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Preface

This textbook was developed from material presented in a year-long, grad-
uate-level course in nonlinear dynamics that I taught at Caltech over the
past five years. It contains the basic techniques and results I believe to be
necessary for graduate students to begin research in the field. The ideal
prerequisite for a nonlinear dynamics course would be a thorough knowl-
edge of Arnold’s Ordinary Differential Equations (Arnold [1973]) or Hirsch
and Smale’s Differential Equations, Dynamical Systems, and Linear Alge-
bra {(Hirsch and Smale [1974]). Because only in the rarest instances have
I found this prerequisite to be met, I have rapidly reviewed the necessary
background material in Section 1.1 of this book.

My main goal in the classroom and in the pages of this book is to pro-
vide students with a large arsenal of techniques to increase their chances
of success when faced with a nonlinear problem. Inevitably, however, the
methods and techniques one has learned often do not quite work for the
problems one needs to solve. Consequently, I also try to provide students
with a sufficiently strong theoretical base so that they will have the tools
and overview they need to develop their own methods and techniques. As
a result, this book is long on detail and contains more material than can
be covered in a year’s worth of lectures. However, because the book does
contain detailed treatment of its subject, it is possible to cover all the top-
ics presented in an academic year and to merely make reading assignments
in topics for which there is no time to lecture in depth.

I would like to make a few remarks concerning content. While in Chapter
3 I spend a fair amount of time on the concept of the codimension of a bi-
furcation, it is not something that a student first learning the subject needs
to worry about in detail. For example, I typically give a one-hour lecture
on the subject and make a reading assignment. This is not to say that I be-
lieve the idea to be an unimportant one but, rather, that a certain amount
of “mathematical maturity” concerning the subject of bifurcation theory
is needed before it can be really appreciated. I included such a detailed
treatment because it is difficult to find a complete discussion of the sub-
ject in the context of dynamics. In this regard I have followed the seminal
paper of Arnold [1972], from which I learned the subject. All of the above
comments notwithstanding, when reading this section the reader should
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ask him- or herself just how much of it is merely formalized mathematical
€ommon sense.

Chapter 4 is concerned with global aspects of dynamics. It has been my
experience that most students have had virtually no previous exposure to
such ideas. I have thus limited most of the geometrical constructions to two
dimensions for maps and three dimensions for vector fields. In this way I
hope the student can more easily develop his or her geometrical intuition.
All of the results are nonetheless valid in higher dimensions; the interested
reader should refer to Global Bifurcations and Chaos—Analytical Methods
[Wiggins 1988] for a discussion at this level.

Finally, although nonlinear dynamics and chaos have become something
of a fad over the past decade, it is still true that an understanding of
nonlinear phenomena requires a solid mathematical background and a lot
of hard work. Hopefully, those who seek the latter will find this book useful.

At this time I would like to acknowledge all of the help and encour-
agement I have received in the development of this book. The reader will
notice the influence of Philip Holmes throughout the book. Phil was my
first teacher in this subject and showed me the beauty of geometry and dy-
namics. He has influenced my approach to the study of dynamics in many
ways—with the exception of my propensity for long and detailed discus-
sions such as those appearing throughout this book, and for which he should
not be blamed. Steve Shaw read the entire book, caught many mistakes,
and made many useful suggestions. Pat Sethna also offered much good
advice concerning content and style. He patiently listened to me present
much of the material in the book and often provided me with new insights.
Jerry Marsden and Marty Golubitsky also read substantial portions of the
manuscript, caught a number of errors, and provided invaluable advice.

The artwork in the book was done by Peggy Firth. Working with Peggy
was a real pleasure. She was able to take my roughest sketches and vaguest
descriptions and transform them into beautiful and instructive illustrations.
Her willingness to cheerfully endure seemingly endless revisions, often on a
moment’s notice, contributed immensely to the book. I also wish to thank
my wife Meredith for copyediting the book. Despite our careful planning,
the birth of this book coincided with the birth of our daughter Saman-
tha, and Meredith was forced to juggle copyediting and colic amidst the
demands of an often unbearable author. For this sacrifice I will always be
grateful. Finally, [ wish to thank the National Science Foundation and the
Oftice of Naval Research for the support of my research program.
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Introduction

In this book we will study equations of the following form

T = f(z,t;p) (0.1)
and

T — g(z; 1), (0.2)
withz € U C R", t € R', and y € V C IR? where U and V are open sets in

RR"™ and IR?, respectively. The overdot in (0.1) means “%,” and we view the

variables u as parameters. In the study of dynamical systems the indepen-
dent variable is often referred to as “time.” We will us this terminology
from time to time also. We refer to (0.1) as a vector field or ordinary differ-
ential equation and to (0.2) as a map or difference equation. Both will be
termed dynamical systems. Before discussing what we might want to know
about (0.1) and (0.2), we need to establish a bit of terminology.

By a solution of (0.1) we mean a map, z, from some interval I ¢ R into
R", which we represent as follows

z: I - R",
t— z(t),
such that z(¢) satisfies (0.1), i.e.,

&(t) = f(2(t),t; ).

The map z has the geometrical interpretation of a curve in R™, and (0.1)
gives the tangent vector at each point of the curve, hence the reason for
referring to (0.1) as a vector field. We will refer to the space of dependent
variables of (0.1) (i.e., R") as the phase space of (0.1), and, abstractly,
our goal will be to understand the geometry of solution curves in phase
space. We remark that in many applications the structure of the phase
Space may be more general than R"; frequent examples are cylindrical,
spherical, or toroidal phase spaces. We will discuss these situations as they
are encountered; for now we incur no loss of generality if we take the phase
space of our maps and vector fields to be open sets in IR™.

It will often prove useful to build a little more information into our
notation for solutions, which we describe below.
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Dependence on Initial Conditions

It may be useful to distinguish a solution curve by a particular point in
phase space that it passes through at a specific time, i.e., for a solution z(t)
we have z(tp) = zo. We refer to this as specifying an initial condition. This
is often included in the expression for a solution by writing z(t, tg, o). In
some situations explicitly displaying the initial condition may be unimpor-
tant, in which case we will denote the solution merely as z(t). In still other
situations the initial time may be always understood to be a specific value,
say to = 0; in this case we would denote the solution as z(t, zo).

Dependence on Parameters

Similarly, it may be useful to explicitly display the parametric dependence
of solutions. In this case we would write z(t,to, zo; 1), or, if we weren’t
interested in the initial condition, z(¢; ). If parameters play no role in our
arguments we will often omit any specific paramter dependence from the
notation.

Some Terminology

1. There are several different terms which are somewhat synonymous
with the term solution of (0.1). x(t, ts, zo) may also be referred to as
the trajectory or phase curve through the point xq at ¢ = ¢y.

2. The graph of x(t, tp, zo) over t is referred to as an integral curve. More
precisely, graph z(t, to, o) = { (z,t) € R™ x R' | £ = 2(t, to, ¢), t €
I} where I is the time interval of existence.

3. Let zg be a point in the phase space of (0.1). By the orbit through zg,
denoted O(z(), we mean the set of points in phase space that lie on a
trajectory passing through zg. More precisely, for zo € U C R", the
orbit through z¢ is given by O(zg) = {z € R" | z = (i, t9,20), t €
I'}. Note that for any T € I, it follows that O(z(T, ¢4, z0)) = O(zo)-

Let us now give an example that illustrates the difference between trajec-
tories, integral curves, and orbits.

ExaMPLE 0.1 Consider the equation

U=,

b= —u, (u,v) € R! x R™. (0.3)

The solution passing through the point (u,v) = (1,0) at t = 0 is given by
(u(t),v(t)) = (cost,—sint). The integral curve passing through (u,v) =
(1,0) at t = 0 is given by {(u,v,) € R' x R' x R' | (u(®),v(t)) =
(cost,—sint), for all ¢ € R}. The orbit passing through (u,v) = (1,0) is
given by the circle u?+v? = 1. Figure 0.1 gives a geometrical interpretation
of these different definitions for this example.
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v (a)
yUUUUU ‘
(b)

(c)
FIGURE 0.1. a) Solution through (1,0) at ¢t = 0. b) Integral curve through (1,0)
at t = 0. ¢) Orbit of (1,0).

The astute reader will note that we have apparently gotten a bit ahead
of ourselves in that we have tacitly assumed that (0.1) has solutions. Of
course, this is by no means obvious, and apparently some conditions must
be placed on f(z,t; 1) (as of yet, none have been stated) in order for solu-
tions to exist. Moreover, additional properties of solutions, such as unique-
ness and differentiability with respect to initial conditions and parameters,
are necessary in applications. When we explicitly consider these questions
in Section 1.1, we will see that these properties also are inherited from
conditions on f(z,¢; u). For now, we will merely state without proof that if
f(z,t;4) is C" (r > 1) in x, ¢, and p then solutions through any zo € R"
exist and are unique on some time interval. Moreover, the solutions them-
selves are C" functions of t, tg, zo, and p. (Note: recall that a function is
said to be C7 if it is r times differentiable and each derivative is continuous;
if r = 0 then the function is said to be continuous.)

At this stage we have said nothing about maps, i.e., Equation (0.2).
In a broad sense, we will study two types of maps depending on g(z; pt);
noninvertible maps if g(z; 1) as a function of z for fixed i has no inverse,
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and invertible maps if g(x; 1) has an inverse. The map will be referred to
as a C" diffeomorphism if g{x; p) is invertible, with the inverse denoted
9~ Y(z; p), and both g(z; u) and g~!(z; 1) are C" maps (recall that a map
is invertible if it is one-to-one and onto). Our goal will be to study the
orbits of (0.2), i.e., the bi-infinite (if g is invertible) sequences of points

{‘ o 7g—n(m0; /*‘l’)a e ag_l(l‘O; Au‘)7$0,g($0;u)a e gn(mm /J’)7 o ’}7 (04)
where z¢ € U and g™ is defined inductively by

g (xos ) = g(9" Hzos 1)), n>2, (0.5a)

g M@y p) =g (g (o3 ), m>2, (0.5b)

or the infinite (if g is noninvertible) sequences of points

{zo, g(xo; 1), -+, 9" (o5 ), -}, (0.6)

where g € U and g" is defined inductively by (0.5a). (Note: it should
be clear that we must assume g™ (zg;p), g~ " (zo;u) € U, n > 2, for
(0.4) to make sense and g"~!(zo; ) € U, n > 2, for (0.6) to make sense.)
Notice that questions of existence and uniqueness of orbits for maps are
obvious and that differentiability of orbits with respect to initial conditions
and parameters is a consequence of the applicability of the chain rule of
elementary calculus.

With these preliminaries out of the way, we can now turn to the main
business of this book.
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The Geometrical Point of
View of Dynamical Systems:
Background Material,
Poincaré Maps, and Examples

Qur main goal in the study of dynamical systems is simple. Given a spe-
cific dynamical system, give a complete characterization of the geometry of
the orbit structure. If the dynamical system depends on parameters, then
characterize the change in the orbit structure as the parameters are varied.

Unfortunately, it is not possible to realize this goal for every dynamical
system we study. However, in this book we will develop techniques and a
point of view which will allow us to make some progress on many problems
(more on some, less on others) and to point out where the gaps in our
knowledge lie. In order to do this, we will need to bring to bear a wide va-
riety of (seemingly) disparate mathematical techniques on a given problem.
Consequently, a fair amount of background material must be introduced.
In developing the necessary background material, we will simultaneously
focus on a specific dynamical system. In this context we will develop a
variety of ideas and techniques which will be used to obtain as much in-
formation on our specific dynamical system as possible. We feel that this
approach will also best illustrate our strategy for dealing with dynamical
systems in applications in that it will show how one takes a variety of ideas
and techniques and “puts them all together” in the analysis of a specific
dynamical system.

The dynamical system around which we will develop our background
material is the damped, forced Duffing oscillator which is given by

=1y,

y=1—2°— 6y + ycoswt,

where §, v, and w are real parameters and the phase space is the plane
R2. Physically, § can be regarded as dissipation, v as the amplitude of the
forcing, and w as the frequency; for this reason we will take 6,7, w > 0. The
damped, forced Duffing oscillator arises in a variety of applications, e.g., see
Guckenheimer and Holmes [1983] for specific applications and references.
Vector fields which depend explicitly on time are called nonautonomous,
and vector fields which are independent of time are called autonomous.
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We will see that in two dimensions there is a vast difference in the possible
dynamics of autonomous versus nonautonomous vector fields. In particular,
chaos is possible in the nonautonomous case but not the autonomous case.
For this reason we will begin by considering the unforced case.

1.1 Background Material from Dynamical
Systems Theory

In Section 1.1 we will develop much of the background material that we will
use throughout this book. We will organize much of this material around the
example of the unforced, damped Duffing oscillator. The unforced damped,
Dulffing oscillator is given by

=y,
> 0. .
i—n_ob sy 020 (1.1.1)
The easiest way to begin to understand the orbit structure of (1.1.1) is to
study the nature of its equilibria.

1.1A EQUILIBRIUM SOLUTIONS: LINEARIZED STABILITY

Consider a general autonomous vector field
T = f(x), z € R"™. (1.1.2)
An equilibrium solution of (1.1.2) is a point & € R™ such that
f(@) =0,

i.e., a solution which does not change in time. Other terms often substituted
for the term “equilibrium solution” are “fixed point,” “stationary point,”
“rest point,” “singularity,” “critical point,” or “steady state.” In this book
we will utilize the terms equilibrium point or fixed point exclusively.

Once we find any solution of (1.1.2) it is natural to try to determine if
the solution is stable.

Stability

Let #(t) be any solution of (1.1.2). Then, roughly speaking, Z(t) is stable if
solutions starting “close” to Z(t) at a given time remain close to Z(t} for all
later times. It is asymptotically stable if nearby solutions actually converge
to Z(t) as t — 0o. Let us formalize these ideas.

DEFINITION 1.1.1 (LIAPUNOV STABILITY) Z(t) is said to be stable (or
Liapunov stable) if, given ¢ > 0, there exists a § = 6(¢) > 0 such that,
for any other solution, y(t), of (1.1.2) satisfying |Z(¢tg) — y(t0}| < 6, then
|Z(t) — y(t)| < £ for t > tg, to € R.
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X x(t) y(t)

FIGURE 1.1.1. a) Liapunov stability. b) Asymptotic stability.

We remark that a solution which is not stable is said to be unstable.

DEFINITION 1.1.2 (ASYMPTOTIC STABILITY) Z(t) is said to be asymptoti-
cally stable if it is Liapunov stable and if there exists a constant & > 0 such
that, if |Z(t9) — y(fo)| < b, then llim 1Z(t) — y(t)| = 0.

—0o0

See Figure 1.1.1 for a geometrical interpretation of these two definitions.
Notice that these two definitions imply that we have information on the
infinite time existence of solutions. This is obvious for equilibrium solutions
but is not necessarily so for nearby solutions. Also, these definitions are for
autonomous systems, since in the nonautonomous case it may be that §
and b depend explicitly on £y (more about this later).

Definitions 1.1.1 and 1.1.2 are mathematically very tidy; however, they
do not provide us with a method for determining whether or not a given
solution is stable. We now turn our attention to this question.

Linearization

In order to determine the stability of Z(¢) we must understand the nature
of solutions near Z(t). Let
r=Z(t)+y. (1.1.3)
Substituting (1.1.3) into (1.1.2) and Taylor expanding about Z(t) gives
&= () +§=f(E0) + DIEO)+OWP), (114

where Df is the derivative of f and |- | denotes a norm on IR™ (note: in
order to obtain (1.1.4) f must be at least twice differentiable). Using the
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fact that Z(t) = f(z(?)), (1.1.4) becomes

g =Df(z(t)y + O(ly). (1.1.5)

Equation (1.1.5) describes the evolution of orbits near Z(t). For stability
questions we are concerned with the behavior of solutions arbitrarily close
to Z(t), so it seems reasonable that this question could be answered by
studying the associated linear system

y = Df(z(1))y. (1.1.6)
Therefore, the question of stability of Z(t) involves the following two steps:
1. Determine if the y = 0 solution of (1.1.6) is stable.

2. Show that stability (or instability) of the y = 0 solution of (1.1.6)
implies stability (or instability) of Z(t).

Step 1 may be equally as difficult as our original problem, since there are
no general methods for finding the solution of linear ordinary differential
equations with time-dependent coefficients. However, if Z(1) is an equilib-
rium solution, i.e., &(t) = Z, then Df(Z(¢)) = Df(Z) is a matrix with
constant entries, and the solution of (1.1.6) through the point yo € R” of
t = 0 can immediately be written as

y(t) = ePH @ty (1.1.7)

Thus, y(t) is asymptotically stable if all eigenvalues of D f(Z) have negative
real parts (cf. Exercise 1.1.22).
The answer to Step 2 can be obtained from the following theorem.

Theorem 1.1.1 Suppose all of the eigenvalues of Df(Z) have negative
real parts. Then the equilibrium solution x = T of the nonlinear vector field
(1.1.2) is asymptotically stable.

Proof: We will give the proof of this theorem in Section 1.1.B when we
discuss Liapunov functions. O

In Section 1.1B we will give an example in which an equilibrium solution
of a nonlinear vector field is stable in the linear approximation, but it is
actually unstable. Sometimes the term “linearly stable” is used to describe
a solution that is stable in the linear approximation. Thus, linearly stable
solutions may be nonlinearly unstable.

In the following sections the reader will see many results that have a
similar flavor to Theorem 1.1.1. Namely, if the eigenvalues of the associated
linear vector field have nonzero real parts, then the orbit structure near an
equilibrium solution of the nonlinear vector fleld is essentially the same as
that of the linear vector field. Such equilibrium solutions are given a special
name.
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DEFINITION 1.1.3 Let z = T be a fixed point of £ = f(z), 2 € R". Then
7 is called a hyperbolic fixed point if none of the eigenvalues of D f(z) have
zero real part.

Maps

Everything discussed thus far applies also for maps; we mention some of
the details explicitly.
Consider a C" (r > 1) map

z — g(z), z e R", (1.1.8)

and suppose that it has a fixed point at z = Z, i.e., # = g(Z). The associated
linear map is given by

y — Ay, y € R, (1.1.9)
where A = Dg(7).
Definitions of Stability for Maps

The definitions of stability and asymptotic stability for orbits of maps are
very similar to the definitions for vector fields. We leave it as an exercise
for the reader to formulate these definitions (cf. Exercise 1.1.8).

Stability of Fized Points of Linear Maps

Choose a point yo € R™. The orbit of ¢y under the linear map (1.1.9) is
given by the bi-infinite sequence (if the map is a C", r > 1, diffeomorphism)

{' te 7A_ny07 Ty A_ly()yy()v AyOv Tty Any()v' ) } (1110)

or the infinite sequence (if the map is C”, r > 1, but noninvertible)

{yo, Ayo,- -, A%yo, - -} (1.1.11)

From (1.1.10) and (1.1.11) it should be clear the fixed point y = 0 of the
linear map (1.1.9) is asymptotically stable if all of the eigenvalues of A have
moduli strictly less than one (cf. Exercise 1.1.24).

* Stability of Fized Points of Maps Via the Linear Approzimation

With the obvious modifications, Theorem 1.1.1 is valid for maps.
Before we apply these ideas to the unforced Duffing oscillator, let us first
give some useful terminology.

Terminology

A hyperbolic fixed point of a vector field (resp., map) is called a saddle if
some, but not all, of the eigenvalues of the associated linearization have real
parts greater than zero (resp., moduli greater than one) and the rest of the
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eigenvalues have real parts less than zero (resp., moduli less than one). If
all of the eigenvalues have negative real part (resp., moduli less than one),
then the hyperbolic fixed point is called a stable node or sink, and if all of
the eigenvalues have positive real parts (resp., moduli greater than one),
then the hyperbolic fixed point is called an unstable node or source. If the
eigenvalues are purely imaginary (resp., have modulus one) and nonzero,
the nonhyperbolic fixed point is called a center.
Let us now apply our results to the unforced Duffing oscillator.

Application to the Unforced Duffing Oscillator
We recall here Equation (1.1.1)

T =y,

>
y=x—z° - by, 620

It is easy to see that this equation has three fixed points given by
(z,y) = (0,0), (£1,0). (1.1.12)

The matrix associated with the linearized vector field is given by

(1 _03;,;2 _15) - (1.1.13)

Using (1.1.12) and (1.1.13) the eigenvalues A; and Ay associated with the
fixed point (0,0) are given by A2 = —6/2+ 3v/6% + 4, and the eigenvalues
associated with the fixed points (+1,0) are the same for each point and are
given by Aj 2 = —6/2 + 5v/62 — 8. Hence, for § > 0, (0,0) is unstable and
(£1,0) are asymptotically stable; for § = 0, (%1, 0) are stable in the linear
approximation.

1.18 LiaApPuNOV FUNCTIONS

The method of Liapunov can often be used to determine the stability of
fixed points when the information obtained from linearization is incon-
clusive (i.e., when the fixed point is nonhyperbolic). Liapunov theory is a
large area, and we will examine only an extremely small part of it; for more
information, see Lasalle and Lefschetz [1961].

The basic idea of the method is as follows (the method works in n-
dimensions and also infinite dimensions, but for the moment we will de-
scribe it pictorally in the plane). Suppose you have a vector field in the
plane with a fixed point Z, and you want to determine whether or not it is
stable. Roughly speaking, according to our previous definitions of stability
it would be sufficient to find a neighborhood U of Z for which orbits starting
in U remain in U for all positive times (for the moment we don’t distinguish
between stability and asymptotic stability). This condition would be satis-
fied if we could show that the vector field is either tangent to the boundary
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u

FIGURE 1.1.2. The vector field on the boundary of U.
vv

Vv

V = constant

'A%

FIGURE 1.1.3. Level set of V and VV denoted at various points on the boundary.

of U or pointing inward toward Z (see Figure 1.1.2). This situation should
remain true even as we shrink U down onto Z. Now, Liapunov’s method
gives us a way of making this precise; we will show this for vector fields in
the plane and then generalize our results to R".

Suppose we have the vector field

= f(l‘, y)» 2

J = g(z.9), (z,y) € R, (1.1.14)
which has a fixed point at (Z,7) (assume it is stable). We want to show
that in any neighborhood of (z, ) the above situation holds. Let V (i, y) be
a scalar-valued function on R?, i.e., V:R?> —» R! (and at least C!), with
V(z,7) = 0, and such that the locus of points satisfying V(z,y) = C =
constant form closed curves for different values of C encircling (Z, ) with
V(z,y) > 0 in a neighborhood of (z,y) (see Figure 1.1.3).
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FIGURE 1.1.4. Level sets of V, 0 < C; < Cp < (4.

Now recall that the gradient of V, VV, is a vector perpendicular to the
tangent vector along each curve V = C which points in the direction of
increasing V' (see Figure 1.1.4). So if the vector field were always to be either
tangent or pointing inward for each of these curves surrounding (Z, 7), we
would have

where the “dot” represents the usual vector scalar product. (This is simply
the derivative of V along orbits of (1.1.14).) We now state the general
theorem which makes these ideas precise.

Theorem 1.1.2 Consider the following vector field
z = f(x), z € R™. (1.1.15)

Let T be a fized point (1.1.15) and let V:U — R be a C' function defined
on some neighborhood U of T such that

V(@ =0and V(z) >0 if z # 7.
i) V(z) <0inU —~ {z).
Then & is stable. Moreover, if
iii) V(z) <0 in U ~ {2}
then T is asymptotically stable.

Proof: See Exercise 1.1.6. 0O

We refer to V as a Liapunov function. We remark that if U can be chosen
to be all of IR, then Z is said to be globally asymptotically stable if i) and
iii) hold.
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ExaMmPLE 1.1.1 Consider the following vector field

T =y,
b= ot ey (1.1.16)

It is easy to verify that (1.1.16) has a nonhyperbolic fixed point at (x,y) =
(0,0). Our goal is to determine if this fixed point is stable.
Let V(z,y) = (22 + y?)/2. Clearly V(0,0) = 0 and V(z,y) > 0 in any
neighborhood of (0,0). Then
= (z,y) - (y.e2’y — 2)
=zy+ EI2y2 — XY
and hence V = ez2y?. Then, by Theorem 1.1.2, (0,0) is globally stable for

€ < 0. Actually, with a little work one can show that (0,0) is globally
asymptotically stable for £ < 0.

Let us now use Liapunov theory to give an outline of the proof of Theorem
1.1.1. We begin by recalling the set-up of the problem.
Consider the vector field

z = f(x), z € R", (1.1.17)

and suppose that (1.1.17) has a fixed point at z = Z, i.e., f(z) = 0. We
translate the fixed point to the origin via the coordinate shift y = x — Z so
that (1.1.17) becomes

y=fly+z), yeR" (1.1.18)
Taylor expanding (1.1.18) about T gives
y=Df(2)y + R(y) (1.1.19)

where R(y) = O(|y/*).
Now let us introduce the coordinate rescaling

Y = eu, 0<e<l. (1.1.20)

Thus, taking e small implies making y small. Under (1.1.20) equation
(1.1.19) becomes

= Df(Z)u+ R(u,¢), (1.1.21)

where R(u,e) = R(eu)/e. It should be clear that R(u,0) = 0 since R(y) =
O(ly)?). We choose as a Liapunov function

V(u) = %|u|2.
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Therefore,

Vu) =VV(u)-u
= (u- Df(@)u) + (u- R(u,¢)). (1.1.22)

From elementary linear algebra the reader should recall that if all eigen-
values of D f(Z) have negative real part then there exists a basis such that

(u-Df(Z)u) <k|u|*’<0 (1.1.23)

for some real number k and all u (see Arnold [1973] or Hirsch and Smale
[1974] for a proof). Hence, by choosing ¢ sufficiently small, (1.1.22) is
strictly negative, which implies that the fixed point z = Z is asymptot-
ically stable. We leave it to the reader to argue that this result does not
depend on the particular basis for which (1.1.23) holds (cf. Section 2.2D).

1.1¢ INVARIANT MANIFOLDS: LINEAR AND NONLINEAR
SYSTEMS

We will see throughout this book that invariant manifolds, in particular
stable, unstable, and center manifolds, play a central role in the analysis of
dynamical systems. We will give a simultaneous discussion of these ideas
for both vector fields

= f(z), zeR"™ (1.1.24)

and maps
z — g(z), z € R". (1.1.25)

DEFINITION 1.1.4 Let S C R" be a set, then

a) (Continuous time) S is said to be wnwarant under the vector field
& = f(z) if for any 29 € S we have z(t,0,z9) € S for all t € R.

b) (Discrete time) S is said to be nwvariant under the map z — g(z) if
for any xo € S we have g™ (zo) € S for all n.

If we restrict ourselves to positive times (i.e., t > 0, n > 0) then we refer
to S as a positwvely invarant set and, for negative time, as a negatively
mvariant set.

We remark that if g is noninvertible, then only n > 0 makes sense (al-
though in some instances it may be useful to consider g~! which does have
a set theoretic meaning).

DEFINITION 1.1.5 An invariant set S C R" is said to be a C" (r > 1)
wwvariant manyfold if S has the structure of a C” differentiable manifold.
Similarly, a positively (resp., negatively) invariant set S C IR™ is said to be
a C" (r > 1) positwely (resp., negatwely) nvariant manifold if S has the
structure of a C” differentiable manifold.
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Evidently, we need to say what we mean by the term “C" differentiable
manifold.” However, this is the subject of a course in itself, so rather than
define the concept of a manifold in its full generality, we will describe only
that portion of the vast theory that we will need.

Roughly speaking, a manifold is a set which locally has the structure
of Euclidean space. In applications, manifolds are most often met as m-
dimensional surfaces embedded in R™. If the surface has no singular points,
i.e., the derivative of the function representing the surface has maximal
rank, then by the implicit function theorem it can locally be represented
as a graph. The surface is a C" manifold if the (local) graphs representing
it are C" (note: for a thorough treatment of this particular representation
of a manifold see Dubrovin, Fomenko, and Novikov [1985]).

Another example is even more basic. Let {s1,- -, s, } denote the standard
basis on R". Let {s,,---,s,}, 3 < n, denote any j basis vectors from
this set; then the span of {s,,---,s, } forms a j-dimensional subspace
of R™ which is trivially a C* j-dimensional manifold. For a thorough
introduction to the theory of manifolds with a view to applications see
Abraham, Marsden, and Ratiu [1988].

The main reason for choosing these examples is that, in this book, when
the term “manifold” is used, it will be sufficient to think of one of the
following two situations:

1. Linear Settings: a linear vector subspace of R™;

2. Nonlmear Settings: a surface embedded in R" which can be locally
represented as a graph (which can be justified via the implicit function
theorem).

Let us return to our study of the orbit structure near fixed points to see
how some important invariant manifolds arise. We begin with vector fields.
Let Z € R" be a fixed point of

z = f(z), z € R™. (1.1.26)

Then, by the discussion in Section 1.1A, it is natural to consider the asso-
ciated linear system

y=Ay, yeR" (1.1.27)
where A = Df(z) is a constant n X n matrix. The solution of (1.1.27)
through the point yp € R™ at ¢t = 0 is given by

y(t) = e*yo, (1.1.28)
where
1
3!
and “id” denotes the n X n identity matrix. We must assume sufficient
background in the theory of linear constant coefficient ordinary differential

1
e = id + At + 5A2t2 + A (1.1.29)
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equations so that (1.1.28) and (1.1.29) make sense to the reader. Excellent
references for this theory are Arnold [1973] and Hirsch and Smale [1974).
Our goal here is to extract the necessary ingredients from this theory so as
to give a geometrical interpretation to (1.1.28).

Now IR™ can be represented as the direct sum of three subspaces denoted
E?, E* and E° which are defined as follows:

E® =span{ey,---,e€s},

E" =span{es+1, s €s4u}, st+u+c=mn, (1.1.30)
E® = span{estut1, s €stutels
where {e1,---,es} are the (generalized) eigenvectors of A corresponding
to the eigenvalues of A having negative real part, {€s11," " -,€s+4} are the

(eeneralized) eigenvectors of A corresponding to eigenvalues of A having
positive real part, and {€s4yt1, -, €s4utc) are the (generalized) eigenvec-
tors of A corresponding to the eigenvalues of A having zero real part (note:
this is proved in great detail in Hirsch and Smale [1974]). E*, E*, and
E*¢ are referred to as the stable, unstable, and center subspaces, respec-
tively. They are also examples of invariant subspaces (or manifolds) since
solutions of (1.1.27) with initial conditions entirely contained in either E*,
E", or E° must forever remain in that particular subspace for all time (we
will motivate this a bit more shortly). Moreover, solutions starting in E*
approach y = 0 asymptotically as ¢ — +oo and solutions starting in E
approach y = 0 asymptotically as t — —oo. Let us now illustrate these
ideas with three examples where for simplicity and easier visualization we

will work in R3,

ExAMPLE 1.1.2 Suppose the three eigenvalues of A are real and distinct
and denoted by A1, A2 < 0, A3 > 0. Then A has three linearly independen,
eigenvectors e, eg, and e corresponding to A;, Ag, and A3, respectively. If
we form the 3 x 3 matrix T by taking as columns the eigenvectors e;, eq,
and e3, which we write as

T= €1 €2 €3 s (1131)
then we have
A 0 0
A=| 0 X 0| =T1'AT (1.1.32)
0 0 As

Recall that the solution of (1.1.27) through yo € R® at t = 0 is given by

y(t) = ettyo = eTAT 'ty (1.1.33)
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Using (1.1.29), it is easy to see that (1.1.33) is the same as

y(t) = TeMT 1y,

eMt 0 0
=T| 0 e 0 |T'w
0 0 erst
= | eeMt egerzt  ezetst | Ty, (1.1.34)

Now we want to give a geometric interpretation to (1.1.34). Recall from
(1.1.30) that we hdve

E® =span{e;, ea},
E™ = span{es}.

Invariance

Choose any point yg € IR®. Then T-! is the transformation matrix which
changes the coordinates of yo with respect to the standard basis on R?
(ie., (1,0,0), (0,1,0), (0,0,1)) into coordinates with respect to the basis
e1, €2, and e3. Thus, for yo € E*, T~ 'yo has the form

Po1
T 'y = | o2 |, (1.1.35)
0
and, for yo € E*, T~y has the form
0
T ly=1[ 0 . (1.1.36)
Jo3

Therefore, by substituting (1.1.35) (resp., (1.1.36)) into (1.1.34), it is easy
to see that yo € E*® (resp., E*) implies ey, € E* (resp., E*). Thus, E*
and E* are invariant manifolds.

Asymptotic Behavior

Using (1.1.35) and (1.1.34), we can see that, for any yo € E®, we have
eftys »0ast — +oo and, for any yo € E*, we have edtyy — 0 ast — —oo
(hence the reason behind the names stable and unstable manifolds).

See Figure 1.1.5 for an illustration of the geometry of E° and E™.

ExaMpLE 1.1.3 Suppose 4 has two complex conjugate eigenvalues p+iw,
P < 0, w # 0 and one real eigenvalue A > 0. Then A has three real
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Eu""~—w;
Es

//

oy

FIGURE 1.1.5. The geometry of E° and E* for Example 1.1.2.

generalized eigenvectors ey, eo, and eg, which can be used as the columns
of a matrix T in order to transform A as follows

p w O
A=|-w p 0| =T714AT. (1.1.37)
0 0 A

From Example 1.1.2 it is easy to see that in this example we have

y(t) = TeMT 1y,
ePlecoswt eftsinwt 0 ,
=T | —e’tsinwt eftcoswt O | Tty (1.1.38)
0 0 eM

Using the same arguments given in Example 1.1.2 it should be clear that
E* = span{e;, e} is an invariant manifold of solutions that decay expo-
nentially to zero as t — 400, and E* = span{es} is an invariant manifold
of solutions that decay exponentially to zero as t — —oo (see Figure 1.1.6).

EXAMPLE 1.1.4 Suppose A has two real repeated eigenvalues, A < 0,
and a third distinct eigenvalue ¥ > 0 such that there exist generalized
eigenvectors ej, es, and e3 which can be used to form the columns of a
matrix T so that A is transformed as follows

A1 0
A= A 0| =T'AT. (1.1.39)
0 ~

0
0
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/A’\/ Eu

Es

~,
FIGURE 1.1.6. The geometry of E° and E* for Example 1.1.3 (for w < 0).

Following Examples 1.1.2 and 1.1.3, in this example the solution through
the point yo € R® at t = 0 is given by

y(t) = TeMT 1y
e)\t te)\t 0
=T| 0 e 0 |T 'y. (1.1.40)
0 0 ¢

Using the same arguments as in Example 1.1.2, it is easy to see that E* =
span{e;, ez} is an invariant manifold of solutions that decay to y = 0 as
t — 400, and E* = span{es} is an invariant manifold of solutions that
decay to y = 0 as t — —oo (see Figure 1.1.7).

The reader should review enough linear algebra so that he or she can
Justify each step in the arguments given in these examples. We remark
that we have not considered an example of a linear vector field having a
center subspace. The reader can construct his or her own examples from
Example 1.1.3 by setting p = 0 or from Example 1.1.4 by setting A = 0; we
leave these as exercises and now turn to the nonlinear system.

The Nonlinear System
Recall that our original motivation for studying the linear system

y=Ay, yeR" (1.1.41)
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FIGURE 1.1.7. The geometry of E° and E* for Example 1.1.4.

where A = Df(Z), was to obtain information about the nature of solutions
near the fixed point z = T of the nonlinear equation

z = f(x), z € R" (1.1.42)

The stable, unstable, and center manifold theorem provides an answer to
this question; let us first transform (1.1.42) to a more convenient form.

We first transform the fixed point =  of (1.1.42) to the origin via the
translation y = z — Z. In this case (1.1.42) becomes

y=f@+y), yeR" (1.1.43)
Taylor expanding f(Z + y) about ¢ = T gives
y=Df(Z)y+R(y), yecRY (1.1.44)

where R(y) = O(|y|?) and we have used f(Z) = 0. From elementary linear
algebra (see Hirsch and Smale [1974]) we can find a linear transformation
T which transforms the linear equation (1.1.41) into block diagonal form

U A; O 0 U
v =0 A4, 0 v |, (1.1.45)
w 0 0 A, w

where T~y = (u,v,w) € R®* xR* X R, s+u+c=n, A;isan s x s
matrix having eigenvalues with negative real part, A, is an v X u ma-
trix having eigenvalues with positive real part, and A, is an ¢ x ¢ matrix
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having eigenvalues with zero real part (note: we point out the (hopefully)
obvious fact that the “0” in (1.1.45) are not scalar zero’s but rather the
appropriately sized block consisting of all zero’s. This notation will be used
throughout the book). Using this same linear transformation to transform
the coordinates of the nonlinear vector field (1.1.44) gives the equation

= Asu+ Ry(u,v,w),

0= Auv+ Ry(u,v,w), (1.1.46)
W= A.w+ Re(u,v,w),
)

where R,(u,v,w), R,(u,v,w), and R.(u,v,w) are the first s, u, and c
components, respectively, of the vector T~ R(T(u, v, w))

Now consider the linear vector field (1.1.45). From our previous discus-
sion (1.1.45) has an s-dimensional invariant stable manifold, a u-dimen-
sional invariant unstable manifold, and a c-dimensional invariant center
manifold all intersecting in the origin. The following theorem shows how
this structure changes when the nonlinear vector field (1.1.46) is considered.

Theorem 1.1.3 (Local, Stable, Unstable, and Center Manifolds of
Fixed Points)  Suppose (1.1.46) 1 C", r > 2. Then the fized pownt
(u,v,w) = 0 of (1.1.46) possesses a C" s-dvmensional local, stable mans-
fold, Wi (0), a C" u-dimenswonal local, unstable manifold, W _(0), and a
C" c-dimenswnal local, center manifold, W .(0), all wntersecting at
(u,v,w) = 0. These manifolds are all tangent to the respective mvariant
manafolds of the linear vector field (1.1.45) at the orwgin and, hence, are
locally representable as graphs. In particular, we have

Wiee(0) = {(u,v,w) € R® x R* x R®|v = hy(u), w = hy, (u);

DhE(0) = 0,DhS,(0) = 0; |u| sufficrently small}

Wite(0) = {(u,v,w) € R* x R x R |u = hy(v), w = hy,(v);

Dh%(0) = 0, DR%(0) = 0; [v| sufficiently small}

Wiee(0) = {(v,v,w) € R® x R* x R®|u = h(w),v = hS(w);

Dh,(0) = 0, Dh$(0) = 0; |w| sufficiently small}

where h$(u), kS (u), h¥(v), h%(v), hS(w), and hS(w) are C functions.
Moreover, W _(0) and W (0) have the asymptotic properties of E° and
EY, respectively. Namely, solutions of 1.1.46 with wmmtial conditions n
W (0) (resp., WL (0)) approach the orgin at an exponential rate asymp-
totucally as t — 400 (resp., t — —o0).
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Proof: See Fenichel [1971] or Hirsch, Pugh, and Shub {1977] for details and
see Wiggins [1988] for some history and further references on invariant
manifolds. O

Some remarks on this important theorem are now in order.

Remark 1. First some terminology. Very often one hears the terms “stable
manifold,” “unstable manifold,” or “center manifold” used alone; however,
alone they are not sufficient to describe the dynamical situation. Notice
that Theorem 1.1.3 is entitled stable, unstable, and center manifolds of
fized points. The phrase “of fixed points” is the key: one must say the
stable, unstable, or center manifold of something in order to make sense.
The “somethings” studied thus far have been fixed points; however, more
general invariant sets also have stable, unstable, and center manifolds. See
Wiggins [1988] for a discussion.

Remark 2. The conditions Dh$(0) = 0, Db, (0) = 0, etc., reflect that the
nonlinear manifolds are tangent to the associated linear manifolds at the
origin.

Remark 3. Suppose the fixed point is hyperbolic, i.e., E¢ = ). In this case
an interpretation of the theorem is that solutions of the nonlinear vector
field in a sufficiently small neighborhood of the origin behave the same as
solutions of the associated linear vector field.

Remark 4. In general, the nature of solutions in W _(0) cannot be inferred
from the nature of solutions in E¢. More refined techniques are needed and
are developed in Chapter 2.

Maps

An identical theory can be developed for maps. We summarize the details
below. Consider a C" diffeomorphism

x — g{x), z € R". (1.1.47)

Suppose (1.1.47) has a fixed point at £ = T and we want to know the nature
of orbits near this fixed point. Then it is natural to consider the associated
linear map

y— Ay, y € R", (1.1.48)

where A = Dg(Z). The linear map (1.1.48) has invariant manifolds given
by

E® =span{ey,---,es},

E* =span{est1, > €atul,
E° = span{estui1," ) Cotutel
where s +u + ¢ = n and eq,---,es are the (generalized) eigenvectors of

A corresponding to the eigenvalues of A having modulus less than one,
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€s+1, " ,€s+y are the (generalized) eigenvectors of A corresponding to the
eigenvalues of A having modulus greater than one, and €54 u41," ) €stute
are the (generalized) eigenvectors of A corresponding to the eigenvalues of
A having modulus equal to one. The reader should find it easy to prove this
by putting A in Jordan canonical form and noting that the orbit of the
linear map 1.1.48 through the point yy € R™ is given by

{‘ T 7A_ny0, Yy A_ly()’yOa AyOa e 7Any0’ o } (1149)

Now we address the question of how this structure goes over to the non-
linear map (1.1.47). In the case of maps Theorem 1.1.3 holds identically.
Namely, the nonlinear map (1.1.47) has a C" invariant s-dimensional sta-
ble manifold, a C" invariant u-dimensional unstable manifold, and a C”
invariant c-dimensional center manifold all intersecting in the fixed point.
Moreover, these manifolds are all tangent to the respective invariant man-
ifolds of the linear map (1.1.48) at the fixed point.

Essentially, everything about stable, unstable, and center manifolds for
fixed points of vector fields holds for fixed points of maps. We will give
examples in the exercises at the end of Section 1.1. However, before com-
pleting our discussion of invariant manifolds let us apply our results to the
unforced Duffing oscillator.

Application to the Unforced Duffing Oscillator

In Section 1.1A we have seen that the equation
T =y,
y =T — 'TB - 62/?
has a saddle-type fixed point of (z,y) = (0, 0), and sinks at (+1,0) for § > 0.
From Theorem 1.1.3 we now know that (1, 0) have two-dimensional stable
manifolds (this is obvious) and (0, 0) has a one-dimensional stable manifold
and a one-dimensional unstable manifold as shown in Figure 1.1.8 (note:
we have drawn the figure for 0 < § < v/8. The reader should show how the
solutions near the sinks are modified for § > /8). Note that Theorem 1.1.3
also tells us that a good local approximation to the stable and unstable
manifolds of (0,0) is given by the corresponding invariant linear manifolds,
which are relatively easy to calculate. The case § = 0 is treated in great
detail in Section 1.1E.
Let us consider a final example from Guckenheimer and Holmes [1983].

6>0,

ExaMpPLE 1.1.5 Consider the planar vector field
T =z,
y=-y+a,

which has a hyperbolic fixed point at (x,y) = (0,0). The associated lin-

earized system is given by

(z,y) € R' x RY,

=z,
y:_—yv
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FIGURE 1.1.8. Local invariant manifold structure in the unforced Duffing oscil-
lator, 0 < § < V/8.

ES—

FIGURE 1.1.9. The stable and unstable subspaces in Example 1.1.5.

with stable and unstable subspaces given by

E*={(z,y) e R?* |z =0},
E'={(z,y) eR? |y =0}

{see Figure 1.1.9).

Now we turn our attention to the nonlinear vector field for which, in this
case, the solution can be obtained explicitly as follows. Eliminating time
as the independent variable gives

x - dz
which can be solved to obtain

72

C
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y
WS (0,0) —
WU (0,0)

N,

F

FIGURE 1.1.10. Stable and unstable manifolds of (z,y) = (0,0) in Example
1.1.5.

where ¢ is some constant. Now Wi (0,0) can be represented by a graph
over the z variables, i.e., y = h{z) with h(0) = #’(0) = 0. Varying c in the
solution above takes us from orbit to orbit; we seek the value of ¢ which
corresponds to the unstable manifold—this is ¢ = 0. Therefore, we have

-z
y—3 )

which is also the global unstable manifold of the origin (see Exercise 1.1.28).
Finally, note that if we have initial conditions with the £ component equal
to zero, i.e., (0,y) Vy, then the solution stays on the y axis and approaches
(0,0) as t 1 oco; thus, E* = W*(0,0) = { (z,y) | z = 0} (see Figure 1.1.10).

Wlléc(oa O) = { (x,y) e R?

1.1D PERIODIC SOLUTIONS

We consider vector fields
z = f(x), z c R", (1.1.50)

and maps
z — g(z), zeR”. (1.1.51)

DEFINITION 1.1.6 (VECTOR FIELDS) A solution of (1.1.50) through the
point xy is said to be periodic of period T if there exists T > 0 such that
x(t, to) = x(t + T, zo) for all t € R. (Maps) The orbit of 2o € R™ is said to
be periodic of period k > 0 if g*(z¢) = zq.

We remark that if a solution of (1.1.50) is periodic of period T then
evidently it is periodic of period nT for any integer n > 1. However, by the
period of an orbit we mean the smallest possible T > 0 such that Definition
1.1.6 holds. A similar statement holds for periodic orbits of maps.
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We will discuss stability of periodic orbits of vector fields when we discuss
Poincaré maps in Section 1.2; for stability of periodic orbits of maps see
Exercise 1.1.5.

Now we will learn a useful and easily applicable trick for establishing the
nonexistence of periodic solutions of autonomous vector fields on the plane.
We will denote these vector fields by

T = f(l'a y)a 2

. z,y) € R2, 1.1.52

i=gloy, @Y (1.1.52)
where f and g are at least C!.

Theorem 1.1.4 (Bendixson’s criterion) If on a sumply connected re-
gion D C R? (r.e., D has no holes 1 1t) the expression gﬁ + g’;l 5 not

wdentically zero and does not change sign, then (1.1.52) has no closed or-
bits lying entirely in D.

Proof: This is a simple result of Green’s theorem on the plane; see Abraham,
Marsden, and Ratiu [1988]. Using (1.1.52) and applying the chain rule we
find that on any closed orbit I we have

/fdy—gd:c:O. (1.1.53)
r

By Green’s theorem this implies

0 0
[ (5 +52) away=o (1.154)

where S is the interior bounded by I'. But if Q’f 29 =£ 0 and doesn’t
change sign, then this obviously can’t be true. Therefore there must be no
closed orbits in D. O

A generalization of Bendixson’s criterion due to Dulac is the following.

Theorem 1.1.5 Let B(z,y) be C! on a sumply connected reqron D C R?.
If Bf) + 6(39) 1s not wdentically zero and does not change sign mn D, then
(1.1. 52) has no closed orbits lying entirely in D.

Proof: The proof is very similar to the previous theorem so we omit it and
leave it as an exercise. 0O

Application to the Unforced Duffing Oscillator

Consider the vector field

=y = f(z,y)
: §>0. 1.1.55
y=z-2° -y =g(x,y), = ( )
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An easy calculation shows that

9f | 99
= —4.
az + 5y Oy
Thus, for § > 0, (1.1.55) has no closed orbits. We will answer the question
of what happens when § = 0 in Section 1.1E.
The next example shows how Theorem 1.1.4 allows us to restrict regions
in the plane where closed orbits might exist.

EXAMPLE 1.1.6 Consider the following modification of the unforced Duff-
ing oscillator

5=yEf@w%
. 6§>0. 1.1.56
y=zx—a3—by+xiy= a(z,y), = ( )

This equation has three fixed points at (z,y) = (0,0), (+1,0) with the
eigenvalues, A 2, of the associated linearization about each fixed point given

by
—6
(0,0) = )\172 = 7 :i: 62 (1157&)
- 1 1
(1,0) = A2 = 62+ + > (-6 + 1)2 -~ 8, (1.1.57b)
— 1 1
(—1,0) = )\1,2 = 6;_ + 5 (——6 + 1)2 — 8. (1157C)

Thus, (0,0) is a saddle, and (£1,0) are sinks for § > 1 and sources for
0<6 <.
A simple calculation gives

af 39 2
oz + = = -6+ z“. (1.1.58)

Thus, (1.1.58) vanishes on the lines 2 = ++/8. These two lines divide the
plane into three disjoint regions which we label (from left to right) R, Ra,
and Rg as shown in Figure 1.1.11.

Now from Theorem 1.1.4, we can immediately conclude that (1.1.56) can
have no closed orbits lying entirely in either region R, Rg, or R3. However,
we cannot rule out the existence of closed orbits which overlap these regions
as shown in Figure 1.1.12. When we discuss index theory in Section 1.1F we
will see how to reduce the number of possibilities even further. We finally
remark that it is not a coincidence that the lines z = /6 fall on the
fixed points (+1,0) when the real parts of the eigenvalues of these fixed
points vanish. We will learn what is going on in this case when we study
the Poincaré-Andronov-Hopf bifurcation in Chapter 3.
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1.1  INTEGRABLE VECTOR FIELDS ON TwO-MANIFOLDS

In applications, three types of two-dimensional phase spaces occur fre-
quently; they are (1) the plane, R? = R! x R}, (2) the cylinder, R! x ST,
and (3) the two-torus, T2 = §* x S!. The vector field can be written as

T = f('r’y)’
3= g(z,7), (1.1.59)
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where f and g are C” (r > 1), and as (z,y) € R' x R! for a vector field
on the plane, as (z,y) € R! x 8! for a vector field on the cylinder, and
as (z,y) € S' x S* for a vector field on the torus, where S' denotes the
circle (which is sometimes referred to as a 1-torus, T'). We now want to
give some examples of how these different phase spaces arise and at the
same time introduce the idea of an integrable vector field. We begin with
the unforced Dufling oscillator.

EXAMPLE 1.1.7: THE UNFORCED DUFFING OSCILLATOR We have been
slowly discovering the global structure of the phase space of the unforced
Duffing oscillator given by

. E—x+6k+2>=0, (1.1.60)
or, written as a system,
=v (z,y) e R' xR, 6>0. (1.1.61)
y=xz—zx° — by, ’ ’ =

Thus far we know the local structure near the three fixed points (z,y) =
(0,0), (£1,0) and that for § > 0 there are no closed orbits. The next step is
to understand the geometry of the global orbit structure. In general, this is
a formidable task. However, for the special parameter value § = 0, we can
understand completely the global geometry, which, we will see, provides a
framework for understanding the global geometry for § # 0.

The reason we can do this is that, for 6 = 0, the unforced, undamped
Duffing oscillator has a first integral or a function of the dependent vari-
ables whose level curves give the orbits. Alternately, in more physical terms,
the unforced, undamped Duffing oscillator is a conservative system hav-
ing an energy function which is constant on orbits. This can be seen as
follows—take the unforced, undamped Duffing oscillator, multiply it by i,
and integrate as below.

iF—dr+ax® =0

or

d (1., «* o
hence,
1 2 4
51’-2— % + % = h = constant
or
2 2 4
T, r
LT (1.1.63)

This is a first integral for the unforced, undamped Duffing oscillator or, if
you think of y?/2 as the kinetic energy (mass has been scaled to be 1) and
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V(x)

FIGURE 1.1.13. Graph of V(z).

—12/2+ 2*/4 = V() as potential energy, h can be thought of as the total
energy of the system. Therefore, the level curves of this function give the
global structure of the phase space.

In general, for one-degree-of-freedom problems (i.e., vector fields on a
two-dimensional phase space) that have a first integral that can be viewed
as the sum of a kinetic and potential energy, there is an easy, graphical
method for drawing the phase space. We will illustrate the method for the
unforced, undamped Duffing oscillator. As a preliminary step, we point out
the shape of the graph of V(z) in Figure 1.1.13.

Now suppose that the first integral is given by

y2
h= ? + V(:L‘),

then
y=+v2y/h—V(z) (1.1.64)

Our goal is to draw the level sets of h. Imagine sitting at the point (0,0),
with h fixed. Now move toward the right (i.e., let z increase). A glance
at the graph of V(z) shows that V begins to decrease. Then, since y =
+v2y/h—V(z) (we take the + sign for the moment) and h is fixed, y
must increase until the minimum of the potential is reached, and then it
decreases until the boundary of the potential is reached (why can’t you
go farther?) (see Figure 1.1.14). Now y = + or — /2 /h — V(z); hence
the entire orbit through (0,0) for fixed h is as in Figure 1.1.15. (Note:
why are the arrows drawn in their particular directions in Figure 1.1.157)
By symmetry, there is another homoclinic orbit to the left as in Figure
1.1.16, and if you repeat this procedure for different points you can draw
the entire phase plane as shown in Figure 1.1.17. The homoclinic orbit
is sometimes called a separatriz because it is the boundary between two
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FIGURE 1.1.14.
y
X

FIGURE 1.1.15.

distinctly different types of motions. We will study homoclinic orbits in
some detail in Chapter 4.

Denoting the first integral of the unforced, undamped Duffing oscillator
by h was meant to be suggestive. The unforced, undamped Duffing oscilla-
tor is actually a Hamiltonian System, i.e., there exists a function h = h(z, y)
such that the vector field is given by

5o Oh

= 5&’
M (1.1.65)
y= Oz

{we will study these in more detail later). Note that all the solutions lie
on level curves of 2 which are topologically the same as S! (or T!). This
Hamiltonian system is an integrable Hamiltonian system and it has a char-
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FIGURE 1.1.16.
Y

LN N
NGNS

FIGURE 1.1.17. Orbits of the unforced, undamped Duffing oscillator.

acteristic of all n-degree-of-freedom integrable Hamiltonian systems in that
its bounded motions lie on n-dimensional tori or homoclinic and hetero-
clinic orbits (see Arnold [1978] or Abraham and Marsden [1978]). (Note
that all one-degree-of-freedom Hamiltonian systems are integrable.)

ExAMPLE 1.1.8: THE PENDULUM The equation of motion of a simple
pendulum (again, all physical constants are scaled out) is given by

¢+sing =0 (1.1.66)
or, written as a system,
¢=v, (¢,v) € S' x R'. (1.1.67)
U= —sing,

This equation has fixed points at (0,0), (£7,0), and simple calculations
show that (0,0) is a center (i.e., the eigenvalues are purely imaginary) and
(+m,0) are saddles, but since the phase space is the cylinder and not the
plane, (+7,0) are really the same point (see Figure 1.1.18). (Think of the
pendulum as a physical object and you will see that this is obvious.)
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!
* p=-m p=m
FIGURE 1.1.18. Fixed points of the pendulum.

Now, just as in Example 1.1.7, the pendulum is a Hamiltonian system
with a first integral given by

v2
h= 1 — cos ¢. (1.1.68)
Again, as in Example 1.1.7, this fact allows the global phase portrait for
the pendulum to be drawn, as shown in Figure 1.1.19a. Alternatively, by
gluing the two lines ¢ = +7 together, we obtain the orbits on the cylinder
as shown in Figure 1.1.19b.

EXAMPLE 1.1.9: A VECTOR FIELD ON A Two-Torus Now we want
to consider an example of a vector field on the two-torus. Since this may
appear a little bit unnatural, we begin with a simple example to motivate
the situation. Suppose we have an undamped two-degree-of-freedom system
consisting of two coupled linear oscillators. Under general conditions we
can perform a change of variables to canonical coordinates (the “normal
modes”), which uncouples the system; we will suppose this has been done
so that the vector field takes the form

i +wiz =0,

(1.1.69)
y + W%y = 01
or, written as a system,
il = T2,
. 2
Iy = —w) Ty, 1
9 = s, (z1,22,%1,y2) € R (1.1.70)
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FIGURE 1.1.19. a) Orbits of the pendulum on R? with ¢ = %7 identified. b)
Orbits of the pendulum on the cyliner.

This system is integrable, since we have the two independent functions of
the dependent variables given by

2 9 2 (1.1.71)
hy = Y2 + %
2 2

The level curves of these functions are compact sets {topological circles):
therefore, the orbits in the four-dimensional phase space actually lie on two-
tori. This can be made more apparent by making the change of variables

Ty = /21 /wisin®, T2 = 2w I cosb,

(1.1.72)
1 = +/2IJwosinbs,  yo = /2wsl; cos s,
which results in the new equations
h=0, L=0,
! g (1.1.73)

91 = Wi, 02 = Wa.
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Hence, I; and I; are constants, and, therefore, the dynamics are contained
in the equations

br=wi (g 8,) e S x S =T (1.1.74)
02 = wsz,
The flow defined by this vector field will be discussed in more detail in
Section 1.2A.

1.1r INDEX THEORY

Before we describe some of the uses of index theory, we will give a heuristic
description of the idea.

Suppose we have a vector field in the plane (this is a two-dimensional
method only). Let T’ be any closed loop in the plane which contamns no fized
points of the vector field. You can imagine at each point, p, on the loop I'
that there is an arrow representing the value of the vector field at p (see
Figure 1.1.20).

Now as you move around I' in the counter-clockwise sense (call this the
positive direction), the vectors on I' rotate, and when you get back to the
point at which you started, they will have rotated through an angle 27k,
where k is some integer. This integer, k, is called the indez of I'.

The index of a closed loop containing no fixed points can be calculated
by integrating the angle of the vectors at each point on I' around T' (this
angle is measured with respect to some chosen coordinate system). For a
vector field on the plane given by

T = f('rvy)a 1 1

. z,y) € R xR, 1.1.75

§ = glz.y), (z,y) { )
the index of T, &, is found by computing

_ L _ L llw
k_27T rd¢_277 rd(tan f(ff-y)>
_ 1 [ fdg—gdf
TS Ay rwral (1.1.76)

This integral has several properties, one of the most important being that

it retains the same value if I' is smoothly deformed, as long as it is not
deformed through some fixed point of the vector field. From the definition
of the index given above (if not by just drawing pictures), one can prove
the following theorems.

Theorem 1.1.6

i) The wndex of o sink, a source, or a center 18 +1.

it} The index of a hyperbohc saddle point ws —1.
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FIGURE 1.1.20. Vector field on the closed curve T.

iii) The index of a closed orbit is +1.
iv) The index of a closed curve not containing any fized points is 0.

v) The index of a closed curve is equal to the sum of the indices of the
fized points within it.

An immediate corollary of this is the following.

Corollary 1.1.7 Inside any closed orbit v there must be at least one fized
point. If there is only one, then it must be a sink, source, or center. If all
the fized points within v are hyperbolic, then there must be an odd number,
2n + 1, of which n are saddles and n + 1 either sinks, sources, or centers.

For more information on index theory, see Andronov et al. [1971].

ExampLE 1.1.6 REVISITED Using the above results, the reader should be
able to verify that the phase portraits shown in Figures 1.1.12b, 1.1.12e,
and 1.1.12f cannot occur. This example shows how Bendixson and Dulac’s
criteria used with index theory can go a long way toward describing the
global structure of phase portraits on the plane. We remark that a higher
dimensional generalization of index theory is degree theory. For an intro-
duction to the use of degree theory in dynamical systems and bifurcation
theory we refer the reader to Chow and Hale [1982] or Smoller [1983].

1.1¢ SOME GENERAL PROPERTIES OF VECTOR FIELDS:
EXISTENCE, UNIQUENESS, DIFFERENTIABILITY, AND
Frows

In this section we want to give some of the basic theorems describing general

properties of solutions of vector fields. Since it is just as easy to treat the
nonautonomous case we will do so.
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Consider the vector field
& = f(z,t), (1.1.77)
where f(z,t)is C", r > 1, on some open set U ¢ R” x R'.

Existence, Uniqueness, Differentiability with Respect to Initial Conditions

Theorem 1.1.8 Let (x9,t9) € U. Then there erists a solution of (1.1.77)
through the point xo at t = ty, denoted x(t, to, xo) with z(tg, to, zo) = o, for
[t —to| sufficiently small. This solution is unique in the sense that any other
solution of (1.1.77) through x¢ at t =ty must be the same as x(t,tg, o) on
their common interval of existence. Moreover, x(t,tg, zg) is a C" function
of t, to, and xg. .
Proof: See Arnold [1973], Hirsch and Smale [1974], or Hale [1980]. O
We remark that it is possible to weaken the assumptions on f(z,f) and
still obtain existence and uniqueness. We refer the reader to Hale [1980} for
a discussion.
Theorem 1.1.8 only guarantees existence and uniqueness for sufficiently

small time intervals. The following result allows us to uniquely extend the
time interval of existence.

Continuation of Solutions
Let C C U € R" x R! be a compact set containing (g, tg).

Theorem 1.1.9 The solution x(t,tg, zq) can be uniquely extended back-
ward and forward in t up to the boundary of C.

Proof: See Hale [1980]. O

Theorem 1.1.9 tells us how solutions fail to exist; namely, they “blow
up.” Consider the following example.

ExaMPLE 1.1.10 Consider the equation
&= x? r e R (1.1.78)
The solution of (1.1.78) through zq at t = 0 is given by

—xg

z(t,0,zp) = (1.1.79)

CEot -1 ’
It should be clear that (1.1.79) does not exist for all time, since it becomes
infinite at ¢ = 1/xy. This example also shows that the time interval of
existence may depend on .

In practice we often encounter vector fields depending on parameters,
and it is often necessary to differentiate the solutions with respect to the
parameters. The following result covers this situation.
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Differentiability unth Respect to Parameters

Consider the vector field
z = f(z,t;n), (1.1.80)
where f(z,t; 1) is C” (r > 1) on some open set U C R™ x R' x R?.

Theorem 1.1.10 For (iy,xo, ) € U the solutron x(t,te,zo, ) 1s a C”
function of t, to, To, and p.

Proof: See Arnold [1973] or Hale [1980]. O

At this stage we would like to point out some special properties of C7,
r > 1, autonomous vector fields which will prove useful.

Autonomous Vector Fields

Consider the vector field
z = f(x), zeR", (1.1.81)

where f(z) is C", 7 > 1, on some open set U € R". For simplicity, let us
suppose that the solutions exist for all time (we leave it as an exercise to
make the necessary modifications when solutions exist only on finite time
intervals). The following three results are very useful in applications.

Proposition 1.1.11 If z(t) 1s a solution of (1.1.81), then so s o(t + 7)
for any 7 € R.

Proof: By definition

de(t)
o = (=) (1.1.82)
Hence, we have
de(t+ 7 drz(t
‘la“llﬂo= ﬁ)tﬂMTZf@Um+ﬁ)=f@@+r»hdo
or
@%%ll = f(zt+7)],—, - (1.1.83)

Since (1.1.83) is true for any ¢y € IR, the result follows. O

Note that Proposition 1.1.11 does not hold for nonautonomous vector
fields. Consider the following example.

ExAMPLE 1.1.11 Consider the nonautonomous vector field

i =e, ze R (1.1.84)
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The solution of (1.1.84) is given by
z(t) = ¢, (1.1.85)
and it should be clear that
a(t+7)=e7 (1.1.86)
is not a solution of (1.1.84) for 7 # 0.

The following proposition lies at the heart of the Poincaré-Bendixson
theorem.

Proposition 1.1,12 For any zo € R" there exsts only one solution of
(1.1.81) passing through this point.

Proof: We will show that if this proposition weren’t true, then uniqueness
of solutions would be violated.
Let z1(t), z2(¢) be solutions of (1.1.81) satisfying

z1(t1) = xo,
JZQ(tQ) = Xy.

By Proposition 1.1.11
Zo(t) = z2(t — (11 — t2))
is also a solution of (1.1.81) satisfying
Za(ty) = xo.

Hence, by Theorem 1.1.8, x;(t) and z3(t) must be identical. O

Since for autonomous vector fields time-translated solutions remain so-
lutions (i.e., Proposition 1.1.11 holds), it suffices to choose a fixed initial
time, say t, = 0, which is understood and therefore often omitted from the
notation (as we do now).

Proposition 1.1.13
i) x(t,xy) 15 C".
i) z(0,z9) = 0.
i) z(t + s,20) = 2(t, (s, z0)).

Proof: i) follows from Theorem 1.1.8, ii) is by definition, and iii) follows
from Proposition 1.1.12; namely, #(t, zo) = z(t + s,xo) and z(t, (s, zo))
are both solutions of 1.1.81 satisfying the same initial conditions at t = 0.
Hence by uniqueness they must coincide. D
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Proposition 1.1.13 shows that the solutions of (1.1.81) form a one-para-
meter family of C”, r > 1, diffeomorphisms of the phase space (invertibility
comes from iii)). This is referred to as a phase flow or just a flow. A common
notation for flows is ¢(¢, ) or ¢¢(x).

Let us comment a bit more on this notation ¢;(x). The part of Theorem
1.1.8 dealing with differentiability of solutions with respect to zq (regarding
t and ty as fixed) allows us to think differently about the solutions of
ordinary differential equations. More precisely, in the solution z(¢, ¢, o),
we can think of ¢ and ¢y as fixed and then study how the map z(¢, to, zo)
moves sets of points around in phase space. This is the global, geometrical
view of the study of dynamical systems. For a set U C IR", we would denote
its image under this map by x(f, to, U). Since points in phase space are also
labeled by the letter x, it is often less confusing to change the notation for
the solutions, which is why we use the symbol ¢. This point of view will
become more apparent when we study the construction of Poincaré maps
in Section 1.2.

Finally, let us note that in the study of ordinary differential equations one
might believe the problem to be finished when the “solution” z(¢,tg, o) is
found. The rest of the book will show that this is not the case, but, on the
contrary, that this is when the story begins to get really interesting.

Nonautonomous Vector Fields

It should be clear that Propositions 1.1.11, 1.1.12, and 1.1.13 do not hold
for nonautonomous vector fields. However, we can always make a nonau-
tonomous vector field autonomous by redefining time as a new dependent
variable. This is done as follows.
By writing (1.1.77) as

de  f(z,1)

i (1.1.87)
and using the chain rule, we can introduce a new independent variable s
so that (1.1.87) becomes

Y]
(1.1.88)
dt
—=t'=1
ds
If we define y = (x,t) and g(y) = (f(x,t),1), we see that (1.1.88) becomes
v =gy, yeR*'xR. (1.1.89)

Of course, knowledge of the solutions of (1.1.89) implies knowledge of the
solutions of (1.1.77) and vice versa. For example, if z(¢) is a solution of
(1.1.77) passing through zg at t = {g, i.e., z(to) = xo, then y(s) = (x(s+1to),
t(s) = s+ to) is a solution of (1.1.89) passing through yo = (z(to), o) at
s=0.
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Every vector field can thus be viewed as an autonomous vector field.
This apparently trivial trick is a great conceptual aid in the construction
of Poincaré maps for time-periodic and quasiperiodic vector fields, as we
shall see in Section 1.2. Notice, however, that in redefining time as a de-
pendent variable, it may then be introduced in various situations requiring
specification of initial positions (i.e., specifying x); in particular, the reader
should reexamine the definition of stability given in Section 1.1A. For an
alternative view of nonautonomous vector fields see Sell {1971].

For the most part in this book we will be considering autonomous vec-
tor fields or maps constructed from nonautonomous vector fields (more
specifically, maps constructed from time-periodic and quasiperiodic vector
fields). Consequently, henceforth we will state definitions in the context of
autonomous vector fields and maps.

1.1# ASYMPTOTIC BEHAVIOR

We now develop a technical apparatus to deal with the notions of “long
term” and “observable” behavior for orbits of dynamical systems. We will
be concerned with C” (r > 1) maps and autonomous vector fields on R"™
denoted as follows.

Vector Field: z = f(z), z € R", (1.1.90)
Map: z v+ g{x), zeR". (1.1.91)

The flow generated by (1.1.90) (see Section 1.1G) will be denoted as ¢(t, z).

As we shall see in Section 1.11, the Poincaré-Bendixson theorem charac-
terizes the nature of the o and w limit sets of flows on certain two manifolds.
We now define o and w limit sets.

DEFINITION 1.1.7 A point 2o € R" is called an w limit point of z € R",
denoted w(zx), if there exists a sequence {t;}, t; — oc, such that

o(ti, ) — xo.
@ limit points are defined similarly by taking a sequence {t;}, t, — —oo.

EXAMPLE 1.1.12 Consider a vector field on the plane with a hyperbolic
saddle point, z, as shown in Figure 1.1.21. Then z is the w limit point of

any point on the stable manifold and the o limit point of any point on the
unstable manifold.

EXAMPLE 1.1.13 This example shows why it is necessary to take a subse-
quence in time, {¢;}, and not to simply let ¢ T oo in the definition of the o
and w limit point. Consider a vector field on the plane with a globally at-
tracting closed orbit, «y, as shown in Figure 1.1.22. Then orbits not starting
on vy “wrap onto” 4.
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WY(x) Ws(x)

FIGURE 1.1.21. a and w limit sets of the hyperbolic fixed point z.

P (t, x)

FIGURE 1.1.22. The point xo € v is the w limit point of x.

Now for each point on «, we can find a subsequence {¢,} such that ¢(t;, x),
r € IR?, approaches that point as i 7 oo. Therefore, ~ is the w limit set of
x as you would expect. However, tlim o(t, z) # .
hande o)

DEFINITION 1.1.8 The set of all w limit points of a flow or map is called
the w limit set. The o limit set is similarly defined.

We will need the idea of o and w limit sets in the context of flows only, so
we leave it to the reader to modify Definition 1.1.8 for maps as an exercise.

For maps, the notion of a nonwandering point has been more fashionable:
however, we will explore the relationship between these two concepts in the
exercises.

DEeFINITION 1.1.9 A point zg is called nonwandering if the following holds.

Flows: For any neighborhood U of zp and T > 0, there exists some |t |> T

such that
o(t, U)NU # 0.
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Maps: For any neighborhood U of zg, there exists some n # 0 such that
g U)NU #0.

Note that if the map is noninvertible, then we must take n > 0.

Fixed points and periodic orbits are nonwandering; we will see more
complicated examples in Chapter 4.

DEFINITION 1.1.10 The set of all nonwandering points of a map or flow
is called the nonwandering set of that particular map or flow.

Definitions 1.1.8 and 1.1.9 do not address the question of stability of those
asymptotic motiohs. For this we want to develop the idea of an attractor.

DEFINITION 1.1.11 A closed invariant set A C IR" is called an attracting
set if there is some neighborhood U of A such that:

flows: V2 €U, Vt>0,  ¢(t,z) €U and §(t,z) A

maps: Yz € U, ¥n >0, g"(z) € U and g"(z) — A.

nfoo

If we have an attracting set it is natural to ask which points in phase
space approach the attracting set asymptotically.

DErFINITION 1.1.12 The domain or basin of attraction of A is given by

flows: U o(t, U),

t<0

maps: U g™ (U),

n<0

where U is defined in Definition 1.1.11.

Note that even if g is noninvertible, g~ still makes sense in a set theoretic
sense. Namely, g~1(U) is the set of points in R™ that maps into U under
9, 97", n > 1 is then defined inductively.

In practice, a way of locating attracting sets is to first find a trapping
region.

DEFINITION 1.1.13 A closed, connected set M is called a trapping region
fét, M) c M,Vt >0 or, equivalently, if the vector field on the boundary
of M (denoted M) is pointing toward the interior of M. Then

st, M) = A

t>0
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FIGURE 1.1.23. Basins of attractions of the sinks.

is an afttracting set.

A similar definition can be given for maps. By now the necessary modi-
fications should be obvious, and we leave the details as an exercise for the
reader. It should be evident to the reader that finding a Liapunov function
is equivalent to finding a trapping region (cf. Section 1.1B). Also, let us
mention a technical point; by Theorem 1.1.8 it follows that all solutions
starting in a trapping region exist for all positive times. This is useful in
noncompact phase spaces such as IR? for proving existence on semi-infinite
time intervals.

Application to the Unforced Duffing Oseillator

As we’ve seen, the unforced Duffing oscillator has, for § > 0, two attractors
which are fixed points. The boundaries of the domains of attraction for the
two attractors are defined by the stable manifold of the saddle of the origin
(see Figure 1.1.23).

Now we want to motivate the idea of an attractor as opposed to attracting
set. We do this with the following example taken from Guckenheimer and
Holmes [1983].

ExampLE 1.1.14 Consider the planar autonomous vector field
.3
r=z-a, (z,y) € R' x R,
y=-y,

This vector field has a saddle at (0,0) and two sinks at (£1,0). The y-axis
is the stable manifold of (0,0). We choose an ellipse, M, containing the
three fixed points as shown in Figure 1.1.24. It should be clear that M is
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FIGURE 1.1.24. Attracting set of Example 1.1.14.

a trapping region and that the closed interval [~1,1] = (), #(t, M) is an
attracting set.

Example 1.1.14 points out what some might regard as a possible defi-
ciency in our Definition 1.1.11 of an attracting set. In this example, almost
all points in the plane will eventually end up near one of the sinks. Hence,
the attracting set, the interval [—1,1], contains two attractors, the sinks
(£1,0). Therefore, if we are interested in describing where most points in
phase space ultimately go, the idea of an attracting set is not quite precise
enough. Somehow we want to incorporate into the definition of an attract-
ing set the notion that it is not a collection of distinct attractors, but rather
that all points in the attracting set eventually come arbitrarily close to ev-
ery other point in the attracting set under the evolution of the flow or map.
We now want to make this mathematically precise.

DEFINITION 1.1.14 A closed invariant set A is said to be topologuically
transitive if, for any two open sets U, V C A

flows: Ite R 3 ¢(t,U)NV #£0,
maps: 3ne€Z > g™ (U)NV #0.

DEFINITION 1.1.15 An attractor is a topologically transitive attracting
set.

We remark that the study of attractors and their basin boundaries in dy-
Ramijcal systems is rapidly evolving and, consequently, the theory is incom-
Plete. For more information see Conley [1978], Guckenheimer and Holmes
(1983), Milnor [1985], and Ruelle [1981).
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1.11 THE POINCARE-BENDIXSON THEOREM

The Poincaré-Bendixson theorem gives us a complete determination of the
asymptotic behavior of a large class of flows on the plane, cylinder, and two-
sphere. It is remarkable in that it assumes no detailed information about
the vector field, only uniqueness of solutions, properties of w limit sets, and
some properties of the geometry of the underlying phase space. We begin
by setting the framework and giving some preliminary definitions.

We will consider C", r > 1, vector fields

T = f(may)a

. ,y) € P,
¥ =g(z,y), (z,)

where P denotes the phase space, which may be the plane, cylinder, or
two-sphere. We denote the flow generated by this vector field by

¢5(')>

where the in this notation denotes a point (x,y) € P. The following
proposition is fundamental and is independent of the dimension of phase
space (as long as it is finite).

“won

Proposition 1.1.14 Let ¢4(-) be a flow generated by a vector field and let
M be a positively invariant compact set for this flow. Then, for p € M, we
have

i) wip) #0;

(p) is closed;
g

ii
i1) w(p) is invariant under the flow, v.e., w(p) is a union of orbits;

)
iii)
)

w
w
iv) w(p) is connected.

Proof: i) Choose a sequence {¢,}, lim ¢, = oo, and let {p, = ¢:,(p)}. Since
1—00

M is compact, {p,} has a convergent subsequence whose limit belongs to
w(p). Thus, w(p) # 0.

ii) It suffices to show that the complement of w(p) is open. Choose q ¢
w(p). Then there must exist some neighborhood of ¢, U(g), that is disjoint
from the set of points { ¢:(p) | t > T} for some T > 0. Hence, ¢ is contained
in some open set that contains no points in w(p). Since ¢ is arbitrary, we
are done.

iii} Let ¢ € w(p) and § = ¢5(q). Choose a sequence t, st with

1100

¢¢,(p) — q. Then ¢y, 1 4(p) = &, (¢t1 (p)) (cf. the notation for flows following
Proposition 1.1.13) converges to § as i — co. Hence, § € w(p), and therefore
w(p) is invariant. However, there is a slight hole in this argument that needs
to be filled; namely, it is not immediately obvious that ¢,(-) exists for all
s.
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We begin by arguing that ¢s(q) exists for s € (—o0, 00) when g € w(p).
It should be clear that this is true for s € (0,00) since M is a positively
invariant compact set (cf. Theorem 1.1.9). Therefore, it suffices to show
that this is true for s € (—o00,0].

Now ¢ € w(p), so by definition we can find a sequence {t,}, ¢, —E 00,

T

such that ¢¢ (p) — ¢ as i — oo. Let us order the sequence so that t; <
ty < -+ < tp < ---. Next consider ¢, (¢>t!(p)). By Proposition 1.1.13 this
is valid for s € [—t,,0]. Taking the limit as i — oo and using continuity
as well as the fact that ¢, — ¢ as i — o0, we see that ¢s(¢) exists for
s € (—00,0].

iv) The proof is by contradiction. Suppose w(p) is not connected. Then
we can choose open sets Vi, V such that w(p) C Vi U Va2, w(p) NV; # 0,
w(p) N V2 # 0,’and Vi N Vo = 0. The orbit of p accumulates on points
in both V1 and V5; hence, given T" > 0, there exists ¢ > T such that
¢:(p) € M — (V1 UV;) = K. Then we can find a sequence {t,}, t, o 00,

with ¢, (p) € K. Passing to a subsequence if necessary we have ¢, (p) — g,
g € K. But this implies that ¢ € w(p) € V1 U Va. Contradiction. D

The following definition will be useful.

DEFINITION 1.1.16 Let ¥ be a continuous, connected arc in P. Then X is
said to be transverse to the vector field on P if the vector dot product of
the unit normal at each point on ¥ with the vector field at that point is
not zero and does not change sign on . Or equivalently, since the vector
field is C™, r > 1, the vector field has no fixed points on ¥ and is never
tangent to X.

Now we are in a position to actually prove the Poincaré-Bendixson theo-
rem. We will first prove several lemmas from which the theorem will follow
easily. Our presentation follows closely Palis and de Melo [1982]. In all that
follows, M is understood to be a positively invariant compact set in P.
For any point p € P, we will denote the orbit of p under the flow ¢;(-) for
Positive times O (p) (also called the positive semiorbit of p).

Lemma 1.1.15 Let & C M be an arc transverse to the vector field. The
Positive orbit through any point p € M, O, (p), intersects ¥ in a monotone
Sequence; that 1s, if p, 15 the i*P intersection of Oy (p) with X, then p, €
[pi—11p1+l]-

Proof: Consider the piece of the orbit O, (p) from p,_; to p, along with
.the segment [p,_1,p,] C ¥ (see Figure 1.1.25). (Note: of course, if Oy (p)
Intersects ¥ only once then we are done.) This forms a positively invariant
Tegion D. Hence, O, (p,) C D, and therefore we must have p,4 (if it exists)
Contained in D. Thus we have shown that p, € [p,_;,p,11]. O
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FIGURE 1.1.25.

We remark that Lemma 1.1.15 does not apply immediately to toroidal
phase spaces. This is because the piece of the orbit from p,_; to p, along
with the segment [p,.1,p,] C X divides M into two “disjoint pieces.” This
would not be true for orbits completely encircling a torus. However, the
lemma would apply to pieces of the torus that behave as M described
above.

Corollary 1.1.16 The w-limit set of p (w(p)) intersects . in at most one
point.

Proof: The proof is by contradiction. Suppose w(p) intersects ¥ in two

points, ¢; and g2. Then by the definition of w-limit sets, we can find se-

quences of points along Oy (p), {p»} and {p,}, which intersect X such that

Dn T» q1 and Py, ——T—> q2. However, if this were true, then it would con-
njoo n|oo

tradict the previous lemma on monotonicity of the intersections of O, (p)
with . O

Lemma 1.1.17 Ifw(p) does not contain fized points, then w(p) is a closed
orbit.

Proof: The strategy is to choose a point g € w(p), show that the orbit of ¢
is closed, and then show that w(p) is the same as the orbit of g.

Choose = € w(q); then z is not a fixed point, since w(p) is connected and
closed and is a union of orbits containing no fixed points. Construct an arc
transverse to the vector field at z (call it ¥). Now O, (q) intersects X in
a monotone sequence, {g,}, with g, " z, but since ¢, € w(p), by the

oo

previous corollary we must have ¢, = z for all n. Since z € w(q), the orbit
of ¢ must be a closed orbit.

It only remains to show that the orbit of g and w(p) are the same thing.
Taking a transverse arc, %, at g, we see by the previous corollary that w(p)
intersects ¥ only at ¢. Since w(p) is a union of orbits, contains no fixed
points, and is connected, we know that O(q) = w(p). O



1.1. Background Material from Dynamical Systems Theory 49

FIGURE 1.1.26.

Lemma 1.1.18 Let p, and po be distinct fived points of the vector field
contained in w(p), p € M. Then there exists at most one orbit v C w(p)
such that a(y) = p1 and w(y) = pa. (Note: by a(y) we mean the o limit
set of every point on v; similarly for w(v).)

Proof: The proof is by contradiction. Suppose there exist two orbits 7,
72 € w(p) such that a(y,) = p1, w(7v,) = pe, i = 1,2. Choose points ¢ € vy,
and gy € - and construct arcs X1, s transverse to the vector field at each
of these points (see Figure 1.1.26).

Since 1, v2 C w(p), O+ (p) intersects X, in a point a and later intersects
Y2 in a point b. Hence, the region bounded by the points ¢i, a, b, g2, p2
is a positively invariant region, but this leads to a contradiction, since 7,
72 Cw(p). O

Now we can finally prove the theorem.

Theorem 1.1.19 (Poincaré-Bendixson) Let M be a positively invari-
ant region for the vector field containing a finite number of fized points. Let
P € M, and consider w(p). Then one of the following possibilities holds.

i) w(p) is a fized point;
il) w(p) is a closed orbit;

iii) w(p) consists of a finite number of fizved points py,---,p, and orbits
Y with a(y) = p, and w(y) = p,.

Proof: 1f w(p) contains only fixed points, then it must consist of a unique
fixed point, since the number of fixed points in M is finite and w(p) is a
connected set.

If w(p) contains no fixed points, then, by Lemma 1.1.17, it must be a
closed orbit. Suppose that w(p) contains fixed points and nonfixed points
(sometimes called regular points). Let v be a trajectory in w(p) consisting
of regular points. Then w(7) and a{vy) must be fixed points since, if they
Wwere not, then, by Lemma 1.1.17, w(v) and a(y) would be closed orbits,
which is absurd, since w(p) is connected and contains fixed points.
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(a)

@

A

FIGURE 1.1.27. a) 0 < § < V/8; b) 6 > /8.

We have thus shown that every regular point in w(p) has a fixed point
for an a and w limit set. This proves iii) and completes the proof of the
Poincaré-Bendixson theorem. DO

For an example illustrating the necessity of a finite number of fixed points
in the hypotheses of Theorem 1.1.19 see Palis and de Melo [1982]. For
generalizations of the Poincaré-Bendixson theorem to arbitrary closed two-
manifolds see Schwartz [1963].

Application to the Unforced Duffing Oscillator

We now want to apply the Poincaré-Bendixson theorem to the unforced
Duffing oscillator which, we recall, is given by

=y,

§=z— 15— 6y, 6>0.

Using the fact that the level sets of V(z,y) = y2/2 — 22/2 + z*/4 form
positively invariant sets for § > 0, we see that the unstable manifold of the
saddle must fall into the sinks as shown in Figure 1.1.26; see Exercise 1.1.36.
The reader should convince him- or herself that Figure 1.1.27 is rigorously
justified based on analytical techniques developed in this chapter. Note
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FIGURE 1.1.28.

that we have not proved anything about the global behavior of the stable
manifold of the saddle. Qualitatively, it behaves as in Figure 1.1.28, but,
we stress, this has not been rigorously justified.

Exercises

1.1.1 Consider the following linear vector fields on R?.

@\ (A 0 [z A<0

22 ) N0 p)\xz2 /)’ w>0

1 A<O0

’ u<0

(A =W\ (o A<0

T \w T ) w>0

( <$1> A< 0.
L2

( (xl), A> 0.

1) For each vector field compute all trajectories and illustrate
them graphically on the phase plane. Describe the stable,
unstable, and center manifolds of the origin.
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For vector field a), discuss the cases |A| < p, |A| = g, and
{A| > p. What are the qualitative and quantitative differ-
ences in the dynamics for these three cases? Can the unsta-
ble manifold of the origin be considered an attracting set
and/or an attractor and do the relative magnitudes of the
eigenvalues affect these conclusions?

For vector field b), discuss the cases A < p, A =, A > p.
What are the qualitative and quantitative differences in the
dynamics for these three cases? Describe all zero- and one-
dimensional invariant manifolds for this vector field. De-
scribe the nature of the trajectories at the origin. In partic-
ular, which trajectories are tangent to either the x; or zo
axis?

In vector field c), describe how the trajectories depend on
the relative magnitudes of A and w. What happens when
A = 0? When w = 07

Describe the effect of linear perturbations on each of the
vector fields.

Describe the effect near the origin of nonlinear perturba-
tions on each of the vector fields. Can you say anything
about the effects of nonlinear perturbations on the dynam-
ics outside of a neighborhood of the origin?

We remark that 6) is a difficult problem for the nonhyperbolic fixed
points. We will study this situation in great detail in Chapter 3.

1.1.2 Consider the following linear maps on R2.

a) 1 o A0 1 p\| <1
T2 0 u)\z2)’ ) > 1
1 A0 1 |)\l <1

2 (2)- (6 0)(E) W
Ty A —w T

0 ()0 ) E) e
T 1 0 T

o (3)=(03) () wer
Ty 1 A T

1 (@) 1) () e
A 1 0 I

0 (2)- G @)
1) For each map compute all the orbits and illustrate them

graphically on the phase plane. Describe the stable, unsta-
ble, and center manifolds of the origin.
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2) For map a), discuss the cases \,p > 0; A = 0, g > 0
A, pu < 0;and A <0, g > 0. What are the qualitative differ-
ences in the dynamics for these four cases? Discuss how the
orbits depend on the relative magnitudes of the eigenval-
ues. Discuss the attracting nature of the unstable manifold
of the origin and its dependence on the relative magnitudes
of the eigenvalues.

3) For map b), discuss the cases A, u > 0; A=0, 4> 0; A\, u <
0; and A < 0, g > 0. What are the qualitative differences
in the dynamics for these four cases? Describe all zero- and
one-dimensional invariant manifolds for this map. Do all
orbits lie on invariant manifolds?

4) For map c), consider the cases A2 +w? < 1, A2+w? > 1, and
A 4w = e for « rational and « irrational. Describe the
qualitative differences in the dynamics for these four cases.

5) Describe the effect of linear perturbations on each of the
maps.

6) Describe the effect near the origin of nonlinear perturba-
tions on each of the maps. Can you say anything about the
effects of nonlinear perturbations on the dynamics outside
of a neighborhood of the origin?

We remark that 6) is very difficult for nonhyperbolic fixed points
(more so than the analogous case for vector fields in Exercise 1.1.1)
and will be treated in great detail in Chapter 3.

1.1.3 Consider the following vector fields.

a)
b)

f)

g)

T =y,

¥ = 6y — (z,y) € R

T =y,

y: _6y_ul._x2 (xvy) € R2'
T =y,

g = —5y—ua:—x3, ('Ivy) € R%.

T = —br — py + zy,

. ,y) € R?.
g=pr—by+ Jat-y?), OV
i=—z+z3

Z):$+y, ($7y)€IR‘2
F=r(l—r2

ézcc()s4QT & (7‘,9)6]R+><81.

P (6 =1,

6 =12 (r,8) ¢ Rt x St
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é:U, i
S COEE IS &

1 91 = Wi, . .
l) '92=w2+0{t’n21, (91,92)65 x S*.
i) Ql:Bz—smBu (91,92)651 Sl
92=—027
91:0%, . .
k) 92 = Wy, (01762) S S X S .

Find all fixed points and discuss their stability in the linear approx-
imation. Describe the nature of the stable and unstable manifolds
of the fixed points by drawing phase portraits. Can you determine
anything about the global behavior of the manifolds? Do there exist
periodic, homoclinic, or heteroclinic orbits? ( Hint: use index theory,
Bendixson’s criteria, the Poincaré—Bendixson theorem, etc.; you also
may want to look ahead to Exercise 1.1.16.)

Describe the attractors for each vector field and discuss what might
determine their domains of attraction. In a), b), ¢), d), g), and h)
consider the cases § < 0,86 =0,6 >0, u <0, p =0, and £ > 0. In i)
and k) consider w; > 0 and wy > 0.

1.1.4 Counsider the following maps.

=T, 2

)ny_"‘y’ (m’y)elR"
2

T =z, 2

b)ny+y, {r,y) € R”.
01— 0y,

1 1
) oo rs, (Br) S xS

01 — Sin91,

1 1
8, — 01, (01,02)65 x S,

e) y (Er_yf)l/27 (x,y) € R%

T — Y

y— (zy)'/2,

z = p— by — 22,
Yy—z,

£) (z,9) € R”.

g) (z,y) € R?.

6— 0+,

h) v — 8v — pcos(f + v),

(8,v) € S' x R™.
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Find all the fixed points and discuss their stability in the linear ap-
proximation. Describe the nature of the stable and unstable manifolds
of the fixed points by drawing phase portraits. Can you determine any
higher period orbits or global behavior? Describe the nature of the
attractors and what might determine their domains of attraction. In
g) and h) consider the cases § < 0,86 =0,6 >0, p <0, p =0, and
u>0.

1.1.5 Consider a C" (r > 1) diffeomorphism
z — f(z), z e R"

Suppose f has a hyperbolic periodic orbit of period k. Denote the
orbit by °

O(p) = {p, (), F*(0),-- -, f* (), f*(p) = p}.

Show that stability of O(p) is determined by the linear map

y— Df*(f7(p))y

for any j = 0,1,---,k — 1. Does the same result hold for periodic
orbits of noninvertible maps?

1.1.6 Prove Liapunov’s theorem for flows, i.e., let Z be a fixed point of
z = f(z), zeR",

and V:W — R be a differentiable function defined on some neigh-
borhood W of % such that

i) V(z) =0and V(z) > 0if z # z; and
i) V(z) <0in W - {z}.
Then Z is stable. Moreover, if
iii) V(z) <0in W — {2}

then I is asymptotically stable. Also, show that if V(z) > 0, then
T = I is unstable.

1.1.7 Prove Dirichlet’s theorem (Siegel and Moser [1971]). Consider a C”
vector field (r > 1)

& = f(x), z € R",
which has a fixed point at z = . Let H(z) be a first integral of this

vector field defined in a neighborhood of z = # such that z = % is a
nondegenerate minimum of H(z). Then z = % is stable.
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1.1.8 Formulate the definitions of Liapunov stability and asymptotic sta-
bility for maps.

1.1.9 Prove Liapunov’s theorem for maps, i.e., consider a C” diffeomor-
phism
T = f(x)v T e ]an

and suppose that we have a scalar-valued function
V:U - R
defined on some open set U € R™ satisfying
i) V(zo) =0;

it) V(z) > 0 for z # zg;
ili) Vo f(z) € V(z) with equality if and only if = xo.

Then ¢ = zg is a stable fixed point. Moreover, if strict inequality
holds in iii), then & = ¢ is asymptotically stable. Does the same
result hold for noninvertible maps?

1.1.10 Show that hyperbolic fixed points of maps which are asymptotically
stable in the linear approximation are nonlinearly asymptotically sta-
ble.

1.1.11 Give examples of fixed points of vector fields and maps that are
stable in the linear approximation but are nonlinearly unstable.

1.1.12 Show that there is a solid ellipsoid F given by
prt+ oyt +o(z—2p)2 <c<

such that all solutions of the Lorenz equations,

dj:a‘(y_‘ll")a
y:pw—y_xzv 0157p203
z2 = —fFz+ xy,

enter E within finite time and thereafter remain in E.

1.1.13 Let V:IR™ — R be a C” map. Then the vector field
t=-VV(z)

is called a gradient vector field. Show that the nonwandering set of
a gradient vector field on R? contains only fixed points and that
no periodic or homoclinic orbits are possible. (Hint: use V() like a
Liapunov function, but see Hirsch and Smale [1974] if you need help.)
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1.1.14 Find fixed points and some low period points of the map
z+— px(l - x), p € [0,4].

Can you find bifurcation values of u for which new periodic points
appear? Discuss the results graphically.

1.1.15 Consider the vector field
.'i,‘ = 93, 2

. z,y) € R*.

y=-Yy, ( y)

The origin is a hyperbolic fixed point with stable and unstable man-
ifolds given by

W*(0,0) = {(&:9) |z =0}, W*(0,0) = {(z,y)|y=0}.

Let
Us = {(z,y) | ly — ol < ¢,0 < z < ¢, for some ¢ > 0},
U, = {( yv¥) ||z — z0) < £,0 <y <& for some € > 0};
see Figure E1.1.1.
y
ws
L
Yo+
<,
Yo
Yo —E
o u,
e wu
— _Jx
Xo-€ X+

FIGURE E1.1.1

Show that you can find smaller closed sets U, c U,, U, C U,, such
that U, maps onto U, under the time 7' flow map (T must be chosen
carefully; it depends on the size of the U,, U, ) and such that hor-
izontal and vertical boundaries of U, correspond to horizontal and
vertical boundaries of U,. How would this problem be formulated
and solved for maps?
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(Note: This seemingly silly exercise is important for the understand-
ing of chaotic invariant sets. We will use it later when we study the
orbit structure near homoclinic orbits in Chapter 4.)

1.1.16 Consider the following vector fields.

a) &+ pur=0, r € R
b) &+ pxr+ 22 =0, reR'.
c) i+ pux+ 22 =0, reR"
9 Z‘/: ufﬁlig(ﬁé— ),  @WERS
1) Write a}, b) and c) as systems.
2) Find and determine the nature of the stability of the fixed
points.
3) Find the first integrals and draw all phase curves for o < 0,
w=0,and ¢ > 0.

1.1.17 Euler’s equations of motion for a free rigid body are

. I, —1I3
Ty = Mams,
1 LI s
Is -1
iy = 2 Lmyma, (m1, ma,m3) € R,
I
) L -5
Ty = mim
3 1112 17762,

where m, = Lw,, 1= 1,2,3, I, > I, > I3.

1) Find and determine the nature of the stability of the fixed
points.
2) Show that the functions

H == -2z, 03
(m17m27m3) 2 I] + 12 + 13

2 2 2
L(mj,me,m3g) =mi+ mj5 +mj

2 2 2
1 [ml ms m3]
— ,

are constants on orbits.
3) For fixed L, draw all phase curves.

1.1.18 Show that the following vector field on the cylinder

g:;“’ (v,6) € R x §*,

has a periodic orbit. Explain why Bendixson'’s criterion does not hold.
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1.1.19 Use the Poincaré-Bendixson theorem to show that the vector field

Epeoy-sle ) gy eR?,
y=z+py -y +y),
has a closed orbit for p > 0. (Hnt: transform to polar coordinates.)

1.1.20 There are six phase portraits of vector fields on the plane shown in
Figure E1.1.2. Using various phase plane techniques (e.g., index the-
ory, the Poincaré-Bendixson theorem) determine which phase por-
traits are correct and which are incorrect. Modify the incorrect phase
portraits to make them correct, not by deleting any orbits shown but
by changing the stability types of existing orbits or adding new orbits.

X X 2

6_¢

()
FIGURE E1.1.2

1.1.21 Construct a vector field in IR® with negative divergence that pos-
sesses a periodic orbit. Construct a vector field in R® with negative
divergence that contains a continuous family of periodic orbits.

1.1.22 Consider the linear vector field
= Az, z € R",

where A is an n x n constant matrix. Suppose all the eigenvalues of A
have negative real parts. Then prove that z = 0 is an asymptotically
stable fixed point for this linear vector field. (Hnt: utilize a linear
transformation of the coordinates which transforms A into Jordan
canonical form.)
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1.1.23 Suppose that the matrix A in Exercise 1.1.22 has some eigenvalues
with zero real parts (and the rest have negative real parts). Does it
follow that x = 0 is stable? Answer this question by considering the

following example.
T 1 . 0 1 I
T 2 o 00 T2 )

1.1.24 Consider the linear map
T — Az, z € R",

where A is an n x n constant matrix. Suppose all of the eigenval-
ues of 4 have modulus less than one. Then prove that £ = 0 is an
asymptotically stable fixed point for this linear map (use the same
hint given for Exercise 1.1.22).

1.1.25 Suppose that the matrix A in Exercise 1.1.24 has some eigenvalues
having modulus one (with the rest having modulus less than one).
Does it follow that x = 0 is stable? Answer this question by consid-
ering the following example.

,Z‘l — 1 ]. T 1
T2 01 T2 ’
1.1.26 Consider the stable and unstable manifolds of a hyperbolic fixed
point of saddle-type of a C™ (r > 1) vector field.

1) Can the stable (resp., unstable) manifold intersect itself?

2) Can the stable (resp., unstable) manifold intersect the stable
(resp., unstable) manifold of another fixed point?

3) Can the stable manifold intersect the unstable manifold? If so,
can the intersection consist of a discrete set of points?

4) Can the stable (resp., unstable) manifold intersect a periodic
orbit?

These questions are independent of the dimension of the vector field
(as long as it is finite); however, justify each of your answers with a
geometrical argument for vector fields on IR?. (Hint: the key to this
problem is uniqueness of solutions.)

1.1.27 Consider the stable and unstable manifolds of a hyperbolic fixed
point of saddle-type of a C” (r > 1) diffeomorphism.
1) Can the stable (resp., unstable) manifold intersect itself?

2) Can the stable (resp., unstable) manifold intersect the stable
(resp., unstable) manifold of another fixed point?
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3) Can the stable manifold intersect the unstable manifold? If so,
can the intersection consist of a discrete set of points?

These questions are independent of the dimension of the diffeomor-
phism (as long as it is finite); however, justify each of your answers
with a geometrical argument for diffeomorphisms on R%. Are the
arguments the same as for vector fields?

1.1.28 Consider the C" (r > 1) vector field
&= f(z), zeR™

Let ¢;(z) denote the flow generated by this vector field, which we
assume exists for all £ € R, z € IR". Suppose that the vector field
has a hyperbolic fixed point at £ = 7 having an s-dimensional stable
manifold, W*(Z), and a u-dimensional unstable manifold, W*(z) (s+
u = n). The typical way of proving their existence (see, e.g., Palis and
deMelo [1982] or Fenichel {1971]) is to prove the existence of the local
manifolds W _(Z) and W%_(Z) via a contraction mapping type of

argument. Then the global manifolds are defined by
w? (‘/i') = U ¢t(W]ic(:E))a

1<0

wH(z) = | (Wit (@)
£>0

1) Show that W*(z) and W*(Z) defined in this way are invariant
for allt € R.

2) If W _(z) and W (%) are C7, does it follow by this definition
that W*(z) and W*(z) are C"?

3) Discuss this definition of the stable and unstable manifolds in the
context of how one might compute the manifolds numerically.

1.1.29 Consider the situation described in Exercise 1.1.28 in the context
of C" diffeomorphisms. Existence of stable and unstable manifolds of
a hyperbolic fixed point is proved similarly (i.e., local manifolds are
shown to exist via a contraction mapping argument), and the global
manifolds are defined by

we(z) = | g"(Wie(2)),
n<0
wH(@) = [ ¢"(Wike()),
n>0
where g denotes the diffeomorphism and % the hyperbolic fixed point.

Answer 1), 2), and 3) from Exercise 1.1.28 in the context of C" dif-
feomorphisms.
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1.1.30 Consider a hyperbolic fixed point of a C" (r > 1) vector field on R?
whose stable and unstable manifolds intersect along a homoclinic or-
bit, as shown in Figure E1.1.3. Show that any point on the homoclinic
orbit cannot reach the fixed point in finite time.

FIGURE E1.1.3

1.1.31 Consider a periodic orbit (of either a C” (r > 1) vector field or
map) that is contained in a compact region of phase space. Can the
period of the orbit be infinite?

1.1.32 Let ¢{x) denote a flow generated by a C” (r > 1) vector field on
R" that exists for all z € R", t € R.

1) Show that the o and w limit sets of the flow are contained in
the nonwandering set of the flow.

2) Is the nonwandering set contained in the union of the o and w
limit set?

1.1.33 Let ¢:(x) denote a flow generated by a C™ (r > 1) vector field on
R” that exists for all z € R”, ¢t € IR. Suppose A is an attracting set,
and let U be a neighborhood of A that is attracted to A. Then is it

true that
A=) ¢(U)?

t>0

1.1.34 Suppose A is an attracting set (of either a vector field or map), and
suppose that £ € A4 is a hyperbolic fixed point of saddle-type. Must
the following be true

1) We(z) C A,
2) W*(z) Cc A7
1.1.35 Consider the union of the homoclinic orbit and the hyperbolic fixed

point that it connects (shown in Figure E1.1.3). Can this set be an
attracting set?

1.1.36 Prove that for § > 0 the unstable manifold of the saddle-type fixed
point of the unforced Duffing oscillator falls into the sinks as shown
in Figure 1.1.27.
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1.1.37 Consider the C” {r > 1) vector field
z = f(x), z cR",

with flow ¢(t, x) defined for all t € R, z € R™. Prove that iftr Df(z) =
0V € R, then the flow ¢(t, z) preserves volume.

1.1.38 Consider the C" (r > 1) diffeormorphism
z — g(z), z e R™

Suppose that det Dg(x) = 1Vx € R". Prove that the diffetomorphism
preserves volume.

1.1.39 Discuss the relationship between Exercises 1.1.37 and 1.1.38.

1.1.40 Consider the following vector field on IR*.

j?] _ -2 0 Iy
()= %) E) we
The stable manifold of the origin is given by
wW#(0,0) = {(1‘1,1‘2) € R? |zo = 0}.

Consider a line segment contained in W*(0, 0). Under the evolution of
the flow generated by the vector field the length of the line segment
shrinks to zero as t — oo. Does this violate the result of Exercise
1.1.377 Why or why not?

1.1.41 Consider the C" (r > 1) diffeomorphism
z — g(x), z € R".

Suppose z = Z is a nonwandering point, i.e., for any neighborhood U
of Z, there exists an n # 0 such that ¢g"(U) N U # 0 (cf. Definition
1.1.9). Is it possible that there may exist only one such n, or, if there
exists one n, must there be a countable (infinity?) of such n? Does
the same result hold for flows?

1.1.42 Define what is meant by the term “perturbation” in the context of
dynamical systems.
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1.2 Poincaré Maps: Theory, Construction, and
Examples

In the second half of Chapter 1 we will develop more quantitative, global
techniques for the analysis of dynamical systems. In particular, we will
emphasize the idea of a Poincaré map, especially the intuitive, geometrical,
and computational aspects. We will apply our methods to a study of the
periodically forced, damped Duffing oscillator given by

=y,

2
?J:m—zs—éy-{-yc(,swt’ (Iay)ER 3 (121)

where 6 > 0 and v, w > 0. We will see that the dynamics of this equation are
much more complicated than the unforced (nonautonomous) case. Indeed,
we know that orbits of nonautonomous systems may intersect and that the
Poincaré-Bendixson theorem does not hold. This leads to the possibility of
much more exotic dynamics than we have seen thus far. In Chapter 4 we
will see that (1.2.1) may exhibit deterministic chaos.

1.2A POINCARE MAPS: EXAMPLES

The idea of reducing the study of continuous time systems (flows) to the
study of an associated discrete time system {map) is due to Poincaré [1899],
who first utilized it in his studies of the three body problem in celestial
mechanics. Nowadays virtually any discrete time system that is associated
with an ordinary differential equation is referred to as a Poincaré map.
This technique offers several advantages in the study of ordinary differential
equations, including the following:

1. Dimensional Reduction. Construction of the Poincaré map involves
the elimination of at least one of the variables of the problem resulting
in the study of a lower dimensional problem.

2. Global Dynamics. In lower dimensional problems (say, dimension < 4)
numerically computed Poincaré maps provide an insightful and strik-
ing display of the global dynamics of a system; see Guckenheimer and
Holmes [1983] and Lichtenberg and Lieberman [1982] for examples of
numerically computed Poincaré maps.

3. Conceptual Clarity. Many concepts that are somewhat cumbersome
to state for ordinary differential equations may often be succinctly
stated for the associated Poincaré map. An example would be the
notion of orbital stability of a periodic orbit of an ordinary differential
equation (see Hale {1980]). In terms of the Poincaré map, this problem
would reduce to the problem of the stability of a fixed point of the
map, which is simply characterized in terms of the eigenvalues of the
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map linearized about the fixed point (see Case 1 to follow in this
section).

It would be useful to give methods for constructing the Poincaré map as-
sociated with an ordinary differential equation. Unfortunately, there exist
no general methods applicable to arbitrary ordinary differential equations,
since construction of the Poincaré map requires some knowledge of the
geometrical structure of the phase space of the ordinary differential equa-
tion. Thus, construction of a Poincaré map requires ingenuity specific to
the problem at hand; however, in three cases that come up frequently, the
construction of a specific type of Poincaré map can in some sense be said
to be canonical. The three cases are:

1. In the study of the orbit structure near a periodic orbit of an ordinary
differential equation.

2. In the case where the phase space of an ordinary differential equation
is periodic, such as in periodically forced oscillators.

3. In the study of the orbit structure near a homoclinic or heteroclinic
orbit.

We begin by considering Case 1.

Case 1: Poincaré Map Near a Periodic Orbit

Consider the following ordinary differential equation
z = f(z), z e R™, (1.2.2)

where f:U — IR™ is C™ on some open set U C IR". Let ¢(¢,-) denote the
flow generated by (1.2.2). Suppose that (1.2.2) has a periodic solution of
period T which we denote by ¢(t, zg), where xg € R"™ is any point through
which this periodic solution passes (i.e., ¢(t + T,zo) = ¢(t,x0)). Let &
be an n — 1 dimensional surface transverse to the vector field at o (note:
“transverse” means that f(z)-n(z) # 0 where “” denotes the vector dot
product and n(z) is the normal to ¥ at z); we refer to ¥ as a cross-section
FO the vector field (1.2.2). Now in Theorem 1.1.8 we proved that ¢(t,z)
18 C" if f(z) is C; thus, we can find an open set V C X such that the
trajectories starting in V return to ¥ in a time close to 7. The map that
associates points in V with their points of first return to ¥ is called the
Poincaré map, which we denote by P. To be more precise,

PV -3,

z > §(r(2).2), (1.2.3)

where 7(z) is the time of first return of the point z to X. Note that, by
Construction, we have 7(x¢) = T and P(xg) = zy.
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FIGURE 1.2.1. The geometry of the Poincaré map for a periodic orbit.

Therefore, a fixed point of P corresponds to a periodic orbit of (1.2.2),
and a period k point of P (i.e., a point x € V such that P*(z) = x
provided P*(z) € V,i=1,---,k) corresponds to a periodic orbit of (1.2.2)
that pierces 3 k times before closing; see Figure 1.2.1. In applying this
technique to specific examples, the following questions immediately arise.

1. How is ¥ chosen?
2. How does P change as ¥ is changed?

Question 1 cannot be answered in a general way, since in any given prob-
lem there will be many possible choices of X. This fact makes the answer
to Question 2 even more important. However, for now we will postpone
answering this question in order to consider a specific example.

ExAMPLE 1.2.1 Cousider the following vector field on IR?

& = px —y— (=’ +y), 2
. z,y) € R, 1.24
jotpy—ya®+y?), Y (1.24)

where 1 € R! is a parameter (note: we will meet (1.2.4) later when we study
the Poincaré-Andronov-Hopf bifurcation). Our goal is to study (1.2.4) by
constructing an associated one-dimensional Poincaré map and studying the
dynamics of the map. According to our previous discussion, we need to find
a periodic orbit of (1.2.4), construct a cross-section to the orbit, and then
study how points on the cross-secticn return to the cross-section under the
flow generated by (1.2.4). Considering (1.2.4) and thinking about how to
carry out these steps should bring home the point stated at the beginning of
this section — constructing a Poincaré map requires some knowledge of the
geometry of the flow generated by (1.2.4). In this example the procedure is
greatly facilitated by considering the vector field in a “more appropriate”
coordinate system; in this case, polar coordinates.

Let
x =rcosb,

y =rsing; (1.25)



1.2. Poincaré Maps 67

then (1.2.4) becomes
_ 3
g - ‘1" - (1.2.6)

‘We will require g > 0, in which case the flow generated by (1.2.6) is given

by
1 1 1 -1/2
¢e(ro,60) = <<— + (—2 — —) 6_2“t) b+ 00) . (1.2.7)
U To H

It should be clear that (1.2.6) has a periodic orbit given by ¢,(\/i, 6p). We
now construct a Poincaré map near this periodic orbit.
We define a cross-section X to the vector field (1.2.6) by

E={(r0)eRxS"|r>0,0=06)} (1.2.8)

The reader should verify that ¥ is indeed a cross-section. From (1.2.6) we
see that the “time of flight” for orbits starting on ¥ to return to X is given
by t = 2m. Using this information, the Poincaré map is given by

P:¥Y—-%
-1/2
(ro,60) — d2x(r0,60) = ((ﬁ + (,}—g - ﬁ) 6‘“") 00 + 27T> :
(1.2.9)
or simply
—1/2
" (l + (—15 - 1) e“’”‘) , (1.2.10)
poo\? p

where we have dropped the subscript ‘0’ on r for notational convenience.
The Poincaré map has a fixed point at r = /. We can compute the
stability of the fixed point by computing the eigenvalue (which is just the
derivative for a one-dimensional map) of DP(,/z). A simple calculation
gives

DP(\/p) = e "™ (1.2.11)

Therefore, the fixed point r = VIt is asymptotically stable.
Before leaving this example there are several points to make.

1. Viewing (1.2.4) in the correct coordinate system was the key to this
problem. This made the choice of a cross-section virtually obvious
and provided “nice” coordinates on the cross-section (i.e., r and 8
“decoupled” as well). Later we will learn a general technique called
normal form theory which can be used to transform vector fields into
the “nicest possible” coordinate systems.

2. We know that the fixed point of P corresponds to a periodic orbit of
(1.2.6) and that the fixed point of P is asymptotically stable. Does
this imply that the corresponding periodic orbit of (1.2.6) is also
asymptotically stable? It does, but we have not proved it yet (note:
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P>

FIGURE 1.2 2.

the reader should think about this in the context of this example until
it feels “obvious”). We will consider this point when we consider how
the Poincaré map changes when the cross-section is varied.

Before leaving Case 1, let us illustrate how the study of Poincaré maps near
periodic orbits may simplify the geometry.

Consider a vector field in IR® generating a flow given by ¢;(z), = € R®.
Suppose also that it has a periodic orbit, v, of period T > 0 passing through
the point zo € R?, i.e.,

é¢(x0) = Pryr(z0).

We construct in the usual way a Poincaré map, P, near this periodic orbit
by constructing a cross-section, ¥, to the vector field through zy and con-
sidering the return of points to ¥ under the flow generated by the vector
field; see Figure 1.2.1.

Now consider the Poincaré map P. The map has a fixed point at xg.
Suppose that thz fixed point is of saddle type having a one-dimensional
stable manifold, W*(x¢), and a one-dimensional unstable manifold W*(xzq);
see Figure 1.2.2. We now want to show how these manifolds are manifested
in the flow and how they are related to 4. Very simply, using them as
initial conditions, they generate the two-dimensional stable and unstable
manifolds of 7. Mathematically, this is represented as follows

We(y) = | de(Wiie(2)),

t<0

W (y) = | o (Wit (o).

t>0

It should be clear that W#(v) (resp. W*(~)) is just as differentiable as
W (zo) (resp. W (z0)), since ¢;(z) is differentiable with respect to x;
see Figure 1.2.3 for an illustration of the geometry. Hence, in IR*, W*(~)
and W¥(v) are two two-dimensional surfaces which intersect in the closed



1.2. Poincaré Maps 69

FIGURE 1.2.3.

curve. This should serve to show that it is somewhat simpler geometrically
to study periodic orbits and their associated stable and unstable manifolds
by studying the associated Poincaré map.

We now turn to Case 2.
Case 2: Powncaré Map of a Tvme-Periodic Ordinary Differential Equation
Consider the following ordinary differential equation
& = f(z,t), zeR", (1.2.12)

where f: U — R" is C” on some open set U C R™ x R!. Suppose the time
dependence of (1.2.12) is periodic with fixed period T = 27/w > 0, i.e.,
f(z,t) = f(z,t + T). We rewrite (1.2.12) in the form of an autonomous
equation in n + 1 dimensions (see Section 1.1G) by defining the function

g: R! — S!,

t 0(t) = wt, mod2r. (1.2.13)
Using (1.2.13) equation (1.2.12) becomes
x'—‘f(-'l'ye)v (x’g) E]R,n XSI_ (1214)

We denote the flow generated by (1.2.14) by () = (z(¢),0(t) = wt +
6o (mod 2m)). We define a cross-section X% to the vector field (1.2.14) by

% = {(2,0) e R x §' | § = b € (0,2n] }. (1.2.15)

The unit normal to % in R" x S! is given by the vector (0, 1), and it is
clear that % is transverse to the vector field (1.2.14) for all z € R™, since
(f(a:, 6),w)-(0,1) = w # 0. In this case £% is called a global cross-section.
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We define the Poincaré map of $% as follows:

Py P 26_’0,
(1’(60—00),6())}—-)(.’L’(e—OM),O—O-FZITEéO),
w [,

x (60 — 00) T (Mﬂ) . (1.2.16)
w w

Thus, the Poincaré map merely tracks initial conditions in z at a fixed
phase after successive periods of the vector field.

It should be clear that fixed points P, correspond to 27/w-periodic
orbits of (1.2.12) and k-periodic points of P, correspond to periodic orbits

of (1.2.12) that pierce ¥.% k times before closing. We will worry about the
effect on the dynamics of the map caused by changing the cross-section
later. Now we consider an example.

EXAMPLE 1.2.2: PERIODICALLY FORCED LINEAR OSCILLATORS Consider
the following ordinary differential equation

i+ 62 4 wiz = ycoswt. (1.2.17)

This is an equation which most students learn to solve in elementary cal-
culus courses. Qur goal here is to study the nature of solutions of (1.2.17)
from our more geometrical setting in the context of Poincaré maps. This
will enable the reader to obtain a new point of view on something relatively
familiar and, we hope, to see the value of this new point of view.

We begin by first obtaining the solution of (1.2.17). Recall (see, e.g.,
Arnold {1973] or Hirsch and Smale [1974]) that the general solution of
(1.2.17) is the sum of the solution of the homogeneous equation (i.e., the
solution for v = 0), sometimes called the free oscillation, and a particular
solution, sometimes called the forced oscillation. For § > 0 there are several
possibilities for the homogeneous solution, which we state below.

& > 0: The Homogeneous Solution, xp(t). There are three cases depending
on the sign of the quantity 6% — 4w3.

62 —4wd > 0 = zp(t) = Cre™t + Cae™", (1.2.18)
where
T2 = —6/2% (1/2)4/62 — 4w3,
62 — 4w = 0= zp(t) = (C + Cat)e™O/D,
8% — 4w(2) < 0= zp(t) = e'(‘s/Q)t(C’l cos Wt + Cysmwt),

and where @ = (1/2)/4w2 — 62 In all three cases C and C; are unknown

constants which are fixed when initial conditions are specified. Also, no-

tice that in all three cases tlim zp(t) = 0. We now turn to the particular
—00

solution.
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The Particular Solution, z,(t).

x,(t) = Acoswt + Bsinwt, (1.2.19)
where
he E-wn L bw
T (wf — W)+ (w)? (W~ w?)? o (w)?

Next we turn to the construction of the Poincaré map. For this we will
consider only the case §2 — 4w2 < 0. The other two cases are similar, and
we leave them as exercises for the reader.

The Powncaré Map: 62 —4w?2 < 0. Rewriting (1.2.17) as a system, we obtain

T =y,

§ = —wiz — 8y + ycoswt. (1.2.20)

By rewriting (1.2.20) as an autonomous system, as was described at the
beginning of our discussion of Case 2, we obtain

Il

Y
= —wir —6y+ycosh, (z,y,0) e R' x R! x S, (1.2.21)

w

<< B

S
il

k]

The flow generated by (1.2.21) is given by
(bt(mD?yD’ 00) - (x(t),y(t),wt + 90)7 (1222)
where, using (1.2.18¢) and (1.2.19), z(¢) is given by

z(t) = e /DY, coswt + Cysinwt) + Acoswt + Bsinwt

with
y(t) = z(¢). (1.2.23)
The constants C; and Cy are obtained by requiring
z(0) = zp,
y(O) = Yo,
which yield
Cl = X9 — A,
1/6 é
CQ = 5 (51'0 + Yo — EA — wB> . (1224)

Notice from (1.2.20) that we can set fp = 0 in (1.2.22) (cf. (1.2.16)).
. .We construct a cross-section at #p = 0 (note: this is why we specified the
Initial conditions at ¢t = 0) as follows

P =Y={(z,5,0) cR' xR x S* |8 =0¢€[0,2n)}, (1.2.25)
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y (A oB)

FIGURE 1.24

where we have dropped the subscript “0” on z, y, and 6 for notational
convenience. Using (1.2.23), the Poincaré map is given by

P Yo% s
b 1
(- 220
y -%s C-L£S5/\Y

e~/ [—AC + (- £ A - £B)
+ (6_5"/“’ [—ch + (-“;flA oy B) s] +wB

(1.2.26)

2,

+

oS
SN——

where

Equation (1.2.26) is an example of an affine map, i.e., it is a linear map
plus a translation.
The Poincaré map has a single fixed point given by

(z,y) = (A,wB) (1.2.27)

(note: this should not be surprising). The next question is whether or not
the fixed point 1s stable A simple calculation shows that the eigenvalues
of DP(A,wB) are given by

/\1 5 = e-én/w:tz?m?;/w (1228)

*

Thus the fixed point 1s asymptotically stable with nearby orbits appearing
as m Figure 1.2 4. (Note. the “spiraling” of orbits near the fixed pomt is
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due to the imaginary part of the eigenvalues.) Figure 1.2.4 is drawn for
A > 0; see (1.2.19).

The Case of Resonance: @ = w. We now consider the situation where the
driving frequency is equal to the frequency of the free oscillation. In this
case the the Poincaré map becomes

Py -3 s
(e ) (i) o
This map has a unique fixed point at
(z,y) = (A,wB). (1.2.30)
The eigenvalues of DP(A,wB) are identical and are equal to
A =e 0/, (1.2.31)

Thus, the fixed point is asymptotically stable with nearby orbits appearing
as in Figure 1.2.5. (Note: 1n this case orbits do not spiral near the fixed
point since the eigenvalues are purely real.)

For § > 0, in all cases the free oscillation dies out and we are left with
the forced oscillation of frequency w which is represented as an attracting

gXed point of the Poincaré map. We will now examine what happens for
=0.

§=0: Subharmonics, Ultraharmonics, and Ultrasubharmonacs. In this case
the equation becomes

r=y,

j— _wO:C + 7 cost, (1.2.32)
6

ll
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Using (1.2.18¢) and (1.2.19), we see that the general solution of {1.2.32) is
given by

2(t) = C} coswpt + Cy sinwgt + A cos wt,

. 1.2.33
y(t) = a(0), (1.2.33)
where 5

A= —— 1.2.34
UJ(2) . w27 ( )

and C} and Cy are found by solving
2(0) =z =C1 + 4, (1.2.35)

y(0) = yo = Cawo.

It should be evident that, for now, we must require w # wp in order for
(1.2.33) to be valid.

Before writing down the Poincaré map, there is an important distinction
to draw between the cases § > 0 and 6 = 0. As mentioned above, for § > 0,
the free oscillation eventually dies out leaving only the forced oscillation
of frequency w. This corresponds to the associated Poincaré map having a
single asymptotically stable fixed point. In the case § = 0, by examining
(1.2.33), we see that this does not happen. In general, for § = 0, it should
be clear that the solution is a superposition of solutions of frequencies w
and wp. The situation breaks down into several cases depending on the
relationship of w to wy. We will first write down the Poincaré map and
then consider each case individually.

The Poincaré map is given by

P.T Y,
T cos 2o L ginoree x
=\ _wosin2ree cos2med Yy

y Wo SIRET, w (1.2.36)

4 (A(l—coszw%e))

wo A sin 27 <2

Our goal is to study the orbits of P. As mentioned above, this will depend
on the relationship of w and wy. We begin with the simplest case.

1) Harmonic Response. Consider the point

(z,y) = (4,0). (1.2.37)

It is easy to verify that this is a fixed point of P corresponding to a solution
of (1.2.32) having frequency w.

We now want to describe a somewhat more geometrical way of viewing
this solution which will be useful later on. Using (1.2.37), (1.2.35) and
(1.2.33), the fixed point (1.2.37) corresponds to the solution

x(t) = Acoswt,

y(t) = —Awsinwt. (1.2.38)



1.2. Poincaré Maps 75
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If we view this solution in the z—y plane, it traces out a circle which closes
after time 27 Jw. If we view this solution in the z-y-6 phase space, it traces
out a spiral which can be viewed as lying on the surface of a cylinder.
The cylinder can be thought of as an extension of the circle traced out by
(1.2.38) in the z-y plane into the §-direction. Since 8 is periodic, the ends
of the cylinder are joined to become a torus, and the trajectory traces out
& curve on the surface of the torus which makes one complete revolution on
the torus before closing. The torus can be parameterized by two angles; the
_angle 6 is the longitudinal angle. We will call the latitudinal angle 6y, which
1s the angle through which the circular trajectory turns in the z-y plane.
This situation is depicted geometrically in Figure 1.2.6. Trajectories which
Y"ind many times around the torus may be somewhat difficult to draw, as
In Figure 1.2.6; we now want to show an easier way to represent the same
Information. First, we cut open the torus and identify the two ends as
shown in Figure 1.2.7. Then we cut along the longitudinal angle 8 and
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flatten it out into a square as shown in Figure 1.2.8. This square is really
a torus if we identify the two vertical sides and the two horizontal sides.
This means that a trajectory that runs off the top of the square reappears
at the bottom of the square at the same 6 value where it intersected the
top edge. For a more detailed description of trajectories on a torus, see
Abraham and Shaw [1984]. We stress that this construction works because
all trajectories of (1.2.32) lie on circles in the z-y plane. Motion on tori is
a characteristic of multifrequency systems.

2) Subharmonic Response of Order m. Suppose we have

w = Mmwy, m > 1, (1.2.39)

where m is an integer. Consider all points on ¥ except (z,y) = (4,0)
(we already know about this point). Using (1.2.33) and the expression for
the Poincaré map given in (1.2.38), it is easy to see that all points except
(z,y) = (A,0) are period m pownts, i.e., they are fixed points of the m't
iterate of the Poincaré map (note: this statement assumes that by the
phrase “period of a point” we mean the smallest possible period). Let us
now see what they correspond to in terms of motion on the torus.

Using (1.2.39) and (1.2.33) it should be clear that z(¢) and y(t) have fre-
quency w/m. Thus, after a time ¢ = 27 /w, the solution has turned through
an angle 27 /m in the z-y plane, i.e., 8y has changed by 27 /m. Therefore, the
solution makes m longitudinal circuits and one latitudinal circuit around
the torus before closing up. The m distinct points of intersection that the
trajectory makes with 6 = 0 are all period m points of P, or equivalently,
fixed points of the m*? iterate of P. Such solutions are called subharmonics
of order m. In Figure 1.2.9 we show examples for mm = 2 and m = 3.

3) Ultraharmonic Response of Order n. Suppose we have

nw = wo, n>1, (1.2.40)
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where n is an integer. Consider all points on £ ezcept (z,y) = (A,0). Using
(1.2.40) and (1.2.33) it is easy to see that every point is a fixed point of
the Poincaré map. Let us see what this corresponds to in terms of motion
on the torus.

Using (1.2.33) and (1.2.40), we see that z(t) and y(t) have frequency nw.
This means that after a time t = 27 /w, the solution has turned through an
angle 2mrn in the z-y plane before closing up. Since 2on = 27 (mod 27), this
explains the nature of these fixed points of P: they correspond to solutions
which make n latitudinal and one longitudinal circuits around the torus
before closing up. We illustrate the situation geometrically for n = 2 and

1 = 3 in Figure 1.2.10. Such solutions are referred to as ultraharmonics of
order n.

4) Ultrasubharmonic Response of Order m, n. Suppose we have

W = 1muwy, m, n>1, (1.2.41)
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t

where m and n are relatively prime integers, which means that all com-
mon factors of n/m have been divided out. Using exactly the same argu-
ments as those given above, it is easy to show that all points in ¥ ezcept
(z,y) = (A,0) are period m points which correspond to trajectories making
m longitudinal and n latitudinal circuits around the torus before closing
up. These solutions are referred to as ultrasubharmonics of order m, n. We
illustrate the situation for (n,m) = (2,3) and (n,m) = (3,2) in Figure
1.2.11.

5) Quasiperiodic Response. For the final case, suppose we have

w
— = irrational number. (1.2.42)
wo
Then for all points in ¥ ezxcept (z,y) = (A4,0), the orbit of the point densely
fills out a circle on ¥ which corresponds to an invariant two-torus in x-y-0
space. We will prove this rigorously in Example 1.2.3.
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ExampLE 1.2.3: THE STUDY OF COUPLED OSCILLATORS VIA CIRCLE
Maps In Example 1.1.9 we saw that (for I;, I> # 0) the study of two
linearly coupled, linear undamped oscillators in a four-dimensional phase

Space could be reduced to the study of the following two-dimensional vector
field

r=wi  (9,,0,) €5 xS (1.2.43)

b2 = wo,
The flow generated by (1.2.43) is defined on the two-torus, S! x S = T2,
and 6; and 60, are called the longitude and latitude; see Figure 1.2.12. As in
Exarnple 1.2.2, it is often easier to visualize flows on tori by cutting open
the torus, flattening it out, and identifying horizontal and vertical sides
of the resulting square as shown in Figure 1.2.13. The flow generated by
(1.2.43) is simple to compute and is given by

01(t) = w1t + 840,
B2(t) = wat + B2,

HOWever, orbits under this flow will depend on how w; and wy are related.

(mod 27). (1.2.44)
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DEFINITION 1.2.1 w; and w- are said to be incommensurate if the equation
mwy + nwe =0

has no solutions consisting of n, m € Z (integers). Otherwise, w; and wo
are commensurate.

Theorem 1.2.1 If w; and we are commensurate, then every phase curve
of (1.2.48) 1s closed. However, 1f w; and wo are incommensurate, then every
phase curve of (1.2.43) 1s everywhere dense on the torus.

To prove this theorem, we need the following lemma.

Lemma 1.2.2 Suppose the circle S! s rotated through an angle o, and o
18 tncommensurate with 2w. Then the sequence

S=1{0,0+0a,0+2a, -,0+na,---, (mod 2m)}

15 everywhere dense on the circle (note: n s an nteger).
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Proof:

0+ ma if ma-2n<0,
9+ ma(mod2r) = ¢ 8+ (ma —2wk) if ma— 27k >0,k >1
and ma — 2wx(k+ 1) <0,

so, in particular, since a and 27 are incommensurate, the sequence S is
infinite and never repeats.

We will use the “pigeonhole principle,” i.e., if you have n holes and n+1
pigeons, then one hole must contain at least two pigeons.

Divide the circle into k half-open intervals of equal length 27 /k. Then,
among the first k 4+ 1 elements of the sequence S, at least two must be in
the same half-open interval; call these points 8 + pa, 6 + ga(mod 27) with
p > ¢. Thus, (p t'q)oz = sa < 27/k(mod 27). Any two consecutive points
of the sequence S given by

5=1{0,0+sa,0+2sa,---,0 +nsa,- -, (mod 27)}

are therefore the same distance d apart, where d < 27 /k (note that § C S).

Now choose any point on S! and construct an e-neighborhood around it.
If k is chosen such that 27/k < ¢, then at least one of the elements of S
will lie in the e-neighborhood. This proves the lemma. O

Now we prove Theorem 1.2.1.

Proof: First, suppose w; and wy are commensurate, i.e., 3 n, m € Z such
that w; = (n/m)w2. We construct a Poincaré map as follows. Let the cross-
section ¥ be defined as

00 — £(6,,0,) | 6, =010 ). (1.2.45)
Then, using (1.2.45), we have

.o [
Py, 2010 — ¥0u0,

2
By s By + oy 2 (1.2.46)
w1

However, w, /w, = m/n; hence, we have
m

02 — 65 + 2w —(mod 27). (1.2.47)
n

This js a map of the circle onto itself (called a circle map); the number
w2/wy is called the rotation number. {Rotation numbers are also defined
for nonlinear circle maps, as we shall see later.)

It is clear that the nt! iterate of this map is given by

02 — 05 + 2rm(mod 27) = 85, (1.2.48)
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Thus, every 65 is a periodic point; hence the flow consists entirely of closed
orbits. This proves the first part of the theorem.

Now suppose w; and w, are incommensurate; then wy/w; = «, where «
is irrational. The Poincaré map is then given by

02 — 65 + 2wa(mod 27); (1.2.49)

thus, by Lemma 1.2.2, the orbit of any point #; is dense in the circle.

Next choose any point p on T2 and construct an e-neighborhood of p.
To finish the proof of Theorem 1.2.1 we need to show that, given any orbit
on T2, it eventually passes through this e-neighborhood of p. This is done
as follows.

First, we are able to construct a new cross-section ¥%19 which passes
through the e-neighborhood of p; see Figure 1.2.14. We have seen that the
orbits of Py, ,: 5910 — $10 are all dense on % for any 8. Therefore, we
can take any point on £%1° and look at its first intersection point with 10
under the flow (1.2.44). From this it follows that the iterates of this point
under Py = are dense in £%0. This completes the proof. O

Let us make a final remark before leaving this example. In our intro-
ductory motivational remarks we stated that Poincaré maps allow a di-
mensional reduction of the problem by at least one. In this example, we
have seen how the study of a four-dimensional system can be reduced to
the study of a one-dimensional system. This was possible because of our
understanding of the geometry of the phase space; i.e., the phase space was
made up of families of two-tori. It will be a common theme throughout this
book that a good qualitative feel for the geometry of the phase space will
put us in the best position for quantitative analysis.

Finally, we note that these results for linear vector fields on T? actually
remain true for nonlinear differentiable vector fields on 72, namely, that
the w limit sets for vector fields with no singular points are either closed
orbits or the entire torus; see Hale [1980].
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Case 3: Powncaré Map Near a Homoclinac Orbat

We now want to give an example of the construction of a Poincaré map
in the neighborhood of a homoclinic orbit. The general analysis for orbits
homoclinic to hyperbolic fixed points of autonomous ordinary differential
equations in arbitrary dimensions is rather involved and can be found in
Wiggins [1988]. Rather than getting entangled in technical details, we will
concentrate on a specific example in two dimensions which illustrates the
main ideas. Section 4.8 contains more examples.
Consider the ordinary differential equation

& =ar+ filz,y;p), 1 1 1
) z,y,u) € R* xR* xR, 1.2.50
=By + f2(2, 95 1), (@9.1) ( )

with fi1, f2 = O(|z}? + |y/?) and C”, r > 2 and where y is regarded as a
parameter. We make the following hypotheses on (1.2.50).

Hypothesis 1. oo < 0, 8> 0, and o + 8 # 0.

Hypothesis 2. At p = 0 (1.2.50) possesses a homoclinic orbit connecting the
hyperbolic fixed point (z,y) = (0,0) to itself, and on both sides of u =0
the homoclinic orbit is broken. Furthermore, the homoclinic orbit breaks
in a transverse manner in the sense that the stable and unstable manifolds
have different orientations on different sides of y = 0. For definiteness, we
will assume that, for 4 <0, the stable manifold lies inside the unstable
manifold, for u >0, the stable manifold lies outside the stable manifold
and, for 4 = 0, they coincide; see Figure 1.2.15.

Hypothesis 1 is of a local nature, since it concerns the nature of the
eigenvalues of the vector field linearized about the fixed point. Hypothesis
2 is global in nature, since it supposes the existence of a homoclinic orbit
and describes the nature of the parameter dependence of the homoclinic
orbit,

Now an obvious question is why this scenario? Why not stable inside for
# > 0 and unstable inside for p < 07 Certainly this could happen; however,
this is not important for us to consider at the moment. We need to know
only that, on one side of y = 0, the stable manifold lies inside the unstable
manifold, and on the other side of y = 0, the unstable manifold lies inside
the stable manifold. Of course, in applications, we would want to determine
which case actually occurs, and in Chapter 4, we will learn a method for
doing this {Melnikov’s method); however, now we will simply study the
consequences of a homoclinic orbit to a hyperbolic fixed point of a planar
vector field breaking in the manner described above.

Let us remark that it is certainly possible for the eigenvalues o and 3
to depend on the parameter p. However, this will be of no consequence
provided that Hypothesis 1 is satisfied for each parameter value and that
this is true for u sufficiently close to zero.
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FIGURE 1.2.15. Behavior of the homoclinic orbit as y is varied

The question we ask is the following: What 1s the nature of the orbit
structure near the homoclimic orbit for pu near u = 07 We will answer
this question by computing a Poincaré map near the homoclinic orbit and
studying the orbit structure of the Poincaré map. The Poincaré map that
we construct will be very different from those we constructed in Cases 1
and 2 in that it will be the composition of two maps. One of the maps, Py,
will be constructed from the flow near the origin (which we will take to be
the flow generated by the linearization of (1.2.50) about the origin). The
other map, Py, will be constructed from the flow outside of a neighbor-
hood of the fixed point, which, if we remain close enough to the homoclinic
orbit, can be made to be as close to a rigid motion as we like. The result-
ing Poincaré map, P, will then be given by P = P; o P,. Evidently, with
these approximations, our Poincaré map will be valid (meaning that its dy-
namics reflect the dynamics of (1.2.50)) only when it is defined sufficiently
close to the (broken) homoclinic orbit. We will discuss the validity of our
approximations later on, but for now we begin our analysis.

The analysis will proceed in several steps.

Step 1. Set up the domain for the Poincaré map.
Step 2. Compute P,.

Step 3. Compute P;.

Step 4. Examine the dynamics of P = P o B.
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Step 1: Set Up the Domain for the Powncaré Map. For the domain of Py we

choose
So={(z,y) e R*|z=¢>0, y >0}, (1.2.51)

and for the domain P, we choose
Si={(zyeR*|z>0,y=¢c>0)}). (1.2.52)

We will take € small; the need for this will become apparent later on. See
Figure 1.2.16 for an illustration of the geometry of g and %;.

Step 2: Compute Py. We will use the flow generated by the linear vector
field .
i = az,
Y= ﬁya
in order to compute the map, Py, of points on ¥y to ;. For this to be a
good approximation, it should be clear that we must take € and y small.
We will discuss the validity of this approximation later.
The flow generated by (1.2.53) is given by

(1.2.53)

z(t) = zoe™,
y(t) = yoe™.

The time of flight, T', needed for a point (¢,y) € T to reach ¥; under the
action of (1.2.54) is given by solving

(1.2.54)

£ = yoePT (1.2.55)

to obtain
1 €
= —log —. 1.2.56
™ ( )
From (1.2.56) it is clear that we must require yo < &.

T

P(): 20 — 21,

a/f
(&, 10) (6 (;_0) )5)_ (1.2.57)
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Step 3: Compute P;. Using Theorem 1.1.8, by smoothness of the flow with
respect to initial conditions and the fact that it only takes a finite time to
flow from X to X¢ along the homoclinic orbit, we can find a neighborhood
U C %, which is mapped onto Ly under the flow generated by (1.2.53). We
denote this map by

Pi(z,&;p) = (Pii(z, & p), Pra(z,&50)): U C £y — o, (1.2.58)

where P;(0,e;0) = (£,0). Taylor expanding (1.2.58) about (z,e;u) =
(0,¢;0) gives
Pi(z,e; 1) = (g,ax + bp) + O(2). (1.2.59)

The expression “O(2)” in (1.2.59) represents higher order nonlinear terms
which can be made small by taking ¢, z, and g small. For now, we will
neglect these terms and take as our map

PI:UCZh *)20,

(z,€) = (e, az + bu), (1.2.60)

where a > 0 and b > 0. The reader should study Figure 1.2.15 to determine
why we must have a, b > 0.

Step 4: Examine the Dynamics of P = P; o Py. We have

P=PoPyV C¥y— Xg,

a/B
(,70) (s,as (i) + bH) , (1.2.61)

where V = (Py)~}(U), or
P(y;p):y — Ayl*/Pl + by, (1.2.62)

where A = ag'*(®/8) > ( (we have left the subscript “0” off the yo for the
sake of a less cumbersome notation). (Note: of course, we are assuming also
that U is sufficiently small so that (Py)~}(U) C Zg.)

Let 6 = |a/8|; then a+ 8 # 0 implies § # 1. We will seek fixed points of
the Poincaré map, i.e., y € V such that

Ply;p) = Ay’ +bu=y. (1.2.63)

The fixed points can be displayed graphically as the intersection of the
graph of P(y; u) with the line y = P(y; i) for fixed p.
There are two distinct cases.

Case 1 |a| > |8] or 6 > 1. For this case D, P(0;0) = 0, and the graph of P
appears as in Figure 1.2.17 for 4 > 0, 4 = 0, and p < 0. Thus, for 41 > 0 and
small p, (1.2.62) has a fixed point. The fixed point is stable and hyperbolic,
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FIGURE 1.2.17. Graph of P for p > 0, ¢ =0, and g < 0 with 6 > 1.

FIGURE 1.2.18. Phase plane of (1.2.50) for é > 1.

since 0 < D, P < 1 for y sufficiently small. By construction we therefore see
that this fixed point corresponds to an attracting periodic orbit of (1.2.50)
(provided that we can justify our approximations); see Figure 1.2.18. We
remark that if the homoclinic orbit were to break in the manner opposite

to that shown in Figure 1.2.15, then the fixed point of (1.2.62) would occur
for u < 0.

MM For this case, D, P(0;0) = oo, and the graph of

appears as in Figure 1.2.19. Thus, for u < 0, (1.2.62) has a repelling fixed
point, By construction we can therefore conclude that this corresponds to
8 repelling periodic orbit for (1.2.50); see Figure 1.2.20. We remark that if
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u>0 y=P

P

/ u=0
ﬁ<0
7

FIGURE 1.2.19. Graph of P for £ > 0, 4 =0, and p < 0 with § < 1.

4

]

u>0

FIGURE 1.2.20. Phase plane of (1.2.50) for § < 1.

the homoclinic orbit were to break in the manner opposite to that shown
in Figure 1.2.15, then the fixed point of (1.2.62) would occur for u > 0.
We summarize our results in the following theorem.

Theorem 1.2.3 Consider a system where Hypothesis 1 and Hypothesis 2
hold. Then we have, for u sufficiently small: i) If a + 8 < 0, there ezists a
unique stable periodic orbit on one side of p = 0; on the opposite side of i
there are no periodic orbits. ii) If o + 3 > 0, the same conclusion holds as
in 1), except that the periodic orbit is unstable.

We remark that if the homoclinic orbit breaks in the manner opposite
that shown in Figure 1.2.15, then Theorem 1.2.3 still holds except that the
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periodic orbits occur for u values having the opposite sign as those given
in Theorem 1.2.3. Theorem 1.2.3 is a classical result which can be found in
Andronov et al. [1971]. Additional proofs can be found in Guckenheimer
and Holmes [1983] and Chow and Hale [1982].

Before leaving this example we must address an important point, which is
that we have not rigorously proven Theorem 1.2.3, since the Poincaré map
we computed was only an approximation. We must therefore show that the
dynamics of the exact Poincaré map are contained in the dynamics of the
approximate Poincaré map. Because our main goal is to demonstrate how
to construct a Poincaré map near a homoclinic orbit, we refer the reader
to Wiggins [1988] for the proof of this fact under the condition that we
remain sufficiently close to the (broken) homoclinic orbit, i.e., for € and u
sufficiently small.

1.2B  VARYING THE CROSS-SECTION: CONJUGACIES OF
MAPS

We now turn to answering the question of how the choice of cross-section
affects the Poincaré map. The point of view that we develop will be that
Poincaré maps defined on different cross-sections are related by a (in gen-
eral, nonlinear) coordinate transformation. The importance of coordinate
transformations in the study of dynamical systems cannot be overesti-
mated. For example, in the study of systems of linear constant coefficient
ordinary differential equations, coordinate transformations allow one to de-
couple the system and hence reduce the system to a set of decoupled linear
first-order equations which are easily solved. In the study of completely
integrable Hamiltonian systems, the transformations to action-angle coor-
dinates results in a trivially solvable system (see Arnold [1978]), and these
coordinates are also useful in the study of near integrable systems. If we
consider general properties of dynamical systems, coordinate transforma-
tions provide us with a way of classifying dynamical systems according to
properties which remain unchanged after a coordinate transformation. In
Section 1.2C we will see that the notion of structural stability is based on
such a classification scheme.

Before considering Poincaré maps, we want to discuss coordinate trans-
formations, or, to use the more general mathematical term, conjugacies,
giving some results that describe properties which must be retained by a
map or vector field after a coordinate transformation of a specific differen-

tiability class. Let us begin with an example which should be familiar to
the reader.

EXAMPLE 1.2.4 We want to motivate how coordinate transformations
affect the orbits of maps.
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Consider two linear, invertible maps

z — Az, zeR"” (1.2.64a)
y — By, y e R™ (1.2.64b)

For zg € R™, we denote the orbit of zy under A by

OA(JCO) = { Ty A—nx(h Ty Ailx()v Zo, A:EO, Ty An$07 o '}7 (12653')
and, for yy; € R™, we denote the orbit of y; under B by

OB(yO) = { ) Biny(h Tty B_lyOfy07ByOy .t '7Bny0» o } (1265b)

Now suppose A and B are related by a similarity transformation, i.e., there
is an invertible matrix T such that

B =TAT™ . (1.2.66)

We could think of T as transforming A into B, and, hence, since it does
no harm in the linear setting to confuse the map with the matrix that
generates it, T transforms (1.2.64a) into (1.2.64b). We represent this in the
following diagram
lT lT. (1.2.67)
R _E) R™
The question we want to answer is this: when (1.2.64a) is transformed into

(1.2.64b) via (1.2.66), how are orbits of A related to orbits of B? To answer
this question, note that from (1.2.66) we have

B" =TA"T™"  for all n. (1.2.68)

Hence, using (1.2.68) and comparing (1.2.64a) and (1.2.66), we see that
orbits of A are mapped to orbits of B under the transformation y = T'z.
Moreover, we know that since similar matrices have the same eigenvalues.
the stability types of these orbits coincide under the transformation T'.

Now we want to consider coordinate transformation in a more general.
nonlinear setting. However, the reader will see that the essence of the ideas
is contained in this example.

Let us consider two C” diffeomorphisms f: R® — R" and g: R® — R".
and a C* diffeomorphism h: R® — R".

DEFINITION 1.2.2 f and g are said to be C* conjugate (k < r) if there
exists a C* diffeomorphism h:IR” — IR” such that goh = ho f. If k = 0,
f and g are said to be topologically conjugate.
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The conjugacy of two diffeomorphisms is often represented by the fol-
lowing diagram. ;
R — R"

lh lh. (1.2.69)
R" L R"
The diagram is said to commute if the relation goh = ho f holds, meaning
that you can start at a point in the upper left-hand corner of the diagram
and reach the same point in the lower right-hand corner of the diagram by
either of the two possible routes. We note that h need not be defined on all
of R™ but possibly only locally about a given point. In such cases, f and
g are said to be locally C* conjugate.

If f and g are €* conjugate, then we have the following results.

Proposition 1.2.4 If f and g are C* conjugate, then orbits of f map to
orbits of g under h.

Proof: Let o € R"; then the orbit of zo under f is given by

O(Il?o) = { o 7f_n($0)7 e 7f_1(1"0)7$07 f(l‘o), o ',fn(xo)’ o } (1270)

From Definition 1.2.2, we have that f = 1o goh, so for a given n > 0
we have

fn(xo)th_lOQOh)O(h_log"h)o"'O(h_lOQOh)(Io)

~—
n factors

=h"'og" o h(xo) (1.2.71)

or
ho f*(zo) = g" o h(xo). (1.2.72)

Also from Definition 1.2.2, we have that f~! = h=1 0 g7 ! o h, so by the
same argument, for n > 0 we obtain

ho f™™(xzg) =g " o h(zp). (1.2.73)

Therefore, from (1.2.71) and (1.2.73) we see that the orbit of zo under f is
mapped by 4 to the orbit of h(zg) under g. O

Proposition 1.2.5 If f and g are C* conjugate, k > 1, and x¢ is a fized

point of f, then the eigenvalues of Df(xg) are equal to the eigenvalues of
Dg(h(xo))'

Proof: From Definition 1.2.2, f(z) = A~ 0 g o h(z). Note that since zo is a
fixed point then h~! ogoh{zy) = xo. Also, by the inverse function theorem,
we have Dh~' = (Dh)~!. Using this and the fact that h is differentiable,
we have

Df)

, = Dh7Y, Dy, . .Dh| (1.2.74)

frof xo"
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FIGURE 1.2.21. The cross-sections ¥g and X;.

Therefore, recalling that similar matrices have equal eigenvalues gives the
result. O

Now we will return to the specific question of what happens to the
Poincaré map when the cross-section is changed. We begin with Case 1,
a Poincaré map defined near a periodic orbit.

Case 1: Variation of the Cross-Section. Let zg and z; be two points on the
periodic solution of (1.2.2), and let ¥ and ¥; be two (n — 1)-dimensional
surfaces at zg and z1, respectively, which are transverse to the vector field,
and suppose that 3 is chosen such that it is the image of X3 under flow
generated by (1.2.2); see Figure 1.2.21. By Theorem 1.1.8, this defines a
C” diffeomorphism

We define Poincaré maps Py and P; as in the previous construction.

Po: V() — Eo,

oy = _ 1.2.76

zg — ¢(7(Z0), Fo ), Zg € Vo C X, ( )
Pli V1 — 21,

-\ = - 1.2.77

T — ¢(T($1),$1), T S V1 C 21. ( )

Then we have the following result.
Proposition 1.2.6 Py and P; are locally C™ conjugate.
Proof: We need to show that

Pyoh=hobP,,

from which the result follows immediately since h is a C" diffeomorphism.
However, we need to worry a bit about the domains of the maps. We have

h(Xp) = X4,
Po(V()) C g, (1278)
P](V]) C 21.
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Thus, ho Py: Vp — X; is well defined but P; o h need not be defined, since
P, is not defined on all of X;; however, this problem is solved if we choose

% such that Vi = h(Vp) and take Vp sufficiently small. O

Case 2: Variation of the Cross-Section. Consider the Poincaré map Pp, de-

fined on the cross-section £% as defined in ( 1.2.16). Suppose we construct
a different Poincaré map, P , in the same manner but on the cross-section

= = {(¢,0) e R"x S* |0 =6, € (0,2n] }. (1.2.79)

Then we have the following result.
Proposition 1.2.7 F;  and Py are C" conjugate.

Proof: The proof follows a construction similar to that given in Proposition
1.2.6. We construct a C” diffeomorphism, h, of % into £ by mapping
points on % into 2‘_" under the action of the flow generated by (1.2.14).
Points starting on T% have initial time to = (fp — 6p)/w, and they reach
¥ after time _ _

01 — 00

t=2""
w

thus we have

h: S0 — 28
(m <90 - 90) ,éo) _ <x (91 - 90) ’91) _ (1.2.80)
w W

Using (1.2.80) and the expression for the Poincaré maps defined on the
different cross-sections, we obtain

ho Py, o . vh

((B5E) ) (A=) o).
w w

Py oh: $% — 20

<z<90—90),éﬂ> — (x(91—90+27r)’6_1+27r59'1)-
23} w

(1.2.82)

and

Thus, from (1.2.81) and (1.2.82), we have that
hoPs = Ps oh. O (1.2.83)
Therefore, Propositions 1.2.4 and 1.2.5 imply that, as long as we remain

sufficiently close to the periodic orbit, changing the cross-section does not
have any dynamical effect in the sense that we will still have the same



94 1. The Geometrical Point of View of Dynamical Systems

orbits with the same stability type. However, geometrically there may be
an apparent difference in the sense that the locations of the orbits as well
as their stable and unstable manifolds may “move around” under a change
in cross-section. It may also be possible that an intelligent choice of the
cross-section could result in a “more symmetric” Poincaré map which could
facilitate the analysis. We will see an example of this later.

We note that Case 3, the Poincaré map near a homoclinic orbit, can be
treated in the same way with the same results. We leave this as an exercise
for the reader.

We remark that it should be clear from these results that a Poincaré
map constructed according to Case 2 (i.e., the global cross-section) has
information concerning all possible dynamics of the vector field. When only
a local cross-section can be constructed (e.g., as in Cases 1 and 3), then
the Poincaré map will not, in general, contain information on all possible
dynamics of the vector field. Different Poincaré maps defined on different
cross-sections may not have the same dynamics.

1.2¢  STRUCTURAL STABILITY, GENERICITY, AND
TRANSVERSALITY

The mathematical models we devise to make sense of the world around
and within us can only be approximations. Therefore, it seems reasonable
that if they are to accurately reflect reality, the models themselves must be
somewhat insensitive to perturbations. The attempts to give mathematical
substance to these rather vague ideas have led to the concept of structural
stability. Before giving a definition of structural stability, let us consider
a specific example which illustrates many of the issues that need to be
addressed.

ExXAMPLE 1.2.5 Consider the simple harmonic oscillator

T =y,

2
=iz, (WY ERS (1.2.84)

We know everything about this system. It has a nonhyperbolic fixed point
of (z,y) = (0,0) surrounded by a one-parameter family of periodic orbits.
each having frequency wy. The phase portrait of (1.2.84) is shown in Figure
1.2.22 (note: strictly speaking, the phase curves are circles for wp = 1 and
ellipses otherwise). Is (1.2.84) stable with respect to perturbations (note:
this is a new concept of stability, as opposed to the idea of stability of
specific solutions discussed in Section 1.1A)? Let us try a few perturbations
and see what happens.
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FIGURE 1.2.22.

Linear, Dissipatwe Perturbation
Consider the perturbed system

=1,

i = Do ey (1.2.85)

It is easy to see that the origin is a hyperbolic fixed point, a sink for € > 0
and a source for € < 0. However, all the periodic orbits are destroyed (use
Bendixson’s criteria). Thus, this perturbation radically alters the structure
of the phase space of (1.2.84); see Figure 1.2.23.

Nonlinear Perturbation

Consider the perturbed system

T =1y,

i = —wkz + e, (1.2.86)
The perturbed system now has two fixed points given by

(z,y) = (0,0), (1.2.87)

(z,y) = (w§/e, 0)-

The origin is still a center (i.e., unchanged by the perturbation), and the
new fixed point is a saddle and far away for ¢ small.

This particular perturbation has the property of preserving a first inte-
gral. In particular, (1.2.86) has a first integral given by

2 2.2 3
h(z,y) = % + —w"; - e%. (1.2.88)

T.his enables us to draw all phase curves for (1.2.86), which are shown in
Figure 1.2.24. From Figure 1.2.24, we make the following observations.
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~

7N

£<0
FIGURE 1.2.23.

1. This particular perturbation preserves the symmetry of (1.2.86) im-

plied by the existence of a first integral. Therefore, sufficiently close
to (z,y) = (0,0) the phase portraits of (1.2.84) and (1.2.86) look
the same. However, for (1.2.86), it is important to note that the fre-
quency of the periodic orbits changes with distance from the origin.
as opposed to (1.2.84).

. The phase space of (1.2.84) is unbounded. Therefore, no matter how

small we take e, far enough away from the origin the perturbation is
no longer a perturbation. This is evidenced in Figure 1.2.24 by the
saddle point and the homoclinic orbit connecting it to itself. Thus.
there is a problem in discussing perturbations of vector fields on un-
bounded phase spaces.

Twme-Dependent Perturbation

Consider the system

T =y,
§ = —waz + ex cost. (1.2.89)
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W
f//

£>0

m

X=me—2 £<0

FIGURE 1.2.24.

This perturbation is of a very different character than the previous two.
Writing (1.2.89) as an autonomous system (see Section 1.1G)

T =y,
y = —wiz + ez cosb, (1.2.90)
0=1,

we see that the time-dependent perturbation has the effect of enlarging the
dimension of the system. However, in any case, (z,y) = (0, 0) is still a fixed
point of (1.2.89), although it is interpreted as a periodic orbit of (1.2.90).
We now ask what the nature of the flow is near (z,y) = (0,0), which is a
difficult question to answer due to the time dependence. Equation (1.2.89)
is known as the Mathieu equation, and for wy = n/2, n an integer, it
is possible for the system to exhibit parametric resonance resulting in a
solution starting near the origin that grows without bound. Thus, the flow
of (1.2.90) near the origin differs very much from the flow of (1.2.84) near
the origin. For more information on the Mathieu equation see Nayfeh and
Mook [1979].

This simple example illustrates several points that need to be considered
when discussing whether or not a system is stable under perturbations.
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1. It is important to specify the type of perturbations that are allowed.
For example, if the system has a symmetry, then one might want to
consider only perturbations which preserve the symmetry. The idea
of structural stability thus depends on the type of dynamical system
under consideration.

2. In discussing the idea of a perturbation of a dynamical system, it is
necessary to specify what it means for two vector fields or maps to
be “close.” In our example we used an ¢ and required £ to be small
However, we saw that this did not work well when the phase space
was unbounded.

3. It is necessary to quantify the statement “two dynamical systems
have qualitatively the same dynamics.” This must be specified if one
is to decide when a system is structurally stable.

Up to this point our discussion has been very heuristic. Indeed, our main
purpose has been to get the reader to worry about whether the systems they
are studying are stable under perturbations. We will see throughout this
book, especially when we study bifurcation theory, that a consideration of
this question often reveals much about the underlying dynamics of dynam-
ical systems. However, now we want to say a little about the mathematical
formulation of the notion of structural stability.

Definitions of Structural Stability and Genericity

The concept of structural stability was introduced by Andronov and Pon-
tryagin [1931] and has played a central role in the development of dynami-
cal systems theory. Roughly speaking, a dynamical system (vector field or
map) is said to be structurally stable if nearby systems have qualitatively
the same dynamics. Therefore, in defining structural stability one must
provide a recipe for determining when two systems are “close,” and then
one must specify what is meant by saying that, qualitatively, two systems
have the same dynamics. We will discuss each question separately.

Let C"(IR™,IR™} denote the space of C™ maps of R" into IR". In terms of
dynamical systems, we can think of the elements of C"(R",IR") as being
vector fields. We denote the subset of C"(IR",R") consisting of the C’
diffeomorphisms by Diff" (IR",IR"). We remark that if one is studying dy-
namical systems that have certain symmetries, then additional constraints
must be put on these spaces.

Two elements of C"(R",IR") are said to be C” e-close (k < ), or just
Ck close, if they, along with their first k derivatives, are within ¢ as mea-
sured in some norm. There is a problem with this definition; namely, R"
is unbounded, and the behavior at infinity needs to be brought under con-
trol (note: this explains why most of dynamical systems theory has been
developed using compact phase spaces; however, in applications this is not
sufficient and appropriate modifications must be made).
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There are several ways of handling this difficulty. For the purpose of our
discussion we will choose the usual way and assume that our maps act on
compact, boundaryless n-dimensional differentiable manifolds, M, rather
than all of R™. The topology induced on C"(M, M) by this measure of
distance between two elements of C"(M, M) is called the C* topology, and
we refer the reader to Palis and de Melo [1982] or Hirsch [1976] for a more
thorough discussion.

The question of what is meant by saying that two dynamical systems are
close is usually answered in terms of conjugacies. Specifically, C® conjugate
maps have qualitatively the same orbit structure in the sense of the propo-
sitions given in Section 1.2B. For vector fields there is a similar notion to
Ck conjugacies for maps called a C* equivalence. We will discuss this in
more detail in Chapter 3 when we study bifurcation theory (note: in some
sense the study of bifurcation theory will be the study of structural instabil-
ity). In this section we will state the definitions for maps along with vector
fields; the reader should refer back to these definitions when we study the
related ideas for vector fields.

We are now at the point where we can formally define structural stability.

DEFINITION 1.2.3 Consider a map f € Diff" (M, M) (resp. a C” vector
field in C"(M, M)); then f is said to be structurally stable if there exists
a neighborhood A of f in the C* topology such that f is C° conjugate
(resp. CO equivalent) to every map (resp. vector field) in NV.

Now that we have defined structural stability, it would be nice if we
could determine the characteristics of a specific system which result in
that system being structurally stable. From the point of view of the applied
scientist, this would be useful, since one might presume that a dynamical
system used to model phenomena occurring in nature should possess the
property of structural stability. Unfortunately, such a characterization does
not exist, although some partial results are known, which we will describe
shortly. One approach to the characterization of structural stability has
been through the identification of typical or generic properties of dynamical
systems, and we now discuss this idea.

Naively, one might expect a typical or generic property of a dynamical
system to be one that is common to a dense sct of dynamical systems in
CT(M, M). This is not quite adequate, since it is possible for a set and its
FOmplement to both be dense. For example, the set of rational numbers
15 dense in the real line, and so is its complement, the set of irrational
numbers. However, there are many more irrational numbers than rational
humbers, and one might expect the irrationals to be more typical than the
Tationals in some sense. The proper sense in which this is true is captured
by the idea of a residual set.

DEFINITION 1.2.4 Let X be a topological space, and let U be a subset of
X. U is called a residual set if it is the intersection of a countable number
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of sets each of which are open and dense in X. If a residual set in X is
itself dense in X, then X is called a Baire space.

We remark that C"(M, M) equipped with the C” topology (k <r)is a
Baire space (see Palis and deMelo [1982]). We now give the definition of a
generic property.

DEFINITION 1.2.5 A property of a map (resp. vector field) is said to be
C* generic if the set of maps (resp. vector fields) possessing that property
contains a residual subset in the C* topology.

EXAMPLE 1.2.6 In the class of dynamical systems having fixed points,
hyperbolic fixed points are structurally stable and generic.

In utilizing the idea of a generic property to characterize the structurally
stable systems, one first identifies some generic property. Then, since a
structurally stable system is C° conjugate (resp. equivalent for vector fields)
to all nearby systems, structurally stable systems must have this property
if the property is one that is preserved under C° conjugacy (resp. equiv-
alence for vector fields). One would like to go the other way with this
argument; namely, it would be nice to show that structurally stable sys-
tems are generic. For two-dimensional vector fields on compact manifolds,
we have the following result due to Peixoto [1962].

Theorem 1.2.8 A C" vector field on a compact boundaryless two-dimen-
stonal manifold M 1s structurally stable of and only of

i) the number of fized pownts and periodic orbits 1s finite and each 1s
hyperbolic;

ii) there are no orbits connecting saddle points;
iii) the nonwandering set consists of fized points and periodic orbits.

Moreover, 1f M 1s orientable, then the set of such vector fields 1s open and
dense i C"(M, M) (note: this 1s stronger than generic).

This theorem is useful because it spells out precise conditions under
which the dynamics of a vector field on a compact boundaryless two mani-
fold are structurally stable. Unfortunately, we do not have a similar theorem
in higher dimensions. This is in part due to the presence of complicated
recurrent motions (e.g., the Smale horseshoe; see Chapter 4) which are not
possible for two-dimensional vector fields. Even more disappointing is the
fact that structural stability is not a generic property for n-dimensional
diffeomorphisms (n > 2) or n-dimensional vector fields (n > 3). This fact
was first demonstrated by Smale [1966].

At this point we will conclude our brief discussion of the ideas of struc-
tural stability and genericity. For more information, we refer the reader
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to Chillingworth [1976], Hirsch [1976], Arnold [1982], Nitecki [1971], Smale
[1967], and Shub [1987]. However, before ending this section, we want to
comment on the relevance of these ideas to the applied scientist, i.e., some-
one who must discover what types of dynamics are present in a specific
dynamical system.

Genericity and structural stability as defined above have been guiding
forces behind much of the development of dynamical systems theory. The
approach often taken has been to postulate some “reasonable” form of dy-
namics for a certain class of dynamical systems and then to prove that this
form of dynamics is structurally stable and/or generic within this class. If
one is persistent with this approach one is occasionally successful and even-
tually a significant catalogue of generic and structurally stable dynamical
properties is oBtained. This catalogue is useful to the applied scientist in
that it gives some idea of what dynamics to expect in a specific dynami-
cal system. However, this is hardly adequate. Given a specific dynamical
system, is it structurally stable and/or generic?

We would like to give computable conditions under which a specific dy-
namical system is structurally stable and/or generic. For certain special
types of motions such as periodic orbits and fixed points, this can be done
in terms of the eigenvalues of the linearized system. However, for more gen-
eral, global motions such as homoclinic orbits and quasiperiodic orbits, this
cannot be done so easily, since the nearby orbit structure may be exceed-
ingly complicated and defy any local description (see Chapter 4). What
this boils down to is that to determine whether or not a specific dynamical
system is structurally stable, one needs a fairly complete understanding
of its orbit structure, or to put it more cynically, one needs to know the
answer before asking the question. It might therefore seem that these ideas
are of little use to the applied scientist; however, this is not exactly true,
since the theorems describing structural stability and generic properties do
give one a good idea of what to ezpect, although they cannot tell what is
precisely happening in a specific system. Also, the reader should always
ask him or herself whether or not the dynamics are stable and/or typical
in some sense. Probably the best way of mathematically quantifying these
two notions for the applied scientist has yet to be determined.

Transversality

Before leaving this section let us introduce the idea of transversality, which
will play a central role in many of our geometrical arguments.
Transversality is a geometric notion which deals with the intersection of

surfaces or manifolds. Let M and N be differentiable (at least C') manifolds
in R™.

DEFINITION 1.2.6 Let p be a point in R™; then M and N are said to be
transversal at pif p ¢ M N N; or, if pe M NN, then T,M + T,N = R",
where T, M and T, N denote the tangent spaces of M and N, respectively,
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FIGURE 1.2.25. M and N transversal at p.

at the point p. M and N are said to be transversal if they are transversal
at every point p € R"; see Figure 1.2.25.

Whether or not the intersection is transversal can be determined by
knowing the dimension of the intersection of M and N. This can be seen
as follows. Using the formula for the dimension of the intersection of two
vector subspaces we have

dim(T,M + T,N) = dimT,M + dim T,N — dim(T,M NT,N). (1.2.91)
From Definition 1.2.6, if M and N intersect transversely at p, then we have
n=dimT,M + dim T, N — dim(T, M N T,N). (1.2.92)

Since the dimensions of M and N are known, then knowing the dimension
of their intersection allows us to determine whether or not the intersection
is transversal.

Note that transversality of two manifolds at a point requires more than
just the two manifolds geometrically piercing each other at the point. Con-
sider the following example.

EXAMPLE 1.2.7 Let M be the z axis in R?, and let N be the graph of the
function f(x) = z3; see Figure 1.2.26. Then M and N intersect at the origin
in R?, but they are not transversal at the origin, since the tangent space

of M is just the x axis and the tangent space of N is the span of the vector
(1,0); thus, Tig 0y N = T{0,0yM and, therefore, Ty 0)N + T9,0)M # R2.

The most important characteristic of transversality is that it persists
under sufficiently small perturbations. This fact will play a useful role in
many of our geometric arguments; we remark that a term often used syn-
onymously for transversal is general position, i.e., two or more manifolds
which are transversal are said to be in general position.

Let us end this section by giving a few “dynamical” examples of transver-
sality.
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N=graph x3

7 X
M

FIGURE 1.2.26. Nontransversal manifolds.

ExaMmPLE 1.2.8 Consider a hyperbolic fixed point of a C, r > 1, vector
field on IR™. Suppose the matrix associated with the linearization of the
vector field about the fixed point has n — k eigenvalues with positive real
part and k eigenvalues with negative real part. Thus this fixed point has an
{n—k)-dimensional unstable manifold and a k-dimensional stable manifold.
If these two manifolds intersect in a point, other than the fixed point,
then by uniqueness of solutions and invariance of the manifolds, they must
intersect along a (at least) one-dimensional orbit. Hence, by (1.2.92), the
intersection cannot be transverse.

ExaMpPLE 1.2.9 Suppose the vector field of Example 1.2.8 is Hamiltonian
so that all orbits are restricted to lie in (n — 1)-dimensional “energy” sur-
faces given by the level sets of the Hamiltonian. Then it is possible for
the stable and unstable manifolds of the hyperbolic fixed point to intersect
transversely in the (n — 1)-dimensional energy surface.

EXAMPLE 1.2.10 Consider a hyperbolic periodic orbit of a C", r > 1,
vector field on R”™. Suppose that the Poincaré map associated with the pe-
riodic orbit linearized about the fixed point has n — k — 1 eigenvalues with
modulus greater than one and & eigenvalues with modulus less than one.
Then the periodic orbit has an (n — k)-dimensional unstable manifold and
a (k + 1)-dimensional stable manifold. Therefore, by (1.2.92), if these man-
ifolds intersect transversely, the dimension of the intersection must be one.
This is possible without violating uniqueness of solutions and invariance of
the manifolds.

1.2D CONSTRUCTION OF THE POINCARE MAP

We will now develop two methods for constructing Poincaré maps for non-
linear systems. They will be perturbation methods and will apply to sys-
tems of the following form.

&= f(z) +eg(z,t,e), z € R, (1.2.93)
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where
f:U—-R",
g:U xR x [0,60) — R™,

are C™ (r > 1) functions on their respective domains of definition with
U an open set in R™. We think of ¢ as being small and fixed. Equation
(1.2.93) may also depend on parameters; however, we will omit any explicit
parametric dependence when it does not affect our arguments.

Setting ¢ = 0, we obtain the following equation

z = f(z), z € R", (1.2.94)

which we refer to as the unperturbed equation. As with most perturbation
methods, the idea is to use knowledge of the solutions of (1.2.94) to infer
results concerning the solutions of (1.2.93). Our approach will be more
geometrical in that we will use knowledge about the geometrical structure
of the phase space of (1.2.94) to infer results concerning the geometrical
structure of the phase space of (1.2.93). This will be a common theme
throughout this book.

Before discussing the specific methods for constructing Poincaré maps,
we need a general result giving us an estimate of how close trajectories of
(1.2.93) and (1.2.94) remain during their evolution in time. More specifi-
cally, let z.(t) and zp(¢) denote solutions of (1.2.93) and (1.2.94), respec-
tively. Suppose z.(¢t) and zo(t) are “close.” Then for how long do z.(t) and
xo(t) remain “close”? In order to answer this question, the following lemma
will be useful.

Lemma 1.2.9 (Gronwall’s Inequality) Suppose the functions u(s) and
v(s) are continuous and nonnegative on the interval [to,t], and the function
c(s) is C' and nonnegative on the wnterval [to,t] with

v(t) < et) +/t u(s)v(s)ds;

then

o(t) < c(to)exp</t:u(s)ds) + /tt é(s)(exp /:u(T)dT) ds.

Proof: See Guckenheimer and Holmes [1983] or Hale {1980]. O

Gronwall’s inequality is the basic tool for estimating the difference be-
tween solutions of (1.2.93) and (1.2.94) on finste time intervals. We see this
in the following proposition.

Proposition 1.2.10 Suppose |z.(to)—zo(to)| = O(e); then |z (t)~xzo(t)| =
Ofe) for |t — il = O(1).
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Proof: Subtract (1.2.94) from (1.2.93) to obtain
Te —&o = f(xs) - f(:EO) + €g($g,t,€). (1295)

By integrating (1.2.95) and considering absolute values, we obtain the fol-
lowing estimate

[2e(t) — 20(t)] < |ee(to) — w0 (to)] + / £ (2(5)) — £ (zo(s))| ds

+ E/tt!g(mg(s),s,s)lds. (1.2.96)

Now, since g is G (r > 1), there exists a constant M > 0 such that
lg(z, t,e)| < M on U x I x [0,eq), (1.2.97)
where I is a compact interval in R'. By the mean value theorem, we have
|f(ze(s)) = Fzo(s))| < Llze(s) — zo(s)] (1.2.98)

for some L > 0. Substituting (1.2.97) and (1.2.98) into (1.2.96) gives

|e(t) — xo(t)] < |ze(to) — molto)| + L | lxe(s) — zo(s)lds + eM(t — to).

to
(1.2.99)
Now, applying Gronwall’s inequality to (1.2.99) gives (with c(t) = eM (¢t —
to) + |z (to) — zo(to)], u(s) = L, and v(s) = |ze(s) — zo(s)])

|Ze(t) — zo(t)| < |ze(to) — zo(to)] exp(/t Lds)

+ /teM(exp/tLah') ds
to s
< <|x5(t0) — zo(to)] + 5%) exp L(t — tp).
(1.2.100)
Therefore, since |z:(to) — xo(to)] = O(e), from (1.2.100) it follows that

!JTe(t) — zo(t)| = O(g) for 0 < L(t — t9) < N where N is some constant
independent of €. In other words,

N
|ze (t) — 1o (t)| = O(e) for to§t§t0+f. |

Now we are ready to develop our first method for constructing Poincaré
maps.
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i) THE METHOD OF AVERAGING

This is a method which has appeared in the applied mathematics and
engineering literature in various forms over (approximately) the last two
hundred years; see Arnold [1982], Lochak and Meunier [1988], and Sanders
and Verhulst [1985] for a historical survey and additional references. We
will consider only a very small portion of the general theory here.
The method of averaging is concerned with equations of the following
form.
& =cf(z,t)+e%g(x, t,¢€) forz e R", (1.2.101)
where
f:U xR' - R",
g:U xR x [0,¢0) —» R"
are C" (r > 1) on their respective domains of definition with U some
open set in R™. We will make the additional assumption that f and g are
periodic in t with the same period T > 0 (note: time periodicity is not
a prerequisite for this method; see Hale [1980] or Sanders and Verhulst
[1985]). The associated averaged equation is given by

y=efly), yeRY (1.2.102)

where r
- 1
fo) =7 | rwoa

The idea behind the method is simple. Presumably (1.2.102) is easier to
study than (1.2.101), so can we infer properties of the dynamics of (1.2.101)
based on an understanding of the dynamics of (1.2.102)? Obviously, much
more specific questions arise, such as the following.

1. Suppose (1.2.102) has a fixed point or periodic orbit. What do these
special solutions correspond to in (1.2.101)?

2. Are stable and unstable manifolds of special solutions of (1.2.102) re-

lated to stable and unstable manifolds of some other special solutions
of (1.2.101)?

The averaging theorem will be our starting point for relating the dynamics
of (1.2.102) to the dynamics of (1.2.101) and in the process we will answer
these two questions. However, before stating and proving this theorem, two
important points must be addressed.

1. At the beginning of this section we stated that the systems of inter-
est are of the form (1.2.93). Evidently (1.2.101) is not of this form
How then can (1.2.93) be transformed into the form of (1.2.101)7
(Ultimately, we will answer why it is necessary to have the small pa-
rameter, €, multiplying the vector field when employing the method
of averaging )
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2. The title of this section is “Construction of the Poincaré Map.” How
does employing the method of averaging facilitate the construction
of the Poincaré map?

We will begin by answering the first question and, in the process, we will
shed some light on the second.

Transformation of (1.2.93) to the Form (1.2.101)

In (1.2.93) let us now suppose that g is periodic in ¢ with period T =
27 /w. Let x(t, T9) be a perrodic solution of the unperturbed equation (1.2.94)
having frequency wq (note: the necessity for requiring z(t, zo) to be periodic
will be discussed shortly). Our goal will be to derive an ordinary differential
equation which geverns the time evolution of the initial condition zg in the
solution z(t,xp). From the discussion of Poincaré maps in Section 1.2A,
this procedure should immediately call to mind the spirit of the Poincaré
map. We will elaborate on this as we go along.

Let us suppose that the initial condition, zg, is a function of time so that
the resulting function

y(t) = z(t, zo(t)) (1.2.103)

is a solution of the perturbed equation (1.2.93). If this is true, then xzo(t)
must have a certain form which can be found by differentiating (1.2.103)
and substituting the result into the perturbed equation (1.2.93). Carrying
out this procedure gives

§ =14+ (Dgyz)do = f(z(t,z0)) +eg(z(t, z0), t,£)

or
&g = (Dgox) ™! (F(2(t, 20)) — & + eg(2(t, 20), t,€) ) - (1.2.104)

Now, if z(t,zo) is a solution of the unperturbed equation (1.2.94), then
& = f(z(t,z0)), so that (1.2.104) reduces to

2o = e(Dyx) " tg(x(t,20), t,€). (1.2.105)

This vector field is now apparently of the same form as equation (1.2.101).
However, a problem has arisen; namely, that (1.2.101) is periodic with
period T" but (1.2.105) is quasiperiodic with frequencies wy and w, since
z(t, zo) has frequency wg and g(z,t,¢) has frequency w in t. Since our goal
is to have the time dependence of (1.2.105) periodic (so that it has the
same form as (1.2.101)), we must show how this can be done. It can be
done in one of two ways.

1. Restrict the application of the method to situations where the fre-
quencies w and wy are equal. In this case (1.2.105) is now a time-
periodic vector field and the method of averaging can be applied.
Another way to obtain a time-periodic vector field which contains
the above as a special case is as follows.
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2. Suppose that nw is “close” to mwy where m and n are integers.
(Note: we assume that m and n are relatwely prime in the sense
that all common factors of m and n in the ratio n/m have been can-
celled.) Assume that the frequency of z(¢,zp) is (n/m)w. In this case
z(t, zo) is no longer a solution of the unperturbed problem (1.2.94) so
that (1.2.104) does not reduce to (1.2.105). In order that the method
of averaging would apply, however, in some sense we would expect
f{z(t,zp)) to be close (O(e)) to & so that (1.2.105) would be peri-
odic in ¢. This admittedly sounds rather strange and unmotivated,
but the following example should clear this up.

ExaMPLE 1.2.11 Consider the following vector field

u=uv,

2
b= —wiu + eh(u,v,t, ), (u,v) € R, (1.2.106)

where h is C™ (r > 1) and periodic in ¢ with period T' = 27 /w. Our goal is
to transform (1.2.106) into the general form (1.2.101).
We begin by considering the unperturbed vector field

U=,
b = —wlu. (1.2.107)

From (1.2.33), the solution of (1.2.107) is given by

u(t) = up cosw t+ 22 sinwot
— HOCORIOR T Bt (1.2.108)

0
v(t) = u(t) = —uowg sinwgt + vg €os wot.

Now we assume that
nw = Mmwo; (1.2.109)

we then substitute (n/m)w for wg in (1.2.108) and go through the procedure
outlined above. For this example we have

‘T(tv $0) = (u(tvu07v0)7v(t’u07v0)), (12110)
so that .
_ cos ¥t Tsin ¢t
Dyx = (—%sin vt “cos¥t ) (1.2.111)
with X
-1 _ { cos 2t —Zsin{t 1
(leom) (%Sln%t COS%t (12 12)
and

—ugy sin ¥t + vg cos §t )
b

F(a(t, z0)) = ( i 0 <

—upwy €os $t — vo—_2 sin £1

u(ta uo, UO)’ U(t, ug, UO)7 tv 6)

(1.2.113)
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where we have set
k =

m
n

Substituting (1.2.110), (1.2.112), (1.2.113), and (1.2.114) into (1.2.104)
gives

(ﬂo)_wz—k%%< k (ug cos ¥ t+msin~t)sinwt)

Yo k2 (uo cos £t + £ sin ¥t) cos £t
k
_‘h( (t,uo,v0),v (t,uo,to),t,s) sin £t
y (1.2.115
* ( h(u(t, ug, vo), v(t, ug, ), t, &) cos £t) ( )
Now let
ki — w? = ep, (1.2.116)

where p is referred to as the “detuning” parameter. In this case the vector
field (1.2.115) is periodic in ¢ and has the form of (1.2.101). Finally, let us
remark that if we let w

v — —Evo, (1.2.117)

then (1.2.115) takes the more “symmetric” form

g €p { (ugcos £t — vpsin £¢) sin £¢
i % m % k
g kw \ (ugcos £t — vgsin §t) cos £t
e h(u(t, uo, vo), v(t, uo, vo), t, €) sin “t
h(u(t, uo, vo), v(t, uo, vo), t, €) cos £t

) . (1.2.118)

With the rescaled variables (1.2.117), the transformation (1.2.110) has the
form of the familiar “van der Pol transformation” from the theory of non-
linear oscillations; see Sanders and Verhulst [1985).

At this stage we have said little about the interpretation of solutions
of the averaged equations. We will postpone this discussion until we have
given the averaging theorem. However, before this, let us see how we might
transform the forced Duffing oscillator into a form suitable for application
of the method of averaging.

ExaMPLE 1.2.12 Consider the equation

j‘.:y:
3

2
y=xz —a° — ey + eycoswt, (z,y) €R". (1.2.119)

We want to study (1.2.119) near a specific solution (Z(t), §(¢)) using the
method of averaging. First we must transform (1.2.119) into the standard
form for this method. Let

z(t) = i(t) + pu(t),

y(t) = 3(t) + po(t), (1.2.120)
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where p = p(g) is a small parameter that requires some care in its specifica-
tion; we will worry about this shortly. Substituting {1.2.120) into (1.2.119)
gives )

u=u,

b= —(322(t) — Du — 3ud(t)u? — ebv — uu®.

Suppose we are interested in the dynamics of (1.2.119) near small am-

plitude resonant periodic solutions close to (x,y) = (1,0) (note: by sym-
metry the same results will be valid near (z,y) = (—1,0)). The points
(z,y) = (£1,0) are center type fixed points of (1.2.119) for ¢ = 0. We
must therefore solve for (Z(¢), §(¢)) using perturbation theory. There are
two cases.

(1.2.121)

Case 1: w = v/2 - 1:1 Resonance. In this case regular perturbation meth-
ods cannot be used to approximate (£(t), (t)) due to the presence of secular
terms. Using either Lindstedt’s method or two-timing (see Kevorkian and
Cole [1981]) a periodic solution of frequency w = /2 can be computed and
is found to have the form

&) =1+ 03,
() = O(e'?). (1.2.122)

Equation (1.2.122) is then substituted into (1.2.121), which becomes

U = v,
b= —2u+ OEY3) + O(e¥3) + O(u) + Oue'?) + O(e) + Ou?).
(1.2.123)
We then define
=gl
so that (1.2.123) becomes
v="u (1.2.124)

b= —2u + O(/3).

Now the van der Pol transformation from Example 1.2.11 can be used to
transform (1.2.124) into the standard form for application of the method
of averaging (where €'/ is regarded as the small parameter. The details
will be left to Exercise 1.2.18.

Case 2: w = mv?2, m > 1 - 1:m Resonance. In this case regular perturba-
tion theory can be used to approximate a periodic solution of (1.2.119) of
frequency w = m+y/2, m > 1. The solution has the form

i) =1+ 0),
() = O(e). (1.2.125)

Equation (1.2.125) is then substituted into (1.2.121), which becomes

u="v,

0= —2u+ O(e) + O(p) + O(ue) + O(u?). (1.2.126)
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We then define

so that (1.2.126) becomes

U=,

b= —2u+ O(e). (1.2.127)

The van der Pol transformation from Example 1.2.11 can now be used to
transform (1.2.127) into the standard form for application of the method
of averaging. We leave the details to Exercise 1.2.18. There are two points
to be made in light of this example.

1. The results obtained from the method of averaging will be valid only
near (z,y) = (1,0). Thus, the method of averaging gives us informa-
tion concerning dynamics that are local in phase space.

2. The transformations in Example 1.2.12 imply that the dynamics of
the averaged equations should give us information only near resonant
solutions close to (z,y) = (1,0). Thus, the method may not detect
other types of solutions that may exist near (z,y) = (1,0).

Now we will state and prove the averaging theorem.

Theorem 1.2.11 There exists a C™ change of coordinates r = y+ew(y,t)
under which (1.2.101) becomes

g=cf(y)+efrly t,e), (1.2.128)
where f is of period T in t. Moreover,

i) if z(t) and y(t) are solutions of (1.2.101) and (1.2.102), respectively,
with z(tg) = xo , y(to) = Yo, and |zo — Yo| = O(e), then [x(t) —
y(t)| = O(e) on a time scale O(1/€) provided y(t) € U on a time
scale O(1/¢);

ii) if po is a hyperbolic fized point of (1.2.102), then there exists g > 0
such that, for all0 < e < gq, (1.2.101) possesses an isolated hyperbolic
periodic orbit ¢ (t) = po + O(c) of the same stability type as po;

iii) if 25(t) € W*(7.) is a solution of (1.2.101) lying in the stable mani-
fold of the hyperbolic periodic orbit v.(t) = po+O(e), y*(t) € W4(po)
is a solution of (1.2.102) lying in the stable manifold of the hyperbolic
fized point py, and if |2(0) — y(0)| = O(g), then |z°(t) —y*(t)| = O(¢)
for t € [0,00). A similar statement holds for solutions lying in the
unstable manifold on the time interval (—oo,0].

Proof: We begin by constructing the change of coordinates which transforms
(1.2.101) into (1.2.128). The effect of the coordinate change is to eliminate
the explicit time dependence of @(¢) by “moving it up” to O(e?).
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We first decompose f(z,1) in (1.2.101) into its oscillating and mean parts
as follows

fla,t) = f(z) + f(=,1), (1.2.129)
where
- 1 T - 1 /T
flx)= T/ f(z,t) dt, f(z,t) = f(z,t) — T/ flx, t)dt.
0 0
Using (1.2.129), we rewrite (1.2.101) as follows
& =cf(x) +ef(x,t) + gz, t,¢€). (1.2.130)
Now we make the change of coordinates
z =y +ew(y,t),

where w will be defined shortly, to obtain

.. ) d - -
b=y +eDywy +e = ef(y+ew) +ef(y+ew,t)
+e2g(y + ew, t,€). (1.2.131)

Next, we expand the right-hand side of (1.2.131) in powers of ¢
. . Ow ~ -
§+eDywy+ e =< () + flv.0))
+e” (Dyf(y)w + Dy f(y, hw + g(y, , 0))

+0(e%). (1.2.132)

We remark that it is possible to compute the O(e®) term explicitly in
(1.2.132) if needed. We rewrite (1.2.132) as

(1-+eDywyi = (7 + ) - 5 )

+¢? (D, f(yw + Dy fly, thw + g(,1,0)) + O(c)

or

§= (I +eDyw)! {s (f(y) + f(y.t) - %—1:)

+ &2 (Dyflyw + Dy fly, O +(u,1,0)) + O}, (1.2.133)
where “I” denotes the n x n identity matrix. Now, for ¢ small, (I +
eDyw)~!' =1 — eDyw + O(e?), so (1.2.133) becomes
. = s ow
i=c(Fw+ fno - 52)

+e? (Dyf(y)w + Dy f(y, w + g(y,,0)

— Dywf(y) — Dywf(y,t) + Dyw%—":’) + O(e%). (1.2.134)
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We then define

f1(y,t,e) = Dy F(y)w + Dy f(y, t)w + g(y, ¢,0)

_ . ow
=D, W f(4) ~ Dyw(w,) + Dyw e +0()
so that (1.2.134) takes the form
. 7 z Ow 9
y=¢ f(y)+f(y7t)*5t— +e fl(y’t’s)‘ (12135)
Next, we choose w so that
ow
then (1.2.135) becomes
y=ef(y) +efr(y,t.e), (1.2.137)

where, tracing through the above steps, it should be clear that f; is 7-
periodic in ¢.
Now we prove i}.

i) We begin by comparing solutions of (1.2.102) and (1.2.128), which we
rewrite below as

v=ef(y)+e2fily,te),  w(to) = vo,
z =ef(z), z(to) = Zo.

We integrate and subtract (1.2.128) and (1.2.102) to obtain
t B t
)= alt) =g —ao+ [ (Fu(o) - Fa(6)) ds+e [ fly(e).s.e)ds,
to to
from which follows

ly(t) = 2(8)] < lyo — ol + / 1F(u(s)) - Fa(s))| ds

+ €2 /tt | f1(y(s),8,€)|ds. (1.2.138)

Using the fact that the vector field is C” (r > 1), on U we have
(f(y) — f(2)] < Lly — 2| (1.2.139)
for some constant L > 0, and on U x R x (0, 0] we have

Ifi(y,t,e)| < M (1.2.140)
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for some constant M > 0 (note: f; is periodic in t). Now let v(t) = |z(t) —
y(t)|- Then, using (1.2.139) and (1.2.140), (1.2.138) becomes

v(t) < wlty) + > M(t —to) + €L /t v{s)ds. (1.2.141)

to

Next, we apply Gronwall’s inequality to (1.2.141) to obtain

t t t
v(t) < U(to)exp/ eLds +/ 52M<exp/ eL dr) ds
to toy s

¢
= v(to)expeL(t — to) + €2 M exp(eLt) / exp(—elLs)ds
to

= v(tg)expeL{t — tg)
+e?M exp(eLt) (i (exp(—eLto) — exp(—sLt)))

M
< wv(to)expeL(t —to) + EE— expel{t —tg) (1.2.142)

[z(t) — y(t)] < <|-To — Yol + #) expeL(t —to).

Therefore, for |z — yo| = Ofe), |z(t) — y(t)] = O(e) on the time scale
0 < eL(t — ty) < N, or equivalently, for ty < t < tg+ N/(eL), where
N is some constant independent of e. Now we must relate this result to
(1.2.101), which we rewrite below as

&= ef(z,t) +%g(z,t,¢).

Solutions of (1.2.101) can be written as

N
r(t) = y(t) + ew(y,t)  onty <t <tg+ I

and thus,

|z (t) — z(t)| = y(t) + ew(y, t) — l’(t)|
< y(t) — z()] + elw(y. 1) = Ofe)

on tg <t < tg+ N/(eL), where the bound of |w(y,t)| uses the fact that
y(t) € U on a time scale O(1/¢). This completes the proof of i).

ii} We will explicitly construct a Poincaré map using regular perturbation
theory.

Using the fact that solutions of (1.2.128) depend on ¢ in a C" manner,
we may Taylor expand the solution of (1.2.128) to obtain

y(t,€) = y(t,0) + ey1 (t) + %y2(t) + O(e®), (1.2.143)
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where y(£,0) is the solution of
y(t,0) =0, (1.2.144)
11(t) is the solution of B
91 = f(y(t,0)), (1.2.145)
and y2(t) is the solution of

g2 = Dy f(y(t,0)) 11 + f1(y(¢,0),¢,0). (1.2.146)

Equations (1.2.145) and (1.2.146) are referred to as the first and sec-
ond variational equations, respectively, and are obtained by differentiating
(1.2.128) with respect to ¢; see Hale [1980] for more details.

We construct a standard (see Section 1.2A, Case 2) time 27 /w Poincaré
map as follows

y(0,¢) — y(2m/w, €). (1.2.147)
Using (1.2.143) and choosing initial conditions such that
¥(0,¢) = y(0,0) = yo (1.2.148)

by replacing y,(0) = 0 for ¢ > 1, (1.2.147) becomes
2w 2 2m 3
v wtey (= )+t (=) +OE). (1.2.149)

We will also consider the map obtained by truncating (1.2.149) at O(e?)

2
Yo — Yo + €N (%) . (1.2.150)

Now, from (1.2.145) and (1.2.148) we obtain

27 2m -
n (-w—) = ;f(yo) (1.2.151)
so that (1.2.150) becomes
2
Yo = Yo +e—f(yo). (1.2.152)

From (1.2.152) we see that a fixed point of the averaged equations corre-
sponds to a fixed point of (1.2.152). Also, if D f(yo) is hyperbolic, then it
follows (see Kato [1980]) that, for e sufficiently small,

2 _
id +E§D F(wo) (1.2.153)

is likewise hyperbolic and, moreover, (1.2.153) will have the same number of
eigenvalues inside (resp. outside) the unit circle as Df(yo) has eigenvalues
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in the left (resp. right) half plane; see Exercise 1.2.24. These facts will be
useful shortly.

Now let us consider the full Poincaré map (1.2.149). The condition for
(1.2.149) to have a fixed point is

Yo=Y t 525f(y0) +O(e%)
or
27 -

(% 700+ 0©)) = glun.e) 0. (1.2.154
We are now in a position to complete the proof. Suppose the averaged equa-
tion (1.2.102) has a hyperbolic fixed point at y = §. This then corresponds
to a hyperbolic fixed point of the O(e?) truncated Poincaré map (1.2.152)
having the same stability type. We want to show that these conditions are
sufficient for this fixed point to persist in the full Poincaré map (1.2.149)
without change of stability and, hence, for the hyperbolic fixed point of
the averaged equations to correspond to a hyperbolic periodic orbit of the
full equations having the same stability type. We do this by applying the
implicit function theorem to (1.2.154). We know

g(gO) O) = 0;
and this matrix 5
T -
Dyo9(30,0) = —Df(%o) (1.2.155)

is hyperbolic. Hence, for ¢ sufficiently small, there exists a C" function of
g, yo(e) such that

g(yo(s),e) =0.

iii} This result follows from the persistence theory for normally hyper-
bolic invariant manifolds and is beyond the scope of this book. See Fenichel
[1971], [1974], [1977], [1979]; Hirsch, Pugh, and Shub [1978]; Schecter [1988];
and Murdock and Robinson [1980]. O

Interpretation of the Dynamics of the Averaged Equations

We now want to discuss the dynamics of the averaged equations and the
relationship with the fully time-dependent equations. We will do this in the
context of Example 1.2.11.

Recall that in Example 1.2.11 the following equation was considered.

U=,

¥ = —wiu + eh(u, v, t,¢). (1.2.156)

The solution to the unperturbed equation is given by (u(t, ug, Vo), v(t, uo,
U())) and is periodic in ¢ with frequency wp. We used this solution to trans-
form (1.2.156) into a form where the method of averaging could be applied.
This was accomplished in two steps.
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Step 1. Assume nw is “close” to mwy and substitute (n/m)w for wp in the
frequency of (u(t,uo,vo), v(t, o, Vo))

Step 2. Assume the initial conditions (ug, vg) are functions of time and use
the “almost” solution of the unperturbed equation to derive a vector field
for (uo(t),vo(t)) such that (u(t, uo(t), vo(t)), v(t, uo(t), vo(t))) is a solution
of (1.2.156).

This vector field for (uo(t),vo(t)) is in the standard form for the method
of averaging and is subsequently averaged over the period T' = 27 /w. From
the averaging theorem we know that hyperbolic fixed points of the averaged
equations correspond to periodic orbits of period 2m/w.

Let us suppose we found a hyperbolic fixed point of the averaged equa-
tions. Then from ¢1.2.108) and the averaging theorem, we have

u(t) = up(t) cos Dot + vo(t)ﬂ sin th,
nwo o om (1.2.157)
n i n
v(t) = —up(t) —wsin —wt + vy (t) cos —wt,
m m m

where ug(t) and vo(t) are periodic with period 27/w. Because (1.2.157) is
periodic in ¢ with period 27m/w, it is natural to think of (1.2.157) in the
context of a Poincaré map where initial conditions are mapped under the
flow generated by (1.2.156) to their image under the flow at time 27 /w (see
Section 1.2A). We consider three cases.

1. n = 1. In this case the solution (1.2.157) pierces the Poincaré cross-
section m times before returning to its starting point. Thus, the fixed
point of the averaged equation corresponds to a period m point of
the Poincaré map, or equivalently, a subharmonic of order m.

2. m = 1. In this case the solution (1.2.157) returns to its starting point
on the Poincaré maps. Thus, the fixed point of the averaged equation
corresponds to a fixed point of the Poincaré map or, equivalently, an
ultraharmonic of order n.

3. n > 1, m > 1. Following the above arguments, the reader should
be able to verify that, in this case, hyperbolic fixed points of the
averaged equations correspond to period m points of the Poincaré
map or, equivalently, ultrasubharmonics of order m, n.

ii) THE SUBHARMONIC MELNIKOV THEORY

We will now develop a method for constructing Poincaré maps which is
similar in spirit to averaging yet much more geometrical. However, it will
be necessary for us to restrict (1.2.93) somewhat. Specifically, we will be
considering two-dimensional systems that are periodic in ¢, which we write
in component form as follows

T = fl(mvy) + 591($,y,t75),

/ ,y) € R, 1.2.158
¥ = fa(z,y) + ega(z,y,t, ), (z,y) € ( )
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When it will prove notationally convenient we may write (1.2.158) in the
following vector form

G = f(q) +eg(q,t,¢), (1.2.159)

where q¢ = (z,9), f = (f1, f2), and g = (g1, g2). We have the same differ-
entiability assumptions on f and g as stated for (1.2.93). However, now
we will assume that g is periodic in ¢ with period T = 2x/w. Our sys-
tem may depend on parameters; however, for now we will not consider this
possibility.

Our strategy will be to use the global geometric structure as a framework
or skeleton on which to construct our analytical techniques for studying the
perturbed system. In order to do this we will have to introduce some as-
sumptions regarding the geometrical structure of the unperturbed system.
Our first step in doing this will be to assume that the unperturbed vector
field is Hamiltonian. By this we mean that there is a C™*! scalar valued
function, H(z,y), such that

hlew) = @_%’l)’ (1.2.160)
falz,y) = —aHégi, y)

(Note: we are assuming that f and H have the same domains.) Thus
(1.2.158) takes the form

OH(z,
= _—({(;;i) + Egl(x,y,t,a),
o ‘8H(m,y) + e ) (1.2.161)
y= al' g2\T,y,t,¢€),
or, in vector form
¢=JDH(q) +eg(g. t,€), (1.2.162)
where oH
O
DH =
8H
By
and

= (00,

We remark that the perturbation (i.e., g) need not be Hamiltonian al-
though, as we will see later, in the case where the perturbation is Hamil-
tonian versus the case where it is not, the dynamics are very different.
Up to this point everything has been very general; how we want to make
the following assumptions on the structure of the unperturbed system.

Assumption 1. The unperturbed system possesses a hyperbolic fixed point,
po, connected to itself by a homoclinic orbit go(t) = (z°(¢),y°(¢)).
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qe(t)
o
FIGURE 1.2.27.

Assumption 2. Lét Tpy = {g € R? | g = go(t),t € R} U {po} = W*(po) N

W*(po)U{po}- The interior of I', is filled with a continuous family of peri-

odic orbits ¢*(t), a € (=1, 0), with period T*. We assume that 1111}) g*(t) =
a—

qo(t) and lirnOT“ = 0.

See Figure 1.2.27 for an illustration of the geometry of the unperturbed
phase space. At this point we wish to make the following remarks.

Remark 1. « is simply a parameter that indexes the periodic orbits inside
I'p,- In specific problems a may have the interpretation of energy, action,
elliptic modulus, etc. The fact that it lies in the interval (—1,0) is not
important (as we shall see); the interval could be arbitrary. We chose this
particular interval for notational convenience only.

Remark 2. If more than one hyperbolic fixed point with associated homo-
clinic orbit and family of periodic orbits appears in a specific equation, then
the method can be applied to each separately.

For now, we will concentrate on the dynamics of the one-parameter fam-
ily of periodic orbits under perturbation. In Chapter 4 we will develop
techniques for studying the behavior of I'p, under perturbation and learn
that it contains many delightfully complicated surprises.

The following lemma will be very useful.

Lemma 1.2.12 Let ¢*(t—to) be a periodic orbit of the unperturbed system
with period T*. Then there exists a perturbed orbit, not necessarily periodic,
which can be expressed as

g2 (£, to) = q°(t — to) + eqf (t — to) + O(?),

uniformly in t € [to, to + T°] for € sufficiently small and all a € (—1,0).

Proof: Suppose we choose any a = & < 0 and restrict ourselves to consid-
eration of g*(t — tg), @ € (—1,4]. In this case the period, T, is bounded
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from above and the approximation problem 1s only on a fimite time mnterval
In this case Proposition 1 2 10 immediately apphes
The aspect that makes this lemma sigmficant is the fact that hm 7% = 0o

a—

In this case crude estimates such as those used in Proposition 1 2 10 do not
work The way to salvage this situation 1s to use the geometrical structure
associated with the stable and unstable mamfolds of the hyperbolic fixed
pomt This 1s discussed 1n depth 1n Guckenheimer and Holmes [1983], and
we refer the reader there for the detauls O

Let us make the following remarks which lughlight some of the important
implications of Lemma 1 2 12

Remark 1 As mentioned above, this lemma 1s nontrivial It says that we
can approximate untzformly (meaning one ¢ 1s sufficient for all the ¢%, o €
(—1,0)) perturbed orbits by unperturbed orbits as their periods go to oo
(1e, as they hmit on I')) We are able to do this because of the control
we have on the geometric structure of the stable and unstable manifolds
of the hyperbolic fixed pomt We will see this more exphcitly in Chapter 4
when we study the global behavior of T'y, under perturbation

Remark 2 ¢$(t,tp) 1s a solution of the linear first variational equation, 1
we have

g5 = JD?H(q*(t — to))af + g(¢°(t — o), 1,0) (12163)
for ¢ € {tg, to + 7] (cf Exercise 12 11)

Remark 8 We are only able to approximate perturbed orbits by unper-
turbed orbits uniformly as they it on I'p, for one unperturbed period
{even though this period goes to co) Geometrically, this means that ap
proximate perturbed orbits are only allowed to pass once through a neigh-
borhood of the hyperbolic fixed pomnt, which, as we will see 1n Section 4 5
becomes a hyperbolic periodic orbit for the perturbed vector field This 1s
because as orbits get closer and closer to I',, they spend longer and longer
near the hyperbolic periodic orbit and, consequently, any small error may
be magnified by an arbitranly large amount We can control this error for
one passage through a neighborhood of the hyperbolic periodic orbit sim
ply by choosing the imtial conditions correctly, however, the second time
through we have no control If we stay bounded away from I',, so that
a remains bounded, then we can approximate perturbed orbits by unper
turbed orbits for nT® n > 1, integer, although 1n this case ¢ = g(n) and
e(n) —0asnToo,1e, we lose umformmty

Remark 4 Remark 3 1s of interest because we will be interested n resonant
periodic orbits, 1 e, orbits whose periods are related to the period of the
external perturbation by a relation of the following form

nT* = mT,
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FIGURE 12 28

where T' = 27 /w 18 the period of the perturbation and m and n are rela-
tively prime integers

We now begin the analysis For the moment we restrict ourselves to a
region nside and hounded away from I',, call 1t K, see Figure 1 2 28 In K,
the pertods of the unperturbed orbits are uniformly bounded above, say by
a constant C' It 1s well known that in such a situation a Hamiltonian system
can be transformed to a new coordinate system, the so-called action-angle
coordinate system (see, e g , Arnold [1978], Goldstein [1980], or Percival and
Richards [1982]) This coordinate change 1s represented by the functions

I=I(.’L’,y), 9:9(.’17,?!),

with inverse
z=1z(1,0), y=y(,0)

In such a coordmnate system the unperturbed vector field takes the form

I=0,
6 = Q(I),

hence, I 1s a constant on unperturbed orbits and the Hamiltoman takes
the form

H=H(I)

and also, Q(I) = %, where now in the action-angle coordinate system
I plays the role of the more general parameter a introduced earlier, 1e,
specifying I specifies a periodic orbit If we transform the coordinates of
the perturbed vector field using the action-angle transformation for the un-
perturbed Hamiltonian vector field, we obtain

oI I
I=¢ (—91 + -(%gg) =cF(l,0,t¢),

ox
o6 of

0= — —

Q)EQUHfGM&ud

(Note an obvious question 1s that if we are given a system m Cartesian
coordinates, how do we transform to action-angle variables? We will see
that 1t 15 often unnecessary to do this The action-angle variables are merely
a convemence that make the geometric interpretation clearer and, in the
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y XC'yC

L,

FIGURE 1.2.29.

end, computations can be made without explicitly transforming the vector
field into the action-angle coordinate system.)

At this stage the introduction of action-angle variables probably appears
to be somewhat unmotivated. However, we would like to argue that they are
the most geometrically natural and revealing coordinates for our system.
In order to do this we must make a slight digression and give a derivation
of action-angle variables for our system that is sensitive to the underlying
geometry.

Digression: Action-Angle Variables

The “traditional” development of the idea of action-angle variables utilizes
the familiar idea of generating functions from classical mechanics (see, e.g.,
Goldstein [1980] or Landau and Lifshitz [1976]). For an excellent deriva-
tion of action-angle variables from this point of view we refer the reader
to Percival and Richards [1982]. We will take a somewhat different ap-
proach (loosely inspired by Melnikov [1963]) which more directly utilizes
the underlying geometry of the vector field.

We consider a C™ (r > 1) Hamiltonian vector field on the plane given as
follows

. 3H( )
L= —=—\TY),
3(?§H (z,y) € R?, (1.2.164)
=~ )
y 6.’1: 4 b

with the following structural assumption.

Assumption 1. In some open set in IR? there exists a fixed point of center
type, (¢, Ye), surrounded by a one-parameter family of periodic orbits,
i.e., H(z,y) = H = constant consists of closed, non-self-intersecting curves
surrounding (z., y.) in this open set; see Figure 1.2.29.

Our goal is to find a new set of coordinates in which the differential
equation has the simplest possible structure, i.e., you can simply look at
it and write down the solution. Let us consider the following motivational
example.
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ExXAMPLE 1.2.13 Consider the simple harmonic oscillator
T =y,

i = (1.2.165)

Tt is easy to verify that (1.2.165) has a fixed point at (z,y) = (0,0) having
purely imaginary eigenvalues (i.e., it is a center) and is surrounded by a
one-parameter family of periodic orbits given by H = y%/2 + 2%/2. If we
transform (1.2.165) into polar coordinates using

x =rsinb,

y = rcosb,
then the vector field becomes 0
7 =0,
6=1,

which has the obvious solution
7 = constant,

For this example polar coordinates work very nicely because (1.2.165) is
linear and, therefore, all of the periodic orbits have the same period.

For the general nonlinear vector field (1.2.164) we will seek a coordinate
transformation that has the same effect. Namely, we will seek a coordinate
transformation

(@.y) = (6(x.y). I(z,))
with inverse

0,1) — (z(1,6),y(1,6))
such that the vector field (1.2.164) in the (8,I) coordinate satisfies the
following conditions:

1. I = O;
2. 6 changes linearly in time on the closed orbits.

We might then think of # and I heuristically as “nonlinear polar coordi-
nates.”

In the construction of the action-angle variables the following steps will
be carried out.

1. Definition of the Transformation. This will rely exclusively on the
geometry of the phase space of (1.2.164).

2. Write the Vector Field in the New Coordinates. In this step we will
show that in the (6, I) coordinates (1.2.164) takes the form

I=o0,

6 — o). (1.2.166)



124 1. The Geometrical Point of View of Dynamical Systems
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L.

FIGURE 1.2.30.

3. Show that the Transformation Preserves the Hamiltonian Structure.
This step implies the following. Note that (1.2.166) is Hamiltonian
for some function K(I), where Q(I) = %—If. If the transformation
preserves the Hamiltonian structure, then we must have

K(I) = H(2(1,0),4(1,0)).
We begin with Step 1.

Step 1. We first define 8(z,y). Let L denote a curve which emanates from
(z¢,y.) and intersects each periodic orbit only once; see Figure 1.2.30. We
denote L in parametric form as follows

L = { (z0(s),y0(s)) € R* | s € some interval in R } .

We denote solutions of (1.2.164) starting on L by (z(t,s),y(t,s)) where
z{0,8) = zo(s) and y(0,s) = yo(s). Let (z,y) be a point on the orbit
of (z(t,s),y(t,s)) and let ¢t = t(z,y) be the time taken for the solution
starting at ((zo(s), yo(s)) to reach (z,y).

(Note: using the implicit function theorem it can be shown that ¢ has the
same degree of differentiability in z and y as the vector field.) We denote
the period of each periodic orbit defined by H(z,y) = H = constant by
T(H). We now define the angle variable, 8(z,y), by

8(z,y) = ?%TH—)t(x,y), (1.2.167)

where (z,y) € H = constant; see Figure 1.2.31. Note that 6(z,y) is multi-

valued, i.e., there is a multiple of 27 ambiguity in its definition. However,
g—z and g—z are single-valued functions.

Next we define the action variable 7(z,y). The area enclosed by any
closed curve is constant in time; this area is called the action and is defined

as 1
I=— ¢ ydz, (1.2.168)
2 H
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«— H(x,y) = constant

FIGURE 1.2.31.

where H denotes the periodic orbit defined by H(z,y) = H = constant.
The normalization factor of 1/(2) is traditional for the following reason;
differentiating (1.2.168) with respect to H gives

o 1o

and, from (1.2.164) we obtain

dz, (1.2.169)

oH _do
dy ~ dt’
Using the chain rule, it is easy to see that

Oy
o7 4z = dt, (1.2.170)

so that (1.2.169) becomes

o1 1

55 = 3. T(H). (1.2.171)

Thus, %—1{ can be interpreted as the frequency of oscillation. Also, from
(1.2.168) it should be clear that we have

I=I(H). (1.2.172)
Now, using (1.2.171), we can invert (1.2.172) to obtain
H=H(I), (1.2.173)

which can be substituted into (1.2.171) to obtain

T =T(I) (1.2.174)
so that SH 9
Tr —_
a1 = 70 = - (1.2.175)
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Step 2. By definition (1.2.168) it should be evident that
I=o,
and by using (1.2.167) and (1.2.175), it follows that

: 2r
0=—=Q(I).
0] (1)
Before proceeding to Step 3, we want to derive two relationships amongst
the partial derivatives of the transformation functions which will prove
useful later on. Differentiating (1.2.168) with respect to ¢ along orbits gives

. I, dI
f=Zd+—y= 2.
52t 5y = 0 (1.2.176)

and substituting (1.2.164) into (1.2.176) gives

I bH O8I 0H
DT 1.2.1
ox 0y Oy Oz (1.2.177)
Using the same idea, differentiating (1.2.167) along orbits gives
060 OH 00 0H OH
=) = ==, 1.2
oz 9y Oy Oz () oI (1.2.178)

Next, using (1.2.173) and the fact that I = I{z,y), differentiating (1.2.173)
gives

OH 0OHOI
dy 0l oy’
a;’f o 8?; (1.2.179)
% - W%'
Now, on the perlodlc orbits, & o and cannot simultaneously vanish, so

(1.2.179) implies 2 W # 0 (which also follows from (1.2.171}). Therefore.
substituting (1.2.179) into (1.2.178) gives

80901 0801
—a — e = 1.2.180
ordy Iydx ( )
The reader may also recognize (1.2.180) as the Jacobian of the transfor-
mation to action-angle variables. The fact that the Jacobian is one implies
that area is preserved under the action-angle transformation.

Step 3. We have shown that in action-angle variables (1.2.164) takes the
form .
I=0,

6 — o). (1.2.181)
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As mentioned earlier, it is evident that {1.2.181) is Hamiltonian with Hamil-
tonian function K{I). We now want to explicitly show that the action-angle
transformation preserves the Hamiltonian structure in the sense that

H(z(1,0),y(1,0)) = K(I). (1.2.182)

Therefore, thinking of H as a function of 8 and I, we must show that

OH _ 0K
8l — 8I’
OH

50 =0

We proceed as follows. We have

%:92@_{34_?_9@
oI Oz oy
_00O0H 0900H
50y By oz
_ 08 (OH 80 OH 01 08 (OH 88 OH oI
—g(w@+a@ﬁ“@ﬁﬁ%+mﬁﬁ
_OH (0081 899I
‘E(ﬁa’%%)
_OH

=3I (using (1.2.180)).

A similar calculation shows that

_OK _ ;i _ OH

a8 ~ag =V

Now let us consider two useful examples.

ExampPLE 1.2.14 Consider a Hamiltonian vector field given by the Hamil-

tonian )

H(z,y) = % +V(z) (1.2.183)

where V(z) is shown is Figure 1.2.32a and the phase curves of the corre-
sponding vector field are shown in Figure 1.2.32b. We will consider orbits
interior to the region bounded by the homoclinic orbit in Figure 1.2.32b.
(Note: for the more physically minded, (1.2.183) has the form of a kinetic
energy term plus a potential energy term.)

From (1.2.183) we obtain

y=+V2/H - V(z). (1.2.184)
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Using (1.2.168) and (1.2.184), we obtain

2 Lmax

1=" VH - V(z)dx (1.2.185)

Zman

where z.,,, is the left-most intersection of H = constant with the z-axis
and Zax 18 the right-most intersection. (Note: the reader should figure out
what became of the choice of plus or minus in (1.2.185).)

Using (1.2.164), (1.2.167), and (1.2.184) yields

2r r dr
9(z,y) = , 1.2.186)
D=5 )., BTV ) (
from which we obtain
Ty =2 [ (1.2.187)

ren V2/H = V(z)

By direct computation, using (1.2.171), the reader may verify directly that

or _ 1)
OH  2rm

. (1.2.188)
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EXAMPLE 1.2.15 Recall that the perturbed equations (1.2.161) are given
by

. OH
I = a_(may) +591(Iay,t75)»
y (1.2.189)

. OH
Y= _%($7y) + 592($7y7t75)‘

We want to transform this vector field using the action-angle transforma-
tion for the unperturbed vector. Differentiating this transformation gives

. g1, 0I,

I= %QH—B_yy’

j_ b, ob (1.2.190)
Tt T ayY

Substituting (1.2.189) into (1.2.190) gives

: 0l 6H 0I0H ol ol
I= Te\ gt
Oz 0

dr 8y Oy Ox Y
j_(200H _obom\  loo oo (12190
T \Ozx 0y Oy ox ozt 8y92 '
Using (1.2.177) and (1.2.180), (1.2.191) reduces to
I =¢F(I1,0,t,¢),
0=Q(I)+eG(I,0,t,¢), (1.2.192)
where
oI
F(1,0,t,¢) = a(m(f,e),y(lﬂ))gl (m(I,O),y(I, 0),t,6)
oI
+ a_y (Z’(I, 0)? y(Iv 9))92(I(I, 0)7 y(Ia 9)7 ta 5)
06
G(Ia H’t,E) = 5; (‘T([a 9)7 y(I» 9))91 ('I(Ia 9)5 y(Ia 9)7 i, 5)
o0
+ a—y(w(Iﬁ),y(I, 0))g2(z(1,6),y(1,0),t,¢).

It should be evident that F and G are 27 periodic in  and T = 27/w
periodic in t.

Our treatment of action-angle variables has been strictly two-dimen-
sional. For higher dimensional generalizations we refer the reader to Arnold
[1978], Goldstein [1980], or Nehorosev [1972].

Now let us return to the construction of the Poincaré map for (1.2.161).
Writing (1.2.192) as an autonomous system gives

I=cF(I,0,0,¢),
6 =Q(I) +€G(I,6,9,¢), (1,0,6) e RT x 8! x 81, (1.2.193)
¢ =w,
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(cf. Section 1.2A). We construct a global cross-section, ¥, to this vector
field defined as follows

2050 = {(I’a7¢) | = ¢o } (12194)

(Note: for this definition of ¥ in the context of Section 1.2A, we have
chosen ¢ = 0.) If we denote the (I,8) components of solutions of (1.2.193)
by (I.(t),0:(t)) and the (1,8) components of solutions of (1.2.193) for e = 0
by (IO, Q(Ip)t + 00), then the (perturbed) Poincaré map is given by

P.: 7% — $¢0,

(1.(0),8:(0)) — (L(T),6.(T)) (1.2.195)

and the m'™ sterate of the Poincaré map is given by

P $éo — noo,
(IE(O)v 96(0)) = (Ie(mT)ags(mT))‘

Now we can approximate the solutions to the perturbed problem by using
Lemma 1.2.12.

I(t) = I + el (t) + O(e?),
0:(t) = 8o + QIp)t + b1 (t) + O(?),

where Ij is the unperturbed (constant) action value and I, 6; can be found
by solving the first variational equation

4t = Df(q%)ar" + 9(q%, 4(2), 0),

where ¢(f) = wt + ¢, or written in the action-angle variables,

((1) (.0 0) (Il +  FUo,2(Io)t + 6o, 6(t),0)

6 9Ip) 0)\6 G(Io, UIo)t + 6y, 06(1),0) )

Now we can see the tremendous advantage we have gained in using the
action-angle coordinates; namely, the solution of this equation is trivial
because the matrix is constant coefficient (normally it would be time de-
pendent in an arbitrary coordinate system, and we know that there are no

general methods for solving linear equations with nonconstant coefficients)
Thus we have that

P x%0 5 B3¢0,
(1:(0),6.(0)) — (I.(mT),6.(mT))
= (Ip, 0p) — (Io + eIy (mT), 80 + mTQ(Lo) + £61(mT)) + O(e?),

where we have chosen
I.(0) = Iy,
0.(0) = 6.
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From the first variational equation, I, (mT) and 6, (mT') are given by

mT

L(mT) = F(Io, QIo)t + 8o, wt + o, 0) dt = M ™ (I, 60; do)
0

N

mT t
/ / F(Io, QI )€ + 0o, wE + ¢o,0) dE dt
I=1y Y0 0

mT
-+ / G(I(), Q(Io)t + B, wt + ¢0,0) dt = MQm/n(Io, Bo; d)o)
0

The Poincaré map therefore takes the form

Pm: %90 - ¥,
(1,6) — (1,0 + mTI)) + & (M]"™(1,6;60), My"" (1,6 60))
+ O(e?),
{1.2.196)
where we have dropped the subscripts 0’s on I and 8 for notational conve-
nience and where ¢g denoctes the dependence of the Poincaré map on the

cross-section L9,
We define

MM (L,6;60) = (M (1,6 60), My (1,0 60) (1.2.197)

to be the subharmonic Melnikov vector named in honor of V. K. Melnikov.
We make the following remarks.

Remark 1. We superscripted the Melnikov vector with m/n to denote our
search for periodic orbits which satisfy the resonance relation

nT(I) =mT.

This relation will enter into the computation of the Melnikov vector as
we explain in Remark 4 following the proof of Theorem 1.2.13. Thus, the
superscript m/n implies that the value of I in the Melnikov vector satisfies
the resonance relation. It will also aid us in avoiding confusion with the
homoclinic Melnikov function in Section 4.5.

Remark 2. The subharmonic Melnikov function defined in previous expo-
sitions of the Melnikov theory for periodic orbits (cf. Guckenheimer and
Holmes [1983]) is, up to a normalization factor that is constant on orbits,
the first component of our Melnikov vector. We will discuss this in more
detail following the proof of Theorem 1.2.13.

R};Bmark 3. Let us make a few comments regarding our potpourri of notation
above.

a) I and o play the same role.
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b) From the resonance relation
nT(I) = mT,

we see that n, m, and I are functionally related. Thus, our practice
of tagging n, m, and I (or «) on the subharmonic Melnikov vector is
a bit redundant; however, it has become traditional.

Occasionally, either I (or a) or m/n may not be explicitly shown, i.e., we
may write M(Iv 0; ¢0)7 M(av to; ¢0)7 Mm/n (97 d’O)a or Mm/n (tO; ¢O) How-
ever, the reader should keep in mind that the resonance relation nT(I) =
mT (or nT® = mT) is the analytical and geometrical assumption.

Now we state the main theorem concerning the existence of subharmonic
periodic orbits.

Theorem 1.2.13 Suppose there exists a point (I,0) at which T(I) =
(m/n)T, and one of the followwng conditions is satisfied:

m/n
min Q2 oM, .
FP1) MMM, 0, ¢) =0 and (01 50 - £0;
FP2) M™™1I,8;¢0) =0, o =0, and
oI |;
oM™ omyr™ oMy oMM oy
oI 00 oI 08 as

Then, for 0 < ¢ < e(n), the Poincaré map PI™ has a fized pownt of period
m. If n =1, the result 1s uniformly valid in 0 < & < g(1).

Proof: Case FP1)

o OM,

Ml(I,H,d)O):O, 5—89— #0

(1,9)

(Note: we have dropped the superscript m/n for notational convenience.)
Then we have

PM™(I,0) — (1,0) = (0,mTQI)) + (0, M2(1,8; o)) + O(£?).

Let us perturb the action by an amount A7, let I =1+ AI, and expand
the right-hand side about I to obtain

P™(1,8)— (1,60) = (0, mTQI) + mT% iAI + O((AI)Q))

+ (0, M3(I,0; ¢0)) + O(eAI) + O(e?).
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‘We recall from the resonance relation that
mTQ(I) = 2rn = 0(mod 27),

and that if we choose AT such that

Al = —¢ MQ(I'ér)

(19
oI

we obtain o o
PI"(1,0) - (1,8) = O(e?)
since AI = O(¢). We have therefore shown that the m' iterate of the
Poincaré map has a fixed point up to an error of O(g?). The fact that the
map has an exact fixed point follows immediately from the implicit function
theorem provided that
#0,
(1.6)

where “id” denotes the 2 x 2 identity matrix. An easy calculation shows
that this is equivalent to

det ((DPg" —id)

99 OM,
(81 56 ) —_—

Case FP2) The argument is very similar to that given for FP1. We leave
the details to the reader. D

Let us now make a few remarks concerning the consequences and impli-
cations of Theorem 1.2.13.

Remark 1. Earlier we remarked that the action-angle variables were merely
a convenience to allow us to view the problem in its intrinsic geometric
context. We saw that their use allowed us to approximate the Poincaré
map to O(e?) by rendering the first variational equation (1.2.163) trivially
solvable. In any other coordinate system (1.2.163) might be analytically
intractable. However, in order to use Theorem 1.2.13 to find ultrasubhar-
monics we must compute the subharmonic Melnikov vector. To do this, it
would appear that our original perturbed equation (1.2.161) must first be
transformed into (1.2.193) via the action-angle transformation. We want to
show that in Case FP1, this is unnecessary.
Let us now assume that

89#0
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In this case, by Theorem 1.2.13, to determine the existence of ultrasubhar-
monics we need information only on ]Wlm/"(l, 8; ¢9). Recall from (1.2.196)
that Mlm/n(I,G;qSO) is given by

mT
Mlm/"(I,G) :/ F(I,Q(D)t + 6,wt + ¢o,0) dt, (1.2.198)
0
where
F = g + Q
= amgl 8y92-
We now have %—‘;’ = Q(I) # 0; hence we can invert this and write [ =

I(H(z,y)). Using the chain rule we obtain

or _oron _ 1 on
or OH 8z Q) 0z’
oI 09I oH 1 OH

gy O0H 9y Q) oy’

F—._1 ?_Ii +8_H

so that F' becomes

and we have

mT

Mlm/n = L/ (DH - g)(unperturbed orbit) dt, (1.2.199)
I Jo

where represents the usual dot product for vectors.

In integrating the expression D H-g around an unperturbed periodic orbit
it does not matter whether we express the unperturbed orbit in action-angle
variables or in Cartesian coordinates, since the Jacobian of the transforma-
tion between the two coordinate systems is identically one. Thus, for the
the “unperturbed orbit” in (1.2.199), we may substitute the expression

q“ (GQ_(IQ)O> , (1.2.200)

where the ¢%(-) denotes an unperturbed periodic orbit in the coordinates
of (1.2.161). The argument for (1.2.200) is found by solving 8 = Q(I)t + 0o
for ¢. We can let 6/()(1) = ¢ and 85/82(I) = ¢¢ so that (1.2.199) becomes

W

mT
MM (a, t: o) = %[)/O (DH - g)(q°(t — to), wt + o, 0) dt. (1.2.201)

Then, letting t — t + tg, and using periodicity in ¢ of the vector field.
(1.2.201) becomes

mT
Mlm/n(av tO; d)U) - Q—(ljs /0 (DHQ) (qa(t),wt+wt0+¢o, 0) dt. (1'2‘202)
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If we define

mT
M{’l/"(a,tg; o) = / (DH - g)(g*(t),wt + wto + ¢0,0) dt, (1.2.203)
0

_ —rm/n
it is easy to see that M]"/™ (a, to; o) has a zero at which a_Mz__(LtOﬂl 40

if and only if M| m/n "(a, tg; ¢q) has a zero at which —J—Z,(a—tof& # 0. Thus,

the computation of (1.2.203) in the original coordinate system is sufficient
for verifying the hypotheses of Theorem 1.2.13. Note that M|" ™ (a, to; ®o)
is the standard subharmonic Melnikov function that can be found in Guck-
enheimer and Holmes [1983].

In the Case FP2 where g—f} = 0, we have not found analogously simple
transformations which transform the subharmonic Melnikov vector derived
in action-angle coordinates into the original coordinates of (1.2.161). It
appears that in this case the action-angle coordinate transformations must
be explicitly computed. A situation in which FP2 would arise would be in

perturbations of linear systems.

Remark 2. By construction it is easy to see that Mm/”(l, 8; o) is 2m-
periodic in §. We will explore the geometrical implications of this for Case
FP1 and leave the details of Case FP2 for the reader.

Suppose we locate a point (I,0) satisfying the hypotheses of Theorem
1.2.13 for Case FP1. Then the point (7,8) is O(e) close to a period m
point of P.. Now, since MI™/™(I,8; ¢o) is periodic in 6 with period 27, this
implies that M;"/”(I,e;¢0) has at least m zero’s for # € [0,2n). These
zero's are simply the orbit of the period m point under P., or equivalently,
the m fixed points of P™. We can go even further. First, we note that

since Mm/ (1,8;¢0) i (I 0; &) is also. Therefore,

8
%‘9— (1, 8; ¢) is identical and nonzero at each of these fixed points for P".

Hence, by the mean value theorem, between any two of these fixed points
of P™ there must be at least one more point where M/ ™(1,6:¢q) = 0

with 24 (1,6; ¢o) # 0. Using the same argument as above, we conclude
there must be m such points.

To summarize, a point (7, ) satisfying the hypotheses of Theorem 1.2.13
for Case FP1 implies the existence of 2m fixed points for P, or equiva-
lently, two period m orbits for P.. We will see later that these two orbits
have different stability characteristics.

Remark 3. As we have mentioned previously, the global geometry of the
unperturbed phase space provides us with a framework for developing our
) analysis of the perturbed orbit structure. With this in mind, we now discuss
the geometry of the unperturbed Poincaré map, which we rewrite below as

(1,6) — (I,6 + mTQ(I)).
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L Po(L)

©) " ¢

0 6 2n
FIGURE 1.2.33.

This is a very simple map; all of the orbits lie on closed curves (as they
should from the structure of the unperturbed problem), and mT€(I) tells
us how much the points move around the curve on each iteration. Let us
assume that % < 0 inside the homoclinic orbit. If %—S} should vanish at
isolated values of I, then we can simply apply our arguments to a subset
inside the homoclinic orbit (i.e., a range of I values) where %—S} does not
change sign. With this assumption, the frequency, Q(/), decreases mono-
tonically to zero as the homoclinic orbit is approached. Therefore, if we
examine an image of a radial line under P, it appears as in Figure 1.2.33.

Thus, points closer to the homoclinic orbit do not move as far as points
closer to the center. Maps of this type are called tunst maps. Clearly, since
the twist is an O(1) property, the perturbed map is still a twist map. Now.
examining the Case FP1, we can see what the twist condition does for us.
Since we are dealing with a two-dimensional map, to determine fixed points
normally we would have to satisfy two conditions; however, in our search
for resonant periodic points we can see from the proof for Case FP1 that
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the twist condition (i.e., % # 0) guarantees that we return to the Poincaré
section at the correct 8 value. Thus, we only need to check whether or not
the radial (i.e., I) coordinates of the image and preimage match up, and
this is measured by M, m/n

In Case FP2, where the twist is zero, it is clear that two conditions must
be satisfied for a fixed point of P/ to exist; namely, (Mm/" Mm/n)

(0,0).

Remark 4. What about the m and n? As these may appear to be rather
mysterious, we want to go into some detail about what they mean. We are
looking for periodic orbits in the perturbed system that are in resonance
with the external forcing and that satisfy the resonance relation

T(I) =mT, n, m relatively prime

(note: this can be taken as the definition of resonant orbits) or T(I) =
(m/n)T. Now our map is constructed from the ordinary differential equa-
tion by taking points (initial conditions) on X% and letting them evolve in
time until they return to £ (by definition of £%°, this occurs after time
T). Thus, if a point returns to where it started on X% after m iterations of
P,., we call it a period m point for the map P.. Next we ask how this period
m point for the map is related to periodic orbits in the ordinary differential
equation. The reader should recall that computation of the Melnikov vector
involved integrating around an unperturbed periodic orbit whose period we
denoted T'(I}. If we find a zero of the Melnikov function corresponding to
a period m point of the map at, say, (I,8) = (I,8), then the period of the
unperturbed orbit on which this particular Melnikov vector is computed is
given by T'(I). In order for this orbit to return to £ and be a period m
fixed point for the map, it is necessary that nT(I) = mT. We can therefore
see that the n enters into the Melnikov vector through the fact that we
calculate the Melnikov vector on a specific periodic orbit and we substitute
mT'/n for T(I) in the expression for the periodic orbit. Thus, we speak of a
period (m/n)T ultrasubharmonic being preserved in the perturbed vector
field.

We also urge the reader to review the geometrical description of Poincaré
maps given in Section 1.2A.

Remark 5. The sign of Mm/n(l #; ¢q) together with the twist condition
‘3, # 0 tells us a great deal about the orbit structure near the fixed points
on a resonance band, i.e., a neighborhood of I = I satisfying the resonance
relation nT(I) = mT. We now want to illustrate this idea.

Suppose, for definiteness, that we have

o0

%o
o1 =
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6
FIGURE 1.2.34.

M, 3 (1,84:9,)

/N /N
N\

m=3
FIGURE 1.2.35.

and we have found I = I such that

= 3T
T(I) = .t
In Figure 1.2.34 we denote the invariant circles in action-angle coordinates.
The arrows on the invariant circles represent the action of P§ on the circles.
In this case the circle labeled by I = I is a circle of fixed points and, due
to %g}_ < 0, points on the circles above I = I move to the left, and points
on the circle below I = I move to the right.

Furthermore, suppose we have found a @ such that
M (1,6, 60) = 0,

o oM™

3 a9 L8id0) #0;
then, by Theorem 1.2.13 and Remark 2 following the proof of the theoremn.
we know that P2 has six fixed points near (O(g)) I = I. In Figure 1.2.35 we

have graphed Mf/" (I,8; ¢o) on top of the unperturbed circle of fixed points

given by I = I. The intersection of the graph of Mf/n(f, 0; ¢g) represents
the fixed points of P3.
By construction, Mf’ / ™(1,8;¢9) measures the “push” in the direction

normal to the unperturbed closed orbit defined by J = I due to the per-
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FIGURE 1.2.36.

turbation. Thus, if M>/™(I,8; ¢) > 0, then points starting near (I,6) are
pushed above I = I and, if Mf/"(f,(); ¢o) < 0, then points starting near
(1,6) are pushed below I = I. Using this, along with Figure 1.2.35, we
represent by arrows in Figure 1.2.36a the direction in which points will be
pushed due to the I component of the perturbatlon near the fixed points. In
Figure 1.2.36b, using the fact that the twist ( # 0) is an order one effect,
we represent by arrows the direction in Wh1ch pomts will be pushed due to
the § motion. In Figure 1.2.36¢ we superimpose the I and § dynamics near

the fixed points, as shown in Figure 1.2.36a and 1.2.36b, and cobtain that,

near the fixed points satlsfymg 6—1—— > 0, points move in a hyperbolic

manner and, near the fixed points satisfying & Q Q——l— < 0, nearby points

Seem to circulate around the fixed points. (Note what would happen if we
had originally assumed 2 g > 07)

We stress that this is a heuristic argument only; we will address stability
directly in the next section. However, much of what we have said is true
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in a more general sense. On an order m/n resonance band we have 2m
fixed points. These fixed points will (generally) alternate in stability type
as one moves around the resonance band with m of the fixed points being
saddles. The stability of the remaining fixed points is a more delicate mat-
ter (note: in the above argument we deliberately used the vague statement
that nearby points tended to “circulate” around the fixed points). For dis-
sipative perturbations these fixed points will be sinks and for Hamiltonian
perturbation they will be elliptic fixed points (i.e., their eigenvalues will
both have modulus one).

Remark 6. For Case FP1, we recall from (1.2.203) that the first compo-
nent of the subharmonic Melnikov vector in the z — y coordinate system
(neglecting the nonzero normalization factor 1/§(I)) is given by

mT
Mlm/n(aato; ¢0) = / (DH . g)(qa(t)a"‘)t +wito + d)O,O)dt'
0

We can thus see that, due to the periodicity of the vector field, varying #g
and varying ¢o have the same effect on M;" /™ (a, to; ¢o). Therefore, varying
the cross-section £ on which the Poincaré map is defined corresponds to
shifting the phase of the periodic orbits.

ila) Stabulsty

One of the major advantages of working with the Poincaré map is that
stability questions follow easily. Recall that stability of the fixed points of
PI™ may often be determined by linearizing the map about the fixed point
and computing the eigenvalues. Cases FP1 and FP2 are different; therefore,
we treat each separately. Recall also the m'™® iterate of the Poincaré map
is given by

P(1,8) = (1,6 + mTQI)) +e(M{™(1,6; ), My” " (I,6; 60)) + O(e2);

hence, the linearization is

DpP™ =

€

( l—l—sM{fZI/” EM;”@/"

+ O(e?),
mTQ +eMy{" 1+sM§ﬁ>

where, for notational convenience, we denote partial derivatives by

oM
59 = Mid "
oM’ m/n
ar = My,
02 _

al
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m/n

and similarly for M,

Case FP1. Suppose we have found a point (I,f) such that nT(I) = mT

and y
o 0 Mm n
M™™(I,0) =0, (8 9 ) # 0.

oI 06 (7.6)

Then, by Theorem 1.2.13, we know there exists a point (1,8) = (I,8)+O(e)
such that (1,8) is a period m point for P..

We want to compute the stability of this fixed point. The eigenvalues of
DP" are given by

+ = \F DP™))2 — 4det(DPM)
and (we drop the superscript m/n for easier notation)

tr DP™ = 24 (M) 1 + Mag) + O(e?),
det DP™ =1 —emTQ M g +e(My s + Mag) + O(e?),
(tr DPM™)? — 4det DP™ = 4 + 4e(My 1 + Ma ) + O(e?)
— 44+ 4emTQ M, o — de(My 1 + Mag) + O(£?),
=4emTQ M, g + O(e?).

At this point the question arises as to where we evaluate the partial deriva-
tives since we don’t know the exact fixed point, only an O(¢) approximation
which is a zero of M7. However, we can see from the above expressions for
tr DP[™ and det DP" that by Taylor expanding these expressions about
(1,8) and substituting in (I,8) = (I,8) + O(¢), we incur an error of only
O(?). Therefore, we evaluate all partial derwatwes at (I,0), i.e., the zero
for M, of which nT(I) = mT is satisfied. We thus obtain

€
M= L (M Mag) & \/emTQ My + O(2) + O(c2).
Expanding the “square-root” part of the expression in a Taylor series gives
A2 =1%e,/mTQUM, o+ = (Ml 1+ Mag) +0O(3?).  (1.2.204)

From this expression we may determine stability provided both the O(4/€)
and O(e) terms are nonzero. Note that, for mTQ;M; g > 0, for £ sufficiently
small the O(+/c) term in (1.2.204) is sufficient for determining stability; cf.
Remark 5 following the proof of Theorem 1.2.13.

Case FP2. Suppose that we have found a point (I, 8) such that nT(J) =
and

N

M(1,6) = —
ro=o G

£0.

(1.6)

L]

OM, M, OM, OM,
oI 88  BI 06
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Then, from Theorem 1.2.13, we have a period m point for P. at (f, é) =
(I,0)+ O{e). We compute the eigenvalues of the linearized map at the fixed
point in a similar manner as in Case FP1. In this case we have to be a bit
more careful with the O(g?) terms, so we include them explicitly in the
expression for DP" as follows

DpPm — l+eMy;+e2A  eMyp+e*B
e eMyy +2C 1+eMg+ g?D )’

where, of course, A, B, C, and D are unknown. The eigenvalues of DFP"
are given by

DP™)

t 1
Ala = (tr > + 5\/(trDPEm)2 —4det DP™,

where

tr DP™ = 2+ e(Mi1 + Mayp) +€2(A+ D),

det DP™ =1+ e(My 1+ Mag) +&*(My 1Mo — My gMy 1)

+e*(A+ D)+ O,
(tr DP™)? — 4det DP™ =4 + 4e(My ; + Mag) + €*(My 1 + Map)?
+4e2(A+ D) + O(e®)~ 4 — de(My,1 + Mayp)
— 462(M1’1M2,9 - MQ,IMI,G)
—4e*(A + D) + O(®)
= X (My 1 + Mag)? — 4*(My [ Ma g — My 1 M p)

+ O(e3).

(Note the fortuitous cancelling of the unknown O(e?) terms above.) Thus.
we obtain

£
)\172 =1+ §(M1,1 + Mg’g)

g
+ 5\/(M1,1 + Mz )2 — 4(My Map — My oMy )
+ O(e?) (1.2.205)

and, similarly to Case FP1, all partial derivatives are evaluated at the zeros
of the Melnikov vector M = (M, Ms) at which the resonance relation
nT(I) = mT is also satisfied. The above expression can thus be used to
determine stability in Case FP2.

We inject a word of caution at this point regarding the use of these
expressions for the eigenvalues of P linearized about the period m point.
The only way in which they are useful for stability considerations is if, for €
sufficiently small, the known part of the expression dominates the unknown
part in the sense that inclusion of the higher order unknown terms does
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not cause the eigenvalue(s) to move across the unit circle in the complex
plane. Let us consider a specific example.

EXAMPLE 1.2.16 Consider the number
AMe) =1+ /ea +eb + O(3/?), (1.2.206)

where a and b are real (note: this would correspond to Case FP1 where

g—? Blé;n—/ﬁ < 0). A simple calculation gives

IA€)| = /1 +e(a? + 2b) + O(2). (1.2.207)

Thus, from (1.2.207) it is easy to see that both the O(/¢) and O(¢) terms
of (1.2.206) are important for determining whether |\(¢)| is greater than
or less than one for ¢ sufficiently small.

We refer the reader to Murdock and Robinson [1980] for more informa-
tion concerning such issues. Finally, we remark that if the perturbation
is Hamiltonian also, then many stability considerations are, in a certain
sense, “beyond all orders” for perturbation theory. In this case a different
approach must be taken. We will comment on these issues as they arise.

iib) Structure of the Resonance Bands

We will refer to the region on the Poincaré cross-section near an action value
satisfying the resonance relation as a resonance band. The techniques de-
veloped thus far enable us to determine the existence of ultrasubharmonics
and possibly even their stability. Now we would like to develop a technique
for studying the global dynamics near a resonance band. The idea will be
to derive an ordinary differential equation that describes the dynamics near
a specific resonance band and then to use the method of averaging. The
original idea appears to be due to Melnikov [1963] and can also be found
in Guckenheimer and Holmes [1983] and Greenspan and Holmes [1983].

We begin by recalling the form of the perturbed system in action-angle
coordinates, which we rewrite below as

I=¢ (ggl + o1 ) =eF(I,0,t,¢),

592
' Oz a%y 56 (1.2.208)
0=0I)+¢ <b;gl + 6—ng> =Q(I)+eG(1,0,1,¢).

Recall that the variable I in this case is the parameter which labels the
unperturbed periodic orbits and that we are interested in the behavior of
resonant periodic orbits under the perturbation, i.e., orbits labeled by I
which satisfy the relation

(resonance relation) nT(I) = mT,
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FIGURE 1 2.37.

Im,n

where T is the period of the perturbation. We label such I as I™". We
now introduce the following transformation valid in the neighborhood of a

fized resonance band.
I=1""+ uh,
2nn

9= QU™+ ¢ = (ﬁ

)t+<z>, (1.2.209)

where p is a small parameter which has yet to be determined.
Figure 1.2.37 illustrates that our transformation is valid in the shaded
region of width O(p). Later we will determine g in terms of €.
Substituting this transformation into equation (1.2.208) gives

ph = €eF(I™" + ph, QI™™)t + ¢, t,¢),

QU™™ + ¢ = QI™™ + ph) + eG(I™™ + ph, UI™ ™)t + ¢, 1, ¢).
(1.2.210)

Expanding the right-hand side of (1.2.210) in powers of u and ¢ gives
. oF
ph =eF(I™™ QU™+ ¢,1,0) + SHaT (I QU™ ™)t + ¢.1,0)h
+0(ep?) + O(e?),

n ; m,n o m,n 19°Q
Q™) + 6= Q™) + por (I™ ™A+ g 22@12

+eG(I™™, Q™™ + ¢,t,0) + O(1?) + Ofep) + O(e?),

(Im n)h2

or (where we neglect the arguments of the functions for the sake of a simpler
notation)

2
h——F+58—Fh+(’)(5u)+O(i—t>,

oI
89 1620,
o= Mth+EG+#28[2h + O(ep) + O(p?) + O(e?).

(1.2.211)
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Now we address the question of how p should be related to ¢.

Our goal is to apply the method of averaging to (1.2.211). In order to do
this we must have a small parameter multiplying the vector field; hence we
will choose p such that this situation holds. Therefore, requiring

£
- =M,
m

we obtain
p=e.

Equation (1.2.211) thus becomes

A= VEF (I, QU™ ™t + ¢,¢,0) + 6((99_1; (I, UI™ ™)t + ¢, t,0)h
+0( 3/2)
n m,n m,n 1629 m,n 2
é= f (Im )h+e | GUI™™, Q™ )t+¢,t,0)+§ﬁ(1 ™h
+(9(53/2). (1.2.212)

We make the very important remark that the choice of u = /¢ depends
on the fact that g—?(I ™) #£ 0; otherwise, a different fractional power of €
is required. This issue is discussed in Morozov and Silnikov [1984]; see also
Exercises 1.2.36 and 1.2.37. Henceforth we will assume that %—?(I’”’") # 0.

It should be clear that (1.2.212) is in the form in which the averaging
theorem can be applied. However, first we will simplify the first term of
the A component of (1.2.212) in a way that is computationally beneficial
and makes an explicit connection with the subharmonic Melnikov theory.
Using the expressions for the action-angle transformations, the chain rule,
and implicit differentiation we obtain

gl 9l oH 1 OH

9z 0H oz Q(I) oz’
81 O0IOH 1 OH

gy  0Hdy Q) dy’
thus,

F(I™, QU™™t + ¢,¢,0) = (DH - g)(I'™™, QI™ ™)t + ¢,¢,0),

1
Q(Imn)
where DH - g = %’:gl + %—Ijgg. Therefore, to first order in /g, (1.2.212)

becomes

1 \/_ m,n m,n
h= Q(Imn)(DH @ (I™™, QU™ ™)t + ¢,¢,0), (12213)

¢ = f—(lm"
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Now we apply the averaging theorem to (1.2.213). Recall that since the ex-
plicit time dependence of the right-hand side is periodic, we merely average
over one period of the perturbation and the averaging theorem allows us
to draw conclusions about the full equations from the averaged equations.
This we now do and obtain

] T
h= Ve _1_/ (DH.g)([’"’",Q(I""")H—4_5,t,0)dt

(Im " T (1.2.214)
¢ \/— (Im n)
To simplify (1.2.214), we use the following facts.
2
1. From the resonance relation, T = ;1?(7}:1—71)

2. From (1.2.180), the transformation
(2(1,6),y(1,0)) < (I(z,y),0(z,y))

has Jacobian equal to one, so we can transform the coordinates on
which the integrand is evaluated back to our original coordinates,
resulting in no change in the equations.

Combining these two remarks, we arrive at the averaged equations

. 90
¢>=fo

where ¢!™ (t - 5(7‘;%7)) represents the unperturbed periodic orbit with

(I™")h, (1.2.215)

its period satisfying
nT(I,m,n) = mT.
(For a discussion regarding the nature of the argument of ' " (-), see the
first remark following the proof of Theorem 1.2.13.)
Note that (unsurprisingly) the first term of the A equation is just the
normalized first component of the subharmonic Melnikov vector. The av-
eraged equations describing the dynamics near a resonance band are thus

given by ~
i 1 - m/n ( @ >
h = —A/[ )
Ve G M Q(Imm) (1.2.216)
$= f—(l’" ")h,

where M" /™ is defined in Remark 1 following the proof of Theorem 1.2.13.
Therefore, the conditions

—rm/n ¢3 —
" o) =0
h =0,
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correspond to subharmonic periodic orbits for the original equation (just as
we might have guessed, and in fact have already shown using the subhar-
monic Melnikov theory). However, we can obtain more information about
the structure of the resonance band simply by examining (1.2.216), since
the averaging theorem tells us that stable and unstable manifolds of hy-
perbolic fixed points of the averaged equations are close to corresponding
structures in the full equations.

For this particular equation, however, there is a problem. Notice that the
first-order averaged equations are a (structurally unstable with respect to
arbitrary perturbations) Hamiltonian system with the Hamiltonian given
by

2

Vig) = 5o [ W (9(%‘)) aé.

Thus, if the perturbation is not Hamiltonian and autonomous (i.e.,

H= 1z <%¥(1mqn)h_ — V(é)) ; (1.2.217)

where

g1(z,y,€) = %[yi(;c,y,s), g2z, y,€) = —%%(w,y,a) for some C™t! func-
tion H, then the first-order averaged equations cannot possibly capture
the correct qualitative dynamics near the resonance band. Therefore, we
will have to carry out the averaging procedure at least to second-order in

JE.

Now let us go back to the full, original equations

- Q{%H. g)(I™" Q™)1 + 6,1,0)

+a—(1m" QU™™)t 4 ¢,t,0)h + O(%/?),

¢ = \/_ (I'”"h+ (G(I’"'”,Q(I’"'”)t+¢,t,0)

(920

+5 5 U™ ")h2> + 0(e¥?),

We recall from the proof of the averaging theorem that the method is
effected by choosing a coordinate change which annihilates the time de-
pendence at the highest order, and the nontrivial part of the coordinate
change is chosen to be the antiderivative (with repect to time) of the os-
cillating part, of the highest order term. The oscillating part of the O(y/e)
part of the h component of the vector field is given by

E(I™™ QUI™™)t + ¢,¢,0) = (DH - g)(I™™, QI™™)t + ¢,t,0)

1
o)

1 - m/n ¢ X
27rnjw1 (Q(Imv")) '
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since the O(+/€) part of the ¢ component of the vector field is constant, we
choose as the averaging transformation

hs bt VE [ B, Q™™+ 9,8,0)

¢ — &,
and note that
de E(I™™ QUI™™)t + ¢,¢,0) = FE(I™", QI™™)t + ¢,t,0)
0 ~ .
. m,n m, 7 t X
+3% FI™™ Q™)+ ¢,,0)¢

Substituting this into the equation and doing some algebra (as in the proof
of the averaging theorem) we arrive at

7 \/E rm/n (5 oF m,n m,n i 1
h= oM, agmy )t a7 (U7 U™t + 6, t,00h

_0 [on
o¢ ) oI
2 o, . 19%Q
¢=Vegr( )h+€(§5ﬁ
+GI™™, QUI™™)t 4 ¢, t,0)

+ g%u’"’") / B, Q™™ + ¢,t, 0>) +O(e%/?). (1.2.218)

(I™™RE(I™™, QI™™)t + 6, ¢, o)) ,+O(Y?)

(Im,n)ﬁ2

Averaging (1.2.218) at second order in /¢ and using the fact that F has
zero average (and, hence, so do [ F' and 8% [ F) gives

27”:99 Q(Im’")l 20 o1 ) (1.2.219)
6= VeI (G5 + 6@ )

8F_ A — 1 T oF m,n m,n n
FO=ar [ FrUmmAUTT G0
_ 1 mT -

In the case where the perturbation is not Hamiltonian, equations (1.2.219)
will often be sufficient to enable us to determine much of the dynamics
near a particular resonance band. When the perturbation is Hamiltonian,
special problems arise which we shall discuss as they are encountered.
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Qb

I
h
FIGURE 1.2.38.

iic) Nonresonance

Up to this point the discussion has been entirely concerned with resonances,
i.e., the orbit structure in the neighborhood of an I value satisfying

nT(I) = mT.

Let us consider the nature of all the periodic orbits inside I'y,. Consider
Figure 1.2.38. In this figure we graph Q) versus I, where Q. represents the
frequency of the vector field linearized about the center type fixed point and
I}, represents the value of action on the homoclinic orbit at which Q(I;,) =0
(note: the action is defined on the homoclinic orbit but the angle variable
is not defined on the homoclinic orbit). So, for I € [0, I}, Q takes all values
between 3, and 0 (note: in Figure 1.2.38 we have illustrated the case where
% < 0; however, this presents no loss of generality). Therefore, for T fixed,
for every m and n satisfying

2
n—QI >mT,

[

we can find a unique I value such that

Hence, there are a countable infinity of such resonant I levels or resonance
bands. (Note: it should be clear to the reader that a possible effect from
having g—(} = 0 might be to have more than one I value satisfying the
resonance relation for a given n and m.) PJ* fixes each resonant I level
as a circle of fixed points. Clearly, this is a structurally unstable situation,
and we would expect arbitrary perturbations to break up this circle of fixed
points into a finite number of fixed points (cf. the remarks following the
proof of Theorem 1.2.13).

It should be evident that there are an uncountable infinity of I values
contained in the interval [0, 1] at which the resonance relation is not sat-
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isfied, i.e., I values for which

@ = irrational number. (1.2.220)
It is natural to ask what is the nature of the orbit structure near these I
values for the perturbed Poincaré map. As opposed to the resonance case,
no iterate of P will result in a circle of fixed points but, rather, orbits on
the nonresonant I levels remain on these invariant circles and densely fill
the circle under iteration by P™ (cf. Section 1.2, Example 1.2.3). In this
case on might expect that (some) invariant circles may be preserved under
the perturbation. It turns out that this depends very much on whether or
not the perturbation is Hamiltonian.

Non-Hamaltonian Perturbations

In this case there are no general theorems. However, a quantity that can
give us much information is the determinant of the linearized Poincaré map
denoted

det DP.. (1.2.221)

Recall that (1.2.221) is a local measure of the contraction or expansion of
area. Thus, it follows that if (1.2.221) is constant everywhere (in general,
DP, varies from point to point) and bounded away from one, then DP.
cannot have any invariant circles; see Exercise 1.2.26. In this case one would
expect the nonresonant invariant circles of the unperturbed Poincaré map
to be destroyed. If (1.2.221) is not constant, then a more careful analysis
is required.

Hamiltonian Perturbations

In this case, (1.2.221) is identically one and we are in the situation dealt
with by the famous KAM (for Kolmogorov, Arnold, and Moser) theorem
and the Moser twist theorem; see Moser [1973]. Roughly speaking, these
theorems tell us that the nonresonant invariant circles having the property
that (1.2.220) is poorly approximated by rational numbers in a number-
theoretic sense are preserved as invariant circles filled with quasiperiodic
orbits for the perturbed Poincaré map.

We now state the Moser twist theorem in a more general setting. Consider
the unperturbed integrable map

g:g; o0, (1.2.222)
defined on the annulus
A={(,0) e R* x S" | I € [I1, L]}
and the perturbed map
[ I+ f(I,0), (1.2.223)

08— 0+ a(l)+g(1,9),
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with f and g also defined on A (we will worry about differentiability
shortly.) In order for (1.2.223) to be regarded as a perturbation of (1.2.222),
f and g must be “small.” Let C"(A4) denote the class of C” functions de-
fined on A. Then a norm on C"(A), denoted | - |, is defined as follows

d"tIh

he C"(A) = |h|, = sup 51907

14y <r
A

We are now able to state the Moser twist theorem.

Theorem 1.2.14 (Moser [1973]) Let ¢ > 0 be a positive number with
a(l}eC",r>5, and |g—‘;| > v >0in A. There then exists a 6 depending
one, r, and afr) such that (1.2.223) with f and g, C", r > 5, on A and

|F(L,0) = I, +1g(1,0) — (D) <vé
possesses an invariwant circle in A with the parametric representation
I=T+ut), =t+v(t), tel0,2n),
where u and v are C! with period 2r and satisfy
luli + [v]1 < e

with I € [I,15]. Moreover, the map restricted to this invariant circle is
given by
t—t+w, t € [0, 27),

where w 18 incommensurate with 2r and satisfies the infinitely many con-

ditions

w P _
~ _ > T 1.2.224
2 q\ Z7q ( )

for some v, 7 > 0 and all integers p,q > 0. In fact, each choice of w €
[Q(1), Q(I2)] satisfyng (1.2.224) gives rise to such an invariant circle.

Proof: See Moser [1973]. O

Several remarks are now in order.

Remark 1. Equation (1.2.224) indicates that the irrational number w/27 is
poorly approximated by rational numbers. Certainly there exist irrational
numbers that do not satisfy this condition. The theorem says nothing about
these.

Remark 2. Recall the m'" iterate of the Poincaré map from (1.2.196),

I I+eM(I,0)+0O(?),

9H0+mTQ(1)+€M2(I,9)+O(E2), (1.2.225)

Note that we have left off the superscripts m/n on M; and M, since we
are now interested in nonresonant dynamics.
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a) The size of the perturbation of (1.2.223) from the integrable case is
controlled by . This presents no problems, since My and Ma, along
with their first r derivatives, are bounded on bounded subsets of
R* x St

b) The quantity mTQ(I) in (1.2.225) plays the role of (/) in Theorem
1.2.14. Thus, g—‘}‘ # 0 if and only if % # (). We can therefore conclude
from Theorem 1.2.14 that, for each I =T € (0, I,) such that

mTQI)  p
2n q

-7

’qu )

(1.2.223) possesses an invariant circle close to I = I.

Remark 3. The existence of invariant circles can prove very useful for sta-
bility arguments. This is because the region of phase space enclosed by an
invariant circle is an invariant set; see Exercises 1.2.25 and 1.2.27.

Remark 4. Theorem 1.2.14 gives rise to a natural question: Do all quasiperi-
odic orbits of (1.2.223) lie on invariant circles or, more precisely, is the clo-
sure of a quasiperiodic orbit of (1.2.223) an invariant circle? The answer to
this question is no — there may be quasiperiodic orbits whose closure is a
Cantor set. This structure is often called a Cantorus. For more information
on Cantori the reader is referred to Aubry [1983a], [1983b], Mather [1982],
and Percival [1979].

Remark 5. We have not directly defined the notion of a quasiperiodic orbit
for a two-dimensional map. One definition might be an orbit whose closure
is an invariant circle. If one thinks of the map as arising as a Poincaré map
of a time-periodic ordinary differential equation, then the quasiperiodic
orbit is just a two-frequency solution of the ordinary differential equation,
where the two frequencies are incommensurate. The discovery of Cantori
indicates that one might want to generalize the notion of a quasiperiodic
orbit; see Mather [1982] for a discussion. However, at present, there is only
a general existence theory for Cantori in two-dimensional, area-preserving
twist maps (but see Katok and Bernstein [1987]).

Remark 6. Theorem 1.2.14 is a perturbation theorem, i.e., it asserts the
existence of invariant circles only for a perturbation of unknown size. An
interesting (and practical) problem would be to locate a quasiperiodic in-
variant circle in the unperturbed map and study what becomes of it as
the strength of the perturbation increases. Recently, there has been much
analytical and numerical work along these lines, and we refer the reader to
Celletti and Chierchia [1988], Herman [1988], de la Llave and Rana [1988],
MacKay [1988], MacKay, Meiss, and Stark [1989], MacKay and Percival
[1985], Mather [1984, 1986], and Stark [1988].

Remark 7. The KAM theorem is more general than Theorem 1.2.14 in that
it is concerned with the preservation of n-frequency quasiperiodic motions
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in perturbations of completely integrable, n-degree-of-freedom Hamiltonian
systems. We refer the reader to Arnold [1978], Moser [1973], Siegel and
Moser [1971), and Bost [1986] for the precise statement and some general-
izations of the theorem.

1.2E  APPLICATION TO THE DYNAMICS OF THE DAMPED,
FORCED DUFFING OSCILLATOR

We now want to apply this mass of theory to the damped, forced Duffing
oscillator. Recall that this equation is given by

=y,

o g=z—1z°+e(ycoswt — 8y), (1.2.226)

where ¢ is assumed small (note: this is so that we can rigorously apply our
theory) and «, 8, w are positive parameters. The unperturbed system is
given by

=y,
e 2P, (1.2.227)

and is Hamiltonian with Hamiltonian function

4

+ = (1.2.228)

z
> "1

y?
H(z,y) =7

The first thing to do is to obtain a complete understanding of the geome-
try of the unperturbed phase space which we illustrate in Figure 1.2.39. As
stated in Section 1.1E, all orbits are given by the level sets of the Hamilto-
nian {1.2.228). In the following we will give analytic expressions for these
orbits, leaving the details of the derivation of the expressions to the dedi-
cated reader.

There are three equilibrium points at the following coordinates with the
following stability types

(z,y) = (£1,0) — centers,
(z,y) = (0,0) — saddle.

FIGURE 1.2.39.
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The saddle point is connected to itself by a two homoclinic orbits given by
% (t) = (V2secht, —v2sechttanht),
g2 (t) = —qL.(t).

There are two families of periodic orbits inside the corresponding homo-
clinic orbits given by

gh(t) = (ﬂ\/_iw dn(\/Qt_kQ,k),

—V/2k? t t
sn Jk)len | —=,k ] |,
2 — k2 V2 k2 Vo — k2
E()=-df(t), ke(01),
where £ is the elliptic modulus and sn{-), ¢n(-), and dn(:) are elliptic func-
tions (see Byrd and Friedman [1971]). Substituting the above expressions
for the periodic orbits into the expression for the Hamiltonian gives the
following relationship between the Hamiltonian and the elliptic modulus.
k-1

(2 - k?)?

Elementary properties of elliptic functions give the period of the above

orbits as
T(k) =2K(k)v2 — k2,

where K (k) is the complete elliptic integral of the first kind.
Also, there exists a family of periodic orbits outside the homoclinic orbits
given by

H(g5(t))=H(k) = (constant on orbits).

k) = 2—k2—cn —t——k
= 2k? — 1 Vok2 —1 )

o () (b)) ke

The periods of these orbits are given by

T(k) = 4K (k)V/2k2 — 1.

It is a simple matter to check that, in the limit as £ — 1, both families
of periodic orbits converge to the homoclinic orbits; see Exercise 1.2.29 for
justification of these statements.

Now we set the stage for our study of the perturbed system (1.2.226).
Rewriting (1.2.226) as a third-order autonomous system gives

T =y,
?J_Zm‘x?""g(’YCOSQb‘(Sy)’ ($,y,¢)€]R2XSI,
¢ =w,
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9o+ 27

%

FIGURE 1.2.40

where S! is the circle of length 27 /w and ¢(t) = wt + ¢¢. The unperturbed
suspended phase space appears as in Figure 1.2.40. We form the global
cross-section to the flow

TP — {(m,y,¢‘¢ =o€ [0, Qw)}

and the associated Poincaré map is given by

P: $%0 5 %0,
(2(0),(0)) = (z(27/w),y(2m/w)).

Let us begin our study of the perturbed dynamics with two preliminary
lemmas. We first want to show that there exists a closed convex set in
IR?, called D, such that the vector field is pointing strictly inward on the
boundary of D (8D) for all times. Thus we will establish the existence of
a trapping region which will be of some use later on.

Consider the following scalar-valued function

y? 22 gt
L{xz,y) = 5 +vzy — ) + T

Consider the level sets of this function

0<v<eb

L(x,y)=C.

For C large the level sets are essentially ellipses (note that L is only a slight
modification of the Hamiltonian); moreover, any line y = ax intersects any
given level set (for C sufficiently large) in exactly two diametrically opposite
points.

Let

D={(z,y)| L{x,y) £ C, Clarge},
oD ={(x,y) | L(z,y) = C}.
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Lemma 1.2.15 (Holmes and Whitley [1984]) The perturbed vector
field points strictly inward on 8D for all times.

Proof: The lemma is true if
VL-(%,9) <0 on 8D for all time,
where (&,y) is the perturbed vector field. Calculating this expression gives

VL-(¢,9) = (vy —z+ 2% y+vz) (y,z — 2° + e(ycoswt — by))
vy? —zy + 2y + xy — 23y + e(yy coswt — 6y?)

+vz? — vzt + e(vyz coswt) — véry)
= (v —eb)y® + eycoswt(y + vz) — v’ (x? — 1) — evéry
< —(e6 — v)y? —va?(z? — 1) + evélzy| + evly + val.

Recall that we require v < €6. On the y-axis this expression becomes
VL - (&,9) < —(8 — v)y* +evlyl;

hence, for y large, this is strictly negative. Also, on any line y = ax, the
expression becomes

VL - (&,9) < —(e6 — v)a’x? — vr?(2? — 1) + evdlalz? + evlz||]1 + val.

As « varies between (—o0, 00}, all points are swept out in D, so we see that,
for z sufficiently large, on any line y = az, @ € (—o0, 00), the expression is
strictly negative. This proves the lemma. 0O

Remark 1. The above lemma depends entirely on the damping (6) term;
without that term it is not true.

Lemma 1.2.16
det DP = e~ %m¢8/w < 1, §>0.

Proof: We give a general proof for the determinant of any Poincaré map.
Consider a general t-periodic ordinary differential equation

¢ = f(z,t), with f(z,t) = f(z,t + 7).

Suppose Z(t) is a solution. Linearize about this solution with the following
variational equation

€ = D, f(z(t), 1))€.

This equation has the fundamental solution matrix

X(),
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so the general solution of the linearized equation is £(t) = X(t)&. There-
fore, the linearized Poincaré map of the original equation is given by

zg — X(T)xo;
the Jacobian is thus
DP = X(T).
By Liouville’s formula (Arnold [1973]), we have that

T
det X(T) =det DP = exp/ tr D, f(z(t),t) dt.
0

For our system (1,2.226), we thus have

f= ¢
x— 2% — by +eycoswt

0 1
Df= (1—3362 —66)’

so that tr Df = —eé = constant and, therefore, det DP = e~ 27¢%/%; gsee
Exercise 1.2.39. O

A consequence of Lemma 1.2.16 is that, for § > 0, the Poincaré map is
area~-contracting. Therefore, it cannot possess any invariant circles.

To obtain more detailed information concerning the dynamics of the
perturbed Poincaré map, we compute the Melnikov function M[" (o),
where we omit denoting the explicit dependence on the cross-section ¢q
and o (whose role will be played by the elliptic modulus k), since we will be
interested in resonant periodic orbits, which will be labeled by m/n through
the resonance relation. The reason that we compute only one component
of the subharmonic Melnikov vector is that

%—? £ 0. (1.2.229)

We will leave it to the reader to verify (1.2.229); however, it should become
apparent from various expressions for the frequency which we will derive
during the course of our analysis.

The Melnikov function for the two families of periodic orbits inside the
homoclinic orbits is given by

Mr/n(to;’y, b,w) = —6J1(m,n) £ vJa2(m,n,w)sinwty, (1.2.230)

where m, n are relatively prime positive integers satisfying the resonance

relation )
2K (k)2 — k2 = 2
wn
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+ and — refer to the right-hand and left-hand families of periodic orbits, re-
spectively (note: by monotonicity of the period this equation has a solution
for each choice of m, n with 2rm/(wn) > v/27), and Ji(m,n), Jo(m,n,w)
are complicated positive expressions involving elliptic functions which are
given as follows (note: K (k) and E(k) denote the complete elliptic integrals
of the first and second kind, respectively)

Jl(m, 'n,) = ((2 _ k2)E(k) _ 2k/2K(k))/(2 _ k2)3/2,

ol

where k' = /1 — k2, and

0 forn#1

’
JQ(mvn’w) = ﬁﬁwsech 1"‘%[{_]5;9_2 forn=1"

Details of these calculations can be found in Greenspan and Holmes [1984];
see also Exercise 1.2.30. Thus we see that no ultrasubharmonics inside the
homoclinic orbits are excited by the perturbation. Therefore, hereafter we
will write

MM to;v,6,w) = —6J1(m, 1) £ vJa(m, 1,w) sin wt. (1.2.231)
If we define ] .
R™(w) = __1(@_)_’
J2(ma 1,(4))

it is easy to see that the condition for the existence of zero’s of the Melnikov
function becomes
—6R™(w) £ ysinwto =0

or
<1

’6Rm(w) l
8
or

A/

5 2 R"W). (1.2.232)

We now want to carefully explain geometrically just what this condition
means.

Consider the unperturbed Poincaré map on the cross-section ¥ and the
unperturbed periodic orbit satisfying the resonance relation

T(k) = 2K (k)V/2 — k2 = 2%”—

We illustrate the solution in Figure 1.2.41. (Note: since, inside the homo-
clinic orbit, the identical situation occurs in both the right and left half-
plane (by the symmetry), hereafter we will draw only the right side and
not the homoclinic orbit.)
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Therefore, for the unperturbed map, the above circles are all period m
points or, equivalently, fixed points of the m'? iterate of the map. We now
ask if any of these period m points are preserved for the perturbed map,
and the answer is provided by the Melnikov function.

1. For /6 < R™{w), the Melnikov function has no zero’s; therefore, the
perturbed Poincaré map has no period m points for this particular
m.

2. For v/6 > R™(w), the Melnikov function has zero’s, and we want to
count how many.

Because the Melnikov function is periodic with period 27 /w, in one period
the Melnikov function appears as in Figure 1.2.42. Thus, during one period
of the perturbation, the Melnikov function has two zero’s. From our earlier
work concerning stability, we know that one zero corresponds to a period m
saddle. With additional work, we will show that the other zero corresponds
to a period m sink for § > 0.

The length of time it takes to get around the unperturbed orbit (i.e.,
its period) is 2wm/w; hence, we see that during this time the Melnikov



160 1. The Geometrical Point of View of Dynamical Systems

function passes through m periods. Therefore, we have that on this partic-
ular resonant level, the perturbed Poincaré map has 2m periodic points (or
equivalently, the m'" iterate has 2m fixed points), m of which are saddles
and, as we will see later, m of which are sinks.

Now let us examine condition (1.2.232) a bit more closely. For m fixed,
with v/6 < R™(w), there are no period m points on the resonance band
and, for v/§ > R™(w), there are 2m period m points on the resonance band.
Thus, the parameter values v/§ = R™(w) are “critical” in some sense. In
Chapter 3 we will see that this is an example of a bifurcation.

We could also consider the limit of R™(w) as m — oo, i.e.,

lim R™(w) = R%w). (1.2.233)
m—0o0
It is easy to verify that this limit exists, but what does it mean? Interpreting
it in the same manner as for the periodic orbits, we would conclude that
for
Ts ROw),
6
we would have nfinitely many periodic orbits. When we study the breakup
of I'p, under the perturbation in Chapter 4 we will see that this is indeed
the case (note: in the limit m — oo, for resonance T'(k) — oo, which implies
that we are approaching the homoclinic orbit). Moreover, this phenomenon
will lie at the heart of what we call chaos.

Equations (1.2.232) and (1.2.233) have implications for the global struc-
ture of the Poincaré map. For example, for w = 1 it can be verified that
R™(1) approaches R°(1) monotonically. Thus, if we pick any M, inner (re-
ferring to inside the homoclinic orbit) subharmonics of order M exist if
v > RM(1)é. Also, since R™(1) < RM(1) ¥m < M, we have that

7> RM(1)6 > R™(1)§  Ym < M.

Thus, all inner subharmonics of order m, m < M are also excited. We
remark that for w # 1, the sequence may not be monotonic; see Exercise
1.2.30.

For the orbits outside the homoclinic orbit we can carry out the same
computation of the Melnikov function (see Exercise 1.2.30) and obtain

]fol/l(to;w,é,w) = —6J,(m, 1) — vJa(m, 1,w) sinwtg.

where J; and J, are complicated positive expressions involving elliptic
functions (note: again we have n = 1) where m must be odd. Letting
R™(w) = Jy(m, 1)/Ja(m,1,w). the condition (in terms of the parameters)
for the existence of subharmonics of order m outside the homoclinc orbits
is given by

=2

> R™(w), m odd.

(%
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As for the inner subharmonics, we can verify
lim R™(w) = R%w),
m—0o0

and for w = 1, this R%(w) is approached monotonically. In Figure 1.2.43 we
show the subharmonic bifurcation curves (this will be justified in Chapter
3) for w = 1.

i) THE RESONANCE BANDS IN DUFFING’S EQUATION

We now apply the previously developed theory to a study of the reso-
nance bands in Duffing’s equation; we follow Greenspan and Holmes [1983,
1984) and Morozov [1976]. We will discuss only the inner right-hand sub-
harmonics because essentially the same behavior is exhibited by the other
subharmonics (with the exception of m being odd for the outer subhar-
monics). Recall that we are studying periodic orbits in resonance with the
external time-periodic forcing which satisfy the resonance relation

nT(I) =mT.

In terms of the expressions for the unperturbed periodic orbits, this can be

written as

2K (k)2 — K2 = 3%
where the relation between I and K is given by
2(2 — k2)E(k) — 4k K (k)

I(k) = 3n(2 — k2)3/2 ’

k12=1_k2
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{note: it is not hard to verify that the relation between I and k is mono-
tonic).
Previously we had the monotonic relation between H and k given by
k2 -1
H(k) = ——.
( ) (2 _ k2)2

Thus, using these two relations we can compute

o0 9 [ o 27 9
o1 = or () = a3 (10 316)

__mR-F)(@-F)ER) — 27K (K) _
- WK (k)3 = ¥(m),

where we denote the argument of Q' by m to indicate the unique m selected
for each k by the resonance relation.

Now, using the transformation valid in the neighborhood of a fixed reso-
nance level, recall that to first order in v/ our system becomes the following
Hamiltonian system

T 1 —rm/n (]_5
=t ()
¢ = Q' (m)h

with Hamiltonian function

Q(m -
Using our previous calculations of the Melnikov function, we can imme-
diately put our system in this form and write down the Hamiltonian as
follows

h= (6Jl(m + 7 Ja(m, w) sin(mg)),
6= f Q' (m)h,

H=\/¢ (Q—mh2 + 1 <6J1(m)z5+ Mcosmqﬁ)) ,
2 2n m

where we have written Jy(m,1) = Ji(m), Ja(m,1l,w) = Ja(m.w), since
we found that, for n # 1, there were no fixed points for P”. Now we
exaniine the structure of the m*"-order resonance level given by the O(y/%)
truncation of our full system.

Fixed points of our system are given by

—8J1(m) + vJ2(m, w) sin(mg) = 0,
h=0.
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We can compute the stability type of the fixed points by linearizing about
the appropriate fixed point. The linearization of the vector field is given by

0 7‘/277"52("1’“) cos me
(vewem 70 ")

When 7 and é are appropriately chosen (assuming that w is fixed) as ¢
varies from 0 to 27 (i.e., once around the unperturbed periodic orbit), the
Melnikov function passes through m periods; hence it can have at most 2m
zero's (a result which we have already established using a slightly different
argument). It is easy to see from the above matrix that these alternate in
stabilty type from saddles to centers (we should also have concluded this
from the Hamiltonian structure). For the O(\/¢) system we draw the m = 2
resonance band in Figure 1.2.44, where R™(w) = Ji(m)/J2(m,w) (note:
we obtain the correct directions for the arrows by examining the averaged
vector field and noting that Q'(m) < 0).

Because we cannot conclude anything about the full system from this
structurally unstable Hamiltonian system, we must therefore include second-
order (O(e)) terms in our equation. Without doing the explicit calculations
and using the notation and formalism outlined in the previous section, te-
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dious but routine calculations give

S

= —yKy(m,w)sinmeo — 6K, (m),

cos me

G = —yKs(m,w) s

where K; and K5 are positive constants involving elliptic integrals.
Therefore, the averaged system to O(¢) 1s given by

h= \2/7; (=6J1(m) + vJa(m,w) sin me)
—5(6K1 (m) + vK2(m,w)sin ch))l_z,

_ o0 10%Q b
6= VERmh+ < (5ﬁ<m>h2 Ko (m,w) m"”) .

An easy computation of the trace of the linearized system gives —e6K1(m) <
0, so that the centers are actually sinks. Also, by Bendixson’s criterion, we
know that there are no closed orbits in a resonance band. Therefore, by
appealing to the averaging theorem, we can conclude that the Poincaré
map in the neighborhood of a resonance band is diffeomorphic to Figure
12.45 (we draw the m = 2 resonance band for definiteness).

Next, we want to obtain an estimate of the width of the resonance band
and the size of the domains of attraction of the sinks. Recall that, at O(1/€),
the system in a neighborhood of a resonance level 1s Hamiltonian with
Hamiltonian function given by

H= f( m )h2+-2—(5«1( )¢+Mg’—w)cosm¢3>),

and that, for v > R™(w)¥, the phase portrait of this Hamiltonian system 1s
as shown 1n Figure 1.2 46, where we draw the m = 2 case for definiteness.
Recall also that a measure of the width of the energy level would be the
length of the vertical lines (labeled Ah) passing through the centers, as
shown in Figure 1.2.46. To make the picture clearer, we will draw just
one saddle-center pair in Figure 1.2.47, where we have labeled the angular
