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Series Foreword

The yearly Neural Information Processing Systems (NIPS) workshops bring to-

gether scientists with broadly varying backgrounds in statistics, mathematics, com-

puter science, physics, electrical engineering, neuroscience, and cognitive science,

uni�ed by a common desire to develop novel computational and statistical strate-

gies for information processing, and to understand the mechanisms for information

processing in the brain. As opposed to conferences, these workshops maintain a


exible format that both allows and encourages the presentation and discussion of

work in progress, and thus serve as an incubator for the development of important

new ideas in this rapidly evolving �eld.

The Series Editors, in consultation with workshop organizers and members of the

NIPS Foundation Board, select speci�c workshop topics on the basis of scienti�c

excellence, intellectual breadth, and technical impact. Collections of papers chosen

and edited by the organizers of speci�c workshops are built around pedagogical

introductory chapters, while research monographs provide comprehensive descrip-

tions of workshop-related topics, to create a series of books that provides a timely,

authorative account of the latest developments in the exciting �eld of neural com-

putation.

Michael I. Jordan, Sara A. Solla, and Terrence J. Sejnowski
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Foreword

When I was searching medical databases about ten years ago for papers on neural

networks, I was surprised that more than half of the hits I got with the key words

\neural networks" in MEDLINE were about their application as special devices for

pattern recognition. Only a small part of the hits concerned the brain and models

of brain function. I had expected the opposite to be the case and actually had

not thought much about the application of neural networks in medicine. In my

view, neural networks are perfect models for understanding the working principles

of the brain. They can describe brain function on an abstract, systems neuroscience

level, while at the same time they re
ect organizational principles of the neuronal

substrate (rather than boxes of logical operators or functions).

On both accounts, as models for top-down approaches to understanding brain

function and as tools for bottom-up approaches for analysis and data mining of

medical data, neural networks made rapid progress: In 1998, the U. S. Food and

Drug Administration approved a neural network based device for the screening of

gynecological smears for cancerous cells. Intensive care units use neural networks

to allocate patients to resources in the most rational way (with cultural di�erences

regarding the interpretation: In the United Kingdom, doctors say they consider the

advice from the computer but decide for themselves, whereas in the United States

doctors say they usually let the computer decide). Even psychiatrists use neural

networks to group symptoms into syndromes. In almost every �eld of medicine,

model based top-down strategies and bottom-up strategies of data mining com-

plement each other. For modeling brain function, back-propagation networks with

biologically less-plausible features have given way to more plausible architectures,

from Kohonen-maps and adaptive resonance networks to spiking neuron networks.

Various models have been used to account for a wide range of psychological phe-

nomena, from simple perception, via reading and attention, to language aquisition,

schizophrenia, and autism (cf. Stein and Ludik, 1998; Spitzer, 1999). The impact

of these developments on systems neuroscience research has been profound. This

book is perhaps the �rst comprehensive volume summarizing the di�erent roles of

neural networks in a new important �eld of physiology, functional neuroimaging. It

describes how neural networks|in a broader sense| act as tools for sophisticated

exploratory data analysis on the one hand, and for brain models on the other.

The advent of recent functional neuroimaging techniques has changed the situa-

tion in physiology entirely. Physiologists used to be proud of the fact that they did

not need any statistics to prove their point with their rather simple measurements.
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x Foreword

\You either see an e�ect or you don't|why run t-tests?" was a common frame of

mind within the �eld. Psychologists were looked down upon, as they had to use

statistics, presumably because they used bad methods that produced noisy data.

However, functional magnetic resonance imaging (fMRI), high resolution magne-

toencephalography (MEG), and event related potentials (ERP) generate signals

that are notoriously noisy, and the e�ect sizes are small. In fact, these methods

were developed to rely upon averaging data across time and/or space, and they

became practical only when computing power to do the necessary number crunch-

ing became available. With re�nement of the techniques, they became less reliant

on averaging, but only because more sophisticated methods of data analysis were

developed, requiring even more computing power than simple averaging.

Finding patterns among noisy signals is a task which the human brain is par-

ticularly good at (cf. Huettel et al., 2002), up to the point where it is running the

risk of generating superstitious beliefs or even outright delusions. The history of

science is full of such apparent patterns, from the channels on Mars "observed"

by the astronomer Lowell in 1906 to the many psychosocial \theories" of various

scope based upon unwarranted inferences from spurious p-values generated by the

analysis of questionnaires. It is therefore equally as important to try to use the

brain's strategies for data analysis as it is to re
ect upon them and scrutinize what

they are able to do and what they are unable to achieve. The more a system|be

it the brain or a data mining program|knows about the structure to be discov-

ered, the better the chances of detection. This is why experts in any �eld, from

chess players to paleontologists, are able to recognize salient structures and \see"

the imminent attack and the million-year-old tooth in the rubble. This is why we

have to turn to models that incorporate what we already know about the brain, in

order to extract most of the signal generated under speci�c conditions. And just

as it is easier to see something when you hear a noise coming from the same spot

in space, the combination of data from two or more techniques can produce vistas

upon the brain that any single method cannot provide. Of course, such multimodal

functional neuroimaging techniques require ingenious ways of analyzing data, such

that one method can be used to constrain data generated by the other method, and

vice versa.

The interpretation of functional neuroimaging data is not unlike the hermeneutic

interpretation of a text. You do not see the details if you do not have the \big

picture," but you cannot see the big picture without seeing the details. As we know

from hermeneutics, the solution to this apparent paradox consists of iterations

(what used to be called the hermeneutic circle), i.e. progressive analytic/synthetic

steps, whereby each has to be tightly controlled by the data as well as guided by

the increasingly clear view of the result. As there are thousands of ways to analyze

the complex data generated in systems neuroscience research, models have to be

used to guide this process from the very beginning on.

The promise of functional neuroimaging is not less than to tackle one of the most

fundamental open questions of understanding the brain, namely how microscopic

and macroscopic organization in the brain relate and interact in order to produce
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Foreword xi

brain function. We may compare the road ahead of brain research with the voyage to

the moon. Functional brain imaging then may correspond to an important element

of rocket technology. To achieve the entire trip, however, it is necessary to put

together many pieces of evidence collected by researchers working in di�erent �elds.

Blood-
ow based techniques alone cannot assess the temporal structure of brain

activity, and even bundling all available techniques of brain research, uncovering

the neural basis of behavior remains an underconstrained problem.

This book provides an overview of the various contributions theorists can and

must deliver in order to apply functional imaging successfully for solving the brain

puzzle. As noted above, there is no canonical method of data analysis and experi-

mental design because the interpretation of functional brain imaging data requires

assumptions that may be wrong. Optimal use of functional brain imaging will there-

fore rely on careful data mining of the raw data. This can be achieved by exploratory

and Bayesian methods of data analysis, which are emphasized in this book. Also,

there is no generic method of experimental design, and paradigms have to be de-

signed tailor-made for the question to be answered. Furthermore, the temporal

structure in brain activity provides indispensable clues about functional organiza-

tion. At present, these can be assessed only by combining blood-based imaging with

EEG/MEG methods. Approaches for combining these methods are described in the

second part of this book. Finally, due to the massive underconstrainment of the

system under consideration, mechanistic interpretations of macroscopic functional

correlates depend on additional constraints that are not provided with the imaging

data. These constraints may be results from microscopic functional studies, from

neuroanatomy, or they may be computational assumptions infered from neural net-

work studies. Linking such constraints requires network modeling of the imaging

data, which is subject of the third part of this book. All told, this book is a valuable

source of information not only to theorists in the �eld of neuroimaging, but to all

experimenters striving for the best possible use of the brain imaging techniques to

creatively address speci�c questions about the function of the human brain.

Manfred Spitzer

Ulm 2002
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Preface

This book is a result of a workshop about theoretical methods in neuroimaging

that took place in December 2000 in Breckenridge, Colorado. The workshop was

part of the Neural Information Processing Systems (NIPS) conference, an annual

interdisciplinary event that brings together cognitive scientists, computer scientists,

engineers, neuroscientists, physicists, statisticians, and mathematicians interested

in all aspects of neural processing and computation.

The purpose of this book is to provide a survey of theoretical and computational

approaches in neuroimaging, communicated in the thin air of high altitude, to the

broader community of scientists interested in neuroimaging.

We thank all participants of the workshop for creating the momentum for this

book, and all the authors for their contributions. We wish to thank the NIPS Foun-

dation, which not only provided the forum for the workshop but also made the

publication of this book possible. We thank Axel Baune, University of Ulm, and

Qingbo Wang, University of Southern California, for solving ba�ing technical prob-

lems as they arose. Editing of this volume was made possible by a grant from the

state of Baden-W�urttemberg and by support from Wilhelm-Schweizer-Zinn�guren

GmbH in Diessen.

Chapter 7 is reprinted with permission of The MIT Press from Neural Compu-

tation 14, no. 8 (Aug. 2002): 1827 ' 1858.
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Functional neuroimaging techniques provide novel and exciting means for the

investigation of working brains. Successful implementation of these tools requires

an understanding of how to incorporate and adapt existing empirical results and

theoretical frameworks for the design and analysis of imaging studies. Development

of new techniques for analyzing data from neuroimaging is also important. No

single technique can optimize the amount of information that can be extracted

from neuroimaging studies; a broad spectrum of theoretical approaches is required.

This chapter gives a brief overview of theoretical methods that are central to

the �eld of experimental neuroimaging. The topics discussed include inferential,

exploratory and causal methods of data analysis, theories of cerebral function and

both biophysical and computational models of neural nets. As well this section helps

to guide the reader by refering to later chapters.
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2 Theories, Data Analysis, and Simulation Models in Neuroimaging|An Overview

1.1 Functional Neuroimaging: Answers without Questions?

The total e�ort devoted to functional neuroimaging is so great that it has led to the

formation a new scienti�c �eld, Human Brain Mapping or Brain Imaging, with large

numbers of associated conferences and journals. This intense interest is rooted in

the distinctive power of techniques such as functional magnetic resonance imaging

(fMRI) and positron emmission tomography (PET), which provide noninvasive

means of viewing global patterns of neuronal processing in the human brain with

spatial resolution at the millimeter scale. After its recent introduction by Ogawa

et al. (1990a,b), fMRI in particular, has had an enormous impact. In the �elds of

cognitive neuroscience and systems neuroscience, fMRI became \the" registration

technique of choice for examining macroscopic activation correlates in the working

brain (Cabeza and Kingstone, 2000).

While there is tremendous interest in functional brain imaging, there is lively

debate about its ultimate value and use. A recent article states succinctly: \It is

unclear that we will come to a better understanding of mental processes simply by

observing which neural loci are active while subjects perform a task," (Kosslyn,

1999). The author holds the view that the context given by prior studies and

theories of cerebral function is required to pose questions that can be investigated

by imaging studies. Kosslyn (1999) discerns two classes of questions that can be

easily addressed by neuroimaging: �rst, how is information processing implemented

in the brain and second, what are the time courses of activation of particular

structures and processes. The work and theories that Kosslyn draws on have come

from electrophysiological experiments, studies of the e�ect of brain damage on

human behavior and cognition, and neuroanatomical descriptions of connections

between di�erent regions. Thus, there is a demand to translate prior empirical

results and associated theories to the new medium of brain imaging. That is, to

ask how can these be represented in mathematically de�ned ways. In the following,

we will characterize approaches to data analysis and modeling in the context of

functional brain imaging.

1.2 Techniques of Functional Neuroimaging: Strengths and Limitations

First, we will brie
y describe the substance of di�erent neuroimaging methods.

Speci�cally, it is important to recall that all current techniques measure local

neuronal activity by indirect means. PET and fMRI measure local properties of

the cerebral blood 
ow: the fMRI signal is based on blood oxygen level dependence

(BOLD), and the PET signal on regional cerebral blood 
ow (RCBF); for an

introductory review, see (Horwitz et al., 2000). The mechanisms that link metabolic

measures to neural activation are not yet well understood. The general impression is

that the BOLD signal re
ects the magnitude of synaptic events more closely than

that of �ring rates (Jueptner and Weiller, 1995; Magistretti and Pelerin, 1999).
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1.2 Techniques of Functional Neuroimaging: Strengths and Limitations 3

Recently, this view has received further experimental support by a study that

combined fMRI with electrophysiological recordings in animal models (Logothetis

et al., 2001). Despite the indirect linkage between the BOLD signal and spike rate,

fMRI has suÆcient spatial resolution to resolve elements of functional architecture

that were originally de�ned by the spatial distribution of stimulus evoked single-

cell activity, such as orientation columns in the visual cortex (Kim et al., 1999). At

present fMRI achieves the best spatial resolution that is possible for whole brain

imaging but it is still 4{5 orders of magnitude away from discriminating single cells.

New experimental methods are being developed, however, for characterizing the

spatial distribution of neuronal populations beyond the technical spatial resolution

of fMRI, see the adaptation paradigm proposed in the chapter by Tolias and

collegues.

Imaging methods that depend on hemodynamic coupling are not only severely

limited in spatial but also in temporal resolution. Technically, fMRI can be sampled

at intervals less than 100ms, however, the hemodynamic response is unlikely to

convey changes in neuronal response on such brief time scales. For example, the

BOLD response begins with a weak dip in the blood oxygen level (depletion dip)

that lags the he neuronal response by 1sec. The most pronounced BOLD response,

the overshoot in oxygen level doe not peak until about 5{7s after the neuronal

event (Frahm et al., 1994). Therefore, fMRI and PET provide only a version of the

neuronal response that is low-pass �ltered by 6 orders of magnitude.

Other measures of brain function permit superb temporal resolution. For exam-

ple, EEG (electroencephalogram) electrodes and MEG (magnetoencephalogram)

sensors record the electric or magnetic �eld arising from neuronal activity and

achieve temporal resolution on the millisecond scale. In the past, these fast tech-

niques provided very poor spatial resolution since they rely on integrating signals

from large areas, 1{2cm around a detector. To some extent, spatial resolution can

be increased by using a larger number of sensors. In the past few years, the number

of detectors that can be �tted on a 2D surface near the skull has increased steadily;

the present limit is about 256 detectors. From the �eld distribution recorded by

many detectors on the surface of the skull, it is under certain circumstances possi-

ble to perform \source reconstruction," that is, to localize the spots of high density

of dendritic currents in the brain underlying the measured �eld distribution. Thus,

current encephalogram methods can also be thought of as a form of neuroimag-

ing. Recent approaches have made progress in improving the spatial resolution of

EEG/MEG and in resolving principal problems with source reconstruction. To date,

EEG/MEG recordings can achieve accuracy on a scale of about 1cm, but not the

millimeter scale of fMRI. Subsequent chapters will describe new analytical meth-

ods to improve sensitivity and spatial resolution (see section 1.5) and approaches

that combine the advantages of EEG/MEG recordings with those of fMRI (see

section 1.7.2).
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4 Theories, Data Analysis, and Simulation Models in Neuroimaging|An Overview

1.3 Theories of Brain Function

A theory of brain function is a teleological interpretation of experimentally de�ned

brain states. The traditional experimental bases of functional brain theories fall into

two broad categories: a) Lesion studies that assess how cerebral injuries or other

manipulations e�ect function; b) Recordings with electrodes or microelectrodes

that measure neuronal activity in response to peripheral stimulation or during

the performance of tasks. Lesion studies, for instance, provided the initial basis

for hypotheses about the localization of brain function { a particular class of

functional theories that specify which brain regions are involved in producing

particular functions. Lesions in the occipital cortex, for example, produce blindness

(Munk, 1880). Recordings of neuronal activity with microelectrodes placed in the

brain provided the basis for functional theories at the neuronal level. For instance,

neurons in the occipital cortex were found to code particular low-level properties of

the external visual world such as stimulus orientation (Hubel and Wiesel, 1962). A

hypothetical function of the primary visual cortex is therefore the decomposition

of visual scenes into stereotyped features.

Two general principles of cerebral function derive largely from studies of brain

lesions and recordings from single or small groups of neurons: One is the concept of

functional specialization of brain regions (Zeki, 1990). The second is the hypothesis

of functional integration (Gerstein and Perkel, 1969; Gerstein et al., 1989), which

states that cerebral functions are carried out by networks of interacting regions and

that di�erent functions correspond to di�erent networks.

1.4 Data Analysis of fMRI and PET

Functional neuroimaging complements traditional avenues of brain research by

opening a macroscopic window on processing in the working brain. Changes of ac-

tivity associated with various stimulus conditions and behaviors are referred to as

functional correlates in brain activity. The extraction of functional correlates from

spatio-temporal fMRI or PET data sets requires the application of sophisticated

data analysis. One main diÆculty in resolving functional correlates is to separate

these from various types of distortion present in the measured signal, e.g. low pass

�ltering, physiological and scanner noise. Another problem in interpretation stems

from the possibility that functional correlates of brain activity may relate to given

behavioral paradigms in complicated ways. This latter diÆculty would remain even

if all issues of signal distortion and �ltering were solved. Delineating functional cor-

relates in the spatio-temporal structure of the data cannot be done without making

assumptions about general working principles in the brain. Currently, there are two

main types of assumption underlying the interpretation of functional neuroimages,

as represented by the subtraction paradigm and the covariance paradigm (Horwitz

et al., 2000).
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1.4 Data Analysis of fMRI and PET 5

1.4.1 Data Analysis Paradigms

The subtraction paradigm assumes that di�erent brain regions are engaged in

di�erent brain functions (Horwitz and Sporns, 1994); that is, it relies on the

existence of functional specialization. The subtraction paradigm has become the

standard in most fMRI and PET studies. These studies commonly employ an

experimental protocol known as block design, which involves switching between two

steady states, or blocks, one a rest interval and the other a functional condition.

This simple alternation between control state and behavioral task constrains the

temporal structure of functional components of the signal. Thus, the data can

be subjected to a regression analysis to reveal functional activation at any given

location, see section 1.4.3. Many issues, however, cannot be addressed directly with

experiments that use block design protocols, including studies about continuous

voluntary movements, self-paced tasks and various forms of cognitive tasks.

The second paradigm is called the covariance paradigm (Horwitz and Sporns,

1994). It is motivated by the hypothesis of functional integration. Covariance

paradigms assess the temporal covariance between di�erent brain regions during a

particular task. Signi�cant covariance between regions associated with a particular

brain function is termed functional connectivity. Originally, functional connectivity

was determined by seed methods, by establishing signal covariance in di�erent

brain regions with respect to a chosen seed region. Currently, exploratory analysis

techniques allow assessment of functional connectivity without reliance on seed

regions (exploratory data analysis is explained in section 1.4.4 of the chapter).

In order to resolve all the functional components of a given cerebral process

available from an fMRI data set, it is often necessary to take advantage of the

complementary views that the subtraction and the covariance paradigms provide.

For example, areas that are activated during a particular task, but not exclusively

activated, would be missed in studies that rely on the subtraction paradigm

alone. On the other hand, if only one small region, rather than multiple sites,

is activated during a given task, its functional role would be undetected by the

covariance approach. Therefore, analyzing the data with both approaches is often

necessary. So far, we have given only broad de�nitions of the two main types of

data analysis. In the following four paragraphs we will characterize new strategies

of signal preprocessing and analysis and explain how these approaches relate to the

subtraction and covariance paradigms.

1.4.2 Data Preprosessing

The detection of functional correlates from fMRI data sets can be improved by

using the subtraction or covariance paradigms for prepossessing. For example, the

covariance paradigm (combined with the anatomical �nding that local networks are

interconnected), led to the suggestion that functional activation extends over more

than a single unit of measurement, or voxel (typically 1mm�1mm�3mm). This

realization, in turn, gave rise to various means of reducing noise in measurements

TLFeBOOK



6 Theories, Data Analysis, and Simulation Models in Neuroimaging|An Overview

of spatially extensive functional correlates spatial averaging such as smoothing by

convolution with a Gauss-kernel. Further approaches to averaging came to include

selection of voxel sets by similarity in signal time-course rather than by spatial

proximity. Partitions for such selective averaging approaches can be found by

explorative data analysis methods, see section 1.4.4 and the chapter of McKeown.

1.4.3 Inferential Data Analysis

Inferential analysis tests hypotheses about functional correlates in data sets from

neuroimaging. A general approach to inferential analysis is to use spatially extended

processes, statistical parametric maps (SPM). The most established sort of SPM

is the general linear model, including familiar methods like ANCOVA (regression

analysis), correlation coeÆcients and t-test as special cases (Friston et al., 1995).

Inferential analysis involves the use of hypotheses drawn independently from the

data set under study. Some experimental paradigms make a straightforward sugges-

tion for the independent hypothesis to use. For block designs with block durations

several times longer than the time constant of the hemodynamic response (6s), the

hypothetical time course of the functional correlate is given by a box-car function,

high levels during task periods and low levels during rest periods. The hypothesis

can be tested in the SPM framework for each voxel. The resulting map of t-values is

a picture of the spatial distribution of functional activity induced by the task. Other

experimental paradigms, however, might suggest several competing hypotheses, or

none at all. Previously, Burock and Dale (2000) developed a voxel-based method

to estimate activation functions from data sets in cases for which no hypothesis is

available. They also proposed a statistical framework capable of testing the activa-

tion functions estimated from those data sets. For testing competing hypotheses a

novel Bayesian approach is presented in the chapter by Hansen and colleagues.

1.4.4 Exploratory Data Analysis

Strategies of multivariate data analysis that rely on the covariance paradigm rep-

resent other types of approaches that are free of preassumptions about activation

functions. For example, methods of unsupervised learning, like cluster analysis or

principal/independent component analysis, are able to reveal voxel sets with co-

varying time courses. Such algorithms, combined with only few preassumptions,

have the ability to detect regularities in data from neuroimaging. Many studies

have demonstrated that functional activity can be detected without reference to

the experimental protocol at all. Exploratory data analysis has the capacity to re-

veal other components in the data as well, including scanner and motion artifacts.

Exploratory data analysis is a main focus of this book; the methods and their ap-

plication for di�erent imaging techniques are described by a number of chapters:

fMRI: Samorjai and collegues, McKeown; event-related fMRI: Wichert and col-

legues; MEG/EEG: Tang and Barak, Vigario and collegues; autoradiography: Nair

and Gonzalez-Lima.
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1.5 Data Analysis of EEG and MEG 7

1.4.5 Causal Data Analysis

The types of analysis we described above were developed to reveal statistical

regularities in the data that can be associated with brain function. The next step

is to explore the processes that produce functional correlates in the brain, for

instance, how di�erent coactivated or sequentially activated areas in
uence one

another. These issues cannot be resolved by determining functional connectivity

alone. If, during task execution, activation of one region is associated with that of

the next, the two are described as functionally connected; the causes or nature of the

association, however, is unspeci�ed. To explore potential mechanisms of interaction

among regions, the data must be analyzed anew. Instead of statistical inference, a

di�erent type of analysis, causal inference, becomes important. Standard inference

assumes that parameters that describe a given distribution can be inferred from

samples taken from that distribution. These parameters can be employed to infer

associations among variables, like the BOLD signal or behavioral features, with

methods such as regression analysis. Causal analysis (originally developed for

e�ect analysis in economics) goes one step further, by providing the means to

make inferences about the processes involved in generating the data. It cannot be

applied in all cases, however, since it requires supplementary information about the

mutual interactions among variables like knowledge of anatomical connections. For

a comprehensive introduction to the general concept of causal inference, see (Pearl,

2002). McIntosh and Gonzalez-Lima (1991) were the �rst to apply causal analysis

to functional neuroimaging. In particular, they used structural equation modeling

(SEM), a linear version of causal analysis. Their analyses provided a way to

quantify the in
uence that a given cortico-cortical pathway (already known to exist

from anatomical studies) has on its target area by generating path coeÆcients1.

High coeÆcients indicated strong \e�ective connectivity" and negative coeÆcients

indicated inhibitory e�ects.

1.5 Data Analysis of EEG and MEG

Since electro- and magneto-encephalogram registration is a longer established

technique than fMRI or PET, the various problems of associated data analysis have

received much previous attention. Here we limit the discussion of this longer used

technique to two recent methods of exploratory data analysis and the combination

with data from blood-
ow based neuroimaging techniques.

The main goal of EEG/MEG data analysis is source reconstruction, as already has

been described in section 1.2. The result of source reconstruction is a con�guration

of sources in the brain (time-dependent electric or magnetic dipoles or multipoles)

1. For technical reasons a SEM analysis has to be restricted to networks including only a

handful of areas of interest.
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that reproduce the �eld measured on the cranial surface. The reconstructed sources

correspond to local cerebral regions with high dendritic current densities. In general,

however, source reconstruction has no unique solution and so falls into the category

of ill-posed problems2.

One approach to reduce ambiguity in source reconstruction is to decompose

the data set in a sensible way and to try to explain the components separately.

Some approaches decompose the data by means of the same exploratory data

analysis techniques described in section 1.4.4. Recent approaches using independent

component analysis of single trial EEG and MEG will be described in the chapters

of Tang and Pearlmutter, and Vigario and collegues. Even after successfull source

reconstruction the spatial resolution of EEG/MEG is 1cm or coarser, far worse

than the spatial resolution of fMRI|it depends on the number and localization of

sources.

Another approach to reduce ambiguity in source reconstruction is to combine

EEG/MEG with other imaging methods. Since advantages and disadvantages of

EEG/MEG on the one hand and blood-
ow based methods on the other are

complementary, the combination of MEG/EEG with blood-
ow based imaging

methods is particularly appealing. The hope is to achieve high temporal and spatial

resolution at the same time. The problems with combining di�erent neuroimaging

methods and ways to overcome them will be addressed in two of the following

chapters, see section 1.7.2 below.

1.6 Neural Network Models

Applying causal data analysis in neuroimaging bears a close relationship to ap-

proaches of brain modeling in the �eld of computational neuroscience (Sejnowski

et al., 1988); for a recent review see the supplement to Nature Neuroscience (volume

3, 2000). A central class of models are neural networks, which, at various levels of

detail or abstraction, describe the interactions among groups of neurons. Two di�er-

ent types of neural networks are of particular value in the context of neuroimaging,

biophysical models and computational models.

1.6.1 Biophysical Models

Biophysical models are descriptions of biological domains in the usual sense of

physics. In physics, a model provides a sketch; a simpli�ed view of a domain, with

the degree and quality of the simpli�cation determined by the modelers. They

2. Mathematical problems are ill-posed if they do not satisfy each of three criteria: a
solution exists, is unique, and depends continuously on the initial data. To solve ill-posed
problems, well-posedness must be restored by restricting the class of admissible solutions
(Hadamard, 1923).
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select experimental phenomena, mechanisms, and interactions that are regarded

as essential to describe and formulate the descriptions in mathematical language.

The resulting mathematical model can be treated analytically, numerically, or

implemented in computer simulations. The biophysical model can be used to

predict how experimental parameters in
uence other ones. To assess the validity

of the model, the predictions it makes can be tested experimentally. Faithful or

valid models usually result from a recursive trial and modi�cation process. A

biophysical model should not only be predictive, it should be explanatory too.

Explanation largely results from the simpli�cation process, which helps to identify

the most important mechanisms involved in biological processes, such as how local

interactions e�ect macroscopic behavior. Fidelity and simpli�cation/reductionism

are equally essential to biophysical modeling. A model that does not faithfully

represent the system it seeks to describe becomes invalid; as does one that fails

to provide reductionistic explanations for the actions of that system. Of course,

model simpli�cation is dictated by pragmatic reasons as well; mathematical models

have to be tractable and should not include parameters that cannot be measured

empirically. Naturally, these pragmatic limitations change as mathematical tools

and technology develop. For example, recent advances in computing power and new

experimental techniques have expanded the scope of biophysical models. A classic

example of a biophysical neural network model is one that draws on the properties of

single neurons and their synaptic interactions to explain the behavior of the network

as a whole (Pinsky and Rinzel, 1994; Traub et al., 1996). Other biophysical models

describe how extracellular �eld potentials, measured by EEG/MEG, are produced

by postsynaptic potentials of large groups of neurons (Nunez, 1990).

1.6.2 Computational Models

The cybernetics movement introduced the computational paradigm of brain func-

tion, that is, the idea that the role of the brain is computation. This movement ini-

tiated the search for algorithmic formalizations of cerebral functions (Craik, 1943;

Rosenblueth et al., 1943; Wiener, 1948). Just as biophysical models describe neu-

ronal domains, algorithms provide mathematical descriptions of cerebral functions.

Cybernetics eventually gave rise to the �eld of Arti�cial Intelligence (AI), whose

goal is to describe cognitive brain functions with mathematical algorithms. The

rationale of this synthetic approach was that biological functions might be easier to

mimic than to analyze in situ. Thus, algorithms implemented in a technical system

(a computer) yield predictions that can be compared with the performance of bio-

logical systems. The hope was that if arti�cial and natural behaviors were similar,

algorithmic elements would help to de�ne the biological working principles. While

the AI approach is interesting, its use in specifying the mechanisms of biological

behavior is limited by the fact that di�erent algorithms can produce identical out-

comes. Computational brain models share with AI the goal of reproducing brain

functions in an arti�cial system. But in addition, the structures and processes in

the models are constrained by biophysics. Thus, neural networks used as computa-
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tional models link interfaces to two di�erent aspects of the brain, its biophysics and

the algorithms it implements. Algorithms performed by neural networks that are

important for neuroimaging include, for instance, associative memory, the storage

and recall of activity patterns.

1.7 Neural Network Models for PET and fMRI

1.7.1 Links to Multielectrode Recordings

Biophysical models developed to describe functional activity as measured by PET

and fMRI have been designed (Arbib et al., 1995; Tagamets and Horwitz, 1999;

Horwitz and Tagamets, 1999) to bridge the gap between results from microelectrode

recordings of single cells and imaging of the whole brain. At present, these models

are selective in scope because the path between single cell recording and functional

imaging is long and only loosely charted. These models have been constructed

to include information about various connectivity schemes between di�erent local

neuronal populations and between the areas of interest. Initially the models were

used for simulations that explored the role of inhibitory and excitatory neuronal

populations and the biophysical relationship between blood 
ow and neural activity.

An important future role for the simulations will be to plan novel neuroimaging

experiments. (see chapters Arbib and collegues, Tagamets and Horwitz.).

1.7.2 Links between Di�erent Neuroimaging Techniques

Blood 
ow based and electrophysiological measurements have complementary

strengths and weaknesses in space and time; thus experiments that combine both

approaches are potentially powerful. Before these approaches can be brought to-

gether, however, two main obstacles must be overcome. First, technical solutions

must be found for solving interference problems caused by the conjoint applica-

tion of both techniques (see chapter Kruggel and Hermann). Second, a means to

combine the signals measured with the two techniques must be developed. The

approach to this second problem is not clear cut. Indeed, it is not even known

whether both signals arise from the same or di�erent groups of cells (Nunez and

Silberstein, 2000). As well, there is considerable debate about which properties of

the EEG signals (e.g., ERP peak height, di�erent bands of spectral power) correlate

best with the fMRI BOLD signal (see chapter Makeig and collegues).

1.7.3 Re�ned Causal Data Analysis

The strength of causal data analysis of fMRI/PET has recently been improved by

the inclusion of biophysical models. Early methods of causal data analysis re
ected

only rudimentary descriptions of the biophysical substrate for interactions between

regions. More recent methods of causal data analysis use fuller descriptions of
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biophysical properties, including populations of inhibitory as well as excitatory

neurons and the relationship between blood 
ow and neuronal activity (Taylor

et al., 2000). Moreover, principles from computation modeling, like pattern storage

or hierarchical processing have also been implemented. These revised analyses

determine the in
uences brain regions exert on each other more realistically than

previous causal analyses had done.

1.7.4 Neuroimaging Studies on Learning

Learning is one of the most exciting subjects of studies that can be addressed

by causal data analysis. One common computational model predicts that learning

initiates changes in synaptic connectivity. Hence, learning might induce changes in

e�ective connectivity as well. In fact, associative learning of visual objects and their

location was shown to in
uence e�ective connectivity between regions specialized

for spatial and object recognition (B�uchel et al., 1999). Developmental in
uences

on such learning e�ects is the subject of an autoradiographic study of neural tissue

in the chapter of Nair and Gonzalez-Lima.

1.8 Final Remarks

This overview gave brief accounts of di�erent approaches to neuroimaging, including

methods of analysis, modeling and the development of experimental techniques. In

addition, we tried to convey a sense of how the di�erent approaches relate to one

another. For instance, there are close relationships between causal data analysis and

biophysical modeling, and between functional theories and computational models.

Last, by discussing biophysical and computational models separately, we hoped to

clarify the di�erent roles that neural network models play in understanding and

integrating di�erent types of information about the working brain.
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The purpose of Exploratory Data Analysis (EDA) is to investigate and discover

salient and novel features of complex, high-dimensional data. We describe a partic-

ular realization of EDA, the three-stage strategy EROICA (Exploring Regions Of

Interest with Cluster Analysis), speci�cally designed to analyze functional MR neu-

roimaging data. The �rst stage consists of an Initial Partition of the data into three

groups: a group of \trend" time-courses (TCs), a group of \potentially interesting"

TCs, and a group that contains the remaining, putative \noise" TCs. The initial

grouping is achieved by �rst normalizing (scaling) the TCs, followed by selection

procedures based on speci�c \trend" and \noise" tests. The second stage is the

Principal Partition, where fuzzy clustering analysis (FCA) is applied to the group

of \potentially interesting" TCs. The third stage, Signi�cance Testing, \validates"

the second-stage results by �rst removing those TCs from the original clusters that

fail special statistical tests, and then by attempting to allocate to the clusters some

of the initially excluded \trend" and \noise" TCs. We assessed the consequences

of this three-stage strategy on the quality of the clustering results. We show that

employing this strategy both improves results relative to clustering that did not use

TLFeBOOK



18 Exploratory Analysis of fMRI Data by Fuzzy Clustering

the initial partitioning, and also speeds up execution signi�cantly. We report de-

tailed analyses on several phantom datasets and on a multi-slice, real fMRI dataset.

Based on detailed studies carried out on sixteen fMRI datasets, the execution time

of EROICA scales sublinearly both with T (scans) and N (number of TCs). We pro-

pose robustness (noise resistance, reproducibility) 
exibility/versatility, and speed

as the three major requirements that any practically viable EDA method ought to

satisfy. We show that the EROICA process, and EvIdentr, its software implemen-

tation, ful�ll these requirements.

2.1 Introduction

Understanding how the human brain works has been an age-old quest. The advent

of functional neuroimaging promises ful�llment. Di�erent imaging modalities probe

di�erently the brain's responses to stimuli. They all have advantages and disadvan-

tages. For instance, the exquisite temporal resolution attainable by EEG (electroen-

cephalography), MEG (magnetoencephalography) and ERP (event related poten-

tials) is o�set by the poor spatial (neuroanatomical) resolution. In addition, the

so-called \inverse problem" has to be solved to disentangle and locate the sources

from which the responses are collected at the electrodes.

The other, most commonly used modalities do not depend directly on neural

responses, but rely on exogenous or endogenous probes that re
ect only indirectly

the actual neuronal activity, (generally through its coupling to metabolic activity).

Thus, PET measures changes in regional cerebral blood 
ow, by following the time-

course of a bolus of injected H15

2
O. Because the half-life of 15O is 123 s, 6{12 scans,

each lasting approximately 1 minute, can be performed in the same scanning session.

However, the spatial resolution of PET images is poor, 5{6 mm.

Functional MRI (fMRI) is based on the BOLD (blood oxygenation level-

dependent) e�ect, which assesses the changes in blood oxygenation and blood

volume resulting from changes in neural activity. Deoxygenated hemoglobin (dHb)

acts as an endogenous paramagnetic contrast agent. Increased blood 
ow reduces

the local concentration of dHb, resulting in increased MR signal on a T2�-weighted

image. Both the temporal and spatial resolution of fMRI are much better than

for PET, the former as high as 100 ms (EPI), the latter approximately 2 mm. A

limitation of fMRI is that the hemodynamic response to a change in brain state

is delayed by 5{8 s. However, fMRI, because of its non-invasive nature, excellent

spatial and good temporal resolution, has become the neuroimaging method of

choice.

The simplest and earliest data analysis strategy of neuroimaging experiments

(especially PET) used the so-called subtraction paradigm (Posner et al., 1988).

This relied on the notion of functional specialization, i.e., that di�erent functions

(stimuli) activate di�erent regions of the brain. For a typical experimental paradigm,

this involves the comparison of, say, two di�erent experimental conditions. If

statistically signi�cant signal di�erences (\activations") between these conditions
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can be located in particular brain regions, then the brain areas \activated" are

presumably related to the di�erences between the two conditions.

Another early strategy is motivated by a more distributed view of cortical

function, with the premise that the response to an experimental task is mediated

by a network of interacting brain regions, di�erent tasks by di�erent functional

networks. This assumption of distributed functions led to the so-called covariance

paradigm (Horwitz, 1994). It postulates that by studying how brain activity co-

varies between di�erent brain areas, one can infer which areas correspond to

important network nodes, as well as the functional connectivity of these nodes.

The covariance paradigm assumes that there is strong correlation amongst the

TCs of an activated area but that di�erent areas correlate weakly. However, this

assumption doesn't allow for strong correlation between spatially distributed areas

that follow the same task paradigm, even though this is a common occurrence.

Both the subtraction and covariance paradigms use minimal assumptions (e.g.,

that there be two di�erent experimental conditions). Interestingly, the focus of anal-

ysis shifted to inferential, con�rmatory statistical approaches, especially because

the tasks of early fMRI experiments were designed to be periodic (block design).

The standard statistical inferential methods of analysis, based e.g., on Pearson's

product-moment correlation coeÆcient �, or on the ubiquitous Student's t-test, are

appropriate if a realistic and faithful model function of the expected response is

known. More powerful statistical approaches, such as the generalized linear model

(McCullagh et al., 1989), adapted by Friston and co-workers (Friston, 1995; Fris-

ton, 1996; Friston et al. 1995) for analyzing PET and more recently fMRI data, are

satisfactory for more complicated paradigms, but still require modeling. However,

selecting the most appropriate model, without additional information and further

assumptions, is diÆcult or even impossible when the temporal response to a pre-

sented stimulus is complex or poorly characterized. A priori modeling is in principle

impossible when the stimulus to be identi�ed is spontaneous, endogenous, and/or

non-generic (e.g., the task is to follow the behavior of a patient with Tourette's

syndrome (Gates et al., 2001), or the onset and course of epileptic seizures, or the

consequences of drug therapy, etc.).

Hence, the need for exploring neuroimaging (particularly fMRI) data by \model-

free," data-driven methods is becoming more compelling as neuroscientists design

increasingly sophisticated and probing cognitive/linguistic experiments, and as

more and more potential clinical applications emerge. Real-life, i.e., complex,

large, and feature-rich data, which do not have \nice" statistical properties such

as homogeneity, stationarity, stochasticity, etc., cannot be reliably analyzed with

the more commonly used, inferential, con�rmatory data analysis (CDA) methods.

Eminent statisticians (see e.g., Tukey, 1962) recognized this, and the recommended

strategy and approach was formally enunciated (Tukey, 1977) as exploratory data

analysis (EDA), a natural complement for CDA.

Attempts to analyze fMRI data by model-free EDA methods, such as Principal

Component Analysis (PCA) (Jackson, 1991; Friston, 1996) or its nonorthogonal

variant, factor analysis (FA) (Backfrieder et al. 1996), although occasionally suc-
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cessful, failed just as often. The main reason for failure is that both PCA and FA

segregate the data by partitioning its total variance into uncorrelated components.

For PCA, the partitioning is along the mutually orthogonal PC axes. FA involves

additional, oblique rotations of the PC axes. This removes the orthogonality con-

straint, without necessarily improving variance partitioning. The latter, whether

achieved by PCA or FA, cannot always separate the data unambiguously into,

say, activated time-courses (TCs), noise TCs, and TCs containing artefacts. This

is because the expected amplitude of the activations is small, and variance parti-

tioning is non-speci�c: thus, activated TCs are likely to be contaminated with, or

even swamped by noise, whether instrumental or physiological (respiratory, cardiac,

etc.). Spatial Independent Component Analysis (ICA) (Bell et al., 1995), recently

applied to the analysis of fMRI data (McKeown et al., 1998), self-organizing neu-

ral nets(Fischer and Hennig, 1999; Chuang et al., 2000), and especially temporal

Cluster Analysis (CA), are alternative unsupervised pattern recognition approaches

that do not su�er from some of the disadvantages of PCA or FA. ICA is conceptu-

ally similar to PCA/FA, with the important di�erence that variance partitioning is

based on mutual information (i.e., on higher than second-order correlations). One

of the consequences of this di�erence is that the variance partitioning achievable

is not \greedy," i.e., ICA, unlike PCA, does not necessarily try to maximize the

variance in the data along successive orthogonal directions. However, ICA imposes

the constraint of (spatial and/or temporal) statistical independence, often satis-

�ed only approximately. Additional possible limitations are ICA's linearity (McK-

eown and Sejnowski 1998), and in particular, that, just as PCA/FA, it attempts to

characterize the data globally. This means that even if the dataset is statistically

heterogeneous (i.e., the time-courses in di�erent regions of the brain have di�erent

distributional properties, certainly the case for fMRI data), the ICA model tries to

describe it using the same global features (Karhunen and Malaroiu, 1999), i.e., as if

the data were spatially homogeneous. In principle, some nonlinear version of ICA,

expressed in various forms (Parra et al., 1996), might solve this problem of dis-

tributional heterogeneity. However, excessive computational requirements for high-

dimensional data, and the likelihood of non-unique solutions, cast serious doubt on

the practical realization of such nonlinear variants (Lin et al., 2001; Yang et al.,

1998; Taleb and Jutten, 1997). (These reservations also apply to recent proposals

of using some variant of nonlinear PCA, e.g., in (Friston et al., 2000).)

A typical 3-dimensional (multislice) fMRI brain dataset for a single subject

contains about 108{109 bytes. According to Huber's data size taxonomy (Huber,

1994), such sizes are crudely classi�able as between \large" (108) and \huge" (1010).

Simultaneous inter-subject studies would raise the dataset size to \huge". The

relevance of this size-based classi�cation is that real-life \large" datasets di�er

from smaller ones not only by size. In particular, nonstationarity and especially

distributional heterogeneity, two persistent features characterizingmassive datasets,

will likely play havoc with conventional statistical methods. Expecting or requiring

a meaningful description of the data, by some global transformation, such as linear

or nonlinear PCA or ICA, is unrealistic.
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Clustering, particularly fuzzy clustering (FC) (Bezdek, 1981), does not su�er

from the constraints implicitly imposed on ICA. It naturally represents the data

both locally (cluster centroids rarely involve the combination of all TCs) and in a

nonlinear manner. Furthermore, its algorithmic implementation can be made very

fast, a feature we feel important if the goal is the thorough exploration of \large"

(Huber, 1994) and complex datasets. The need for adequate computational speed

when analyzing such datasets is convincingly argued in (Huber, 1994; Huber, 1997;

Huber, 1999), (Wegman, 1995; Wegman, 2000; Wegman, 2000).

Since its introduction in neuroimaging in 1995, FCA/EvIdent was successful in

analyzing brain fMRI data, both by us (Baumgartner et al., 1999; Baumgartner et

al., 2000, Baumgartner et al., 1997), (McIntyre et al., 1998), (Scarth et al., 1995;

Scarth and Somorjai, 1996), (Somorjai and Jarmasz, 1999; Somorjai et al., 1997;

Somorjai et al., 2001; Somorjai et al., 1999), and by colleagues and collaborators

(Barth et al., 1999), (Baumgartner et al., 2001), (Carpenter and Just, 1999), (Kato

et al., 1999), (Moser et al., 1999; Moser et al., 1997; Moser et al., 1996).

The usefulness of FCA is not con�ned to brain fMRI. It was applied successfully

to perfusion MRI of the brain (Ye et al., 1997), breast (Scarth et al., 1997) or heart

(Tian et al., 1998), and to infrared image analysis of the skin (Mans�eld et al,

1997), tissue oxygenation (Sowa et al., 1997) and viability (Mans�eld et al., 1998)

etc.

A critical, in-depth comparison of the various data-driven methods used in

fMRI data analysis has not yet been made, and is beyond the intended scope of

this Chapter. We con�ne ourselves to some of the conceptual and computational

aspects of FC analysis, in the light of general EDA considerations. It has become

obvious that the strategy of analysis and its implementation both play essential

and complementary roles in creating a practically useful EDA method. Crucial

requirements for EDA methods are 1) robustness (noise resistance, reproducibility),

2) 
exibility/versatility, 3) speed and 4) easy applicability. The last condition

implies a user-friendly GUI.

Our main purpose is to describe and discuss a multi-stage strategy, based on

the concept of \divide and conquer," which achieves the above goals. (Earlier,

we have announced a two-stage version (Somorjai et al., 1999; Somorjai et al.,

2001). A simpli�ed, more basic variant of this, using only the autocorrelation-based

\self-similarity" (Somorjai et al., 2001), no trend exclusion, and the slower, original

Bezdek fuzzy clustering algorithm, without cluster merging (Jarmasz and Somorjai,

1998), was adopted and implemented in (Fadili et al., 2000). The current three-stage

strategy is an extension and improvement of our earlier version. It explicitly empha-

sizes the importance of testing the generated hypotheses for statistical signi�cance.

We show that by appropriately preprocessing the data (Stage I), we can sub-

stantially enhance the success of fuzzy clustering in partitioning multidimensional

vectors (the T-dimensional TCs in the case of fMRI) into functionally and/or phys-

iologically meaningful groups. Typically, only a small fraction of the total number

of TCs is activated by the task; hence, once the limited subset containing these

TCs has been identi�ed, FCA needs only to be applied to this subset. When \po-
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22 Exploratory Analysis of fMRI Data by Fuzzy Clustering

tentially interesting" clusters have been found, we have to ensure that the initially

excluded TCs are properly assigned to the most similar cluster. This motivated our

developing the three-stage strategy/process we call EROICA (Exploring Regions

Of Interest with Cluster Analysis) (Jarmasz and Somorjai, 2002). It is important

to establish that the initial partitioning is not at the expense of the quality of

the results but, in fact, quality will also improve. Any consequent speedup in pro-

cessing is a welcome bonus, and enables the analyst to more thoroughly explore

the data. The 
ow-chart in �gure 2.1 depicts the basic components of EROICA's

three stages, with their functional interrelationships. These were implemented in

the software EvIdentr.

PRE-PROCESSING N TIME-SERIES:

1. TRANSFORMATION; 2. NOISE REDUCTION (FILTERING);

3. DETRENDING; 4. NORMALIZATION

POTENTIALLY ACTIVATED

TIME-SERIES

NOISY

TIME-SERIES TIME-SERIES

TRENDY

I. INITIAL PARTITION OF N TIME-SERIES

II. PRINCIPAL PARTITION

FUZZY CLUSTER ANALYSIS:

EXTRACTS REFERENCE FUNCTIONS

(ACTIVATION PROFILES)

FIND BEST COVARIATE REFERENCE FUNCTION

FOR EACH TIME SERIES AND APPLY A TWO-

DOMAIN TEST TO THE LINEAR MODEL

III. SIGNIFICANCE TEST 

PARAMETER

Figure 2.1 Flow-chart of EROICA, the 3-stage EDA strategy/process.

2.2 Methodology

Stage I: Initial Data Partition (Preprocessing)

If the inputs are the raw, unprocessed TCs, and the Euclidean metric is chosen as

the distance measure, then the FC algorithm merely segments the brain (Scarth et

al., 1995), i.e., TCs are assigned to clusters, based only on the magnitudes of their

average intensities. Normally, this is not the goal of temporal FCA, which typically

attempts to partition the TCs according to their temporal pro�les (waveforms). To

achieve this, the �rst step of preprocessing is what we call normalization in the

initial publication (Scarth et al., 1995). Its principal role is to remove from the data
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the in
uence of di�erent average intensity levels, and highlight temporal waveform

shapes. The various possible normalization methods are discussed in the Appendix.

Following normalization, a speci�c TC screening method is chosen to carry out

the initial data partition. The goal is to eliminate from subsequent FC analysis the

confounding e�ects of noise and/or trend TCs and analyze only the \potentially

interesting" ones. Both \trend" and \noise" tests (see �g. 2.1) were incorporated

into EROICA (Jarmasz and Somorjai, 2002), to give it the robustness (Requirement

1) and speed (Requirement 3) that any practically useful EDA method should have.

The following are concise descriptions of the preprocessing methods we found most

useful. The subsequently de�ned test procedures make extensive use of the Pearson

product-moment correlation coeÆcient � (�1 � � � 1), de�ned as

�(xi;vj) =
x
t
ivjq

x
t
ixiv

t
jvj

(2.1)

where xi and vj are zero-mean T-scans vectors, and the superscript \t" denotes

the transpose. While the test A) is used to select voxels with distorted signal, the

tests B) and C) can identify \potentially interesting" TCs.

A) Trend Exclusion (TE): Prior to clustering, we detect TCs with signi�cant

trends, and temporarily place these in a \trend" cluster (see �gure 2.1). (Trends

may be due to motion artefacts and/or instrumental drift (Smith et al., 1999). In

EPI data often as many as 50 � �70% of the voxels have statistically signi�cant

trends.)

We have implemented trend detection/exclusion as a two-stage process:

We compute the Pearson correlation coeÆcient � between each TC and a straight

line with unit slope; if j�j � �0, the TC is used in creating a \trend" centroid with

� as weight. The correlation threshold is obtained from �0 =
q
2SP0(m)

T�1 , where

the Spectral Peak threshold SP0(m) = �ln[1 � (1 � p)1=m], p is a user-de�ned

false-positive rate, and m is the number of spectral peaks in the power spectrum

density of a straight line with unit slope that are above the lowest signi�cance

level of SP1(m) = �ln(p) (see (Jarmasz and Somorjai, 2002) for more details). p

determines the level of statistical signi�cance (con�dence level) - the smaller p the

less likely that a match with the straight line is due to chance. All TCs with j�j � �0
are averaged, with weights set equal to the � values, to create a \trend" centroid.

We will give a more comprehensive explanation of the origin of SP0(m) and �0 in

the Signi�cance Test section.

All TCs are now correlated with the \trend" centroid. TCs with j�j � �0 are

placed in a \Trend" cluster and are excluded from the Principal Partition.

Once the Principal Partition is completed, an attempt is made to reassign trendy

TCs to the clusters found by the FCA. The criterion for reassignment will be ex-

plained in the Signi�cance Test section. In our experience, most of trendy TCs

tend to remain in the \Trend" cluster. Clearly, trend exclusion is a data-driven
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process, and the \trend" centroid Ctrend is created by the data. Often Ctrend has

a highly nonlinear shape. We �nd that temporary trend exclusion is generally su-

perior to trend removal (i.e., \detrending," usually accomplished by �tting TCs to

a low-degree polynomial), since detrending may create spurious temporal shapes

in TCs that in fact have nonlinear trends, a very common situation. The distinc-

tion between trend exclusion and trend removal (that actually alters the TC) is

important. We do not permanently detrend TCs, and no TC is permanently re-

jected without an appropriate statistical test. The temporary exclusion of trend

TCs from analysis not only speeds up subsequent processing; it makes the process

of �nding \interesting" cluster centroids more robust (Somorjai and Jarmasz, 1999).

B) Autocorrelation (AC) (Somorjai et al., 1999): This method is based on the

observation that a potentially activated (i.e., structured) TC that is shifted by one

time instance (lag) has a high correlation coeÆcient, designated by AR(1), with the

original, unshifted TC (i.e., in equation (2.1) we set vj = x(i+1)). On the other hand,

a time-shifted noise TC has consecutive amplitude values that are e�ectively inde-

pendent of each other, and generates AR(1) �= 0. AR stands for the auto-regressive

modeling of a time-series. For Gaussian noise, the expected value of AR(1) is zero.

The statistic AR(1) can therefore be used for detecting noisy TCs, i.e., all TCs

that fail the hypothesis AR(1) � AR0(1) are potentially activated TCs that can

be clustered independently of the noisy TCs. (Note that \trend" TCs also generate

large AR(1) values, and must be excluded or corrected prior to selection.) For a suf-

�ciently large T, the statistic Q1 =
AR(1)2T (T+2)

(T�1) has a chi-square distribution with

one degree of freedom (Ljung and Box, 1978). For a given false-positive p, the cor-

responding correlation threshold is given by AR0(1) =
p
Q1(p)(T � 1)=T (T + 2),

where Q1(p) is the inverse chi-square distribution. Only TCs with AR(1) > AR0(1)

are selected for the second, Principal Partition stage. TCs with AR(1) � AR0(1)

are placed in the \Rejects" cluster. Analogously to the trendy TCs, rejected TCs

can be assigned to one of the clusters found by FCA if the membership threshold is

met. The reassignment scheme is described in the Stage III (Signi�cance Testing)

section.

C) Spectral Peak (SP) (Jarmasz and Somorjai, 2002): This method is based on

a frequency-domain solution to a common signal-analysis problem: how to detect

the presence of a periodic (or nearly periodic) signal that is buried in noise. We

describe a spectral peak order statistic we use to identify potentially activated

TCs prior to clustering. Most activated TC can be modelled as a sum of one or

two dominant periodic signals plus noise. For such signals, the peak in the power

spectral density (periodogram) makes a disproportionately large contribution to

the total signal power. Thus, the actual fraction of total signal power contained in

a given spectral peak can be a useful measure in identifying TCs dominated by one

or two spectral peaks. For noisy TCs, the total power is approximately evenly dis-

tributed over the entire spectrum, and this leads to a comparatively small spectral

peak measure. We de�ne a spectral peak statistic SP, as the power contained in
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the spectral peak divided by the average power. (SP is a scaled version of Fisher's

g statistic (Fisher, 1929).) To compute the SP statistic, the TCs are padded with

zeros so that N = 2n > 2T , where T is the number of scans (time instances), and

the integer part of [(N-1)/2] is the number of frequency points that are searched

to �nd the peak. (To allow proper statistical analysis, we ignore the Nyquist fre-

quency N/2.) Padding with zeros increases frequency resolution and letting N = 2n

permits using an eÆcient FFT algorithm to compute the power spectrum (this is

an important step for minimizing execution time). For TCs drawn from a Gaussian

process, the probability distribution for the statistic was derived by Fisher (Fisher,

1929) and its �rst term is given by PrfSP > SP0g = M(1 � SP0=M)M�1, where

M = integer part of [(T-1)/2]. For a given false-positive rate (signi�cance level) p,

the SP threshold is given by SP0 =M [1� (p=M)1=(M�1)]. All TCs with SP > SP0
(i.e., those that fail the noise test) are deemed \potentially interesting" and are

selected for the Principal Partition; the others are placed temporarily in the \Re-

jects" cluster (see �g. 2.1).

Stage II: Principal Data Partition|Fuzzy Cluster Analysis

The goal of Stage I, Initial Partition, is to �nd a suÆcient number of potentially

activated TCs such that they can form valid clusters at the second, Principal Par-

tition stage. Fuzzy clustering, the second stage of EDA in EROICA, starts with

selecting a distance (similarity) measure for assessing how similar two TCs are

to each other. There is clearly nothing unique about the Euclidean metric as the

similarity measure. The choice among an in�nite number of possibilities, provided

e.g., by the well-known Minkowski distance metric D�
ij :

D�
ij = f

TX
k=1

jxik � vjk j
�g1=�; �1 � � � 1

must be dictated by extrinsic considerations. (� = 2 produces the familiar Euclidean

metric, � = �1 selects the smallest, � =1 the largest of the T terms in the sum.)

A good discussion of other possible measures is found in (Goutte et al., 1999). In

quite general terms, similarity measures of any kind (Gower, 1971) could be used,

with \similarity" and \distance" related by an appropriate (and possibly quite

arbitrary) monotonically decreasing transformation. (Note however, that for each

new measure, the validity/ convergence properties of the alternating-stage iterative

algorithm used to carry out the optimization in FC must be veri�ed (Bezdek et al.,

1999).)

(Golay et al., 1998) have experimented with a distance measure de�ned by

d2ij =

�
1� �(xi;vj)

1 + �(xi;vj)

��
; (2.2)

with �(xi;vj) as in (2.1) and vj the j
th cluster centroid. In the implementation of

EROICA, we use (2.2) with � = 1, as another choice for the distance measure. (By

substituting (2.2) into (2.7), the e�ect of � can be combined with the fuzzy index
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m, i.e., m0 = 1 + (m � 1)=�, hence an independent selection of � is unnecessary.)

The correlation-based measure does not distinguish between identically shaped

waveforms of di�erent amplitudes.

We assessed the relative e�ectiveness of �nding expected clusters for the two dis-

tance measures on a large number of fMRI datasets. We tested the two measures,

with two normalization options, Subtract Median and Rank Order, (see the Ap-

pendix for their de�nition), and various combinations of the three Initial Partition

methods. The Appendix also contains details of the fuzzy clustering algorithm we

have developed, improved, and implemented in EvIdentr.

The spectral peak noise test is applied to all the centroids at every iteration of

the FCA. The ones that fall below the noise level are removed from further analysis

and the corresponding cluster member TCs are assigned to the \Rejects" cluster.

This is done to eliminate ill-formed clusters since, for a well-formed cluster, the

expectation is that the SP value of the centroid will be much higher than that of

the average member TC. The rejected TCs are retested at Stage III against all

centroids that remained above the noise level.

Stage III: Time-Course Reassignment, Signi�cance Testing, and Cluster

Membership Validation

EROICA's 3rd stage involves measuring the presence of each centroid (activation

pro�le) in all of the TCs in the region of interest, and assessing the statistical

signi�cance of that measure. Each TC is provisionally assigned to a cluster with

whose centroid it has the largest correlation coeÆcient. In e�ect, each centroid

is treated as a possible reference function (or a statistical probe), and each TC

y(n); n = 1; :::; T is modeled as a linear combination of a single reference function

plus residual error:

y(n) = �jxj(n) + rj(n) = �j
�y
�xj

xj(n) + rj(n); �j = maxf�l : l = 1; 2; :::;Kg (2.3)

where j is the index of the centroid with which y(n) has the largest correlation

coeÆcient �j ; �j is the model parameter (a measure of experimental e�ect), K is

the �nal number of centroids produced by clustering, and rj(n) is a residual error

sequence. TCs that were placed in the \trend" cluster at the initial partition stage,

must be e�ectively detrended prior to computing �j . This can be accomplished

without explicit detrending by using: �j = (�(xj ; y)� �(t; u)�(t; xj))=(1� �2(t; y)),

where t; xj ; y refer to the trend, reference and time-course vectors, respectively. (In

this Section, we deliberately changed notation, in order to express the results in a

form more familiar to practitioners of fMRI. The xi and vj of (2.1) are, in (2.3), yi
and xj , respectively.)

Modeling each TC with only one reference function has the e�ect of partitioning

the entire dataset into K groups. Therefore, on average, the number of TCs that

will be tested against a particular reference function xj is N=K, and therefore the

expected number of false-positives in the �nal activation maps is pN=K, where p is

the signi�cance level. This amounts to a signi�cant reduction, since K is typically
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10 � 20. The �rst part of the signi�cance test is to test the null hypothesis that

�j = 0. For the L TCs used in clustering, the correlation coeÆcient is recomputed

by including a correction factor c

�̂j =
�j � c

p
(1� 2c�j + c2

�=
�j � c

1� c�j
; c �

�y(�ik)
m

�xj
PLj

i=1(�ik)
m

where Lj is the number of TCs closest to centroid j. This removes the circularity

in modeling a TC with a model that is partly de�ned by the TC itself, and then

attempting to assess the signi�cance of �j . The correction factor c removes the

e�ect of yi on xj (see (2.8)); in situations where Lj � 1; c is small and can be

ignored, but when Lj is small, c can be signi�cant. For the typically 95% of TCs

that were not involved in creating xj , this inferential circularity does not apply and

no correction factor is needed.

As was the case when testing for signi�cant trends, �j in (2.3) is tested against

a threshold �0, whose correct value is diÆcult to obtain in practice because an

accurate estimate of the number of e�ective degrees of freedom is lacking. For

example, if we let G = xj and K = I (the unit matrix) in the general linear

model in (Friston, 1996), the test statistic becomes tj = �j
q
(T � 1)=(1� �2j ),

which is Student-t distributed with T � 1 e�ective degrees of freedom. For large

T , the corresponding correlation threshold �0 is simply too small to be useful. To

overcome this problem, we propose that �0 be obtained as follows: The reference

function (centroid) in (2.3) can be expressed as

xj(n) =

mX
i=1

Aki cos(2�kin=N +�vk(k)) + rj(n)

where the Aki coeÆcients correspond to the m largest power spectrum coeÆcients

such that

SPj(k1) � SPj(k2) � ::: � SPj(km) � SP0(1) = �ln(p) (2.4)

where, as was the case when detecting signi�cant trends, SP0(1) is the lowest

spectral peak threshold for the chosen level of signi�cance p. In e�ect, the reference

function speci�es the number, locations and phases of the spectral peak coeÆcients

at which a TC is to be tested. We take advantage of the relationship between SP (k)

and the correlation coeÆcient (see (Jarmasz and Somorjai, 2002) for a derivation)

and set �0;j =
p
SP0(m)=M; SP0(m) = �ln(1� (1� p)

1

m ) : the hypothesis that

�0 = 0 is rejected if �j � �0;j .

To overcome the non-speci�c nature of the correlation coeÆcient and make the

signi�cance test both more sensitive and more speci�c, all TCs with �j � �0;j are

also tested in the spectral domain. The test involves all m signi�cant frequency

locations in the order speci�ed by (2.4), as established by the reference function.

The null hypothesis is rejected when at least one SP (ki) � �ln[1� (1� p)1=i]; i =

1; 2; :::;m. However, we allow the threshold to increase, instead of keeping it at

its lowest possible value of SP0(1) = �ln(p), because the search domain for the

spectral peak is increasing: if a TC fails the �rst i tests, the search domain is
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expanded by an additional frequency location and the test becomes SP (ki+1) �

�ln[1�(1�p)1=(i+1)], until i = m. The tests in the two domains are not independent,

and overlap to some degree, but overall sensitivity and speci�city are both enhanced

by combining the two tests. For the model in (2.3), the spectral peak statistic is

de�ned as (Jarmasz and Somorjai, 2002)

SP (ki) �
jY (ki)j

2

N�2r
=

SPIP (ki)

(1� �2j )
i = 1; :::m:

where SPIP (ki) is the spectral peak value from the Initial Partition stage and Y (ki)

is the DFT coeÆcient. The inclusion of a reference function in the model reduces

the noise variance to �2r = �2y(1 � �2j ). Consequently, the SNR as a function of

frequency is given by jY (k)j2=jR(k)j2 = sin�2(�y(k) � �x(k)), i.e., the residual

power at k is zero if y(n) and xj(n) are in phase at k. The complete signi�cance

test with respect to a reference function xj(n) is summarized by:

�j �

s
�ln(1� (1� p)

1

m )

M
and at least one SP (ki) � �ln(1� (1� p)

1

i );

i = 1; 2; :::;m:

The two-domain signi�cance test, together with clustering, eliminates most of the

expected false-positive time-series from the activation maps.

EROICA's third stage Signi�cance Test is statistically superior to previous

approaches, because, for a given signi�cance level, it uses a better estimate of

the true number of statistically signi�cant degrees of freedom in the activation-

pro�le. In addition, the test extracts a statistic with a well-de�ned probability

distribution, which yields an accurate threshold. This third stage not only updates

the clusters originally identi�ed at Stage II (FCA), by allocating some of the initially

excluded TCs to them, it also \puri�es" and \validates" these clusters by removing

TCs that fail speci�c statistical criteria. Consequently, the number of \interesting"

TCs initially found at Stage II will likely change (increase or decrease) at the

completion of the full three-stage analysis. To assess how coherent a cluster is, we

have suggested (Baumgartner et al., 1999) computing W (0 � W � 1), Kendall's

measure of concordance (Kendall and Gibbons, 1990). W tests, in a pairwise fashion,

the inherent similarity amongst the TCs comprising the cluster, without comparison

with some reference, such as the cluster centroid or an externally de�ned reference

function. (W � 0 for a group of noise TCs; W = 1 if all TCs are identical in their

rank order. W is essentially a scaled average of all pairwise Spearman correlation

coeÆcients of the TCs comprising the cluster.)
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2.2.1 The Datasets

2.2.1.1 \Phantom" Datasets

We have analyzed four phantom datasets. These were created from a real null

fMRI experiment (i.e., the subject in the magnet was at rest, not presented

with any task). The single-slice single-shot EPI dataset, acquired on a GE Signa

scanner (FA=TE = 90o=50, matrix size 128 � 128, 120 scans, TR = 3500 ms),

was thresholded to 3975 brain pixels. A 46-pixel contiguous region was excised,

and the excised pixel TCs were replaced with a two-peak \activation," each peak

having been constructed from a two-parameter gamma function simulating the

hemodynamic response (Lange, 1996). Gaussian noise was added to each of these

activated TCs, such that the contrast-to-noise (CNR) values were 2, 3, 4 and 5,

i.e., realistic values for typical fMRI experiments (CNR = �S=�noise, where �S is

the signal enhancement and �noise is the noise standard deviation (Lange, 1996)).

For the default normalization option (SM), the analyses were carried out with

both Euclidean (E) and correlation-based (C) distance measures. We tested all

three Initial Partition options in di�erent combinations; For the Trend Exclusion

(TE), Auto-Correlation (AC), and/or Spectral Peak (SP) we set p = 0:05. For the

allocation threshold, p = 0:01. We set the Merging Index to 2 (see the Appendix).

2.2.1.2 Studies of Execution Times

Sixteen fMRI datasets were analyzed to assess the e�ect of Initial Partition on

the quality of the clustering results, and on computational speed. To evaluate the

robustness of the results, we used six normalization options in EvIdentr (see the

Appendix), and the two distance measures (Euclidean and correlation-based). Thus,

we completed 12 analyses for each dataset, 192 analyses in total. For all these

analyses the trend exclusion (p = 0:01), autocorrelation (p = 0:01) and merging

(Index = 4) options were enabled. The datasets included both simple and more

complex motoric, visual, and cognitive/motoric paradigms. One of the datasets

derives from a mental rotation task (Richter et al., 2000), presented to the same

subject at sixteen separate occasions; we concatenated these 16 T-scan experiments

into a composite 16T-scan dataset. Some datasets have clinical relevance, including

one for a patient with Tourettes syndrome (Gates et al., 2001), and another with

self-monitored onset and cessation of seizures.

2.2.1.3 Analysis of Real Data

We report full analyses for one of the more complex datasets. (Additional results,

for both a smaller and a larger dataset are given in (Somorjai et al., 2001).) This is

an 8-slice, 50-scan set (N = 14; 957; 128�128), involving a �nger-tapping paradigm,

executed �rst with the left, then with the right hand. This dataset demonstrates the

importance of the three stages, and the robustness of the results, once the Initial
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Partition options were enabled. We show results only for the default normalization

option, Subtract Median, and the correlation-based (C) distance measure. We

display and discuss the results for several combinations of Initial Partition options.

We selected p = 0:01 both for the TE + AC and TE + SP options. The p-value

for TC reassignments (Signi�cance Test, Stage III) was also set to 0.01. Although

computations were carried out both with merging \o�," and with merging \on,"

for brevity we report results only for the latter, with the Merging Index at its

default value, 4.0. All analyses were carried out with our software implementation

of the three-stage process EROICA. The software is called EvIdentr (EVent

IDENTi�cation) (www.ibd.nrc.ca/informatics), and it also contains basic image

processing functions. The analyses of the execution times were carried out with

EvIdent 5.0, compiled and running on an SGI Origin 2000, 180 MHz R10000 CPU

(this has approximately the same execution speed as a 350 MHz Pentium II PC).

Unless otherwise indicated, we kept the following parameters at their default values:

fuzzy indexm = 1.1, initial number of clusters = 35, maximum number of iterations

= 25, and centroid initialization = Maximum Dispersion (this uses the deterministic

and reproducible maximin distance algorithm (Tou and Gonzales, 1974)). In no case

did FCA surpass the maximum number of iteration allowed.

2.3 Results

2.3.1 Phantom Studies

The phantom studies were designed to answer the question: How successful is FCA

in identifying activation in the presence of di�erent levels of noise contamination,

and what are the advantages if any, of the various Initial Partition options?

We show the results in Table 2.1 for CNR = 2 and 3. Inspection of the Table

suggests that for CNR = 2.0, the number of FPs (false positives) and/or FNs (false

negatives) do not depend strongly on which or how many of the Initial Partition

options were enabled, as long as at least one of them was. For CNR = 3.0, the FPs

are 0 for seven of the eight combinations. In one case FP = 1. In all cases FN = 0.

For CNR = 2.0, the median of Kendall's concordance values over the eight

combinations isWmedian = 0:287, whereas the median of the corresponding average

Pearson correlation coeÆcients between the cluster centroids and the TCs in the

clusters is �median
ave

= 0:556. For CNR = 3.0, Wmedian = 0:410, �median
ave

= 0:704.

For both CNR = 4.0 and 5.0 (not shown in the Table 2.1), FP = FN = 0

in all cases. Wmedian = 0:478, �median
ave

= 0:792 (CNR = 4:0); Wmedian =

0:519; �median
ave

= 0:849 (CNR = 5:0). The results are similar when using the

Rank Order normalization option.
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Table 2.1 \Phantom" Datasets

Results for \phantom" datasets obtained by choosing di�erent combinations of Initial
Partition options, either for Euclidean (E) or for correlation-based (C) distance measures.
The correct number of arti�cial \activated" TCs is 46. FP = false positive, FN =
false negative. Initial Partition options: TE = trend exclusion, SP = spectral peak,
AC = autocorrelation. Y: option enabled; N: option disabled. W: Kendalls measure of
concordance (0 �W � 1). �ave: average value of Pearson's correlation coeÆcient between
the cluster centroid and the individual TCs of the cluster. The speedup ratios are relative
to the execution times when all three Initial partition options are disabled.

2.3.2 Studies of Execution Times

To assess how di�erent combinations of the available options in
uence execution

times, we have analyzed sixteen fMRI datasets of widely di�erent types and sizes,

for all combinations of the six normalization and three Initial Partition options,

and the two similarity measures, using the aforementioned default values and rules.

The number N of brain voxels analyzed ranged from 3500 to 68000, the number T

of scans from 35 to 1408, a wide range of realistic N and T combinations.

The FC execution times texe spanned 0.4 to 29 seconds, and did not depend

strongly on which of the six normalization options were selected (the texes were

within 10{15%). Based on these 16 datasets, we �tted the texes (averaged over the

various combinations of options) to N� T �, where N is the total number of brain

voxel TCs and T is the number of scans.

The 3-parameter expression texe = AN�T �, with A = 9:7118 � 10�6; � =

0:8912; � = 0:9131 gives a good �t, with the coeÆcient of determination R2 =

0:9689. (An easy-to-remember upper bound approximation is texe < BNT , i.e.,

execution times are approximately linear in both the number of brain TCs and the

number of time instances. B = 10�5 for the 180 MHz Intel CPU.) The fraction of
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the N original TCs chosen (i.e., passing either trend exclusion and autocorrelation

tests (TE + AC) or trend exclusion and spectral peak tests (TE + SP)) is obviously

strongly data-dependent. For the sixteen fMRI datasets, the median percentage of

preselected TCs was 4.2%. The median speedup ratios relative to no Initial Partition

were, for (E, AC) = 4.8, (E, SP) = 4.7, (C, AC) = 5.9 and (C, SP) = 4.3, where E

indicates using the Euclidean metric, C the correlation metric. The major di�erences

are between the TE \o�" and TE \on" groups. For the former, the average speedup

is � 2-fold, for the latter ��ve-fold.

2.3.3 Analysis of Real Data

The task paradigm consisted of one activation epoch of �nger tapping, �rst by

the left, and then by the right hand. Ideally, one would expect corresponding

Table 2.2 Real Dataset

Results of the analyses of an 8-slice, 50-volume dataset (courtesy, Prof. E. Moser).
Paradigm: one activation epoch each of �nger tapping, left hand �rst, then right hand.
The columns correspond to four Initial Partition (IP) options: IP disabled (None), TE
enabled, TE + SP enabled, TE + AC enabled. The �rst row contains the number of TCs
in the left-hand �nger-tapping cluster, and their average Pearson's correlation coeÆcient
(�ave) with the centroid. The 2nd row lists the same quantities, for the right-hand �nger-
tapping cluster. The 3rd shows the �nal number of TCs assigned to the \trend" cluster,
the 4th the ones assigned to the \rejects" cluster. The 5th row shows the number of TCs
to which FC was applied, with the percentage of the total number in parentheses. The
last row lists the execution times relative to the \No IP" option.
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Figure 2.2 Homogeneity maps, centroids and activation maps for an 8-slice (only slices
3{8 are shown), 50-scan fMRI dataset, using FCA with SM normalization, C- metric,
Merging Index = 4.0: cluster for the right hand �nger-tapping activation.

responses in the appropriate right and left motor areas. This is a particularly

diÆcult dataset to analyze because many of the low frequency confounds due to

aliasing are indistinguishable from the actual activation TCs. In Table 2.2, we

list the outcomes of using several combinations of the Initial Partition options,

including clustering on the entire 14,957-TC set (i.e., no Initial Partition, NNN).

Without any Initial Partition, no activation could be cleanly recovered. We have

veri�ed that this was not because of possibly excessive cluster merging (with the

default merging index MI = 4.0, the merging algorithm merged the original 35

initial clusters into 17). Even without merging, and starting with 50 initial clusters,

the responses were swamped by \noise" and \trend" TCs.

In �g. 2.2, we display the two expected activation maps for brain slices 3{8. The

cluster centroids correctly re
ect the �nger-tapping paradigm executed by the right

hand (�g. 2.2) and by the left hand (�g. 2.3). The homogeneity map (Baumgartner

et al., 1999) displayed beneath the centroids depict the TCs on the given slices

(vertical axis) vs. Image Number (time instance, horizontal axis). These TCs are

ordered: the one on top correlates the most strongly with the centroid, the one at
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Figure 2.3 Homogeneity maps, centroids and activation maps for an 8-slice (only slices
3{8 are shown), 50-scan fMRI dataset, using FCA with SM normalization, C- metric,
Merging Index = 4.0: cluster for the left hand activation.

the bottom least strongly. The homogeneity map provides a useful visual display

of the internal consistency of the TCs comprising the cluster (also summarized,

as a single number, by �ave or Kendall's concordance W). As shown in Table 2.2,

selecting only trend exclusion (with p(TE) = 0.01) wasn`t suÆcient to identify the

right-hand �nger tapping activation pro�le; enabling TE alone did pick out the left-

hand activation region (see Table 2.2 for more details). We �nd the two clusters

of interest when both TE and SP (p = 0.01) or both TE and AC (p = 0.01) are

selected. Closer inspection of Table 2.2 reveals that selecting only TE reduced the

number of TCs to be considered at the Principal Partition stage to 60.4% (9036

TCs) of the original 14,957 TCs. The relative execution time texe dropped to 71%

of the full computation time. When both TE and AC are selected, only 8.9% (1337

TCs) are used by FCA, and texe is down to only 20%. Finally, when both TE and

SP are enabled, only 2.9% (433 TCs) are used by FCA, and texe drops further to

11% of the full analysis.
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2.4 Discussion

2.4.1 Phantom Studies

Results in Table 2.1 suggest that, at least for these phantom datasets, the major

advantage is execution speedup. For both the Subtract Median and Rank Order

(results not shown) normalization options, and for both E- and C-measures, the

arti�cially created activation was recovered, even when the \No Initial Partition"

option was chosen. The quality of the recovered clusters, as measured both by

W and by �ave, is comparable for \No Initial Partition" and for the other three

combinations of Initial Partition options. The main distinction is that for CNR =

2.0, the \No Initial Partition" option produced more false positives and negatives,

and in general, the results with the C-measure were somewhat less accurate than

with the E-metric. For CNR = 3.0, there are no FNs and only one of the eight

combinations produced a single FP. For CNR values larger than 3.0, recovery of

the \activated" TCs is error-free in all cases (not shown). Thus, an approximately

2-fold speedup was obtained with the TE option enabled; the speedups increased

to approximately 12-fold with TE and one of the two Initial Partition options (AC

or SP) enabled, all producing comparable or better cluster recovery than the \No

Initial Partition" option. As expected, with increasing CNR the centroids become

progressively less noise-corrupted, re
ecting the increased homogeneity (larger Ws)

of the activated cluster. Furthermore, as CNR increases, the TCs belonging to the

cluster correlate better (larger values of �ave) with their cluster centroid.

2.4.2 Studies of Execution Times

The execution time results indicate that there is no signi�cant statistical di�erence

between the FC analyses carried out with the two distance measures. The di�erences

are more pronounced among the six normalization options (not shown). Subtract

Median and Rank Order appear to be the most reliable normalization options

in terms of overall clustering success (i.e., clean recovery of the response to the

task paradigm). McKeown et al. (1998) report 90 minutes execution time on a

DEC Alpha 2100A workstation for the spatial ICA method, on an fMRI dataset

comprising 135{146 images and 8{10 slices. Estimating that their data comprises

�25,000 brain voxels, for a comparable-sized dataset (N = 26,293, 21 slices, 140

time instances), with Initial Partition enabled, the execution time with EvIdentr is

� 5�6 secs. The current 
urry of activity in the literature (McKeown, 2000; Carew

et al., 2001; Laconte et al., 2001; Lin et al., 2001; Rogers et al., 2001; Calhoun et al.,

2001) applying ICA to fMRI data all suggest that extensive preprocessing is needed

to obtain acceptable execution times. The standard approach is to �rst use PCA

to reduce the number of components to be extracted by ICA to a computationally

tolerable level (typically 50{80 PCs) (McKeown, 2000).
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The correlation-ordered homogeneity maps of �gures 2.2, 2.3 provide a quick

and ready visual check of the internal consistency of the TCs belonging to the

parent cluster. Because cluster centroids are (membership-weighted) averages of

the constituent TCs, they are naturally less noisy than the individual TCs and

hence reveal the temporal behavior more clearly. They provide an intrinsic, data-

determined model of the brain's response; they can be used as natural inputs for

subsequent inferential tests.

2.4.3 General Considerations

It should be emphasized that we analyzed the majority of the 16 datasets blindly,

without knowing anything about the task paradigm. (We invariably found the \cor-

rect" (i.e., expected) response that was communicated to us post facto by the orig-

inal investigators.) Thus, the conditions were challenging: in normal circumstances

the investigator who designs the experiment, would have some idea of what to

expect. However, we wanted to simulate the conditions of a clinical study or a

complicated cognitive/linguistic experiment, for which such knowledge may not be

available.

The importance of always enabling the Trend Exclusion (TE) Initial Partition

option, (and one or both of the Autocorrelation (AC) or Spectral Peak (SP) options)

is incontestable. Because of the Initial Partition, the actual clustering is, on average,

done only on � 4% of the voxels. This is part of the reason for the much enhanced

execution speed of EROICA. (Some of the other reasons are technical and are

detailed in the Appendix.) Furthermore, it is much more likely that \interesting"

clusters are obtained if most of the confounding e�ects of \trends" and \noise" are

initially excluded. The Signi�cance Test (Stage III) guarantees that small e�ects,

initially excluded, are not missed. Alternatively, the initially excluded TCs can be

re-analyzed. Whether we select (along with TE), AC, SP or both, depends on the

data. If the duration of the activation is short, then AC may not always work,

especially for low SNR. If the SNR is low and the paradigm is \busy," i.e., there

are many (quasi) periods, then SP tends to be more e�ective.

When prior knowledge is available about the expected response, performing

the t-test, or computing the correlation coeÆcients between the brain TCs and

a prede�ned reference function could and should be viewed as a type of initial

partition of the TCs. We would still apply the FCA method (or any equivalent EDA

approach) to let the data de�ne the precise shape of the response, and eliminate

many false positives, before any inferential method is used (McIntyre et al., 1998).

The three-stage strategy we have described is bene�cial for any EDA method,

whether it uses FCA (as does EROICA) or some other unsupervised pattern

recognition method. EROICA satis�es the basic requirements of a viable, eÆcient

EDA method for analyzing fMRI data. Based on more than �fty fMRI datasets,

acquired with both FLASH and EPI, on MR imaging systems with �eld strengths

ranging from 1.5T to 4.0T, EROICA has invariably detected the \true" response,

even under very noisy conditions. (Here \true" refers to the assessment of the
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original designers of the various fMRI experiments that were analyzed blindly by

the EROICA process.) Of course, some experimentation with parameters and p-

values may be needed, but this is precisely in the spirit of EDA. We have reported

(Tuor et al, 2000) a good example of the type of novelty that could be detected

by an EDA process. We used EvIdent/EROICA to analyze the outcome of fMRI

experiments on rats responding to noxious electrical and chemical stimuli. EROICA

identi�ed several clusters of TCs, whose centroids graphically depict an unexpected,

sequential progression of activations to pain, occurring �rst in either the right or the

left hemisphere, with a separation of seconds to minutes between peak activations.

The result of pre-treatment with morphine was also clearly identi�ed: activation

response to electrical stimulation was inhibited in most regions except for sensory-

motor cortex.

One might argue that the \potentially interesting" TC centroids (testable hy-

potheses) found ought not be tested against the very dataset from which they were

derived. The three-stage strategy practically eliminates this statistically undesir-

able circularity. In fact, the Stage I initial partition (preselection) eliminates the

majority of the TCs prior to FCA. The newly found hypotheses, generated at the

second stage from a small fraction of the total number of TCs, can be tested with

reasonable statistical con�dence against the remainder of the data (or, fully le-

gitimately, against data obtained from repeated experiments on the same subject

or on data produced by the same experiments but on di�erent subjects. As al-

ready discussed, we would still submit the TCs so identi�ed to Stages II and III, to

discover subtle inter-experiment or inter-subject di�erences.). We accomplish this

post-analysis testing with the conservative allocation and clean-up procedure of

Stage III. However, allocation may lower the overall intrinsic homogeneity of an en-

larged cluster. Because of this possibility, as a useful cluster validation strategy, we

propose to \purify" the clusters in some fashion, e.g. by the algorithms described

in (Baumgartner et al., 1999; Baumgartner et al., 2001), (Davison and Somorjai,

2001). (Alternatively, EROICA can be repeated with a more stringent p-value, i.e.

larger �min.)

It is important to emphasize that an EDA method, such as FCA or ICA, is

only useful in practice if a large number of di�erent analyses can be conducted in

computationally reasonable times, e.g., at most a few minutes per dataset for a

complete analysis (Requirement 3, speed). Examples of what can be accomplished

with a fast EDA method include the possibility of analyzing experiments over

several subjects for common responses (e.g. by stacking the K brain slices of each

of M subjects to create a KM slice \meta brain" (Somorjai, 2001), or concatenating

the TCs by combining L experiments of T scans each into a composite LT-scan

dataset (\meta experiment") (Richter et al., 2000), (Somorjai, 2001).

fMRI data are suÆciently varied and complex, so that it is unlikely, and unrea-

sonable to expect, that there are theoretical criteria by which, for any given dataset,

an optimal preprocessing option/distance measure could be selected a priori. What

we do propose is a data analysis strategy that is useful, or even essential, for com-

plicated cognitive/linguistic tasks or clinical applications. We do not believe that
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an automated \black box" approach with pre-set recipes is desirable or even fea-

sible for large, complex data. There is no best prescription, especially since what

is deemed best depends on the question one wants answered. This view of using

several di�erent analysis methods is gaining acceptance in the fMRI data analysis

literature (Lange et al., 1999). Despite these caveats, we can suggest certain guide-

lines for analyzing fMRI datasets. Some of these are generic, applicable to any EDA

method; others are speci�c to using FCA for the second stage.

Given the size and complexity of fMRI datasets, identi�cation and temporary

exclusion of trend and noise TCs is critical for �nding the relatively small number of

potentially interesting TCs at the �rst, initial partition stage. Once these interesting

TCs have been grouped by some means (e.g. by FCA), the initially excluded

TCs are to be assigned to the groups, and the ultimate groups' homogeneity

(internal coherence) checked and validated (stage three). If the actual group/cluster

identi�cation is to be performed via fuzzy clustering, it is important to start the

process with a large number of initial cluster \seeds." This ensures that the high-

dimensional T-space of the TCs is adequately sampled.

We have repeatedly emphasized that a viable EDA method must have the 
exibil-

ity, versatility, and robustness/reliability to allow a systematic and comprehensive,

yet acceptably fast exploration of the data. We have shown that EROICA, the

proposed three-stage process, with appropriate TC preselection, followed by FCA,

and completed by an appropriate signi�cance test (i.e. the possibility of reassigning

initially excluded TCs) and cluster validation, readily satis�es the conditions that

qualify it as a viable EDA method.

Of course, we are not suggesting that the EDA method used for analyzing

fMRI data must necessarily be based on FCA. In particular, spatial ICA seems

to be gaining some acceptance as a possible EDA method for fMRI. However, we

do not regard ICA as a direct competitor of FCA (just as FCA is not meant

to supplant hypothesis-driven inferential methods). At least for now, ICA still

lacks the 
exibility, versatility and speed that a competitive EDA must have.

(Frequently, even after PCA-based feature reduction, some hybrid version (e.g.,

HYBICA (McKeown, 2000)), which combines the data-driven ICA with a priori

hypothesis-guided methods, needs to be used to complete the analysis.) We view

ICA as complementary to FCA. Although both unsupervised, they address di�erent

aspects of the general data-analytic problem. ICA could be used in subsequent

analyses, if it appears that the centroids are (linear) mixtures of well-de�ned

temporal shapes. That this view is reasonable is supported by (Karhunen and

Malaroiu, 1999). These authors, although strong proponents of ICA, realized its

limitations (linearity, description of data by the same global features), and proposed

to �rst \preprocess" the data by k-means clustering, and then analyze / demix each

of the K clusters (or their centroids) by local ICA.

The most important conceptual feature of an EDA method is that it is data-

driven, and thus bias- and model-free. Its primary role is to help generate new

hypotheses (i.e., models) directly from the data, to be subsequently tested and

veri�ed by some model-driven inferential method. Ideally, an EDA method should
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precede the more conventional statistical inferential methods of analysis (Somorjai

and Jarmasz, 1999), i.e., complement, not supplant the latter. This is what EROICA

was designed to do. In practice, exploration-con�rmation-inference is likely to be

carried out iteratively. In a landmark paper (Tukey, 1962) argued that classical

statistics, with its propensity for analyzing small, homogeneous, stationary, i.i.d.

data, using known distributional models and assumptions, will be inadequate to

handle the problems encountered in the analysis of large, complex data. The

statistical community (Fayyad and Smith, 1999; Huber, 1999) increasingly endorses

and veri�es this prophetic view. As Huber succinctly stated in his classic review on

Projection Pursuit (Huber, 1985): \There are no panaceas in data analysis." The

entire concept of EDA is an acknowledgement of this fact.

2.5 Conclusion

We have argued that the analysis of the typically large, complex, heterogeneous

fMRI data ought to start with an EDA method that allows the data to reveal its

inherent structure without prior models or assumptions. EROICA, the three-stage

strategy of preprocessing / analysis / inferential validation we propose for fMRI,

at its �rst stage identi�es, by various direct and indirect noise tests (preselection

methods), \potentially interesting" temporal structure amongst the TCs, and at

the second stage, focuses analysis on these via an appropriate unsupervised pat-

tern recognition method. At the third stage, we attempt to allocate the initially

excluded \trend" and \noise" TCs to the clusters they most resemble, and vali-

date and \clean up" the second-stage clusters by possibly reassigning its original

members. The �rst stage renders large datasets computationally manageable, a

critical requirement. At the second stage, our choice of fuzzy clustering over ICA

or PCA/FA is partly dictated by speed of execution, but more importantly, by the

heterogeneous nature of large fMRI data: FCA is local, (i.e., the cluster centroids do

not consist of linear combinations of all voxel TCs) hence does not get confounded

by global heterogeneity. The third stage is aimed to assure that the hypotheses (i.e.

the ultimate cluster centroids) generated by the EROICA process are minimally

contaminated by the in
uence of false positive TCs. Overall, the three stages of

EROICA ful�ll the requirements for a practically feasible and useful exploratory

analysis of fMRI data.
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2.6 Appendix

2.6.1 Preprocessing Details

Aside from not preprocessing the raw TCs prior to FCA (leading to segmentation),

the normalization options in EvIdentr are Subtract Mean, Subtract Median,

Divide by Median, Robust (de�ned as \subtract median and divide by MAD,"

the Median Absolute Deviation), Non-Robust (de�ned as \subtract mean and

divide by standard deviation"), and Rank Order. Some of these eliminate from

the TCs not only the level dependence but also the in
uence of di�erent variances

(or their robust equivalent, MAD). In particular, by Rank Orderingrank ordering

the T intensity values of each TC (i.e., replacing them by their rank from 1 to T),

and scaling them to the (1=T; 1) range by dividing each by T, both the mean

(= (T � 1)=2T � 0:5 for large T ) and the variance (= (T + 1)=12T � 1=12

for large T ) will only depend (weakly) on T , and be the same for all TCs. (In

fact, by Rank Ordering, all moments, not only the �rst two above, become the

same for all TCs; they all depend only on T .) Two other important characteristics

of Rank Ordering are that 1) it monotonically and nonlinearly transforms (any

nondecreasing function g(Ik) of) the original intensity values Ik, i.e., R(g(Ik)) =

R(Ik), and if g(Ik) > g(Im) then R(Ik) > R(Im), where R() is the rank; 2) whatever

the original distribution of the T intensities, the rank-ordered ones are uniformly

distributed. The �rst characteristic eliminates any undue in
uence from outliers

(excessively large intensities).

If the \subtract" option is chosen prior to FCA, then FCA creates clusters that

di�er in their TCs' absolute activation amplitude above a common (zero) resting

state. This is the desired outcome if we wish to distinguish between apparent activa-

tions in large vessels and small activations in the cortex (Baumgartner et al., 1997).

If the \divide" option is selected, then FCA produces clusters comprised of TCs

with a common baseline (set to unity), but with di�erent relative (%) changes in

the activations above this baseline. This is how results are most frequently reported

in the fMRI literature. Note that when Subtract Mean is used for normalization,

d2ij = tan2(�ij=2), with �ij the angle between the vectors xi and vj .

2.6.2 Temporal Fuzzy Clustering Methodology

Hard k-means temporal clustering of brain fMRI data was proposed in (Ding et al.,

1994) and further investigated, together with hierarchical clustering, in (Goutte

et al., 1999). A recent hard k-means-based version that includes cluster merging is

reported in (Baune et al., 1999). A hybrid of hierarchical and k-means clustering was
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suggested recently (Filzmoser et al., 1999) and applied to fMRI. Independently, in

1995 we introduced to fMRI analysis the fuzzy c-means variant (Scarth et al., 1995;

Scarth et al., 1996) which, based on our previous experience (Gordon and Somorjai,

1992), seems to have a de�nite advantage over the hard version. In particular,

unlike its hard counterpart, the fuzzy clustering algorithm is much less prone to

converge prematurely to an unsatisfactory local minimum (or critical point) of the

objective function that is being minimized to achieve cluster separation. This has

been con�rmed in another application (Geva and Kerem, 1998). Given N voxel

time-courses (TCs) of T time points (scans) each, partitioned among an a priori

�xed number of K clusters, the original Bezdek algorithm (Bezdek, 1981) minimizes

the objective function Jm(U; V )

Jm(U; V ) =

NX

n=1

KX

k=1

(ukn)
md2kn (2.5)

U = fukng is the K � N matrix of fuzzy membership values, m � 1 is the

fuzzy index. The distance dkn is (typically but not necessarily) the Euclidean

distance from the nth TC xn = fxn1; xn2; xn3; :::; xnT g to the kth cluster centroid

vk = fvk1; vk2; vk3; :::; vnT g

d2kn =

TX

t=1

(xnt � vkt)
2; 1 � n � N; 1 � k � K: (2.6)

The minimization is via a two-stage iterative process (Picard iteration). After

initializing the K cluster centroids, �rst one calculates the distances d2kn, followed

by cluster membership values fukng, 1 � n � N; 1 � k � K, from

ukn = (

KX

j=1

(dkn=djn)
2=(m�1))�1: (2.7)

The second stage consists of updating the cluster centroids vk, using:

vk = (

NX

n=1

(ukn)
m
xn)(

NX

n=1

(ukn)
m)�1; 1 � k � K: (2.8)

Equations (2.6), (2.7) and (2.8) are iterated alternately until Jm of (2.5) converges.

The FC variant that we have developed and implemented in our EDA software

EvIdentr is a signi�cant reformulation of the classical Bezdek algorithm, expressly

optimized for computational eÆciency. The improvements are at both the coding

and algorithmic levels. For example, we have determined empirically that, in (2.8),

TCs need contribute only to the two closest centroids. This does not adversely

a�ect accuracy, as long as TC membership values are suÆciently high. Also,

distances to centroids that have changed little from the previous iteration need

not be recomputed. These measures have led to a 2{3-fold speedup relative to

the classical algorithm. We have also found that �nding good solutions is generally

more likely if the cluster centroids are initialized, instead of the membership matrix.

Furthermore, centroid initialization by a reformulated version of the deterministic
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Maximum Dispersion minimax initialization algorithm (Tou and Gonzales, 1974)

generally works better than random initialization. The success of clustering is

further enhanced by using as initial seeds some of the SP-identi�ed centroids.

After some earlier experimentation with di�erent distance measures, including

the Mahalonobis distance, we chose either the Euclidean or the correlation-based

distance measure when computing the distance between a voxel time-course and

any of the K cluster centroids. This resulted in signi�cant execution speedup

over the Mahalonobis distance, without any noticeable disadvantage (our distance

measures do not consider or require computing the covariance matrix). (In fact,

the Mahalonobis distance tends to produce \fuzzier," less well-de�ned clusters.)

We have introduced further conceptual advances and algorithmic improvements to

the FCA. In particular, we have developed a novel cluster- merging algorithm (an

earlier version was announced in (Jarmasz and Somorjai, 1998)).

Cluster merging (Jarmasz and Somorjai, 1998) is an additional option in

EvIdentr that helps speed up the execution of FCA. The algorithm considers

only those pairs of clusters for merging that are mutually closest to each other.

It uses both centroid proximity (similarity) and membership-based criteria. The

degree of merging is controlled by a user-selectable parameter. In EvIdent, this

parameter ranges between 0 (no merging) and 10 (maximal merging). Combined

with the Initial Partition methods discussed in the main body of the MS, a 50{

90-fold speedup over the older, �xed-K versions (see also Moser et al., 1999) was

achievable.
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We use a Bayesian framework to compute probabilities of competing hypotheses

about functional activation based on single trial fMRI measurements. Within the

framework we obtain a complete probabilistic picture of competing hypotheses,

hence control of both type I and type II errors.

3.1 Introduction

In single trial fMRI experiments we may want to analyze the local activation

with respect to several competing hypotheses. As a speci�c example we have

designed an experiment which consists of a cued, delayed motor action with a delay

between cue and go-signal that varies from trial to trial. In each pixel we then

face three competing hypotheses: no activation, motor preparation (the activation

last for the delay between cue and action), and motor execution (the activation

lasts only for the time interval of the actual execution). In �gure 3.1 we show the

two activation reference functions corresponding to motor preparation and motor

execution hypotheses. The reference functions are binary time series, the actual

fMRI signal will be modeled below as the reference function convolved with a linear

�lter (the hemodynamic response) degraded by additive white noise.
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Figure 3.1 The two reference functions for a sequence of single trial cued, delayed

motor activation experiments. The two reference functions have been o�set vertically for

illustration, the upper function is \on" during the preparation phases, while the lower

reference function is on during the execution phases.

We will present a Bayesian framework below that allows calculation of relative

probabilities of such competing hypotheses. The Bayesian framework is of interest

in this context because it gives a more complete picture of the interplay between

null hypotheses and alternatives and the framework has embedded a quantitative

statement of the a priori knowledge that enters the formulation of hypotheses.

Frank et al. (1998) recently reviewed a Bayesian framework for signal detection

in fMRI data. Here we expand on the application of the Bayesian framework

based on so-called conjugate priors and we include an explicit treatment of linear

hemodynamic response e�ects.

3.2 Bayes's Theory

We will be concerned with models of the local activation in a region or a single

pixel. Let y be a fMRI signal measured at times t = 1; :::; T , and represented as a

T �1 vector with components y(t). The experiment is characterized in terms of one

or more activation reference functions, representing alternative hypotheses about

the local activation. Consider linear fMRI signal models of the form,

by(t) =
lX

�=0

x(t� �)b(�) (3.1)

where x(t) is the average activation in the region or pixel under consideration at

time t. b is a set of (l + 1) linear coeÆcients describing the local hemodynamic

response to the activation. Introducing the T � (l + 1) matrix with components
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3.2 Bayes's Theory 51

X(t; �) � x(t� �) the linear model can be written in matrix form

by = Xb: (3.2)

In an fMRI experiment we expect that the actual measurement deviates from the

\ideal" model output by various noise contributions that we will represent by a

random white noise process so that y(t) = by(t) + n(t) where n(t) is assumed zero

mean normal with unknown variance (�2). Such models have been investigated

e.g. by Lange and Zeger (1997) based on parameterized hemodynamic response

functions b(�) of the gamma density form. In (et al., 1997) more general �nite

impulse response models (FIR models) were invoked. FIR models �t the coeÆcients

b(�) in the hemodynamic response function individually. A fundamental problem

with equation (3.2) is that the neither the model \order" l nor the noise variance

�2 are known.
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Figure 3.2 Visualization of the priors on the noise variance and the coeÆcients of the

hemodynamic impulse response. The upper panel shows the inverse gamma distribution

of the noise variance parameter, while the lower panel show the joint distribution of two

hemodynamic impulse response parameters. The parameters of both distributions are

matched to the actual paradigm and expected signal-to-noise levels.

A main objective of neuroimaging is to answer questions about the form of

activation in regions or locations in the brain. When testing competing hypotheses

about the activation of a certain region (or a single pixel) we consider several

possible activation patterns Xm indexed by m. We will show below how we can

compute the probability for a given model order, and the probability of a given

type of activation (m) given the measurement y is then

P (mjy) =

lmaxX
l=1

P (m; ljy) =

lmaxX
l=1

P (yjm; l)P (m; l)=P (y); (3.3)
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where we have used Bayes' relation and where P (m; l) is a prior probability of the

combination of reference function and model dimension. In the following we will

let the prior probabilities be a given by a uniform distribution over combinations

of (m; l), in the set of reference functions and the corresponding model orders

(l = 1; :::; lmax), hence, we express no a priori preference for any of the alternatives.

For a �xed set of parameters b; �2 we can use equation (3.2) to establish the

likelihood function, i.e., the probability density of the observation s given the

parameters,

P (yj�2;b;X; l) =

�
1

2��2

�T=2

exp

�
�

1

2�2
(y �Xb)2

�
: (3.4)

Since, however, these parameters too are unknown we need to eliminate them using

a prior distribution P (b; �2jm; l) which quanti�es the general knowledge we have

on the domain and which potentially depends on the given activation function and

model order. Following Ohagan (1994) one can write

P (yjm; l) =

Z
d�2

Z
dbP (b; �2jm; l)P (yj�2;b;Xm; l)

=

Z
d�2

Z
dbP (b; �2jm; l)

�
1

2��2

�T=2

exp

�
�
(y �Xmb)

2

2�2

�
: (3.5)

We will use the principle of congugate priors to establish a convenient prior

P (b; �2jm; l) (Ohagan, 1994). The conjugate prior for the above linear model with

additive gaussian noise is the so-called normal-inverse-gamma or NIG(a; d;m;V),

distribution,

P (b; �2jm; l) =
(a=2)d=2(�2)�(d+l+2)=2

(2�)l=2jVj1=2�(d=2)
exp

�
�(b�m)

0

(2�2V)�1(b�m)�
a

2�2

�
:

(3.6)

The new (hyper-) parameters d; a;m;V have the following meaning. The

marginal prior distribution of b,

P (bjm; l) =

Z
d�2P ((b; �2jm; l)

=
(a=2)�l=2�((d+ l)=2)

(2�)l=2jVj1=2�(d=2)

�
1 + (b�m)

0

(aV)�1(b�m)
��(d+l+2)=2

(3.7)

is a multivariate t-distribution with mean m and the covariance determined by

(a=(d� 2))V. This distribution is unimodally centered at m, with heavier \tails"

than a normal distribution, see �gure 3.2. The marginal prior distribution of �2 is

given by

P (�2jm; l) =
(a=2)�d=2(�2)�(d+2)=2

�(d=2)
exp

�
�a=(2�2)

�
: (3.8)

Hence an inverse gamma distribution (meaning: 1=�2 is gamma distributed) of

mean a=(d� 2); d > 2.
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The next step of the inference is then to set the parameters of the prior. In

general we prefer to give the parameters values so that they have minimal in
uence

on results. In particular, we should check that for long time series their e�ects

should vanish completely. The prior mean of the noise variance can, e.g., be set

to the observed signal variance, a=(d � 2) = �2y � y0y=T , meaning that we do

not expect much larger noise variance than the total observed variance. Further

we will let d = 3 leading to a prior as shown in �gure 3.2. We express no prior

knowledge about the mean hemodynamic response, hence, m = 0. The form of the

prior covariance structure will be V = v1, where 1 is a unit matrix. The parameter

v will be determined essentially by data. The prior variance of the �tted signal by,
is given by

hby0byiprior=T = Tr[XX0hbb0iprior=T ] = (va=(d� 2))Tr[XX0]=T (3.9)

We can let this be some fraction Q of the variance of the measured signal, i.e.,

let v = Q=Tr[XX0]=T � Q=((l + 1)�2x;m), where �2x;m is the variance of the m'th

reference function. The role of the parameter Q will be investigated below; we �nd

that there is a rather wide window of values of this parameter in which the Bayes

decisions are stable.

Comparing equations (3.2) and (3.6) we see that by conjugacy they are of the

same exponential form, so when we multiply them together the function to be

integrated in equation (3.5) is again an (un-normalized) NIG distribution, hence

the integral is simply the NIG normalization integral (Ohagan, 1994), we �nd

P (yjm; l) =

�
jVPja

d

jVj(aP )dP �T

�1=2
�(dP =2)

�(d=2)
; (3.10)

with the following de�nitions

V�1
P = V�1 +X0X; (3.11)

mP = VP (V
�1m+X0y); (3.12)

aP = a+m0V�1m+ y0y �m0

PV
�1
P mP ; (3.13)

dP = d+ T: (3.14)

Using our speci�cations of the prior parameters we obtain the simpli�cation

V�1
P =

(l + 1)�2x;m
Q

1+X0X; (3.15)

aP = (T + 1)�2y � y
0XVPX

0y; (3.16)

dP = 3 + T: (3.17)

We can see explicitly that the in
uence of the prior is weak for T � 1.

Testing the above linear system hypotheses, a natural null-hypothesis is formed

by x0 � 0, corresponding to a no �tted signal model. The corresponding probability

density is given by the X = 0 limit of the above expressions.
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Assuming that all models are equally probable a priori, we get the appropriately

normalized posterior probabilities,

P (mjy) =

P
l P (yjm; l)

P (yj0) +
P

m;l P (yjm; l)

P (0jy) =
P (yj0)

P (yj0) +
P

m;l P (yjm; l)
(3.18)

In our particular cued, delayed motor action experiment there will be three such

probabilities.

3.3 Evaluation on Simulated and fMRI Data

3.3.1 Simulation Experiments

In order to illustrate the viability of the Bayesian approach for testing hypotheses

about time series data we have set up simulation experiments. The experiment

involves a stimulus reference function, here taken to be a simple on/o� block

design for simplicity. The temporal extent of the experiment is T = 200 time

units (TR's). Figure 3.3 shows the stimulus reference function, the hemodynamic

response obtained by convolving the impulse response (here a boxcar of duration

l0 = 10 TR's, see �gure 3.5) and the reference function, and �nally we show the

noise degraded (simulated) fMRI signal.
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Figure 3.3 Simulation experiment A. The upper panel shows the stimulus reference
function for a simple block design. The hemodynamic response function is here modeled
as a boxcar of length 10 (TR's). The resulting hemodynamic response is shown in the
second panel, and �nally we show the simulated fMRI signal in the lower panel. The noise
level is 0.3 (ratio of standard deviations { noise/signal).
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Figure 3.4 Simulation experiment A. The stimulus reference function for a simple block
design as shown in �gure 1. The hemodynamic response function is here modeled as a
boxcar of length 10 (TR's) see �gure 3. The model probability was computed for models
with lags ranging from 0 to lmax; lmax = 20. The probability of the zero lag model (no
�tted signal) is the nul hypothesis. The �gure shows the probability of each of the 21
models considered and is as expected focused on the \correct" model l = 10
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Figure 3.5 Two model hemodynamic response functions used in the initial experiments.
The hemodynamic response function is here modeled either as a boxcar or a Gaussian of
both length 10 (TR's).
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Figure 3.6 Simulation experiment A. The upper panel shows the stimulus reference
function for a simple block design. The hemodynamic response function is here modeled
as a Gaussian of length 10 (TR's). The resulting hemodynamic response is shown in the
second panel, and �nally we show the simulated fMRI signal in the lower panel. The noise
level is 0.3 (ratio of standard deviations { noise/signal).
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Figure 3.7 Simulation experiment A. The stimulus reference function for a simple block
design as shown in �gure 1. The hemodynamic response function is here modeled as a
boxcar of length 10 (TR's). The probability P (modeljdata) was computed for models
with lags ranging from 0 to lmax; lmax = 20. The probability of the zero lag model is the
null-hypothesis probability (no �tted signal). The �gure shows the probability of each of
the 21 models considered, since the Gaussian model has small (relative to the noise level)
contributions to the �tted signal for large delays , the probability is focused on somewhat
smaller models than the \correct" model l = 10
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Figure 3.8 Simulation experiment B. The stimulus reference function for a simple
block design as shown in �gure 1. The hemodynamic response function is here modeled as
a Gaussian of length 10 (TR's). The model probabilities P (modeljdata) were computed
for models with lags ranging from 0 to lmax; lmax = 20. The zero lag model is the X = 0

null-hypothesis (the measured signal is modeled as a white noise Gaussian signal with
unknown variance). We calculated the probability of the activation (summing again over
all model \lags"), for increasing noise levels. In the plot we show the probability for four
di�erent Q's and in each case we show the probability as function of the relative noise
amplitude for a situation where the signal actually was activated (ACTIVATION) and for
the case when the reference function is zero (CONTROL). We note that for Q's in the
range 10 � 100 we �nd good detection of signal for relative noise levels less than 1 (low
type-II error rate), and at the same time good suppression of the activation probability in
case of no activation (CONTROL), i.e., low type-1 error rate.

In simulation experiment A we test the ability of the Bayesian approach to �nd

the correct model, i.e., the correct duration of the response. In �gure 3.4 we show

the Bayes probabilities P (ljdata), for l = 0; :::; lmax, with lmax = 20. As seen the

probabilities are indeed centered on the correct value l � 10.

The boxcar �lter is, of course, not a very realistic model of the hemodynamic

response, so the above experiment was redone in �gures 3.6 and 3.7 for the Gaussian

impulse response shown �gure 3.5. Since the Gaussian shape of the impulse response

has only little weight for the larger delays, the probabilities are centered on

somewhat smaller values of l.

Simulation experiment B investigates the in
uence of the prior expected signal-to-

noise level, that is, the role of the parameter Q. Figure 3.8 displays the probability

of activation (summed on all �lter lenghts) for both data with activation (ACTIVA-

TION) and without activation (CONTROL) for four di�erent Q-values. It is seen

that for Q's in the range 10 � 100 we get good detection for reasonable relative

noise levels, hence, low type-II error rate, while at the same time suppression of the

activation probability for signals without activation, hence low type-I error rate.
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3.3.2 fMRI Experiment

We now return to the experiment brie
y introduced in the introduction. We analyze

a small subset of an experiment designed to determine the location of two di�erent

aspects of motor control (see (Purushotham et al., 2001) for details and analysis of

the complete data set). The experiment involves a cued, delayed, motor response

and in the motor areas we can expect di�erent behavior in regions involved in

planning versus execution of the response. In the context of the new method we

consider here three competing hypotheses. A pixel can either be non-activated (null-

hypothesis), be activated during preparation or be activated during execution.

The paradigm consisted of a delayed, cued joystick movement task performed

by normal, right-handed adult human subjects. The subject was asked to move a

cursor from the centre of the screen to the memorized location of a target using a

joystick. The cursor was positioned in the centre of the screen at the beginning of

the task. A yellow target appeared for 200 ms at one of 8 possible locations along

the circumference of a circle centered on the screen (view angle: < 5 degrees). Then

the target disappeared. Following a pseudo-randomized variable (0-3 seconds) delay

period, the colour of the central circular home zone changed from red to green, the

go cue. The subject was to then move the cursor radially to the memorized location

of the target, as accurately and quickly as possible, and then move it back to

the home circle. This signaled the end of a single trial, and a return to the control

state. During the control period between tasks, the targets continued to appear and

disappear, one every 3 seconds, to control for visual stimulation and eye movement.

The home circle remained black during this period, and the subject was instructed

not to make any joystick movements.

A modi�ed joystick (Measurement Systems, Model 521) from which all ferromag-

netic components were removed, was used. The maximum range of motion is an

arc of +=� 30 degrees. The joystick was positioned and secured to the side of the

subjects right thigh, at a position that was comfortable for the subject to reach

with the right hand while lying down. Subjects moved the joystick using their right

thumbs and fore�ngers in a pincer grasp. The output of the joystick was sampled

at 100 Hz, and controlled the movement of the cursor on the screen.

16 single trials as described above, were performed, with an interval of 20 sec

between the beginning of one trial and the next 20 volumes (at a rate of 1 volume

per sec) were acquired per trial, and along with 20 initial pre-steady-state volumes,

made up a total of 340 volumes per run. Response accuracy, reaction and movement

times and trajectories were recorded for each trial but were not used in the present

analysis.

3.3.2.1 Data Acquisition

Magnetic resonance imaging experiments were performed on a 4 Tesla whole body

MRI system (Varian, Palo Alto, CA) with a homogeneous birdcage coil. Multi-slice

T1-weighted scout images were acquired with a Turbo FLASH sequence (inversion
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time of 1.2 s) to select the slices for functional imaging. From these anatomical

images, ten coronal 5mm slices, including the primary, pre- and supplementary

motor areas, were selected for the joystick task. For the mental rotation task, four

axial 10 mm slices were chosen, including the primary and secondary motor areas.

For functional MRI studies, a gradient-echo echo-planar imaging (EPI) technique

was used. Typical fMRI parameters were matrix size of 64 x 64, �eld of view (FOV)

of 24 x 24 cm2, echo time (TE) of 20 ms (for joystick experiment) or 15ms (for

mental rotation experiment), and repetition time of 1000 (for joystick experiment)

or 480 ms (for mental rotation experiment).

The study necessitated the provision of visual instruction, and stimuli were

generated by a PC. The PC was synchronized with the MRI data collection. Images

projected onto a screen inside the magnet room via a projector were viewed by

subjects through a mirror. The screen subtended less than 5 degrees of the �eld of

view.

3.3.2.2 Testing Competing Hypotheses

In each voxel we test three hypotheses: a null, and two di�erent reference activation

functions, demarcating the preparation and the execution phases of the response

respectively, as shown in �gure 3.1.
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Figure 3.9 Distribution of probabilities across di�erent model lags (l = 1; ::; 30) for
two models based on di�erent reference functions in the region of a single pixel. In the
upper panel we show the measured fMRI signal and the two reference functions for a
cued-delay motor activation single trial experiment (from above: fMRI signal, motor
preparation, and motor execution). Hypothesism = 1 is a reference function corresponding
to motor preparation, while m = 2 corresponds to motor execution. This pixel shows high
probability of the preparation model.
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Figure 3.10 Distribution of probabilities across di�erent model lags (l = 1; ::; 30)
for two models based on di�erent reference functions. In the upper panel we show the
measured fMRI signal, and the two reference functions for a cued-delay motor activation
single trial experiment (from above: fMRI signal, motor preparation, and motor execution).
Hypothesis m = 1 is a reference function corresponding to motor preparation, while m = 2
corresponds to motor execution. This pixel shows high probability of the execution model.
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Figure 3.11 Distribution of probabilities in the 5� 5 slap of pixels covering pre-motor
and motor areas. In the upper left corner we show the signal standard deviation �y for
the 25 pixels. The three other panels shows the spatial distribution of the probability for
the two activation hypotheses and for the null-hypothesis. We use a linear gray map so
that bright pixels have probability � 1, dark pixels have probability � 0).
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For each voxel in a 5-by-5 slab of pixels expected to cover motor and pre-motor

areas aggregate probabilities (averaged over both response values and response

lengths) for the where calculated and presented in �gure 3.11.

The probabilities suggest that all three types of response (null, preparation and

execution) are present in the slab. For illustration of the Bayesian analysis we

also present the probability distributions over response lengths in �gures 3.9-3.10

for both the preparation hypothesis and the execution hypothesis. The two pixels

have strongly peaked probability distributions for the two di�erent hypotheses

respectively at response durations of 15 and 20 TR's.

3.4 Conclusion

We have outlined a Bayesian framework for signal detection in noisy linear systems.

We used weak conjugate priors and as a result we obtain closed form expressions

for the relative probabilities over competing hypotheses, depending on only one

free parameter. The value of this parameter can be estimated from simulations and

the system appears to quite insensitive to its precise value. We used the Bayesian

framework to estimate the probability of three alternatives in an fMRI experiment

involving planning and execution of motion. In a small slap covering both motor and

premotor pixels we found contiguous regions designated to the null, the execution

and to the preparation hypotheses.
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Averaging of data, using time windows time-locked to repetitive stimuli, is a method

that has long been used in Event-Related Potential (ERP) research. As event-

related designs are becoming increasingly common in fMRI experiments, selective

averaging is a natural approach to the analysis of these data sets. However, as the

biophysical origin (and presumably the statistical properties) of the fMRI BOLD

and ERP signals fundamentally di�er, there is a need to assess the implications of

averaging raw fMRI data. We recorded a fMRI data series from a single subject per-

forming a simple event-related task, consisting of 95 presentations of checkerboard

visual stimuli. The data set was �rst dimension-reduced with Principal Component

Analysis (PCA) and separated into 100 spatially independent components with In-

dependent Component Analysis (ICA), an iterative technique whose weight matrix

is normally initialized to the identity matrix. To determine components which were

reproducible, and by inference represented deterministic features in the data, the

ICA processing step was repeated, but this time initialized with the inverse of the

weight matrix computed from the �rst analysis, a method supported by simula-

tions. The mutual information between best-matching pairs of components each

ICA analysis was plotted. Visual inspection suggested that 55 components were

reproducible, accounting for 84% of the variance in the dimension-reduced data.

The reproducible components exhibited much less trial-to-trial variability than the

raw data from even the most activated voxels. Of the 55 reproducible components
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in the �rst series, the average responses of 28 independent components were signi�-

cantly a�ected by stimulus presentation (p < 0.001). The most signi�cant stimulus

correlated component was strongly time-locked to stimulus presentation and was

directly stimulus correlated, corresponding to occipital brain regions. Other stimu-

lus correlated components included stimulus-correlated motion artifact, overlapping

occipital activation with a di�erent time course from the strongly time-locked com-

ponent, and frontal and temporal activations. Our results suggest that a signi�cant

proportion of the variance in fMRI data is in fact deterministic. Double ICA training

with di�erent initial weight matrices is a simple and practical method to determine

which components are reproducible. Averaging the time courses of robust spatially-

independent components time-locked to stimulus presentation, as opposed to the

raw data, may prevent possible biases in the estimates of the spatial and temporal

extent of stimulus correlated activation and of trial-to-trial variability.

4.1 Introduction

Functional Magnetic Resonance Imaging (fMRI) experiments usually incorporate

\block" designs or \event-related" designs. With block designs, stimulus events are

clumped together within an extended 15{40 sec block, interspersed with blocks of

a contrast condition, such as rest in a motor study. Several interspersed blocks

are typically performed, to prevent slow drifts in the fMRI signal from being

misinterpreted as true changes due to brain activation. With event-related designs,

e.g. (Buckner et al., 1998; McCarthy et al., 1996), stimuli are presented singly and

suÆciently separated in time so that the mean latency, rise, amplitude, duration,

and recovery in response to the experimental stimulus can be estimated.

A major disadvantage of event-related designs is that the Blood Oxygen Level

Dependent (BOLD) response to an impulse function of neural activity is long, ne-

cessitating interstimulus intervals of the order of 15s to avoid overlapping responses

from successive events (Bandettini and Cox, 2000; Howseman et al., 1998). Usually

post-processing methods, based on linear, time-invariant models of evoked response

(Boynton et al., 1996; Buckner et al., 1998) are used to estimate the mean e�ect

of a single stimulus (Buckner et al., 1996, 1998; Rosen et al., 1998; Burock et al.,

1998). However, there is evidence for non-linearities under realistic trial conditions,

e.g., (Vazquez and Noll, 1998; Huettel et al., 2001).

Analysis of data from fMRI experiments incorporating event-related designs

typically involves dividing the data from each voxel into epochs, time-locked to

stimulation presentation, which are then averaged to obtain a mean response to the

stimuli. This method of analysis, standard for analysis of Event Related Potential

(ERP) data (McCarthy, 1999), implicitly assumes that the data can be accurately

modeled as a deterministic signal precisely time-locked to stimulus presentation, and

corrupted with random noise that will tend to zero when averaged over many trials.

All brain signals not precisely time-locked to stimulus presentation are handled

as noise with this model. However, if underlying components of the data are not
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completely random with respect to the onset of stimulus presentation, they may

tend to average to values other than zero, introducing biases in the estimates of

stimulus-locked signals.

Unlike ERP studies, the maximum number of non-overlapping trials that can

be employed in an fMRI study is practically limited to a few hundred across all

experimental conditions, and is usually much less. Even if a feature of the fMRI data

would eventually tend to zero when averaged over hundreds of trials, this may not

necessarily be the case when averaged over the more common case of 30{40 trials

per condition. A further problem is that, in contrast to EEG data, characterization

of artifacts such as cardiac and respiratory pulsations and movement are less well

known and not as readily identi�ed.

Accurate isolation of non-stimulus correlated but non-random aspects of fMRI

data is a worthwhile goal, as adequately modeling their e�ects is a �rst step

to minimizing their in
uence on estimates of stimulus correlated brain activity.

For example, in a standard regression approach using the General Linear Model,

(Friston, 1996) the total variance of the data is assumed to be appropriately

allocated into deterministic and random components. The deterministic fraction

may contain, as nuisance regressors, non-brain activity such as cardiac pulsations.

Under the limitations imposed by the statistical assumptions of the model, the

contribution of these nuisance regressors can be stripped away from the raw data

to more accurately reveal underlying hypothesized stimulus correlated activity.

Some clues suggest that fMRI data is not heavily corrupted with Gaussian noise,

although this is a standard feature of many models. McKeown and Sejnowski (1998),

by calculating the log-likelihood of observing the data under an assumed linear

model (Independent Component Analysis, ICA), demonstrated that true fMRI data

is unlike what would be expected by a relatively small number of deterministic

components corrupted by zero-mean Gaussian distributed random noise.

In a related study, training on alternate even and odd time points of an fMRI

data or corrupting the data with pure Gaussian noise did not signi�cantly a�ect

the estimates of stimulus correlated component of interest, suggesting the stimulus

correlated component was deterministic and reproducible (McKeown et al., 1998).

There are many reasons why fMRI data may exhibit variability to a given stimu-

lus, including non-reproducibility of the brain's response to stimulus, ongoing brain

activity not related to stimulus, di�erential hemodynamic responses to the same

neuronal activity, and motion artifacts. Here we di�erentiate between deterministic

and random variability. In this chapter, we refer to variability as deterministic if

the state of a dynamical system at selected time points or points in space can be

modeled predictably from knowledge of the system at other time points or other

points in space. In contrast, we de�ne a signal as random if knowledge of the signal

at some time points or points in space provide no information (i.e. is statistically

independent from) the signal at other points in time or space.

Here we exploit two facts regarding the Bell-Sejnowski ICA algorithm: 1) when

the assumptions of are perfectly held, the separated ICs are unique and 2) that the

algorithm cannot separate pure Gaussian noise. We propose that the reproducibility

TLFeBOOK



66 Deterministic and Stochastic Features of fMRI Data: Implications for Data Averaging

of the separated ICs will be a qualitative indication of the amount the data are

corrupted with truly random noise.

By calculating independent components with di�erent initial weight matrices,

we will determine which components are robust to changes in weight matrix

initialization. We will infer that these components represent deterministic features

of the data. We show that the contribution of some robust components, presumably

based on endogenous brain signals, do not sum to zero when averaged time-locked to

stimulus presentation after a reasonable number of trials, and have the potential to

introduce biases into the temporal and spatial estimates of stimulus-locked activity.

When separating fMRI data into spatially-independent components, the ICA

model is,

C =WX (4.1)

where C is an n x v matrix of component maps (where n is the number of time

points in the experiment and v is the number of brain voxels), X is an n x v row

mean-zero data matrix, with each row representing the entire volume recorded at

each given time point, and W is an n x n unmixing matrix, usually iteratively

obtained. Since the number of time points in a given experiment (especially event-

related designs) may greatly exceed the e�ective dimensionality of the data, it is

common to �rst reduce the data to a linear subspace with principal component

analysis (PCA) before applying the ICA algorithm (McKeown et al., 1998):

Xred = V TX (4.2)

where V is n by p (p < n) matrix whose columns are the eigenvectors of the

covariance matrix, < XXT >, corresponding to the p largest eigenvalues, and V T

is transpose of V . Xred is a now smaller full-rank matrix of eigenimages of X . ICA

decomposition of the resulting eigenimages, Xred, gives,

Cred =WXred (4.3)

where Cred is the p by v matrix of component maps, andW is the p by p computed

unmixing matrix from ICA. Substituting for Xred from eqn. (4.2) gives:

Cred =WV TX (4.4)

To estimate the timecourses of the maps Cred calculated from the dimension-

reduced data, we wish to �nd a matrix T , such that

X � TCred (4.5)

An estimate for T can easily be obtained by scaling the rows of Cred so that jC
i

red
j =

1. Thus, CredC
T

red
� I , because the rows of Cred are maximally independent.

Finding the p time courses (of length n) associated with each of the p maps can

now be determined by examining the columns of the matrix,

T � XCT

red (4.6)
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In this paper, we use PCA & ICA (McKeown et al., 1998; McKeown and Sejnowski,

1998) to separate fMRI data from an event-related study with a human subject into

spatially independent components and their associated timecourses to indirectly

infer the amount of randomness in the data, as assumed by typical analysis of

event-related data.

4.2 Methods

We performed a simple event-related fMRI visual experiment with a single normal

subject. Ninety-�ve visual stimuli, consisting of black and white radial checker-

boards that subtended about 20o by 15o of visual angle and were presented singly

for 500ms. The interval between successive stimuli varied randomly between 14 to

18s. Ten contiguous 5mm thick slices were acquired parallel to the line connecting

the anterior and posterior commissures (axial imaging plane) on a 1.5T machine.

Functional gradient echo echo-planar images were acquired at a TR of 1s (TE:

40ms, Flip Angle: 81o, FOV: 24cm, matrix: 642, in-plane resolution: 3:75mm
2).

The fMRI data were temporally aligned to compensate for interleaved slice

acquisition. Because we were investigating responses of the sluggish BOLD signals

to individual stimuli, the data were low-pass �ltered with a Hanning window of

length 4 to increase the signal-to-noise ratio (Press et al., 1992). The raw data were

not spatially smoothed. A minimum-intensity threshold was used to identify voxels

in the head.

The data set was reduced in dimension using Principal Component Analysis

(PCA { (Jackson, 1991)) to one hundred components. Independent Component

Analysis (ICA) was applied to the dimension-reduced data set, separating the data

into 100 spatially-independent components (McKeown et al., 1998; McKeown and

Sejnowski, 1998).

The Bell-Sejnowski algorithm for ICA is an iterative technique that starts with

an initial weight matrix that is iteratively updated until convergence is reached.

Typically the initial weight matrix is set to the identity matrix. To determine which

components were robust to weight matrix initialization, the data were re-separated,

except this time the initial weight matrix was the inverse of the calculated weight

matrix from the �rst separation.

As the ICA algorithm does not assign any direct importance to the order of

the components, the di�erent sets of spatially-independent components from the

two data separations were compared for similarity. Component pairs were �rst

created by selecting a component from one group of separated components and

selecting another component from the other group of separated components. When

two component sets were compared, the mutual information between all possible

pair combinations was computed to determine the components that matched the

most closely. This was accomplished by separating the �rst component values into

20 histogram bins. The voxels in the second component that corresponded to

those voxels from the �rst component contained in the �rst histogram bin were
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also separated into 20 histogram bins. This process was repeated until a 20-by-20

contingency table of the data was created. The computations were normalized so

that a component compared to itself would result in a value of 1, and two completely

random components would result in a value of about 0, see eqn. 14.4.17 in (Press

et al., 1992). The same component was not allowed to contribute to more than one

component pair.

The mutual information between best-matching component pairs was plotted to

determine which components were robust to weight matrix initialization. A cuto�

for the mutual information, based on the in
ection point of the mutual information

vs. component number curve was estimated by visual inspection. Component pairs

that matched above the cuto� were deemed reproducible and deterministic, and

component pairs whose mutual information was below the cuto� were deemed

unreproducible and assumed to refer to random noise. Speci�cally, the data were

modeled as,

X = T � C = [TrepjTnoise]

�
Crep

Cnoise

�
(4.7)

T = [TrepjTnoise] = C
T
X (4.8)

where X is the all time-point data set, of dimension n by v, where n is the

number of time points and v is the number of brain voxels in all slices. The T and

C matrices were partitioned to correspond to the reproducible and unreproducible

components de�ned by the cuto� described above, of dimensions n by 100 and 100

by v respectively.

In order to assess the relative contribution to the entire data of the reproducible

components,

Xrep = [ Trepj0]

�
Crep

0

�
(4.9)

was calculated. The relative variance in the data that was deterministic was

estimated as:

RatioDet =
tr(cov(XT

rep))

tr(cov(XT ))
(4.10)

where tr() refers to the trace of a matrix, and cov() refers to the covariance matrix.

The reproducible components were then examined to see if they had a relationship

to the stimulus presentation. The time course of each reproducible component was

divided into epochs by taking the 5 time points preceding to 13 time points following

checkerboard onset. Each 19 time point epoch was linearly detrended. The mean of

each component across epochs was calculated to create a mean vector, of 19 time

points, M . The entire time course of the component was then correlated with the

convolution ofM and a vector containing ones at the times of stimulus presentation.

The degree of correlation was assumed to represent the amount that component was

time-locked to stimulus presentation. To estimate the signi�cance of the correlation,
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under the null hypothesis that the two waveforms were not correlated, we calculated

p = erfc
jrj
p
np
2

(4.11)

where n is the number of time points, and jrj is the magnitude of the correlation

coeÆcient (see also Press et al., 1992). Components that were signi�cant to p <

0:001 were selected as being a�ected by stimulus presentation.

The �ve most signi�cantly stimulus correlated components were overlaid on an

anatomical image obtained at the same sitting. The spatial maps of the ICA

components were �rst spatially smoothed with a 6mm fwhm (full-width-half-

maximum) Gaussian �lter. The smoothed maps were thresholded at z > 1:25.

4.3 Results

The fMRI series created a data set consisting of 1; 464 time points by 10; 192 brain

voxels. The plots of mutual information between component pairs are shown in

�gure 4.1.

Figure 4.1 The plots of mutual information between component pairs. The mutual
information between best matching component pairs (without duplication of any single
component) is shown after two ICA separations with di�erent initial weight matrices. Note
the abrupt in
exion point at MI values of � 0.1.
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Best matching pairs had a mutual information of about 0:9 with least matching

pairs having a mutual information of < 0:05, suggesting almost complete statistical

independence. To estimate the mutual information expected by chance, we plotted

a histogram of all elements of the 100 by 100 matrix whose elements, Mij , referred

to the mutual information between the ith component from the �rst separation

and the jth component of the second separation. This suggested that almost all

component pairs had mutual information measures of � 0:1 (�gure 4.2).

Figure 4.2 To estimate the mutual information expected by chance, we plotted a

histogram of all elements of the 100 by 100 matrix whose elements, Mij , referred to

the mutual information between the ith component from the �rst separation and the jth

component of the second separation. This suggested that almost all component pairs had

mutual information measures of � 0:1.

A relatively abrupt change in the slope of the Mutual Information curve was

evident on visual inspection at n = 55. This value was used as the arbitrary

cuto� to di�erentiate between reproducible or deterministic features of the data,

and non-reproducible or random features (cf. equations 9 and 10). The ratio

of deterministic variance to total variance (equation 10) was 0:84. Of the 55

reproducible components, 28 independent components were considered correlated

with the stimulus presentation (equation 11) to a signi�cance of p < 0:001.

To test whether the weighting the second ICA separation with the inverse of the

weight matrix created an uncontrollable dependency between the repetitions, we

performed simulations on synthetic data. An arti�cial data set consisting of 40 ICs

corrupted with pure Gaussian noise was constructed. The �rst 40 spatial ICs from

one ICA separation were pre-multiplied by a random 100�40 matrix (each element

drawn from uniform distribution [0 1]).
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Figure 4.3 The �ve most signi�cantly stimulus-correlated (all p < 10�19) components.
(column 1) The time courses of these components were divided into 19 timepoint epochs
time-locked to stimulus presentation, linearly detrended and overlaid. (a) The Most
Signi�cantly Correlated (MSC) component. The time course of this component most
closely followed that expected from a single visual 
ash. (b) & (d) The ring-like spatial
structures of these components suggest movement, but their time courses seem reliably
reproduced by the task. (c) Task-related brain activation loading heavily in temporal
regions. Contrast the relative onset of this component to (a). (e) Occipital task-related
component with a di�erent temporal pro�le. Note the relative \jitter" between events for
this component compared to MSC component in (a).
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Figure 4.4 Relative contribution of di�erent components in selected voxels. Voxels
loading heavily in the MSC component (4.3a) were examined to determine the relative
contribution of di�erent components to these voxels. (top) Voxels loading most heavily
in the MSC component (top, right) received contributions to their raw time courses
from the MSC component and other components (top left, same vertical scale shown for
both �gures). Each trace represents a di�erent voxel. (middle, bottom) Voxels loading less
heavily on the MSC component received greater and greater relative contribution from
other components (middle and bottom left, same vertical scale shown for both �gures).
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The resultant matrix was made full rank by adding Gaussian noise, with zero

mean and unit standard deviation. Two initial ICA separations were performed as

before, with the second initialized with the inverse of the �rst weight matrix. Also,

a comparison between ICs initialized with the identity matrix was compared with

many repetitions (30) of ICs initialized with a random matrix. The seeding with

the inverse weight matrix appeared to more accurately re
ect the true number of

components in the synthetic data (i.e., 40) (�gure 4.1).

The �ve most signi�cantly stimulus-correlated (all p < 10�19) components

are shown in �gure 4.3. The most signi�cantly stimulus-correlated ICA compo-

nent demonstrated very little trial-to-trial variability and appeared directly task-

related (�gure 4.3a). The spatial distribution of this component (thresholded at

z � 1:25) was heavily weighted in occipital regions. At least two signi�cant com-

ponents were presumably the result of task-dependent head motion (�gure 4.3b,d),

a phenomenon previously described (Bullmore et al., 1999; Rombouts et al., 1998;

Thacker et al., 1999). Other signi�cant components were weighted heavily in oc-

cipital regions (overlapping with the component in 4.3a), with distinct, but still

stimulus-dependent temporal pro�les (�gure 4.3c,e). One of these components ap-

peared to involve temporal and frontal regions of brain activation (�gure 4.3c).

To see the relative e�ects that these stimulus-correlated components might

have, we examined voxels that weighted heavily on the most stimulus-correlated

(MSC) component (�gure 4.3a). We then examined the relative contributions of

this component (by taking the outer product of its time course and spatial map)

and all other components at these voxels (�gure 4.4). The spatial map associated

with the MSC component was converted to z-scores. As expected, in voxels loading

most strongly on this component (z � 3), the MSC component was the main

contributor to the raw time course of these voxels (�gure 4.4, same scale used

for MSC component contribution and contribution from all other components).

However, on voxels loading less well, for example, 1 < z < 2, contribution from

other components were of the same order of amplitude as the contribution from the

MSC component (�gure 4.4, bottom).

4.4 Discussion

Our results suggest that the majority of the variance of fMRI data can be e�ectively

modeled as robust spatially independent components. We found a number spatially

independent components whose mean time course remained signi�cantly correlated

with the empirical waveform when averaged over a reasonable number (n = 95) of

trials (�gure 4.3). We refer to these components as \stimulus correlated" because

their mean, when averaged time-locked to stimulus presentation appeared signi�-

cantly correlated with the presentation of stimuli. The most signi�cantly stimulus-

correlated component appeared directly task related and was temporally and spa-

tially similar to that expected from prior studies of averaging the raw data (�gure

4.3a). However other stimulus correlated components appeared related to motion
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induced artifact (�gure 4.3b,d), overlapping occipital regions with di�ering tempo-

ral pro�les (�gure 4.3e), and frontal and temporal regions of unknown signi�cance

(�gure 4.3c).

The presence of di�erent stimulus-correlated components that were suggestive of

true brain activation and had temporal pro�les distinct from the MSC component

(�gure 4.3c,e) is consistent with the notion that fMRI data consists of temporally

and spatially overlapping components. Moreover, these di�erent stimulus-correlated

components appear to have slightly di�erent latencies from event-to-event, indicat-

ing the need to align each component separately as has recently been suggested for

ERP literature (Jung et al., 2000). Of the stimulus-correlated components, clearly

not all were related to cortical processing, as at least two were related to stimu-

lus correlated movement (�gure 4.3b,d). However, isolation of stimulus correlated

components is still important, as their e�ects will tend to become more pronounced

when data are averaged time locked to stimulus presentation, as is typically done

with event-related fMRI studies.

An important result from any fMRI experiment is the extent of activation.

In voxels that loaded most heavily in the MSC component (�gure 4.4 top), the

task-related activity appeared to dominate the raw signal, so averaging the raw

data would not a�ect the interpretation that these voxels are indeed task-related.

However, in voxels that loaded less heavily, other task-related components and non-

task related components that were averaged time-locked to stimulus presentation

were of the same order of magnitude as the task-related signal (�gure 4.4 bottom).

These voxels were still contiguous and loaded heavily in occipital regions suggesting

that they represent true activation in response to visual stimuli. Averaging the raw

data in this case may result in erroneous interpretations as to the true extent of

activation.

We note that the components themselves exhibited much less trial-to-trial vari-

ability than a typical stimulus correlated voxel (not shown). This suggests that the

variability seen in an individual voxel is more the e�ect of spatially-overlapping

deterministic processes than of truly random noise, and suggests a role for deter-

ministic models (such as ICA) to isolate the stimulus correlated changes at a voxel.

This may ultimately lead to a reduced number of total trials that may need to be

averaged before a stable value is reached. Further work needs to be done to directly

compare the number of trials required to stabilize the spatial and temporal esti-

mates of the individual stimulus correlated components as opposed to averaging

the raw data.

Our results suggest that averaging raw fMRI data to infer the temporal pro�le

and spatial extent of activation must be done with caution. Either a restricted

region of interest (ROI) could be used, or �rst techniques like ICA can be used to

segregate voxels with similar properties before averaging.
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Here we describe a novel technique for exploratory analysis of event-related fMRI.

The technique comprises two parts. The �rst component is dense latency sampling

(DLS), an oversampling scheme for event-related fMRI that has the advantage of

providing volume slice timing without the need for signal interpolation. The second

component is dynamical cluster analysis (DCA) of signal time-courses; this analysis

is done with temporal constraints taken from the event-related design: Signal seg-

ments that correspond to di�erent types of events are analyzed separately to reveal

speci�c event-related activation. The technique does not rely on preassumptions

about the temporal shape of functional activity like common inerential methods.

We demonstrate the utility of the technique and also compare its performance to

standard techniques in a study of working memory. The technique reveals spatio-

temporal patterns of activity associated with di�erent memory load conditions.

Most delay-related activity appeared in parietal and prefrontal regions peaked in

the second half of the delay period; this suggested involvement of these regions

in processes of memory rehearsal and decision making. The superior parietal and

precentral cortices also participated in delay-related activity. But for these regions

the temporal shapes of functional activation suggested additional roles in memory

encoding.
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5.1 Introduction

Almost all methods of data analysis in fMRI make assumptions about the nature

of the underlying neuronal processes. The methods can be divided into two classes,

based on the type of assumptions made. One class of methods uses univariate anal-

ysis and relies on the assumption of functional specialization of cortical regions. The

other class employs multivariate analysis and relies on the assumption of functional

integration, that is, that brain function results from cooperative interactions among

cortical regions. Here, we will describe a technique, belonging to this second class,

that applies multivariate analysis to data from event-related fMRI (ER fMRI). Our

approach of exploratory data analysis is designed to detect weak, task-induced sig-

nal changes whose shapes are not known beforehand (Wichert et al., 2001a,b). The

technique combines a new scheduling scheme of multi-slice data acquisition with a

variant of temporal cluster analysis. The approach is designed for complex experi-

mental paradigms with short events where the event-related signal is weak and has

a time course that is diÆcult to predict. Studies that explore cognitive processes

like memory typically involve such complex paradigms.

In order to evaluate the strength of our technique we chose the study of working

memory. The choice of this cognitive task made sense for two di�erent reasons.

First, working memory is amenable to study with our technique because the tim-

ing of the neural processes it involves can be directly manipulated by experimental

design. Second, earlier studies had indicated that the formation of working mem-

ory is distributed across disparate cortical areas, thus, suggesting that functional

integration might be important.

The concept of working (or short term) memory refers to a type of memory

that has limited capacity for storing and manipulating information necessary for

performing a speci�ed task. It was originally de�ned in studies in which subjects

were presented with a list of items and then asked to recall individual entries

on the list. Results from these studies de�ned the upper limits of memory load,

i.e., the maximum number of items (such as words) that could be memorized

with reasonable accuracy. Typically, experiments test working memorizes whose

durations range from a few seconds to a few minutes. The mechanisms of working

memory vary as a function of the length of time the memory is required to last. If

the duration is short, 10s or less, subjects recall items nearer the end of the list more

accurately that those at the beginning of the list. This recency e�ect disappears

if the duration of the memory exceeds 10s. Thus, there seems to be a qualitative

di�erence between memories that persist for more 10s and those that are briefer |

the former are more durable than the latter.

A common type of task used in studies of working memory is called delayed

match-to-sample task or simply delayed response task. The task consists of three

discrete phases. The �rst is a presentation phase during which the subject is

presented with a set of items to memorize (the memory set). The presentation phase

is followed by the delay period, an interval during which no tasks are required. The
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last phase is the probe phase during which the subject is presented with an item

and must decide whether or not it belongs to the memory set.

The cellular neurophysiology of delayed response tasks has been studied in

experiments with animal models. These studies showed that prefrontal and parietal

cortical region are involved in working memory. Cells in these regions respond

selectively during di�erent phases of the task, indicating "process speci�city"

(Baddeley, 1986, 1996). For instance, a population of cells in prefrontal cortex

�re persistently during the delay phase. Cells in prefrontal cortex are also able

to convey information about both the identity and location of a given item in a

memory set (Rainer et al., 1998).

Whole-brain neuroimaging techniques such as PET and fMRI promise to re-

veal the global functional architecture of working memory (Jonides et al., 1993;

D'Esposito et al., 1995; Goldman-Rakic, 1996; Owen et al., 1996; Postle et al.,

2000b; Goldman-Rakic, 2000). The �rst neuroimaging studies of working memory

made only indirect assessments of functional activity (Cabeza and Nyberg, 2000).

The advent of the event-related fMRI technique (Josephs et al., 1997; Dale and

Buckner, 1997) gave direct access to the functional activity caused by short events

such as a single delayed response task. These later studies led to revisions of theories

of working memory that had been based on results from the indirect assessments

(Postle et al., 2000a). Thus, the evolution of methods in whole-brain imaging allows

the re�nement and revisions of theories of brain function.

In the study of working memory that we will describe we will focus on the

following three questions. i) How do results depend on the paradigm used in

data analysis, speci�cally, do results change if one switches from the assumption

of functional specialization (underlying common univariate inferential fMRI data

analysis) to the assumption of functional integration (the incentive of multivariate

exploratory fMRI data analysis)? ii) How do the time courses of functional activity

relate to results from single-cell recordings? iii) Are sensory areas involved in the

delay phase?

All told, the overall aims of the chapter are to explain our data acquisition and

analysis technique, to discuss its relations to other approaches in ER fMRI, and to

evaluate its ability to explore processes of working memory. The results of the new

technique will be compared with those of state-of-the-art approaches, i.e., the slice

timing technique usually applied in multi-slice fMRI, and conventional inferential

data analysis by the general linear model (GLM). The discussion of the results of

our study in the context of earlier working memory literature will be brief and

certainly not cover all aspects. A more exhaustive description of the results will

appear in a forthcoming paper.
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5.2 Current Methods for Event-Related fMRI

5.2.1 New Chances and Challenges

The classical block design common in PET and early fMRI introduced stationary

phases of functional activation (blocks). The stationarity requirement posed strong

limits on the investigation of behavioral paradigms. A considerable widening of the

scope of neuroimaging was provided by the introduction of ER fMRI registration

technique. In ER fMRI the data aquisition is exactly scheduled relative to events in

the experimental design. Thus, it allows to register signal changes evoked by short

events, quite similar to evoked event-related potentials measured with EEG/MEG.

Of course, with regional blood 
ow imaging techniques the temporal resolution is

generically limited by the delayed and low-pass �ltered hemodynamic response (HR)

(with time-to-peak interval of about 5s). However, up to the generical resolution

limit, ER fMRI provides more freedom for implementing experimental paradigms.

For instance, short events can be repeated in random order, or categorized post-

hoc. Early studies using the event-related technique were on odd-ball paradigms

(MCarthy et al., 1997) and on various cognitive paradigms (for short comprehensive

reviews, see (Buckner, 1998; Rosen et al., 1998)). In the performance of cognitive

tasks, ER fMRI allows to discern and characterize di�erent phases that were only

indirectly assessible in block designs.

The extended scope of ER fMRI implicates as well new diÆculties in data anal-

ysis. For inferential analysis the availability of an adaequate regressor or model

function for functional activation, determined external to the data, is an indispens-

able prerequisite (Lange, 1996, 1997; Lange et al., 1999; Petersson et al., 1999a,b).

The regressors used for block designs are box-car functions re
ecting the blocks,

convolved by a canonical HR (Bandettini et al., 1993). If the durations of blocks are

long compared to the HR characteristic, exact modeling of the HR is uncritical for

the inferential analysis. For event-related designs the situation is entirely di�erent.

The time course of functional activity is not as completely prescribed by the exper-

imental paradigm as in block design. Thus adaequate regressor functions necessary

to detect the weak component of functional activity1 are hard to predict indepen-

dently of the fMRI data. A method to estimate adaequate regressor functions from

the fMRI data set is revisited in the following paragraph.

1. The typical S/N of functional imaging in an 1.5T scanner is 1-5%. Regression analysis
with the box-car shaped regressor function re
ecting the block design reduces the noise
by temporal averaging within blocks.
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5.2.2 Signal Averaging and Data Analysis

To achieve a noise reduction in ER fMRI selective averaging has been proposed by

Dale and Buckner (1997):

h = XT y (5.1)

where h is the sampled HR, y stands for the signal measured at a voxel, and X is

the design matrix re
ecting the event timing during the experiment.

Current inferential data analyses for ER fMRI uses families of regressor functions

generated by a canonical HR impulse response function systematically shifted in

time. Since for short events the sensitivity of the analysis depends critically on a

good model of the HR, Dale (1999) had proposed to estimate the HR response from

the data set to be analyzed. He used univariate linear signal estimation based on

ordinary least square (OLS) �ts

hOLS = (XTX)�1XTy; (5.2)

To take into account in
uences between events, Burock and Dale (2000) employed

univariate linear signal estimation based on maximum likelihood (ML) estimation:

hML = (XTC�1n X)�1C�1n XT y: (5.3)

where Cn denotes the covariance of the noise. Burock and Dale (2000) used equation

5.3 as regressor in a modi�ed approach of inferential data analysis.

5.2.3 Increased Resolution by Oversampling

In state-of-the-art fMRI scanning the lower limit on the repetition time (TR) is

methodologically prescribed. Since di�erent slices cannot be acquired simultane-

ously, TR grows proportionally with the number of slices in the measurement

volume. Because the time constant of spin relaxation is �xed, the time required

for a slice measurement cannot be arbitrarily reduced. The current limit is about

TR ' k � 80 ms, with k the number of slices. As �rst suggested for cardiac fMRI,

oversampling can virtually increase the intrinsically low temporal resolution of

multi-slice ER fMRI2. Oversampling means that each type of event is recorded

repeatedly, say r times, each event repetition sampled with a di�erent latency. The

sampling time points can either be randomly jittered, or equidistantly distributed in

the interval TR. The latter we refer to as equidistant oversampling. In such sampling

schemes the latency is varied between 0 and TR(1� 1=r) in steps of TR=r which

increases the e�ective sampling rate from 1=TR to r=TR. Josephs et al. (1997) �rst

proposed equidistant oversampling for neuro fMRI (with r = 2). The method was

used for estimating HR functions (Miezin et al., 2000).

2. Oversampling critically relies upon the condition that repeated trials produce similar

functional activation, an assumption also made in conventional fMRI.
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5.2.4 Slice-Timing

The technical limitation in multi-slice fMRI that di�erent slices cannot be recorded

simultaneously causes the slice timing problem. This describes the fact that a

recorded volume is not an instantaneous picture in time. The di�erent slices are

recorded one after another in intervals of TR/k. While negligible with traditional

block designs, the slice timing di�erences matter for the investigation of event-

related designs.

The current method to solve this problem is a procedure called volume slice

timing that involves phase-shift manipulations in the data: A reference slice is

selected in the volume and all signals measured in other slices are phase-shifted3

to the sampling points of the reference slice, see �gure 5.1 a). Because the required

shifts of the phases are smaller than the sampling intervals of the signals, this

manipulation involves signal interpolation and the typical errors associated with

it, such as ringing and wrap-around e�ects, see (Schanze, 1995). The described

procedure is applied as a standard preprocessing step, often even before inferential

data analysis, where in principle the slice timing could be re
ected more properly

by shifting the regressors for each slice individually (Josephs et al., 1997).

5.3 Exploratory Analysis in Functional Imaging

For multivariate exploratory analysis of fMRI/PET data various methods have been

proposed, such as principal component analysis (Lai and Fang, 1999; Hansen et al.,

1999; Baumgartner et al., 2000a), indepedent component analysis (McKeown et al.,

1998; McKeown and Sejnowski, 1998; McKeown et al., 1999), and diverse temporal

clustering methods (Scarth et al., 1995; Baumgartner et al., 1997; Golay et al.,

1998; Baune et al., 1999; Goutte et al., 1999; Filzmoser et al., 1999; Fadili et al.,

2000), and see chapter Somorjai and Jamusz. The goal of these approaches is to

detect characteristic spatio-temporal properties in the data as much as possible

uninformed of a priori assumptions about the results.

Exploratory data can yield a reduced data set that still re
ects the important

properties in the data. For instance, cluster analysis approaches in functional

imaging usually apply temporal cluster analysis (TCA) i.e., they cluster the data

with respect to the shapes of the signal time courses. TCA partitions the data into

sets of voxels with similar time courses|clusters4. A cluster can be characterized

by its spatial pattern and by the cluster center, that is, the averaged time course.

3. Applying the Fourier-shift theorem, a phase shifting can be achieved by multiplying
with a complex exponential in Fourier space (Aguirre et al., 1998).
4. It has to be emphasized that a cluster resulting from temporal TCA is di�erent from
a spatially contiguent set of voxels (for instance, in functional maps), often referred to
as cluster. The �rst collates voxels of similar signal shape, but completely independent of
spatial positions. To avoid confusion we will refer to the latter as a spatial cluster.
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Exploratory data analysis was successfully applied for block design experiments,

see the comparison between di�erent exploratory and inferential data analysis

approaches in (Lange et al., 1999). However, few attempts have been made to apply

exploratory data analysis to ER fMRI, but see (Richter et al., 2000). For ER fMRI,

where inferential data anlysis is hampered by the lack of adaequate regressors,

exploratory data is particularly interesting.

5.4 New Technique for Exploratory Analysis of Event-Related fMRI

In this section we describe a new approach to characterize functional activity in

event-related fMRI. It relies on selective signal averaging as well, but applies ex-

ploratory analysis techniques (section 5.3) rather than univariate signal estimation

and inferential data analysis described in section 5.2.2. The �rst part of this section,

section 5.4.1, explains the data acquisition method, the second part, section 5.4.2,

the exploratory analysis algorithm and its application to ER fMRI data.

5.4.1 Data Acquisition and Slice Timing

5.4.1.1 Dense Latency Sampling

For increased temporal resolution we use equidistant oversampling of events as de-

scribed in section 5.2.3. Applying selective averaging (equation 5.1) after equidistant

oversampling yields signal time courses virtually sampled with a rate of r=TR.

Equidistant oversampling can have another interesting consequence for multi-slice

data acquisition that, as far as the authors are aware, has not been exploited before:

With the sampling rate chosen appropriately it can also resolve the slice timing

problem described in section 5.2.4; for r = k, that is the number of repeated events

is equal to the number of acquired slices, a dense sampling can be guaranteed. Dense

sampling means that for any slice measurement all the k�1 other slices completing

a volume have been recorded with the same latency during other repetitions of the

event. Thus, slice timing can be achieved just by data re-sorting, i.e., by rearranging

slices of same acquisition latency to new volumes. Re-sorting is done with respect

to a labeling of the measured data based on the event-related design matrix. Each

slice is labeled by the latency between the exact acquisition time and the event

with the largest in
uence on the signal. The labeling takes into account an assumed

delay until the maximum e�ect of an event is expressed in the HR. We used a 5s

time-to-peak interval of the canonical HR. The described methods are explained by

schematic pictures in �gure 5.1.

The combination of equidistant dense sampling scheme and data re-sorting we

call the dense latency sampling (DLS) technique (Wichert et al., 2001b). Like in

conventional ER fMRI the DLS technique leaves the freedom to schedule order and

onsets of events in the experiment in a pseudorandom manner. The advantage of

the DLS fMRI technique is that it provides volume slice timing without introducing
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Figure 5.1 Schematic views of the DLS method and phase-shift slice timing (example
with k = 7 slices per volume and r = 7 event repetitions). Picture a) shows the DLS data
acquisition scheme and the e�ect of phase-shift slice timing: Big squares symbolize the
acquisition of volumes. The horizontal extension corresponds to the acquisition time TR,
the vertical extension to the spatial axis perpendicular to the measured slices (as labeled
on the right margin of the �gure). The shaded squares in the background sketch volume
measurements taken at event repetitions. Latencies between events and measurements
were varied such that the interval of TR (marked by the bold horizontal arrow) is
equidistantly divided by sampling points (depicted by the downward arrows). Thus, the
oversampling rate is TR=r. Within the acquisition volume in the foreground the small
squares symbolize how di�erent slices are measured one after the other. The thin horizontal
arrows depict the e�ect of phase-shift slice timing (with slice 4 chosen as the reference
slice), the dashed rectangle symbolizes the resulting slice-timed volume. Picture b) shows
the result of the DLS-re-sorting. Bold rectangles denote the volumes assembled by re-
sorting with respect to the latencies between event and the individual measurements. The
numbers indicate the event repetition from picture a) indicating the origin of each slice.
In addition, the slices acquired during the �rst event are marked by shaded squares|they
are distributed over di�erent DLS volumes. Note, that the choice r = k, provides complete
volumes at each sampling point after re-sorting.

artifacts of the conventional slice-timing procedure (section 5.2.4). Particularly for

designs with long repetition times TR, when phase-shift artifacts become more and

more serious, the DLS technique o�ers an interesting alternative for slice timing. A

reliable method for volume slice timing is crucial for all sorts of exploratory analysis

methods such as principal/independent component analysis and cluster analysis.

5.4.1.2 Dense Latency Sampling at Lower Rates

As explained before, the full DLS technique requires an oversampling rate TR=r

equal to the single-slice sampling rate of the used measurement sequence. For com-

plex experimental paradigms, however, this requirement results in long durations

TLFeBOOK



5.4 New Technique for Exploratory Analysis of Event-Related fMRI 85

of experimental sessions. In such cases one might prefer a lower e�ective temporal

resolution, if achieved with fewer event repetitions.

A reduction of the sampling rate required for data re-sorting is possible by

combining DLS-fMRI with modest phase-shifting. The idea is to apply phase-shift

time slicing not only with respect to a single reference slice per volume. Instead one

can choose s > 1 reference slices spaced equidistantly over the volume. For each

slice only the data corresponding to the closest reference slice are used. These can

be arranged to complete volumes by DLS re-sorting as explained in section 5.4.1.1.

Compared with the traditional phase-shift slice timing the resulting interpolation

errors are smaller because the maximum phase-shifts involved are reduced from

TR=2 to TR=(2s)5. The combination of DLS-technique and phase-shifting can be

best explained with an example: For a measurement volume consisting of k = 21

slices, phase shifting is done for the reference slices 2; 5; 8; 11; 14; 17; and 20. The

result is s = 7 slice-timed zones in the volume, each zone comprising three adjacent

slices. The situation is again re
ected by �gure 5.1 where now each slice corresponds

to a zone of 3 slices and the measurement latencies stand for the latencies of the

reference slices. By DLS-re-sorting one can rearrange the di�erent zones to complete

slice-timed volumes. In this example the maximum phase-shift to be applied to the

data is reduced from 10�TR=21 in the standard slice timing technique (using slice

10 as reference slice) to 1 � TR=21 with the DLS technique. Thus, the required

event repetitions, as well as the e�ective sampling rate were reduced by a factor of

3 compared with the full DLS-scheme.

5.4.2 Exploratory Analysis for Event-Related fMRI

5.4.2.1 Restricted Cluster Analysis

The results of multivariate exploratory analyses like temporal cluster analysis

(TCA) depend on the selection of voxels included in the analysis. Therefore, removal

of voxels outside the brain using a simple threshold criterion for the mean signal

amplitude is a usual preprocessing step. The most assumption-free way to perform

data exploration is then to run TCA on the whole brain volume and over the

entire sequence of slice-timed volumes. While this provides a screening of the data

for detecting coarse artifacts, not all functionally induced spatio-temporal structure

might be segregated in clusters under such a broad scope. Particularly, event-related

responses, short in duration, and interspersed with regard to event type, are unlikely

to be detected by unrestricted TCA.

TCA can be restricted in space and time. By applying TCA only in a partial

volume of the brain one can focus on regions of interest, or disregard regions of

5. To further minimize interpolation errors, recent techniques such as the expansion with
phase-invariant Fourier-sets as base functions, or the inclusion of temporal derivatives
could be used, see (Henson et al., 1999; Josephs and Henson, 1999).
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no interest. For uncovering functionally related structure more speci�cally, one can

restrict TCA in the time dimension, i.e., inspect temporal segments of the data

that have been selected informed by the experimental paradigm. We used temporal

restriction for isolating e�ects from experimental conditions, in our case, from

di�erent event types. The selection of segments to be analyzed used the labeling of

the measurement sequence as described in section 5.4.1.1 (Wichert et al., 2001a).

In the reminder of this section we will brie
y describe two more technical topics

that are essential components of the data analysis technique, the clustering method

(section 5.4.2.2), and de�nitions of temporal and spatial similarity we used in

the cluster analysis and to assess and compare the clustering results (paragraph

5.4.2.3). After TCA is carried out for each conditions independently, these similarity

measures can be used to search for relations and di�erences in functional activity

of di�erent conditions.

5.4.2.2 Dynamical Clustering

As a number of previous studies have revealed, the standard clustering algorithm, k-

means clustering is not the right choice for high-dimensional fMRI data sets (with

hundreds of sampling points in time). The gradient-descent performed by the k-

means algorithm is a local minimizer that for high-dimensional data sets frequently

fails to �nd the global minimum, resulting in poor data �ts. An indicator for the

local minima problem of k-means clustering is a poor reproducability of the results.

The results depend strongly on the initialization of the cluster centers. With random

initialization6 repeated runs of k-means clustering on the same data set can lead

to quite di�erent partition results.

Therefore, alternative algorithms have been proposed, like fuzzy clustering

(Scarth et al., 1995; Moser et al., 1997; Baumgartner et al., 1997; Golay et al.,

1998; Fadili et al., 2000), hierarchical clustering (Goutte et al., 1999; Filzmoser

et al., 1999), and dynamical cluster analysis (DCA) (Baune et al., 1997, 1999).

In DCA the number of clusters is not �xed like with k-means clustering; cluster

centers are generated and anihilated during the data �tting process. A comparison

between k-means CA and DCA has shown that the reproducability of DCA is much

better (Baune et al., 1999). The problem with DCA is that it is computationally ex-

pensive. The advantage of dynamical cluster generation in DCA led us to a variant

of k-means clustering with dynamical initialization phase for the choice of cluster

seeds, very similar as the one proposed by Waldemark (1997). For a previously

speci�ed radius r the initialization phase generates a set of cluster seeds such that

for every data point at least one of the seeds is closer than r. The initialization is

completed after a single sweep through the data set where successively each data

point is assigned as cluster seed if all previously assigned seeds are farther away

6. In random initialization, the default used for k-means clustering, k data points are

picked at random as seeds for the cluster centers.
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than r. We will refer to the combination of k-means clustering with the described

dynamical initialization phase as K-MDI clustering. On the data of the working

memory study both methods, K-MDI and DCA, achieved similar results, but the

�rst was considerably faster. Therefore, in the following we will only report the

results provided by K-MDI clustering.

5.4.2.3 Assessment and Comparison of Cluster Solutions

TCA requires one strong a priori assumption which is the measure of temporal

dissimilarity (td) used for clustering. We used the Euclidean distance between two

time courses. Another commonly used measure, that only compares signal shapes

and entirely disregards absolute signal amplitudes, is based on the correlation

coeÆcient.

After completion of TCA there is the problem how to inspect, assess and interpret

the results in a systematic and fair manner. This requires quantitative description of

the results, i.e., of the properties of centers and spatial patterns of the clusters. The

td measure used during clustering can also be applied post hoc to the cluster centers

for assessing di�erences in the temporal signal shape. In addition, we used the

following de�nitions (Wichert et al., 2001a): The signal change homogeneity (SCH)

which is de�ned as the ratio between peak-to-peak amplitude of the cluster center

and mean standard deviation of signal amplitudes of the members of a cluster. The

temporal smoothness (TSM) which is de�ned as the relative spectral power in the

low frequency range of a time course. The spatial contiguity (SC) which is de�ned as

the relative number of adjacent voxels in a voxel set (presence of \spatial clusters").

The spatial similarity (0 � ss � 1) between two patterns which is de�ned as the

normalized overlap, i.e., the ratio between the numbers of voxels in the intersection

and the union of the voxel sets corresponding to the clusters. For a pattern b and a

pattern set A we call a 2 A best match to b, if a is the element with maximum spatial

similarity to b. For two pattern sets A and B we call a 2 A; b 2 B best-matching

pair, if a is best match to B and b is best match to A.

For inspection and interpretation of clustering solutions we select clusters based

on threshold criteria using the introduced measures. Functional activation can be

assessed by focussing on clusters with high values in SCH and TSM. The �rst

criterion selects clusters whose voxels homogeniously display signal changes of

the cluster center. To assess homogeneity of time courses in fMRI activity maps

Kendall's coeÆcient of concordance has been proposed (Baumgartner et al., 1999,

2000b). We prefer the SCH measure for cluster selection because it measures the

homogeneity of signal changes which are essential for characterizing functional

activity 7. A threshold on TSM is used to reject clusters whose signal shape cannot

be explained by in
uences mediated by the low-frequent HR.

7. For visual inspection of cluster homogeneity we display cluster centers with error bars

re
ecting standard deviation of signal amplitudes of the members.
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As an optional selection criterion one can require high SC. This rules out clusters

whose spatial patterns are scattered. Such rejection follows a common assumption

that meaningful fMRI activity occupies a larger region than the volume of a single

voxel (typically 1� 1� 3 mm3) and thus forms a spatial cluster8. This assumption

also underlies spatial smoothing of the data, a preprocessing step, that is often

applied before starting with data analysis (Xiong et al., 1995). Spatial �ltering, for

instance, with Gaussian kernels, enhances contiguous components in the signal by

spatial averaging. In our technique spatial clustering is used as post hoc criterion

to assess the result of temporal clustering9.

The measures ss and td will be used for various comparisons between conditions.

For instance, cluster results from two di�erent conditions can be checked for spatial

similarity. A spatially corresponding cluster pair (a best-matching pair) suggests

that similar regions are recruited by both conditions. Di�erences in the centers of

corresponding clusters indicate condition-speci�c changes of functional activation.

Size di�erences of corresponding clusters, however, cannot be interpreted directly.

Due to the global nature of the clustering process, the size of a cluster is in
uenced

by push-away e�ects from other clusters10.

5.5 The Working Memory Study

5.5.1 The Experimental Task and Data Aquisition

Five male and four female volunteers performed a delayed match-to-sample task in

the fMRI scanner. Experiment blocks consisted of 42 task events with two di�erent

event types pseudo-randomly shu�ed, one with low memory load (memory set with

1 letter) and one with high load (6 letters). Each event type occurred r = 21 times

during one experimental block. An event started with the visual presentation of

the memory set, a 2 � 3 array of the letters. For low load, a single letter to be

memorized in the array was marked with a di�erent color. The presentation lasted

for 1s and 3.5s for low and high load, respectively. To reduce confounding e�ects

in the following delay phase we adjusted memory set presentation time according

to the number of items to be remembered (0.5s per item plus 0.5s) as usually done

in behavioral studies (Richardson et al., 1996; Neath et al., 1999). After the delay

8. It is important to distinguish between spatial clusters, de�ned by voxel contiguities in

spatial patterns, and the clusters extracted by clustering signal time courses as described

in section 5.4.2.2. The latter are formed without any information about voxel contiguity. If

the voxel pattern forms a spatial cluster this re
ects the additional property that similar

time courses are found in nearby voxels.
9. We apply spatial smoothing for preprocessing only before group averaging to account

for imprecision of realignment and normalization and for interindividual di�erences in

functional localization.
10. Neighboring clusters will compete for data points, resulting in a repulsive interaction.
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period of 6s, a second visual stimulus was presented for 1.5s. It displayed a similiar

2 � 3 array containing one letter and �ve dummies. The subject had to press a

yes/no button deciding whether or not the letter was in the memory set previously

seen. Video goggles were used for visual presentation.

An experimental session consisted of two identical pseudorandom event blocks,

as described above. For one male subject the experiment block was repeated �ve

times. This data set was used in the single subject analysis. Data aquisition was

performed on a 1.5 T Siemens Vision scanner. A full brain volume consisted of

k = 21 slices and was sampled with TR = 1.9s.

5.5.2 Data Preprocessing and Analyses

We started data processing by motion correction using the realignment procedure in

SPM99 (http://www.�l.ion.ucl.ac.uk/spm). In a second step for each subject the

signals from repeated blocks were averaged. For assessing group e�ects the data

of eight subjects (four male and four female) where spatially smoothed (with a

Gaussian kernel of 8mm), normalized to the SPM Epi template, and averaged.

Having performed the experiment with the DLS-fMRI technique described in

section 5.4.1.1, there were two options for volume slice timing, DLS-re-sorting, or

the usual phase-shift method. DLS-re-sorting was provided by a self-implemented

program. For the purpose of comparison we also carried out the second option: The

common signal interpolation slice timing was performed by the routine available in

SPM99. Both, the phase-shifted and the DLS-re-sorted data set were analyzed in

two di�erent ways. We will use the following descriptors for di�erent exprimental

conditions: H denotes the high and L the low load condition in the working memory

task. Di�erent phases in the trials are denoted by s for memory set presentation,

d for delay phase, and t for the test or probe phase. Thus, the set of di�erent

experimental conditions is C = fHs;Hd;Ht; Ls; Ld; Lt; Pg, with P denoting pauses

between events.

For inferential data analysis regression analysis in the GLM was carried out with

SPM99. As regressors we used the box cars of the distinct experimental periods,

stimulation, delay and target, convolved with a canonical HR function, a gamma

function with a time-to-peak constant of 5s. The contrast functions we used in the

GLM will be given in the result sections using a notation with the elements of C.

For instance, Hd � Hs denotes the contrast function requiring a higher signal in

the delay than in stimulus during the high load condition.

Cluster analysis was applied on di�erent temporal segments of the data sets.

For overall data exploration we applied TCA on H&L, the data set containing the

measurements during both load conditions. Such overall data exploration revealed

for eight of the nine subjects scanner artifacts localized in the basal parts of the

brain. For assessing group e�ects we disregarded the regions with distorted signal

in the further analysis by spatial restriction of the cluster analysis. As described

in section 5.4.2.1, we applied TCA separately on two data segments: L with a

duration of 12s corresponding to the low load event; and H with a duration of 13.5s
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corresponding to the high load event. The cluster analyses yielded 20 clusters for

low load, and and 18 clusters for high load. In the following, these cluster sets will

be labeled by L1� L20, and H1�H18, respectively.

5.5.3 Results for a Single Subject

This section compares the results from di�erent data acquisition and analysis

techniques for a single subject. The two most contrasting analysis approaches we

employed were linear regression analysis (GLM) on the phase-shifted data set,

as the most conventional, and K-MDI clustering on the DLS-data, as the most

unconventional. If these extremes yielded agreeing results, we will not describe the

results produced by intermediate approaches, such as TCA on phase-shifted data, or

linear regression in the DLS data set. Overall data examination with TCA revealed

no obvious artifacts so that the whole data set could be examined.

Our �rst question concerned visual functional activity. In the GLM we looked

for voxels showing the same activation pattern in both load conditions, a higher

signal intensity under visual stimulation, in the periods s and t, than without visual

stimulation in the delay periods d. The binarized SPMt map is shown in �gure 5.2.

Figure 5.2 The SPMt map of the contrast function +Ls� Ld + Lt +Hs�Hd+Ht

(corrected with p < 0:05) in the signal interpolation slice-timed data.

TCA was applied on the H&L DLS-data. For comparison with the results of

standard GLM analysis we selected those clusters from the clustering result whose

centers had highest temporal similarity with the used contrast function11. Note,

however, that the selection of visual clusters was done post hoc, i.e., the formation

of clusters was uninformed of any target function. The spatial maps of the two

visual clusters are displayed in �gure 5.3. The two clusters had very similar signal

shape but di�erent signal amplitude levels.

11. A boxcar function convolved with a canonical HR function.

TLFeBOOK



5.5 The Working Memory Study 91

Figure 5.3 The clusters with highest temporal similarity to the contrast used in the

SPMt map displayed in �gure 5.2.

Figures 5.2 and 5.3 show quite similar spatial maps for visual stimulation in-

dicating that the time courses of visual stimulation were well preserved by both

time-slicing operations. Further, this result suggested that visual activity is so dom-

inant in the data statistics that it is lumped together even by a data exploration

completely uninformed about the functional paradigm.

Our second question addressed delay activity, the focus of our study. We concen-

trated on the high load, using the contrast function �Hs + Hd, and masked the

SPMt map exclusively by two other contrast maps: stimulus deactivation against

the baseline, i.e., �Hs+P , and second, higher delay activity during low load than

during high load, i.e., +Ld �Hd. For the single subject this search was negative,

neither in the slice-timed, nor in the DLS data set we were able to �nd signi�cant

delay activity with SPM or the exploratory analysis technique. Our negative result

of �nding delay-related functional activity in the single subject is in line with some

previous fMRI studies of working memory fMRI, however, there are also studies

reporting positive results.

Finally, we asked about functional activity related to both phases, delay period

s and probe phase t. We applied a contrast including target and delay in both

conditions against baseline +D+ T �P . The obtained SPMt map was exclusively

masked by the contrast function for visual activation (cf. Figs. 5.3 and 5.4).

The resulting map on the phase-shift slice-timed data is displayed in �gure 5.4.

Functional activity is scattered but shows higher spatial density in left parietal

regions and bilateral prefrontal regions.

To assess the in
uence of the slice timing methods on such a smaller e�ect,

we analyzed the DLS-re-sorted data set with the equivalent contrast function, see

�gure 5.5. Although the main spatial clusters agree, the maps di�er in detail. There

is less lateralization in the DLS-re-sorted data set than in the phase-shift slice-timed

data set. This example shows that e�ects less salient than visual stimulation are

in
uenced by the method of time-slicing.
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Figure 5.4 SPMt map of the contrast function +Ld+ Lt +Hd+Ht� P , exclusively
masked by +Ls� Ld+ Lt +Hs�Hd+Ht (corrected. p < 0:05). Height threshold T =
5.12, extent threshold k=0. Time-slicing done with phase-shift method.

Figure 5.5 SPMt map of the contrast function +Ld + Lt +Hd+Ht � P exclusively
masked by +Ls�Ld+Lt+Hs�Hd+Ht (corrected, p = 0:05). Height threshold T=5.04,
extent threshold k=0. DLS-re-sorted data.
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5.5.4 Results of the Group Analysis

A group analysis can reveal e�ects similarly expressed in several group members,

even if hidden by signal variability in individual data sets. The rationale of a group

analysis is simply that group e�ects add up, while those signal components are

averaged out that vary over the subjects.

Linear regression in the GLM was again used on the group data for cross-checking.

We used the same combination of contrasts in the GLM as for the single subject

analysis in section 5.5.3. Unlike in the single subject, where no functional activity

could be detected, delay activation was found in the group analysis, see �gure 5.6.

The cluster centers resulting from the TCA of the group data are displayed in

�gure 5.8. First we asked for spatial similarities between the high load clustering

results and the SPMt map of �gure 5.6. The best and the second best matches

to the SPMt map were the clusters H12 and H10, reaching together a spatial

similarity to the SPMt map of ss = 0:077. Their spatial maps are displayed in

�gure 5.7.

Figures 5.6 and 5.7 reveal a qualitative agreement. Both spatial maps were

dominantly located in the left superior parietal cortex (BA40), in regions at the

midline, superior frontal gyrus (BA6) and in the left prefrontal cortex (BA9).

Furthermore, the time courses of H12 and H10 were similiar to each other, and

showed, in fact, delay activity; a pronounced peak in the second half of the delay

period, see �gure 5.8. Thus, the TCA found components with qualitative spatial

Figure 5.6 SPMt map of the contrast �Hs+Hd, masked exclusively by Hs�P , and
by +Ld�Hd (corrected, p = 0:05). In the upper row the cursor position is in BA40, in
the lower row in BA9. Phase-shift time-slicing used.
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Figure 5.7 Spatial maps of H10 and H12, the clusters with highest spatial overlap

with the SPMt map of �gure 5.6. Both cluster centers show a pronounced peak in the

late delay period, see �gure 5.8. In the upper row the cursor position is in BA40, in the

lower row in BA9. DLS-re-sorting used for slice timing.

similarity to the SPM map. The detailed patterns of activity, however, deviated: the

spatial similarity ss between the TCA clusters and the SPMt stayed far below one,

and at some regions they disagreed considerably. The spatial cluster located in right

prefrontal cortex in the SPM map, for instance, had only some scattered voxels as

counterparts in the TCA result. Di�erences must be caused by the di�erent ways

of data analysis and preprocessing as well. One should be aware, that there is no

\gold standard" for analyzing these data. The mutual masking of contrasts used to

generate the SPMt map is just another way of exploratory data analysis.

The crucial question is now what the exploratory analysis technique based on

cluster analysis can reveal about the expression of delay activity exceeding the

scope of GLM-based data analysis. For the systematic assessment of the entire

clustering results we proceeded as described in the sections 5.4.2.3 and 5.4.2.1.

First, we selected clusters with high signal change homogeneity. The chosen selection

threshold was SCH � 2:6, which was surpassed by 7 clusters for high, and 8 for

low load condition. One low load cluster was excluded because of lacking temporal

smoothness. The cluster centers of 11 of the selected clusters are displayed in

�gure 5.8. Among the selected high load clusters were the previously described

\delay activity" clusters H12 and H10, but also H15, with quite similar activation

time course, peaked in the late delay. There were more clusters displaying activation

during the delay, however, with quite di�erent time course: The signal courses of

H2 and H16 show not only activation in the delay period but also in the phase of
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Figure 5.8 Cluster centers obtained by the analyses of high and low load trials. The
displayed clusters satis�ed our selection criteria based on the measures SCH and TCH

(de�ned in section 5.4.2.3). High and low load clusters are paired with respect to high
spatial similarity. Each pair a) to f) shows on the left the center for low load and on
the right the center for high load. The horizontal axes display latency time with respect
to stimulus onset (in seconds, t = 0 marks the canonical hemodynamic delay interval of
5s after stimulus onset). The curve onsets mark the begin of the phase s, the three bars
indicate transitions between the phases s, d, t and P. The vertical axes display relative
signal strength (in arbitrary units). Error bars represent the signal standard deviation
within the cluster. Below each diagram one �nds the name of the cluster, and in brackets,
the SCH value and cluster size (in voxels). The pairs a) to f) are ordered with respect to
decreasing spatial similarity (ranging from ss = 0:156 for a), to ss = 0:127 for f).

memory set presentation. The time course of H2 displayed an activity peak in the

late delay period quite similar to the cluster centers of H12, H10 and H15, but

there was a second activity peak in the preceeding period with visual stimulation.

Of course, voxels with such temporal behavior remain undetected by the d � s

contrast used in the GLM-based data analysis. Figure 5.9 shows the spatial pattern

of the cluster H2. The spatial pattern of cluster H2 was located in the upper left

and right occipito-parietal cortex, (BA19, BA40).

Cluster H16 showed a signal time course that was quite unique among the

clusters with increased activities in the delay. The signal was high during the visual

stimulation and the activity persisted without interuption almost until to the end
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Figure 5.9 Map of cluster H2. It was activated in the stimulus and had a second peak
in the delay. The cursor is set at the Talairach coordinates 27 -78.1 37.6 mm in BA19.

of the target period. The interpretation of this activation function is less clear since

the prolonged activity could just be a confounding e�ect from the preceeding phase,

but see discussion below.

So far, we have discussed the high load clusters showing pronounced e�ects in the

delay period. To study load dependencies, we checked for spatial correspondences

between high and low load clusters. We scored high/low load pairs with respect to

spatial similarity. The spatial similarities ranged between ss = 0:156 and ss = 0:0.

Interestingly, all 14 selected clusters belonged to the 10 high scored pairs, with

spatial similarities higher than ss = 0:098. Eight of the 10 high scored pairs

had a pairwise association, i.e., they were best-matching pairs, see de�nition in

section 5.4.2.3. Figure 5.8 shows the six pairs with highest spatial similarity. With

the exception of pair d), the clusters displayed in �gure 5.8 were best-matching

pairs. The pairs a) and d) associate the clusters H12 and H10 with the same low

load cluster L20. Note thatH12 andH10 were the both clusters with highest spatial

similarity to the GLM map, see �gure 5.7. The magnitudes of the spatial similarity

within pairs already indicated a substantial overlap region12 and a visually salient

similarity.

Interestingly, in many cluster pairs, a), b), d), f), we found high similarity in

signal shape and amplitude of the cluster centers. This indicated load-independent

activation time courses in the overlap regions of these cluster pairs. The strongest

load-dependency was observed in the overlap of pair c): While during low load

the activity was peaked in the late delay (L13), the cluster H16, described above,

showed persistent activity from stimulus to the end of the delay phase during high

load. Since quite clearly L13 displayed delay-related activity, the region where L13

overlapped withH16 was likely to convey delay-related neuronal activity also during

high load, even if this was unclear from the time course of H16 alone. The spatial

pattern of the overlap region of cluster pair c) is shown in �gure 5.10. It is spatially

clustered in the precentral gyrus (BA6), bilateral near the midline (SMA), and left

parietal cortex.

12. For instance, the overlap region of cluster pair c) is displayed in �gure 5.10.
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Figure 5.10 Voxels belonging to both clusters L13 and H16 of cluster pair c) showing
the most extreme load-dependency in the activation. The cursor is set at the Talairach
coordinates -2.2 1.4 61.0 mm in medial precentral gyrus (BA6).

Figure 5.11 Load-dependent delay period speci�c e�ect. This map shows the voxels
in the superset of high load clusters with delay peak (H10, H12, H15), but not in the
superset of low load clusters with delay peak (L4, L20). The cursor is set at the Talairach
coordinates 35.3 56.1 18.6 mm in the right BA10.

The spatial deviations within the cluster pairs cannot be interpreted directly,

see section 5.4.2.1. For a rough estimation how the global region of exclusive delay

activation changed with load we merged for each load all the clusters with the

typical activity peak in the late delay/early target (the clusters in the pairs a, b,

and d). The voxel ratio between high and low load was 1.27, indicating a slight load-

dependent increase of the activated volume. We asked for the spatial distributions

of load speci�c activation: The map of voxels with delay activation only in the high

load, shown in �gure 5.11, was clearly spatially clustered in prefrontal cortex and in

gyrus cinguli anterior. The map of voxels with delay activation exclusively during

the low load exhibited less pronounced spatial clusters located in premotor and

posterior parietal regions (map not shown here).
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5.6 Discussion

5.6.1 Relations to Other Exploratory Analysis Techniques for fMRI

A number of di�erent exploratory analysis methods have been proposed for fMRI,

e. g. cluster analysis, principal/independent component analysis, neural networks.

These exploratory approaches have demonstrated that for block designs functional

activity can be detected completely uninformed by the experimental paradigm, see

references in section 5.4.2.

For event-related designs involving short events and di�erent conditions, func-

tional activation is unlikely to be found completely uninformed of the paradigm.

Event-related e�ects are small compared to other signal in
uences and functional

recruitment of di�erent conditions might interfere with each other. Earlier studies

applying explorative techniques on event-related experiments used previous knowl-

edge about the task by introducing spatial constraints, i.e., restricting the analysis

to regions of interests (Richter et al., 2000). The incentive of our technique is to ex-

plore the whole brain, by relying on temporal constraints dictated by experimental

paradigm. In the case of the working memory study we applied TCA separately on

data segments that corresponded to di�erent load conditions.

Exploratory methods, though reducing raw data, still tend to produce data sets

rich in structure (like the clusters obtained from temporal clustering as involved

in our technique). Often, the a posteriori assessment of exploratory results is done

more or less ad hoc and the selection of reported clusters does not rely on fair data-

based criteria, but is biased by expectations about the results. We believe that a

crucial component of exploratory data analysis is a systematic and fair a posteriori

assessment of the reduced data sets. Therefore we introduced quantitative measures

and similarity relations to select, evaluate and interprete the TCA clusters. We

selected clusters with high signal change homogeneity SCH and high temporal

smoothness TSM to account for functional activity13. However, once thresholds

were �xed, all clusters were reported that full�ll the criterion.

The paradigm-informed application of TCA presented in this chapter actually

increased the diÆculty of a posteriori assessment. Instead of just one data partition

we had to deal with di�erent data partitions for each load condition. For a

systematic assessment of load-dependent e�ects we scored the spatial similarity

between cluster pairs. We found pairwise correspondences between most of the

previously selected clusters. Thus, the assessment of load-dependencies mainly

involved pairwise comparisons between clusters.

Various temporal clustering methods have turned out to perform well on fMRI

data, see section 5.3. Biased by our previous experience, we chose a dynamical hard

clustering algorithm (DCA) (Baune et al., 1999) and compared this approach with

13. In the displayed mean time courses we visualize by error bars the cluster homogeneity
proposed earlier (Baumgartner et al., 1999).
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faster clustering algorithms. Previously it had been shown that k-means cluster

analysis with random initialization of the cluster seeds has lower robustness than

DCA (Baune et al., 1999). We found that k-means clustering, if extended by an

dynamical initialization phase (Waldemark, 1997), can achieve similar results and

similar robustness as DCA. The dynamical initialization proved to be e�ective in

preventing the gradient-descent to terminate in local minima.

Volume slice timing is an inevitable step of data preprocessing for exploratory

data analysis based on temporal similarity. In common slice timing techniques

(Aguirre et al., 1998) the signal interpolation is a potential source of signal dis-

tortion. Since the detection of functional activation during a working memory task

with short delay is hard (low S/N), we wanted to eliminate as much as possible

sources of noise in data preprocessing. We proposed dense latency sampling (DLS)

that not only enhances time resolution by oversampling (Josephs et al., 1997; Miezin

et al., 2000), but provided slice timing without introducing any signal interpola-

tion errors. It should be noted that the re-sorting process of the DLS-technique

destroys the auto-correlation structure of signal components that are unrelated to

the events. However, this does not have a strong impact on the detection of event-

related activity.

5.6.2 Probing Delay Related Activity: Methodological Issues

The slow HR characteristic is the limiting factor for the temporal resolution of

regional cerebral blood-
ow-based techniques including fMRI. A serious problem

these techniques have with event-related data acquisition is to disentangle func-

tional activity from di�erent events following on each other in fast succession. In

the case of event-related working memory studies, delay related activity might be

confounded by the HR resulting from processes during the preceding presentation

period. A way to exclude this confound is to prolong the delay period { e.g. to 12s

{ and to consider only delay activity occuring not earlier than 4-5s after the onset

of the delay period, e.g. (Zarahn et al., 1997; Cohen et al., 1997; Postle et al., 1999;

Rypma and D'Esposito, 1999; D'Esposito et al., 2000). However, this approach has

major drawbacks, such as the qualitative changes of working memory with variation

of the delay period, and the fact that experimental sessions become quite long.

In this study we examined a delayed response task with a delay period of 6s. The

chosen delay length was still in the time domain of working memory most intensely

studied by other experimental methods. Though the delay duration was on the

short end of those examined by other neuroimaging studies, we were con�dent

to detect delay-related activity for a number of reasons. Visual experiments had

indicated almost linear summation for the hemodynamic responses of di�erent

events (Boynton et al., 1996; Buckner, 1998), and consecutive events have been

successfully resolved, even if their time delay was only about 2 � 3s (Kim et al.,

1997). Burock et al. (1998) demonstrated that at fast stimulus presentation rates

the hemodynamic responses could be estimated quite well. Moreover, confounding

due to the HR is only a problem if successive events activate the same regions. Small
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latencies (of the order of several hundreds of milliseconds) between di�erent regions

had been previously detected, for instance in regions involved in voluntary hand

movement (Wildgruber et al., 1997; Baune et al., 1999). To provide the optimum

power for detection of delay-speci�c activity, we tried to optimize experimental

paradigm, design, and the exploratory technique: i) In order to restrict in both

load conditions encoding processes to the period of memory set presentation, we

adjusted the presentation time according to the number of items to be remembered,

see section 5.5. ii) We eliminated possible distortions from signal interpolation by

applying the DLS method. iii) In the GLM analysis we checked for delay activity

against the activity level during stimulus presentation, and not against baseline.

iv) The exploratory technique was unbiased by a priori hypotheses about the signal

shape of functional activation. Such a bias reduces sensitivity in case of mismatch

between hypothesis and actual activation.

5.6.3 Results on Working Memory

We examined a delayed response task with 6s delay duration and two di�erent load

conditions (1 versus 6 letters). In a single subject we found functional activation

related to the phase including delay period and probe phase in parietal and

prefrontal regions. However, none of the techniques found purely delay-related

activation. The situation was di�erent in the data averaged over 8 subjects. Here

clear delay-speci�c activity was found, with the conventional slice timing and

analysis technique (�gure 5.6) and as well with the exploratory analysis technique

(�gure 5.7). Both analysis techniques located the delay activity accordingly in

typical working memory regions, inferior parietal left, superior frontal left, superior

medial (BA6) and bilateral prefrontal (BA9).

The exploratory technique yielded results going beyond those obtained by an

inferential technique, mainly because the former can characterize functional acti-

vation unbiased by expected signal shapes (regressors) or locations (anatomically

de�ned regions of interest14). Most delay-related activity found by the exploratory

data analysis had a particular transient signal shape, a peak in the second half of

the delay period (�gure 5.8 a,b,d,L13). In some clusters the peak width was some-

what wider and involved some of the target period too (�gure 5.8 b,H10). Since

all these time courses involved no high activity in the preceeding visual stimulus

period, confounding e�ects were no problem in indentifying these activity peaks

as delay-related. In pre- and sensomotoric regions delay peaks were found during

both load conditions (overlaps of the cluster pairs a, b and d in �gure 5.8). In other

regions delay peaks occurred load speci�cally: for high load in bilateral spatial clus-

ters in PFC, and in anterior cingulate (�gure 5.11). The latter regions seemed to

be particularly involved in working memory related processes during the delay pe-

14. Jhi and McCarthy (2000) studied signal time courses during delayed tasks averaged
over anatomically de�ned regions of interest.
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riod. Since the activation occured in the later part of the delay period, they might

participate in rehearsal as well as in preparation of the stored information to be

used in desicion making. The left lateralization of delay-related activity (seen in

Figs. 5.6 and 5.7) is in accordance to a number of studies on the processing of ver-

bal material, see for instance (Awh et al., 1996; Gabrieli et al., 1998; Smith et al.,

1997; Smith and Jonides, 1999).

Other clusters showed activity during the delay period as well, but the activation

also included the preceeding period of memory set presentation (�gure 5.8H2,H16).

The functional interpretation of these clusters relied on their detailed time courses

or on spatial relationships between clusters of the di�erent load conditions. One

cluster center (H2) exhibited two peaks clearly separated in time, one during

stimulus presentation and one during delay. This suggested that the delay activity

is no confound from the preceeding phase, but a true delay-related component. The

cluster was localized in bilateral superior parietal regions near midline. We conclude

that superior parietal regions are not only involved in perception and encoding, but

also in delay-locked processes of working memory, such as rehearsal. Another cluster

(H16) allowed no functional assignment based on its signal shape, the activity was

high during visual stimulation and persisted continously almost over the complete

delay period. But for this cluster the best-matching cluster from the analysis of low

load events (L13) showed peaked delay activity (�gure 5.11 c). Thus, voxels in the

overlap of H16 and L13 are likely to be involved in delay-related processes as well.

These voxels were located in BA6, precentral and left lateral (�gure 5.10). In BA6

the load dependency was largest during the period of visual stimulation. Thus, BA6

might participate in working memory maintainance, but its most important role is

more likely to be in encoding.

In this paragraph we summarized results obtained with the explorative technique

and how they can be interpreted in terms of process speci�c involvements of cortical

regions. A more complete description and discussion of the results in the context

of process speci�c theories of working memory (Baddeley, 1996), as well as the

relation to other working memory studies, will be subject of a forthcoming paper.

5.6.4 Conclusions

We have described a technique of exploratory data analysis for ER fMRI exper-

iments. The technique includes two components. The �rst component is a new

oversampling and data sorting scheme (DLS: dense latency sampling. The sec-

ond component is a paradigm-informed application of temporal cluster analysis

to event-related data combined with a systematic evaluation of the clustering re-

sults. A dynamical variant of k-means analysis (K-MDI CA) permitted rapid and

reproducible cluster analysis of the data.

The technique was used for a study of delayed response working memory. As a

reference, we also used standard techniques to evaluate the same data set. At a

macroscopic level, both methods gave a similar view of patterns of delay-related

approaches gave similar results about. Thus important features of the results can
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be extracted by methods that di�er in the type of underlying assumptions|

functional specialization versus functional integration. Furthermore, the exploratory

technique yielded results that the standard technique could not provide. The

exploratory technique was able to provide a global view of the spatio-temporal

structure associated with each di�erent type of event. Thus, it was possible to

assess involvement of disparate regions in di�erent process of working memory.

The time course of the delay-related activity that we found di�ered from that

measured with single cell recordings. The delay-related activity we measured

reached a peak over time while the �ring rates of individual prefrontal cells is

persistent, a pattern that is interpreted as memory maintainance. The di�erence

between the results might come from the fact that fMRI signals re
ect activity of

functionally diverse populations of cells that are involved in several processes. Such

processes could include rehearsal that sets in later in the delay and computations

that prepare the decision process.

In additon, our results suggest that superior parietal visual areas might be not

only involved in perception or encoding, but also in rehearsal or decision making.

This �nding is especially encouraging because the involvement of sensory areas in

decision processes has recently been found in electrophysiological studies of working

memory, see (Brody, 2002).

We hope to have been able to convince the reader that using exploratory anal-

ysis for event-related fMRI adds an interesting alternative to existing techniques.

Further we advocated that paradigm-informed application of TCA and systematic

assessment of clustering results allows exploratory data analysis without restriction

to regions of interest as by Richter et al. (2000). Finally, we proposed a solution

of the slice timing problem (a problem that must be solved before any type of ex-

ploratory data analyis can be done) that avoids artifacts introduced by the standard

method.

We believe it is important to add a �nal remark about one caveat of multivariate

analysis of fMRI at high temporal resolution. Current methods rely on the assump-

tion that synchrony of the hemodynamic response in di�erent voxels corresponds to

synchrony of the underlying neuronal activity. This assumption becomes more and

more questionable as temporal resolution is increased. Indeed, there is some evi-

dence that the delay of the hemodynamic response can vary with location (Aguirre

et al., 1998) and with type of stimulation (Friston et al., 1998). Thus, further ad-

vances in fMRI will depend on a better understanding of the relationship between

the hemodynamic response and patterns of neural activity.
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Functional magnetic resonance imaging can be used to study the networks of

neurons that underline di�erent behaviors. The blood oxygenation level-dependent

signal though, measures the activity averaged across heterogeneous population of

neurons with di�erent response characteristics. It is therefore often impossible

to infer the properties of the underlying imaged neural populations by simply

examining the fMRI signal. Here, we describe the use of an adaptation paradigm

to study the properties of neuronal populations beyond the spatial resolution of

fMRI.

6.1 Introduction

A fundamental goal of research in systems neuroscience is to understand the

neuronal mechanisms that underlie behavior, both at the level of single neurons
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and of neuronal ensembles. Substantial progress has been made in characterizing

the response properties of single neurons involved in sensory, motor and cognitive

functions (Barlow, 1972). In contrast, little is known about the collective properties

of contiguous or distributed networks of neurons that underlie brain mechanisms.

Imaging techniques such as functional magnetic resonance imaging (fMRI), o�er

global coverage and could therefore be used to investigate brain mechanisms at the

level of distributed networks of neurons. The fMRI signals are useful for studying

the global organization of brain circuits, but are far removed from measuring the

spike trains of individual neurons. In fact, recent studies have shown that the

blood oxygenation level-dependent (BOLD) signal is correlated more with local

�eld potentials and less with the average spiking activity of neurons (Logothetis

et al., 2001). However, spikes are thought to be the language of the brain and

the basic unit of neural computation. Therefore, the ability to combine fMRI with

single cell recordings is a promising approach for systems neuroscience as the two

techniques are complementary, providing information on di�erent spatiotemporal

scales. In addition fMRI can be used to localize putative brain circuits important for

a particular experiment of interest so that these sites can be subsequently studied in

depth with electrophysiology. Another limitation of standard imaging methods is its

low spatial resolution. Namely, the measured signal represents the activity averaged

across heterogeneous populations of neurons with di�erent response characteristics.

In most cases, it is therefore impossible to infer the properties of the underlying

imaged neural populations. Recent studies have suggested that it may be possible

to image brain activity organized in columns where nearby neurons have similar

properties (Kim et al., 2000a; Kim et al., 2000b; see also Logothetis, 2000 for a

critical evaluation). Even if this were the case, neuronal selectivity is not always

organized in large columnar structures. Thus, given the functional architecture of

the brain the conventional use of fMRI is rather restricted.

6.2 Adaptation Paradigm

Here we describe a novel adaptation paradigm that has been recently employed

to study the properties of neuronal populations beyond the spatial resolution of

fMRI. In this paradigm, suÆciently prolonged or repeated presentation of a stimulus

(adapting stimulus) results in decreased fMRI responses. Once the underlying

neuronal activity has been adapted, a test stimulus is presented which is either

identical to the adapting stimulus or di�ers from it in speci�c attributes, (e.g.

orientation, direction of motion etc). Stronger fMRI responses to the modi�ed test

stimulus rather than to the identical adapting test stimulus, indicate that neuronal

populations within the imaged voxels are involved in processing information about

the stimulus attribute along which the stimulus changed. To demonstrate more

clearly the reasoning behind the use of the adaptation paradigm we propose a

thought experiment as described in �gure 6.1.
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Figure 6.1 Thought experiment illustrating the use of an adaptation paradigm. (a)
Conventional imaging experiment. During a conventional sensory fMRI experiment re-
sponses under two stimulus conditions A and B are compared to each other. Since the
voxel of interest is composed of a heterogeneous population of neurons, i.e. not all neurons
have the same stimulus selectivity, the strength of the BOLD signal will be the same under
these two conditions. Therefore, this standard imaging experiment will fail to characterize
the properties of these neurons. In this case the black and gray outlined neurons prefer
stimuli A and B respectively. (b) Adaptation experiment. In this case stimulus A is shown
for a prolonged time (or repeated). This results in adaptation of the BOLD signal. After
presentation of stimulus B the signal shows a rebound, a sign of release from adaptation.
This is due to the activation of the gray neurons for which stimulus B is their preferred
stimulus. (c) In the control case of the adaptation experiment stimulus A is shown con-
tinuously instead of changing to stimulus B.
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The goal of the thought experiment is to identify whether a particular voxel

processes information about the direction of motion of a stimulus. If one were to

carry out a conventional imaging experiment and compare the activity of this voxel

under two stimulus conditions e.g. stimulus movement in two di�erent directions,

then no di�erence would be observed in the BOLD response signal (�gure 6.1a). This

would be due to the fact that this voxel is composed of a heterogeneous population

of neurons; that is the neurons within this voxel do not have the same stimulus

selectivity to motion direction. Therefore from such a standard imaging experiment,

one cannot deduce the properties of the underlying neuronal population.

Now consider the same experimental question studied with an adaptation

paradigm (�gure 6.1b and 6.1c). After repeated presentation of a stimulus moving

in the same direction of motion (e.g. leftward), the neuronal populations selective

for this stimulus will show progressively decreased amount of activity as a result

of adaptation. Thereafter, the direction of motion of the stimulus will change to

rightward and di�erent neurons selective for the new direction of motion will be

activated. This will translate to a higher BOLD activity compared to the case

when the stimulus motion direction remains the same (compare �gures 6.1b and

6.1c). Such a result would indicate that direction of motion of the stimulus is being

processed within this particular voxel. Similar experiments can be carried out to

investigate neuronal selectivity in relation to various visual attributes such as color,

orientation, shape etc. Below we describe monkey and human fMRI studies that

have used the adaptation paradigm to investigate the processing visual information

by neural populations.

The underlying neuronal mechanism of adaptation of the BOLD signal is cur-

rently not known. Neuronal adaptation is ubiquitously expressed in the properties

of single neurons throughout the nervous system, where the �ring rate of neurons

in a wide range of species typically decreases during continuous presentation of a

stimulus. For instance, the �ring rate of neurons processing motion show adaptation

during the presentation of a moving stimulus (Barlow and Hill, 1963; Ibbotson et

al., 1998; Maddess et al., 1988; Oyster et al., 1972; Vautin and Berkley, 1977) (von

der Heydt al., 1978; Lisberger and Movshon, 1999). Future experiments combining

electrophysiological recordings and BOLD imaging will be crucial to elucidate the

relationship between adaptation of the BOLD signal and neuronal activity.

6.3 Monkey fMRI Studies

fMRI in monkeys has several advantages including the ability to combine electro-

physiological recordings with BOLD measurements. In addition, monkey fMRI can

be used in combination with other invasive techniques like pharmacological manipu-

lations and lesion studies. Recently, high-spatial resolution (nanoliter voxel volume)

temporally resolved (as low as 20 msec segment acquisition times) fMRI has been

developed for monkeys (Logothetis et al., 1999) and fMRI adaptation experiments

have been designed to investigate motion processing (Tolias et al., 2001).
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Figure 6.2 Adapted from Tolias et al., 2001: (a) Visual stimulation, see section 6.3.1.
(b) Average time course of the BOLD signal in area V1 from a single slice (170 voxels, 20
repetitions). The signal is normalized to the baseline (dividing by mean activity during
the initial o�-condition) { a signal of 1.02 represents an increase of 2% from baseline.
(c) Same analysis as (b) but with no change in the direction of motion. The mean of
the distribution is not signi�cantly di�erent from zero (two-tailed paired t-test, p>0.7 for
V1 and two-tailed paired t-test, p>0.8 for area MT). The histograms inserted show the
distribution of the reactivation of the signal across all activated V1 voxels for 20 identical
stimulation trials. Description of the time courses, see section 6.3.2

TLFeBOOK



114 fMRI Adaptation: A Technique for Studying the Properties of Neuronal Networks

The methods and the measured data of the adaptation paradigm study (Tolias

et al., 2001) are displayed in �gure 6.2 and described in the two following sections.

6.3.1 Data Acquisition and Visual Adaptation Protocol

Two to three selected horizontal brain slices were imaged every second. Each slice

had a �eld of view of 128x128 voxels, with each voxel size 1 � 1mm2 in plane

resolution and 2 mm slice thickness. The used stimulus is depicted in �gure 6.2a:

Thirty s of the o�-condition were followed by 200 s of the ON-condition while the

polar was rotating continuously in only one of the two motion directions, i.e. either

clockwise or counterclockwise. In interleaved trials the direction of motion of the

polar was reversed after 200 s of stimulus onset and presentation continued for

another 100 s. At the point of transition in both cases the phase of rotation of the

polar was reset which was visible as a fast transient without a�ecting the BOLD.

Finally, 48 s of the o�-condition was presented.

6.3.2 Signal Time Courses Observed in Visual Areas

The typical time course of BOLD activity from area V1 is illustrated for a single

slice in �gure 6.2 (b and c, left). The �rst 30 s show activity during o�-condition.

Clockwise and counterclockwise arrows represent ON-conditions, with the polar

rotating counterclockwise and clockwise. The reactivation for each stimulation trial

was de�ned to be the di�erence between the mean signal for 30 s before and after

the change in the direction of motion across all activated voxels from V1. The

mean of the distribution is signi�cantly bigger than zero (two-tailed paired t-test,

p<0.05) indicating an increase in the BOLD signal after the change in the direction

of motion. For areas MT in �gure 6.2 (b and c, right) the mean of the distribution

is signi�cantly greater than zero (two-tailed paired t-test, p<10-4) when a change

in the direction of rotation occurs.

6.3.3 Results and Interpretation

Using an fMRI adaptation paradigm a distributed network of visual areas has been

identi�ed within the visual cortex of the macaque that processes information about

direction of motion of a stimulus.

The BOLD signal rises quickly to a peak after the onset of the stimulus, and then

adapts slowly while the polar stimulus is rotating in the initial direction of motion.

Following the reversal of the direction of motion of the stimulus, a second peak is

seen in the BOLD signal (rebound signal) that re
ects release from adaptation to

the initial direction of motion of the polar stimulus (�gure 6.2b, left). The existence

of this second peak demonstrates explicitly that direction of motion information is

re
ected in the BOLD signal. In the control condition the direction of motion of the

visual stimulus did not change (�gure 6.2c, left). In both the experiment and the

control conditions, the rotating polar was reset to its starting position 200 s after
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the onset of the visual stimulus. This stimulus transient did not in
uence the time

course of the BOLD signal (�gure 6.2c). An even stronger release from adaptation

was found in area MT (�gure 6.2b; right panel) consistent with the crucial role it

plays in the processing of information about the direction of motion of a stimulus

(Albright, 1984; Maunsell and Van Essen, 1983; Newsome et al., 1989; Newsome

and Salzman, 1993; Salzman and Newsome, 1994).

In addition, other visual areas (V2, V3, V3A and V4) were also found to

participate in the processing of the direction of motion (�gure 6.3a). The relative

strength of the rebound- versus the initial-signal varied across these areas, indicating

the di�erence in processing of motion signals among them (�gure 6.3b).
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Figure 6.3 Adapted from Tolias et al., 2001. Information about direction of motion
across di�erent visual areas (a) The mean initial and rebound �ltered responses (digital low
pass Butterworth 8 order �lter and cuto� frequency 0.125 Hz) for di�erent visual areas are
plotted in solid and dotted lines, respectively. These signals represent the mean across all
slices and experimental sessions. If the mean activity (from 11 to 20 s after stimulus onset)
from an individual slice for a particular visual area was less that two standard deviations
above the mean of the baseline (activity during 30 s of background stimulation) then this
response was excluded from the analysis. (b) BOLD directionality indices (r = Rebound-
response/Initial-response). For V1 mean r = 0.33 (standard error of mean; SEM=0.03),
for V2 mean r = 0.35 (SEM=0.06), for V2/V3 mean r = 0.37 (SEM=0.04), for V3A
mean r = 0.42 (SEM=0.16), for V3/V3A mean r = 0.43 (SEM=0.25), for V4 mean r = 1
(SEM=0.29), for MT mean r = 0.84 (SEM=0.15). The BOLD directional index in V1 was
signi�cantly smaller from both the index of MT and V4 (two-tailed paired t-test, p<0.001
for V1, MT comparison and two-tailed paired t-test, p<0.001 for V1, V4 comparison).
The BOLD directional indices for V4 and MT were not signi�cantly di�erent (two-tailed
paired t-test, p>0.05).
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6.3.4 Relations to Results from Single-Unit Electrophysiology

Monkey fMRI experiments allow semi-quantitative comparisons between known re-

sults from electrophysiology and the BOLD signal. When such comparisons were

made, the strength of the directional selectivity re
ected in the BOLD signal in

some visual areas such as V1 and V4 was found to be greater from an estimate

based on the number of strongly directional selective cells found in these areas. A

hypothesis has been proposed that could account for the apparent di�erence be-

tween the single unit electrophysiology and BOLD results (Tolias et al., 2001) that

is based on the numerous connections that exist among neurons within and between

brain areas. According to this hypothesis, neuronal selectivity is a function of the

state of adaptation. In this case neurons that under classical investigation may not

be directionally selective can manifest directional selectivity after adapting to di-

rectional stimuli. To demonstrate the principle behind this hypothesis, consider a

network of neurons where directionally selective cells activate other cells, so that

the latter group of neurons is classically non-directionally selective. This can be

achieved if heterogeneous populations of directionally selective cells converge to

provide balanced input to the non-directionally selective neurons (�gure 6.4a). The

directionally selective cells in �gure 6.4, show robust activity only when the pre-

ferred stimulus is presented in the visual �eld (�gure 6.4a). On the other hand, the

non-directional selective cells are activated when stimulated with either direction

of motion. However, after the network adapts to a particular direction of motion of

the visual stimulus, a change in the direction of motion will result in an increase in

the activity of the "non-directionally selective" neurons, thereby contributing to-

wards the rebound signal (�gure 6.4b). Therefore, one possible source for the higher

than expected BOLD directional index in visual areas such as V1 may be the dif-

ferent methodologies employed between the imaging and electrophysiology studies.

In the fMRI study adaptation was used to probe visual selectivity whereas the

electrophysiology experiments were carried out using standard selectivity mapping

procedures. Although there is no way to be absolutely sure that the relationships

between BOLD and known electrophysiology are not simply due to di�erences in

the transfer function between neuronal activity and hemodynamic response in dif-

ferent visual areas, the adaptation-dependent selectivity hypothesis can easily be

tested with standard electrophysiology. In fact, recent electrophysiology work pro-

vides evidence supporting the above hypothesis. Speci�cally, the orientation tuning

of complex cells in macaque V1 shifts as a function of the orientation of an adapting

stimulus (Muller et al., 1999; Dragoi et al., 2000).

TLFeBOOK



6.3 Monkey fMRI Studies 117

directionally selective neurons

non-directionally selective neurons

BOLD signal

Visual
stimulation

a

b

ti
m
e

Figure 6.4 Model of proposed interactions among neurons in a network, during adap-
tation, processing information about direction of motion. (a) Hypothetical classical direc-
tion selectivity experiments. Upper layer black and gray outlined circles represent neurons
which exhibit direction selectivity (e.g. MT cells) in the classical sense. Lower level gray
outlined circles represent neurons that do not exhibit classical direction selectivity (e.g.
most neurons in V1). The directionally selective neurons respond only when the preferred
direction of motion (leftward or rightward pointing arrow) is presented (black �lled cir-
cles). In contrast, the non-directionally selective cells respond equally during both visual
stimulation conditions. (c) The BOLD signals originating from both the directionally and
non-directionally selective neurons show an increase following a change in the direction of
motion of the visual stimulus. This is because of the input the non-directionally selective
cells receive from the directionally selective ones. One plausible implementation of such a
model could come about through feedback interactions, i.e. connections between areas MT
and V1. Other schemes including elaboration of local neuronal circuits are also possible.
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Neuronal adaptation is a fundamental principle of single cell physiology (Barlow,

1972). The extensive connectivity between neurons in a distributed hierarchical

network may mediate a change of neuronal speci�city in early visual areas as a

function of adaptation to high level visual attributes computed in the higher areas.

Neurons in early visual areas, currently thought to lack information about certain

attributes of the visual scene when tested classically, might nevertheless be able to

adapt speci�cally to those attributes. Thereby, neurons in early visual areas may

be recruited to encode changes along speci�c stimulus dimensions.

Recently, Kourtzi et al. (2001) investigated in monkeys by the same fMRI adapta-

tion paradigm as above how local image features are integrated into con�gurations

that may represent visual shapes. The adapting stimulus consisted of a rectangular

area �lled with randomly oriented line segments (noise stimulus) followed by one

of three test stimuli: a) a pattern identical to the adapting stimulus, b) a second

noise pattern where 1/3 of the line segments changed orientation randomly from

the original adapting noise pattern, and c) a pattern where the same line segments

changed orientation to form a collinear shape. Higher increased rebound signal dur-

ing the test phase for the collinear shape than the noise pattern identi�ed visual

areas with neurons that are selective for the global con�guration of shapes.

6.4 Human fMRI Studies

Human imaging studies have also employed the adaptation paradigm to de�ne the

functional neural properties of human brain areas involved in the processing of

the visual input. Speci�cally, recent human imaging studies tested whether the

neural populations in the early visual areas are tuned to visual features, such

as orientation (Boynton, 2001; Ress and Heeger, 2001) and direction of motion

(Huk and Heeger, 2001). To this end, observers were presented with gratings at a

speci�c orientation or motion direction. After exposure to this adapting stimulus,

observers were tested with the same stimulus in the same or in an orthogonal

orientation or motion direction. Decreased fMRI responses were observed in V1 and

MT/MST when the test stimuli were in the same orientation or motion direction as

the adapting stimulus, respectively. However, recovery from this adaptation e�ect

was observed for stimuli presented at an orthogonal orientation or direction of

motion. These studies suggest that the neural populations in V1 and MT/MST are

tuned to orientation and direction of motion, respectively. Similarly, recent studies

have shown stronger adaptation in MT/MST for coherently moving plaid stimuli

than for transparently moving gradings. These �ndings provide evidence that fMRI

adaptation responses are linked to the activity of pattern-motion rather than

component-motion cells in MT/MST (Huk and Heeger, 2001). Finally, selective

fMRI adaptation to color contrast has been reported in V1 (Engel and Furmanski,

2001). Thus, these studies provide evidence that the fMRI signal may reveal

neural selectivity in human visual regions similar to the selectivity established with

neurophysiological methods.
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Figure 6.5 Adapted from Kourtzi and Kanwisher, 2001. Shape Processing in the LOC:
Data averaged across 10 subjects showing adaptation e�ects in the LOC, that is decreased
responses for identical images of objects (compared to the responses for di�erent objects
in a trial. Adaptation is shown (upper panel) for images that have the same perceived
shape but di�erent contours due to occlusion. In contrast, no adaptation is shown (lower
panel) for images that when rendered stereoscopically have the same contours but di�erent
perceived shape due to �gure ground reversal (F indicates the shape perceived as the �gure
in front of the background for each image).
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Another set of human fMRI studies tested for selectivity to shape in higher

visual areas, which are thought to be involved in the processing of visual objects.

In particular, the lateral occipital complex (LOC), a region in the lateral occipital

cortex extending anterior in the temporal cortex, has been shown to be involved

in shape processing (Kanwisher et al., 1996; Malach et al., 1995). Recent human

fMRI studies have used adaptation to test whether neural populations in the LOC

show selectivity to visual properties of objects or whether they represent objects

independent of image changes. Adaptation across a change between two shapes

provides evidence for a common neural representation invariant to that change,

while recovery from adaptation suggests neural representations selective for speci�c

shape properties.

In particular, fMRI adaptation was used to test whether the LOC is involved in

the processing of object shape independent of low level image features that de�ne

the shape (�gure 6.5; Kourtzi and Kanwisher, 2001). An event-related fMRI adap-

tation paradigm was employed, in which a pair of consecutively-presented stimuli

was presented in each trial that lasted for 3 s. These studies showed adaptation in

the LOC when the perceived shape was identical but the image contours di�ered
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Figure 6.6 Adapted from Grill-Spector et al., 1999. Adaptation ratios are calculated
for each condition by dividing the mean signal in an epoch of that condition by the
mean signal in the di�erent epoch consisting of di�erent exemplars shown under the same
viewing conditions. A ratio of 1.0 indicates no adaptation. Ratios that were signi�cantly
less than 1.0, indicate signi�cant adaptation (p<0.01) and are marked by asterisks. Error
bars indicate one standard error of the mean (SEM). Note that both in LO (posterior
part of the LOC) and pFS/LOa (anterior part of the LOC) there is adaptation due
to repetitions of identical images. However, LO and LOa/pFs exhibit di�erent levels of
adaptation especially in the translation and size epochs (for details see Grill-Spector et
al., 1999). Abbreviations: Ident: repetitions of identical pictures. Trans: the same object
translated in the image plane. Size: the same object shown in di�erent sizes. Illum: same
object illuminated from �ve di�erent directions. View: same object depicted from di�erent
viewing angles around the vertical axis.

TLFeBOOK



6.4 Human fMRI Studies 121

(because occluding bars occurred in front of the shape in one stimulus and behind

the shape in the other). In contrast, release from adaptation was observed when

the contours were identical but the perceived shapes were di�erent (because of a

�gure-ground reversal). Consistent with these results, adaptation was also shown

for grayscale images and line drawings of the same objects (Kourtzi and Kanwisher,

2000). These results suggest that neural populations in the LOC may not repre-

sent simple image features, such as contours, but higher-level shape information

independent of image cues (i.e. shading and line contours).

Another human imaging study tested the e�ect of di�erent stimulus transforma-

tions, namely position, size, orientation, and illumination change, on the BOLD

signal in the LOC (�gure 6.6; (Grill-Spector et al., 1999; Grill-Spector and Malach,

2001). Adaptation was observed when the observers were presented repeatedly with

identical images of objects. Stronger recovery from adaptation was shown across

orientation or illumination changes compared to size and position changes. Inter-

estingly, adaptation e�ects across orientation and size changes were observed more

strongly in the anterior rather than the posterior regions of the LOC.

A particularly interesting aspect of repetition and adaptation is their relation-

ships to learning. Recent studies have used adaptation to test whether learning and

stimulus familiarity are associated with changes of the BOLD signal. Speci�cally,

event-related fMRI studies have shown decreased activation in temporal and frontal

areas for repeated presentation of objects (Buckner et al., 1998). This repetition

suppression e�ect has been observed for familiar (Henson et al., 2000) namable ob-

jects (James et al., 1999) and it has been reported to be rather long lasting (e.g. 3

days) (van Turennout et al., 2000). It has been suggested that this adaptation e�ect

is related to a psychophysical e�ect known as visual priming in which repeated pre-

sentation of a stimulus results in faster and more accurate observer performance in

visual discrimination or object naming tasks (Schacter and Buckner, 1998; Wiggs

and Martin, 1998). Neurophysiological studies (Miller et al., 1991; Li et al., 1993)

have also observed this repetition suppression e�ect and have proposed that it may

re
ect signals from neural populations that become smaller but more highly tuned

to speci�c shape properties after the repeated presentations of objects (Desimone,

1996). As a result these neural populations become more selective to the repeated

stimuli and may support more eÆcient behavioral responses. Finally, adaptation ef-

fects have been observed in higher cognitive tasks other than visual processing, such

as semantic classi�cation of objects (Buckner and Koutstaal, 1998) and procedural

motor learning (Karni et al., 1995). Taking these results together we can conclude

that the fMRI adaptation technique has been proven to be a useful tool for de�ning

the functional properties of human brain regions involved in visual analysis and for

investigating the representations of visual features and shapes that may mediate

higher cognitive processes.
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6.5 Discussion

Adaptation is a powerful tool for studying the properties of networks of neurons

with imaging techniques. Speci�cally, in this chapter we present evidence that

adaptation paradigms can be used in imaging experiments to characterize properties

of neuronal populations beyond the spatial resolution of current imaging techniques.

The validity of the adaptation technique is illustrated by results from monkey

and human fMRI studies. In particular, the adaptation experiments in monkeys

showed the existence of strong selectivity for information about the direction of

motion in area MT. These results are consistent with previous work using single

unit recording, microstimulation and lesion techniques showing the crucial role MT

plays in the processing and perception of stimulus motion direction (Albright, 1984;

Maunsell and Van Essen, 1983; Newsome et al., 1989; Newsome and Salzman, 1993;

Salzman and Newsome, 1994).

In addition, adaptation can reveal certain response properties of neurons beyond

those known from standard neuronal selectivity experiments. Unfortunately, the

relationship between the adaptation of the BOLD signal and neuronal activity is

currently not known. Recently, simultaneous recording of BOLD and electrophysio-

logical signals using microelectrodes have become possible (Logothetis et al., 2001).

Recording simultaneously the BOLD signal and electrophysiological activity dur-

ing adaptation is likely to provide further insights about the relationship between

BOLD and neuronal adaptation.
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We applied second-order blind identi�cation (SOBI), an independent component

analysis (ICA) method, to MEG data collected during cognitive tasks. We explored

SOBI's ability to help isolate underlying neuronal sources with relatively poor

signal-to-noise ratios, allowing their identi�cation and localization. We compare

localization of the SOBI-separated components to localization from unprocessed

sensor signals, using an equivalent current dipole (ECD) modeling method. For

visual and somatosensory modalities, SOBI preprocessing resulted in components

that can be localized to physiologically and anatomically meaningful locations.

Furthermore, this preprocessing allowed the detection of neuronal source activations

that were otherwise undetectable. This increased probability of neuronal source

detection and localization can be particularly bene�cial for MEG studies of higher

level cognitive functions, which often have greater signal variability and degraded

signal-to-noise ratios than sensory activation tasks.

7.1 Introduction

Magnetoencephalography (MEG) is a passive functional brain imaging technique

which, under ideal conditions, can monitor the activation of a neuronal population

with a spatial resolution of a few mm and with millisecond temporal resolution

(H�am�al�ainen et al., 1993; George et al., 1995). Typical signals associated with
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neuronal activity are on the order of one hundred fT, while the noise signals within

a shielded room tend to be much larger (Lewine and Orrison, 1995). Furthermore,

the intrinsic sensor noise is comparable in magnitude to small neuronal signals.

Therefore, what the sensors record during an experiment is always a mixture of

small neuromagnetic and large noise signals. This relatively poor signal-to-noise

ratio1 can a�ect the localization of neuronal activity.

Several independent component analysis (ICA) algorithms, such as second-order

blind identi�cation (SOBI) (Belouchrani et al., 1993; Cardoso, 1994), Infomax (Bell

and Sejnowski, 1995), and fICA (Hyv�arinen and Oja, 1997), have been applied to

EEG data (Makeig et al., 1996, 1997, 1999b; Jung et al., 2000a,b) and MEG data

(Vig�ario et al., 1998; Tang et al., 2000a; Vig�ario et al., 1999, 2000; W�ubbeler et al.,

2000; Ziehe et al., 2000; Cao et al., 2000). In both applications, ICA methods have

proven useful for artifact removal and for improving the signal-to-noise ratio (Jung

et al., 2000a,b; Vig�ario et al., 1998; Tang et al., 2000a). For general reviews of ICA

see Amari and Cichocki (1998); Cardoso (1998); Hyv�arinen (1999); Vig�ario et al.

(2000).

For MEG, in addition to separating various noise signals from the neuromagnetic

signals, SOBI and fICA have been shown to separate one neuronal source from

another between and within the same modality (Tang et al., 2000a; Vig�ario et al.,

1999, 2000). To localize functionally independent neuronal sources or to simulta-

neously localize and recover the time course of these neuronal sources, a variety of

algorithms have been proposed (Mosher et al., 1992; Kinouchi et al., 1996; Seki-

hara et al., 1997; Nagano et al., 1998; Mosher and Leahy, 1998; Uutela et al., 1998;

Mosher and Leahy, 1999; Schwartz et al., 1999; Sekihara et al., 2000; Huang et al.,

2000; Aine et al., 2000; Ermer et al., 2000; Cao et al., 2000; Schmidt et al., 1999).

Given their capability to separate noise and neuronal signals, ICA algorithms are

expected to bene�t all source localization methods by providing them with input

signals that are more likely to be associated with functionally independent neuronal

sources.

It was found, however, that the fICA-separated components yielded localization

results qualitatively similar to those arrived at without ICA preprocessing (Vig�ario

et al., 1999). Consequently, no substantial bene�ts from ICA were reported for

neuromagnetic source localization. As one of the strengths of ICA is its ability to

separate noise from the signals of interests, whether ICA could o�er any advantage

in source localization should depend on the signal-to-noise ratio in the sensor

data. The experiment reported by Vig�ario et al. (1999) was optimally designed to

produce strong and focal activation of a small number of neuromagnetic sources, and

therefore has high signal-to-noise ratios. Under such optimal conditions, ICA could

1. Unless otherwise indicated, we use signal-to-noise ratio in the sense de�ned in signal

detection theory. Signals refer to the neuromagnetic signal of interest. Noise refers to all

other signals including environmental and sensor noise and other background brain signals.
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not improve much upon the already good localization provided by conventional

methods.

In this chapter, we applied ICA to neuromagnetic signals with relatively poor

signal-to-noise ratios collected during cognitive tasks involving large trial-to-trial

variability in neuronal source activation and from a much larger number of sources.

We localized these neuronal sources using the equivalent current dipole (ECD)

modeling method (Neuromag) on SOBI-separated components, and on unprocessed

sensor data. We found that SOBI preprocessing resulted in the localization of neu-

ronal sources that could not be found when the dipole �tting method was directly

applied to the sensor data. In addition, the process of localizing separated com-

ponents required signi�cantly less subjective judgment regarding which sensors to

exclude from the analysis2 and at what time the dipoles are �tted. We suggest that

ICA methods can be particularly e�ective and eÆcient in the study of higher level

cognitive functions when the neuronal source activations are often characterized by

their greater degree of variability and lower signal-to-noise ratios.

7.2 Methods

7.2.1 Cognitive Tasks

We collected MEG data from four right-handed subjects (two females and two

males) during four visual reaction time tasks originally designed to study temporal

lobe memory functions (Tang et al., 2000b). These tasks are described in detail

in section 7.5. Here, we o�er a brief description. In each task, a pair of colored

patterns, one of which was the target, was presented on the left and right halves

of the display screen. The subject was instructed to press either the left or right

button when the target appeared on the left or right, respectively. In all tasks, the

target was not described to the subject prior to the experiment. The subject was to

discover the target by trial and error using auditory feedback (low and high tones

corresponded to correct and incorrect responses, respectively). All subjects were

able to discover the rule within a few trials.

The tasks di�ered in the memory load required for determining which of the pair

is the target. Task one served to familiarize the subjects with all visual patterns.

The subjects simply viewed the stimuli and were asked to press either the left or

right button at their own choice while making sure approximately equal numbers

of left and right button presses were performed. As such, task one placed little

memory demand on the subject. Task two involved remembering a single target

pattern which appeared on each trial paired with another pattern. Subjects pressed

the right or left button to indicate whether the target pattern was on the left or

2. It is a common practice to select 20{30 sensors over the brain region of interest for

dipole �tting.
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the right. Task three involved remembering multiple targets, each always paired

with the same non-target. Task four was the most complex. In task four, targets

were context sensitive in a circular fashion, as in the game rock-paper-scissors.

The amount of cognitive processing beyond the initial sensory processing increased

successively from task one to task four.

We used data from these complex cognitive tasks to evaluate the capability of

SOBI (see section 7.6.1) because of the relatively poor signal-to-noise ratios involved

in comparison to sensory activation tasks. Speci�cally, these tasks involved (1)

large visual �eld stimulation without the use of �xation points, (2) incidental

somatosensory stimulation as a result of button presses during reaction time

tasks, and (3) highly variable button press responses (because precisely what form

of the thumb movement should be make, how the mouse was to be held, and

where the hands should rest were not speci�ed.) These sources of variability in

visual and somatosensory activation can lead to poor signal-to-noise ratios in the

average responses, making it particularly diÆcult to localize the neuronal sources

from unprocessed averaged sensor data. The involvement of higher level cognitive

functions, memory demands, and the small number of trials (90 in most cases)

collected under each task condition, further decreased the signal-to-noise ratios in

the averaged sensor data. These tasks therefore o�ered a set of challenging datasets

in which the advantages of ICA methods could be revealed.

7.2.2 Selection of ICA Methods

In selection of ICA algorithms, one important consideration is the robustness of the

algorithm to sensor noise. Instantaneous and summary algorithms are two extremes

of ICA algorithms that di�er in whether each point in time is considered in isolation.

Instantaneous algorithms, such as Bell-Sejnowski Infomax (Bell and Sejnowski,

1995) and fICA (Hyv�arinen and Oja, 1997), make repeated passes through the

dataset and update the unmixing matrix in response to the data at each time

point. They are derived under the assumption that the signals are white, and their

results should therefore be invariant to shu�ing of the data. As a consequence of

this, they cannot take advantage of the temporal structure of each source as a cue

for correct separation. In contrast, summary algorithms �rst make a pass through

the data while summary statistics are accumulated by averaging; they then operate

solely upon the summary statistics to �nd the separation matrix. Some summary

algorithms collect statistic that allow them to make use of the temporal structure of

the sources as a cue for separation. More importantly, summary algorithms should in

general be relatively insensitive to sensor noise, because their summary statistics are

averages over time. The relatively poor signal-to-noise ratios in MEG data suggested

the choice of a summary algorithm rather than an instantaneous algorithm.

When it can be assumed that each source has a broad autocorrelation function,

as is the case with brain signals, the summary algorithm SOBI (Belouchrani

et al., 1993; Cardoso, 1994) can use this temporal structure as a cue and give

high quality separation while imposing rather modest computational requirements.
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SOBI extracts a large set of statistics from the dataset, which it uses for the

separation. Each of these statistics is calculated by averaging across the dataset,

which makes the algorithm robust against noise. The particular statistics calculated

are the correlations between pairs of sensors at a �xed delay, hxi(t)xj(t+ �)i. This

makes good use of abundant but noisy data, and most importantly, SOBI can

be tuned by modifying its set of delays (see section 7.6), allowing its users to

gently integrate a very weak form of prior knowledge, namely knowledge of the

length constant of the autocorrelation function. Although Bell-Sejnowski Infomax

and fICA have been previously applied to MEG and EEG data, and other ICA

algorithms, such as Contextual ICA (Pearlmutter and Parra, 1996) and Sparse

Decomposition (Zibulevsky and Pearlmutter, 2001) are locally available, we selected

SOBI as our ICA method based on the above properties of SOBI. However, we have

not conducted a systematic comparison of ICA methods for our MEG data.

7.2.3 Second-Order Blind Identi�cation

SOBI is considered blind as it makes no assumptions about the form of the mixing

process. In other words, SOBI does not attempt to solve the inverse problem or use

the physics of the situation in any way. It does not try to estimate currents, or know

about Maxwell's equation or any of its consequences. The only physical assumption

made about the mixing process is that it is instantaneous and linear.

Let x(t) be an n-dimensional vector of sensor signals, which we assume to be an

instantaneous linear mixture of n unknown independent underlying sources si(t),

via the unknown stationary n� n mixing matrix A,

x(t) = A s(t) (7.1)

The ICA problem is to recover s(t), given the measurements x(t) and nothing

else. This is accomplished by �nding a matrix W which approximates A�1, up to

permutation and scaling of its rows. SOBI assumes that the sources are statistically

independent in time, and not necessarily orthogonal in space. It �nds W by

minimizing the correlation3 between one recovered source at time t and another

at time t+ � .

The particular set of delays � we used were chosen to cover a reasonably wide

interval without extending beyond the support of the autocorrelation function.

Measured in units of samples, at our 300 Hz sampling rate, the delays4 were

3. For justi�cation for this minimization, see Discussion.
4. The choice of delays can a�ect the results of separation. Depending on the types

of sources activated by the behavioral task, the selection of delays can have complex

interactions with the latency of evoked responses. This is an important topic and deserves

a separate study.
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� 2 f 1; 2; 3; 4; 5; 6; 7; 8; 9;

10; 12; 14; 16; 18;

20; 25; 30; 35; 40; 45; 50; 55;

60; 65; 70; 75; 80; 85; 90; 95; 100 g:

Each recovered si(t) also has a sensor space projection that gives the sensor

readings of si(t) (see section 7.6.2). This sensor projection can be displayed as a

�eld map, and can be used as input to source localization algorithms. For example,

after calculating its sensor projection, we can repackage a component for localization

by Neuromag dipole modeling tools.

SOBI shares a number of weaknesses with all ICA methods: they all assume that

there are as many sensors as sources; they all make some sort of independence

assumption; they all assume that the mixing process is linear; and they all assume

that the mixing process is stable. See section 7.4.3 for further discussion.

7.2.4 Localization of Separated Components

SOBI was performed on continuous5 122-channel data collected during the entire

period of the experiment, sampled at 300 Hz, and band-pass �ltered at 0.03{100 Hz.

It generated 122 components,6 each a one-dimensional time series with an associated

�eld map (see section 7.6.2). Each component potentially corresponds to a set of

magnetic �eld generators.

Event triggered averages were calculated from their continuous single-trial time

series for all 122 separated components, where the triggering events were either

sensory stimuli or behavioral responses. For the speci�c tasks used here, there were

typically 10{20 components in each experiment which showed responses locked to

either stimuli or to button presses. Those with stimulus- or motor-locked responses

were candidate neuronal generators, since they showed task related activation.

Those with responses locked onto other external events, such as eye blinks or heart

beats (detected using EOG and EKG), were considered known noise sources. The

rest were treated as non-task-related noise sources.

For a task related component, if its �eld map and time course were consistent with

known neurophysiological and neuroanatomical facts, we considered it a neuronal

component re
ecting the activity of a neuronal generator. For example, if the �eld

map of a component shows activation over the occipital cortex and the visual

stimulus triggered average for this component contains an evoked response that

peaks between 50{100ms, then it is considered to re
ect the activity of a visual

source in the occipital lobe. Using this procedure, neuronal and non-neuronal

5. ICA algorithms can be applied to cross-trial averages rather than continuous data, as
in Makeig et al. (1999c).
6. ICA algorithms produce the same number of components as there are channels in their
input.
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generators were separated and identi�ed (Tang et al., 2000a,b). A dipole �tting

method was then applied to the identi�ed neuronal components. The input to

the dipole �tting algorithm (Neuromag, x�t, least square) was the �eld map, and

the output was the location of ECDs projected onto the subject's structural MRI

images.

This same dipole �tting algorithm was used for localization with and without

SOBI preprocessing. Because our goal was to evaluate whether ICA methods can

improve source localization, we were not concerned with whether the least square

dipole �tting was as good as more recent more sophisticated source modeling

methods. Our interest was not in localization accuracy per se, but in the comparative

performance of a given localization method when used alone, as opposed to being

coupled with ICA.

In statistical comparison, to match the common practice in source modeling

without SOBI, a subset of channels (20{30) over the region of interest were selected

for dipole �tting with both methods. To localize each separated component, we

chose channels over the region of interest showing stronger responses to the source.

For localization without SOBI (the conventional practice) we began with the

channels selected for SOBI localization, and then modi�ed the selections to obtain a

more dipolar �eld pattern.7 If these modi�cations improved the results then we used

them, otherwise we used the original channel selections. This procedure gave the

conventional practice an advantage because the event-triggered-average responses

were cleaner in the separated components than in the raw data. In fact, the raw

data were often so noisy that no channels could have been selected by following

the same procedure on the raw data, and therefore no localization could have been

performed without the channel selection information enabled by SOBI.

To localize a component, we used its �eld map as input to the dipole �tting

program.8 One can select any time during the average time window to �t the

dipole because the dipole solution for a component is invariant to time (see

section 7.6.2). This independence of localization results from the dipole �tting time

can signi�cantly simplify the dipole localization process, making it less subjective

than dipole localization directly from the sensor data, without the use of ICA.

Using the conventional method, the time at which a dipole was �tted a�ects the

�nal estimated dipole location.

To localize neuronal sources without SOBI preprocessing, we used event triggered

sensor data (averages) as inputs to the dipole �tting program. We �rst chose the

time with the largest evoked response amplitude within the time window of interest.

7. A �eld map is judged dipolar by visual inspection (Hari and Salmelin, 1997). If it
contains two sets of concentric contour lines, the �eld is considered dipolar. If it contains
more or less than two sets, the �eld is not dipolar.
8. Theoretically, one sampling point in time across all sensors contains all information
about a source. In practice the Neuromag software (x�t) needs a time series of at least
several samples. Therefore, we calculated the event-triggered average for the component
of interest and made an input .�f �le containing the average.
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Then a subset of channels (20{30) over the region of interest were selected. When

the contour maps were single-dipolar for the selected channels at the time chosen, a

single dipole �t was performed. Otherwise multiple dipoles were �tted. For details of

the process, see the x�t manual. In the examples shown in the �gures, all channels

were used in the dipole �tting to show that SOBI can identify dipolar sources

without any channel selection.

7.3 Results

7.3.1 SOBI Decomposition: Time Courses and Sensor Projections

Using SOBI, continuous MEG signals from 122 channels were separated into 122

components. Each of these components has a time course and an associated sensor

projection. The time course can be averaged across multiple trials using either the

visual stimulus onset or the button press as a trigger. It can also be displayed as an

MEG image (e.g. �gure 7.6, right), a pseudo-colored bitmap in which the responses

of a given component during an entire experiment can be parsimoniously displayed

(Jung et al., 1999). Typically, each row represents one discrete trial of stimulation

and multiple trials are ordered vertically from top to bottom. See section 7.6.3 for

details on the process of giving sensible units to the components. As shown in the

overlay plots of the visual stimulus and button press triggered averages for all 122

components (�gure 7.1c,d), only a small fraction of the components showed task

related responses. For clarity, these task related components are shown separately

in �gure 7.1a,b.

The components can be displayed in the sensor domain in �eld maps (�gure 7.6,

left) or in a fullview graph using the Neuromag software x�t (�gure 7.2{7.5). The

sensor projections for two components are shown: one for a visual component

(�gure 7.2) and the other for a sensory-motor component (�gure 7.3). It is clear

that the two components are projected selectively to sensors over the visual and

sensory-motor cortices. For comparison, the fullview plots of the sensor projection

from the raw data (mixture of all components) are shown in �gure 7.4{7.5.

7.3.2 Energy in Separated Components

We divided components into the following six categories: visual, somatosensory,

ocular artifacts, 60 Hz, sensor jumps, and other.9 Visual and somatosensory com-

ponents were identi�ed by their clearly visible evoked responses in the MEG images

and by their activation patterns in the �eld maps (see following sections). These

9. Sensor jumps refer to a peculiar property of the SQUID sensors which cause an

enormous and nearly instantaneous DC shift. \Other" includes any components that do

not belong to the �rst �ve categories.
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Figure 7.1 Event-triggered averages for groups of separated components (N = 90

trials). (a) Components showing visual-stimulus-triggered responses, triggered on

visual stimulus onset. (b) Components showing button-press-triggered responses,

triggered on button presses. (c) All components, triggered on visual stimulus onset.

(d) All components, triggered on button presses.

neuronal components were further veri�ed by the consistency between the response

latency, shown in the MEG images, and the spatial location of sensor activation,

shown in the �eld maps (see subsequent sections). Ocular artifact sources were

identi�ed by their characteristic activation patterns in the �eld map and their large

amplitude responses in the MEG image (�gure 7.6a), which match signals measured

by EOG (not shown). The 60 Hz components were identi�ed by the clearly visible

60 Hz cyclic activity in the MEG images in �gure 7.6b (see also Tang et al., 2000a).

Sensor jump components were easily identi�ed by the single-sensor activation in

the �eld maps and sometimes by high contrast lines or dots in the MEG images

(�gure 7.6c).

For these �ve types of identi�ed components, we calculated the amount of energy

in each (see section 7.6.4), across all subjects and all tasks, using a window of

200ms after either the visual stimulus presentation or the button presses10 (see

10. Window speci�cation will a�ect the calculated energy.
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20fT/cm
200ms

Figure 7.2 Sensor projection of component showing selective sensor activation

over the occipito-parietal cortex (N = 90 trials, visual stimulus triggered averages).

Compare with unseparated data in �gure 7.4.

section 7.6.4). This window was chosen to cover all neuronal responses. The amount

of energy in a single component varied widely, between 0.17% and 71% of the

total energy across all sensors. This range di�ered among the �ve categories of the

components (Table 7.1). The energies in the visual and somatosensory components

(using visual stimuli and button presses as triggers respectively) were 10.0�1.02%

(N = 29) and 4.65�0.74% (N = 10). Using button presses as triggers (because

subjects tended to blink after the button press responses), the energy in the ocular

artifact components were 24.86�4.67% (N = 16). Since both 60 Hz signals and

sensor jumps were not task related, the energy in these two types of components

were calculated using both visual stimulation and button presses as triggers and

then averaged. The total energy in the 60 Hz sources was 10.19�1.73% (N = 32)
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50fT/cm
200ms

Figure 7.3 Sensor projection of component showing selective activation over

the right fronto-parietal cortex (N = 90 trials, button press triggered averages).

Compare with unseparated data in �gure 7.5.

and the total energy in the sensor jump sources was 1.72�0.28% (N = 13). The

ocular artifact and 60 Hz components have the most energy, while the energy in

the neuronal components represented 10% or less of the total.

7.3.3 Localization of Separated Components: Examples

Using the sensor projection of task-related components as input to standard Neu-

romag dipole �tting software (x�t), we localized separated components. In conven-

tional source localization practice, very often only 20{30 channels are selected for

source localization. To show how well SOBI can isolate one neuronal source from

another without relying on channel exclusion, throughout section 7.3.3{7.3.4, we
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100fT/cm
200ms

Figure 7.4 Visual stimulus triggered averages of unseparated data, N = 90 trials.

Aberrant sensors are shaded.

Table 7.1 Range of energy accounted for (% of total energy across all channels)

by the �ve categories of components

Category Minimum Maximum

Visual 0.21 24

Somatosensory 0.47 14

Ocular Artifact 0.57 72

60 Hz 0.26 44

Sensor Jump 0.17 12
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100fT/cm
100ms

Figure 7.5 Button press triggered averages of unseparated data, N = 90 trials.

Aberrant sensors are shaded.

generated the �eld maps, contour plots, and dipole localizations for components

using all channels, i.e. without channel exclusion. To make the localization re-

sults comparable between using SOBI and without using SOBI, a subset of 20{30

channels were selected in dipole �tting in section 7.3.5, which provides statistical

comparisons.

7.3.3.1 Visual Component

As the tasks involved simultaneous bilateral visual stimulation and judgment of its

spatial location and identity, we expected SOBI to isolate visual components in the

occipital, parietal, and temporal lobes. Components with visual evoked responses

indeed showed �eld map activation over occipital, parietal and temporal lobes (not

TLFeBOOK



142 Independent Components of Magnetoencephalography: Localization
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Figure 7.6 Field maps and un�ltered MEG images for (a) an ocular artifact

component, (b) 60 Hz component, and (c) sensor jump component.

shown). For the particular stimuli used in these experiments, temporal sources were

more variable in their precise location and temporal pro�les. In contrast, occipito-

parietal lobe activation appeared to have the greatest signal amplitudes and were

reliably identi�ed across multiple subjects. �gure 7.7 left shows the dipole location

of one such occipito-parietal visual source along with its �eld map and time course.

7.3.3.2 Somatosensory Component

As the tasks involved button presses, we expected both somatosensory and motor

responses from the sensory and motor areas. �gure 7.7 middle shows the dipole

location of one component in the left hemisphere. Notice that this dipole is near

the region where one �nds dipoles from median nerve stimulation (Hari and

Forss, 1999; Tesche and Karhu, 1997), and that the median nerve services the

thumb. The time course of the response suggests that this response is unlikely

to be a response from the motor cortex because the activations associated with

motor preparation are typically estimated to be 385�85 ms before the movement

onset (Hoshiyama et al., 1997), much earlier than the latency shown here. The
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Figure 7.7 Examples of separated visual (top left), somatosensory (top right),

and auditory (bottom) components, shown in (a) event triggered averages (N = 90

trials, stimulus onset at t = 0), (b) �eld maps, (c) contour plot, and (d) the �tted

dipole superimposed on the subject's structural MRI images. All sensors (channels)

were used in generating the contour plots and �tting the dipoles.
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motor-evoked sensory responses with an estimated onset time of approximately

20�30 ms after the onset of movement (Hoshiyama et al., 1997) matched best

to our button-press-elicited responses. Therefore, this component corresponds to

a somatosensory source instead of a motor source. In contrast to typical fast-

rising somatosensory responses recorded using median nerve stimulation (Hari and

Forss, 1999; Tesche and Karhu, 1997), the slow-rising somatosensory responses

recorded here were elicited by stimulation to the thumb due to button presses.

These temporal pro�les are expected to di�er, due to the di�erence between a very

brief and focal electric shock and a much longer and distributed stimulation to the

thumb and its surrounding areas.

7.3.3.3 Auditory Component

As the tones were presented as feedback, auditory responses were expected from

the auditory cortex. In contrast to the typical auditory responses recorded during

a simple auditory oddball task, the auditory responses from our experiment were

most likely to overlap with and perhaps to be a�ected by both visual, motor, and

somatosensory processing. As both auditory responses and somatosensory responses

were triggered on the button press, auditory responses needed to be distinguished

from the somatosensory sources. The spatial location of their �tted ECDs in the

auditory cortex and their longer response latencies were suÆcient to allow the

disambiguation. �gure 7.7 right shows one unilateral auditory source, with slow-

rising and long response latency, localized to the vicinity of the lateral �ssure, as

expected for auditory activation (Cansino et al., 1994).

The relatively longer response latency (�180ms) may be due to particular

aspects of the task (see section 7.5). Speci�cally, in order to process the auditory

feedback the subjects must �rst switch their attention from the visual to the

auditory modality, and this takes time. Furthermore, the subjects must process

and further interpret the auditory stimulus in evaluating their behavioral response

and registering the correct target stimuli into memory. This additional processing

may account for the di�erence in the temporal pro�le of the auditory responses.

As the tones were bilaterally presented, one would expect auditory components

with �eld maps showing bilateral activation. The auditory components recovered

in these experiments, however, were unilateral for two subjects and bilateral for the

other two. This variability across subjects could be due to di�erences in cerebral

dominance of auditory processing. A di�erence in the temporal aspect of the left

and right auditory processing could be expected to lead to the identi�cation of two

separate left and right components.

In comparison to visual and somatosensory components, auditory components

were much more diÆcult to identify, perhaps due to the above described complexity

and associated variability. Although in most cases auditory components could be

identi�ed from visual inspection of the �eld map and event-triggered averages, the

signal-to-noise ratios were too poor to permit consistent dipole �tting across tasks
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and across subjects. Therefore, the following more detailed and systematic analysis

of localization results will focus on only visual and somatosensory sources.

7.3.4 Cross-Task and Cross-Subject Reproducibility in Localization of

Components

To show how reproducible the localization of components can be across the four

cognitive tasks, we examined separated visual components from one subject. Across

tasks, two occipito-parietal visual sources were reliably localized within the same

subject from two separated components. For both visual sources, the time course of

the response is highly repeatable across multiple tasks, as shown in the overlay plot

(�gure 7.8a,b). The earlier visual responses were almost identical in both amplitude

and response latency (�gure 7.8a), while the later responses varied only in amplitude

across tasks (�gure 7.8b). Given the number of subjects in this study (four), we do

not have the statistical power to draw any conclusions about whether the amplitude

increases monotonically with the complexity of the task.

These visual components identi�ed from di�erent tasks were localized to similar

locations within the occipital and parietal lobes, as shown in �gure 7.8c,d, in

which �tted dipoles from multiple experiments are superimposed on the subject's

structural MRI images. Notice that in the �eld map, the right side of the head is

shown on the right whereas in the structural MRI images, following radiological

convention, the right side is shown on the left.

To show how reproducible the localization of components can be across subjects,

we examined separated somatosensory components from three subjects.11 In all

three subjects, we reliably identi�ed two components (left and right) with button

press locked responses in the somatosensory areas. �gure 7.9 shows the time course,

�eld map, contour plot, and �tted dipole for the somatosensory components in

the right hemisphere of the three subjects. Notice the cross-subject similarity in

the �eld maps, contour plots, and dipole locations (somatosensory cortex in the

anterior parietal lobe, post-central sulcus).

7.3.5 Detecting Expected Neuronal Sources with and without SOBI

To o�er quantitative comparison in the relative performance of source localization

with and without SOBI, we attempted to identify and localize the most reliable

occipito-parietal visual source, and both the left and right somatosensory sources

in all subjects and all tasks from separated components and from the unprocessed

data. As all four tasks involved bilateral presentation of visual stimuli, we expected

that at least one visual source would be found active in the occipito-parietal

cortex. Similarly, because separate left and right button presses were required by

11. The fourth subject did right-hand index-mid �nger button presses which di�ered from

the rest of the subjects.
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Figure 7.8 Cross-task consistency in the temporal pro�le (a,b) and dipole location

(c,d) of two visual components. Occipital (a,c) and occipito-parietal (b,d) sources

can be identi�ed and localized consistently across multiple tasks (overlay). (a,b)

Visual stimulus-triggered averages from 4 visual tasks, overlayed (N = 90 trials

per task). (c,d) Corresponding single ECDs for visual sources in (a,b). Notice

consistency of the dipole locations across-tasks. Notice also the temporal pro�le

of the earlier visual source (a) did not di�er across tasks, but the amplitude of the

later visual source (c) was modulated by the task conditions.

all the tasks, we also expected that at least one left and one right somatosensory

source would be active. For these expected sources, we attempted to localize the

source with dipole �tting from separated components and from the raw sensor data

(without SOBI). The percentage of the expected sources for which dipole solutions

can be found are compared for localization with and without the aid of SOBI.

For a component to be considered a detectable neuronal source, there must be an

evoked response that clearly deviates from the baseline in the averaged component

data. We rejected all components with any ambiguity on this criterion. Secondly,

the components must have a �eld map showing focal activation of sensors over the

relevant brain regions (occipito-parietal cortex and anterior parietal cortex in this

study). Thirdly, the contour plot for the component must be dipolar. Finally, the
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Figure 7.9 Somatosensory sources can be identi�ed and localized consistently

across multiple subjects. Similar to �gure 7.7 except the responses were triggered

by the button press.
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�tted dipole must be in the relevant cortical areas. For a source to be considered

detectable using the conventional method of localization, one must �rst identify a

sensor at which the largest evoked response is found. Secondly, the contour plot

must be dipolar at the peak time. Finally, in a few cases when multiple dipole

solutions are needed, at least one of the dipoles is localized to the expected brain

region.

7.3.5.1 Visual Sources

Among all separated components, for each subject and each task, we were able to

identify and localize an occipito-parietal visual source with a single dipole (100%

detectability). These occipito-parietal components invariantly had very focal sensor

projections (see �eld maps in �gure 7.7b), and the contour plots were invariably

dipolar even without channel selection (for example, see �eld map and contour plot

in �gure 7.7a). Single dipoles were �tted for these occipito-parietal components. A

subset of channels over the occipito-parietal lobe (20{30 channels) were used for the

purpose of fair comparison with the conventional analysis method without the aid

of SOBI. The peak response latencies of these components (N = 16) were 139.0�7.6

and the dipole coordinates (X,Y,Z) were 7.5�2.6, �49.4�3.2, and 68.6�3.4 mm.

Using the conventional method of source localization directly from the unsepa-

rated sensor data, dipoles were �tted using the same or similar subset of channels

selected over the occipito-parietal cortex. In all subjects and all tasks, the conven-

tional method identi�ed and localized at least one visual source in the occipito-

parietal lobe (100% detectability). Of a total of 16 expected sources (4 tasks by

4 subjects by 2 sides), 10 could be �tted with a single dipole, 4 were �tted with

two-dipole solutions, 1 was �tted with a three-dipole solution, and 1 was �tted with

a four-dipole solution. When multiple dipole solutions were needed, at least one of

them was localized to the occipito-parietal cortex. This variation in dipole solutions

may re
ect some individual di�erences in visual processing occurring outside of the

occipito-parietal cortex. The peak response latencies of these occipito-parietal vi-

sual sources (N = 16) were 143.6�5.5 and the dipole coordinates (X,Y,Z) were

4.21�4.8, �55.89�2.68, and 59.42�3.83 mm.

7.3.5.2 Somatosensory Source

From components of all subjects and all tasks, with only two failures we were able to

identify and localize 22 out of the 24 expected left and right somatosensory sources

with a single dipole (3 subjects by 4 tasks). All 22 somatosensory components had

very focal sensor projections (see �eld maps in �gure 7.9b) and their contour plots

were all highly dipolar even without channel selection (for example, see �eld map

and contour plot in �gure 7.9.) Single dipoles were �tted to these components, with

a subset of channels over the somatosensory cortex (20{30 channels) selected for

the purpose of fair comparison with the conventional analysis method. The peak

response latencies were 3.3�4.2 and 0.8�3.4 ms for the left (N = 11) and right
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(N = 11) somatosensory sources, respectively. The dipole coordinates (X,Y,Z) were

�39.4�2.4, 7.8�2.7, and 84.6�1.7 for the left and 45.69�2.1, 5.6�2.2, and 84.1�3.1

for the right somatosensory sources.

Using the conventional method of source localization directly from the unsepa-

rated sensor data, dipoles were �tted using the same or similar subset of channels

selected over the somatosensory cortex. Only 9 out of 24 expected left and right

somatosensory sources could be identi�ed and localized following the conventional

method of identifying a peak response in the averaged sensor data. Of 24 sources

expected (3 subjects by 4 tasks by 2 sides), in 7 cases no visible peak response

could be identi�ed in any of the sensors. Of the remaining 17 cases in which peak

responses could be found in at least one sensor over the somatosensory cortex, 4

did not have dipolar �elds, and 4 resulted in dipole locations outside of the head

or in the auditory cortex. Single dipole solutions were found in only 9 cases. The

peak response latencies of these somatosensory sources were �5.2�2.5 for the left

hemisphere (N = 5) and 1.6�1.8 for the right hemisphere (N = 4). The dipole

coordinates (X,Y,Z) were �43.3�3.9, 12.1�5.6, and 82.8�3.8 for the left 42.3�5.5,

15.9�2.7 and 89.9�1.4 for the right sources.

7.3.6 Statistical Comparisons

There was no signi�cant di�erence in the detectability for the occipito-parietal

source measured with and without SOBI. In contrast, SOBI preprocessing resulted

in an increase in the detectability of the expected somatosensory sources (Chi

Square, test p < :0001) (�gure 7.10). The peak response latencies for the visual

and somatosensory sources did not di�er signi�cantly when measured using and

without using SOBI. For the visual sources, the precise dipole locations estimated

with and without SOBI did not di�er in the X and Y dimensions but nearly di�ered

signi�cantly in the Z dimension (p = 0:05). For the somatosensory sources, the

precise dipole locations di�ered signi�cantly in the Y dimension (p < 0:05) for the

left source and in Y and Z dimensions for the right source (p < 0:05). As the true

accuracy of source locations cannot be determined from these experiments without

a depth-electrode, no quantitative comparisons can be made concerning accuracy.

7.4 Discussion

We identi�ed and localized visual and somatosensory sources activated in four

subjects during four cognitive tasks. Due to the relatively large variability involved

in highly cognitive tasks and the small number of trials collected, these tasks

were characterized by relatively poor signal-to-noise ratios in the sensor data

and therefore were ideal for evaluating di�erential localization performance. Our

results showed that despite the large variability associated with the visual and

somatosensory activations during these particular tasks, SOBI was able to separate

identi�able visual and somatosensory components that were further localized to the
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Figure 7.10 SOBI increased the detectability of expected neuronal sources for the

more variable somatosensory activation.

expected cortical regions. The physiological and neuroanatomical interpretability

of these components across multiple sensory modalities and their cross-subject and

cross-task reproducibility establish SOBI as a viable method for separating and

identifying neuronal populations from MEG data during fairly complex cognitive

tasks. Most importantly, we showed that SOBI preprocessing o�ered a special

advantage when the evoked responses in the sensor data had poor signal-to-noise

ratios. Speci�cally, for the highly variable somatosensory activation evoked by

incidental stimulation during button presses, SOBI preprocessing resulted in a

greater percentage of the expected somatosensory sources being identi�ed and

localized than the same dipole modeling method applied directly to the raw sensor

data.

7.4.1 SOBI Reduced Subjectivity and Labor in Source Localization

In conventional source localization, there are two major sources of subjectivity:

the selection of dipole �tting times, and the selection of channels. These are both

eliminated by our proposed procedure. First, because each component has a �xed

�eld map, the dipole �tting solutions for components were not sensitive to either the

time at which the dipoles were �tted nor to the sensor used for determining the time

of �t (see section 7.6.2). Within this map, each sensor reading re
ects only activation

due to a single source generator, or several temporally coherent generators as

opposed to activation due to a combination of multiple generators, each with a

di�erent time course. Therefore, using SOBI, there is no need to subjectively select

a time from a sensor for dipole �tting. Secondly, simple components, which have

�eld activation over early sensory processing areas, were almost always dipolar even
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without channel selection/reduction.12Therefore, channel selection is not necessary.

One way to see the di�erence between dipole localization with and without SOBI

processing is to view SOBI as a more automatic and more objective tool that allows

the isolation of sensor activation due to an already isolated functionally independent

generator. The reduced subjectivity and time required to �nd dipole solutions can

make data analysis and training of new researchers for MEG more cost-e�ective.

7.4.2 SOBI Improved Detectability of Neuronal Sources

The advantages of ICA algorithms in general have been shown in a number of

applications to EEG and MEG data. First, these algorithms can separate neuronal

activity from various artifacts (Makeig et al., 1996; Vig�ario et al., 1998; Tang et al.,

2000a; Ziehe et al., 2000; Jung et al., 2000a,b), such as eye blinks. In contrast to

methods that rely on the use of a template, ICA removes these artifacts without

any prior assumptions about the nature of the waveforms. Secondly, ICA isolates

physiologically and behaviorally meaningful components that describe previously

unavailable aspects of neuronal activity (Makeig et al., 1997, 1999b;W�ubbeler et al.,

2000). Finally, ICA-separated neuronal sources are less contaminated by various

noise sources, which allows single-trial response detection (Jung et al., 1999; Tang

et al., 2000b; Carter et al., 2000). ICA methods have been able to distinguish the

absence of rhythmic activity from the absence of phase locked rhythmic activity

(Makeig et al., 1999a).

We have shown that SOBI separation of the data resulted in a greater detectabil-

ity of somatosensory sources, but did not increase the detectability of visual sources.

This modality-speci�c improvement in source detectability depended on the signal-

to-noise ratios in the sensor data. Because visual responses could be clearly iden-

ti�ed from the raw sensor data even without the aid of SOBI, it would not have

been possible for SOBI to improve the detection rate. In contrast, the relatively

poor signal-to-noise ratios in the raw sensor data for the somatosensory responses

caused many failures in identifying a sensor at which a peak response occurred and

in determining the peak response time. Under this poor signal-to-noise condition,

in all but two cases, SOBI preprocessing resulted in separated components with the

characteristic �eld map, characteristic temporal response pro�le, and the correct

dipole location for a somatosensory source. These �ndings suggest another advan-

tage that ICA algorithms can o�er: improving the ability to detect and localize

neuronal sources that are otherwise diÆcult to detect or are undetectable under

relatively poor signal-to-noise conditions.

This improvement has signi�cant practical implications. First, brain regions

involved in higher level cognitive processing tend to show greater trial-to-trial

12. SOBI also separated out many complex components which have multiple patches

or very broad �eld activation. These components may re
ect synchronized activation in

multiple brain regions. Functional connectivity may be inferred among these brain regions.
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variability in their activation, and therefore, have lower signal-to-noise ratios in the

average responses. Second, behavioral tasks that bear greater resemblance to real

world situations tend to involve greater variability in both stimulus presentation

and subsequent processing. Finally, studies of clinical patients and children are often

limited by the length of the experiment, and therefore, often provide data from

a limited number of trials. Our results suggest that ICA may o�er an improved

capability in detecting and localizing neuronal source activations in these diÆcult

situations.

7.4.3 Assumptions of SOBI

Here, we discuss assumptions of particular relevance to SOBI and MEG, rather

than general issues in ICA. Like all ICA algorithms, SOBI assumes that the mixing

process is stable. In the context of MEG, a stable mixing process corresponds to

assuming that the head is motionless relative to the sensors. For this reason head

stabilization can be particularly important in MEG when ICA is used. SOBI also

assumes that there are at least as many sensors as sources. For us, this is not a

serious problem, as our MEG device has 122 sensors, yet we recover only a few dozen

sources that show task-related evoked responses. The observation that only a small

number of sources are active during typical cognitive and sensory activation tasks

is consistent with the results of studies using both EEG (Makeig et al., 1999b) and

MEG (Vig�ario et al., 2000). The crucial assumption in ICA is that of independence.

For a thorough discussion of the independence assumption as it pertains to MEG,

see Vig�ario et al. (2000). Here, we will discuss independence only in the context of

the particular measure of independence used by SOBI.

One problem that EEG and MEG researchers have with the independence

assumption arises from the fact that if one computes correlations between EEG

or MEG sensor readings over multiple brain regions during behavioral tasks, one

would �nd that some brain regions have non-zero correlations. A good example

of correlated brain activity is the apparently correlated evoked responses from

neuronal populations in multiple visual areas along the processing pathway during

a visual stimulus presentation. Based on such an observation, one could conclude

that as the statistical independence assumed by ICA is clearly violated, the results

of ICA must not be trusted. Yet, we have shown that SOBI was able to separate

visual components that clearly correspond to neuronal responses from early and

later visual processing stages that are correlated due to common input (Tang

et al., 2000b). Others (Makeig et al., 1999b; Vig�ario et al., 2000) have produced

behaviorally and neurophysiologically meaningful components under a variety of

task conditions.

As di�erent ICA algorithms use the independence assumption di�erently, we o�er

the following explanation that applies speci�cally to SOBI. One needs to recognize

that correlation is not a binary quantity. Consequently, neither is violation of the

independence assumption. The important question is not whether the assumption is

violated but whether the assumption is suÆciently violated such that the estimated
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neuronal sources by SOBI are no longer meaningful. The way SOBI uses the

independence assumption is to minimize the total correlations computed with a

set of time delays, as described in section 7.6.1. As such, each delay-correlation

matrix R� generally makes only a small contribution to the objective function. For

example, the correlation one would observe between V1 and V2 responses could

be high only at or around one particular time delay, say in R20ms. In optimizing

its objective function, SOBI can leave a particularly large non-zero o�-diagonal

element, say the one corresponding to the 20ms delayed correlation between V1

and V2, when minimizing the sum squared o�-diagonal elements across all the

components and time delays. Therefore, this particular method of maximizing

independence is not necessarily incompatible with a large correlation at a particular

time delay between two sources sharing common inputs.

Most ICA algorithms, including SOBI, minimize some objective function. It is

possible for the optimization process to �nd a poor local minimum. In general,

poor results can result from many underlying causes: poor experimental design,

poorly conducted experiments, poor head stabilization, poor optimization within

the ICA algorithm, violation of assumptions, etc. No amount of attention to any

one possible problem can validate ICA-based methods for processing functional

brain imaging data. As with any statistical procedure, the real issue here should

not be whether assumptions are violated at all, but whether the algorithms can

robustly produce separated components that are behaviorally, neuroanatomically,

and physiologically interpretable, despite some violation of the assumptions under

which the algorithms were derived. For example, t-tests are very robust against the

violation of normality assumption and are therefore regularly performed on data

which are not guaranteed to be Gaussian. Only empirical results can give con�dence

that a method is correctly separating the MEG data.

7.4.4 Summary

Establishing that (1) SOBI preprocessing can lead to the identi�cation and local-

ization of physiologically and anatomically meaningful neuronal sources and (2)

SOBI preprocessing can increase the success rate in detecting and localizing neu-

ronal source activation under poor signal-to-noise conditions is only the �rst step in

demonstrating the usefulness of ICA algorithms to the analysis and interpretation

of MEG data. The next steps include systematically studying the e�ect of ICA on

source localization when ICA methods are combined with more sophisticated source

localization algorithms (Ribary et al., 1991; Aine et al., 1998; Mosher and Leahy,

1999; Schmidt et al., 1999) and exploring the possibility of measuring single-trial

response onset times in ICA separated neuronal sources.

Acknowledgments

This Chapter is reprinted with permission of The MIT Press from Neural Compu-

tation 14, no. 8 (Aug. 2002): 1827 ' 1858.

TLFeBOOK



154 Independent Components of Magnetoencephalography: Localization

Supported by the National Foundation for Functional Brain Imaging and NSF

CAREER award 97-02-311, an equipment grant from Intel corporation, the Albu-

querque High Performance Computing Center, a gift from George Cowan, and a

gift from the NEC Research Institute. We thank Ole Jensen for tips on packaging

the separated components for the Neuromag software, Mike Weisend for granting

us access to his data, and Robert Christner for technical support. We also thank

Lloyd Kaufman, Zhonglin Liu, Claudia Tesche, Cheryl Aine, and Roland Lee for

their comments and discussion.

7.5 Experimental Details

Continuous 122-channel data were collected during the entire period of the following

four tasks sampled at 300 Hz and band-pass �ltered at 0.03{100 Hz. A total of four

visual reaction time tasks were performed by each subject.

In all tasks, each trial consisted of a pair of colored abstract block compositions,

one of which was the target, presented symmetrically and simultaneously on the

left and right halves of the screen. Subjects were instructed to respond as quickly

and as accurately as possible with a left or right hand mouse button press when

the target stimulus was presented to the left or right side of the display screen

respectively. The button press elicited an auditory feedback indicating whether a

correct or incorrect response was made.

Stimuli were either presented on 15 inch VGA computer monitor at a distance

of 48 inch and occupying 7.6Æ of visual angle or back-projected by an LCD

projector positioned so that the stimulus occupied the same visual angle. In all tasks

the interval between the motor-response and the next stimulus presentation was

3.0�0.5s. Auditory feedback was composed of 2000 Hz and 500 Hz tones indicating

correct and incorrect choices respectively.

The four tasks di�ered from each other primarily in their de�nition of the target

stimulus which a�ected how much processing was required for target determination.

The precise duration of each task varied slightly across subjects, depending upon the

subject's reaction time. Therefore typical durations are given below. The �rst task

(stimulus pre-exposure) consisted of 270 trials. It took the subjects approximately

30 minutes to perform this task. The other three tasks (elemental discrimination,

trump card, and transverse patterning) each consisted of 90 trials that were subsets

of the same stimuli contained in the �rst task. Each of the these three tasks took

approximately 10 minutes to complete. For each subject, all four experiments

were performed on the same day but each in a separate session. Instructions

for each experiment were given immediately prior to that experiment. Subjects

were permitted to move between experiments. Head positions were recalibrated

at the beginning of each experiment. Subjects performed the four experiments in

order of increasing task demand: stimulus pre-exposure, trump-card task, elemental

discrimination task, and transverse patterning task.
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7.5.1 Stimulus Pre-Exposure Task

There were no pre-de�ned relationships between stimuli and button presses. No

feedback was given to the subjects about any choice. The subject was instructed

to examine both stimuli and then make a roughly equal number of right and left

button presses, without consistent alternation between right and left responses. The

sequence of presentation was random. Presentations of each stimuli on the left and

right sides of the video screen were counterbalanced.

7.5.2 Trump Card Task

Subjects were instructed to discover by trial and error which of the two stimuli

in the stimulus pair was the target (the trump card). A total of 9 stimulus pairs

involving 10 stimuli were used, with a single stimulus as the trump card. Subjects

did not have any problem in discovering the trump-card within a few trials.

7.5.3 Elemental Discrimination Task

Subjects were instructed to discover which one of the stimulus pair was the target

stimulus by trial and error. A total of three stimulus pairs consisting of six stimuli

were used. For each pair of stimuli, one of the pair was the target. This task di�ers

from the trump card task in that multiple target stimuli were involved. All subjects

found the targets within a few trials.

7.5.4 Transverse Patterning Task

Subjects were instructed to discover which of the two stimuli in a stimulus pair

was the target. Three stimulus pairs consisting of three stimulus compositions were

used. Each stimulus could be a target or non-target depending upon what it was

paired with. The target de�nition was a \rock-paper-scissors" arrangement: A wins

when paired with B, B wins when paired with C, C wins when paired with A.

Again, subjects were able to discover the winning relationships after a few trials.

7.6 Mathematical Methods

7.6.1 The SOBI Source Separation Algorithm

The SOBI algorithm (Belouchrani et al., 1993) proceeds in two stages. First, the

sensor signals are zero-meaned and pre-sphered as follows:

y(t) = B (x(t) � hx(t)i) (7.2)

The angle brackets h�i denote an average over time, so the subtraction guarantees

that y will have a mean of zero. The matrix B is chosen so that the correlation
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matrix of y, namely hy(t) y(t)T i, becomes the identity matrix. This is accomplished

by moving to the PCA basis usingB = diag(�
�1=2
i )UT ; where �i are the eigenvalues

of the correlation matrix h(x(t) � hx(t)i) (x(t) � hx(t)i)T i and U is the matrix

whose columns are the corresponding eigenvectors, i.e. the \PCA components"

of x. (This pre-sphering is solely for the purpose of improving the numerics of the

situation by constraining the matrix V below to be a rigid rotation.)

For the second stage, one constructs a set of matrices which, in the correct

separated basis, should be diagonal. In our case, we chose a set of time-delay

values � to compute symmetrized correlation matrices between the signal y(t) and

a temporally shifted version of itself,

R� = sym(hy(t) y(t + �)T i) (7.3)

where sym(M) = (M+MT )=2 is a function that takes an asymmetric matrix and

returns a closely related symmetric one. This symmetrization discards some infor-

mation, but the problem is already highly over-constrained, and the symmetrized

matrices provide valid, albeit slightly weaker, constraints on the solution.

After calculating the R� , we look for a rotation V that jointly diagonalizes all

of them by minimizing
P

�

P
i6=j(V

TR�V)2ij ; the sum of the squares of the o�-

diagonal entries of the matrix products VTR�V, via an iterative process (Car-

doso and Souloumiac, 1996, using MATLAB code available at http://sig.enst.fr/
�cardoso/). The �nal estimate of the separation matrix is W = VT B; which is

used to calculate the separated components ŝ(t) =Wx(t):

7.6.2 Separated Components in Sensor Space

Since W is the estimated unmixing matrix, let us use ŝ(t) = W x(t) for the

consequent estimated sources, and Â = W�1 for the corresponding estimated

mixing matrix. Using these, the sensor signals resulting from just one of the

components can be computed as x̂(t) = Â D W x(t) = Â D ŝ(t), where D is

a matrix of zeros except for ones on the diagonal entries corresponding to each

component which is to be retained.

To localize a single component, one computes

x̂(i)(t) = ŝi(t) â
(i) (7.4)

where â(i) is the ithcolumn of Â and x̂(i)(t) is the sensor-space image of source i.

Because x̂(i)(t) is at each point in time equal to the unchanging vector â(i), scaled

by the time course ŝi(t), dipole �tting algorithms will localize x̂(i)(t) to the same

location no matter what window in time is chosen.

7.6.3 Scaling

Blind source separation leaves the freedom to choose an arbitrary scale factor for

each component. For instance, the source si(t) could be scaled up by a factor of

ten, and the ith column of A scaled down by the same factor of ten, giving rise
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to the exact same observation x(t). Making a reasonable assumption that all the

sensors have intrinsic Gaussian noise of the same magnitude, we used the additivity

of these independent sensor noises to scale each row ofW to give each row a vector

length of one. That is, if fW is the unscaled unmixing matrix, then we normalized

its rows to yield W using

wij =
~wijqP
j ~w2

ij

(7.5)

With this scale factor, the sources can be viewed as being measured by a \virtual

sensor" that measures in the same units, with the same scale, and with the same

amount of intrinsic noise as the real sensors. This gives rise to \e�ective Ft/cm"

units as above.

An alternative approach to scaling is to try to calculate the actual strength of the

source, for instance the actual total energy emitted. This can be done by �tting a

physical source model (such as an equivalent current dipole) to each component and

scaling the rows ofW such that the columns of Â match the attenuations predicted

by the estimated physical model. This approach has the disadvantage of being

dependent on the localization process, thus giving rise to multiple scalings when

there are multiple localization procedures in use, or even when a single procedure

produces multiple possible localizations. Another disadvantage of this alternative

is a failure to generate a scaling when the localization fails, as it would on noise

components.

7.6.4 Energy/Variance Accounted For

A commonly used statistic is the energy in a source, or the amount of variance it

accounts for. The energy of source i is

Ei =
X
t

X
j

(x̂
(i)
j (t)� x̂

(i)
j )2 (7.6)

where the mean is being subtracted to discount DC o�sets, an important consider-

ation in MEG. Because the rows of the matrix W are normalized, we can simplify

this expression using Equation 7.4 yielding

Ei =
X
t

(ŝi(t)� ŝi)
2 (7.7)

which is computationally more eÆcient. In this chapter, we gave the fraction of

variance accounted by the ithcomponent as Ei=
P

i Ei.
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simple structures that may be easier to analyse than the complex brain activity

that is often available to the physician, or brain researcher.

In data analysis we often face the following dilemma: if we impose a too strong

model on the data, we might only get the structure that we are imposing; if

our model is too weak we might get no useful result at all. As there is no

systematic answer to this fundamental problem for all situations, we will discuss

about possibilities and limits of the new blind source separation (BSS) technique in

the context of speci�c biomedical applications. Here a fair amount of physiological

and physics knowledge is available and we can use this prior information to bias

our solution { of course carefully avoiding to predetermine the solution.

BSS methods, such as the ones based on independent component analysis (ICA)

and temporal decorrelation (TD) methods have been shown to be an eÆcient tool

for artifact identi�cation and extraction from electroencephalographic (EEG) and

magnetoencephalographic (MEG) recordings, as well as the analysis of some evoked

and spontaneous brain activity.

This chapter reviews our recent results to the application of blind and not so

blind source separation techniques to the analysis of evoked brain signals, elicited

by sensory stimuli, and to the analysis of single trials of near DC brain �elds.

8.1 Introduction

With the advent of new anatomical and functional imaging methods, it is now

possible to collect, non-invasively, vast amounts of data from the living and active

human brain. It has thus become very important to extract the essential features

from the data to allow an easier representation or interpretation of their properties.

Traditional approaches to solve this feature extraction or dimension reduction

problem include, e.g., principal component analysis (PCA), projection pursuit, and

factor analysis. This chapter focuses on a signal processing technique, BSS, which

allows the blind separation of sources, linearly mixed at the sensors.

It has turned out, with an assumption on statistical independence for the sources,

that BSS very often provides the ideal \weak" model for decomposing brain signals

like Electroencephalograms (EEG) or Magnetoencephalograms (MEG) since the

assumption of independence is often veri�ed (we will elaborate this aspect in more

detail in Section 8.5). EEG and MEG are recordings of electric and magnetic �elds

of signals emerging from a multitude of neural currents within the brain. They are

arguably the only existing completely non-invasive methods capable of giving direct

information about the neural dynamics on a millisecond scale, which makes them

attractive methods for functional brain imaging and diagnosis. The developments of

EEG and MEG over the past years are strongly related to signi�cant improvements

in the quality of the sensing devices, the number of channels, the signal processing

techniques and the neural source models used.

In order for neural magnetic �elds to be measured outside of the head, the

synchronous activation of tens of millions synapses is required. This limits the
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spatial resolution of EEG and MEG to around 1 cm2. Also, the synchronicity

restrictions limits the number of macroscopically observable sources, active at a

given time.

In Section 8.2 we present a short description of the blind source separation (BSS)

problem. The independent component analysis (ICA) theory is then introduced,

together with some algorithms capable of performing such analysis. In Section 8.4

another algorithm (TDSEP) is introduced which uses the temporal structure of the

data to perform the blind separation of sources. In Section 8.5 we shortly validate

the application of the ICA model to EEG and MEG data, and give an overview of

the limitations of the BSS model. The use of ICA for the decomposition of event-

related activity is presented in Section 8.7. In Section 8.8 the ICA approach is

extended to incorporate existing prior modeling information in the search for the

independent components. We conclude the chapter with the application of TDSEP

to the identi�cation of a DC-component from MEG recordings.

Due to the reviewing nature of this chapter, the expose herein is strongly based

on previously published material (cf. (Vig�ario, 1999; Vig�ario et al., 2000; Vig�ario

and Oja, 2000; W�ubbeler et al., 2000; Ziehe et al., 2000a)).

8.2 The Blind Source Separation Model

Blind source or signal separation (BSS) is a very important problem in science and

in engineering. It consists in revealing unknown sources from their linear mixtures,

with very little, if any, knowledge on the mixing process. Only very few assumptions

can be made on the source signals.

Let us assume that, at time instant k, the observed n-dimensional data vector,

x(k) = [x1(k); : : : ; xn(k)]
T is given by the model:

xi(k) = ai1s1(k) + ai2s2(k) + � � �+ aimsm(k)

or, in a more compact matrix notation,

x(k) =

mX

j=1

ajsj(k) = As(k): (8.1)

The source signals, s1(k); : : : ; sm(k), are unknown, as are the coeÆcients of the

mixing matrix A = [a1; : : : ; am]. The goal is therefore to estimate both unknowns

from a sample of the x(k). The solution is sought in the form

y(k) = ŝ(k) = Bx(k); (8.2)

where B is called the separating matrix.

The general BSS problem requires A to be an n �m matrix of full rank, with

n � m (i.e., there are at least as many mixtures as the number of independent

sources). In most algorithmic derivations, an equal number of sources and sensors

is assumed.
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Figure 8.1 Schematical illustration of the mathematical model used to perform the

ICA decomposition.

In the model summarised by Eq. (8.1), and schematically illustrated in Fig. 8.1,

we omit any additive noise. Some considerations on noisy models can be found

in (Hyv�arinen, 1999; Vig�ario, 1999; M�uller et al., 1999; Kawanabe and Murata,

2000; S�arel�a et al., 2001).

It is important to note that, in our application of BSS approaches to the analysis

of EEG or MEG recordings, the estimates of both the underlying source signals

and the mixing matrix are of importance. The former will give us information on

the temporal activation of a particular brain source, whereas the latter will give

the corresponding �eld patterns, which are required for the localization of the brain

activation areas.

8.3 Independent Component Analysis

ICA is a novel statistical technique that aims at �nding linear projections of the

data that maximize their mutual independence. Its main applications are in feature

extraction and blind source separation.

ICA attempts to solve the BSS problem by assuming that the underlying source

signals s are stationary, independent and with only up to one source allowed to

have a Gaussian probability distribution.

It is not the intention of the authors of this chapter to fully characterise the

�eld of ICA. A good and recent review of the theory behind ICA and several of its

applications can be found in (Hyv�arinen et al., 2001). Yet, in order for the reader

to understand the following application oriented sections, we believe it necessary

to spend some time in the description of the algorithms used therein.

8.3.1 The FastICA Algorithm

In the FastICA algorithm (Hyv�arinen and Oja, 1997), to be described below, the

initial step is whitening or sphering (see Fig. 8.1 for an illustration of the notation

used). By a linear transformation, the measurements xi(k) and xj(k), for all i; j,

are made uncorrelated and unit-variance. The whitening facilitates the separation
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of the underlying independent signals (Hyv�arinen et al., 2001). Furthermore, S�arel�a

and Vig�ario (2001) have shown that a well chosen compression, during this stage,

may be necessary in order to reduce the overlearning(over�tting), typical of ICA

methods.

The whitening may be accomplished by PCA projection: v(k) = Vx(k), with

Efv(k)v(k)T g = I . The whitening matrixV is given byV = ��1=2UT , where � =

diag[�(1); : : : ; �(m)] is a diagonal matrix with the eigenvalues of the data covariance

matrix Efx(k)x(k)T g, and U is a matrix with the corresponding eigenvectors as

its columns. The transformed vectors v(k) are called white or sphered, because all

directions have the same unit variance.

In terms of v(k), the model (8.1) becomes v(k) = VAs(k), and we can show that

the matrixW = VA is orthogonal (Hyv�arinen et al., 2001). Therefore, the solution

is now sought in the form:

ŝ(k) =WT
v(k): (8.3)

The decorrelation attained with a PCA decomposition is not enough when dealing

with the more restrictive independence requirements. Methods based on higher

order statistics are required. Their theoretical foundations can be tracked to notions

such as maximization of negentropy, non-Gaussianity or minimization of mutual

information.

In many ICA algorithms, the fourth-order cumulant also called the kurtosis is

used as a measure of non-Gaussianity. For the ith source signal, the kurtosis is de-

�ned as kurt(si) = Efs4i g� 3[Efs2ig]
2. Ef�g denotes the mathematical expectation

value of the bracketed quantity. The kurtosis is negative for source signals whose

amplitude has sub-Gaussian probability densities (distributions 
atter than Gaus-

sian), positive for super-Gaussian (sharper than Gaussian, and with longer tails),

and zero for Gaussian densities. Maximizing the norm of the kurtosis leads to the

identi�cation of non-Gaussian sources.

Consider a linear combination y = w
T
v of the white random vector v, with

kwk = 1. Then Efy2g = 1 and kurt(y) = Efy4g� 3, whose gradient with respect

to w is 4Efv(wT
v)3g.

The FastICA (Hyv�arinen and Oja, 1997) is a �xed point algorithm which �nds

one of the columns of the separating matrix W (noted w) and so identi�es one

independent source at a time. The corresponding independent source signal can

then be found using Eq. (8.3). Each lth iteration of this algorithm is de�ned as

w
�

l = Efv(wT
l�1
v)3g � 3wl�1

wl = w
�

l=kw
�

lk: (8.4)

In order to estimate more than one solution, and up to a maximum of m, the

algorithm may be run repeatedly. It is, nevertheless, necessary to remove the infor-

mation contained in the solutions already found, to estimate a di�erent independent

component each time. For details on the FastICA algorithm, see (Hyv�arinen and

Oja, 1997). Further reading on algorithmic implementations of the ICA technique,
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as well as its extensions and relations to other data analysis techniques, can be

found, e.g., in (Vig�ario, 1999) and (Hyv�arinen et al., 2001). A MatlabTM package

that performs the FastICA can be found at:

http://www.cis.hut.fi/projects/ica/fastica/.

8.3.2 INFOMAX

Another approximation to the ICA decomposition can as well be attained by

maximizing the output entropy, or information 
ow, of a neural networks with

nonlinear outputs. Bell and Sejnowski (1995) proposed one such algorithm that

maximizes the mutual information I between the inputs and the outputs of a neural

network. The intuitive interpretation of I(x;y) is the reduction of information in

x, after the observation of y.

The separating matrix B is found using the updating rule:

�B / (I� 2tanh(y)yT)B: (8.5)

Note that this algorithm does not require an explicit pre-whitening. A MatlabTM

package that performs the INFOMAX can be found at:

http://www.cnl.salk.edu/~scott/ica-download-form.html.

8.3.3 JADE

For o�-line (batch) computation, Cardoso and Souloumiac (1993) developed the

JADE algorithm based on the (joint) diagonalization of matrices obtained from

`parallel slices' of the fourth-order cumulant tensor. This algorithm often performs

very eÆciently on low dimensional data if suÆciently many sample points are

available. However, for high dimensional problems like MEG the e�ort for storing

and processing the 4-th order cumulants is O(m4) and computation may become

prohibitive. A MatlabTM package that performs the JADE can be found at:

ftp://sig.enst.fr/pub/jfc/Algo/Jade.

Several papers have been written on the relations between the active principles

behind the FastICA, the Infomax, and the JADE algorithms. For a well structured

comparison see, e.g., (Hyv�arinen et al., 2001).

8.4 Temporal Decorrelation Methods

In addition to the ICA approach to source separation, described in the previous

section, there exist other useful criteria to de�ne a suitable decomposition. In par-

ticular, EEG and MEG recordings have a rich dynamical time structure. Therefore,

instead of basing our decomposition approach on the distributional information con-

tained in the data, one can exploit directly temporal, i.e., spectral information, to

perform the desired blind separation of sources.
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An attractive framework to deal with this problem is the simultaneous diago-

nalization of appropriately de�ned matrices by algebraic methods (cf. (Tong et al.,

1991; Molgedey and Schuster, 1994; Belouchrani et al., 1997; Ziehe et al., 1998;

Wu and Principe, 1999; Ziehe et al., 2000b)). In particular, the TDSEP algorithm

by Ziehe and M�uller (1998) �nds an estimate of the mixing matrix A by simultane-

ously diagonalizing several time lagged correlation matrices R
�(x) = hx(t)xT (t��)i.

This method can be seen as an eÆcient way to minimize the cost function

J(Wij) =

NX

l=1

X

i6=j

hyi(k)yj(k + �l)i
2; (8.6)

that measures the correlation of the outputs for several time-lags �l.

As with the ICA algorithm presented in Section 8.3.1, the simultaneous diago-

nalization procedure that is employed here consists of a sphering or whitening step

followed by a rotation. The determination of the rotation matrix W, is performed

by a Jacobi-type method as in (Cardoso and Comon, 1996), applied to the set of

time-delayed correlation matrices.

From the computational point of view TDSEP is very eÆcient and robust, since

(1) it uses linear algebra and avoids complicated optimizations and (2) it relies

on estimates of simple time-lagged covariance matrices (second-order statistics).

Therefore TDSEP is ideally suited for the preprocessing of multi-channel data

typically encountered in physiological recordings. A MatlabTM implementation of

this algorithm can be found at:

http://www.first.fhg.de/~ziehe/research.html.

8.5 On the Validity of the Linear ICA Model

The application of ICA to the study of EEG and MEG signals assumes that several

conditions are veri�ed: the existence of statistically independent source signals,

their instantaneous linear mixing at the sensors, and the stationarity of both the

source signals and the mixing process.

8.5.1 Instantaneous Linear Mixing

Because most of the energy in EEG and MEG signals lies below 1 kHz, the qua-

sistatic approximation of the Maxwell equations holds, and each time instance can

be considered separately (H�am�al�ainen et al., 1993). Therefore, the instantaneous

mixing model is valid. The linearity of the mixing follows as well directly from the

Maxwell's equations.
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8.5.2 The Independence

The independence criterion applies solely to the statistical relations between the

amplitude distributions of the signals involved, and not to considerations upon the

morphology or physiology of certain neural structures. In particular, the obvious

time relations between stimuli and brain responses (which correspond to a certain

form of dependence), have no in
uence on the statistical independence between two

signals with factorizable joint probability density.

On the other hand, in certain conditions, the search for independent components

can be replaced by a search for maximally non-Gaussian linear transformation of

the data. Due to their sparse activation patterns, the evoked responses are clear

examples of non-Gaussian distributed signals. This means that, even though the

direct independence criterion may occasionally be diÆcult to justify, the ICA model

may still be useful.

Rhythmic activity in the brain poses an additional problem. Pure oscillatory

activity has negative kurtosis. Yet in reality neural activity often comes as bursts

of limited time span. Depending on the lengths of these bursts, the sign of the

kurtosis may be positive. In the worst case, the global kurtosis may even be zero,

i.e., the desired component is then interpreted as Gaussian by any kurtosis-based

method. A di�erent strategy may be required to cope with this problem.

The TDSEP algorithm, described in Section 8.4, uses explicitly the temporal

correlations present in the data, and is therefore very suitable to handle brain

oscillation data.

Furthermore, Barros et al. (2000) show that a modi�ed version of the FastICA,

giving particular focus to periodic or quasiperiodic signals, deals well with cardiac

and other periodic contaminations of MEG recordings. The same approach may

lead to very interesting results when analysing the brain's rhythmic activity.

One can also model the dynamics of the oscillatory sources directly. In (S�arel�a

et al., 2001), the sources are modelled by MLP networks, resulting in the dynamical

factor analysis (DFA). There, the over�tting, typical in maximum likelihood or

maximum a posteriori estimates of such a complex model, have been avoided using

a Bayesian based approach called ensemble learning (Hinton and van Camp, 1993;

Lappalainen and Miskin, 2000). As an additional asset, the Bayesian approach

makes it simple to estimate the noise in the observations.

8.5.3 Stationarity

The last requirement for the utilization of the basic ICA model is the stationarity

of the recordings. This requirement applies both to the source signals, and to the

mixing model. Stationarity of the independent source signals is required to assume

the convergence of their amplitudes to a particular distribution. The stationarity

in the mixing model ensures a constant mixing matrix A.

Generally, the non-stationarity of EEG and MEG signals is well documented

(Blanco et al., 1995). Yet, in the implementation of the batch FastICA algorithm,
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the estimation of the distribution of the independent signals is made using the

whole data set, removing the need for stationarity requirements.

Another way to tackle the intrinsic non-stationarity of EEG and MEG signals

has been suggested in (M�uller et al., 2000). There, an \annealing competition of

experts" is used to perform the segmentation of non-stationary EEG signals into

stationary periods. Any BSS approach can then be applied to each period.

The stationarity of the mixing model corresponds to the assumption of �xed

�eld patterns associated with the di�erent independent components. In the widely

used dipole source model, the mixing stationarity leads to the existence of sources

with �xed locations and orientations, but amplitude varying with time. Such

models (Scherg and von Cramon, 1985; Mosher et al., 1992) have been extensively

and eÆciently used in the analysis of evoked responses, which justi�es the use of

constant mixing vectors ai in our BSS model.

If strictly required, also ICA algorithms with non-stationary mixing models exist

(see, e.g., (Murata et al., 1997)).

8.6 Limits and Problems of Source Separation Algorithms

It is important to note that the blind separation of sources is ultimately bound to the

acting principle employed. This means that the orthogonality of the decomposition

is the most we can get from PCA, the orthogonality in some feature space what we

get from kernel PCA (Sch�olkopf et al., 1998) and the mutual independence of the

components when using ICA.

The eÆciency of high-order statistics to produce good ICA algorithms (the

kurtosis based FastICA, JADE,...) comes with a clear price: the strong sensitivity

to outliers. In fact, these often turn out to be the leading factors in the search for

the underlying sources.

Another limitation of the presented BSS approaches is that one can extract only

up to as many underlying sources as the number of sensors. In the brain, however,

the multitude of microscopic sources outnumbers by far the number of sensors.

Nevertheless, as stated in the introductory section, it can be argued that the total

number of macroscopically observable sources, active at a given time, is of a much

smaller count.

On a more general note, the linear mixing model, summarized in Eq. (8.1),

may be too simple to accommodate possible nonlinearities in the data or even

convolutive mixtures. If we have shown that the instantaneous linear mixing is a

good approximation for EEG and MEG data, that is not the case in the temporal

dynamics of the neural activations. A non-linear model of such processes may be

necessary if a proper temporal modeling is sought. DFA is one example of algorithms

that perform such non-linear modeling (S�arel�a et al., 2001).
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8.6.1 The Necessary Amount of Data: Overlearning and Over�tting

When the number of samples of the observed data is insuÆcient to explain the

high-dimensional independent source signals, we may encounter overlearning or

over�tting e�ects in ICA algorithms. This result is true for practically any type

of contrast-based linear ICA implementations (S�arel�a and Vig�ario, 2001). In the

extreme case of an equal number of independent source signals, mixtures and sample

sizes, it is shown that the optimal solution is the one that produces source signals

that are zero almost everywhere except for a single spike or bump. In the referred

communication, experimental evidence of this over�tting e�ect is given, using both

simulated and real MEG data.

Temporal decorrelation algorithms, such as the TDSEP, may su�er from a

di�erent type of overlearning, consisting in a series of sinusoidal components of

various frequency contents.

Furthermore, channel noise, explicitly ignored in the model of Eq. (8.1), e�ectively

doubles the number of independent sources, rendering the overlearning problem

ever more present. In some applications, we may construct an approximate noise

model. Projections to signal spaces orthogonal to the noise space could then be

performed (Hyv�arinen, 1998; M�uller et al., 1999; Hyv�arinen et al., 2001; S�arel�a

et al., 2001).

When utilizing algorithms requiring pre-whitening, this preparatory stage can be

used to reduce the dimensionality of the data. The compression, specially if the

rejected components contain mainly noise (i.e. unnecessary information), should

reduce the overlearning e�ect due to lack of net information.

Ultimately, a good reliability measure of the components found may help to

determine whether we are in presence of clear overlearning, or of an overlearning-

like true source. Furthermore, such measure could help determining whether the

model is appropriate at all. One such measure, based on a bootstrap resampling

approach has been recently proposed by Meinecke et al. (2002).

8.7 Analysis of Multimodal Evoked Fields

State-of-the-art approaches for processing magnetic evoked �elds are often based

on a careful expert scrutiny of the complete data (in raw format or averaged around

the responses to repeating stimuli). At each time instance, one or a set of neural

sources, often of dipolar nature, are modeled in order to produce as good �t to the

data as possible. The quality of the �t is then evaluated through its goodness-of-

�t (Kaukoranta et al., 1986), a normalized squared error between the measurements

and the �elds produced by the modeled sources:

g =

�
1�

P
i
(bi �mi)

2P
i
m2

i

�
� 100%:
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The summations run over the complete set of sensors. The higher the g, the better

the explanation. If g = 100%, the model fully explains the measurements, if

g = 0%, it does not perform any better than a zero �eld �t would.

The choice of the time instances where the �tting of the model should be made,

as well as the type of source models employed, are crucial. An approach based in

ICA presents the advantage of constant �eld patterns, simplifying the analysis of

the results, and enabling a semi-automatic processing of the data.

The application of ICA in event related studies was �rst introduced in the blind

separation of auditory evoked potentials by Makeig et al. (1997). This method

has been further developed in relation to magnetic auditory and somatosensory

evoked �elds (AEFs and SEFs, respectively) in (Vig�ario et al., 1998, 1999), using

the FastICA algorithm, in a de
ationary mode.

Original Averages

Figure 8.2 An example of evoked MEG signals to concomitant vibrotactile and
auditory auditory stimulation. The sensor array of the neuromagnetometer (Neuromag-
122 (H�am�al�ainen et al., 1993)) is viewed from the top, i.e. left hemisphere is on the left side
and right hemisphere on the right side, and the nose of the subject is pointing upwards.
Each trace corresponds to the signal which was detected by a single sensor as a function of
time. Encircled channels show the maximum responses to auditory and tactile stimulation.
From (Vig�ario and Oja, 2000).
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Without any prior source model assumption, other than the statistical indepen-

dence to the rest of the MEG signals, the most signi�cant independent components

we have found in di�erent modality event-related studies have shown patterns that

agree with the conventional dipole approximation. Adding the dipole modeling in-

formation to the calculation of the source locations, we have found them to fall on

very acceptable brain areas (the di�erence to conventional methods was well below

1 cm, therefore within the spatial precision of MEG).

In (Vig�ario et al., 1999), ICA was shown to be able to di�erentiate between

somatosensory and auditory brain responses in the case of vibrotactile stimulation.

The stimuli was generated with a bass-re
ex loudspeaker and a tube delivering

the tone to a balloon which was held by the subject with both hands. The sound

pressure level of the simulator was about 60 dB SPL, and thus somatosensory

evoked �elds (SEFs) to vibrotactile stimuli (200 Hz, duration 100 ms) and auditory

evoked �elds (AEFs) to the concomitant auditory stimulation were elicited in the

same experiment (Jousm�aki and Hari, 1999).

Figure 8.2 shows the complete set of 122 averaged evoked responses. Three inserts

in the �gure highlight equal number of interesting signal types present in the

measurements. On the leftmost one, we can see a step-like signal. The middle one

shows a sharp and early response, originated in the primary somatosensory cortex.

The rightmost insert has a broader signal, with longer latency than the previous

one, which is associated with the primary auditory responses.
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Figure 8.3 Results of the application of FastICA to averaged brain MEG responses
to a vibrotactile stimulation. Frames a) through c) present, respectively, a sample of the
original MEG data, the whitened and the independent signals. Each tick corresponds to
a time interval of 100 ms. Frame e) shows the �eld patterns associated with the �rst two
independent components and the modeled current dipoles (arrows). Their corresponding
location in the brain is showed in frame e) superimposed to magnetic resonance images.
From (Vig�ario and Oja, 2000).
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In Fig. 8.3, together with a sample of the MEG averages, are depicted the �rst

8 principal components, as well as the �rst 8 components found on a single run of

the FastICA algorithm. Note that PCA hasn't been able to resolve the complexity

of the original MEG signals, most of the components presenting still combined

somatosensory and auditory responses (see Fig. 8.3b). The independent components

in 8.3c show a much improved separation.

The �eld patterns shown in Fig. 8.3d, correspond to the columns of the estimated

mixing matrix associated with the �rst two independent components. Full lines

depict the magnetic 
ux coming out of the head, whereas dashed ones correspond

to the 
ux entering the head. The current dipoles best accounting for these �eld

patterns are also shown.

The location of the equivalent current sources fall on the expected brain regions

for the particular stimulus. Fig. 8.3e shows these brain sources superimposed onto

vertical and horizontal MRI slices. The black dots in the MRI correspond to

activation of the primary auditory cortex. In addition, the orientations of the

dipoles, represented by the lines starting at the dots, are approximately normal

to the surface of the cortex. The white dots, based on the second independent

component, correspond to the activation on the primary somatosensory area.

8.8 Extending the Basic ICA and BSS

8.8.1 How B Should BSS Be?

Thus far we have always used ICA in an attempt to extract, with minimal a priori

information, independent source signals from their instantaneous linear mixtures.

Yet, we often know more than what we are using. In fact, when attempting to give a

physiologically plausible explanation to the independent components found from the

evoked responses, we have admitted a dipolar current model for the corresponding

neural sources.

Knuth (1998) proposes a Bayesian framework, in which it is possible to incorpo-

rate, onto the ICA/BSS model, prior information about the source geometry and

the mixing properties.

In the next section we show some preliminary results on the incorporation of a

dipolar model 
avor to the ICA framework (Vig�ario, 2000). We thus reduce the

blindness of the search, and at times relax the independence assumption.

8.8.2 The Dipole Modeled FastICA

The study presented in this section consists of a modi�cation on the FastICA

algorithm, in order to add an explicit stage of dipolar modeling into the search for

the independent components. This iterative method is applied to the decomposition

of evoked �elds introduced in Section 8.7.
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8.8.2.1 From the Original FastICA

FastICA can be used both in a symmetrical and a de
ationary manner. If the inde-

pendence is not fully guaranteed, the error of assuming it will be somewhat spread

to all independent components in the symmetrical version. In the de
ationary, the

early components are more likely to �t the criterion, as the later ones will have to

deal with accumulated errors from the previous components found.

In the present work, FastICA will be used in its de
ationary version, to extract

one single component. The independence of this component should then be the

most reliable one. Yet, the order of appearance of the independent components is

undetermined in ICA, therefore di�erent initial conditions can lead to di�erent �rst

guesses from the algorithm. Due to the very fast convergence of the FastICA, as

much as 100 di�erent initial conditions were tested, and their results gathered. Only

a few di�erent signals were consistently picked using this method, as can be seen

in Fig. 8.4.

8.8.2.2 Adding Dipole Modeling to FastICA

As stated above, dipole modeling is often assumed when validating the independent

components and locating the corresponding neural sources. In fact, often the

�eld patterns, mapping the components to the measurements, �t well the dipole

modeling assumptions (see, e.g., Fig. 8.3d).

Furthermore, in the de
ationary FastICA, to extract more than one independent

component, we have to insure that the contributions of the ones already found are

extracted from the original data. This can be done by explicit subtraction of the

independent component, or by imposing the orthogonality of the spaces de�ned by

successive components.

We now propose to remove, not the independent component itself, but the

magnetic �eld produced by one or more equivalent current dipoles (ECDs) that �t

the best the respective independent component. With this change, the independence

criterion is somewhat relaxed, but with an increase in the explanation power of the

resulting component. This modi�ed or iterated FastICA algorithm is therefore a

good compromise between pure independence and conventional ECD �tting. Or, in

other words, between the weak BSS model, given by ICA, and the strong dipole-

based modeling.

8.8.2.3 Results

Figure 8.4 shows the results of the ICA decomposition of the evoked responses.

The left column has the four independent components found from 100 runs of

the original FastICA on the complete data set, changing the initial conditions

after each run. These results agree with the ones presented earlier, and explain

well some of the measured signals of Fig. 8.2: OrIC1 and OrIC3 (�rst and third

components extracted using the original FastICA algorithm) have latencies that
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Figure 8.4 ICA decomposition of the evoked responses. On the left are depicted the
independent components corresponding to a single run of FastICA, whereas on the right
are the ones corresponding to the modi�ed algorithm. The middle 5 columns show the
construction of the components of the right hand side. From (Vig�ario and Oja, 2000).

are characteristic of the auditory responses visible in the rightmost insert, whereas

OrIC2 and OrIC4 are clearly related to the somatosensory and step-like inserts.

Note as well that the multiple extraction of only one independent component

leads to the identi�cation of only the most interesting components found in Fig. 8.3.

This consistency increases our trust in this ICA decomposition.

The locations of the ECDs associated to the independent components are shown

in Fig. 8.5. Once again, it is clear that they agree with the expected brain regions

to be activated by the particular stimulus mode. Note that only the last component

required three dipoles to correctly explain the respective independent component.

One of the ECDs explaining OrIC4 originates from the primary somatosensory area,

already used to explain OrIC2.

The independent components shown in the right column of Fig. 8.4 have been

produced by the modi�ed FastICA algorithm. After each set of 100 runs of FastICA,

the most frequently observed independent component was kept. The magnetic �eld

associated to its best ECD �t was then extracted from the original data. The nth

independent component is now sought from a set of 122 dimensional signals, from

which the ECD contributions of the previous n�1 components have been removed.

The 5 columns in the middle show each step of the long iterative process leading to

the �nal set of signals on the right. Note that, on the second run, the signal picked

was not the one corresponding to the auditory response, as we could have wished

for, but rather the step-like one. This is due to the fact that the choosing criterion

has no way to evaluate the goodness or physiological usefulness of each component.

Figure 8.6 shows the �eld patterns of the independent components found using

the dipole modeled FastICA algorithm, and respective ECDs. If it is clear that
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DmIC1 and DmIC3 (�rst and third components using the dipole modeled version

of FastICA) present great resemblance to OrIC2 and OrICA1, the same can not

be said from the other independent component. Due to an early extraction of the

somatosensory ECDs, no such dipole was required to explain DmIC2, reducing

here the total number of dipoles from 9 to 8. Furthermore, the pattern on the

left side of DmIC2 is now much clearer than that of OrIC4. Finally, it is as well

visible that DmIC4's patterns are simpler than those of the corresponding original

decomposition (OrIC3).

In Fig. 8.7 we see the goodness-of-�t values attained by the complete sets of

ECDs associated to both ICA implementations. The solid line shows the combined

performance of the 9 dipoles modeling the \conventional" FastICA components,

whereas the dashed line shows the performance of the 8 dipoles associated to

the iterated FastICA decomposition. It is clear that the modi�ed ICA algorithm

explains the measured data at least as well as the traditional algorithm does, with

increased performance on occasions (see, e.g., the portion corresponding to the

activation of the primary auditory area).

OrIC1 OrIC2

OrIC3 OrIC4

Figure 8.5 Localizations of the ECDs corresponding to the original FastICA decom-
position. From (Vig�ario and Oja, 2000).
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Figure 8.6 Localization of the modi�ed FastICA. From (Vig�ario and Oja, 2000).
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Figure 8.7 Goodness-of-�t for the ECDs associated with the two FastICA algorithms.
From (Vig�ario and Oja, 2000).
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Figure 8.8 Residual magnetic �elds, after extracting each \conventional" independent
component's contribution. Adapted from (Vig�ario and Oja, 2000).
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Figure 8.9 Residual magnetic �elds, after extracting each iterated independent com-
ponent's contribution. Adapted from (Vig�ario and Oja, 2000).
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Another way to look into the di�erent behaviors of the two algorithms, is through

the analysis of the remaining measured signals, after extracting the magnetic �elds

originated by the ECDs corresponding to each independent component.

In Fig. 8.8, we show these remaining magnetic �elds for the conventional FastICA.

Symmilarly, Fig. 8.9 shows the remaining �elds for the modi�ed algorithm. On the

original FastICA results, the extraction of the �rst independent component leads to

the suppression of all auditory related components (left and right). Removing the

second component leads to a very simpli�ed set of remaining signals, that seems

to change only after the extraction of the fourth component, in which the step-like

signal disappears.

In the modi�ed algorithm (Fig. 8.9), after extracting the �rst independent

component from the original data, the somatosensory related signal is suppressed.

The step-like response is removed after the second. It is important to note that

the extraction of the third independent component doesn't result in a complete

suppression of the auditory responses. In fact, the right-hand side responses are

just attenuated at this stage, and removed only after the extraction of the fourth

independent component. This is a good indication that the algorithm is actually

capable to detect the lateralization e�ects visible when the auditory stimuli are

applied mainly to one ear as seen earlier (Vig�ario et al., 1998).

8.9 Cortical Magnetic DC Fields in Humans

Recently, advanced biomagnetic recording technology has opened the possibility

to reliably detect slow electrophysiological processes, occurring over several sec-

onds (W�ubbeler et al., 1998).

Such near-DC phenomena are expected in metabolic injuries to brain cells in

stroke or migraine, e.g. in anoxic depolarization, peri-infarct depolarization or

spreading depression (Gardner-Medwin et al., 1991; Chen et al., 1992; Back et al.,

1994). Non-invasive electrical recordings of near-DC phenomena are prone to large

drift artifacts due to electrochemical instabilities at the electrode-skin interface.

Up to now this limitation could be overcome only by invasive approaches (Hotary

et al., 1992; Stys et al., 1991). In contrast, Superconducting Quantum Interfer-

ence Devices (SQUIDs) in combination with a specialized mechanical modulation

technique allow for a non-invasive registration of near-DC (below 0.1 Hz) mag-

netic �elds. Biomagnetic �elds in this frequency range were detected, quanti�ed

and continuously monitored in the human brain. This was achieved by employ-

ing an acoustical stimulation paradigm (alternating periods of music and silence,

each of 30 s length, to the subjects right ear during 30 min. of total recording

time) to induce a prolonged auditory cortex activation (for a detailed physiological

background see (Mackert et al., 1999)).
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8.9.1 Data Acquisition and Validation

In order to observe very low frequency brain activity, it is necessary to suppress the

in
uence of DC and near-DC magnetic �eld noise. This can be achieved by careful

hardware design and/or signal processing.

Therefore, the DC magnetic �eld values were acquired by using a mechanical hori-

zontal modulation of the body position with a frequency of 0.4 Hz and an amplitude

of 75 mm. This modulation transposed the DC magnetic �eld of the subject to the

modulation frequency, which is less contaminated by noise. The recorded magnetic

�eld data were processed by digital lock-in techniques in order to extract the modu-

lation induced frequency components (W�ubbeler et al., 1998). Then the DC-�eld of

the subject was reconstructed from these frequency components by using a trans-

formation technique based on a virtual magnetic �eld generator (Mackert et al.,

1999). These reconstructed DC magnetic �eld values, sampled at the modulation

frequency of 0.4 Hz, gave a total number of 720 sample points per channel for the

30 minutes recording time.

Figure 8.10 Input data used for BSS after DC preprocessing (demodulation and
reconstruction); arranged according to sensor positions; diameter of sensor array 210 mm.
From (W�ubbeler et al., 2000).
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Figure 8.11 Spatial �eld patterns, waveforms and frequency contents of four se-
lected components obtained by TDSEP. For units and details of ICA10 cf. Fig. 8.12.
From (W�ubbeler et al., 2000).

Examining this data (see Fig. 8.10), we observe that the signals have an obvious

trend behavior (slow drift). Possible components of interest are covered by other

strong signals of unknown origin, i.e. the very weak response to the stimulus is

completely hidden.

8.9.2 Results and Discussion

The data was reduced to a 32-dimensional subspace, during whitening, prior to the

application of TDSEP. In the latter algorithm, 50 time-lagged correlation matrices

(� = 1:::50 sample points) were used for simultaneous diagonalization. In Fig. 8.11

some selected components are shown. Not surprisingly, the �rst component (TD1)

mainly captured the slow drift, already visible in the data (see Fig. 8.10). While

most other components show irregular time courses, re
ecting the dynamics of

undetermined processes, it is noteworthy that their �eld maps feature spatially

coherent �eld patterns which clearly distinguish them from random channel noise

patterns.

Remarkably, one component (TD10) shows a (noisy) rectangular waveform.

Its time course and frequency (see Fig. 8.12) clearly displays the 1

30s
\on/o�"

characteristics of the stimulus. The spatial �eld distribution of TD10 shows a bipolar

pattern. This is very similar to the �eld pattern obtained by classical averaging and

subtraction of the averaged \o�" periods as baseline (Mackert et al., 1999).

The �eld pattern of TD10 agrees with the N100m obtained, for the same subject,

through conventional non-DC MEG recordings. Furthermore, its brain source is

located at the expected position for the corresponding cortical activity (Hari et al.,

1980; Mackert et al., 1999). Both �ndings regarding the time course and the �eld

pattern give direct evidence that TD10 represents the response to the acoustical

stimulus.
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Figure 8.12 Spatial �eld pattern, frequency content and time course of the component
TD10. Note that the extracted component follows well the stimulus. From W�ubbeler et al.
(2000).

We do not expect that the cortical response resembles completely the stimulus.

Yet, computing the correlation coeÆcient between the \on/o�" stimulus and the

time courses of the components provides a useful measure to evaluate and compare

the performance of di�erent separation algorithms. Applying three di�erent BSS

algorithms, from sections 8.3 and 8.4, we �nd that, in this special application, only

the TDSEP algorithm is able to recover a signal that is highly correlated to the stim-

ulus, while FastICA and JADE yield much lower correlation coeÆcients (W�ubbeler

et al., 1998).
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Figure 8.13 Correlation coeÆcient between stimulus and the best matching component
versus number of samples used for TDSEP applied on the full 49-dimensional data set.
From W�ubbeler et al. (2000).
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There might be a number of reasons for this �nding. On one hand the limited

number of sample points is a serious problem for algorithms based on higher-

order statistics, as they have to estimate a larger amount of parameters from

the same amount of data. On the other hand, the low signal-to-noise ratio is

problematic as well and makes the distinction between di�erent sources solely

relying on the probability density very diÆcult. Furthermore we note a number

of outliers in Fig. 8.10 that may harm the estimation of higher-order moments.

Unfortunately simply removing potential outliers did not improve the results, as

one might erroneously remove also data points which are important for a proper

estimate of the higher-order statistics.

One might argue that our comparison in this speci�c context is unfair, as DC

signals contain by de�nition a strong temporal correlation and may have a Gaussian

distribution. However, the extracted component (TD10) from which we believe

that it corresponds to interesting brain activity has a clear non-Gaussian structure

(kurtosis = �0:6).

To investigate the e�ects of small sample size, Fig.8.13 shows the dependency of

the separation result for TDSEP as a function of the sample size. Already for 300

samples we observe an enhanced correlation.

8.10 Concluding Remarks

What makes blind source separation an appealing method for the analysis of

neurobiological data, is the reduced amount of prior assumptions required for the

identi�cation of underlying interesting features in the data. The results attained

with such methods seem nevertheless to agree with more complex physiologically

based ones.

In this chapter we have shown examples of BSS in the analysis of biomagnetic

brain signals. A special emphasis has been given to the validation of the ICA model

for EEG and MEG data. Some limitations of the BSS model we discussed as well.

ICA has shown to be able to di�erentiate between somatosensory and auditory

brain responses in the case of combined auditory and vibrotactile stimulation. In

addition, the independent components, found with no other modeling assumption

than their statistical independence, exhibit �eld patterns that agree with the

conventional current dipole models. The equivalent current dipoles corresponding to

the independent components are located in brain regions expected to be activated

by the respective stimuli.

Furthermore, we have used the speed and de
ationary characteristics of the Fas-

tICA algorithm to derive an iterative algorithm, incorporating source modeling in

its search for independent decomposition of combined somatosensory and auditory

evoked responses.

Generally, the modi�ed FastICA algorithm achieved better separation abilities,

while keeping the very high agreement with the physiological plausibility of its

independent components. In particular, we have seen that a fewer number of equiv-
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alent current dipoles were needed to attain a better explanation of the measured

recordings than when using a traditional FastICA approach. The detection of subtle

information, such as lateralization e�ects, were as well rendered possible with the

modi�ed algorithm which were not clearly visible in the original FastICA formula-

tion.

Finally, by using TDSEP, a BSS method that performs decorrelation at several

time-lags, it became possible to extract a faithful estimate of the DC-activation

level in the auditory cortex. In contrast to earlier paradigms, which identi�ed

cortical sources of short-term (2{9s) \sustained" �elds (Pantev et al., 1996) or

potentials (Picton et al., 1978) by averaging at least dozens of such repeated

activations, the present DC-MEG plus ICA approach allows to monitor the time

course of cerebral DC-activations without any need for averaging.

In an attempt to strengthen the blind separation approach, we have started to

add some existing prior knowledge into it. As we depart from the purely statistically

based assumptions, we get closer to physiologically plausible decomposition of

electromagnetic brain signals. On the other hand, �tting neural sources in a classical

framework, may be hard if some temporal overlap is present in their activations.

A well balanced use of both the model and any prior is therefore needed in order

to fully exploit all the advantages of each technique. We think we may have found

a good middle term in determining the most independent dipole decomposition of

averaged evoked responses.
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The two major noninvasive functional human brain imaging modalities developed

during the last part of the twentieth century, high-density scalp EEG (electroen-

cephalogram) and fMRI (functional magnetic resonance imaging), appear from a

logical viewpoint to be largely complementary. BOLD (blood oxygen level di�er-

ence) signals can have a spatial resolution of less than 1 cm3, meaning time series

of blood oxygenation level di�erences can be recorded from many more than 10,000

spatially and structurally identi�able brain regions (voxels). However, changes in

TLFeBOOK



196 Having Your Voxels and Timing Them Too?

blood oxygenation are inherently slow, much slower than the �ring of individual

neurons (circa 1 ms) or the frequencies at which neural networks tend to syn-

chronize (1-200 Hz or more). EEG signals, on the other hand, can be recorded at

sampling rates of a kHz or more per channel, and can thus easily and accurately

record cortical potentials throughout their frequency range, if they re
ect a suf-

�cient amount or density of synchronous activity within cortex that the summed

local �elds reach the scalp without canceling one another. It therefore seems easy

to argue, as many researchers have, that by concurrently recording EEG and fMRI

BOLD signals, researchers could acquire functional brain activity data with both

high spatial and high temporal resolution.

9.1 Introduction

Certainly there are formidable technical problems that researchers wishing to make

such concurrent recordings must overcome. Any ferromagnetic metal inside the

scanner can be dangerous for the subject, and will certainly cause unacceptable

loss in the BOLD image. Then too, even very small movements of the electrodes

or cables in a very strong magnetic �eld must induce artifactual currents. The RF

pulses used in fMRI scanning are another serious challenge; their sharp gradients

can induce volts of current in EEG leads that usual analog EEG high pass �lters

will convert into `railed' ampli�er signals. The slightest movement of the subject's

scalp, including the pulse of blood through it, will move the electrodes suÆciently

to produce large ballistocardiogram signals that may obscure the underlying brain

activity. Finally { or not �nally, as the list of potential recording problems is long

{ the sharp loud noise produced by the gradient pulses several times a second may

generate large auditory evoked responses or induce more general perturbations of

the �eld dynamics in the brain of the subject.

However, even after having dealt with or overcome all these and related problems,

it is important to reconsider whether promoting EEG and BOLD signals as \com-

plementary" in space and time is not too glib a concept. EEG is, �rst and foremost,

an index of local cortical synchrony. EEG signals, certainly, re
ect synchronous den-

dritic and possibly glial activity within domains of cortical tissue (neuropile) much

much larger than a single neuron, most probably within hypercolumn-scale or larger

domains. Perhaps `neuropile synchrony' is a better term, if one gives room for ac-

tive contributions of inhibitory neural networks (with their electrotonic as well as

synaptic couplings) and for active contributions of non-neural glial networks. Blood

oxygenation, on the other hand, is considered to index the brain response to local

metabolic need in the neuropile, mediated and controlled by mechanisms whose

details are not yet understood.

Since EEG and BOLD signals re
ect di�erent phenomena { spatial synchroniza-

tion and total metabolic consumption, respectively { EEG and BOLD signals, even

from the same patch of cortex, may be as unrelated to each other as are phase

and amplitude in Fourier spectra of random signals. That is, there is no a priori
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reason to assume they have any correlation at all! Before assuming a direct rela-

tionship between EEG and BOLD signals, we must answer the following question:

Do synchronized neuronal excitatory and inhibitory processes demand more oxy-

gen than the same processes in a desynchronized state? The largest normal EEG

rhythms, after all, occur in deepest sleep stages, when overall brain metabolic de-

mands (and most BOLD signals) are somewhat lower than during waking. Lack

of a �rm answer to this question should give us pause, and leads inevitably to the

conclusion that making a priori assumptions about the interrelationship of EEG

and BOLD signals is foolish in advance either of direct experimental evidence (from

adequate concurrent EEG / fMRI studies) and/or more detailed understanding of

their biophysics.

Even less well founded, in our view, are assumptions espoused by many re-

searchers that BOLD signal increases following sensory stimuli are highly likely

to indicate the brain areas responsible for generating small features (e.g., peaks) of

averaged event-related potentials (ERPs) evoked by the same stimuli. We believe

the very nature of the ERP may be di�erent from that assumed by most researchers.

The usual conception is the idea that sensory-evoked ERPs sum monodirectional

potentials accompanying and indexing phasic stimulus-induced increases in neural

�ring rates observed in some neurons within limited, cytoanatomically-de�ned sen-

sory cortical processing areas. In general, however, positive and negative peaks in

averaged ERP waveforms may not index changes in total EEG energy time locked

to stimulus onset, such as can be measured in the time/frequency domain by the

ERSP (event-related spectral perturbation) method (Makeig, 1993). Instead, most

features of averaged ERPs may be produced by event-related perturbations in the

phase statistics of ongoing EEG activity (Makeig et al., 2002).

Many event-related increases in EEG spectral amplitudes, on the other hand, (as

seen in ERSP plots) are not correlated with the reliable appearance of positive or

negative potential peaks in the raw EEG time series. Such a correlation may occur

only when the increases in EEG energy take the form of bursts that are reliably (1)

time locked (e.g., peaking at the same latency, relative to event onset, across trials)

and (2) phase locked (e.g., exhibiting the same phase at the same latency and central

burst frequency) to the experimental events of interest. For example, following onset

of brie
y 
ashed, left-hemi�eld non-target squares (cueing no subject response) in

a special selective attention experiment we observed a small (0.5 dB) event-related

increase in EEG power near 7 Hz (�gure 9.2B), whereas the ERP waveforms showed

a much larger (15-dB) post-stimulus increase in spectral power which was prolonged

near 10 Hz (�gure 9.2A). Furthermore, the scalp topographies over which the two

increases occurred were dissimilar.

Even increases in EEG spectral amplitudes (irregardless of phase) cannot be

assumed to correlate with BOLD signal increases. This is clearly shown by two re-

cent preliminary reports of negative and positive correlations, respectively between

BOLD signals and EEG amplitudes in the alpha and gamma bands, respectively

(Goldman et al., 2001; Logothetis et al., 2001).
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Figure 9.1 Visual Nontarget Stimulus-Evoked ERPs. (A) Screen display for the spatial
selective attention experiment. Five 1.6 cm2 square outlines indicating possible stimulus
locations were permanently displayed 0.8 cm above a central �xation cross. In each 76-
s block of trials, one outline was colored green, indicating the target location for that
block of trials. Target location was evenly distributed over the �ve stimulus locations
across 30 trial blocks per subject. (B) Stimulus timing. Stimuli were brie
y 
ashed white
circular discs each presented for 117 ms in a randomly selected stimulus location following
a randomly selected inter-stimulus interval of 250 to 1000 ms. Subjects were asked to
press a right thumb button press as quickly as possible each time a (target) stimulus
appeared in the target location (green box), and to ignore (nontarget) stimuli presented
in the other four boxes. (C) Averaged responses from 15 subjects (S1-S15). EEG data
were collected from 29 scalp plus two periocular sites, referred to the right mastoid at a
rate of 256 Hz/channel with an analogue band pass of 0.01 to 100 Hz. Scalp impedances
were kept below 5 k
. After rejecting epochs containing out-of-bounds values, data were
low pass �ltered below 40 Hz to suppress line noise. Averaged responses to nontarget
stimuli presented to the left of �xation (mean trials per subject, 922). Grand mean of 15
single-subject ERPs time locked to the brief appearance of the disk in a non-attended box
to the left of subject �xation. The light blue area marks the de�ned N1 response interval
(50 ms before and after the RMS N1 peak). The four interpolated scalp maps show the
shifting scalp distribution of the averaged response during the N1 interval. Following the
N1 feature, circa 10-Hz rhythmic activity appears in the evoked response. Figure 9.2B
shows that this `alpha ringing' does not arise from an increase in 10-Hz energy in the
EEG. (D) Envelopes of the 15 single-subject ERPs. The solid blue response envelopes
enclose the individual response traces for all 29 scalp channels. Vertical dashed lines mark
the grand mean N1 interval. From Makeig et al., Science 295, 690-694, 2002. Reprinted
with permission.
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EEG signals are produced by spatial synchronization of electrochemical activ-

ity in cortex; ERPs by synchronization of EEG signals time locked to the oc-

currence of some class of experimental events. Recently, we have shown that the

electroencephalographic (EEG) response to a small visual stimulus presented in

an unattended location in a selective spatial attention task (�gure 9.1) is better

modeled by stimulus-induced phase realignment of EEG activity within domains

of strong cortical synchrony that appear to generate most of the ongoing EEG

(Makeig et al., 2002) (�gure 9.2). These EEG domains need not be located within

single functionally-de�ned cortical processing areas. Some evidence suggests they

may extend across boundaries between such areas (Rogeul-Buser et al., 1997).

If visual ERPs are produced by stimulus-induced phase resetting of multiple

ongoing EEG processes rather than by consistent evoked positive or negative

potentials generated in restricted cortical areas, as strongly supported by our results

and other reports as early as Sayers et al. (1974), it appears naive to assume

that generators of single ERP peaks should be co-located with areas of signi�cant

event-related BOLD signal change. BOLD signal changes should re
ect changes
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Figure 9.2 Di�erences between Event-related Power Spectral Changes in the ERP and
EEG.. (A) Event-related spectral perturbation (ERSP) plot showing mean post-stimulus
increases in spectral power of the single-subject ERPs, averaged across 15 subjects. Shaded
areas in the time/frequency plane that show signi�cant (p < :02) post-stimulus increases or
decreases (see gray scale) in log spectral power in the averaged ERP waveform at a central
parietal electrode site (POz) relative to mean power in the averaged 1-s pre-stimulus
ERP. Topographic scalp maps show topography of the post-stimulus power increases
in the ERP relative to baseline across all 29 scalp channels at three indicated points
in the time/frequency plane. (B) Event-related spectral perturbations (ERSPs) for the
unaveraged EEG at central posterior site POz following left visual �eld nontarget stimulus
presentations. Mean of similar time/frequency transforms 15 subjects. Log spectral power
at each time and frequency was normalized by subtracting mean log power in the 1-s
pre-stimulus baseline. Features near (7 Hz, 200 ms) and (16 Hz, 350 ms) re
ect small
power increases. Vertical dotted lines, the N1 interval; horizontal line, 10 Hz. Cartoon

heads, scalp topographies of di�erences in spectral amplitude, relative to baseline, at the
indicated time-frequency points. FromMakeig et al., Science 295, 690-694, 2002. Reprinted
with permission.
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in the level of neural or neuroglial activity in local cortical domains whose size

is determined by the voxel size of the measurement (convolved with hemodynamic

control patterns). Even if some ERP peak were generated predominantly in a single

compact cortical area, it is premature to assume that a relatively slow BOLD

signal increase should be triggered by a brief period of net positive or negative

far-�eld potential, as this might well re
ect a transient increase in synchronization

of synaptic activity rather than an increase in its metabolic activity level.

If the time courses of averaged ERPs do not accurately re
ect event-related

dynamic patterns in the unaveraged EEG signals, which may in turn di�er in

complex ways from trial to trial, then combining averaged BOLD and EEG/ERP

data collected in separate sessions is an idea built on shaky ground indeed. Here we

report results of a single-subject, single-channel pilot study to test the feasibility

of recording and analysis of concurrent EEG and BOLD data. Preliminary results

from this study were reported earlier (Jung et al., 1999).

9.2 Methods

EEG epochs time locked to presentation of an RF pulse during an oddball/rare-

target \P300" experiment at the vertex to a 
ashed target shape (in the fovea),

from a pilot experiment conducted. The data (232 trials) were collected during

continuous, concurrent EPI scanning using a Siemens 1.5-T scanner at a rate

of 5 slices per second in a blocked paradigm consisting of three 4-minute bouts

each consisting of 40-s task blocks consisting of presentations of standard circles

(75%) and target squares (25%)) alternating with 40-s control blocks during which

the nontarget stimuli only were presented and the subject was instructed only

to continue to �xate a dot at screen center while ignoring the 
ashed stimuli.

Stimulus SOAs ranged between 435 and 1116 ms. During task blocks the adult

volunteer subject was asked to attend to di�erences between the visual stimuli

and to push a handheld button as soon as possible after presentation of a target

(square) stimulus. The subject wore earplugs to minimize sound from the scanner

during scanning pulses. Behavioral responses to targets were collected via a non-

metallic thumb button held in the subject's right hand. EEG was recorded from a

tin electrode placed over the right central scalp and referenced to another placed

over the right mastoid. The electrodes were attached to the ampli�er by carbon

wire (Electrocap, Inc.). The recording used an analog pass band of 0.1-30 Hz and

a sampling rate of 500 Hz. The ampli�er (SA Instrumentation, Inc.) was especially

constructed to operate on batteries placed before and after an optical bridge, and

to `time out' during a pulse produced by the Siemens scanner from a few ms before

to approximately 16 ms after the production of each RF scanning pulse. During

these brief time-out periods, capacitors held the EEG signal level nearly constant

to minimize switching artifacts.
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9.3 EEG Artifact Removal

First, the mean noise waveform time locked to the RF pulse was removed from

the data. The relative consistency of this noise is indicated by �gure 9.3, which

shows EEG epochs time-aligned to 100 consecutive RF pulses using a relative

microvolt scale. Unfortunately, for this pilot experiment microvolt calibrations were

not available. Time 0 marks the onset of the RF pulse.

Figure 9.3 shows the time-out period (with 2 sharp but relatively small remaining

spike artifacts), and a larger 10-Hz artifact time locked to pulse presentation. The

precise origin of the 10-Hz wave is unknown { two obvious candidates are ringing

at the frequency of the scanning pulse (near 1500 Hz) aliased down to near 10

Hz by the 500-Hz EEG sampling-rate, and/or possibly, entrainment of subject

alpha/mu activity by the pulse (and accompanying loud noise burst) sequence.

The mean artifact was then subtracted from the EEG data surrounding each RF

pulse. (Pulse onsets were recorded on a separate recording channel). Next, EEG

epochs surrounded the 226 target stimulus presentations were extracted from the
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Figure 9.3 Scan-related EEG artifact. One hundred consecutive EEG epochs time
locked to the onset (at time 0) of RF pulses during fMRI scanning. The �80 msec timeout
period is followed/preceded by a stereotyped noise waveform to which is added EEG
variability occurring during the �120 msec non-blanking periods. Removing the mean
pulse-locked artifact from each pulse epoch allows reconstructing the variable EEG and
ERP activity in single trials (see Figs. 2-3). Y-axis scaling is proportional to �V.
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cleaned data and imaged using the ERP-image plotting technique (Jung et al., 1999;

Makeig et al., 1999). Finally, we performed ERSP and phase resetting analysis on

the cleaned data. The �gures were created using an ICA/EEG toolbox for MATLAB

(The Mathworks, Inc.) available for download on the Web (sccn.ucsd.edu/eeglab/).

9.4 Results

Single-trial results are summarized in �gure 9.4 using the `ERP-image' plotting

format (Jung et al., 1999; Makeig et al., 1999).

The striate pattern visible in the pre-stimulus EEG data (and throughout) re
ects

the remaining pulse-locked artifact. However, as the delivery of stimuli was not time

locked to the production of scanning pulses, the ERP-image format clearly reveals

event-related potential activity in single trials (horizontal image lines) which here

are sorted in ascending order of response latency (indicated by the sloping white

line). The cleaned data clear show the presence of a complex pattern of evoked

response activity time-locked to the button press. The trace below the ERP-image

shows the average ERP of the cleaned trials.

Figure 9.4 Target stimulus-aligned ERP-image plot. This plot shows the 226 single
trials after removing the mean pulse-locked artifacts from each trial. The dotted white
line shows the stimulus onset time. The curved solid white line shows subject response
time (RT) after sorting trials by RT. Both the data and the RT curve are smoothed with
a 20-trial moving average. The averaged target-locked response is shown below the image
of the single-trial data.
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As �gure 9.4 clearly shows, the averaged ERP is smeared because of the relatively

broad range of response times in di�erent trials. The lower trace of �gure 9.5 shows

the response-locked ERP for the same trials. Note the �10-Hz activity in the �100

ms following the response (solid white line). This may represent the phase resetting

of mu activity, as suggested by other results obtained out of the scanner. The two

larger peaks of the averaged evoked response are separated by approximately 200

ms, suggesting a circa 5-Hz character.

Figure 9.6 presents time/frequency analysis of the same target epochs. The top

panel shows the ERSP, which includes a strong (6-dB) mean increase in theta band

power (near 5 Hz) in single trials during the evoked response. This theta power

increase does not in itself produce the 5-Hz ERP features. Instead, as shown in the

lower panel, the phase of theta bursts following the motor response is not random.

This switch from a pre-stimulus random to a post-stimulus non-random phase

distribution across trials, termed `phase resetting,' is indexed by the signi�cant

(r=0.4) inter-trial coherence in the theta band. More exactly, the term should be

`partial phase resetting,' since the resetting is incomplete (1 � r � 0).

The top panel also shows that the increase in EEG following the subject response

is not con�ned to one frequency band. Instead, a similar though smaller phasic

Figure 9.5 Response-aligned ERP-image plot. This plot shows the 226 single trials after
removing the RF-pulse artifacts from each trial. The trials are aligned to median subject
reaction time (403 ms, solid white line). The dotted white line shows the median stimulus
onset time. The mean RT-aligned response is shown below the single-trial image. Notice
the additional small peak (after 500 ms) in the response-locked average response (lower
trace); this feature does not appear in the stimulus-locked average (�gure 9.4 lower trace).
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power increase is seen near 14 Hz, 18 Hz, and 38 Hz. Near 38 Hz, the augmentation

begins just after stimulus onset and continues throughout the epoch, again peaking

after the button press. The augmentations at these higher frequencies are not

accompanied by phase resetting, since phase following the stimulus is random (ITC

not signi�cantly di�erent from 0). However, �gure 9.6 measures ITC relative to

stimulus onset.

Figure 9.5 suggests signi�cant phase resetting occurs time locked to the motor

response in at least two bands (near 5 and 10 Hz). The occurrence of partial phase

resetting in the theta band time locked to both the stimulus and the motor response

is quite possible. Further research would be required to determine if this occurred

in di�erent trial subsets or only as a consequence of the response time distribution

being concentrated in less than a 200 ms window representing one 5-Hz cycle (see

�gure 9.5). We are examining the relation of phase resetting to perceptual awareness

and behavior in more extensive EEG-only data sets.

dB

r

Time (ms)

400 8000 1200400 8000 1200

400 8000 1200400 8000 1200

1600

1600

ITC

ERSP

r

0

0.4

0.2

dB0

- 6

+6

10

20

30

40

10

20

30

40

10

20

30

40

10

20

30

40

F
re
q
u
e
n
c
y
(H
z
)

Figure 9.6 Frequency domain characterization of target event-related EEG dynamics.
(Upper panel) Shaded areas show signi�cant transient event-related power increases in
the EEG spectrum (the event-related spectral perturbation, ERSP) during the 232 target
response epochs time locked to stimulus onset. In addition to the circa 4-8 Hz theta
band power increase during the period of the late evoked response (400-700 ms), there are
increases near 12, 19 and 38 Hz, plus a lengthy post-stimulus increase in power near 28 Hz.
(Increases after 1500 ms are probably edge artifacts). (Lower panel) Signi�cant changes in
inter-trial coherence (ITC) measuring changes in consistency of EEG phase-locking of the
EEG at each frequency to stimulus onsets. None are evident save for the ERP-related circa
4-5 Hz peak. Thus, the 28-Hz augmentation in the upper panel represents an event-related
amplitude modulation of 28-Hz activity without phase resetting.
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9.5 BOLD Signal Analysis

Straightforward correlation analysis was performed on the BOLD data by correlat-

ing its time course at each brain voxel with a task design reference function obtained

by convolving the alternating block design time course with a model hemodynamic

response function. Results, shown in �gure 9.7, included expected activations in

left motor cortex at or near the expected location hand motor area. Artifacts from

the electrodes were con�ned primarily to supra-brain areas. Further analysis of this

pilot experiment data was not attempted. Currently, we are performing experi-

ments using a continuous performance task and 72 similar scalp electrodes, with an

intention to compare the spatially independent components of the BOLD signals

(McKeown et al., 1998) with the dynamics of temporally independent components

of the concurrently recorded EEG (Makeig et al., 1996).

Arrows: Consistently task-related activation in motor cortex. Letters

indicate Right, Left, Anterior, Posterior

R L R LA P

Figure 9.7 Voxels whose BOLD signals are positively correlated (r > 0:3) with the
task block design. BOLD data recorded during concurrent EEG acquisition on a Siemens
1.5-T scanner shows BOLD activation in left motor cortex during a visual detection task
requiring right thumb button presses.

9.6 Discussion

EEG signals recorded from the scalp arise through synchronous activity in cortical

domains or networks. Cortical BOLD signals, on the other hand, are believed to

index the brain response to total metabolic demand. In theory, these may be as

uncoupled as phase and amplitude are in noise signals. As �gure 9.7 also depicts

schematically, single pyramidal cells in cortex can only �re upon receiving suÆcient

synchronous excitatory input. It is now becoming clear that synchronization of

activity across and between cortical areas can e�ectively bias or modulate the

�ring of single neurons. Thus, information transfer in cortex is also controlled in

part by the network synchronies that give rise to EEG. If changes in EEG power
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Figure 9.8 EEG and fMRI BOLD data measure di�erent aspects of cortical activity.
Whereas the BOLD signal is thought to measure the brain hemodynamic response to
local metabolic need, the scalp EEG sums volume-conducted potentials generated in
cortical domains/networks (of unknown size, shape and density) across which extracellular
potential varies with suÆcient synchronicity. Synchronous activity, as re
ected in far-
�eld potentials, can also modulate �ring of individual neurons. Changes in the degree of
synchronization of activity in a cortical area may not mirror changes in total metabolic
consumption; thus changes in EEG power need not be correlated with BOLD signal
changes.

and in BOLD signal strength are signi�cantly related, we suggest the nature of

their links cannot be guessed in advance, may prove complex, and may eventually

be understood to arise through biophysical mechanisms whose details are not yet

discovered.

Clearly, the true test of these predictions will come from suÆcient analysis of a

wide range of recordings of concurrent EEG and BOLD signals. The pilot data we

have shown here indicate that detailed analysis of the dynamics of concurrently

recorded EEG and BOLD signals is feasible, even to the extent of single-trial

analysis of human cognitive ERP features. However, we have argued that the most

intimate relationship between BOLD and EEG signals is not likely to be between

BOLD di�erences and sources of peaks in ERP scalp waveforms, as other have

suggested, but between BOLD signals and changes in power and/or other whole-

signal features of the scalp EEG. Early results in this direction are promising.

Logothetis and colleagues (2001) have reported preliminary results from a relatively

few cells in a small cortical area of anesthetized monkeys that indicate that neural

�ring rate may not be as positive a correlate of BOLD signals as is changes in

TLFeBOOK



References 207

the power of local �eld potentials in the gamma band (above 30 Hz). Goldman

and colleagues (2001), however, have reported that BOLD signal levels within

discrete cm-scale domains of posterior cortex in humans are negatively correlated

with alpha band EEG power on the posterior scalp, while in other places (e.g., in

insula, thalamus) the same correlation may be positive. Clearly, we expect that

concurrent EEG and fMRI studies will prove important for the development of

cognitive neuroscience, and possibly for neuroscience in general (�gure 9.8).
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Recording event-related potentials (ERP) and observing the hemodynamic response

by functional MRI (fMRI) scanning are two complementary techniques for studying

brain functioning. A combination of both methods promises to reveal more detail

about the brain processes employed in a cognitive task. However, the interfering

measurement conditions require the solution of a number of delicate technical

details: in
uences of the electrode/ampli�er set-up on MRI scanning and of the

scanning process on the recording of electrophysiological signals are reviewed.

Implications and limitations of conducting combined ERP/fMRI experiments using

higher-level cognitive stimuli are discussed on the basis of two example studies.

10.1 Introduction

Electric potentials and the hemodynamic response of the vascular system are

measurable correlates of the brain's neuronal activation. The �rst e�ect, measured

here by event-related potentials (ERP), is a direct consequence of synchrony in the

electrical activity of neurons, and allow the observation of aspects of the underlying

cognitive brain process on a millisecond timescale. The second e�ect, measured here

by functional magnetic resonance imaging (fMRI) is only indirectly linked to the

energy consumption of the neuronal population and takes place on a timescale which

is of the order of seconds. However, recent developments in experimental techniques

and data analysis have shown that hemodynamic responses are indeed modulated by

the experimental stimulation and carry information about the underlying processes

at least on a 100 ms timescale (Buckner, 1998; Clark et al., 1998; Kruggel and von

Cramon, 1999; Richter et al., 1998).
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210 Recording of Evoked Potentials during Functional MRI

The localization of an activation by ERP source analysis provides a good temporal

resolution but su�ers from poor spatial resolution and the theoretical problem

of providing only inexact solutions. Here, fMRI is better able to localize brain

activations at a high spatial resolution. A combination of both techniques is a very

attractive aim in neuroscience, and a number of research groups have taken up

the challenge. Most studies so far were performed as separate experiments (i.e.

ERP and fMRI recordings at di�erent times), and results were registered and

combined by data processing (e.g., Liu et al. (1998); Martinez et al. (1999); Opitz

et al. (1999); B.R. Rosen (1998); Woldor� et al. (1999)). Especially for cognitive

stimuli, it is impossible to control whether a subject performs in the same manner

in both experiments: a response may habituate due to stimulus repetition; solution

strategies may change. Thus, performing a single experiment, i.e., recording ERPs

during fMRI, o�ers the advantage of observing responses to an unique event.

However, constraints imposed by a combined measurement will likely always lead to

results which are inferior in quality to separate measurements. It is an open issue,

which way of conducting experiments yields more valuable results. For observing

"unrepeatable events" such as epileptic �ts or sleep stages in the spontaneous

electroencephalogram (EEG), combined measurements are a pre-requisite.

However, recording EEG during fMRI scanning reveals a number of delicate

technical problems, which will brie
y be summarized in the following section. A

typical experimental set-up for conducting ERP/fMRI measurements is described,

and implications for experimental design are discussed on the basis of two studies.

10.2 Technical Considerations

The �rst report on recording EEG during fMRI scanning by Ives et al. (1993)

already mentioned the three major problems confronting combined measurements:

The strong and rapidly changing radio-frequency (RF) �elds coupled with the

large static magnetic �eld of the MR scanner may introduce signi�cant current


ow within the electrodes and wires, potentially leading to RF burns on the contact

surface of the electrodes on the skin. Lemieux et al. (1997) identi�ed RF-induced

electromotive forces as the most important potential hazard. Placing a 15 k


current-limiting resistor close to the electrode is suÆcient to ensure patient safety.

Heating of the electrode gel was considered negligible.

The EEG equiment may interfere with the imaging quality of the scanner. Krakow

et al. (2000) investigated the e�ect of individual components of the EEG recording

equipment on image quality. Electrodes and wires lead to local signal drop outs

and to geometric distortions due to magnetic susceptibilty di�erences (e.g., at

the electrode-skin contact) and the presence of Eddy currents in EEG electrode

assemblies. Secondly, the electromagnetic noise emitted by the EEG recording unit

degradates the image signal-to-noise ratio (SNR). Carbon electrodes with carbon

wires introduced the smallest artifacts. Due to their delicate handling, these authors
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suggest using gold electrodes and cermet �lm resistors as a second best choice,

which limit areas of signal loss to extracortical regions. Fast switching of the EEG

digitizing circuitry induces broadband signals decreasing the image SNR, so that

the recording unit needs adequate shielding.

Various superimposed RF and gradient �elds induce voltages which are much

higher than the brain's response and thus interrupt electroencephalogram (EEG)

acquisition (often called imaging artifact, Allen et al. (2000)). For this reason, most

EEG/fMRI studies have used clustered scanning protocols (Goldman et al., 2000;

Kruggel et al., 2000a), i.e. the brain region of interest is scanned rapidly at a fraction

of the repetition time (TR), leaving the remaining time of the period "silent" of

RF pulses for an undisturbed EEG recording. After each scan, the ampli�er needs

50-100 ms to recover from saturation, which must be taken into account in the

experimental design. Example: in an event-related design with a TR of 8 s, the �rst

2 s after a stimulus may be silent for EEG recording, then 6 s are left for fMRI

scanning.

The �rst experimental EEG set-ups have quickly turned into commercially available

MR-compatible EEG ampli�ers, which incorporate provisions as discussed above.

Most studies so far used only a small number of electrodes (up to 20), while

conventional ERP experiments are run with 64 or 128 electrodes. Using a higher

number of electrodes is necessary to cover a higher portion of the scalp (and

the brain underneath) and to achieve a better spatial resolution of the recorded

biosignals. However, when using a high electrode and wire density, in
uences on

fMRI acquisiton are more likely.

In addition, a pulse-synchronous artifact is encountered in the recorded EEG,

which reaches amplitudes of 100-500 �V and thus hides the real EEG signal.

Head movements induced by heart action (the so-called cardio-ballistic e�ect,

Ives et al. (1993); M�uri et al. (1998)) lead to small movements of the electrodes

and wires in the magnetic �eld, and thus induce a voltage in the wires. This

e�ect scales with magnetic �eld strength and is in fact the dominating signal

component at 3 T (Kruggel et al., 2000a). Twisting wires pairwise and careful

subject �xation minimize this artifact. However, post-hoc correction methods are

required to eliminate remaining artifact components from the signal (Allen et al.,

1998; Goldman et al., 2000; M�uri et al., 1998; Kruggel et al., 2000a).

In summary, to obtain a similar ERP quality under the interfering measuring

conditions of combined experiments, we estimate that 2-3 times the number of

trials must be conducted (Kruggel et al., 2001).

10.3 Experimental Design

In principle, both blocked and event-related experimental designs are feasible for a

combined ERP/fMRI experiment, and any fMRI experiment may be enhanced by

ERP recording. Some of the technical issues discussed above lead to constraints
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Figure 10.1 Signal recorded inside the scanner at sample scalp positions and corre-
sponding ECG (tick marks on EEG traces: � 200 �V, on ECG trace: � 1 mV). This
biosignal is about �ve times in magnitude compared to recordings outside the scanner.

in the design of an experiment. As a consequence of the imaging artifact, a

silent period is required for EEG recording, thus, there is a tradeo� between the

length of this period and the number of slices acquired within a TR. In both

experiments described below, we limited scanning to a sparse set of slices. Thus,

slice positions must be chosen carefully to cover the interesting brain regions. It

is useful to conduct a fMRI pre-study to de�ne the components of the network

under study. A consequence of the interfering measurement conditions is a low

SNR of the obtained ERPs, so that typically 100-250 repetitions per stimulus

class are necessary to obtain an ERP quality which is comparable to a separate

recording. Thus, even a simple factorial design requires 500-1000 trials. Given

the rather uncomfortable and con�ned situation for a subject in the MR tunnel,

the duration of an fMRI experiment (excluding preparatory scans) is limited to

less than 45 min. Thus, the trial length may not exceed 2.5-5 s, which leads to

strongly overlapping hemodynamic responses. Burock et al. (1998) demonstrated

that disentangling responses from rapid presentation rates is possible when using a

randomly varied trial length. Nevertheless, short trial lengths may not be feasible
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for some cognitive stimulus material, such as used in auditory speech perception

or recognition memory tasks. Auditory experiments may also be disturbed by the

scanning noise, which may also lead to lateralization of brain responses (Herrmann

et al., 2000b).

10.4 Experiments

We now describe two sample studies to demonstrate the feasibility of conducting

combined ERP{fMRI experiments. The �rst experiment aims at recording a visual

evoked potential (VEP) using an alternating checkerboard stimulus in a blocked

design. Details of the experimental set-up and data analysis will be discussed for

this simple experiment. As a typical example for a functional study in cognitive

neuroscience, the second experiment employed a well-studied visual oddball task

using illusory �gures (Herrmann et al., 1999, 2000a). This design incorporates 4

conditions with 225 repetitions each and a randomly varied trial length of 2{3.5 s.

Methods for post-hoc artifact correction are described, as well as a non-linear model

for disentangling the strongly overlapping hemodynamic responses.

10.4.1 Recording a VEP

Five healthy persons took part in this study (3 female, 2 male, mean age 23.6 years,

range 21-27 years). Conventional plastic-coated Ag/AgCl electrodes with iron-free

copper leads of 60 cm length were �xed on the subject's scalp by a stretchable

plastic cap. Electrodes were mounted at all positions of the international 10/20

system except Pz, where leads left the cap. The reference electrode was placed

close to the nasion on the forehead. Wires were twisted pairwise and led through

a 
exible silicon tube to the EEG ampli�er. In order to minimize movements, the

subject's head was restrained using cushions. Cables and ampli�er were �xed to the

gantry by tape and weighed down by rice bags.

Figure 10.2 Scheme of experiment 1: Sixteen seconds of alternating checkerboard

display were followed by a 16 s display of a �xation cross. A clustered acquisition of 3

MRI slices during a period of 200 ms was performed at a repetition time of 1333 ms,

leaving a 1133 ms period for EEG acquisition.
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To elicit visual evoked potentials, a black/white checkerboard pattern of 16x16

patches (full �eld visual angle 11.5 degrees, 42 arc minutes per pattern) was

inverted in intervals of 550 ms (a trial) (Celesia and Brigell, 1999). 16 s checkboard

stimulation were followed by a 16 s display of a �xation point. 16 blocks were

conducted (corresponding to a total of 310 trials).

10.4.1.1 Data Recording

A commercially available MR-compatible system (Schwarzer, M�unchen, Germany)

was used for EEG recording. The battery-powered ampli�er located in the scanner

tunnel was connected via a 20 m �ber optic link to a standard PC equipped

with a digital signal processor (DSP) board in the MR console room. The DSP

board received trigger input from the stimulation PC which was recorded with the

biosignals. The ampli�cation factor of the system was 10.000 x, with a bandwidth

of 0.073-70 Hz. Biosignals were sampled at 250 Hz using an unipolar recording with

Fz as reference. Functional imaging was performed using a Bruker Medspec 30/100

3.0T MR system. An in-house EPI implementation (TE 30 ms, TR 1333) was used

to acquire three slices (19.2 cm FOV, 64x64 matrix, 5 mm thickness, 2 mm gap)

centered along the calcarine �ssure. The clustered image acquisition time was 200

ms, leaving a 1133 ms period for EEG acquisition.

10.4.1.2 EEG Data Analysis

Recorded EEG data were processed o�ine in a series of steps. Slow-frequency

components of the signal were removed by a Hamming-weighted 0.8 Hz high-pass

�lter. The imaging artifact was detected in the summed signal. If the slope of

this signal exceeded a threshold of 25 �V=ms, an interval of the following 200 ms

was marked for exclusion. Then, the cardio-ballistic artifact was corrected: �rst, the

length of all cardiac cycles in the recording were detected from the ECG trace using

the �rst peak of the autocorrelated signal. A tracewise model of the cardio-ballistic

artifact was then computed by cutting the trace into sections corresponding to the

actual length of the cardiac cycle, interpolating each section to a length of 1000

points, and subsequent averaging. This artifact model was adapted to the original

signal by varying an amplitude factor, a o�set potential and a temporal shift. The

adapted artifact model was subtracted from the signal, which was low-pass �ltered

using a cut-o� frequency of 30 Hz to yield the corrected EEG. Finally, all trials

were averaged, with marked intervals excluded (see Fig. 10.4).

10.4.1.3 fMRI Data Analysis

Analysis of fMRI data consisted of a series of steps: Subject movements were

corrected in 2D (two translational and one rotational parameter) within and

between both scans (Friston et al., 1996). Baseline �ltering was achieved by

estimating the baseline using low-pass �ltering in the temporal domain (cut-o�
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Figure 10.3 Spontaneous EEG outside the scanner (top, tick marks: � 50 �V), inside
the scanner (middle, tick marks: � 200 �V), and EEG corrected for the cardio-ballistic
artifact (below, tick marks: � 50 �V). Trace labels correspond to electrode locations.

0.05 Hz) and subtraction of the result from the data (Kruggel et al., 1999). System

and physiological noise were partially removed by low-pass �ltering in the temporal

domain (cut-o� 0.2 Hz) (Kruggel et al., 1999). Functional activation was detected

by voxelwise univariate regression analysis using a box-car waveform shifted by 5

s to match the lag of the hemodynamic response (Kruggel and von Cramon, 1999;

Worsley and Friston, 1996). F-scores were converted into z-scores, thresholded (z

> 8) and activated blobs were assessed for signi�cance on the basis of their spatial

extent (Friston et al., 1994). For graphical display, signi�cantly activated brain

areas were color-coded and overlaid onto T1-weighted anatomical scans obtained at

the same positions as the functional data (see Fig. 10.4). As expected, the striate

cortex was activated by the stimulation. Components and latencies of the evoked

potentials are in accordance with published data (Celesia and Brigell, 1999).

10.4.2 Recording ERPs due to Cognitive Stimuli

The second experiment employed a well-studied visual oddball task using illusory

�gures (Herrmann et al., 1999, 2000a). Twelve healthy persons took part in this
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Figure 10.4 Example results from a single subject: BOLD activation (top) shown as a
z-score color map overlaid onto the corresponding anatomical slices and visually evoked
potential (below). Here, the dotted line corresponds to an experiment without fMRI
scanning, the solid line results from a combined ERP/fMRI measurement.

study (5 female, 7 male, mean age 24.8 years, range 22-30 years). We used Kanizsa

�gures and non-Kanizsa �gures (see Fig. 10.5) as stimulus material. Stimuli were

presented for 1000 ms, followed by randomized inter-stimulus-intervals (ISI) of 1000

to 2500 ms. The ISI duration followed an exponential distribution corresponding

to ISI = 1000� 500 � log(d); d 2 [0:04979; 1]. Figures were displayed in black on

a white background with a black �xation cross in the center. Stimuli subtended a

visual angle of 4.28 degrees including inducer disks.

The induced illusory �gures (Fig. 10.5 left) subtended 2.86 degrees. Fixation

crosses were displayed foveally (0.02 degrees). The ratio of the inducing line ends and

the side-length of the illusory �gures was 1/4. A block of 20 trials (approx. 50 s) was

followed by a 10s display of the �xation cross alone. Fourty-�ve blocks were recorded

in three experimental runs (a total of 900 trials). Conditions Kanizsa square (KS),
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Figure 10.5 Stimulus material used in the experiment: on the left, Kanizsa square (KS)
and triangle (KT), on the right: non-Kanizsa square (NS) and triangle (NT).

Figure 10.6 Scheme of experiment 2: Twenty Kanizsa stimuli were presented during 50
s with randomly jittered interstimulus intervals, followed by a 10 s display of a �xation
cross. A clustered acquisition of 5 MRI slices during a period of 270 ms was performed at
a repetition time of 1500 ms, leaving a 1230 ms period for EEG acquisition.

Kanizsa triangle (KT), non-Kanizsa square (NS), and non-Kanizsa triangle (NT)

were presented equiprobably and randomized across subjects and runs. The Kanizsa

square (KS) served as the target condition. Subjects were instructed to press a

button with their right middle �nger when a target appeared (p = 0.25), and to

press another button with the right index �nger for all other conditions (p = 0.75).

10.4.2.1 Data Recording

The EEG was recorded using the same set-up as above, and fMRI scanning was

performed using the same equipment, but applying a slightly modi�ed protocol

(TE 30 ms, TR 1500 ms, 5 axial slices with thickness 6 mm, oriented parallel to the

AC-PC line in the sagittal plane approx. at axial coordinates -13 mm, -5 mm, +3

mm, +43 mm, +50 mm. The time period during which the images were acquired

was 270 ms, leaving a period of 1230 ms for EEG acquisition.

10.4.2.2 EEG Data Analysis

Collected EEG data were analyzed o�ine by the procedure described above. Finally,

the corrected EEG was averaged across subjects in a period of -100 to +600 ms

relative to stimulation onset, selecting periods with correct responses and speci�c

conditions only (see Fig. 10.7).
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Figure 10.7 ERPs recorded at six selected positions for the four conditions Kanizsa
square (KS, red), Kanizsa triangle (KT, blue), non-Kanizsa square (NS, green), non-
Kanizsa triangle (NT, black).

As apparent from Fig. 10.7, all stimuli evoked the typical P100 and N170 ERP

responses. For statistical analysis, ERP amplitudes were pooled into 6 regions: LA

(left anterior: Fp1, F3), LC (left central: C3, T3), LP (left posterior: P3, O1), and

their homologues on the right side. ERP components were de�ned by the time

intervals 30-60 ms (N50), 70-110 ms (P100), 130-180 ms (N170), and 300-500 ms

(P300). Repeated measures ANOVAs with factors topography (anterior, central,

posterior), hemisphere (left, right), form (KS, KT, NS, NT) were conducted to

assess the e�ect of the experimental variables on the measured amplitudes.

For the N50 component in both posterior regions, square �gures elicited a higher

amplitude than triangular ones (F = 50:97; R2 = 0:168; p < 1e � 12). No e�ect

was found the the �gure factor or the other regions. A similar �nding was obtained

for the P100 component (F = 7:8; R2 = 0:019; p = 0:05). As might be inferred

from Fig. 10.7, for the N170 component and both posterior regions, a signi�cant

ordering of amplitudes by the factor form was found: KS > KT > NS > NT

(F = 31:7; R2 = 0:182; p < 1e � 12). Likewise, the same ordering was found for

the P300 component (F = 13:3; R2 = 0:022; p = 1e � 8). All results match with

previous ERP (Herrmann et al., 1999) and MEG (Herrmann et al., 2000a) studies.

10.4.2.3 fMRI Data Analysis

After the same preprocessing steps as in the �rst experiment, fMRI data were

analyzed by voxelwise univariate regression analysis. The regression analyses were

designed to distinguish (1) task-related activation (KS, KT, NS, NT) from baseline

(display of �xation cross alone), (2) target (KS) vs. non-target (KT, NS, NT)
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related activation, (3) activation related to Kanizsa (KS, KT) vs. non-Kanizsa

�gures (NS, NT), and (4) activation related to squares (KS, NS) vs. triangles

(KT, NT). In all designs, the �rst two time steps of each stimulus and baseline

period were excluded from analysis as transition phases. In addition, the �rst 5

time steps of each scan were excluded due to their magnetical non-equilibrium. The

design matrix was shifted by 5.5 s to match the lag of the hemodynamic response.

Resulting z-score maps were registered with a T1-weighted high resolution MR data

set of the same subject and transformed into Talairach space, and averaged within

the subject group. The resulting z-score map was thresholded by 4. Anatomical

locations of activated areas are summarized in Tab. 10.1, and quantitative results

from regression analyses are compiled in Tab. 10.2.

Table 10.1 Name and positions of activated regions-of-interest in experiment 2

Anatomical Location ROI Coordinates

x y z

Motor cortex left MCL -38 -19 53

Supplementary motor area SMA -5 1 54

Superior parietal lobule left SPLL -32 -53 52

Superior parietal lobule right SPLR 29 -42 44

Middle frontal gyrus left MFGL -36 29 32

Middle frontal gyrus right MFGR 33 45 24

Occipito-medial and lateral gyri left OMGL -42 -78 11

Occipito-medial and lateral gyri right OMGR 39 -64 6

Precuneus (left and right) PC 5 -33 51

Area striata (left and right) AS -10 -72 11

Heschl's gyrus left HGL -37 -17 - 4

Heschl's gyrus right HGR 39 -7 - 0

Results of regression analyses were summarized as:

During the stimulation (condition KS, KT, NS and NT vs. �xation point)

activations are found at expected locations (see Tab. 10.1 and Tab. 10.2): the left

motor cortex (MCL), the supplementary motor area (SMA), the left and right

superior parietal lobule (SPLL, SPLR), bilateral occipito-medial (OML, OMR)

and occipito-lateral gyri (OLL, OLR). Interestingly, the periphery of the area

striata (AS) and Heschl's gyrus is suppressed on both sides. This is interpreted

as an attentional focusation on the center of the visual �eld while suppressing the

peripheral visual �eld and the primary auditory cortex.

The evaluation of target (KS) vs. non-target (KT, NS, NT) conditions revealed

an activation of a bilateral fronto-parietal network (MFGL, SPLL, MFGR, SPLR),
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Table 10.2 Activation foci

ROI (KS, KT, NS, NT) (KS) vs. (KS, KT) vs. (KS, NS) vs.

vs. Fixation (KT, NS, NT) (NS, NT) (KT, NT)

Integral zmax Integral zmax Integral zmax Integral zmax

MCL 40181 11.81 26305 8.97 21618 9.10 14428 8.35

SMA 5787 10.16 6788 6.24 3586 6.74 1856 6.39

SPLL 2654 8.61 1453 5.31 { n.s. { n.s.

SPLR 1354 7.56 79 4.36 { n.s. { n.s.

MFGL -520 -5.93 561 5.50 { n.s. { n.s.

MFGR -10122 -8.80 200 4.68 { n.s. { n.s.

OMGL 52288 14.58 { n.s. 12054 7.82 6448 7.22

OMGR 42609 14.84 { n.s. 13520 9.11 1956 6.95

PC -20091 -11.62 { n.s. { n.s. { n.s.

AS -244861 -19.24 30305 6.82 -1065 -6.41 1967 7.24

HGL -3068 -7.49 { n.s. { n.s. { n.s.

HGR -19146 -9.54 { n.s. { n.s. { n.s.

Notes: Selected activation foci for the all stimuli vs. �xation, target vs. non-target
conditions, Kanizsa vs. non-Kanizsa �gures and square vs. triangle �gures. For each
comparison, the integral suprathreshold activation and the maximum z�score within a
focus are given.

and a stronger activation of MCL, SMA and SPL. The periphery of AS exhibits a

relative activation (i.e., a less pronounced suppression).

Kanizsa �gures elicit a stronger activation of MCL and SMA, however less

pronounced compared to the target condition. The detection of "meaningful �gures"

is documented by relatively stronger activations of secondary visual areas.

Displaying squares (KS, NS) elicits a stronger activation of MCL, SMA, OMG and

OLG than triangles (KT, NT). However, this e�ect is less pronounced compared

to the target e�ect and the e�ect elicited by the Kanizsa �gures. The periphery of

AS is less suppressed, which might be explained by the larger spatial extent of the

squares.

In summary, the activation increases in MCL and SMA for squares, Kanizsa

�gures, and the target condition. OMG and OLG exhibit a stronger activation for

squares and Kanizsa �gures. SPL appears to be involved in the detection of the

target condition. The periphery of AS is suppressed during stimulus display, which

is less pronounced for squares and target display.

10.4.2.4 Modelling the Hemodynamic Response

To obtain information about the class-wise shape properties of the hemodynamic

response, a non-linear regression model was adapted to the time-series (Kruggel
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et al., 2000b). Each hemodynamic response due to a single stimulus is a modeled

by a Gaussian function. We assume that each stimulus of a given class elicits the

same response, and that subsequent stimuli add linearly (Buckner et al., 1996).

This de�nes the model of the time-series y as:

y =
X

s

tmaxX

t=0

(gc(s) � exp(�((t� lc(s))=d)
2) + o; (10.1)

where the parameters of the Gaussian function are called g: gain, l: lag, d: dispersion

and o: o�set. The inner sum models the hemodynamic response due to a single

stimulus in the time interval t 2 [0; tmax] lasting from stimulation onset for an

arbitrary time (here, tmax = 12s). The outer sum runs over all trials s of the

experiment, with c(s) 2 fKS;KT;NT;NSg referring to the stimulus class. Note

that the dispersion and the o�set were assumed as class-independent. The signal was

sampled at integral multiples of TR (the actual time points of measurements), and

the slice-dependent acquisition delay of the EPI protocol was taken into account.

First, regions-of-interest (ROIs) were determined by computing a regression

analysis in single subjects as described above, measuring the e�ect of stimulation

periods (KS, KT, NS, NT) vs. �xation point display. In the resulting individual

z�score maps, we de�ned regions of 6 four-connected, suprathreshold (z � 6)

voxels around local maxima and selected those regions, whose position most closely

resembled to regions found in the group analysis (see Tab. 10.2). The time series

for a ROI was obtained by averaging voxel intensities at a given timepoint. Note

that spatio-temporal correlations were neglected.

Parameters of the model function were optimized using Powell's algorithm (Press

et al., 1992). Ten parameters (gain and lag for each class, class independent

dispersion and o�set) were determined from a time series of 1800 points. For inter-

subject comparisons, relative gain values were computed for each subject and each

ROI: rgc = gc=
P

c
gc. Lag times were normalized by subtracting the individual lag

of a ROI within the area striata (AS).

For each subject, ROI and stimulus class, we obtained a relative gain (activation

strength) and a relative lag (time to response maximum). Resulting values were

ordered by time and condition. Orderings were determined by computing Student's

t tests (single sided, unequal variance, where > corresponds to p < 0:05, � to

p � 0:05):

The temporal sequence of activations of ROIs and their mean relative lag was

determined as: MCL (-0.019 s) � AS (0.000 s) � OMG (0.034 s) � OLG (0.106

s) < SMA (0.515 s) < SPL (+1.100 s). Three temporal activation groups are

discriminated: (AS, OMG, OLG, MCL) appear �rst, then SMA, then SPL.

Lag times for the target condition tended to be greater for the target condition

in ROIs SPL (�t = 0.380 ms, p = 0.079) and SMA (p = 0.056), but not in the

other ROIs.

Relative gains vs. experimental conditions were ordered for all ROIs. We obtained

for ROI AS: KS � NS � KT � NS, for ROIs OMG, OLG: KS � KT > NT � NS,
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for ROIs MCL, SMA and SPL: KS > NT � KT � NS. While the activation of

central portions of the striate cortex was independent from the stimulus, a stronger

activation was found for Kanizsa �gures in OMG and OML. A clear selection of

the target was found in ROIs MCL, SMA and SPL.

Activations in ROIs MFGL and MFGR were too low to warrant a proper

modelling.

10.4.2.5 Combining Results

We would now try to summarize results from this combined ERP-fMRI study of

an oddball task using illusory �gures:

ERP responses in the N50 and P100 time window from this and an earlier

experiment (Herrmann et al., 1999) demonstrated a slightly higher activation for

squares than for triangles. This result is consistent with a slightly higher activation

of the striate cortex found by the standard linear and the non-linear regression

model. We argue that this due to that fact that the four pac-men, when 
ashed

over the screen, lead to a greater change in overall brightness and have a greater

spatial extent than only three of them.

At a later processing stage (during the N170 time window), Gestalt-like properties

that emerge from binding individual elements seem to become more relevant

(Herrmann and Bosch, 2001). The target e�ect in striate cortex is probably not

due to an early selection mechanism since the early ERPs (N50, P100) do not show

a target e�ect (Heinze et al., 1994). It is more likely that the striate cortex receives

feedback from higher visual areas during a later stage of the selection (Martinez

et al., 1999). The ERP component indicated an amplitude-ordering by condition

as: KS > KT > NS > NT, which is consistent with the regression results for ROIs

OML and OLL.

A fronto-parietal network (consisting of ROIs SPL and MFG bilaterally) is

responsible for response selection: Both regions are more strongly activated when

comparing target vs. non-target conditions in fMRI; this and previous EEG and

MEG studies (Herrmann et al., 1999, 2000a) have demonstrated maxima of the P300

component over the centro-parietal cortex (at positions P3, P4, Herrmann et al.

(1999). The locations of the BOLD e�ect which resemble this e�ect (OMG, OLG)

are in accordance with previous fMRI localization of the N170 sources (Gonzales

et al., 1994).

Similar to results from modelling other fMRI experiments (Kruggel and von

Cramon, 1999; Kruggel et al., 2000b), ROIs SMA and MCL, which are responsible

for response generation, are activated rather early and show a clearly stronger

activation during target trials: KS > NT � KT � NS.

The auditory cortex and periphery of the striate cortex are suppressed during

stimulation. Most likely, this corresponds to an attentional focusation on central

visual cortex.
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This qualitative hypothetical model is in accordance with experimental �ndings

from this combined and previous separate measurements. It implicitly re
ects

the underlying hypothesis that the absolute ERP amplitudes correspond to fMRI

activation strengths, although there is no strict experimental evidence for this

assumption.

10.5 Discussion

The feasibility of recording ERPs during fMRI scanning using cognitive stimuli was

demonstrated by recording ERPs with the expected con�guration while measuring a

typical pattern of BOLD responses. While the possibilities of this new methodology

are exciting, a few issues should be remembered when planning such experiments,

analyzing their data, or interpreting their results:

Problems of a combined measurement: There are mutual in
uences of the EEG

and MRI measuring process. The clustered EPI protocol in experiment 2 allowed

recording 5 functional slices in 250 ms, but the EEG ampli�er needed approx. 150

ms to recover from saturation. Thus, a window of 400 ms is lost for each block of

scans from the EEG time course. For an average trial duration of 2.5 s here, this

compiles to an acceptable "duty cycle" of 84 %. However, if the process under study

requires scanning of a larger extent of the brain, this might leave EEG windows left

which are too short for a meaningful evaluation.

The cardio-ballistic e�ect may be corrected by using one of the published methods

(Allen et al., 1998, 2000; Kruggel et al., 2000a). Due to their comparatively high

magnitude on our 3T scanner, remnants of this artifact are still detectable in the

corrected output, which corresponds to a lower SNR ratio in the grand averages. We

estimate that 2-3 times the trials of a conventional ERP experiments are needed in

a combined EEG-fMRI measurement. To avoid picking up too much of this pulse-

synchronous signal, we had to move the reference from the Goldmann point to

the nasion. However, this drastically reduced the relative amplitude of the P300

component for the target condition.

Using 20 EEG electrodes and cables, which were radially joined at location Pz

of the electrode cap, resulted in a loss of MR signal which was most noticable in

the topmost slices. This is best explained by a shielding e�ect of the cables, and

made the shimming process of the MR scanner tedious. Using this conventional

EEG set-up, this certainly poses an upper limit for the number of electrodes, most

likely not much beyond 20.

Problems of exprimental design: As stated above, the rather low SNR of the grand

average forces the design of experiments with a rather high number of trials per class

(say, at least 100). On the other hand, most detail about the shape properties of the

hemodynamic response is obtained when using rather long trial lengths (say, 12 s

or more), so that the overlap of sequential BOLD responses is negligible. Obviously,

a compromise between the number of stimulus classes in a factorial (or parametric)

design, and the trial length must be made.
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We employed the rapid stimulation protocol using randomly varied trial length

introduced by Burock et al. (1998) in the second experiment. We presented 900 trials

within 45 min, using a trial length of 2{3.5 s, and we were able to disentangle the

class-wise properties of hemodynamic response by non-linear regression analysis.

Obviously, such rapid presentation is better suited to visual than auditory stimulus

material.

A greater freedom in experimental design is possible when improving the SNR

of ERP acquistion to a level comparable to separate measurements. An improved

subject set-up, and advances in sensor and ampli�er construction are expected

to yield most bene�t. Because artifacts scale supralinearly with �eld strengths, it

might even be bene�cial to conduct such experiments at 1.5 Tesla �eld strengths,

sacri�cing sensitivity for the BOLD signal in favor of a less-distorted EEG.

Problems of analyzing data: We analyzed measured EEG and fMRI data in a

conventional fashion, i.e., each measurement separately. When trying to create a

synthesis of the results for ERP and fMRI data analysis, the following physiological

response properties must be remembered: Electric potentials measured on the scalp

have a rather low spatial resolution, which is partially due to a spatial low-pass

�ltering e�ect of the outer hulls of the brain, and thus correspond to an integral

response of a certain brain region at a given time point. Conversely, the BOLD

response may be understood as a (fast) neuronal activation convolved by a (slow)

hemodynamic response function. This corresponds to a low-pass �ltering e�ect in

time, or: an integral activation over a certain time window at a speci�c brain

location. In addition, it is still unclear to which extent lag times are in
uenced

by a delay in neuronal activation or in delivery of oxygenated blood to the response

area.

Theoretical considerations: Although both experiments demonstrate the feasibil-

ity of conducting combined experiments, theoretical considerations warn against a

naive interpretation of the results. As Nunez and Silberstein (2000) pointed out, it

is important to remember that:

EEG and fMRI responses may not necessarily originate from the same cell

assemblies, and

Scalp EEG amplitudes and hemodynamic activity can change in opposite direc-

tion.

Much of the physiological knowledge necessary to create a computational model

of the neurono-vascular coupling is still missing, which is required to permit a

stronger interpretation of the results revealed by combined experiments. The co-

operativity of the brain adds another level of complexity when interpreting results:

Assuming that processes are strictly sequential in time and well-separated in space,

unique models about the underlying processes involved in a cognitive task may be

constructed. While this assumption may approximately hold for early processing

stages (e.g., during stimulus perception), it is well known that later processing

stages (i.e., stimulus analysis, decision making, response generation) require a

network of temporally strongly overlapping processes (Makeig et al., 1999), where
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even re-activations of certain brain regions are under discussion (Martinez et al.,

1999). Modelling such a network will most likely yield non-unique solutions.

We demonstrated the feasibility of performing combined ERP/fMRI experiments

under higher-level cognitive stimulation. The perspective of observing complemen-

tary responses due to the same stimulation event on a single subject level is very

appealing in order to better understand physiological processes underlying brain

activation and the functional organization of the brain.
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Synthetic PET imaging is a technique for using computational models derived from

primate neurophysiological data to predict and analyze the results of human PET

studies. This technique makes use of the hypothesis that is correlated with the inte-

grated synaptic activity in a localized brain region. In this chapter, we describe the

Synthetic PET imaging approach, and demonstrate how it is applied to the FARS

model of parietal-premotor interactions underlying primate grasp control. The Syn-

thetic PET measures are computed for a simulated conditional/non-conditional

grasping experiment, and then compared to the results of a similar human PET

study. We then show how the human PET results may be used to further constrain

the computational model.
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11.1 Synthetic PET De�ned

In order to provide a causal account of brain function constrained by data from both

primate neurophysiology and human brain imaging, Arbib et al. (1995) introduced

a new computational technique, called Synthetic PET imaging. This technique uses

neural models that are based on primate neurophysiology to predict and analyze

results from PET (Positron Emission Tomography) brain imaging regional cerebral

blood 
ow (rCBF) or glucose metabolism taken during performance of a variety

of human behaviors. The problem is to �nd an integrated measure of activity

in each simulated neural group that provides a predictor for the PET-measured

activation of the 3D volume to which the neurons in this group correspond. The

key hypothesis is that PET metabolic imaging is correlated with the integrated

synaptic activity in a brain region (Brownell et al., 1982), and thus re
ects in part

neural activity in regions a�erent to the region studied, rather than intrinsic neural

activity of the region alone. However, the method is general, and can potentially

accommodate other hypotheses on single cell correlates of imaged activity, and can

thus be applied to other imaging techniques, such as functional MRI, as they emerge

(see Arbib et al. (1995) for further discussion). Thus, although the present study

uses Synthetic PET, we emphasize that this is but one case of the broader potential

for systems neuroscience of Synthetic Brain Imaging (SBI) in general. In the rest

of this section we brie
y review the way in which we represent neural networks for

computer simulation, and then provide the formal de�nition for Synthetic PET.

11.1.1 Modeling Neural Networks

Here, we adopt the leaky integrator neuron model leaky integrator model of the

neuron, in which the internal state of the neuron is described by a single variable,

the membrane potential m(t) at the spike initiation zone. The time evolution of

m(t) is given by the di�erential equation:

�
dm(t)

dt
= �m(t) +

X

i

wiXi(t) + h; (11.1)

with resting level h, time constant � , Xi(t) the �ring rate at the ith input, and wi

the corresponding synaptic weight. The present model de�nes the �ring rate as a

continuously varying measure of the cell's activity. The �ring rate is approximated

by a sigmoid function of the membrane potential, M(t) = �(m(t))1. Many brain

regions can be modeled as a set of two dimensional arrays of neurons, with one array

for each anatomically or physiologically distinct cell type. Connections between

these neural arrays are de�ned in terms of interconnection masks which describe

1. An appreciation of neural complexity is necessary for the computational neuroscientist
wishing to determine how detailed the neural model needs to be when studying a speci�c
system|see Rall (1995) and Arbib (1995), for further details.
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the synaptic weights. E.g., the equations � = 10 ms, and SA = C +W � B, state

that the membrane time constant for neural region A; � is 10 milliseconds, and that

for each cell i,j in array A, the cell's input, SA(i; j), is the sum of the output of the

i; jth cell in C, plus the sum of the outputs of the 9 cells in B centered at i; j times

their corresponding weights in W. In other words,

SA(i; j) = C(i; j) +

lX

k;l=�l

W (k; l) � B(i+ k; j + 1);

that is, the � operator in \W � B" indicates that mask W is spatially convolved

with B.

11.1.2 De�ning Synthetic PET

The issue now is how to map the activity simulated in neural network models of

interacting brain regions based on say single-cell recordings in behaving monkeys

into predictions of metabolic activity values to be recorded from corresponding

regions of the human brain by imaging techniques such as PET. There are two

problems: localization and modeling activation.

Localization: Each array in the neural network model represents a neural popu-

lation in a region identi�ed anatomically and physiologically in the monkey brain.

A Synthetic PET comparison requires explicit hypotheses stating that each such

region A is homologous to a region h(A) in the human brain such that |within

the tasks under consideration| A and h(A) perform their tasks in the same way.

In some cases, such homologies are well de�ned. In other cases, the existence or

identity of such a homology is an open question. Thus, the comparison of a Syn-

thetic PET study with the results of a human brain scan study will, inter alia, be

a test of the hypothesis \h(A) in human is homologous to A in (a given species

of) monkey", and comparison of synthetic and human studies may suggest a new

homology to be tested in further studies.

Modeling activation: PET typically measures regional cerebral blood 
ow (rCBF).

Arbib, et al. (1995) hypothesize that the counts acquired in PET scans are corre-

lated with local synaptic activity in a particular region (Brownell et al., 1982; Fox

and Raichle, 1985), and call this measure the \raw PET activity." However, PET

studies typically do not report these values, but instead report the comparative

values of this activity in a given region for two di�erent tasks or behaviors.

We thus de�ne our Synthetic PET computation in two stages:

1. Compute rPETA, the simulated value of raw PET activity, for each region A of

our network while it is used to simulate the monkey's neural activity in some given

task.

2. Compare the activities computed for two di�erent tasks. The result is a Synthetic

PET comparison which presents our prediction of human brain activity as based

on neural network modeling constrained by monkey neurophysiology and known

functional neuroanatomy.
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The synthetic raw activity, rPETA, associated with a cell group A is de�ned as:

rPETA =

Z t1

t0

X
B

!B!A(t)dt; (11.2)

where A is the region of interest, the sum is over all regions B that project to the re-

gion of interest, wB!A(t) is the synaptic activity (firing rate�jsynaptic strengthj)

summed over all the synapses from region B to region A at time t, and the time

interval from t0 to t1 corresponds to the duration of the scan (see Arbib et al. (1995)

for further discussion).

The comparative activity PETA(1=2) for task 1 over task 2 for each region A

was given by Arbib et al. (1995) as:

PETA(1=2) =
rPETA(1)� rPETA(2)

rPETA(1)
(11.3)

where rPETA(i) is the value of rPETA in condition i, to compare the change in

PETA from task 2 to task 1. In the present study we use a di�erent measure,

de�ning the relative synaptic activity for region A from task 1 to task 2 with

max(rPETA(1); rPETA(2)) replacing rPETA(1) in the denominator of equation

11.3 to yield

PETA(1=2) =
rPETA(1)� rPETA(2)

maxi2f1;2g rPETA(i)
(11.4)

This yields a more robust measure of relative synaptic activity. We can display

the values of the \Synthetic PET comparison" PETA(1=2) for each region A on a

graph or in a table, or we may (see Arbib et al. (1995)) convert each A-value to

a color scale, and display the colors on the region h(A) homologous to A on slices

based on the Talairach Atlas (Talairach and Tournoux, 1988). The resulting images

then predict the results of human PET studies. Note that we are plotting synaptic

activity for each region A, not the neural activity of A. As a computational plus

(going beyond the imaging technology), we may also collect the contributions of

the excitatory and inhibitory synapses separately, based on evaluating the integral

in equation 11.2 over one set of synapses or the other. Using simulated PET, we

can break apart di�erent factors that contribute to the measure of synaptic activity

so that they can be studied independently. This can allow a much more informed

view of the actual PET data that are collected, possibly shedding light on apparent

contradictions that arise from interpreting rCBF simply as cell activity.

11.2 A Model of Grasp Control

The cells of area F5, part of of the macaque inferior premotor cortex, are often

selective for the type of grasp made by the monkey (Rizzolatti et al., 1988). Grasps

observed during these experiments include precision pinches (using the tips of the

index �nger and thumb), lateral pinches (thumb against the side of the index
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�nger), and power grasps (four �ngers opposing the palm). In addition, the �ring

of these cells typically correlated with a particular phase of the ongoing movement.

For a task in which the monkey was presented with an object, then grasped the

object in response to a go signal, held the object, and �nally released the object

after a secondary go signal, the following phases were identi�ed: preparatory (set),

�nger extension, �nger 
exion, holding, and release. F5 exchanges cortico-cortical

connections with AIP (the anterior intra-parietal area of parietal cortex), whose

cells demonstrate a variety of both visual- and grasp-related responses (Taira et al.,

1990). This section outlines the FARS (Fagg-Arbib-Rizzolatti-Sakata) model of the

grasping process. It is implemented in terms of simpli�ed, but biologically plausible

neural networks. For details of the model, supporting monkey data, computational

constraints, and a set of simulation results, see Fagg (1996) andFagg and Arbib

(1998). In the next section, we will extract measures of regional synaptic activity

from the model, and then compare them to rCBF results in a human PET study.

The FARS model focuses on the roles of several intra-parietal areas (anterior - AIP,

posterior - PIP, and ventral - VIP), inferior premotor cortex (F4 and F5), pre-

SMA (F6; one of two subdivisions of the supplementary motor area), frontal cortex

(area 46), F2 (dorsal premotor cortex), inferotemporal cortex (IT), the secondary

somatosensory cortex (SII), and the basal ganglia (BG). However, in this chapter

we shall discuss only the contributions of AIP, F5, F6, F2, and the BG. The crucial

aspects of the model (see �gure 11.1) are the following:

1. AIP serves the dual role of �rst computing a set of a�ordances for the object

being attended (i.e., AIP highlights properties of the object relevant for manu-

ally interacting with it), and then maintaining an active memory of the selected

a�ordance as the corresponding grasp is prepared and executed.

2. F5 integrates a variety of constraints to decide on the single grasp that is to

be executed. These constraints include visual information (from the a�ordances

extracted by AIP), task information (from F6), instruction stimuli (from F2), and

a working memory (from area 46) of recently-executed grasps. We shall say more

of F6 and F2 below; area 46 will not be considered further in the present paper.

When the movement is triggered, F5 is responsible for the high-level execution and

subsequent monitoring of the planned preshape and grasp.

Fagg and Arbib (1998) have o�ered both a computational analysis and an analysis

of empirical data in support of the hypothesis that not only is F5 responsible for

unfolding the grasp in time during the execution of the movement, but that F5 also

sends recurrent connections back to AIP to update AIP's active memory for the

grasp that is about to be executed or that is being executed by F5.

Figure 11.1 illustrates how the modeled AIP computes a set of a�ordances for a

mug, and passes the corresponding set of grasps to F5. In general, a single object

a�ords many possible grasps. As a function of the current context, F5 selects only

one. This decision is then broadcast back to AIP, which shunts the other a�ordances,

leaving only the a�ordance that corresponds to the selected grasp. During the

execution of the grasp, the a�ordance represented by AIP forms the active memory
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dorsal/ventral
streams

F5

Instruction Stimuli (F2)

Working Memory (46)

Task Constraints (F6)

AIP

Figure 11.1 According to the FARSmodel, AIP uses visual input to extract a�ordances,
which highlight the features of the object that are relevant to grasping it. F5 then applies
various constraints to select a grasp for execution and to inform AIP of the status of
its execution, thus updating AIP's active memory. The areas shown are AIP (anterior
intraparietal cortex), area F5 (of the ventral premotor cortex), and regions providing
supporting input to F5, namely F6 (pre-SMA), area 46 (dorsolateral prefrontal cortex),
and F2 (dorsal premotor cortex).

which is continually updated by inputs from the active grasp program in F5. This

process of separating out motor-related visual features may explain why cells in

AIP re
ect both object- and grasp-related activity patterns.

The current context used by F5 to select amongst available grasps may include

task requirements, position of the object in space, and even obstacles. When the

precise task is known ahead of time, it is assumed that a higher level planning

region predisposes the selection of the correct grasp. In the FARS model, it is area

F6 that performs this function. However, here we emphasize a task in which the

grasp is not known prior to presentation of the object, and is only determined by

an arbitrary instruction stimulus made available during the course of the trial (e.g.

an LED whose color indicates one of two grasps). The dorsal premotor cortex (F2)

is thought to be responsible for the association of arbitrary IS with the preparation

of motor programs (Evarts et al., 1984; Kurata and Wise, 1988; Wise and Mauritz,

1985). In a task in which a monkey must respond to the display of a pattern with

a particular movement of a joystick, some neurons in F2 respond to the sensory-

speci�c qualities of the input, but others speci�cally encode which task is to be

executed on the basis of the instruction, they thus form set cells which encode the

motor speci�cation until the go signal is received (Fagg and Arbib, 1992; Mitz et al.,

1991).

We therefore implicate F2 as a key player in this grasp association task. What is

particularly interesting about this type of conditional task, is that alone, neither the

view of the object (with its multiple a�ordances), nor the instruction stimulus (IS)
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is enough to specify the grasp in its entirety: the visual input speci�es the details of

all the possible grasps; the IS speci�es only the grasp mode|and not the speci�c

parameters of the grasp (such as the aperture). F5 must combine these sources of

information in order to determine the unique grasp that will be executed.

11.2.1 Population Coding of Grasp Type in AIP and F5

Figure 11.2 presents an outline of the neural regions involved in the FARS model

of grasp production. The precision pinch and power grasp pools of AIP receive

inputs from both the dorsal and ventral visual pathways (pathways not shown;

more details may be found in (Fagg , 1996; Fagg and Arbib, 1998). The pools in

F5 and AIP are connected through recurrent excitatory connections: a�ordances

represented by populations of units in AIP excite corresponding grasp cells in F5;

active F5 units, representing a selected grasp, in turn support the AIP units that

extract the motorically-relevant features of the objects. In monkey, the number of

neurons in F5 involved in the execution of the precision pinch is greater than the

number observed for any other grasp (Rizzolatti et al., 1988). The model re
ects

this distribution in the sizes of the precision and power pools in both F5 and AIP.

Each grasp pool within F5 is partitioned into overlapping subpopulations that en-

code both the phase of the grasp program, and the grasp parameters (e.g. the grasp

aperture). Subpopulations within AIP capture the a�ordance parameters, such as

object width. Cells within these subpopulations exchange excitatory connections

with one another, supporting their mutual coactivation. Competition between op-

posing subpopulations is mediated via inhibitory interneurons (indicated by the

connections in �gure 11.2 that are terminated with �lled circles). F5 cells that are

active for a given phase of movement recruit units in the primary motor cortex

(F1) that move the �ngers in a manner that is appropriate for that phase. In ad-

dition, units in the secondary somatosensory cortex (SII) are recruited by F5 cells

as a way of monitoring the progress of the grasp as it is executed. The results of

this monitoring are broadcast back to F5, which may in turn adjust the ongoing

execution of the program. When the model is presented with the conditional task

described in the previous section, how is a unique grasp selected for execution?

AIP �rst extracts the set of a�ordances that are relevant for the presented object

(say, a cylinder). These a�ordances, which also encode the diameter of the cylinder,

activate the corresponding motor set cells in F5. However, because there are mul-

tiple active a�ordances, several competing subpopulations of F5 set cells achieve

a moderate level of activation. This competition is resolved only when the IS is

presented. This instruction signal, mapped to a grasp mode preference by the basal

ganglia (connections not shown in the �gure 11.2), is hypothesized to arrive at F5

via F2. The signal increases the activation level of those F5 cells that correspond

to the selected grasp, allowing them to win the competition over the other subpop-

ulations. Besides the processing of instruction stimuli, the basal ganglia play two

additional roles in the model. A subset of BG units are dedicated to implement-

ing the gating circuitry that controls the phasic behavior of cells within F5. This
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power

precision

F5
power

precision

AIP
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F1
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F6 F2
instruction
stimulus

Figure 11.2 A schematic view of the model's architecture. Arrows indicate excitatory
connections between regions; �lled circles indicate inhibitory connections. The precision
pinch and power grasp pools in F5 and AIP are connected through recurrent excitatory
connections. The precision pinch pool contains more neurons than other grasps, which
e�ects the Synthetic PET measure in these and downstream regions. F6 (pre-SMA)
represents the high-level execution of the sequence, phase transitions dictated by the
sequence are managed by the basal ganglia (BG). The dorsal premotor cortex (F2) biases
the selection of grasp to execute as a function of the presented instruction stimulus.

phasic activation, in turn, implements the set, preshape, enclose, hold, and release

phases of the grasping motor program. This monitoring of the motor program takes

place at a coarse level and is not speci�c to the type of grasp that is executed. In

general, we imagine that F6 is responsible for con�guring the gating circuitry so as

to implement the appropriate sequence of movements. However, this knowledge is

not explicitly represented in this implementation of the model. An additional set

of BG cells is responsible for providing task speci�c biases for the grasp selection

process. These cells also receive this bias information from area F6.

11.2.2 Control of Sequential Behavior

The supplementary motor area (SMA) has been implicated in the planning and

execution of complex movements (Tanji and Keisetsu, 1994). In the FARS model,

area F6 (pre-SMA) is responsible for representing the high-level sequence for per-

forming the task (wait-grasp-hold-release). This region manages the phase-related

activity in F5 and F4 (ventral premotor region involved in reaching movements) via

pathways through the basal ganglia (see �gure 11.2). F6 �rst prepares the ventral

premotor regions for execution of the coming grasp by priming F4 and F5. This
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priming process allows set cells within F5 to become active in response to inputs

from AIP. In response to the go signal given by the experimenter, F6 initiates

execution of the program by priming movement-related cells in F5, and shunting

set cells. Local excitatory and inhibitory interactions within F5 ensure that the

selected grasp, as represented by F5 set cell activity at the time of the go signal,

gives way to activation of the appropriate subpopulations of F5 movement (exten-

sion) cells. Phase transitions in F5 from extension to 
exion, and from 
exion to

holding are triggered by either an internal model of the hand state, or directly by

sensory feedback from the hand (available from SII). Initiation of the release phases

of movement is also managed by F6 in response to the second go signal.

11.3 Synthetic PET for Grasp Control

In what follows, we present the results of two di�erent Synthetic PET experiments,

which serve as predictions for what we expect when the experiments are performed

in the human. In both experiments, the modeled subject is asked to grasp a single

object using one of two grasps.

1. In the �rst experiment, we examine the e�ects of knowing which grasp to use

prior to the onset of recording (non-conditional task), as compared with only being

told which grasp to use after a delay period (conditional task). In the conditional

task, an instruction stimulus in the form of a bi-colored LED informs the subject

which grasp should be used.

2. The second experiment looks at the di�erences in rCBF between a \complex"

grasp (precision pinch), and a \simple" grasp (power grasp).

Table 11.1 Talairach coordinates for modeled brain regions

Brain Talairach Coordinates Source Experimental Context

Region

X Y Z

F5 -64 4 24 Ehrsson et al., 2000 Precision vs. power grip

consistent with Action observatrion

Buccino et al., 2001

AIP -40 -40 40 Binkofski et al., 2000 Finger movement obs.

consistent with Action observation

Buccino et al., 2001

F1 complex -26 -24 38 Kinoshita et al., 1999 Precision grip for lifting

SII -64 -20 24 Binkofski et al., 1999 Object manipulation

F2 -31.5 - 6.1 54.2 Kurata et al., 2000 Conditional �nger mov.

For both experiments, we report the relative synaptic activity for each brain re-

gion and task. In addition, the comparative activity for each brain region is painted

onto a three-dimensional model of a brain, which is derived from a Talairach-
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registered MRI image. Table 11.1 reports the location of each brain region and

the experimental sources from which locations were derived. Regions on the surface

of the model were painted if they fell within an ellipsoid surrounding the reported

Talairach coordinate. The dimensions of the ellipsoids were scaled so as to bring

the activation to the closest surface of the three-dimensional model.

11.3.1 Comparison of Conditional and Non-Conditional Tasks

Figure 11.3A shows the relative synaptic activity measures for the conditional and

non-conditional tasks (Experiment 1). Only regions in the model that demonstrate

a change in synaptic activity from one task to the other are shown.

(A) (B)

(C) (D)

Figure 11.3 (A) Predictions of relative synaptic activity for the non-conditional and
conditional tasks. Relative synaptic activity is de�ned as in equation 11.4. A positive slope
implies an increase in relative synaptic activity from the non-conditional to the conditional
task. (B) The predicted PET image that highlights the conditional synaptic activity over
non-conditional activity; the deviation from gray is proportional to rPETA(1=2). (C and
D) Positive and negative synapse contributions to the synaptic activity measure for the
same pair of tasks.
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The most signi�cant change predicted by the model is the level of activity

exhibited by area F2 (dorsal premotor cortex). Its high level of activity in the

conditional task is due to the fact that this region is only involved when the model

must map an arbitrary stimulus to a motor program. In the non-conditional task,

the region does not receive IS inputs, and thus its synaptic activity is dominated

by the general background activity in the region. The additional IS inputs in the

conditional task have a second-order e�ect on the network, as re
ected in the small

changes in synaptic activity in F5, BG, and AIP. The increased synaptic activity

in F5 is due to the additional positive inputs from F2. These inputs also cause

an increase in the region's activity level, which is passed on through excitatory

connections to both AIP and BG (recall �gure 2). It is important to note that

synaptic activity does not have the same meaning as neural activity. This can be

seen by examining the de�nition of wB!A(t) (see equation 2 of Section 1). The

absolute value of the synaptic strength contributes positively to this measure-so

increases in either positive or negative signals into a region will be re
ected as

an increase in synaptic activity. Neural activity, on the other hand, increases with

excitatory input but decreases with inhibitory input. An important property of

the Synthetic PET technique is that the positive and negative contributions to the

Synthetic PET measure can be di�erentiated in the simulation. This information,

combined with knowledge of the gross anatomy (especially the sign of connections

between regions), can aid in inferring changes in neural activity across tasks. (For

further discussion of the relative e�ects of inhibition see the Chapter \The Use of

Large-scale Modeling for Interpreting Human Brain Imaging Experiments" by M.-

A. Tagamets and Barry Horwitz in this volume.) Figures 11.3 C, D demonstrate

the positive and negative contributions, respectively, to the overall PET measure in

the conditional/non-conditional task comparison. Note that although the positive

contributions to F5 and AIP essentially dominate the full PET measure, we also see

small increases in the negative inputs into these regions. These inhibitory signals

are due to negative inputs from local recurrent connections in the respective areas

(in the case of F5, BG also contributes additional negative inputs). This serves

as additional evidence that both F5 and AIP experience increases in their overall

neural activity.

11.3.2 Comparison of Complex and Simple Grasps

As noted in Sec. 2.1, the model re
ects the fact that the number of F5 neurons

involved in the execution of the precision pinch is greater than those involved in

the power grasp. We now show how this distribution is re
ected in the Synthetic

PET measures. The protocol used during Experiment 2 was the same as the

non-conditional task described above. Figure 11.4 illustrates a general increase

in synaptic activity in many of the model's regions for the precision pinch over

the power grasp. This e�ect is due to the larger number of participating units

in F5 and AIP for the precision pinch case (see �gure 11.2). Not only is there a

larger number of cells contributing to the rCBF measure, on average, but also each
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(A) (B)

(C) (D)

Figure 11.4 (A) Predictions of relative synaptic activity for the precision pinch and
power grasp tasks. (B) Predicted PET image (precision versus power grasp). (C and
D) Positive and negative synapse contributions to the synaptic activity measure the
corresponding tasks.

unit in the \precision pools" of AIP and F5 receives a greater number of positive

inputs from other precision units. Furthermore, despite the fact that the number

of participating cells has only changed in F5 and AIP, we also observe an increase

in synaptic activity in BG, F1, and SII. This is due to the fact that these regions

receive input from a larger number of F5 neurons during the precision pinch task.

Because these regions receive positive connections from F5 (�gure 11.2), this is an

indication for a true increase in cell activity in F5 for the precision pinch case.

11.4 Human Grasping Experiment

The Synthetic PET experiments described above raise some important questions

about how instruction stimuli are mapped to arbitrary motor programs, and about

the relative representation of di�erent grasps. In this section, we summarize the

results of a human PET experiment in which both of these questions were addressed
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LED

FSR

Figure 11.5 Apparatus used in PET experiment. Each of three stations can be grasped
in two ways: precision pinch of the two plates in the grove (inset), or power grasp of the
block. The side of the blocks are covered with a Force Sensitive Resistive (FSR) material;
Light Emitting Diodes (LEDs), depending upon the task, indicate both the goal and type
of grasp.

(see Grafton, Fagg and Arbib, 1998, for details of the protocol and conditional task

results).

Subjects were asked to repeatedly perform grasping movements over the 90

second scanning period. The targets of grasping were mounted on the experimental

apparatus shown in �gure 11.5. Each of three stations mounted on the apparatus

consisted of both a rectangular block that could be grasped using a power grasp,

and a pair of plates (mounted in a groove on the side of the block|see inset of �gure

11.5), which could be grasped using a precision pinch (thumb and index �nger).

A force sensitive resistive (FSR) material, mounted on the front and back of the

block, detected when a solid power grasp had been established. The two plates were

attached to a pair of mechanical micro-switches, which detected when a successful

precision pinch had been executed. For each station, the block and plates were

mounted such that the subject could grasp either one without requiring a change

in wrist orientation. A bi-colored LED at each station was used to instruct the

subject as to the next target of movement. A successful grasp of this next target was

indicated to the subject by a change in the color of the LED. The subject then held

the grasp position until the next target was given. Targets were presented every 3

+/- 0.1 seconds. Four di�erent scanning conditions were repeated three times each.

In the �rst, subjects repeatedly performed a power grasp to the indicated block.

The target block was identi�ed by the turning on of the associated LED (green in

color). When the subject grasped the block, the color of the LED changed from

green to red. For the second condition, a precision pinch was used. The target was
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identi�ed in the same manner as the �rst condition. In the third grasping condition

(conditional task), the initial color of the LED instructed the subject to use either

a precision pinch (green) or a power grasp (red). When contact was established, the

LED changed to the opposite color. In the fourth (control) condition, the subjects

were instructed to simply �xate on the currently lit LED, and not make movements

of the arm or hand (prior to the scan, the arm was placed in a relaxed position).

The lit LED changed from one position to another at the same rate and variability

as in the grasping tasks. Prior to scanning, subjects were allowed to practice the

tasks for several minutes.

11.4.1 Grasp versus Rest

Grafton et al. (1998) �nd that the areas most signi�cantly active during grasping

as compared with the non-movement (control) condition include sensory and motor

areas along the central sulcus, as well as the nearby premotor and parietal cortices

(�gure 11.6, left), which is consistent with a number of other similar studies with

arm movements (Grafton et al., 1996; Roland et al., 1982; Winstein et al., 1996).

In addition, signi�cant activity is observed in the inferior precentral gyrus/sulcus

(indicated by the arrow in the left panel of �gure 11.6). This region corresponds to

the ventral premotor cortex, and may include the human homologue of Rizzolatti's

F5 (Winstein et al., 1996).

11.4.2 Conditional versus Non-Conditional Grasp

The right panel of �gure 11.6 re
ects di�erences of conditional grasp selection

(power or precision based on color cues) as compared to an average of the �xed

grasping conditions (power and precision tasks): Cond � (Power + Precision)=2.

The upper arrow indicates a large area of signi�cance in the left superior frontal

sulcus corresponding to the dorsal premotor cortex. As earlier noted, this region

in monkey is thought to be involved in the arbitrary association of stimuli with

the preparation of motor programs. The lower arrow indicates increased rCBF in

the left inferior parietal lobule and intraparietal sulcus. Because this comparison is

counterbalanced for the amount of movement made during execution of the tasks,

there is no di�erence observed in the motor execution areas.

11.4.3 Precision versus Power Grasp

The lower panel of �gure 11.6 denotes areas where rCBF activity is greater for

precision grasps than for power grasps. The upper arrow indicates a site located

in the left dorsal frontal gyrus, in the extreme dorsal SMA. The lower left arrow

denotes a di�erence in the left rostral inferior parietal lobule, the lower right arrow

indicates a di�erence in the intraparietal sulcus.

TLFeBOOK



11.5 Comparison of PET and Synthetic PET for Grasp Control 245

Figure 11.6 Left hemisphere localization of task related e�ects. PET statistical com-
parisons of the pooled data across subjects (darkened areas, P < 0:005) are superimposed
on a single subject's MRI scan centered in the same coordinate space. The three panels
are left superior oblique views, and denote di�erences of all grasp movements versus rest
(left), conditional grasp selection versus �xed grasping (right), and precision versus power
grasp (lower panel).

11.5 Comparison of PET and Synthetic PET for Grasp Control

11.5.1 Conditional versus Non-Conditional Task

The model predicts that the conditional task should yield much higher activation in

F2 (dorsal premotor cortex), some activation of F5, and a slight activation of AIP.

The human experiment con�rmed the F2 result, but failed to con�rm the predictions

for F5. Furthermore, in human we see an activation of the inferior parietal cortex,

along the intra-parietal sulcus, which is perhaps an AIP homologue.

The negative F5 result may be used to further re�ne the model. Consider the

functional connectivity of these regions in the model (�gure 11.7A). In the model,

the strength of the projection from F2 to F5 is essentially a free parameter. In other

words, there is a wide range of values over which the model will correctly perform

the conditional and non-conditional tasks. The implication is that, by tuning this

parameter, we can control this projection's contribution to the synaptic activity
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Figure 11.7 Previous functional model (A = �gure 11.2) and updated functional model
(B). In the revised model, the information from F2 
ows (primarily) into the circuit
through a projection into AIP.

measure in F5. However, the di�erence in AIP synaptic activity from the non-

conditional to the conditional task will always be less than the di�erence observed

in F5. This results from an interaction between the neural dynamics and the

assumptions made about the model anatomy. Suppose that the projection strength

from F2 to F5 is increased. In this case, we would observe an increase in both F5

synaptic and cell activity. The increase in F5 cell activity, however, is attenuated

by local, recurrent inhibitory connections. Thus the excitation that is then passed

on to AIP via F5 does not re
ect the full magnitude of the signal received from F2.

The conclusion is that, although we can adjust the free parameter to match one

or the other observations in the human experiment (of either F5 or AIP changes),

the model cannot re
ect both at the same time. One possibility for repairing this

problem in the model is to reroute the F2 information so that it enters the grasp

decision circuitry through AIP (or both AIP and F5), rather than exclusively

through F5 (�gure 11.7B). This would yield an increase in activity in AIP due

to F2 activation with only an attenuated signal being passed on to F5, resulting

in only a small increase in F5 synaptic activity. Note that we do not necessarily

assume that there exists a direct cortico-cortical connection from F2 to AIP or F5,

but only that there is a functional connection (which potentially involves multiple

synapses).

11.5.2 Precision versus Power Task

The model predicts a higher degree of synaptic activity in both F5 and AIP

for complex grasps than for simple grasps (in the model, these grasps are the

precision pinch and power grasp, respectively). Although we see an increase in

activity for the precision grasp case along the inferior parietal sulcus (IPS) in

the human experiment, we fail to see any such change in the ventral premotor
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cortex (speci�cally F5). Two explanations are possible for this negative result.

First, although Rizzolatti et al. (1988) observe a larger number of cells for the more

complex grasps (e.g. the class of precision pinches), these cells may be involved in

encoding the many variations of the grasp. But, when a speci�c grasp is executed,

the number of active cells may be the same as for any other grasp instantiation

(including side oppositions and power grasps). If this is the case, however, the

model would also predict no di�erence in synaptic activity in AIP. The second

possibility assumes that the number of active F5 cells does indeed di�er signi�cantly

between the precision and power grasps, but that the e�ect is masked by force-

related activity in the region. In the human experiment, performance of the power

grasp required a reasonable level of force to be applied to the block before the

LED would indicate to the subject that a grasp had been detected. In monkey,

force-related activity has been observed in F5 (Hepp-Reymond et al., 1994). The

implication is that even though there are fewer neurons involved in encoding the

power grasp, they achieve a higher level of activity because of the force requirements

of the task. This higher level of cell activity is an indicator of increases in the cells'

inputs, which implies an increase in the rCBF measure. Thus, the rCBF measures

could be similar enough in the two conditions to not be detectable above the noise

levels inherent in the PET imaging process.

11.6 Discussion

The fundamental bene�t of the Synthetic PET method is that it allows for speci�c

predictions in PET experiments based on neural network models of behavior.

Since the models themselves are a product of functional anatomy, measured single-

unit recordings, and behavioral measurements, Synthetic PET provides a powerful

bridge between all of these approaches. An additional strength of the Synthetic PET

implementation is that the contribution of excitatory and inhibitory in
uences can

be teased apart. Because synaptic activity is not the same as neural activity, being

able to distinguish excitatory from inhibitory in
uences can be an aid to inferring

neural activity from the rCBF measure, possibly clarifying apparent contradictions

in rCBF data (an example has been demonstrated in Arbib et al. (1995). The

low-level details of the FARS grasping model (Fagg and Arbib, 1998) were derived

primarily from neurophysiological results obtained in monkey. The Synthetic PET

approach extracts measures of regional synaptic activity as the model performs

a variety of tasks. These measures are then compared to rCBF (regional cerebral

blood 
ow) observed during human PET experiments as the subjects perform tasks

similar to those simulated in the model. In some cases, the human results provide

con�rmation of the model behavior. In other cases, where there is a mismatch

between model prediction and human results, it is possible (as we have shown) to

use these negative results to further re�ne and constrain the model and, on this

basis, design new experiments for both primate neurophysiology and human brain

imaging. An additional feature of the Synthetic PET technique is that it provides
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a link between neural network models and anatomic circuitry with the results

displayed directly on a brain atlas centered in Talairach coordinates (Talairach

and Tournoux, 1988). This facilitates interaction between anatomists, physiologists

and modelers interested in common neurobehavioral phenomena. The method

is suÆciently 
exible that it will be possible to have network implementations

spanning multiple species. Homologies and di�erences between species can then

be tested more rigorously using predictions generated by the Synthetic PET , while

the human data provide another form of validation of neural network models derived

from monkey data.

Our current measure of \raw PET activity", based on a linear function of the

total of the absolute value of synaptic activity, already yields qualitatively useful

results in evaluating the sign and small versus large magnitude of activities seen in

PET comparisons. However, we do not claim that this �rst approximation yields

quantitatively accurate predictions. We note, as a target for further research on

Synthetic brain imaging, the interest of evaluating a variety of more quantitative

�ts based on (possibly nonlinear) combinations of cell �ring rates, synaptic change,

and synaptic activity per se. We also note the possibility of performing a stochastic

analysis with the model in order to account for the variation in PET activity seen

in the same subject over a set of trials.
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Functional neuroimaging methods such as positron emission tomography (PET) and

functional magnetic resonance imaging (fMRI) have become increasingly important

in the study of human brain function. These methods allow the study of the

conscious, behaving human brain, and are commonly used for relating regional

brain activations to speci�c cognitive components. However, there is still a large

gap between the imaging results and underlying neuronal processes such as those

described in single-cell animal studies. A few e�orts have been made to bridge this

gap by the use of large-scale modeling. Some of the factors and constraints that

need to be considered in building such a model are discussed. Then a speci�c model

of visual working memory is described. The model performs a task that has been

used in both animal single-cell recordings and human brain imaging experiments.

The model includes elements that have dynamics similar to the various neuronal

populations that have been identi�ed in the ventral visual pathway, while at the

same time the total summed synaptic activity in the di�erent regions is similar

to human imaging data. In this model, the emphasis is at the circuit level, and

the expected e�ect of balance of excitatory and inhibitory connections on imaging

data is discussed. Speci�c experiments and predictions made by the model include
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the expected e�ect of synaptic inhibition on imaging data, an interpretation of

transcranial magnetic stimulation (TMS) data, and a potential mechanism for the

mediation of working memory in the prefrontal cortex.

12.1 Introduction

Human brain imaging techniques such as positron emission tomography (PET)

and functional magnetic resonance imaging (fMRI) have come to be important

in relating human cognition to physical changes in the brain. There is a great

potential for these studies to gain from other areas of neuroscience research, such as

single-cell recordings in animals, anatomical and circuit level structural studies, and

physiological studies of systems such as synaptic transmitter systems. These latter

types of studies can potentially inform the interpretation of the human imaging data

and enhance our understanding of human neurophysiology. However, because these

methods all yield di�erent measures of neuronal activity at di�erent temporal and

spatial scales, interpreting the data into a coherent and uni�ed picture has proved

diÆcult.

A better understanding of the relationships between these widely di�ering meth-

ods requires �rst identifying salient aspects of how each of these measures re
ects

the underlying neuronal activity. This allows a formulation of mechanisms that

"translate" between them. Large-scale modeling is one tool that is ideally suited

for this purpose. We have developed such a model (Tagamets and Horwitz, 1998)

with the speci�c goal of understanding the neural underpinnings of human imaging

data and relating it to animal studies. The model performs a delayed match-to-

sample (DMS) task, a paradigm that has been used in both animal single-cell

recordings and human brain imaging studies. It includes four separate regions that

model the ventral visual pathway, and incorporates a circuit in the model frontal

cortex area that maintains delay-period activity, acting as a short-term memory.

Quantitatively, the simulated regional blood 
ow matches that of human imaging

experiments of the DMS task. Qualitatively, the temporal behavior of the individ-

ual units in the model are similar to those observed in animal single-cell recordings.

In contrast to other large-scale models of working memory, the design is based

on speci�c factors that are likely to in
uence how neuronal activity is manifested

quantitatively as the data seen in human imaging. In this paper, we have focused

on three major classes of information that are expected to be important in a�ecting

this relationship: 1) The direct relationship between spiking and fMRI and PET

at a cellular level; 2) The in
uence of local and inter-regional circuit properties; 3)

Modulatory e�ects, e.g. from other brain regions or from neurotransmitters such as

dopamine. A number of other issues relevant to models of imaging are reviewed in

Horwitz and Sporns (1994).
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12.2 Relating Spiking Activity to Brain Imaging Data

In studies of information coding at the single-cell electrophysiological level, the

most commonly measured entity is the rate of action potentials (spiking) of single

neurons. In general, the rate of spiking is taken to be the de facto standard for

assessing the coding properties of neurons, though there have been a number of

studies that examine information encoded by timing relationships among either

separate neurons or populations of cells (Gray et al., 1989; Aersten et al., 1989;

Eskandar et al., 1992; Friston, 1997). While single-cell recordings provide a direct

measure of this spiking activity, the human imaging methods of PET and fMRI

are indirect measures, and apply to large populations of neurons, having a spatial

resolution of about 1 cm2 of the brain's surface, which includes about 10 to 30

million neurons (Peters, 1987). It has been estimated that anywhere from 60 to

80% of these neurons are pyramidal cells, which are those nerve cells whose spiking

properties are most often studied by single-cell methods. Speci�cally, regional

cerebral blood 
ow (rCBF, measured by PET) and blood oxygenation level (BOLD,

measured by fMRI) are thought to re
ect local energy requirements that are a

byproduct of synaptic activity. Whereas rCBF is the measured blood 
ow in a

brain region, BOLD re
ects the oxygenation level in the blood. Changes in the

latter, measured by fMRI, are caused by an increase in oxygenated blood that is

carried in by increased blood 
ow. In summary, a single voxel in PET and fMRI

data represents a transformed, mixed blend of neural activities that vary both in

their coding properties and changes in their background state over time.

To date, most imaging studies examine relative changes in brain activity in a

subtraction paradigm, yielding \hot spots" of activation in circumscribed regions

that are interpreted to be important in one task relative to another. It is thought

that such changes in rCBF and BOLD measure energy demands that are needed

for recycling transmitters at presynaptic terminals (for a review see Jueptner

and Weiller, 1995). Consequently, it is likely that both excitatory and inhibitory

synaptic activities can cause a rise in rCBF or BOLD activity. More recently, it

has been suggested that astrocytes play a crucial role in this cycle at the excitatory

glutamatergic synapses (Magistretti and Pellerin, 1999). Two factors are especially

germane to modeling the relationship between human imaging data and single cell

recordings: 1) glutamatergic synapses are the most abundant in the cortex, and

(2) the glutamate cycle as mediated by astrocytes is tightly coupled to changes in

local metabolism that are generated from the activity of neurons (Magistretti and

Pellerin, 1999). This suggests that there is a direct relationship between excitatory

synaptic activity and energy metabolism, and this has indeed been shown to be

true in circuits that have known excitatory inputs (Sokolo�, 1993). However, it

has been proposed that energy demands at inhibitory synapses also would tend

to increase blood 
ow, even when local spiking activity decreases, and results

suggesting this have been reported in known inhibitory pathways (Ackermann et

al., 1984; Mathiesen et al., 1998). Thus, in a patch of cortex at the resolution of
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PET and fMRI, the corresponding rCBF or BOLD activation re
ects a blend of

both excitatory and inhibitory local and a�erent synaptic activity. A consequence

of this is that it may not be apparent whether PET or fMRI activations re
ect

increased or decreased spiking, especially if there is a mix of synaptic types in the

area being measured. Since it is known that inhibitory interneurons and inhibitory

pathways play a crucial role in the regulation of brain activity, this is an important

factor in understanding human neurophysiology in terms of brain imaging. This

also leads to the basic premise that imaging data can be modeled as the sum of all

synaptic activities (both excitatory and inhibitory) in a model area that corresponds

to the region of interest. This method was used by Arbib et al. in a model of

memory-driven saccades (Arbib et al., 1995) and in a study of visually directed

hand movements (Arbib et al., this volume). We have also taken this approach to

representing rCBF/BOLD activations in our model (Tagamets and Horwitz, 1998;

Horwitz and Tagamets, 1999).

Because of the mix of excitatory and inhibitory signals that make up a unit of

imaging data, the type and strength of connectivity is likely to play a major role

in relating spiking to imaging data. Local connectivity in particular is thought to

dominate in the cerebral cortex, and the role of this in the model will be discussed

later. Functional connectivity between regions has recently become a topic of great

interest in the �eld of neuroimaging (Horwitz et al., 1992; Friston, 1994; Horwitz,

1994; McIntosh et al., 1996; Friston et al., 1997). Taylor et al. (Taylor et al.,

2000) derived theoretical conditions for making valid inferences about functional

connectivity from structural equation modeling. The two main results of their work

suggest that from the point of view of imaging data, all neuronal (spiking) activity

is a hidden variable, and that it is necessary to account for both excitatory and

inhibitory neuronal populations when interpreting the results. One of the strengths

of modeling is that the relative contributions of each of these populations can

be observed independently. We have used our model to examine how di�erent

types of inter-regional inputs can a�ect both spiking and simulated blood 
ow,

and demonstrated conditions under which there is a dissociation between the two

(Tagamets and Horwitz, 1997; Tagamets and Horwitz, 2001). This will be reviewed

in more detail in section 12.4.

Another factor that a�ects rCBF and BOLD is the background activity of neurons

in the region being examined. In a combined experimental and theoretical study,

Scannell and Young (1999) presented results that suggested that changes in the

background activity (without a change in spiking level) could modify measured

rCBF at least as much as changes in spiking alone. This highlights the importance

of modulatory e�ects in imaging. In particular, there is an interaction of sensory

input (feed-forward) and modulatory in
uences ( feedback or transmitter-based) in

most regions of the cortex, especially in association areas. In a model, these e�ects

can be explicitly speci�ed and they can be systematically examined. For example,

di�erent parameters in the dynamics of model units can be used to implement the

e�ects of neuromodulators such as dopamine, which are thought to play a major role

in working memory. In section 12.5, we show how we have used this information
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to improve performance of the model in the task and, at the same time, better

approximate observed experimental imaging data in frontal cortex (Tagamets and

Horwitz, 2000). The next section reviews the structural and functional speci�cations

of the model. Examples of simulation studies of inhibitory e�ects and working

memory modulation follow.

12.3 The Model

Our model was speci�cally developed for simulation of imaging data. The model

performs a visual delayed match-to-sample (DMS) task, electrical activity of model

elements are similar to those found in primate electrophysiology data in a DMS

task, and simulated PET activity is similar to human PET data in the same task.

One of the main goals for the model was to include anatomical and physiological

constraints that are likely to in
uence the relationship between the imaging and

single-cell methods. This led us to pay particular attention to the properties of a

local circuit that forms the basic element of the model and to the nature of inter-

regional connections. It is well known that local connections are abundant in the

cerebral cortex, and that there is a great deal of local recurrent feedback (Douglas

et al., 1995). Activity at a site also depends on the type and number of a�erent

synapses from other regions.

The goal in designing the model was to take into account the balance of excitatory

and inhibitory synapses in both local and inter-regional circuits. The local basic

circuit was de�ned �rst, and was designed to approximate known proportions of

local excitatory and inhibitory connections in the cortex. It is made up of two

units, which represent the local excitatory population (E) and the local inhibitory

population (I) of neurons in a circuit that approximates a cortical column (see

�gure 1A). Based on animal studies (Douglas et al., 1995), the proportions of four

types of connections were evaluated and included in the model: 1) Local E ! E:

60% of all connections; 2) Local E ! I: 15% of connections; 3) Local I ! E: 15%

of connections; and 4) A�erent connections: the remaining 10%. The basic unit

of the model captures these properties (see �gure 1A), and the local connection

proportions are identical in all regions of the model. A patch of cortex is modeled

by a 9x9 group of local basic circuits, as shown in �gure 1B, and represents about

1 cm2 of cortex. Electrical activity that models the spiking of neurons is computed

by a sigmoidal activation rule, with parameters �xed in all elements of the model.

rCBF in the model is computed as the sum the absolute values of all synaptic

activations, both excitatory and inhibitory. For more details on the derivation of

the connections and parameters, see Tagamets and Horwitz (1998).

Di�erences in inter-regional connectivity account for di�erent behaviors in the

regions of the model, while the interactions of local and inter-regional connections

determine simulated blood 
ow in each region. The full-size model is created by

connecting 9x9 patches of local units together (see �gure 2). Regions represented in

the model are primary visual cortex (V1/V2), ventral extrastriate cortex (V4),
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Figure 12.1 (A) The local circuit consists of one excitatory unit (E) and one inhibitory
unit (I) that are connected as shown. 60% of connections are local and excitatory-to-
excitatory, 15% are local and excitatory-to-inhibitory, and 15% are local and inhibitory-
to-excitatory. 10-20% of all connections are a�erents from other regions. (B) A patch of
cortex is made up of a 9x9 array of local circuits as depicted in (A). Each square represents
a single unit in the patch. E and I elements are shown separately, but are connected as in
(A).

anterior fusiform and inferior temporal cortex (TEO/IT) and prefrontal cortex

(PF). Between-region connections are described by 3 parameters and then generated

automatically. The parameters are: 1) The fanout size in each of the two dimensions

(mxn); 2) The sparseness (percent of connections that actually exist in the mxn

area); and 3) The total weight (i.e. the sum of all connection weights that arise from

a single unit and converge on the mxn area). Thus it is possible to examine how

each of these parameters can in
uence both spiking and rCBF. For example, given

the same total weight and fanout, increasing the sparseness makes individual units

more selective, while total rCBF in the recipient region goes down. The reason that

rCBF goes down is that fewer neurons respond in the local region, even though

those that do respond are more selective and have increased spiking rates. In

animal studies, it is usually the selectivity of single neurons that is reported in

the literature. Understanding how connectivity a�ects both coding properties and

imaging data simultaneously will help lead to a better understanding of human

cortical mechanisms.

12.4 Inhibition E�ects in a Single Region

Some aspects of the relationship between imaging and neuronal data can be

examined in a single region of the model. The observed hemodynamic response is

the result of an interaction between a�erent activity and local response. The basic

element takes into account the relative importance that local circuits are thought to
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Figure 12.2 The large-scale model is composed of connected patches (see �gure 1B).
Each of the regions has separate subgroupings of units that have selective response
properties. For example, area V1/V2 has two populations, one which is selective for
horizontal lines and one of vertical lines. Simulated imaging data is computed as the
average synaptic activity across all populations within each region. The frontal region is
made of specialized memory modules that implement the working memory circuit (see
section 12.5). Stimuli are presented to the lateral geniculate nucleus (LGN) region, and
are made up of simple geometric �gures composed of straight lines. Patches of units shown
in the expanded views depict the increasing abstraction and receptive �elds as activity
moves forward along the pathway from V1/V2 to frontal cortex (PF).

have in shaping a neuronal response within a local cortical region. Even in a single

unit of the model, there is a nontrivial relationship between mean �ring rate of

the excitatory units in an area (i.e. pyramidal cells, those usually recorded in non-

human electrophysiological studies) and total synaptic activity in the population

of all cells. This is further complicated by the fact that within a region, there is a

mixture of elements that have di�erent response pro�les for di�erent stimuli. One

open question concerns the relationship between a�erent inhibition, spiking activity

and imaging data.

In order to examine this question, we used a single model area A. The e�ects of

two factors were examined: 1) the amount of local recurrent excitation, and 2) the

amount of excitation that is driving the circuit from elsewhere (e.g. as during a task

and a passive control condition). The total amount of recurrent local connectivity

was set at three levels, as determined by the connection strengths of the E!E

connections: 1) none, 2) medium recurrence (0.6, as in the basic circuit of the

model, �gure 1A), and 3) high recurrence (E!E connection strength = 0.9). In

the absence of any local recurrent excitatory connectivity, most synaptic activity

is from an external source. In this case, any a�erent inhibition could potentially

reduce spiking and raise overall synaptic activity. In contrast, at very high levels
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of excitatory recurrence, it is predicted that the strong nonlinearities induced by

this component would dominate in determining total synaptic activity. In this case,

rCBF would decrease if spiking decreases and vice versa. In a local circuit such

as shown in �gure 1A, with a moderate amount of excitatory recurrence, it is

not obvious what the net e�ect of inhibition would be. It might be expected that

this would depend to a large extent on the background activity of the circuit. For

example, if there is very low background, any new incoming inhibition contributes

a substantial proportion of local synaptic activity, and rCBF might be expected

to rise. On the other hand, if the circuit is being driven by a�erent excitation, the

nonlinear e�ects dominate the total amount of local synaptic activity, and rCBF

would go down concurrently with spiking. Local spiking goes down in both cases,

but there is a dissociation in the rCBF.

We examined how inhibition a�ects rCBF in a model area A under three levels

of local excitatory-to-excitatory connection strengths, and at two di�erent levels of

a�erent excitation that would be similar to a task condition and a control condition.

Simulations were performed by presenting a pattern to a �xed array of excitatory

inputs that project to the excitatory population of the area and computing rCBF for

the duration of the stimulus. Two types of background activation patterns are used:

(1) a�erent excitatory input is applied to a subset of the E units of region A; this

depicts an active task, in which the region is being driven from other sources; and (2)

all inputs are set to a uniformly low value to simulate a low level of a�erent input to

the region. Each task is run once with added inhibition and once without. Inhibition

is implemented as a low level of a�erent excitation to all of the local inhibitory units

in areaA. This is the con�guration that was experimentally examined by Mathiesen

et al. (Mathiesen et al., 1998), in which they found that a�erent inhibition caused

spiking decreases but blood 
ow increases.

Figure 3 shows the results of the simulations for each of the conditions. Up-arrows

signify increased rCBF with increasing inhibition, and down-arrows the opposite. In

each case, spiking activity goes down. Thus, conditions where rCBF increases (up-

arrows) indicate a dissociation between spiking and rCBF activity. Of particular

note is the center row, in which local recurrence is at the level thought to exist in

cortical circuits. In this case, the existence of dissociation depends on the context

in which inhibition occurs. At a low background excitation level, analogous to a

condition in which there is no a�erent excitation from other regions, there is a

dissociation between spiking and rCBF, while with high background activity, both

spiking and rCBF go down. These results suggest that inhibition may either lower

or raise the hemodynamic response in a cortical region, depending both on the

amount of local excitatory feedback in the region, and on whether the site is being

activated from other sources.

In summary, at the moderate to high level of recurrence that is thought to exist

in local circuits in the cortex, a�erent inhibition may cause a dissociation between

spiking and rCBF change that is further modulated by the activity context in which

the inhibition occurs. Speci�cally, even though spiking goes down, rCBF may go

either up or down, depending on how much other activity is present in the circuit.
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Figure 12.3 E�ects of inhibition on modeled rCBF. Up-arrows represent cases where
rCBF increases, and down-arrows where it decreases. Each row shows the e�ects at a
di�erent degree of local excitatory recurrence, with the middle row depicting the local
circuit as used in the mode, and is the amount of recurrence thought to exist in the
cortex. The two columns on the right show rCBF changes in each of two condition:
1) with low background activity in the recipient region, and 2) with a high amount of
a�erent excitation arriving in the region concurrently with the inhibition. In all cases,
spiking activity within the region goes down, so that condition where rCBF goes up are
those in which there is a dissociation between spiking and rCBF.

Such e�ects need to be explored in more detail before de�nitive interpretation

of the neuronal dynamics underlying PET and fMRI data is possible. These

considerations are especially relevant to the understanding of imaging results from

patient populations, since the e�ects of focal lesions, in which whole populations

of columns are removed, are likely to be quite di�erent from those that result from

more di�use degenerative processes, where local connectivity is reduced, or from

disconnection between areas, in which local circuitry may remain unchanged but

total a�erents are reduced.

12.5 Working Memory and Modulation

Multiple regions of the model can be connected to form a large-scale network that

represents a set of connected regions in the cortex. Simulating an entire human

imaging study calls for a model that is able to perform several di�erent tasks, so

that the results from one task can be subtracted from the other to yield quantitative

data that approximate a subtraction paradigm in imaging. Furthermore, the timing

and phases of the tasks should emulate those from the imaging study, since imaging

data are typically acquired over a period of seconds to minutes, during which there
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may occur a sequence of several di�erent cognitive components that are averaged

together in time. The frontal region of the model includes a local memory circuit,

which is the main component that performs the working memory task. In this

section we illustrate how a PET subtraction study can be modeled by running

simulations that correspond to two di�erent conditions, a task condition and a

control condition.

The large-scale model includes areas that represent four di�erent cortical areas:

V1/V2, V4, TEO/IT, and lateral frontal cortex (PF). These regions are thought

to comprise the major object processing pathway (Ungerleider and Mishkin, 1982;

Haxby et al., 1991; Haxby et al., 1994), and there is extensive animal single-cell

data for each of these regions in a working memory task (Fuster et al., 1982; Haenny

et al., 1988; Fuster, 1990; Wilson et al., 1993; Miller et al., 1996). Although it is not

known exactly what the homology is between humans and non-human primates in

these areas, anatomical and imaging studies suggest that at least the earlier parts of

this pathway are similar between the two species (Burkhalter and Bernardo, 1989.;

Sereno et al., 1995.; DeYoe et al., 1996). The connections between the regions

of the model are constructed with two constraints in mind: 1) Spiking activity

should re
ect encoding properties that are similar to neurons found in each of the

regions; and 2) The total inter-regional connection strength should approximate

known proportions of between-region connectivity. Given constraint 2, connections

with a fanout and topographic pattern are generated in order to meet constraint

1. This yields appropriate selective response properties for each region: units in

V1/V2 respond optimally to short line segments; units of V4 have optimal responses

to longer lines and corners, and those in TEO/IT are selective for whole simple

geometric �gures that are composed of straight lines. The object-speci�c tuning in

the IT units was obtained by a competitive Hebbian learning rule. For more details

on the construction of the model, see Tagamets and Horwitz (1998).

The frontal region of the model has four di�erent types of units, whose responses

mediate the online storage, retrieval and decision phases of working memory (see

�gure 4). The behaviors of these units are based on results from single-cell recordings

in the monkey during a delayed response task, and are de�ned in terms of the

time when they are active, i.e. during the cue period, the delay period, or the

response period of the task (Funahashi et al., 1990; Goldman-Rakic, 1995). Cue

sensitive cells (C) respond only when a stimulus is present and response neurons

(R) display a brief response on presentation of the second stimulus if it matches the

one in memory. Delay-active neurons in the prefrontal cortex have been classi�ed

by Funahashi et al. (1990) as being of two types: those that are active only during

the delay period (D1 unit type), and others that display activity during both the

cue and the delay periods (D2 unit type). Performance of the task is mediated by

a gating mechanism at the D2 units. When gating is ON, a "high attention" state

is modeled, and the circuit performs the DMS task by maintining a representation

of the stimulus over the delay period via a high activity level in the D1 and D2

units. With gating turned OFF, no memory trace is maintained, and the circuit is

unable to perform the task. The speci�c form of gating is described later in this
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Figure 12.4 The working memory circuit in the model frontal cortex area has four types

of units with di�erent temporal activity pro�les. C: Cue units, active only when an external

stimulus is present; D1 and D2: Delay-active units. These maintain the representation of

items to be remembered in an excitatory feedback loop. D2 units are active both during

the delay period and when a stimulus is present, and are also the recipients of the gating

signal, which controls updating and maintenance of items in memory. D1 units become

active only when the external stimulus is not present and remain active during the delay

period. R: Response units mediate the decision task. These respond when the current

external stimulus matches the one being held in memory, and serve as the decision-making

output of the circuit. The frontal region of the model is composed of a 9x9 array of such

circuits. Stimuli are encoded by distributed representations of activity in these circuits.

section, and a comparison of di�erent gating mechanisms is performed with the

model. Although we do not model the source of the gating, we do make explicit

that it operates on the D2 units of the working memory circuit.

Typical electrical behaviors of the memory circuit neurons, as seen in single-

cell recordings from monkeys (Funahashi et al., 1990; Goldman-Rakic, 1995), are

illustrated in �gure 5A. Simulations of a DMS task with the model are shown in

�gure 5 B and C. In �gure 5B, gating is turned on and the stimulus is maintained

in the memory during the delay interval. When the matching stimulus appears,

the response unit shows a brief response to indicate that a match has occurred.

Figure 5C depicts the condition in which no gating is applied, simulating a control

condition of passive viewing. In this case, the memory is not maintained during the

delay period and no response occurs in the response unit. In single-cell recordings,

all of these classes of neurons were found to have at least some degree of stimulus

selectivity, in a manner similar to neurons found in more posterior regions of the

visual pathway (Funahashi et al., 1990; Wilson et al., 1993). The regions of frontal

cortex containing these neurons also appear to be organized in a roughly columnar

fashion, with both excitatory and inhibitory neurons in close proximity having

similar preferences to stimuli (Wilson et al., 1994; Rao et al., 1999). Each module

TLFeBOOK



262 Large-Scale Modeling for Interpreting Human Brain Imaging Experiments

Figure 12.5 Unit electrical activity for each unit type in the frontal cortex over a
single trial of the DMS task. A. Data from single-cell recordings in monkeys, in which
the monkey was required to maintain a representation of the �rst stimulus across the
delay period (Funahashi et al., 1990; Goldman-Rakic, 1995). B and C. Unit activity in the
model working memory circuit with gating turned on (B) and with gating turned o� (C),
depicting the task condition (B) and control condition (C), respectively. In each �gure,
the horizontal axis depicts time and the vertical axis depicts the size of the response.
Responses to a single instance of the task are shown. A target stimulus is presented �rst,
then there is a delay period followed by the second (test) stimulus. With gating turned
ON (5B), the D1 and D2 units maintain high activity during the delay interval. With
gating turned OFF, there is no delay period activity. The Cue units respond in each case,
but only when the stimuli are present.

of the working memory circuit in the frontal cortex part of the model is composed

of four units connected to each other as depicted in �gure 4. The frontal area of

the model is made up of a 9 x 9 array of such modules, each roughly representing

a local assembly such as a column. Representations of objects in the frontal area of

the model are formed by distributed activities of these circuits. In addition, a global

response unit receives a�erents from all individual response units and serves as the

decision maker for the model, and is included mainly for assessing the behavior of

the model.

Imaging studies of working memory have implicated the frontal cortex as having

a major role. In general, frontal regions have higher activation during working

memory tasks relative to control tasks that use the same stimuli but do not involve

working memory (Haxby et al., 1994; Courtney et al., 1996). One other factor

common to many object working memory imaging studies is the enhancement of

extrastriate visual areas in the ventral pathway (e.g. Haxby et al., 1994; McIntosh

et al., 1996). It is generally thought that both the frontal and posterior associative

regions are part of an attention-modulated working memory system.

One unanswered question concerns the mechanism by which modulation of

working memory takes place. It is thought that access of items into working memory

is mediated by a dopaminergic \gating" signal, although the speci�c mechanism

by which this occurs appears to be complex. Speci�cally, the D1 dopaminergic

receptor subtype appears to enhance the signal-to-noise ratio in neurons of the

prefrontal cortex by enhancing stimulus-speci�c responses and not a�ecting other

response attributes (Desimone and Duncan, 1995). However, too much D1 receptor
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action appears to impair working memory, possibly by interfering with the updating

process (Williams and Goldman-Rakic, 1995). Note that the naming convention

for the D1 and D2 units are taken from Funahashi et al., 1990, and have no

relation to the D1 and D2 dopamine receptors. Theoretical models have often

used a gating signal, which controls how the contents of working memory are

encoded and updated (Zipser, 1991; Cohen and Servan-Schreiber, 1992; Moody

et al., 1998; Braver and Cohen, 1999; Braver et al., 1999). In the model of Braver et

al. (1999), the gating mechanism was further elaborated by explicitly modeling

it as dopaminergic modulation of the frontal cortex. This was implemented as

a temporary enhancement of both the a�erent excitatory connections into the

memory module and the inhibitory connections within the module. This type

of complementary/antagonistic mechanism improves the signal-to-noise ratio of

responses to attended stimuli, and thus allows access of these stimuli into working

memory, and is consistent with the neurobiological evidence.

In our original model (Tagamets and Horwitz, 1998), gating was implemented

as a di�use low-level a�erent signal into all the D2 units in the working memory

circuit. Although we did not specify the source of the signal, we did make explicit

that it operated on the D2 type of units only. Recently we implemented a modi�ed

mechanism, in which gating is modeled by changes to the dynamics of the units'

response properties (Tagamets and Horwitz, 2000). Speci�cally, gating is e�ected

by increasing the gain and lowering the threshold of the D2 units of the working

memory circuit. The increased gain enhances signal-to-noise ratio by making the

responses more robust to above-threshold stimuli and more resistant to subthreshold

stimuli, thus making the maintenance of the current item more robust. Lowering

the threshold when a new item is about to be encoded increases the access of the

item into memory. This mechanism is consistent with the action of dopamine, which

has the e�ect of modulating neuronal responses, rather tham providing additional

excitation or inhibition. The di�erent types of units in our model make up a

functional circuit in which each unit type has a speci�c role. The D2 units serve the

dual roles of acting as the link for knowledge of the task by being recipients of the

gating, and then maintaining the memory loop (together with the D1 units) when

there is a stimulus to be remembered. The response (R) units serve to suppress the

memory loop whenever a stimulus is present. They interact competitively with the

D1 units and suppress the D2 units. The R units become fully active only when

converging inputs arrive from the external input and the current memory contents,

and thus act as the decision-making element. This activity surge also extinguishes

activity in the memory loop via inhibitory connections to the D1 and D2 units.

There are also feedback interactions of the circuit with other regions. Excitatory

projections from the D2 units into areas IT and V4 enhance the reverberatory

circuit that allows stimuli to enter the memory when a stimulus is present. As

a result of these connections, some IT neurons tend to also remain active during

the initial delay period. Since the D2 units receive the \voluntary" attentional

modulation and serve to integrate the memory with knowledge of the task, it is also

possible for self-generated representations to 
ow backward from the frontal cortex
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to visual areas via this route. The D1 units have di�use inhibitory back-projections

into area IT, which serve to suppress new stimuli when an item is currently being

held in memory. This provides some resistance to interference. In a manner similar

to single-cell experiments (Miller and Desimone, 1994; Miller et al., 1996), these

connections also have the e�ect of eliminating the delay-period IT activity when a

new stimulus occurs.

Simulations were performed by presenting a delayed match-to-sample (DMS)

task to the model with and without gating. The latter case serves as a control

task. The DMS task was run with two forms of gating: 1) By a di�use a�erent

input to all D2 units, and 2) By increasing the gain and lowering threshold within

the D2 units. The former case, gating via increased a�erent activity, models the

case in which the gating function is mediated by some other population of cells

which signal \attention". In this case, the increased a�erent synaptic activity would

contribute to a rise in rCBF. In the second case, modulation is achieved by changing

the dynamic response properties of the neurons within the memory circuit. This

mechanism does not contribute to measured rCBF in itself. Rather, changes in

blood 
ow are due to changes in the synaptic activities within the memory circuit.

Two di�erent gating strategies were also tested: 1) Gating was turned on either

only during the cue period; or 2) Gating was turned on for the cue period and

then maintained for the duration of the trial. The former case represents a gating

strategy that only serves to allow updating a new memory, while in the latter case,

both updating and maintenance are modulated. The responses illustrated in �gure

5B are achieved by the a�erent input mechanism applied only during the cue period.

Although the memory was maintained, this mechanism did not provide suÆcient

resistance to interference from intervening stimuli. The goal of the following is to

examine alternative gating mechanisms that would provide robustness in a task

with intervening stimuli, and concurrently examine the resulting simulated rCBF

in order to evaluate which method best approximates human imaging data.

An ABA version of the DMS task was used, in which the appropriate stimulus (A)

must be maintained until a matching stimulus occurs, and non-matching stimuli

(B) should be ignored. Two criteria were used to evaluate the models: 1) Robustness

in the ABA task; this includes the ability to maintain the stimulus across a delay,

resistance to intervening stimuli or noise, and appropriate response and clearing of

memory when a match occurs; and 2) Quantitative rCBF responses in the frontal

area as compared to human imaging data.

12.5.1 Results

Overall, gating by means of gain and threshold modulation over the entire time

period showed the best performance. Cues were robustly encoded and maintained in

memory until the matching stimulus occurred. The time course from a sample unit

is shown in �gure 6A. The net e�ect of this gating mechanism is that responses to

optimal stimuli are enhanced while responses to non-optimal stimuli are suppressed,

making the circuit less susceptible to noise but at the same time allowing it to
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Figure 12.6 Performance of two sample local working memory circuits in the ABA
task. A. A unit gated by applying the gain/threshold method for the entire trial period.
Here the memory of the original item is maintained across the non-matching intervening
stimulus, and an appropriate response is made when the matching stimulus appears. B.
A unit from the gating by a�erent activation method, again for the entire trial period.
All methods produced both types of behaviors, and also cases in which no delay period
activity was maintained. In this case, the circuit made an inappropriate decision about
the intervening stimulus, and the memory trace was erased. C. Stimuli that were used in
the trial. Occurrences are marked in A and B by blocks in the time course labeled LGN.
Di�erences among gating methods were characterized by di�erences in the total numbers
of units which displayed each type of behavior, as indicated by the global decision unit,
which sums activities from all response units.

maintain a high level of activity during the delay period. In contrast, the a�erent

activity model of gating had the poorest performance (�gure 6B). This was due

mainly to interference from the intervening non-match stimulus, during which many

units made inappropriate responses in the R units and recoded the new stimulus

into memory. In the other two cases, when gating was active during the initial cue

period only, both models had similar moderately good performance, with a slowly
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degrading memory activity for many units, but no interference from the intervening

stimulus. The similarity makes sense, since during most of the trial period, both

had the same parameters after gating was turned o�.

The simulated rCBF activity for all four models also di�ered. Table 12.1 shows

the percent increase in Task minus Control subtractions for the four regions of the

model, and the results from the data in a face matching study reported by Haxy

et al., (1995). The cue-only gain gating had rCBF values that are most similar to

human imaging data, in that V4, IT and the frontal region all had similar amounts

of increase relative to the control condition, about 6-7%. The whole-period a�erent

activity gating model deviated most from real data, in that the increase in the

frontal area was about 24%, while V4 and IT had increases of 13% and 16%,

respectively. Both the a�erent cue-only and the gain mediated whole-period rCBF

values were similar, with V4, IT and frontal regions having increases of about 9%,

11% and 14%, respectively. While none of the simulated rCBF changes match the

experimental data perfectly, there is variability in imaging data as well, as can

be seen from the experimental data in Table 12.1. However, it can be seen that

the increased gain gating method applied only during the cue period is the closest

match to the imaging data. In particular, the other methods produce unrealistically

high activation levels in the frontal (PF) region of the model.

Taken together, these results suggest that the gain-mediated model has the

most robust behavior and at the same time rCBF values that are most similar

to human imaging data. In our implementation, the gating mechanism itself does

not contribute directly to the rCBF, since it does not involve a�erent synaptic

activity. All of the increased rCBF comes from the increases of the units within the

memory circuit.

The neuromodulatory actions of dopamine are still poorly understood, but it has

become increasingly clear that these are complex and most likely involve other neu-

rotransmitter systems. Computationally, the increased gain and decreased threshold

Table 12.1 Simulated rCBF Results for Di�erent Gating Methods

Simulated rCBF Percent Change in rCBF

Gating method V1/V2 V4 IT PF

A�erent, Cue period only 3% 9% 11% 14%

A�erent, Entire trial 3% 13% 16% 24%

Gain/Threshold Cue only 3% 7% 6% 6%

Gain/Threshold Entire trial 3% 9% 11% 14%

Experimental PET Data

Face matching { Control (Haxby et al.,
1995)

3% 8% 4% 4%

Face matching { Control (Haxby et al.,
1994)

2.5% 8% 5% 2%

Face {Location matching
(Haxby et al., 1994)

4% 5% 4% 3%

TLFeBOOK



12.6 Summary and Discussion 267

implement competing e�ects, in that the former increases resistance to noise and the

latter makes the circuit more susceptible to noise. Biologically, the evidence suggests

that dopamine has both synaptic and extrasynaptic e�ects on the recipient neurons

(Smiley et al., 1994). Furthermore, the synaptic e�ects are post-synaptic, a�ecting

mainly responses to incoming activity. Since neuroimaging results are thought to

re
ect mainly presynaptic energy requirements of the transmitter reuptake process

(Magistretti and Pellerin, 1999), the implementation of neuromodulators as postsy-

naptic changes in neuronal dynamics seem appropriate for modeling imaging data

until more details of the mechanisms are known.

12.6 Summary and Discussion

Large-scale neural modeling can make explicit use of both anatomical and single-

cell data to clarify how the results of these methods can be interpreted in terms of

underlying neuronal events. With a large-scale model, explicit hypotheses can be

examined in di�erent contexts by varying the e�ects of parameters that correspond

to biological substrates such as synaptic density or receptor eÆcacy. Manipulating

these parameters in a way that changes simulated �ring rates to correspond to

observed single-cell recordings, then observing the e�ect on simulated blood 
ow,

may yield insights and help guide experimental design of human studies. For

example, inhibition has been hypothesized to raise rCBF and BOLD, making

it unclear how to interpret either local increases or the polarity of correlations.

The results of the simulation study in section 12.4 suggest that this can be a

complex matter that depends on an interaction between local connectivity and

task. For example, if the local connectivity is reduced in an area, as it may be in

some degenerative disorders, our modeling results indicate that tonic inhibition can

produce increases in blood 
ow under a range of activity levels of the area. With

normal local connectivity, however, inhibition may cause decreased rCBF if this

area is engaged by a task, and increased rCBF if the task results in little a�erent

input to the region.

In the second example, a working memory task was used to examine how di�erent

types of gating mechanisms might a�ect both behavior and imaging results. The

gain parameter has the e�ect of increasing signal-to-noise ratio of the simulated

electrical activity, which is similar to the proposed e�ect of dopamine. At the

same time, increasing the gain reduces the simulated rCBF in the region. Such

manipulations can be used to examine both normal function and intervention

studies, such as pharmacological intervention, with applicability to a variety of

cognitive disorders.

Other studies with the model have also helped clarify the underlying neuronal

mechanisms that generate neuroimaging data. The model has recently been ap-

plied to simulate transcranial magnetic stimulation (TMS) data, in which a strong,

changing magnetic �eld applied to a region on the scalp induces intracranial elec-

trical currents that can alter regional neuronal function. TMS has been used in
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conjunction with positron emission tomography (PET) to examine inter-regional

connectivity of human cerebral cortex (e.g., Paus et al., 1998).We simulated (Nandi-

pati et al., 2000) the e�ect of TMS using our large-scale neural model, replicating

the e�ects found in Paus et al. (1998), but only when TMS a�ected primarily the in-

hibitory units in PFC. In another study, we (Horwitz et al., 1999) used the model to

determine what neurobiologic parameters a�ect the correlations (functional connec-

tivity) of simulated PET-blood 
ow in di�erent regions. The analysis showed that

for two anatomically linked brain regions, the strength of the functional connectiv-

ity between them depends both on the strength of their anatomical connectivity (as

embodied in the synaptic weights), and also on the extent to which the circuit in

which the two regions are nodes is being utilized. All of these studies have helped

to clarify the relationship between experimental manipulations and analysis meth-

ods, an important factor when interpreting experimental data that is still relatively

poorly understood in human imaging.
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The development of the ability to express learned behavior during the postnatal pe-

riod is presumably related to maturational changes in the recruitment of particular

neural systems to guide the behavior. By assessing brain functional activity during

transitional periods of behavioral development, we may gain valuable insight into

when particular neural systems come on-line and impact behavior. These issues

were investigated by applying Partial Least Squares (PLS) analysis to metabolic

mapping data obtained from developing rats. Preweanling rat pups aged postnatal

day 12 (P12) and P17 were trained on two di�erent instrumental reward schedules,

injected with 
uorodeoxyglucose (FDG), and then shifted to continuous nonreward

(extinction). Behavior during extinction varied with training in P17 pups but not

P12 pups. In the �rst application of PLS, an analysis analogous to a traditional

univariate means analysis was performed to identify large scale networks, within 39

regions of interest, either commonly activated across groups or which di�erentiated

groups. A second application of PLS was used to identify dominant patterns of co-

variances between regions (i.e. functional connectivity) that distinguished training

and age groups.
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13.1 Introduction

Electrophysiological and imaging studies have supported the view that learning

and memory proceeds through the concerted activity of distributed neural systems.

Ex-vivo metabolic mapping and in-vivo functional imaging techniques aid the

identi�cation of such systems by virtue of their ability to measure, simultaneously,

the activity of all parts of the brain during a particular task. However, eÆciently

extracting information about those systems from such a large data set - particularly

how they relate to experimental condition or a behavioral measure poses a

considerable statistical challenge. Here we demonstrate the utility of a multivariate

technique known as partial least squares (PLS) for this purpose. The PLS method

has its roots in a family of least squares models of correlation matrices introduced

by Sewel Wright in the 1920s. The speci�c computation described here, however,

was fully developed by Bookstein and colleagues (Bookstein, 1994) in studies of

alcohol teratogenesis. McIntosh et al. (1996) were the �rst to adapt the technique

to human functional imaging data; in this case PLS identi�es spatial patterns of

functional activation (singular images) that covary with task, behavior, or other

regions of interest (ROIs). In this chapter, we demonstrate how the PLS method

may be used for the analysis of brain metabolic mapping data of learning and

postnatal development.

13.2 Conceptualization of PLS

At the core of the PLS method is the singular value decomposition (SVD) of the

cross-correlation matrix derived from two blocks of variables. The cross-correlation

matrix is part of a correlation matrix in that it includes only correlations between

the two blocks of variables rather than variables within a block and is usually

not square (hence, SVD or least squares analysis of part of a correlation matrix

leads to the name partial least squares Bookstein, 1994). The output is a series

of latent variables (LV) describing the covariance between linear combinations of

the original variables. Each LV accounts for successively less of the original cross

block covariation. Thus, PLS identi�es a new set of variables that optimally relate

the variables in the original two blocks using the fewest dimensions (McIntosh et

al., 1996). For example, suppose brain functional activity is measured across three

conditions or tasks. Two possible design e�ects can be represented by a set of

orthogonal vectors (2 1 1, 0 1 1). These vectors constitute a block of variables

(call them A) that are correlated with another set of variables (B) the functional

activation measured in each region of interest (ROI). SVD of this cross correlation

matrix computed from A and B will yield a new linear combination of the design

variables that optimally covary with a new linear combination of ROIs. The output

thus identi�es sets of regions associated with a particular design e�ect; basically,

sets of regions showing particular mean di�erences (or commonalities, which will
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be illustrated later) and the nature of those di�erences. Hence PLS applied in this

way, also known as design PLS, can be conceptualized as a multivariate extension

of a traditional means analysis (analysis of functional activation).

Suppose the design variables in A in the previous example are replaced by a

separate set of ROIs. In this case, the same computation results in a multivariate

extension of covariance analysis (analysis of functional connectivity see Horwitz

et al., 1992 ; McIntosh and Gonzalez-Lima, 1998; Nair and Gonzalez-Lima, 1999).

This seed PLS will identify those regions in B with which set A demonstrates task

related covariance changes and the nature of those di�erences (the particular group

di�erences and the direction of the changes) (McIntosh and Gonzalez-Lima, 1998;

Nair et al., 2001a). Alternatively, if A is now a behavioral measure the seed PLS

identi�es sets of regions optimally covarying with performance and the particular

nature of the group similarities or di�erences in that relationship. In summary,

the power of PLS as applied to imaging data resides in its ability to identify,

usually in a single omnibus step, sets of regions showing common activational

e�ects, interregional covariance, or covariation with performance. The following

sections will detail the PLS method through speci�c examples derived from our

studies of learning and postnatal development. The goal is to present step by step

computation of the PLS analysis. For a more thorough look at the mathematical

basis of PLS please refer to Bookstein (1994) and McIntosh et al. (1996).

13.3 PLS in Studies of Functional Development of the Brain and Behavior

If distributed neural systems guide associative learning in adults then the presence

or absence of the learning during the postnatal period presumably relates to

the maturational state of those systems. Thus, as a behavior emerges over the

course of the postnatal period, it may be inferred that the neural systems and,

importantly, the functional interactions between neural systems that support the

behavior are maturing. By combining brain functional imaging with behavior, our

aim has been to gain insight into developmental changes in the neural systems

that are on-line and operable at successive ages of development. In preweanling

rats, the ability to readily modify behavior in response to di�erent reinforcement

schedules changes with development (Lilliquist et al., 1999). Postnatal day 17 (P17)

rats trained in a straight alley runway on an alternating schedule of reward and

nonreward, (patterned single alternation or PSA) rapidly decrease their responding

when switched to continuous nonreward (extinction). If animals are trained on a

pseudorandom reward schedule (pseudorandom partial reinforcement or PRF), they

are slow to inhibit responding (i.e. they are persistent) during extinction relative

to P17 PSA-trained pups. Thus their prior learning during acquisition guides P17

extinction behavior. In younger, P12 pups, PSA and PRF trained subjects display

essentially the same acquisition behavior as P17 pups. However, they show no

di�erences in responding during extinction. Thus, the younger pups ability to utilize
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Figure 13.1 Behavioral E�ects. Please refer to Nair et al. (2001b) for full details on the
analysis of behavioral e�ects. Behavioral training lasted two days. 200 trials of acquisition
(�ve sessions of 40 trials) followed by 50 trials of extinction were conducted. A) PSA
Acquisition E�ects. Both PSA12 and PSA17 pups discriminated reward and nonreward
trials by the end of training. The breaks in the data indicate the �ve sessions of acquisition.
* indicates signi�cantly increased run speeds on reward trials relative to nonreward trials
(p < 0:05, using repeated measures ANOVA). B) PRF Acquisition E�ects. PRF12 and
PRF17 demonstrated no di�erences in run speed between rewarded and nonreward trials.
C) Extinction E�ects. PSA17 pups demonstrated signi�cantly faster extinction rates
relative to PRF17 pups, based on a nonlinear regression analysis of run speeds (Nair
et al., 2001b). No di�erences were found in the P12 groups. FDG was administered at
the start of the extinction session, which lasted 50 minutes. A group of handled control
animals (N=10) was included at each age to control for handling e�ects.
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learning established during acquisition appears to be compromised when shifted to

extinction. These behavioral e�ects are summarized in Figure 13.1.

These data are important because they suggest a maturational shift has occurred

in the neural systems engaged during extinction training. Functional systems re-

lated to 
exibility in behavior might be more mature in P17 pups compared to

P12 pups. Moreover, it is possible that P12 pups are relying on a fundamentally

di�erent neural system. Alternatively, there could be common systems engaged at

both ages, but the recruitment of those related to 
exible responding distinguish

the older pups. To address these issues, we used 
uorodeoxyglucose (FDG) au-

toradiography to map metabolic activity during extinction in the two age groups.

FDG, a radiolabeled glucose analog, can be used to measure regional changes in

brain metabolic activity occurring during behavior. Since energy utilization and

functional activity are closely correlated (Sokolo�, 1992), FDG serves as an index of

brain functional activity (see Gonzalez-Lima (1992) for review of FDG methodology

and applications). A design PLS was used to identify regions showing age-related

and task related changes in activation. Seed PLS was then used to identify regions

showing signi�cant covariance changes with three frontal cortical regions that were

hypothesized to be important for 
exible responding during extinction.

13.4 Design PLS: Activational Changes due to Age and Learning

A univariate covariance analysis previously showed that functional interactions

between the septo-hippocampal limbic system and other regions, such as the ventral

tegmental area, are quite di�erent in P17 PSA, relative to P12 PSA pups during

extinction (Nair and Gonzalez-Lima, 1999). While functional coupling among these

regions occurred in P17 PSA pups, they were functionally dissociated in P12 PSA

pups. The functional dissociation of the septo-hippocampal system in P12 pups

implies that a di�erent neural system is guiding their behavior. General motor

coordination and somatosensation are among the �rst functions to appear in the

behavioral ontogeny of the rat (Almli and Fisher, 1977) and so it was hypothesized

that P12 pups may be relying on somatosensory and motor regions. Furthermore,

studies assessing developmental changes in baseline metabolic activity indicate that

regions more caudal on the neuroaxis attain functional maturity earlier than more

rostral areas, particularly forebrain structures (Chugani et al., 1991; Kennedy et

al., 1972; Nair et al., 1999). Hence, somatosensory, motor, and brainstem regions

may form the dominating circuit in P12 behavior while P17 pups may have shifted

to relying on more rostral brain regions, such as frontal and limbic structures.

Alternatively, the same brainstem/sensory-motor system may be operating in both

P12 and P17 pups, but the additional recruitment of frontal and limbic structures

may allow for the di�erential responding in P17 pups. Hence, there may be common

regions operating in both P12 and P17 pups, but the additional frontal and limbic

recruitment in the P17 pups allows for their di�erential responding. The design PLS

analysis of activational e�ects is uniquely suited to answer these questions, as it
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identi�es sets of regions which demonstrate both group commonalities or di�erences

in functional activation, in one omnibus step (McIntosh et al., 1996). The capability

to identify systems commonly activated across age or task thus distinguishes

the PLS method from a univariate means analysis, which emphasizes di�erences

between groups. Furthermore, despite the various hypotheses proposed above,

conducting a univariate analysis in a hypothesis driven manner is less powerful

than the data-driven approach o�ered by PLS. In the univariate case, limiting

the analysis to hypothesized regions, though preserving statistical robustness, may

result in excluding regional e�ects that might be present in the data. Alternatively,

one could perform the univariate analysis on a large number of regions. However, the

propensity for a Type I error would be greatly in
ated on the one hand, but using

a correction would be overly conservative on the other. By virtue of its treatment

of regions simultaneously and its ability to identify main e�ects and interactions in

one omnibus step, the data-driven, PLS approach is better suited for this kind of

data set.

13.4.1 Methods

13.4.1.1 Behavioral Training

Animals were given acquisition training (as described in Figure 13.1), injected with

FDG and then extinguished. FDG incorporated during extinction in P12 and P17

PSA-, PRF-trained and handled control (HC) pups was measured via quantitative

image analysis in 39 regions throughout the rostral-caudal extent of the brain.

HC pups were exposed to the same environmental conditions and given the same

amount of reward but outside the runway apparatus. They were merely placed in

and out of the runway for acquisition and extinction sessions.

13.4.1.2 FDG Method

Immediately prior to the extinction session subjects were injected intraperitoneally

with 18Ci=100g b.w. of [14C(U)] 
uoro-2-deoxy-glucose (FDG); (speci�c activ-

ity=300 mCi/mmol, American Radiolabeled Chemicals) in 0.1 ml of physiological

saline. Animals were trained for approximately 50 min., the duration of the extinc-

tion session. Upon completion of the test period, the animal was removed from the

chamber and rapidly decapitated. The brain was then quickly removed and frozen.

Sections of the brain at 40�m were taken in a cryostat at �20oC . The FDG slides,

along with plastic micro-scale standards of known 14C concentrations (Amersham)

were exposed to Kodak EB-1 �lm for 2 weeks and then developed. Images from the

�lm were placed on a DC-powered light box and captured through a black-and-

white video camera (Javelin JE2362). Incorporation of FDG was quanti�ed using

JAVA image analysis software (version 1.4, Jandel Scienti�c Corp.). A calibration

curve was created based on the absolute gray levels of the 14C standards on the

�lm. Subsequent densitometric measures taken from brain images were then auto-
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Figure 13.2 FDG autoradiographic images of P17 brain sections depicting regions of

interest and e�ects revealed by PLS. Training e�ects are indicated on the left side of the

images while age related e�ects are indicated on the right. Regions signi�cantly associated

with the e�ects are indicated in bold. Those that were sampled but demonstrated no e�ect

are in plain text, on the right

matically expressed in terms of isotope incorporation per gram of tissue (nCi=g).

Details of the behavioral e�ects and design, FDG administration, and image

analysis have been reported (Nair et al., 2001b). Approximate sampling levels and

anatomical location of readings are illustrated in Figure 13.2A, 13.2B and 13.2C.

13.4.1.3 Design PLS

A preliminary analysis indicated that a single analysis on the entire data set was

problematic even for PLS, due to the large number of groups. Therefore the ROIs

were regrouped according to anatomical/functional characteristics and separate

PLS analyses were performed on each group. The 5 sets of regions were grouped

as limbic thalamic/cortical regions, somatosensory/motor regions, basal forebrain,

brainstem, and cerebellum (see Table 13.1). The details of the PLS analysis follows

and are illustrated in Figure 13.3.

Step 1. Design-ROI Cross Product Matrix. A cross product matrix (S)

between the matrix containing the FDG uptake values, in which columns represent

the ROIs and rows represent subjects, and a matrix containing design contrasts
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(orthogonal Helmert contrasts) was calculated. The design contrasts are dummy

variables coding for the design features. For example, given three groups of three

subjects each, the contrast (2 2 2 -1 -1 -1 -1 -1 -1) distinguishes group 1 from 2

and 3 while (0 0 0 -1 -1 -1 1 1 1) contrasts groups two and three (Figure 13.3A).

In this case, six contrasts were used. The �rst contrast distinguished group 1 from

the other 5 (i.e. 5 -1 -1 -1 -1 -1). The next contrasted group 2 from the remaining

four (4 -1 -1 -1 -1), and so on.

Table 13.1 FDG Uptake Means � Standard Error (nCi/g)

Limbic Thalamic /Cortical ALT12 PRF12 HC12 ALT17 PRF17 HC17

Orbital Frontal Cortex (OFC)b 1311�96 1360�94 1077�10 31518�110 1429�85 1114�126

MedialFrontal Cortex (MFC)a 562�56 554�45 478�51 1107�99 1055� 56 855�98

Anterior Cingulate 686�61 672�60 516�70 1025�93 1059�68 835�108

Cortex (ACC)a

Posterior Cingulate 639�55 673�55 558�68 1113�104 1026�71 876�106

Cortex (PCC)a

Retrosplenial Cortex (RSC) 483�46 501�35 401�50 869�78 755�51 695�82

Perirhinal Cortex (PRC)a 389�36 384�26 310�35 550�40 530�36 503�52

Medial Dorsal Nucleus (MD)a;b 1024�76 1146�85 924�102 1561�103 1427�92 1138�122

Centromedian Nucleus (CM)a;b 639�51 658�57 518�56 1044�69 1009�63 801�88

Anterior Dorsal Nucleus (AD)c 1038�96 748�63 762�55 954�87 861�72 843�116

Paratenial Nucleus (Pt) 894�115 669�66 698�76 893�113 896�126 772�102

Somato sensory/Motor

Primary Motor Cortex (PMC) 1036�100 972�88 691�54 982�77 1006�72 888�117

Anterior Parietal Cortex (Par)b 1454�94 1399�98 1079�82 1308�96 1325�91 1097�126

Globus Pallidus (GP) 654�40 748�52 613�48 729�94 731�44 658�67

Ventrobasal Complex (VBC)b 1471�60 1635�91 1235�104 1490�86 1460�80 1136�130

Red Nucleus (RN) 938�78 972�72 768�85 1203�82 1243�6 9968�105

Substantia Nigra (SN) 469�36 508�37 396�38 692�57 650�52 565�63

Spinal Trigeminal 1151�69 1229�85 760�92 1065�77 1061�79 860�110

Nucleus(SpT)b

Vestibular Nucleus (VN)b 1533�82 1640�90 1215�85 1556�88 1545�78 1235�142

Caudate Putamen (CPu) 848�91 924�99 655�82 1088�121 1035�76 787�94

Basal Forebrain

Ventral Diagonal Band (VDB) 775�74 830�87 683�65 1062�99 987�68 792�102

Basolateral Amygdala (BlA)a 456�32 507�38 424�48 819�72 759�45 682�83

Central Amygdala (CeA)a 350�23 385�31 301�34 500�31 504�27 460�47

Medial Amygdala (MeA)a 386�36 420�39 334�34 537�49 561�38 501�55

Nucleus Accumbens (NAC) 478�36 627�57 496�47 644�85 645�45 581�53

Medial Habenula (MHb) 846�59 914�70 752�77 1088�87 1040�64 865�85

Lateral Habenula(LHb) 863�69 941�66 768�77 1185�86 1125�60 962�110

Brainstem

Periaqueductal Grey (PAG)a 387�33 404�30 343�48 582�38 558�37 531�53

Mesencephalic Reticular 581�45 613�53 462�55 875�68 860�56 756�77

Nucleus (MR)a

Interpeduncular Nuclues (IP) 1120�75 1200�80 1007�97 1343�10 21282�117 1096�118

Interstitial Nucleus, Medial 1035�85 1029�76 826�76 1439�105 1389�91 1118�121

Longitudinal Fasciculus (IMLF)

Dorsal Raphe (DR) 466�44 507�40 408�47 639�40 606�43 561�57

Pedunculopontin 565�51 580�45 427�48 795�59 770�54 697�83

Tegmental N. (PTG)a

Gigantocellular nucleus (GIG) 791�62 847�59 594�54 892�63 867�58 724�90

Cerebellum

Medial Cerebellar 1149�70 1240�69 940�88 1372�99 1357�82 1102�144

Nuclues(MC)a;b;d

Interpositus (IC)d 1077�85 1097�75 834�78 1356�110 1330�74 1086�139

Lateral Cerebellar N (LCr) 950�74 990�78 749�78 1318�105 1318�66 1049�136

Cerebellar Vermis (Vrm)a;b 839�59 898�56 686�56 1201�87 1178�69 914�102

Cerebellar Hemisphere 452�41 504�40 342�28 726�67 723�59 561�72

(Hem)a;b

Flocculus (Flc)a 550�32 579�60 547�70 945�93 1007�76 754�107

Notes: Label a indicates increased activity in all three P17 groups relative to P12 groups;
b stands for increased uptake in ALT and PRF pups relative to HC, in both age groups;
and c denotes increased uptake in ALT12 and PRF12 pups relative to HC12 pups.
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Figure 13.3 A) The design PLS analysis begins by computing a cross correlation matrix
between design contrasts (contrast matrix) and the regions of interest (ROI matrix). B)
This matrix is then decomposed using singular value decomposition (SVD), which returns
mutually orthogonal paired latent variables (LV). Each LV describes a set of weights or
saliences associated with the original design contrasts (design LV) and are maximally
correlated with a corresponding set of saliences associated with the ROIs (brain LV). The
magnitude of the covariance for each LV is indicated by the singular values. C. Suppose 6
ROIs are sampled in three experimental groups of animals and the largest proportion of
the cross-block covariation is accounted for by a contrast between group 1 and 3 across
regions 1-4. The �rst latent variable (with the largest singular value) will consist of high
saliences for regions 1 through 4; the contrast saliences when multiplied by the original
contrasts will result in a new set of contrasts. The �rst vector in the design score matrix
thus corresponds to the �rst set of saliences (Brain LV1), as indicated by the arrow.
Suppose the next greatest proportion is a contrast between groups 1 vs. 2 and 3 on the
last two ROIs. When the contrast saliences are multiplied by the original contrasts, the
new design scores will approximate the 2 1 1 contrast. The ROI saliences will be high for
the last two regions. Thus, the second vector in the design score matrix corresponds to
Brain LV2, as indicated by the arrow.
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Step 2. SVD of S. SVD summarizes large covariance structures in terms of a

smaller number of components (Reyment et al., 1996). The cross product matrix S

was decomposed via SVD into a series of latent variables (LV). Each LV describes

a set of weights or saliences associated with the original design contrasts and are

maximally correlated with a corresponding set of saliences associated with the ROIs.

The covariation between the vectors comprising each LV is returned as a third

PLS descriptor called the \singular value". The sum of squares of the singular

values equals the sum of squares of the original cross block correlation matrix.

Hence, each singular value indicates the proportion of the cross block correlation

(SSCB) accounted for by the covariation between the region and design saliences.

The successive singular values account for the covariances in decreasing order of

importance, that is, the largest amount of the SSCB is carried by the �rst LV, the

second largest amount by the third, and so on (Figure 13.3B).

Step 3. Design Scores. By multiplying the contrast saliences by the original

design contrasts, we obtained design scores. The design scores are a linear combina-

tion of the original design contrasts and indicate a new set of contrasts maximally

correlated with the ROI saliences. Thus, those regions showing high saliences are

most associated with the new set of contrasts indicated by the design scores (Figure

13.3C).

Step 4. Statistical Signi�cance. The statistical signi�cance of each LV pair

can be assessed by bootstrap methods or permutation tests (McIntosh et al., 1996).

Here we chose the latter. The subject to group assignment was randomized, and the

PLS recomputed. This was repeated 5000 times and the probability of a singular

value greater than or equal to the original was computed. Those singular values

with a probability of less than 0.05 were considered signi�cant. The individual

saliences were tested in the same way. Testing of individual saliences is somewhat

controversial, however, as it does not take into consideration the strongly dependent

nature of the individual saliences. Therefore, it has been suggested that signi�cance

tests be limited to the singular values (Bookstein, personal communication).

13.4.2 Results

The interpretation of the design PLS output involves relating the design scores to

the regional saliences. Those saliences that are signi�cant demonstrate signi�cant

covariation with the corresponding design scores. The salience-design score rela-

tionship essentially describes the nature of the mean di�erences in FDG activity

across groups. Saliences can be either negative or positive; the sign is interpreted

in relation to the signs of the values of the design score. A negative region salience

and design scores of (3 -3 0.01) describes a pattern of FDG uptake which contrasts

groups 1 and 2, such that group 2 demonstrates greater uptake than group 1. A

positive salience in the same case indicates lower uptake in group 2 relative to group

1. Design scores, the e�ect described by the design scores, the regions signi�cantly
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Table 13.2 Age-Related E�ects: Design PLS

Regions Design Scores E�ect Sign�cant Regions P

[ALT, PRF, HC] +Salience % SSCB

LV1 [-2.0, -1.5, -1.3](P17) P17>P12 MFR (-0.50) RS (-0.33) p<0.01

[2.4, 1.2, 1.3](P12) ACG (-0.36) MD (-0.39) 86.9

Limbic/Cortical PCG (-0.41) Cm(-0.37)

LV2 [-.09, .28, .43](P17) ALT12 > AD (-0.78) p< 0.01

[-4.3, 2.1, 1.5](P12) PRF12, HC12 86.9

Basal Forebrain LV1 [-1.9, -1.5, -1.3](P17) P17 > P12 BLA (-0.56) MEA (-0.23) p < 0.05

[2.8, 0.48, 1.3](P12) CEA (-0.27) 90.1

Brainstem LV1 [-1.8, -1.4, -1.3](P17) P17 > P12 PAG (-0.30) IMLF (-0.27) p < 0.01

[2.0, 0.78, 1.8 ](P12) MR (-0.47) PTG (-0.39) 94.5

LV1 [-1.8, -1.5, -1.2](P17) P17 > P12 LC (-0.48) CH (-0.35) p < 0.01

Cerebellum [2.2, 0.7, 1.7](P12) CV (-0.43) Flc (-0.48) 93

LV2 [.30, 0.89, 1.1](P17) ALT12, PRF12 IC (-0.37) MC (-0.58) p< 0.01

[-2.4, -2.4, 2.5 ] (P12) > HC12 6.5

associated with the e�ect for each PLS analysis, p values, and percent SSCB, are

presented in Table 13.3. While up to 3 signi�cant LVs were obtained in some anal-

yses the third usually accounted for less than 5% of the cross block correlation,

usually involved only one region, and either represented theoretically unmeaning-

ful contrasts (e.g. PSA12 vs. HC17), or statistical noise. We thus constrained our

signi�cant �ndings to the �rst two signi�cant LVs for each analysis.

Limbic Thalamic/Cortical Regions. In the medial frontal, anterior cingulate,

posterior cingulate, and retrosplenial cortices and the medial dorsal and centro-

median thalamic nuclei, FDG uptake was signi�cantly increased in all P17 groups

relative to the P12. The �rst two LVs were signi�cant and accounted for 95.8%

of the sum-squared cross block correlation (SSCB). Thus, the �rst LV (p < 0:01,

86.9% SSCB) identi�ed a pattern of activity di�erentiating the two age groups.

As indicated in Table 13.2, the design contrasts associated with this e�ect were

[-2.0, -1.5, -1.3] (P17) and [2.4, 1.2, 1.3] (P12). The three numbers in each vector

correspond to PSA, PRF and HC groups, respectively. Note that the contrasts

are approximately the same magnitude in each case, but opposite in sign. Thus,

these contrasts indicate an age related di�erence that is common to all three

experimental groups. The aforementioned regions signi�cantly associated with this

contrast demonstrate salience values negative in sign. This means that FDG uptake

is higher in the P17 groups relative to the P12 groups. The magnitude of the salience

itself is proportionately related to the magnitude of the e�ect associated with the

region. The second LV re
ected di�erences among the P12 groups. LV2 (p < 0:01,

8.9% SSCB) described signi�cantly increased FDG in the anterior dorsal thalamic

nucleus. Note that in this case, the design scores are much smaller in the P17 group

( [-0.09, 0.28, 0.43]) relative to the P12 group ([-4.3, 2.1, 1.5]). This indicates that

the changes involving the anterior dorsal thalamic nucleus are associated with the

P12 group. The P12 contrast distinguishes the PSA12 pups from the PRF12 and

HC12 pups. Because the associated salience for the anterior dorsal nucleus is -0.78,

FDG uptake is higher in PSA12 pups relative to the PRF12 and HC12 groups.
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Basal Forebrain. LV1 (p < 0:05, 90.1% SSCB) identi�ed an age-related contrast

in which the amygdalar nuclei (basolateral, central, and medial amygdala) were

increased in all three P17 groups compared to P12 groups. For LV1 the contrasts

([-1.9, -1.5, -1.3] (P17), [2.8, 0.48, 1.3] (P12)) are opposite in sign and comparable

in magnitude across the age groups, indicating an age e�ect. On the other hand,

note that in the design scores for the P12 group, the value associated with the PRF

group (0.48) is relatively small compared to the PSA and HC groups. This is due to

the fact that the PRF12 group tended to have higher values across the amygdaloid

regions compared to the PSA12 and HC12 group, resulting in less di�erence from the

PRF17 group. Hence the reduced design score for the PRF12 group was due to the

fact that it did not show the same magnitude of decrease from its P17 counterpart,

as did the PSA12 and HC12 groups. The largest regional salience was associated

with the BLA, which indicates that it demonstrated the greatest di�erence between

P12 and P17 pups.

Brainstem. LV1 (p < 0:01, 94.5% SSCB) attained signi�cance among these

regions and re
ected an increase between P12 and P17 groups in the periaquaductal

gray, mesencephalic reticular nucleus, and the pedunculopontine nucleus. The

contrasts for the P17 ([-1.8, -1.5, -1.2]) and P12 ([2.2, 0.7, 1.7] ) were approximately

equal in magnitude but opposite in sign, indicating the age di�erence. Again, the

lower design score in the PRF12 case indicates that the magnitude of the age

di�erence was less in the PRF case, due to increased uptake in the PRF12 group

relative to the PSA12 and HC12. The saliences associated with the periaquaductal

gray (-0.30), mesencephalic reticular nucleus (-0.47), and the pedunculopontine

nucleus (-0.39) indicated the direction of the e�ect (negative saliences so greater

uptake in P17 pups).

Cerebellum. LV1 and LV2 were signi�cant for the cerebellar regions and ac-

counted for 99.5LV2 (p < 0:01, 6.5%) identi�ed increased FDG in the interpositus

and medial cerebellum which distinguished the PSA12 and PRF12 groups from the

HC12 group.

13.4.2.1 FDG Changes Using Residualized Values

The PLS methodology identi�es the most dominant pattern of changes across ex-

perimental conditions. The results from the �rst PLS analysis revealed a dominant

age-related e�ect, wherein all P17 groups demonstrated higher FDG uptake values

relative to P12 groups across several ROIs. It is possible that other e�ects interac-

tions may not have attained statistical signi�cance due to the dominant age e�ect.

Therefore, we performed a residual analysis in which the age e�ect was removed

from the data, using linear regression, and PLS was performed on the remaining

residual values. The aim was to identify interactions that may have occurred in-

dependent of the main e�ect of age. ROI uptake values were �rst regressed on to

the contrast vector [1 -1] (coding for age P12 vs. P17) and a regression equation
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Table 13.3 Training E�ects: Residual Design PLS

Regions Design Scores E�ect Sign�cant Regions P

[ALT, PRF, HC] +Salience % SSCB

Limbic/Cortical LV1 [-1.4, -1.0, 2.4](P17) PREF,ALT >HC OFC (-0.55) MD (-0.49) p < 0.01

[-0.73,-0.75,1.5](P12) CM (-0.32) 91.6

Samatosensory/ LV1 [-0.88, -0.85, 1.7](P17) PREF,ALT >HC Par (-0.37) SPT (-0.42) p < 0.01

Motor [-1.0,-1.2,2.2](P12) VBC (-0.42) VN(-0.45) 95.4

Brainstem LV1 [-1.1, -0.9, 2.0](P17) PREF,ALT >H C IMLF (-0.61) Gig (-0.46) p < 0.02

[-0.87,-2.2,1.9](P12) 96.5

Cerebellum LV1 [-1.1, -1.1, 2.2](P17) PREF,ALT >HC CV (0.44) MC (-0.48) p < 0.01

[-0.76,-0.98,1.7](P12) CH (-0.28) 96.4

derived (wherein contrast is the predictor variable X). The regression equation was

applied to the contrast vector to derive a predicted set of ROI values. The residual

values were then obtained by subtracting the predicted from original ROI values.

In all sets of regions except for the basal forebrain, the �rst LV was signi�cant

and indicated an increase in FDG uptake among PRF and PSA pups relative to

HC pups at both ages. The same regions showed this e�ect in both age groups and

are presented in Table 13.3. In all cases except the somatosensory-motor regions,

this e�ect appeared to be slightly weaker in P12 pups than in P17 pups.

Limbic Thalamic/Cortical. The �rst LV (p < 0:01, 91.6% SSCB) indicated

P12 design scores of [-.73, -.75, 1.5] and P17 design scores of [-1.4, -1.0, 2.4]. In

both cases, the �rst two design scores, associated with PSA and PRF groups,

are negative relative to the third (HC group). This indicates that PSA and PRF

values are increased in P17 relative to the P12 pups in the orbital frontal cortex,

centromedian nucleus, and medial dorsal nucleus. The design scores are slightly

smaller in magnitude among P12 pups relative to P17, indicating that the e�ect is

slightly greater in the P17 pups. The saliences associated with each are negative,

indicating the increase in activity of P17 pups relative to P12.

Somatosensory/Motor. The design scores of [-1.0, -1.2, 2.2] for P12 pups and

[-0.88, -0.85, 1.7] for P17 pups, associated with LV1 (p < 0:01, 95.4% SSCB),

indicated the training e�ect. As indicated by the magnitudes of design scores, the

e�ect is slightly smaller in the P17 pups relative to P12. The regions showing this

e�ect were the anterior parietal cortex (�0:37, salience), ventral basal complex

(-0.42), spinal trigeminal nucleus (�0:42), and vestibular nucleus (-0.45).

Brainstem. The gigantocellular nucleus and the interstitial nucleus of the medial

longitudinal fasciculus were associated with P12 ([-.87, -2.2, 1.9]) and P17 ([-1.1,

-0.9, 2.0]) design scores indicating training e�ects. This LV accounted for 96.5% of

SSCB.

Cerebellum. LV1 (p < 0:01, 96.4% SSCB) indicated training e�ects in the

cerebellar vermis, cerebellar hemisphere, and medial cerebellar nucleus. The e�ects

were indicated by P12 design scores of [-.76, -.98, 1.7] and P17 design scores of [-1.1,

-1.1, 2.2].
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13.4.2.2 Comparison of PLS with Univariate Method

We compared the results from the PLS analysis of limbic cortical/thalamic re-

gions to a repeated measures analysis followed by tests for simple e�ects of the

same regions. A modi�ed Bonferroni correction was used to control for multiple

comparisons (Hochberg, 1988). A signi�cant age by region e�ect (F(9,324)=11.57,

p < 0:05) was found in the medial frontal, anterior cingulate, posterior cingulate,

retrosplenial, perirhinal cortices, medial dorsal thalamus, and centromedian tha-

lamus. These regions were increased in P17 pups relative to P12. FDG uptake in

the orbital frontal cortex, medial dorsal thalamus and centromedian nucleus was

increased in PSA and PRF pups relative to controls at both ages. This e�ect was

signi�cant at a 0.05 alpha level before Bonferroni correction, but not after correc-

tion. Thus, mean di�erences using the univariate repeated measures approach were

limited to the regions showing an age e�ect.

13.4.3 Discussion

In summary, the cingulate and frontal cortices, amygdala, midline thalamic nuclei,

cerebellum, and several brainstem regions demonstrated increases in activity be-

tween P12 and P17, independent of training. Second, analysis of residuals revealed

a system of regions - the orbital frontal cortex, limbic thalamus, gigantocellular

nucleus, the somatosensory system, and cerebellum - which demonstrated increases

in uptake in the two trained groups relative to controls in both age groups. Age de-

pendent training e�ects were found in the interpositus and medial cerebellar nuclei,

and they showed increases in the PSA12 and PRF12 groups relative to controls.

Aside from the anterior dorsal thalamus, which distinguished the PSA12 group

from the PRF12 and HC12 groups, no other regions distinguished PSA and PRF

groups at either age. Analysis of the Limbic/Thalamic-Cortical regions using a re-

peated measures ANOVA followed by tests for simple e�ects revealed similar age

e�ects as found in the PLS analysis. However, the combined PLS analyses of raw

and residualized data identi�ed 3 regions demonstrating training di�erences (which

were common to both age groups), while the ANOVA method revealed none. Cor-

rections for multiple tests appeared to be quite conservative in the univariate case,

accounting for the di�erence. Because PLS considers brain regions simultaneously,

there is no need for such correction, resulting in more statistical sensitivity.

13.5 Seed PLS: Frontal Cortical Interactions and Development of Extinction

Despite the behavioral extinction rate di�erence between ages and P17 trained

groups, there were no regions in the previous study that distinguished the older

trained groups in the current analysis. One possibility is that covariance relation-

ships involving particular regions could distinguish groups. We have shown previ-

ously that while absolute FDG uptake may not change in a region between groups,
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the functional interactions between one region and another, as indicated by their

correlated activity, may change with task or age (Nair and Gonzalez-Lima, 1999).

The frontal and limbic cortices are well known to be associated with adapt-

ability of behavior to environmental changes. In particular the medial prefrontal

(mPFC), orbitofrontal (OFC), and anterior cingulate (ACC) cortices appear to

be quite important for switching response strategies, attaching reward value to

events, or learning to avoid aversive situations (Woodward et al., 1999; Tremblay

and Schultz, 2000; Poremba and Gabriel, 1997). Given the substantial structural

and physiological maturation of these regions between P12 and P17, it was hypoth-

esized that their functional maturation contributes to the age-related behavioral

di�erences. Speci�cally, the regions inability to engage in concerted functional ac-

tivity with other regions of the brain may be related to the behavioral impairments

at the younger age.

The seed PLS analysis is uniquely suited for such an analysis as it can identify

regions showing task related changes in covariance relationships with another ROI

in a single omnibus step. For example, if 10 brain regions (out of a sampling of 60)

were to change in their covariance relationships with a cortical region (the seed)

across three di�erent tasks, then the seed PLS would identify the e�ect and the

particular pattern (e.g. high correlations in task 1, weaker correlations in task 2,

uncorrelated in task 3). Such an analysis would be cumbersome using a univariate

approach, as each correlation (between the seed ROI and the rest of the data set)

would have to be tested across groups individually.

13.5.1 Methods

Seed PLS was used to identify regions that may be involved in functional relation-

ships with the aforementioned cortical regions in an age- and training-dependent

manner. The regions included in this analysis are presented in Table 13.4.

The seed PLS computation proceeds in the same manner as the design PLS,

except that a set of ROIs replaces the original design contrasts. The seed PLS

analysis identi�es sets of regions whose covariances with another region (the `seed

ROI') change across tasks or are common to tasks (McIntosh and Gonzalez-Lima,

1998). The analysis begins by computing a cross correlation matrix between a

vector of FDG uptake values for the seed ROI and another vector containing the

values for the other regions of interest (ROIs) (Figure 13.4A). The same cross

correlation is calculated for each experimental group; all correlation matrices are

then stacked into a single matrix. SVD of the cross correlation matrix returns

mutually orthogonal LVs - one describing the change in covariances across groups,

and the other indicating regions most contributing to the e�ect - and singular

values (Figure 13.4B). The magnitude of the weights of the seed LV indicate how

well the regions covary with the seed LV saliences. In this case each SV indicates the

proportion of the cross block correlation (% SSCB) accounted for by the covariation

between the seed region and saliences.
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Table 13.4 Regions of Interest

Medial Prefrontal Cortex (mPFC) Anterior Dorsal

Thalamic Nucleus (AD)

Orbitofrontal Cortex (OFC) Paratenial Nucleus (PT)

Anterior Cingulate Cortex (ACC) Medial Habenula (MHB)

Perirhinal Cortex (PRH) Lateral Habenula (LHB)

Retrosplenial Cortex (RSC) Dorsal Raphe (DR)

Posterior Cingulate Cortex (PCG) Pedunculopontine

Tegmental Nucleus (PTG)

Subiculum (Sub) Gigantocellular Nucleus (GIG)

CA1 Nucleus Accumben (NAC)

CA3 Caudate Putamen (CPU)

Dentate Gyrus (DG) Globus Pallidus (GP)

Basolateral Amygdala (BLA) Substantia Nigra (SN)

Central Amygdala (CEA) Ventral Tegmental Area (VTA)

Medial Amygdala (MEA) Anterior Parietal Cortex (PAR)

Mediodorsal Thalamus (MD) Ventrobasal Complex (VB)

Centromedian Nucleus, Spinal Trigeminal Nucleus (SPT)

Thalamus (CM)

13.5.2 Seed PLS Statistical Signi�cance

The statistical signi�cance of each LV pair was assessed via a permutation test of

the singular value corresponding to the pair (McIntosh et al., 1996). The subject

to group assignment for the seed ROIs was randomized, and the PLS recomputed.

This was repeated 5000 times and the probability of a singular value greater than or

equal to the original was computed. Those singular values with a probability of less

than 0.01 were considered signi�cant. The individual saliences were tested in the

same way. Because all regions are considered simultaneously by the PLS analysis,

there is no need to correct for multiple comparisons in the permutation tests.

13.5.3 Results

Permutation tests of singular values revealed that the �rst LV pair returned in

each seed PLS analysis for the P17 groups was signi�cant (p<0.01). The percent

SSCB for each of the three cortical regions were: mPFC, 80% ; OFC, 88%;

ACC, 82%. In summary, the analyses identi�ed 1) a pattern of covariance change

involving the mPFC which distinguished the PSA17 group from the PRF17 and

HC17 groups; 2) covariances involving the OFC which were relatively similar

across groups but were slightly higher in PSA17 pups; and 3) an ACC covariance

pattern which distinguished PSA17 and PRF17 pups from controls. The mPFC,

OFC, and ACC seed LVs and those regions demonstrating signi�cant saliences

(according to permutation tests, p < 0:01) are presented in Figures 13.5, 13.6
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Figure 13.4 A) and B) are the same computations as in the design PLS, except that
the design contrasts are replaced by a vector values for a single ROI. C) The e�ect
indicates that the largest proportion of the cross-block covariation is accounted for by
a change in covariances between the seed region and the �rst three ROIs, such that the
greatest covariation occurs in group 1, less in group 2, and least in group 3. The next
highest proportion is accounted for by a contrast such that group 3 demonstrates large,
negative correlations across the last three regions; the magnitude of the same negative
correlations are decreased in groups 1 and 2. Arrows indicate that the seed LVs show
maximal covariance with their corresponding Brain LV.
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Figure 13.5 Seed PLS analysis of mPFC. (A) The graph of contrast vector for
LV1 indicates that covariances between the mPFC were generally high across regions
in PSA17, while they were less coupled in the PRF17 and HC17 groups. The regions
signi�cantly contributing to this e�ect according to the permutation tests are indicated in
the autoradiographic images in (B). The value of the saliences are indicated next to each
label. Note that all saliences are positive, indicating positive covariance relationships.

and 13.7, respectively. No signi�cant LVs were returned by any of the seed PLSs

performed for the P12 groups. Hence, while PLS identi�ed functional interactions

that distinguished or were common to the P17 groups, there were no signi�cant

covariance patterns associated with the P12 groups.

mPFC. The seed saliences associated with the mPFC were 0.77, 0.48, and

0.41 for PSA17, PRF17, and HC17 groups respectively. The regions signi�cantly

contributing to this pattern were the nucleus accumbens, posterior cingulate, medial

habenula, lateral habenula, subiculum, and CA1 (the salience values associated with

each region are presented in Figure 13.5B, next to each label). These results indicate

that these six regions were most correlated with the mPFC in the PSA17 group

relative to the PRF17 and HC17 groups.

OFC. The seed LV and salient brain regions associated with the OFC are pre-

sented in Figures 13.6A and 13.6B, respectively. The seed saliences were 0.69, 0.51,

and 0.51 for PSA17, PRF17, and HC17 groups, respectively. The regions signi�-

cantly contributing to this pattern were the anterior parietal cortex, anterior dorsal,

medial dorsal, centromedian, and ventro-basal thalamic nuclei, posterior cingulate

cortex, lateral habenula, ventral tegmental area, and gigantocellular nucleus. The

higher salience in PSA17 pups indicates stronger covariances in this group. Saliences

were similar between PRF17 and HC17 pups.

ACC. The seed saliences associated with the ACC were 0.74, 0.65, and 0.15

for PSA17, PRF17, and HC17 groups respectively (Figure 13.7A). The regions

signi�cantly contributing to this pattern were the medial amygdala, subiculum,

CA1, CA3, perirhinal cortex, and the pedunculopontine nucleus (Figure 13.7B).

Hence, while covariances between these regions and the anterior cingulate were

similarly positive between PSA17 and PRF17 groups (although somewhat higher

in the PSA17 pups), they were lower in the HC17 case.
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Figure 13.6 Seed PLS analysis of OFC covariances. (A) The graph of contrast vector
for LV1 indicates that covariances between the OFC and sampled regions were generally
high across all three P17 groups but slightly higher in the PSA17 pups. The regions
signi�cantly contributing to this e�ect according to the permutation tests are indicated in
the autoradiographic images in (B). The value of the saliences are indicated next to each
label.

Figure 13.7 Seed PLS analysis of ACC covariances. (A) The graph of contrast vector
for LV1 indicates that the regions were generally uncoupled in the HC17 pups relative to
PRF17 and PSA17 pups. The regions signi�cantly contributing to this e�ect according to
the permutation tests are indicated in the autoradiographic images in (B). The value of
the saliences are indicated next to each label.

13.5.4 Discussion

The results of the seed PLS analysis revealed covariance patterns describing

training-related e�ects, as well as covariances common to all three groups in P17

pups. The �rst training-related change involved the mPFC, and indicated a system

of regions that showed high correlations in the PSA17 group. Coupling between

mPFC activity and the activities of the nucleus accumbens, subiculum, CA1, habe-

nular nuclei, and posterior cingulate cortex were associated with the rapid PSA

extinction behavior. The same set of regions showed positive correlations in the

PRF17 groups, but were less coupled across the system of regions. They were largely

uncoupled in the HC17 group. Hence, the recruitment of these regions changed

depending on the particular experimental condition and appeared to be most re-

lated to the performance di�erences between P17 groups. PLS identi�ed regions

whose covariances with the OFC were similar between PRF17 and HC17 groups

but slightly higher in the PSA17 groups. This e�ect is similar to the e�ect associated

with the mPFC, although lesser in magnitude. In the case of the ACC, covariances
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were higher in PSA17 relative to PRF17 groups but not to the extent found in

the mPFC case. Covariances were generally low in the non-extinction HC groups.

The regions associated with this particular common pattern of covariances dur-

ing extinction behavior were the hippocampus, perirhinal cortex, medial amygdala,

and pedunculopontine tegmental nucleus. The P17 seed PLS analyses implicate the

mPFC, OFC, ACC, and their interactions with regions distributed throughout the

rostro-caudal extent of the brain in supporting the di�erential extinction respond-

ing among the older pups. The rapid behavioral extinction of PSA17 pups may

be related to covariances involving the mPFC and OFC. The similarity in ACC

covariance relationships between PSA17 and PRF17 groups suggests they may be

related to behavioral extinction processes common to both groups, not found in

the HC pups. There were no dominant patterns of covariances that were similar or

di�erent between P12 groups, indicating that at the younger age, the three cortical

regions are operating di�erently. In fact, their functional dissociation may underlie

the behavioral di�erences found among the younger group.

A caveat, however is that the seed PLS considers the correlations between the

seed ROI and the rest of the data set as a whole. The method identi�es dominant

patterns of changes, and so information regarding individual correlations is not

emphasized in the computation. For example, it is possible that one region out of

those sampled demonstrated a signi�cant covariance change across P12 groups but

was not identi�ed by PLS since this was not a dominant pattern. If information

regarding a particular region is desired, complementing PLS with a univariate

analysis may be required.

13.6 Summary and Conclusions

The combined approach of the design and seed PLS contributed substantially

to identifying age and task related activational and covariances changes in FDG

uptake. While age-related changes in several regions were found, a common network

of regions was activated due to extinction across trained P12 and P17 groups.

The seed PLS analysis, however, suggests that superimposed on this network, is a

frontal cortical network in P17 pups which may allow them to behave 
exibly during

extinction. This was one of the hypotheses regarding the brain functional activity

at the two ages. Hence, the data-driven PLS approach lends support to this a priori

hypothesis. The utility of the PLS approach resides in its identi�cation of task or age

related changes in a relatively eÆcient manner. The same information as found here

would undoubtedly be diÆcult to obtain via traditional univariate approaches. PLS,

in conjunction with univariate or other multivariate techniques such as principal

components or independent components analyses would be a powerful approach for

maximally extracting information regarding large scale brain functional systems

related to learning and memory.
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cybernetics, 9
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data averaging, 63
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delay-related activity, 77, 99, 100, 102
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delayed motor task, 49

Dense Latency Sampling, 83

dense latency sampling, 77

deoxygenated hemoglobin, 18

design PLS, 279

dimension reduction, 164

dipole modeled fastICA, 175
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dynamical factor analysis, 170

EEG power spectrum, 198

EEG rhythm, 197

eigenimages, 66
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electrophysiology, 116
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exploratory data analysis, 6, 17
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grasp control, 231

hemodynamic response, 50, 80, 209

higher order statistics, 167

independence, 164

independent component analysis, 63,
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inter-regional connectivity, 255, 268
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k-means clustering, 86

kurtosis, 167

large scale brain modeling, 252
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leaky integrator neuron model, 232
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modulation induced frequency
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motor activation, 60
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moving visual stimulus, 113, 118

multielectrode recording, 10

multivariate data analysis, 6

mutual information, 63, 167, 168
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neural network model, 8, 233

neural populations, 109

neuron populations, 253

neuronal adaptation, 118

noise in fMRI, 65

null-hypothesis, 53
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overlearning in ICA, 167

oversampling, 77, 81

partial least squares, 273

Pearson correlation coeÆcient, 23

phase-shift slice timing, 82, 84

population coding, 237

positron emission tomography, 232

positron emmission tomography, 2
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prior distribution, 52
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regressor function, 80
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second-order blind source
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selective averaging, 81

short-term memory, 252
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signal time course, 114

signi�cance test, 26
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single trial fMRI, 49

single-cell electrophysiology, 253

Slice-Timing, 82

smoothing, 6

somatosensory component, 140

somatosensory stimulation, 132

source localization, 130

source reconstruction, 7
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analysis, 20
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spatial similarity, 87
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statistical parametric map, 6

structural equation modeling, 7, 254

subtraction paradigm, 5, 18, 253

synaptic activity, 253

synaptic connectivity, 11

synchronized neuronal activity, 197

synthetic PET, 231

TDSEP, 165

temporal cluster analysis, 82

temporal decorrelation, 164

temporal dissimilarity, 87

temporal fuzzy clustering, 40

temporal resolution, 3

temporal smoothness, 87

trend exclusion, 23

univariate linear signal estimation, 81

unmixing matrix, 156

validation of ICA for EEG & MEG,
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vibrotactile stimulation, 173

visual component, 140

visual evoked potentials, 198, 214

visual stimulus, 135

volume slice timing, 82, 89

white noise process, 51
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