
Evolutionary Algorithms and Optimization

D I S S E R T A T I O N

zur Erlangung des akademischen Grades

doctor rerum naturalium

(dr. rer. nat.)

im Fach Physik

eingereicht an der

Mathematisch-Naturwissenschaftlichen Fakultät I

Humboldt-Universiẗat zu Berlin

von

Herr Dipl.-Phys. Axel Reimann

geboren am 28.05.1973 in Hennigsdorf

Pr̈asident der Humboldt-Universität zu Berlin:

Prof. Dr. J̈urgen Mlynek

Dekan der Mathematisch-Naturwissenschaftlichen Fakultät I:

Prof. Dr. Michael Linscheid

Gutachter:

1. Prof. Dr. Werner Ebeling

2. Prof. Dr. Heinz M̈uhlenbein

3. PD Dr. Dr. Frank Schweitzer

eingereicht am: 20. August 2001

Tag der m̈undlichen Pr̈ufung: 5. Dezember 2002

Zusammenfassung

Diese Arbeit bescḧaftigt sich mit dem ThemaEvolution̈are Algorithmenund deren Verwen-

dung f̈ur Optimierungsaufgaben. Im ersten Teil der Arbeit werden die theoretischen Grund-

lagen ausf̈uhrlich dargelegt, die zum Verständnis der Problemstellung und der vorgeschlage-

nen L̈osungsm̈oglichkeiten notwendig sind. Dazu gehören die Einf̈uhrung des Konzeptes von

Fitneßlandschaften, deren Eigenschaften sowie die kurze Darstellung bekannter stochastischer

Optimierungsverfahren wie z.B. Simulated Annealing. Im Anschluß daran wird auf neue Ver-

fahren – insbesondere gemischte Strategien – eingegangen und diese vergleichend gegenüber

den herk̈ommlichen Verfahren abgegrenzt.

Die neu entwickelten Verfahren werden an Modellproblemen getestet, welche im zweiten Teil

der Arbeit vorgestellt werden. Verwendet wurden sowohl einfache theoretische Modelle wie

Frustrierte Periodische Sequenzenals auch praktisch relevante Probleme wie das der RNA Se-

kund̈arstrukturen. Die verschiedenen Modellprobleme werden bezüglich ihrer Eigenschaften

und Schwierigkeitsgrade untersucht und miteinander verglichen, um die Effizienz der verwende-

ten Optimierungsverfahren abschätzen zu k̈onnen.

Der dritte Teil der Arbeit pr̈asentiert wichtige Ergebnisse der im Rahmen dieser Arbeit durch-

geführten umfangreichen numerischen Simulationen. Es wird demonstriert, wie sensitiv die

Optimierungsergebnisse von den verwendeten Parametern der Algorithmen (wie z.B. Ensem-

blegr̈oße, Temperatur oder Mutationsrate) abhängen und das ein relativ scharf umrissenes evo-

lutionäres Fenster der Parameter existiert, innerhalb dessen die Optimierungsresultate deutlich

besser sind. Eine im Rahmen dieser Arbeit entwickelte adaptive Parametersteuerung wird an

den im zweiten Teil vorgestellten Modellproblemen getestet und gezeigt, daß es möglich ist, den

Optimierungsprozeß automatisch innerhalb des evolutionären Fensters zu halten.

Der letzte Teil gibt Einblick in die im Rahmen dieser Arbeit verwendete Computer-Software und

das vom Autor entwickelte Programmpaket. Es wird hervorgehoben, daß die inC++ objekto-

rientiert und modular geschriebene Software leicht an andere Optimierungsaufgaben angepaßt

werden kann und dank graphischer Benutzeroberfläche auch einfach zu bedienen ist.

EVOLUTIONARY ALGORITHMS

AND OPTIMIZATION

Axel Reimann

Author: Axel Reimann, 2001

Cover : Ribonucleic Acid, Structure of loop E from E. Coli 5s Rrna

ORGANISM SCIENTIFIC: Escheria coli

C. C. Correll, B. Freeborn, P. B. Moore and T. A. Steitz

30th Sep. 1997, PDB Code: 354D

visualized using Cn3D

This document was typeset using pdfTEX

Copyright (C) 1999 Han The Thanh, Petr Sojka, and Jiri Zlatuska

pdfTEX is covered by the terms of both the

pdfTEX copyright and the GNU General Public License

Dedicated to my parents and friends.

Contents

1 Introduction 9

2 Learning from Nature 11

2.1 The Theoretical Framework. 11

2.1.1 The Concept of Fitness Landscapes. 12

2.1.2 Properties of Fitness Landscapes. 14

The Density of States. 15

The Autocorrelation Function. 17

2.1.3 Stochastic Modeling of Basic Evolutionary Strategies. . 20

The Darwin Strategy. 21

The Boltzmann Strategy. 23

The Mixed Boltzmann-Darwin Strategy. 25

2.1.4 Other Stochastic Optimization Strategies. 27

Simulated Annealing. 27

Genetic Algorithms. 28

3 Model Problems 31

3.1 Correlated Random Landscapes. 31

3.2 Frustrated Periodic Sequences. 34

3.3 The LABS Problem. 35

3.4 The RNA and NK Model Compared. 36

1

3.4.1 The NK Model . 36

3.4.2 RNA Secondary Structures. 38

4 Optimizing the Search Process 43

4.1 Exact Stochastic Simulations. 43

4.1.1 The Direct Method. 44

4.1.2 The First Reaction Method. 45

4.1.3 The Next Reaction Method. 45

4.2 The Evolutionary Window. 46

4.2.1 Comparing Fitness Landscapes. 46

4.2.2 Exploring Parameter Windows. 50

1. Constant Temperature. 52

2. Variable Temperature. 54

4.3 Mastering Intrinsic Search Parameters. 58

4.3.1 Ensemble Size Adaptation. 58

4.3.2 Temperature Adaptation. 59

4.3.3 Mutation Rate Adaptation. 61

First Approach: The Ensemble Variability. 64

Second Approach: The Relative Ensemble Dispersion. 66

Third Approach: The Ensemble Entropy. 68

4.4 An Adaptive Evolutionary Algorithm 73

5 Software 77

5.1 Newly Developed Software. 77

5.1.1 Optimization Programs. 77

The User Interface. 78

The Workflow . 78

5.1.2 The SimRNA Mutation Operator. 80

5.1.3 The SimRNA Source Code. 82

The RNA-Strand Class. 82

The Main Loop . 108

5.1.4 MPIgenerate. .116

5.2 Open Source Software. 129

5.2.1 The Message Passing Interface MPI. 129

5.2.2 The Vienna RNA Package. 129

5.2.3 Free Visualization Software. 129

5.2.4 Free External Libraries. 131

A Polio Virus Type 1 Subsequence 133

B Glossary 137

C Acknowledgment 165

List of Figures

2.1 Simple Fitness Landscape. 12

2.2 Complex Fitness Landscape. 13

2.3 Density of States. 16

2.4 Landscapes with Different Correlation Length. 18

2.5 Autocorrelation. 19

2.6 Discrete Representation of a Fitness Landscape. 22

2.7 Mixed Strategy . 26

2.8 Crossover Operator. 29

3.1 Sequence Evaluation Scheme. 34

3.2 Purines . 38

3.3 Pyrimidines . 39

3.4 Primary Structure. 39

3.5 Secondary Structure. 40

3.6 Pseudo Loop . 41

4.1 Autocorrelation Functions for Different Problems. 49

4.2 Small Search Space. 50

4.3 Vast Search Space. 51

4.4 Parameter Sweep on Testmodels. 53

4.5 Evolutionary Window (Frustrated Periodic Sequences). 55

4.6 Evolutionary Window (Low Autocorrelation Binary Strings). . 56

5

4.7 Evolutionary Window (RNA Secondary Structure). 57

4.8 Error Threshold (Scheme). 62

4.9 Ensemble Variability . 65

4.10 Relative Ensemble Dispersion. 66

4.11 LABS Problem: Comparison of Different Sensors. 67

4.12 FPS Problem: Ensemble Entropy. 70

4.13 FPS Problem: Entropy Sensor. 71

4.14 RNA Problem: Entropy Sensor. 71

4.15 Ensemble Histograms. 72

4.16 Adaptation Results for RNA Problem. 75

5.1 SimRNA User Interface. 79

5.2 Block Diagram: Optimization Programs. 80

5.3 Implementation Scheme of the SimRNA Mutation Operator. . 81

A.1 Best Folding:L = 100,ACV01148,5′−cloverlea f 134

A.2 Suboptimal Foldings:L = 100,ACV01148,5′−cloverlea f . . . 135

Symbols

Ai j mutation matrixA

β inverse temperature

drel relative ensemble dispersion

E energy

F fitness

γ selection probability

H Hamiltonian

Ĥens ensemble entropy

k Boltzmann constant

L problem size; sequence length

m tournament size

N number of observations, ensemble size

n(F) density of states

O order symbol

p probability density

P probability

r correlation length

Rk lagk autocorrelation coefficient

R(t) evolution rate

7

S entropy

σ standard deviation

σ2
a autocovariance

σ2 variance

t time

T temperature

v ensemble variability

U potential energy

V potential

W statistical weight

x̄ mean value ofx

xi occupation number of statei

Z partition function

Chapter 1

Introduction

This work is a theoretical approach to a practical problem: optimization.

Everyday life is full of tasks related to optimization. Wherever resources, like

energy, space, food supply etc., are limited, the question of efficiency and, thus,

the need for optimization arises.

In biology this issue becomes literally a matter of life or death. Any living

being not optimally adapted to its surroundings will most likely vanish over time

due to natural selection [1, 2]. The adaptation problem becomes even more intri-

cate considering that environmental parameters are not static, but instead change

over time. Since short term changes might also happen within the lifespan of an

individual it is obvious that adaptation or optimization is an ongoing process that

in itself needs to be efficient with respect to time and energy consumption.

In the paragraph above adaptation and optimization could essentially be used

interchangeably, underlining the close relationship between the two processes.

Adaptation can be perceived as the optimization of one or more items under sev-

eral given constraints. In engineering it is an often encountered problem that

the optimization of one crucial parameter directly or indirectly influences other

parameters in a sometimes unpredictable way. Optimization here means find-

ing compromises to reach contradictory goals, e.g. gas mileage versus engine

power or stability of a construction versus its weight. The situation can easily

9

10

get out of hand when the number of parameters and constraints surpasses a cer-

tain threshold. Even though engineers have learned by experience to circumvent

or tackle many well behaved problems, some others can no longer be success-

fully approached with conventional methods. What can one learn from nature? It

seems that biology has come up with some exceedingly well-working remedies

to solve dynamic multi-parameter optimization problems that could hardly be

solved analytically in any given reasonable time span. In order to take advantage

of evolutionary strategies however, one has to understand first of all how they

work and why they perform as well as they indeed do. Secondly, those strategies

need to be modeled mathematically to be of any benefit in engineering. Last but

not least, any given algorithm needs to be tuned with regards to its efficiency.

This work describes theoretical models for different ‘standard’ evolutionary

algorithms known as e.g.Metropolis Algorithm[3], Simulated Annealing[4, 5, 6,

7, 8, 9] or Boltzmann strategy[10, 11] andEvolutionary Algorithms[12, 13, 14].

It furthermore investigates the power of mixed strategies combining ideas from

both physics and biology, like theBoltzmann-Darwin Strategy. The investigated

algorithms will be applied to different test problems in computer simulations,

and their respective results will be analyzed with respect to time consumption,

result quality and search parameter dependence. The test problems include op-

timization of artificial strings (Frustrated Periodic Sequences and Low Autocor-

relation Binary Strings [LABS]), as well as RNA folding problems (RNA sec-

ondary structure). It will be shown that the chosen optimization parameters

crucially influence the optimization result. For all investigated problems only

a smallevolutionary windowof parameters leads to an efficient search process.

The introduction of a new nonlinear numerical sensor allows to improve the in-

vestigated algorithms by automatically adapting their intrinsic parameters to the

evolutionary window.

Chapter 2

Learning from Nature

2.1 The Theoretical Framework

Conventional problem-solving strategies follow a strict algorithm. It is the de-

terministic nature of these algorithms that embodies both the advantages and

disadvantages. A classical deterministic algorithm, by definition, solves a given

problem in a finite number of steps. Many problems are, however,NP or NP

completeproblems,1 and the necessary computation timet to solve the problem,

for example often grows exponentially with the problem sizeL, that is, the prob-

lem is said to be of orderO
(
exp[L]

)
.

If a problem is not exactly deterministically solvable in polynomial time, it

might however still be possible toapproximateit in polynomial time. An elegant

way to circumvent deterministic limitations is to introduce stochastic elements

to problem solving methods. Evolutionary algorithms, inspired by physics and

biology, do just that. It takes some insight to understand how exactly stochastic

can help to solve problems.

1for an exhaustive reference cf.‘A compendium of NP optimization problems’ at:

http://www.nada.kth.se/˜viggo/problemlist/compendium.html

11

http://www.nada.kth.se/~viggo/problemlist/compendium.html

12 2.1. THE THEORETICAL FRAMEWORK

Natural evolution is undoubtedly driven by at least two dominating forces:

mutationand selection. The following paragraphs investigate how these pro-

cesses can be modeled mathematically and how randomness helps by coming

into play.

2.1.1 The Concept of Fitness Landscapes

-1

0

1
Parameter 1

-1

0

1

Parameter 2

0
0.5

1
1.5
2

Fitness

-1

0

1
Parameter 1

Figure 2.1: Simple imaginary two-dimensional fitness landscape (continuous)

A simple engineering problem might depend, for example, onn parameters

xn. By assigning these parameters to the axes of a simple diagram, one can

plot all solutions to the problem for all given parameter combinations for low

dimensional problems. Then-dimensional space spanned by then parameters

is simply called parameter space. Figure2.1 shows a three dimensional plot

for an imaginary two-dimensional problem. The single peaked plane stretching

into the z-direction represents the set of solutions to the respective parameter

combinations:{(x1,x2)}→ {F(x1,x2)}. The different solutions have a different

fitness with respect to the posed problem; hence, it is legitimate to also speak of

a fitness landscape.

The problem with finding an optimal parameter combination or equivalently

with finding the best fitness values can now easily be illustrated as the search for

2.1. THE THEORETICAL FRAMEWORK 13

the top of the hill in Figure2.1. If the underlying analytic relation were known,

then it would be possible to use the rich toolbox of classical algorithms imple-

menting well-known analytical solution techniques. If, on the other hand, ana-

lytic solutions are impossible to find, and the number of parameters (parameter

combinations) runs out of bounds, simple trial and error methods will, likewise,

no longer suffice.

A simple alternative approach to find the maximum (or optimum respectively) is

known as themethod of steepest descent, thegradient strategy, or more descrip-

tively, hill climbing. Starting somewhere in the parameter space, one follows

the inclination (gradient) by varying the parameters until the optimum is found.

This method works well for simple fitness landscapes such as the one seen in

Figure2.1.

-1

0

1
Parameter 1 -1

0

1

Parameter 2

-5
0
5

Fitness

-1

0

1
Parameter 1

Figure 2.2: More complex imaginary fitness landscape (continuous) with several local minima

and maxima

As soon as the underlying dynamics becomes more complex and the fitness

landscape becomes more rugged, this method is probably doomed to fail. The

search process will ultimately end in a local optimum, which is not necessarily

the global optimum. Figure2.2 illustrates such a fitness landscape. A way of

working around this would be to simultaneously start several search processes

beginning with different starting points in parameter space. The search process

14 2.1. THE THEORETICAL FRAMEWORK

can be imagined as being carried out by an uncoupled seeker ensemble. Another

ansatz is to also allow downhill movements under certain circumstances. While

dead ends in the search process can be circumvented this way, the search speed

is degraded. In order to efficiently search for the global optimum it might be-

come necessary to drop inefficient seekers or adjust the probability of downhill

movements. A number of different search strategies have been developed with

these ideas in mind. A few of them will be introduced in section2.1.3.

It is important to know that even though the fitness landscape completely de-

termines the structure of the optimization problem, it isnot true that, in reverse,

the optimization problem uniquely defines the fitness landscape [15]. Scanning

along the fitness plane, one successively encounters the fitness values for neigh-

boring parameter settings. There is no immediate information, however, about

how the neighborhood is defined in parameter space. In other words, it is the

set of allowed steps in parameter space that defines the respective neighborhood

structure and, in turn, generates a fitness landscape as just one of many possible

representations of the problem.

Therefore, choosing a proper set of allowed steps in parameter space can in-

fluence the solvability of an optimization problem in the same way that choosing

a proper coordinate system influences the solvability of any problem in physics.

2.1.2 Properties of Fitness Landscapes

The fitness landscapes illustrated so far have been continuous. In order to be nu-

merically tractable, however, fitness landscapes that are not inherently discrete

need to be suitably sampled (Figure2.6 shows an example of a discrete fitness

landscape representation). Keeping this in mind, the following paragraphs do

not explicitly distinguish between continuous and discrete fitness landscapes.

2.1. THE THEORETICAL FRAMEWORK 15

As can be derived from Figure2.1and Figure2.2already, fitness landscapes

can have very different shapes. The typical features of fitness landscapes (rugged-

ness, number of peaks etc.) represent the inherent difficulty of the corresponding

optimization problem. Efficient search algorithms, therefore, need to have an

idea regarding the kind of landscape upon which they are working. While for

smooth landscapes gradient-based optimization methods with only a few seek-

ers perform best, they are almost useless in rugged landscapes. Because the

complete fitness landscape is usually unknown1, some sort of numerical mea-

sure describing the landscape is necessary to guide an optimization algorithm.

Two candidates, thedensity of statesand theautocorrelation function, will be

introduced here.

The Density of States

The density of statesn(E) is an important tool in physics to characterize thermo-

dynamical systems. It describes how often a certain energy valueE is realized

in a sizeN system, meaning how likely it is to encounter a particular energy re-

alization in this system.

It is easy to adopt this idea for optimization purposes, as it is straightforward

to consider fitness valuesF instead of energy levels. The definition of the density

of states describing the frequency of particular fitness values in the entire fitness

landscape then becomes [15]:

n(F) =
dN
dF

. (2.1)

The probability to find a certain fitness realization therefore is:

P(F) = n(F)p(x(F)) (2.2)

1Otherwise, the optimization problem were solved already.

16 2.1. THE THEORETICAL FRAMEWORK

fmax ?

f

n(f)

Figure 2.3: Partial knowledge of the density of states may help

guessing the quality of the optimal solution and approximating the

necessary effort required by means of extrapolation.

wherep(x) is the conditional probability density function. The probability den-

sity p(F) is, of course, normalized and simply states that it is certain that the

system is in only one particular state at any given moment:

∞∫
−∞

p(x1 . . .xn)dx1 . . .dxn
!= 1. (2.3)

Since the complete fitness landscape has to be considered unknown,n(F)

(or P(F) respectively) is also an unknown function. It is possible, however, to

construct a picture of the density of states in stepswhile the optimization is in

progress.1 This procedure reflects the growing knowledge of the optimization

problem and can, thus, also be expressed by using a measure taken from infor-

1This can easily be done by generating a histogram with respect to found fitness values and normalizing the

outcome according to eq. (2.3).

2.1. THE THEORETICAL FRAMEWORK 17

mation theory, the entropyS(f):

S(F̄) = k ln
(
n(F̄)∆F

)
. (2.4)

Using the definition of a statistical weight1: W(F̄) = n(F̄)∆F , the last equation

can be written in short as:

S(F̄) = k lnW(F̄). (2.5)

The entropyS can represent the currently missing knowledge about the inves-

tigated problem within a single number. The minimal valueS= 0 is reached

for a completely unveiled landscape. Even the partial knowledge of the density

function gives valuable information about the system. For example, it enables

the prediction of the optimization result and thereby provides some guidelines

for the necessary computation time that still has to be invested [15]. Figure2.3

gives an impression of the procedure. As all predictions based on extrapolation,

the outcome has to be taken cum grano salis.

The Autocorrelation Function

In order to understand the autocorrelation function, one first has to have an under-

standing of the termsautocovarianceandvariance. The first term, autocovari-

ance, literally means “how something varies with itself” [16]. It is the average

of the deviation of a function from its mean value ¯x at pointxt joint by the corre-

sponding deviation at a lagged pointxt+k (cf. Figure2.5). So the autocovariance

σ2
a can be written as:

σ
2
a =

1
N+1

N−k

∑
t=1

(xt − x̄)(xt+k− x̄) (2.6)

1The statistical weight denotes the number of realizations of a certain fitness level.

18 2.1. THE THEORETICAL FRAMEWORK

0
10

20
30

40
50

60
70

80
90

10
0

pa
ram

ete
r 2

0
10

20
30

40
50

60
70

80
90

100

parameter 1

-4
-2

0
2

4
fit

ne
ss

 (a
.u

.)

(a) correlation length:r = 10

-10

0
10

20
30

40
50

60
70

80
90

10
0

pa
ram

ete
r 2

0
10

20
30

40
50

60
70

80
90

100

parameter 1

-1
2

-1
0

-8
-6

-4
-2

0
fit

ne
ss

 (a
.u

.)
(b) correlation length:r = 50

Figure 2.4: Two fitness landscapes with different correlation lengthr. The landscape in subfigure

(a) has a relatively short correlation length while the subfigure (b) in contrast shows a highly

correlated landscape.

The autocovariance can be normalized and made dimensionless to have a use-

ful means of comparing different functions. This is achieved by a standardiza-

tion with the varianceσ2 which essentially reflects the fluctuation of a function

around its mean value:

σ
2 =

1
N+1

N

∑
t=1

(xt − x̄)2 (2.7)

The resulting fraction of autocovariance and variance for a given lagk is the

so-called autocorrelation coefficientRk:

Rk =
σ2

a

σ2 =

N−k
∑

t=1
(xt − x̄)(xt+k− x̄)

N
∑

t=1
(xt − x̄)2

(2.8)

2.1. THE THEORETICAL FRAMEWORK 19

lag k

_
x

 -
 x

t
_

x

 -
 x

t+
k

Figure 2.5: Graph and lagged graph of a function. For simplicity, the mean ¯x is set to zero.

The entire series of autocorrelation coefficients constitutes the autocorrelation

function. Since the autocorrelation coefficients can vary from−1 to +1 the

autocorrelation function (correlogram) is confined to the same interval:{−1,1}.
As can immediately be seen from eq. (2.8) the correlogram is able to reflect

linear dependencies only.

Nevertheless, autocorrelation provides a useful means of categorizing fitness

landscapes. The most interesting value is the correlation length, which measures

in generic units (i.e. Hamming distance) in how many steps the autocorrela-

tion function has decreased from 1 to the value 1/e (which is roughly 0.37).

Examples of different autocorrelation functions can be found in section4.2.1,

Figure4.1. To give an impression of fitness landscapes with different correlation

length compare Fig2.4(a) and Fig2.4(b). While the highly correlated landscape

in Figure2.4(b) has one pronounced valley and smooth inclinations, the shortly

correlated landscape in Figure2.4(a) shows numerous peaks and troughs within

a generally rough surface. Please note that the parameter intervals{0,100} are,

of course, the same for both landscapes.

20 2.1. THE THEORETICAL FRAMEWORK

2.1.3 Stochastic Modeling of Basic Evolutionary Strategies

Taking a look at natural evolutionary processes and adaptation, several strategies

can be observed [17, 18, 19, 20]. These strategies include changes in genotype

(mutations), changes in phenotype, selection processes, learning, and knowledge

transfer (communication). It would require far too much computational power to

try to mimic all of these processes for optimization purposes. A more promising

ansatz for numerical evolutionary optimization algorithms is to place one or more

virtual seekers, each representing one possible parameter combination, onto the

fitness landscape in question and restrict the strategy to fundamental processes:

1. First and foremost, every seeker has to have a sophisticated concept ofhow

to move about the search space. A movement in the search space is equiv-

alent to a change in parameter space (cf. Figure2.4). The new parameter

combination represents a new potential solution to the problem with a fit-

ness level that is usually different. These movements in search space (pa-

rameter changes) will henceforth be called mutations. This is inspired by

the fact that in biology mutations also potentially change the fitness of an

individual.1

2. Secondly, if a seeker ensemble is used instead of a single seeker, there has

to be a way to drop inefficient candidates. The process of canceling seekers

(and optionally replacing them with better ones) will, again in analogy to

biology, be called selection. The selection process constitutes a basic seeker

coupling or seeker communication.

3. The search strategy needs to be adaptive to ensure efficiency while the seek-

ers zero in to global optima. Seeker agility that is too high can cause the

1The close relation between mutation in optimization and mutation in biology becomes visible in Genetic Algo-

rithms where a mutation operator alters one or more bits of a string (a virtual gene) at a time (cf. page29).

2.1. THE THEORETICAL FRAMEWORK 21

ensemble to spread unnecessarily in the late optimization phase. This adap-

tation can be achieved by techniques introduced later on asannealingor

mutation rate adaptation.

The introduced evolutionary strategies differ by their realization of the basic

processes given in the enumeration above. A relatively simple strategy is the

Darwin strategy:

The Darwin Strategy

The ingredients for the Darwin Strategy are:

• mutation processes

• self reproduction of superior species showing best fitness

It is relatively easy to mathematically model this behavior [21]: The problem

is defined as the search for a maximum on a potentialVi representing the fitness

landscape, or search space, respectively. The indexi denotes the fact that the

potential that is probably continuous, is reduced to an integer set withs states

(i = 1, . . . ,s) in order to be numerically tractable. The numbers can still grow

extremely large, however.

Thus, the parameter/fitness landscape as shown in Figure2.2 gets translated

onto a state/potential landscape as sketched in Figure2.6. Modeling the seeker

population as the occupation numberxi of statei, it becomes possible to describe

mutations as transitions from statej to statei and arrange the transition rates in

matrix formAi j . This leads directly to the following balance equation:

∂t xi =
s

∑
j=1

(
Ai j x j −A ji xi

)
. (2.9)

22 2.1. THE THEORETICAL FRAMEWORK

Figure 2.6: Discrete representation of a continuous fitness landscape as shown for example in

Figure2.2.

In the interest of simplicity, the number of seekersx0 can be kept constant

throughout the search process:

s

∑
i=1

xi(t) = x0 = const. (2.10)

Adding the fitness-dependent self-reproduction yields a FISHER-EIGEN equa-

tion describing the problem-solving dynamics [17]:

∂t xi = (〈U〉−Ui)xi +
s

∑
j=1

(
Ai j x j −A ji xi

)
. (2.11)

By assuming symmetrical mutation ratesAi j = A0
i j , with A0

i j therefore being a

symmetrical matrix, one can solve eq.2.11with the ansatz:

xi(t) = exp

− t∫
0

〈Ut ′〉 dt ′

 yi(t) (2.12)

leading to

∂t yi(t) =−
s

∑
j=1

HD
i j yi(t). (2.13)

2.1. THE THEORETICAL FRAMEWORK 23

The HEISENBERGmatrixHD is defined as

HD
i j :=−A0

i j +δi j

(
s

∑
k=1

A0
ki−Vi

)
(2.14)

The solution may now be expressed in terms of the eigenvaluesεn and eigen-

functionsyn of the eigenvalue problem as [17, 18]:

s

∑
j=1

HD
i j yn

j = ε
D
n yn

i ; n = 1. . .s (2.15)

yi(t) =
s

∑
n=1

exp
[
−ε

D
n t
]
an

i yn
i (2.16)

The time dependent-occupation numbers are as follows:

xi(t) =
yi(t)

s
∑
j=1

y j(t)
(2.17)

This strategy has a highly erratic search path, since motion along gradients is

not explicitly modeled. By implementing the latter feature, one arrives at the

so-called Boltzmann Strategy.

The Boltzmann Strategy

This fundamental strategy describes processes corresponding to the second law

of thermodynamics. It is also known as theMetropolis Algorithm[3]. It com-

bines the following two basic elements:

• motion along gradients to reach steepest ascent/descent of thermodynamic

functions

• stochastic processes including thermal and hydrodynamic fluctuations lead-

ing to random changes in order to avoid locking in local maxima or minima

respectively

24 2.1. THE THEORETICAL FRAMEWORK

A theoretical model can be constructed analogously to the Darwin strategy by

considering a set of statesi = 1,2, . . . ,s. Again, each state is characterized by

a potential energyUi = −Vi and a relative frequency in the seeker ensemble

populationxi(t) at timet. The simplest model of a Boltzmann Strategy searching

for minima ofUi is described by the following master equation:

∂t xi(t) =
s

∑
j=1

(
Ai j x j(t)−A ji xi(t)

)
(2.18)

with the following transition rates:

Ai j = A0
i j

1 if ∆U < 0,

exp[−β ∆U] if ∆U ≥ 0.
(2.19)

A process searching for maxima ofUi can be implemented by simply changing

the sign of the∆U conditions in eq.2.19. The parameterβ , known from thermo-

dynamics to typically beβ = 1/kT, has the meaning of a reciprocal temperature.

The Boltzmann constantk can be set to 1 without altering the character of the

search strategy. Now, how can the equations2.18and2.19actually be portrayed?

While the Darwin strategy allows the seeker ensemble to wander about indif-

ferently (leading to a symmetric transition matrixA0
i j) unless they are terminated

by selection processes, the Boltzmann strategy takes energy changes∆U into

account. Mutation steps leading to improvements (uphill for maximization and

downhill for minimization) are always accepted, whereas degradations are expo-

nentially weighted with respect to the threshold’s height. The idea, obviously, is

to take the best characteristics from simple gradient search methods (fast search

and easy implementation) while avoiding their pitfalls (trapping in local optima).

The exponential weight (Boltzmann factor) assures that drastic degradations are

rarely ever accepted.

This construction as a whole causes the distribution of seekers to assume the

form of the well-known Boltzmann distribution [15]:

2.1. THE THEORETICAL FRAMEWORK 25

xi =
1
Z

exp[−Ui/T] (2.20)

Z =
s

∑
i=1

exp[−Ui/T] (2.21)

that is centered around the maxima (or minima respectively) of the fitness land-

scape as time goes to infinity. Therefore, the master equation (2.18) indeed de-

scribes an optimizing process.

The parameterF in the equations above denotes a problem-dependent fitness

based upon the energyUi and the search direction (maximization/minimization).

The dimensionless normalization factorZ is the partition function.

The Mixed Boltzmann-Darwin Strategy

It is intuitively clear that the gradient-guided search of the Boltzmann Strategy is

very effective for smooth fitness landscapes, while the Darwin strategy shows its

strength in shortly-correlated, rugged landscapes, where its ability to tunnel high

fitness barriers is advantageous. Numerical experiments show that a search strat-

egy combining the basic ingredients of both the Darwin and the Boltzmann strat-

egy easily surpasses both pure search algorithms (cf. section4.2). Going back to

equations (2.11, 2.18), it is straightforward to write down the master equation for

the Boltzmann-Darwin dynamics. The equation contains the selection term, the

mutation term, and the Boltzmann factor (hidden inside the mutation matrix):

d
dt

xt(t) = γ

(
〈U〉−Ui

)
xi(t)︸ ︷︷ ︸

selection term

+m
s

∑
j=1

(
Ai j x j(t)−A ji xi(t)

)
︸ ︷︷ ︸

mutation term

(2.22)

The mutation matrixAi j is defined according to eq. (2.19). The new factorγ

denotes the selection strength, whereas the factorm denotes the mutation rate.

Since, numerically, one can only execute one step at a time, both are related via:

26 2.1. THE THEORETICAL FRAMEWORK

B
ol

tz
m

an
n

S
tr

at
eg

y

M
ixe

d S
tra

te
gy

00

γγ

ββ

Darwin Strategy

Figure 2.7: Parameter space for the different search strategies; Boltzmann Strategy:β 6= 0, γ ≡ 0;

Darwin Strategy:β ≡ 0, γ 6= 0

m+ γ
!= 1. It is easy to see now that the pure Boltzmann Strategy is contained in

eq. (2.22) for γ = 0, while the pure Darwin strategy is obtained by settingγ = 1

andβ → 0.

So far, the selection is restricted to fitness proportional survival. In order

to also allow nonlinear selection functions, eq. (2.22) needs to be written in a

somewhat more general form [22]:

d
dt

xt(t) = γ f (∆U)x j(t)xi(t)+m
s

∑
j=1

(
Ai j x j(t)−A ji xi(t)

)
(2.23)

Now it is possible to introduce a selection such as

f (∆U) = const−Θ(∆U). (2.24)

This is used for all numerical simulations in this work (cf. chapter4).

2.1. THE THEORETICAL FRAMEWORK 27

Here,Θ describes a step function which switches from0 (all values less than

0) to1 (all values greater than 0).

Very efficient and, therefore, used in the numerical simulations is the so-called

tournament selection, which works as follows:

1. In a selection step randomly pickm seekers from the ensemble.

2. Rank the obtainedm seekers according to their fitness.1

3. Replace the worst seeker with the best of them candidates.

Obviously, the strategy now requires at least anN > mseeker ensemble which

is then globally coupled via selection processes. The tournament sizem is a

free parameter. Since the worst of them seekers is dropped in a selection step,

by increasingm one indirectly also increases the selection strength. A typical

tournament size chosen for numerical simulations ism= 4.

2.1.4 Other Stochastic Optimization Strategies

Simulated Annealing

In 1983, KIRKPATRICK and co-workers introduced a new optimization strategy

that was inspired by thermodynamics [4]. Simulated Annealing basically extends

the Metropolis algorithm (cf. eq. (2.18)) by making the temperature a variable

in the search process.

While high temperatures are beneficial in the early optimization phase (they

allow for widespread seeker ensembles), it makes the search inefficient in zero-

ing in on the fitness optima. The idea, therefore, is to cool down the temperature

along the search path to enable the ensemble to finally focus.

1Efficiency demands that instead of a complete ranking which is at least of orderO(L log[L]) the best and the

worst seeker must be found only. The latter is anO(L) problem.

28 2.1. THE THEORETICAL FRAMEWORK

The crucial point using simulated annealing is the actual annealing schedule.

Severalad hocschedules have since been proposed1, but they are hard to moti-

vate in theory. It was, however, possible to partially deduce optimal annealing

schedules analytically for special problems (spin glass [5]; Ising model [24]).

In 1993 ANDRESENproposed an annealing schedule that suggested a constant

thermodynamic annealing speed that adapted itself to the optimization prob-

lem [25, 26, 27]. His basic physical idea was to minimize the cumulative en-

tropy production for the cooling process. The resulting schedule contained the

constant annealing speedvc as a free parameter and the relaxation coefficientε

as well as the heat capacityC as problem dependent values:

dT
dt

=
vc T

ε
√

C
(2.25)

The last equation can be written equivalently as [26, 28]:

vc =
〈U〉−Ueq(T)

σ
(2.26)

with Ueq(T) being the internal energy the system would have if it were in equi-

librium with its surroundings at temperature T. In eq. (2.25), C(T) andε(T) are

estimated based on the entire past history of the annealing [25]. This makes

numerical simulations using ANDRESEN’s schedule somewhat tedious.

Genetic Algorithms

Genetic algorithms that are outside the scope of this work appeared first in the

1970’s and, in a way, pioneered evolutionary algorithms.2 It was mainly the

works of HOLLAND [19, 29, 30], GOLDBERG [31, 32], DE JONG [33, 34, 35]

et. al. that laid the theoretical foundation.

Essentially, the difference between evolutionary algorithms and genetic al-

gorithms is the representation of search space elements. Genetic algorithms, or
1Among them: linear cooling, exponential cooling, fast simulated annealing [23] etc.
2The first Proceedings of the International Conference on Genetic Algorithms did not appear before 1985.

2.1. THE THEORETICAL FRAMEWORK 29

GAs for short, restrict themselves to a bit-string representation of data structures

reflecting some sort of chromosome representation.

011001001 0001001010111010101

110100011 1101110010110111010

X over

before: after:

0110010011101110010110111010

1101000110001001010111010101

Figure 2.8: One possible realization of a crossover operator working on a bit string. First, a

common crossover point for two candidate strings is randomly chosen. In a second step the tails

of both strings are exchanged.

All operators, such as mutation, are therefore binary operators likeinsertion,

deletion, bit inversion, orstring reversion. This artificial restriction makes it easy

to introduce a crossover operator1 to the search dynamics. This operator, as seen

in Figure2.8, is able to efficiently exchange building blocks between different

seekers. This is the starting point for the ‘schema theorem’2, which investigates

why genetic algorithms are actually able to optimize.3 It is evident, however,

that problems that cannot be split into the form of building blocks will not ben-

efit from crossover operations. At this point evolutionary algorithms are more

appropriate tools to tackle the optimization problem.

1Some authors prefer to typeset crossover asXover
2For a detailed introduction refer to [12].
3For a different explanation, cf. [36, 37].

30 2.1. THE THEORETICAL FRAMEWORK

Chapter 3

Model Problems

3.1 Correlated Random Landscapes

In a working paper, STEINBERG [38] proposed an approach to generate n-dimen-

sional random landscapes with a predefined correlation lengthr, which will be

briefly introduced here. Correlated random fitness landscapes generated as de-

scribed below offer a nice set of features to test the effectivity of evolutionary al-

gorithms: A typical landscape has numerous local maxima and minima, a known

correlation length and a given number of dimensions. Figure2.4 shows exam-

ples of such landscapes for two dimensions.

To construct the landscape the energyU(x), the mean value〈U(x)〉, and the cor-

relation function are predefined.

〈U(~x)〉 = 0 (3.1)

〈U(~x)U(~x′)〉 = K(|~x−~x′|) (3.2)

Decomposing the fitness landscape to uncorrelated Gaussian random numbers

yields:

31

32 3.1. CORRELATED RANDOM LANDSCAPES

U(~x) =
∞∫

−∞

d~x′ h(~x,~x′)ξ (~x′) (3.3)

〈ξ (~x)ξ (~x′)〉= δ (~x−~x′) (3.4)

To determine the yet unknown functionh(~x) one can combine eq.3.2 and

eq.3.3.

〈U(~x)U(~x′)〉=
∞∫

−∞

d~x′′h(~x, ~x′′)h(~x′, ~x′′) (3.5)

Introducing the Fourier spectrum of the correlation function

SUU =
∞∫

−∞

d~x′ 〈U(~x)U(~x+~x′)〉 ei~k~x′ (3.6)

and returning to eq.3.3yields

SUU = |H(~k)|2 (3.7)

with

|H(~k)|2 :=
∞∫

−∞

d~x′h(~x′)ei~k~x′
∞∫

−∞

d~x′′h(~x′′)ei~k~x′′ (3.8)

In general, eq.3.7becomes

SUU = Sξ ξ |H(~k)|2 (3.9)

3.1. CORRELATED RANDOM LANDSCAPES 33

with Sξ ξ being the Fourier transform of the random number’s correlation func-

tion. The last equation finally leads to:

h(x) =
∞∫

−∞

d~k

√
SUU

Sξ ξ

e−i~k~x (3.10)

It is then quite simple to get from the continuous to the discrete landscape.

The example shown in Figure2.4was generated using the following iteration:

n0000 =
√
〈U00U00〉 (3.11)

nis jt =
1

nsstt

(
〈Ui j Ust〉

−
t−1

∑
l=0

s

∑
k=0

nik jl nsktl

−
s−1

∑
k=0

nik jt nsktt

)
(3.12)

Ui j = ∑
k≤i

∑
l≤ j

nik jl ξkl (3.13)

It lies in the algorithm’s iterative nature that generating already relatively

small landscapes (100 steps in each direction) becomes quite computation in-

tensive forn = 3 or more dimensions. Therefore, the software developed to

generate these fitness landscapes was designed to benefit from multiprocessor

machines (cf. section5.1.4).

34 3.2. FRUSTRATED PERIODIC SEQUENCES

3.2 Frustrated Periodic Sequences

As the name suggests, Frustrated Periodic Sequences introduced by ENGEL and

FEISTEL [17] are an example of frustrated fitness functions. The aim of the prob-

lem is to optimize two contradictory goals (alphabetic order versus periodicity).

So the optimal solution has to be a compromise.

A sequence consists for example ofλ letters:

λ ∈ {A,B,C,D}.

The fitness functionF(x) is defined as follows:

The functionα(x) denotes the number of letters occurring in alphabetic order.

(The sequence(D,A) is also considered to be alphabetical.)

The functionπ(x) is defined as the number of letters occurring with periodp 6= λ .

A B D A A D B C

+ 0.2

+ 1 + 1 + 1

Figure 3.1: Frustrated Periodic Sequence evaluation scheme for a periodp = 5 andb = 0.2.

Then, the fitness function is calculated as

F(x) = α(x)+bπ(x). (3.14)

The free parameterbweighs between preferably alphabetic or periodic sequences.

For b = 0 optimal sequences are purely alphabetic, while forb→ ∞ optimal se-

quences are purely periodic. Maximal frustration is reached if one chooses the

3.3. THE LABS PROBLEM 35

parameterλ to be [15]

b =
1
p

Figure3.1demonstrates the evaluation of a sequence forp= 5 andb= 0.2. Frus-

trated Periodic Sequences form Gaussian landscapes with respect to the density

of states. Their structure, however, is rather simple. In the case of maximal frus-

tration, the best sequences are made of building blocks:

• alphabetic structure:ABCDA︸ ︷︷ ︸
block 1

BCDAB︸ ︷︷ ︸
block 2

• periodic structure:ABCDA︸ ︷︷ ︸
block 1

ABCDA︸ ︷︷ ︸
block 2

These building blocks induce a high degeneracy of optimal sequences and expo-

nentially long correlations in the fitness landscape (cf. Figure4.1), rendering the

problem rather easy, despite its appearing complexity.

3.3 The LABS Problem

The LABS (low autocorrelation binary sequences) problem introduced in 1990

by GOLAY has been studied intensely [39, 40, 13]. It is undoubtedly a hard

problem to solve. The optimization goal is to minimize the autocorrelation of a

binary stringS. The stringS is composed of+1 and−1 bits:

S= {s1,s2, . . . ,sL}; si ∈ {−1,+1} (3.15)

The autocorrelation coefficientR for distancek is given by:

Rk =
L−k

∑
i=1

si si+k. (3.16)

36 3.4. THE RNA AND NK MODEL COMPARED

As mentioned above, the aim is to minimize the quadratic sumE of all autocor-

relation coefficients:

E =
L−1

∑
k=1

R2
k (3.17)

or equivalently maximize the so called MERIT-factorF :

F =
L2

2E
(3.18)

For most (but not all) odd length sequences, the highest Merit factor is achieved

by skew-symmetric configurations. Skew-symmetric sequences fulfil the rela-

tion

sµ+i = (−1)isµ−i; µ =
L+1

2
(3.19)

and, therefore, haveRk = 0 for all oddk. Due to the{+1;−1} symmetry, the

optimal sequence is degenerated, but the optimization still resembles the search

for the infamous needle in a haystack.

3.4 The RNA and NK Model Compared

3.4.1 The NK Model

The NK model is an abstract model introduced by KAUFFMAN [20] in the frame-

work of population genetics. In its structure it is very similar to the well-studied

spin glasses introduced by EDWARDS, ANDERSON [41], et. al. A spin glass is

typically described as a two or three dimensional lattice carryingN coupled spins

which can point either up or down. Hence, there are 2N possible configurations

with a total energy given by the Hamiltonian:

H =−∑
i, j
i 6= j

Ji j (si ×sj) si,sj =±1 (3.20)

3.4. THE RNA AND NK MODEL COMPARED 37

wheresi andsj are the orientations of the two spins.Ji j is the energy reflecting

how strongly the two are coupled and, therefore, prefer to be in the more fa-

vorable relative orientation. Analogously, the NK model consists ofN positions

(gene loci) with two different possible states (alleles), 1 and 0. The parameterK

stands for the average number of other loci which epistatically affect the fitness

contribution of each locus. A possible third parameter describes how theK are

distributed among theN. According to KAUFFMAN, it turns out that to a very

large extentonly N andK matter.

As the number ofK increases the conflicting constraints lead to an increas-

ingly more rugged, multi-peaked fitness landscape. Examining the landscape

structure as a function ofN andK shows two interesting extremes:

• K = 0 : This corresponds to a highly correlated, very smooth fitness land-

scape with a single peak. The difference in fitness between neighboringN

is 1/N, thus for largeN the fitness of one-mutant neighbors is very similar.

• K = N− 1 : This case corresponds to a fully random fitness landscape.

Thus, the number of local fitness optima is extremely large and as the num-

ber of lociN increases, the local optima fall toward the mean fitness value

of the fitness landscape.

The fitness landscape itself can be constructed as follows:

1. Assign to each locusi theK other loci which influence it.

2. For each of the possible 2K+1 combinations, assign for each locusi a fitness

contributionwi drawn at random from the interval[0,1].

3. The fitness value of a given genotype is defined as the average of all contri-

butionswi:

W =
1
N

N

∑
i=1

wi

38 3.4. THE RNA AND NK MODEL COMPARED

3.4.2 RNA Secondary Structures

One particular optimization problem has gained increasing interest in physics

and biology over the last couple of years: the stochastic folding kinetics of RNA1

sequences into secondary structures [42, 43]. RNA sequences consist of bases

that can be either purines (Figure3.2) or pyrimidines (Figure3.3).

While the bases Adenine and Guanine are the so called purines, the bases

Thymine, Uracil, and Cytosine are pyrimidines. Thymine, however, is present in

DNA2 strands only, so a symbolic RNA sequence consists of the lettersA(denine),

C(ytosine),G(uanine), andU(racil): {A,C,G,U}.
A member of the purines can chemically bind to a member of the pyrimidines

and vice versa. The result is what is know as a base pair. The most common ones

are the Watson-Crick pairs ((G,C) and (A,U)) plus the ’twisted’ pair(G,U).

Thus, a plain RNA strand (primary structure; Fig3.4) can curl up in the three

dimensional space to form a secondary structure3 (Figure3.5a).

Adenine

N

H

NH 2

N

N

N H N2

N

H
N

N

N

O

H

Guanine

Figure 3.2: Purines: The bases Adenine and Guanine can be found as building blocks for RNA

as well as DNA sequences.

1RNA: ribonucleic acid
2DNA: deoxyribonucleic acid
3online database: http://www.rcsb.org/pdb/

3.4. THE RNA AND NK MODEL COMPARED 39

Thymine
H

NH

O

N O

H

NH

O

N O

Uracil

H

N

N O

NH 2

Cytosine

Figure 3.3: Pyrimidines: Uracil is found in RNA sequences only, while Thymine is specific to

DNA sequences.

 G-G-C-C-A-G-A-U-U-G-A-G-C-C-U-G-G-G-A-G-C-U-C-U-C-U-G-G-C-C

Figure 3.4: Primary structure of an RNA sequence with 30 bases. This RNA strand is theHIV-2

Tar-Arganininamide Complexwhich has the key1AJU in the online protein database.

The secondary structure, forming e.g. loops and ‘hairpins’, can fold into

higher level structures likeα-helices andβ -sheets itself.The Figures3.5(b) and

3.5(c) show such higher level structures of an RNA sequence.

It is not trivial to estimate the free energy of RNA secondary structures. Each

base pair and each loop contributes a specific binding energy. In this work, the

software‘Vienna RNA package’Version 1.4 was used to numerically evaluate

RNA sequences. This software package includes experimental data of binding

energies and is freely available.1

In order to simplify matters somewhat, secondary structures can be written in a

commonly used bracket notation: The positions of bases within an RNA strand

1http://www.tbi.univie.ac.at/∼ivo/RNA/

40 3.4. THE RNA AND NK MODEL COMPARED

G
G
C
C
A
G
AUUG
A
G
C

C
U

G G
G
A

G
C
U
C
U
C
U
G
G
C
C

(a) (b) backbone (c) details

Figure 3.5: Secondary structure of the RNA strand shown in Figure3.4. Subfigure (a) shows the

bindings and secondary structure, subfigure (b) shows how the secondary structure curls up in a

helix like structure and subfigure (c) gives a detailed picture of the bases.

are marked by dots, while base pairs are symbolized by closed parentheses. The

sequence shown in Figure3.4 with a secondary structure as displayed in Fig-

ure3.5(a) can symbolically be written as:

(((((((..((((......)))))))))))

This binding structure together with the original sequence can be fed to the

RNAevalroutine contained in the Vienna package to obtain the free energy of the

given secondary structure . All parentheses are assumed to be properly stacked,

since this software is not yet able to take pseudo loops into account. Pseudo loops

are higher order structures that occur whenever two bindings intersect, as shown

in Figure3.6. The optimization problem considered here is the search for a sec-

ondary structure, which minimizes the free energy of the RNA sequence.1 Since

even for short sequences the search space is enormous and the fitness landscape
1The minimal free energy conformation is often – but not always – the biologically occurring structure.

3.4. THE RNA AND NK MODEL COMPARED 41

....(.....(...)....)..

Figure 3.6: Intersecting bindings generate a pseudo loop.

is almost uncorrelated (cf. Figure4.1), this optimization problem is particularly

hard to solve.

Additionally, numerical simulations show that most initial folding steps in-

crease the free energy compared to an unfolded sequence, since a single binding

naturally forms a simple loop. Hence, it is a crucial point to design the numerical

mutation operator used in evolutionary algorithms to allow for multiple bindings

and dissections.

Sometimes simpler combinatorial models like the NK-model are used to mimic

problems like RNA folding. It is therefore helpful to have a comparison of both

problems [44]. The following table lists both the advantages and disadvantages

of either model.

42 3.4. THE RNA AND NK MODEL COMPARED

NK-Model RNA secondary structure

Advantages
• relatively simple model

• analytically treatable

• all values known

• easy to implement numer-

ically

• practically relevant

• numerical implementation

freely available

• relevant values partially

known

Drawbacks
• comparable to RNA mod-

els for limited parameter

set

• mostly poor correspon-

dence to RNA data

• computationally intensive

• pseudo knots not yet treat-

able

• several unknown parame-

ters

• energy functional disputed

Chapter 4

Optimizing the Search Process

4.1 Exact Stochastic Simulations

A serious problem that has not yet been discussed is the fact that master equa-

tions, such as eq. (2.22), contain probabilities as variables. While it is still possi-

ble to write down the complete set of coupled differential equations for a system

with very few possible states, the method becomes not feasible for large systems.

A possible way to generate valid trajectories according to the master equation

is to choose the transitions and transition times fora single trajectoryaccording

to the correct probability distribution. This idea was proposed independently by

FEISTEL [17, 45] and GILLESPIE. The latter suggested two different algorithms

for numerical simulations [46, 47], which can be proven to be mathematically

equivalent [46]. TheDirect Methodexplicitly calculates which transition occurs

next and when. The second one, theFirst Reaction Method, calculates a time

τ at which the particular transition occurs for each transitionAi j , chooses the

one with smallestτ, and executes it at timeτ. Both algorithms will be briefly

described in the following subsections.

43

44 4.1. EXACT STOCHASTIC SIMULATIONS

4.1.1 The Direct Method

As stated above, the direct method follows the two questions:

• Which transitionj → i occurs next?

• At what timeτ does it occur?

The probability densitypi j (τ) that the next occurring transition isj → i at time

τ is:

pi j (τ) = pi j exp

[
−τ ∑

s
ps j

]
dτ (4.1)

The probability distributionPi j for all transitionsj → i can now easily be calcu-

lated as:

Pi j = pi j

∞∫
0

exp

[
−τ ∑

s
ps j

]
dτ =

pi j

∑
s

ps j
(4.2)

The time distribution can be determined as well:

p(τ)dτ =
(

∑
s

ps j

)
exp

(
−τ ∑

s
ps j

)
dτ (4.3)

The knowledge of both distributions can now be used to set up the following

algorithm:

Direct Method Algorithm

1. Initialize seeker ensemble; sett = 0.

2. Calculateps j for all s.

3. Choose transition according to eq. (4.2).

4. Chooseτ according to eq. (4.3).

5. Execute transition, sett = t + τ and go to step 2.

4.1. EXACT STOCHASTIC SIMULATIONS 45

4.1.2 The First Reaction Method

Instead of directly calculating the probability distributions for both transition and

time, one can equivalently calculate a putative timeτi for each transition and then

execute the one which would occur first. This is theFirst Reaction Methodwhich

has the advantage that it requires the generation of only one random number in-

stead of two for each transition.

First Reaction Method

1. Initialize seeker ensemble; sett = 0.

2. Calculateps j for all s.

3. Calculate all putative timesτi according to eq. (4.3).

4. Setτ = min
i

τi.

5. Choose transition with timeτ.

6. Execute transition, sett = t + τ and go to step 2.

4.1.3 The Next Reaction Method

The Next Reaction Method, proposed by GIBSON and BRUCK [50], is an ad-

vancement of the algorithms introduced above. While these scale linearly with

the number of transitionsr, theNext Reaction MethodperformsO(log(r)) in a

worst case scenario. The main ideas used according to GIBSON et. al., are:

46 4.2. THE EVOLUTIONARY WINDOW

1. Store all transition timesτi.

2. Be extremely sensitive in recalculating the transition probabilities.

3. Re-use transition timesτi where appropriate.

4. Switch from relative time (time between reactions) to absolute time.

5. Use efficient data structures to store transitions as well as transition times.

To realize the second and last points, the authors rely on dependency graphs

and priority queues for numerical efficiency. The high effort quickly pays off

when comparing simulation times.

The simulations carried out in this work implemented a variant of GILLESPIE’s

Direct Method, since the calculations of the extensive investigative ensemble

statistics far outweighed everything else.

4.2 The Evolutionary Window

As discussed in subsection2.1.3(p. 25) mixed evolutionary strategies provide

the highest flexibility for optimization tools, in terms of tuning measures. This

benefit is paid for by the introduction of numerous free parameters such as en-

semble sizeN, temperatureT = 1/β , and selection pressureγ (cf. eq. (2.22)).

This section investigates the influence of all these inherent search parameters on

the optimization outcome using some model problems introduced in chapter3.

4.2.1 Comparing Fitness Landscapes

In order to understand the results of numerical simulations, one has to have an

impression of the underlying fitness landscape. As laid out in section2.1.2, it is

4.2. THE EVOLUTIONARY WINDOW 47

helpful to either determine the density of states or the autocorrelation function.

Here, an easy method to obtain the latter one will be introduced.1

A simple approach is to take a sample of the fitness landscape and calculate

the whole spectrum of autocorrelation coefficients according to eq. (2.8). To

reduce sampling effects, it is necessary to average the autocorrelation function

over many different samples afterwards.

As already discussed in section2.1.1it is the mutation operator that generates

a representation of the fitness landscape by determining the set of allowed moves

in parameter space. Using the idea introduced above, the easiest approach is to

simply start a search process with a single seeker at a randomly chosen posi-

tion to get a sample of the fitness landscape, then calculate the autocorrelation

function and iterate the procedure many times to have an averaged result.

For an infinite temperature, the seeker’s path resembles what is known as

a random walkacross the landscape. It might however be easier to visualize

the movement as a random flight where the temperature value symbolizes an

altitude.2 It is shown in Figure4.1 how temperature-dependent the obtained

autocorrelation function indeed is. For the models investigated, the correlation

length decreases with increasing temperature for maximization problems (Fig-

ure 4.1 top and center) and vice versa for minimization problems (Figure4.1

bottom).

This is easy to understand when referring to the picture used above. The

higher the seeker’s altitude is, the more structures will come into its scope and

will decrease the correlation length. At high temperatures the RNA folding land-

scape becomes almost uncorrelated (correlation lengthr ≈ 1.7 at temperature

T = 10).
1Two different ways to investigate the density of states is described in [15].
2This picture is appropriate for a minimization problem only; for a maximization the inverse temperatureβ

would correspond to the imaginary altitude.

48 4.2. THE EVOLUTIONARY WINDOW

Sticking to interesting temperature regions (cf. section4.2.2), the optimiza-

tion problems can most assuredly be ranked according to their difficulty level

from easiest to most difficult as follows:

1. Frustrated Periodic Sequences (exponentially long correlation)

2. LABS problem (short correlation length)

3. RNA folding problem (almost uncorrelated)

4.2. THE EVOLUTIONARY WINDOW 49

0 5 10 15 20 25 30 35 40 45 50

lag

0

0.2

0.4

0.6

0.8

1

au
toc

or
rel

ati
on

 co
eff

ici
en

t
T=0
T=1
T=2
T=5
T=10

35.0

15.4

8.65.7; 6.3

0 5 10 15 20 25 30 35 40 45 50

lag

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

au
toc

or
rel

ati
on

 co
eff

ici
en

t

T=0
T=1
T=2
T=5
T=10

24.8

3.0; 3.6; 4.5

0 20 40 60 80 100 120 140

lag

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

au
toc

or
rel

ati
on

 co
eff

ici
en

t

T=0
T=1
T=2
T=5
T=10

1.7; 2.1
18.3

124.0

Figure 4.1: Temperature dependence of the autocorrelation function for lengthL = 15 Engel

sequences (top), anL = 32 LABS problem (middle) and anL = 100 RNA folding problem

(bottom, Polio virus Type 1, AC V01148; 5’-cloverleaf, cf. AppendixA). For each temperature,

the respective correlation length is denoted.

50 4.2. THE EVOLUTIONARY WINDOW

4.2.2 Exploring Parameter Windows

Figure 4.2: Computation time shared among the seeker ensemble implies that smaller ensembles

(left figure) can explore longer optimization paths per seeker in the search space than bigger

ensembles can (right figure).

Having three model problems of different difficulty level at hand, it is possible to

numerically investigate the generic influence of the search parameters (ensemble

sizeN, temperatureT and mutation ratePmut) on the optimization result.

All numerical simulations were carried out in such a way that a given absolute

computation time was shared among all seekers of the ensemble. Thus, small en-

sembles allowed for longer search paths per seeker. In the limit of either infinite

computation time or a small search space, there should be no notable influence

of the ensemble size on the search result (granted, that the fitness landscape is

ergodic1). For random initial conditions the entire search space can be equally

well covered, as seen in Figure4.2.

1If this is not the case, i.e. if some points in the search space are unreachable, the mutation operator is obviously

ill-designed.

4.2. THE EVOLUTIONARY WINDOW 51

Figure 4.3: Despite long search paths, small seeker ensembles can not efficiently cover high-

dimensional search spaces.

In the case of common optimization problems, the computation time is usu-

ally quite limited. As shown in Figure4.3, the size of the seeker ensemble now

makes a big difference indeed. Even an ensemble having only a couple of seekers

cannot efficiently cover the search space, despite having longer search paths. The

situation becomes even worse if the search space is high-dimensional. Clearly,

bigger ensembles can be spread across the fitness landscape more easily. The en-

semble size is, however, limited by the computation time, as seen in Figure4.2.

Too many seekers turn the search strategy into pure guessing with a simulation

time per seeker diminishing to zero.

Summarizing the last paragraphs, it is now possible to make a few projections

on the generic influence of the ensemble size for realistic optimization conditions

(i.e. vast search space and limited computation time):

Uncoupled seeker ensemble:The volume of the search space obviously increa-

ses exponentially with the number of dimensions. At first glance, a linear

52 4.2. THE EVOLUTIONARY WINDOW

change in the ensemble size is therefore neglectable for uncoupled seekers.1

Since the computation time is shared among the seekers however, one can

expect a decreasing optimization result with increasing ensemble size.

Coupled seeker ensemble:Once the seekers form a coupled ensemble the ini-

tial conditions (initial distribution in search space) become crucially im-

portant. For small ensemble sizes seeker communication provides no ad-

vantages. On the other hand, ensembles that are too large are handicapped

by insufficient computation time. One can, therefore, expect a pronounced

optimum with respect to the ensemble size for coupled seekers, unless the

fitness landscape is trivial.2

With these expectations in mind, it is now necessary to have a look at some

numerical simulations and either verify or disregard the above conclusions.

1. Constant Temperature

Figure 4.4 shows a summary for an exhaustive parameter sweep on all three

test models. A mutation rate ofPmut ≡ 100% indicates absent selection steps

and, therefore, represents an uncoupled seeker ensemble. Notably in this case

an increasing ensemble size causes a decreasing optimization result as expected,

regardless of the test problem. It is also immediately visible that the best results

can be achieved only for a relatively small parameter window. This distinct

window, called anevolutionary windowfrom now on, always encloses mutation

rates of 0%< Pmut < 100% and ensemble sizes withN > 1 seekers. A pure

Boltzmann strategy (Pmut≡ 100%) turns out to be less effective than the Darwin

1The seekers are uncoupled if e.g. selection is missing. Thus, there is no communication between the individual

seekers of the ensemble.
2For trivial landscapes communication does not have any benefits and the optimal (degenerated) ensemble con-

sists of 1 seeker only.

4.2. THE EVOLUTIONARY WINDOW 53

strategy and the mixed strategies, because the Boltzmann strategy cannot cover

the evolutionary window (cf. Figure2.7on page26).

(a) Frustrated Periodic Sequences (b) LABS problem

(c) RNA secondary structures

 temperature T=1
 calculation time t=500
 repetitions R=1000
 String Length:
 Frust. Per. Seq. L=15
 LABS Problem L=32
 RNA Second. Str. L=100

(d) Search Parameters

Figure 4.4: Optimization results for an exhaustive parameter sweep on all three test models

show a distinct parameter window (red area) with significantly better optimization results. The

RNA sequence used in subfigure4.4(c) (which displays the free energy instead of the fitness so

that best results are again indicated by red colors) is the sequence of the first 100 base pairs of

Polio virus type 1 MahoneyAC V01148 (cf. AppendixA). For all three models, random initial

conditions were used.

54 4.2. THE EVOLUTIONARY WINDOW

Besides these common properties, Figure4.4 also reveals some interesting

differences between the test problems used. For any chosen mutation rate, frus-

trated periodic sequences do not benefit from an ensemble based optimization.

In other words, small seeker numbers are the best choice. This indicates that, as

stated above, that the fitness landscape is rather trivial. It is very unlikely that

seekers get stuck in local optima along their respective search paths.

In contrast, the evolutionary window shows a pronounced maximum at en-

semble sizes ofN ≈ 10 seekers for the LABS problem. Considering the short

correlation length of the fitness landscape (cf. Figure4.1), this is another hint

that the optimization ofLow Autocorrelated Binary Sequencesis rather difficult.

Looking at Figure4.4(c), one must keep in mind that in the case of RNA

secondary structures, one is looking for theminimalfree energy. The color scale

was therefore inverted to assure that best results are again displayed in red.

The vast search space1 and an almost uncorrelated landscape dramatically shift

the evolutionary window, which is clearly marked again, so that optimal seeker

ensembles contain someN≈ 100 seekers.

2. Variable Temperature

So far, the temperature was kept constant atT = 1 for all simulations. Since

the various fitness landscapes’ autocorrelation function has turned out to be very

temperature dependent, the evolutionary window is also expected to show a de-

pendence on temperature.

The results of the first problem investigated, Frustrated Periodic Sequences,

is shown in Figure4.5. The color scales are identical for all four subfigures;

fitness values belowF = 5.5 are displayed in black. Comparing the subfigures,

the following statements can be made:

1Considering 4 bases and 3 possible base pairings for lengthL strings, . . .

4.2. THE EVOLUTIONARY WINDOW 55

1. As can be seen, an increasing temperature shifts the evolutionary window

towards lower mutation rates.

2. Furthermore, the evolutionary window shrinks quickly as the temperature

rises.

(a) temperatureT = 0 (b) temperatureT = 2

(c) temperatureT = 4 (d) temperatureT = 6

Figure 4.5: Mean ensemble fitness: Temperature dependence of the evolutionary window dis-

played for Frustrated Periodic Sequences. Sequence lengthL = 15; computation timet = 500;

averaged over 1000 runs; Fitness values belowF = 5.5 are shown in black.

56 4.2. THE EVOLUTIONARY WINDOW

The first finding is evidence to a shifted error threshold [51, 52] caused by

an increased acceptance of missteps with increased temperature. The second

finding is closely linked to the first one and could already be anticipated. The

long autocorrelation of the fitness landscape and the fact that just a few seekers

suffice to explore the fitness landscape (without trapping in local optima) suggest

a trivial optimization problem.

(a) temperatureT = 0 (b) temperatureT = 2

(c) temperatureT = 4 (d) temperatureT = 6

Figure 4.6: Mean ensemble fitness: Temperature dependence of the evolutionary window dis-

played for Low Autocorrelation Binary Strings. Sequence lengthL = 32; computation time

t = 500; averaged over 1000 runs

4.2. THE EVOLUTIONARY WINDOW 57

(a) temperatureT = 0 (b) temperatureT = 2

(c) temperatureT = 4 (d) temperatureT = 6

Figure 4.7: Mean free energy: Temperature dependence of the evolutionary window displayed

for RNA secondary structure optimization. Sequence lengthL = 100; computation timet = 500;

averaged over 100 runs

Since there is, therefore, no need to accept steps with lower fitness (as higher

temperatures permit), the evolutionary window is expected to shrink. The same

behavior as seen for Frustrated Periodic Strings can be observed for Low Au-

tocorrelated Binary Strings. The sharply limited evolutionary window at{T =

0, 5 ≤ N ≤ 20, 68%≤ Pmut ≤ 98%} shrinks and shifts towards lower muta-

tion rates as the temperature increases. Since the LABS problem is non-trivial,

58 4.3. MASTERING INTRINSIC SEARCH PARAMETERS

optimal ensemble sizes are aboutN ≈ 10 in contrast to the Frustrated Periodic

Sequences.

The RNA secondary structure optimization is somewhat special, as can be

seen in Figure4.7. The evolutionary window does not get shifted noticeably

with increasing temperature, but rather disappears above a certain threshold. For

temperaturesT ≥ 4, the optimization result is almost independent of the ensem-

ble sizeN.

4.3 Mastering Intrinsic Search Parameters

The mixed evolutionary algorithms introduced, including the pure strategies as

special cases, basically have three intrinsic search parameters: the ensemble size

N, the temperatureT, and the mutation ratePmut. As demonstrated in the sec-

tion above, all these parameters must be carefully adjusted in order to ensure an

efficient optimization process.

A user-friendly algorithm should be enabled to automatically adapt all its

intrinsic parameters. Since the optimal parameter window, the evolutionary win-

dow, is three-dimensional, three cross-dependent adaptation strategies have to be

developed. As a first step one could try to adapt each parameter individually.

4.3.1 Ensemble Size Adaptation

Very few attempts can be found in literature dealing with the adaptation of seeker

ensemble sizes. There are also no new contributions developed in the scope of

this work. The main obstacle is the difficult analysis involved in modelling evo-

lutionary algorithms. There is basically only one model problem, binary strings

or so called Bitstrings1, that is analytically solvable in the linear case.

1A well known implementation of this model is also known as the ONEMAX -Problem.

4.3. MASTERING INTRINSIC SEARCH PARAMETERS 59

If one does not want to rely onad hocassumptions, the problem to fix the

ensemble size can be approached by introducing a meta-optimization-algorithm.

The idea is to start the search process with differently sized, competing subpopu-

lations [53]. During an evaluation interval, each subpopulation may demonstrate

its performance. Afterwards, the different populations are rated and accordingly

adapted. This is the so-called migration interval.

The advantage of a meta algorithm (i.e. to have a tool to adjust an intrinsic

search parameter) faces a few disadvantages:

1. The meta algorithm unavoidably binds scarcely available computational re-

sources.

2. The meta algorithm introduces a set of additional intrinsic parameters such

as thenumber of subpopulations, a quality criterion to rate the subpopu-

lations, the length of theevaluation interval, the length of themigration

interval, and again criterionfor the ensemble size adaptation.

4.3.2 Temperature Adaptation

In contrast to ensemble size adaptation, temperature control techniques have

been thoroughly investigated [4, 5, 6, 7, 8, 9, 23, 54]. The simplest forms of

annealing schedules are fixed functions like linear or exponential cooling. More

sophisticated variants are sensitive to the underlying fitness landscape.

A good example of a theoretically motivated annealing schedule (the one in-

troduced by ANDRESEN) is discussed in section2.1.4on page27. In the men-

tioned schedule, the temperature is controled according to:

d T
d t

=
vc T

ε
√

C
; vc =

〈U〉−Ueq(T)
σ

(4.4)

The heat capacityC(T) and the relaxation coefficientε can be estimated by

recording the complete history of the annealing process. The latter is a require-

60 4.3. MASTERING INTRINSIC SEARCH PARAMETERS

ment that makes working with ANDRESEN’s schedule resource-hungry and the

implementation unnecessarily demanding.

It is possible, however, to simplify the procedure and avoid the necessary

maintenance of history records. As a first step, one can assume the relaxation

coefficient to be constant. For the second step, the heat capacity needs to be

substituted by a more easily accessible quantity:

The heat capacity is defined as

C =
∂ 〈H〉
∂T

. (4.5)

The expectation value of the Hamilton operator can be expressed as:

〈H〉=
∫

H e−
H
T dΓ∫

e−
H
T dΓ

=:
u
v
. (4.6)

Using the substitutionsu andv for numerator and denominator and keeping in

mind that

u′ =
∂

∂T

∫
H e−

H
T dΓ =

1
T2

∫
H2e−

H
T dΓ (4.7)

v′ =
∂

∂T

∫
e−

H
T dΓ =

1
T2

∫
H e−

H
T dΓ, (4.8)

(4.9)

equation (4.5) can be written as:

∂ 〈H〉
∂T

=

∫
e−

H
T dΓ

∫
H2e−

H
T dΓ−

(∫
H e−

H
T dΓ

)2

T2
(∫

e−
H
T dΓ

)2 (4.10)

A simplification of the last equation yields:

C =
∂ 〈H〉
∂T

=
1

T2

(
〈H2〉−〈H〉2

)
=

1
T2〈(H− H̄)2〉. (4.11)

The last equation states that the heat capacity can be expressed via the variation

of the Hamiltonian. Using the relation:

〈(H− H̄)2〉= σ
2
H (4.12)

4.3. MASTERING INTRINSIC SEARCH PARAMETERS 61

whereσH denotes the standard deviation of the Hamiltonian, one finally gains

a simplified annealing schedule:

d T
d t

=
vc T2

σH
.

(4.13)

This schedule was successfully used in numerical simulations [55]. A closely re-

lated schedule, the so-called Standard Deviation Schedule (SDS), was proposed

by MAHNIG and MÜHLENBEIN [10] and also successfully implemented in the

context of this work [22]. The SDS controls the temperature according to:

d β

d t
=

vc

σF
. (4.14)

4.3.3 Mutation Rate Adaptation

Thinking about the role of the mutation rate, a few ideas immediately come to

mind. Since the evolutionary algorithms introduced basically implement selec-

tion and mutation processes only1, it is clearly the mutation driving the optimiza-

tion process. Selection, on the other hand, operates on already existing solutions

only. Introducing an evolution rateR(t) as the average change of the ensemble

fitness [10]:

R(t) =
d 〈F〉

dt
(4.15)

or

R(t) = 〈F(t +1)〉−〈F(t)〉 (4.16)

respectively, from the master equation (2.22) follows:

R(t) = γ

(
〈F2〉−〈F〉2

)
+m ∑

i j
Ai j (∆F)yi. (4.17)

1In contrast to typical Genetic Algorithms there is no crossover operator involved here.

62 4.3. MASTERING INTRINSIC SEARCH PARAMETERS

In the special case of absent mutation(m = 0 → γ = 1), the last equation

reads:

R(t) = σ
2
F ≥ 0. (4.18)

At least gained optimization results are not lost. New solutions are found

only by chance due to a widespread ensemble. Therefore, one can conclude

that the mutation rate should be as high as possible (Pmut → 100%) in order

to analyze the search space at a quick pace. On the other hand, however, this

cannot be the whole truth. As all numerical simulations show (cf. section4.2.2),

the evolutionary window ends well belowPmut = 100%. The idea, borrowed

from nature, to introduce selection steps is an important part of mixed strategies

to ensure an efficient search process by dropping inefficient seekers.

0

mutation rate [a.u.]

0

0.2

0.4

0.6

0.8

1

re
la

tiv
e

fr
eq

ue
nc

y

error threshold

Figure 4.8: Beyond the error threshold, the different fitness values are distributed randomly

and independently of the mutation rate. The figure sketches the phase transition as observed in

numerical experiments.

A detailed analysis reveals that, raising the mutation rate, the transition from

an efficient to an inefficient search happens quickly at a certain threshold. This

transition, known as theerror threshold[51, 52], marks the critical mutation

rate, beyond which solutions obtained by evolutionary processes are destroyed

4.3. MASTERING INTRINSIC SEARCH PARAMETERS 63

more frequently than selection can reproduce them. Many attempts have been

undertaken to analytically predict this threshold [56, 57]. Most trials came up

with empirical data and collected evidence that the error threshold and optimal

mutation rates are indeed correlated. Only for Genetic Algorithms was it possible

to find an analytic expression for a restricted number of fitness landscapes.1 For

infinite and asexually reproducing populations, the critical value was found to

be [58, 59]:

P crit
mut =

ln(σ)
ξ

. (4.19)

The valueξ here denotes the chromosome length used to encode the problem. A

series expansion allows an approximate prediction for finite sizeN ensembles:

P crit
mut (N) =

ln(σ)
ξ

− 2
√

σ −1

ξ
√

N
+

2 lnσ
√

σ −1

ξ 2
√

N
. . . (4.20)

The estimators given by eq. (4.19) and eq. (4.20) were, as mentioned above,

derived for Genetic Algorithms and asexual reproduction. Taking sexual repro-

duction into account, the critical threshold is typically lower [58].

Since the results of NOWAK, SCHUSTER, OCHOA, et. al. cannot be simply

transferred to be used for evolutionary algorithms, this work proposes a hands-

on method. As sketched in Figure4.8, the critical mutation rate is imprinted in

the ensemble’s fitness distribution. It should therefore be possible to somehow

numerically detect the onset of the phase transition. To this end, an easily acces-

sible sensor is necessary. More concrete, the sensor has to fulfil the following

requirements:

1. It needs to be sensitive for the error threshold.

2. For efficiency reasons, it must be numerically easy to aquire.

3. Ideally, it has to be ensemble size and temperature independent.
1Namely the bitstring model, the Royal Road -, and the Royal Staircase fitness function were investigated.

64 4.3. MASTERING INTRINSIC SEARCH PARAMETERS

4. Preferably, the sensor can be applied to any optimization problem without

change.

One can think of uncountable variants of statistical measures, including linear

and non-linear terms, all of which have to be tested against the needs stated

above. A few investigated examples will be introduced and compared in the

following subsections.

First Approach: The Ensemble Variability

In case of absent selection, the chance that all seekers of the ensemble are dif-

ferent is very high. In case of absent mutation, on the other hand, the ensemble

quickly focuses so that nearly all seekers are identical. As a first attempt, one

might therefore define a numerical sensor, the ensemble variabilityv, as the num-

ber of different seekersNdi f f normalized by the ensemble sizeN:

v =
Ndi f f

N
(4.21)

Since fitness values can be degenerated, the variability is actually twofold: It

is possible to define the variability with respect to either phenotype (vf it : two

seekers are counted identical if they have the same fitness) or genotype (vgen:

two seekers are counted identical only if they represent the same point in the

fitness landscape, even though they might have the same fitness). In a highly de-

generated landscape (plateau structure) the latter has a significantly higher sen-

sitivity [21]. As numerical experiments confirm, the ensemble variability fulfils

at least the first two requirements: it is sensitive towards the error threshold [55]

as seen in Figure4.9, and it is easy to calculate.

4.3. MASTERING INTRINSIC SEARCH PARAMETERS 65

Figure 4.9: Mixed Evolutionary Algorithm; 4 seeker tournament selection; Frustrated Periodic

Sequence Model; lengthL = 15, ensemble sizeN = 20, temperatureT = 1, periodicity bonus

b= 1, timet = 104 – The solid red line marks the fitness based ensemble variability which nicely

redraws the phase transition atPmut≈ 75%.

Even though it is possible to design successful adaptation techniques using

this sensor [55] this approach has a couple of drawbacks that must not be over-

looked. The range of possible valuesv is restricted to: 1/N ≤ v ≤ 1. This

introduces a strong bias for small ensemblesN≤ 10.

Measuring the variability foroptimalmutation rates, one observes a standard-

deviation-like dependence with respect to the ensemble size:

vopt '
1√
N

. (4.22)

The problems discussed are a strong motivation to look out for a better alterna-

tive showing less parameter dependencies while being just as sensitive. In the

following step a more sophisticated sensor based on ensemble statistics will be

introduced.

66 4.3. MASTERING INTRINSIC SEARCH PARAMETERS

Second Approach: The Relative Ensemble Dispersion

Instead of counting different seekers to get a notion about about the ensemble

distribution, one can also refer to off-the-shelf tools from statistics. It is a very

simple and straightforward way to calculate the ensemble’s mean fitness〈F〉
and standard deviationσF . Combining both terms yields the relative ensemble

dispersion:

drel :=
〈F〉
σF

(4.23)

0 10 20 30 40 50 60 70 80 90 100

0.1

0.2

0.3

0.4

P [%]mut

re
la

tiv
e

fi
tn

es
s

di
sp

er
si

on

opt. rel. disp.

Figure 4.10: LABS problem of lengthL = 32: relative dispersion in dependence of the mutation

ratem; simulation timet = 500; temperatureT = 1; 4 seeker tournament selection; averaged

over 1000 runs

Regardless of the mean fitness, the standard deviation can take any value in-

cluding zero. This implies that the relative ensemble dispersion as defined above

is not normalized.

Just as the ensemble variability, the dispersion sensitively reflects the muta-

tion rate’s influence as displayed in Figure4.10. It is a suitable numerical sensor

since it is able to detect the areas of different optimization quality. As can be seen

in Figure4.11, the latter is ensemble-size-independent, making it a better sensor

4.3. MASTERING INTRINSIC SEARCH PARAMETERS 67

than the ensemble variability. The figure also clearly shows that the standard

deviation by itself cannot uniquely relate mutation rate and resulting fitness.

(a) mean fitness〈F〉 (b) ensemble variabilityv

(c) ensemble dispersiond (d) rel. ensemble dispersiondrel

Figure 4.11: LABS problem of lengthL = 32; temperatureT = 1; time t = 500; averaged over

1000 runs – Comparison of different numerical sensors: Subfigure (b) clearly shows the ensemble

size dependence of the ensemble variability. The ensemble dispersion by itself ambiguously

relates mutation rate and dispersion, as shown in subfigure (c). The relative ensemble dispersion

(subfigure (d)) eliminates the ensemble-size-dependence while being sensitive towards areas of

different fitness, as seen in subfigure (a).

68 4.3. MASTERING INTRINSIC SEARCH PARAMETERS

While the relative dispersion surpasses the ensemble variability measured in

terms of the necessities for a sensor formulated on page63, it also shows weak

spots [60]. The results of numerical simulations listed in Table4.1 indicate that

for temperaturesT > 0, the temperature dependence could, at first glance, be

neglected. It also shows, however, that the idea of an optimal relative fitness

dispersion is crucially dependent on the optimization problem.

Temp. Frustr. Period. Sequ.LABS Problem RNA second. struct.

0 < 0.001 < 0.005 < 0.050

1 0.020±0.010 0.06±0.02 0.15±0.10

2 0.025±0.010 0.05±0.02 0.15±0.10

4 0.035±0.010 0.04±0.02 0.35±0.10

6 0.030±0.010 0.04±0.02 0.30±0.10

8 0.025±0.010 0.04±0.02 0.36±0.10

Table 4.1: Optimal relative fitness dispersion for different model problems at different tem-

peratures. Tolerance values are due to averaging and graphical evaluation. Frustrated Periodic

Sequence length:L = 15 and periodicity bonusb = 0.2; LABS length:L = 32; RNA sequence

length:L = 100.

In a third approach, a nonlinear numerical sensor will be introduced that does

not have any of the shortcomings seen before, but still provides all of the benefits.

It is the only numerical estimator found in context of this work that satisfies all

four demands formulated above.

Third Approach: The Ensemble Entropy

While the relative ensemble dispersion is already quite useful it nevertheless re-

mains a linear measure and shows its limitations comparing different test models.

This last approach to design a numerical sensor borrows ideas from informa-

tion theory. The crucial point is that an evenly scattered ensemble (high dis-

persion) represents the least amount of knowledge regarding its whereabouts,

while an ensemble focused in a single point (highly ordered state), on the other

4.3. MASTERING INTRINSIC SEARCH PARAMETERS 69

hand, represents a maximum amount of knowledge. The information-theoretical

measure for (missing) knowledge is the so-called entropy:

H =−∑
i

Pi lnPi (4.24)

So there already exists a non-linear measure to express the ensemble distribution

(as explained in the previous approach) in a different way. It only needs to be

translated to suit the needs. The occupation probabilitiesPi will be substituted

by relative occupation numbers. The latter can be easily obtained by generating

an ensemble histogram at any given time. Since, in the beginning of the search

process, there is nothing known about the respective fitness landscapes, it does

not make much sense to operate with predefined bins generating the histogram.

Instead, the (likely unequally spaced) bins are generated dynamically using the

fitness values the respective seekers have assumed at any given moment.

The normalized ensemble entropy can thus be defined as [22]:

Ĥens=
N

∑
i=1

xi

N
logN

xi

N
. (4.25)

Figure4.12demonstrates the sensitivity of this new sensor as an example of Frus-

trated Periodic Sequences. The highest gradient is just where the evolutionary

window happens to be (in terms of the mutation rate) providing a very high sen-

sitivity as demanded (cf. Figure4.13). It is interesting to note that the ensemble

entropy, like the ensemble dispersion, has ambiguous parameter intervals where

a functional relation between entropy and mutation rate is missing. The prob-

lematic interval is beyond the error threshold as displayed for RNA sequences in

Figure4.14.

70 4.3. MASTERING INTRINSIC SEARCH PARAMETERS

Figure 4.12: Frustrated Periodic Sequence lengthL = 15; ensemble entropy in dependence of

the mutation ratem; simulation timet = 500, temperatureT = 1; ensemble sizeN = 20; averaged

over 1000 runs.

On the positive side, the optimal ensemble entropy denoting the evolutionary

window is dependent neither on temperature nor on the optimization problem:

Temp. Frustr. Period. Sequ.LABS Problem RNA second. struct.

0 0.15±0.05 0.12±0.05 0.12±0.05

1 0.20±0.05 0.10±0.05 0.12±0.05

2 0.14±0.05 0.13±0.05 0.15±0.05

3 0.14±0.05 0.10±0.05 0.12±0.05
...

...
...

...

10 0.15±0.05 0.12±0.05 0.16±0.05

Table 4.2: Optimal ensemble entropŷH opt
ens for different model problems at different temper-

atures. Tolerance values are due to averaging and graphical evaluation. Frustrated Periodic

Sequence length:L = 15 and periodicity bonusb = 0.2; LABS length:L = 32; RNA sequence

length:L = 100.

4.3. MASTERING INTRINSIC SEARCH PARAMETERS 71

(a) mean fitness〈F〉 (b) ensemble entropŷHens

Figure 4.13: Frustrated Periodic Sequence of lengthL = 15; periodicity bonusb = 0.2 – The

entropy measure nicely redraws the areas of different fitness values independent of the ensemble

size and may thus serve as a numerical sensor. The temperature was kept constant atT = 1;

random initial sequences were used; the simulation time wast = 500; the results were averaged

over 1000 runs. The best fitness values are obtained for an entropy around 0.20.

(a) mean free energy〈F〉 (b) ensemble entropŷHens

Figure 4.14: RNA sequence of lengthL = 100; random initial conditions; temperature kept

constant atT = 1; simulation timet = 500; the results are averaged over 1000 runs – The best

fitness values are obtained for an entropy around 0.15. . .0.40

72 4.3. MASTERING INTRINSIC SEARCH PARAMETERS

0
2

4
6

8

10

12

14

fitness

0
10

20
30

40
50

60
70

80
90

100

P
m

ut [%
]

2
4

6
8

10
12

14
fre

qu
en

cy
 [%

]

0 2 4 6 8 10 12 14

frequency [%]

(a) Frustrated Periodic SequenceL = 15;b =
0.2

-10
-5

0
5

10
15

20
25

30

 f
itness

0
10

20
30

40
50

60
70

80
90

100

P
mut [%

]

1
2

3
4

5
fre

qu
en

cy
 [%

]

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

frequency [%]

(b) RNA sequenceL = 100

Figure 4.15: Ensemble histograms for two model problems used to calculate the entropyĤens.

In order to be comparable, the mean free energy〈U〉 was used to define a fitness asF =−〈U〉 in

subfigure (b).

It is enlightening to have a look at the ensemble histograms actually used to

calculate the ensemble entropy. For Frustrated Periodic Sequences (Figure4.15(a))

the error threshold is immediately visible. BeyondPmut≈ 55% the ensemble dis-

tribution rapidly spreads out and loses focus.

The situation is very different considering the secondary structures of RNA

sequences (Figure4.15(b)). It is hardly possible to visualize some sort of thresh-

old. It is even more amazing that the numerical procedure determining an opti-

mal ensemble entropy still points towards the evolutionary window.

4.4. AN ADAPTIVE EVOLUTIONARY ALGORITHM 73

Summarizing, the ensemble entropy is well-suited to serve as a sensor for the

evolutionary window. It is a sensitive and easily calculated measure, and it is

not only independent of other intrinsic search parameters, but also independent

of the optimization problem investigated. In the next chapter, an auto-adaptive

evolutionary algorithm based on the entropy sensor will be introduced.

4.4 An Adaptive Evolutionary Algorithm

The material gathered in the last sections enables the construction of an adaptive

evolutionary algorithm able to control its intrinsic search parameters with the

exception of the ensemble sizeN. (The difficulties regarding ensemble sizing

were discussed in section4.3.1on page58.)

It seems reasonable to start out with randomly distributed seekers. The tem-

perature should be set infinitely high (β → 0), thus allowing all mutation steps

regardless of their benefits. Also, the mutation rate should be set to its maxi-

mum (i.e.m= 1). These initial settings allow maximal flexibility and prevent a

premature ensemble convergence in fitness space.

It is also intuitively clear that an adaptation towards a fixed mutation / selec-

tion ratio cannot be optimal for all given simulation times. For clearly insufficient

computation time, for example, the best strategy is to guess solutions.

That corresponds to a setting withm(t) ≡ 1. It can be shown, however, that

these concerns are negligible for a wide range of granted computation times [22].

Starting from the initial settings, the ensemble statistics quickly yields enough

information to turn on adaptation for mutation rate and temperature, as intro-

duced above. The complete recipe now looks like this:

74 4.4. AN ADAPTIVE EVOLUTIONARY ALGORITHM

Adaptive Evolutionary Algorithm

1. Start optimization with high temperature and disabled

selection.

2. Beginning shortly thereafter, increase and control the

mutation rate to keep the ensemble entropy at the opti-

mumĤ opt
ens .

3. Follow the annealing schedule to adapt the temperature

parameter.

The steps 2 and 3 can be carried out simultaneously [22]. The results, that

can be achieved using the adaptation above, are absolutely comparable to those

obtained by manually adjusting the intrinsic search parameters towards the evo-

lutionary window. An example is shown in Figure4.16using the RNA sequence

model. The fact that the best solution found in a single run (F = 8) is much better

than the ensemble average (F = 3.6±0.5) indicates that the provided computa-

tion time for this optimization was not yet sufficient by far. Nevertheless, the

adaptation was successful since even exhaustive parameter scans (manual pa-

rameter settings) could not achieve significantly better results.

4.4. AN ADAPTIVE EVOLUTIONARY ALGORITHM 75

0 20 40 60 80

ensemble size N

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

fi
tn

es
s

F
 [

a.
u.

]

best manual parameter settings
automatic parameter adaption

Figure 4.16: Expectation value for the ensemble’s best seeker〈Fmax〉; LABS problem

of length L = 32; comparison between exhaustive parameter scan and automatic parame-

ter adaptation with initial conditionsm = 1,T = 103, computation timet = 500, averaged

over 1000 runs. The absolutely best solution found in the simulation is the stringS =
01010100000111111011011001110011 with fitnessF = 8.

76 4.4. AN ADAPTIVE EVOLUTIONARY ALGORITHM

Chapter 5

Software

5.1 Newly Developed Software

5.1.1 Optimization Programs

Substantial effort has been invested in the development of a new optimization

program suite. This suite namely consists of the the twin programsSimLabs ,

SimEngel , andSimRNAdesigned by the author to apply different evolution-

ary algorithms to theLABSproblem (cf. section3.2), the Frustrated Periodic

Sequence problems (cf. section3.3), and the RNA secondary structure optimiza-

tion (cf. section3.4).

These programs are written inC++, as opposed to, for exampleCorFortran

for the following reasons:

• abstraction: C++ allows the definition of abstract data types, thus greatly

reducing source code size and error proneness of the programs [61, 62, 63].

• compiler availability: Almost any computer platform offers highly devel-

opedC++ compilers with sophisticated optimization routines.

• flexibility: The object-oriented and modular approach makes it easy to

maintain and extend the program.

77

78 5.1. NEWLY DEVELOPED SOFTWARE

The User Interface

The developed optimization programs feature a complete command line inter-

face as well as a graphical user interface (GUI). The command line interface

offers a short description of all parameters if it encounters the option-help . If

the option-nox is given all output is directed tostdoutandstderrexclusively.

The program then runs as a single thread. If the option-nox is missing the com-

mand line is parsed first, so the GUI comes up with its default values adjusted

to the given command line parameters. When the ’Start’ button is hit, the pro-

gram spawns a new thread for the calculations, which is separated from the GUI

thread, making it easy to update the GUI in parallel to the calculations. While

the calculation is running the user is informed about the progress via the progress

bar; all interactions regarding parameter changes are inhibited. Figure5.1shows

the user interface forSimRNAprogram.

The Workflow

All three developed optimization programs share an identical workflow template

as sketched in Figure5.2. All problem specific details (seeker layout, mutation

operator implementation etc.) are encapsulated in a separate seeker class.

Starting with an initialization sequence, the program enters a loop structure

working through the requested number of repetitions, the externally set mutation

rates, and ensemble sizes – and finally enters an inner cycle. The inner cycle

represents the actual optimization process starting at timet0 = 0 and running

until the final time is reached. Within this time interval, only either mutation or

selection steps are executed at a time (depending on the set mutation rate and the

chosen optimization strategy), and necessary statistical calculations are carried

out as explained in section4.3.

5.1. NEWLY DEVELOPED SOFTWARE 79

Figure 5.1: Graphical User Interface (GUI) of theSimRNAoptimization program. The GUI

uses the graphical routines of the Qt Toolkit (cf. sec.5.2.4). The user interface became necessary,

when the number of command line parameters grew too large. It allows strategy selection, the

setting of all parameters as well as the number of repetitions, and enabling the ensemble statistics

of interest.

80 5.1. NEWLY DEVELOPED SOFTWARE

Initialization:
- memory
- command line parameters
- seekers

REPEAT: 1 MaxRep

SWEEP: P P
mut

min max
mut

SWEEP: N Nmut
min max

mut

RAND (strategy)

MUTATE SELECT

CALCULATE:

- Ensemble Statistics

- Ensemble Histograms

- Control Parameters

Graphical
User
Interface

spawn new thread

Figure 5.2: Workflow template which is common to all optimization programs developed in this

work. The implementation inC++ allows to encapsulateall problem specific details in a sepa-

rate seeker class. This guarantees that the software is easily adaptated to different optimization

problems.

5.1.2 The SimRNA Mutation Operator

For almost all problems investigated here, the implemented mutation operator

had a rather simple structure. The exception to the rule is the mutation operator

designed for RNA secondary structure optimization. In this special case, an

efficient operator has to fulfil the following minimal requirements:

1. Carry out only permitted bindings that yield valid pairs.

2. Avoid bindings that generate pseudo-loops (cf. section3.4.2, p.38).

3. Avoid search operations to find free binding locations.

5.1. NEWLY DEVELOPED SOFTWARE 81

The latter is a requirement ensuring that the necessary computation time does

not grow orderO(logL) with the RNA strand length, but is ideally of order

O(1) instead. The implementation of detailed house-keeping of free comple-

mentary spots, separatly done for each base{A,C,G,U} via lookup-tables (bind

operation) and reverse lookup-tables (resolve operation), has lead to a mutation

operator meeting all of the requirements above. Figure5.3shows the final layout

used in the numerical simulations.

fr
ee

 c
om

pl
em

en
ts

fr
ee

 c
om

pl
em

en
ts

fr
ee

 c
om

pl
em

en
ts

fr
ee

 c
om

pl
em

en
ts

A C G U

fr
ee

 p
la

ce
s

on
 R

N
A

−s
tr

an
d

secondary structure

vector of pairs

free places on RNA−strand

Figure 5.3: Implementation scheme of the SimRNA mutation operator. A pair-connect operator

first looks up a free (unconnected) position on the RNA-strand, and then a free complementary

position is looked up. If the connection of both positions does not result in a pseudo-loop,

the pair-table, the complement tables, and the table of free (unconnected) strand positions are

updated. The resulting secondary structure is stored in the corresponding vector. Disconnect-

operations, in reverse, work on the complementary lookup-tables not shown in this figure.

The main components are the following vectors:

free placesThis vector contains only unbound positions of the RNA-strand.

a,c,g,u - complementsThese four vectors contain the complementary bases for

each base respectively. At positionpos1, the positionpos2 of a pair

(pos1, pos2) is stored.

82 5.1. NEWLY DEVELOPED SOFTWARE

pairs This vector is used to keep track of bound pair positions. It has the length

of the RNA strand.

structure This vector contains the current secondary structure in bracket nota-

tion.

As mentioned above, for all these containers reverse lookup-tables had to be

implemented in order to support fast resolve operations.

5.1.3 The SimRNA Source Code

This subsection does not list the complete source-code of the SimRNA program,

but rather the small fraction of modules necessary to trace the steps of the various

implemented evolutionary algorithms.

The RNA-Strand Class

The RNA-strand class encapsulates the problem-specific parts of the algorithms.

It is defined (in the header file) as follows:

/∗ c l a s s d e f i n i t i o n s w r i t t e n f o r rns sequence

2 s i m u l a t i o n s ,

c f . s i m r n s . cc

4 Axe l Reimann (2 0 0 1)

6 Vers ion : 0 . 1

∗ /

8

i f n d e f r n s s t r i n g h

10 # d e f i n e r n s s t r i n g h

12 # inc lude < c s t d l i b>

inc lude < s t d l i b . h>

14 # inc lude < c t y p e . h>

5.1. NEWLY DEVELOPED SOFTWARE 83

inc lude < i o s t r e a m . h>

16 # i n c l u d e < c s t r i n g>

inc lude < s t r i n g>

18 # inc lude < vec to r>

inc lude "fold_vars.h"

20 # inc lude "fold.h"

22 / / energy e v a l u a t i o n u s i n g ViennaRNA package :

24 c l a s s r n s s t r i n g {
f r i e n d

26 i n t hamming (cons t r n s s t r i n g & , cons t r n s s t r i n g &);

pub l i c :

28 / / c o n s t r u c t o r s & d e s t r u c t o r

r n s s t r i n g (cons t s t d : : s t r i n g & , cons t s t d : : s t r i n g &);

30 r n s s t r i n g () ;

˜ r n s s t r i n g () ;

32 / / member f u n c t i o n s

cons t char∗ c o n t e n t () ;

34 cons t char∗ f o l d i n g () ;

i n t muta te () ;

36 vo id e v a l u a t e () ;

r n s s t r i n g & opera tor =(cons t r n s s t r i n g &);

38 / / e l e m e n t s

unsigned i n t l e n g t h ;

40 double v a l u e ;

p r i v a t e :

42 i n t a index , c index , g index , u i n d e x ;

i n l i n e vo id s e t c o n t e n t (char ∗) ;

44 i n l i n e vo id s e t s t r u c t u r e (char ∗) ;

i n t b ind (vo id) ;

46 i n t d i s s o l v e (vo id) ;

i n t z i p (i n t) ;

48 i n t unz ip (vo id) ;

vo id connec t (i n t , i n t) ;

50 vo id d i s c o n n e c t (i n t , i n t) ;

i n t t r y p a i r i n g (i n t , i n t) ;

84 5.1. NEWLY DEVELOPED SOFTWARE

52 i n t c h e c k p s e u d o k n o t s (i n t , i n t) ;

s t d : : s t r i n g s t r i n g ;

54 s t d : : s t r i n g s t r u c t u r e ;

s t d : : vec to r<i n t > a complements ;

56 s t d : : vec to r<i n t > c complements ;

s t d : : vec to r<i n t > g complements ;

58 s t d : : vec to r<i n t > u complements ;

s t d : : vec to r<i n t > a lookup ;

60 s t d : : vec to r<i n t > c lookup ;

s t d : : vec to r<i n t > g lookup ;

62 s t d : : vec to r<i n t > u lookup ;

s t d : : vec to r<i n t > f r e e p l a c e s ;

64 s t d : : vec to r<i n t > f r e e l o o k u p ;

s t d : : vec to r<i n t > p a i r s ;

66 s t d : : vec to r<i n t > p a i r s l o o k u p ;

s t d : : vec to r<i n t > p a i r s l o o k u p l o o k u p ;

68 } ;

70 # e n d i f

5.1. NEWLY DEVELOPED SOFTWARE 85

The functionality of this class, as well as various contructors and the destruc-

tor, is encoded in its body:

inc lude "compare.h"

2 # inc lude "rns_string.h"

4 # d e f i n e DUMMY VALUE 0

6 r n s s t r i n g : : ˜ r n s s t r i n g () {
}

8

r n s s t r i n g : : r n s s t r i n g () {
10 s t r i n g = "" ;

s t r u c t u r e = "" ;

12 v a l u e = DUMMYVALUE;

a complements . c l e a r () ;

14 c complements . c l e a r () ;

g complements . c l e a r () ;

16 u complements . c l e a r () ;

a l ookup . c l e a r () ;

18 c lookup . c l e a r () ;

g lookup . c l e a r () ;

20 u lookup . c l e a r () ;

a i n d e x =0;

22 c i n d e x =0;

g i n d e x =0;

24 u i n d e x =0;

f r e e p l a c e s . c l e a r () ;

26 f r e e l o o k u p . c l e a r () ;

p a i r s . c l e a r () ;

28 p a i r s l o o k u p . c l e a r () ;

p a i r s l o o k u p l o o k u p . c l e a r () ;

30 } ;

32 r n s s t r i n g : : r n s s t r i n g (cons t s t d : : s t r i n g & s ,

cons t s t d : : s t r i n g & b i n d i n g s)

34 {

86 5.1. NEWLY DEVELOPED SOFTWARE

unsigned i n t i ;

36

i f (s . l e n g t h () ! = b i n d i n g s . l e n g t h ())

38 re turn ;

l e n g t h = s . l e n g t h () ;

40 v a l u e = DUMMYVALUE;

a i n d e x = 0 ;

42 c i n d e x = 0 ;

g i n d e x = 0 ;

44 u i n d e x = 0 ;

p a i r s . c l e a r () ;

46 p a i r s l o o k u p . c l e a r () ;

/ / i n i t i a l i z e s t r u c t u r e and p a i r s

48 f o r (i = 0 ; i < l e n g t h ; i ++){
s t r i n g += t o u p p e r (s [i]) ;

50 s t r u c t u r e += b i n d i n g s [i] ;

f r e e p l a c e s . pushback (i) ;

52 p a i r s l o o k u p l o o k u p . pushback (−1) ;

p a i r s . pushback (−1) ;

54 / / i n i t i a l i z e complement t a b l e s and lookup t a b l e s

f r e e l o o k u p . pushback (i) ;

56 }
f o r (i = 0 ; i <2∗ l e n g t h ; i ++){

58 a lookup . pushback (−1) ;

c l ookup . pushback (−1) ;

60 g lookup . pushback (−1) ;

u lookup . pushback (−1) ;

62 }
f o r (i = 0 ; i < l e n g t h ; i ++){

64 sw i tch (s t r i n g [i]) {
case ’A’ :

66 u complements . pushback ((i n t) i) ;

u lookup [(i n t) i] = u complements . s i z e ()−1;

68 break ;

case ’C’ :

70 g complements . pushback ((i n t) i) ;

g lookup [(i n t) i] = g complements . s i z e ()−1;

5.1. NEWLY DEVELOPED SOFTWARE 87

72 break ;

case ’G’ :

74 c complements . pushback ((i n t) i) ;

u complements . pushback ((i n t) i) ;

76 c lookup [(i n t) i] = c complements . s i z e ()−1;

u lookup [(i n t) i] = u complements . s i z e ()−1;

78 break ;

case ’U’ :

80 a complements . pushback ((i n t) i) ;

g complements . pushback ((i n t) i) ;

82 a lookup [(i n t) i] = a complements . s i z e ()−1;

g lookup [(i n t) i] = g complements . s i z e ()−1;

84 break ;

d e f a u l t :

86 c e r r << "Unknown nucleotide in RNA sequence!\n" ;

e x i t (1) ;

88 }
}

90 }

92 cons t char∗ r n s s t r i n g : : c o n t e n t (){
re turn (s t r i n g . c s t r ()) ;

94 }

96 cons t char∗ r n s s t r i n g : : f o l d i n g () {
re turn (s t r u c t u r e . c s t r ()) ;

98 }

100 vo id r n s s t r i n g : : s e t c o n t e n t (char ∗ S t r) {
t h i s−>s t r i n g = S t r ;

102 }

104 vo id r n s s t r i n g : : s e t s t r u c t u r e (char ∗ S t r){
t h i s−>s t r i n g = S t r ;

106 }

108 r n s s t r i n g & r n s s t r i n g : : opera tor =(cons t r n s s t r i n g & S t r) {

88 5.1. NEWLY DEVELOPED SOFTWARE

i f (t h i s ==&S t r)

110 re turn ∗ t h i s ;

l e n g t h = S t r . l e n g t h ;

112 v a l u e = S t r . v a l u e ;

f r e e p l a c e s = S t r . f r e ep l a c e s ;

114 s t r i n g = S t r . s t r i n g ;

s t r u c t u r e = S t r . s t r u c t u r e ;

116 p a i r s = S t r . p a i r s ;

p a i r s l o o k u p = S t r . p a i r s l o o k u p ;

118 p a i r s l o o k u p l o o k u p = S t r . p a i r s l o o k u p l o o k u p ;

a complements = S t r . acomplements ;

120 c complements = S t r . ccomplements ;

g complements = S t r . gcomplements ;

122 u complements = S t r . ucomplements ;

a l ookup = S t r . a l ookup ;

124 c lookup = S t r . c l ookup ;

g lookup = S t r . g lookup ;

126 u lookup = S t r . u lookup ;

f r e e l o o k u p = S t r . f r e e l o o k u p ;

128 re turn ∗ t h i s ;

}
130

i n t r n s s t r i n g : : muta te (){
132 enum {bind , bind2 , d i s s o l v e , p u l lt i g h t , p u l l t i g h t 2 , p u l l u p } ;

i n t m u t a t i o n o p e r a t o r , r e t u r nv a l u e =−1;

134

/ / mu ta t i on o p e r a t o r s :

136 / / − b ind − > . (.) . . .

/ / − d i s s o l v e . (.) . . − >

138 / / − p u l l t i g h t . (.) . . − > . (((. . .))) . .

/ / − p u l l up . (((. . .))) . . − > . (.) . .

140

/ / p i c k mu ta t i on o p e r a t i o n

142 m u t a t i o n o p e r a t o r = (i n t) (6 . 0∗ rand () / (RANDMAX+ 1 . 0)) ;

sw i tch (m u t a t i o n o p e r a t o r){
144 / /−−

/ / i f mu ta t i on o p e r a t o r f a i l s , t r y complementary o p e r a t i o n i n s t e a d

5.1. NEWLY DEVELOPED SOFTWARE 89

146 case b ind :

case b ind2 :

148 r e t u r n v a l u e = r n s s t r i n g : : b ind () ;

i f (r e t u r n v a l u e !=−1)

150 break ;

case d i s s o l v e :

152 r e t u r n v a l u e = r n s s t r i n g : : d i s s o l v e () ;

i f (r e t u r n v a l u e !=−1)

154 break ;

e l s e

156 r e t u r n v a l u e = r n s s t r i n g : : b ind () ;

break ;

158 case p u l l t i g h t :

case p u l l t i g h t 2 :

160 r e t u r n v a l u e = r n s s t r i n g : : b ind () ;

i f (r e t u r n v a l u e != −1){
162 r e t u r n v a l u e = r n s s t r i n g : : z i p (r e t u r n v a l u e) ;

break ;

164 }
e l s e

166 r e t u r n v a l u e = r n s s t r i n g : : unz ip () ;

break ;

168 case p u l l u p :

r e t u r n v a l u e = r n s s t r i n g : : unz ip () ;

170 i f (r e t u r n v a l u e !=−1)

break ;

172 e l s e

r e t u r n v a l u e = r n s s t r i n g : : z i p ((i n t) 0) ;

174 break ;

d e f a u l t :

176 c e r r << "Unknown mutation operator!\nBug in rns_string.cc...\n" ;

e x i t (1) ;

178 }
re turn r e t u r n v a l u e ;

180 }

182 vo id r n s s t r i n g : : e v a l u a t e (){

90 5.1. NEWLY DEVELOPED SOFTWARE

v a l u e = (double)

184 e n e r g y o f s t r u c t ((char ∗) s t r i n g . c s t r () ,

(char ∗) s t r u c t u r e . c s t r ()) ;

186 re turn ;

}
188

i n t r n s s t r i n g : : b ind (vo id){
190 i n t pos1 , pos2 , f r e e , index , index2 , p s e u d ok n o t s ;

192 / / f i n d f r e e p l a c e s

f r e e = f r e e p l a c e s . s i z e () ;

194 i f (f r e e < 2)

re turn −1;

196 / / p i c k f i r s t c a n d i d a t e

i ndex = (i n t) (1 . 0∗ f r e e∗ rand () / (RANDMAX+ 1 . 0)) ;

198 pos1 = f r e e p l a c e s [i ndex] ;

/ / p i c k second c a n d i d a t e

200 sw i tch (s t r i n g [pos1]){
case ’A’ :

202 f r e e = a complements . s i z e () ;

i f (f r e e > 0) {
204 i ndex2 = (i n t) (1 . 0∗ f r e e∗ rand () / (RANDMAX+ 1 . 0)) ;

i f d e f PROGDEBUG

206 i f (index2 >= (i n t) a complements . s i z e ()| | i ndex2 < 0){
c e r r << "DEBUG: a_complements index2 out of bounds!\n" ;

208 c e r r << i ndex2 << end l ;

e x i t (1) ;

210 }
e n d i f

212 pos2 = a complements [index2] ;

i f (abs (pos2− pos1) < 3)

214 re turn −1;

p s e u d o k n o t s = c h e c kp s e u d o k n o t s (pos1 , pos2) ;

216 i f (p s e u d o k n o t s > 0)

re turn −1;

218 a i n d e x = pos1 ;

u i n d e x = pos2 ;

5.1. NEWLY DEVELOPED SOFTWARE 91

220 }
e l s e re turn −1;

222 break ;

case ’C’ :

224 f r e e = c complements . s i z e () ;

i f (f r e e > 0) {
226 i ndex2 = (i n t) (1 . 0∗ f r e e∗ rand () / (RANDMAX+ 1 . 0)) ;

i f d e f PROGDEBUG

228 i f (index2 >= (i n t) c complements . s i z e ()| | i ndex2 < 0){
c e r r << "DEBUG: c_complements index2 out of bounds!\n" ;

230 c e r r << i ndex2 << end l ;

e x i t (1) ;

232 }
e n d i f

234 pos2 = c complements [index2] ;

i f (abs (pos2− pos1) < 3)

236 re turn −1;

p s e u d o k n o t s = c h e c kp s e u d o k n o t s (pos1 , pos2) ;

238 i f (p s e u d o k n o t s > 0)

re turn −1;

240 c i n d e x = pos1 ;

g i n d e x = pos2 ;

242 }
e l s e re turn −1;

244 break ;

case ’G’ :

246 f r e e = g complements . s i z e () ;

i f (f r e e > 0) {
248 i ndex2 = (i n t) (1 . 0∗ f r e e∗ rand () / (RANDMAX+ 1 . 0)) ;

i f d e f PROGDEBUG

250 i f (index2 >= (i n t) g complements . s i z e ()| | i ndex2 < 0){
c e r r << "DEBUG: g_complements index2 out of bounds!\n" ;

252 c e r r << i ndex2 << end l ;

e x i t (1) ;

254 }
e n d i f

256 pos2 = g complements [index2] ;

92 5.1. NEWLY DEVELOPED SOFTWARE

i f (abs (pos2− pos1) < 3)

258 re turn −1;

p s e u d o k n o t s = c h e c kp s e u d o k n o t s (pos1 , pos2) ;

260 i f (p s e u d o k n o t s > 0)

re turn −1;

262 g i n d e x = pos1 ;

i f (s t r i n g [pos2]==’C’)

264 c i n d e x = pos2 ;

e l s e

266 u i n d e x = pos2 ;

}
268 e l s e

re turn −1;

270 break ;

case ’U’ :

272 f r e e = u complements . s i z e () ;

i f (f r e e > 0) {
274 i ndex2 = (i n t) (1 . 0∗ f r e e∗ rand () / (RANDMAX+ 1 . 0)) ;

i f d e f PROGDEBUG

276 i f (index2 >= (i n t) u complements . s i z e ()| | i ndex2 < 0){
c e r r << "DEBUG: u_complements index2 out of bounds!\n" ;

278 c e r r << i ndex2 << end l ;

e x i t (1) ;

280 }
e n d i f

282 pos2 = u complements [index2] ;

i f (abs (pos2− pos1) < 3)

284 re turn −1;

p s e u d o k n o t s = c h e c kp s e u d o k n o t s (pos1 , pos2) ;

286 i f (p s e u d o k n o t s > 0)

re turn −1;

288 u i n d e x = pos1 ;

i f (s t r i n g [pos2]==’A’)

290 a i n d e x = pos2 ;

e l s e

292 g i n d e x = pos2 ;

}

5.1. NEWLY DEVELOPED SOFTWARE 93

294 e l s e

re turn −1;

296 break ;

d e f a u l t :

298 c e r r << "Illegal character: "

<< s t r i n g [pos1]

300 << " in RNS string! Bug in rns_string.cc!?\n" ;

e x i t (1) ;

302 }
r n s s t r i n g : : connec t (pos1 , pos2) ;

304 re turn pos1 ;

}
306

i n t r n s s t r i n g : : d i s s o l v e (vo id){
308 i n t pos1 , index , bound ;

310 / / f i n d bound p a i r

bound = p a i r s l o o k u p . s i z e () ;

312 i f (bound < 1)

re turn −1;

314 i ndex = (i n t) (1 . 0∗ bound∗ rand () / (RANDMAX+ 1 . 0)) ;

i f d e f PROGDEBUG

316 i f (index>=(i n t) p a i r s l o o k u p . s i z e ()){
c e r r << "rand() index out of bounds in rns_string::dissolve!\n" ;

318 e x i t (1) ;

}
320 # e n d i f

pos1 = p a i r s l o o k u p [index] ;

322 # i f d e f PROGDEBUG

i n t pos2 = p a i r s [pos1] ;

324 i f (pos2 < 0 | | pos2 > (i n t) l e n g t h) {
c e r r << "Bug detected in dissolve operator in rns_string.cc!\n" ;

326 c e r r << "Pair management derailed.\n" ;

e x i t (1) ;

328 }
e n d i f

330 r n s s t r i n g : : d i s c o n n e c t (pos1 , index) ;

94 5.1. NEWLY DEVELOPED SOFTWARE

re turn 1 ;

332 }

334 i n t r n s s t r i n g : : z i p (i n t pos1){
i n t pos2 , pos1backup , pos2backup ;

336 i n t bound , v a l i d p a i r = 1 , r e t u r n v a l u e =0;

338 / / s a n i t y check

bound = p a i r s l o o k u p . s i z e () ;

340 i f (bound < 1)

re turn −1;

342 pos2 = p a i r s [pos1] ;

pos1 backup = pos1 ;

344 pos2 backup = pos2 ;

/ / check inwards d i r e c t i o n f o r

346 / / p o s s i b l e p a i r s : AU , CU , CG

whi le (v a l i d p a i r && (pos2 − pos1 > 5)){
348 v a l i d p a i r = 0 ;

pos1 + + ;

350 pos2−−;

v a l i d p a i r = r n s s t r i n g : : t r y p a i r i n g (pos1 , pos2) ;

352 i f (v a l i d p a i r)

r n s s t r i n g : : connec t (pos1 , pos2) ;

354 }
/ / check outbound d i r e c t i o n f o r

356 / / p o s s i b l e p a i r s : AU , CU , CG

pos1 = pos1backup ;

358 pos2 = pos2backup ;

v a l i d p a i r = 1 ;

360 whi le (v a l i d p a i r &&

(pos2 − pos1 > 5) &&

362 (pos1 > 0) &&

(pos2 < (i n t) (l eng th−1))){
364 v a l i d p a i r = 0 ;

pos1−−;

366 pos2 + + ;

v a l i d p a i r = r n s s t r i n g : : t r y p a i r i n g (pos1 , pos2) ;

5.1. NEWLY DEVELOPED SOFTWARE 95

368 i f (v a l i d p a i r)

r n s s t r i n g : : connec t (pos1 , pos2) ;

370 }
re turn r e t u r n v a l u e ;

372 }

374 i n t r n s s t r i n g : : unz ip (vo id){
i n t index , pos1 , pos1backup ;

376 i n t bound , r e t u r n v a l u e =0;

s t a t i c i n t v a l i d p a i r =1;

378

/ / f i n d bound p a i r

380 bound = p a i r s l o o k u p . s i z e () ;

i f (bound < 1)

382 re turn −1;

/ / check p o s s i b l e c o o r d i n a t e s

384 i ndex = (i n t) (1 . 0∗ bound∗ rand () / (RANDMAX+ 1 . 0)) ;

i f d e f PROGDEBUG

386 i f (index>=(i n t) p a i r s l o o k u p . s i z e ()){
c e r r << "rand() index out of bounds in rns_string::zip!\n" ;

388 e x i t (1) ;

}
390 # e n d i f

pos1 = p a i r s l o o k u p [index] ;

392 # i f d e f PROGDEBUG

i n t pos2 = p a i r s [pos1] ;

394 i f (pos1 > pos2){
cou t << "DEBUG: Bug detected in rns_string::unzip!\n"

396 << "Pair management derailed.\n" ;

e x i t (1) ;

398 }
e n d i f

400 pos1 backup = pos1 ;

index = p a i r s l o o k u p l o o k u p [pos1] ;

402 r n s s t r i n g : : d i s c o n n e c t (pos1 , index) ;

whi le (v a l i d p a i r){
404 pos1 + + ;

96 5.1. NEWLY DEVELOPED SOFTWARE

v a l i d p a i r =0;

406 i f (s t r u c t u r e [pos1] ! = ’.’ &&

s t r u c t u r e [pos1] ! = ’)’){
408 v a l i d p a i r =1;

r e t u r n v a l u e ++;

410 i ndex = p a i r s l o o k u p l o o k u p [pos1] ;

i f d e f PROGDEBUG

412 i f (i ndex < 0 | | i ndex > (i n t) (p a i r s l o o k u p . s i z e ()−1)){
c e r r << "DEBUG: pairs_lookup index " << i ndex

414 << " out of range in rns_string::unzip!\n" ;

e x i t (1) ;

416 }
e n d i f

418 / / d i s c o n n e c t

r n s s t r i n g : : d i s c o n n e c t (pos1 , index) ;

420 }
}

422 v a l i d p a i r =1;

whi le (v a l i d p a i r && pos1 backup>0){
424 pos1 backup−−;

v a l i d p a i r =0;

426 i f (s t r u c t u r e [pos1backup] ! = ’.’ &&

s t r u c t u r e [pos1backup] ! = ’)’)

428 {
v a l i d p a i r =1;

430 r e t u r n v a l u e ++;

index = p a i r s l o o k u p l o o k u p [pos1 backup] ;

432 # i f d e f PROGDEBUG

i f (i ndex < 0 | | i ndex > (i n t) (p a i r s l o o k u p . s i z e ()−1)){
434 c e r r << "DEBUG: pairs_lookup index " << i ndex

<< " out of range in rns_string::unzip!\n" ;

436 e x i t (1) ;

}
438 # e n d i f

/ / d i s c o n n e c t

440 r n s s t r i n g : : d i s c o n n e c t (pos1backup , index) ;

}

5.1. NEWLY DEVELOPED SOFTWARE 97

442 }
re turn r e t u r n v a l u e ;

444 }

446 vo id r n s s t r i n g : : connec t (i n t pos1 , i n t pos2){

448 i n t l a s t , index , index2 ;

s t d : : s t r i n g b a s ep a i r ;

450

/ /−−
452 / / connec t p o s i t i o n s pos1 and pos2 and

/ / p r e v e n t m u l t i p l e b i n d i n g s o f same p o s i t i o n

454 / /−−
/ / base p a i r r ega rds bases

456 / / AU , UA A ,G,U

/ / CG , GC C,G,U

458 / / GU, UG A , C,G,U

/ /−−
460

b a s e p a i r = s t r i n g [pos1] ;

462 b a s e p a i r + = s t r i n g [pos2] ;

464 i f (b a s e p a i r [0]==’A’ | |
(b a s e p a i r [0]==’U’ && b a s e p a i r [1]==’A’)) {

466 / / A

i ndex = a lookup [u i n d e x] ;

468 i ndex2 = a complements . back () ;

i f d e f PROGDEBUG

470 i f (i ndex >= (i n t) a complements . s i z e ()| | i ndex < 0){
c e r r << "DEBUG: u_index out of range\n" ;

472 c e r r << i ndex << end l ;

e x i t (1) ;

474 }
e n d i f

476 a complements [i ndex] = index2 ;

a complements . popback () ;

478 a lookup [index2] = index ;

98 5.1. NEWLY DEVELOPED SOFTWARE

/ / G

480 i ndex = g lookup [u i n d e x] ;

index2 = g complements . back () ;

482 # i f d e f PROGDEBUG

i f (i ndex >= (i n t) g complements . s i z e ()| | i ndex < 0){
484 c e r r << "DEBUG: u_index out of range\n" ;

c e r r << i ndex << end l ;

486 e x i t (1) ;

}
488 # e n d i f

g complements [i ndex] = index2 ;

490 g complements . popback () ;

g lookup [index2] = index ;

492 / / U

i ndex = u lookup [a i n d e x] ;

494 i ndex2 = u complements . back () ;

i f d e f PROGDEBUG

496 i f (i ndex >= (i n t) u complements . s i z e ()| | i ndex < 0){
c e r r << "DEBUG: a_index out of range\n" ;

498 c e r r << i ndex << end l ;

e x i t (1) ;

500 }
e n d i f

502 u complements [i ndex] = index2 ;

u complements . popback () ;

504 u lookup [index2] = index ;

}
506 i f (b a s e p a i r [0]==’C’ | |

(b a s e p a i r [0]==’G’ && b a s e p a i r [1]==’C’)) {
508 / / C

i ndex = c lookup [g i n d e x] ;

510 i ndex2 = c complements . back () ;

i f d e f PROGDEBUG

512 i f (i ndex >= (i n t) c complements . s i z e ()| | i ndex < 0){
c e r r << "DEBUG: g_index out of range\n" ;

514 c e r r << i ndex << end l ;

e x i t (1) ;

5.1. NEWLY DEVELOPED SOFTWARE 99

516 }
e n d i f

518 c complements [i ndex] = index2 ;

c complements . popback () ;

520 c lookup [index2] = index ;

/ / G

522 i ndex = g lookup [c i n d e x] ;

index2 = g complements . back () ;

524 # i f d e f PROGDEBUG

i f (i ndex >= (i n t) g complements . s i z e ()| | i ndex < 0){
526 c e r r << "DEBUG: c_index out of range\n" ;

c e r r << i ndex << end l ;

528 e x i t (1) ;

}
530 # e n d i f

g complements [i ndex] = index2 ;

532 g complements . popback () ;

g lookup [index2] = index ;

534 / / U

i ndex = u lookup [g i n d e x] ;

536 i ndex2 = u complements . back () ;

i f d e f PROGDEBUG

538 i f (i ndex >= (i n t) u complements . s i z e ()| | i ndex < 0){
c e r r << "DEBUG: g_index out of range\n" ;

540 c e r r << i ndex << end l ;

e x i t (1) ;

542 }
e n d i f

544 u complements [i ndex] = index2 ;

u complements . popback () ;

546 u lookup [index2] = index ;

}
548 i f ((b a s e p a i r [0]==’G’ && b a s e p a i r [1]==’U’) | |

(b a s e p a i r [0]==’U’ && b a s e p a i r [1]==’G’)) {
550 / / A

i ndex = a lookup [u i n d e x] ;

552 i ndex2 = a complements . back () ;

100 5.1. NEWLY DEVELOPED SOFTWARE

i f d e f PROGDEBUG

554 i f (i ndex >= (i n t) a complements . s i z e ()| | i ndex < 0){
c e r r << "DEBUG: u_index out of range\n" ;

556 c e r r << i ndex << end l ;

e x i t (1) ;

558 }
e nd i f

560 a complements [i ndex] = index2 ;

a complements . popback () ;

562 a lookup [index2] = index ;

/ / C

564 i ndex = c lookup [g i n d e x] ;

index2 = c complements . back () ;

566 # i f d e f PROGDEBUG

i f (i ndex >= (i n t) c complements . s i z e ()| | i ndex < 0){
568 c e r r << "DEBUG: g_index out of range\n" ;

c e r r << i ndex << end l ;

570 e x i t (1) ;

}
572 # e n d i f

c complements [i ndex] = index2 ;

574 c complements . popback () ;

c l ookup [index2] = index ;

576 / / G

i ndex = g lookup [u i n d e x] ;

578 i ndex2 = g complements . back () ;

i f d e f PROGDEBUG

580 i f (i ndex >= (i n t) g complements . s i z e ()| | i ndex < 0){
c e r r << "DEBUG: u_index out of range\n" ;

582 c e r r << i ndex << end l ;

e x i t (1) ;

584 }
e n d i f

586 g complements [i ndex] = index2 ;

g complements . popback () ;

588 g lookup [index2] = index ;

/ / U

5.1. NEWLY DEVELOPED SOFTWARE 101

590 i ndex = u lookup [g i n d e x] ;

index2 = u complements . back () ;

592 # i f d e f PROGDEBUG

i f (i ndex >= (i n t) u complements . s i z e ()| | i ndex < 0){
594 c e r r << "DEBUG: g_index out of range\n" ;

c e r r << i ndex << end l ;

596 e x i t (1) ;

}
598 # e n d i f

u complements [i ndex] = index2 ;

600 u complements . popback () ;

u lookup [index2] = index ;

602 }

604 / / b ind p o s i t i o n s 1 and 2

i f (pos1 < pos2){
606 s t r u c t u r e [pos1] = ’(’ ;

s t r u c t u r e [pos2] = ’)’ ;

608 }
e l s e {

610 s t r u c t u r e [pos1] = ’)’ ;

s t r u c t u r e [pos2] = ’(’ ;

612 }
p a i r s [pos1] = pos2 ;

614 p a i r s [pos2] = pos1 ;

i f (pos1 < pos2){
616 p a i r s l o o k u p . pushback (pos1) ;

p a i r s l o o k u p l o o k u p [pos1] = p a i r s l o o k u p . s i z e ()−1;

618 }
e l s e{

620 p a i r s l o o k u p . pushback (pos2) ;

p a i r s l o o k u p l o o k u p [pos2] = p a i r s l o o k u p . s i z e ()−1;

622 }
i f d e f PROGDEBUG

624 / / c o n s i s t e n c y check

f o r (unsigned i =0 ; i < p a i r s l o o k u p . s i z e () ; i ++){
626 i f (p a i r s [p a i r s l o o k u p [i]] == −1){

102 5.1. NEWLY DEVELOPED SOFTWARE

c e r r << "DEBUG: bug detected in rns_string::connect!\n"

628 << "pairs_lookup table inconsistent\n" ;

e x i t (1) ;

630 }
}

632 # e nd i f

i ndex = f r e e l o o k u p [pos1] ;

634 i ndex2 = f r e e l o o k u p [pos2] ;

l a s t = f r e e p l a c e s . s i z e ()−1;

636 i f (i ndex == l a s t){
f r e e p l a c e s . popback () ;

638 l a s t = f r e e p l a c e s . back () ;

f r e e p l a c e s [index2] = l a s t ;

640 f r e e p l a c e s . popback () ;

f r e e l o o k u p [l a s t] = index2 ;

642 re turn ;

}
644 i f (index2 = = l a s t){

f r e e p l a c e s . popback () ;

646 l a s t = f r e e p l a c e s . back () ;

f r e e p l a c e s [i ndex] = l a s t ;

648 f r e e p l a c e s . popback () ;

f r e e l o o k u p [l a s t] = index ;

650 re turn ;

}
652 l a s t = f r e e p l a c e s . back () ;

f r e e p l a c e s [index2] = l a s t ;

654 f r e e p l a c e s . popback () ;

f r e e l o o k u p [l a s t] = index2 ;

656 l a s t = f r e e p l a c e s . back () ;

f r e e p l a c e s [i ndex] = l a s t ;

658 f r e e p l a c e s . popback () ;

f r e e l o o k u p [l a s t] = index ;

660 re turn ;

}
662

vo id r n s s t r i n g : : d i s c o n n e c t (i n t pos1 , i n t p a i r s i n d e x){

5.1. NEWLY DEVELOPED SOFTWARE 103

664 i n t l a s t , pos2 ;

666 # i f d e f PROGDEBUG

i f ((pos1 < 0) | | (pos1 >= (i n t) l e n g t h)){
668 c e r r << "pos1 : " << pos1

<< " out of range in rns_string::disconnect!\n" ;

670 e x i t (1) ;

}
672 # e n d i f

pos2 = p a i r s [pos1] ;

674 # i f d e f PROGDEBUG

i f ((pos2 < 0) | | (pos2 >= (i n t) l e n g t h)){
676 c e r r << "pos2 : " << pos2

<< " out of range in rns_string::disconnect!\n" ;

678 e x i t (1) ;

}
680 # e n d i f

682 / / upda te t a b l e s and lookup t a b l e s

sw i tch (s t r i n g [pos1]) {
684 case ’A’ :

u complements . pushback (pos1) ;

686 u lookup [pos1] = u complements . s i z e ()−1;

break ;

688 case ’C’ :

g complements . pushback (pos1) ;

690 g lookup [pos1] = g complements . s i z e ()−1;

break ;

692 case ’G’ :

c complements . pushback (pos1) ;

694 u complements . pushback (pos1) ;

c l ookup [pos1] = c complements . s i z e ()−1;

696 u lookup [pos1] = u complements . s i z e ()−1;

break ;

698 case ’U’ :

a complements . pushback (pos1) ;

700 g complements . pushback (pos1) ;

104 5.1. NEWLY DEVELOPED SOFTWARE

a lookup [pos1] = acomplements . s i z e ()−1;

702 g lookup [pos1] = g complements . s i z e ()−1;

break ;

704 d e f a u l t :

c e r r << "Unknown nucleotide " << s t r i n g [pos1]

706 << " in RNA sequence!\n"

<< "Bug in rns_string::disconnect function!\n\n" ;

708 e x i t (1) ;

}
710 sw i tch (s t r i n g [pos2]) {

case ’A’ :

712 u complements . pushback (pos2) ;

u lookup [pos2] = u complements . s i z e ()−1;

714 break ;

case ’C’ :

716 g complements . pushback (pos2) ;

g lookup [pos2] = g complements . s i z e ()−1;

718 break ;

case ’G’ :

720 c complements . pushback (pos2) ;

u complements . pushback (pos2) ;

722 c lookup [pos2] = c complements . s i z e ()−1;

u lookup [pos2] = u complements . s i z e ()−1;

724 break ;

case ’U’ :

726 a complements . pushback (pos2) ;

g complements . pushback (pos2) ;

728 a lookup [pos2] = acomplements . s i z e ()−1;

g lookup [pos2] = g complements . s i z e ()−1;

730 break ;

d e f a u l t :

732 c e r r << "Unknown nucleotide in RNA sequence!\n"

<< "Bug in rns_string::disconnect!\n\n" ;

734 e x i t (1) ;

}
736 f r e e p l a c e s . pushback (pos1) ;

f r e e l o o k u p [pos1] = f r e e p l a c e s . s i z e ()−1;

5.1. NEWLY DEVELOPED SOFTWARE 105

738 f r e e p l a c e s . pushback (pos2) ;

f r e e l o o k u p [pos2] = f r e e p l a c e s . s i z e ()−1;

740 # i f d e f PROGDEBUG

i f (s t r u c t u r e [pos1] = =’.’ | | s t r u c t u r e [p a i r s [pos1]] = =’.’){
742 c e r r << "DEBUG: bug detected in rns_string::disconnect!\n"

<< "Pair table unbalanced.\n" ;

744 e x i t (1) ;

}
746 # e nd i f

p a i r s [pos1] =−1;

748 p a i r s [pos2] =−1;

l a s t = p a i r s l o o k u p . back () ;

750 p a i r s l o o k u p [p a i r s i n d e x] = l a s t ;

p a i r s l o o k u p l o o k u p [l a s t] = p a i r s i n d e x ;

752 # i f d e f PROGDEBUG

p a i r s l o o k u p [(i n t) p a i r s l o o k u p . s i z e ()−1] = −1;

754 p a i r s l o o k u p l o o k u p [pos1] = −1 ;

e nd i f

756 p a i r s l o o k u p . pop back () ;

i f d e f PROGDEBUG

758 / / c o n s i s t e n c y check

f o r (unsigned i =0 ; i < p a i r s l o o k u p . s i z e () ; i ++){
760 i f (p a i r s [p a i r s l o o k u p [i]] == −1){

c e r r << "DEBUG: bug detected in rns_string::connect!\n"

762 << "pairs_lookup table inconsistent\n" ;

e x i t (1) ;

764 }
}

766 # e n d i f

/ / d i s s o l v e b i n d i n g

768 s t r u c t u r e [pos1] =’.’ ;

s t r u c t u r e [pos2] =’.’ ;

770 re turn ;

}
772

i n t r n s s t r i n g : : t r y p a i r i n g (i n t pos1 , i n t pos2){
774 i n t r e t u r n v a l u e =0;

106 5.1. NEWLY DEVELOPED SOFTWARE

s t d : : s t r i n g b a s ep a i r ;

776

/ / p o s s i b l e p a i r s : AU , GU, GC

778 i f (abs (pos2− pos1) <= 3)

re turn r e t u r n v a l u e ;

780 b a s e p a i r = s t r i n g [pos1] ;

b a s e p a i r + = s t r i n g [pos2] ;

782 i f (s t r u c t u r e [pos1]==’.’ && s t r u c t u r e [pos2]==’.’){
i f ((b a s e p a i r [0]==’A’) && (b a s e p a i r [1]==’U’)) {

784 a i n d e x = pos1 ;

u i n d e x = pos2 ;

786 r e t u r n v a l u e ++;

}
788 i f ((b a s e p a i r [0]==’U’) && (b a s e p a i r [1]==’A’)) {

u i n d e x = pos1 ;

790 a i n d e x = pos2 ;

r e t u r n v a l u e ++;

792 }
i f ((b a s e p a i r [0]==’C’) && (b a s e p a i r [1]==’G’)) {

794 c i n d e x = pos1 ;

g i n d e x = pos2 ;

796 r e t u r n v a l u e ++;

}
798 i f ((b a s e p a i r [0]==’G’) && (b a s e p a i r [1]==’C’)) {

g i n d e x = pos1 ;

800 c i n d e x = pos2 ;

r e t u r n v a l u e ++;

802 }
i f ((b a s e p a i r [0]==’G’) && (b a s e p a i r [1]==’U’)) {

804 g i n d e x = pos1 ;

u i n d e x = pos2 ;

806 r e t u r n v a l u e ++;

}
808 i f ((b a s e p a i r [0]==’U’) && (b a s e p a i r [1]==’G’)) {

u i n d e x = pos1 ;

810 g i n d e x = pos2 ;

r e t u r n v a l u e ++;

5.1. NEWLY DEVELOPED SOFTWARE 107

812 }
}

814 re turn r e t u r n v a l u e ;

}
816

i n t r n s s t r i n g : : c h e c k p s e u d o k n o t s (i n t pos1 ,i n t pos2){
818 i n t pos1 backup , pos2backup , b races , i ;

char f i r s t =’.’ , l a s t =’.’ ;

820

/ / check f o r pseudo k n o t s

822 b r a c e s = 0 ;

i f (pos1 < pos2){
824 pos1 backup = pos1 +1;

pos2 backup = pos2−1;

826 }
e l s e {

828 pos1 backup = pos2 +1;

pos2 backup = pos1−1;

830 }
f o r (i = pos1 backup ; i<=pos2 backup ; i ++){

832 i f (f i r s t ==’.’)

f i r s t = s t r u c t u r e [i] ;

834 e l s e

i f (s t r u c t u r e [i] ! =’.’)

836 l a s t = s t r u c t u r e [i] ;

i f (s t r u c t u r e [i]==’(’)

838 b r a c e s ++;

840 e l s e

i f (s t r u c t u r e [i]==’)’)

842 braces−−;

}
844 i f (b r a c e s ! = 0 | | f i r s t = = ’)’ | | l a s t = = ’(’)

re turn 1 ;

846 re turn 0 ;

}

108 5.1. NEWLY DEVELOPED SOFTWARE

The Main Loop

The main loop of the different algorithms is contained in the control-module.

This module basically realizes the workflow as described in Figure5.2. The rel-

evant part of the source code is listed below:

inc lude < i o s t r e a m . h>

2 # inc lude < t ime . h>

inc lude < c t y p e . h>

4 # inc lude <math . h>

inc lude < f s t r e a m . h>

6 # inc lude "global_defs.h"

inc lude "mutex_guard.h"

8

d e f i n e INFINITY 10000

10

i n t main loop (vo id) {
12 s t a t i c double w , g , o l d p e r c e n t , d e l t ap s e l , c t r l p s e l ;

s t a t i c double temp backup , pse lbackup , maxt ime backup ;

14 s t a t i c double i n i t t i m e ;

s t a t i c i n t coun te r , cyc l es , d e l t an ;

16 s t a t i c i n t r eac t i on w indow = 1 , c y c l e c o u n t =0;

double v a r i a b i l i t y = 0 , d i f f e r e n c e = 0 , t a u =0;

18 s t d : : s t r i n g r n s f i l e n a m e ;

i f s t r e a m r n s f i l e ;

20

/ / s t an da rd i n i t i a l i z a t i o n

22 i f (gu i)

Mutex Guard m a i n l o o p t h r e a d ;

24 / / read RNA sequence from f i l e

r n s f i l e n a m e = problemname + ".dat" ;

26 r n s f i l e . open (r n s f i l e n a m e . c s t r () , i o s : : i n) ;

i f (! r n s f i l e) {
28 c e r r << r n s f i l e n a m e

<< " couldn’t be opened to read RNS sequence!\n" ;

30 e x i t (FALSE) ;

5.1. NEWLY DEVELOPED SOFTWARE 109

}
32 g e t l i n e (r n s f i l e , i n i t s t r i n g) ;

r n s f i l e . c l o s e () ;

34 f o r (w=0;w< i n i t s t r i n g . l e n g t h () ; w++)

i n i t s t r u c t +=’.’ ;

36 / / c o n t i n u e i n i t i a l i z a t i o n

max t ime backup=maxt ime ;

38 hash = new rank [n max] ;

a l l o c a t e d ++;

40 i f ((r n d g e n e r a t o r = g s lr n g a l l o c (r n d g e n e r a t o r t y p e))==NULL) {
c e r r << "Random number generator initialization failed!\n" ;

42 e x i t (FALSE) ;

}
44 i f (n max==n min)

d e l t a n = 1 ;

46 e l s e

d e l t a n = (i n t) c e i l (n max−n min) / n s t e p s ;

48 i f (pse l max == p s e l m i n)

d e l t a p s e l = 1 ;

50 e l s e

d e l t a p s e l = (pselmax−p s e l m i n) / p s e l s t e p s ;

52 i f (s t r a t e g y != tou rnamen t &&

s t r a t e g y != tou rnament4 &&

54 s t r a t e g y != f i t n e s s){
pse l max = p s e l m i n ;

56 d e l t a p s e l =1;

}
58 i f (s t r a t e g y != f i t n e s s){

s e e k e r = new r n s s t r i n g [n max] ; / / r e s e r v e memory f o r s e e k e r s

60 a l l o c a t e d ++;

}
62 e l s e {

/ / memory f o r s e e k e r s + o f f s p r i n g

64 s e e k e r = new r n s s t r i n g [2∗ n max] ;

a l l o c a t e d ++;

66 }
/ / s t a t u s 100% r e l a t e s t o :

110 5.1. NEWLY DEVELOPED SOFTWARE

68 g =(1+(psel max−p s e l m i n) / d e l t a p s e l) ∗
(1+ (n max−n min) / d e l t a n) ∗ maxruns ∗ max t ime ;

70 o l d p e r c e n t =0;

/ / s e l e c t i o n sweep

72 f o r (p s e l = p s e l m i n ; pse l<=pse l max ; p s e l += d e l t ap s e l){
/ / s e e k e r number sweep

74 f o r (n=n min ; n<=n max ; n+= d e l t a n) {
/ / new c y c l e i n i t i a l i z a t i o n

76 i n i t c a l l =TRUE;

i n i t t i m e = i n i t s t r i n g . l e n g t h ()∗ n∗2 ;

78 max t ime+= i n i t t i m e ;

s t a t i s t i c s (& c y c l e s) ;

80 / / i f (ham pr i n t)

/ / h a m s t a t (& c y c l e s) ;

82 i f (h i s t p r i n t | | a u t o m a t i c)

make h is togram (cyc l es , c t r lp s e l) ;

84 i n i t c a l l =FALSE ;

/ /

86 temp backup = temp ;

p s e l b a c k u p = p s e l ;

88 e p s i l o n = 1 . 0 / n ;

v a r i a b i l i t y g o a l = 1 . 0 / s q r t (n) ;

90 temp = i n i t t e m p ;

i f (p s e l !=0)

92 c t r l p s e l = p s e l ;

e l s e

94 c t r l p s e l = 0 . 1 ;

/ / p r i n t pa ramete rs used

96 i f (ve rbose) {
c e r r << "\nProgram version : "

98 << VERSION << end l ;

c e r r << "opt. problem name : " << problem name << end l ;

100 c e r r << "variability : " ;

i f (v a r i a b i l i t y t y p e == f i t n e s s o r i e n t e d)

102 c e r r << "fitness based\n" ;

e l s e

104 c e r r << "genotype based\n" ;

5.1. NEWLY DEVELOPED SOFTWARE 111

i f (a u t o m a t i c)

106 c e r r << "autotuning : enabled\n" ;

c e r r << "search strategy : " ;

108 sw i tch (s t r a t e g y) {
case wors t :

110 c e r r << "kill worst seeker\n" ;

break ;

112 case m e t r o p o l i s :

c e r r << "Metropolis algorithm\n" ;

114 break ;

case t ou rnamen t :

116 c e r r << "Boltzmann strategy + tournament selection\n" ;

break ;

118 case t ou rnament4 :

c e r r << "Boltzmann strategy + tournament 4 selection\n" ;

120 break ;

case f i t n e s s :

122 c e r r << "Boltzmann strategy + "

<< "fitness proportional selection\n" ;

124 break ;

case a n n e a l i n g :

126 c e r r << "simulated annealing\n" ;

break ;

128 }
c e r r << "number of seekers : " << n << end l

130 << "repetitions : " << maxruns<< end l

<< "init. temperature : " << temp << end l ;

132 i f (s t r a t e g y != wors t &&

s t r a t e g y != m e t r o p o l i s &&

134 s t r a t e g y != a n n e a l i n g)

c e r r << "selection prob. : " << p s e l << end l ;

136 i f (goa l)

c e r r << "goal value : " << g o a l v a l u e << end l ;

138 c e r r << "sequence length : " << i n i t s t r i n g . l e n g t h ()

<< end l

140 << "evaluations : " << max t ime << end l

<< "\n\n" ;

112 5.1. NEWLY DEVELOPED SOFTWARE

142 i f (! h i s t p r i n t)

c e r r << "suppressed histogram file output\n" ;

144 i f (s t r a t e g y != a n n e a l i n g)

c e r r << "suppressed temperature file output\n" ;

146 i f (! c t l p r i n t)

c e r r << "suppressed control file output\n" ;

148 i f (! s t a t p r i n t)

c e r r << "suppressed statistics file output\n\n" ;

150 } / / end : i f ve rbose

/ / ∗ ∗ ∗ ∗ run f o l l o w i n g code ’ maxruns ’ t i m e s∗∗∗∗
152 f o r (c y c l e s =0; cyc l es<maxruns ; c y c l e s + +){ / / c y c l e sweep

r u n t i m e =0;

154 / / g e n e r a t i n g s e e k e r s

f o r (c o u n t e r =0; coun te r<n ; c o u n t e r ++){
156 s e e k e r [c o u n t e r]= r n ss t r i n g (i n i t s t r i n g . c s t r () ,

i n i t s t r u c t . c s t r ()) ;

158 s e e k e r [c o u n t e r] . e v a l u a t e () ;

}
160 temp = INFINITY ;

p s e l = 0 ;

162 / /−−
/ / l i f e c y c l e

164 / /−−
whi le (r u n t i m e <= max t ime) { / / t ime sweep

166 i f (r u n t i m e > i n i t t i m e && temp = = INFINITY){
temp = tempbackup ;

168 p s e l = p s e l b a c k u p ;

170 }
/ / s t a t u s r e p o r t

172 i f (gu i) {
p t h r e a d t e s t c a n c e l () ;

174 w=(1+(pse l−p s e l m i n) / d e l t a p s e l) ∗
(1+ (n−n min) / d e l t a n) ∗ (c y c l e s + 1) ∗ r u n t i m e ;

176 p e r c e n t d o n e =(i n t) r i n t (w∗1 0 0 . 0 / g) ;

i f (p e r c e n t d o n e>o l d p e r c e n t) {
178 o l d p e r c e n t = p e r c e n td o n e ;

5.1. NEWLY DEVELOPED SOFTWARE 113

IPC Handler−>AsyncHandler () ;

180 }
}

182 / / c a l c u l a t e runn ing ensemble s t a t i s t i c s

i f (s t r a t e g y = = a n n e a l i n g| | ve rbose2)

184 s t a t i s t i c s (& c y c l e s) ;

i f (h i s t p r i n t | | a u t o m a t i c)

186 v a r i a b i l i t y = make h is togram (cyc l es , c t r lp s e l) ;

/ /−−−−−−−− a u t o m a t i c−−−−−−−−−−−−−−−−−−−−
188 i f (r u n t i m e > i n i t t i m e &&

a u t o m a t i c && (c y c l e c o u n t == reac t i onw indow)) {
190 c y c l e c o u n t =0;

d i f f e r e n c e = v a r i a b i l i t y−v a r i a b i l i t y g o a l ;

192 i f (e p s i l o n +0.01>= f a b s (d i f f e r e n c e))

d i f f e r e n c e =0;

194 i f (d i f f e r e n c e > 0) {
c t r l p s e l∗=exp (1 + d i f f e r e n c e / e p s i l o n) ;

196 i f (c t r l p s e l > 100)

c t r l p s e l =100;

198 }
e l s e

200 i f (d i f f e r e n c e < 0) {
c t r l p s e l /= exp (1− d i f f e r e n c e / e p s i l o n) ;

202 i f (c t r l p s e l < 0 . 1)

c t r l p s e l = 0 . 1 ;

204 }
}

206 e l s e

c y c l e c o u n t ++;

208 / / −−−−− end a u t o m a t i c−−−−−−−−−−−−−−−−−−

210 /

/ / sea rch acco rd ing t o s e l e c t e d s t r a t e g y / /

212 /

214 sw i tch (s t r a t e g y) {
case a n n e a l i n g :

114 5.1. NEWLY DEVELOPED SOFTWARE

216 / / c a l c u l a t e new t e m p e r a t u r e f o r n e x t t ime s t e p

i f (temp > dtemp)

218 temp−=dtemp ;

dtemp = 1 . 0 / s t d v f i t n e s s ;

220 mut a t i o n () ;

r u n t i m e ++;

222 break ;

case wors t :

224 case m e t r o p o l i s :

mu t a t i o n () ;

226 r u n t i m e ++;

break ;

228 case f i t n e s s :

case t ou rnamen t :

230 case t ou rnament4 :

t a u = g s l r a n e x p o n e n t i a l (r n dg e n e r a t o r , rndmu) ;

232 r u n t i m e +=1.0∗ rnd mu∗ t a u ;

i f (1 0 0 . 0 ∗ g s l r n g u n i f o r m (r n d g e n e r a t o r)>= c t r l p s e l)

234 mut a t i o n () ;

e l s e

236 s e l e c t i o n (hash) ;

break ;

238 d e f a u l t :

c e r r << "Internal program error in main loop!\n"

240 << "Unknown optimization strategy. Exiting now.\n\n" ;

e x i t (FALSE) ;

242 break ;

244 /

} / / end s t r a t e g y

246 } / / end t ime sweep

s t a t i s t i c s (& c y c l e s) ;

248 i f (h i s t p r i n t | | c t l p r i n t | | a u t o m a t i c)

make h is togram (cyc l es , c t r lp s e l) ;

250 i f (h a m p r i n t)

h a m s t a t (& c y c l e s) ;

252 } / / end c y c l e sweep

5.1. NEWLY DEVELOPED SOFTWARE 115

max t ime=max t ime backup ;

254 / / p r i n t f i n a l r e s u l t s

s t a t i s t i c s (& c y c l e s) ;

256 i f (h i s t p r i n t | | c t l p r i n t | | a u t o m a t i c)

make h is togram (cyc l es , c t r lp s e l) ;

258 i f (h a m p r i n t)

h a m s t a t (& c y c l e s) ;

260 } / / end s e e k e r number sweep

} / / end s e l e c t i o n p r o b a b i l i t y sweep

262 cou t << "Done.\n" ;

s t a t u s = u n d e f i n e d ;

264 i f (gu i) {
p e r c e n t d o n e =100;

266 IPC Handler−>AsyncHandler () ;

}
268 d e l e t e [] hash ;

a l l o c a t e d−−;

270 d e l e t e [] s e e k e r ;

a l l o c a t e d−−;

272 # i f d e f PROGDEBUG

i f (a l l o c a t e d ! = 0)

274 c e r r << "Program still holds " << a l l o c a t e d << " arrays!\n" ;

e n d i f

276 / / r e t u r n TRUE;

278 re turn 0 ;

}

116 5.1. NEWLY DEVELOPED SOFTWARE

5.1.4 MPI generate

This program was developed by the author to effectively generate correlated

Gaussian random fitness landscapes in up to five dimensions (cf. section3.1).

It is written in C and refers to theMPI standard for message passing on multi

processor machines. Acceleration is achieved due to a simple divide and con-

quer strategy, so the landscape generation speed scales nicely with the number

of processors involved to generate it.

/∗−−−
2 g e n e r a t e c o r r e l a t e d , random l a n d s c a p e s i n up t o 5 d imens ions

u t i l i z i n g m u l t i p l e p r o c e s s o r s

4 c f . S t e i n b e r g , M. :

” K o n s t r u k t i o n von k o r r e l i e r t e n , z u f a e l l i g e n L a n d s c h a f t e n ”

6

Copy r i gh t (C) 1 9 9 9 A . Reimann

8 Vers ion : 0 . 5

10 Th is program i s f r e e s o f t w a r e ; you can r e d i s t r i b u t e i t and / or

mod i fy i t under t h e te rms o f t h e GNU Genera l P u b l i c L i c e n s e

12 as p u b l i s h e d by t h e Free So f t wa re Foundat ion ; e i t h e r v e r s i o n 2

o f t h e L icense , or (a t your o p t i o n) any l a t e r v e r s i o n .

14

Th is program i s d i s t r i b u t e d i n t h e hope t h a t i t w i l l be u s e f u l ,

16 bu t WITHOUT ANY WARRANTY ; w i t h o u t even t h e i m p l i e d war ran ty o f

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See t h e

18 GNU Genera l P u b l i c L i c e n s e f o r more d e t a i l s .

20 You shou ld have r e c e i v e d a copy o f t h e GNU Genera l P u b l i c L i c e n s e

a long w i th t h i s program ; i f not , w r i t e t o t h e Free S o f twa re

22 Foundat ion , Inc . , 5 9 Temple Place− S u i t e 3 3 0 ,

Boston , MA 02111−1307 , USA .

24 −−−∗ /

26 /∗ i n c l u d e header ∗ /

5.1. NEWLY DEVELOPED SOFTWARE 117

inc lude < s t d i o . h>

28 # i n c l u d e < s t d l i b . h>

inc lude <math . h>

30 # inc lude < s t r i n g . h>

inc lude <mpi . h>

32

d e f i n e DEBUG

34

i f n d e f PI

36 # d e f i n e PI 3.141592653

e n d i f

38 # i f n d e f twoPI

d e f i n e twoPI 6.2831853072

40 # e n d i f

i f n d e f SQRT2

42 # d e f i n e SQRT2 1.4142135624

e n d i f

44 # d e f i n e SEED SQRT2

d e f i n e MAXDIM 5

46 # d e f i n e INIT TAG 1

d e f i n e STATUS TAG 2

48 # d e f i n e SOLVED TAG 3

50 /∗ d e f i n e p r o t o t y p e s ∗ /

i n t g e t o p t s (i n t argc , char ∗∗ argv) ;

52 i n l i n e f l o a t f i t n e s s (i n t , i n t , f l o a t ∗) ;

vo id i n i t i a l i z e r a n d (f l o a t ∗) ;

54 vo id mas te r (i n t , char ∗ ∗) ;

vo id s l a v e (i n t) ;

56 vo id usage (vo id) ;

58 /∗ d e f i n e g l o b a l v a r i a b l e s ∗ /

f l o a t Gamma , f a c t o r 1 , f a c t o r 3 , f a c t o r 4 , f a c t o r 5 ;

60 i n t dimension , s i z e , p lane , volume , volume4 , volume5 ;

s t a t i c i n t r o o t =0;

62 char ∗ o u t f i l e n a m e ;

118 5.1. NEWLY DEVELOPED SOFTWARE

64 /∗−−−∗ /

i n t main (i n t argc ,char ∗∗ argv) {
66 i n t myrank ;

68 M P I I n i t (& argc , & argv) ;

MPI Comm rank (MPICOMM WORLD, & myrank) ;

70

i f (myrank== r o o t) {
72 mas te r (argc , a rgv) ;

f p r i n t f (s t d e r r ,"done.\n") ;

74 }
e l s e

76 s l a v e (myrank) ;

re turn (0) ;

78 }
/∗−−−∗ /

80

vo id mas te r (i n t argc , char ∗∗ argv) {
82 MPI Sta tus s t a t u s ;

MPI Request r e q u e s t ;

84 FILE ∗ f i l e h a n d l e ;

char f i l e n a m e [1 0 0] ;

86 i n t source , des t , p rocn r , runn ing , remainder , f l a g ;

i n t b u f f e r , count , i , j , ∗ c o o r d i n a t e , ∗ p e r c e n t a g e ;

88 long i n t r a n d n r ;

f l o a t rand mem , ∗ ch i , ∗ r e s u l t ;

90 l d i v t l f r a c t i o n ;

d i v t f r a c t i o n ;

92

g e t o p t s (argc , a rgv) ;

94 s t r c p y (f i l ename , o u t f i l e n a m e) ;

/∗ i n i t i a l i z e random numbers∗ /

96 r a n d n r =(long i n t) pow (s i z e , d imens ion) ;

rand mem =1.0∗ s i z e o f(f l o a t) ∗ (r a n d n r + 2) ;

98 i f (rand mem /1048576>1)

f p r i n t f (s t d e r r ,"allocating %.2f MB of memory\n" ,

100 rand mem / 1 0 4 8 5 7 6) ;

5.1. NEWLY DEVELOPED SOFTWARE 119

e l s e

102 f p r i n t f (s t d e r r ,"allocating %.2f kB of memory\n" ,

rand mem / 1 0 2 4) ;

104 c h i = ma l loc (randmem) ;

i f (c h i ==NULL) {
106 f p r i n t f (s t d e r r ,"Insufficient memory!\n") ;

MPI Abort (MPI COMM WORLD, 1) ;

108 e x i t (1) ;

}
110 f p r i n t f (s t d e r r ,"initializing random number reservoir\n") ;

i n i t i a l i z e r a n d (c h i) ;

112 f p r i n t f (s t d e r r ,"initializing slave processes:\n") ;

/∗ seed t h e s l a v e s ∗ /

114 /∗ send : d imens ion , s i z e , Gamma and ∗ /

/∗ random number r e s e r v o i r ∗ /

116 MPI Comm size (MPICOMM WORLD, & p r o c n r) ;

f o r (d e s t = 1 ; des t<p r o c n r ; d e s t ++){
118 f p r i n t f (s t d e r r ,"Nr. %i " , d e s t) ;

MPI Send(& dimension , 1 , MPIINT , des t , INIT TAG , MPI COMM WORLD) ;

120 f p r i n t f (s t d e r r ,".") ;

MPI Send(& s i z e , 1 , MPIINT , des t , INIT TAG , MPI COMM WORLD) ;

122 f p r i n t f (s t d e r r ,".") ;

MPI Send(&Gamma , 1 , MPIFLOAT , des t , INIT TAG , MPI COMM WORLD) ;

124 f p r i n t f (s t d e r r ,".") ;

MPI Send(& rand n r , 1 , MPI LONG , des t , INIT TAG , MPI COMM WORLD) ;

126 f p r i n t f (s t d e r r ,".") ;

MPI Send (ch i , r andn r , MPI FLOAT , des t , INIT TAG , MPI COMM WORLD) ;

128 f p r i n t f (s t d e r r ,".") ;

f p r i n t f (s t d e r r ," initialized\n") ;

130 }
/∗ check , whether f i t n e s s [] s p l i t s e v e n l y∗ /

132 /∗ send f r a c t i o n o f r e s u l t a r ray ∗ /

l f r a c t i o n = l d i v (rand n r , (p roc n r −1)) ;

134 i f (l f r a c t i o n . quot<=1){
f p r i n t f (s t d e r r , "Warning: Problem too small to be treated ") ;

136 f p r i n t f (s t d e r r ,"efficiently on %i Processors.\n" , p r o c n r) ;

}

120 5.1. NEWLY DEVELOPED SOFTWARE

138 i f (l f r a c t i o n . rem ==0)

{
140 # i f d e f DEBUG

f p r i n t f (s t d e r r ,"task splits nicely\n") ;

142 # e n d i f

f o r (d e s t = 1 ; des t<p r o c n r ; d e s t ++)

144 MPI Send(& l f r a c t i o n . quot , 1 , MPILONG ,

des t , INIT TAG , MPI COMM WORLD) ;

146 }
e l s e

148 {
/∗ prepare some i n t e l l i g e n t p a r t i t i o n i n g∗ /

150 # i f d e f DEBUG

f p r i n t f (s t d e r r ,"task splits inconveniently\n") ;

152 # e n d i f

i f ((l f r a c t i o n . quo t + l f r a c t i o n . rem)>=(p roc n r −1)) {
154 l f r a c t i o n . quo t ++;

l f r a c t i o n . rem= randn r −((p roc n r −2)∗ l f r a c t i o n . quo t) ;

156 }
e l s e

158 l f r a c t i o n . rem= l f r a c t i o n . rem+ l f r a c t i o n . quo t ;

/∗ send f r a c t i o n s ∗ /

160 # i f d e f DEBUG

f p r i n t f (s t d e r r ,"sending %i times %li\n" ,

162 p roc n r −2 , l f r a c t i o n . quo t) ;

f p r i n t f (s t d e r r ," + 1 time %li numbers.\n" ,

164 l f r a c t i o n . rem) ;

e n d i f

166 f o r (d e s t = 1 ; des t<(p roc n r −1) ; d e s t ++)

MPI Send(& l f r a c t i o n . quot , 1 , MPILONG ,

168 des t , INIT TAG , MPI COMM WORLD) ;

MPI Send(& l f r a c t i o n . rem , 1 , MPILONG ,

170 p roc n r −1 , INIT TAG , MPI COMM WORLD) ;

}
172 /∗ prepare s t a t u s i n f o r m a t i o n o u t p u t∗ /

p e r c e n t a g e = mal loc (s i z e o f(i n t)∗ p r o c n r) ;

174 f o r (i =0; i <p r o c n r ; i ++)

5.1. NEWLY DEVELOPED SOFTWARE 121

p e r c e n t a g e [i] = 0 ;

176 f p r i n t f (s t d e r r ,"percent processed:\n") ;

/∗ r e c e i v e s t a t u s i n f o r m a t i o n∗ /

178 # i f d e f DEBUG

f p r i n t f (s t d e r r ,"(reallocating %g bytes)\n" , rand mem) ;

180 # e n d i f

r e s u l t = r e a l l o c (ch i , randmem +100) ;

182 i f (r e s u l t ==NULL) {
f p r i n t f (s t d e r r ,"Insufficient memory!\n") ;

184 MPI Abort (MPI COMM WORLD, 5) ;

e x i t (5) ;

186 }
r unn ing = p roc n r −1;

188 whi le (r unn ing) {
MPI I recv (& b u f f e r , 1 , MPI INT , MPI ANY SOURCE ,

190 MPI ANY TAG , MPI COMM WORLD, & r e q u e s t) ;

do

192 MPI Test (& r e q u e s t , & f l a g , & s t a t u s) ;

whi le (! f l a g) ;

194 s o u r c e = s t a t u s . MPISOURCE ;

sw i tch (s t a t u s . MPITAG) {
196 case STATUS TAG :

p e r c e n t a g e [source−1]= b u f f e r ;

198 i f (b u f f e r ! = 0) {
f o r (i =0; i <(p roc n r −1); i ++)

200 f p r i n t f (s t d e r r ,"%i " , p e r c e n t a g e [i]) ;

f p r i n t f (s t d e r r ,"\n") ;

202 }
break ;

204 case SOLVED TAG:

MPI Recv(& count , 1 , MPIINT , source ,

206 SOLVED TAG , MPI COMM WORLD, & s t a t u s) ;

MPI Recv (r e s u l t + b u f f e r , count , MPIFLOAT , source ,

208 SOLVED TAG , MPI COMM WORLD, & s t a t u s) ;

runn ing−−;

210 break ;

122 5.1. NEWLY DEVELOPED SOFTWARE

212 }
}

214 /∗ w r i t e f i n a l r e s u l t t o d i s k ∗ /

f f l u s h (NULL) ;

216 f p r i n t f (s t d e r r ,"\nWriting results to %s\n" , f i l e n a m e) ;

f i l e h a n d l e = fopen (f i l ename ,"w") ;

218 i f (f i l e h a n d l e ==NULL) {
f p r i n t f (s t d e r r ,"Couldn’t open file %s for writing!\n" , f i l e n a m e) ;

220 MPI Abort (MPI COMM WORLD, 2) ;

}
222 c o o r d i n a t e = mal loc (d imens ion∗ s i z e o f(i n t)) ;

/∗ c a l c u l a t e c o o r d i n a t e s from i n d e x∗ /

224 f o r (j = 0 ; j <r a n d n r ; j ++) {
r ema inde r = j ;

226 f o r (i =(d imension−1) ; i >0; i −−) {
f r a c t i o n = d iv (remainder , pow (s i z e , i)) ;

228 c o o r d i n a t e [i]= f r a c t i o n . quo t ;

r ema inde r = f r a c t i o n . rem ;

230 }
c o o r d i n a t e [0]= rema inde r ;

232 f o r (i = 0 ; i <d imens ion ; i ++)

f p r i n t f (f i l e h a n d l e ,"%i\t" , c o o r d i n a t e [i]) ;

234 f p r i n t f (f i l e h a n d l e ,"%f\n" , r e s u l t [j]) ;

}
236 M P I F i n a l i z e () ;

re turn ;

238 }

240 vo id s l a v e (i n t myrank) {
s t a t i c i n t r o o t =0;

242 long i n t r a n d n r ;

i n t i , f r a c t i o n , o f f s e t , p e r c e n t , n rs l a v e s ;

244 MPI Sta tus s t a t u s ;

MPI Request r e q u e s t ;

246 f l o a t ∗ ch i , ∗ r e s u l t , s tep , i n t e r v a l l = 5 . 0 ;

l d i v t l f r a c t i o n ;

248

5.1. NEWLY DEVELOPED SOFTWARE 123

/∗ r e c e i v e d imens ion , s i z e and gamma v a l u e∗ /

250 MPI Recv(& dimension , 1 , MPIINT , roo t ,

INIT TAG , MPI COMM WORLD, & s t a t u s) ;

252 MPI Recv(& s i z e , 1 , MPIINT , roo t ,

INIT TAG , MPI COMM WORLD, & s t a t u s) ;

254 MPI Recv(&Gamma , 1 , MPIFLOAT , roo t ,

INIT TAG , MPI COMM WORLD, & s t a t u s) ;

256 /∗ a l l o c a t e memory f o r random number r e s e r v o i r∗ /

MPI Recv(& rand n r , 1 , MPI LONG , roo t ,

258 INIT TAG , MPI COMM WORLD, & s t a t u s) ;

i f (! (c h i = ma l loc (s i z e o f(f l o a t)∗ r a n d n r))) {
260 MPI Abort (MPI COMM WORLD, 5) ;

e x i t (5) ;

262 }
/∗ r e c e i v e random number r e s e r v o i r∗ /

264 MPI Recv (ch i , r andn r , MPI FLOAT , roo t ,

INIT TAG , MPI COMM WORLD, & s t a t u s) ;

266 /∗ a l l o c a t e memory f o r f i t n e s s v a l u e s∗ /

MPI Recv(& f r a c t i o n , 1 , MPILONG , roo t ,

268 INIT TAG , MPI COMM WORLD, & s t a t u s) ;

i f (! (r e s u l t = ma l loc (s i z e o f(f l o a t)∗ f r a c t i o n))) {
270 MPI Abort (MPI COMM WORLD, 5) ;

e x i t (5) ;

272 }
/∗ p r e c a l c u l a t e c o n s t a n t f a c t o r s∗ /

274 MPI Comm size (MPICOMM WORLD, & n r s l a v e s) ;

n r s l a v e s−−; /∗ maste r doesn ’ t coun t∗ /

276 p l a n e = s i z e∗ s i z e ;

volume= p l a n e∗ s i z e ;

278 volume4=volume∗ s i z e ;

volume5=volume4∗ s i z e ;

280 f a c t o r 1 = s q r t (Gamma / (2 . 0∗ PI∗PI)) ;

f a c t o r 3 =SQRT2 / pow (PI , 3 / 2) ;

282 f a c t o r 4 =1 / (16∗pow (PI , 4)) ;

f a c t o r 5 = s q r t (Gamma/ (2∗ pow (PI , 5))) ;

284 /∗ s t a r t a c t u a l work ∗ /

p e r c e n t=− i n t e r v a l l ;

124 5.1. NEWLY DEVELOPED SOFTWARE

286 s t e p = f r a c t i o n / i n t e r v a l l ;

i f (myrank== n r s l a v e s)

288 o f f s e t = rand n r− f r a c t i o n ;

e l s e

290 o f f s e t =(myrank−1)∗ f r a c t i o n ;

f o r (i =0; i < f r a c t i o n ; i ++) {
292 r e s u l t [i]= f i t n e s s (o f f s e t + i , s i z e , c h i) ;

l f r a c t i o n = l d i v (i , (long) c e i l (s t e p)) ;

294 i f (l f r a c t i o n . rem ==0){
i f (p e r c e n t>=0)

296 MPI Wait (& r e q u e s t , & s t a t u s) ;

p e r c e n t += i n t e r v a l l ;

298 MPI Isend (& p e r c e n t , 1 , MPIINT , roo t ,

STATUS TAG , MPI COMM WORLD, & r e q u e s t) ;

300 }
}

302 /∗ submi t r e s u l t s t o mas te r∗ /

MPI Send(& o f f s e t , 1 , MPIINT , roo t ,

304 SOLVED TAG , MPI COMM WORLD) ;

MPI Send(& f r a c t i o n , 1 , MPIINT , roo t ,

306 SOLVED TAG , MPI COMM WORLD) ;

MPI Send (r e s u l t , f r a c t i o n , MPIFLOAT , roo t ,

308 SOLVED TAG , MPI COMM WORLD) ;

/∗ done ∗ /

310 M P I F i n a l i z e () ;

re turn ;

312 }

314

/∗−−−∗ /

316

i n t g e t o p t s (i n t argc , char ∗∗ argv){
318 i n t i ;

320 i f (argc<2)

usage () ;

322 f o r (i = 0 ; i <a rgc ; i ++) {

5.1. NEWLY DEVELOPED SOFTWARE 125

i f (! s t rncmp (argv [i] ,"-h" , 2))

324 usage () ;

i f (! s t rncmp (argv [i] ,"-s" , 2))

326 s i z e = a t o i (a rgv [i + 1]) ;

i f (! s t rncmp (argv [i] ,"-g" , 2))

328 Gamma= a t o f (a rgv [i + 1]) ;

i f (! s t rncmp (argv [i] ,"-d" , 2))

330 d imens ion = a t o i (a rgv [i + 1]) ;

i f (! s t rncmp (argv [i] ,"-f" ,2) && i <(argc−1))

332 o u t f i l e n a m e = argv [i + 1] ;

}
334 i f (d imension< = 0 | | d imens ion > MAXDIM) d imens ion =1;

f p r i n t f (s t d e r r ,"dimension: %i\n" , d imens ion) ;

336 i f (s i z e <=0) s i z e =10;

f p r i n t f (s t d e r r ,"size : %i\n" , s i z e) ;

338 f p r i n t f (s t d e r r ,"gamma : %.2f\n" , Gamma) ;

f p r i n t f (s t d e r r ,"outfile : %s\n" , o u t f i l e n a m e) ;

340 i f (Gamma∗2 >= s i z e) {
f p r i n t f (s t d e r r ,"\nWARNING: Gamma comparatively high!\n\n") ;

342 }
re turn 1 ;

344 }

346 vo id i n i t i a l i z e r a n d (f l o a t ∗ c h i) {
f l o a t v1 , v2 , v3 , r a d i u s ;

348 unsigned i n t i ;

350 s r a n d (SEED) ;

f o r (i = 0 ; i <((unsigned i n t) (pow (s i z e , d imens ion)−2)) ; i +=2) {
352 do {

v1 =2.0∗ rand () / (RANDMAX+1.0) −1 .0 ;

354 v2 =2.0∗ rand () / (RANDMAX+1.0) −1 .0 ;

r a d i u s =v1∗v1+v2∗v2 ;

356 }
/∗ p i c k two numbers i n u n i t c y c l e∗ /

358 whi le (r a d i u s > = 1 . 0 | | r a d i u s = = 0 . 0) ;

v3= s q r t (−2.0∗ l og (r a d i u s) / r a d i u s) ;

126 5.1. NEWLY DEVELOPED SOFTWARE

360 c h i [i]= v1 ∗v3 ;

c h i [i +1]= v2∗v3 ;

362 }
re turn ;

364 }

366 f l o a t f i t n e s s (i n t index , i n t s i z e , f l o a t ∗ c h i) {
i n t i , x1 , y1 , z1 , a1 , b1 , x2 , y2 , z2 , a2 , b2 ;

368 i n t modulus ;

f l o a t f i t n e s s = 0 , r ;

370

sw i tch (d imens ion) {
372 case 1 :

f o r (i =0; i <s i z e ; i ++) {
374 r =1.0∗ abs (index− i) ;

i f (r ! =0)

376 f i t n e s s += c h i [i]∗ f a c t o r 1 / (exp (r /Gamma)∗ s q r t (r)) ;

}
378 break ;

case 2 :

380 x1= index%s i z e ;

y1= index / s i z e ;

382 f o r (i = 0 ; i <p l a n e ; i ++) {
x2= i%s i z e ;

384 y2= i / s i z e ;

r = s q r t ((x2−x1)∗ (x2−x1) + (y2−y1)∗ (y2−y1)) ;

386 f i t n e s s += c h i [i]∗ exp(− r /Gamma) / twoPI ;

}
388 break ;

case 3 :

390 z1= index / p l a n e ;

modulus= index%p l a n e ;

392 y1=modulus / s i z e ;

x1=modulus%s i z e ;

394 f o r (i = 0 ; i <volume ; i ++) {
z2= i / p l a n e ;

396 modulus= i%p l a n e ;

5.1. NEWLY DEVELOPED SOFTWARE 127

y2=modulus / s i z e ;

398 x2=modulus%s i z e ;

r = s q r t ((x2−x1)∗ (x2−x1) + (y2−y1)∗ (y2−y1) + (z2−z1)∗ (z2−z1)) ;

400 i f (r ! = 0) f i t n e s s += c h i [i]∗ f a c t o r 3∗ (exp(− r /Gamma) / r) ;

}
402 break ;

case 4 :

404 a1= index / volume ;

modulus= index%volume ;

406 z1=modulus / p l a n e ;

modulus=modulus%p l a n e ;

408 y1=modulus / s i z e ;

x1=modulus%s i z e ;

410 f o r (i = 0 ; i <volume4 ; i ++) {
a2= i / volume ;

412 modulus= i%volume ;

z2=modulus / p l a n e ;

414 modulus=modulus%p l a n e ;

y2=modulus / s i z e ;

416 x2=modulus%s i z e ;

r = s q r t ((x2−x1)∗ (x2−x1) + (y2−y1)∗ (y2−y1) + (z2−z1)∗ (z2−z1)+

418 (a2−a1)∗ (a2−a1)) ;

f i t n e s s += c h i [i]∗ f a c t o r 4∗exp (−2∗ r /Gamma) ;

420 }
break ;

422 case 5 :

b1= index / volume4 ;

424 modulus= index%volume4 ;

a1=modulus / volume ;

426 modulus=modulus%volume ;

z1=modulus / p l a n e ;

428 modulus=modulus%p l a n e ;

y1=modulus / s i z e ;

430 x1=modulus%s i z e ;

f o r (i = 0 ; i <volume5 ; i ++) {
432 b2= i / volume4 ;

modulus= i%volume4 ;

128 5.1. NEWLY DEVELOPED SOFTWARE

434 a2=modulus / volume ;

modulus=modulus%volume ;

436 z2=modulus / p l a n e ;

modulus=modulus%p l a n e ;

438 y2=modulus / s i z e ;

x2=modulus%s i z e ;

440 r = s q r t ((x2−x1)∗ (x2−x1) + (y2−y1)∗ (y2−y1) + (z2−z1)∗ (z2−z1)+

(a2−a1)∗ (a2−a1) + (b2−b1)∗ (b2−b1)) ;

442 f i t n e s s += c h i [i]∗ f a c t o r 5∗exp (−2∗ r /Gamma) ;

}
444 }

re turn f i t n e s s ;

446 }

448 vo id usage (vo id) {
f p r i n t f (s t d e r r ,"program requires MPI to be installed\n\n") ;

450 f p r i n t f (s t d e r r ,"invocation: mpi_generate [-s #] [-g #] [-d #]") ;

f p r i n t f (s t d e r r ," [-f file]\n") ;

452 f p r i n t f (s t d e r r ,"s:\tsize of parameter space\n") ;

f p r i n t f (s t d e r r ,"g:\tcorrelation length\n") ;

454 f p r i n t f (s t d e r r ,"d:\tdimension of parameter space\n") ;

f p r i n t f (s t d e r r ,"f:\toutput file\n\n") ;

456 MPI Abort (MPI COMM WORLD, 1) ;

e x i t ;

458 }

5.2. OPEN SOURCE SOFTWARE 129

5.2 Open Source Software

The software developed for this work, of course, does not reinvent the wheel.

The programs and libraries listed below where used for data analysis and as

building blocks in the auhor’s simulation software.

5.2.1 The Message Passing Interface MPI

Whenever it comes to programming parallel machines, the problem of data and

task synchronization arises. Usually, the tasks running in parallel solve this

problem by sending messages back and forth. MPI is a library specification

for message-passing, proposed as a standard by a broadly based committee of

vendors, implementors, and users.1 It was designed for high performance on

both massively parallel machines and on workstation clusters. Implementations

include, among others, MPICH and LAM (Local Area Multicomputer).

5.2.2 The Vienna RNA Package

The core of the Vienna RNA Package is formed by a collection of routines for

the prediction and comparison of RNA secondary structures. These routines can

be accessed through stand-alone programs, such as RNAfold, RNAdistance etc.,

which should be sufficient for most users; but they are also made available by a

software library.2

5.2.3 Free Visualization Software

All figures in this work were generated using free software covered by the GPL.

The following programs where particularly helpfull:

1http://www-unix.mcs.anl.gov/mpi/
2http://www.tbi.univie.ac.at/∼ivo/RNA/RNAlib.html

130 5.2. OPEN SOURCE SOFTWARE

GMT The Generic Mapping Tools were developed at the School of Ocean and

Earth Science and Technology, Hawaii. GMT is a free, public-domain col-

lection of∼60 UNIX tools that allow users to manipulate (x,y) and (x,y,z)

data sets (including filtering, trend fitting, gridding, projecting, etc.) and

produce Encapsulated PostScript File (EPS) illustrations ranging from sim-

ple x-y plots through contour maps to artificially illuminated surfaces and

3-D perspective views in black and white, gray tone, hachure patterns, and

24-bit color. GMT supports 25 common map projections plus linear, log,

and power scaling, and comes with support data such as coastlines, rivers,

and political boundaries. It is available at

htt p : //www.soest.hawaii.edu/gmt/.

Vis5D is a system for interactive visualization of large 5-D gridded data sets.

One can make isosurfaces, contour line slices, colored slices, etc of data in

a 3-D grid then rotate and animate the image in real time. There’s also a

feature for trajectory tracing, a way to make text anotations for publications,

etc. Vis5D uses a binary format to store its data, making it necessary to

convert ASCII input. Vis5D is available for download at

htt p : //www.source f orge.net/pro jects/vis5d/.

XMGrace Grace is a WYSIWYG 2D plotting tool for the X Window System

and Motif. Grace runs on practically any version of Unix. Also, it has been

successfully ported to VMS, OS/2, and Win9*/NT (some minor functional-

ity may be missing, though).

Grace is a descendant of ACE/gr, also known as Xmgr. It is available at

htt p : //plasma−gate.weizmann.ac.il /Grace/.

5.2. OPEN SOURCE SOFTWARE 131

5.2.4 Free External Libraries

All statistical calculations rely on theGNU Scientific Library GSL which is

available1 under the GNU Public License GPL Version 2. This library is cur-

rently under heavy development but nonetheless offers a tremendous and reliable

help for numerical computations. For example, it embodies carefully crafted rou-

tines to avoid numerical artifacts due to rounding errors or variable overflows.

The library version used for this work is GSL V.:0.6.

The program SimLabs also links to theC++ Standard Template Library

STL to access the vector class . This ensures an abstract interface, data type

safety, and inhibits buffer overflows as well as memory leaks.

The graphical user interface (GUI) was realized with help of theQt GUI

toolkit which is Copyright (C) 1994-2000 Trolltech AS. The toolkit was, how-

ever, brought under the GPL version 2 in the year 2000.

The programs SimEngel and SimLabs need the qt libraries version 2.0 or

above. Since the interprocess communication (IPC) is done using Qt’s signal/s-

lot mechanism and the libraries before version 2.2 were not thread safe, both

programs contain their own mutexes and schedule all X events through a pipe.

This prevents timing dependent crashes when both the X Server and the program

interfere by trying to access the same resources.

1available at ftp://alpha.gnu.org/gnu

132 5.2. OPEN SOURCE SOFTWARE

Appendix A

Polio Virus Type 1 Subsequence

All simulations with respect to RNA secondary structures where carried out

using a 100 base sequence of Polio virus Type 1 Mahoney (AC V01148, 5’-

cloverleaf). The primary structure of this sequence is (spaces are inserted for

readability):

CCCUU CCCUC AUAUU

UUGUC CGCAU GUUCC

CAUGG CGUUA UGGCC

UCAUG AUCGG CGGUG

CACCC GGAGA CCCCA

CCCAU GUUGG GGUCU

CGACA AAAUU

The optimal folding (i.e. the least free energy secondary structure) determined

by the Vienna RNA package1 (version 1.4) has a free energy ofF = −32.0

kcal/mol. This differs from the resultF = −28.09 kcal/mol found in a work

by ROSÉ [15]. His work relies on an earlier version of the Vienna RNA pack-

age, however, which used a different energy functional. The secondary structure

found by the package’s recursive algorithm is shown in FigureA.1.
1http://www.tbi.univie.ac.at/∼ivo/RNA/

133

134

C
C

CUUC
C

C
U
C

A U A
U
U
U
U
G
U
C

CGCA
U

G
U
U

C C C A
U
G
G
CG
U
U
A
U

G
G
C
C

U
C
A

U G
A
U
C

G
G
C

G
G
U
GC
A
C
C
CGG A G A C C C C A

C C
C
A

UGU
UGGGGUCUCG

A
C

A
A

A
A

U
U

F=-32.0 kcal/mol

Figure A.1: Best secondary structure of the firstL = 100 base pair sequence of Polio virus

Type 1 (AC V01148, 5’-cloverleaf) found by the recursive algorithm included in the Vienna

RNA package Version 1.4

In bracket notation, the secondary structure seen in FigureA.1 reads:

.....((((((((.....((.(((((.(((..... ...))

).))) .)))) .(((((((((..... ..))))))))))))))))).

This optimum is at least two-fold degenerated since the optimal folding found

with the mixed evolutionary strategies introduced in this work has the same free

energy but with a different secondary structure. In FigureA.2, this optimum as

well as sub-optimal foldings found ’on the way’ in the search process are shown.

135

C
C

CUUC
C

C
U
C

A U A
U
U
U
U
G
U
C

C
G

CAU
GU

U
CCC

A
U
G

G
CG

U
U

A U
G
G

C
C U C

A
U

G
A U

C
G

G
C

G
G

U
G

C AC
C
C

GG A G A C C C C A
C C

C
A

UGU
UGGGGUCUCGA

C
A

A
A

A
U

U

C
C

CUUC
C

C
U
C

A U A
U
U
U
U
G
U
CC

G
CAUGU

U
C C

C A U GGCGUU
A
U

G
G
C
CU

C
A

U G A
U
C

G
G
C
G

G
U
GCAC

C
C
G
G A G A C C C C A

C C
C
A

UGU
UGGGGUCUCG

A
C

A
A

A
A

U
U

C
C

CUUC
C

C
U
C

A U A
U
U
U
U
G
U
CC

G
CAUGU

U
C C

C A U GGCG
UU
A
U

G
G
C
C

U
C
A

U G
A
U
C

G
G
C
G

G
U
G
CACC

C
G
G A G A C C C C A

C C
C
A

UGU
UGGGGUCUCG

A
C

A
A

A
A

U
U

C
C

CUUC
C

C
U
C

A U A
U
U
U
U
G
U
C

C

G
C

A
U

G
U

UC
C
C

A
U

G
GC

GU
U
A

U G
G
C C

U
C

A
U

G A
U
C

G
G

CG
G

U
G

CACCC
G
G A G A C C C C A

C C
C
A

UGU
UGGGGUCUCG

A
C

A
A

A
A

U
U

F=-29.8 kcal/mol F=-30.3 kcal/mol

F=-30.6 kcal/mol F=-32.0 kcal/mol

Figure A.2: Optimal and suboptimal secondary structures of the first part (L = 100) of Polio

Virus Type 1 Mahoney (AC V01148) and their respective free energies found by the adaptive

evolutionary algorithm [60] using someN = 35 seekers and a time limit oft = 150.000 steps.

136

Appendix B

Glossary

This glossary, which is not complete in any way, lists terms and explanations

often encountered not only in this work, but also in related literature that is cited

herein.

A

algorithm A complete, unambiguous procedure for solving a specified problem

in a finite number of steps.

ASCII American Standard Code for Information Interchange; ASCII is the uni-

versal standard for the numerical codes computers use to represent all upper

and lower-case letters, numbers, and punctuation.

autocorrelation The autocorrelation describes how a function varies with itself;

i.e. it is a measure of self-similarity.

137

138

autocorrelation coefficient The autocorrelation coefficientRk for a given lagk

is confined to the interval[−1,1] and calculated as follows:

Rk =

N−k
∑

t=1
(xt − x̄)(xt+k− x̄)

N
∑

t=1
(xt − x̄)2

see also:correlation coefficient

autocorrelation function The autocorrelation function contains the entire se-

ries of autocorrelation coefficients.

B

Bernoulli trial A Bernoulli trial is an experiment with only two possible out-

comes. The probabilityp of success and probabilityq of failure must sat-

isfy p+q = 1.

A binomial random variablecounts the number of successes inn indepen-

dent Bernoulli trials; ageometric random variablecounts the number of

independent trials until the first success.

bimodal distribution A relative frequency or probability distribution character-

ized by two peaks or humps rather than the more common single peak,

which characterizes the normal distribution and most other standardized

distributions.

binomial distribution A binomial random variableX is a discrete variable in

the interval[0,n] with the probability distribution:

Pk(X) =

(n

k

)
pkqn−k; 0≤ k≤ n

0 otherwise

139

It describes the number of successesX = k for n independent trials in an

experiment with only two possible outcomesp andq. Themeanof X is np

and thevarianceis nqp = np(1 − p).

Box-Muller transformation The Box-Muller transformation allows the gener-

ation of Gaussian distributed random numbersy1 andy2, given two equally

distributed random numbersx1 andx2:

y1 =
√
−2lnx1cos(2πx2)

y2 =
√
−2lnx1sin(2πx2)

The polar form of the Box-Muller transformation is both faster and more

robust numerically. The algorithmic description of it is:

float x1, x2, w, y1, y2;

do {

x1 = 2.0 * ranf() - 1.0;

x2 = 2.0 * ranf() - 1.0;

w = x1 * x1 + x2 * x2;

} while (w >= 1.0);

w = sqrt((-2.0 * log(w))/w);

y1 = x1 * w;

y2 = x2 * w;

C

central limit theorem The average of a fixed random variable measured repeat-

edly and independently asymptotically becomes anormal random variable

as the number of measurements increases.

140

Chi square random variable The probability distribution for the always non-

negative random variableχ2 is given by

f (x) =
x

ν

2−1e
−x
2

2
ν

2 Γ(ν/2)

The variable represents the sum of a fixed number of squares of standard

normal random variables; the number of terms in the sum is its degrees of

freedomν .

combinations The number of combinationsCn
k is the number of ways of choos-

ing k objects out of a group ofn objects, where two choices are considered

to be the same if they contain the samek objects.

Cn
k =

(
n
k

)
:=

n!
k!(n−k)!

conditional probability The conditional probability is the probabilityP(x2|x1)

that an eventx2 will occur provided that an eventx1 has occured.

P(x2|x1) =
P(x2∧x1)

P(x1)

correlation coefficient The correlation coefficientr is a measure normalized to

the interval[−1,1] describing thecovarianceof two variablesX, Y.

r =
Cov(X,Y)√

Var(X)Var(Y)

see also:autocorrelation coefficient

covariance The covariance measures whether two variablesX andY vary in the

same way.

Cov(X,Y) = 〈XY〉−〈X〉〈Y〉

D

141

density of statesThe density of states describes how often a certain state is re-

alized in a particular system.

distribution see bimodal distribution, binomial distribution, Gamma distribu-

tion, Gaussian distribution, normal distribution, and lognormal distribu-

tion

E

ergodic According to BOLTZMANN ’s hypothesis (1887), asystem trajectory reaches

every point withH = U . This hypothesis could not be upheld mathemati-

cally [64] and in 1911 P. EHRENFESTand T. EHRENFESTformulated that

an ergodic system comes arbitrarily close to any point H= U . [65]

exponential random variable The exponential random variable depending on

a parameterα is determined by the following probability density function:

f (x) =

 1
α

e−x/α x > 0

0 otherwise

F

fitness In order to commonly describe minimization and maximization problems

it is convenient to introduce an abstract fitness which is always to be maxi-

mized and, therefore, defined asF = V for a maximization and asF =−V

for a minimization problem.

fitness landscapeThe fitness landscape is a virtual landscape representing the

search space. It is uniquely generated by the mutation operator.

frustrated problem An optimization problem is said to be frustrated if two or

more contradictory goals are to be optimized

142

G

Gamma distribution The probability density function describing a gamma ran-

dom variable depends on two parametersα and β . The distribution is

skewed to the right and given by

f (x) =
β α

Γ(α)
xα−1e−βx

Gamma function Generalized factorial function defined as

Γ(x) =
∞∫

0

tx−1e−xdx

Gaussian distribution A probability distribution that describes the behavior of

many natural and man-made phenomena. The normal distribution is partic-

ularly useful because it can be described with a relatively simple equation

and analyzed to reveal detailed characteristics of segments of the distribu-

tion.

P(x) =
1

σ
√

2π
exp

[
−(x− x̄)2

2σ2

]
GPL GNU Public License, copyright license issued by the Free Software Foun-

dation to protect free software

GMT Generic Mapping Tools; collection of software utilities for 2D and 3D

data visualization

GSL GNU Scientific Library; scientific software library providingC andC++

bindings; available under the terms of the GPL athtt p : //www.

GUI Graphical User Interface; point and click interface for user/program inter-

action

143

H

hypergeometric distribution Given a population of sizeN, M objects of one

type andN−M objects of another type in a sample ofn objects chosen

without replacement, the numberX of typeM objects in the sample is hy-

pergeometrically distributed. The mean of the hypergeometric distribution

is nM/N. The probability distribution is given by

Pk(X) =

(M

k)(N−M
n−k)

(N
n)

0≤ k≤min(M,N)

0 ortherwise

I

IPC Inter Process Communication – implemented e.g. as System V IPC calls

for messages, semaphores, and shared memory

K

kurtosis Kurtosis, a measure of how far the tails of the distribution of a variable

x go, is defined as

k̂ =
〈(x− x̄)4〉

σ4

M

Markov Process A stochastic process in which the future distribution of a vari-

able depends only on the variable’s current value or itsn predecessors.

Stock prices, for example, are widely assumed to follow a Markov process.

Metropolis algorithm The Metropolis algorithm is a stochastic optimization al-

gorithm which, unlike gradient strategies, allows downhill steps with a cer-

tain probability.

144

mean The arithmetic mean of a set ofN numbers can be calculated as:

x̄ =
1
N

N

∑
i=1

xi

For a distributionρ(x) of numbers the mean value is defined as the expec-

tation value ofx or, in other words, the first moment〈X〉 of the distribution:

〈x〉= 〈X〉=
∫

dnx x ρ(x)

moment Them−th moment〈Xm〉 of a distributionρ(x) is the expectation value

of the monomialxm:

〈Xm〉=
∫

dx xm
ρ(x)

Important moments of a distribution are, for example, the first moment

(mean value) and a combination of first and second moment:the variance.

MPI The Message Passing Interface is a standard specification for message

passing libraries (used in parrallel programs) defined by the MPI forum

(a broadly based group of parallel computer vendors, library writers, and

application specialists.)

multithreading seethread

mutation In the scope of this work the term ‘mutation’ describes a change of one

ore more variables in parameter space which necessarily induces a move in

search space.

mutation operator The mutation operator uniquely describes the set of allowed

variable changes in parameter space. The definition of mutation steps gen-

erates a neighborhood structure in search space and thus uniquely defines

the fitness landscape.

mutex locking variable to ensure exclusive access to shared resources inmulti-

threadedprograms, a simple form of asemaphore

145

N

normal distribution see Gaussian distribution

NP A problem is said to be NP (non deterministic polynomial) if it can not be

solved by a deterministic algorithm in polynomial time with respect to the

problem size.

NP completeA problem is said to be NP complete if it represents the worst case

scenario of an NP problem. If an efficient (meaning polynomial) algorithm

can be found for an NP complete problem,all NP problems of the same

problem class can be solved efficiently. This is reflected in the still open

question:P
?= NP.

O

OneMax Problem The OneMax Problem is in its simple, linear form the task

to maximize the number of 1s in a bitstring. The solution is trivial and the

problem is easy enough to be analytically solvable.

P

partition function The partition functionZ, a dimensionless normalization fac-

tor, can be calculated as

Z =
∫

exp[−βH].

The termH denotes the Hamilton operator.

PDF short for Portable Document Format, a file format developed by Adobe

Systems. PDF captures formatting information from a variety of desktop

publishing applications, making it possible to send formatted documents

146

and have them appear on the recipient’s monitor or printer as they were

intended. To view a file in PDF format, you need Adobe Acrobat Reader, a

free application distributed by Adobe Systems.

Poisson distribution The Poisson distribution is the limit of the binomial distri-

bution when the number of trials goes to infinity. Its variance and mean are

both identical toα. The probability distribution is given by

Pk(X) =

αke−λ

k! k≥ 0

0 otherwise

postscript PostScript is a programming language optimized for printing graph-

ics and text, a page description language. It was introduced by Adobe in

1985. The purpose of PostScript was to provide a convenient language in

which to describe images in a device independent manner.

probability The probabilityP of an eventX describing the likelihood of its oc-

currence was defined by LAPLACE as [66]

P(X) =
Number of elementary events favourable to X

Number of all elementary events

probability density cf. random variable (continuous)

R

random variable (discrete) A random variableξ is said to be discrete if it can

take only finitely or countably many valuesξi. The ξi must satisfy the

normalization condition

∑
i

ξi
!= 1

147

random variable (continuous) A random variableξ is said to be (absolutely)

continuous when its distribution function can be represented as

P(ξ) =

ξ∫
−∞

p(t)dt

The functionp(ξ) is called the probability density which must satisfy

∞∫
−∞

p(ξ)dξ
!= 1

Rastrigin’s function This function is a multimodal function often used for test-

ing purposes. Its global minimumf (x) = 0 is atxi = 0. The function is

defined as

f (x) = nA+
n

∑
i=1

x2
i −Acos(2πxi)

The amplitude parameter is typically set toA = 10.

S

seekerA seeker actually represents a certain point in the fitness landscape and

thus reflects a potential solution to the optimization problem.

selectionThe selection process replaces inferior seekers by better ones. The

exact procedure differs depending on the optimization algorithm.

semaphore integer variable common to different processes or threads, for ex-

ample, to assure exclusive access to shared resources

Simulated Annealing Simulated Annealing is an extended version of the Metropo-

lis algorithm. During the optimization process, the temperature is lowered

according to an annealing schedule.

148

skewnessThe skewness of a distribution (positive→ right, negative→ left) is

given by

〈(x− x̄)3〉
σ3

spin glasstheoretical model describing disordered magnetic materials as ann

dimensional lattice of locally and globally coupled spinss; the Hamiltonian

is

H =−∑
i, j
i 6= j

Ji j (si ×sj) si,sj =±1

A spin glass is an example for afrustrated problem.

standard deviation standard deviationσ of a set ofN numbers with mean ¯x:

σ =

√
∑i(x̄−xi)2

N−1

statistical independenceIf two eventsxi andx j are mutually independent, their

correlation is zero:

Cor(xi,x j) = Cov(xi,x j)≡ 0

The inversion, however (if the correlation of two events is zero, they are

statistically independent), is true for normally distributed eventsx only.

statistical weight The statistical weight in the scope of this work denotes the

number of realizations of a certain fitness level in a discrete fitness land-

scape.

149

T

thread A program can be written to run several tasks in parallel as if they were

separate programs. Such a program is said to be multithreaded, since every

task constitutes a thread sharing common resources (memory, stack etc.)

with all other threads of the program.

V

variance The varianceσ2(x) of a distributionρ(x) is defined as:

σ
2(x) = 〈(X−〈X〉)2〉= 〈X2〉−〈X〉2 =

∫
dx (x2−〈X〉2) ρ(x).

The square root of the variance is calledstandard deviation.

150

Bibliography

[1] C. Darwin,On The Origin of Species by Means of Natural Selection, or the

Preservation of Favoured Races in the Struggle for Life. Harmondsworth:

Penguin, 1968.9

[2] R. A. Fisher,The Genetical Theory of Natural Selection. Oxford: Claren-

don Press, 1930.9

[3] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and

E. Teller, “Equation of state calculations by fast computing machines,”J.

Chem. Phys., vol. 21, pp. 1087–1092, 1953.10, 23

[4] S. Kirkpatrick, C. D. G. Jr., and M. P. Vecchi, “Optimization by simulated

annealing,”Science, vol. 220, no. 4598, pp. 671–680, 1983.10, 27, 59

[5] G. S. Grest, C. M. Soukoulis, and K. Levin, “Cooling rate dependence for

the spin-glass ground-state energy: Implications for optimization by simu-

lated annealing,”Phys. Rev. Lett., vol. 56, no. 11, pp. 1148–1151, 1986.10,

28, 59

[6] R. Diekmann, R. L̈uling, and J. Simon, “Problem independent distributed

simulated annealing and its applications,” tech. rep., Department of Math-

ematics and Computer Science, University of Paderborn, Germany, 1993.

10, 59

151

152 BIBLIOGRAPHY

[7] G. S. Stiles, “The effect of numerical precision upon simulated annealing,”

Phys. Lett. A, vol. 185, 1994.10, 59

[8] R. Desai and R. Patil, “Salo: Combining simulated annealing and local

optimization for efficient global optimization,” inFLAIRS-’96, Key West,

FL, pp. 233–237, 1996.10, 59

[9] R. Frost and P. Heinemann, “Simulated annealing: A heuristic for parallel

stochastic optimization,” inPDPTA ’97, 1997.10, 59

[10] T. Mahnig and H. Muhlenbein, “A new adaptive boltzmann selection sched-

ule sds,” in Proceedings of the 2001 Congress on Evolutionary Com-

putation CEC2001, (COEX, World Trade Center, 159 Samseong-dong,

Gangnam-gu, Seoul, Korea), pp. 183–190, IEEE Press, 27–30 May 2001.

10, 61

[11] T. Boseniuk, W. Ebeling, and A. Engel, “Boltzmann and Darwin strategies

in complex optimization,”Phys. Lett. A, vol. 125, pp. 307–310, 1987.10

[12] Z. Michalewicz,Genetic Algorithms + Data Structures = Evolution Pro-

grams. Springer, 1996.10, 29

[13] B. Militzer, M. Zamparelli, and D. Beule, “Evolutionary search for low

autocorrelated binary sequences,”IEEE Trans. Evol. Comp., vol. 2, pp. 34–

39, 1998.10, 35

[14] H. Mühlenbein and T. Mahnig, “Mathematical analysis of evolutionary al-

gorithms for optimization,” inProceedings of the Third Internatinal Sym-

posium on Adaptive Systems, (Havanna), pp. 166–185, 2001.10

[15] H. Rośe,Evolution̈are Strategien und Multitome Optimierung. PhD thesis,

Humboldt Universiẗat Berlin, 1998.14, 15, 17, 24, 35, 47, 133

BIBLIOGRAPHY 153

[16] G. P. Williams,Chaos Theory Tamed. 1 Gunpowder Square, London EC4A

3DE: Taylor & Francis Ltd., 1997.17

[17] W. Ebeling, A. Engel, and R. Feistel,Physik der Evolutionsprozesse.

Akademie-Verlag, Berlin, 1990.20, 22, 23, 34, 43

[18] R. Feistel and W. Ebeling,Evolution of Complex Systems. Kluwer Publ.

Dordrecht, 1989.20, 23

[19] J. H. Holland,Adaptation in Natural and Artificial Systems: An Introduc-

tory Analysis with Applications to Biology, Control and Artificial Intelli-

gence. Ann Arbor, MI: University of Michigan Press, 1975.20, 28

[20] S. A. Kauffman,The Origin of Order, Self-Organization and Selection in

Evolution. University of Pennsylvania and The Santa Fe Institute: Oxford

University Press, 1993.20, 36

[21] W. Ebeling and A. Reimann,Biological Evolution and Statistical Physics,

ch. Evolutionary Strategies for Solving Optimization Problems. Springer,

2002. M. L̈assig and A. Valleriani, eds.21, 64

[22] A. Reimann and W. Ebeling, “Ensemble based control of evolutionary op-

timization algorithms,”Phys. Rev. E, vol. 65, no. 046106, 2002.26, 61, 69,

73, 74

[23] H. Szu and R. Hartley, “Fast simulated annealing,”Phys. Lett. A, vol. 122,

pp. 157–162, 1987.28, 59

[24] G. T. Barkema and T. MacFarland, “Parallel simulation of the Ising model,”

Phys. Rev. E, vol. 50, pp. 1623–1628, August 1994.28

[25] B. Andresen and J. M. Gordon, “Analytic constant thermodynamic speed-

cooling strategies in Simulated Annealing,”Open Systems & Information

Dynamics in Physical and Life Sciences, vol. 2, pp. 1–12, April 1993.28

154 BIBLIOGRAPHY

[26] B. Andresen and J. M. Gordon, “Constant thermodynamic speed for mini-

mizing entropy production in thermodynamic processes and simulated an-

nealing,”Phys. Rev. E, vol. 50, pp. 4346–4351, 1994.28

[27] B. Andresen, “Parallel implementation of simulated annealing using an op-

timal adaptive annealing schedule,” tech. rep., Physics Laboratory, Univer-

sity of Copenhagen, 1993.28

[28] G. RuppeinerNucl. Phys. B (Proc. Suppl.), vol. 5A, p. 116, 1988.28

[29] J. H. Holland, “Royal Road functions,”Genetic Algorithm Digest, vol. 7,

August 1993.28

[30] J. H. Holland and J. S. Reitman, “Cognitive systems based on adaptive

algorithms,” inPattern-Directed Inference Systems(D. A. Waterman and

F. Hayes-Roth, eds.), New York: Academic Press, 1978.28

[31] D. E. Goldberg,Genetic Algorithms in Search, Optimization and Machine

Learning. Reading, MA: Addison-Wesley, 1989.28

[32] D. E. Goldberg and P. Segrest, “Finite Markov chain analysis of Genetic Al-

gorithms,” inProceedings of the Second International Conference on Ge-

netic Algorithms(J. J. Grefenstette, ed.), (Hillsdale, NJ), pp. 1–8, Lawrence

Erlbaum Associates, 1987.28

[33] K. A. D. Jong, “Adaptive system design: A genetic approach,”IEEE Trans-

actions on Systems, Man, and Cybernetics, vol. 10, no. 3, pp. 556–574,

1980.28

[34] K. A. D. Jong, “On using genetic algorithms to search program spaces,” in

Proceedings of the Second International Conference on Genetic Algorithms

(J. J. Grefenstette, ed.), (Hillsdale, NJ), pp. 210–216, Lawrence Erlbaum

Associates, 1987.28

BIBLIOGRAPHY 155

[35] K. A. D. Jong, “Are Genetic Algorithms Optimisers?,” inParallel Problem

Solving from Nature(R. Männer and B. Manderick, eds.), vol. 2, pp. 3–13,

Sept. 1992.28

[36] T. Mahnig and H. M̈uhlenbein, “Optimal mutation rate using Bayesian pri-

ors for estimation of distribution algorithms,” inProceedings of the 1st Sym-

posium on Stochastic Algorithms, Foundations and Applications, Springer,

2001.29

[37] H. Mühlenbein and T. Mahnig, “The Factorized Distribution Algorithm for

additively decomposed functions,” inProceedings of the 1999 Congress on

Evolutionary Computation, pp. 752–759, 1999.29

[38] M. Steinberg, “Konstruktion von korrelierten, zufälligen Landschaften.”

Humboldt Universiẗat Berlin. 31

[39] M. J. E. Golay and D. B. Harris, “A new search for skewsymmetric binary

sequences with optimal merit factors,”Trans. Inf. Theory (USA), vol. 36,

no. 5, pp. 1163–1166, 1990.35

[40] S. Mertens, “Exhaustive search for low-autocorrelation binary sequences,”

J. Phys. A, vol. 29, pp. L473–L481, 1996.35

[41] S. F. Edwards and P. W. Anderson, “Theory of spin glasses,”J. Phys. F,

vol. 5, p. 965, 1975.36

[42] C. Flamm, W. Fontana, and I. L. Hofacker, “RNA folding at elementary

step resolution,”RNA, vol. 6, pp. 325–338, 2000.38

[43] S. Wuchty, W. Fontana, I. L. Hofacker, and P. Schuster, “Complete subopti-

mal folding of RNA and the stability of secondary structures,”Biopolymers,

vol. 49, pp. 145–165, 1999.38

156 BIBLIOGRAPHY

[44] W. Fontana, P. F. Stadler, E. G. Bornberg-Bauer, T. Griesmacher, I. L. Ho-

facker, M. Tacker, P. Tarazona, E. D. Weinberger, and P. Schuster, “RNA

folding and combinatory landscapes,”Phys. Rev. E, vol. 47, pp. 2083–2099,

March 1993.41

[45] R. Feistel,Anwendungen der Theorie stochastischer Systeme auf lineare

und nichtlineare Probleme der Flüssigkeitsphysik. PhD thesis, Universität

Rostock, 1976.43

[46] D. T. Gillespie, “A general method for numerically simulating the stochastic

time evolution of coupled chemical reactions,”J. Comput. Phys., vol. 22,

pp. 403–434, 1976.43

[47] D. T. Gillespie, “Exact stochastic simulation of coupled chemical reac-

tions,” J. Phys. Chem., vol. 81, pp. 2340–2361, 1977.43

[48] D. T. Gillespie, “A rigorous derivation of the chemical master equation,”

Physica A, vol. 188, pp. 404–425, 1992.

[49] D. T. Gillespie,Markov Processes: An Introduction for Physical Scientists.

Academic Press, 1992.

[50] M. A. Gibson and J. Bruck, “Efficient exact stochastic simulation of chem-

ical systems with many species and many channels,”J. Phys. Chem. A,

vol. 104, no. 9, pp. 1876–1889, 2000.45

[51] M. Eigen and P. Schuster, “The hypercycle,”Naturwiss., vol. 64, 65,

pp. 541, 341, 1977, 1978.56, 62

[52] M. Eigen, J. McCaskill, and P. Schuster, “Molecular quasi-species,”J.Phys.

Chem, vol. 92, pp. 6881–6891, 1988.56, 62

BIBLIOGRAPHY 157

[53] H. Mühlenbein and D. Schlierkamp-Voosen, “Adaptation of population

sizes by competing subpopulations,” inInternational Conference on Evo-

lutionary Computation, (Nagoya, Japan), pp. 330–335, 1996.59

[54] Salamon, Nulton, Harland, Pederson, Ruppeiner, and Liau, “Simulated an-

nealing with constant thermodynamic speed,”Computer Physics Commu-

nications, pp. 423–428, 1988.59

[55] W. Ebeling, L. Molgedey, and A. Reimann, “Stochastic urn models of inno-

vation and search dynamics,”Physica A, vol. 287, pp. 599–612, 2000.61,

64, 65

[56] M. Nowak and P. Schuster, “Error thresholds of replication in finite

populations: Mutation frequencies and the onset of Muller’s ratchet,”

J. Theor. Biol., vol. 137, pp. 375–395, 1989.63

[57] T. Bäck and M. Schutz, “Intelligent mutation rate control in canonical

genetic algorithms,” inProceedings of the 9th International Symposium,

ISMIS, (Zakopane (Poland)), pp. 158–167, Springer-Verlag, Berlin, June

1996.63

[58] G. Ochoa, I. Harvey, and H. Buxton, “Error thresholds and their relation to

optimal mutation rates,” inEuropean Conference on Artificial Life, pp. 54–

63, 1999.63

[59] G. Ochoa and I. Harvey, “Recombination and error thresholds in finite

populations,” inFoundations of Genetic Algorithms 5(W. Banzhaf and

C. Reeves, eds.), pp. 245–264, San Francisco, CA: Morgan Kaufmann,

1999.63

158 BIBLIOGRAPHY

[60] W. Ebeling and A. Reimann, “Ensemble-based control of search dynamics

with application to string optimization,”Z. Phys. Chem., vol. 216, no. 01,

pp. 065–075, 2002.68, 135

[61] B. Stroustrup,The C++ Programming Language. Reading: Addison-

Wesley, 3rd ed., 1997.77

[62] S. B. Lippman,The C++ Primer. Reading: Addison-Wesley, 2nd ed., 1991.

77

[63] E. Gode,ANSI C++ (kurz & gut). Köln: O’Reilly, 1998. ISBN 3-89721-

205-6.77

[64] T. Haar,Elements of Statistical Mechanics. New York: Rinehart, 1954.141

[65] R. Becker,Theorie der Ẅarme. Berlin, Heidelberg: Springer, 3rd ed., 1985.

141

[66] I. N. Bronshtein and K. A. Semendyayev,Handbook of Mathematics.

Springer, reprint of the third ed., 1998.146

[67] T. Asselmeier, W. Ebeling, and H. Rosé, “Evolutionary strategies of opti-

mization,”Phys. Rev. B, vol. 56, pp. 1171–1180, 1997.

[68] T. Asselmeier,Schr̈odinger-Operatoren und Evolutionäre Strategien. PhD

thesis, Humboldt Universität Berlin, 1997.

[69] M. Conrad and W. Ebeling, “M. V. Volkenstein, evolutionary thinking

and the structure of fitness landscapes,”BioSystems, vol. 27, pp. 125–128,

1992.

[70] P. E. F. Carter Jr, “The generation and application of random numbers.”

[71] L. Peleti, “Quasispecies evolution in general mean-field landscapes,”Euro-

phys. Lett., 2000.

BIBLIOGRAPHY 159

[72] W. E. Hart,Adaptive Global Optimization with Local Search. PhD thesis,

University of California, San Diego, 1994.

[73] C. O. Book,Mathematical Optimization. Computational Science Education

Project, 1995.

[74] H. Mühlenbein and T. Mahnig, “FDA - A scalable evolutionary algorithm

for the optimization of additively decomposed functions,”Evolutionary

Computation, vol. 7, pp. 353–376, 1999.

[75] M. Fekete, I. L. Hofacker, and P. F. Stadler, “Prediction of RNA base pairing

probabilities using massively parallel computers,”J. Comput. Biol., vol. 7,

pp. 171–182, 2000.

[76] C. Flamm, I. L. Hofacker, and P. F. Stadler, “RNA in silico: The compu-

tational biology of RNA secondary structures,”Adv. Complex Syst., vol. 2,

pp. 65–90, 1999.

[77] I. L. Hofacker, P. Schuster, and P. F. Stadler, “Combinatorics of RNA sec-

ondary structures,”Discr. Appl. Math., vol. 88, pp. 207–237, 1998.

[78] M. Gen and R. Cheng,Genetic Algorithms & Engineering Optimization.

New York, Chichester, Weinheim, Brisbane, Singapore, Toronto: Wiley-

Interscience (John Wiley & Sons Inc.), 2000.

[79] H.-M. Voigt, W. Ebeling, I. Rechenberg, and H.-P. Schwefel, eds.,Paral-

lel Problem Solving from Nature - PPSN IV, Springer, Sept. 1996. Inter-

national Conference on Evolutionary Computation - The 4th International

Conference on Parallel Problem Solving from Nature, Berlin, Germany.

[80] V. Nissen,Einführung in evolution̈are Algorithmen. Braunschweig, Wies-

baden: Vieweg, 1997. (computational intelligence); ISBN 3-528-05499-9.

160 BIBLIOGRAPHY

[81] E. Chattoe, “Just how (un)realistic are Evolutionary Algorithms as repre-

sentations of social processes?,”Journal of Artificial Societies and Social

Simulation, vol. 1, no. 3, 1998.

[82] I. Rechenberg,Evolutionsstrategie: Optimierung Technischer Systeme nach

Prinzipien der Biologischen Evolution. Stuttgart: Frommann-Holzboog,

1973.

[83] T. Bäck, Evolutionary Algorithms in Theory and Practice: Evolution

Strategies, Evolutionary Programming, Genetic Algorithms. Oxford Uni-

versity Press, 1996. ISBN: 0 1950997 10.

Index

Symbols

α-helix .39

β -sheet .39

ε .28

A

adaptation9, 73

Adenine .38

algorithm .11

analytic solution13

Anderson .36

Andresen28, 60

annealing schedule59

annealing speed28

autocorrelation

coefficient7, 18, 19, 47

function17, 19, 47

autocovariance8, 17

B

base pair .38

Boltzmann .141

constant7, 24

distribution24

factor24, 25

strategy10, 23, 52

Boltzmann-Darwin Strategy10

Bruck .45

building block35

C

chromosome representation29

communication20

compromise .9

Copyright .131

correlation.31, 35

length .7, 19

correlogram .19

crossover operator29

Cytosine .38

D

Darwin Strategy21, 24, 53

de Jong .28

density of states7, 15

DNA .38

E

Edwards .36

161

162 INDEX

Ehrenfest .141

eigenvalue .23

energy .7

Engel. .34

Engel Sequence34

ensemble entropy7, 69

ensemble size7

ensemble variability8, 64

entropy .8, 17

error threshold.56, 62, 72

evolution rate7, 61

evolutionary

algorithm10, 28

window46, 52

evolutionary window.70

F

Feistel .34, 43

Fisher-Eigen equation22

fitness .7, 25

function .34

frustrated34

landscape . .12, 31, 33, 35, 37, 46

discrete14, 33

properties14

Fourier

spectrum32

transform33

free energy39, 40

frequency .15

Frustrated Periodic Sequence10, 34,

77

frustrationseefitness function,

frustrated

G

Gaussian

landscape35, 116

random number31

genetic

algorithm28

genotype20, 37

Gibson .45

Gillespie43, 46

Gillespie-Feistel algorithm43

GMT. .130

Golay .35

Goldberg .28

GPL .129, 131

gradient search.13, 24

GSL .131

Guanine .38

GUI .78, 131

H

hairpin .39

Hamilton operator60

INDEX 163

Hamiltonian7, 36

Hamming distance19

heat capacity28, 59

Heisenberg matrix23

hill climbing13

Holland .28

I

inverse temperature7

IPC .131

Ising model .28

K

Kauffman36, 37

Kirkpatrick .27

L

LABS. .10, 77

Laplace .146

loop .39

M

Mühlenbein .61

Mahnig .61

master equation24

mean value. .8

memory leak131

Merit-factor .36

method

direct .44

first reaction45

next reaction45

Metropolis Algorithm10, 23, 27

MPI generate116

mutation12, 20

operator .80

rate .22

mutex .131

N

NK model .36

non polynomial . . .seeNP complete

Nowak .63

NP complete11

O

occupation number8

Ochoa .63

optimization9, 11, 25

P

parameter .9

space13, 47

partition function8, 25

phenotype .20

pipe .131

Polio Virus Type 1133

population

genetics .36

size .58, 63

164 INDEX

potential .8

potential energy8

probability7, 15

density7, 16

pseudo loop .40

purines .38

pyrimidines .38

Q

Qt GUI toolkit131

R

random .12

random walk47

relative ensemble dispersion . . .7, 66

relaxation coefficient28, 59

RNA

folding kinetics38

secondary structure . . .10, 38, 80

sequence38, 39

S

sample .47

Schuster .63

second law of thermodynamics. . .23

selection12, 20

probability7, 26

signal .131

Sim Engel .77

Sim Labs .77

Sim RNA77, 80

Simulated Annealing10, 21, 27

slot .131

source code .77

spectrum .47

spin glass.28, 36

standard deviation8

Standard Deviation Schedule61

steepest descent13

Steinberg .31

step function27

STL. .131

stochastic .11

strategy

mixed .25

structure

primary .38

secondary38, 40

T

temperature8, 27

thermodynamical system15

thermodynamics27

thread .78

Thymine .38

time .8

tournament selection27

twisted pair .38

INDEX 165

U

Uracil .38

V

variance .8, 17

vector class131

Vis5D .130

W

Watson-Crick38

weight, statistical8, 17

X

XMGrace. .130

166 INDEX

Appendix C

Acknowledgment

The author wishes to thank the‘Deutsche Forschungsgemeinschaft’who has

financially supported this work in the framework of the special research field

‘Sonderforschungsbereich 555 – Komplexe Nichtlineare Prozesse’.

I am furthermore indebted to:

• Prof. Dr. Werner Ebeling for supervising this work and numerous fruitful

discussions,

• Dr. Lutz Molgedey for his seemingly endless patience in repeatedly ex-

plaining gory mathematical details,

• Dipl. BW Claudia Lehmann for her moral and practical support in every-

day life, and

• Ruth Perkins for proof-reading this document (in an intermediate state;

so I had enough time to introduce new mistakes) and answering uncounted

style and grammar-related questions.

167

168

169

Author’s Publication List

1. W. Ebeling, L. Molgedey, and A. Reimann, “Stochastic urn models of in-

novation and search dynamics”,Physica A, vol. 287, pp. 599–612, 2000.

2. W. Ebeling and A. Reimann, inBiological Evolution and Statistical Physics,

ch. Evolutionary Strategies for Solving Optimization Problems. Springer,

2002. M. L̈assig and A. Valleriani, eds.

3. W. Ebeling and A. Reimann, “Ensemble-based control of search dynamics

with application to string optimization”,Z. Phys. Chem., vol. 216 (01),

pp. 065–075, 2002.

4. A. Reimann and W. Ebeling, “Ensemble based control of evolutionary op-

timization algorithms”,Phys. Rev. E, vol. 65 (046106), 2002.

170

Selbsẗandigkeitserklärung

Hiermit versichere ich, die vorliegende Arbeit selbständig angefertigt und keine

weiteren als die gegebenen Hilfsmittel verwendet zu haben.

————————————————

Axel Reimann,Berlin den:

	Introduction
	Learning from Nature
	The Theoretical Framework
	The Concept of Fitness Landscapes
	Properties of Fitness Landscapes
	The Density of States
	The Autocorrelation Function

	Stochastic Modeling of Basic Evolutionary Strategies
	The Darwin Strategy
	The Boltzmann Strategy
	The Mixed Boltzmann-Darwin Strategy

	Other Stochastic Optimization Strategies
	Simulated Annealing
	Genetic Algorithms

	Model Problems
	Correlated Random Landscapes
	Frustrated Periodic Sequences
	The LABS Problem
	The RNA and NK Model Compared
	The NK Model
	RNA Secondary Structures

	Optimizing the Search Process
	Exact Stochastic Simulations
	The Direct Method
	The First Reaction Method
	The Next Reaction Method

	The Evolutionary Window
	Comparing Fitness Landscapes
	Exploring Parameter Windows
	1. Constant Temperature
	2. Variable Temperature

	Mastering Intrinsic Search Parameters
	Ensemble Size Adaptation
	Temperature Adaptation
	Mutation Rate Adaptation
	First Approach: The Ensemble Variability
	Second Approach: The Relative Ensemble Dispersion
	Third Approach: The Ensemble Entropy

	An Adaptive Evolutionary Algorithm

	Software
	Newly Developed Software
	Optimization Programs
	The User Interface
	The Workflow

	The SimRNA Mutation Operator
	The SimRNA Source Code
	The RNA-Strand Class
	The Main Loop

	MPI_generate

	Open Source Software
	The Message Passing Interface MPI
	The Vienna RNA Package
	Free Visualization Software
	Free External Libraries

	Polio Virus Type 1 Subsequence
	Glossary
	Acknowledgment

