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Preface 

More and more engineering work relies on mathematical models of 
the studied object. It is thus important to master the art of model 
construction of real processes. Two kinds of knowledge necessary for 
model construction can be discerned. One is the actual knowledge 
and insights of the process's way of functioning and its properties. 
The other is the knowledge of how these facts can be transferred into 
a useful model. We can call these areas of knowledge the domain 
expert 'S and the knowledge engineer 'S,  respectively. 

This is a book about the knowledge engineer's role in the modeling. 
The book treats methods of transferring physical facts, more intuitive 
insights, and information in measured signals into useful mathemati- 
cal models. It also deals with how to use such models in simulation 
applications, which play a more and more important role in the con- 
temporary engineer's work. 

The material has been used in different courses in the engineering 
education at Linkoping Institute of Technology and Chalmers Institute 
of Technology in Sweden. It has also been used in several courses for 
practicing engineers. The reader is assumed to have some background 
in signals and systems as well as in elementary physics and statistics. 

Several persons have helped us with the work in this book. Dr. 
Krister Gerdin has supplied the material in Example 8.1. Examples 
8.3 and 8.4 are based on Professor Karl Johan Astrom's report "Fre- 
quency Response Analysis, Report 7504," Lund Institute of Technol- 
ogy while the head box example in Chapter 4 is described in his report 
Lecture Notes on Paper Machine Control - Head Box Flow Dynam- 
ics and Control, Department of Automatic Control, Lund Institute of 
Technology, March 1972. He has been kind enough to let us use this 
material. 



Professors Bo Egardt and Gustaf Olsson gave valuable points of 
view on the manuscript. Almost all our co-workers in the Division of 
Automatic Control at Linkoping Institute of Technology, as well as the 
students taking our courses, have given valuable advice and viewpoints 
that have lead to several revisions. 

Ulla Salaneck translated the book into English and also produced it 
in UT$. Ingegerd Stenlund also did a substantial part of the prepara- 
tory work. Leif Andersson, Patrik Lagermo, and Bjorn Ottersten 
solved the last technical problems in transferring the manuscript into 
a final ps-file. We thank all of them for their help. 



Part I 

Models 





To Describe Reality with Models 

Constructing models for a slice of reality and studying their properties 
is really what science is about. The models - "the hypotheses," "the 
laws of nature," "the paradigms" - can be of a more or less formal 
character, but they all have the fundamental property that they try 
to link observations to some pattern. 

In Chapter 1 we will describe the roles that models of dynamical 
systems play; Chapter 2 gives a number of examples of models from 
different areas. In Chapter 3 the necessary, formal mathematical back- 
ground to handle models and systems is given. 





Chapter 1 

Systems and Models 

1.1 Systems and Experiments 

The concept of system can be defined in several different ways. Here 
we will use it to denote an object or a collection of objects whose 
properties we want to study. With such a broad definition most things 
in our environment will become systems: 

Example 1.1 
The solar system, a paper machine, an  evergreen forest, a capacitor 
with a resistor, and so on, are all examples of systems. 0 

It is typical for human activity and curiosity to seek answers to many 
questions about various system properties. 

Example 1.2 
For the solar system a typical question is: When  will the next solar 
eclipse occur? For the paper machine one might wonder: How shall I 
adjust all the valves so that good quality paper is  produced? Concerning 
the capacitor and the resistor the question can be: What  will happen i f  
I connect them? 0 

Many questions of this kind can be answered by experimentation. Con- 
nect the capacitor and the resistor and observe what happens! A main 
activity for the natural sciences over several centuries has been to ask 
appropriate questions about system properties and answer them by 
experiment ation. 
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The experimental method is based on a sound scientific principle, 
but it has its limitations. It is sometimes inappropriate or impossible 
to carry out an experiment. The reason might be one of the following: 

It is too expensive: Arbitrarily testing different valve positions 
on the paper machine would produce unsellable paper during the 
tests. 

It is too dangerous: Training nuclear plant operators in how to 
react in dangerous situations on a real nuclear plant would be 
inappropriate. 

The system does not (yet) exist: When designing a new airplane 
one wants to test the effect of different wing shapes on the aero- 
dynamical properties. 

Note especially the last point. It represents a very common actual sit- 
uation. What possibilities do we then have to answer such questions? 
Well, first we have to make a model of the system. 

1.2 What Is a Model? 

Loosely put, a model of a system is a tool we use to answer questions 
about the system without having to do an experiment. In this way we 
use models in everyday life all the time. It is, for example, a model 
of a person's behavior to say that he is "kind." This model helps 
us to answer the question of how he will react if we ask him for a 
favor. We also have models for technical systems that are based on 
intuition and experience "in the back of our heads." We call such 
models mental models. To learn to drive a car, for example, consists 
partly of developing a mental model of the car's driving properties. 
The operator's picture of how an industrial process reacts on different 
actions is also a mental model developed by training and experience. 

Another kind of model is a verbal model; the behavior of a system 
under different conditions is described in words; If the bank rate goes 
up, then the unemployment rate will rise. Expert systems are examples 
of formalized verbal models. It is important to separate verbal and 
mental models. We use a mental model of the bicycle dynamics when 
we ride a bike. It is not easy to convert it to a verbal model. 
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In addition to the mental and verbal models there are models that 
try to imitate the system. (The word "model" is derived from Latin 
and originally means mold or pattern.) This can simply mean physical 
models, like the ones architects and boat builders use to test the sys- 
tem's (the house and boat, respectively) esthetic and hydrodynamical 
properties, respectively. 

But the models that we will work with in this book are of a fourth 
kind: Mathematical models. By this we mean that the relationships 
between quantities (distances, currents, flows, unemployment, and so 
on) that can be observed in the system are described as mathematical 
relations in the model. Most laws of nature are mathematical models 
in this sense. 

Example 1.3 
For the S: *stem "a mass point," Newton's law of motion gives a rela- 
tionship between force and acceleration. 

For the system "a resistor," Ohm's law describes the connection 
between current and voltage. 

The laws of nature deal, in general, with simple and often ideal 
systems. For realistic systems the relationships between the variables 
can be much more complicated. 

1.3 Models and Simulation 

Assume now that for different reasons the experiment on the system 
cannot be carried out, but a model of the system is available. The 
model can then be used to calculate or decide how the system would 
have reacted. This can be done analytically, that is, by mathematically 
solving the equations that describe the system and studying the an- 
swer. This is the way in which models typically are used, for example, 
in mechanics and electronics. 

With effective computer power, a numerical experiment can be per- 
formed on the model. This is called sirnz~lation (from the Latin sim- 
ulare which means pretend). Simulation is thus an inexpensive and 
safe way to experiment with the system. However, the value of the 
simulatiol results depends completely on the quality of the model of 
the system. 
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1.4 How to Build Models 

The main part of this book deals with building mathematical models 
of real systems. There are, in principle, two sources of knowledge for 
system properties. One is the collected experiences of the experts and 
the literature in the area in question. Within this lies all the laws 
of nature, which have been worked out by generations of scientists. 
The other source is the system itself. Observations of the system 
and experiments on the system are the basis for all descriptions of its 
properties. 

There are also two types of areas of knowledge for the model con- 
struction itself. One is the domain of expertise. This is about under- 
standing the application and mastering all the facts that are relevant 
for this model. The other area is that of the knowledge engineer, who 
has to put the expert's knowledge into practice in a usable and explicit 
model. These terms are usually used in the construction of expert 
systems (or knowledge-based systems), but are just as important for 
mathematical model building. This book thus aims at describing the 
tools the knowledge engineer needs to construct mathematical models 
from the domain of expertise. 

There are two basic and quite different principles for model con- 
struction. 

Physical Modeling 

One principle is to break down the properties of the system to sub- 
systems whose behaviors are known. For technical systems this means 
that the laws of nature that describe the sub-systems are used in gen- 
eral. What happens when the capacitor and the resistor are connected 
follows Ohm's law and the relationship between charge and current 
for a capacitor. For nontechnical systems (economic, sociological, bi- 
ological, and the like), such well-known laws of nature are usually not 
available, even for simple subsystems. Then hypotheses have to be 
introduced or generally recognized relationships have to be used. 
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Identification 

The other basic principle is to use observations from the system in or- 
der to fit the model's properties to those of the system. This principle 
is often used as a complement to the first one. For technical sys- 
tems the laws of nature are themselves mathematical models, which 
once were based on observations of small systems. Hence these models 
according to the first basic principle are also originally based on obser- 
vations of the system. This is sound, since our models of the system 
ultimately have to be based on experience. 

We illustrate the basic principles in Figure 1.1. 

1.5 How to Verify Models 

It is not difficult to build models of systems - the difficulty lies in 
making them good and reliable. For the model to be useful, we have 
to have confidence in the results and predictions that are inferred from 
it. Such confidence can be obtained by verifying or validating the 
model. In principle, model validation is done by comparing the model's 
behavior with the system's and evaluating the difference. 

All models have a certain domain of validity. This may determine 
how exactly they are able to describe the system's behavior. Certain 
models are valid only for approximate, qualitative statements ("rais- 
ing oil prices will lead to a slower growth of the GNP"). Most verbal 
models are of this kind. Other models can be valid even for more ex- 
act, quantitative predictions. The domain of validity here corresponds 
to the accuracy demands. It may also refer to the values of the sys- 
tem variables and system parameters for which the model is valid. A 
certain model of a pendulum might only be valid for small angular 
positions, while another is reliable even for large angles. 

It is important to understand that all models have a limited domain 
of validity. One could say that a law of nature is a mathematical 
model with a large domain of validity. But it is limited. Newton's 
laws of motion are valid with good precision within a broad spectrum 
of velocities, but close to the speed of light it is unable to describe the 
motion of particles. 

One lesson of this section is that there is a fundamental limitation in 
models and simulations: It is hazardous to use a model outside the area 
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Figure 1.1: Model construction. 
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it has been validated for. Models and simulations can never replace 
observations and experiments - but they constitute an important and 
useful complement. 

1.6 Different Types of Mat hemat ical Models 

Mathematical models that have been developed for different systems 
can have different characteristics depending on the properties of the 
system and on the tools used. A number of adjectives are used to 
describe the different types. 

Deterministic - Stochast ic 

We call a model deterministic if it works with an exact relationship 
between measurable and derived variables and expresses itself without 
uncertainty. (It is another thing if our confidence in the expression 
is limited.) A model is stochastic if it also works with uncertainty 
or probability concepts. A stochastic, mathematical model contains 
quantities that are described using stochastic variables or stochastic 
processes. 

Dynamic - Static 

A system is usually characterized by a number of variables that change 
with time (position of bodies, current, voltage, unemployment num- 
bers, blood sugar values, and the like). If there are direct, instanta- 
neous links between these variables, the system is termed static. A 
resistor is an example of a static system, since the current through it 
and the voltage across it are directly related (Ohm's law). The cur- 

rent through it depends only on the present voltage and not on earlier 
values. 

For other systems the variables can change also without direct out- 
side influence, and their values will thereby also depend on earlier 
applied signals. Such systems are called dynamic (from the Greek 
dynamis for strength or power). 
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Figure 1.2: Resistor and capacitor 

Example 1.4 
A capacitor connected to a resistor with an  external voltage v, is a dy- 
namic system. See Figure 1.2. The voltage over the capacitor depends 
on  the charge and thereby on  earlier values of the current and voltage 
v. 

Example 1.5 
A national economy is  a dynamic system, since the present economic 
situation depends on  several earlier years' socioeconomical intenten- 
tions. 

The list of examples of dynamic systems can be long. In this book 
we will use a slightly narrower definition: A dynamic system is a sys- 
tem that is described by differential and/or difference equations. 

Continuous Time - Discrete Time 

A mathematical model that describes the relationship between time 
continuous signals is called t ime continuous. Differential equations are 
often used to describe such a relationship. In practice, the signals of 
interest are most often obtained in sampled form, that is , as a result 
of discrete time measurements. A model that directly expresses the 
relationships between the values of the signals at the sampling instants 
is called a discrete t ime or sampled model. Such a model is typically 
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described by difference equations. 

Lumped - Distributed 

Many physical phenomena are described mathematically by partial dif- 
ferential equations. The events in the system are so to speak dispersed 
over the space variables. This description is called a distributed param- 
eter model. If the events are described by a finite number of changing 
variables, we talk of lumped models. Such models are usually expressed 
by ordinary differential equations. 

Change Oriented - Discrete Event Driven 

The physical world is usually described in terms of continuous changes 
in the signals and variables we are interested in. Most laws of nature 
are of this character. (If we work with discrete time, the changes 
will of course not be continuous, but the basic idea is the same.) We 
call such models change oriented and say that they correspond to the 
Newtonian paradigm in the model world. 

For systems constructed by humans the course of events is different 
in many cases. The underlying changes take place in terms of discrete 
events, which occur more or less randomly. Think, for example, of 
queuing systems or production systems where the arrival of customers 
drives the system. Other random events that influence the system may 
also occur. It can be a question of a machine breaking down, a buffer 
stock being emptied, and so on. Such systems and models are called 
discrete event systems. 

1.7 The Book in Summary 

After this survey of concepts that apply to systems and models we 
can define the book's goals and contents: To describe how to build 
mathematical models of dynamic systems and how to use them for 
simulation. We will treat both discrete time and continuous time 
representations and deterministic as well as stochastic models. We 
will, however, not discuss distributed models. They will have to be 
treated approximately as lumped (see Example 2). We will also not 
discuss the area of discrete event models. Such models demand their 
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own techniques both when they are constructed and simulated and 
thereby fall outside the framework of this book. 

The book is divided into four parts: 

Part I, which comprises Chapters 1-3, deals with typical ways of de- 
scribing signals and dynamic systems and their basic properties. 

Part 11, which consists of Chapters 4-7, describes tools for physical 
model building. This includes straightforward methods based on 
common sense as well as more formalized procedures like bond 
graphs and computer algebraic tools. 

Part 111, which comprises Chapters 8-10, deals with system identi- 
fication, that is, methods to arrive at  mathematical models by 
starting with observations of the system. 

Part IV, consisting of Chapters 11-12, describes how models are sim- 
ulated and how they are used in simulators. The concept of 
model quality is also discussed. 



Chapter 2 

Examples of Models 

2.1 Introduction 

In this chapter we will study a number of simple examples of model 
building from different areas. The main purpose is to illustrate how to 
think when constructing the models and which types of mathematical 
models can be obtained. This will serve as a background when we 
discuss the formal aspects of the models in Chapter 3. There we will 
use the examples from this chapter as illustrations. 

In these examples we will present the models in a way that seems 
natural within the respective applications. In Chapters 4-6 we will 
introduce principles for systemizing model building. 

2.2 An Ecological System 

As a first example we will study an idealized ecological system consist- 
ing of two animal species that either compete for the same food (case 
1) or are in a predator-prey situation (case 2). We are interested in 
variations in the number of individuals of these species. Let Nl(t) and 
N2(t) be the number of individuals of each species at time t. The birth 
rate for the species is assumed to be constants X I ,  and X2, respectively. 
There are thus XiNi offsprings of the species i born per unit time. 

The mortality rate for the species is pi, and it depends on the 
availability of food as  well as the risk of being eaten. In general, we 
can write pi = pi (NI, N2). There are thus pi (NI, N2) . Ni individuals 
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of species i dying per unit time. The net effect is now described by 
the differential equations 

We will examine the two cases. 

Case 1: The Species Compete for the Same Food 

If the species subsist on the same food, the total number of specimens 
(possibly weighted) will determine the supply of food and thereby the 
mortality rate. We assume as a simple model that the mortality is 
proportional to this total number and assign 

and get the model 

d 
- N2(t) = (X2 - ~2)N2(t) - 62 (NI (t) + N2(t))N2(t) 
dt 

(2.2b) 

In Figure 2.1, it is shown how Nl and N2 vary when 

It can be shown that if (X1 - yl)/S1 > (X2 - 72)/62 the second species 
will die out and the first will approach the number (X1 - yl)/61, inde- 
pendently of the initial number of individuals. 

Case 2: Predator and Prey 

Assume now that the first species preys on the second. The supply 
of food for species 1 is thus proportional to NZ, and their mortality 
rate is thereby diminished when N2 increases. We assign the simple 
relationship 

P l (Nl ,N2)=Yl -~ lN2 ,  O l > O  
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Figure 2.1: Number of individuals when the species compete for the 
same food. NI, solid line, N2, dashed line. 

The mortality rate for species 2 increases in the same way when NI 
increases: 

~~2(N1,N2)=72+a2N1,  a 2 > O  

We then get the model 

Here it is natural to assume that the predators would die out if there 
were no prey, that is, X1 - 71 < 0, and that the prey would multiply 
if there were no predators, that is, X2 - 7 2  > 0. In Figure 2.2, we 
show how NI and N2 vary in a typical case (X1 = 1, 71 = 2, X2 = 
2, 7 2  = l, a1 = a 2  = 1). We see that the numbers oscillate around a 
certain value. This agrees well with the observations of such systems in 
nature. In Figure 2.3, we show how many hare pelts (snowshoe hare) 
and lynx pelts that were bought from hunters by the Hudson Bay 
Company in Canada during the years 1846-1936. It  can be assumed 
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Figure 2.2: Number of predator (NI) (solid line) and prey (N2) (dashed 
line) as a function of time. 

Figure 2.3: Number of lynx pelts (solid line) and hare pelts (dashed 
line) sold in Canada. (From D. MacLulich, University of Toronto 
Studies, Biological Sciences, No. 43, 1937, pp. 1-136.) 
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Figure 2.4: Tank with free outflow. 

that these numbers are approximately proportional to the occurrence 
of the respective species. 

Remark: This example is based on the classic article by V. 
Volterra, "Variations and Fluctuations of the Number of Individu- 
als in Animal Species Living Together," J. du Conseil, Vol 111, 1928. 
This article was the source of a completely new discipline within biol- 
ogy: population dynamics. The models can of course be made more 
sophisticated, but already the simple assumptions we have made have 
some nontrivial consequences. The predator-prey situation, for exam- 
ple, guarantees the survival of both species, while the case where there 
is competition for food eventually will lead to the extinction of one 
species. 

2.3 A Flow System 

Consider a tank with free outflow as in Figure 2.4. The tank has a 
crossection A (m2) and the outflow hole has an area a (m2). The level 
of the liquid in the tank is h (m), the inflow is U (m3/s), and the 
outflow is q (m3/s). We want to construct a model of how the outflow 
depends on the inflow. 
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Bernoulli's law describes the relationship between the outflow speed 
v (m/s) and the liquid level in the tank: 

Here g is the acceleration of gravity. The relation between the outflow 
q and the outflow speed v is by definition 

The volume of the liquid in the tank at time t is obviously A h(t) 
(m3), and it changes according to the difference in inflow and outflow 
(this is called mass balance given that the density is constant): 

The equations (2.4)-(2.6) now constitute a model for the tank system 
in Figure 2.4. By substituting (2.5) and (2.4) into (2.6) we get an 
explicit nonlinear differential equation for the liquid level: 

With the help of (2.7) we can determine the level h(t) when the inflow 
u(t) is known. After that, the outflow q(t) is determined as 

In Figure 2.5 we show how h(t) varies when u(t) = 1, t 2 0, for 
h(0) = 0 and for h(0) = 2 ( A  = 1, a f i  = 1). 



Figure 2.5: Liquid level in the tank when u( t )  = 1 and h ( 0 )  = 0 or 
h ( 0 )  = 2. 

2.4 An Economic System 

Simple national economic models are based on the following funda- 
mental variables: 

y ( t ) :  the gross national product (GNP), year t 

c ( t ) :  the total consumption, year t 

i ( t ) :  the total investments, year t 

g ( t ) :  the expenses of the government, year t 

By definition, 

y ( t )  = c ( t )  + i ( t)  + g ( t )  (2.9) 

There are obviously other relationships among these four variables. In 
reality these are certainly complicated, and some "exact" relationships 
of the laws of nature type are missing. 

Different economic schools have assigned different simplified rela- 
tionships. In this example we will study a simple Keynesian model, 
the multiplier-accelerator model according to P. Samuelsson. The fol- 
lowing assumptions are then made regarding economic mechanisms: 
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1. The consumption for the current year is assumed to be propor- 
tional to the GNP of the previous year: 

2. The investments are assumed to be proportional to the increase 
in consumption: 

Both assumptions seem reasonable and should describe the principal 
character in the real relationships. 

Equations (2.9) - (2.11) now constitute a simple model for the 
national economic system. Our aim with this model could be to in- 
vestigate how the government can influence the economy by different 
interventions. It is then natural to view the GNP y(t) as a goal vari- 
able. The government can control it in several ways, for example by 
influencing c(t) via taxes (increases in sales taxes are used to lower 
the consumption) or by influencing i(t)  via the bank rate (a lower 
bank rate makes it easier to borrow money and thereby investments 
increase). 

But in this example we will consider the expenditures g(t) as the 
government's main instrument to influence the economy. To investi- 
gate how g(t) influences y(t), it is suitable to reorganize the model 
given by equations (2.9)-(2.11). 

The variables c( t )  and i(t) in (2.9) can be eliminated with the help 
of (2.10) and (2.11), which gives 

The relationship between g(t) and y(t) is thus given by the difference 
equation 

y(t) - (a+ab)y(t - 1) +aby(t - 2) = g(t) (2.13) 

We could also organize the model by expressing how the variables y(t) 
and c(t) are changed from year to year. According to (2.10) we have 
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Figure 2.6: Consequences in the GNP, y(t) (crosses), and consumption 
c(t) (asterisks), of an increase in the state expenditures, g(t). 

Furthermore 

Here we have used (2.9) in the first equation, (2.11) in the second, and 
(2.10) in the third. Using vector and matrix notations, we can write 
the result as 

The descriptions (2.13) and (2.14) are, of course, equivalent, but the 
matrix expression (2.14) has certain advanta,ges in simulation, which 
we will see later. In Figure 2.6 it is shown how the GNP is changed 
according to model (2.13) or (2.14) when the expenditures of the state 
increase by one unit at year t = 2 (a = b = 0.5). We see that an 
increase in the state expenditures, according to this model, has two 
consequences for the GNP. One immediate rise follows directly from 
(2.9). This in turn results in an increase in the consumption, according 
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to (2.10), and thereby, according to (2.11), an increase in investments. 
The governments actions thus have a multiplier effect on the economy. 

The model (2.14) is of course much simplified. It can be made 
more detailed and more exact by increasing the number of variables, 
dividing the investments into different areas, and so on. Such models 
are very useful today for studying and predicting economic variables. 

2.5 Conclusions 

The examples in this chapter have been gathered from different prob- 
lem areas with different characteristics. However, the resulting models 
have shown a number of common features. The model has consisted of 
a differential equation or a system of differential equations, describing 
how some of the system variables relate to each other. It was then 
possible to determine other variables from the solution to the differ- 
ential equation. When we worked with discrete time (Section 2.4), we 
obtained a difference equation instead of a differential equation. But, 
apart from that, the model had the same structure. 

The differential equations have arisen naturally in the model build- 
ing process. We have started from problems of this type: How does 
this variable (number of animals, liquid level, GNP) change with time? 
The dynamic character of the systems (see Section 1.6) therefore nat- 
urally leads to differential and difference equations. 

We also note that model building contains different degrees of ideal- 
ization. Equations for certain electric circuits are rather exact. Equa- 
tions for motion of bodies already contain idealizations of the type of 
point masses, neglected air resistance, and so on. Bernoulli's law is 
only valid under idealized conditions, as if no turbulence exists at the 
outflow, and so on. Even here the approximation is rather good. 

For the biological and economic example, however, it is obvious that 
the assumptions of the mortality rate and the economic links cannot be 
even approximately valid. They are, on the other hand, qualitatively 
of the same character as the conditions that, in all likelihood, should 
apply in reality. We thereby expect that the behavior of the models 
reveals a number of essential properties of the system. The modeling is 
valuable even in this case, since the model's statements are not trivial 
consequences of the assumptions. 



Chapter 

Models for Systems and 
Signals 

3.1 Types of Models 

Mat hemat ical Models and Signal Models 

By a mathematical model we mean a description of the system where 
relationships between the model's variables and signals are expressed in 
mathematical terms. In the examples in Chapter 2 we saw that model 
building naturally leads to differential and difference equations. Our 
mathematical models of the dynamic system will thus, in principle, 
consist of a collection of differential and/or difference equations. In 
this chapter we will discuss the formal, mathematical aspects of such 
equations. Several of the external signals that influence the system 
also have to be modeled in order to understand and simulate their 
effects on the system. In this chapter we will therefore also discuss 
typical ways of describing properties of signals. 

Block Diagram Models 

A block diagram of a system is a logical decomposition of the functions 
of the system and shows how the different parts (blocks) influence each 
other. This interaction is illustrated by arrows between the blocks. 
A given system can usually be represented by several different block 
diagram models, depending on how detailed we want to make them. 
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Figure 3.1: Block diagram for the tank in Section 2.3. 

Figure 3.2: Block diagram describing how the level in the tank depends 
on the inflow and the outflow. 

Example 3.1 Block Diagram for the Water Tank 
Consider the tank i n  Figure 2.4. The  outflow q depends o n  the inflow 

U ,  which we can illustrate by a simple block diagram, according to 
Figure 3.1. W e  can also make a more detailed description, which i n  
addition contains the level h i n  the tank. The  level h depends on  the 
inflow u and the outflow q (Figure 3.2). The  outflow q in turn depends 
on  the level h (and the outflow area a ) ,  according to  Bernoulli's law 
(see Figure 3.3). The left picture i n  Figure 3.3 i s  preferable if the 
outflow area i s  fixed and cannot be influenced. If the outflow area can 
be varied, for example, by placing a valve i n  the outflow, the right 
picture is however more natural. From the subsystems i n  Figures 3.2 
and 3.3, we now have a block diagram for the tank according to Figure 
3.4. 

Observe the difference between the schematic picture in Figure 2.4 
and the block diagram in Figure 3.4. Schematic pictures are often used 
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Figure 3.3: (a) Outflow as a function of the level, and (b) as a function 
of the level and the outflow area. 

Figure 3.4: Block diagram for the tank system. 
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for simple illustration of the function of a system. These are, however, 
based on the physical construction of the system, whereas the block 
diagram is based on the logical description. The flows in Figure 3.4 
are information flows and not water as in Figure 2.4. 

Block diagrams are very useful when structuring a system, espe- 
cially for larger and more complex ones. As models for the system 
they can be compared to the verbal models we discussed in the intro- 
ductory chapter. They also constitute a very important starting point 
for the mathematical model building. When, for example, we built 
the model (2.7), (2.8) for the tank system, we started from the basic 
equations (2.6) and (2.4)-(2.5), which correspond to the two blocks in 
Figure 3.4. In Chapter 4 we will discuss in more detail the use of block 
diagrams in model building. 

Block diagrams are also used as models in sciences where quantita- 
tive models usually cannot be constructed, as in, for example, ecology, 
sociology (sociograms), and so on. 

Simulation Models 

Models can be constructed for different purposes. As we noted in the 
introduction, simulation is often a main goal. For large, complex mod- 
els it is common that the equations have not been explicitly expressed 
in closed form. The model might then only exist as a computer pro- 
gram that is used for simulation. Such models can be called simulation 
models. In Chapter 11 we will discuss them more closely in connec- 
tion with program languages that have been specifically developed for 
simulation of dynamic systems. 

3.2 Input, Output, and Disturbance Signals 

A mathematical model of a dynamic system contains a number of 
quantities of different types. In this section we are going to discuss 
the characteristics of these different quantities and assign some terms 
for them. Certain quantities in the model do not vary in time. We will 
call them constants. Quantities that vary in time we will call variables 
or signals. 

When modeling and simulation studies are made for design pur- 
poses, it is practical to separate them into two types of constants in 
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models. System parameters are constants that are considered given by 
the system and cannot be chosen by the designer. Design parameters 
are constants that can be chosen in order to give the system/model 
desired properties. The purpose of the simulation study is often to 
decide suitable values for the design parameters. 

Example 3.2 
If we simulate the tank model i n  Section 2.3 in order t o  test how the 
outflow depends o n  the outflow area a in an  otherwise fixed tank, the 
area a i s  a design parameter, while g and A are system parameters. 

A model and a dynamic system always contain a number of vari- 
ables, or signals, whose behavior is our primary interest. We will call 
such signals outputs and denote them by yl ( t )  , y2 ( t )  , . . . , yp ( t )  . 

Example 3.3 
I n  Section 2.2 the output was 

y l ( t )  = N l ( t )  (specimens of species 1)  
y2 ( t )  = N 2 ( t )  (specimens of species 2) 

Note that the output is not defined by the system itself. It is instead 
the model builder's interests that decide what is going to be condidered 
as output. Another model builder might have chosen y2 ( t )  = N z ( t )  as 
the model's output in Example 3.3. 

We will write all outputs as a column vector: 

In systems/models, there are usually signals and variables that influ- 
ence other variables in the system, but are not themselves influenced 
by the behavior of the system. The inflow U in the tank system (Sec- 
tion 2.3) is such a signal. It influences both the level of the tank and 
the outflow, but does not itself depend on these variables. We will 
call such a signal an external signal. In a block diagram it is easy to 
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recognize external signals as free arrows pointing into one or several 
blocks. See for example Figure 3.4, where U and a are external signals. 

An external signal can be one of two types. If we have the external 
signal at our disposal, to influence the system's behavior, we talk of 
an input or control signal. We will denote such signals by 

or by vector formalism 

An external signal that we, in the application in question, cannot 
influence or choose, we will call a disturbance signal. We will use the 
not at ion 

~ l ( t ) ,  w2( t ) ,  . . . , W & )  

for disturbance signals. 

Example 3.4 Signals for the Water Tank 
If the outflow area a in the tank system in Section 2.3 can be varied, 
this system will have two external signals, u( t )  and a ( t ) .  Whether they 
are disturbance signals or inputs depends o n  the application. The flow 
u(t)  could be a variable that we cannot influence, while a ( t )  could be 
regulated to achieve certain goals. Think, for example, of the tank as 
a water reservoir, u(t)  as rain, and a ( t )  as a floodgate. Then  u(t)  is  
a disturbance signal and a ( t )  an  input. I n  other applications we can 
control the flow u(t) and then this also will be a n  input.  • 
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The example shows that the presence of external signals and the 
division of input and disturbance signals is not unambiguously deter- 
mined by the system as such. I t  is instead decided by our opinion of 
what can vary or be varied and whether we can control the conditions. 

For modeling and simulations, it is not necessary to decide on 
whether a certain signal is an input or a disturbance signal. The 
signal enters the model and the simulation program in the same way 
regardless of the interpretation. The distinction will only become im- 
portant when discussing which properties can be obtained from the 
system and how to achieve them. Therefore, for simplicity we will 
often use the notation U for both input and disturbance signals and 
talk about "inputs" when we should say "inputs and/or disturbance 
signals." 

We have now defined outputs and external signals in the models. 
We will call other model variables internal variables. 

The notation we have introduced in this section can be summarized 
as follows: 

a Constant: A quantity in the model that does not vary with time. 

a System parameter: A constant that is given by the system. 

a Design parameter: A constant that we can vary in order to give 
the system different properties. 

a Variable or signal: A quantity in the model that varies with time. 

a Output: A variable whose behavior is our primary interest. De- 
noted by y. 

a External signal: A variable that affects the system without being 
affected by the system's other variables. 

a Input: An external signal in the system whose time variations 
we can choose. Denoted by U .  

a Disturbance signal: An external signal in the system that we 
cannot influence. Denoted by W. 

a Internal varzable: A variable in the system that is neither an 
output nor an external signal. 
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Figure 3.5: Basic block diagram for a system. 

With the notation U ,  W ,  and y we can picture the system as a simple 
block diagram according to Figure 3.5. 

By these concepts we can also more clearly define the difference 
between a static and a dynamic system, which we talked about in Sec- 
tion 1.6. The variations in the output from a static system are directly 
coupled to the momentary value of the input. For dynamic systems, 
on the other hand, the present output value depends, in principle, on 
all earlier input values. See Figure 3.6. 

3.3 Differential Equations 

In the mathematical modeling in Chapter 2, we found that the rela- 
tionships between the model variables were described with the help of 
differential equations (in discrete time, difference equations). 

There are two different ways of describing these differential equa- 
tions. One is to directly relate inputs U to outputs y in one differential 
equation. In principle it looks like this: 

LJ(y(n)(t), y(n-l)(t), . . . , y(t), J m ) ( t ) ,  Jm- l ) ( t ) ,  . . . , u(t)) = 0 (3.4) 

where 

and g ( . ,  -, . . . , .) is an arbitrary, vector-valued, nonlinear function. 
The other way is to write the differential equation as a system of 

first-order differential equations by introducing a number of internal 
variables. If we denote these internal variables by 
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(4 (b) 
Figure 3.6: Example of input-output relationship for (a) a static and 
(b) a dynamic system. The input is the solid line, and the output the 
dashed line. 

and introduce the vector notation 

(3.5) 

we can, in principle, write a system of first-order differential equations 
as 

= f W), u(t)) (3.6) 

The dot over X denotes differentiation with respect to time t. In (3.6), 
f (X, U) is a vector function with n components: 

The functions fi(x, U) are in turn functions of n + m variables, the 
components of the X and U vectors. Without vector notation, (3.6) 
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becomes 

The outputs of the model can then be calculated from the internal 
variables x i ( t )  and the inputs ui ( t):  

which written in longhand means 

All the models in Chapter 2 can be written as (3.6)-(3.9) or a s  their 
corresponding discrete time equations 

Example 3.5 Internal Description of the Water Tank 
The model (2.7), (2.8) for the tank i n  Section 2.3 i s  of the form (3.6), 
(3.9) with 

x ( t )  = h ( t ) ,  u(t)  = u(t)  
y ( t )  = q( t ) ,  n = 1, m = 1, p = 1 
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( 4  (b) 

Figure 3.7: (a) External model, and (b) internal model. 

A model description of the type (3.4) is sometimes said to be an 
external description, since it directly relates the external variables to 
the output. The description (3.6), (3.9) is then said to be internal, 
since it also describes the behavior of the internal variables, the X'S. 

See Figure 3.7. 
In this book we will use the internal description most of the time. 

The reason for this is that the vector x(t) in (3.6) has an important 
interpretation as a state vector, which we will discuss in the next 
section. 

3.4 The Concept of State and State-space 
Models 

In the end of Section 3.2 we remarked that for a dynamic system the 
output depends on all earlier input values. This leads to the fact that 
it is not enough to know u(t) for t 2 to in order to be able to calculate 
the output y(t) for t 2 to. We need information about the system. By 
the state of the system at time to we mean an amount of information 
such that with this state and the knowledge of u(t), t 2 to, we can 
calculate y(t), t 2 to. This definition is well in line with the everyday 
meaning of the word "state." 

It is also obvious from the definition of state that this concept will 
play a major role in the simulation of the model. The state is exactly 
the information that has to be stored and updated at the simulation 
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in order to be able to calculate the output. 
Consider a general system of first-order differential equations (3.7) 

with the output given by (3.9): 

For this system the vector x(to) is a state at time to. This follows from 
a general result on differential equations: 

Provided that f (X,  U) is well behaved (it is enough, for example, 
that f is continuously differentiable and U is piecewise continuous), 
the differential equation (3.12a) with x(to) = xo has a unique solution 
for t 2 to. 

Intuitively we can think as follows: Assume that we know x(t) and 
u(t) at time to. We can then according to (3.12a) calculate x(t). We 
can then also compute x(to + St) for infinitesimally small 6t according 
to 

,(to + 6t) =  to) + at . f WO),  to)) (3.13) 

From this value we can continue and calculate x(t) for t > to. The 
output y(t), t 2 to, can then also be computed according to (3.12b). 
In fact, the equation (3.13) is Euler's method for a numerical solution 
of (3.12a) if St is a small, finite number. 

We have thus established that the variables xl (t), . . . , x,(t) or, in 
other words, the vector 

in the internal model description (3.12) is a state for the model. Herein 
lies the importance of this model description for simulation. The model 
(3.12) is therefore called a state-space model, the vector x(t) the state 
vector, and its components xi(t) state variables. The dimension of 
x(t), that is, n, is called the model order. 

For the discrete time model (3.11a) it is obvious that x(to) is a state 
at time to. If we know x(to) and u(t) for t 2 to we can clearly calculate 
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x(t) and thereby y(t) for t = to + 1, to + 2, to + 3, .... Equation (3.11a) 
is its own solution algorithm. 

State-space models will be our standard model for dynamic sys- 
tems. In conclusion, we have the following model: 

State space models (continuous time) 

~ ( t )  = f(x(t),  u(t)) (3.14a) 

~ ( t )  = h(x(t), (3.14b) 

u(t) : input, an m-dimensional column vector 
y(t) : output, a pdimensional column vector 
x(t): state, an n-dimensional column vector 
The model is said to be nth order. If the function f (X, U) is contin- 
uously differentiable and if u(t) is a piecewise continuous function, 
then a unique solution to (3.14) for x(to) = xo exists. 

For discrete time systems we have the corresponding model: 

State space models (discrete time) 

~ ( t k + ~ )  = f (x(tk), u(tk)) k = 0,1,2, ... (3.15a) 

~ ( t k )  = h(x(tk), ~ ( t k ) )  (3.15b) 

u(tk): input at time tk ,  an m-dimensional column vector 
y(tk): output at time tk ,  a pdimensional column vector 
x(tk): state at time tk ,  an n-dimensional column vector 
The model is said to be nth order. For a given initial value $ ( t o )  = 
xo, (3.15) always has a unique solution. 

Linear Models 

The model (3.14) or (3.15) is said to be linear if f (X, U) and h(x,u) 
are linear functions of X and U: 
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Here the matrices have the following dimensions 

If these matrixes are independent of time the model (3.16) is said to be 
linear and time invariant. Some facts for linear, time invariant models 
are summarized in Appendix A. 

3.5 Stationary Solutions, Static Relationships, 
and Linearization 

For a given initial state xo at time t o ,  

and for a given time function u(t) ,  a unique solution x( t )  exists to 
(3.14). This solution can, more completely, be denoted by 

X @ ;  xo, t o ,  U ( . ) )  (3.17) 

in order to clearly show that it is tied to the initial value x ( t o )  = xo and 
to the input U ( . ) .  A solution x ( t ;  xo, to, U ( . ) )  is also called a trajectory 
for the differential equation (3.14) [or difference equation (3.15)]. The 
output that corresponds to the input signal { u ( t ) }  and to the initial 
state x ( t o )  = xo is of course 

y(t) = h ( x ( t ;  xo, t o ,  U ( . ) ) ,  

Stationary Solutions 

In many cases in practice the input is constant over long periods of 
time. In this section we will discuss how the state model (3.14) behaves 
in such a case. We thus assume that the input is constant in time: 

For a given value of uo, let the state vector xo be a solution to the 
equation 

~ ( X O , U O )  = 0 (3.19) 
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There can be several xos that solve (3.19), or such a solution can be 
lacking, depending on uo and the function f ( X ,  U ) .  

Now solve the differential equation 

with the initial condition 
x ( to )  = X 0  

where xo is subject to (3.19). Then i ( t o )  = 0 and the solution 
x ( t ;  2 0 ,  t o ,  uO) will be constant and equal to X O .  Such a solution is 
called a stationary solution. Exo, u o )  is said to be a stationary point to 
the differential equation (3.14). Sometimes we use the notation singu- 
lar point or equilibrium. On the other hand, all time constant solutions 
x ( t )  E X* for the input (3.18) must fulfil1 

That is, they have to be such that X* is a solution to (3.19). 
All stationary solutions to (3.14) for the input u(t) = uo are ob- 

tained by solving (3.19) with respect to xo. If x ( t )  = xo is a stationary 
solution, then the corresponding output will also be time invariant: 

y ( t )  - yo = h ( x o ,  uo) for all t (3.20) 

The stationary solutions play an important role in the analysis of a 
system. They are the possible equilibrium points of the system. Such 
a point often corresponds to a desired behavior of the system. 

Example 3.6 Stationary Points for the Population Model 
What stationary points does the population model (2.3) have? W e  find 
them by setting the right side [the function f ( X ) ]  equal to  zero: 

This system of equations has the solution 
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(4 (b) 
Figure 3.8: X = 1 is an asymptotically stable solution. (a) Solutions 
that start close to 1 converge to this value. (b) All solutions converge, 
that is, X = 1 is globally asymptotically stable. 

There are thus two stationary points for this system. This means, for 
example, that if the number of specimens of each kind should be given 
by (3.22) at any time, the number will be constant at these values. All 
other combinations of numbers (except the trivial Nl = Nz = 0) will 
necessitate changes. 

Stability 

Suppose the initial value x(to) = xo gives a stationary solution. What 
happens at another initial value x(to) = xl? Depending on the prop 
erties of the function f (X, uo), the solution for the initial value XI can 
behave in different ways. The stationary solution xo is asymptotically 
stable if any solution x(t) that starts close enough to xo converges to 
xo as t tends to infinity. The solution is globally asymptotically stable 
if all solutions x(t) to (3.14) with u(t) = uo converges toward xo as t 
tends to infinity. See Figure 3.8. 



3.5 STATIC RELATIONSHIPS AND LINEARIZATION 

Static Relationships 

For an input uo and a corresponding asymptotically stable stationary 
solution xo, the output of the system 

will converge toward the stationary value 

Let us discuss the relationship between input level uo and the corre- 
sponding output yo. The stationary point xo, which is determined by 
(3.19), is an implicit function of uo. We can emphasize this by writing 

The stationary output yo will thereby be a function of uo: 

The expression (3.24) describes the static relationship that exists be- 
tween a constant input and the corresponding stationary output. If the 
stationary solution is asymptotically stable and the input is changed 
from one level to another, the stationary output will in time assume 
the value in (3.24). How fast this will happen depends on properties 
of the differential equation (3.15). The term time constant is used to 
tell in which time scale the output is approaching the stationary value 
yo. If we say that "the system (for the input uo) has the time constant 
5 seconds," this means that 5 seconds after a change in the input level 
the output will have come close to its new stationary value. A formal 
and more exact definition of the concept of time constant can only be 
given for linear systems. (Compare Appendix A.) 

If the time constants for the system (3.14) should be considerably 
shorter than the time frame we are interested in, the dynamical differ- 
ential equation model (3.14) can be replaced by the static model (3.24). 
See also the discussion on separation of time constants in Section 4.6. 

If we make a small change of the input level uo from uo to ul = 
uo + SuO, the stationary output will according to (3.24) be given by 
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Figure 3.9: Time constant T and static gain BIA. 

Here the derivative g'(uo) is a p X m matrix that describes how the 
stationary output varies locally with the input. It is called the static 
gain (for the input uo). The terms time constant and static gain are 
illustrated in Figure 3.9. 

Example 3.7 Stationary Points for the Water Tank 
Consider the tank model in Section 2.3. If the inflow u(t) is  constant 
and equal to uo, we can determine the corresponding stationary solu- 
tion for the system by solving [see (2.7)] 

with respect to  ho. This gives 

This relation between the state vector's stationary value h. and the 
input uo corresponds to (3.23). Thus the corresponding stationary 
outflow will be 

~ ( t )  qo = a .  J2g. = uo 
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This corresponds to the static relation (3.24). The static gain is thus 
equal to 1, independent of the value of UO. (This result is trivial, since 
if the level in the tank is constant the outflow has to be equal to the 
inflow.) 

In this section we have discussed continuous time systems. For a 
discrete time system (3.15), a stationary solution corresponding to the 
constant input 

~ ( t k )  = U0 

is given by xo, the solution of 

This equation corresponds to (3.19) in the continuous time case. Other 
than that, the results are analogous to the ones. discussed previously. 

Linearizat ion 

If a stationary solution is of interest, it can be meaningful to ask how 
the solution behaves in its neighborhood. 

Consider a nonlinear system (3.14) with a stationary solution 
(xo, uo). Let yo = h(xo, uo). This system can be linearized around 
the solution xo, uo by considering small deviations Ax(t) = x(t) - xo, 
Au(t) = u(t) - uo, and Ay(t) = y(t) - yo. Approximately, we then 
have 

AX = AAx + BAu (3.26a) 

Ay = CAx + DAu (3.26b) 

Here A, B, C, and D are partial derivative matrices (Jacobians) of 
f (X, U) and h(x, U), respectively, evaluated at (xo, uO) . See Appendix 
B for more details. 

Example 3.8 Linearization of the Population Model 
According to Example 3.6, the population model in Section 2.2 has the 
stationary points NI = N2 = 0 and 
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Figure 3.10: The solution to the population model. Exact (solid line) 
and linearized (dashed line) for AN1 (0) = 0.1, AN2(0) = 0. 

Let U S  linearize the equation (2.3) around the latter stationary point. 
W e  have 

Evaluating these derivatives at the stationary point NT, NZ, we 
have the linearized system: 

Figure 3.1 0 shows the solutions to the linearized equation (3.27) and to 
the original one (2.3) for the initial value ANl(0) = 0.1, AN2(0) = 0. 
Note the insignificant deviation from the equilibrium. 

Linearization is an important and useful tool. However, we have to 
point out the following important limitations: 
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Linearization can only be used to study local properties in the 
vicinity of a stationary solution. This can be interesting in many 
cases, in particular if we want the system to remain around one 
of these stationary solutions. 

It is often difficult to quantitatively estimate how good the ap- 
proximation of the linearized solution is. Conclusions based 
on the linearized system should be treated with a considerable 
amount of caution and preferably be complemented by simula- 
tions of the original nonlinear system. 

Finally, the system (3.14) can be linearized by a similar procedure 
around any solution not necessarily stationary. The resulting linear 
system will then, in general, be time varying. [The matrices A, B, C,  
and D in (3.26) will be evaluated at ~ ( t ) ,  a(t),  where z(t),  ~ ( t )  is the 
nominal solution to (3.14) around which we linearize.] 

Remark: A time discrete system (3.15) can also be linearized 
around a stationary solution u0, 50. We then have 

where the matrices A, B,  C,  and D are given by (B.2) and (B.5) in 
Appendix B. 

3.6 Disturbances in Dynamic Models 

In Section 3.2 we defined a disturbance signal as an external signal 
that we cannot choose or influence ourselves. In many systems the 
disturbance signal has a very obvious influence on the behavior of the 
system. It is then important to also have a picture of the typical 
properties of the disturbance signals. 

The construction of a model for the disturbance signals depends 
to some extent on whether it is separately measurable and of known 
origin. In this section we will discuss the importance of these distinc- 
tions. 
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, \Solar panel 

Figure 3.11: Outline of the solar house 

Known Disturbance Sources - Measurable Disturbance 
Signals 

The disturbance signal is often a well-known physical quantity, which 
can be measured separately. Consider the following example. 

Example 3.9 A Solar-heated House 
Basically a solar-heated house looks like the one depicted in Figure 
3.1 1. The function is that the sun heats the air in the solar panel. 
This air is then pumped by fans into the heat storage. W e  use the 
following signals to describe the system: 

I ( t )  : Solar intensity at time t 

y ( t )  : Temperature at the inlet to the heat storage 

u ( t )  : Pump velocity 

W e  want to build a model for how the storage temperature y ( t )  is 
influenced by the pump speed u ( t )  and the intensity I ( t ) .  Measurements 
of the solar intensity I ( t )  are shown i n  Figure 3.12. (See also Example 
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Time (h) 

Figure 3.12: The solar intensity I ( t )  measured during a 24-hour period 
with a sampling interval of 10 minutes. 

10.4.) (Actually, it is more common to use water instead of air for 
the heat transport, but the data shown in  the figure are collected from 
an experimental setup with air.) 

According to the classification in Section 3.2, the pump speed u(t) 
is an input, while the intensity I ( t )  is a disturbance signal, since we 
cannot influence its value. It  is, however, measurable and we know its 
origin. We have therefore no particular difficulties to incorporate this 
disturbance signal in the model construction. There is no essential 
difference between the handling of the disturbance signal I ( t )  and the 
input u ( t ) .  

In such cases we are led to a model of the general character 

or, in discrete time, 
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[Compare with (3.14), (3.15) .] Here we have distinguished between 
the input U and the disturbance signal W,  but as pointed out, this 
distinction is not essential for the model construction. 

A new problem arises when the model is going to be used, however. 
To get an idea of how the output y(t) really behaves in practice, it is 
necessary to have a description of the typical properties of the distur- 
bance signal w(t). Consider the curve in Figure 3.12, which depicts 
the measured solar intensity. Obviously, it is not an easy problem to 
characterize this signal. We are thus led to the following problem: 

Describe w(t) in a suitable way (3.31) 

We will discuss this problem in Sections 3.7-3.8. 
However, the situation with a known and measurable disturbance 

signal is favorable in the following sense: Separately from the construc- 
tion of the dynamic model, a model can be built for the disturbance 
signal's properties based on direct measurements. We will return to 
how this can be done in Chapters 8-10. 

Known Disturbance Sources - Nonmeasurable Distur- 
bance Signals 

Consider for example an airplane. Its motion is completely determined 
by the force of the engine, gravity, and the forces the air exerts. The 
latter depends partly on rudder and flap movements and partly on 
wind variations. Rudder and flap angles will be inputs. The airplane's 
speed and orientation will then be state variables (internal variables). 
The wind variations, finally, are disturbance signals. 

When a mathematical model of an airplane is constructed, both the 
input and the disturbance signals have to be considered. In this case 
the physical origin of the disturbance signals is known, and their effect 
on the motion of the airplane is also known (follows Newton's law of 
motion). We are thus led to a description of the type (3.29) or (3.30) in 
our model building, where w(t) represents wind forces. When studying 
airplane models, w(t) has to be given typical and realistic values. The 
problem (3.31) becomes very significant. 

There is, however, an important difference concerning our possibil- 
ities in building a disturbance model. Even if we know the origin of 
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the disturbance signals, they are in this case hardly separately mea- 
surable. They will mainly be noticed by their influence on other mea- 
surable variables. We have thus only indirect information about the 
characteristics of the disturbance signal. In principle, we could cal- 
culate w ( t )  "backward" from y( t )  and u ( t ) ,  but we will in any case 
realize that the modeling of w ( t )  is integrated into the construction of 
the mathematical model. 

Unknown Disturbance Sources 

A common situation is that the interesting signals from the system 
are influenced by a number of disturbance sources and that we have 
no possibility, energy, or wish to sort out their physical origins. We 
then have to lump their effect into a disturbance contribution to the 
output, which in such cases typically is additive: 

z ( t )  is here the undisturbed output, for example 

The problem (3.31) of describing w ( t )  does however remain un- 
changed. In this case, obviously, w ( t )  is not directly measurable. We 
then must proceed from indirect observations of w ( t )  inferred from 
measurements of input and output signals. 

Example 3.10 Electric Welding 
In electric welding the heat power in  the weld depends on the current. 
This heat in  turn influences how fast the welding steel melts and thereby 
how wide the weld will be. Figure 3.13 shows the related values of 
current and weld width. The latter is obviously also influenced by a 
number of other signals, and it is not so easy to get a clear picture of 
the physical origins of all of them. 0 
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Time (S) 

Figure 3.13: (a) The width of the weld. (b) Current in the welding 
machine. 

3.7 Description of Signals in the Time Do- 
main 

Deterministic Models 

A natural way to approach problem (3.31) is to describe the distur- 
bance signal w(t) as the output from a dynamic system with a simple 
and known input uw(t): 

and similarly in discrete time. A typical choice of input is an impulse 

S(t) is Dirac's delta function. In discrete time we interpret S(t) as a 
pulse: 
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w(t) is then the impulse response to the system in question. If uw(t) 
is chosen as a pulse train, i.e regularly or irregularly recurring pulses 
(impulses), repetitive patterns can be described. 

We sometimes have some insight into the generation of the distur- 
bances. The modeling techniques according to Chapters 4-7 can then 
be used to construct (3.34). Such detailed knowledge is, however, often 
missing, and we have to resort to obtaining models by identification 
methods. See Chapters 8-10. 

It is common that the model (3.34) be linear. It can then be written 

and similarly in discrete time. 
According to Appendix A [see (A.4)] we can then also represent the 

disturbance signal by the transfer function 

In terms of the time functions (rather than their Laplace transforms) 
we let the transfer function have the argument p = dldt, that is, the 
differentiation operator: 

In the same way, in discrete time, we then have, according to (A.13), 
for the signals' z-transforms 

which according to Appenix A corresponds to the difference equation. 

where 

Similarly to (3.39) in the time domain, we can write 
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where q is the  shift operator qy ( tk )  = Y(tlc+l). For signals that have 
been sampled uniformly such that t k  = k T ,  we call T the  sampling 
interval, the  frequency 2s/T the sampling frequency (radians per sec- 
ond),  and the frequency r /T  the  Nyquist frequency. 

Example 3.11 Wave Models 
Waves constitute disturbances for systems like oil drilling platforms 
and ships. Much work has been done in hydromechanics both in  de- 
veloping models of waves and in  trying to find out how they influence 
ships. 

A simple model in the time domain will lead to the following model 
of the wave profile: 

W ( [ ,  t )  is the water level at time t at the (length) coordinate t ,  h is the 
wave height, k is the wave number, and W the wave frequency. The 
following relationship holds: 

where g is the acceleration of gravity. 
The dependence of h and W on the wind speed v has also been de- 

termined experimentally: 

h = 0.015v2 + 1.5 ( h  in  meters, v in m/s)  

(Reference: W. G. Price and R .  E. D. Bishop: Probabilistic Theory of 
Ship Dynamics, Chapman-Hall, London, 1974.) 

W e  can write (3.44) in the form (3.37), for example, as 

h ~ ( e ,  t )  =  C COS(^^) sin(ke))xw ( t )  
2 
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Figure 3.14: Air pressure variation as a result of human speech. 

This  follows from the fact that the state-space equation has 

as its solution. U 

Example 3.12 Models of Human Speech 
To be able t o  store, recognize, transfer, and artificially generate human 
speech, we need models for the speech signal. Figure 3.14 shows some 
typical speech signals (air pressure variations as a function of time). 

A n  attempt that has been successfully tested is  to  describe the speech 
signal w(t)  as 

where uw(t) is  a pulse train with a frequency equal to  the basic pitch of 
the speech. The sampling interval is  typically T = 1 0 - ~ s  (sampling 
frequency 8 kHz). 

The  model (3.47) has a certain physical background. The  speech is  
formed when the vocal cords generate a train of pressure pulses. These 
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are then filtered in the oral cavity and by the lips. Pressure varia- 
tions are described by a linear, partial differential equation, for which 
the form of the oral cavity constitutes boundary values. If the form is 
described approximately as four consecutive cylinders with different di- 
ameters, the solution to the partial differential equation is of the form 
(3.47), where uw ( t )  is the input from the vocal cords. 

A certain sound (phoneme) can now be described with the help of 
the numbers d l ,  d2, . . . , dg plus the basic frequency (pitch) in  the pulse 
train. This can be stored or transferred instead of the speech signal 
itself. 

Stochastic Models 

A characteristic feature in a disturbance signal is that its future can- 
not be predicted exactly. Consider, for example, the solar intensity 
signal in Figure 3.12. It is not reasonable to consider a model of the 
type (3.41), which exactly describes the solar intensity. On the other 
hand, qualified guesses of the expected future behavior can be made. 
It is therefore natural to introduce stochastic elements in the signal 
description. This can be done in several ways. It is most easily ac- 
complished in the linear time discrete description (3.41) by choosing 
u w ( t k )  = e ( t k )  as a series of independent stochastic variables, white 
noise. (In the sequel we will deal with uniformly sampled signals: 
t k  = k . T .) This gives 

= coe(t) +cle( t  - T )  + . . a  + ~ e ( t  - nT), 

e ( t )  and e ( s )  independent if t # S (3.48) 

The probability distribution of e ( t )  plays a major role for the typical 
appearance of w ( t ) .  The most common model is that e ( t )  are inde- 
pendent, normally distributed variables: 

e ( t )  E N (0, X )  (normally distributed 
with mean value 0 and variance X )  

(3.49) 

This gives "noisy" variables w ( t ) .  If, on the other hand, e ( t )  is zero 
most of the time, but is a pulse now and then, then w ( t )  has a different 
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character. Such a behavior in e(t) can be modeled with the distribution 

e(t) = 0 with probability 1 - p 
(3.50) 

e(t) E N(0, Alp) with probability p 

Also, in this case e(t) will have zero mean and variance X. 
From (3.48), w(t) will then have properties that depend on c, and 

di, and on the probability distribution of e(t). See Figure 3.15 for an 
illustration. This shows realizations of (3.48) when e(t) is a series of 
independent normally distributed, stochastic variables with zero mean 
and variance one. The following numbers have been used: 

(a) n = 1, dl = -0.9, Q = 1, cl = 0 

(b) n = 1, dl = 0.9, Q = 1, cl = 0 

( c )  n = 2, dl = -0.5, d2 = 0.7, C,, = 1, cl = 0.5, = o 

(d) same system as in case (c), but e(t) not normally distributed, in- 
stead with the distribution P(e(t) = 0) = 0.98, P(e(t) = v'%) = 
0.01, and P(e(t) = --) = 0.01 (thus still independent with 
average 0 and variance 1) 

The signal {w(t)) is defined through (3.48) as a stochastic process, 
that is, a series of stochastic variables with a certain simultaneous 
distribution. The values that {w(t)) assume for a certain turnout of 
the random variables {e(t)) are called a realization of the process. 

A complete characterization of a stochastic process means that 
all simultaneous distribution functions for w(tl), W (tz), . . . , W (tN) are 
given. In our cases we will let these distribution functions be deter- 
mined indirectly with the help of the numbers ci and d, and e( t ) ' s  prob- 
ability distribution. We will consequently limit ourselves to stochastic 
processes that are obtained as linearly filtered white noise. Such a pro- 
cess is also called an A RMA process(AutoRegressiveMovingAverage). 
The numerator polynomial C ( z )  is the MApart and the denominator 
polynomial D(z) is the ARpart. [Compare (3.42).] If q = 0, i # 0, 
we talk of an AR process, and if di = 0, i # 0, we have an MA process. 

If the distribution of e(t) does not depend on t ,  the properties 
of w(t) will not depend on absolute time either (after any possible 
transients have died out). We then have a stationary process. 
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Figure 3.15: Realizations of different stochastic processes. See the text 
for details. 

The time function 
mw(t) = E w ( t )  

is called the mean value function and the covariance 

gives the covariance function. Here and elsewhere E denotes mathe- 
matical ezpectation. For a stationary process, &(t, S )  depends only 
on the time difference t - S ,  and we then write 

The covariance functions for the processes in Figure 3.15 are shown in 
Figure 3.16. 

3.8 Description of Signals in the Frequency 
Domain 

To describe a signal's properties in terms of its frequency contents is 
appealing both intuitively and from an engineering point of view. This 



3.8 SIGNALS IN THE FREQUENCY DOMAIN 65 

Figure 3.16: The covariance functions for the processes in Figure 3.15. 

is probably connected to the fact that our senses are well suited to a 
frequency description of the observed signals. A new spectral peak in 
the motor sound of a car - a discord - is revealed quickly by the 
ear. Added to this is the fact that the mathematical tool for frequency 
description - the Fourier transform - is powerful. 

Spectra 

The frequency content of a signal is described by its spectrum. We will 
use the notation @,(W) for w(t)'s spectrum. A more precise term is 
really spectral density, since 

is a measure of the signal's energy (power) between the frequencies w l  
and W Z .  a, thus has the "dimension" of energy (power) per frequency. 
There are several variations of spectrum definitions, depending on 
whether the signal is time continuous or time discrete, deterministic or 
stochastic, whether it has finite or infinite energy, and whether we deal 
with power or amplitude. The definitions are, however, very closely 
related and are all meant to describe the (mean) frequency content of 
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the signal in question. The exact definitions are given in Appendix C. 
All that is necessary to know is that a signal's spectrum is the square 
of the absolute value of its Fourier transform, possibly normalized and 
possibly formed by mathematical expectation. In summary, we have 
the following: 

1. For signals with finite energy, we define (energy) spectrum as the 
absolute square of the signal's Fourier transform. This is valid 
for both time continuous and time discrete signals. 

2. For signals with infinite energy, we calculate energy spectrum 
for a truncated signal, normalize with the time interval's length, 
and then let this interval tend to infinity. The power spectrum 
is thereby defined. This is valid in both continuous and discrete 
time. 

3. For signals that are perceived as realizations of stationary 
stochastic processes, we define spectrum as the expected value 
of the realization's power spectrum (more exactly expressed as 
the limit value of the expected value of the normalized energy 
spectra for the truncated realizations). 

For a given signal, only one of these definitions is relevant. We will 
therefore not distinguish between the different variants in the nota- 
tions, but use 

@W (4 (3.55) 

for the spectrum of the signal w(t).  The context will decide which 
definition applies. In Figure 3.17 the spectra for the disturbance sig- 
nals in Figure 3.15 are shown. Note especially that for a time discrete 
signal that has been sampled with sampling interval T the spectrum 
is defined only up to the Nyquist frequency TIT. (More exactly, the 
spectrum is symmetric with respect to frequency and periodic with pe- 
riod 2 ~ l T . )  It is therefore enough to consider the spectrum between 
the frequency zero and the Nyquist frequency. [See (C.12).] 

Remark: We deal in this book only with energy and power spectra. 
In some applications it is customary to work with the square root of 
these spectra, which are called amplitude spectra. 
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Figure 3.17: Spectra for the processes in Figure 3.15. The x-axis 
has a logarithmic frequency range, and the y-axis has a logarithmic 
amplitude range. 

Cross Spectra 

Consider two signals u(t) and y(t). It is obviously interesting to find 
out how they "vary together," that is, what relationship exists between 
the two signals. Analogously to spectra, the cross spectrum between 
U and y, 

@YU (W) (3.56) 

is defined as the product between the Fourier transform of y and the 
conjugate of the Fourier transform of U. The result is normalized and 
the expected value is applied exactly as for spectra. Exact definitions 
are given in Appendix C. @,,(W) = @,(W); that is, the cross spectrum 
between a signal and the signal itself is what we defined as spectrum 
earlier. We say that two signals are uncorrelated if their cross spectrum 
is identically zero. 

U and y uncorrelated ++- QyU(w) -- 0 (3.57) 

Cross spectra are mainly used for signals that are described as real- 
izations of stochastic processes [that is, with the definition (C.22)]. 
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@,,(W) is then a complex number equal to the covariance between 
Y(w) and U(w), that is, the respective signal's Fourier transform at 
the frequency W. Intuitively we can think as follows: If u(t) has a 
"typical" signal component coswt, y(t) will "on the average" have 
this component (@,,(W) I times larger and arg @,,(W) radians phase 
delayed. 

Links with the Time Domain Description 

Assume that three signals y, U and W are related by 

[here p is the differentiation operator, see (3.39)], where u(t) and w(t) 
are uncorrelated. Their Fourier transforms then [compare (A.4)] obey 

By taking the absolute square of both terms and possibly normalizing 
by the length of the time interval and possibly using expected value, 
we have 

@,(W) = I ~ ( i w ) l ~ @ ~ ( w )  + @,(W) (3.60) 

regardless of which spectral definition we apply. Multiplying (3.59) 
by U(w) (and possibly normalizing and possibly using the expected 
value), yields 

@,,(W) = G(~w)@u(w) (3.61) 

If the relationship between y,  U and W instead is given as a time discrete 
expression 

Y(t) = G~(9)"(t) + (3.62) 

[here q is the shift operator, see (3.43)], then 

holds, and 
@,,(W) = G T ( ~ ' ~ ~ ) @ ~ ( W )  (3.64) 

[compare (C.25)]. 



3.8 SIGNALS IN THE FREQUENCY DOMAIN 69 

For the special case w ( t )  E 0, @,(W) E 1, G(p) = [which 

corresponds to u(t) being an (im)~ulse or white noise and that G is 
finite dimensional], we have in continuous time 

This gives a simple and obvious link between the signal spectrum and 
the linear system, G(p), which represents the signal in the time domain 
with a white noise or (im)pulse input. If a given spectrum Qy(w) is a 
rational function of w2, it is always possible to find a stable and in- 
versely stable system G(p) such that (3.65) is valid. (That is all poles 
and zeros are in the left half-plane.) This is called spectral factoriza- 
tion. 

In discrete time we analogously have 

It is always possible to find a stable and inversely stable GT(q) if <Py ( W )  

is a rational function of cos WT. 

Use of Spectral Description 

To characterize the properties of a signal by plotting or verbally de- 
scribing its spectrum is, as we said, both practical and intuitively 
appealing. "We have low frequency disturbances, almost all under 5 
Hz," "The disturbances are concentrated to the region around 50 Hz," 
and so on. The link to a more exact mathematical description is ob- 
tained from the spectral factorization (3.65). The function a y ( w )  is 
then formed, and its W dependence is reflected in the verbal descrip- 
tion. The polynomial C and D can then be determined in (3.65) or 
its time discrete counterpart (3.66), and a time domain description is 
thereby obtained. 

Example 3.13 Wind Models 
Models of wind strength and wind gusts play, as we pointed out earlier, 
an important role i n  many applications. Much work has been done to 
obtain such models. One of the most used models is the won Karman 
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Wind strength (mls) 

Time (S) 

Figure 3.18: Wind strength as a function of time. 

spectrum 

The model is a frequency description. Figure 3.18 shows a typical wind 
strength signal and Figure 3.19 shows the won Karman spectrum. Most 
other wind models are of the general form 

of which (3.67) is a special case. 

Finally it has to be said that in practice we seldom can calculate 
the spectrum for an observed signal. We have only a finite sequence of 
numbers {w(l), w(2), . . . , w ( N ) )  available, and all spectral definitions 
contain limits when N + oo and/or expected values. We instead have 
to be satisfied by estimating spectra from the measured values. How 
this is done will be discussed in Chapter 8. 
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Figure 3.19: Von Karman's spectrum for wind strength. 
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3.9 Links between Continuous Time and Dis- 
crete Time Models 
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So far we have treated time continuous models of systems and sig- 
nals, like (3.14), parallel to the time discrete counterparts, like (3.15). 
Many of the formal properties, especially for linear systems are also 
analogous. Which representation to choose, time continuous or time 
discrete, depends partly on how it is natural to model and partly on 
the purpose of the model. 

If the system is mechanical-physical-technical and the modeling 
is done based on laws of nature, it is often easier to build a time 
continuous model. This naturally is due to the fact that most laws 
of nature are formulated as time continuous differential equations. If 
the model building is done based on measured data, we are often led 
to time discrete models, simply because data are collected at time 
discrete moments. We say that the signals are sampled. Economic 
models are also often built in discrete time due to the fact that it is 
natural to think of economic variables as sampled data: "GNP this 
year depends on GNP last year and ... ." 

In this section we will discuss the links between a time discrete 

Frequency (radls) 
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and a time continuous model of the same system. When is it inter- 
esting to use such relationships? A typical situation is when a time 
discrete model has been built based on measured data and we want to 
compare it to a time continuous one, which is based on physical mod- 
eling. Another situation is when we have a time continuous model 
and want to describe how states and outputs vary between different 
sampling instants while the input, for example, is constant between 
the sampling instants. This of course can always be dealt with by 
simulation, but sometimes it is important to have an analytical ex- 
pression for the variations, that is, a time discrete model. A typical 
application of this is when we want to use the time continuous model 
to determine computer-based regulators (mechanisms for computing a 
suitable input). 

Time Continuous and Time Discrete Models 

We are now going to discuss the formal links between a time continuous 
model 

~ ( t )  = f (x(t)7 (3.69) 
y(t> = h(x(t), 

and a time discrete model 

These links can be divided into approximate relationships, which are 
based on difference approximations of X or the Taylor expansion of 
x(t), and exact relations, based on the analytical solution to (3.69) 
over the time interval [tk,tk+l]. 

Let us first consider the approximate relations. The simplest ap- 
proximation (the Euler approximation) of x(t) is 

This gives 

The link between (3.69) and (3.70) is thus 
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Note that according to the mean value theorem the expression (3.72) 
will be exactly valid, in the scalar case, if in f i ( x ( t k ) ,  u ( tk ) )  we replace 
x ( t k )  and u ( t k )  with values between x ( t k )  and ~ ( t k + ~ )  and U ( & )  and 
~ ( t k + ~ ) ,  respectively. The quality in the approximation (3 .72)  thus 
depends on how much the variables x ( t )  and u(t)  change over the time 
interval ( t k , t k + l ) .  In other words, the approximation (3 .73)  is good 
if the time interval t k + l  - tk is small compared to the model's time 
constants. 

The approximation can of course be improved in this regard by 
replacing the difference approximation (3 .71)  with higher-order ap- 
proximations or by using more expressions in the Taylor expansion 
(3 .73) .  

Let us now discuss the exact links that can be established between 
(3.69) and (3 .70) .  We are only going to study linear equations. 

Linear Models 

More precise expressions can be obtained for linear models. Consider 
a system with the transfer function G(s)  and the state representation 

If the values of the input at each time instant can be reconstructed 
from its values at the sampling instants, we should be able to translate 
(3 .74)  exactly to discrete time. The simplest case is when the input is 
piecewise constant: 

u ( t )  = u(tk)  for tk 5 t  < tkS1 (3.75)  

This is the case for instance in computer-controlled systems. We then 
have x ( t k )  and y ( t k )  given exactly by 

where 
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See Appendix A. Observe that (3.77) also can be used to  compute A 
and B in (3.74) from given Ak and Bk. 

If the input is piecewise linear, 

we can also obtain an exact relationship. The simplest way to  achieve 
this link is to reason as follows: If u ( t )  is piecewise linear, then u ( t )  
is piecewise constant. Therefore, form a state representation for the 
system 

and run it with u( t ) .  Sample the state representation for G ( s ) / s  ac- 
cording to (3.76)-(3.77). We then have a model of the form 

If the real input is neither piecewise constant nor piecewise linear, the 
expressions are not exactly valid. If the signal is twice continuously 
differentiable, it can be shown that the approximation (3.75) will give 
rise to an error in y( tk )  bounded by C .  suptE[tk,tk+ll Ju ( t )  1 . T,  while the 
approximation (3.78) gives an error of no more than 

Here is T = max Itk+l - t k (  and C is a constant, independent of U and 
T. 

Transfer Functions 

Consider the time continuous model (3.74) with the frequency function 
G(iw). If t k  = kT and the input is piecewise constant, the sampled 
model (3.76) gives a sampled frequency function [see (A.14)] 

Even if G(iw) and ~ ~ ( e ~ ~ ~ )  describe the same system and give exactly 
the same values of y( tk )  [when (3.75) holds], they themselves will not 
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be identical functions of W .  It can be shown (see the appendix to this 
chapter) that 

where g(r) is the impulse response of G ( s ) .  The two frequency func- 
tions are thus in good agreement for low frequencies. The rule of 
thumb is that this good agreement usually extends to up to one-tenth 
of the sampling frequency [W < 27r/(lOT)]. For a system that is sam- 
pled fast compared to the interesting frequencies, it follows that the 
sampled frequency function gives a good picture also of G(iw) .  

Example 3.14 Sampling of a System 
Consider a time continuous system with the transfer function 

Its impulse response and frequency function are shown in Figures 3.20 
and 3.21, respectively. If we represent (3.82) in a state-space form and 
sample according to (3.76)-(3.77) for some different sampling intervals 
T and then compute the time discrete transfer function, we have 

The impulse response and the frequency function ~ ~ ( e ~ ~ ~ )  for these 
time discrete systems are also shown in  Figures 3.20 and 3.21. W e  
see, as expected, that the shorter the sampling interval the better the 
correspondence will be between the sampled and time continuous sys- 
tems. Cl 
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Figure 3.20: The continuous system's impulse response (solid line) 
together with the sampled system's impulse response. (a) X : T = 0.1 
S, o :  T = 0.5 S. (b) X :  T = 1 S, o :  T = 2 S. The levels of the impulses 
have been fitted so that they all give the same energy. 

Signal Spectra 

Consider a time continuous signal 

that has been sampled with the sampling frequency W, = 2n/T, which 
gives the time discrete signal 

The Nyquist frequency is then given by w~ = w,/2. 
Let the Fourier transform of (3.84) be W ( w )  [see (C.2)] and that 

of (3.85) be w(~)(w) [see (C.8)]. Poisson's summation formula then 
says that 

The proof is given in Appendix C. From Poisson's summation formula 
a number of facts can be obtained. We see that w(~)(w) is periodic 
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Figure 3.21: The continuous system's Bode diagram together with the 
sampled systems'. The curves are, from top to bottom, the continuous 
system, T =0.1 S, T =0.5s ,  T = 1 S, T = 2 s .  Note that they end at 
their respective Nyquist frequencies. 

with period W,. It is thus enough to consider it over the interval 

The frequencies in the time continuous signal that lie outside this inter- 
val are "folded into" IT and are interpreted as slower frequencies in the 
sampled signal. The sampling theorem follows from this: If the time 
continuous signal's spectrum is zero outside IT,  the sampled signal will 
have exactly the same spectrum. In other words, no information is lost 
at the sampling. 

The practical consequence is that, if (3.84) has insignificant en- 
ergy above the Nyquist frequency (for example eliminated by a pre- 
sampling filter), then the spectrum of (3.85) can be used as a good 
approximation of the spectrum of (3.84). 
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3.10 Appendix 

Proof of (3.81) 

Let 
W 

G(iw) = 1 g(~)e-"~d.r  

We have 

where gk is the sampled system's impulse response. From 

which is valid if (3.75) is true (tk = kT), we realize that 

Thus 

which gives (3.81). 
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Deriving Equations from Physical Knowledge 

This part of the book discusses how to construct a mathematical model 
from knowledge of the basic mechanisms of a system. We will use the 
term physical modeling, since it is usually a knowledge of physics that 
is relevant in the examples we consider. The principles that we discuss, 
mainly in Chapter 4, are useful for most types of models, however. The 
knowledge of physics will then have to be replaced by other relevant 
knowledge of chemistry, biology, economics, or whatever is required. 

It is unrealistic to expect a general methodology for modeling all 
the types of systems that are possible. There is, however, a way of 
structuring the problem in different phases that is fairly general. This 
is discussed in Chapter 4. For many engineering applications it turns 
out that the same type of equations appear despite the diversity of 
the physical systems. These analogies are discussed in Chapter 5. 
Starting from these analogies it is possible to do systematic modeling 
for a broad class of systems. This is done using bond graphs, which are 
presented in Chapter 6. Finally, we discuss in Chapter 7 how modern 
computer facilities can help modeling. 
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Chapter 4 

Principles of Physical 
Modeling 

4.1 The Phases of Modeling 
In this chapter we will discuss how to build mathematical models of 
dynamical systems. We will thus consider the problem of how to arrive 
at a model of the form 

starting from a physical, engineering, biological, economic, or other 
system. 

Modeling is, in common with other scientific and engineering ac- 
tivities, as much an art as a science. Successful modeling is based as 
much on a good feeling for the problem and common sense as on the 
formal aspects that can be taught. In this chapter we will take a prag- 
matic commonsense attitude toward modeling. Later, in Chapter 6 ,  
we will demonstrate a systematic approach that solves many but not 
all modeling problems. 

We can distinguish the following three phases in the work of arriving 
at a mathematical model: 

1. The problem is structured. 

2. The basic equations are formulated. 

3. The state-space model is formed. 
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Phase 1 consists of an attempt to  divide the system into subsystems, 
an effort to determine cause and effect, what variables are im- 
portant and how they interact. When doing this work, it is 
important to know the intended use of the model. The result 
of phase 1 is a block diagram or some similar description. This 
phase puts the greatest demands on the modeler in terms of the 
understanding of and intuition for the physical system. It is also 
in this phase that the level of complexity and degree of approxi- 
mation are determined. 

Phase 2 involves the examination of the subsystems, the blocks, that 
the structuring of phase 1 produced. The relationships between 
variables and constants in the subsystems are formed. In doing 
that, we use those laws of nature and basic physical equations 
that are assumed to hold. This often means that we introduce 
certain approximations and idealizations (point mass, ideal gas, 
and the like) in order to avoid too complicated expressions. For 
nontechnical systems, for which generally accepted basic equa- 
tions are often lacking, this phase gives the opportunity for new 
hypotheses and innovative thinking. 

Phase 3, in contrast to the other phases, is a more formal step aiming 
at the suitable organization of the equations and relationships 
left by phase 2. Even if the model in some sense is defined 
already after phase 2, this step is usually necessary to give a 
model suitable for analysis and simulation. During phase 3 a 
computer algebra program can be helpful (see Chapter 7),  and it 
is not always necessary to carry the work all the way to an explicit 
form (4.1). For the purpose of simulation it might be enough to 
arrive at state-space models for the subsystems together with 
instructions for the interconnections. 

These three phases will be discussed in more detail in the following sec- 
tions of this chapter, where we will also illustrate their use in a physical 
example. An important problem in modeling is to find a model that 
is not too complicated. This means that we must always make sim- 
plification~, idealizations, and approximations. The simplification of 
models is discussed in Section 4.6 



4.2 A HEAD BOX 

Head box 

Wire 

Figure 4.1: A paper machine. 

4.2 An Example: Modeling the Head Box of 
a Paper Machine 

To give a concrete dimension to our discussion of the phases of model- 
ing, we will illustrate their application to a physical example, the head 
box of a paper machine. 

The manufacturing of paper from paper pulp is basically done in 
the following way. The pulp is a dilute solution of fibers in water. It is 
poured over the wire, which is a continuously moving fine mesh, 10-20 
m long. On the wire most of the water drains away, producing a sheet 
of paper, which then is dried, pressed, and rolled. See the schematic 
diagram of Figure 4.1. The pulp is delivered to the wire by a head 
box. It is important that this be done in a well-controlled manner in 
order to get uniform paper quality. This is achieved by forcing the 
pulp through a narrow slit. Modern head boxes use compressed air 
to achieve an even flow and a sufficiently high velocity ( m  10m/s). A 
paper machine head box is shown in Figure 4.2. We will illustrate the 
principles of this chapter by modeling the head box. 
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Air 

Pl, Vl, PI 

Figure 4.2: Diagram of a head box. The variables are defined in Section 
4.3. 

4.3 Phase 1: Structuring the Problem 

When addressing a modeling task, the main difficulty is often under- 
standing the general structure: 

What signals are of interest (that is, to be considered as out- 
puts)? 

Which quantities are important to describe what happens in the 
system? 

Of these quantities, which are time varying and which should be 
regarded as internal variables? 

What quantities are approximately time invariant and should be 
regarded as constants? 

What variables affect certain other variables? 

Which relationships are static and which are dynamic? (Com- 
pare Figure 3.6.) 
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Answering these questions can demand considerable insight into the 
system and much work, but it is always necessary as a first step in 
modeling. When modeling an existing system, we often use simple ex- 
periments to assist these preliminary steps, for example, to determine 
time constants and the influences of signals (see Section 8.1). 

Note that the intended use of the model must be known when we 
answer the preceeding questions. A model that will only be used for 
simple, order of magnitude calculations (what are the dominating time 
constants and the approximate static gain?) can allow crude approx- 
imations and can neglect many effects and variables. A model to be 
used for important design decisions demands greater care when an- 
swering the questions. The intended use of the model thus determines 
its complexity. 

In later modeling work, maybe after the beginning of simulations, 
we get a deeper insight into the properties of the system. Then it is 
not uncommon to go back to this initial stage to revise some decisions. 

In some cases it is natural to work with several models in parallel. 
These models can have very different complexity and can be used to 
answer different questions. When modeling jet engines, we sometimes 
uses models with hundreds of states to study thermal problems and 
models with a handful of states to design regulators. 

When we have decided what variables in the system are of interest, 
the next step is to make clear how they interact. At this stage it is 
mainly the question of cause and effect that is considered. The quan- 
titative expression, formulas, and equations are introduced in phase 2 
(see Section 4.1). Often the result of this analysis is presented as a 
block diagram (see Section 3.1), which can be seen as the result and 
goal of phase 1. 

Summarizing phase 1 of the modeling, we have to accomplish the 
following: 

Determine outputs and external signals for the model. Decide 
what internal variables are important to describe the system. 

Illustrate the interactions between external signals, internal vari- 
ables, and outputs in a block diagram. 

Sometimes, in particular for more complex systems, it is convenient to 
first divide the system into subsystems and then divide the subsystems 
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further into blocks. In that case we iterate between these two steps. 

An Example of Phase 1: The Head Box 

Consider the head box of Section 4.2 and Figure 4.2. We are given the 
following: 

A Inputs to the system: 
M: air flow rate (mass flow) (kg/s) 
Q: pulp flow rate (volume flow) (m3/s) 

B Outputs from the system: 
Here we can choose what interests us. The output pulp flow 
rate q should definitely be of interest, since it determines what 
is delivered onto the wire. It is also suitable to regard the pulp 
level h as an output, since there will be practical restrictions on 
it. We also choose the excess pressure p, of the air pad as an 
output: 
g: output pulp flow rate (volume flow) (m3/s) 
h: pulp level (m) 
p,: excess pressure of air pad (N/m2 ) 

C Division into subsystems: 
It is natural to regard the paper pulp and the air pad as separate 
subsystems. The variables affecting the air subsystem are M 
and Vl (the available volume), while the pulp subsystem has the 
inputs Q and p,. We have the following relationships between 
these variables: 
M: is an input to the overall system 
Vl: depends on the pulp level h 
Q: is an input to the overall system 
p,: is an output of the air subsystem 

This gives us the block diagram of Figure 4.3. 
To get a more detailed block diagram, we introduce the variables 

and constants of the subsystem in question. 



4.3 PHASE 1 

Air Subsystem 

Inputs: 
M :  inflow of air (kg/s) 
Vl:  volume of air (m3) 

Output: 
p,: excess pressure of the air ( ~ / m ~ )  

Internal variables: 
p l :  density of air (kg/m3) 
m: mass outflow of air (kg/s) 
pl: pressure in air pad ( ~ / r n ~ )  
N: mass of air in air pad (kg) 

M 

Constants: 
T: absolute temperature of air (K) 

(We regard the physical processes in the air pad as isothermal.) 
al :  cross-sectional area of air outflow (m2) 
R: gas constant for air ( m 2 / ~ / s 2 )  
PO: atmospheric pressure ( ~ / m ~ )  

Air system 

4 

v1 D 

Pulp 

P e  system 

A 

Figure 4.3: Block diagram for the head box. 
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Figure 4.4: Air subsystem. I11 marks a signal from block I11 of Figure 
4.5. 

Pulp Subsystem 

Inputs: 
Q: input flow rate (m3/s) 
p,: excess pressure in air pad ( ~ / m ~ )  

Outputs: 
g: output flow rate (m3/s) 
h: pulp level (m) 

Interral variables: 
hef f: the effective pulp level (m) (see Section 4.4) 
h: pulp volume (m3) 

Constants: 
A: cross sectional area of head box (m2) 
a2 : cross sectional area of slit (m2) 
C: coefficient of slit area (see Section 4.4) 
V: total volume of head box (m3) 
po: density of pulp (kg/m3) (assumed to be incompressible) 
g: gravitational acceleration (m/s2) 

Some simple considerations now lead to the block diagrams of Fig- 
ure 4.4 and 4.5. 
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Figure 4.5: Pulp subsystem. 

4.4 Phase 2: Setting up the Basic Equations 

We now have to transform the block diagram model derived in phase 
1 into a mathematical model. We do this by formulating quantitative 
relationships between the inputs and outputs of the different blocks. 
In this phase, we use knowledge of mechanics, physics, economics, and 
the like. 

The relationships between the system variables can be of different 
kinds. Sometimes they go back to some reliable and well-established 
law of nature, like Ohm's law describing the relationship between cur- 
rent and voltage for a resistor. In other cases the relationship might be 
given by an experimental curve giving, for example, the pressure over 
a valve as a function of the flow. A third situation occurs when we 
use simple formulas that should describe the general character of the 
relationship but are obviously crude approximations. That was the 
situation for the ecological model and the economic model in Sections 
2.2 and 2.4, respectively. 

The work in phase 2 is therefore very problem dependent. However, 
for systems in physics and engineering we can give certain guidelines for 
the organization of the work. To that end we note that relationships 
between physical quantities usually can be divided into two groups: 
conservation laws and constitutive relationships. 
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1. Conservation laws relate quantities of the same kind. Common 
examples are the following: 

Power in - power out = stored energy per unit of time 

Input flow rate - output flow rate = stored volume per unit 
of time 

Input mass flow rate - output mass flow rate = stored mass 
per unit of time 

Kirchhoff's laws (the sum of currents at a junction is zero, the 
sum of all voltages around a circuit is zero) are also examples of 
conservation laws. 

The conservation laws express the conservation of some basic 
physical quantity: conservation of energy, mass, electrons (Kirch- 
hoff's law), and so on 

2. Constitutive re2ationships relate quantities of different kinds. Ex- 
amples are the relationships between voltage and current for a 
resistor, a capacitor, or an inductor, the relationship between 
level and output flow of a tank and the relationship between 
pressure drop and flow for a valve. 

Constitutive relations often describe the properties of a certain 
material or a certain component or block in the system. This is 
illustrated in Figure 4.6 

Note that the relationships are static in the chosen variables. 
From the user's point of view there is no fundamental difference 
between the law of nature of Figure 4.6a and the experimental 
curve (or table) of Figure 4.6b, which is specific for a certain 
valve. In practice it is of course easier to use simple, linear 
relationships. 

Constitutive relations, like those of Figure 4.6, are always ap- 
proximate. The inaccuracy depends on the type of system and 
on the care that was used to determine the curve. 

Remark: For practical reasons, we will also count relationships that 
follow from definitions as constitutive relationships. The curve in Fig- 
ure 4.6c, for example, can be derived from conservation of energy. 
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Figure 4.6: Constitutive relationships. (a) current as a function of 
voltage for a resistor. (b) flow as a function of area for a valve. (c) 
output flow as a function of level for a tank. (d) pressure as a function 
of volume for an ideal gas at constant temperature. (All variables are 
normalized to the interval 0-1.) 

A good way of formulating the basic equations of a block is the 
following: 

Write down the conservation law(s) that is relevant for the 
block/subsystem. 

Use suitable constitutive relationships to express the conserva- 
tion laws in the model variables. Calculate the dimensions of the 
different quantities as a check. 

We illustrate the procedure using the head box example. 

An Example of Phase 2: The Head Box 

We continue the example from Figures 4.4 and 4.5. We get the follow- 
ing results for the different subsystems. 
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Air System I + I1 

Conservation law (conservation of mass) 

Constitutive relationships 

N = p1 Vl ( mass = density . volume) (4.3) 

p1 = R . T - p1 (pressure) (4-4) 

The mass flow m is determined by Bernoulli's law for gases: 

m = a1 J G  (4.5) 

The total pressure is the sum of the atmospheric and excess pressures: 

Pulp Subsystem I1 + IV + V 
Conservation law (conservation of volume) 

% = Q - - q  

Constitutive relationships 

= A h  ( volume = area height) (4.8) 

v1 = v - v2 (4.9) 

The flow q is determined by Bernoulli's law, as in Section 2.3. A 
complication is the excess pressure above the pulp. Converting this 
pressure into an effective pulp level, we get 

The flow out of the head box now becomes 

The coefficient C compensates for the fact that Bernoulli's law is valid 
only for holes with small cross-sectional area and for flow without 
energy losses. We define an effective cross-sectional area C a 2 ( m 2 ) ,  
where a2 is the geometric area. 
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4.5 Phase 3: Forming the State-space Model 

After phase 2 we have, strictly speaking, a mathematical model for the 
system. The equations are often unstructured, however, and it is not 
easy to go from phase 2 to a simulation. In the example we treated 
in the last section, the result of phase 2 was 10 equations. Obviously 
these could be better organized. In this section we shall demonstrate 
how to go from phase 2 to a state space-model of the form (4.1). 

The general recipe is obvious: 

1. Choose a set of state variables. 

2. Express the time derivative of each state variable with the help 
of state variables and inputs. 

3. Express the outputs as functions of the state and input variables. 

If steps 2 and 3 are successful, we have a state-space description as in 
(4.1). The difficulties in the procedure obviously lie in step 1. How 
do you choose the state variables? As a guidance it is useful to re- 
member the interpretation of the state (see Section 3.4). The state 
variables represent the memory of what has happened earlier. All 
internal variables corresponding to storage of different quantities are 
therefore candidates for the role of state variable. 

Example 4.1 Stored quantities 
The following are examples of stored quantities: 

Position of point mass (stored potential energy) 

Velocity of point mass (stored kinetic energy) 

Charge of capacitor (stored electrical field energy) 

Current through inductor (stored magnetic field energy) 

Temperature (stored thermal energy) 

Tank level (stored volume) 
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Another rule of thumb is that internal variables, whose time deriva- 
tives occur in the equations of phase 2, are suitable state variables. 

When forming the state-space model (4.1), it is not necessary to 
collect all formulas and equations together into one (vector-valued) 
equation. For large systems it is often advantageous to make separate 
state-space models for the subsystems and then connect them accord- 
ing to the block diagrams. A modularized model of this type makes it 
possible to check (in a simulation) what happens when a certain block 
is replaced by another. 

An Example of Phase 3: The Head Box 

Guided by the discussion in the previous section, we make the following 
choice of state variables: 

x1 = (volume of pulp) 
2 2  = N (mass of air) 

We now have to express the time derivatives xl and x2 using only X,, 
2 2 ,  M, Q, and the constants. 

Here we have used at the successive steps (4.7), (4.10), (4.11), (4.8) 
and (4.4), (4.6), (4.3) and (4.9), (4.8). 



4.6 SIMPLIFIED MODELS 97 

Here the following equations were used: (4.2), (4.5), (4.6) (4.3), (4.4) 
and (4.8), (4.9). The outputs are calculated in a similar fashion: 

X2 p, = RT- -po 
v - X 1  

The equations (4.12), (4.13) and (4.14)-(4.16) now form a state-space 
model for the head box, and we have reached the goal of the modeling. 

The Number of State Variables 

It is easy to check whether we have chosen enough state variables. The 
test is that their time derivatives can be expressed using only state 
variables and inputs to the system, together with constant quantities. 
It  can be more difficult to determine if there are unnecessary state 
variables. In our head box example, N, pl, V2, and h are possible 
candidates for state variables. We see directly from (4.8) that it is 
unnecessary to let both V2 and h be state variables. Apart from that, 
it is not easy, however, to see which variables are redundant. For linear 
state-space models there are tests based on the rank of certain matrices 
to determine if we have a minimal number of states. A corresponding 
test for nonlinear systems is much more difficult to carry out, both from 
a mathematical and a computational point of view. However, when 
the model is used for simulation, the only disadvantage (in principle) 
of too many state variables is that unnecessary computations are done. 
The simulation result is the same. 

4.6 Simplified Models 

All models contain simplifications of the real processes. We are forced 
to use simplifications simply because we do not know the exact re- 
lationships. But even if we knew them we would still construct a p  
proximate, simplified models. The reason is that the model must be 
manageable for our purposes. A model with thousands of variables 
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is impossible to use for analysis and requires long execution times for 
simulation. In other words, we seek simple models and we consciously 
introduce approximations and generalizations. By a simple model we 
mean primarily a model whose order (the dimension of the state vec- 
tor) is small. Simple could also mean that the relationships between 
variables are easily computable or that the model is linear rather than 
nonlinear. 

In this section we will study the principles that can be used to sim- 
plify models. The simplification can be done under the first two phases 
of modeling but also in the completed model to reduce complexity. 

There is of course a trade-off between the complexity of a model and 
the accuracy requirements in order to simulate the physical system. 
The intended use of the model decides how this trade-off is handled. It 
is important to have some balance between the approximations used in 
different parts of the model, since usually the overall model is no better 
than the crudest approximation. If you accept a general approximation 
in one model, it maks no sense to resort to hair-splitting in another. 

We will discuss simplifications of three kinds: 

1. Small effects are neglected - approximate relationships are used. 

2. Separation of time constants. 

3. Aggregation of state variables. 

Most model simplifications can be placed under one of these headings. 
We treat them one at a time. 

Small Effects Are Neglected - Approximate Relation- 
ships Are Used 

In the block diagram phase we usually consider what relationships 
could be present between the different variables. It is then often clear 
that certain effects are more important than others. When modeling 
the head box, we assumed the paper pulp to be incompressible. This 
ought to be a good approximation here, since the compressibility is 
much lower than that of the air pad. There are other situations how- 
ever, for example, in hydraulic servos, where the compressibility of 
a liquid can give rise to important phenomena, like resonances that 
are clearly noticeable. In all modeling we must make trade-offs. Is 
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an effect important enough to be included in the block diagram? In 
different areas of modeling, different practices have developed from 
experience. Often we know when to neglect friction and air drag. For 
example, in hydrodynamics we know what approximations are suitable 
and how good they are. In general, we must use our physical intuition 
and insight together with the developed practice to arrive at a suitable 
degree of approximation. 

When formulating the basic equations of phase 2, we often en- 
counter similar problems. Many relationships between variables in an 
engineering system are complicated and do not fit the idealized situa- 
tions for which physical laws are formulated. Real gases are not ideal, 
real liquids are not incompressible, real flow is not laminar, and so 
on. When modeling a nontechnical system, the difficulties of getting 
a reliable description are even greater. 

In practice, we have to accept working with approximate relation- 
ships. The degree of approximation that we can tolerate depends on 
the desired accuracy of the model. For example, is it sufficient to use 
a linear relationship between force and elongation for a spring, or is 
it necessary to use a nonlinear description for large elongations? In 
the latter case we probably have to make separate experiments and 
tabulate the results. This is only justified if the model has to be very 
accurate or if its intended use is precise simulation of large ampli- 
tudes. As we noted earlier, we must also have some balance between 
approximations in different subsystems. 

Separation of Time Constants 

In Section 3.5 we introduced the notion of time constant to describe 
the time scale of change in the variables. The time constant for the 
car dynamics from accelerator to velocity is on the order of a few 
seconds, while the time constant of the economy (say from investment 
stimulants to export) can be several years. 

In the same system we often have time constants of different orders 
of magnitude. Still, our interest might be focused on a certain time 
scale. If we are going to construct a model of a nuclear reactor to be 
used for simulations of the control rods, then we are mainly interested 
in time constants around a few seconds. The time constants associated 
with the burnout of nuclear fuel, which are on the order of months, 
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are then uninteresting even though they affect the dynamics. 
We can give the following advice: 

Concentrate the modeling on phenomena whose time constants 
are of interest when considering the intended use of the model. 

Subsystems whose dynamics are considerably faster are approx- 
imated with static relationships. (See Section 3.5 .) 

Variables of subsystems whose dynamics are appreciably slower 
are approximated as constants. 

With these rules, we gain two important advantages 

1. By ignoring very fast and very slow dynamics, we lower the order 
of the model. 

2. By giving the model time constants that are on the same order 
of magnitude (say T,,,/Tmi, 5 10 - loo)), we get simpler simu- 
lation~. (Differential equations that have a great spread of time 
constants are called stiff. We will see in Chapter 11 that they 
pose special problems for the simulation.) 

For some systems we might really be interested in time constants of 
quite different magnitude. An example is the model of the heat stor- 
age for a solar-heated house. On the one hand, we want to see the 
variations in temperature during the day (time constant a few hours). 
On the other hand, we are interested in the yearly variation in tem- 
perature (time constant a couple of months). In such a situation we 
should consider the possibility of using two different models, one for 
each time scale, and using the preceding procedure to simplify each 
one of them. 

Aggregation of State Variables 

In Section 3.4 we defined the state as the set of information needed to 
predict the future behavior of the system, provided the external signals 
are known. A strict application of this definition would in most cases 
lead to an excessive number of states. For the head box example we 
would have to assign each point in the air pad a value of pressure, 
temperature and density. We would then have infinitely many state 
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variables (connected via partial differential equations). However, it 
seems reasonable that the spatial variations of these three variables 
are so small that one single value for each would be sufficient. 

This is an example of aggregation of state variables: 

To merge several similar variables into one state variable. 
Often this variable plays the role of average or total value. 

Aggregation is a very common method for reducing the number 
of state variables in a model. For economic models we often have 
a hierarchy of models with different amounts of aggregation. In a 
very simple model the level of investment might be one single variable 
(compare Section 2.4). In a less aggregated model the investments are 
perhaps divided into private and government ones. In detailed models 
the investment level of each sector of the economy might be modeled. 
There are economic models in use with more than a thousand state 
variables. 

Aggregated models are also common in physics. A typical exam- 
ple is thermodynamics. To know the state of a volume of gas, we 
would strictly speaking have to know the speed and position of every 
molecule. Instead we use pressure and temperature when dealing with 
a gas on a macro level. Those variables are aggregated state variables 
connected to the average distance between molecules and the average 
velocity. 

A number of physical phenomena are described by partial differ- 
ential equations (PDE). Typical examples are field equations, waves, 
flow, and heat conduction problems. In mathematical models of dy- 
namic systems to be used in simulation, PDEs are often unsuitable. 
The reason is that the standard simulation programs for dynamic sys- 
tems assume that models are given in the form 

with a finite dimensional state vector X. Often partial differential 
equations are reduced to ordinary differential equations via difference 
approximations of the spatial variables. This corresponds to aggrega- 
tion, as shown in the following example. 
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Figure 4.7: Heating o f  a metal rod 

Example 4.2 Heat Conduction 
Consider a metal rod whose left end point is heated by an external 
source. See Figure 4.7. The power in the heat source is denoted P and 
is an input. The system output is the temperature T at the other end 
point. The heat conduction is described by the heat equation 

where x ( z , t )  i s  the temperature at time t at the distance z from the 
left end point. The number a is the heat conductivity coeficient of the 
metal. W e  have disregarded heat losses to the environment. At the end 
points we have 

T ( t )  = x ( L ,  t )  (4.18) 

where cr is a constant depending on  the heat transfer from the external 
source to the metal. 

The description (4.17)-(4.19) requires that we know the whole func- 
tion x ( z , t l ) ,  0 5 z 5 L, i n  order to determine the temperature T ( t )  
for t 1 t l .  The function x ( z , t l ) , O  5 z < L is the system state at 
time t l ,  so we have to measure and store infinitely many temperatures 
(one for each value of z )  to know the state. Systems described by par- 
tial diflerential equations are therefore often called infinite-dimensional 
systems. 

To get an approximate model that is more manageable for simu- 
lation purposes, we can use aggregation. Let U S  make a third-order 
model of the system i n  Figure 4.7. This means that we work with three 
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Figure 4.8: An aggregate model for heat conduction. 

state variables. W e  divide the rod into three parts and assume the tem- 
perature to be homogeneous in each of them. See Figure 4.8. These 
temperatures at time t we denote x l ( t ) ,  x 2 ( t ) ,  and x3( t ) ,  respectively. 
In this way we have aggregated the function x ( z , t ) ,  0 5 z 5 L/3 ,  
into the aggregate x l ( t )  and so on. Let the heat capacity of each part 
be denoted C and let the heat transfer coefficient between the parts be 
K .  Writing the conservation of energy relationships for each part gives 

d 
-(heat stored in part 1) = (power in) - (power out t o  part 2) 
dt 

This gives the equation 

In an analogous manner we get 

d 
-(C . x3( t ) )  = K(52(t) - x3( t ) )  
dt 

T ( t )  = 5 3 ( t )  

Rearranging these equations gives the linear state-space model 
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This is essentially the same model that we would get using a diflerence 
approximation of the partial derivative 

of (4.17). By choosing a finer division of the rod (giving more state 
variables), we could get a more accurate model. D 

Example 4.3 Forrester's World Model 
In 1979, J. W .  Forrester, working for the Club of Rome, constructed 

a dynamic model for the development of the world. The model is of 
order five with the following state variables 
$1 : World population 
2 2  : Investments 
$3: Natural resources 
xq: Agricultural share of capital 
x5 : Pollution 
This is probably the most grandiose example of aggregation. The model, 
its construction, and the result of simulations are described in J. W. 
Forrester: World Dynamics, Wright-Allen Press, Inc., 1971. D 

4.7 Conclusions 

We can now summarize the phases of modeling in the following scheme: 

Phase 1. Structure the problem: 

Decide on: 

The intended use of the model 

Outputs, inputs, variables, constants 

How the variables interact 

I Draw a block diagram. I 
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Phase 2. Describe the relationships between the 
variables: 

For each block: 

Write down conservation laws. 

Add relevant constitutive relations. 

Phase 3. Form a state-space model: 

Choose a set of state variables. 

Express their time derivatives as functions of state variables 
and inputs. 

Express the outputs as functions of state variables and in- 
puts. 

We have shown how it is possible to produce a model in a fairly 
systematic fashion, starting from physical (or biological, chemical, or 
economical) knowledge of a system. One difficulty is that the modeling 
sometimes ranges over completely different types of physical systems. 
It is then useful to draw on the analogies that exist between different 
physical phenomena. We will discuss this aspect in the next two chap- 
ters. The general structuring of the modeling into three phases will 
also be relevant in that context. 





Chapter 5 

Some Basic Relationships 
in Physics 

5.1 Introduction 

When modeling physical systems, we must of course start with a knowl- 
edge of physics. In this chapter we shall summarize the most common 
relationships within a number of areas in physics. Together the equa- 
tions presented here cover many of the situations encountered in phys- 
ical system modeling. At the same time we get the advantage that 
more general relationships become visible. They can form the basis 
for the more general modeling methods presented in Chapter 6. To 
make comparisons easier, we will label the equations in a special way 
in this chapter. The label will be the section number followed by a 
letter, that indicates the type of equation. The labels (5.2C), (5.3C), 
(5.4C) etc. will all denote analogous equations, for instance. 

5.2 Electrical Circuits 

Consider electrical circuits consisting of resistors, capacitors, induc- 
tors, and transformers. The basic equations used to describe such 
circuits consist of relationships between the fundamental quantities: 

Voltage U (volt) (5.2A) 
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Current i (ampere) (5.2B) 

An ideal inductor, for instance, is described by 

where u(t) and i(t) are voltage and current at time t. The constant L 
is the inductance (henry), and the relationship is sometimes called the 
law of inductance. We can also write it as 

In the same way an ideal capacitor is described by 

where C is the capacitance (farad). We can also write 

For a linear resistor with resistance R (ohm) we have Ohm's law: 

We can of course also consider nonlinear resistances, with the general 
description 

u(t) = hl(i(t)) (5.2F) 

for some nonlinear function h. An ideal rectifier, for instance, has 

In the resistor, energy is lost (as heat). The power is 
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Figure 5.1: Kirchhoff's laws. (a) The sum of currents (with signs) is 
zero. (b) The sum of voltages (with signs) over a circuit is zero. 

(P is measured in watts, 1 W = 1 J/s.) In a similar manner the 
inductor and the capacitor represent energy storage (magnetic and 
electric field energy, respectively). For the inductor we have 

(T is measured in joules), and for the capacitor 

When connecting the electric circuit elements, the rule is 

for current and 

for voltage (Kirchhoff's laws). See Figure 5.1. An ideal transformer 

transforms voltage and current in such a way that their product is 
constant : 

u1 . il = u2 . i2 
u1 = (YUZ (5.2L) 

1 .  
21 = -22 a 

See Figure 5.2. 
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Figure 5.2: A transformer. a is the ratio of the number of turns on 
each side. 

5.3 Mechanical Translation 

Mechanical translation is governed by the laws of mechanics, which 
are relationships between the variables 

Force F (newton) (5.3A) 
Velocity v (meters per second) (5.3B) 

Note that these quantities are three dimensional vectors in the gen- 
eral case. Most of the following relationships can be formulated as 
vector equations. For simplicity we will treat everything as scalars 
here. 

Newton's force law gives 

where the constant m (kg) is the mass of the body. We can also write 

For elastic bodies (for example, a linear spring), the force is propor- 
tional to the elongation (or compression). This in its turn is pro- 
portional to the integral of the difference in velocity between the end 
points: 
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Here k is the spring constant (N/m). In many cases there is a more 
complicated relationship between the force and the elongation (this is 
an important part of materials science). In general we can write 

for some nonlinear function 'H. 
An important problem in mechanical systems is the description 

of the phenomena of friction. In general the description is a direct 
relationship between (frictional) force and velocity 

The most common case perhaps is dry friction 

(Here F. is the frictional force at rest, whose value depends on the 
details of the friction model.) 

Air drag is often described by 

while viscous frzction (for example, in dampers) corresponds to 

The power lost as heat through friction is 

In a similar way the velocity of the body and the compression of 
the spring represent energy storage (kinetic and elastic energy, respec- 
tively). For the kinetic energy we have 
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Figure 5.3: A lever. ac is the ratio of the distances from the pivot. 

and for the elastic energy of the linear spring 

When a number of forces act on a body at rest, their sum is zero: 

Forces can be amplified by levers and similar mechanical devices. See 
figure 5.3. The relationship is then 

5.4 Mechanical Rotation 

Mechanical systems with rotational parts like motor and gear boxes, 
are very common. For these systems the laws of mechanics relate the 
basic variables: 

Torque M (newton - meter) (5.4A) 
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Figure 5.4: Rotational mechanics. 

Angular velocity W (radians per second ) (5.4B) 

See Figure 5.4. The counterpart of Newton's law of force says that 
the angular acceleration is proportional to the torque on the axis: 

where the constant of proportionality J ( ~ m / s ~ )  is the moment  of 
inertia. We write this as 

The torsion of an axis gives rise to a torque described by 

The integral corresponds to the angular displacement between the ends 
where k is the torsiona2 stiflness. 

The rotational friction is a function of the angular velocity 

with different functions h analogous to translational friction. The 
power dissipation at rotation is 
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Figure 5.5: A pair of gears. a is the ratio of the circumferences, 

and the stored rotational energy is 

while turning of a torsional axis to M(t)  corresponds to a stored tor- 
sional energy according to 

1 
T ( t )  = - ~ ~ ( t )  

2k 
(5.41) 

For a rotational mechanical system at rest, the sum of all torques must 
be zero: 

A pair of gears transforms torque and angular velocity as follows: 

See Figure 5.5. 

5.5 Flow Systems 

By a flow system we mean connections of fluid flows in tubes and 
tanks. Typical applications are in chemical industrial systems and 
hydraulic systems. We will only treat incompressible fluids, that is, 
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those for which the volume is unaffected by the pressure. The treat- 
ment of compressible fluids is more complicated, partly because there 
are temperature changes when the volume is altered. 

Flow systems are described by two basic quantities: 

Pressure p (newtons per square meter) 
Flow Q (cobic meters per second) 

(We will work with volume flows. Multiplying by the density would 
give mass flows. For incompressible flows there is no essential differ- 
ence.) 

Consider a fluid flowing through a tube. See Figure 5.6. The pres- 
sure difference p between the end points of the tube results in a force 
that accelerates the fluid. If the cross-sectional area is A, the force is 
p A. The mass to be accelerated is p l A, where p is the density of 
the fluid and l the length of the tube. Newton's force law gives 

where v(t) is the velocity of the fluid. The velocity corresponds to a 
fluid flow Q(t) = v(t) A (m3/s). We get 

where Lf = p l/A is the inertance (kg/m4) of the tube. 
Consider a fluid that is accumulated in a tank as shown in Figure 

5.7. The volume in the tank is the integral of the flow: V = JQdt.  
The pressure at the bottom of the tank is equal to the level (h = VIA) 
multiplied by the density p and the gravitational acceleration g, 

The number Cf = A/pg (m4s2/kg) is called the fluid capacitance. If 
the area of the tank depends on the level, we get a nonlinear relation- 
ship 

= W Jt Q(+) (5.5Dt) 
0 
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Figure 5.6: Flow through a tube. p1 and p2 are the pressures at the 
end points of the tube. 

Figure 5.7: A tank as a fluid store. 
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Figure 5.8: Flow through an orifice. 

When liquid flows through a tube there is normally a loss of power 
through friction against the walls and internal friction in the fluid. 
This leads to a pressure drop over the tube. Conversely, we can say 
that a pressure drop is needed to maintain a certain flow. [Note that 
we disregarded these effects in (5.5C).] The pressure drop depends on 
the flow. In general we can write 

The properties of the function hl depend on the properties of the tube. 
If the tube is thin or filled with a porous medium, d'Arcy's law applies: 

where Rf is called the flow resistance. If the tube contains a sud- 
den change in area (an orifice or a valve), we have the approximate 
relationship 

p(t> = - ~ ~ ( t )  . sgn(Q(t)) (5.5F1) 

for some constant 3-1. See Figure 5.8. The energy loss through these 
phenomena is 

p( t>  = ~ ( t )  . Q(t) (5.5G) 

The frictionless flow through a tube (Figure 5.6) corresponds in the 
same way to an accumulation of energy, 
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Figure 5.9: Flows at a junction. 

while the tank of Figure 5.7 corresponds to potential energy: 

When flows are connected in a junction (see Figure 5.9) their sum 
must be zero: 

Likewise, the total pressure over a series connection as in Figure 5.10 
must be the sum of the pressure drops 

or, going around in a loop and taking account of signs, 

Finally, flows and pressures can be transformed as shown in Figure 
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Figure 5.10: Pressures over subsystems [r = 3 in (5.5K)l. 

area AI 

Figure 5.11: A flow transformer. 

area A2 

5.1 1. It is easily seen that we get 

Q -A-.. p1 

where a = A2/A1 

p2 - Q2 

5.6 Thermal Systems 

Thermal systems involve heating of objects and transport of thermal 
energy. The laws governing these phenomena are typically expressed 
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as relationships between the quantities: 

Temperature T (kelvin) 
Heat flow rate q (watt). 

Heating of a body means that the temperature increases as heat 
flows into it. 

Here C is the thermal capacity [J/(K- S)]. We write this relationship 

If the thermal capacity depends on the temperature, then (5.6D) is 
replaced by a nonlinear expression. Normally, T(t) represents the de- 
viation from a reference temperature (different from absolute zero) and 
then (5.6D) can be a good approximation. 

Heat transfer between two bodies with different temperatures is 
often considered to be proportional to the temperature difference T(t): 

The coefficient W is called the heat transfer coeficient [J/(K. S)]. 

Furthermore, the sum of all heat flow rates at one point must be 
zero: 

E q k ( t )  E 0 (5.65) 

5.7 Some Observations 

There are obvious similarities among the basic equations for different 
physical systems. (Check all the equations ending with the same let- 
ter!) We have seen that almost all equations are relationships between 
two variables: 

A: Effort variables e 
B: Flow variables f 

The relationships have the following characteristics: 

C: Effort storage: f = a-l . J e 
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System 
Electrical 
Mechanical: 
Translational 
Rotational 

Table 5.1 : Some Physical Analogies. 

Effort Flow C D F 
Volt age Current Inductor Capacitor Res 

Force Velocity Body Spring Fr i l  

Torque Angular Axis Torsion Fril 

Hydraulic 
Thermal 

D: Flow storage: e = P-' J f 
F: Static relationship: e = h(f) 
G: Power dissipation: P = e . f 
H: Energy storage via C: T = f 10. I: Energy storage via D: T = 
J: Sum of flows equal to zero: 5 fi = 0 
K: Sum of efforts (with signs) equal to zero: C ei = 0 
L: Transformation of variables: el fi = e2 fi 

velocity spring 
Pressure Flow Tube Tank Ori 
Temperature Heat flow rate - Heating He 

In this way we get many analogies. In certain cases the analogies are 
not complete. The relationship G, for instance, is invalid for thermal 
systems. We would have to use entropy flow rate instead of heat flow 
rate to get completely parallel results. The analogies are summarized 
in Table 5.1. 

5.8 Conclusions 

We have seen that there are far reaching analogies between different 
types of physical systems. An important aspect is that it should be 
possible to create systematic, application-independent modeling meth- 
ods starting from these analogies. In Chapter 6 we will use the analo- 
gies in a thoroughly systematic attack on the modeling problem. 





Chapter 6 

Bond Graphs 

In Chapter 5 we saw that there are far reaching analogies between 
electrical, mechanical, hydraulic, and thermal systems. At the end 
it was also suggested that we can find a systematic modeling scheme 
based on these analogies. One way of doing this is to use bond graphs, 
introduced by H. Paynter. We then make the modeling systematic by 
following the energy flow in the system under study. Since the pro- 
cesses that are modeled usually involve energy exchange and energy is 
conserved, there is some assurance that nothing important is forgotten 
in the modeling. 

6.1 Efforts and Flows 

The basic idea of bond graphs is the observation of Section 5.7 that 
many models can be described in terms of effort variables e and flow 
variables f .  This is represented graphically in Figure 6.la for the 
electrical, mechanical, hydraulic, and general cases, respectively. As 
we noted before, the products ui, F v ,  pQ,  and ef have the dimension 
of power. The horizontal line, the bond, is therefore interpreted as 
a connection between subsystems that exchange energy. To mark in 
what direction the energy flows when the product e f is positive, we 
can put a half-arrow on the bond (Figure 6. lb). (Ordinary arrows are 
reserved for other purposes; we will return to them later.) The half- 
arrow will also be used to distinguish between the variables: it will 
be written on the same side as the effort variable. (Unfortunately, no 
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Figure 6.1: Efforts and flows. 

Figure 6.2: Flow storage. 

convention of this type is universal in the bond graph literature.) We 
will now present some elements that can be connected by bonds. 

Flow Storage 

We noted in Chapter 5 that many physical elements can be modeled as 
flow storage, for example, a capacitor for electric current or a tank for 
water flow. With bond graphs this is represented according to Figure 
6.2a. Here the C denotes the storage element (C as in capacitive). 
The bond symbolizes the energy flow from the rest of the system into 
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the element. If the relationship between e and f is linear, 

then the coefficient ,l3 is often included in the graph as in Figure 6.2b. 

Effort Storage 

We also saw in Chapter 5 that, for example, an inductor could be 
regarded as an effort storage with a relationship 

(in the linear case). In a bond graph this is represented as in Figure 6.3. 
Elements of this type are often called inductive or inertial (compare 
the electrical and mechanical applications in Sections 5.2 and 5.3). 
The symbol I : a shows the type of element (I)  and the parameter a 
of equation (6.1). 

Resistive Element S 

We have also considered static relations between effort and flow 

These are called resistive elements following electrical terminology. 
The graphical representation is shown in Figure 6.4a. For linear ele- 
ments with the relation 

e = r .  f 

we often use the notation of Figure 6.4 b. 

Figure 6.3: Effort storage. 
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Figure 6.4: Resistive element. 

- - - - - - 
e l I 

S,- : System I 
f t - - - - - - J  
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e I I 

Sff 
I System I 
1 I 

Figure 6.5: (a) Effort source and (b) flow source. 

Sources 

In the general discussion of models (Section 3.2), we saw that there are 
in general inputs, that is, externally generated signals. When dealing 
with bond graphs, they are called sources. They can be of two types, 
depending on whether the input is an effort or a flow (see Figure 6.5). 

In the effort source, e is regarded as input, while f is the input for 
the flow source. 

6.2 Junctions 

The discussion in Chapter 5 of analogies between different physical 
phenomena also showed that summation laws for flows and efforts are 
important. (Equations J and K in Section 5.7.) We will now scrutinize 
these relationships within the framework of bond graphs. 
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Figure 6.4: Resistive element. 

e I l 

S,- : System : 
f I------. 

( 4  

e I I 

Sf 7 : System : 
I I 
L - - . . - - - A  

(b) 

Figure 6.5: (a) Effort source and (b) flow source. 

Sources 

In the general discussion of models (Section 3.2), we saw that there are 
in general inputs, that is, externally generated signals. When dealing 
with bond graphs, they are called sources. They can be of two types, 
depending on whether the input is an effort or a flow (see Figure 6.5). 

In the effort source, e is regarded as input, while f is the input for 
the flow source. 

6.2 Junctions 

The discussion in Chapter 5 of analogies between different physical 
phenomena also showed that summation laws for flows and efforts are 
important. (Equations J and K in Section 5.7.) We will now scrutinize 
these relationships within the framework of bond graphs. 
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Figure 6.4: Resistive element. 
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S.? : System 
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Figure 6.5: (a) Effort source and (b) flow source. 

Sources 

In the general discussion of models (Section 3.2), we saw that there are 
in general inputs, that is, externally generated signals. When dealing 
with bond graphs, they are called sources. They can be of two types, 
depending on whether the input is an effort or a flow (see Figure 6.5). 

In the effort source, e is regarded as input, while f is the input for 
the flow source. 

6.2 Junctions 

The discussion in Chapter 5 of analogies between different physical 
phenomena also showed that summation laws for flows and efforts are 
important. (Equations J and K in Section 5.7.) We will now scrutinize 
these relationships within the framework of bond graphs. 
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Series Junction 

Consider the electric circuit of Figure 6.6a. Let us regard the voltage v 
as an input signal. We then get an effort source, (see Figure 6.6b). We 
see directly that the energy flowing into the system is divided between 
the resistor, the capacitor, and the inductor (see Figure 6.6~).  

We have put an S into the junction representing the division of the 
energy flow to show that it represents a series connection. Note that 
the flow variable i is the same for all bonds at the junction. Also note 
that the efforts satisfy 

The sum of the efforts is thus zero, if we use the convention that 
an outward pointing half-arrow represents a change of sign for the 
corresponding variable. By using what we know about capacitive, 
inductive, and resistive elements, the graph can now be completed 
(see Figure 6.6d). 

We can now generalize the example and define a general series 
junction, an S junction (see Figure 6.7a). It is characterized by the 
following. 

The same flow: fl = f2 = ... = f, 

The sum of efforts equal to zero: el + e;! + ... + e, = 0 

As we saw in the example, it is natural to have the convention that an 
outward pointing arrow gives a change of sign for the effort variable. 
The graph of Figure 6.7b, for example, has the equation 
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v l l 

Se- : System I 
2 I I 

(4 
Resistor 

v31 
Capacitor 

Inductor 

Figure 6.6: Power flow in an electric circuit. 
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Figure 6.7: S junction. 

en I fn 
(4 

Figure 6.8: p junction. 
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Figure 6.9: Electrical parallel circuit. 

Parallel Junction 

Analogously to the previous section, it is natural to define a junction 
where e and f have changed roles. So let us define a parallel junction 
( p  junction) with the graphical representation shown in Figure 6.8a 
and the following rules: 

Identical efforts: el = ea = ... = e, 

Sum of flows equal zero: fi + f2 + ... + f, = 0 

As before the sign convention should be that an outward pointing 
half-arrow gives a change of sign in the sum, so in Figure 6.8b the 
relation is fl + fi - f3 = 0. Let us finally motivate the name parallel 
junction by applying the definition to the electrical parallel circuit 
shown in Figure 6.9a. We get the graph in Figure 6.9b. We will see 
later that the source should be a flow source (Section 6.6). We see 
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Figure 6.10: Removal of junctions. 

that the equation 

i - i l - i 2 - i J = O  

fits into what we know about electrical currents. Also there is the 
same voltage (effort) at all the bonds. 

Simplifications in Bond Graphs 

In a number of cases, bond graphs can be simplified. We give two 
examples. 

1. Junctions that have only two bonds (with the half arrows point- 
ing in the same direction) can be removed, as shown in Figure 
6.10. 

2. A direct application of the definitions shows that two adjacent 
junctions of the same kind can be merged. In Figure 6.11, two s 
junctions (a and b) and two p junctions (c and d) are merged. 

6.3 Simple Bond Graphs 

We now have enough tools to set up bond graphs for some simple 
physical systems. Consider the mechanical system of Figure 6.12a. A 
body, which is moving without friction with the velocity v, is pulled 
with the force F. It is natural to regard F as the input, that is, an 
effort source (see Figure 6.12b). In this case, all energy is stored as 
kinetic energy. From Section 5.3 we see that this is an effort storage, 
that is, an I element. The graph is shown in Figure 6.12~. 
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(c> 

Figure 6.11: Merging of junctions. 
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F l 
I 

S,-----' : System I 
v I l 

Figure 6.12: Mechanical system. 

Now suppose that we add a spring with spring constant k, as shown 
in Figure 6.13a. F is still represented as an effort source. Now, how- 
ever, the energy is divided between kinetic energy and energy stored 
in the spring (see Figure 6.13b). This corresponds to effort and flow 
storage, respectively, that is, I and C elements. Since these elements 
have the velocity in common, this is a junction with common flow 
- a series junction. This gives the graph of Figure 6 . 1 3 ~  with the 
relationship F = Fl + F2. 

Now consider the situation in which the mass slides along the sur- 
face with a certain friction as shown in Figure 6.14a. The friction is 
assumed to be a nonlinear function of the velocity, Ff = cp(v). The 
energy supplied by F is now divided into three components (Figure 
6.14b). We see that the friction loss is an R element. Furthermore, the 
velocity v is common to all bonds, that is, we still have an s junction. 
The graph is shown in Figure 6.14b. 

We will now consider the electrical system shown in Figure 6.15a. 
The voltage v is regarded as input. This corresponds to an effort source 
(see Figure 6.15b). If we regard R2 and Cl as one element, we see that 
we have a series connection where RI and L1 are R and I elements 
respectively (Figure 6.15~). In the subsystem consisting of R2 and Cl 
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F 
S,------ --- Kinetic F 

S, -------- S 
F1 

v energy V I : m  l I V  

i 
Energy in spring 

Figure 6.13: Mechanical system with spring. 

Figure 6.14: Mechanical system with spring and friction. 
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the energy is divided between R2 ( R  element) and Cl (C element) in a 
p junction (a common voltage). The full graph is displayed in Figure 
6.15d. 

6.4 Transformers and Gyrators 

In Chapter 5 it was shown that the ideal electrical transformer (Figure 
6.16a) with the relationships 

also has counterparts for mechanical and hydraulic systems. In bond 
graphs it is usually symbolized as shown in Figure 6.16b, with the 
relationships 

e2 = nel 
f2  = i f 1  

An interesting feature bf the transformer is that it can also be used 
to describe connections between different types of physical variables. 
An example is a hydraulic cylinder as shown in Figure 6.17a. The 
relationship between the mechanical variables, the force F and the 
velocity v, and the hydraulic variables, the pressure p and the flow Q, 

where A is the cross section of the cylinder. Since we have defined p 
and F to be effort variables and Q and v to be flow variables, this is 
a transformer (Figure 6.17b). 

There is an element similar to the transformer in which efforts and 
flows have a LLcrosswise" dependence. It is called a gyrator and its 
symbolic description is shown in Figure 6.18. It is characterized by 
the equations 

Note that ea f2 = el fi, so power is conserved, as in the transformer. 
The gyrator is found for instance in the conversion between electri- 

cal and rotational energy in electric motors. In principle the situation 
is described by Figure 6.19a. A wire carrying the current i rotates with 
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Figure 6.15: Electrical system. 
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Figure 6.16: Ideal transformer. 

Area A 
F ,  P 

F v TF Q 
1/A 

Figure 6.17: A mechanical-hydraulic conversion. 

Figure 6.18: Gyrator. 
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Figure 6.19: An electromechanical example of a gyrator. 

the angular velocity W in a magnetic field. It is turned by a moment 
M proportional to the current 

At the same time an emf proportional to the angular velocity is gen- 
erated 

U = kw 
- 

Since MW = ui if there are no energy losses, we must have k = k. 
We can thus symbolize the system with a gyrator as shown in Figure 
6.19b. 

6.5 Systems wit h Mixed Physical Variables 

We shall use tranformers and gyrators as tools to describe some mixed 
systems. 

Example 6.1 A DC Motor 
W e  first consider the dc motor shown in Figure 6 . 2 0 ~ .  The motor 
is controlled by an external voltage U ,  giving rise to a current i and 
a rotation with the angular velocity W .  W e  assume that the windings 
have a resistance RI and an inductance L1.  The rotating parts have 
a moment of inertia J .  There is also some fmction. The energy sup- 
plied will be partially stored i n  the inductor and partially lost in the 
resistor, while the remainder will be converted into mechanical energy. 
This energy i n  its turn will be stored as rotational energy or be lost by 
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friction. The graph will then in  principle be the one of Figure 6.20b. 
As  we saw earlier, the storages i n  the inductor and as rotational en- 
ergy correspond to I elements, while the resistor and the friction are 
R elements. Both junctions have common flow variables, so they are 
s junctions. The conversion between electrical and mechanical energy 
is a gyrator as we saw i n  the last section. W e  then get the bond graph 
of Figure 6.20c, where we have assumed a general, possibly nonlinear, 
relationship for the friction: M f  = cp(w). 

Example 6.2 Mechanics-Hydraulics 
Let us now consider a mechanical-hydraulic example as shown in Fig- 
ure 6.21a. The force F acts on  a piston with mass m1 and cross 
section Al. This results i n  a flow Q1,  which is  partly stored in a tank 
with cross section Ag and partly goes on as Q2 to a piston with cross 
section A2. This piston moves the mass m2 with velocity v2 over a 
surface with frzction Ff  = cp(v2). The pressure in the connecting tube 
is p. Starting with the left cylinder, we see that the energy is partly 
stored in the mass m1 and partly transferred to the hydraulic subsys- 
tem. This transfer of energy is, as we have seen, represented by a 
transformer (Figure 6.17). W e  thus get Figure 6.21b. 

The energy flow to the right is partly stored in the tank (see equation 
(5.50)) and partly taken to the cylinder on the right. A common 
pressure means a p junction [see Figure 6.21~1. At the cylinder to the 
right there is  a reconversion to mechanical energy which is divided into 
kinetic energy and friction losses. W e  then get the full graph shown in 
Figure 6.21 d. 

6.6 Causality: Signals between Subsystems 

We have discussed input signals and represented them by sources. If 
an effort e is an input, then we have an effort source (see Figure 6.22). 
(We do not include the half-arrow in the bond, since the sign of the 
energy flow is of no importance here.) Our physical feeling tells us that 
the system will produce a certain f when we apply an e .  (A certain 
voltage gives a certain current, a certain pressure gives a certain flow, 
and so on.) The flow f should then be regarded as the output of the 
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Figure 6.20: DC motor. 
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Figure 6.21: Mechanical-hydraulic system. 
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Figure 6.22: Effort as input. 

e l I 

S f : System : f I  I 

Figure 6.23: Flow as input. 

system. For a flow source we have the reverse situation (see Figure 
6.23). We regard f as input to the system and it is then reasonable to 
regard e as the output (a current gives rise to a voltage drop, a flow 
gives a pressure drop). 

The point is now that we can use the same arguments about any 
bond. Consider a bond between two arbitrary subsystems (Figure 
6.24). Now imagine a situation where it is natural to regard the sub- 
system A as an effort source. The variable e then becomes an input 
to the subsystem B, and from the preceding argument f should be an 
output of B. To make the situation symmetrical it is then logical to 

l I I l e 
I Subsystem A ] Subsystem B 
I 
L - - - - - - - - - - - d  I f : -----------: 

Figure 6.24: A bond between subsystems. 
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Figure 6.25: Signals between subsystems. 

Figure 6.26: Signals between subsystems. 

regard f as an input to A, so e becomes an output. Using a block 
diagram description (see Chapter 4), we can illustrate the situation as 
shown in Figure 6.25(a). We regard e as a signal from A to B and f 
as a signal from B to A. If we want to view the bonds in this way, 
we put a cross stroke on the bond adjacent to subsystem B, as shown 
in Figure 6.25(b), that is, adjacent to the subsystem that has effort 
as input. A cross stroke at the opposite side of the bond, as shown 
in Figure 6.26, means that e is regarded as input of A and f as input 
of B. This process of assigning inputs and outputs to subsystems is 
often called causality assignment - the input can be regarded as the 
cause of the output. The cross strokes are often called causal strokes. 

Note that the causal stroke says that we choose to regard the system 
as having a certain causality. The causality is thus not given by physics 
(except for sources). We will see however that there is often a natural 
choice of causality that makes it simple to transfer a bond graph to 
state equations. 

Causality and Sources 

For sources we must, by definition, have the causality of Figure 6.27. 
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Figure 6.27: Causality of sources. 

Figure 6.28: Different choices of input for an effort storage. 

Causality of Energy Storage 

Let us consider an effort storage described by 

Regarding e as  the input gives the block diagram of Figure 6.28a. 
Choosing f as the input gives instead the block diagram of Figure 
6.2813. Since integration is a more natural operation than differentia- 
tion in signal processing, it seems natural to prefer Figure 6.28a. We 
could also consider a physical example. Suppose a body with velocity 
f is acted on by the force e. If f is regarded as the input, an instan- 
taneous input change will give an infinitely large force. There is no 
corresponding problem if the force e is regarded as input. Every time 
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Figure 6.29: Causal strokes for I, C and R elements. 

function e (with the exception of mathematical pathologies) can be 
integrated to a nice f .  We conclude that it is natural to let e be the 
input and then get the causality of Figure 6.29a. Since e and f change 
roles for a flow storage, the natural choice of input is f ,  giving the 
causality of Figure 6.29b. 

Causality of Resistive Elements 

For a resistive element there is a static relationship between e and f ;  
for example, 

4) = cp(f (ill, f (t) = cp-l(e(t)) 

where we have assumed the function cp to be invertible. If this is the 
case we see that we are free to choose either e or f as input. Both (c) 
and (d) of Figure 6.29 are thus possible causalities. We will see later 
that this freedom can be used to adjust the causality to be compatible 
with the rest of the graph. 

Causality of Junctions 

For an S junction as shown in Figure 6.30a, we know that there is 
a common flow and that the sum of the efforts is zero: 
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Figure 6.30: Causality of an s junction. 

We see that it is possible to choose the flow in only one of the bonds; 
when this fi is chosen, the others are automatically fixed to the same 
value. For the efforts however we can choose n - 1 of them as inputs 
and let the remaining one be an output, given by (6.2). If we take el, 
e2, . . . en-1 as inputs then we get the causality of Figure 6.30b. 

The argument can be summarized in the following rule: 

All bonds of an s junction except one 
shall have the causal stroke at the S.  

(6.3) 

For a p junction the roles of effort and flow change places and the rule 
therefore becomes 

Precisely one of the bonds of a p junction 
shall have the causal stroke at the p. (6.4) 

Causality of Transformers and Gyrators 

Since a transformer relates the variables as 

we must choose inputs and outputs in the same way in the bonds. This 
gives two possibilities for the causal strokes (see Figure 6.31). 

A gyrator ties the effort of one side to the flow of the other side, so 
the causal stroke has to be moved (see Figure 6.32). 
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Figure 6.31: Possible causalities of a transformer. 

Figure 6.32: Possible causalities for a gyrator. 

Propagating Causality in a Graph 

We have seen that some bonds have an automatic (sources) or a natural 
(I and C elements) causality. Also it is clear that the rules for p and 
s junctions, transformers, and gyrators will force a certain choice of 
causality for some other bonds. We formalize this in the following 
algorithm. 

1. Choose a source and mark its automatic causality. 

2. Some adjacent bonds have only one possible causality because of 
the rules for junctions, transformers, and gyrators. Mark these 
causalities as far into the graph as possible. 

3. Repeat steps 1 and 2 for all sources. 

4. Choose an I or C element and mark its natural causality. 

5. Mark the causalities that are now fixed analogous to step 2. 

6 .  Repeat steps 4 and 5 for all I and C elements. 
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7. Choose some R element that has no causality mark and fix an 
arbitrary one. 

8. Do the analogy of step 2. 

9. Repeat steps 7 and 8 for all remaining R elements. 

The normal case is that the algorithm terminates after step 6 with 
causality for all bonds and all rules satisfied. If the algorithm stops 
because the causality rules are in conflict, then the problem might be 
ill-posed. We will defer a discussion of such questions to Section 6.8. 
Instead we will show how to go from a causality marked bond graph 
to a state-space description. First, we will give an example. 

Example 6.3 Causality for a n  Electrical System 
W e  will use the bond graph of an electrical system constructed i n  Sec- 
tion 6.3 (Figure 6.15). See Figure 6 . 3 3 ~ .  Here we have already per- 
formed step 1 i n  the algorithm by marking the causality at the eflort 
source. Steps 2 and 3 of the algorithm do not give anything new. At  
step 4 we give causality to the bond at the I element. See Figure 6.33b. 
I n  step 5, rule (6.3) says that we must mark causalities at the left junc- 
tion as shown Figure 6 . 3 3 ~ .  According to step 6, we have to repeat step 
4 for the C element. This gives Figure 6.33d. Finally, step 5, using 
(6.4), gives causality to the last bond. See Figure 6.33e. W e  have 
now succeeded i n  giving causality to all bonds without conflict with the 
rules. U 

6.7 State Equations from Bond Graphs 

A great advantage of bond graphs is that the choice of state variables 
is natural. The memory of the system lies in the I and C elements. 
From the physical interpretation of the states described in Section 3.4 
it then follows that it is natural to associate one state variable with 
each such element. Mathematically, we do it in the following way. 
Consider an effort storage 
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Figure 6.33: Causality in a bond graph of an electrical system. 
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We see that it is natural to choose the state variable X as 

These choices are equivalent but one of them might be more natural 
from a physical point of view. In both cases the flow f is uniquely 
determined by X and (6.5) or (6.6) is a state equation for X, provided 
we can express e in states and inputs only. 

For a flow storage the corresponding equation is 

with the following natural choices of state. 

If we introduce state equations of the form (6.5) - (6.8) for all I and 
C elements, we get a state-space description as soon as all flows of 
C elements and all efforts of I elements are expressed in states and 
inputs. The flow of an I element and the effort of a C element are 
given by the states, and they are also regarded as outputs by the 
causality of the bonds. We can then do calculations as zfthe I elements 
were flow sources and the C elements effort sources. We can then 
propagate the signals through the graph using the causality marks as 
local information whether a signal is to be regarded as an input or an 
output. When the whole graph has been filled, we know in particular 
the right sides of (6.5)-(6.8). 

We illustrate the method using the bond graph of Example 6.3. 
With the causality of Figure 6.33, we have the graph of Figure 6.34a, 
where we have marked those variables that are known when the I 
element is regarded as a flow source (the current i) and the C element 
as an effort source (the voltage v,). At the s junction we now have the 
flow i as input. Then all the other flows are given as outputs (= i). In 
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Figure 6.34: Relations among variables for an electrical system. 
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the same way, v, at the p junction determines all other efforts to be 
equal to v,. The result is shown in Figure 6.34b. 

We see that we now know the inputs of the R elements with values 
R1 and R2 so that their outputs Rli and vc/R2 can be calculated (see 
Figure 6.34~). 

Since we now know the three efforts that are inputs to the S junc- 
tion, the fourth one, which is an output, can be computed to be 
v - Rli - v,. At the p junction we analogously calculate the cur- 
rent into the capacitor to be i - vc/R2. The complete graph is shown 
in Figure 6.34d. 

If we introduce the state variables xl = i and 22 = v,, we get 
directly, by reading the bonds at the I and C elements, the equations 

or equivalently 

This is a state space description with input v. The procedure of this 
example can be formalized into an algorithm. It is then possible to 
translate a bond graph into state equations automatically on a com- 
puter. We will discuss this in Section 7.4. However, the informal 
reasoning that we used in this example is usually sufficient for bond 
graphs that are small enough for hand calculations. 

6.8 111-posed Modeling Problems and Bond 
Graphs 

Sometimes the causality rules lead to conflicts that cannot be resolved. 
Often this means that the problem is in some sense ill-posed. We give 
some examples. 

Consider the simple circuit of Figure 6.35a. With the causality 
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Figure 6.35: Electrical circuit. 

Figure 6.36: Electrical circuit with complete causality 
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of an I element marked, we get the bond graph of Figure 6.3510. The 
rules of an s junction now make it necessary to complete the graph 
as in Figure 6.36. We see that we have to choose v as the input. If 
we choose the current i we get an inconsistent diagram (if we do not 
want to move the causality of the inductor to make it an element that 
differentiates the signal). Hence we note that one cause of problems 
can be a bad choice of input signal. Physically, the problem with the 
current as input is related to the fact that the current is also the natural 
choice of state variable for the inductor. We like to think of inputs as 
variables that can be changed momentarily, but it is not natural to be 
able to change the state (and thereby the stored energy) of a system 
momentarily. 

Now consider the mechanical system of Figure 6.37a. The accom- 
panying graph is shown in Figure 6.37b. We have marked causalities 
except on the bond between the S junctions. For this bond there is no 
possibility to get consistence with the rules. The problem is related to 
the fact that the states associated with the masses are not independent 
of each other (the velocity is the same for both masses). 

In this case our physical insight tells us that the problem can be 
solved by lumping the masses together as in Figure 6.38a, giving the 
bond graph of Figure 6.38b. 

Another possibility would be to introduce a spring between the 
masses (see Figure 6.39a). The bond graph, shown in Figure 6.3913, 
then has no causality conflict. If we try to make the connection be- 
tween the masses "almost rigid7' by making k' large, there will be a 
problem with stiff differential equations when simulating the system 
(see Chapter 11). 

6.9 Controlled Elements 

In many cases the elements of a bond graph are variable. Variable R 
elements occur for instance in electrical systems (potentiometers), in 
hydraulic systems (valves), and mechanical systems (brakes). In some 
cases the variable resistance can be regarded as an input. In other 
cases it might be determined by variables in some other part of the 
bond graph. We denotc this a controlled R element. All types of ele- 
ments can in principle be controlled. The most common cases except 
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Figure 6.37: An ill-posed mechanical problem. 

Figure 6.38: A mechanical system with the masses lumped into one. 



CHAPTER 6. BOND GRAPHS 

Figure 6.39: A mechanical system with a spring between the masses. 
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Figure 6.40: A controlled source and a controlled R element. 

R elements are probably controlled sources and controlled transform- 
ers and gyrators. In the simple cases we will discuss here, the control 
implies a one-way dependence without any significant transfer of en- 
ergy. It is marked as shown in Figure 6.40. The whole arrow marks 
a signal flow without energy transfer. If the control is via an effort 
variable, we get the graph of Figure 6.41a. The figure shows that eo 
of the effort source depends on the common effort e of the p junction. 
The dependence, which can be dynamic, is symbolized by the block 
G. [If G is a linear system G = G(p) in the differentiation operator 
p, we have eo(t) = G(p)e(t).] Since we assume that the signal flow 
of the whole arrows implies no energy transfer, the flow out of the p 
junction this way must be zero. When writing down the flow balance, 
we should therefore include only the ordinary bonds: 

If we instead have a flow as input to G, we get the diagram of Figure 
6.41b. In this case we get 

since no effort is transferred by the signal arrow. 
As an example we can study the flow system of Figure 6.42. Here 

we describe a level control where the pressure at the bottom of the 
tank is taken as a measure of the level. The regulator Reg controls the 
valve, which is thus a controlled R element. 

If the coefficients n, r of a transformer or gyrator are controlled from 
some other variable, we use the term modulated transformer or gyrator. 
Analogously to the preceding example, above we use the notation of 
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Figure 6.41: (a) Effort-controlled and (b) flow-controlled source. 
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Figure 6.42: Flow system with a controlled R element. 

M T F  ------L MGY --W--* 

4 0 )  ~ ( 0 )  

Figure 6.43: Modulated transformer and modulated gyrator. 
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Figure 6.44: Example of a modulated transformer. 

Figure 6.43, where 8 denotes a variable determined at some other place 
in the system (or an input variable). 

A typical example is the relationship between rotation and trans- 
lation. Such a case is is shown in Figure 6.44a. A bar turns around 
the point P. Between the moment M and the force F and between 
the velocity v and the angular velocity W we have the relations 

We can regard these equations as a modulated transformer with n = 
e sin 0 as shown in Figure 6.4413. This example can be used to describe 
the model of a pendulum. 

Example 6.4 Model of a Pendulum 
Consider Figure 6.Q5a. W e  can regard gravitation as a constant in- 

put. A s  we just saw, the pendulum can be regarded as a modulated 
transformer, transforming the gravitational force into a moment. The 
energy supplied by gravity is stored as rotational energy (an I element 
with moment of inertia = me2), but also lost to frzction (an R ele- 
ment). If we assume that the moment caused by fnction is proportional 
to the angular velocity 

Mf = bw 

we get the bond graph of Figure 6.45b. Here the relationship between 8 
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and w is  also marked (W = 8). If we fill in the relationships generated 
by the graph, we finally get Figure 6 . 4 5 ~ .  Introducing W as a state 
variable we get me2 cj = -mgesin8 - bw, which gives the state-space 
description 

b h=-:sine- =W 

e = w  

6.10 Further Remarks 

We have presented the basis of the theory of bond graphs. This theory 
has been extended in many ways. We list some of these extensions. 

1. For electrical and mechanical systems there is a special system- 
atic technique. It is outlined in Section 6.12. 

2. The bonds can represent vector-valued variables. This is of great 
interest in mechanical applications. 

3. Simple thermal systems can be handled using pseudo bond 
graphs, in which the heat flow is the flow variable and the tem- 
perature effort variable. 

4. General thermodynamic problems can be handled with bond 
graphs in which the entropy flow is the flow variable and the 
temperature the effort variable. 

5. We have assumed that the storage of flow and effort only affects 
one variable at a time. More complicated situations are possible 
and can be treated within the framework of bond graphs. 

For details regarding these extensions we refer to the bibliography at 
the end of Part 11. Finally, we note some differences regarding notation. 

1. We have marked series and parallel junctions with an S and a p, 
respectively. It is also common to use 1 and 0 (see Figures 6.46 
and 6.47). 
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- m g  I 
Se h M T F  - S -  R : b  

sin 8 W 

I : me2 

- m g e  sin 8 - bw W l 
- m g  - m g l  sin0 I bw &h M T F  ' S -  R : b  

[sine W W 

Figure 6.45: Description of a pendulum. 
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Figure 6.46: Series junction. 

Figure 6.47: Parallel junction. 

2. From a purely mathematical point of view it does not matter 
if the variables denoting flow and effort change places. For me- 
chanical systems we could use force and moment as flow variables 
and velocity and angular velocity as effort variables. This is in 
fact done by many authors. The only difference is that I ele- 
ments are turned into C elements, S junctions into p junctions, 
some transformers into gyrators, and vice versa. 

6.11 Conclusions 

We have seen that bond graphs represent a very systematic method for 
the modeling of systems in physics and engineering. It is an advantage 
that the method is based on a central physical concept - energy - 
and that the same methodology is used for different types of systems. 
Another advantage is that we work locally, "one junction at a time." In 
this way, complex systems are in principle no more difficult than simple 
ones. The bond graph is also a complete description of a dynamic 
system. It can automatically be translated into state-space equations. 
Perhaps the main disadvantage with bond graphs is that we exclude 
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nontechnical applications. 

6.12 Appendix 

A Systematic Method of Translating Electrical Circuits 
into Bond Graphs 

Most electrical diagrams can easily be converted into bond graphs by 
grouping components as series and parallel connections. However, we 
could also use the following completely systematic procedure: 

1. Introduce a p junction for every point with a well-defined poten- 
tial. 

2. Introduce an S junction with a C, I, or R element attached for 
every component. Introduce an s junction with a source attached 
for every input. 

3. Use the fact that grounded points have zero voltage (and conse- 
quently do not contribute to  the summation at S junctions) for 
removing certain bonds. 

4. Use the simplification rules of Section 1 for removing and merging 
junctions. 

Example 6.5 Simplification of an Electric Circuit. 
Consider the circuit of Figure 6.48(a). Steps l and 2 give Figure 
6.48(b). Note that the structure of the circuit diagram is presented. 
Step 3 gives Figure 6.48(c) and step 4 gives (d). 

A Systematic Method for Mechanical Systems 

For mechanical systems we can use the following procedure: 

1. Introduce an s junction for every point with a well-defined ve- 
locity. 

2. Introduce S junctions for velocity differences and p junctions to 
form these differences. 
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Figure 6.48: Systematic procedure for an electrical bond graph. 

P- S- P -  S- P 

I i- 
s- C s e -  

P- P- P- P-P- P 

S C- S I 

I i- 
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3. Introduce I elements at those s junctions that are associated 
with masses. 

4. Introduce C and R elements. 

5. Make suitable simplifications. 

When dealing with the first item it is sometimes convenient to 
introduce an s junction for a fictitious point with velocity zero. This 
junction is then eliminated from the graph when it is simplified. 

Example 6.6 Simplification of a Mechanical System 
Consider the mechanical system Figure 6.49(a). The first two items 
give Figure 6.49(b). (We have introduced the velocity digerences 
needed for the resistive and capacitive elements.) With I ,  R, and C 
elements introduced, we get Figure 6.49(c), and finally a simplification 
gives (d), where also a source has been introduced. 0 
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I I l V 2  
, S - - p - - S - p - - - - - S A P S  
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I 
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1 v 2 - v 3  

C-S-R C 
(4 

Figure 6.49: Systematic procedure for a mechanical bond graph. 





Chapter 7 

Computer-aided Modeling 

In earlier chapters we discussed different systematic approaches to 
modeling. We assumed that the goal is a state-space description. 

We will see in Chapter 11 on simulation that this is natural, considering 
how numeric methods work. Most simulation programs assume that 
the user supplies the right side of (7.1) in some form. 

We have seen that the road from the physical description to the 
state-space form (7.1) can contain many complicated calculations even 
for comparatively simple physical systems. It is thus natural to inves- 
tigate to what extent a computer can assist in this work. We will 
discuss some aspects of this. First we will discuss computer algebra in 
general, then we will present two systematic methods of arriving at a 
state-space description, one of them algebraic and the other based on 
bond graphs. In Chapter 11 we will discuss how some of these features 
are incorporated into simulation languages. 
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7.1 Computer Algebra and Its Applications 
to Modeling 

Computer algebra uses methods for manipulation of mathematical for- 
mulas as opposed to numerical calculations. There are a number of 
commercially available programs, for example, Macsyma, Maple, Re- 
duce, Axiom, and Mathematica. Some examples of the capabilities of 
a typical computer algebra program follow: 

Algebraic expansions 

Factorizations 

Symbolic differentiation 

Symbolic integration 

1 / d s d x  = - (arcsinh x + x d;c"Ti) 
2 

Obviously, such a program is of interest for almost all engineering 
and scientific applications. We will here discuss some applications in 
rl~odeling. 

Using the biological example of Section 2.2, equations (2.2a) and 
(2.2b), we will show how Macsyma can be used as a tool for modeling. 
Figure 7.1 shows the result of a simple computer session. The right 
sides of the differential equations are in f l and f 2. The stationary 
points are determined using so lve  to solve the nonlinear system of 
equations defined by f l and f 2. This gives three solutions displayed 
in (d5). The command (c6) gives the linearization, as shown in (d6). 
By substituting the different solutions of (d5) we get the linearizations 
of the different stationary points, (d7), (d8) and (d9). Eliminating 
the time variable from (2.2a) and (2.2b) gives the differential equation 
of (cll).  It can be solved using the ode command giving an explicit 
expression for the solution curves in the nl-nZplane, (d12). In this 
expression %c is an arbitrary constant of integration. 
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(c31 fl; 

( d S )  [Cnl = 0, n2 = 01. [nl = 2, n2 - 01. Cnl = 0, n2 = 111 

(c7) a1 : subst (d5 Cl] .a) ; 
c 2  0 1  

(d7) c 1 
C O  l 1  

(c10) depends (n2,nl) ; 
(d10) Cn2(nl)l 

--- = ------------------- 
dnl 2 nl - nl (n2 + nl) 

Figure 7.1: A computer algebraic analysis of a biological system: c, 
user commands; d, replies by the computer. 
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Figure 7.2: Analytical solution for the tank example. 

7.2 Analytical Solutions 

Up to now it has been regarded as more or less self-evident that the 
state equations have to be solved numerically, apart from some very 
simple cases. We will discuss numerical methods in Chapter 11. How- 
ever, the rapid development of computer algebra has changed the sit- 
uation in recent years. We saw in the example of Section 7.1 that 
the differential equations admitted an explicit solution. Also there are 
more analytically solvable differential equations than we would first 
expect. The fact that there might be algebraic manipulations involved 
to get the solutions is of less importance when they can be done in 
computer algebra. It is thus well worth investigating whether analytic 
solutions can be found for the model under consideration. We give 
one more example for the tank system of Section 2.3 (see Figure 7.2). 
Here we have defined the differential equation in (c3) and solved it with 
the command ode giving the result of (d4), where %c is an arbitrary 
constant. 

Even when no complete solution can be presented, there might be 
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partial results that are interesting. For a second-order system 

the solution algorithm sometimes generates results of the form 

where C is a constant. (In fact this was the result we got in the 
example of Figure 7.1.) Sometimes it is possible to continue from this 
expression to explicit solutions of the form 

Even when this in not possible, equation (7.3) will give essential in- 
formation. The function F of (7.3) is often called an integral of the 
system. Geometrically, (7.3) is the equation of the path in the xl - 2 2  
plane. The information that is not present is the velocity along the 
path. An example is the pendulum of Example 6.4 with the equation 

(here b = 0). In this case 

is an integral of the system. Physically it represents the total energy 
(the sum of kinetic and potential energy) of the system. Figure 7.3 
shows a plot of the 8-W plane for the case g / (  = 1. 

7.3 Algebraic Modeling 

In many modeling cases, physical knowledge will provide a number 
of equations describing the system. These equations are usually not 
in the desired state-space form. An important task is then to try to 
transform the equations into a more convenient form, a task for which 
computer algebra is often of great help. 
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theta 

Figure 7.3: The 0-W plane of a pendulum. 

Introduction of State Variables for Higher-Order Differ- 
ential Equations 

Sometimes the modeling will give differential equations with high-order 
derivatives. Consider the case of a single such equation 

F (y, y, . . . , yn-l, y(n); U) = o 

where U is the input. Let us introduce the variables 

X1 = y, X2 = ?j, . . . , X, = y(n-l) 

We then get the equations 

This is a state-space description provided X, can be solved from the 
last equation. 
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Example 7.1 
Let 

2 
y(3) -$2Y4 - 1 = 0 

be given [here y(3) denotes the third-order derivative of y with respect 
to  time]. W i t h  XI = y, x2 = y,  and x3 = y, we get 

Here the last equation can be solved for x3 giving 

Note that we have to  treat two cases if we do not know the sign of 
y(3) = k 3  from the physical contezt. 0 

Systems of Higher-Order Differential Equations 

Now consider the slightly more complicated situation in which there 
are two higher-order differential equations in two variables 

F ( y ,  G , .  . . , y(n);  v ,  v , .  . . , v(m-l); 2L) = 0 
G ( y ,  I j ,  . . . , Y ( ~ - ' ) ;  v, it, . . . , v(m);  U )  = 0 

[We use the notation y ( j )  = djyldtj .1 Here we can introduce the 
variables 
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and we get 
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This is a state-space description provided X, and X,+, can be solved 
for in F and G, respectively. 

Example 7.2 

Here the variables 

directly give the state-space description 

Example 7.3 
Let us modify Example 7.2 somewhat. 
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W e  cannot use the technique of Example 7.2 directly, since the highest 
derivatives of v and y are in the same equation. One possibility is to 
diflerentiate (7.5) and subtract it from (7,4), eliminating v(3).  

W e  can let this equation represent our system together with (7.5) and 
choose the state variables as i n  Example 7.2. This gives the result 

A technique o f  the  form suggested in Example 7.3 can often be  used 
t o  eliminate variables in static relationships. 

Example 7.4 
Consider the system 

A diflerentiation of (7.7) gives 

One more diflerentiation gives 

Multiplying (7.6) by v and subtracting (7.9), eliminates the vv terms. 
This gives 

vg + - $2 - yji - 6 2  = 0 

If this equation is multipZied by v2, 
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then we see that v v  can be eliminated with the help of (7.8). The result 
is 

2  2 . 2  2 . 2  2 . 2  v ( v - y ) $ - v  y - v  yy - y  y = o  
Finally, v can be eliminated with the help of (7.7), giving an equation 
i n  y only. 

Introducing 
X1 = y, X 2  = y 

finally gives 
x1 = X 2  

( x i  - 2x1 - 2 ) 4  
X2 = - 

( 2  - 2 3 3 1 2  + 2; - 2x1 

which is a state-space description. 0 

Example 7.4 is interesting because it shows that we can eliminate 
one of the variables from the two equations (7.6) and (7.7), although 
both are nonlinear and contain derivatives of the variables. 

The calculations of the examples can in principle be done by hand. 
For slightly more complex problems there is, however, hardly any al- 
ternative to computer algebra. We can show that the methods of 
Example 7.4 can be generalized to an arbitrary number of equations 
in an arbitrary number of variables with derivatives of arbitrarily high 
order, provided all equations are polynomial in the variables and their 
derivatives. (It is even possible to have partial derivatives of the vari- 
ables.) The general algorithm is complicated but can be automated 
using computer algebra. 

7.4 An Automatic Translation of Bond Graphs 
to Equations 

To understand the principle behind an automatic generation of equa- 
tions from bond graphs, we consider Figure 7.4. We have marked the 
causality that is without conflict. Let us introduce the state X = af2 
for the I element, giving 

X = e 2  
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Figure 7.4: Bond graph for generation of state equations. 

We can now use the following reasoning. Imagine a list of equations 
in which all ei and fi are computed from the given v and X. First on 
the list we can write 

where we use the given input. We can put the computation of the 
other variable of the bond fi last on the list. Then we can be sure 
that whatever is needed for the calculation will be available. This gives 
us the following list: 

el = v 

The last equation could also be fi = f3. Since the equation is last, 
both f2 and f3 are clearly known from previous calculations at this 
point. 

Since there are no more sources, we turn our attention to storage 
elements. From the I element we get the equation 

which can be evaluated for given X. The paired variable e2 is used in 
X = e2 and is an output of the junction. We then get 
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Placing this equation second to 1 s t  in the list assures that el and e3 

are calculated before. The list is now 

We can now investigate what further variables have been defined by 
our first two equations. From the input f2 of the junction we know 
the flows of the other bonds, in particular f3. 

Let us place the equation for the other variable of the bond 

on the first free space from below. 
Since all bonds are covered the complete list is 

Starting from the input v and the state X, all variables are evaluated 
in the proper order. In particular X is evaluated from X and v. 

By performing successive substitutions from below, we can get a 
compact state space description: 

Our example can be generalized into a general algorithm. Instead of 
one list filled from the top and the bottom, we could use two lists, the 
forward and the backward list. 
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Algorithm for Equation Sorting 

1. Choose a source and write its input signal in the forward list and 
the equation of the other bond variable in the backward list. 

2. Check adjacent bonds. If some variable is defined in terms of 
already calculated variables, write its equation in the forward 
list and the equation of the other bond variable in the backward 
list. Do this as far into the bond graph as possible. 

3. Repeat steps 1 and 2 until all sources have been treated. 

4. Choose an I element and write the equation fi = &xi (or 
alternatively fi = xi) in the forward list and 

[or alternatively ii = $ei = $(. . .)] in the backward list. 

5 .  Do the analogy of step 2. 

6. Repeat steps 4 and 5 until all I elements have been processed. 

7. Do the analogy of steps 4, 5, and 6 for all C elements [ei = i ~ i  
1 or ei = xi to the forward list and xi = fi = . . . or X. - -fi = ' - Pi 

i;; (. . .) to the backward list]. 

8. Reverse the order of the backward list and put it after the for- 
ward list. 

We illustrate the algorithm using the dc motor from Section 6.5; 
see Figure 7.5. 

We choose the following state variables 

We then get the following lists. Note that equations defining the effort 
and flow of each bond are in the same row. 
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Figure 7.5: Bond graph for a dc motor. 

Step Forward list Backward list 
1 v 1 = v  2 1  = 22 

1 2 i2 = ~ x 1  xl = v2 = v1 - 213 - v4 
2 i3 = i2 v3 = Rli3 
2 i4 = i2 v4 = kwl 
2 M1 = ki4 w1= w2 

1 4 ~2 = 7x2 x2 = M2 = Ml - M3 
5 wg = w2 M3 = cp(w3) 

The complete list of equations is obtained by putting the reverse back- 
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ward list after the forward list giving 

This is a complete description of the dynamic system. Eliminating all 
variables that are not states gives 

We see that it is possible to use the list in two ways. Reading it 
from above we eventually evaluate the time derivative of each state 
variable, given the states and inputs. We will see that this is exactly 
what is needed in a simulation program. However we also see that it 
is possible to obtain a compact description of the state equations by 

, reading the list from below and substituting. This compact equation 
sometimes shows the structure of the mathematical relationship more 
clearly. Of course it is also possible to use this description in the 
simulation program. 

If we compare this algorithm with the one for causality, we see that 
they have essentially the same structure. In fact we can regard the 
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causality marking as a check as to whether it would be possible to 
write down equations in a straightforward manner, without actually 
doing so. 

7.5 Conclusions 

We have seen that it is possible to use various forms of computer 
support for modeling. In particular the use of computer algebra is 
interesting. Its use will probably increase as the capabilities of the 
languages increase. For practical modeling the possibility of directly 
translating bond graphs to equations is of great interest. It  represents 
a direct step from a physical representation to a purely mathematical 
one. 
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Part I11 

Identification 





System Identification: Use of Data in 
Modeling 
It is impossible to sit at a desk and figure out how the world works: 
it also has to be studied. In our case this means that we have to use 
experimental data of some kind during the modeling work. In earlier 
chapters we used such data indirectly by analyzing the system in terms 
of subsystems, whose functions are well known through experience and 
classical experiments. 

This is often not enough. There can be system constants whose 
values we do not know. There can also be subsystems of such charac- 
teristics that it is difficult to describe their function by known phys- 
ical laws. In such cases, data from the system have to be used to 
complete the model. These data consist of measurements of variables 
in the system: outputs, inputs and possibly also disturbances. Such 
measurements can be used to understand how the system works, to 
describe partial systems, and to compute values of system constants. 

The technique to build and complement models from measurements 
is called (system) identification. In the following three chapters, we 
will describe possibilities and limitations in system identification. 

There are, in principle, three different ways to use identification 
methods for modeling purposes. 

1. Make simple experiments to facilitate phase 1 in the modeling 
(structuring the problem). 

2. Build models to describe how the outputs depend on the inputs 
that are not based on any physical insight of what is happening 
inside the system. Such models are often linear. There are two 
ways of attacking this problem: 

2a. Building models as arbitrary, linear systems by estimating 
their impulse response or frequency function. 

2b. Estimating ready made models of the type (A.18), where 
the number n and the parameters ai and bi are fitted to 
observed data. 

3. Use data to determine unknown parameters in a model obtained 
from physical modeling, according to Part 11. We then have a 
tailor-made model in which to estimate parameters. 



The main tool for problem 1 is transient analysis, which is described 
in more detail in Section 8.1. Problem 2a can be solved by correlation 
analysis, frequency analysis, or spectral analysis, which are described 
in the remainder of Chapter 8. These methods, like transient analysis, 
do not directly estimate any model parameters. They are therefore 
called nonparametric identification methods. Problems 2b and 3 both 
result in parameter estimation in dynamic models, and this general 
problem is discussed in Chapter 9. Finally, Chapter 10 contains a 
user-oriented account of the possibilities the identification offers for 
modeling. 



Chapter 8 

Estimating Transient 
Response, Spectra, and 
Frequency f inct  ions 

8.1 Experiments for the Structuring Phase: 
Transient Analysis 

The first step in modeling is to decide which quantities and variables 
are important to describe what happens in the system. We called this 
the structuring phase in Section 4.2. It is then also necessary to decide, 
or guess, how the variables affect each other, which time constants are 
important, and which relationships can approximately be described as 
static ones (compare Section 4.6). 

It is a rather demanding task for the modeler to answer these ques- 
tions. Considerable knowledge and insights about the system will be 
required. Often simple experiments on the real system have to be car- 
ried out to support the work in this phase. A simple and common 
kind of experiment that shows how and in what time span various 
variables affect each other is called step-response analysis or transient 
analysis. In such experiments the inputs vary (typically one at the 
time) as a step: u(t) = uo, t < to; u(t) = 211, t 2 to. The other 
measurable variables in the system are recorded during this time. We 
thus study the step response of the system, using terminology from 
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Appendix A. An alternative would be to study the impulse response 
of the system by letting the input be a pulse of short duration. From 
such measurements, information of the following nature can be found: 

1. The variables affected by the input in question. This makes it 
easier to draw block diagrams for the system and to decide which 
influences can be neglected. 

2. The time constants of the system. This also allows us to decide 
which relationships in the model can be described as static (that 
is, they have significantly faster time constants than the time 
scale we are working with; see Section 4.6). 

3. The characteristic (oscillatory, poorly damped, monotone, and 
the like) of the step responses, as well as the levels of static gains. 
Such information is useful when studying the behavior of the final 
model in simulation. Good agreement with the measured step 
responses should give a certain confidence in the model. 

Example 8.1 Tank Dynamics 
Mixing tanks are common i n  process industry. Their purpose is to 
smooth variations i n  concentration in a liquid by letting it pass through 
a big tank, where it is mixed. A t  a paper mill (Skarblacka, Sweden) 
three identical mixing vessels, coupled together as indicated in Figure 
8.1, are used to smooth the concentration of pulp (see Section 4.3). 
The dynamics of this system were investigated by an  impulse response 
experiment. The actual concentration of the pulp wuld not be manzp- 
ulated since the experiment had to be done during normal operation. 

The problem was solved i n  the following way: A bucket of water 
with 2070 grams of radioactive lithium, with short half-life, was poured 
into the first mixing vessel at point A i n  Figure 8.1. The radioactivity 
was then measured at point B during 5 hours. This radioactivity will 
obviously be proportional to the concentration of lithium, after cor- 
rection for the half-life and background radiation. Figure 8.2 shows 
the measurements. Even i f  the measurements are disturbed by a fair 
amount of noise, a clear picture of a typical t ime response is obtained. 

To correctly scale the impulse response we argue as follows: Let both 
the input and the output have the unit mg/liter. Then the coeficients 
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Figure 8.2: (a) Lithium concentration at point B. (b) Cross: the 
experimental impulse response. Solid line: a fitted impulse response. 
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Transient Analysis: Summary 

Transient analysis is an excellent method to get a quick and 
easy insight into cause and effect relationships, time delays, time 
constants, and static gains. 

Transient analysis is probably the most widely used method of 
identification in industrial practice. 

A drawback is that the obtained information is somewhat lim- 
ited. 

Practical limits in the amplitude of the input, together with dis- 
turbances and measurement errors may make it difficult to deter- 
mine quantitative models with a reasonable degree of accuracy. 



8.2 CORRELATION ANALYSIS 

8.2 Correlation Analysis 

It is not necessary to use an impulse as input to directly estimate the 
impulse response of a system. Consider a sampled data system with 
the impulse response {gk ) :  

Let { u ( t ) )  be a signal that is a realization of a stochastic process with 
zero mean value and covariance function &(r) [see (3.52) - (3.53)]: 

and assume that { u ( t ) )  and { v ( t ) )  are uncorrelated. The cross covari- 
ance function between U and y is then 

If the input is white noise, 

we obtain 

R y U ( 7 )  = XgT (8.5) 

The cross covariance function &,(r) will thus be proportional to the 
impulse response. Of course, this function is not known, but it can be 
estimated in an obvious way from observed inputs and outputs as the 
corresponding sample mean: 

In this way we also obtain an estimate of the impulse response: 
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If the input is non white, it would be possible to estimate its covariance 
function as R;(T) ,  analogous to (8.6), and then solve for gk from (8.4) 
where R, and R,, have been replaced by the corresponding estimates. 
However, a better and more common way is the following: First note 
that if both input and output are filtered through the same filter 

then the filtered signals will be related by the same impulse response 
as in (8.2): 

00 

Y F  ( t )  = E S ~ U F  (t - k, + V F  ( t )  (B-9] 
k=l 

We can now choose the filter L so that the signal { u F ( t ) )  will be 
as white as possible. Such a filter is called a whitening filter. It is 
often computed by describing u(t) as an AR process (see Section 3.7): 
A(q)u(t) = e ( t ) .  The polynomial A(q) = L(q) will then be estimated 
using the least squares method. [See (9.27) and (9.35)]. Let y=u and 
u=O, and choose the order na  to 4-8, and nb to 0 ) .  We can now use 
the estimate (8.7) applied to the filtered signals. The algorithm, which 
we call CRA (for correlation analysis), can thus be summarized as in 
the equation box (8.11). 

Example 8.2 Estimation of Impulse Response 
Consider the same system as i n  Example 3.14 

The input is piecewise constant over the sample interval T = 0.5 sec- 
ond. Figure 3.20 shows the impulse response of a continuous time 
system together with that of the sampled system. Input and output 
were observed during 250 seconds. The variance of the measurement 
noise was about 0.1. Let us define the signal to noise ratio as the ra- 
tio between the input's contribution and the noise's contribution to the 
output variance. Then the signal to noise ratio i n  the data is about 6 
(18 dB). A portion of the data is shown in Figure 8.3. The procedure 
C R A  gives an  estimate of the impulse response according to Figure 
8.4. 
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Algorithm CRA (8.11) 

1. Collect data y ( k ) ,  u ( k ) ,  k = 1,. . . , N 

2. Subtract sample means from each signal: 

1 N 1 N 

9 ( k )  = Y ( k )  - C ~ ( t ) ,  = u ( k )  - - C u(t )  
t=l N 

t= l  

3. Form the signals 

Y F @ )  = L ( q ) g ( t )  U F  ( t )  = L ( q ) ~ ( t )  

4. Form the estimates 

1 N 

a,",,, = C Y F ( ~ ) U F  (t - T )  

t = l  

1 N 
x, = - C u;(t) 

N t= l  

5. The impulse response estimate is now 

G," = RKU~ (4 
1 N  
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Figure 8.3: Input-output data from the system (8.10). 
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Figure 8.4: Solid line: estimated impulse response. Dashed line: true 
impulse response of the system (8.10) sampled at 0.5 S. Observe that 
the curves are obtained by linear interpolation between times 0, 0.5, 
1, 1.5, . . . S. 
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Correlation Analysis: Basic Properties 

Like transient analysis, correlation analysis gives a quick insight 
into time constants and time delays. 

No special inputs are required, and poor signal to noise ratios 
can basically be compensated for by longer data records 

The result is a table or a graph that cannot be used for simulation 
directly. 

Correlation analysis, as described here, assumes that the input 
is uncorrelated with the disturbances [see equation (8.4)]. This 
means that correlation analysis will not work properly when the 
data are collected from the system under output feedback. 

8.3 Frequency Analysis 

A linear system is uniquely determined by its impulse response or 
its frequency response G(iw) (the Laplace transform of the impulse 
response evaluated at S = iw). While transient and correlation anal- 
ysis aim at direct estimates of the impulse response, there are several 
techniques to directly estimate the frequency response. We will first 
describe frequency analysis. 

If a linear system has the transfer function G(s) and the input is 

then the output after possible transients have faded away (see A p  
pendix A) will be 

Y (t) = YO cos(wt + p) (8.13) 

where 

Yo = lG(iw)l . uo 
cp = arg G(iw) 

If the system is driven by the input (8.12) for a certain uo and wl  and 
we measure yo and cp from the output signal, it is possible to determine 
the complex number G(iwl) using (8.14)-(8.15). By repeating this 
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Figure 8.5: Diagram for the adaptation of the pupil 

Light - 

procedure for a number of different W ,  we can get a good estimate of the 
function G(iw) .  This method is called frequency analysis. Sometimes 
it is possible to see or measure uo, yo, and cp directly from graphs 
of the input and output signals. (See for example Figure 8.6.) Most 
of the time, however, there will be noise and irregularities that make 
it difficult to determine cp directly. A suitable procedure is then to 
correlate the output with cos w t  and sin w t  in the way that is evident 
later from equation (8.21). This procedure is called frequency analysis 
with the correlation method. 

Example 8.3 Eye Dynamics 
It is well known that the pupil of an eye reacts to incoming light so 
that the light intensity at the retina is more or less independent of the 
outside brightness. We  also know that this reaction is not immediate, 
but dynamic. It takes about a second or so before the eye adapts to 
new light conditions. Let us construct a model for how the pupil reacts 
to incoming light. Consider a system according to  Figure 8.5. The 
dynamic properties of this system depend on how the nerve impulses 
that register the light at the retina are processed and sent to the pupil 
muscle. They also depend on the reaction time of the pupil muscle. It 
is not easy to write down reliable equations for this process. Instead 
we will use an experiment and build a model using frequency analysis. 
The experiments are described in  the work carried out by L. Stark in 
1959. 

A complication of the experiment i n  this case is that there is always 
feedback from the output to  the input i n  the system i n  Figure 8.5. The 

t 

r 

Pupil - - Retina - Brain 
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Figure 8.6: Inputs and outputs from pupil experiment. 

area of the pupil will affect the light intensity at the retina; this indeed 
is the purpose of the reaction. To disable the feedback during the e v e r -  
iment, an input ray with a very small area was used and aimed at the 
center of the pupil. The intensity was then varied as a sinusoid, and 
the area of the pupil was measured. These measurements were made 
using a wide infrared light beam, also aimed at the pupil. From the re- 
flected intensity it  was possible to compute the area of the pupil. Figure 
8.6 shows corresponding inputs and outputs at the frequency W = 3.75 
rad/s. The output is not exactly sinusoidal, which shows that the sys- 
t e m  is not exactly linear and/or that errors affect the measurements. 
It can still be described as a sinusoid with reasonable approximation, 
and it  is not dificult to determine the gain IG(iw)l and the phase delay 
arg G ( i w )  from the figure. 

By  repeating the experiment for a number of frequencies and graph- 
ing log JG(iw)l  and arg G ( i w )  as functions of log W ,  the points in the 
diagram i n  Figure 8.7 were obtained. These points could then be ad- 
justed to transfer function curves for linear systems. In  Figure 8.7 
they have been adjusted to the transfer function 
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Figure 8.7: Experimentally determined transfer function for the pupil 
system. 

The factor e-0.28S means that there is a pure time delay of 0.28 s 
before anything at all happens [the Laplace transform of u ( t  - T )  is 
e - s T ~ ( s ) ] .  The factor is a third order system that describes 
how the output reacts after the time delay. The step response of the 
model (8.16) is shown in  Figure 8.8. 

This model can be physiologically interpreted as a time delay corre- 
sponding to the time to transmit and process the information in nerves 
and synapses, while the third-order system corresponds to the dynam- 
ics of the muscle. 

Example 8.4 Submarine dynamics 
In the end of the 1940s the Swedish company ASEA constructed a 
regulator for maintaining depth for Swedish submarines. It was then 
important to determine the dynamics of the system depicted in Figure 
8.9. 

Parts of the dynamics from elevator to the actual depth of the sub- 
marine are quite dificult to model from physical equations. One reason 
is that the response of the submarine to changes in  this rudder depends 
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Time (S) 

Figure 8.8: Step response for the system (8.16). 

Figure 8.9: Depth control for a submarine. 
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Figure 8.10: The rudder signal during the depth-control experiment. 

on its shape i n  a complicated fashion. A model was thus constructed 
using frequency analysis. The input (the elevator) was varied i n  a 
near sinusoidal way by giving the helmsman orders for the previously 
computed rudder values. Since the dynamics with reasonable approxi- 
mation are linear, the submarine traversed the water like a sine wave. 
The depth was registered and Figures 8.1 0 and 8.1 1 show the corre- 
sponding values of elevator, pitch angle, and depth. From repeated 
experiments with diflerent frequencies a plot of the transfer function of 
the system is obtained as in  Figure 8.12. In  this case the purpose of 
the model was to determine a regulator for the system. This was done 
directly from the diagram i n  Figure 8.12, and no explicit mathematical 
description of the model was needed. 0 

Frequency Analysis. Basic Properties 

The method of frequency analysis is often used to build models of 
systems. The following advantages and disadvantages can be pointed 
out: 
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Advantages 

Easy to use and requires no complicated data processing. 

Requires no structural assumptions about the system, other than 
it being linear. 

It is easy to concentrate on frequency ranges of special interest 
(for example around resonance frequencies). 

Disadvantages 

m The basic result is a table or a graph of the function G(iwk) k = 
0,.  . . , M. This cannot be used directly for simulation. 

Many systems, especially in a process industry, cannot be exper- 
imented with freely. Frequency analysis may need long periods 
of experimentation if G(iw) has to be determined at many fre- 
quencies. 

8.4 Fourier Analysis 

Consider a linear system that can be described by the transfer function 
G(s). If the input has finite energy, the following relationship holds 
for the Fourier transforms of the input and the output [see (A.4)]: 

If these were known, the frequency function G(iw) could thus be com- 
puted as 

Normally we have access to y(t), u(t) only over a finite interval 0 <_ 
t <_ S.  We could then use 

and form the estimate 
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We call G the empirical transfer function estimate (ETFE), since it is 
formed directly from data, without any other model assumptions than 
linearity. 

If u(t) = uo COS w,t, we have that 

The estimate (8.20) then is 

which is how the frequency function normally is computed using fre- 
quency analysis. 

If only sampled values of U and y, (u(kT) , y (kT),  k = 1, . . . , N), are 
available, which is the normal situation, the following approximations 
in (8.19) are natural: 

Here T is the sampling interval and S = N .T. Note that (8.22) can be 
efficiently computed at W = re 2.rr/N, r = 0,.  . . , N - 1, using the FFT 
(fast Fourier transform). N is then first adjusted so that it becomes a 
power of 2. 

Well, how good an estimate is (8.20)? This question is answered 
by the following result: 

Theorem 8.1. Assume that a system is given by 

Assume that 
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Let 

G(s) = Lrn g(.r)e-srd~ 

Then 
2cu..c, IVs(w>l lGs(iw) - G(iw)l 5 - + - (8.23) 
IUs(w)l IUs(w)I 

Here ~ ~ ( i w )  is given by (8.19)-(8.20) and Vs(w) is the Fourier trans- 
form of the disturbance v( t )  over the time interval 10, S]. The proof is 
given in the appendix to this chapter. 

For a signal with infinite energy the Fourier transform typically has 
a magnitude 

l Us(w) l M & . const 

If the signal contains a pure sinusoid with frequency WO, we have 

I Us (wo) l x S . const 

Theorem 8.1 thus shows that if the input contains pure sinusoids (and 
the disturbance signals do not) the transfer function will be estimated 
with arbitrary accuracy at these frequencies, as the time interval tends 
to infinity. For inputs that do not contain pure sinusoids, estimate 
(8.20) has an error for large S that is equal to the noise to signal ratio 
Vs (w)/Us(w) at the frequency in question. 

The fact that we in practice use (8.22) rather than the time con- 
tinuous signals in (8.19) gives further discrepancies between the em- 
pirical transfer function estimate and the true G, in addition to what 
is described by (8.23). For short sampling intervals T compared to 
the system dynamics, this difference is, however, small as we saw in 
Example 3.14 (see Figure 3.21). 

Example 8.5 Empirical Transfer Function Estimates 
Consider the same system and the same data as in  Example 8.2. (See 

Figure 8.3.) The ETFE ~ s o ~ ( e ~ " )  was formed according to (8.20)) 
(8.22) (T = 0.1). The result is shown in Figure 8.13. W e  see that 
the estimate gives a rather good picture of the frequency function up to 
about 1 rad/s. At higher frequencies it is not of much use. Compare 
also the difference between the transfer function for the continuous 
time system (8.10) and the one for the corresponding sampled data 
system, sampled with 0.5 S.  This was shown i n  Figure 3.21. 
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Figure 8.13: Solid line: Empirical transfer function estimation accord- 
ing to (8.20), (8.22). Dashed line: The true transfer function sampled 
at 0.5 S. 

Fourier Analysis: Basic Properties 

Easy and efficient to use (especially if FFT is applied). 

Good estimates of G(iw) are obtained at frequencies where the 
input has pure sinusoids. 

Otherwise, the estimate is a wildly fluctuating graph, which only 
gives a rough picture of the true frequency function. 

8.5 Estimation of Signal Spectra 

The spectrum @,(W) for a signal {u( t ) )  was defined in Section 3.8 as its 
average frequency content. We have formalized @,(W) as the absolute 
square of the Fourier transform of the input, as a normalized version 
of this, as well as the expected value of this, depending on the actual 
nature of the signal. See Appendix C. 

To build models from observations of the signal, it is essential to be 
able to estimate the spectrum from observed, sampled data. Assume 
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therefore that we have observed 

and from these data we want to estimate @,(W). The sampling interval 
is thus T. From the data we can of course only estimate the spectrum 

(T )  Q, ( W )  for the sampled data signal. If T is small compared to the 
frequency contents in the underlying time continuous signal, there is 

not much difference between @lT) (U) and @: ( W )  according to Poisson's 
summation result (C.12). See also Section 3.9. 

For simplicity we will in the sequel of this section use T = 1. The 
sampling interval is thus one time unit. All frequencies will then have 
the unit radians/time unit. When the estimate has been formed it is 
easy to translate the result to any other time unit: See (8.35). 

The Periodogram 

Based on the definition of the spectrum it is natural to estimate it as 

where 

This estimate is called the periodogram of U .  Figure 8.14 shows the 
periodograms of the signals in Figure 3.15. 

Periodograms from measured signals often show the following three 
typical properties: 

1. Pure sinusoids in the signal show up as clear-cut peaks in the 
periodogram. 

2. Otherwise, the periodogram is wildly fluctuating. 

3. Smoothing the periodogram by eye gives a reasonable picture of 
the frequency contents of the signal. 

There is reason to understand what causes the fluctuations. One 
explanation is as follows: Suppose that the signal U is a realization of a 
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therefore that we have observed 

and from these data we want to estimate @,(W). The sampling interval 
is thus T. From the data we can of course only estimate the spectrum 
(T) Q, ( W )  for the sampled data signal. If T is small compared to the 

frequency contents in the underlying time continuous signal, there is 
not much difference between @!jT)(w) and @:(W) according to Poisson's 
summation result (C.12). See also Section 3.9. 

For simplicity we will in the sequel of this section use T = 1. The 
sampling interval is thus one time unit. All frequencies will then have 
the unit radians/time unit. When the estimate has been formed it is 
easy to translate the result to any other time unit: See (8.35). 

The Periodogram 

Based on the definition of the spectrum it is natural to estimate it as 

where 

This estimate is called the periodogram of U .  Figure 8.14 shows the 
periodograms of the signals in Figure 3.15. 

Periodograms from measured signals often show the following three 
typical properties: 

1.  Pure sinusoids in the signal show up as clear-cut peaks in the 
periodogram. 

2. Otherwise, the periodogram is wildly fluctuating. 

3. Smoothing the periodogram by eye gives a reasonable picture of 
the frequency contents of the signal. 

There is reason to understand what causes the fluctuations. One 
explanation is as follows: Suppose that the signal U is a realization of a 
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therefore that we have observed 

and from these data we want to estimate @,(W). The sampling interval 
is thus T. F'rom the data we can of course only estimate the spectrum 
(T) ( W )  for the sampled data signal. If T is small compared to the 

frequency contents in the underlying time continuous signal, there is 

not much difference between @iT)(w)  and @:(W) according to Poisson's 
summation result (C.12). See also Section 3.9. 

For simplicity we will in the sequel of this section use T = 1. The 
sampling interval is thus one time unit. All frequencies will then have 
the unit radians/time unit. When the estimate has been formed it is 
easy to translate the result to any other time unit: See (8.35). 

The Periodogram 

Based on the definition of the spectrum it is natural to estimate it as 

where 

This estimate is called the periodogram of U .  Figure 8.14 shows the 
periodograms of the signals in Figure 3.15. 

Periodograms from measured signals often show the following three 
typical properties: 

1. Pure sinusoids in the signal show up as clear-cut peaks in the 
periodogram. 

2. Otherwise, the periodogram is wildly fluctuating. 

3. Smoothing the periodogram by eye gives a reasonable picture of 
the frequency contents of the signal. 

There is reason to understand what causes the fluctuations. One 
explanation is as follows: Suppose that the signal U is a realization of a 
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Figure 8.14: Solid lines: periodogram estimates of spectra for the 
signals in Figure 3.15. Dashed lines: true spectra (compare with Figure 
3.17). 

stochastic process with the spectral density @,(W). The periodogram 

&N is formed from u(t), t = 1, . . . , N, and thus is itself a stochastic 
variable with a certain mean and variance. In fact we have 

Here R:) denote remainder terms that tend to zero as the number of 
data increases. E is expectation with respect to the stochastic process 
U. These calculations are carried out in the appendix to this chapter. 

We see from these expressions that for large N the periodogram is 
unbiased, but its variance does not decay to zero as N increases, but is 
proportional to (U). Furthermore, the estimates of the periodogram 
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at different frequencies are uncorielated. The periodogram for a real- 
ization of stochastic processes is thus a fluctuating graph, which varies 
around the true spectral density with a standard deviation that is as 
large as the spectral density itself. The observation that periodograms 
for many real-life signals are of this nature can be seen as an indi- 
cation that stochastic processes form a good mathematical model for 
such signals. 

Frequency resolution is another concept of importance for spectral 
estimates. By this is meant how fine details in a spectrum can be 
detected by a certain method. In principle we can reason as follows: 
To see a frequency (or a frequency difference) that is less than A 
radianslsecond, it must have had an opportunity to "show itself." 
This means that we must observe the signal during at least 2xlA 
seconds, so that it has gone through at least a full cycle. For the 
periodogram based on N data we have that the frequency resolution 
is 2r lN.  This follows from the fact that the Fourier transform (8.25) 
gives the discrete Fourier transform (DFT) at the frequency values 
W = 2re/N, e = 1,. . . , N. Between these frequencies the Fourier 
transform consists of (trigonometrically) interpolated values. 

The problem with the periodogram is that it has a high variability, 
while the frequency resolution is good. We will now examine different 
methods to reduce the variance of the spectral estimate. The price, 
however, will turn out to be worse frequency resolution. 

Averaged Periodograms: Welch's Method 

A classical way to reduce the variance of an estimate is to form averages 
of a number of independent estimates. In our case an obvious idea 
would be to split the signal into a number, say R, of segments, each of 
length M and possibly overlapping. For each of these, periodograms 
2 ( k )  
9eM (W) ,  k = 1,. . . , R are formed. The spectral estimate is then taken 
as the average of these periodograms: 

By selecting the length of the segments to be powers of 2, the calcula- 
tions of the periodograms can be efficiently done using FFT. 
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Since the different periodograms are essentially uncorrelated (if seg- 
ments do not overlap) the variance of &N(w) in (8.29) is reduced by a 
factor R. The price for this is worse frequency resolution in the esti- 
mate. According to our earlier discussion, it will increase from 1/N ra- 
dians/time unit (N = the original data record length) to 1/M = R/N 
radiansltime unit (M = = the length of the nonoverlapping seg- 
ments). The trade-off between variance and frequency resolution is 
thus determined by the number of segments R. 

Estimating spectra using (8.29) is also known as Welch's method. 

Smoothed Periodograms: Blackman-Tukey's Met hod 

We noted earlier that the periodograms are unbiased with uncorrelated 
estimates for neighboring frequencies. It is therefore natural to smooth 
the fluctuating graph of a periodogram by averaging over a number of 
neighboring frequencies: 

[Here we have that W,(w)dw = l.] Here W,(w) is a window func- 
tion that typically is centered around W = 0. We shall use the number 
y to describe the "width" of the window. For reasons that soon will 
be clear, we will let the width be inversely proportional to y. A simple 
window with width l / y  would be rectangular: 

7, if IEI 
= { 0, else 

The width of the window then corresponds to the frequency resolution 
of the smoothed estimate &,(U). Normally, other windows than the 
rectangular one will be used. In that way more weight can be given 
to the center value. See Figure 8.15 and equations (8.36)-(8.38) to 
follow. 

The actual algorithm to realize (8.30) is best implemented in the 
time domain. In the appendix to this chapter it is shown that (8.30) 
also can be written as 
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where 

(8.32) 

and 
1 N 

~ : ( k )  = 3 u(t + k)u(t) 
t = l  

This spectral estimation method is known as the The Blackman- Tukey 
approach. The procedure can be summarized as follows: 

- 

Procedure: Blackman-Tukey's Spectral Estimate 
(8.34) 

1. Choose time window W, (k). See for example (8.36). 

2. Choose window size y (discussed later). 

3. Compute ~ f ( k )  for k = 0, . . . , y according to (8.33). 

4. Form 6 N ( ~ )  as in (8.31). 

In the preceding expressions we have assumed that w,(k) is cho- 
sen so that it is zero for Jkl > y. This means that there are special 
requirements of the choice of window W,(<). (A rectangular window 
would be impossible for this reason.) In (8.33) we have also assumed 
that u(t) = 0 when t is outside the interval [l, NI. 

Transformations to Correct Sampling Interval 

In the preceding expressions we have assumed the sampling interval 
to be one time unit. The frequency unit W is thus radians/sampling 
interval. The spectral density & ~ ( w )  has the dimension power per 
frequency unit and we have used the unit power sampling inter- 
vallradian. 

Suppose now that the sample interval is T seconds. To express the 
frequency < in the unit radianslsecond and the spectral density $;(W) 

in the unit power per radians/second we simply do the following: 
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Figure 8.15: The Hamming window. (a) The time window w,(k). (b) 
Its Fourier transform W,(w). Solid line: y = 20. Dashed line: y = 5. 

Choice of Window Functions 

Time window 

The Fourier transform pair w,(k) tt W,(() determines the properties 
of the spectral estimate. For the given width y of the time window 
w,(k) it is desirable to have as "nice" (narrow and high) a frequency 
function W,(() as possible. There is no optimal solution to  this prob- 
lem, but the most common window used in spectral analysis is the 
Hamming window: 

0.8 

0.6 

0.4 

0.2 

0 

Its Fourier transform is 

- 

- 

- 

- 

where 

(a) -25 -20 -15 -10 -5 o 5 10 15 20 25 
Time 

sin(y + ;)W 

DY(w> = sin w/2 

See Figure 8.15. The effective width of the frequency window, which 
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gives the frequency resolution, can be measured as 

For the Hamming window we have 

which is, naturally enough, inversely proportional to the width of the 
time window y. 

In the periodogram the frequency resolution is r / N  radiansltime 
unit. Within the indicated window width we consequently have 

independent periodogram estimates, and therefore the variance in the 
average quantity (8.30) is reduced by about the same factor. Then, 
according to (8.40) and (8.27) this variance will be m &.+(@,(w))~. 
In summary, we consequently have the following: 

1. The frequency resolution of (U) is FZ .rr/(y&) radians/sampling 
interval. 

(8.41) 

2. The variance of &N(w) is z - +(@,(W))~. 

Choice of Window Size 

The choice of y according to (8.41) is a pure trade-off between fre- 
quency resolution and variance (variability). For a spectrum with nar- 
row resonance peaks it is thus necessary to choose a large value of y 
and accept a higher variance. For a more flat spectrum, smaller values 
of y will do well. In practice a number of different values of y are 
tried out. Often we start with a small value of y and increase it suc- 
cessively until a spectrum is found that balances the trade-off between 
frequency resolution (true details) and variance (random fluctuations). 
A typical value for spectra without narrow resonances is y= 20-30. 
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Figure 8.16: Spectral estimation by the method (8.34) for data in 
Figure 3.15~. Solid line: true spectrum. Dashed line: y = 10. Dotted 
line: y = 30. Dash-dotted line: y = 60. 

Example 8.6 Spectral Estimates 
The Blackman-Tukey procedure was applied to data i n  Figure 3 . 1 5 ~ .  
A number of diflerent values of y were tested and the results are shown 
in  Figure 8.1 6. W e  see that the resonance peak is entirely lost for y = 
10, but for larger values of y a reasonable picture of the true spectrum 
is obtained. D 

Cross Spectra 

Estimation of cross spectra is entirely analogous to the procedure of 
estimating spectra that we have just described. From sampled values 

y ( k )  and u(k) k = 1,. . . , N 

the cross-covariance function is formed as 
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from which the spectral estimate is computed: 

Here w y ( l )  is the same window function as in (8.31), and the same 
aspects for choosing y are valid also in this case. 

8.6 Estimating Transfer Functions Using Spec- 
tral Analysis 

Suppose that we have the following relationship between output y, 
input U ,  and disturbance v :  

If u ( t )  and v ( t )  are mutually uncorrelated, the following expressions 
hold for spectra and cross spectra [See (3.63)-(3.64)]: 

From the spectral estimates (8.31) and (8.43), we then have a natural 
estimate of the frequency function (8.45): 

Furthermore, the disturbance spectrum can be estimated from (8.46) 
as 

To compute these estimates, the following steps are carried out: 
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Algorithm SPA (8.49) 

1. Collect data y(k), u(k) k = 1,. . . , N. Subtract the corre- 
sponding sample means. 

2. Choose width of the lag window w,(k). 

3. Compute ~ f ( k ) ,  ~ r ( k ) ,  and d%(k) for Jkl 5 y according 
to (8.33). 

4. Form the spectral estimates 4; (W),  &:(W), and &;(W) ac- 
cording to (8.31) and analogous expressions. 

5. Form (8.47) and possibly also (8.48). 

The user only has to choose y. A good value for systems without 
sharp resonances is y = 20 to 30. This may have to be modified 
according to the discussion in Section 8.5. Larger values of y may be 
required for systems with narrow resonances. 

From sampled data it is actually the sampled frequency function 
~ ~ ( e ~ ~ ~ )  that is estimated [see (3.80)]. With a suitable choice of sam- 
pling interval this function does not differ very much from G(iw) in 
the frequency region of interest [compare (3.81)]. Furthermore, experi- 
ence shows that the estimate ~ ~ ( i w )  is unreliable at high frequencies 
anyway. 

We may also note that with y = N we essentially obtain &:(W) = 
I UN (W) I 2  and 6; (W) = YN (W) UN (W) (the periodogram estimates), 
which gives ~ ~ ( i w )  = YN(u)/UN(w), that is, the empirical transfer 
function estimate (8.20). 

Quality of the Estimates 

The estimates GN and 62 are formed entirely from estimates of spec- 
tra and cross spectra. Their properties will therefore be inherited from 
the properties of the spectral estimates, as they were summarized in 
(8.41). The corresponding results also hold for cross spectra. 

For the Hamming window with width y, the frequency resolution 
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will be about 
n- 

z radiansltime unit (8.50) 

This means that details in the true frequency function that are finer 
than this expression will be smeared out in the estimate. It is also 
possible to show that the estimate's variances satisfy 

Gv(w> Var G N ( i u )  M 0.7 .  - . - 
N @,(W) 

and 
Y Var &:(W) M 0.7. - - @:(W) 
N 

(8.52) 

[Variance" here refers to taking expectation over the noise sequence 
v ( t ) . ]  Note that the relative variance in (8.51) typically increases 
dramatically as w tends to the Nyquist frequency. The reason is 
that IG(iw)l typically decays rapidly, while the noise-tesignal ratio 
@,(w)/@,(w) has a tendency to increase as W increases. In a Bode 
diagram the estimates will thus show considerable fluctuations at high 
frequencies. Moreover, the constant frequency resolution (8.50) will 
look thinner and thinner at higher frequencies in a Bode diagram due 
to the logarithmic frequency scale. 

Example 8.7 Estimating a Frequency Function with Spectral 
Analysis 
Consider again the system and data from Example 8.2. The procedure 
SPA applied to these data with different values of y will give estimates 
of the system's frequency function, which are shown i n  Figure 8.1 7. W e  
see that y = 10 is too small a value, i n  that the (modest) resonance 
peak does not show up at all. The values = 30 and 60 give a good 
picture of the frequency function up to 2 to 3 rad/s. Compare with the 
empirical transfer function estimate in Figure 8.13! 0 

Spectral Analysis: Summary 

Spectral analysis is a very common method for analysis of signals 
and systems. 

It is general, assuming only that the system is linear, and requires 
no specific input signals. 
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Figure 8.17: Spectral estimation of frequency functions according to 
the procedure SPA for different values of y. Solid line: the true fre- 
quency function for the system sampled with T = 0.5. Dashed line: y 
= 10. Dotted line: y = 30. Dash-dotted: y = 60. 

Spectral analysis does not work for systems that operate under 
output feedback (when the input is partly determined by old 
outputs). The reason is that the assumption that U and v are 
uncorrelated is violated in that case; that is, (8.45)-(8.46) do not 
hold. See Example 10.1. 

After adjustment of the window size y, it is usually possible to get 
a good picture of the system's or signal's frequency properties. 

The result is a plot, the frequency function, or the spectrum, and 
it cannot be used directly for simulation. 

The method should be complemented with parametric modeling 
as described in Chapter 9. 
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8.7 Summary 

The nonparametric identification methods of this chapter aim at direct 
estimates of the system's transient response or frequency response. As 
such they are very valuable initially when the structure of a model 
is not yet clear. Simple step and impulse response experiments give 
important insight into relationships between measured variables, their 
static relationships, and dominating time constants. 

Spectral analysis is the most commonly used method for estimating 
frequency functions. Fourier analysis can be viewed as a special case 
(very wide lag windows), which in turn contains frequency analysis as 
a special case (sinusoidal input). The procedure for spectral analysis 
is summarized in the algorithm SPA in Section 8.6. The most essential 
influence by the user over the estimates is the choice of window size 
y. This will determine the trade-off between frequency resolution and 
variability of the estimate. See (8.50)-(8.52). Reasonable choices of 
y give good, but ,preliminary, insight into the dominating frequency 
properties of the system. 

8.8 Appendix 

Proof of Theorem 8.1 

From (8.19) and the expression for y(t) in the theorem we have 

Now we have 
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Inserting this into the preceding expression we obtain 

Proof of (8.26)-(8.28) 

We introduce the assumption that 

Let U N ( w )  be defined by (8.25), and let us compute 

make the change of variables 
k - l = 7  

N k - l  C e a ( t - ~ ) k  C &(T)e-i7€ - - 
- N  

k = l  r = k - N  

Now note the following: 

This is easily seen by using the expression for the sum of the geometric 
series. We also have 

k - N - l  03 k - l  

C Ru(+ - ir<  =  mu(^) - C &(r)e-'tT - C ~ 1 ( ~ ) e - ~ '  
7=-00 7 = k  r = k -  N 
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Now consider 

N k-N-l  

5 F c c IW4l 5 
change order 

k=l r=-00 of summation 

In the same way it is shown that 

All this together gives 

In particular we obtain the result (8.26). 
For (8.27)-(8.28) we restrict ourselves to the special case that {U) is 

a Gaussian process. This also means that Re [UN ( W ) ]  and Im [UN ( W ) ]  

are Gaussian random variables (since they are formed as sums of Gaus- 
sian variables). With 

and 
1 

Im[UN ( W ) ]  = 5 (UN ( W )  - U N ( - ~ ) )  

it is easy to verify, using (8.53), that 
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This means that 

is the sum of squares of two (up to RN) independent Gaussian vari- 
ables. Therefore, ZN is x2(2) and has a x2(2) distribution with the 
variance 4 (up to RN). Consequently, (8.27) holds. 

From (8.53) it also follows that the periodogram is independent (up 
to RN) for different frequencies, which gives (8.28): 

Remark. Our heuristic way to treat "up to RN7) is formalized by 
projecting away the dependent part of Im[UN(w)] (and similarly in the 
other expressions). Its magnitude is bounded by RN and therefore it 
cannot change the result by a value larger than this.] 

Proof of (8.31) 

We start from (8.30): 

This is a convolution between the functions W,(w) and & ~ ( w ) .  It  will 
then, according to the rules for Fourier transformation, be written as 
the Fourier transform of the product of these two functions' inverse 
Fourier transforms: 

&N(w) = C (W, (k) - + ~ ( k ) )  . e-ewk 
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Here w , ( k )  is defined by (8.32)  and b N ( k )  is the inverse transform of 

& N ( ~ ) .  But [let u ( k )  = 0 for k < 1 and k > N] 

This means that b N ( k )  = R;(L)  according to (8.33)  and consequently 
(8.31) has been proved. 



Chapter 9 

Parameter Estimation in 
Dynamic Models 

It is a well-known statistical problem to estimate parameters in differ- 
ent models. Such methods are also of great importance when building 
models of dynamic systems. The lack of knowledge about specific 
details or about general subsystems in the system will then be r e p  
resented using parameters, whose numerical values have to be deter- 
mined by statistical methods. In this chapter we shall give a basic 
account of such methods. 

There are two different kinds of parameterized models: 

1. Tailor-made models, for which the model is constructed from 
basic physical principles and the parameters represent unknown 
values of system parameters that, at least in principle, have a 
physical interpretation. 

2. Ready-made models are families of flexible models of general 
applicability. The parameters in such models have no direct 
physical interpretation, but are only used as vehicles to describe 
the properties of the input-output relationships of the system. 
Such models are also known as black-box models. 
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9.1 Tailor-made Models 

When the relationships between the variables in the systems are writ- 
ten down in phase 2 of the modeling process, it is normally found 
that a number of system constants have unknown values. It could for 
example be the outlet area of the head box in equation (4.11) or the 
moment of inertia of the electric motor in Example 6.1. 

The resulting state-space model (4.1) will be of the form 

where the parameter vector 8 contains the unknown system parame- 
ters. If we have d such parameters, this vector can be written as 

Our task is now to determine the values of these parameters using mea- 
sured data. In some cases this can be done by conventional physical 
experimentation and measurement methods. This approach of deter- 
mining the parameter values will not be discussed further here, since it 
is entirely problem dependent and goes back directly to measurement 
technology and physics. 

Example 9.1 A DC Motor 
Consider the electric motor i n  Example 6.1 and Figure 6.20. The input 
U is the applied voltage v and the output y is the angular position of the 
motor shaft. Moreover W is the angular velocity; that is, &(t) = W .  

From the bond-graph i n  Figure 6.20 we obtain 

where we assumed the function p(w)  to be linear: cp(w) = f w .  
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Neglecting the inductance L1 and introducing the state variables 

gives, after some calculations, 

" ( t )  = [O l ] 
+ [;.l dt 0 -l/. 

where 
JR1 Ic 

7 = 
f R1 + k2 

P =  f R1 + k2 (9.4) 

I n  the modeling procedure we have used four different system con- 
stants: J ,  R I ,  k ,  and f. W e  see that the dynamics of the system still 
only depends on the two parameters T and P,  which have been cal- 
culated from the original constants. Should we know two of the four 
system constants, we still have no direct use of that i n  (9.3). 

The model (9.3) is thus parameterized by two parameters 

and can also be written 

The transfer function is 

The model is consequently a general first-order model, followed by an 
integrator. I n  spite of the rather detailed modeling work, we have still 
only obtained a structure in which the angular position is the integral 
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of the angular velocity, which in turn is  determined from the applied 
voltage via a first-order system. This could have been realized directly 
from physics. 

Note also that ,B is the static gain from voltage to angular velocity. 
If it is possible to measure the angular velocity, it is thus rather easy 
to determine the parameter ,B by a step response experiment and thus 
reduce the model uncertainty to the parameter O1 = r .  

We saw in the example that (9.5) will be a special case of (4.1). 
To stress that the output of the model will depend on the parameter 
vector 6 we write 

y ( t J6 )  is thus the predicted value of the output at time t ,  according to 
the model. 

If in our model we assume that measurement noise is affecting the 
output, 

dt)  = h ( x ( t ) 1 u ( t ) 7  0 )  + e( t )  (g.8] 

and that this noise can be described as white noise, the value of e ( t )  
cannot be predicted. In that case it is still G(tl6) in (9.7b) that con- 
stitutes the model's prediction, or guess, of y ( t ) .  

When more sophisticated modeling of the disturbances is required, 
the Kalman filter can be used for computing G(tJ6).  

Example 9.2 Model with Kalman Filter 
The Kalman filter is a way of estimating the state i n  a model like (9.5) 
by using observed values of u(t) and y ( t ) .  If the input is known and 
y ( t )  is observed only for t = k T ,  k = 1,2 , .  . . , the Kalman filter for 
the time continuous model is given by 

Here 2 ( k T - )  is  the state estimate just before the observation of y ( k T )  
and P(kT+) its value just after this observation. The state estimate P 
will thus change instantaneously at the time instants k T .  The Kalman 
gain K ( 6 )  is a vector or a matrix that depends in a rather complicated 
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way on the properties of the disturbance signal. These properties are 
offen unknown, and then K(0) can equally well be parameterized di- 
rectly. The prediction of the output according to the model will now 
be 

In this section we have used only time continuous models, since this 
is the most common case in physical modeling. The model (9.7) and 
other corresponding expressions could of course equally well have been 
given in discrete time, with obvious modifications. 

9.2 Linear, Ready-made Models 

Sometimes we are faced with systems or subsystems that cannot be 
modeled based on physical insights. The reason may be that the func- 
tion of the system or its construction is unknown or that it would 
be too complicated to sort out the physical relationships. It  is then 
possible to use standard models, which by experience are known to 
be able to handle a wide range of different system dynamics. Linear 
systems constitute the most common class of such standard models. 
From a modeling point of view these models thus serve as ready-made 
models: tell us the size (model order), and it should be possible to find 
something that fits (to data). 

A Family of Transfer Function Models 

Normally, ready-made models are described in discrete time, since data 
are collected in sampled form. If a time continuous model is required, 
it is always possible to transform the time discrete model into such a 
model. A general, linear, time discrete model can be written as 

~ ( t )  = rl(t) + 4) (9.11) 

Here w ( t )  is a disturbance term and q(t) is the noise-free output, which 
in turn can be written as 



232 CHAPTER 9. PARAMETER ESTIMATION 

If G(q, 0) is a rational function of the shift operator g, 

then (9.12) is a shorthand notation for the relationship 

blu(t - nk) + . . . + bnb(t - (nb + nk - 1)) (9.14) 

There is also a time delay of nk samples. In this section we will assume, 
for simplicity, that the sampling interval T is one time unit. 

In the same way the disturbance term can be written 

with 
C(q) 1 + c1q-l + - .  + - 

H(q' O) = D(p) - l + dlq-1 + . . . + dnd4-nd (9.16) 

where e(t) is white noise. [Compare with equation (3.41)!] 
The model (9.11) can now be summarized as 

The parameter vector 0 thus contains the coefficients bi, G, di, and fi 
of the transfer functions. This ready-made model is thus described by 
five structural parameters: nb, nc, nd, nf ,  and nk .  When these have 
been chosen, it remains to adjust the parameters bi, c;, di, and fi to 
data. How this is done will be described in Section 9.3. The ready- 
made model (9.13)-(9.17) is known as the Box-Jenkins (BJ) model, 
after the statisticians G. E. P. Box and G. M. Jenkins. 

An important special case is when the properties of the disturbance 
signals are not modeled, and the noise model H(q) is chosen to be 

H(q) 1; that is, nc = nd = 0. This special case is known as an 
output error (OE) model since the noise source e(t) = w(t) will then 
be the difference (error) between the actual output and the noise-free 
output. 

A common variant is to use the same denominator for G and H: 
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Multiplying both sides of (9.17) by A(q) then gives 

This ready-made model is known as the A R M A X  model. The name 
is derived from the fact that A(q)y(t) represents an AutoRegression 
and C(q)e(t) a Moving Average of white noise, while B(q)u(t) repre- 
sents an extra input (or with econometric terminology, an exogenous 
variable). 

Physically, the difference between ARMAX and BJ models is that 
the noise and input are subjected to the same dynamics (same poles) in 
the ARMAX case. This is reasonable if the dominating disturbances 
enter early in the process (together with the input). Consider for 
example an airplane where the disturbances from wind gusts give rise 
to the same type of forces on the airplane as the deflections of rudders. 

Finally, we have the special case of (9.19) that C(q) 5 1, that is, 
nc = 0 

A(Q)Y(~) = B(Q)u(~) f e(t) (9.20) 

which with the same terminology would be called an ARX model. 
Figure 9.1 shows the most common model structures. 
To use these ready-made models, decide on the orders na, nb, nc, nd, 

n f, and nk and let the computer pick the best model in the class thus 
defined. The obtained model is then scrutinized, and it might be found 
that other order must also be tested. 

A relevant question is how to use the freedom that the different 
model structures give. Each of the BJ, OE, ARMAX, and ARX struc- 
tures offer their own advantages, and we will discuss them in Section 
10.3. 

Prediction 

Starting with model (9.17), it is possible to predict what the output 
y(t) will be, based on measurements of u(s), y(s) s 5 C - 1. The 
signal e(t) which represents white noise cannot be predicted, since it 
is independent of everything that has happened before. It is easiest to 
calculate the prediction for the OEcase, H ( q ,  0) E 1, when we obtain 
the model 

~ ( t )  = G(q,O)u(t) + e(t) 
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ARX 

ARMAX 

Figure 9.1: Model structures. 
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with the natural prediction 

From the ARX case (9.20) we obtain 

y ( t )  = -a ly( t  - 1) - . . - anay (t - n a )  

+blu(t - n k )  + . . + b n b ~ ( t  - nlc - nb + 1)  + e ( t )  (9.22) 

and the prediction (delete e ( t ) ! )  

G(tl6) = -aly(t  - 1 )  - ... -an,y(t - n a )  (9.23) 
+blu(t - n k )  + - + bnbu(t - n k  - nb + 1 )  

Note the difference between (9.21) and (9.23). In the OE model the 
prediction is based entirely on the input { u ( t ) ) ,  whereas the ARX 
model also uses old values of the output. 

In the general case of (9.17) the prediction can be deduced in the 
following way: Divide (9.17) by H ( g ,  6 ) :  

We see that (assume n c  > n d )  

The expression [l - H-'(g, O)]y(t)  thus only contains old values of 
y ( s ) ,  S 5 t - 1. The right side of (9.24) is thus known at time t - 1, 
with the exception of e ( t ) .  The prediction of y ( t )  is simply obtained 
(9.24) by deleting e ( t ) :  

This is a general expression for how ready-made models predict the 
next value of the output, given old values of y and U .  It is also easy to 
verify that (9.21) and (9.23), respectively, are obtained for the special 
cases OE and ARX. 
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Linear Regression 

Both tailor-made and ready-made models describe how the predicted 
value of y ( t )  depends on old values of y and U and on the parameters 
8. We denote this prediction by 

See (9.7) and (9.25). In general this can be a rather complicated func- 
tion of 8. The estimation work is considerably easier if the prediction 
is a linear function of 8: 

Here 8 is a column vector that contains the unknown parameters, 
while p ( t )  is a column vector formed by old inputs and outputs. Such 
a model structure is called a linear regression: The vector p ( t )  is the 
regression vector and its components are called regressors. 

The ARX model (9.20) is the most common example of (9.26) in 
our context. If we define 

0 = [al a2 . - a,, bl - - . bnblT (9.27) 

p ( t )  = [-y(t - 1). . . - y( t  - n a )  u(t - n k )  . u(t - n k  - n b  + l)lT 

we notice that (9.23) corresponds to (9.26). 
Linear regression models can also be obtained in several other ways. 

See Section 10.3. 

9.3 Fitting Parameterized Models to Data 

The Principle: Minimize the Prediction Errors 

For each value of the parameter vector 8, our model provides us with 
a guess, a prediction of y ( t )  : S value at time t - 1, that is, 

regardless if we have tailor-made models as in (9.7) or ready-made 
models as in (9.25) or linear regression as in (9.26). At time t we can 
evaluate how good this prediction is by calculating the prediction error 
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When we have collected input and output data over a period t = 
1, . . . , N, it is possible to evaluate how well the model with the pa- 
rameter value 8 can describe the performance of the system. We can 
form the number 

N 

as a measure of how well the parameter value 8 performs. It is natural 
to choose the value of 8 that minimizes (9.29): 

eN = arg min vN (8) (9.30) 
e 

(arg min denotes the minimizing argument). 
Several variants of (9.29) can be considered. If the system has 

several outputs, a quadratic norm of the vector ~ ( t ,  8) can be chosen. 
In general we may use any arbitrary positive, scalar-valued function 
l(&) as a measure and minimize 

Here we have motivated the estimation method (9.30) from a prag- 
matic point of view: Choose the model that best describes (= predicts) 
observed data. A long list of statistical and information theoretical 
criteria support the use of the criterion (9.30) as  a good choice for pa- 
rameter estimation. The function (9.29) is, for example, the negative 
logarithm of the likelihood function for the estimation problem if the 
noise is supposed to be Gaussian. 

In general (9.30)-(9.31) give the m ~ m u m  lilce2ihood (ML) estimate 
of 0 if l(.) is chosen as 

e(&) = log f e  ( E )  (9.32) 

where fe(x) is the probability density function (pdf) of the noise e(t) 
in (9.17). 

It is also often interesting to estimate the variance of the noise 
source e(t). With eN determined, a natural estimate of X is obtained 
as 



238 CHAPTER 9. PARAMETER ESTIMATION 

Computing the Estimate When the Model Is a Linear 
Regression 

Now consider the special case when the model is a linear regression 

We assume that 8 is a d-dimensional column vector. The error will be 

and the quadratic criterion (9.29) can be written 

where 

N 
l 

f N  = v(t)y(t) (a d-dimensional column vector) 
t=l  

l 
RN = - v(t)vT(t). (ad X d matrix) (9.34) 

N 
t=l 

If RN is invertible, the preceding expression can be written as 

The last term is always positive since the matrix RN is positive 
semidefinite. The smallest possible value of VN(B) is obtained when 
this term is zero, that is, when 

The least squares estimate 8~ is thus computed by (9.34) and 
(9.35). In practice, inversion of the matrix RN is avoided for numerical 
reasons and eN is solved from a linear equation system. 
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Note that the elements in the matrix RN and the vector fN for the 
ARX model (9.27) are all of the type 

The estimate 8~ is thus formed from the estimates of y's and U'S 

covariance functions. 

Iterative Search for Minimum 

For many model structures the function VN(6) in (9.29) is a rather 
complicated function of 6, and the minimizing value eN must then be 
computed by numerical search for the minimum. The most common 
methods for this are based on the Newton-Raphson method. This a 
method to solve the equation 

numerically for X by iteratively selecting 

x(i+l) = x(i) - [gl(x(i))]-lg(x(i)) (9.36) 

Here is the derivate of g(x) with respect to X. 
A step length parameter p is often used in (9.36) to adjust the 

update so that x ( ~ +  l) is guaranteed to be better than x (~) :  

This method can be used to minimize (9.29). We search for a minimum 
by solving 

Since VN(6) is a real-valued function of d, its gradient is a d- dimen- 
sional column vector. Applying (9.36) gives 
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Here Vg(8) is the second derivative (the Hessian) of VN(8) with 
respect to 8 (a d X d matrix) and Vh(8) is the gradient (a d X 1 vector). 
The step length p( i )  is determined so that v~(B(~+ ' ) )  < V ~ ( B ( ~ ) ) .  

The computation of these expressions depends on the model struc- 
ture used. More detailed formulas for a general case are shown in 
the appendix to this chapter. We will conclude this section with two 
examples of parameter estimation in dynamic systems. 

Example 9.3 Estimation of Linear Ready-made Models 
Consider the same data that were used in Examples 8.2, 8.3, and 8.5. 
(See Figure 8.3.) They are fitted to second-order BJ, OE, ARMAX 
and, ARX models, which give the following models for the dynamics: 

0 . 0 9 1 6 ~ - ~  + 0 . 1 0 7 9 ~ - ~  
O E :  ~ ( q )  = 

1 - 1.3949-I + 0.590q-2 

0.0907q-~ + 0.1070q-~ 
ARMAX : ~ ( q )  = 

1 - 1.3979-I + 0.5918q-~ 

0.1064q-~ + 0 . 2 4 9 8 ~ - ~  
ARX : ~ ( q )  = 

1 - 0.51229-I - 0.1580q-2 

The noise models are 

1 + 0.107q-~ - 0.886q-~ 
B J :  ~ ( q )  = 

1 + 0.1669-I - 0.829q-2 

O E :  ~ ( q )  = l 

1 - 1.438q-l+ 0.599q-~ 
ARMAX : fi(q) = 

1 - 1.3979-I + 0.5918q-2 

1 
ARX : ~ ( q )  = 

1 - 0.51229-I - 0.1580q-2 
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The corresponding values of the loss function (9.33) are 

BJ : j\ = 0.1006 
OE : = 0.1018 

A R M A X  : 1 = 0.1010 
A R X :  j\ = 0.1734 

The frequency functions for the different models are depicted in 
Figure 9.2. Data had been generated by the time-discrete model 

[This is what we obtain when we sample the system (8.10) with the 
sampling interval 0.5.1 The OE-model is thus the correct structure, 
but we see that we also obtain a very good estimate of the frequency 
function i n  the BJ and A R M A X  structures. However, the A R X  model 
gives a bad estimate, since a correct description of both the dynamics 
and the noise properties is impossible in this structure. 

Example 9.4 Estimating the Output Coefficient for the 
Outflow Area in a Paper Machine 
I n  Section 4.2 we described a model for the head box to a paper ma- 
chine. The model was obtained from equations (4.12)-(4.16). This 
contains several system parameters, which were listed i n  that section. 
Most of them can be determined easily, like the total volume of the 
head box, its cross section, the outflow area, and so on. But what we 
called the output coeficient for the outflow area C i n  equation (4.14) 
is a parameter not known directly. 

In this example we will discuss how C can be estimated from mea- 
surements from the system. The di,lgiculties in estimating C depend on 
which variables can be measured. If the fluid level h i n  the head box, 
the pressure p,, and the outplow q can be measured, then C can easily 
be determined from the static relation (4.11). But i f  the outflow q, the 
input M (the fluid input), and Q (air input) are the only measured 
variables the estimation problem is  more dificult. W e  have to use the 
dynamic model (4.12)-(4.16) i n  order to estimate C .  W e  use 

M ( t )  = MO constant 
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10' Amplitude 

Frequency (radls) 

-4001 I 
10-2 10-1 100 101 

Frequency (radts) 

Figure 9.2: Bode plot for estimated models in Example 9.3. Solid line: 
the true system. Dashed line: ARX model. Other curves: BJ, OE and 
ARMAX models (these almost coincide with the true system). 

Q+AQ 
Q@> = random changes between these levels 

as input signals during the experiment. 
The outjlow q ( t )  is measured at times t k  = k T ,  where T = 1 S .  

Figure 9.3 shows related values of the inputs and outputs. 
(In this example these were simulated with noise and the values 

V = 1 0 m 3 ,  A = 1 0 m 2 ,  R = 267.4 J / k g .  K ,  T = 293 K ,  a1 = 1oW3rn2, 
a2 = 0.1 m2, p0 = 1.013. 105 N / m 2 ,  p2 = 103 k g / m 3 ,  g = 9.81m/s2,  
C = 0.8, Q = 0.71 m 3 / s ,  and M = 0.34 kg l s . )  

This gives a mean level of h and heff, which are 0.5 m and 4 m  
respectively. If we assume that all system parameters except C are 
known and given by the preceding values, the model will be (4.12)- 

(4.13). 
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0.6~  I 
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Time (S) 

Figure 9.3: Measured input-output data for the head box 

0.65 

If we compare the output cj(tlC) for this model with the measured value 
q ( k T ) ,  k = 1, ..., 100, we can form the following criterion: 

- 

This function is  shown in Figure 9.4. 
W e  see that the criterion is  minimized for C = 0.802. This is i n  

good agreement with the true value C = 0.8. 

0.6 
0 10 20 30 40 50 60 70 80 W 100 

Time (S) 

9.4 Model Properties 

The method to minimize the prediction error (9.30) is a general method 
to estimate parameters. Which properties will these estimates have? 
How good are the resulting models? These questions will be treated 
in this section. 
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Figure 9.4: The criterion as a function of C. 

Model Quality 

What do we mean by a good model? This should mean that it is close 
to the true description. In practice, no "true" descriptions are avail- 
able, and the model quality must thus be judged on different grounds. 
We note a number of basic facts: 

1. Model quality is related to model use. A model can for exarnple 
be excellent for control design but inadequate for simulation. 

2. Model quality is typically related to the ability of the model to 
reproduce the behavior of the system. This usually means that 
the model's simulated or predicted output is in good agreement 
with the outputs produced by the system. 

3. Model quality is also related to the model's stability, that is, how 
well the model can be reproduced from different measured data 
sets. Regardless of the statistical formalism that can be devel- 
oped around these facts, it is obvious that it is necessary to 
question the resulting model if it varies much with the segment 
of data it was computed from. Conversely, confidence is gained 
in a model obtained with small variations from different mea- 
surement data under varied conditions and maybe with different 
identification methods. 

We will return to these general aspects of model quality in Section 
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10.4. Here we will first develop some formal results in connection with 
the third aspect. 

Bias and Variance 

Model inadequacy can take two, principally different shapes. One is 
the model error that arises because of noise influence on the measure- 
ments and system. If an experiment is repeated with exactly the same 
input, the output will not be exactly the same because the noise is 
not reproduced. Because of this the resulting model will be different. 
Such model variations are called variance errors. Variance errors can 
typically be reduced by using longer measi~rement sequences. 

The other model inadequacies originate from deficiencies in the 
model structure. The model is simply not capable of describing the 
system, even if it should be fitted to noise-free data. Such errors 
will be called systematic errors, or bias error. Bias errors are noticed 
as variations in the model when it is fitted to data that have been 
collected during different conditions (even if the measurement intervals 
are long enough to make the variance error insignificant). The reason 
is that different conditions (operating point, input characteristics and 
so on) bring out different aspects of the system's properties and the 
model is fitted to the dominating system properties. 

A good model according to statement 3 above is thus one that has 
both small variance and bias error. 

Convergence of the Estimate - Bias Error 

Consider the parameter estimate eN from (9.30). If we want to concen- 
trate on the bias error, the obvious question is what will happen when 
N, the number of measurement data, tends to infinity. The variance 
error should then be negligible. 

The answer is the following. If the noise that influences the system 
can be described as a stationary stochastic process, then the prediction 
error ~ ( t ,  6 )  for each value of 6 is a stationary process. Let the variance 
of E be denoted by 

E E ~ ( ~ ,  8) = V(B) (9.42) 

If ~ ( t ,  6) is a sequence of independent stochastic variables (white noise), 
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then the law of large numbers in its simplest form would imply that 

This convergence happens with probability one (w.p.l), that is, the 
probability that the event occurs (9.43) is 1. Now, ~ ( t ,  8) are not inde- 
pendent, but under very general conditions the dependence decreases 
so fast that (9.43) still holds. The convergence is also uniform in the 
parameter 8. This implies that 

This result is completely general and contains all information of 
the bias error. The estimate g N  converges to the value that minimizes 
E E ~ ( ~ ,  8). If we cannot get an exact model (which gives white pre- 
diction errors), we will at least obtain the best approximation that is 
available within the parametrized model, the one that minimizes the 
prediction error variance. This is an important robustness property of 
the estimate. 

For linear models the result is best interpreted in the frequency 
domain. Assume that we have a linear model 

where H,(q) is a fixed (8-independent) model for the noise term. As- 
sume that the true system is given by 

Using expression (9.25), we can compute the prediction for (9.45). The 
difference ~ ( t ,  8) = y(t) - G(t(8) gives 

~ ( t ,  8) = H,l(q)[y(t) - G(9,8)u(t)l 

= ~ , ~ ( q ) [ G o ( q )  - G(9, e>lu(t> + H,"q)w(t) 

The spectrum for ~ ( t ,  0) will then be, according to (3.63) (if U and W 
are independent), 



9.4 MODEL PROPERTIES 

Parseval's formula (C.21) gives 

and thus yields 

0* = lim jN = arg I G ~ ( ~ ~ ‘ " )  - ~ ( e ~ ~ ,  8)12 @.(W) * 
N-ca IH*(ei")I2 

(9.48) 

since the last term in (9.47) is independent of 0. 
The estimate thus converges to the value O * ,  which makes the fre- 

quency function of the model G(eZW, e*) as close as possible to the true 
~ ~ ( e ~ ~ )  measured in a quadratic frequency norm with the weighting 
function 

Note especially that by choice of @, and H, we can control the fre- 
quency bands where the fit is best. This will give a good illustration of 
how the bias error depends on the experimental conditions - in this 
case the input spectrum. 

If there is a value 80 such that 

we see from (9.48) that 0* = independently of @,(W) and H*(eiw) 
as long as @,(W) is different from zero for sufficiently many W .  

Another general result also follows directly from (9.44). Assume, 
in the general case, that there is a value O0 such that 

y ( t )  - y(tle0) = ~ ( t ,  0,) = e ( t )  = white noise, with variance X (9.50) 

Then we get from (9.44) 
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since e(t) is independent of all old data. We see that 8 = O0 minimizes 
t ( 8 ) .  From this follows 

e~ + 80 when N -, oo (9.52) 

under the condition 

y(tleo) - y(tle) + e = eo (9.53) 

We will discuss the condition (9.53) later under "Identifiability." 

Variance Error 

We will discuss the variance error of the estimate in the case that the 
bias error is zero, that is, when the assumption (9.50) is valid. In the 
appendix to this chapter we will show that 

where 

d 
+(t,e) = -y(tlO) (ad X 1 vector) dB 

The covariance matrix for eN is thus proportional to the noise intensity 
X and inversely proportional to the number of measurement points. 
Less noise and more data mean a better estimate, which is completely 
natural. The covariance matrix of is also proportional to the inverse 
of the covariance matrix for +(t, 8), the gradient of the prediction with 
respect to 8. This is also natural. The quality of eN depends on 
how sensitive the prediction is regarding 8. If the prediction e(tl8) 
changes only a little when a certain component of 8 is changed, the 
corresponding component in +(t, 80) will be small R will be small, and 
consequently the uncertainty in the 8 component will be large. 

It is true that the matrix R is unknown to us, but it can easily be 
estimated. The gradient +(t, 8) can be computed for each given value 
of 8 - this is also normally done in the minimizing algorithm when 
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gN is computed. We use the estimates 

and can then estimate ON7s covariance matrix as 

It can also be shown that the distribution for the stochastic variable 
iN converges to a normal distribution (with mean B. and covariance 
matrix PN). This is written 

("belongs to the asymptotic normal distribution with mean 0 and CO- 

variance matrix XRW1"). 
With the help of (9.59) we answer questions of the type "How large 

is the probability that iN differs from 130 by more than 10%?" For this 
we use standard tables for the normal distribution. 

The result (9.54) is mainly used to judge the variance error in a 
computed estimate iN. We then use (9.57)-(9.58). The result can of 
course also be used to compute the effect on an estimate of different 
design variables. 

Example 9.5 Variance of ARX Parameters 
Consider a system described by 

The input U is white noise with variance p,  and the noise { e ( t ) )  is 
white with variance X. By squaring (9.60)and taking the expected 
value, we get 

By multiplying (9.60) by u ( t )  and taking the expected value, we obtain 
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[u(t)  is independent of y(t  - l ) ,u( t  - l ) ,  and e( t )] .  By  multiplying 
(9.60) by  y( t  - 1)  and taking the expected value, we get 

This gives 

W e  use the ARX model 

to identify (9.60). The predictor is 

which gives 

and 

The variance i n  the estimate G N ,  &N is  then, according to (9.54), 

1 0.19X 
Var ( h N )  M -- 

l X 
Var ( iN)  M -- 

N p + X '  N L L  

Here we see directly how the input variance p infEuences the accuracy 
of the estimate. 

In a ready-made model of the type (9.17) the primary interest may 
not be in the variance of the parameter, but in the variance of the 
frequency function. Starting with (9.54), we can estimate the variance 
for ~ ( e ' ~ ,  e N ) .  This gives a rather complicated expression. However, 
the simple relationship 
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holds approximately, where n is the model order, N the number of 
data, and Q, and Q, spectra for W and U in (9.15) and (9.17). Notice 
the similarity to (8.51). 

Ident ifiability 

If we use a tailor-made parameterization it is interesting to know if 
the chosen parameters can be determined from these data at all. 

Consider for example the dc model in Example 9.1. To begin with, 
we had four system constants in the model building. But they entered 
the model only as the two combinations T and P. It is thus obvious 
that if we had a 8 that consisted of these four parameters we would 
not be able to decide their individual values from only measurements 
of the system's inputs and outputs. 

In other cases it can be considerably more difficult to decide such 
questions. We use the term identifiability to describe that a certain 
parameter can be uniquely identified from the input-output signal 
data. The key relationship is (9.53).s If two different parameter vectors 
O1 and O2 give rise to identical predictions they cannot be separated by 
identification methods. We shall say that a certain parameterization 
is identifiable at 8*, if 

ij(t(8,) ij(tl8) implies 8 = 8, (9.62) 

There are two different reasons that (9.62) may not hold. One 
is that two different values of 0 simply give identical input-output 
properties in the model. The dc motor was an example of this. The 
other reason is that we do get different models with different values of 
8 ,  but because of deficiencies in the input the predictions are still the 
same. 

Example 9.6 Nonidentifiability 
Consider the model 

The  input is  chosen as a constant u(t)  E uo. The actual prediction is  
then 

ij(tl8) = (h + b2)uo 
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and we see that all values of bl and b2 whose sum is  a given value give 
identical predictions. Equation (9.62) does not hold, and the parame- 
ters bl and b2 are thus nonidentifiable. 

In Section 10.2 we will discuss choices of input that assure identi- 
fiability whenever possible. 

9.5 Summary 

To estimate parameters in models of dynamic systems gives a very 
powerful and wide range of possibilities for model construction. Here 
are the fundamental features in the method: 

The basic principle is to fit the parameters so that the model 
will predict the measured output as well as possible: 

1 N 
BN = argmin- C e 2 ( t , 0 )  e N  t=l 

The minimization work may demand heavy computations. 

Under the assumption that noise and disturbances that affect 
the process can be described as stochastic processes, the general 
expressions for the model properties and quality are as follows: 

gN + O* = arg min E E ~  (t , 0) 

To be able to estimate the magnitude of the variance error is very 
valuable: Each model has to  be delivered to the user together 
with a quality declaration! 

The parameter estimation has the following advantages: 

Generally applicable. Can be applied to detailed tailor-made 
models as well as to crude ready-made models. 

Only what is unknown needs to be estimated. 
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The disadvantages are the following: 

Certain insights in to the system's properties are needed to be 
able to test reasonable model structures. 

A comprehensive computer and program support is needed to 
compute and evaluate different kinds of models with reasonable 
effort. 

9.6 Appendix 

Computing Derivatives for Numerical Minimization 

We gave equation (9.39) as the basic algorithm for numerical mini- 
mization. In order to use it, derivatives and second derivatives of the 
criterion VN (8) are needed. 

The computation of these expressions depends on the model struc- 
ture used. In this appendix we will first study a general case with a 
quadratic criterion function: 

Direct, term-wise differentiation of (9.63) gives 

and 

In general we approximate the second derivative Vi(8) by neglecting 
the second sum in (9.65). It is small anyway, close to the minimum 
point, and it is then unnecessary to compute the second derivative of 
e(ti18). With this term canceled in the expression for Vi(8) ,  (9.39) 
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is usually called The Gauss-Newton method. Now it only remains to 
describe how the derivatives 

are computed. The computation of these depends on the model struc- 
ture used. We will give these estimations for both the ARMAX model 
(9.19) and for the general structure (9.7). 

Derivatives for the ARMAX Model 

The ARMAX model is given by (9.19): 

The general prediction formula (9.25) gives in this case 

Now differentiate with respect to the coefficient ak in the A(q) poly- 
nomial: 

d 
C(q)-$(tIO) = -y(t - k) 

dak 

In the same way we have 

and by differentiating C(q)G(tlO) as a product 
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These expressions can be summarized as 

The General Case (9.7) 

C(q)+(t, 8) = 

Consider the general state-space form (9.7). By differentiating (9.7b) 
with respect to 8, we get by the chain rule 

- -y(t - 1) - 

-y(t - na) 
u(t - 1) 

u(t - nb) 
~ ( t  - 1, e) 

~ ( t  - nc, 8) - 

= H&@, e), o ) ~ ( t ,  0) + H2(x(t, B), U@), 8) (9.69) 

where 

d 
H1(x,u,8)=--h(z,u,8) ( a l x n v e c t o r )  

dx 
d 

z(t,8)=-x(t,8) ( a n n x d m a t r i x )  
dB 
d 

H2(x,u,8)=-h(x,u,e) ( a l x d v e c t o r )  
de 

In the same way we get from (9.7a) 

where 
d 

Fl(x, U, 9 )  = f (X, U, 8) (an n X n matrix) 
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d 
F 2 ( x , ~ , 8 ) = d s f ( x , u , 8 )  ( a n n x d m a t r i x )  

In the second expression we changed the order of differentiation. This 
is allowed if x(t, 8) is twice continuously differentiable. 

Equations (9.7), (9.69), and (9.70) now make a system of n + n - r 
coupled differential equations, from which we can determine the deriva- 
tive $d(ti18). 

The preceding expressions look complicated. But if a program 
package for solving differential equations numerically is available (see 
Chapter ll), the necessary programming work is still moderate. 

It is evident from the expressions that the computational work to 
minimize (9.63) increases rapidly with n and d. (The necessary number 
of iterations typically grows faster than linearly with d.) There is 
therefore reason to try to estimate unknown system parameters using 
as small partial systems as possible. It is thus not necessary to let 
(9.1) be the whole system model if there is a smaller subsystem that 
also gives information of 8 or some of B's components. 

Proof of (9.54) and (9.59) 

According to (9.30), let 

O N  = arg min VN (B) 

We then have that the derivative of the criterion is zero 

Assume that N is sufficiently large and that O N  lies close to 80. Then 
Taylor expansion gives 

We thus have for large N 

For V; (80) we have from (9.65) 
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For large N this expression will be close to its expected value: 

Here we make use of the fact that e(t) = y(t) - y(t(OO) is white noise 
and thereby independent of $(t(8). For -V&(&) we have from (9.64) 

The expected value of this expression is zero. [e(t) and +(t, 60) are 
independent and e(t) has the expected value of zero.] If the terms 
were independent, the central limit theorem would also give that 
- ~ ~ V L ( O O )  converges to a normally distributed variable with zero 
mean and variance: 

where we made use of the fact that Ee(s)e(t) = 
The terms in (9.74) are indeed not independent, but the central 

limit theorem is still valid under general conditions. If we combine 
this with (9.72), (9.73), and (9.75), we have that f i ( 8 j v  - 00) con- 
verges to a normal distribution with zero mean and covariance matrix 
R-'[xR]R-' = XR-l, which gives (9.59) and (9.54). 





Chapter 10 

System Identification as a 
Tool for Model Building 

The previous two chapters have shown the techniques and methods 
available for model building based on measurements. In this chapter 
we will discuss what the identification tool looks like in the hands of 
the user and how it is used for model building. 

The most important aspect is that there are now many interac- 
tive computer program packages for identification in which the meth- 
ods and theories are packaged in a user-friendly way. The focus has 
thereby moved from algorithms for identification to understanding of 
the possibilities and limitations of identification. 

With given data the user's main task is to decide on a suitable 
model structure - a suitable parametrization of the model - and to 
evaluate the calculated models. 

Another main task is to construct and carry out experiments that 
give data with good information contents for the subsequent identifi- 
cation step. 

In this chapter we will first describe typical computer packages. 
After that, in Section 10.2, we will deal with construction of identi- 
fication experiments and in Section 10.3 with posttreatment of data. 
The choice of model structure is discussed in Sections 10.4 and 10.5. 
An example and a discussion of the possibilities and limitations of 
system identification conclude the chapter. 
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10.1 Program Packages for Identification 

The work to produce a model by identification is characterized by the 
following sequence: 

1. Specify a model structure. 

2. The computer delivers the best model in this structure. 

3. Evaluate the properties of this model. 

4. Test a new structure, go to step 1. 

See Figure 10.1. The first thing that requires help is to compute the 
model and to evaluate its properties. There are now many commer- 
cially available program packages for identification that supply such 
help. They typically contain the following routines: 

A Handling of data, plotting, and the like 
Filtering of data, removal of drift, choice of data segments, and 
SO on 

B Nonparametric identification methods 
Estimation of covariances, Fourier transforms, correlation and 
spectral analysis, and so on. 

C Parametric estimation methods 
Calculation of parametric estimates in different model structures 

D Presentation of models 
Simulation of models, estimation and plotting of poles and ze- 
ros, computation of frequency functions and plotting in Bode 
diagrams, and so on 

E Model validation 
Computation and analysis of residuals ( ~ ( t ,  6jv ) ) ;  comparison be- 
tween different models' properties, and the like 

The existing program packages differ mainly by various user inter- 
faces and by different options regarding the choice of model structure 
according to item C. 
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Polish and 
present data 

structure to the data 

Data 
not OK 

Model structure 
not OK the model 

1 
No 

Yes 

Figure 10.1: Identification cycle. Rectangles: the computer's main 
responsibility. Ovals: the user's main responsibility. 

One of the most used packages is MathWorks SYSTEM IDENTIFI- 
CATION TOOLBOX (SITB), which is used together with MATLAB. 
The command structure is given by MATLAB's programming envi- 
ronment with the work-space concept and MACRO possibilities in the 
form of m-files. SITB gives the possibility to use all model structures 
of the type (9.17)-(9.20) with an arbitrary number of inputs. The 
user can also define arbitrary tailor-made linear state-space models in 
discrete and continuous time. 
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10.2 Design of Identification Experiments 

A successful identification application demands that the collected mea- 
surement data contain significant information about the system. This 
in turn requires that the data acquisition be well planned. Several 
decisions regarding this have to be taken: 

Which signals in the process should be measured? 

How should the inputs be chosen? 

Which sampling interval should be used? 

How much data need be collected? 

The following questions concerning posttreatment of data are also 
related to data quality: 

Do slower variations, drift, and the like, have to be removed? 

Do the data need filtering to remove disturbing frequencies? 

Are all data points reliable? 

Should the data sequence be decimated (that is, be resampled 
at a lower frequency)? 

To deal with all these questions in depth demands a long discussion. 
In this section we will only indicate the most important aspects. 

Guiding Principles 

The basic result of the properties of the estimates, as described in 
Section 9.4, can be summarized in three points: 

1. The estimate eN converges to a value that gives the best approx- 
imation 8* of the system's properties under the conditions valid 
during the data acquisition. 

2. The limiting model O* gives a true description of the system if 
the model parameterization allows this, and if the experiment 
conditions are such that no two different models have identical 
behaviors under these conditions. 
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3. The covariance matrix for the estimation error in the parameters 
is given approximately by 

where +(t, 00) is the gradient of the prediction with respect to 
the parameters. N is the number of collected data points and X 
is the noise variance. 

These three points give guidance for the construction of identifica- 
tion experiments in the following way: 

Let the experiment be carried out under conditions that are as 
similar as possible to those under which the model is going to be 
used 

See to it that the inputs excite all interesting aspects of the 
system 

Choose the measurement y(t) and the input u(t) so that the 
prediction y(t(8) will be as sensitive as possible with respect to 
t' 

Choice of Input 

The input u(t) should excite the system. One single pure sinusoid with 
the frequency W ,  for example, only gives information of the value of the 
frequency function at W .  There are infinitely many systems that give 
the same output with this input. It is thus important that u(t) contain 
enough frequencies. If the system allows the user to choose the input, a 
good choice is to let it shift randomly between two levels (a "telegraph" 
signal). Such signals contain all frequencies. The levels should be 
chosen so that they correspond to maximally allowed variations. If 
the system is nonlinear, an interval for the input that corresponds 
to a desired operation point should be chosen. When constructing a 
nonlinear model, it is usually also necessary to work with more than 
two input levels. 

A simple way to generate binary random signals is to filter a white 
noise signal (from a normal random generator) through a suitably 
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chosen filter, take the sign of this filtered output and then adjust the 
level and interval to what is required by the application. The filter 
will determine the spectrum of the input. The expressions (9.48) and 
(9.61) can be used as a guide for the choice of spectrum. The input 
should have the major part of its energy in the frequencies that are 
important for the model fit. 

In the time domain we could think as follows: First, make a step 
response to get a general feel for the time constants of the system. 
If we seek an input as a pulse train, consisting of pulses of different 
durations, it is of course not much use to have pulses so short that 
the response is hardly visible, that is, just covering a negligible part 
of the rise time of the step response. Moreover, it should be useful to 
have occasional pulses that are constant over such long periods that 
the step response more or less settles. There is, however, no need to 
have longer pulses than these. This gives some practical guidelines for 
the choice of pulse lengths. 

An often used signal for identification is the PRBS (pseudo ran- 
dom binary signal). It has approximately the same properties as the 
telegraph signal, but is deterministic in nature (periodic with a rather 
long period) and can be realized by a shift register. 

The major aspects on the choice of input can be summarized as 
follows: 

Binary signals are often suitable to identify linear systems. 

Choose the frequency range of the input so that it has most of its 
energy in the frequency bands that are important for the system, 
that is, where the Bode diagram's breaking points are. 

Alternatively expressed: Let the input contain pulses that occa- 
sionally allow the step response to more or less settle, and also 
clearly excite interesting fast modes in the system. 

It is often a good idea to first generate the input sequence in an 
off-line fashion and examine its properties before applying it to 
the system. 
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Feedback Experiments 

It is often expensive or dangerous to experiment with the system, and 
then data have to be collected during normal operating conditions. 
Normally, this means that the process is controlled so that the input 
is partially determined by feedback from the output. That this can 
cause some problems is evident from the following example. 

Example 10.1 Identification under Feedback 
Consider the simple A R X  model 

Assume that the system is controlled by a proportional regulator during 
the data acquisition: 

u(t)  = -f ~ ( t )  (10.2) 

The predictor is thus 

A11 values ( i i , k )  of the model parameters such that kf + ii is a cer- 
tain given number will therefore produce identical predictions under 
the feedback (10.2). This is a situation similar to Example 9.6. Note 
especially that i t  does not help to know the regulator constant f. There 
are thus no possibilities to determine a and b uniquely in (10.1) when 
(10.2) holds, regardless of what the true system is. 

If we change (1 0.2) so that a set point for the output r ( t )  is  included, 
we have 

u(t) = f ( r ( t )  - ~ ( t ) )  (10.3) 

The predictor will then be 

If r is not identically zero, the predictor will now distinguish between 
diflerent values of a and b.  

The system (10.1)) (1 0.3) has been simulated for the values a = 
-0.9, b = 0.5, and f = 1 in Figures 10.2 and 10.3. { e ( t ) )  was 
simulated as normally distributed white noise with variance 0.1 and 
r ( t )  alternating between 0 and l according to the figure. A n  estimate 
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Figure 10.2: Input and output from the feedback system. 
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Figure 10.3: The reference signal r( t )  for the feedback system. 
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Phase , , , , , ,  0 , - - -. - - - .. 

Figure 10.4: Spectral analysis estimation of the transfer function. Solid 
line: true system. Dashed line: spectral analysis of the transfer func- 
tion. Dotted line: ARX model's transfer function. 

of the parameters a and b in the ARX stmcture (10.1) based o n  these 
data gave the values 

Spectral analysis according to the algorithm SPA (8.49) was also car- 
ried out for the data given in Figure 10.4. W e  see that the spectral 
analysis estimate is  useless. This is because of the two relationships 
that exist between the signals U and y: partly due to the system de- 
pendence (1 0.1) and partly due to the regulator dependence (1 0.3). In 
spectral analysis these dependences are mixed. When we use the A R X  
model ( l  0. l )  we look explicitly for how y(t - 1)  and u ( t  - 1 )  aflect y ( t ) .  
The regulator (10.3) does not in f i ence  this relation. 

The example shows the importance of handling closed-loop systems 
with care. The advice can be summarized as follows: 

If possible, avoid simple regulators. Adjust the set points (or 
adjust the regulators) as much as allowed during the experiment. 
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Conventional spectral analysis according to Section 8.6 does not 
work when applied to data from systems operating under feed- 
back. 
Instead use parameter estimation with prediction error models 
of the type ARX, ARMAX, or BJ (or in tailor-made models). 
Apply the identification routine in a straightforward fashion to 
the actual input and the actual output from the process to be 
identified. 

Choice of Sampling Interval 

The choice of sampling interval is coupled to the time constants of the 
system. Sampling that is considerably faster than the system dynamics 
leads to data redundancy and relatively small information value in the 
new data points. Sampling that is considerably slower than the system 
dynamics leads to serious difficulties in determining the parameters 
that describe the dynamics. In general we can say that it is much 
worse to sample too slow than too fast. A rule of thumb is to choose a 
sampling frequency about 10 times the bandwidth of the system (or, 
rather, the bandwidth of interest for the modeling). This corresponds 
approximately to placing about 5-8 sampling points over the rise time 
of the interesting part of the system's step response. It is thus valuable 
to first obtain a step response of the system. 

If we are uncertain of the choice of sampling interval and data 
collection is "cheap," it is wise to sample fast at the data collection. 
The decision of which sampling interval to use in model building is 
then deferred to the computer sessions. The data sequences can then 
be decimated; that is, every r th value of the original data is chosen 
before they are used in the identification routine. 

In this context it is important to consider how the frequency con- 
tents in the signals are affected by sampling. According to Poisson's 
summation formula (C.12) (or the sampling theorem), the frequencies 
in the measured signal that are higher than the Nyquist frequency will 
be (mis)interpreted as lower ones; the alias effect. Such frequencies 
have thus to be filtered out before the sampling by help of a low-pass 
filter with cut-off frequency just at the Nyquist frequency. Such a filter 
is also called an antialias filter. Note that this also holds if an already 
sampled signal has to be decimated. 
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The most important aspects on the choice of sampling interval can 
be summarized as follows: 

Choose the sampling interval so that it corresponds to 5-8 sam- 
pling points over the rise time of the system's step response. 

It is better too sample too fast than too slow. 

Do not forget the antialias filter. 

10.3 Posttreatment of Data 

The first step in an identification application is to plot the data. One 
then often discovers that they have certain deficiencies. It might be 
that the signal levels drift away or that there are high-frequency dis- 
turbances above the frequency interval of interest for the system dy- 
namics. There can also be obvious faulty values (outliers) among the 
data. There may also be reasons to enhance certain frequency bands 
in the data in order to get a better model fit. There thus has to be 
quite a bit of posttreatment of data before the real identification work 
can start. An important aspect of the posttreatment is also to choose 
a part from the data that looks good and that thereby is suitable for 
model fit and model validation. 

Drift and High-frequency Disturbances 

The linear models that are estimated from data are normally based on 
signals measured relative to a certain equilibrium. If we work with a 
tailor-made model with absolute signal levels built in, the signal should 
of course be kept at their physical units. Otherwise, the rule of thumb 
is always to subtract at least the mean level in each measured signal. 
The mean levels also often drift away during the experiment. This 
can, be eliminated by high-pass filtering. 

High-frequency noise in measurements in "uninteresting" frequency 
bands is really a sign that the sampling interval and the antialias filter 
have not been adequately chosen. At posttreatment of data they can 
be removed by low-pass filtering, possibly followed by decimation. 



CHAPTER 10. IDENTIFICATION AS A TOOL 

Outliers 

In a difficult measurement environment it often happens that some 
measurement values are obviously incorrect. This is usually most visi- 
ble in plots of the residuals y(t) -e(tleN). If these values were accepted 
uncritically, they would have a devastating effect on the .estimated 
models. The reason is that quadratic criteria of the type (9.29) give 
an unreasonably large weight to data points that give large prediction 
errors. To protect from this, we should use criteria of the type (9.31)' 
where l(&) behaves quadratically for small- and middle-sized c, but 
linearly for large c. 

Consequently, the data have to be evaluated critically. Segments 
that contain inaccurate or doubtful measurement values should be 
avoided. If this is impossible, the inaccurate values could be smoothed 
by hand to interpolated or predicted values. 

Prefiltering of Data 

In equation (9.48) we saw that the estimate of a linear system can 
be interpreted as a best fit between the model's frequency function 
and the true frequency function in a weighted frequency norm (9.49). 
Assume now that both the input and output are filtered through the 
same filter before the estimation takes place: 

This will affect the weighted frequency norm. It changes from 

If L is chosen as a band-pass filter, the passband will be given priority 
for the model fit. This is a very valuable possibility when building 
models with complicated dynamics. 

Example 10.2 A Hydraulic Crane 
Loading cranes are usually controlled hydraulically. I n  this example we 
are going to study a hydraulic log loader. It  is  approximately 5 meters 
tall and is  controlled by oil being pumped via a valve to a cylinder with 
a piston, which in turn is  coupled to the crane arm. W e  are especially 
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Figure 10.5: Collected data from a hydraulic crane. (a) The pressure 
in the hydraulic cylinder. (b) Valve position. Time scale: seconds. 
Sampling interval 0.02 S. Mean values have been subtracted. 
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Figure 10.6: Data in Figure 10.5 filtered through a Butterworth filter 
of 10th order with a passband between 7.5 and 22.5 rad/s. 
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interested i n  the mechanical resonances i n  the crane arm, and we know 
that these lay somewhere i n  the interval 8 to 20 rad/s. The input, 
valve position, and the output, pressure in the hydraulic cylinder, were 
measured during 20 S.,  with a sampling intervalm of 0.02 S. The first 
half of these data are shown i n  Figure 10.5. Data were also filtered 
through a band pass filter (10th-order Butterworth) with a passband 
between 7.5 and 22.5 rad/s. Filtered data are shown in Figure 10.6. 
A second-order ARX model (na = 2,  nb = 1, nk = 1) was estimated 
for both data sets. The model's Bode diagrams are shown in Figure 
10.7. Now, which model is best? W e  tested both models on the data 
set that was not used for identification. The models are simulated with 
the input, and their output is compared with the measured output in 
Figure 10.8. W e  see that the model we obtained by help of filtered data 
is much better i n  describing the actual resonance oscillations. That 
the levels difler is, i n  this case, not so important. The models do not 
use the output i n  the simulation, so it can easily happen that the levels 
separate, especially since low frequencies have not been emphasized i n  
the fit when using filtered data. 

Since the ARX model (9.20) definitely is the most used parametric 
model, it is important to note that it uses the noise model 

The weighting function in (10.5) then contains [ ~ ( e ~ ~ )  l2 in the numer- 
ator, which typically gives a clear high-pass character. This implies 
that the ARX model is adjusted with an emphasis on high-frequency 
behavior (close to the Nyquist frequency). This is not desirable in 
general. The effect can be compensated for by prefiltering the input 
and output through a low-pass or band-pass filter. A simple and useful 
procedure is to first fit the ARX model to unfiltered data, which will 
give the model B ~ ( ~ ) / A ~ ( ~ ) .  After that the input and output are 
filtered through 

1 

and a new ARX model is computed by help of filtered data. - 

We can summarize the discussion of prefiltering of data by saying 
that it is advisable to filter the data through a band-pass filter that has 
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a passband covering the interesting frequencies (breaking points in the 
system's Bode diagram). The effects of low-frequency disturbances, 
drift, and so on, are thereby reduced. The focus on the model fit is 
also automatically moved to the most important frequency bands. 

10.4 Choice of Model Structure 

To choose a model structure that is suitable for identification is per- 
haps the most difficult decision the user has to make. The choice has 
several aspects. First the decision has to be made whether to use a 
tailor-made or a ready-made model. If the latter choice is made, the 
next question will be whether to use ARX, OE, ARMAX, or BJ or 
some other model. Finally, we have to decide the orders for the ready- 
made model. In this section we will give a number of suggestions for 
making these decisions. 

Tailor-made or Ready-made? 

To tailor-make a model has one important advantage. The known 
physical relationships are built in. No parameters have to be wasted 
estimating what is already known. 

The model will be parsimonious with its parameters, which often 
have a direct physical interpretation. This latter fact has the added 
advantage that it helps decide if the estimates are reasonable. 

The most important disadvantages are that the modeling proce- 
dure can be time consuming and that the numerical minimization of 
the criterion (9.30) can be computationally demanding. The decision 
whether to tailor-make a model at all might in the end depend on 

whether the identification package that is used gives relevant support 
for such an exercise. 

Example 10.3 The DC Motor 
Data were collected from a dc servo of the type described i n  Exam- 
ple 9.1 (feedback MSIIO). These data are shown i n  Figure 10.9. The 
data were adjusted to a ready-made model, ARX, of a second order 
[nu = nb = 2, nk  = 1 i n  (9.21)], which gives four parameters to esti- 
mate, as well as to the tailor-made model (9.6), where the static gain 
from voltage to angle velocity first has been determined to 4.51 from 
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Figure 10.9: Measured data from a dc motor. 
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Figure 10.10: Estimated Bode diagram for the ARX model. The dash- 
dotted line shows a confidence interval corresponding to 3 standard 
deviations. 
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Figure 10.11: Estimated Bode diagram for the tailor-made model. 
The dash-dotted line shows a confidence interval corresponding to 3 
standard deviations. 

a step response experiment. The Bode diagrams, with uncertainty re- 
gions marked, are shown i n  the Figures 10.10 and 10.1 1 for the two 
models. The uncertainty regions correspond to a 99% confidence inter- 
val, computed for the model's parameters according to (9.57) - (9.59) 
and then translated to the frequency function of the model. The tailor- 
made model gives better accuracy as shown. This depends on the fact 
that fewer parameters (only one) have been estimated. It is, however, 
not known which model is best, since the true dynamics of the mo- 
tor are unknown. Insight into this can be gained by simulating the two 
models for a new input and comparing the model outputs with the mea- 
sured ones. Such curves are shown i n  Figure 10.12.. The tailor-made 
model thus has an obvious advantage. 

The choice is finally a question of price and quality. A tailor-made 
model can give high quality, that is, small bias and variance inaccu- 
racy, since it is fitted to the current system (+ small bias) with only a 
few parameters (-+ small variance). But the price in the form of mod- 
eling, programming, and computational work can be high. Also, the 
tailor-made physical model may contain a large number of unknown 
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Figure 10.12: Measured output (solid line) and simulated model out- 
put (dashed). (a) ARX model. (b) Tailor-made model. 

parameters whose individual values are not essential for the dynamics 
of the system. We saw an example of this in Example 10.l.will not be 
identifiable. 

There are, as always, reasons to remember the principle TSTF (try 
simple things first). This principle suggests that we should test sim- 
ple, cheap, ready-made models (for example ARX) first and then go 
on to more complex ones only if the simple models cannot solve the 
problem. There are, however, never any excuses for neglecting funda- 
mental physical nonlinearities. However, these can be dealt with in a 
more simple fashion than by full-fledged physical modeling. 

Semiphysical Modeling: Transformation of Raw Data 

Even if we do not use a detailed tailor-made model structure, it is 
important to think through the system's function and basic physics 
before arbitrary using a ready-made model. This often shows that it 
is necessary to first do some nonlinear transformations of the origi- 
nal measured data. Such an example is given in Section 10.6. When 
new inputs and outputs have been constructed from the raw mea- 
surements, by nonlinear trasnformations they can be used in simple 
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model structures, such as the ARX structure. We term i;his combina- 
tion of transformations based on physical insights and simple model 
structures "semi-physical modeling". 

Other reasons for nonlinear measurement data transformations can 
be to: 

a Compensate for nonlinear sensors 

m Compensate for nonlinear actuators 

If, for example, a valve saturates so that it actuates p(u(t)) instead of 
the commanded input u(t), then use p(u(t)) as input in the model. 

Which Kind of Ready-made Model? 

In Section 9.2 we described a number of different ready-made models. 
Which one should we choose? There is no general answer, instead the 
choice depends on data. In practice some different structures are tested 
and compared to the obtained models with the methods described 
later. However, some general points of view can be listed: 

a The ARX model A(q) y(t) = B(y)u(t) + e(t) is the easiest to es- 
timate since the corresponding estimation problem is of a linear , 

regression type (see Section 9.2). According to the TSTF princi- 
ple, we should start by testing ARX models. The foremost dis- 
advantage is that the disturbance model H(q, 8) = l/A(q) comes 
along with the system's poles. It is therefore easy to get an incor- 
rect estimate of the system dynamics because the A polynomial 
also has to describe the disturbance properties. Higher orders in 
A and B than necessary may be required. If the signal-to-noise 
ratio is good, this disadvantage is less important. 

a The ARMAX model A(q)y(t) = B(q)u(t) + C(q)e(t) gives ex- 
tra flexibility to handle disturbance modeling because of the C 
polynomial. This is an often used model. , 

The OE model y(t) = a u ( t )  + e(t) has the advantage that 
the system dynamics can be described separately and that no 
parameters are wasted on a disturbance model. If the system 
operates without feedback during the data collecting, a correct 
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description of the transfer function G(q) = B(q)/F(q) can be 
obtained regardless of the nature of the disturbance. However, 
minimization of the criterion function (9.29) can be more difficult 
than in the ARMAX case. 

m The BJ model y(t) = [B(q)/F(q)]u(t) + [C(q)/~(q)]e(t)  is the 
"complete model" in which the disturbance properties are mod- 
eled separately from the system dynamics. 

The models ARX and ARMAX have common dynamics (common 
poles) for the noise e ( t )  and the input u(t). This is suitable when 
the dominating disturbances enter "early" in the process, for exam- 
ple at the input. Correspondingly, the BJ model is preferable when 
modeling disturbances come in "late" to the process, for example, as 
measurement noise in the output. 

Comparing Model Structures 

When some models in different model structures have been calculated, 
the obvious question arises of how to compare them. Which one is 
best? The first thought is to compare the corresponding values of 
the criterion function: Which prediction error variance did they lead 
to? This question requires careful consideration. It is best to evaluate 
prediction error variances of the different models when they are con- 
fronted with new data sequences (that is, other than the ones used in 
the model estimation). In statistical terms this is called cross valida- 
tion. This is a straightforward and natural method. If a model is able 
to predict a fresh set of data better than another, it should be treated 
as a better model. 

The only disadvantage with cross validation is that a fresh amount 
of data has to be reserved for the model comparison, and therefore we 
cannot use all available information to estimate the model. 

If the prediction error comparison has to be made on the basis of 
the data that already have been used at the model estimation (second 
hand data), a few problems emanate. A larger model will always give a 
lower value of the criterion function (9.29), since it has been obtained 
by minimizing over more parameters. If the values of the criterion 
function are plotted (the prediction error variances) as a function of 
the model order, a strictly decreasing function is obtained. To start 
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with, the value VN decreases since the model includes more and more 
of the system's relevant properties. But even after a "correct" model 
order has been passed, the criterion function continues to decrease. 
The reason is that the extra - and unnecessary - parameters are 
used to fit the model to the specific disturbance signals in the present 
data set. This is called overfit and does not serve any purpose since 
the model will be used when other disturbances affect the system. On 
the contrary, the model will in fact be worse because of the overfit. 

The goal is to find the transition from relevant model fit to overfit. 
A number of different methods for this have been suggested in the 
literature. In general, they are based on fundamental information 
theoretical principles. They all have the following characteristic: 

N 

min f (d, N) (t, 8) (10.6) 
4 0  t= l  

Here N is the number of data and d is 8's dimension (the number 
of estimated parameters). The function f (d, N)  increases with d and 
decreases with N. Minimizing (10.6) with respect to both d and 8 will 
penalize a model that contains many parameters. 

The model that finally is selected - the one that minimizes (10.6) 
- has to represent a balance between model fit and the number of 
parameters used. 

The most well-known methods are the following: 

1. Akaike 'S information criterion: AIC 

2d 
min(1 + E )  E (t, 8) 

t= l  

2. Final prediction error: FPE 

min 
i + d / N  1 

- C c2(t ,  8) 
4 0  1 - d/N N t=1 

This is a statistical estimate of the prediction error variance we 
would get for a fresh data set using the model e N .  
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3. Rissanen's minimal description length 

2d N 

min(1 + F - log N) (t ,  8) 
d,@ t=l  

This criterion aims at minimizing the code needed to store data. 
A parameter-rich model is also penalized by the fact that the 
model's parameters have to be stored. Hence there is a higher 
penalty for model complexity. 

Besides comparing models in terms of the prediction variances that 
they produce, the models can be simulated with a given input and then 
compared as to how well they describe the corresponding measured 
output. 

For linear models it is also instructive to compare their Bode dia- 
grams and pole-zero diagrams. A comparison between the frequency 
function that is obtained by spectral analysis and the functions pro- 
duced by the different parametrized models is particularly useful. 

Choice of Order of a Ready-made Model 

To determine the order and delays of a ready-made model, the follow- 
ing procedure is quite useful. 

1. First get a reasonable estimate of the delay by correlation anal- 
ysis and/or by testing all reasonable ones in a, say, fourth-order 
ARX model. Pick the delay that gives the best model perfor- 
mance (sum of squared prediction errors on a validation set). 

2. Then test many ARX models of different orders with this delay. 
Pick the orders that give the best model performance. This is 
done efficiently in several identification packages. 

3. This model may be of unnecessarily high order to describe the 
system dynamics, since the poles of an ARX model also describe 
the noise properties. Thus plot the zeros and the poles of the 
resulting model (with uncertainty regions marked) and look for 
cancellations. The surviving numbers of poles and zeros give us 
indications of the necessary order for the dynamics from input to 
output. Then try ARMAX, OE, or BJ-models with this order for 
G and first- or second-order models for the noise characteristics. 
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Getting Started 

To get a feel for how difficult it will be to find a good model structure 
for a certain data set, the following pragmatic route can be followed: 

1. Get an indication of the time delay of the system, for example 
from an impulse response estimate using correlation analysis [see 
algorithm (8.1 l)].  

2. Compute a fourth-order ARX model using this delay, and com- 
pare the measured output with the simulated output from the 
model using a separate validation data set. If the model/system 
is unstable or has some very long time constants, use the model's 
predicted output over a reasonably long prediction horizon. Now 
either of two things happens: 

The comparison looks good 

The comparison does not look good 

In the former case we can go to the procedure described in the 
previous subsection and fine-tune the choice of orders and struc- 
tures. In the second case we have to go deeper into the physics 
of the application. 

3. Test higher-order linear models. This might be necessary in par- 
ticular for systems with mechanical resonances. If this does not 
help, go on to the next step. 

4. Try to find out if there are further signals that affect the output. 
If they can be measured, include them as additional input signals. 
If this does not lead to a better agreement between the measured 
and the model output, go on to the next step. 

5. Apply semiphysical modeling to come up with essential nonlin- 
ear transformations of the raw measurements. This is of course 
highly application dependent. An example will be given in Sec- 
tion 10.6. 
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10.5 Model Validation 

To validate a model is to investigate if it can be accepted, given its 
intended use. This is closely related to the concept of model quality, 
and we shall in this section discuss some methods to study the quality 
of a model. 

Model Quality 

In Section 9.4 we discussed model quality. Model validation ties in 
closely to the aspects we mentioned there 

The model's stability: Computing models from different mea- 
surement records and in different structures and then evaluating their 
input-output properties (for example in a Bode diagram or in sim- 
ulation) is an important tool for gaining confidence in the model. If 
approximately the same model properties are obtained under such var- 
ied conditions, we should feel confident that the model found some 
significant features of the system. 

It is especially informative to plot the model's frequency function 
in the same diagram as the one obtained by spectral analysis. They 
should show reasonable agreement. But remember that spectral anal- 
ysis estimation is unreliable if the system operated under feedback 
when the data were collected. 

The model's ability to reproduce the system's behavior: A 
natural test is to simulate the model from input only and then compare 
the simulated output with the measured one. This comparison is best 
made on a fresh data set. That is what we did in Example 10.3. 

The corresponding comparison can also be made for k-step pre- 
diction of the output based on the model. The k-stepahead pre- 
dictor predicts y(t) based on the model and on the information in 
y(t - k),y(t - k -  1) ,... as well as in u(t - l) ,  u(t - 2) ,...,. It can 
thus be thought of as a simulation k time steps ahead. By picking the 
prediction horizon k larger than the time constants of the system, we 
can thus test if these have been correctly picked up by the model. 

For k = 1, the model's short-term behavior (the high-frequency 
properties) is evaluated. A comparison plot between measured output 
and predicted output can look rather impressive even for the trivial 
model y(t18) = y (t - 1) .  One-step-ahead prediction is better evaluated 
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by analysis of the errors, the residuals. 

Residual Analysis 

Let us examine the residuals that the model leaves behind, that is, the 
prediction errors 

These should ideally be independent of the input. If this is not the 
case, then there are components in ~ ( t )  that stem from {u(t)), which 
means that there are more system dynamics to describe than the model 
c(tleN) picked up. Typically, we then form 

and test whether these numbers are close enough to zero. It can be 
shown that if { ~ ( t ) )  and {u(t)) are really independent, then (10.11) is 
for large N approximately normally distributed, with mean zero and 
the variance 

Here R, and R, are E'S and U'S covariance functions. &,(T) is usually 
drawn in a diagram together with the lines f 3 . G. That R,,(T) 
goes outside these lines for any r is an indication that ~ ( t  + r) and 
u(t) probably are dependent for this value of r .  

When examining the correlation functions, note the following 
points: 

a If there is a correlation for negative values of T, that is, the influ- 
ence from ~ ( t )  on later values of u(s), S > t ,  this is an indication 
that the data were collected during feedback, not that the model 
is incomplete. 

If an ARX model (9.20) and the expression (10.11) are computed 
for the same data, then R,,(T) = 0 for T = nk, . . . , nk + nb - 1. 
The least squares estimates are constructed in this way. 
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If an ARX model is used and R€,(T) is significantly different 
from zero for a value TO, it is an indication that the term u(t -7-0) 

should be included in the model. This can be a good tip for the 
choice of n k  and nb. 

If also a model of the disturbance signal's properties is sought, we 
should demand that the residuals be mutually independent. This can 
be tested analogously by computing and plotting 

The residual analysis will of course be more revealing (and more 
demanding for the model) if the residuals are computed for a set of 
data that have not been used in the model estimation. 

Validation Decisions 

In summary we can say that it is important to get as much advice 
as  possible from available validation possibilities. The final validation 
criterion is, however, that the model is working well when it is used 
for its purpose: simulation, analysis, control design, or whatever. 

10.6 An Example 

Finally, we illustrate the choice of model structure with the following 
example in which both ready-made and simple tailor-made models are 
tested. 

Example 10.4 Solar-heated House Dynamics 
Consider the problem to  identify the dynamics of a solar-heated house 
described i n  Example 3.9. The function of the system is to let the sun 
heat the air i n  the solar panel. The air is then pumped to the storage 
tank, from where the heat can be talcen later for heating the house. 
Introduce the following variables: 
I ( t )  : Solar intensity at time t 
x ( t ) :  Temperature in the solar panel 
y ( t ) :  Temperature in the storage tank (at the inlet) 
u ( t ) :  Pump speed 
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W e  want to build a model to show how the temperature of the storage 
tank y is affected by the pump speed and the solar intensity. For this 
purpose, measurement data were collected for a 3-day and night period. 
The sampling interval was chosen as 10 minutes. The data are shown 
i n  Figure 10.13. 

W e  first test a model of the type (9.20): 

y(t)+aly(t- l)+a2y(t-2)  = blu(t-l)+b2u(t-2)+clI(t- l)+c21(t-2) 
(10.14) 

The least squares estimates of the coeficients a,, bi, and Q based on 
450 sampling points (N = 450) gave the values 

This is thus the best model of the type (10.14). Is it good enough? 
In  order to test this, the model (10.14)-(10.15) is simulated with the 
real inputs U and I ,  and the simulated output y~ is compared to the 
measured one. The comparison is shown i n  Figure lO.l4a. The model 
is obviously not very good. It is unable to follow any essential changes 
i n  the temperature. 

So far we have not used any physical insight for the heating pro- 
cess, but assigned the linear ready-made model (10.14) without further 
consideration. But it soon becomes evident that a linear model is not 
very realistic. The effects of the solar intensity and the pump speed are 
obviously not additive. When the pump stands still, the solar radiation 
has no effect at all on the storage tank's temperature. 

Let us think about what happens in  the heating system. With some 
simplifications the developments can be described as follows i n  discrete 
time: 

Energy balance means that the heating of the air in the solar panel 
[x ( t  + 1 )  - x ( t ) ]  is equal to the heat produced by the sun [d2 I ( t ) ]  minus 
the heat loss to the environment [d3 x ( t ) ]  minus the heat transferred to 
the storage tank [do x ( t )  u ( t ) ] :  

Similarly, the heating of the storage tank [y( t  + 1)  - y ( t ) ]  is  equal 
to supplied heat [dox( t )u( t )]  minus heat losses [d ly ( t ) ] :  
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Figure 10.13: Storage temperature y, pump speed U, and solar inten- 
sity I for a 2-day period. Sampling interval: 10 min. 
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Figure 10.14: Measured temperature (solid line) and the output from 
the model (dashed line). (a) The linear model (10.14)-(10.15). (b) 
The nonlinear model (10.21)-(10.22). 
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In equations (1 0.16) and (l 0.17) do, d l ,  d2 and, d3 are unknown con- 
stants whose numerical values we want to determine. But the temper- 
ature x ( t )  was not measured, so the equations cannot be used directly. 
W e  have to eliminate x ( t ) .  From equation (10.17), x ( t )  is determined 

If we substitute this expression into (10.16), we have after some cal- 
culations 

In  this expression we do not have a simple linear relation between the 
coefficients di and the output. W e  therefore introduce the reparame- 
terization 

giving us a model that is linear i n  its parameters: 

which is of the form (9.26). The price for the linear expression i n  
8 is that the knowledge of the algebraic relationships between Oi ,  i = 
1, . . . , 6 ,  according to (1 0.1 9) have been lost. The least squares estima- 
tion of 8 does not give a 8 value that directly corresponds to  values of 
di, i = 0,1,2,3,4.  

If we adjust i n  (10.20) to the same U ,  I ,  and y data as before, 
we obtain the result 



(When the pump was off, the value of U was given a small postive 
number rather than zero.) The model (10.20)-(10.21) is then simulated 
with the real inputs u and I according to 

The model's output y~ is compared to the measured input y i n  Figure 
10.14. A s  shown, the model (10.22) gives a reasonable description of 
the system. If we know the solar radiation and pump speed for the 
next 24 hours, we can predict the storage tank's temperature with an 
accuracy of 3' C on the average. This is acceptable in order to test 
control strategies and to evaluate the heating capacity over longer time 
periods. 

The example shows the importance of using physical insights dur- 
ing the identification work. Regardless of how accurate the data we 
use and which ready-made models we test, it is impossible to get an 
acceptable description of the system until, in this case, the important 
nonlinearities are built into the model structure. 

The example also shows that the physical insight does not have 
to be worked into the model structure during a laborious modeling 
process. Here we reached our goal by doing simple and rather obvious 
nonlinear transformations of raw data. 

10.7 Conclusions: The Possibilities and 
Limitations of Identification 

System identification has proved to be a convenient and useful tool for 
model building. Well over 10,000 successful applications are published 
in the literature. These cover widely varying areas from process indus- 
try, ship dynamics, signal processing, and seismology to biomedicine, 
ecology, and econometrics. Possibilities to handle completely unknown 
systems with the help of ready-made models, as well as carefully tailor- 
made model parameterizations, give a very wide area of applications. 
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There are two main limitations: 

We have to have informative data. 

We have to be able to find a suitable model structure. 

In this chapter we have discussed how both these conditions can be 
met. But in some cases there are limitations in the application or in 
our knowledge that make it impossible to fulfil1 the conditions. 

There are several reasons why the measured data can be unsatisfac- 
tory. A common reason is that we are unable to make experiments and 
to manipulate essential inputs. Another is that there are considerable, 
nonmeasurable disturbances that do not fit into the standard pattern 
of stationary processes. A third reason is measurement problems, and 
a fourth is that the system's properties may vary in time. 

If the system, at the operating point in question, can be described 
by a ready-made model, the prospects are good for finding such a 
model. If the model has to be based on physical insights - Example 
10.4 shows such a case - it is necessary to have so much understanding 
of the system that basic nonlinear elements can be built into the model 
structure. 
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Part IV 

Simulation and Model Use 





How to Use Models for Simulation 

In Parts I1 and 111 we have presented methods for system modeling. 
These models can be used for a number of purposes, for example: 

1. Increasing the understanding of the system itself 

2. Predicting the future behavior of the system 

3. Carrying our technical computations for control design 

4. Optimizing constructions 

5. Studying human-machine cooperation. 

Regardless of the purpose, we almost always want to study the 
solutions to the model equations. We saw in Chapter 7 on computer 
support that in certain cases explicit solutions to differential equations 
can be generated with computer algebra methods. For most models, 
however, the complexity is such that some form of approximation is 
needed. The classical way of attacking the problem has been to solve 
the equations using analog computers. Today the equations are most 
often solved numerically in a computer. Regardless of the method, we 
usually call the solving of the equations, together with the presentation 
of the result, simulation. We present different simulation methods in 
Chapter 11. Modern technology gives a wide range of possibilities for 
presenting the results from simulatioils in a striking way so that the 
real system's behavior is illustrated. We describe them briefly, also in 
Chapter 11. This part is concluded by Chapter 12 with a discussion 
of model use and to what extent the model can be trusted. 





Chapter 11 

Simulation 

11.1 Short Review 

The earlier simulation tools were usually based on analog techniques. 
The different variables in the model corresponded to physical quanti- 
ties like positions, angles, pressures, voltages, and so on. The user then 
tried to construct a device that gave the same relationship between 
the variables as the mathematical model. During the 1800s several 
mechanical tools of this kind were used. They were often specially 
constructed for a certain purpose, for example, Lord Kelvin's tide pre- 
dictor from 1879. Gradually, more general devices, which could be 
used for a whole class of problems, were constructed. An example of 
this is a mechanical differential analyzer built by Vannevar Busch at 
MIT about 1930. The advances in electronics opened vast possibilities 
to build flexible analyzers. These were called analog computers. After 
World War I1 electronic analog computers became widely used, in the 
airplane industry, in particular. The transistorization of electronics in 
the 1960s improved the analog computers. At the same time they got 
competition from digital computers. Since the introduction of work- 
stations and simulation languages suitable for interactive work, digital 
computers have become much more effective and flexible simulation 
tools. 
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11.2 Scaling 

We have seen that mathematical models can be expressed in different 
ways. Transfer functions, weighting functions, a higher order differen- 
tial equation, or a system of first order differential equations can be 
used. At the simulation it is often advantageous, and in some cases 
necessary, that the model be written in a state form. If that is not the 
case, the first step is to get a state-space description using one of the 
earlier stated methods. 

The simulation work is made easier through scaling of the equations. 
Scaling means that in the equations 

a variable change is made 

corresponding to amplitude and time scaling, respectively. This means 
that the following new functions are considered 

Differentiating this expression gives the differential equations 

The scaling can be used to get the same order of magnitude of the vari- 
ables and thereby avoid numerical problems. Another use of scaling is 
to reduce the number of cases that we need to simulate. 

Example 11.1 Simulation of a Tank 
As an example we can study the tank in Section 2.3. W e  found there 
that the mathematical model is 

Now assume that we want to investigate how an originally empty tank 
is filled with a constant input flow U for diflerent parameter values in 
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the model. At first glance, this seems to be an extensive amount of 
work since there are three parameters to vary: a ,  A, and U .  If each 
parameter has to assume N values, N 3  simulations are, in  principle, 
needed. However, i f  the model's behavior under scaling is utilized, only 
one simulation is needed. Apply 

where H and T are scaling factors. W e  then have 

If we choose H and T so that g = l and 9 & = l ,  that is, we 
take 

then we get the equation 

All we need to do now is to simulate this equation and draw the result 
as shown in Figure 11.1. 

When we then want to utilize the curve for a special problem, we 
compute the values of H and T for the case in question and can then 
go from .r and to t and h. W e  can also establish that H physically 
means the equilibrium the fluid assumes in the case in question. It can 
thus be considered as a natural unit of length for the model. In the 
same way, T is the quotient between the equilibrium volume and the 
flow, which is a natural time unit. 0 

Example 11.2 Simulation of a Pendulum 
Let us also consider the pendulum in Example 6.4. If we make the 
approximation sin0 = 0 and eliminate W, we obtain the digerential 
equation 
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Scald time 

Figure 11.1: Step response of a tank. 

Let us say that we want to simulate the case 

If we want to investigate the system's behavior for diflerent values of 
the physical parameters, it is necessary to simulate all possible com- 
binations of m, e, b, and A. With the scaling 8(r) = 0 ( t o ~ ) / O 0  we 
have 

The choice 

gives 
d28 de' 
- + 2 [ - + L 0  dr2 d r  

d8 
e '(o)=1, - ( O ) = O  d r  
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where 

It is obviously enough to simulate the scaled equation for diflerent val- 
ues of C. The parameter C, which decides the essential characteristic 
of the simulated curves, is called the relative damping. W e  also note 
that instead of using to,  one could use 

which becomes a scaling factor for the angular velocity. 

The two examples show the usefulness of both amplitude and time 
scaling as a way of making "standardized simulations". In addition the 
scaling can be physically necessary when the simulation takes place in 
terms of analog, physical quantities. Scaling can also give considerably 
better numerical properties in digital simulation. 

11.3 Block Diagrams 

In simulation it can sometimes be advantageous to think about a dif- 
ferential equation 

a s  an integral equation 

This equation involves two types of operations: static nonlinear trans- 
formations and integrations (see Figure 11.2). With this viewpoint 
equations (11 .S ) ,  (1 1.6) are represented as block diagrams, according 
to Figure 11.3. 
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Figure 11.2: (a) Integrator and (b) static nonlinear element. 

Figure 11.3: Block structure of a dynamic system. 
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Figure 11.4: Block diagram for a linear system. 

Figure 11.5: (a) Summation and (b) multiplication by a constant. 

This figure also emphasizes the systems theoretically interesting 
fact that a general dynamic system can be constructed from simple 
elements, which are pure integrators, connected through static nonlin- 
earities. The structure will be particularly simple for linear differential 
equations. The system 

will thus have a block diagram representation according to Figure 11.4. 
Here we see that, aside from the integrators, we only need two other 
operations - summation and multiplication with a constant (see Fig- 
ure 11.5). 

For nonlinear systems where the righ side consists of a polynomial, 
we also need a multipljcation element (see Figure 11.6). As an exam- 
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Figure 11.6: Multiplication element. 

ple the system 

can be described by the block diagram in Figure 11.7. 
Block diagrams of the types shown in Figures 11.4 and 11.7 can be 

used to directly simulate in hardware. Each block in the diagram will 
then have its counterpart in a physical component. In Lord Kelvin's 
tide predictor, the integrators for example were represented by me- 
chanical devices with rotating discs and spheres. In electronic analog 
computers, summations and integrations are performed by operational 
amplifiers, while multiplication with constants are carried out by po- 
tentiometers. 

Block diagrams can form the basis of an implementation in digital 
hardware as well, where integrations, summations, and multiplications 
correspond to suitably connected registers. An advantage with this 
approach is that an implementation is obtained, in which all operations 
take place in parallel. A system with 100 states thus takes no more 
time to simulate than one with one state (but requires more hardware). 

A block diagram representation may also be interesting for software 
implementation of the simulation, since it can be a convenient method 
to enter the system description. The block diagram is then often pre- 
sented in a more aggregated form. The linear parts are combined into 
units that are represented by their transfer functions. Let us consider 
a nonlinear variant of (11.7): 
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Figure 11.7: Block diagram for a polynomial, nonlinear system. 
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Figure 11.8: Block diagram for a linear system with nonlinear feed- 
back. 

This system can be regarded as the linear system 

with the transfer function 

from e to y, with a cubic feedback gain, according to Figure 11.8. 

11.4 Connecting Subsystems 

In Section 11.3 we saw that a block diagram description of a model 
could be quite useful. We can also recall from the discussion of mod- 
eling in Chapter 4 that a block diagram description can give insight 
into the structure of the system and the interdependence of different 
parts. There are, however, also some pitfalls in this view of systems. 
Throughout this book we have said that we consider the state space 
formulation 
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to be the natural way of describing a system. Suppose we have several 
subsystems described in this way and connect them. Will the resulting 
system then also have a state-space description? Will it be easy to 
calculate that description? 

Connecting Inputs and Outputs of Subsystems 

Consider the situation where we have two subsystems described in 
state-space form. 

Now suppose we make a series connection so that the output y becomes 
the input to the other subsystem, that is v = y. Then we get 

We see that we still have a state-space description; the state variables 
of the combined system are X, z. The series connection is thus fairly 
straightforward. For linear subsystems this type of connection is well 
known. 

Example 11.3 Series Connection of Two Linear Systems 
Consider two linear subsystems described by 

Suppose we make the series connection v = p. Then we have v = X 

and the overall system becomes 
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Using (A.5) i t  is easy to see thclt the transfer functions of (11.12), 
(11.13) are 

1 3 - S  - 
s + l '  S 

respectively. W e  then get the following diagram. 

The transfer function of (11.14) from U to W becomes 

which is the product of the transfer functions of the individual blocks. 
This is a well known fact from linear systems theory: a series wnnec- 
tion corresponds to multiplication of the transfer functions. 

The situation becomes different if we decide to connect the subsys- 
tems in a loop. 

Example 11.4 Two Linear Systems in a Loop (1) 
Consider the same systems as i n  Example 11.3 but suppose that they 
are connected in a loop, that is v = y and U = W. W e  then have the 
systems 

with the connecting equations 
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Substituting from the second equation into the first gives 

u = 3 z - X ,  V = X  (11.18) 

The combined system is then 

X = - 2 ~  2: 32 

This situation looks perfectly straightforward. However, let us 
change the example a little. 

Example 11.5 Two Linear Systems in a Loop (2) 
Suppose we change Example 11.4 by altering the output equation of the 
first subsystem so that we have 

Let the connection of subsystems be the same (U = W ,  v = y). The 
connecting equations are then 

u = w = ~ z - V ,  v = y = ~ f  U ( 1  1.22) 

This is  in fact a linear system of equations in U and v :  

The solution is 
U = - 0 . 5 ~  + 1.52 
v = 0.52 + 1.52 

The combined system is thus 

X = -1.52 + 1.52 
i = 0.52 + 1.52 
y = 0.52 + 1.52 
W = -0.52 + 1.52 
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Example 11.5 is more difficult to handle than Example 11.4 , be- 
cause it involves the solution of a system of equations. This is because, 
for both subsystems, the output depends directly on the input (y de- 
pends directly on U and w depends directly on v). A system for which 
the output depends directly on the input is said to be a system with 
direct feedthrough. It is also useful to describe Example 11.5 in terms 
of transfer functions and block diagrams. Using (A.5), it is easy to see 
that the two subsystems have the transfer functions 

We can show that the transfer function of a linear system has the 
same degree in numerator and denominator precisely when there is a 
direct feedthrough from input to output. Thus we see clearly from the 
transfer functions that this is a case where both systems have direct 
feedthrough. The connected system is described by 

The figure shows clearly why we get a system of equations. The 
signal U is equal to W ,  which depends directly on v, which is equal to 
y, which depends directly on U. The signals chase each other round 
the loop. This situation, in which systems with direct feedthrough are 
connected in a loop, is often referred to as an algebraic loop. 

Let us now return to the general situation with two state-space 
systems (11.9) and (11.10). Let the systems be connected in a loop; 
that is, U = W and v = y. Then we get the equations 

From these equations we have to solve for u,and v in terms of X and 
z. If we are successful, we can substitute the solutions into (11.9) and 
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(11.10) and get a standard state-space description of the connected 
system. In the general case, (11.27) is a nonlinear system of equations 
and neither existence nor uniqueness of a solution is guaranteed. Even 
if a unique solution exists, it might be difficult to compute. 

Suppose that one of the subsystems, for instance (11.9), has no 
direct feedthrough. Then h(x, U) does not depend on U, so we have in 
fact 

v = h(x) 
U = H(z,v) 

which can be rewritten 

The inputs can now be calculated from the state. When these expres- 
sions are substituted into (11.9), (11.10), we get a standard state-space 
description. 

We can summarize our conclusions so far: If two dynamic subsys- 
tems that can be described by state-space equations are connected in 
a loop, there are two possibilities. 

1. If at least one subsystem has no direct feedthrough, the resulting 
system has an easily computable state space description. 

2. If both subsystems have direct feedthrough, we have an algebraic 
loop. The calculation of the resulting state space-description 
requires the solution of a system of equations. In the general 
case, these equations are nonlinear. 

The discussion we have had so far generalizes in principle to many 
interconnected subsystems. If we have a number of interconnected 
subsystems, for which we can trace a loop, with direct feedthrough at 
every subsystem involved, then we have an algebraic loop. We then 
run into precisely the same kind of problems that we described for the 
case of two subsystems. 

Connecting State Variables of Subsystems 

In the previous section we studied the connection of inputs to outputs. 
The situation becomes more complex if subsystems are connected in 
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Figure 11.9: Mechanical system with two masses. 

Figure 11.10: Mechanical system with connected masses. 

such a way that certain relationships between the state variables are 
prescribed. 

Example 11.6 Connecting Mechanical Subsystems 
Consider the example of Figure 11.9. The left mass is described by 

and the right mass by 

m2v2 = F2 

Now suppose we connect the systems as described in  Figure 11.10. We 
can regard this as a connection of the subsystems described by (11.28) 
and (11.29) through the equations 
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Note that this is a connection of the state variables v1 and v2. By 
adding (11.28) and (1 1.29) and using ( l  1.30), we get 

We see that a direct connection of state variables is something much 
more drastic than a connection of inputs and outputs. To get the 
resulting system we had to directly manipulate the state equations 
and eliminate some of the variables. In the process we reduced the 
system order from 2 to 1. Compare this example to the one of Figure 
6.37, where we did a similar operation with bond graphs. 

11.5 Simulation Languages 

To make simulation possible, there must be a systematic way in which 
the user can enter a system description into the computer. We may 
call it a simulation language. Several approaches are possible. We list 
some of them. 

1. The system is defined by subroutines written in a standard pro- 
gramming language like FORTRAN or C. Those routines define 
the rigth side of a state-space description like (11.8). 

2. The right sides of (11.8) are entered in a specially designed com- 
mand language. 

3. The system description might be entered graphically in terms of 
block diagrams, as discussed in Section 11.3. 

4. The system description is entered graphically in terms of bond 
graphs. 

The first method is used in classical simulation languages like ACSL. 
The second method can be found for example, in SIMNON. The third 
method is found for instance in MATRIX-X and SIMULINK. Often a 
simulation language gives the user the choice between different meth- 
ods. SIMNON, for instance, can handle methods 1 and 2, while 
SIMULINK gives the user a choice between C code, or m files, and 
block diagrams, that is, the three first methods. 
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l inl 

File - Edit Ogtions - Simulation Style Code 

Figure 11.11: SIMULINK block diagram for linear system. 

To give the reader some idea of what is possible in a modern sim- 
ulation language, we show some examples of models in SIMULINK. 

Consider the block diagram of Figure 11.4 in Section 11.3. In 
SIMULINK it can be represented as shown in Figure 11.11. We see 
that the block structure is copied exactly. Now we can group the blocks 
together and regard them as one block, as shown in Figure 11.12. The 
top block, l i n l ,  is the system of Figure 11.11, while the other two 
blocks represent linear systems in transfer-function form and state- 
space form, respectively. The block in Figure 11.11 has the transfer 
function 

1 

and a possible strte-space description is 

with 

A ( )  B =  ( i )  C =  ( 0 0 1 ) ~  D=O 
0 1 0  

The descriptions (11.32) and (11.33) are also descriptions of the blocks 
l i n 2  and l i n3 ,  so we have in Figure 11.12 three different blocks that 
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Figure 11.12: SIMULINK block diagram for three linear systems. 
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Figure 11.13: SIMULINK block diagram for nonlinear system. 
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To give the reader some idea of what is possible in a modern sim- 
ulation language, we show some examples of models in SIMULINK. 

Consider the block diagram of Figure 11.4 in Section 11.3. In 
SIMULINK it can be represented as shown in Figure 11.11. We see 
that the block structure is copied exactly. Now we can group the blocks 
together and regard them as one block, as shown in Figure 11.12. The 
top block, l i n l ,  is the system of Figure 11.11, while the other two 
blocks represent linear systems in transfer-function form and state- 
space form, respectively. The block in Figure 11.11 has the transfer 
function 

and a possible stzte-space description is 

with 

A =  ( )  = ( )  C =  ( 0 0 1 )  D - 0  
0 1 0  

The descriptions (11.32) and (11.33) are also descriptions of the blocks 
l in2  and l in3 ,  so we have in Figure 11.12 three different blocks that 
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Figure 11.13: SIMULINK block diagram for nonlinear system. 
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describe the same linear system. In Figure 11.13 we have grouped 
the three systems together into one block with three inputs and three 
outputs. In order to show some other features of the language, we have 
connected some additional elements. These include two nonlinearities 
in the form of a relay with hysteresis and a multiplication of signals. 
Furthermore we have demonstrated two examples of how to generate 
input signals, one sine wave and one constant. We also see examples of 
the display of simulation results. The first is a scope, which gives on- 
line display on the computer screen, where as the second is an output 
to the program workspace. This output can then be used for later 
display or for processing of the data. 

Several notable features are shown in this example: 

The hierarchial structure. The system sysex contains the block 
c3lin, which in turn contains several blocks, among them l i n i ,  
which in turn is made up of a number of blocks. 

The possibility of describing a given system in several ways, as 
was done in c3lin. 

Various possibilities of generating input signals. 

m Various ways of storing and displaying results. 

Many additional features are not displayed in this simple example. 
Some instances are the following: 

A block can represent a discrete time model. Discrete time and 
continuous time blocks can be connected. 

From a block model of a linear system it is possible to compute 
a state-space description and from that a transfer function. For 
a nonlinear system a linearized state-space model can be com- 
puted. 

It is possible to include blocks that represent a continuous time 
delay. 

Current Trends 

Many of the current developments of simulation languages can be de- 
scribed as making them more and more into modeling languages. In 
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our brief SIMULINK example we saw that it was possible to enter 
a model using one description and have it recomputed into another 
description. This means that the program is actually performing part 
of what we called phase 3 in our discussion of modeling principles in 
Chapter 4. Ideally a modeling and simulation language would auto- 
mate all of phase 3 in the modeling process. The user would then have 
to supply the basic physical relationships of phase 2, but would not 
have to worry about putting them together into a model that can be 
simulated. 

Another ongoing development concerns algebraic-differentia1 equa- 
tions, 

that is, a mixture of differential and algebraic equations. There are 
several approaches to these. We could try to use the second set of 
equations to eliminate some variables from the first set and arrive 
at a standard state-space description. Alternatively, we can develop 
numerical methods that can handle algebraic-differentia1 equations di- 
rectly. Several simulation languages can handle equations arising from 
algebraic loops by solving them numerically on line. There are diffi- 
culties with this, of course, since there are no global numeric methods 
for nonlinear equations that are guaranteed to work in all cases. An 
alternative that is attractive in principle is to use the computer algebra 
methods we looked at in Chapter 7 to manipulate the equations. In 
Example 7.4 we actually saw how this can be done. There we started 
with a second-order differential equation and a static relationship and 
arrived at a state-space description. The methods used in the exam- 
ple generalize to arbitrary polynomial systems of differential equations, 
but the complexitiy is such that they cannot be considered the final 
answer to the problem. 

The devopments in algebraic-differentia1 equations and in model- 
ing are actually tied together. We saw in Chapter 4 that phase 2 of 
the modeling resulted in a mixture of static and dynamic relation- 
ships, that is, a system of equations of type (11.34). Also we saw 
in Section 11.4 that the tying together of subsystems could result in 
algebraic loops. To resolve the algebraic loop, a system of equations, 
(11.27), has to be solved. We also saw that a modeling approach that is 
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sufficiently general to allow arbitrary connections between subsystems 
must be able to handle mixtures of differential and algebraic equations. 
These equations can be tricky in the sense that the static relationships 
actually reduce the order of the system. A modeling language that has 
advanced features for handling these types of problems is DYMOLA. 
It can handle models defined in many ways, including bond graphs. 
Subsystems can be tied together in general ways and algebraic rela- 
tionships handled. The output of DYMOLA can be a model suitable 
for one of the standard simulation languages. 

11.6 Numeric Methods 

We will now look at the actual solving of the differential equations 
defining our model. We will assume that, no matter how the model was 
entered by the user, the simulation language/program has been able to 
convert it to a standard state-space form. In other words we will not 
consider numeric methods that handle algebraic-differential equations. 
We are going to present some of the most common algorithms and 
discuss the properties that are essential to consider in a simulation. 
For a more detailed discussion we refer to courses and textbooks in 
numerical analysis. (See the bibliography for Part N.) 

Basis of Numerical Methods 

We consider a model in state-space form 

where X is a vector of dimension n. If we fix the input to a certain 
function u(t) = fi(t), we can represent the influence of U as a time 
variation of f and write 

Assume that we have an initial state x(0) and want an approximation 
of X at the points 

0 < t l  < t2 < ...  < tf 
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Our algorithm will thus generate the values xi,  xz, x3,. . . , which a p  
proximate 

+l), x(t2), x(t31, . . . 
The simplest algorithm is obtained by approximating x(t) with a dif- 
ference ratio 

Xn+1 - X n  M x(tn) = f (t,, X,), where h = tn+l - t, 
h 

This gives the equation 

which is called Euler's method. It is often used in simple simulations, 
but as we will see below, is it not the most effective method. 

An algorithm for differential equations can, more generally, be de- 
scribed by the equation 

The integer k shows the number of previous steps that are utilized. 
We can thus speak of a (11.37) as a k-step method. 

If xn+l is not included in the expression for G, xn+l is obtained 
directly by evaluating the right side. The method is then said to be 
explicit. In other cases the method is implicit, and an equation system 
has to be solved to get x,+~. Euler's method is obviously an explicit 
one-step method. 

It is of course important to know how accurate a method is in 
solving differential equations. It is natural to consider the global error 

which, however, turns out to be difficult to compute. Therefore, we 
also look at the one-step error, or the local error 

where zn satisfies 
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This is the error obtained when using the method for one step, provided 
all information from previous steps is exact. For Euler's method we 
have 

1 
= -h2?(t), for tn < c < tn+1 (11.38) 

2 

(In this case we have, for simplicity, looked at the scalar case.) 
The local error is thus proportional to h2. It can be shown that 

the global error will be proportional to h. (Intuitively, we can reason 
as follows: the number of steps will be proportional to h-' SO that 
the local error is multiplied by h-'.) If the local error is of the form 
O(hk+'), k is usually called the order of accuracy. [Here we read 0 
as "large ordo." It denotes a function that is of the same order of 
magnitude as its argument when the argument tends to zero. O(x)/x 
is thus limited when X tends to zero.] The global error is then O(hk) .  

However, accuracy is not the only aspect that is important. In 
many simulations, stability is an essential qualitative property, which 
is studied. It can therefore be valuable to investigate the relationship 
between the stability of the numerical method and that of the under- 
lying differential equation. To do this, we consider the simple scalar 
test equation 

X = Xx, X complex number 
x(0) = 1 

(We can envision that we start with a system of differential equations 

and diagonalize A. Each component of the equation will then be of the 
preceding form. We note especially that it is natural to allow complex 
values of X.) 

If we use Euler's method we have 

The solution to this difference equation is 
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Figure 11.14: Values of Xh that give a stable difference equation for 
Euler's method (stability inside the circle). 

We see that 

and 

The stability area for the difference equation is thus a disk with radius 
1 and center at -1 (see Figure 11.14). On the other hand, X -+ 0 
for the differential equation if Re[X] < 0 and 1x1 -+ oo if Re[X] > 0. 
The fact that the region of stability of a differential equation does not 
necessarily coincide with the one valid for the numerical algorithm is 
something to remember when trying to determine the stability of a 
dynamic system by simulation. In this case we see, however, that for 
Re[X] < 0, hX will be in the region of stability if h is small enough. If 
X -+ 0, then also X, -+ 0 if the step-length is small enough. 

As we mentioned earlier, there are more effective methods than 
Euler's method. We will describe some of them here. 
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The Runge-Kutta Methods 

Again consider (11.35), which can also be written in integral form: 

If we approximate the value of the integral with the length of the 
interval times the value of the integrand in the center, we have 

The problem is that x(tn + 5) is unknown. It can, however, be a p  
proximated with Euler 'S method: 

If we combine equations (11.41) and (11.42), we can write 

This is a simple example of an algorithm of the Runge-Kutta type. If 
we make a series expansion, we see, after some computations, that the 
local error is 

~ ( t n + l )  xn+1 = 0(h3) 

That is, the method is an order of magnitude more accurate than 
Euler's method. 

In general, a Runge-Kutta method is described by the equations 
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The number s and the coefficients G, b;, and a;j are chosen so that the 
method has the desired order of accuracy p, that is, such that 

Depending on whether we want to make the calculation simple, to 
minimize the error term or some other criterion, we will get differ- 
ent values of the coefficients. There is thus a family of Runge-Kutta 
methods. 

A classic method sets s = p = 4 and the coefficients are 

(The nonlisted coefficients have the value 0.) 

Adams's Methods 

The Adams's methods form a family of multistep methods that can 
be written in the form 

The coefficients Pj are chosen so that the order of accuracy is as high as 
possible. If PO = 0 is chosen, the method will be explicit. This variant 
is often called Adams-Bashforth, while the implicit form (po # 0) is 
called Adams-Moulton. The simplest explicit forms are 

while the implicit ones are given by 
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l 3  5 

Figure 11.15: Stability regions for Adams-Bashforth for different k; 
k = 1: solid line, k = 2: dashed line, k = 3: dotted line, k = 4: 
dash-dotted line (stable inside the contours). 

It can also be shown that for the explicit methods the order of accuracy 
is equal to k. For the implicit methods it is of order k + 1. 

We see that for the implicit variant we have to solve the equation 

with respect to X,. This can be done using an iterative procedure, 
where a point is generated from the explicit Adams-Bashforth method 
as an initial guess. What is the reason for using the more complicated 
implicit equations? One reason is shown in Figures 11.15 and 11.16. 
The implicit methods have, as we see, considerably larger stability 
areas t.han the explicit methods with the same order of accuracy. We 
also see that an increased order of accuracy might result in a smaller 
stability region. 

Variable Step Length 

It is often inefficient to use a constant step length when solving dif- 
ferential equations. A typical solution might contain segments with 
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Figure 11.16: Area of stability for Adams-Moulton for different k; k 
= 2: solid line, k = 3: dashed line (stable inside contours). 

rapid changes, where small steps are required, and segments where 
slow changes make large steps possible. Methods for automatic step 
adjustment are often based on an estimate of the local error. This can 
be done in the following way, for example. Assume that we have an 
algorithm in which the local error has the form 

The coefficient C depends on the solution and is therefore normally 
unknown. If the algorithm takes two steps of length h we have 

since the errors in two steps are added (approximately). Let 5 denote 
the value computed by the algorithm when taking a step of length 2h 
from t, to t n + 2 .  Then we get 

~ ( t , + ~ )  - 5 = ~ ( 2 h ) ~ "  + o ( ~ P + ~ )  (11.44) 

By subtracting (11.43) from (11.44), we get 



326 CHAPTER 1 1. SIMULATION 

If this is used to eliminate C in (11.43), the result will be 

If we assume that h is small enough for the ~ ( h p + ~ )  term to be neg- 
ligible, then the right side only contains known numbers, and we thus 
have an estimate of the error. 

This estimate can be used in different ways, but the general idea is 
the following. The algorithm has a tolerance level for the local error 
(for example, determined by the user). If the error estimate exceeds 
the tolerance, the step length h is decreased. If it is far below the 
tolerance, the step length is increased. Ideally, a given accuracy is 
obtained wit h a minimum amount of computational work. 

Stiff Differential Equations 

Stiff differential equations are characterized by the fact that their so- 
lutions contain both fast and slow components and that the difference 
between their time constants is large. An example is the differential 
equation 

which has the solution 

If we want to simulate this equation, we have to start with a very 
short step length in order to follow the fast term e-loooot. This term 
is, however, soon close to zero, and the solution is only characterized 
by the term cwt. Since it is much slower, we would now like to increase 
the step length. But then we have to take stability into account. The 
product -10,000. h has to be within the stability region, which means 
that h has to be small if the stability region looks like Figures 11.14, 
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11.15, and 11.16. One way to avoid the stability problem would be to 
use methods that are always stable if Re[Xh] < 0. Then it is possible 
to use an unlimited step length without instabilities if the differential 
equation itself is stable. Unfortunately, it is difficult to combine such 
a stability region with the demand for high accuracy. Methods for 
stiff differential equations often make a compromise such that almost 
the whole left half-plane is included in the stability region, while at 
the same time the accuracy order will be reasonably high. We saw 
earlier that implicit methods often have a wider stability area than 
the explicit ones. Methods for stiff differential equations are therefore 
implicit in general, and an equation system thus has to be solved at 
each step. 

Comments about Choice of Methods 

Several investigations of the efficiency of numerical algorithms for dif- 
ferential equations have been done. They indicate that Runge-Kutta 
methods are most effective when the complexity is relatively low, while 
Adams's methods are preferable at high complexities. By complexity, 
we mean the computational work in evaluating the right side of the 
differential equation. It also seems that methods for stiff problems are 
usually ineffective for nonstiff problems. These methods should thus 
be reserved for the problems where they really are needed. 

11.7 Simulators 

So far we have viewed the simulation only as solving differential equa- 
tions. The solution can then be presented in different ways, for exam- 
ple, as curves on paper or on a screen. The presentation can, however, 
be taken much further. If, for example, an industrial robot is simu- 
lated, a three-dimensional picture can be shown on the screen showing 
the movements of the robot in three dimensions. In a car simulator 
a test person is placed in the driver seat, like the one in a regular 
car. The maneuvering tools like the steering wheel, accelerator, gear 
shift, and so on are tied to a sensor whose values are transferred to 
a computer. Mathematical models of a car are programmed into the 
computer, and this model is simulated in real time. With the guidance 
of the simulation results, the speedometer and other instruments are 
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controlled so that they show the same values as in a real car under 
corresponding conditions. The windshield is replaced by some kind of 
display, which shows how the road looks as a result of different ma- 
neuvers. In more advanced simulators, the whole driver's seat is put 
in motion so that the test person experiences the centrifugal force in 
curves, and so on. 

If the simulation is combined with enough powerful presentation 
tools, we talk of a simulator. Examples of this are airplane simula- 
tors, car simulators, nuclear power plant simulators, process control 
simulators and so on. 

Different Purposes of Simulators 

There are a number of different uses for simulators. 

Means of Assistance for the Designer 

By simulating the dynamic course of events, a designer can find out 
what demands are put on different components. Many industrial pro- 
cesses have traditionally been designed from the demands valid for 
operation in a stationary state. Experiences show, however, that it is 
necessary to account also for transient phenomena. It can therefore 
become necessary to make extensive simulations to test all the differ- 
ent dynamic behaviors that can occur, both in normal operation and 
under exceptional conditions. 

Operating Procedures 

Simulations can also form the basis for certain operating procedures. 
As an example, different ways of starting an industrial process after 
a stop can be simulated. It is then possible to see the influence of 
different sequences and actions. The simulations can then be used 
when instructions for operators are drawn up. 

Instruction 

Simulators can be valuable for instruction. People learning how an 
industrial process works can vary different physical quantities and ob- 
serve how the process behaves. Aside from simulations often being 
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cheaper, there are a number of advantages working with a simulation 
instead of the real process. All internal variables (which are repre- 
sented in a simulation) can be illustrated. Some of these can be hard 
or impossible to measure in the physical process. It can also be diffi- 
cult to illustrate certain events in reality, because the process then has 
to work under conditions that are uneconomical or dangerous. 

Training 

In training the emphasis is shifted from giving understanding of prin- 
ciples to showing, often in detail, what really happens. The classical 
example is training in airplane simulators. Here we want to show how 
the airplane behaves as an effect of different rudder commands, but 
also what all the instruments will show. Another example is training 
simulators for nuclear power plants or complicated processes in steel 
factories, refineries, and the paper industry. We then want to show 
how all instruments, screens, monitors, and so on, behave during dif- 
ferent situations. An advantage of simulators is that it is possible to 
train for an operator's handling of abnormal situations, pure emergen- 
cies, and accidents. These situations are of course difficult to train for 
otherwise. Another advantage is that the training of process operators 
can start before the process is completed. The start-up procedure will 
then often be smoother since the staff already has a certain amount of 
experience. 

Consequences of Decisions 

All the earlier applications imply off-line simulation. If it is possible 
to simulate faster than the natural time scale, then the simulation can 
be used to help the operator on-line when controlling the real process. 
The operator can then "ask" the simulator, "What happens if I open 
this valve?" "How long will it take before the temperature rises if the 
fan is turned off?" and so on. Decisions about suitable actions can be 
taken with the guidance of the simulations. 

Types of Simulators 

Since simulation is used for so many different purposes, different types 
of simulators with different demands on hardware and software are 
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Full-scale Simulators 

In full-scale simulators we try, as far as possible, to imitate the real 
system seen from the operator's point of view. An airplane simulator, 
for example, is often an exact copy of the cockpit, with the same 
controls and instruments as in the real airplane. Pictures can, for 
example, be presented on a screen, which depict what the pilot sees. 
The cockpit can be turned and moved in different directions in order 
to simulate accelerations the pilot is exposed to in reality. 

A complete control room, with the same type of commercial in- 
struments and regulators as in a real process, can sometimes be built 
in industrial full-scale simulators. The construction shown in Figure 
11.17 is then in principle obtained. 

Completely computerized control systems are now used in many 
industries. For such systems a simulator can be obtained by running 
a simulation program through the system. A computer-based control 
system, used in a heating plant, is shown in Figure 11.18. The simu- 
lator is obtained by running the system in the configuration shown in 
Figure 11.19. The real processes are replaced by simulation programs, 
but the part of the system the operator sees at the console is the same. 

From what we have said it is evident that a full-scale simulator is 
used mainly in the training of operators and similar tasks. 
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Function and Compact Simulators 

If the main interest with a simulation is to illustrate a principle, for 
example, for instruction purposes, it is often unnecessary to build a 
full-scale model. Simpler instrumentation or the computer's built- 
in units, for example the screens, can be satisfactory. We may, on 
the other hand, want to present variables and relationships in the 
simulation that are invisible in the real process (and in general also in 
the full-scale simulator). 

Hardware and Software Demands 

The demand on full-scale simulators that everything the operator sees 
and comes in contact with has to look like real life puts high demands 
on the hardware. In cases where advanced visual presentation is used, 
advanced software and perhaps special processors are also needed. 

Simulation for construction support in general sets no such de- 
mands. Instead, high accuracy in the simulation model is often needed, 
which can lead to demands of large computational capacity in the com- 
puter. 
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When simulating for instructional purposes, we can in certain cases 
manage with lower accuracy in the model if the main interest is in 
showing the principal behavior of a process. 

The demand for accuracy in the simulation part of a full-scale sim- 
ulator is mainly that the operator has to "feel at home." This can lead 
to high accuracy demands on certain variables, while for others it may 
be enough that the qualitative behavior be correct. 

11.8 Summary 

In summary we see that modern computer and programming tools turn 
simulation into a relatively straightforward procedure compared to the 
modeling work. Difficulties can arise with models that are not in state- 
space form and that have very stiff systems. Complicated models can 
demand very large computer resources. In some cases the problem 
may need to be attended to on the modeling level, for example, by 
model reduction. 



Chapter 12 

Model Validation and 
Model Use 

A model is not useful until its validity has been tested and established. 
Using simulation results from an untested model complacently can 
be worse than to guess on the basis of common sense. The formal 
"scientific method" can give a false impression of authority. In this 
chapter we are going to discuss how to achieve confidence in models 
and how to remain soundly critical of them. 

12.1 Model Validat ion 

A model is never the true description of a system. We thus do not 
demand that a model be "exact," "true," or "correct." Models have 
instead been developed to help in solving certain problems. We call 
a model that is useful in this way valid with regard to the purpose in 
mind. 

We can as an example mention Ptolemy's model of the solar system 
from about 150 A.D. This model places the earth in the center and 
the sun, the moon, and the planets in complicated systems of circles 
and epicycles. See Figure 12.1. The purpose of the model was to be 
able to compute future planetary movements and solar eclipses. This 
could be done with impressive accuracy. Ptolemy's model of the solar 
system is thus valid with regard to its purpose, even though we view 
it as "incorrect." 
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Figure 12.1: Ptolemy's model of the planetary movements. The planet 
Q moves around P in a circle (dashed curve), while P moves around 
the dotted circle. This results in a movement according to the solid 
curve (an epicycle). 

Deciding if a certain model is valid is called model validation. The 
procedure implies that the steps in the model building have to be criti- 
cally scrutinized and that some parts of the model have to be dismissed 
or improved. Model validation is thus intimately tied to modeling. See 
Figure 12.2. Let us discuss the lower block in this figure. How is the 
validity of a certain model tested? Since the validity refers to  a cer- 
tain purpose for the model, the test is problem dependent. A common 
characteristic is, however, that the output from the model and system 
are compared when they are run with the same input. See Figure 12.3. 
The difference has to be small, and what is meant by "small" depends 
on both the purpose of the model and the disturbances that influence 
the output. We discussed this in Section 10.5. 

When the model has been compiled into a total system descrip 
tion, we also have the possibility of evaluating the influence of different 
model approximations and model parameters. The level of approxima- 
tion can then be changed in a subsystem, and we can test how much 
the output of the total model changes. We should thus work more with 
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the subsystem in question if the change is significant. Also, if a certain 
parameter value is found to seriously influence the model properties, 
further attempts have to be made to estimate the value carefully. This 
iterative procedure is described symbolically in Figure 12.2. 

12.2 Domain of Validity of the Model 

All models have a limited domain of validity. They might relate to 
the system's properties at a certain operating point or have certain 
accuracy limitations. It is always risky to use a model outside the 
area for which it has been validated. A model can, on the other hand, 
be validated only within the area that the system itself is allowed 
to work in. A model of a nuclear reactor cannot be validated for use 
during catastrophe conditions. The purpose of the model in such cases 
is often precisely to use it to test dangerous situations. 

We are thus sometimes forced to use a model outside its established 
area of validity. This places high demands on the model so that we 
can have intuitive confidence in it. We can thus speak of the model's 
credibility along with its validity. 

Building models that are not only valid but also credible is a prob- 
lem that lies close to the core of the philosophy of science, and we will 
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here refrain from further discussion. 
We can, however, point to the solar system. Ptolemy's as well 

as Kopernicus-Kepler-Newton's model have a high degree of validity. 
The latter is however more credible, since it has a broad area of va- 
lidity (from apples to planets), it contains few numeric parameters 
(the gravitational constant, the masses of the planets), compared with 
Ptolemy's many circular radii for each planet, and it has not been 
necessary to adjust it to be able to describe the movements of new 
planets (it has shown itself to be valid outside earlier established areas 
of validity). 

12.3 Remaining Critical of the Model 

Remember that a model is never true or correct. At its best it is valid 
and possibly credible. This means that we always must remain critical 
of the model. 

In particular one should think of the following fallacies: 

The Pygma2ion eflect:' "Don't fall in love with your model!". 
Even if a considerable amount of work has been done to develop 
the model, we have to remember that it is the system that is 
most important - not the model. 

The Procrustes efleck2. Forcing reality to fit the model is not 
possible (although sometimes tempting). We must always be 
ready to develop and modify a model to include new facts and 
observations. We cannot disregard phenomena that conflict with 
the model. Many important scientific discoveries have their basis 
in facts that conflict with accepted models. 

Be aware of the model's (lack of )  accuracy! It is necessary to 
keep in mind the degree of accuracy in the model and the level 

l~ygmal ion:  fairy tale king of Cyprus, famous sculptor, who fell in love with 
one of his works, a sculpture of a young maid, and asked the Gods to make it alive, 
which then happened. 

2~rocmstes:  in Greek mythology a robber at Eleusis, known for the bed (Pro- 
cruste's bed), where he tormented the travelers who fell into his hands; if the victim 
was too short, he stretched its limbs until it fit the bed, if the victim was to tall, 
he cut off its legs and head. 
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of approximation when the simulation results are interpreted. 
This is particularly valid when the model contains estimated 
parameters. Forrester's world model has, for example, been crit- 
icized because it has completely different qualitative properties 
when certain parameters vary within a reasonable interval (see 
Example 4.3). It is obviously hard to base decisions on such a 
model. 

12.4 Use of Several Models 

Since a model has a limited domain of validity, it is interesting to work 
with several models for the same system. There can be a sequence of 
models for different operating conditions, such as airplane models for 
different flight conditions (altitude and speed). It is also possible to 
have one model for fast responses and one for slow responses. 

Another possibility is to work with a hierarchy of models with dif- 
ferent levels of accuracy and complexity to solve different problems. 
Finally, it is important to have a flexible attitude toward the model 
concept and its possibilities. 
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Appendix A 

Linear Systems. 
Description and 
Properties 

A. l  Time Continuous Systems 

A linear system in state-space form is described by 

If X is an n vector, U an m vector and y a p vector, A, B, C, and D will 
be matrices of dimensions n X n, n X m, p X n and p X m, respectively. 
X is called the state, U the input, and y the output. n is called the the 
system order. Often D = 0. 

If U, y are scalars (m = p = l ) ,  B is then a column vector and C a 
row vector. 

The solution to (A.l) is given by 

where the matrix exponential is defined according to 
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If U and y have the Laplace transforms U(s) and Y(s) respectively, 
these will be related by 

where G is a p X m matrix called the transfer function. (Here the initial 
conditions are supposed to be zero.) The system (A.l) corresponds to 
a transfer function G(s) 

If U and y are scalars (p = m = l ) ,  G(s) is a rational function: 

The values of S for which G(s) = 0 are called zeros, while values where 
G(s) = co are called poles (these will be zeros to the denominator of 

G). 
Normally the poles to G are identical to the eigenvalues of the 

matrix A in (A.1). Some eigenvalues may, however, correspond to 
dynamics that cannot be excited or observed from input-output be- 
havior. Such eigenvalues are not included among the poles. 

Since differentiation in the time domain corresponds to multipli- 
cation by S of the Laplace transform, we can formally rewrite (A.4) 

If G is of the form (A.5), this will correspond to the linear, higher-order 
differential equation 

If (A.4) is transformed to the time domain we can also write 

where h is called the impulse response. G(s) and h(t) are related by 
G being the Laplace transform of h: 
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If the input to a system is chosen a .  U = sin wt and all its poles have 
strictly negative real parts, the output is given, when all transients 
have died out, by the expression 

~ ( t )  = IG(iw)( sin(wt + arg G(iw)) (A.ll) 

The function 
G(iw) 

which thus can be interpreted as  the system's response to the angular 
frequency W,  is the frequency function or frequency response. 

A.2 Time Discrete Models 

A time discrete linear model is given analogously to (A.l) by 

Here we assume that the signals are measured at equidistant times 
(0, T, 2T, . . .), separated by the sampling interval T. 

If u and y have the z transforms U(z) and Y(z), respectively, they 
will correspond to 

Y (z) = G(z)U(z) (A.13) 

where G is a p X m matrix called the (time discrete) transfer function. 
For (A.12), G(z) can be computed from 

If U and y are scalars (p = m = l), then G(z) is a rational function. 

The z values that satisfy G(z) = 0 are called zeros, while those for 
which G(z) = oo are called poles (these will be zeros to the denomina- 
tor in G). 

Normally, the poles of G are identical to the eigenvalues of the 
matrix A in (A.12). 
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The preceding equations can also be written in terms of the shift 
operator q ~ ,  with the properties 

Since the time shift corresponds to multiplication by z in the z trans- 
form, (A.13) can also be written as 

or with G according to (A.14), 

or, equivalently, 

The sampling interval (T) is often implicit, then we write q = q~ and 

If (A.13) is transformed to the time domain, we also have the r e p  
resent ation 

where g is the impulse response. G(z) and g(t) are related by G being 
a z transform of g: 

The function of W that we get when we replace z by eiwT in G is 
called the system's frequency function: 

It has the same interpretation as in the time continuous case: If the 
signal u(kT) = sinwkT is subject to a system, with all poles inside 
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the unit circle, the output is given, when all transients have died out, 
by the expression 

where 
4 = arg G ( e w T )  

A.3 Connections between Time Continuous 
and Time Discrete Models 

If the input U is piecewise constant according to 

then (A.l) corresponds to 

where the matrices F and G are given by 

(A. 24) 

We thus have an exact representation of the type (A.12). 
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Linearizat ion 

B.l Continuous Time Models 

Consider the system 

where 

X = 

urn YP 
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Assume that X = a is a, stationary solution to (B.l) corresponding to 
the constant input U = b. Then 

If the function f has continuous partial derivatives in a neighborhood 
of the point X = a,  U = b, we have for k = l , .  . . , n 

afk a f k  
+-(a, b)(u1 - bl) + - + -(a, b)(u, - b,) + rk(x - a, U - b) 

au1 sum 
where the remainder term 7-k is small. More precisely, 

where I . ( is some vector norm. With the notations 

where the partial derivatives have been evaluated at X = a and U = b, 
we can write 

f (x ,u)  = f ( a , b ) + A ( x - a ) + B ( u - b ) + r ( x - a , u -  b) 

= A(x - a) + B(u - b) + r ( x  - a , u  - b). 

With the notation 
Z = X - a ,  v = u - b  

(B.la) can be written as 

In an analogous way, (B.lb) can be written as 

W = Cz + DV + i(z,  v), ?(z, v) = o(lz(+ (v[) (B.4) 
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with W = y - h(a, b) and 

where the partial derivatives have been evaluated at X = a and U = b. 
If the remainder terms r and F are neglected, we have a linear model 
of the type (A. l ) .  

B.2 Discrete Time Models 

The system 

can be linearized around X = a,  U = b in an analogous manner to the 
time continuous case: 

where the matrices A, B, C ,  and D are given by 

with all partial derivatives evaluated at X = a,  U = b. The remainder 
terms r and F fulfil1 the same conditions as in the time continuous case 
if f and h are continuously differentiable functions. 
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Signal Spectra 

C.l  Time Continuous Deterministic Signal 
: with Finite Energy 

We have the signal 

w( t ) ,  -aJ < t < aJ 

with the property 
m 

We define the Fourier transform 

and the inverse Fourier transform 

The spectrum of w ( t )  is defined as 

Parseval's equation gives 
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C.2 Sampled Deterministic Signals with Fi- 
nite Energy 

We have a signal sampled with the sampling frequency T: 

with the property 
W 

C Iw(kT)l < 00 
k=-W 

We define the discrete Fourier transform 

and the inverse transform 

The spectrum is defined as 

@iT'(w) = I W ( ~ ) ( W ) ( ~  (C. 10) 

Parseval's equation gives 

C .3 Connections between the Continuous and 
the Sampled Signal 

The following links exist between W(w) and w ( ~ ) ( w )  (Poisson's sum- 
mation formula) : 
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( W, = 2.rrlT). The equation is obtained from (C.3): 

where WN is the Nyquist frequency (WN = ws/2). 

C.4 Signals with Infinite Energy 

If (C.l) does not hold, we define a truncated signal 

This signal has finite energy and its spectrum Q,, (W) is defined as in 
Section C.1. The power spectrum for the original signal is defined as 

1 
@,(W) = lim -Q,, (W) 

S+w S 

Through normalization with the length of the time interval the unit 
for @,(W) will in this case be "power" per frequency. 

Remark: For many signals w(t) the limit (C.14) does not exist for 
each W. The limit then has to be interpreted in a "weak" sense, that 
is, @,(W) is a function such that 

for any "nice" function f (J). Consider, for example, f (F) as an ap- 
proximation of Dirac's delta function. The delta function itself would 
give (C.14) from (C.15). 

For the sampled signal the corresponding operations can be carried 
out. If w(kT) = 0, k 5 0 we have 
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where S = N - T .  The comment about weak convergence is valid also 
here. 

C.5 Stochastic Processes 

Consider a stationary process {w(kT)) with the sampling interval T, 
with mean O and the covariance function 

(E denotes the expected value). Its spectrum (spectral density) is 
defined as 

W 

@,(W) = T & , ( k ~ ) e - ~ " ~ ~  (C.18) 
k=-W 

If the term "spectrum" for (C.18) is going to  be reasonable, the @,(W) 

has of course to describe the "typical frequency contents" in realiza- 
tions of {w(t)). That this is the case we can see from the following. 
Define 

N 

Then 
l l 
- lim E- (  WN (W) 1 2 =  @ul(w) 
T N+W N 

with @,(W) defined in (C.18). Compare to (C.16)! This result follows 
from the following calculations: 
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When N -t oo, the right side converges to (C.18) under the condition 
that 

m 

If we compare to ((2.16) we find that the spectrum (C.18) for a 
stochastic process is the expected value of the effect spectrum for real- 
izations of {w(t)). @,(W) thus describes the average frequency contents 
of {w(t)) and has then the same physical interpretation as the spectra 
we discussed earlier. The corresponding is true for time continuous 
stochastic processes. 

Parseval's equation takes on the following expression for stochastic 
processes: 

Cross Spectra 

The cross spectrum of two stationary processes with zero mean value 
and sampling interval T is defined as 

where 
(kT) = Ey(t + kT)u(t) (C. 23) 

For time continuous processes the definition is analogous. As in 
(C.20) we can show that 

l l 
@,,(W) = - lim E-YN (w)UN(w) 

T N+oo N 
(C. 24) 

where YN(w) and UN (W) are defined analogously to (C.19). 
For deterministic signals we can also work with cross spectra de- 

fined as Y(w)U(w) or (weak) limits of such expressions normalized, 
analogously to (C.4)' (C. 14) and correspondingly for sampled signals. 

A good feeling for what a cross spectrum says about the relations 
between the two signals is obtained from the following: If y and U are 
subject to 

Y (t) = G(QT)u(~) (C.25a) 
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then 
Qyu ( W )  = ~ ( e ~ ~ ~ ) Q ~ ( w )  (C.25b) 

This is obtained from (C.24) and (A.13). 
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effort storage, 125 
effort variable, 120 
eigenvalue, 342 
empirical transfer function esti- 

mate, 207 
energy storage, 109, 111 
equilibrium, 47 
estimate, 206 
Euler's method, 44, 319 
experimentation, 13 
explicit method, 319 
external signal, 37 

F 
final prediction error, 280 
flow, 115, 123 
flow resistance, 117 

flow source, 126 
flow storage, 124 
flow systems, 114 
flow variable, 120 
fluid capacitance, 115 
force, 110 
Forrester's world model, 104 
Fourier transform, 351 
FPE, 280 
frequency analysis, 200 
frequency function, 343, 344 
frequency resolution, 212 
frequency response, 343 
friction, 11 1 

G 
Gauss-Newton method, 254 
global error, 319 
globally asymptotically stable, 

48 
gyrator, 135 

H 
hardware, 304 
head box, 85 
heat conduction, 102 
heat flow rate, 120 

I 
identifiability, 251 
identifiable, 251 
identification, 17 
ill-posed problems, 152 
implicit method, 319 
impulse response, 342, 344 
incompressible, 114 
inductance, 108 
inertance, 115 
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input, 38 
integral, 173 
internal variable, 39 

J 
Jacobian, 51 

K 
k-step method, 319 
Kirchhoff 'S laws, 109 

L 
Laplace transform, 342 
linear system, 46 
linear systems, 341 
linearization, 347 
local error, 319 
lumped, 21 

M 
MA process, 63 
mass, 110 
mathematical expectation, 64 
mathematical model, 15 
maximum likelihood, 237 
MDL, 281 
mechanical rotation, 112 
mechanical translation, 110 
mechanics-hydraulics, 139 
mental model, 14 
merging, 131 
ML estimation, 237 
model, 14 
model order, 44 
model validation, 334 
modulated, 157 
moment of inertia, 113 

N 
Newton's force law, 110 
nonparametric identification meth- 

ods, 260 
Nyquist frequency, 60, 76, 353 

0 
OE model, 232 
order of accuracy, 320 
output, 37 
output-error model, 232 
overfit, 280 

P 
p junction, 130 
paper machine, 85 
parallel junction, 130 
parameter, 37 
parametric estimation methods, 

260 
Parseval's equation, 351, 355 
parsimonious, 274 
partial differential equations, 101 
pendulum, 160, 173 
periodogram, 210 
phases of modeling, 83 
physical model, 15 
physical model building, 16 

Poisson's summation equation, 
352 

Poisson's summation formula, 
76 

pole, 342, 343 
posttreatment of data, 269 
power spectrum, 66, 353 
pressure, 115 
Procrustes, 337 
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R 
realization, 63 
regression vector, 236 
regressors, 236 
residuals, 284 
resistance, 108, 125 
resistive, 125 
Rissanen's minimal description 

length, 281 

S 
S junction, 127 
sampled model, 20 
sampled signal, 71 
sampling frequency, 60 
sampling interval, 60, 343 
sampling theorem, 77, 268 
scaling, 298 
semiphysical modeling, 277 
separation of time constants, 99 
series junction, 127 
shift operator, 344 
signal, 36 
signal to noise ratio, 196 
simplification, 97, 131 
simulation, 15, 295 
simulation models, 36 
simulator, 328 
singular point, 47 
SITB, 261, 291 
source, 126 
spectral factorization, 69 
spectrum, 65, 351 
spring constant, 111 
state, 43, 150, 174, 178 
state equations, 178 
state-space model, 95 
static gain, 50 

static model, 19 
static relationship, 49, 92 
static system, 40 
stationary point, 47 
stationary solution, 47, 348 
stiff differential equation, 100 
stochastic model, 19 
stochastic process, 63, 354 
structuring, 86 
system, 13 

tank system, 27 
temperature, 120 
thermal capacity, 120 
thermal systems, 119 
time constant, 99 
time continuous model, 20 
time invariant system, 46 
time scaling, 298 
torque, 112 
torsional stiffness, 113 
trajectory, 46 
transfer function, 59, 342, 343 
transformer, 109, 135 

U 
uncorrelated, 67 

v 
validate, 17 
validation, 260 
validity, 336 
variable, 36 
variance errors, 245 
velocity, 110 
verbal model, 14, 36 
viscous friction, 11 1 
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voltage, 107 

W 
Welsh's method, 213 
white noise, 62 
whitening filter, 196 

z 
zero, 342, 343 


