Evolutionary Algorithms and Optimization

DISSERTATION

zur Erlangung des akademischen Grades
doctor rerum naturalium
(dr. rer. nat.)
im Fach Physik

eingereicht an der
Mathematisch-Naturwissenschaftlichen Fa&ult
Humboldt-Universiat zu Berlin

von
Herr Dipl.-Phys. Axel Reimann
geboren am 28.05.1973 in Hennigsdorf

Prasident der Humboldt-Universit zu Berlin:
Prof. Dr. Jirgen Mlynek

Dekan der Mathematisch-Naturwissenschaftlichen Fakult
Prof. Dr. Michael Linscheid

Gutachter:

1. Prof. Dr. Werner Ebeling
2. Prof. Dr. Heinz Mihlenbein
3. PD Dr. Dr. Frank Schweitzer

eingereicht am: 20. August 2001
Tag der niindlichen Piafung: 5. Dezember 2002

Zusammenfassung

Diese Arbeit besdiftigt sich mit dem Themdvolutiorére Algorithmenund deren Verwen-

dung fur Optimierungsaufgaben. Im ersten Teil der Arbeit werden die theoretischen Grund-
lagen audihrlich dargelegt, die zum Ve#éstdnis der Problemstellung und der vorgeschlage-
nen Losungsmglichkeiten notwendig sind. Dazu gafen die Einfihrung des Konzeptes von
FitneRRlandschaften, deren Eigenschaften sowie die kurze Darstellung bekannter stochastischer
Optimierungsverfahren wie z.B. Simulated Annealing. Im Anschlul daran wird auf neue Ver-
fahren — insbesondere gemischte Strategien — eingegangen und diese vergleicheidegegen
den herbmmlichen Verfahren abgegrenzt.

Die neu entwickelten Verfahren werden an Modellproblemen getestet, welche im zweiten Teil
der Arbeit vorgestellt werden. Verwendet wurden sowohl einfache theoretische Modelle wie
Frustrierte Periodische Sequenzals auch praktisch relevante Probleme wie das der RNA Se-
kundarstrukturen. Die verschiedenen Modellprobleme werderiuidgdesh ihrer Eigenschaften

und Schwierigkeitsgrade untersucht und miteinander verglichen, um die Effizienz der verwende-
ten Optimierungsverfahren absthen zu bnnen.

Der dritte Teil der Arbeit pisentiert wichtige Ergebnisse der im Rahmen dieser Arbeit durch-
gefuhrten umfangreichen numerischen Simulationen. Es wird demonstriert, wie sensitiv die
Optimierungsergebnisse von den verwendeten Parametern der Algorithmen (wie z.B. Ensem-
blegiolie, Temperatur oder Mutationsrate) abgen und das ein relativ scharf umrissenes evo-
lutionares Fenster der Parameter existiert, innerhalb dessen die Optimierungsresultate deutlich
besser sind. Eine im Rahmen dieser Arbeit entwickelte adaptive Parametersteuerung wird an
den im zweiten Teil vorgestellten Modellproblemen getestet und gezeigt, dafighishmst, den
Optimierungsprozel3 automatisch innerhalb des evolatemFensters zu halten.

Der letzte Teil gibt Einblick in die im Rahmen dieser Arbeit verwendete Computer-Software und
das vom Autor entwickelte Programmpaket. Es wird hervorgehoben, dal’ Gietimbjekto-

rientiert und modular geschriebene Software leicht an andere Optimierungsaufgaben angepalt
werden kann und dank graphischer Benutzerohehn# auch einfach zu bedienen ist.

EVOLUTIONARY ALGORITHMS
AND OPTIMIZATION

Axel Reimann

Author: Axel Reimann, 2001

Cover: Ribonucleic Acid, Structure of loop E from E. Coli 5s Rrna
ORGANISM SCIENTIFIC: Escheria coli
C. C. Caorrell, B. Freeborn, P. B. Moore and T. A. Steitz
30th Sep. 1997, PDB Code: 354D
visualized using Cn3D

This document was typeset using pafT

Copyright (C) 1999 Han The Thanh, Petr Sojka, and Jiri Zlatuska
pdfTeX is covered by the terms of both the

pdfTeX copyright and the GNU General Public License

Dedicated to my parents and friends.

Contents

1 Introduction 9
2 Learning from Nature 11
2.1 The Theoretical Framework. 11
2.1.1 The Concept of Fitness Landscapes 12

2.1.2 Properties of Fitness Landscapes. 14

The DensityofStates 15

The Autocorrelation Function. 17

2.1.3 Stochastic Modeling of Basic Evolutionary Strategies 20

The Darwin Strategy. 21

The Boltzmann Strategy. 23

The Mixed Boltzmann-Darwin Strategy 25

2.1.4 Other Stochastic Optimization Strategies. 27
Simulated Annealing. 27

Genetic Algorithms. 28

3 Model Problems 31
3.1 Correlated Random Landscapes. 31
3.2 Frustrated Periodic Sequences. 34
3.3 TheLABSProblem 35
3.4 The RNA and NK Model Compared 36

1

341 TheNKModel. 36

3.4.2 RNA Secondary Structures. 38

4 Optimizing the Search Process 43
4.1 Exact Stochastic Simulations. 43
4.1.1 TheDirectMethod. 44
4.1.2 The First Reaction Method. 45
4.1.3 The Next Reaction Methad. 45

4.2 The Evolutionary Window. 46
4.2.1 Comparing Fitness Landscapes. 46
4.2.2 Exploring Parameter Windows. 50

1. Constant Temperature 52

2. Variable Temperature. 54

4.3 Mastering Intrinsic Search Parameters 58
4.3.1 Ensemble Size Adaptation. 58
4.3.2 Temperature Adaptation 59
4.3.3 Mutation Rate Adaptation 61

First Approach: The Ensemble Variability. 64

Second Approach: The Relative Ensemble Dispersion 66

Third Approach: The Ensemble Entropy. 68

4.4 An Adaptive Evolutionary Algorithm 73
5 Software 77
5.1 Newly Developed Software. 77
5.1.1 Optimization Programs. 77

The Userinterface. 78

The Workflow 78

5.1.2 The SImRNA Mutation Operator. 80

5.1.3 The SIMRNA SourceCode. 82

The RNA-StrandClass 82

TheMainLoop. 108

5.1.4 MPIlgenerate. 116

5.2 OpenSource Software 129
5.2.1 The Message Passing Interface MPI 129

5.2.2 TheViennaRNAPackage 129

5.2.3 Free Visualization Software 129

5.2.4 Free External Libraries. 131

A Polio Virus Type 1 Subsequence 133
B Glossary 137

C Acknowledgment 165

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4
4.5
4.6

Simple Fitness Landscape 12
Complex Fitness Landscape 13
Densityof States., 16
Landscapes with Different Correlation Length 18
Autocorrelation. e 19
Discrete Representation of a Fitness Landscape. 22
Mixed Strategy 26
CrossoverOperator 29
Sequence Evaluation Scheme 34
Purines e 38
Pyrimidines. 39
Primary Structure L oo 39
Secondary Structure. 40
PseudoLoop. 41
Autocorrelation Functions for Different Problems. 49
Small SearchSpace. 50
VastSearchSpace. 51
Parameter Sweepon Testmodels 53
Evolutionary Window (Frustrated Periodic Sequences) . . . 55

Evolutionary Window (Low Autocorrelation Binary Strings). 56

5

4.7

4.8

4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16

5.1
5.2
5.3

A.l
A.2

Evolutionary Window (RNA Secondary Structure) 57

Error Threshold (Scheme) 62
Ensemble Variability. 65
Relative Ensemble Dispersion 66
LABS Problem: Comparison of Different Sensors 67
FPS Problem: Ensemble Entropy 70
FPS Problem: Entropy Sensar. 71
RNA Problem: Entropy Sensor. 71
Ensemble Histograms. 72
Adaptation Results for RNA Problem 75
SimRNA Userinterface 79
Block Diagram: Optimization Programs. 80

Implementation Scheme of the SIMRNA Mutation Operator. 81

Best FoldingL = 100 ACV011485 —cloverleaf 134
Suboptimal Foldingsk. = 100 ACV011485 —cloverleaf . . . 135

Symbols

R(t)

mutation matrixA

inverse temperature

relative ensemble dispersion
energy

fitness

selection probability
Hamiltonian

ensemble entropy

Boltzmann constant

problem size; sequence length
tournament size

number of observations, ensemble size
density of states

order symbol

probability density

probability

correlation length

lag k autocorrelation coefficient
evolution rate

NXxX X s<c<+H-~

entropy

standard deviation
autocovariance
variance

time

temperature
ensemble variability
potential energy
potential

statistical weight
mean value ok
occupation number of state
partition function

Chapter 1

Introduction

This work is a theoretical approach to a practical problem: optimization.
Everyday life is full of tasks related to optimization. Wherever resources, like
energy, space, food supply etc., are limited, the question of efficiency and, thus,
the need for optimization arises.

In biology this issue becomes literally a matter of life or death. Any living
being not optimally adapted to its surroundings will most likely vanish over time
due to natural selectiori[2]. The adaptation problem becomes even more intri-
cate considering that environmental parameters are not static, but instead change
over time. Since short term changes might also happen within the lifespan of an
individual it is obvious that adaptation or optimization is an ongoing process that
in itself needs to be efficient with respect to time and energy consumption.

In the paragraph above adaptation and optimization could essentially be used
interchangeably, underlining the close relationship between the two processes.
Adaptation can be perceived as the optimization of one or more items under sev-
eral given constraints. In engineering it is an often encountered problem that
the optimization of one crucial parameter directly or indirectly influences other
parameters in a sometimes unpredictable way. Optimization here means find-
ing compromises to reach contradictory goals, e.g. gas mileage versus engine
power or stability of a construction versus its weight. The situation can easily

9

10

get out of hand when the number of parameters and constraints surpasses a cer-
tain threshold. Even though engineers have learned by experience to circumvent
or tackle many well behaved problems, some others can no longer be success-
fully approached with conventional methods. What can one learn from nature? It
seems that biology has come up with some exceedingly well-working remedies
to solve dynamic multi-parameter optimization problems that could hardly be
solved analytically in any given reasonable time span. In order to take advantage
of evolutionary strategies however, one has to understand first of all how they
work and why they perform as well as they indeed do. Secondly, those strategies
need to be modeled mathematically to be of any benefit in engineering. Last but
not least, any given algorithm needs to be tuned with regards to its efficiency.
This work describes theoretical models for different ‘standard’ evolutionary
algorithms known as e.gvetropolis Algorithn{ 3], Simulated Annealing, 5, 6,
7, 8, 9] or Boltzmann strategy10, 11] andEvolutionary Algorithm$12, 13, 14].
It furthermore investigates the power of mixed strategies combining ideas from
both physics and biology, like tH&oltzmann-Darwin Strategyl he investigated
algorithms will be applied to different test problems in computer simulations,
and their respective results will be analyzed with respect to time consumption,
result quality and search parameter dependence. The test problems include op-
timization of artificial strings (Frustrated Periodic Sequences and Low Autocor-
relation Binary Stringsl{ABS), as well as RNA folding problems (RNA sec-
ondary structure). It will be shown that the chosen optimization parameters
crucially influence the optimization result. For all investigated problems only
a smallevolutionary windowof parameters leads to an efficient search process.
The introduction of a new nonlinear numerical sensor allows to improve the in-
vestigated algorithms by automatically adapting their intrinsic parameters to the
evolutionary window.

Chapter 2

Learning from Nature

2.1 The Theoretical Framework

Conventional problem-solving strategies follow a strict algorithm. It is the de-
terministic nature of these algorithms that embodies both the advantages and
disadvantages. A classical deterministic algorithm, by definition, solves a given
problem in a finite number of steps. Many problems are, howéNeror NP
completeproblems' and the necessary computation titrie solve the problem,

for example often grows exponentially with the problem giz#hat is, the prob-

lem is said to be of ordef’(expL]).

If a problem is not exactly deterministically solvable in polynomial time, it
might however still be possible pproximatat in polynomial time. An elegant
way to circumvent deterministic limitations is to introduce stochastic elements
to problem solving methods. Evolutionary algorithms, inspired by physics and
biology, do just that. It takes some insight to understand how exactly stochastic
can help to solve problems.

for an exhaustive reference A compendium of NP optimization problems’ at:
http://www.nada.kth.se/"viggo/problemlist/compendium.html

11

http://www.nada.kth.se/~viggo/problemlist/compendium.html

12 2.1. THE THEORETICAL FRAMEWORK

Natural evolution is undoubtedly driven by at least two dominating forces:
mutationand selection The following paragraphs investigate how these pro-
cesses can be modeled mathematically and how randomness helps by coming
into play.

2.1.1 The Concept of Fitness Landscapes

Figure 2.1: Simple imaginary two-dimensional fithess landscape (continuous)

A simple engineering problem might depend, for examplen garameters
Xn. By assigning these parameters to the axes of a simple diagram, one can
plot all solutions to the problem for all given parameter combinations for low
dimensional problems. Thedimensional space spanned by thearameters
Is simply called parameter space. Fig@éd shows a three dimensional plot
for an imaginary two-dimensional problem. The single peaked plane stretching
into the z-direction represents the set of solutions to the respective parameter
combinationsy{(xg,x2)} — {F(X1,X2)}. The different solutions have a different
fitness with respect to the posed problem; hence, it is legitimate to also speak of
a fitness landscape.

The problem with finding an optimal parameter combination or equivalently
with finding the best fithess values can now easily be illustrated as the search for

2.1. THE THEORETICAL FRAMEWORK 13

the top of the hill in Figur&.1 If the underlying analytic relation were known,
then it would be possible to use the rich toolbox of classical algorithms imple-
menting well-known analytical solution techniques. If, on the other hand, ana-
lytic solutions are impossible to find, and the number of parameters (parameter
combinations) runs out of bounds, simple trial and error methods will, likewise,
no longer suffice.

A simple alternative approach to find the maximum (or optimum respectively) is
known as thenethod of steepest descahegradient strategyor more descrip-
tively, hill climbing. Starting somewhere in the parameter space, one follows
the inclination (gradient) by varying the parameters until the optimum is found.
This method works well for simple fitness landscapes such as the one seen in
Figure2.l

£ oS
S ™ ‘&""Q .';’

2%
LN
N Za

Parameter 1

Figure 2.2: More complex imaginary fitness landscape (continuous) with several local minima
and maxima

As soon as the underlying dynamics becomes more complex and the fitness
landscape becomes more rugged, this method is probably doomed to fail. The
search process will ultimately end in a local optimum, which is not necessarily
the global optimum. Figur@.2 illustrates such a fitness landscape. A way of
working around this would be to simultaneously start several search processes
beginning with different starting points in parameter space. The search process

14 2.1. THE THEORETICAL FRAMEWORK

can be imagined as being carried out by an uncoupled seeker ensemble. Another
ansatz is to also allow downhill movements under certain circumstances. While
dead ends in the search process can be circumvented this way, the search speed
is degraded. In order to efficiently search for the global optimum it might be-
come necessary to drop inefficient seekers or adjust the probability of downhill
movements. A number of different search strategies have been developed with
these ideas in mind. A few of them will be introduced in sec&2ah 3

It is important to know that even though the fitness landscape completely de-
termines the structure of the optimization problem, nnaétrue that, in reverse,
the optimization problem uniquely defines the fitness landscHpe $canning
along the fitness plane, one successively encounters the fithess values for neigh-
boring parameter settings. There is no immediate information, however, about
how the neighborhood is defined in parameter space. In other words, it is the
set of allowed steps in parameter space that defines the respective neighborhood
structure and, in turn, generates a fitness landscape as just one of many possible
representations of the problem.

Therefore, choosing a proper set of allowed steps in parameter space can in-
fluence the solvability of an optimization problem in the same way that choosing
a proper coordinate system influences the solvability of any problem in physics.

2.1.2 Properties of Fitness Landscapes

The fitness landscapes illustrated so far have been continuous. In order to be nu-
merically tractable, however, fithess landscapes that are not inherently discrete
need to be suitably sampled (Figite shows an example of a discrete fithess
landscape representation). Keeping this in mind, the following paragraphs do
not explicitly distinguish between continuous and discrete fitness landscapes.

2.1. THE THEORETICAL FRAMEWORK 15

As can be derived from Figur21 and Figure2.2 already, fitness landscapes
can have very different shapes. The typical features of fithess landscapes (rugged-
ness, number of peaks etc.) represent the inherent difficulty of the corresponding
optimization problem. Efficient search algorithms, therefore, need to have an
idea regarding the kind of landscape upon which they are working. While for
smooth landscapes gradient-based optimization methods with only a few seek-
ers perform best, they are almost useless in rugged landscapes. Because the
complete fitness landscape is usually unknbwsome sort of numerical mea-
sure describing the landscape is necessary to guide an optimization algorithm.
Two candidates, thdensity of stateand theautocorrelation functionwill be
introduced here.

The Density of States

The density of states(E) is an important tool in physics to characterize thermo-
dynamical systems. It describes how often a certain energy ¥alaeealized

in a sizeN system, meaning how likely it is to encounter a particular energy re-
alization in this system.

It is easy to adopt this idea for optimization purposes, as it is straightforward
to consider fitness valuésinstead of energy levels. The definition of the density
of states describing the frequency of particular fithess values in the entire fitness
landscape then becomdds:

dN
F)=—. 2.1
n(F) = (2.2)
The probability to find a certain fitness realization therefore is:
P(F) =n(F)p(x(F)) (2.2)

10otherwise, the optimization problem were solved already.

16 2.1. THE THEORETICAL FRAMEWORK

n(f)

Figure 2.3: Partial knowledge of the density of states may help
guessing the quality of the optimal solution and approximating the
necessary effort required by means of extrapolation.

wherep(x) is the conditional probability density function. The probability den-
sity p(F) is, of course, normalized and simply states that it is certain that the
system is in only one particular state at any given moment:

/ P(X1...%n)dXq...dX, L1 (2.3)

Since the complete fitness landscape has to be considered unkmdwn,
(or P(F) respectively) is also an unknown function. It is possible, however, to
construct a picture of the density of states in stepde the optimization is in
progress. This procedure reflects the growing knowledge of the optimization
problem and can, thus, also be expressed by using a measure taken from infor-

1This can easily be done by generating a histogram with respect to found fitness values and normalizing the
outcome according to e Q).

2.1. THE THEORETICAL FRAMEWORK 17

mation theory, the entropS(f):

S(F) = kIn(n(F)AF). (2.4)

Using the definition of a statistical weightW/(F) = n(F)AF, the last equation
can be written in short as:

S(F) = kInW(F). (2.5)

The entropyS can represent the currently missing knowledge about the inves-

tigated problem within a single number. The minimal vakie- O is reached

for a completely unveiled landscape. Even the partial knowledge of the density
function gives valuable information about the system. For example, it enables
the prediction of the optimization result and thereby provides some guidelines
for the necessary computation time that still has to be invedtgd Figure2.3

gives an impression of the procedure. As all predictions based on extrapolation,
the outcome has to be taken cum grano salis.

The Autocorrelation Function

In order to understand the autocorrelation function, one first has to have an under-
standing of the termautocovarianceandvariance The first term, autocovari-
ance, literally means “how something varies with itselfg]. It is the average
of the deviation of a function from its mean valyat pointx; joint by the corre-
sponding deviation at a lagged poxat (cf. Figure2.5). So the autocovariance
o2 can be written as:

1 N-k

o5 = N1 ZA — X) (%+k — X) (2.6)

1The statistical weight denotes the number of realizations of a certain fitness level.

18 2.1. THE THEORETICAL FRAMEWORK

< | S
:EN :5‘\."
I s SV s
~ © ~
0o S 0 © =)
v 0 o o
S o AV S,
<= O <o IS
= Ao = Ao
= D (SN 8.2
5 (3 Al > D
&] &

3
S
3
S

(a) correlation lengtht = 10 (b) correlation lengthr = 50

Figure 2.4: Two fitness landscapes with different correlation lengtihe landscape in subfigure
(a) has a relatively short correlation length while the subfigure (b) in contrast shows a highly
correlated landscape.

The autocovariance can be normalized and made dimensionless to have a use-
ful means of comparing different functions. This is achieved by a standardiza-
tion with the variances? which essentially reflects the fluctuation of a function
around its mean value:

2 1 d
6-—N+12¥m X) (2.7)

The resulting fraction of autocovariance and variance for a giverk lsgthe
so-called autocorrelation coefficieRg:

N—k
G2 tzl(xt_)z)(x“rk_)z)
Ro= 2 =1 (2.8)

S (% —X)?
=1

t=

2.1. THE THEORETICAL FRAMEWORK 19

Figure 2.5: Graph and lagged graph of a function. For simplicity, the méaget to zero.

The entire series of autocorrelation coefficients constitutes the autocorrelation
function. Since the autocorrelation coefficients can vary frefinto +1 the
autocorrelation function (correlogram) is confined to the same intefval; 1}.

As can immediately be seen from e@.8) the correlogram is able to reflect
linear dependencies only.

Nevertheless, autocorrelation provides a useful means of categorizing fithess
landscapes. The most interesting value is the correlation length, which measures
in generic units (i.,e. Hamming distance) in how many steps the autocorrela-
tion function has decreased from 1 to the value fwhich is roughly 037).
Examples of different autocorrelation functions can be found in seétidr,
Figure4.1l To give an impression of fithess landscapes with different correlation
length compare Fig.4(a) and Fig2.4(b). While the highly correlated landscape
in Figure2.4(b) has one pronounced valley and smooth inclinations, the shortly
correlated landscape in Figuzed(a) shows numerous peaks and troughs within
a generally rough surface. Please note that the parameter int€dvaG0} are,
of course, the same for both landscapes.

20 2.1. THE THEORETICAL FRAMEWORK

2.1.3 Stochastic Modeling of Basic Evolutionary Strategies

Taking a look at natural evolutionary processes and adaptation, several strategies
can be observedlf, 18, 19, 20]. These strategies include changes in genotype
(mutations), changes in phenotype, selection processes, learning, and knowledge
transfer (communication). It would require far too much computational power to
try to mimic all of these processes for optimization purposes. A more promising
ansatz for numerical evolutionary optimization algorithms is to place one or more
virtual seekers, each representing one possible parameter combination, onto the
fitness landscape in question and restrict the strategy to fundamental processes:

1. First and foremost, every seeker has to have a sophisticated contept of
to move about the search space. A movement in the search space is equiv-
alent to a change in parameter space (cf. Fi@ude The new parameter
combination represents a new potential solution to the problem with a fit-
ness level that is usually different. These movements in search space (pa-
rameter changes) will henceforth be called mutations. This is inspired by
the fact that in biology mutations also potentially change the fithess of an
individual 1

2. Secondly, if a seeker ensemble is used instead of a single seeker, there has
to be a way to drop inefficient candidates. The process of canceling seekers
(and optionally replacing them with better ones) will, again in analogy to
biology, be called selection. The selection process constitutes a basic seeker
coupling or seeker communication.

3. The search strategy needs to be adaptive to ensure efficiency while the seek-
ers zero in to global optima. Seeker agility that is too high can cause the

1The close relation between mutation in optimization and mutation in biology becomes visible in Genetic Algo-
rithms where a mutation operator alters one or more bits of a string (a virtual gene) at a time (&9page

2.1. THE THEORETICAL FRAMEWORK 21

ensemble to spread unnecessarily in the late optimization phase. This adap-
tation can be achieved by techniques introduced later amasalingor
mutation rate adaptation

The introduced evolutionary strategies differ by their realization of the basic
processes given in the enumeration above. A relatively simple strategy is the
Darwin strategy:

The Darwin Strategy

The ingredients for the Darwin Strategy are:
e Mmutation processes
e self reproduction of superior species showing best fithess

It is relatively easy to mathematically model this behavizif]{ The problem
Is defined as the search for a maximum on a pote¥itisdpresenting the fithess
landscape, or search space, respectively. The indexotes the fact that the
potential that is probably continuous, is reduced to an integer setsvgitiites
(i=1,...,9 in order to be numerically tractable. The numiseran still grow
extremely large, however.

Thus, the parameter/fitness landscape as shown in FRjRgets translated
onto a state/potential landscape as sketched in FygreModeling the seeker
population as the occupation numixeof statel, it becomes possible to describe
mutations as transitions from stajtéo statei and arrange the transition rates in
matrix formAjj. This leads directly to the following balance equation:

X = i (Aijj—Aji Xi). (2.9)

=1

22 2.1. THE THEORETICAL FRAMEWORK

potential W

state i

Figure 2.6: Discrete representation of a continuous fitness landscape as shown for example in
Figure2.2

In the interest of simplicity, the number of seekegscan be kept constant
throughout the search process:

i\Xi (t) = Xp = const (2.10)

Adding the fitness-dependent self-reproduction yieldsssiER-EIGEN equa-
tion describing the problem-solving dynamidsT:

A= (U)~ U)X+ 3 (Agx; —Ajx). (2.11)
j=1

By assuming symmetrical mutation ratgs = A, with AIQJ- therefore being a
symmetrical matrix, one can solve éj11with the ansatz:

t
xi(t) = exp | / Up) | vi(t) (2.12)
0
leading to

o yi(t) Z Pyt (2.13)

2.1. THE THEORETICAL FRAMEWORK 23

The HEisENBERGMatrix HP is defined as
S
HY = A9 + & (kzlAEi vi> (2.14)

The solution may now be expressed in terms of the eigenvaiuasd eigen-
functionsyy, of the eigenvalue problem a7, 19]:

S

S HP Y =&’y n=1..s (2.15)

j=1

. D
yi(t) = exp[—&; t] &'y (2.16)
n=1
The time dependent-occupation numbers are as follows:
i(t
x(t) = - (2.17)
> Yit)

This strategy has a highly erratic search path, since motion along gradients is
not explicitly modeled. By implementing the latter feature, one arrives at the
so-called Boltzmann Strategy.

The Boltzmann Strategy

This fundamental strategy describes processes corresponding to the second law
of thermodynamics. It is also known as thketropolis Algorithm[3]. It com-
bines the following two basic elements:

e motion along gradients to reach steepest ascent/descent of thermodynamic
functions

e stochastic processes including thermal and hydrodynamic fluctuations lead-
ing to random changes in order to avoid locking in local maxima or minima
respectively

24 2.1. THE THEORETICAL FRAMEWORK

A theoretical model can be constructed analogously to the Darwin strategy by
considering a set of states= 1,2,...,s. Again, each state is characterized by
a potential energy; = —V; and a relative frequency in the seeker ensemble
populationx;(t) at timet. The simplest model of a Boltzmann Strategy searching
for minima ofU; is described by the following master equation:
S
Axi(t) = jzl(/sq () — A %(0)) (2.18)
with the following transition rates:
o)1 if AU <O,
Aij = A | (2.19)
expg—BAU] if AU >0.

A process searching for maxima df can be implemented by simply changing
the sign of theAU conditions in €q2.19 The parameteB, known from thermo-
dynamics to typically b@ = 1/kT, has the meaning of a reciprocal temperature.
The Boltzmann constamt can be set to 1 without altering the character of the
search strategy. Now, how can the equat@®rig8and2.19actually be portrayed?

While the Darwin strategy allows the seeker ensemble to wander about indif-
ferently (leading to a symmetric transition matA'%) unless they are terminated
by selection processes, the Boltzmann strategy takes energy chsngeso
account. Mutation steps leading to improvements (uphill for maximization and
downhill for minimization) are always accepted, whereas degradations are expo-
nentially weighted with respect to the threshold’s height. The idea, obviously, is
to take the best characteristics from simple gradient search methods (fast search
and easy implementation) while avoiding their pitfalls (trapping in local optima).
The exponential weight (Boltzmann factor) assures that drastic degradations are
rarely ever accepted.

This construction as a whole causes the distribution of seekers to assume the
form of the well-known Boltzmann distributiori §:

2.1. THE THEORETICAL FRAMEWORK 25

X = 2 expl~Ui/T] (2.20)
Z= _iexp[—ui /T (2.21)

that is centered around the maxima (or minima respectively) of the fitness land-
scape as time goes to infinity. Therefore, the master equati@f) (ndeed de-
scribes an optimizing process.

The parameteF in the equations above denotes a problem-dependent fithess
based upon the energyy and the search direction (maximization/minimization).
The dimensionless normalization facirs the partition function.

The Mixed Boltzmann-Darwin Strategy

It is intuitively clear that the gradient-guided search of the Boltzmann Strategy is
very effective for smooth fitness landscapes, while the Darwin strategy shows its
strength in shortly-correlated, rugged landscapes, where its ability to tunnel high
fitness barriers is advantageous. Numerical experiments show that a search strat-
egy combining the basic ingredients of both the Darwin and the Boltzmann strat-
egy easily surpasses both pure search algorithms (cf. séc#prGoing back to
equations2.11, 2.18), itis straightforward to write down the master equation for

the Boltzmann-Darwin dynamics. The equation contains the selection term, the
mutation term, and the Boltzmann factor (hidden inside the mutation matrix):

d s
mxt (t) = Y\(<U> — Ui) Xi(tZer jZl(Aij Xj(t) — Aji X (t)) (2.22)

\ 7

\'r
selection term ~~
mutation term

The mutation matrix4; is defined according to eg2.19. The new factory
denotes the selection strength, whereas the fantdenotes the mutation rate.
Since, numerically, one can only execute one step at a time, both are related via:

26 2.1. THE THEORETICAL FRAMEWORK

0 Darwin Strategy

>

Y

Figure 2.7: Parameter space for the different search strategies; Boltzmann StiageQyy = 0;
Darwin Strategy3 =0,y #0

m+ yé 1. Itis easy to see now that the pure Boltzmann Strategy is contained in
eq. .22 for y = 0, while the pure Darwin strategy is obtained by settng 1
andf — 0.

So far, the selection is restricted to fitness proportional survival. In order
to also allow nonlinear selection functions, eg.22) needs to be written in a
somewhat more general forr@3):

d S
Ge(t) =7 FBU)Xj (0% (1) +m j;(m i -A%D) (229
Now it is possible to introduce a selection such as
f(AU) = const— ©(AU). (2.24)

This is used for all numerical simulations in this work (cf. chagter

2.1. THE THEORETICAL FRAMEWORK 27

Here,© describes a step function which switches frOifall values less than
0) to 1 (all values greater than 0).

Very efficient and, therefore, used in the numerical simulations is the so-called
tournament selection, which works as follows:

1. In a selection step randomly pick seekers from the ensembile.
2. Rank the obtaineth seekers according to their fitne'ss.

3. Replace the worst seeker with the best ofrtiheandidates.

Obviously, the strategy now requires at leasihNan mseeker ensemble which
is then globally coupled via selection processes. The tournamentrsigea
free parameter. Since the worst of timeseekers is dropped in a selection step,
by increasingm one indirectly also increases the selection strength. A typical
tournament size chosen for numerical simulations is 4.

2.1.4 Other Stochastic Optimization Strategies

Simulated Annealing

In 1983, KIRKPATRICK and co-workers introduced a new optimization strategy
that was inspired by thermodynamid.[Simulated Annealing basically extends
the Metropolis algorithm (cf. eq2(18) by making the temperature a variable
In the search process.

While high temperatures are beneficial in the early optimization phase (they
allow for widespread seeker ensembles), it makes the search inefficient in zero-
Ing in on the fitness optima. The idea, therefore, is to cool down the temperature
along the search path to enable the ensemble to finally focus.

LEfficiency demands that instead of a complete ranking which is at least of @delog|L]) the best and the
worst seeker must be found only. The latter isca.) problem.

28 2.1. THE THEORETICAL FRAMEWORK

The crucial point using simulated annealing is the actual annealing schedule.
Severalad hocschedules have since been propdsedt they are hard to moti-
vate in theory. It was, however, possible to partially deduce optimal annealing
schedules analytically for special problems (spin gl&$siging model p4)).

In 1993 ANDRESEN proposed an annealing schedule that suggested a constant
thermodynamic annealing speed that adapted itself to the optimization prob-
lem [25, 26, 27]. His basic physical idea was to minimize the cumulative en-
tropy production for the cooling process. The resulting schedule contained the
constant annealing spegglas a free parameter and the relaxation coefficient

as well as the heat capact®yas problem dependent values:

dT Ve T
— = 2.25
e (2.25)
The last equation can be written equivalently 26 P8]:
Ve =) _SGQ(T) (2.26)

with Ueq(T) being the internal energy the system would have if it were in equi-
librium with its surroundings at temperature T. In eg.26), C(T) ande(T) are
estimated based on the entire past history of the annedlsig [This makes
numerical simulations usingMDRESENS schedule somewhat tedious.

Genetic Algorithms

Genetic algorithms that are outside the scope of this work appeared first in the
1970’s and, in a way, pioneered evolutionary algoritfmi.was mainly the
works of HOLLAND [19, 29, 30], GOLDBERG [31, 32|, DE JONG [33, 34, 35
et. al. that laid the theoretical foundation.

Essentially, the difference between evolutionary algorithms and genetic al-
gorithms is the representation of search space elements. Genetic algorithms, or

LAmong them: linear cooling, exponential cooling, fast simulated anned@jgefc.
2The first Proceedings of the International Conference on Genetic Algorithms did not appear before 1985.

2.1. THE THEORETICAL FRAMEWORK 29

GAs for short, restrict themselves to a bit-string representation of data structures
reflecting some sort of chromosome representation.

before: after:
01100100150001001010111010101 0110010011101110010110111010
\ ‘ X over
11010001151101110010110111010 1101000110001001010111010101

Figure 2.8: One possible realization of a crossover operator working on a bit string. First, a
common crossover point for two candidate strings is randomly chosen. In a second step the tails
of both strings are exchanged.

All operators, such as mutation, are therefore binary operatorgisiegtion
deletion bit inversion or string reversion This artificial restriction makes it easy
to introduce a crossover operatoo the search dynamics. This operator, as seen
in Figure 2.8, is able to efficiently exchange building blocks between different
seekers. This is the starting point for the ‘schema thedrantiich investigates
why genetic algorithms are actually able to optimizét is evident, however,
that problems that cannot be split into the form of building blocks will not ben-
efit from crossover operations. At this point evolutionary algorithms are more
appropriate tools to tackle the optimization problem.

1Some authors prefer to typeset crossovexager
2For a detailed introduction refer taJ].
3For a different explanation, cf3p, 37).

30

2.1. THE THEORETICAL FRAMEWORK

Chapter 3

Model Problems

3.1 Correlated Random Landscapes

In a working paper, 8EINBERG[38] proposed an approach to generate n-dimen-
sional random landscapes with a predefined correlation lengtthich will be

briefly introduced here. Correlated random fitness landscapes generated as de-
scribed below offer a nice set of features to test the effectivity of evolutionary al-
gorithms: A typical landscape has numerous local maxima and minima, a known
correlation length and a given number of dimensions. Fi@uehows exam-

ples of such landscapes for two dimensions.

To construct the landscape the enedyix), the mean valueU (x)), and the cor-
relation function are predefined.

(UX)) =0 (3.1)
URU X)) = K(R—X]) (3.2)

Decomposing the fitness landscape to uncorrelated Gaussian random numbers
yields:

31

32 3.1. CORRELATED RANDOM LANDSCAPES

U(R) = / A%’ h(%, %) & (X)) (3.3)
(E(R)E(X)) = 8(X—X) (3.4)

To determine the yet unknown functidiiX) one can combine e@.2 and
eq.3.3

(URU (X)) = / dx"h(%, X")h(X, x") (3.5)

Introducing the Fourier spectrum of the correlation function

-
!

Su = /d%/ UR) U (R+X)) (3.6)

and returning to e3.3yields

Siu = HK) (3.7)
with
HK)]2 = / dxh(x)e® / dx"h(x")eR (3.8)

In general, eg3.7 becomes

Su = See[H(K)|? (3.9)

3.1. CORRELATED RANDOM LANDSCAPES 33

with S¢¢ being the Fourier transform of the random number’s correlation func-
tion. The last equation finally leads to:

[[ik
h(x)= [dk,/—e (3.10)
_4 | See

It is then quite simple to get from the continuous to the discrete landscape.
The example shown in Figu&4was generated using the following iteration:

Noooo = v/ (UooUoo) (3.11)

1
Nisit = —<<UijUst>
Nsstt

s—1
— > Nikjt nsktt) (3.12)
o

Uij % IZJ Nikjl Sk (3.13)

It lies in the algorithm’s iterative nature that generating already relatively
small landscapes (100 steps in each direction) becomes quite computation in-
tensive forn = 3 or more dimensions. Therefore, the software developed to
generate these fitness landscapes was designed to benefit from multiprocessor
machines (cf. sectiob.1.9.

34 3.2. FRUSTRATED PERIODIC SEQUENCES

3.2 Frustrated Periodic Sequences

As the name suggests, Frustrated Periodic Sequences introduceaskey Bnd
FEISTEL[17] are an example of frustrated fitness functions. The aim of the prob-
lem is to optimize two contradictory goals (alphabetic order versus periodicity).
So the optimal solution has to be a compromise.

A sequence consists for exampleiofetters:

A € {A,B,C,D}.

The fitness functioifr (x) is defined as follows:

The functiono(x) denotes the number of letters occurring in alphabetic order.
(The sequencéD, A) is also considered to be alphabetical.)

The functionr(x) is defined as the number of letters occurring with pepedA .

+ 0.2

SN

ABDAADBC
VoV \%

+1 +1 +1
Figure 3.1: Frustrated Periodic Sequence evaluation scheme for a petidcandb = 0.2.
Then, the fitness function is calculated as
F(x) = o(X) +br(X). (3.14)

The free parametdrweighs between preferably alphabetic or periodic sequences.
For b = 0 optimal sequences are purely alphabetic, whildbfer o optimal se-
guences are purely periodic. Maximal frustration is reached if one chooses the

3.3. THE LABS PROBLEM 35

parameteil to be [L5]

b==
p

Figure3.1demonstrates the evaluation of a sequence fob andb = 0.2. Frus-

trated Periodic Sequences form Gaussian landscapes with respect to the density
of states. Their structure, however, is rather simple. In the case of maximal frus-
tration, the best sequences are made of building blocks:

e alphabetic structureABCDABCDAB
block 1 block 2

e periodic structureABCDAABCDA
block 1 block 2

These building blocks induce a high degeneracy of optimal sequences and expo-
nentially long correlations in the fitness landscape (cf. Figutk rendering the
problem rather easy, despite its appearing complexity.

3.3 The LABS Problem

The LABS (low autocorrelation binary sequences) problem introduced in 1990
by GOLAY has been studied intensel$9 40, 13]. It is undoubtedly a hard
problem to solve. The optimization goal is to minimize the autocorrelation of a
binary stringS. The stringSis composed of-1 and—1 bits:

S={s1,%,...,st}; se{-1+1} (3.15)

The autocorrelation coefficieRfor distancek is given by:

L—k

R = .le.stk. (3.16)

36 3.4. THE RNA AND NK MODEL COMPARED

As mentioned above, the aim is to minimize the quadratic Euohall autocor-
relation coefficients:

L—1
E=Y R (3.17)
K=1
or equivalently maximize the so calledeviT-factorF:
L2
F=— 3.18

For most (but not all) odd length sequences, the highest Merit factor is achieved
by skew-symmetric configurations. Skew-symmetric sequences fulfil the rela-
tion
i L+1
Suvi = (—1)'su—iy p= >
and, therefore, havi, = O for all oddk. Due to the{+1;—1} symmetry, the
optimal sequence is degenerated, but the optimization still resembles the search

(3.19)

for the infamous needle in a haystack.

3.4 The RNA and NK Model Compared

3.4.1 The NK Model

The NK modelis an abstract model introduced byudcFMAN [20] in the frame-
work of population genetics. In its structure it is very similar to the well-studied
spin glasses introduced byp®WARDS, ANDERSON([41], et. al. A spin glass is
typically described as a two or three dimensional lattice carryiiegupled spins
which can point either up or down. Hence, there dfe@ssible configurations
with a total energy given by the Hamiltonian:

H:—ZJij(S XSj) S,5==1 (3.20)
N

i

3.4. THE RNA AND NK MODEL COMPARED 37

wheres ands; are the orientations of the two sping; is the energy reflecting
how strongly the two are coupled and, therefore, prefer to be in the more fa-
vorable relative orientation. Analogously, the NK model consistd pbsitions
(gene loci) with two different possible states (alleles), 1 and 0. The paraketer
stands for the average number of other loci which epistatically affect the fithess
contribution of each locus. A possible third parameter describes how tre
distributed among th&l. According to KAUFFMAN, it turns out that to a very
large extenbnly N andK matter.

As the number oK increases the conflicting constraints lead to an increas-
ingly more rugged, multi-peaked fitness landscape. Examining the landscape
structure as a function ™ andK shows two interesting extremes:

e K =0: This corresponds to a highly correlated, very smooth fitness land-
scape with a single peak. The difference in fithess between neighbdring
is 1/N, thus for largeN the fitness of one-mutant neighbors is very similar.

e K=N-1: This case corresponds to a fully random fitness landscape.
Thus, the number of local fithess optima is extremely large and as the num-
ber of lociN increases, the local optima fall toward the mean fitness value
of the fitness landscape.

The fitness landscape itself can be constructed as follows:
1. Assign to each locustheK other loci which influence it.

2. For each of the possibl&2! combinations, assign for each lodusfitness
contributionw; drawn at random from the intervg, 1].

3. The fitness value of a given genotype is defined as the average of all contri-
butionsw;:

W = Wi

1
N.&

Mz

38 3.4. THE RNA AND NK MODEL COMPARED

3.4.2 RNA Secondary Structures

One particular optimization problem has gained increasing interest in physics
and biology over the last couple of years: the stochastic folding kinetics offRNA
sequences into secondary structud? f13]. RNA sequences consist of bases
that can be either purines (Figu3e2) or pyrimidines (Figure3.3).

While the bases Adenine and Guanine are the so called purines, the bases
Thymine, Uracil, and Cytosine are pyrimidines. Thymine, however, is present in
DNAZ strands only, so a symbolic RNA sequence consists of the lét{desine),
C(ytosine),G(uanine), andJ(racil): {A,C,G,U }.

A member of the purines can chemically bind to a member of the pyrimidines
and vice versa. The resultis what is know as a base pair. The most common ones
are the Watson-Crick pair§®,C) and (A,U)) plus the ’twisted’ pair(G,U).

Thus, a plain RNA strand (primary structure; Bg) can curl up in the three
dimensional space to form a secondary structufégure3.5a).

0> 0

Adenine Guanine

Figure 3.2: Purines: The bases Adenine and Guanine can be found as building blocks for RNA
as well as DNA sequences.

IRNA: ribonucleic acid
2DNA: deoxyribonucleic acid
3online database: http://www.rcsb.org/pdb/

3.4. THE RNA AND NK MODEL COMPARED 39

O O NH,
\(kNH (‘kNH \/NL
N /LO N /LO N 0
H H H
Thymine Uracil Cytosine

Figure 3.3: Pyrimidines: Uracil is found in RNA sequences only, while Thymine is specific to
DNA sequences.

G-G-C-C-A-G-A-U-U-G-A-G-C-C-U-G-G-G-A-G-C-U-C-U-C-U-G-G-C-C

Figure 3.4: Primary structure of an RNA sequence with 30 bases. This RNA strandHBMze
Tar-Arganininamide Complexhich has the kestAJU in the online protein database.

The secondary structure, forming e.g. loops and ‘hairpins’, can fold into
higher level structures like:-helices ang3-sheets itself. The FigurésS(b) and
3.5(c) show such higher level structures of an RNA sequence.

It is not trivial to estimate the free energy of RNA secondary structures. Each
base pair and each loop contributes a specific binding energy. In this work, the
software‘Vienna RNA packageVersion 1.4 was used to numerically evaluate
RNA sequences. This software package includes experimental data of binding
energies and is freely available.

In order to simplify matters somewhat, secondary structures can be written in a
commonly used bracket notation: The positions of bases within an RNA strand

Lhttp://www.tbi.univie.ac.atlivo/RNA/

40 3.4. THE RNA AND NK MODEL COMPARED

@) (b) backbone (c) details

Figure 3.5: Secondary structure of the RNA strand shown in FiguteSubfigure (a) shows the
bindings and secondary structure, subfigure (b) shows how the secondary structure curls up in a
helix like structure and subfigure (c) gives a detailed picture of the bases.

are marked by dots, while base pairs are symbolized by closed parentheses. The
sequence shown in Figu4 with a secondary structure as displayed in Fig-
ure 3.5a) can symbolically be written as:

(GG

This binding structure together with the original sequence can be fed to the
RNAevaloutine contained in the Vienna package to obtain the free energy of the
given secondary structure . All parentheses are assumed to be properly stacked,
since this software is not yet able to take pseudo loops into account. Pseudo loops
are higher order structures that occur whenever two bindings intersect, as shown
in Figure3.6. The optimization problem considered here is the search for a sec-
ondary structure, which minimizes the free energy of the RNA sequeBagce

even for short sequences the search space is enormous and the fitness landscape

1The minimal free energy conformation is often — but not always — the biologically occurring structure.

3.4. THE RNA AND NK MODEL COMPARED 41

el (2)0),
N/

Figure 3.6: Intersecting bindings generate a pseudo loop.

is almost uncorrelated (cf. Figudel), this optimization problem is particularly
hard to solve.

Additionally, numerical simulations show that most initial folding steps in-
crease the free energy compared to an unfolded sequence, since a single binding
naturally forms a simple loop. Hence, it is a crucial point to design the numerical
mutation operator used in evolutionary algorithms to allow for multiple bindings
and dissections.

Sometimes simpler combinatorial models like the NK-model are used to mimic
problems like RNA folding. It is therefore helpful to have a comparison of both
problems #4]. The following table lists both the advantages and disadvantages
of either model.

42 3.4. THE RNA AND NK MODEL COMPARED

relatively simple model ractically relevant
Advantages * y P °P y
e analytically treatable e numerical implementation
freely available
e all values known
. e relevant values partially
e easy to implement numer-
. known
ically
comparable to RNA mod computationally intensive
Drawbacks y P y P y

els for limited paramete
set

~—t+
1

e pseudo knots not yet trea
able
e mostly poor correspon

e several unknown paramg
dence to RNA data

D
1

ters

|®X

e energy functional dispute

Chapter 4

Optimizing the Search Process

4.1 Exact Stochastic Simulations

A serious problem that has not yet been discussed is the fact that master equa-
tions, such as eg2(22, contain probabilities as variables. While it is still possi-

ble to write down the complete set of coupled differential equations for a system
with very few possible states, the method becomes not feasible for large systems.

A possible way to generate valid trajectories according to the master equation
Is to choose the transitions and transition timesafgingle trajectoryaccording
to the correct probability distribution. This idea was proposed independently by
FEISTEL[17, 45 and GLLESPIE. The latter suggested two different algorithms
for numerical simulations46, 47], which can be proven to be mathematically
equivalent #16]. The Direct Methodexplicitly calculates which transition occurs
next and when. The second one, ffiest Reaction Methodcalculates a time
7 at which the particular transition occurs for each transi#gn chooses the
one with smallest, and executes it at time. Both algorithms will be briefly
described in the following subsections.

43

44 4.1. EXACT STOCHASTIC SIMULATIONS

4.1.1 The Direct Method
As stated above, the direct method follows the two questions:

e Which transitionj — i occurs next?

e At what timet does it occur?
The probability densitypjj (7) that the next occurring transition js— i at time
T IS:

pij (T) = Pij eXIO[—TZ psj] dz (4.1)
S

The probability distributior®;j for all transitionsj — i can now easily be calcu-
lated as:

o)

Ri = pij /exp[prs,] zpﬁs, (4.2)

0
The time distribution can be determined as well:

p(7)dt = (Z psj) exp(—fz psj> dr (4.3)

The knowledge of both distributions can now be used to set up the following
algorithm:

Direct Method Algorithm

1. Initialize seeker ensemble; get 0.

2. Calculatepsj for all s.

3. Choose transition according to ed.2).
4. Chooser according to eq.4.3).

5. Execute transition, sét=t + 7 and go to step 2.

4.1. EXACT STOCHASTIC SIMULATIONS 45

4.1.2 The First Reaction Method

Instead of directly calculating the probability distributions for both transition and
time, one can equivalently calculate a putative tiayfer each transition and then
execute the one which would occur first. This is Bmst Reaction Methoavhich

has the advantage that it requires the generation of only one random number in-
stead of two for each transition.

First Reaction Method

1. Initialize seeker ensemble; get 0.

2. Calculateps;j for all s.

3. Calculate all putative timeg according to eq.4.3).
4, Sett = miinri.

5. Choose transition with time.

6. Execute transition, sét=1t + 7 and go to step 2.

4.1.3 The Next Reaction Method

The Next Reaction Methqdoroposed by @soN and Bruck [50], is an ad-
vancement of the algorithms introduced above. While these scale linearly with
the number of transitions the Next Reaction Methoperforms&'(log(r)) in a
worst case scenario. The main ideas used accordinggedl et. al., are:

46 4.2. THE EVOLUTIONARY WINDOW

1. Store all transition times,.

2. Be extremely sensitive in recalculating the transition probabilities.
3. Re-use transition times where appropriate.

4. Switch from relative time (time between reactions) to absolute time.

5. Use efficient data structures to store transitions as well as transition times.

To realize the second and last points, the authors rely on dependency graphs
and priority queues for numerical efficiency. The high effort quickly pays off
when comparing simulation times.

The simulations carried out in this work implemented a variantiaL EspPIE's
Direct Method, since the calculations of the extensive investigative ensemble
statistics far outweighed everything else.

4.2 The Evolutionary Window

As discussed in subsectiéhl.3(p. 25) mixed evolutionary strategies provide

the highest flexibility for optimization tools, in terms of tuning measures. This
benefit is paid for by the introduction of numerous free parameters such as en-
semble sizeN, temperaturd = 1/, and selection pressuge (cf. eq. .22).

This section investigates the influence of all these inherent search parameters on
the optimization outcome using some model problems introduced in ctapter

4.2.1 Comparing Fitness Landscapes

In order to understand the results of numerical simulations, one has to have an
impression of the underlying fitness landscape. As laid out in se2tig it is

4.2. THE EVOLUTIONARY WINDOW 47

helpful to either determine the density of states or the autocorrelation function.
Here, an easy method to obtain the latter one will be introddiced.

A simple approach is to take a sample of the fitness landscape and calculate
the whole spectrum of autocorrelation coefficients according to2§). (To
reduce sampling effects, it is necessary to average the autocorrelation function
over many different samples afterwards.

As already discussed in secti@ri.lit is the mutation operator that generates
a representation of the fitness landscape by determining the set of allowed moves
in parameter space. Using the idea introduced above, the easiest approach is to
simply start a search process with a single seeker at a randomly chosen posi-
tion to get a sample of the fithess landscape, then calculate the autocorrelation
function and iterate the procedure many times to have an averaged result.

For an infinite temperature, the seeker’s path resembles what is known as
a random walkacross the landscape. It might however be easier to visualize
the movement as a random flight where the temperature value symbolizes an
altitude? It is shown in Figure4.1 how temperature-dependent the obtained
autocorrelation function indeed is. For the models investigated, the correlation
length decreases with increasing temperature for maximization problems (Fig-
ure 4.1 top and center) and vice versa for minimization problems (Figute
bottom).

This is easy to understand when referring to the picture used above. The
higher the seeker’s altitude is, the more structures will come into its scope and
will decrease the correlation length. At high temperatures the RNA folding land-
scape becomes almost uncorrelated (correlation lengthl.7 at temperature
T =10).

1Two different ways to investigate the density of states is describeibn [
2This picture is appropriate for a minimization problem only; for a maximization the inverse tempefature

would correspond to the imaginary altitude.

48 4.2. THE EVOLUTIONARY WINDOW

Sticking to interesting temperature regions (cf. secddh?), the optimiza-
tion problems can most assuredly be ranked according to their difficulty level
from easiest to most difficult as follows:

1. Frustrated Periodic Sequences (exponentially long correlation)
2. LABS problem (short correlation length)

3. RNA folding problem (almost uncorrelated)

4.2. THE EVOLUTIONARY WINDOW 49

autocorrelation coefficient

LEELL
o

autocorrelation coefficient

BONR O

R S R
11

autocorrelation coefficient

Figure 4.1: Temperature dependence of the autocorrelation function for lergth5 Engel
sequences (top), an= 32 LABS problem (middle) and ah = 100 RNA folding problem
(bottom, Polio virus Type 1, AC V01148; 5’-cloverleaf, cf. Appendix For each temperature,
the respective correlation length is denoted.

50 4.2. THE EVOLUTIONARY WINDOW

4.2.2 Exploring Parameter Windows

parameter 2
parameter 2

parameter 1 parameter 1

Figure 4.2: Computation time shared among the seeker ensemble implies that smaller ensembles
(left figure) can explore longer optimization paths per seeker in the search space than bigger
ensembles can (right figure).

Having three model problems of different difficulty level at hand, it is possible to
numerically investigate the generic influence of the search parameters (ensemble
sizeN, temperaturd and mutation rat&m,) on the optimization result.

All numerical simulations were carried out in such a way that a given absolute
computation time was shared among all seekers of the ensemble. Thus, small en-
sembles allowed for longer search paths per seeker. In the limit of either infinite
computation time or a small search space, there should be no notable influence
of the ensemble size on the search result (granted, that the fithess landscape is
ergodid). For random initial conditions the entire search space can be equally
well covered, as seen in Figude2

Lif this is not the case, i.e. if some points in the search space are unreachable, the mutation operator is obviously
ill-designed.

4.2. THE EVOLUTIONARY WINDOW 51

parameter 3

2

Pg
13 J
N ster
ter 7 p’af ar®

Figure 4.3: Despite long search paths, small seeker ensembles can not efficiently cover high-
dimensional search spaces.

In the case of common optimization problems, the computation time is usu-
ally quite limited. As shown in Figurd.3, the size of the seeker ensemble now
makes a big difference indeed. Even an ensemble having only a couple of seekers
cannot efficiently cover the search space, despite having longer search paths. The
situation becomes even worse if the search space is high-dimensional. Clearly,
bigger ensembles can be spread across the fithess landscape more easily. The en-
semble size is, however, limited by the computation time, as seen in Fdure
Too many seekers turn the search strategy into pure guessing with a simulation
time per seeker diminishing to zero.

Summarizing the last paragraphs, it is now possible to make a few projections
on the generic influence of the ensemble size for realistic optimization conditions
(i.e. vast search space and limited computation time):

Uncoupled seeker ensembleThe volume of the search space obviously increa-
ses exponentially with the number of dimensions. At first glance, a linear

52 4.2. THE EVOLUTIONARY WINDOW

change in the ensemble size is therefore neglectable for uncoupled seekers.
Since the computation time is shared among the seekers however, one can
expect a decreasing optimization result with increasing ensemble size.

Coupled seeker ensembleOnce the seekers form a coupled ensemble the ini-
tial conditions (initial distribution in search space) become crucially im-
portant. For small ensemble sizes seeker communication provides no ad-
vantages. On the other hand, ensembles that are too large are handicapped
by insufficient computation time. One can, therefore, expect a pronounced
optimum with respect to the ensemble size for coupled seekers, unless the
fitness landscape is trivial.

With these expectations in mind, it is now necessary to have a look at some
numerical simulations and either verify or disregard the above conclusions.

1. Constant Temperature

Figure 4.4 shows a summary for an exhaustive parameter sweep on all three
test models. A mutation rate &, = 100% indicates absent selection steps
and, therefore, represents an uncoupled seeker ensemble. Notably in this case
an increasing ensemble size causes a decreasing optimization result as expected,
regardless of the test problem. It is also immediately visible that the best results
can be achieved only for a relatively small parameter window. This distinct
window, called arevolutionary windowrom now on, always encloses mutation
rates of 0%< Pynut < 100% and ensemble sizes with> 1 seekers. A pure
Boltzmann strategyRnut = 100%) turns out to be less effective than the Darwin

1The seekers are uncoupled if e.g. selection is missing. Thus, there is no communication between the individual

seekers of the ensemble.
2For trivial landscapes communication does not have any benefits and the optimal (degenerated) ensemble con-

sists of 1 seeker only.

4.2. THE EVOLUTIONARY WINDOW 53

strategy and the mixed strategies, because the Boltzmann strategy cannot cover
the evolutionary window (cf. Figur2.7 on page26).

9 70
8 o
~0 60
7 &
6 -E 50
5 o 40
4 30
3
20
2
4 10
0 R
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 B0 90
ensemble size N ensemble size N
(a) Frustrated Periodic Sequences (b) LABS problem
[kcalimol]
temperature T=1
calculation time t=500
repetitions R=1000

String Length:

Frust. Per. Seqg. L=15
LABS Problem L=32
RNA Second. Str. L=100

0 10 20 30 40 50 60 70 B8O S0 100
ensemble size N

(c) RNA secondary structures (d) Search Parameters

Figure 4.4: Optimization results for an exhaustive parameter sweep on all three test models
show a distinct parameter window (red area) with significantly better optimization results. The
RNA sequence used in subfiguted(c) (which displays the free energy instead of the fithess so
that best results are again indicated by red colors) is the sequence of the first 100 base pairs of
Polio virus type 1 MahonepC V01148 (cf. Appendid). For all three models, random initial
conditions were used.

54 4.2. THE EVOLUTIONARY WINDOW

Besides these common properties, Figdir4also reveals some interesting
differences between the test problems used. For any chosen mutation rate, frus-
trated periodic sequences do not benefit from an ensemble based optimization.
In other words, small seeker numbers are the best choice. This indicates that, as
stated above, that the fitness landscape is rather trivial. It is very unlikely that
seekers get stuck in local optima along their respective search paths.

In contrast, the evolutionary window shows a pronounced maximum at en-
semble sizes oN ~ 10 seekers for the LABS problem. Considering the short
correlation length of the fitness landscape (cf. FiguB, this is another hint
that the optimization ofow Autocorrelated Binary Sequenassather difficult.

Looking at Figure4.4(c), one must keep in mind that in the case of RNA
secondary structures, one is looking for thmimalfree energy. The color scale
was therefore inverted to assure that best results are again displayed in red.

The vast search spdcand an almost uncorrelated landscape dramatically shift
the evolutionary window, which is clearly marked again, so that optimal seeker
ensembles contain somk~ 100 seekers.

2. Variable Temperature

So far, the temperature was kept constant at 1 for all simulations. Since
the various fitness landscapes’ autocorrelation function has turned out to be very
temperature dependent, the evolutionary window is also expected to show a de-
pendence on temperature.

The results of the first problem investigated, Frustrated Periodic Sequences,
Is shown in Figure4.5. The color scales are identical for all four subfigures;
fitness values below = 5.5 are displayed in black. Comparing the subfigures,
the following statements can be made:

1Considering 4 bases and 3 possible base pairings for léngfifngs, . ..

4.2. THE EVOLUTIONARY WINDOW 55

1. As can be seen, an increasing temperature shifts the evolutionary window
towards lower mutation rates.

2. Furthermore, the evolutionary window shrinks quickly as the temperature

rses.
100 fa.ul 12 100 fa.ul 13
= 1z = 1z
B0 B0
70 11 70 11
.B_E.m 10 ﬁ 60 10
E = E¥ >
n n %
20 & 20 &
20 Fi 20 7
10 10
]]
[+] [a]
0 10 20 30 40 50 B0 7O B0 20 100 0 10 20 30 40 50 80 7O B0 20 100
Ensemble Size Ensemble Size
(a) temperaturd =0 (b) temperaturd = 2
100 [a.u] 13 100 [aul 13
%0 1z 0 1z
80 80
20 11 0 11
la_E’,.&o 10 .3_9'. 60 10
E = EY ®
o % o %
20 8 20 8
20 7 20 7
10 10
]]
[#] a
0O 10 20 30 40 50 B0 7O BO 80 100 0O 10 20 30 40 50 8O 7O BD B0 100
Ensemble Size Ensemble Size
(c) temperaturd =4 (d) temperaturd =6

Figure 4.5: Mean ensemble fitness: Temperature dependence of the evolutionary window dis-
played for Frustrated Periodic Sequences. Sequence length5; computation timé = 500;
averaged over 1000 runs; Fitness values bdétow 5.5 are shown in black.

56 4.2. THE EVOLUTIONARY WINDOW

The first finding is evidence to a shifted error threshdd, [52] caused by
an increased acceptance of missteps with increased temperature. The second
finding is closely linked to the first one and could already be anticipated. The
long autocorrelation of the fitness landscape and the fact that just a few seekers
suffice to explore the fithess landscape (without trapping in local optima) suggest
a trivial optimization problem.

8
8 8

ol
o

2 e 2 e
5% 5%
n_E 40 n_E 40
20 20
20 20
10 10 1z
o] T T T 1 T T a L B 1 T T
0 10 20 Z0 40 50 B0 7O BO =20 0 10 20 30 40 50 B0 7O BO S0
ensemble size N ensemble size N
(a) temperatur@d =0 (b) temperatur@d =2
100
20
80
70
ﬁ.m
5 30
n" <
20
20
1o 12
a T T T T T T T T T
0 10 20 30 40 50 B0 70 BO 80 0 10 20 30 40 50 B0 70 BO 20
ensemble size N ensemble size N
(c) temperaturd =4 (d) temperaturd =6

Figure 4.6: Mean ensemble fithess: Temperature dependence of the evolutionary window dis-
played for Low Autocorrelation Binary Strings. Sequence lergth 32; computation time
t = 500; averaged over 1000 runs

4.2. THE EVOLUTIONARY WINDOW

57

8

E 50
5 S0
n" 4
20
20
10

a T T T T T T T T T T

0 10 20 30 40 50 B0 FO 80 90 100
ensemble size N
(a) temperaturd =0

100 1 L 1 1 L L 1 L L |
20
80
70
E 60
5 30
s 4
20
20

0 10 20 30 40 50 B0 70 BO 80 100
ensemble size N

(c) temperaturd =4

]

Pmut [‘%]

B8 54 8

o

[keakmel]

8

Pmut [O/O]

B B8 &48 8

[kcakmal]

T T T T T T T T T
0 10 20 30 40 50 B0 70 BD =0 100

ensemble size N

(b) temperaturd =2

TR SR T SR TR S TN N SR [heakmel]

0 10 20 30 40 50 B0 TO BO 80 100
ensemble size N

(d) temperaturd =6

Figure 4.7: Mean free energy: Temperature dependence of the evolutionary window displayed
for RNA secondary structure optimization. Sequence lehgth100; computation time= 500;

averaged over 100 runs

Since there is, therefore, no need to accept steps with lower fitness (as higher
temperatures permit), the evolutionary window is expected to shrink. The same
behavior as seen for Frustrated Periodic Strings can be observed for Low Au-
tocorrelated Binary Strings. The sharply limited evolutionary windoWTat=
0, 5 < N <20, 68% < Pyt < 98%} shrinks and shifts towards lower muta-
tion rates as the temperature increases. Since the LABS problem is non-trivial,

58 4.3. MASTERING INTRINSIC SEARCH PARAMETERS

optimal ensemble sizes are abduts 10 in contrast to the Frustrated Periodic
Sequences.

The RNA secondary structure optimization is somewhat special, as can be
seen in Figured.7. The evolutionary window does not get shifted noticeably
with increasing temperature, but rather disappears above a certain threshold. For
temperature3 > 4, the optimization result is almost independent of the ensem-
ble sizeN.

4.3 Mastering Intrinsic Search Parameters

The mixed evolutionary algorithms introduced, including the pure strategies as
special cases, basically have three intrinsic search parameters: the ensemble size
N, the temperatur@, and the mutation ratB,,. As demonstrated in the sec-

tion above, all these parameters must be carefully adjusted in order to ensure an
efficient optimization process.

A user-friendly algorithm should be enabled to automatically adapt all its
intrinsic parameters. Since the optimal parameter window, the evolutionary win-
dow, is three-dimensional, three cross-dependent adaptation strategies have to be
developed. As a first step one could try to adapt each parameter individually.

4.3.1 Ensemble Size Adaptation

Very few attempts can be found in literature dealing with the adaptation of seeker
ensemble sizes. There are also no new contributions developed in the scope of
this work. The main obstacle is the difficult analysis involved in modelling evo-
lutionary algorithms. There is basically only one model problem, binary strings
or so called Bitstring’ that is analytically solvable in the linear case.

LA well known implementation of this model is also known as thee® Ax -Problem.

4.3. MASTERING INTRINSIC SEARCH PARAMETERS 59

If one does not want to rely oad hocassumptions, the problem to fix the
ensemble size can be approached by introducing a meta-optimization-algorithm.
The idea is to start the search process with differently sized, competing subpopu-
lations B3]. During an evaluation interval, each subpopulation may demonstrate
its performance. Afterwards, the different populations are rated and accordingly
adapted. This is the so-called migration interval.

The advantage of a meta algorithm (i.e. to have a tool to adjust an intrinsic
search parameter) faces a few disadvantages:

1. The meta algorithm unavoidably binds scarcely available computational re-
sources.

2. The meta algorithm introduces a set of additional intrinsic parameters such
as thenumber of subpopulations quality criterionto rate the subpopu-
lations, the length of thevaluation interval the length of themigration
interval, and again criterionfor the ensemble size adaptation.

4.3.2 Temperature Adaptation

In contrast to ensemble size adaptation, temperature control techniques have
been thoroughly investigated,[5, 6, 7, 8, 9, 23, 54]. The simplest forms of
annealing schedules are fixed functions like linear or exponential cooling. More
sophisticated variants are sensitive to the underlying fitness landscape.

A good example of a theoretically motivated annealing schedule (the one in-
troduced by AADRESEN) is discussed in sectich1.4on page27. In the men-
tioned schedule, the temperature is controled according to:

dT v.T (U) —Ueq(T)

dt ¢ V/C' Vo= c
The heat capacit(T) and the relaxation coefficierst can be estimated by
recording the complete history of the annealing process. The latter is a require-

(4.4)

60 4.3. MASTERING INTRINSIC SEARCH PARAMETERS

ment that makes working with MDRESENS schedule resource-hungry and the
implementation unnecessarily demanding.

It is possible, however, to simplify the procedure and avoid the necessary
maintenance of history records. As a first step, one can assume the relaxation
coefficient to be constant. For the second step, the heat capacity needs to be
substituted by a more easily accessible quantity:

The heat capacity is defined as

d(H)
— , 4,
T (45)
The expectation value of the Hamilton operator can be expressed as:
H
He 7dll u
(H) :—f 5 = —. (4.6)
Je Tdr v

Using the substitutiona andv for numerator and denominator and keeping in
mind that

u’:aiT/He—?dr:%/Hze#dr (4.7)
V = %/e—¥dr - %/H e ar, (4.8)
(4.9)

equation 4.5 can be written as:

2
oy Jetdr [H2e fdr - ([He Far)

(4.10)
2
o7 T2 (fefar)
A simplification of the last equation yields:
_dH) 1 2 AN 2
C—?—ﬁ(m >—<H>)—ﬁ<(H—H)). (4.11)

The last equation states that the heat capacity can be expressed via the variation
of the Hamiltonian. Using the relation:

(H=H)?) = ofj (4.12)

4.3. MASTERING INTRINSIC SEARCH PARAMETERS 61

whereoy denotes the standard deviation of the Hamiltonian, one finally gains
a simplified annealing schedule:

dT v T?
dt oy

(4.13)

This schedule was successfully used in numerical simulatif}sA closely re-

lated schedule, the so-called Standard Deviation Schedule (SDS), was proposed
by MAHNIG and MUHLENBEIN [10] and also successfully implemented in the
context of this work 22]. The SDS controls the temperature according to:

dp _ Ve

at ~ or (4.14)

4.3.3 Mutation Rate Adaptation

Thinking about the role of the mutation rate, a few ideas immediately come to
mind. Since the evolutionary algorithms introduced basically implement selec-
tion and mutation processes ohlit is clearly the mutation driving the optimiza-

tion process. Selection, on the other hand, operates on already existing solutions
only. Introducing an evolution rat(t) as the average change of the ensemble
fitness [LO):

R(t) = % (4.15)
or
R(t) = (F(t+1)) — (F(t)) (4.16)

respectively, from the master equatiéq? follows:

R(t) =y ((F2) = (F)?) +m Y Aj (4F)y; (4.17)
1]

LIn contrast to typical Genetic Algorithms there is no crossover operator involved here.

62 4.3. MASTERING INTRINSIC SEARCH PARAMETERS

In the special case of absent mutation= 0 — y = 1), the last equation
reads:

R(t) = 62 > 0. (4.18)

At least gained optimization results are not lost. New solutions are found
only by chance due to a widespread ensemble. Therefore, one can conclude
that the mutation rate should be as high as possig: (—~ 100%) in order
to analyze the search space at a quick pace. On the other hand, however, this
cannot be the whole truth. As all numerical simulations show (cf. sedti»i),
the evolutionary window ends well beloR,,: = 100%. The idea, borrowed
from nature, to introduce selection steps is an important part of mixed strategies
to ensure an efficient search process by dropping inefficient seekers.

1

o
™

error threshold

o
[}

o
~

relative frequency

0.2}

mutation rate [a.u.]

Figure 4.8: Beyond the error threshold, the different fitness values are distributed randomly
and independently of the mutation rate. The figure sketches the phase transition as observed in
numerical experiments.

A detailed analysis reveals that, raising the mutation rate, the transition from
an efficient to an inefficient search happens quickly at a certain threshold. This
transition, known as therror threshold[51, 52], marks the critical mutation
rate, beyond which solutions obtained by evolutionary processes are destroyed

4.3. MASTERING INTRINSIC SEARCH PARAMETERS 63

more frequently than selection can reproduce them. Many attempts have been
undertaken to analytically predict this threshotdb,[57]. Most trials came up

with empirical data and collected evidence that the error threshold and optimal
mutation rates are indeed correlated. Only for Genetic Algorithms was it possible
to find an analytic expression for a restricted number of fitness landst&jues.
infinite and asexually reproducing populations, the critical value was found to
be [68, 59:

oo
prt = N0) (4.19)

The value here denotes the chromosome length used to encode the problem. A
series expansion allows an approximate prediction for finiteNizasembles:

_In(c) 2v/6-1 2Ihcyo-1
R RN
The estimators given by ed4.9 and eq. 4.20 were, as mentioned above,
derived for Genetic Algorithms and asexual reproduction. Taking sexual repro-
duction into account, the critical threshold is typically lows§]|

Since the results of BWAK, SCHUSTER OCHOA, et. al. cannot be simply

(4.20)

transferred to be used for evolutionary algorithms, this work proposes a hands-
on method. As sketched in FigudeS, the critical mutation rate is imprinted in

the ensemble’s fitness distribution. It should therefore be possible to somehow
numerically detect the onset of the phase transition. To this end, an easily acces-
sible sensor is necessary. More concrete, the sensor has to fulfil the following
requirements:

1. It needs to be sensitive for the error threshold.
2. For efficiency reasons, it must be numerically easy to aquire.

3. Ideally, it has to be ensemble size and temperature independent.

INamely the bitstring model, the Royal Road -, and the Royal Staircase fitness function were investigated.

64 4.3. MASTERING INTRINSIC SEARCH PARAMETERS

4. Preferably, the sensor can be applied to any optimization problem without
change.

One can think of uncountable variants of statistical measures, including linear
and non-linear terms, all of which have to be tested against the needs stated
above. A few investigated examples will be introduced and compared in the
following subsections.

First Approach: The Ensemble Variability

In case of absent selection, the chance that all seekers of the ensemble are dif-
ferent is very high. In case of absent mutation, on the other hand, the ensemble
quickly focuses so that nearly all seekers are identical. As a first attempt, one
might therefore define a numerical sensor, the ensemble variahiigthe num-
ber of different seekemdis 1 normalized by the ensemble sikie

Nt

V= N (4.21)

Since fitness values can be degenerated, the variability is actually twofold: It
Is possible to define the variability with respect to either phenotypg (wo
seekers are counted identical if they have the same fitness) or genagype (
two seekers are counted identical only if they represent the same point in the
fitness landscape, even though they might have the same fitness). In a highly de-
generated landscape (plateau structure) the latter has a significantly higher sen-
sitivity [21]. As numerical experiments confirm, the ensemble variability fulfils
at least the first two requirements: it is sensitive towards the error threg#ld |
as seen in Figurd.9, and it is easy to calculate.

4.3. MASTERING INTRINSIC SEARCH PARAMETERS 65

0.25
— d=0

B d=1 -

= — d=12 ™,

2 - N 7 020
T o1l —— d=4 I =t
= ’ d=5 L E
8 d=6 E
: ,/\V/"/N\ﬁ -015
)% =
S -2
20 3
£ 001 (Pl ~010%
= | &
P =
= =
e 0,05

5

= L

0.001 \ 0

0 10 20 30 40 50 60 70 8 90 100
Finur [%]

Figure 4.9: Mixed Evolutionary Algorithm; 4 seeker tournament selection; Frustrated Periodic
Sequence Model; length= 15, ensemble sizN = 20, temperaturd = 1, periodicity bonus

b= 1, timet = 10* — The solid red line marks the fitness based ensemble variability which nicely
redraws the phase transitionRy: ~ 75%.

Even though it is possible to design successful adaptation techniques using
this sensor%9] this approach has a couple of drawbacks that must not be over-
looked. The range of possible valuess restricted to: IN <v < 1. This
introduces a strong bias for small ensemiies 10.

Measuring the variability fooptimalmutation rates, one observes a standard-
deviation-like dependence with respect to the ensemble size:

1
Vopt &~ ——. 4.22
The problems discussed are a strong motivation to look out for a better alterna-
tive showing less parameter dependencies while being just as sensitive. In the
following step a more sophisticated sensor based on ensemble statistics will be

introduced.

66 4.3. MASTERING INTRINSIC SEARCH PARAMETERS

Second Approach: The Relative Ensemble Dispersion

Instead of counting different seekers to get a notion about about the ensemble
distribution, one can also refer to off-the-shelf tools from statistics. It is a very
simple and straightforward way to calculate the ensemble’s mean fi{Ress

and standard deviatiooe. Combining both terms yields the relative ensemble

dispersion:
(F)

de| (= —- 4.23
rel oF ()
c 04
(@)
.
0.3
7 74
ol 7
g 02 _ —-
£ F opt.rel. disp A
() //
% 0.1 -
T =

0 10 20 30 40 50 60 70 80 90 100
I:)mu'[[%]

Figure 4.10: LABS problem of length= 32: relative dispersion in dependence of the mutation
ratem; simulation timet = 500; temperaturd = 1; 4 seeker tournament selection; averaged
over 1000 runs

Regardless of the mean fitness, the standard deviation can take any value in-
cluding zero. This implies that the relative ensemble dispersion as defined above
Is not normalized.

Just as the ensemble variability, the dispersion sensitively reflects the muta-
tion rate’s influence as displayed in Figutd.Q It is a suitable numerical sensor
since itis able to detect the areas of different optimization quality. As can be seen
in Figure4.11, the latter is ensemble-size-independent, making it a better sensor

4.3. MASTERING INTRINSIC SEARCH PARAMETERS 67

than the ensemble variability. The figure also clearly shows that the standard
deviation by itself cannot uniquely relate mutation rate and resulting fitness.

0 10 20 30 40 50 B0 70 80 90 0 10 20 30 40 50 60 70 80 S0
ensemble size N ensemble size N

(a) mean fitheséF) (b) ensemble variability

0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
ensemble size N ensemble size N
(c) ensemble dispersiah (d) rel. ensemble dispersial,

Figure 4.11: LABS problem of length = 32; temperaturd@ = 1; timet = 500; averaged over

1000 runs — Comparison of different numerical sensors: Subfigure (b) clearly shows the ensemble

size dependence of the ensemble variability. The ensemble dispersion by itself ambiguously

relates mutation rate and dispersion, as shown in subfigure (c). The relative ensemble dispersion
(subfigure (d)) eliminates the ensemble-size-dependence while being sensitive towards areas of
different fitness, as seen in subfigure (a).

68 4.3. MASTERING INTRINSIC SEARCH PARAMETERS

While the relative dispersion surpasses the ensemble variability measured in
terms of the necessities for a sensor formulated on p&g# also shows weak
spots p0]. The results of numerical simulations listed in TaBl& indicate that
for temperature§ > 0, the temperature dependence could, at first glance, be
neglected. It also shows, however, that the idea of an optimal relative fithess
dispersion is crucially dependent on the optimization problem.

Temp. | Frustr. Period. Sequ LABS Problem| RNA second. struct|
0 < 0.001 < 0.005 < 0.050
1 0.020+0.010 0.06+0.02 0.15+0.10
2 0.025+0.010 0.05+0.02 0.15+0.10
4 0.035+0.010 0.04+0.02 0.35+0.10
6 0.030+0.010 0.04+0.02 0.30+£0.10
8 0.025+0.010 0.04+0.02 0.36+0.10

Table 4.1: Optimal relative fitness dispersion for different model problems at different tem-
peratures. Tolerance values are due to averaging and graphical evaluation. Frustrated Periodic
Sequence length: = 15 and periodicity bonub = 0.2; LABS length:L = 32; RNA sequence
length:L = 100.

In a third approach, a nonlinear numerical sensor will be introduced that does
not have any of the shortcomings seen before, but still provides all of the benefits.
It is the only numerical estimator found in context of this work that satisfies all

four demands formulated above.

Third Approach: The Ensemble Entropy

While the relative ensemble dispersion is already quite useful it nevertheless re-
mains a linear measure and shows its limitations comparing different test models.
This last approach to design a numerical sensor borrows ideas from informa-
tion theory. The crucial point is that an evenly scattered ensemble (high dis-
persion) represents the least amount of knowledge regarding its whereabouts,
while an ensemble focused in a single point (highly ordered state), on the other

4.3. MASTERING INTRINSIC SEARCH PARAMETERS 69

hand, represents a maximum amount of knowledge. The information-theoretical
measure for (missing) knowledge is the so-called entropy:

H=-Y RInR (4.24)

So there already exists a non-linear measure to express the ensemble distribution
(as explained in the previous approach) in a different way. It only needs to be
translated to suit the needs. The occupation probabiRiegll be substituted

by relative occupation numbers. The latter can be easily obtained by generating
an ensemble histogram at any given time. Since, in the beginning of the search
process, there is nothing known about the respective fithess landscapes, it does
not make much sense to operate with predefined bins generating the histogram.
Instead, the (likely unequally spaced) bins are generated dynamically using the
fitness values the respective seekers have assumed at any given moment.

The normalized ensemble entropy can thus be define2ls |

N
A Xi Xi
Hepe= S — logy —. 4.25
ens i; N ON N ()

Figure4.12demonstrates the sensitivity of this new sensor as an example of Frus-
trated Periodic Sequences. The highest gradient is just where the evolutionary
window happens to be (in terms of the mutation rate) providing a very high sen-
sitivity as demanded (cf. Figure13. It is interesting to note that the ensemble
entropy, like the ensemble dispersion, has ambiguous parameter intervals where
a functional relation between entropy and mutation rate is missing. The prob-
lematic interval is beyond the error threshold as displayed for RNA sequences in
Figure4.14

4.3. MASTERING INTRINSIC SEARCH PARAMETERS

70
Lo
0.8 /
-
5 /
g 06 /
_% opt. entropy 4
5 04 T~ -
5 ~_/
0.2 s
L~
| [oy
m-' Ll | | Ll | | Ll Ll Ll
0 20 40 60 80 100
P [%]

mut

Figure 4.12: Frustrated Periodic Sequence lehgth15; ensemble entropy in dependence of
the mutation raten; simulation time = 500, temperatur&€ = 1; ensemble sizH = 20; averaged

over 1000 runs.

On the positive side, the optimal ensemble entropy denoting the evolutionary
window is dependent neither on temperature nor on the optimization problem:

Temp.

Frustr. Period. Sequ

LABS Problem

RNA second. struct]

w Nk O

10

0.15+£0.05
0.20£0.05
0.14+0.05
0.14+0.05

0.15+£0.05

0.12+0.05
0.10+£0.05
0.13+0.05
0.10+£0.05

0.12+0.05

0.12+0.05
0.12+0.05
0.15+0.05
0.12+0.05

0.16+£0.05

Table 4.2: Optimal ensemble entro

2 for different model problems at different temper-

atures. Tolerance values are due to averaging and graphical evaluation. Frustrated Periodic
Sequence length: = 15 and periodicity bonub = 0.2; LABS length:L = 32; RNA sequence

length:L = 100.

4.3. MASTERING INTRINSIC SEARCH PARAMETERS 71

0 10 20 30 40 50 B0 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
ensemble size N ensemble size N
(a) mean fitnes&F) (b) ensemble entropilens

Figure 4.13: Frustrated Periodic Sequence of lehgth15; periodicity bonu = 0.2 — The

entropy measure nicely redraws the areas of different fitness values independent of the ensemble
size and may thus serve as a numerical sensor. The temperature was kept coristari;at
random initial sequences were used; the simulation timetwaS00; the results were averaged

over 1000 runs. The best fitness values are obtained for an entropy ar@0nd O

E

T T T T T T T T T T
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

[keal/mol]
55 1.0

0.9
0.8
0.7
0.6
05
04
0.3
0.2
0.1

0.0

ensemble size N ensemble size N
(a) mean free energ{f) (b) ensemble entroplens

Figure 4.14: RNA sequence of length= 100; random initial conditions; temperature kept
constant afl = 1; simulation timet = 500; the results are averaged over 1000 runs — The best
fithess values are obtained for an entropy aroud8.0.0.40

72 4.3. MASTERING INTRINSIC SEARCH PARAMETERS

Y

0

N

Y

5

Y
&

regpeney Ty

3

kA
“-‘ﬁ" 5

O

i

e

98;

2

freopency ey

Y

frequency [%] frequency [%]
6 8 10 12 14

0.0 05 1.0 15 20 25 3.0 35 4.0 45

(a) Frustrated Periodic Sequenice= 15;b =

(b) RNA sequencé = 100
0.2

Figure 4.15: Ensemble histograms for two model problems used to calculate the df¢rgpy

In order to be comparable, the mean free en€bjywas used to define a fitnesskas- —(U) in
subfigure (b).

It is enlightening to have a look at the ensemble histograms actually used to
calculate the ensemble entropy. For Frustrated Periodic Sequences @idiag)

the error threshold is immediately visible. Beyd®gl,: ~ 55% the ensemble dis-
tribution rapidly spreads out and loses focus.

The situation is very different considering the secondary structures of RNA
sequences (Figuee15b)). Itis hardly possible to visualize some sort of thresh-
old. It is even more amazing that the numerical procedure determining an opti-
mal ensemble entropy still points towards the evolutionary window.

4.4. AN ADAPTIVE EVOLUTIONARY ALGORITHM 73

Summarizing, the ensemble entropy is well-suited to serve as a sensor for the
evolutionary window. It is a sensitive and easily calculated measure, and it is
not only independent of other intrinsic search parameters, but also independent
of the optimization problem investigated. In the next chapter, an auto-adaptive
evolutionary algorithm based on the entropy sensor will be introduced.

4.4 An Adaptive Evolutionary Algorithm

The material gathered in the last sections enables the construction of an adaptive
evolutionary algorithm able to control its intrinsic search parameters with the
exception of the ensemble side (The difficulties regarding ensemble sizing
were discussed in secti@gn3.1on pageb8.)

It seems reasonable to start out with randomly distributed seekers. The tem-
perature should be set infinitely high (0), thus allowing all mutation steps
regardless of their benefits. Also, the mutation rate should be set to its maxi-
mum (i.e.m=1). These initial settings allow maximal flexibility and prevent a
premature ensemble convergence in fitness space.

It is also intuitively clear that an adaptation towards a fixed mutation / selec-
tion ratio cannot be optimal for all given simulation times. For clearly insufficient
computation time, for example, the best strategy is to guess solutions.

That corresponds to a setting withit) = 1. It can be shown, however, that
these concerns are negligible for a wide range of granted computation 2&jes [

Starting from the initial settings, the ensemble statistics quickly yields enough
information to turn on adaptation for mutation rate and temperature, as intro-
duced above. The complete recipe now looks like this:

74 4.4. AN ADAPTIVE EVOLUTIONARY ALGORITHM

Adaptive Evolutionary Algorithm

1. Start optimization with high temperature and disabled
selection.

2. Beginning shortly thereafter, increase and control the
mutation rate to keep the ensemble entropy at the opti-

mumHE,

3. Follow the annealing schedule to adapt the temperature
parameter.

The steps 2 and 3 can be carried out simultaneo@dy [The results, that
can be achieved using the adaptation above, are absolutely comparable to those
obtained by manually adjusting the intrinsic search parameters towards the evo-
lutionary window. An example is shown in Figu4e€l6using the RNA sequence
model. The fact that the best solution found in a single Fua-@) is much better
than the ensemble averadge £ 3.6+ 0.5) indicates that the provided computa-
tion time for this optimization was not yet sufficient by far. Nevertheless, the
adaptation was successful since even exhaustive parameter scans (manual pa-
rameter settings) could not achieve significantly better results.

4.4. AN ADAPTIVE EVOLUTIONARY ALGORITHM 75

A
o1
LI

»
o
|
T

|

/
FEis

fitnessF [a.u.]
N
a1

g
o

@——@ best manual parameter settings
A——A automatic parameter adaption

=
ol

=
(@)

O T
N
o

40 60 80
ensemble size N

Figure 4.16: Expectation value for the ensemble’s best seékgfy; LABS problem

of length L = 32; comparison between exhaustive parameter scan and automatic parame-
ter adaptation with initial conditionsn = 1,T = 10%, computation timet = 500, averaged

over 1000 runs. The absolutely best solution found in the simulation is the s$riag
01010100000111111011011001110011 with fitriless8.

76

4.4. AN ADAPTIVE EVOLUTIONARY ALGORITHM

Chapter 5

Software

5.1 Newly Developed Software

5.1.1 Optimization Programs

Substantial effort has been invested in the development of a new optimization
program suite. This suite namely consists of the the twin prog@imsabs
SimEngel , andSimRNAdesigned by the author to apply different evolution-
ary algorithms to thelABSproblem (cf. sectior8.2), the Frustrated Periodic
Sequence problems (cf. secti®rd), and the RNA secondary structure optimiza-
tion (cf. section3.4).

These programs are written@i+, as opposed to, for exampBor Fortran
for the following reasons:

e abstraction: C++ allows the definition of abstract data types, thus greatly
reducing source code size and error proneness of the prog8ant2[63].

e compiler availability: Almost any computer platform offers highly devel-
opedC++ compilers with sophisticated optimization routines.

e flexibility: The object-oriented and modular approach makes it easy to
maintain and extend the program.

7

78 5.1. NEWLY DEVELOPED SOFTWARE

The User Interface

The developed optimization programs feature a complete command line inter-
face as well as a graphical user interface (GUI). The command line interface
offers a short description of all parameters if it encounters the optielp . If

the option-nox is given all output is directed tstdoutandstderr exclusively.

The program then runs as a single thread. If the optiox is missing the com-
mand line is parsed first, so the GUI comes up with its default values adjusted
to the given command line parameters. When the 'Start’ button is hit, the pro-
gram spawns a new thread for the calculations, which is separated from the GUI
thread, making it easy to update the GUI in parallel to the calculations. While
the calculation is running the user is informed about the progress via the progress
bar; all interactions regarding parameter changes are inhibited. FAdLsbBows

the user interface fd8imRNAprogram.

The Workflow

All three developed optimization programs share an identical workflow template
as sketched in Figure.2 All problem specific details (seeker layout, mutation
operator implementation etc.) are encapsulated in a separate seeker class.
Starting with an initialization sequence, the program enters a loop structure
working through the requested number of repetitions, the externally set mutation
rates, and ensemble sizes — and finally enters an inner cycle. The inner cycle
represents the actual optimization process starting at tyree0 and running
until the final time is reached. Within this time interval, only either mutation or
selection steps are executed at a time (depending on the set mutation rate and the
chosen optimization strategy), and necessary statistical calculations are carried
out as explained in sectigh3.

5.1. NEWLY DEVELOPED SOFTWARE 79

- SimRHA

FRsS_sequence

Figure 5.1: Graphical User Interface (GUI) of tB&mRNA optimization program. The GUI

uses the graphical routines of the Qt Toolkit (cf. $82.4). The user interface became necessary,
when the number of command line parameters grew too large. It allows strategy selection, the
setting of all parameters as well as the number of repetitions, and enabling the ensemble statistics
of interest.

80 5.1. NEWLY DEVELOPED SOFTWARE

Initialization:

- memory

- command line parameters
- seekers

spawn new thread l

REPEAT: 1 MaxRep

min ax

SWEEP: Pmut R
Graphical . o
User G SWEEP: Nmue -
Interface W
MUTATE SELECT
CALCULATE:

- Ensemble Statistics
- Ensemble Histograms

- Control Parameters

Figure 5.2: Workflow template which is common to all optimization programs developed in this
work. The implementation ii€++ allows to encapsulatall problem specific details in a sepa-

rate seeker class. This guarantees that the software is easily adaptated to different optimization
problems.

5.1.2 The SImRNA Mutation Operator

For almost all problems investigated here, the implemented mutation operator
had a rather simple structure. The exception to the rule is the mutation operator
designed for RNA secondary structure optimization. In this special case, an
efficient operator has to fulfil the following minimal requirements:

1. Carry out only permitted bindings that yield valid pairs.
2. Avoid bindings that generate pseudo-loops (cf. sec3idn2 p. 39).

3. Avoid search operations to find free binding locations.

5.1. NEWLY DEVELOPED SOFTWARE 81

The latter is a requirement ensuring that the necessary computation time does
not grow orderZ'(logL) with the RNA strand length, but is ideally of order
0(1) instead. The implementation of detailed house-keeping of free comple-
mentary spots, separatly done for each Has€, G,U } via lookup-tables (bind
operation) and reverse lookup-tables (resolve operation), has lead to a mutation
operator meeting all of the requirements above. FiguBshows the final layout

-+ vector of pairs I

-ﬁ secondary structure I
-+ free places on RNA-strand I

Figure 5.3: Implementation scheme of the SImMRNA mutation operator. A pair-connect operator
first looks up a free (unconnected) position on the RNA-strand, and then a free complementary
position is looked up. If the connection of both positions does not result in a pseudo-loop,
the pair-table, the complement tables, and the table of free (unconnected) strand positions are
updated. The resulting secondary structure is stored in the corresponding vector. Disconnect-
operations, in reverse, work on the complementary lookup-tables not shown in this figure.

used in the numerical simulations.

>
O
®
c

free complements
free complements
free complements
free complements

free places on RNA-strand

The main components are the following vectors:
free_places This vector contains only unbound positions of the RNA-strand.

a,c,g,u - complementsThese four vectors contain the complementary bases for
each base respectively. At positiposl, the positionpo<2 of a pair
(posl, po2) is stored.

10

12

14

82 5.1. NEWLY DEVELOPED SOFTWARE

pairs This vector is used to keep track of bound pair positions. It has the length
of the RNA strand.

structure This vector contains the current secondary structure in bracket nota-
tion.

As mentioned above, for all these containers reverse lookup-tables had to be
iImplemented in order to support fast resolve operations.
5.1.3 The SImMRNA Source Code

This subsection does not list the complete source-code of the SImMRNA program,
but rather the small fraction of modules necessary to trace the steps of the various
implemented evolutionary algorithms.

The RNA-Strand Class

The RNA-strand class encapsulates the problem-specific parts of the algorithms.
It is defined (in the header file) as follows:

/I« class definitions written for rns sequence
simulations ,
cf. sim.rns.cc
Axel Reimann (2001)

Version: 0.1
x/

#ifndef _rns_string_h
#define _rns_string_h

#include <cstdlib>
#include <stdlib .h>
#include <ctype .h>

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

5.1. NEWLY DEVELOPED SOFTWARE

83

#include <iostream .b
#include <cstring>
#include <string>
#include <vector>
#include "fold_vars.h"
#include "fold.h"

/I energy evaluation using ViennaRNA package:

class rns_string {
friend

int hamming(const rns_string &, const rns_string &);

public:
// constructors & destructor

rns_string (const std:: string &, const std:: string &);

rns_string ();
“rns_string ();
/!l member functions

const charx content ();
const charx folding ();
int mutate ();
void evaluate ();

rns_string & operator=(const rns_string &);
I/l elements

unsigned int length;

double value;

private :

int a_index , ciindex , gindex , uindex;

__inline__ void set.content(charx);
__inline__ void setstructure (Charx);

int bind (void);

int dissolve (void);

int zip(int);

int unzip (void);

void connect(nt , int);
void disconnect{nt , int);

int try_pairing (int , int);

52

54

56

58

60

62

64

66

68

70

84

5.1. NEWLY DEVELOPED SOFTWARE

int

std ::
std ::
std ::
std ::
std ::
std ::
std ::
std ::
std :
std ::
std ::
std :
std ::
std ::
std :

#endif

string

string

vectorint
vectorint
vectorint
vectorint
vectorint
vectorint

vectokint

vectokint
vectokint

vectokint

vectokint
vectokint

vectokint

V V.V V V VYV VYV YV V VYV

checkpseudaknots(int , int);
string;

structure ;
a_.complements;
c_.complements;
g.complements;
u_complements;
a_lookup;

c_lookup;

g_lookup;

u_lookup;
free_places;
free_lookup;

pairs;

pairs_.lookup;
pairs_.lookup_lookup;

10

12

14

16

18

20

22

24

26

28

30

32

34

5.1. NEWLY DEVELOPED SOFTWARE

The functionality of this class, as well as various contructors and the destruc-

tor, is encoded in its body:

#include "compare.h"
#include "rns_string.h"

#define DUMMY VALUE 0O

rns_string ::"rns.string () {
}
rns_string :: rns.string () {
string ="
structure =" ;
value = DUMMY.VALUE;

a_.complements. clear ();
c_.complements. clear ();
g.complements. clear ();
u_.complements.clear ();
a_lookup.clear ();
c_lookup.clear ();
g_lookup.clear ();
u_lookup.clear ();
a_.index =0;

c_index =0;

g-index=0;

u_index=0;
free_places.clear ();
free_lookup.clear ();
pairs.clear ();
pairs_.lookup.clear ();
pairs_.lookup_lookup.clear ();

rns_string ::rnsstring (const std
const std

cistring& s,
::string& bindings)

36

38

40

42

44

46

48

50

52

54

56

58

60

62

64

66

68

70

86

5.1. NEWLY DEVELOPED SOFTWARE

unsigned int i;

if (s.length()!=bindings.length ())

return ;
length = s.length ();
value = DUMMY.VALUE;
a_index = 0;
c_index = 0;
g_index = 0;
u_index = 0;

pairs.clear ();
pairs_.lookup.clear ();
/l initialize structure and pairs
for (i=0; i<length; i++)
string+=toupper(s[i]);
structure+=bindings|[i];
free_places.pushback(i);
pairs_.lookup_lookup .pushback(—1);
pairs.pushback(—1);
/] initialize complement tables and lookup tables
free_lookup .pushback(i);
}
for (i=0; i<2xlength;i++)
a_lookup.pushback(-1);
c_lookup.pushback(—1);
g_-lookup.pushback(—1);
u_lookup.pushback(—1);
¥
for (i=0; i<length; i++)
switch(string[i]) {
case’'A’
u_.complements. pustback ((int) i);
u_lookup[(int) i] = u_.complements.size (1;
break;
case 'C
g_.complements. pustback ((int) i);
g_lookup[(int) i] = g.complements.size(@1;

72

74

76

78

80

82

84

86

88

90

92

94

96

98

100

102

104

106

108

5.1. NEWLY DEVELOPED SOFTWARE

87

break;

case 'G :
c.complements. pusiback ((int) i);
u_.complements. pustback ((int) i);

c_lookup[(int) i] = c_.complements.size(Q1;
u_lookup[(int) i] = u_.complements.size §1;

break;

case’'U
a_.complements. pustback ((int) i);
g.complements. pustback ((int) i);

a_lookup[(int) i] = a_.complements.size (B 1;
g_lookup[(int) i] = g_.complements.size 1;

break;

default:
cerr << "Unknown nucleotide in RNA sequence!\n"
exit(1l);

const charx rns_string :: content (){

return (string.c.str ());

const charx rns_string :: folding () {
return (structure.cstr ());

void rns_string ::setcontent(charx Str) {
this—string=Str;

void rns_string ::setstructure Charx Str){
this—string=Str;

rns_string& rns_string ::operator=(const rns_string& Str) {

110

112

114

116

118

120

122

124

126

128

130

132

134

136

138

140

142

144

88

5.1. NEWLY DEVELOPED SOFTWARE

if (this==&Str)
return xthis;

length = Str.length;
value = Str.value;
free_places = Str.freeplaces;
string = Str.string;
structure = Str.structure;
pairs = Str.pairs;

pairs_lookup =
pairs_.lookup_lookup =

a_.complements

Str. pairslookup;
Str. pairslookup_lookup;
Str.a&omplements;

c.complements = Str.complements;
g.complements = Str.gomplements;
u_.complements = Str.wcomplements;
a_lookup = Str.alookup;
c_lookup = Str.clookup;
g_lookup = Str.glookup;
u_lookup = Str.ulookup;
free_lookup = Str.freelookup;

return xthis;

int rns_string :: mutate (){
enum

int

// mutation operators:

/I —bind L
/I — dissolve B) ..
/I — pull tight N (PR)..
/Il — pull up (0C...))).

/!l pick mutation operation

{bind , bind2 , dissolve , pultight , pull_tight2 , pull_up};
mutationoperator ,

returnvalue=1;

(oo)
> e e e
(CC))) -
(oo)

mutation.operator = (int) (6.0xrand ()/(RANDMAX+1.0));

switch(mutationoperator)
/1

/I if mutation operator fails ,

try complementary operation

inste

ad

146

148

150

152

154

156

158

160

162

164

166

168

170

172

174

176

178

180

182

5.1. NEWLY DEVELOPED SOFTWARE

89

case bind:
case bind2:
return.value = rnsstring ::bind();
if (return.value!=-1)
break;
case dissolve:

return.value = rnsstring::dissolve ();
if (return.value!=-1)

break;
else

return.value = rnsstring::bind();
break;

case pull_tight:
case pull_tight2:
return.value = rnsstring::bind();

if (return_value !'= —1){
return.value = rnsstring::zip(returnvalue);
break;

}

else
return.value = rnsstring::unzip ();

break;

case pull_up:
return.value = rnsstring::unzip();
if (return.value!=-1)
break;
else
return.value = rnsstring::zip((int) 0);
break;
default:
cerr << "Unknown mutation operator\nBug in rns_string.cc...\n"
exit(1);
¥

return return_.value;

void rns_string :: evaluate (){

184

188

190

192

194

196

198

200

202

204

206

208

210

212

214

216

218

90 5.1. NEWLY DEVELOPED SOFTWARE

value = (double)
energy.of_struct ((char %) string.c_.str (),
(char %) structure.cstr());
return ;

int rns_string :: bind(void){
int posl,pos2,free ,index ,index2 , pseudnots;

/1l find free places
free = freeplaces.size();
if (free < 2)
return —1;
/1l pick first candidate
index = (int) (1.0xfreexrand ()/(RANDMAX+1.0));
posl = freeplaces[index];
/1l pick second candidate
switch(string[posl]X

case’A
free = acomplements.size ();
if (free > 0) {
index2 = (int) (1.0%« freexrand ()/(RANDMAX+1.0));

#ifdef PROGDEBUG
if (index2 >= (int) a_.complements.size ()] index2 < 0){
cerr << "DEBUG: a_complements index2 out of bounds\n"

cerr << index2 << endl;

exit(1);
}
#endif
pos2 = acomplements[index2];
if (abs(pos2— posl) < 3)
return —1;

pseudaknots = checkpseudaknots(posl, pos2);
if (pseudaknots > 0)

return —1;
a_index = posl;
u_index = pos2;

220

222

224

226

228

230

232

234

236

238

240

242

244

246

248

250

252

254

256

5.1. NEWLY DEVELOPED SOFTWARE

91

}
else return —1;
break;
case 'C
free = c.complements.size ();
if (free > 0) {
index2 = (int) (1.0« freexrand ()/(RANDMAX+1.0));

#ifdef PROGDEBUG
if (index2 >= (int) c_.complements.size ()| index2 < 0){
cerr << "DEBUG: c_complements index2 out of bounds\n"
cerr << index2 << endl;

exit(1);
}
#endif
pos2 = ccomplements[index2];
if (abs(pos2— posl) < 3)
return —1;

pseudaknots = checkpseudaoknots(posl, pos2);
if (pseudaknots > 0)

return —1;
c_index = posl;
g_-index = pos2;
}
else return —1,;
break;
case 'G’ :
free = gcomplements.size ();
if (free > 0) {
index2 = (int) (1.0« freexrand ()/(RANDMAX+1.0));

#ifdef PROGDEBUG
if (index2 >= (int) g.complements.size ()| index2 < 0){
cerr << "DEBUG: g_complements index2 out of boundsi\n"
cerr << index2 << endl;
exit(1);
¥
#endif
pos2 = gcomplements[index2];

258

262

264

266

268

270

272

274

276

278

280

282

284

286

288

290

292

92 5.1. NEWLY DEVELOPED SOFTWARE

if (abs(pos2— posl) < 3)

return —1;
pseudaknots = checkpseudaoknots(posl,pos2);
if (pseudaknots > 0)

return —1;
g-index = pos1,;
if (string[pos2]==C")
c_index = pos2;
else
u_index = pos2;
}
else
return —1;
break;
case’'U
free = ucomplements.size ();
if (free > 0) {
index2 = (int) (1.0x« freexrand ()/(RANDMAX+1.0));

#ifdef PROGDEBUG
if (index2 >= (int) u_.complements.size ()| index2 < 0){
cerr << "DEBUG: u_complements index2 out of bounds!\n"
cerr << index2 << endl;

exit(1);
}
#endif
pos2 = ucomplements[index2];
if (abs(pos2— posl) < 3)
return —1;

pseudaknots = checkpseudaknots(posl, pos2);
if (pseudaknots > 0)
return —1;
u_index = posl;
if (string[pos2]==A")
a_index = pos2;
else
g_index = pos2;

294

296

298

300

302

304

306

308

310

312

314

316

318

320

322

324

326

328

330

5.1. NEWLY DEVELOPED SOFTWARE

93

else
return —1;
break;
default:
cerr << "lllegal character: "
<< string[posl]
<<" in RNS string! Bug in rns_string.cc!?\n" ;
exit(1);
}

rns_string ::connect(posl,pos2);
return posl;

int rns_string :: dissolve ¢oid){
int posl,index , bound;

/1 find bound pair

bound = pairslookup.size ();

if (bound < 1)
return —1;

index = (int) (1.0*xboundtrand ()/(RANDMAX+1.0));

#ifdef PROGDEBUG

if (index>=(int) pairs_.lookup.size ()X
cerr << "rand() index out of bounds in rns_string::dissolve\n
exit(1);

}
#endif

posl = pairslookup[index];
#ifdef PROGDEBUG
int pos2 = pairs[posl];
if (pos2 < 0 || pos2 > (int) length) {
cerr << "Bug detected in dissolve operator in rns_string.cc\n"
cerr << "Pair management derailed.\n" ;
exit(1);
}
#endif
rns_string :: disconnect(posl,index);

332

334

336

338

340

342

344

346

348

350

352

354

356

358

360

362

364

366

94

5.1. NEWLY DEVELOPED SOFTWARE

in

return 1;

t rns_string::zip(int posl)

int pos2, poslbackup , pos2backup;

int bound, validpair=1, returnvalue =0;

/Il sanity check
bound = pairslookup.size ();
if (bound < 1)
return —1;
pos2 = pairs[posl];
poslbackup = posl;
pos2backup = pos2;
/I check inwards direction for
I/l possible pairs: AU, CU, CG
while(valid_pair && (pos2 — posl > 5)){

valid_pair = 0;
posl ++;
pos2 ——;

valid_pair = rns.string ::try_pairing (posl,

if (valid_pair)
rns_string ::connect(posl,pos2);
¥
/!l check outbound direction for
I/l possible pairs: AU, CU, CG
posl = poslbackup;
pos2 = pos2backup;
valid_pair = 1;
while (valid_pair &&
(pos2 — posl > 5) &&
(posl > 0) &&
(pos2 < (int)(length—1))){
valid_pair = 0;
posl——;
pos2 ++;

valid_pair = rns.string ::try_pairing (posl,

pos2);

pos2);

368

370

372

374

376

378

380

382

384

386

388

390

392

394

396

398

400

402

404

5.1. NEWLY DEVELOPED SOFTWARE

95

if (valid_pair)
rns_string ::connect(posl,pos2);

¥
return return_value;
}
int rns_string ::unzip (void){
int index , posl, poslbackup;
int bound, returnvalue =0;

static int valid_pair=1;

/1 find bound pair
bound = pairslookup.size ();
if (bound < 1)
return —1;
I/l check possible coordinates
index = (int) (1.0xboundsrand ()/(RANDMAX+1.0));
#ifdef PROGDEBUG
if (index>=(int) pairs_.lookup.size ()X
cerr << "rand() index out of bounds in rns_string::zip'\n"
exit(1);
}
#endif
posl = pairslookup[index];
#ifdef PROGDEBUG
int pos2 = pairs[posl];
if (posl > pos2)
cout << "DEBUG: Bug detected in rns_string::unzip\n"
<< "Pair management derailed.\n"

exit(1);
¥
#endif
poslbackup = posil;
index = pairslookup_lookup[posl];

rns_string ::disconnect(posl, index);
while (valid_pair){
posl ++;

406

410

412

414

416

418

420

422

424

426

428

430

432

434

436

438

440

96 5.1. NEWLY DEVELOPED SOFTWARE

valid_pair=0;

if (structure[posl] =" &&
structure[posl] !'=7)){
valid_pair=1;
return.value ++;
index = pairslookup_lookup[posl];

#ifdef PROGDEBUG

if (index < 0 || index > (int)(pairs_.lookup.size()}1)){

cerr << "DEBUG: pairs_lookup index " << index
<<" out of range in rns_string::unzip\n"
exit(1);

}
#endif

Il disconnect
rns_string :: disconnect(posl, index);

}
valid_pair=1;
while (valid_pair && posl backup>0){

poslbackup——;

valid_pair=0;

if (structure[poslbackup] !'="" &&
structure [poslbackup] !'="7))
{

valid_pair=1;
return.value ++;
index = pairslookup_lookup[poslbackup];
#ifdef PROGDEBUG
if (index < 0 || index > (int)(pairs_.lookup.size(}1)){

cerr << "DEBUG: pairs_lookup index " << index
<< " out of range in rns_string::unzip\n"
exit(1);

}
#endif

/] disconnect
rns_string ::disconnect(posbackup, index);

442

444

446

448

450

452

454

456

458

460

462

464

466

468

470

472

474

476

478

5.1. NEWLY DEVELOPED SOFTWARE

97

}

return return.value;

void rns_string ::connect(nt posl, int pos2)X

int last ,index ,index2;
std :: string basepair;
/1

/l connect positions posl and pos2 and
I/l prevent multiple bindings of same position
/1

/1l base pair regards bases
/I AU, UA A,G,U

/I CG, GC C,G,U

/I GU, UG A,C,G,U

/1

basepair = string[posl];

basepair += string[pos2];

if (basepair[0]=="A" ||
(basepair[0]=="U" && base_pair[1]=="A")){

/1A
index = alookup[u.index];
index2 = acomplements.back();

#ifdef PROGDEBUG
if (index >= (int) a_.complements.size ()| index < 0){
cerr << "DEBUG: u_index out of range\n"
cerr << index << endl;

exit(1);
¥
#endif
a_complements[index] = index2;

a_.complements. popack();
a_lookup[index2] = index;

480

482

484

486

488

490

492

494

496

498

500

502

504

506

508

510

512

514

98 5.1. NEWLY DEVELOPED SOFTWARE

I G
index = glookup[u.index];
index2 = gcomplements.back ();

#ifdef PROGDEBUG
if (index >= (int) g_.complements.size ()| index < 0){
cerr << "DEBUG: u_index out of range\n"
cerr << index << endl;

exit(1);
}
#endif
g.complements[index] = index2;
g.complements. poack ();
g_lookup[index2] = index;
/11U
index = uwlookup[aindex];
index2 = ucomplements.back ();

#ifdef PROGDEBUG
if (index >= (int) u_.complements.size ()| index < 0){
cerr << "DEBUG: a_index out of range\n"
cerr << index << endl;

exit(1l);
}
#endif
u_.complements[index] = index2;
u_.complements. pomack();
u_lookup[index2] = index;

}
if (basepair[0]=="C" ||
(basepair[0]=="G’ && base_pair[1]=="C")){

Il C
index = clookup[g.index];
index2 = ccomplements.back();

#ifdef PROGDEBUG
if (index >= (int) c_.complements.size ()| index < 0){
cerr << "DEBUG: g_index out of range\n"
cerr << index << endl;
exit(1);

516

518

520

522

524

526

528

530

532

534

536

538

540

542

544

546

548

550

552

5.1. NEWLY DEVELOPED SOFTWARE

99

}
#endif
c_.complements[index] = index2;
c_.complements. poack ();
c_lookup[index2] = index;
Il G
index = glookup[c.index];
index2 = gcomplements.back();

#ifdef PROGDEBUG
if (index >= (int) g_.complements.size ()| index < 0){
cerr << "DEBUG: c_index out of range\n"
cerr << index << endl;

exit(1);
}
#endif
g.complements[index] = index2;
g.complements. poack ();
g_lookup[index2] = index;
/1 U
index = uwlookup[g.index];
index2 = ucomplements.back ();

#ifdef PROGDEBUG
if (index >= (int) u_.complements.size ()| index < 0){
cerr << "DEBUG: g_index out of range\n"
cerr << index << endl;

exit(1);
}
#endif
u_.complements[index] = index2;
u_.complements. pomack();
u_lookup[index2] = index;

¥
if ((basepair[0]=="G' && base_pair[1l]=="U) ||
(basepair[0]=="U" && base_pair[1]=="G")){

Il A
index = alookup[u.index];
index2 = acomplements.back();

554

556

558

560

562

564

566

568

570

572

574

576

578

580

582

584

586

588

100 5.1. NEWLY DEVELOPED SOFTWARE

#ifdef PROGDEBUG
if (index >= (int) a_.complements.size ()|
cerr << "DEBUG: u_index out of range\n"
cerr << index << endl;

index < 0){

exit(1);
}
#endif
a_complements[index] = index2;
a_complements. pofack ();
a_lookup[index2] = index;
Il C
index = c_lookup[g.index];
index2 = ccomplements.back ();

#ifdef PROGDEBUG
if (index >= (int) c_.complements.size ()|
cerr << "DEBUG: g_index out of range\n"
cerr << index << endl;

index < 0){

exit(1);
}
#endif
c_.complements[index] = index2;
c_.complements. pofack ();
c_lookup[index2] = index;
I G
index = g lookup[u.index];
index2 = gcomplements.back();

#ifdef PROGDEBUG
if (index >= (int) g_.complements.size ()|
cerr << "DEBUG: u_index out of range\n"
cerr << index << endl;

exit(1);
}
#endif
g.complements[index] = index2;
g_.complements. popack ();
g_lookup[index2] = index;

/11U

index < 0){

590

592

594

596

598

600

602

604

606

608

610

612

614

616

618

620

622

624

626

5.1. NEWLY DEVELOPED SOFTWARE

101

index = uwlookup[g-index];
index2 = ucomplements.back ();
#ifdef PROGDEBUG
if (index >= (int) u_.complements.size ()| index < 0){
cerr << "DEBUG: g_index out of range\n"
cerr << index << endl;

exit(1);
}
#endif
u_.complements[index] = index2;
u_.complements. pogback ();
u_lookup[index2] = index;

/1l bind positions 1 and 2

if (posl < pos2)
structure[posl] ="
structure[pos2] =Y

}

else {
structure[posl] =Y
structure[pos2] ="

}

pairs[posl] pos2;

pairs[pos2] posl;

if (posl < pos2)
pairs_lookup . pushback(posl);
pairs_.lookup_lookup[posl] = pairslookup.size()}1;

}

else{
pairs_lookup .pushback(pos2);
pairs_.lookup_lookup[pos2] = pairslookup.size()}1;

¥

#ifdef PROGDEBUG

/!l consistency check

for (unsigned i=0;i < pairs_.lookup.size (); i++)
if (pairs[pairslookupl[i]] == —1){

628

630

632

634

636

638

640

642

644

646

648

650

652

654

656

658

660

662

102

5.1. NEWLY DEVELOPED SOFTWARE

cerr << "DEBUG: bug detected in rns_string::connect'\n"

<< "pairs_lookup table inconsistent\n"

exit(1);
}
}
#endif
index = freelookup[posl];
index2 = freelookup[pos2];
last = freeplaces.size (}3-1;

if (index == last)
free_places.popback();
last = freeplaces.back();

free_places[index2] = last;
free_places.popback();
free_lookup[last] = index2;
return ;
}

if (index2 == last})

free_places .popback();
last = freeplaces.back();

free_places[index] = last;
free_places .popback();
free_lookup[last] = index;
return ;
}
last = freeplaces.back();
free_places[index2] = last;
free_places .popback();
free_lookup[last] = index2;
last = freeplaces.back();
free_places[index] = last;
free_places .popback();
free_lookup|[last] = index;
return ;

void rns_string ::disconnecti(nt posl, int

pairs.index){

664

666

668

670

672

674

676

678

680

682

684

686

688

690

692

694

696

698

700

5.1. NEWLY DEVELOPED SOFTWARE

103

int last, pos2;

#ifdef PROGDEBUG
if ((posl < 0) || (posl >= (int) length))X

cerr<<"posl : " << posl
<< " out of range in rns_string::disconnecth\n"
exit(1);
¥
#endif

pos2 = pairs[posl];
#ifdef PROGDEBUG
if ((pos2 < 0) || (pos2 >= (int) length))

cerr<<"pos2 : " << pos2
<<" out of range in rns_string::disconnect'\n"
exit(1);
}
#endif

/Il update tables and lookup tables

switch(string[posl1]){

case’A
u_complements. pusiback (posl);
u_lookup[posl] = ucomplements.size(@1
break;

case 'C
g.complements. pustback (posl);
g_lookup[posl] = gcomplements.size@G1
break;

case’'G’ :
c_.complements. pustback (posl)
u_.complements. pusltback (posl);
c_lookup[posl] = ccomplements.size@1
u_lookup[posl] = ucomplements.size(@1
break;

case’'U
a_.complements. pustback (posl)
g_.complements. pustback (posl);

702

704

706

708

710

712

714

716

718

720

722

724

726

728

730

732

734

736

104

5.1. NEWLY DEVELOPED SOFTWARE

a_lookup[posl]
g_lookup[posl]
break;

default:

cerr << "Unknown nucleotide "

acomplements.size G 1;
gcomplements. size G 1;

<< string[posl]

<< " in RNA sequencel\n"

<< "Bug in rns_string::disconnect function\n\n"

exit(1);

}

switch(string[pos2]){

case A’

u_.complements.

u_lookup[pos2]
break;
case 'C

g.complements.

g_lookup[pos2]
break;
case G :

c_.complements.
u_.complements.

c_lookup[pos2]
u_lookup[pos2]
break;

case’'U

a_.complements.
g_.complements.

a_lookup[pos2]
g_-lookup[pos2]
break;

default:

pusiback (pos2);

= ucomplements.size O 1;

pusiback (pos2);

= gcomplements.size 1;

pusiback (pos2);
pusitback (pos2);
= ccomplements.size O 1;

size (31;

= ucomplements.

pustback (pos2);
puslback (pos2);
= acomplements.size 1;

size (31;

= gcomplements.

cerr << "Unknown nucleotide in RNA sequencel\n"
<< "Bug in rns_string::disconnect\n\n"

exit(1);
}

free_places .pushback(posl);

free_lookup[posl]

= freeplaces.size (}1;

740

742

744

746

748

750

752

754

756

758

760

762

764

766

768

770

772

774

5.1. NEWLY DEVELOPED SOFTWARE

105

free_places .pushback(pos2);
free_lookup[pos2] = freeplaces.size (}1;
#ifdef PROGDEBUG

if (structure[posl] ==" || structure[pairs[posl]] ==

cerr << "DEBUG: bug detected in rns_string::disconnecti\n"
<< "Pair table unbalanced.\n"

exit(1);
¥
#endif
pairs[posl] =—1;
pairs[pos2] =—1;
last = pairslookup .back();
pairs_.lookup[pairsindex] = last;

pairs_.lookup_lookup[last] = pairsindex;
#ifdef PROGDEBUG
pairs_.lookup [(int) pairs_.lookup.size (1] = —1;
pairs_.lookup_lookup[posl] =—1;
#endif
pairs_.lookup .popback();
#ifdef PROGDEBUG
I/l consistency check
for (unsigned i=0;i < pairs_.lookup.size (); i++)
if (pairs[pairslookupl[i]] == —1){
cerr << "DEBUG: bug detected in rns_string::connect\n"
<< "pairs_lookup table inconsistent\n"
exit(1);

}
#endif

/!l dissolve binding
structure[posl] =
structure[pos2] =
return ;

int rns_string ::try_pairing(int posl, int pos2)X
int return_.value =0;

){

776

778

780

782

784

786

788

790

792

794

796

798

800

802

804

806

808

810

106

5.1. NEWLY DEVELOPED SOFTWARE

std :: string basepair;

I/l possible pairs: AU, GU, GC
if (abs(pos2— posl) <= 3)
return return.value;
basepair = string[posl];
basepair += string[pos2];

if (structure[posl]=% && structure[pos2]==2’

if ((basepair[0]=="A") && (base_pair[l]==
a_.index = posl;
u_index = pos2;
return.value ++;

if ((basepair[0]=="U") && (base_pair[1l]=="A

u_index = posil;
a_index = pos2;
return.value ++;

){
A

A

if ((basepair[0]=="C") && (base_pair[1]=="G")){

c_index = posl;
g.index = pos2;
return.value ++;

if ((basepair[0]=="G’) && (base_pair[1]=="C")){

g_.index = posi;
c_index = pos2;
return.value ++;

if ((basepair[0]=="G’) && (base_pair[1]=="U")){

g_.index = posil;
u_index = pos2;
return.value ++;

if ((basepair[0]=="U") && (base_pair[1]=="G")){

u_index = posl;
g_.index = pos2;
return.value ++;

812

814

816

818

820

822

824

826

828

830

832

834

836

838

840

842

844

846

5.1. NEWLY DEVELOPED SOFTWARE

107

}

return return.value;

int rns_string ::checkpseudaknots (int pos1 ,int
int poslbackup, pos2backup, braces, i;
char first="" ,last=’

!/l check for pseudo knots

braces = 0;

if (posl < pos2)
poslbackup = posl+1l;

pos2backup = pos21;
}
else {
poslbackup = pos2+1;
pos2backup = posit1;
¥
for (i=poslbackup;ic=pos2backup;i++)
if (first=="")
first = structure[il];
else
if (structure[i]!=")
last = structurelil];
if (structure[i]==(C)
braces ++;
else
if (structure[i]==))
braces——;
¥
if (braces!=0]|| first ==") || last =="C)
return 1;
return O;

pos2)

108 5.1. NEWLY DEVELOPED SOFTWARE

The Main Loop

The main loop of the different algorithms is contained in the control-module.
This module basically realizes the workflow as described in Fi§uteThe rel-

10

12

14

16

18

20

22

24

26

28

30

evant part of the source code is listed below:

#include <iostream .b
#include <time .h>
#include <ctype .h>
#include <math.h>
#include <fstream .h
#include "global_defs.h"
#include "mutex_guard.h"

#define INFINITY 10000

int main_loop (void) {

static double w, g, old_percent, deltapsel, ctrl_psel;
static double temp.backup , pselbackup , maxtime_backup;
static double init_time ;

static int counter , cycles, deltan;

static int reactionwindow=1, cyclecount=0;

double variability =0, difference =0, tau=0;

std :: string rnsfile_name ;

ifstream rnsfile;

/I standard initialization
if (qui)
Mutex_Guard mainloop_thread;
/1 read RNA sequence from file
rns_file_name = problemname + ".dat"
rns_file .open (rnsfile_name.cstr(), ios::in);
if ('rns_file){
cerr << rns_file_name
<< " couldn’t be opened to read RNS sequencel\n"
exit (FALSE);

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

64

66

5.1. NEWLY DEVELOPED SOFTWARE 109

}

getline (rnsfile , initstring);

rns_file.close ();

for (w=0;w<initstring .length ();w++)
initstruct+=" ;

/!l continue initialization

max_time_backup=maxtime;

hash =new rank[nmax];

allocated ++;

if ((rnd_generator=gslrng_-alloc(rnd_generatortype))==NULL) {
cerr << "Random number generator initialization failed\n" ;
exit (FALSE);

}

if (n_-max==nmin)
deltan = 1;

else

deltan = (int) ceil(n.max-n_min)/ n_steps;
if (psel.Lmax==pselmin)

delta_psel = 1;
else

delta_psel = (pselmax—pselLmin)/ pselsteps;

if (strategy!=tournament &&
strategy!=tournament4 &&
strategy!=fitness){
psel.max=pselmin;
delta_psel=1;

}
if (strategy!=fitness){
seeker =new rns_string[n.max]; /!l reserve memory for seekers
allocated ++;
¥
else {
/I memory for seekers + offspring
seeker =new rns_string[2xn_max];
allocated ++;
¥

// status 100% relates to:

68

70

72

74

76

78

80

82

84

86

88

90

92

94

96

98

100

102

104

110 5.1. NEWLY DEVELOPED SOFTWARE

g=(1+(pselmax—pselLmin)/ deltapsel) x
(1+(n_max—n_min)/deltan) % maxruns x maxtime;
old_percent=0;
I/l selection sweep
for (psel=pselmin; psel<=pselLmax; psel+=deltapsel){
I/l seeker number sweep
for (n=n_min;n<=n_max;n+=deltan) {
/I new cycle initialization
init_call=TRUE;
init_time = initstring.length (xnx2;
max_time+=init_time ;
statistics(&cycles);
[lif(ham_print)
/1 ham_stat(&cycles);
if (hist_print || automatic)
make histogram (cycles , ctrlpsel);
init_call=FALSE;

/1
temp.backup = temp;
pselbackup = psel;
epsilon = 1.0/n;
variability_goal = 1.0/sqrt(n);
temp = init.temp;
if (psel!=0)

ctrl_psel = psel;
else

ctrl_psel =0.1;
I/l print parameters used
if (verbose){
cerr << "\nProgram version "
<< VERSION << endl;
cerr << "opt. problem name :
cerr << "variability o ;
if (variability_type==fitnessoriented)
cerr << "fitness based\n" ;
else

cerr << "genotype based\n” ;

<< problemname<< endl;

106

110

112

114

116

118

120

122

124

126

128

130

132

134

136

138

140

5.1. NEWLY DEVELOPED SOFTWARE

111

if (automatic)
cerr << "autotuning . enabled\n" ;
cerr << "search strategy S ;
switch(strategy){
case worst:
cerr << "kill worst seeker\n" ;
break;
case metropolis:
cerr << "Metropolis algorithm\n" ;
break;
case tournament:
cerr << "Boltzmann strategy + tournament selection\n"
break;
case tournament4:
cerr << "Boltzmann strategy + tournament 4 selection\n"
break;
case fitness:
cerr << "Boltzmann strategy +
<< "fitness proportional selection\n" ;
break;
case annealing:
cerr << "simulated annealing\n” ;
break;
¥
cerr << "number of seekers :
<< "repetitions
<< "init. temperature :
if (strategy!=worst &&
strategy!=metropolis &&
strategy!=annealing)
cerr << "selection prob.
if (goal)
cerr << "goal value
cerr << "sequence length
<< endl
<< "evaluations
<<"\n\n"

<< n<< endl
<< maxruns<< endl
<< temp << endl;

<< psel << endl;

<< goal.value << endl;
<< initstring.length ()

<< max.time << endl

142

144

146

148

150

152

154

156

158

160

162

164

166

168

170

172

174

176

178

112 5.1. NEWLY DEVELOPED SOFTWARE

if (!hist_print)
cerr << "suppressed histogram file output\n” ;
if (strategy!=annealing)
cerr << "suppressed temperature file output\n” ;
if (!ctl_print)
cerr << "suppressed control file output\n” :
if (!stat_print)
cerr << "suppressed statistics file output\n\n” ;
} I/l end: if verbose
Il xxxx run following code 'maxruns’ timest*xx
for (cycles=0;cyclesmaxruns;cycles++) // cycle sweep
run_time =0;
/!l generating seekers
for (counter=0;counte«n; counter ++){
seeker[counter]=rnsstring (initstring.cstr (),
initstruct.c_.str());
seeker[counter]. evaluate ();

¥
temp = INFINITY;
psel = 0;
/1
/1 life cycle
/1
while (run_time <= maxtime) { // time sweep
if (run_time > init_time && temp == INFINITY){

temp = tempbackup;
psel = pselbackup;

}
[/l status report
if (qui) {
pthreadtestcancel ();
w=(l+(psel-pselLmin)/deltapsel) x
(L+(n—n_min)/deltan) x (cycles+1)x run_time;
percentdone=(int) rint(wx100.0/g);
if (percentdone>old_percent){
old_percent=percendone;

180

182

184

186

188

190

192

194

196

198

200

202

204

206

208

210

212

214

5.1. NEWLY DEVELOPED SOFTWARE

113

IPC_Handler—>AsyncHandler ();

¥

}

/! calculate running ensemble statistics

if (strategy == annealing|| verbose2)
statistics(&cycles);

if (hist_print || automatic)
variability=makehistogram (cycles , ctrilpsel);

[automatic

if (run_time > init_time &&
automatic && (cyclecount==reactionwindow)) {
cycle_.count=0;
difference=variability—variability_goal;
if (epsilon+0.01>= fabs(difference))
difference =0;
if (difference > 0) {
ctrl_pselx=exp (1 + difference/epsilon);
if (ctrl_psel > 100)
ctrl_psel=100;
¥
else
if (difference < 0) {
ctrl_psel/=exp(1— difference/epsilon);
if (ctrl_psel < 0.1)
ctrl_psel =0.1;

}
}
else
cycle_.count++;
[———— end automatie

LETTEEEEErrr bbb rrrrrrrrny
/1 search according to selected strategy
LELTEEEEErrr bbb rrrrrrrrny

switch(strategy){
case annealing:

/11

216

218

220

222

224

226

228

230

232

234

236

238

240

242

244

246

248

250

252

114

5.1. NEWLY DEVELOPED SOFTWARE

}

/!l calculate new temperature for next time step
if (temp > dtemp)
temp—=dtemp;
dtemp=1.0/stdvfitness;
mutation ();
run_time ++;
break;
case worst:
case metropolis:
mutation ();
run_time ++;
break;
case fitness:
case tournament:
case tournament4:
tau=gslLran_exponential (rndgenerator , rndmu);
run_time+=1.0«rnd_muxtau ;
if (100.0« gsl-rng_uniform(rnd_.generator)>= ctrl_psel)
mutation ();
else
selection (hash);
break;
default:
cerr << "Internal program error in main looph\n"
<< "Unknown optimization strategy. Exiting now.\n\n" ;
exit (FALSE);
break;

TELLLEEE bbb
} /Il end strategy

} /1 end time sweep

statistics(&cycles);
if (hist_print || ctl_print || automatic)
make_ histogram (cycles , ctripsel);
if (ham_print)
ham_stat(&cycles);
/! end cycle sweep

254

258

260

262

264

266

268

270

272

274

276

278

5.1. NEWLY DEVELOPED SOFTWARE

115

max_time=maxtime_backup;
/I print final results
statistics(&cycles);

if (hist_print || ctl_print || automatic)

make histogram (cycles , ctrlpsel);
if (ham_print)
ham_stat(&cycles);
} I/l end seeker number sweep

} /!l end selection probability sweep

cout << "Done.\n"
status=undefined;
if (gui) {
percentdone=100;
IPC_Handler—AsyncHandler ();
}
delete[] hash;
allocated——;
delete[] seeker;
allocated——;
#ifdef PROGDEBUG
if (allocated !'= 0)
cerr << "Program still holds "
#endif
/1 return TRUE;

return O;

<< allocated<< "

arrays\n"

10

12

14

16

18

20

22

24

26

116 5.1. NEWLY DEVELOPED SOFTWARE

5.1.4 MPlgenerate

This program was developed by the author to effectively generate correlated
Gaussian random fitness landscapes in up to five dimensions (cf. s2cfjon

It is written in C and refers to thdMPI standard for message passing on multi
processor machines. Acceleration is achieved due to a simple divide and con-
quer strategy, so the landscape generation speed scales nicely with the number
of processors involved to generate it.

[
generate correlated , random landscapes in up to 5 dimensions
utilizing multiple processors

cf. Steinberg, M.:

"Konstruktion von korrelierten , zufaelligen Landschaften”

Copyright (C) 1999 A. Reimann
Version : 0.5

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place Suite 330,

Boston, MA 021131307, USA.

x/

/+ include header %/

28

30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

5.1. NEWLY DEVELOPED SOFTWARE

117

#include <stdio .h>

#include <stdlib .h>
#include <math.h>
#include <string .h>
#include <mpi.h>

#define

#ifndef
#define
#endif

#ifndef
#define
#endif

#ifndef
#define
#endif

#define
#define
#define
#define
#define

DEBUG

Pl
Pl

twoPlI
twoPlI

SQRT2
SQRT2

SEED
MAXDIM
INIT_TAG
STATUSTAG
SOLVED_TAG

3.141592653

6.2831853072

1.4142135624

SQRT2

W N R 9

/+ define prototypessx/

int

get.opts(int argc, char xxargv);

__inline__ float fitness (int, int, float x);
initialize_rand (float x);
master (nt , charx*x);
slave (int);

usage {oid);

void
void
void
void

/+ define global

float
int
static
char

Gamma,

variables x/

factorl , factor3 , factor4 , factor5;

dimension, size, plane, volume, volume4, volume5;

int root=0;

xoutfilename ;

64

66

68

70

72

74

76

78

80

82

84

86

88

90

92

94

96

98

100

118

5.1. NEWLY DEVELOPED SOFTWARE

[*

x/
int main (int argc ,char xxargv) {
int myrank;
MPI_Init(&argc, &argv);
MPI_Comm.rank (MPLCOMM WORLD, & myrank);
if (myrank==root){
master (argc , argv);
fprintf (stderr "done\n");
}
else
slave (myrank);
return (0);
x/

[*

void master(nt argc, charxx argv) {

MPI|_Status status;
MPI_Request request;

FILE «filehandle ;

char filename [100];

int source , dest, proar, running, remainder, flag;
int buffer , count, i, j,*xcoordinate ,x percentage;
long int rand.nr;

float randmem, x chi, xresult;

Idiv_t Ifraction;

div_t fraction;

get.opts(argc, argv);
strcpy (filename , outfilename);

I+ initialize random numbersx/
rand_.nr=(long int) pow(size , dimension);
randmem=1.G-sizeof(float)«(rand.nr+2);
if (randmem/1048576-1)

fprintf(stderr ,"allocating %.2f MB of memory\n"

randmem/1048576);

102

104

106

108

110

112

114

116

118

120

122

124

126

128

130

132

134

136

5.1. NEWLY DEVELOPED SOFTWARE

119

else
fprintf (stderr J"allocating %.2f kB of memory\n" ,
randmem/1024);
chi=malloc (randmem);
if (chi==NULL) {

fprintf (stderr "Insufficient memory\n");
MPI_Abort (MPLCOMM WORLD, 1);
exit (1);
¥
fprintf (stderr initializing random number reservoir\n”);
initialize_rand (chi);
fprintf (stderr initializing slave processes:\n");
/I« seed the slaves */
/x send: dimension, size , Gamma and x/
K random number reservoir */

MPI_Comm.size (MPICOMM WORLD, & proc_nr);
for (dest=1; des&proc.nr; dest++){
fprintf(stderr 'Nr. %i " ,dest);

MPI_Send(&dimension, 1, MRINT, dest, INITTAG, MPLCOMMWORLD);

fprintf (stderr ");

MPI_Send(&size , 1, MPINT, dest, INITTAG, MPLCOMMWORLD);

fprintf (stderr ");

MPI_Send(&Gamma, 1, MPFLOAT, dest, INITTAG, MPL.COMMWORLD);

fprintf(stderr ”.")

MPI_Send(&randnr , 1, MPLLONG, dest, INITTAG, MPLCOMMWORLD);

fprintf(stderr ");

MPI_Send(chi, randnr , MPLFLOAT, dest, INITTAG, MPLCOMMWORLD);

fprintf(stderr ”.");
fprintf(stderr " initialized\n");
¥
[+ check , whether fitness|[] splits evenly/
/+ send fraction of result array x/
Ifraction=Ildiv(randnr, (proc.nr—1));
if (Ifraction.quot<=1){
fprintf(stderr , "Warning: Problem too small to be treated "
fprintf(stderr ,efficiently on %i Processors.\n" , proc.nr);

)

140

142

144

146

148

150

152

154

156

158

160

162

164

166

168

170

172

174

120 5.1. NEWLY DEVELOPED SOFTWARE

if (Ifraction.rem==0)
{
#ifdef DEBUG
fprintf (stderr 'task splits nicely\n");
#endif
for (dest=1; des&proc.nr; dest++)
MPI_Send(&lfraction .quot, 1, MPLONG,
dest, INITTAG, MPL.COMMWORLD);

else
{
/x prepare some intelligent partitioningx/
#ifdef DEBUG
fprintf (stderr 'task splits inconveniently\n");
#endif
if ((Ifraction.quot+lifraction.rem)}=(proc.nr —1)) {
[fraction.quot++;
Ifraction.rem=randnr —((proc_.nr —2)«Ifraction .quot);
¥
else
Ifraction.rem=Ifraction .rem+Ifraction.quot;
/[« send fractions x/
#ifdef DEBUG
fprintf(stderr ,"sending %i times %li\n" ,
proc_.nr—2, Ifraction.quot);
fprintf(stderr " + 1 time %li numbers.\n" ,
Ifraction.rem);
#endif
for (dest=1; desk(proc_.nr —1); dest++)
MPI_Send(&Ifraction.quot, 1, MPLONG,
dest, INITTAG, MPL.COMMWORLD);
MPI_Send(&Ifraction.rem, 1, MPLONG,
proc.nr —1, INIT_.TAG, MPL.COMM WORLD);
¥
[+ prepare status information outputk/
percentage=mallocgizeof(int)*proc_nr);
for (i=0;i<proc_nr;i++)

176

178

180

182

184

186

188

190

192

194

196

198

200

202

204

206

208

210

5.1. NEWLY DEVELOPED SOFTWARE

121

percentage[i]=0;
fprintf (stderr "percent processed:\n");
I/« receive status informationx/
#ifdef DEBUG

fprintf (stderr "(reallocating %g bytes)\n" ,randmem);

#endif
result=realloc (chi, randnem+100);
if (result==NULL) {

fprintf (stderr Insufficient memory\n");
MPI_Abort (MPLCOMM WORLD, 5);
exit (5);

}
running=procnr —1;
while (running) {
MPI_lrecv(&buffer , 1, MPLINT, MPI_ANY_SOURCE,
MPI_ANY _TAG, MPI.COMM WORLD, &request);
do
MPI_Test(&request, &flag, & status);
while (! flag);
source=status . MPSOURCE,
switch(status .MPITAG) {
case STATUSTAG:
percentage[sourcel]=buffer;
if (buffer!=0) {
for (i=0;i<(proc_nr —1);i++)
fprintf(stderr "%i " ,percentagel[i]);
fprintf(stderr \n");
}
break;
case SOLVED.TAG:
MPI_Recv(&count, 1, MPIINT, source,
SOLVED.TAG, MPL.COMMWORLD, & status);

MPI_Recv(result+buffer , count, MBFLOAT, source,

SOLVED.TAG, MPL.COMMWORLD, & status);
running——;
break;

212

214

216

218

220

222

224

226

228

230

232

234

236

238

240

242

244

246

248

122 5.1. NEWLY DEVELOPED SOFTWARE

}

/[« write final result to disk x/
fflush (NULL);
fprintf (stderr "\nWriting results to %s\n" ,filename);
filehandle=fopen(filename ;'w");
if (filehandle==NULL) {
fprintf (stderr ,"Couldn’t open file %s for writing\n"
MPI_Abort (MPLCOMM WORLD, 2);
¥
coordinate=malloc(dimensionsizeof(int));
/x calculate coordinates from index/
for (j=0; j<rand.nr; j++) {
remainder=j;
for (i=(dimension—1); i >0; i——) {
fraction=div(remainder ,pow(size ,i));
coordinate[i]=fraction.quot;
remainder=fraction.rem;
}
coordinate [O]=remainder;
for (i=0; i<dimension; i++)
fprintf(filehandle /%Mt ,coordinate[i]);
fprintf(filehandle ,"%f\n" ,result[j]);

¥
MPI_Finalize ();
return ;

void slave (int myrank) {
static int root=0;
long int rand.nr;
int i, fraction , offset, percent, nrslaves;
MPI1_Status status;
MPI_Request request;
float «chi, xresult, step, intervall=5.0;
Idiv_t Ifraction;

,filename);

250

252

254

256

258

260

262

264

266

268

270

272

274

276

278

280

282

284

5.1. NEWLY DEVELOPED SOFTWARE

123

/x receive dimension, size and gamma valué
MPI_Recv(&dimension, 1, MPINT, root,
INIT_TAG, MPLCOMMWORLD, & status);
MPI_Recv(&size , 1, MPIINT, root,
INIT_TAG, MPLCOMMWORLD, & status);
MPI_Recv(&Gamma, 1, MPFLOAT, root,
INIT_TAG, MPLCOMMWORLD, & status);
/[« allocate memory for random number reservoit/
MPI_Recv(&randnr , 1, MPLLONG, root,
INIT_TAG, MPLCOMMWORLD, & status);
if (!(chi=malloc(sizeof(float)«rand.nr))) {
MPI_Abort (MPLCOMM WORLD, 5);
exit (5);
}
/I« receive random number reservoik/
MPI_Recv(chi, randnr , MPILFLOAT, root,
INIT _TAG, MPLCOMMWORLD, & status);
/[« allocate memory for fitness values/
MPI_Recv(&fraction , 1, MPILONG, root,
INIT_TAG, MPLCOMMWORLD, & status);
if (!(result=malloc(sizeof(float)«fraction))) {
MPI_Abort (MPLCOMM WORLD, 5);
exit (5);
¥
[+ precalculate constant factorsx/
MPI_Comm.size (MPLCOMM WORLD, & nr_slaves);
nr_slaves——; /x master doesn’t countx/
plane=sizesize;
volume=plane&size;
volume4=volumesize;
volume5=volume4size;
factorl=sqrt (Gamma/(2.0PI«Pl));
factor3=SQRT2/pow (Pl ,3/2);
factord =1/(16pow (Pl ,4));
factor5=sqrt (Gamma/(2pow (Pl ,5)));
[+ start actual work =/
percent=intervall;

288

290

292

294

296

298

300

302

304

306

308

310

312

314

316

318

320

322

124 5.1. NEWLY DEVELOPED SOFTWARE

step=fraction/intervall;

if (myrank==nr.slaves)
offset=randnr—fraction;

else
offset=(myrank-1)xfraction;

for (i=0;i<fraction;i++) {
result[i]=fitness (offset+i, size, chi);
Ifraction=Ildiv(i,(long) ceil(step));
if (Ifraction.rem==0){

if (percent>=0)

MPI_Wait(&request, & status);
percent+=intervall;
MPI_lsend(&percent, 1, MRINT, root,

STATUSTAG, MPIL.COMMWORLD, &request);

}

/x submit results to master«/

MPI_Send(&offset , 1, MPIINT, root,
SOLVED.TAG, MPL.COMM WORLD);

MPI_Send(&fraction , 1, MPIINT, root,
SOLVED.TAG, MPL.COMM WORLD);

MPI_Send(result , fraction , MPFLOAT, root,
SOLVED.TAG, MPL.COMM WORLD);

[+ done x/

MPI_Finalize ();

return ;

[%

int get.opts(int argc, char xxargv){
int i;

if (argc<2)
usage ();
for (i=0; i<argc; i++){

x/

324

326

328

330

332

334

336

338

340

342

344

346

348

350

352

354

356

358

5.1. NEWLY DEVELOPED SOFTWARE

125

if (!'strncmp(argv[i],-h" ,2))

usage ();

if (!'strncmp(argv[i],-s" ,2))
size=atoi(argv[i+1]);

if (!strncmp(argv[i],-g" ,2))

Gamma=atof (argv[i+1]);

if (!'strncmp(argv[i],-d" ,2))
dimension=atoi(argv[i+1]);

if (!'strncmp(argv[i],-f* ,2) && i <(argc—1))
outfilename=argv[i+1];

}
if (dimension<=0 || dimension > MAXDIM) dimension=1;
fprintf (stderr ,"dimension: %i\n" , dimension);
if (size<=0) size=10;
fprintf(stderr 'size : %i\n" , Size);
fprintf(stderr ,"gamma : %.2f\n" | Gamma);
fprintf (stderr 'outfile : %s\n" , outfilename);
if (Gamma2 >= size) {
fprintf (stderr "\nWARNING: Gamma comparatively high\n\n");
}
return 1;

void initialize_rand (float « chi) {
float vli, v2, v3, radius;
unsigned int i;

srand (SEED);
for (i=0; i<((unsigned int)(pow(size , dimension}2)); i+=2) {
do {
vl=2.0«rand ()/(RANDMAX+1.0) —1.0;
v2=2.0«rand ()/(RANDMAX+1.0) —1.0;
radius=vikvl+v2xv2;

}
[+ pick two numbers in unit cyclex/
while (radius>=1.0|| radius == 0.0);

v3=sqrt(—2.0«log(radius)/radius);

360

362

364

366

368

370

372

374

376

378

380

382

384

386

388

390

392

394

396

126 5.1. NEWLY DEVELOPED SOFTWARE

chi[i]=v1xv3;
chi[i+1]=v2xv3;

}

return ;

float fitness(int index, int size , floatx chi) {
int i, x1, yl, z1, al, bl, x2, y2, z2, a2, b2;
int modulus;
float fitness=0, r;

switch (dimension){
case 1:
for (i=0ji<size;i++){
r=1.0«abs(indexi);
if (r!'=0)
fitness+=chi[ixfactorl/(exp(r/Gamma)sqrt(r));
}
break;
case 2:
xl=index%size;
yl=index/size;
for (i=0; i<plane; i++){
x2=i%size ;
y2=ilsize;
r=sqgrt ((x2=x1)*x(x2—x1)+(y2—-yl)x(y2-yl));
fitness+=chi[ixexp(r/Gamma)/twoPI;
}
break;
case 3:
zl=index/plane;
modulus=index%plane;
yl=modulus/size;
xl=modulus%size;
for (i=0; i<volume; i++){
z2=ilplane;
modulus=i%plane;

398

402

404

406

408

410

412

414

416

418

420

422

424

426

428

430

432

5.1. NEWLY DEVELOPED SOFTWARE

127

y2=modulus/size;
x2=modulus%size ;
r=sqrt ((x2-x1)x(x2—x1)+(y2-yl)*(y2-yl)+(z2-z1)x(z2—z1));
if (r!=0) fitness+=chi[ikfactor3x(exp(—r/Gamma)/r);
}
break;
case 4:
al=index/volume;
modulus=index%volume;
zl=modulus/plane;
modulus=modulus%plane;
yl=modulus/size;
xl=modulus%size ;
for (i=0; i<volumed; i++){
a2=i/volume;
modulus=i%volume;
z2=modulus/plane;
modulus=modulus%plane;
y2=modulus/size;
x2=modulus%size ;
r=sqrt ((x2-x1)*(x2—x1)+(y2-yl)*(y2—-yl)+(z2-z1)x(z2—z1)+
(a2—al)«(a2-al));
fitness+=chi[ixfactor4xexp(—2«r/Gamma);
}
break;
case 5:
bl=index/volume4;
modulus=index%volume4;
al=modulus/volume;
modulus=modulus%volume;
zl=modulus/plane;
modulus=modulus%plane;
yl=modulus/size;
xl=modulus%size;
for (i=0; i<volume5; i++){
b2=i/volume4;
modulus=i%volume4;

434

436

438

440

442

444

446

448

450

452

454

456

458

128 5.1. NEWLY DEVELOPED SOFTWARE

a2=modulus/volume;

modulus=modulus%volume;

z2=modulus/plane;

modulus=modulus%plane;

y2=modulus/size;

x2=modulus%size ;

r=sqrt ((x2-x1)*(x2—x1)+(y2-yl)*(y2—-yl)+(z2-z1)x(z2—-z1)+
(a2—al)+(a2—-al)+(b2-bl)x(b2-bl));

fitness+=chi[ixfactorb5xexp(—2«r/Gamma);

}

return fitness;

void usage oid) {
fprintf (stderr "program requires MPI to be installed\n\n");
fprintf (stderr 'invocation: mpi_generate [-s #] [-g #] [-d #]");
fprintf (stderr " [-f file]\n");
fprintf (stderr |'s:i\tsize of parameter space\n");
fprintf (stderr "g:\tcorrelation length\n");
fprintf (stderr ,"d:\tdimension of parameter space\n");
fprintf (stderr 'f\toutput file\n\n");
MPI_Abort (MPLCOMM WORLD, 1);
exit;

5.2. OPEN SOURCE SOFTWARE 129

5.2 Open Source Software

The software developed for this work, of course, does not reinvent the wheel.
The programs and libraries listed below where used for data analysis and as
building blocks in the auhor’s simulation software.

5.2.1 The Message Passing Interface MPI

Whenever it comes to programming parallel machines, the problem of data and
task synchronization arises. Usually, the tasks running in parallel solve this
problem by sending messages back and forth. MPI is a library specification
for message-passing, proposed as a standard by a broadly based committee of
vendors, implementors, and usérdt was designed for high performance on

both massively parallel machines and on workstation clusters. Implementations
include, among others, MPICH and LAM (Local Area Multicomputer).

5.2.2 The Vienna RNA Package

The core of the Vienna RNA Package is formed by a collection of routines for
the prediction and comparison of RNA secondary structures. These routines can
be accessed through stand-alone programs, such as RNAfold, RNAdistance etc.,
which should be sufficient for most users; but they are also made available by a
software library2

5.2.3 Free Visualization Software

All figures in this work were generated using free software covered by the GPL.
The following programs where particularly helpfull:

http://vww-unix.mcs.anl.gov/mpi/
2http://www.tbi.univie.ac.attivo/RNA/RNAlib.html

130 5.2. OPEN SOURCE SOFTWARE

GMT The Generic Mapping Tools were developed at the School of Ocean and
Earth Science and Technology, Hawaii. GMT is a free, public-domain col-
lection of ~60 UNIX tools that allow users to manipulate (x,y) and (X,y,z)
data sets (including filtering, trend fitting, gridding, projecting, etc.) and
produce Encapsulated PostScript File (EPS) illustrations ranging from sim-
ple x-y plots through contour maps to artificially illuminated surfaces and
3-D perspective views in black and white, gray tone, hachure patterns, and
24-bit color. GMT supports 25 common map projections plus linear, log,
and power scaling, and comes with support data such as coastlines, rivers,
and political boundaries. It is available at
http: //wwwsoesthawaii.eduy/gmt/.

Vis5D is a system for interactive visualization of large 5-D gridded data sets.
One can make isosurfaces, contour line slices, colored slices, etc of data in
a 3-D grid then rotate and animate the image in real time. There’s also a
feature for trajectory tracing, a way to make text anotations for publications,
etc. Vis5D uses a binary format to store its data, making it necessary to
convert ASCII input. Vis5D is available for download at
http: //wwwsource forgenet/ pro jects/vissd /.

XMGrace Grace is a WYSIWYG 2D plotting tool for the X Window System
and Motif. Grace runs on practically any version of Unix. Also, it has been
successfully ported to VMS, OS/2, and Win9*/NT (some minor functional-
ity may be missing, though).

Grace is a descendant of ACE/gr, also known as Xmgr. It is available at
http: //plasma— gateweizmanrac.il /Grace/.

5.2. OPEN SOURCE SOFTWARE 131

5.2.4 Free External Libraries

All statistical calculations rely on th&NU Scientific Library GSL which is
availablé under the GNU Public License GPL Version 2. This library is cur-
rently under heavy development but nonetheless offers a tremendous and reliable
help for numerical computations. For example, it embodies carefully crafted rou-
tines to avoid numerical artifacts due to rounding errors or variable overflows.
The library version used for this work is GSL V.:0.6.

The program SimLabs also links to tiae++ Standard Template Library
STL to access the vector class . This ensures an abstract interface, data type
safety, and inhibits buffer overflows as well as memory leaks.

The graphical user interface (GUI) was realized with help of @ieGUI
toolkit which is Copyright (C) 1994-2000 Trolltech AS. The toolkit was, how-
ever, brought under the GPL version 2 in the year 2000.

The programs SimEngel and SimLabs need the qt libraries versibior2
above. Since the interprocess communication (IPC) is done using Qt’s signal/s-
lot mechanism and the libraries before versioB @ere not thread safe, both
programs contain their own mutexes and schedule all X events through a pipe.
This prevents timing dependent crashes when both the X Server and the program
interfere by trying to access the same resources.

Lavailable at ftp://alpha.gnu.org/gnu

132 5.2. OPEN SOURCE SOFTWARE

Appendix A

Polio Virus Type 1 Subsequence

All simulations with respect to RNA secondary structures where carried out
using a 100 base sequence of Polio virus Type 1 Mahoney (AC V01148, 5'-

cloverleaf). The primary structure of this sequence is (spaces are inserted for
readability):

CCCUU CCCuC AUAUU
UUGUC CGCAU GUUCC
CAUGG CGUUA UGGCC
UCAUG AUCGG CGGUG
CACCC GGAGA CCCCA
CCCAU GUUGG GGuUcCU
CGACA AAAUU

The optimal folding (i.e. the least free energy secondary structure) determined
by the Vienna RNA package(version 14) has a free energy ¢ = —32.0
kcal/mol. This differs from the resuk = —28.09 kcal/mol found in a work
by RosE [15]. His work relies on an earlier version of the Vienna RNA pack-
age, however, which used a different energy functional. The secondary structure
found by the package’s recursive algorithm is shown in Figufe

Lhttp://www.tbi.univie.ac.atlivo/RNA/

133

134

Figure A.1: Best secondary structure of the fitst 100 base pair sequence of Polio virus
Type 1 (AC V01148, 5'-cloverleaf) found by the recursive algorithm included in the Vienna
RNA package Version.4

In bracket notation, the secondary structure seen in Figureeads:

............ (N ()
)-)) M) (. - D)) N N))-

This optimum is at least two-fold degenerated since the optimal folding found
with the mixed evolutionary strategies introduced in this work has the same free
energy but with a different secondary structure. In Fighi2, this optimum as

well as sub-optimal foldings found 'on the way’ in the search process are shown.

135

F=-32.0 kcal/mol

Figure A.2: Optimal and suboptimal secondary structures of the first paft{00) of Polio
Virus Type 1 MahoneyAC V01148) and their respective free energies found by the adaptive
evolutionary algorithmQ] using someN = 35 seekers and a time limit b= 150000 steps.

136

Appendix B

Glossary

This glossary, which is not complete in any way, lists terms and explanations
often encountered not only in this work, but also in related literature that is cited
herein.

A

algorithm A complete, unambiguous procedure for solving a specified problem
in a finite number of steps.

ASCIl American Standard Code for Information Interchange; ASCII is the uni-
versal standard for the numerical codes computers use to represent all upper
and lower-case letters, numbers, and punctuation.

autocorrelation The autocorrelation describes how a function varies with itself;
l.e. it is a measure of self-similarity.

137

138

autocorrelation coefficient The autocorrelation coefficieR for a given lagk
is confined to the intervdl-1, 1] and calculated as follows:

N—k
3 (=T (=5
.

N
S (% —X)?

t=1

see alsocorrelation coefficient

autocorrelation function The autocorrelation function contains the entire se-
ries of autocorrelation coefficients.

B

Bernoulli trial A Bernoulli trial is an experiment with only two possible out-
comes. The probability of success and probability of failure must sat-
isfy p+q=1.

A binomial random variableounts the number of successesimdepen-
dent Bernoulli trials; ageometric random variableounts the number of
independent trials until the first success.

bimodal distribution A relative frequency or probability distribution character-
ized by two peaks or humps rather than the more common single peak,
which characterizes the normal distribution and most other standardized
distributions.

binomial distribution A binomial random variabl& is a discrete variable in
the interval[O, n] with the probability distribution:

Mpkg"™k 0<k<n
R — { P

0 otherwise

139

It describes the number of succesXes= k for nindependent trials in an

experiment with only two possible outcompsindg. Themeanof X isnp
and thevarianceis ngp = np(1 — p).

Box-Muller transformation The Box-Muller transformation allows the gener-

ation of Gaussian distributed random numbgrandy,, given two equally
distributed random numbers andx,:

yl=+/—2Inx1cog2mxy)
y2 = +/—2Inx1SIN(27X2)

The polar form of the Box-Muller transformation is both faster and more
robust numerically. The algorithmic description of it is:

float x1, x2, w, yl, y2;

do {
x1 = 2.0 * ranf() - 1.0;
x2 = 2.0 * ranf() - 1.0;
w = x1*x1 + x2 * x2;
} while (w >= 1.0);

w = sqrt((-2.0 * log(w))w);

yl = x1 * w;
y2 = X2 * w;
C

central limit theorem The average of a fixed random variable measured repeat-

edly and independently asymptotically become®eanal random variable
as the number of measurements increases.

140

Chi square random variable The probability distribution for the always non-
negative random variablg? is given by

xz~lez

221 (v/2)

The variable represents the sum of a fixed number of squares of standard

normal random variables; the number of terms in the sum is its degrees of

f(x) =

freedomv.

combinations The number of combinatior&_ is the number of ways of choos-
ing k objects out of a group af objects, where two choices are considered
to be the same if they contain the sakngbjects.

conditional probability The conditional probability is the probabilify(xz|x1)
that an evenky, will occur provided that an eveni has occured.

P(XZ VAN Xl)

Plcha) = —5r s

correlation coefficient The correlation coefficientis a measure normalized to
the interval—1, 1] describing theovarianceof two variablesX, Y.
. CovX,Y)
v/ Var(X)Var(Y)

see alsoautocorrelation coefficient

covariance The covariance measures whether two varialesndY vary in the
same way.
Cov(X,Y) = (XY) — (X)(Y)

D

141

density of statesThe density of states describes how often a certain state is re-
alized in a particular system.

distribution see bimodal distribution, binomial distribution, Gamma distribu-
tion, Gaussian distribution, normal distribution, and lognormal distribu-
tion

E

ergodic Accordingto BOLTZMANN's hypothesis (1887), asystem trajectory reaches
every point withH = U. This hypothesis could not be upheld mathemati-
cally [64] and in 1911 P. BRENFESTand T. EFHRENFESTformulated that
an ergodic system comes arbitrarily close to any pointi. [65]

exponential random variable The exponential random variable depending on
a parametew is determined by the following probability density function:

1

lex/a x>0

f(x) =
0 otherwise

F

fithess In order to commonly describe minimization and maximization problems
it is convenient to introduce an abstract fithess which is always to be maxi-
mized and, therefore, definedas=V for a maximization and as = —V
for a minimization problem.

fitness landscapeThe fitness landscape is a virtual landscape representing the
search space. It is uniquely generated by the mutation operator.

frustrated problem An optimization problem is said to be frustrated if two or
more contradictory goals are to be optimized

142

G

Gamma distribution The probability density function describing a gamma ran-
dom variable depends on two parameterand 8. The distribution is
skewed to the right and given by

f(x) = %xa_le_ﬁx

Gamma function Generalized factorial function defined as

(o]

r(x) = / t*leXdx
0

Gaussian distribution A probability distribution that describes the behavior of
many natural and man-made phenomena. The normal distribution is partic-
ularly useful because it can be described with a relatively simple equation
and analyzed to reveal detailed characteristics of segments of the distribu-

tion.
X—X)?

P(x) = 1 exp [_(ZT]

- oV2rm

GPL GNU Public License, copyright license issued by the Free Software Foun-
dation to protect free software

GMT Generic Mapping Tools; collection of software utilities for 2D and 3D
data visualization

GSL GNU Scientific Library; scientific software library providing and C++
bindings; available under the terms of the GPh#p: //www

GUI Graphical User Interface; point and click interface for user/program inter-
action

143

H

hypergeometric distribution Given a population of siz&l, M objects of one
type andN — M objects of another type in a sample mbbjects chosen
without replacement, the numbXrof type M objects in the sample is hy-
pergeometrically distributed. The mean of the hypergeometric distribution
isnM/N. The probability distribution is given by
w 0<k<min(M,N)
AX) =4)

0 ortherwise

IPC Inter Process Communication — implemented e.g. as System V IPC calls
for messages, semaphores, and shared memory

K

kurtosis Kurtosis, a measure of how far the tails of the distribution of a variable

X go, is defined as
o (=%
— 3

M

Markov Process A stochastic process in which the future distribution of a vari-
able depends only on the variable’s current value omifgredecessors.
Stock prices, for example, are widely assumed to follow a Markov process.

Metropolis algorithm The Metropolis algorithm is a stochastic optimization al-
gorithm which, unlike gradient strategies, allows downhill steps with a cer-
tain probability.

144

mean The arithmetic mean of a set bf numbers can be calculated as:

_ 11X
X:Ni;Xi

For a distributionp (x) of numbers the mean value is defined as the expec-
tation value ok or, in other words, the first mome(X) of the distribution:

) = (x) = [dxxp(x)

moment Them—th moment X™) of a distributionp(x) is the expectation value
of the monomiak™;
(x™ = [dexp(x
Important moments of a distribution are, for example, the first moment
(mean valugand a combination of first and second momeéhné& variance

MPI The Message Passing Interface is a standard specification for message
passing libraries (used in parrallel programs) defined by the MPI forum
(a broadly based group of parallel computer vendors, library writers, and
application specialists.)

multithreading seethread

mutation In the scope of this work the term ‘mutation’ describes a change of one
ore more variables in parameter space which necessarily induces a move in
search space.

mutation operator The mutation operator uniquely describes the set of allowed
variable changes in parameter space. The definition of mutation steps gen-
erates a neighborhood structure in search space and thus uniquely defines
the fitness landscape.

mutex locking variable to ensure exclusive access to shared resourpastin
threadedprograms, a simple form of semaphore

145

N

normal distribution see Gaussian distribution

NP A problem is said to be NP (non deterministic polynomial) if it can not be
solved by a deterministic algorithm in polynomial time with respect to the
problem size.

NP complete A problem is said to be NP complete if it represents the worst case
scenario of an NP problem. If an efficient (meaning polynomial) algorithm
can be found for an NP complete probleall, NP problems of the same
problem class can be solved efficiently. This is reflected in the still open
guestion:P 2 NP.

O

OneMax Problem The OneMax Problem is in its simple, linear form the task
to maximize the number of 1s in a bitstring. The solution is trivial and the
problem is easy enough to be analytically solvable.

P

partition function The partition functiorZ, a dimensionless normalization fac-
tor, can be calculated as

Z— / exg—BH].
The termH denotes the Hamilton operator.

PDF short for Portable Document Format, a file format developed by Adobe
Systems. PDF captures formatting information from a variety of desktop
publishing applications, making it possible to send formatted documents

146

and have them appear on the recipient’'s monitor or printer as they were
intended. To view a file in PDF format, you need Adobe Acrobat Reader, a
free application distributed by Adobe Systems.

Poisson distribution The Poisson distribution is the limit of the binomial distri-
bution when the number of trials goes to infinity. Its variance and mean are
both identical tax. The probability distribution is given by

ake

i k=0

R(X) =

0 otherwise

postscript PostScript is a programming language optimized for printing graph-
ics and text, a page description language. It was introduced by Adobe in
1985. The purpose of PostScript was to provide a convenient language in
which to describe images in a device independent manner.

probability The probabilityP of an evenX describing the likelihood of its oc-
currence was defined byAPLACE as [66]

_ Number of elementary events favourable to X

P(X
(X) Number of all elementary events

probability density cf. random variable (continuous)

R

random variable (discrete) A random variable is said to be discrete if it can
take only finitely or countably many valu€s. The & must satisfy the
normalization condition

Zéi!Il

147

random variable (continuous) A random variabl€ is said to be (absolutely)
continuous when its distribution function can be represented as

<
PE)= [pb)a
The functionp(&) is called the probability density which must satisfy

fp@méél

Rastrigin’s function This function is a multimodal function often used for test-
ing purposes. Its global minimurfi(x) = 0 is atx; = 0. The function is
defined as

f(X) = nA+ iXIZ — Acog27x;)

The amplitude parameter is typically setAe= 10.

S

seeker A seeker actually represents a certain point in the fithess landscape and
thus reflects a potential solution to the optimization problem.

selection The selection process replaces inferior seekers by better ones. The
exact procedure differs depending on the optimization algorithm.

semaphoreinteger variable common to different processes or threads, for ex-
ample, to assure exclusive access to shared resources

Simulated Annealing Simulated Annealing is an extended version of the Metropo-
lis algorithm. During the optimization process, the temperature is lowered
according to an annealing schedule.

148

skewnessThe skewness of a distribution (positive right, negative— left) is
given by
(x=%)°)

o3

spin glasstheoretical model describing disordered magnetic materials as an
dimensional lattice of locally and globally coupled spgnthe Hamiltonian
IS
H= —ZJij(S XSj) S,5==1
1)
i

A spin glass is an example forfaustrated problem

standard deviation standard deviatioor of a set ofN numbers with mear:

statistical independencelf two eventsx; andx; are mutually independent, their
correlation is zero:

Cor(x,xj) = Couxi,Xj) =0

The inversion, however (if the correlation of two events is zero, they are
statistically independent), is true for normally distributed everasly.

statistical weight The statistical weight in the scope of this work denotes the
number of realizations of a certain fitness level in a discrete fitness land-
scape.

149

T

thread A program can be written to run several tasks in parallel as if they were
separate programs. Such a program is said to be multithreaded, since every
task constitutes a thread sharing common resources (memory, stack etc.)
with all other threads of the program.

Vv

variance The variances?(x) of a distributionp (x) is defined as:

02(x) = (X = (X))2) = (%) = (X)2 = [dx (@ = (X)) p(x).

The square root of the variance is calkendard deviation

150

Bibliography

[1] C. Darwin,On The Origin of Species by Means of Natural Selection, or the
Preservation of Favoured Races in the Struggle for.LHarmondsworth:
Penguin, 19689

[2] R. A. Fisher,The Genetical Theory of Natural Selectio@xford: Claren-
don Press, 193(®

[3] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and
E. Teller, “Equation of state calculations by fast computing machinks,”
Chem. Physwvol. 21, pp. 1087-1092, 19530, 23

[4] S. Kirkpatrick, C. D. G. Jr., and M. P. Vecchi, “Optimization by simulated
annealing,”Sciencevol. 220, no. 4598, pp. 671-680, 1983, 27, 59

[5] G. S. Grest, C. M. Soukoulis, and K. Levin, “Cooling rate dependence for
the spin-glass ground-state energy: Implications for optimization by simu-
lated annealing,Phys. Rev. Lettvol. 56, no. 11, pp. 1148-1151, 198K),
28,59

[6] R. Diekmann, R. Lling, and J. Simon, “Problem independent distributed
simulated annealing and its applications,” tech. rep., Department of Math-
ematics and Computer Science, University of Paderborn, Germany, 1993.
10,59

151

152 BIBLIOGRAPHY

[7] G. S. Stiles, “The effect of numerical precision upon simulated annealing,”
Phys. Lett. Avol. 185, 199410, 59

[8] R. Desai and R. Patil, “Salo: Combining simulated annealing and local
optimization for efficient global optimization,” iFLAIRS-'96, Key West,
FL, pp. 233-237, 199610, 59

[9] R. Frost and P. Heinemann, “Simulated annealing: A heuristic for parallel
stochastic optimization,” IPDPTA '97, 1997.10, 59

[10] T. Mahnig and H. Muhlenbein, “A new adaptive boltzmann selection sched-
ule sds,” inProceedings of the 2001 Congress on Evolutionary Com-
putation CEC2001 (COEX, World Trade Center, 159 Samseong-dong,
Gangnam-gu, Seoul, Korea), pp. 183-190, IEEE Press, 27-30 May 2001.
10,61

[11] T. Boseniuk, W. Ebeling, and A. Engel, “Boltzmann and Darwin strategies
in complex optimization,Phys. Lett. Avol. 125, pp. 307-310, 19870

[12] Z. Michalewicz,Genetic Algorithms + Data Structures = Evolution Pro-
grams Springer, 199610, 29

[13] B. Militzer, M. Zamparelli, and D. Beule, “Evolutionary search for low
autocorrelated binary sequencdgEE Trans. Evol. Compvol. 2, pp. 34—
39, 1998.10, 35

[14] H. Muhlenbein and T. Mahnig, “Mathematical analysis of evolutionary al-
gorithms for optimization,” inProceedings of the Third Internatinal Sym-
posium on Adaptive Systenislavanna), pp. 166—185, 20010

[15] H. Ros, Evolutiorare Strategien und Multitome OptimierunBhD thesis,
Humboldt Universiat Berlin, 1998.14, 15, 17, 24, 35, 47, 133

BIBLIOGRAPHY 153

[16] G. P. Williams,Chaos Theory Tamed Gunpowder Square, London EC4A
3DE: Taylor & Francis Ltd., 199717

[17] W. Ebeling, A. Engel, and R. FeisteRhysik der Evolutionsprozesse
Akademie-Verlag, Berlin, 1990, 22, 23, 34, 43

[18] R. Feistel and W. Ebelingsvolution of Complex System&luwer Publ.
Dordrecht, 198920, 23

[19] J. H. Holland,Adaptation in Natural and Artificial Systems: An Introduc-
tory Analysis with Applications to Biology, Control and Artificial Intelli-
gence Ann Arbor, Ml: University of Michigan Press, 19720, 28

[20] S. A. Kauffman,The Origin of Order, Self-Organization and Selection in
Evolution University of Pennsylvania and The Santa Fe Institute: Oxford
University Press, 19920, 36

[21] W. Ebeling and A. ReimanrBiological Evolution and Statistical Physics
ch. Evolutionary Strategies for Solving Optimization Problems. Springer,
2002. M. Lassig and A. Valleriani, ed21, 64

[22] A. Reimann and W. Ebeling, “Ensemble based control of evolutionary op-
timization algorithms,Phys. Rev. Evol. 65, no. 046106, 20026, 61, 69,
73,74

[23] H. Szu and R. Hartley, “Fast simulated annealirigjiys. Lett. Avol. 122,
pp. 157-162, 198728, 59

[24] G. T. Barkema and T. MacFarland, “Parallel simulation of the Ising model,”
Phys. Rev. Evol. 50, pp. 1623-1628, August 19923

[25] B. Andresen and J. M. Gordon, “Analytic constant thermodynamic speed-
cooling strategies in Simulated Annealin@pen Systems & Information
Dynamics in Physical and Life Sciengesl. 2, pp. 1-12, April 199328

154 BIBLIOGRAPHY

[26] B. Andresen and J. M. Gordon, “Constant thermodynamic speed for mini-
mizing entropy production in thermodynamic processes and simulated an-
nealing,”Phys. Rev. Evol. 50, pp. 4346-4351, 19928

[27] B. Andresen, “Parallel implementation of simulated annealing using an op-
timal adaptive annealing schedule,” tech. rep., Physics Laboratory, Univer-
sity of Copenhagen, 19928

[28] G. RuppeineNucl. Phys. B (Proc. Suppl.yol. 5A, p. 116, 198828

[29] J. H. Holland, “Royal Road functions@enetic Algorithm Digestvol. 7,
August 1993.28

[30] J. H. Holland and J. S. Reitman, “Cognitive systems based on adaptive
algorithms,” inPattern-Directed Inference Systeri3. A. Waterman and
F. Hayes-Roth, eds.), New York: Academic Press, 1283.

[31] D. E. GoldbergGenetic Algorithms in Search, Optimization and Machine
Learning Reading, MA: Addison-Wesley, 19828

[32] D. E. Goldberg and P. Segrest, “Finite Markov chain analysis of Genetic Al-
gorithms,” in Proceedings of the Second International Conference on Ge-
netic AlgorithmgJ. J. Grefenstette, ed.), (Hillsdale, NJ), pp. 1-8, Lawrence
Erlbaum Associates, 198283

[33] K. A. D. Jong, “Adaptive system design: A genetic approatlhEE Trans-
actions on Systems, Man, and Cybernetics. 10, no. 3, pp. 556-574,
1980.28

[34] K. A. D. Jong, “On using genetic algorithms to search program spaces,” in
Proceedings of the Second International Conference on Genetic Algorithms
(J. J. Grefenstette, ed.), (Hillsdale, NJ), pp. 210-216, Lawrence Erlbaum
Associates, 198728

BIBLIOGRAPHY 155

[35] K. A. D. Jong, “Are Genetic Algorithms Optimisers?,” Rarallel Problem
Solving from NaturéR. Manner and B. Manderick, eds.), vol. 2, pp. 3-13,
Sept. 199228

[36] T. Mahnig and H. Mihlenbein, “Optimal mutation rate using Bayesian pri-
ors for estimation of distribution algorithms,” Proceedings of the 1st Sym-
posium on Stochastic Algorithms, Foundations and ApplicatiSpsinger,
2001.29

[37] H. Muhlenbein and T. Mahnig, “The Factorized Distribution Algorithm for
additively decomposed functions,” Rroceedings of the 1999 Congress on
Evolutionary Computatiampp. 752—-759, 19929

[38] M. Steinberg, “Konstruktion von korrelierten, Alligen Landschaften.”
Humboldt Universiét Berlin. 31

[39] M. J. E. Golay and D. B. Harris, “A new search for skewsymmetric binary
sequences with optimal merit factorgfans. Inf. Theory (USAol. 36,
no. 5, pp. 1163-1166, 19965

[40] S. Mertens, “Exhaustive search for low-autocorrelation binary sequences,”
J. Phys. Avol. 29, pp. L473-1L481, 19965

[41] S. F. Edwards and P. W. Anderson, “Theory of spin glasses?hys. F
vol. 5, p. 965, 197536

[42] C. Flamm, W. Fontana, and I. L. Hofacker, “RNA folding at elementary
step resolution,RNA vol. 6, pp. 325-338, 200(88

[43] S. Wuchty, W. Fontana, I. L. Hofacker, and P. Schuster, “Complete subopti-
mal folding of RNA and the stability of secondary structur@&gpolymers
vol. 49, pp. 145-165, 19928

156 BIBLIOGRAPHY

[44] W. Fontana, P. F. Stadler, E. G. Bornberg-Bauer, T. Griesmacher, I. L. Ho-
facker, M. Tacker, P. Tarazona, E. D. Weinberger, and P. Schuster, “RNA
folding and combinatory landscapeBhys. Rev. Bvol. 47, pp. 2083-2099,
March 1993.41

[45] R. Feistel,Anwendungen der Theorie stochastischer Systeme auf lineare
und nichtlineare Probleme der &$sigkeitsphysikPhD thesis, Universit
Rostock, 197643

[46] D.T. Gillespie, “A general method for numerically simulating the stochastic
time evolution of coupled chemical reactions,”Comput. Physvol. 22,
pp. 403-434, 197643

[47] D. T. Gillespie, “Exact stochastic simulation of coupled chemical reac-
tions,” J. Phys. Chemvol. 81, pp. 2340-2361, 19743

[48] D. T. Gillespie, “A rigorous derivation of the chemical master equation,”
Physica Avol. 188, pp. 404—-425, 1992.

[49] D. T. Gillespie,Markov Processes: An Introduction for Physical Scientists
Academic Press, 1992.

[50] M. A. Gibson and J. Bruck, “Efficient exact stochastic simulation of chem-
ical systems with many species and many channdlsPhys. Chem. A
vol. 104, no. 9, pp. 1876-1889, 20046

[51] M. Eigen and P. Schuster, “The hypercycléyaturwiss, vol. 64, 65,
pp. 541, 341, 1977, 19786, 62

[52] M. Eigen, J. McCaskill, and P. Schuster, “Molecular quasi-specieBliys.
Chemvol. 92, pp. 6881-6891, 19886, 62

BIBLIOGRAPHY 157

[53] H. Muhlenbein and D. Schlierkamp-Voosen, “Adaptation of population
sizes by competing subpopulations,’lmernational Conference on Evo-
lutionary Computation(Nagoya, Japan), pp. 330-335, 1996.

[54] Salamon, Nulton, Harland, Pederson, Ruppeiner, and Liau, “Simulated an-
nealing with constant thermodynamic speeddmputer Physics Commu-
nications pp. 423-428, 198&%9

[55] W. Ebeling, L. Molgedey, and A. Reimann, “Stochastic urn models of inno-
vation and search dynamic$hysica Avol. 287, pp. 599-612, 200@&1,
64, 65

[56] M. Nowak and P. Schuster, “Error thresholds of replication in finite
populations: Mutation frequencies and the onset of Muller’s ratchet,”
J. Theor. Biol, vol. 137, pp. 375-395, 19883

[57] T. Back and M. Schutz, “Intelligent mutation rate control in canonical
genetic algorithms,” irProceedings of the 9th International Symposium,
ISMIS (Zakopane (Poland)), pp. 158-167, Springer-Verlag, Berlin, June
1996.63

[58] G. Ochoa, I. Harvey, and H. Buxton, “Error thresholds and their relation to
optimal mutation rates,” iEuropean Conference on Atrtificial Lifpp. 54—
63, 1999.63

[59] G. Ochoa and I. Harvey, “Recombination and error thresholds in finite
populations,” inFoundations of Genetic Algorithms @V. Banzhaf and
C. Reeves, eds.), pp. 245-264, San Francisco, CA: Morgan Kaufmann,
1999.63

158 BIBLIOGRAPHY

[60] W. Ebeling and A. Reimann, “Ensemble-based control of search dynamics
with application to string optimizationZ. Phys. Chemvol. 216, no. 01,
pp. 065-075, 200268, 135

[61] B. Stroustrup,The C++ Programming Language Reading: Addison-
Wesley, 3rd ed., 199777

[62] S. B. Lippman;The C++ Primer. Reading: Addison-Wesley, 2nd ed., 1991.
77

[63] E. Gode ANSI C++ (kurz & gut) Kdln: O'Reilly, 1998. ISBN 3-89721-
205-6.77

[64] T. Haar,Elements of Statistical Mechaniddew York: Rinehart, 1954141

[65] R. Becker,Theorie der Virme Berlin, Heidelberg: Springer, 3rd ed., 1985.
141

[66] I. N. Bronshtein and K. A. SemendyayeMandbook of Mathematics
Springer, reprint of the third ed., 199846

[67] T. Asselmeier, W. Ebeling, and H. Res‘Evolutionary strategies of opti-
mization,” Phys. Rev. Bvol. 56, pp. 1171-1180, 1997.

[68] T. AsselmeierSchibdinger-Operatoren und Evolutiéne Strategien PhD
thesis, Humboldt Universit Berlin, 1997.

[69] M. Conrad and W. Ebeling, “M. V. Volkenstein, evolutionary thinking
and the structure of fitness landscap&gSystemsvol. 27, pp. 125-128,
1992.

[70] P. E. F. Carter Jr, “The generation and application of random numbers.”

[71] L. Peleti, “Quasispecies evolution in general mean-field landscapesy-
phys. Lett.2000.

BIBLIOGRAPHY 159

[72] W. E. Hart,Adaptive Global Optimization with Local SearcRhD thesis,
University of California, San Diego, 1994.

[73] C. O. Book,Mathematical OptimizationComputational Science Education
Project, 1995.

[74] H. MUhlenbein and T. Mahnig, “FDA - A scalable evolutionary algorithm
for the optimization of additively decomposed functiongWolutionary
Computationvol. 7, pp. 353-376, 1999.

[75] M. Fekete, I. L. Hofacker, and P. F. Stadler, “Prediction of RNA base pairing
probabilities using massively parallel computets,Comput. Biol.vol. 7,
pp. 171-182, 2000.

[76] C. Flamm, I. L. Hofacker, and P. F. Stadler, “RNA in silico: The compu-
tational biology of RNA secondary structureg\tlv. Complex Systvol. 2,
pp. 65-90, 1999.

[77] 1. L. Hofacker, P. Schuster, and P. F. Stadler, “Combinatorics of RNA sec-
ondary structuresPDiscr. Appl. Math, vol. 88, pp. 207-237, 1998.

[78] M. Gen and R. Chengienetic Algorithms & Engineering Optimization
New York, Chichester, Weinheim, Brisbane, Singapore, Toronto: Wiley-
Interscience (John Wiley & Sons Inc.), 2000.

[79] H.-M. Voigt, W. Ebeling, |I. Rechenberg, and H.-P. Schwefel, eldaral-
lel Problem Solving from Nature - PPSN,I8pringer, Sept. 1996. Inter-
national Conference on Evolutionary Computation - The 4th International
Conference on Parallel Problem Solving from Nature, Berlin, Germany.

[80] V. Nissen,Einfiihrung in evolutioare Algorithmen Braunschweig, Wies-
baden: Vieweg, 1997. (computational intelligence); ISBN 3-528-05499-9.

160 BIBLIOGRAPHY

[81] E. Chattoe, “Just how (un)realistic are Evolutionary Algorithms as repre-
sentations of social processes®jurnal of Artificial Societies and Social
Simulation vol. 1, no. 3, 1998.

[82] I. Rechenberdgivolutionsstrategie: Optimierung Technischer Systeme nach
Prinzipien der Biologischen EvolutionStuttgart: Frommann-Holzboog,
1973.

[83] T. Back, Evolutionary Algorithms in Theory and Practice: Evolution
Strategies, Evolutionary Programming, Genetic Algorithn@xford Uni-
versity Press, 1996. ISBN: 0 1950997 10.

Index

Symbols
a-helix....................... 39
B-sheet...................... 39
€ 28

A
adaptation................. 9,73
Adenine..................... 38
algorithm.................... 11
analytic solution.............. 13
Anderson.................... 36
Andresen................. 28, 60
annealing schedule 59
annealingspeed 28
autocorrelation

coefficient........ 7,18, 19,47
function............ 17,19, 47
autocovariance............. 8,.17

B
basepair..................... 38
Boltzmann.................. 141

constant................ 7,24
distribution 24

161

factor.................. 24, 25
strategy............ 10, 23,52
Boltzmann-Darwin Strategy ... 10
Bruck 45
building block................. 35
C
chromosome representation. . .29.
communication............... 20
COMProMISe.cvvvvinnnn. 9.
Copyright 131
correlation................ 31, 35
length................... 7,19
correlogram.................. 19
crossover operator........... 29
Cytosine...........coovinn... 38
D
Darwin Strategy 21, 24,53
dedong...............n.. 28
density of states............ 7,15
DNA 38
E
Edwards..................... 36

162 INDEX
Ehrenfest................... 141 freeenergy 39, 40
eigenvalue 23 frequency.................... 15
BNEIGY .ottt 7. Frustrated Periodic Sequentg, 34,
Engel........................ 34 77
Engel Sequence 34 frustration. seefitness function,
ensemble entropy 7,69 frustrated
ensemblesize 7. G
ensemble variability 8, 64 _
; 8 17 Gaussian
0] 0)2
entropy ’ landscape 35,116
error threshold. 56, 62, 72
random number........... 31
evolutionrate.............. 7,61 .
_ genetic
evolutlor.1ary algorithm.................. 28
algorlthm 10, 28 GENOIYPE oo ovoveeoe 20, 37
erTdow. T 46,52 Gibson...................... 45
evolutionary window........... 70 Gillespie 43,46
E Gillespie-Feistel algorithm 43
Feistel 34,43 g'v:T """""""""""" 122
Fisher-Eigen equation......... 22 GOIZ:; """""""""""" o8
tNESS . -+t v eeeeeeein) 7,25 OUDEIG -
_ GPL.............iit, 129 131
function................... 34 ,
gradientsearch............ 13,24
frustrated 34
GSL ... 131
landscape .12, 31, 33, 35, 37, 46 _
_ Guanine.............cooe... 38
discrete.............. 14, 33
_ GUI ... 78,131
properties............... 14
Fourier H
spectrum 32 hairpin 39
transform................. 33 Hamilton operator 60

INDEX 163
Hamiltonian................ 1,36 firstreaction............... 45
Hamming distance............ 19 nextreaction.............. 45
heat capacity 28,59 Metropolis Algorithm ... 10, 23, 27
Heisenberg matrix............ 23 MPIl_generate 116
hill climbing 13 mutation.................. 12,20
Holland 28 operator.................. 80
rate i 22
| mutex............oovninn... 131
inverse temperature 1.
IPC ..o 131 N
Isingmodel 28 NKmodel.................... 36
non polynomial .. seeNP complete
K Nowak 63
Kauffman................. 36,37 NP complete................. 11
Kirkpatrick 27
O
L occupation number 8
LABS............ ... 10, 77 Ochoa..... 63
Laplace 146 optimization............. 9,11, 25
loop ..o 39 5
M parameter..................... 9
Muhlenbein.................. 61 space 13 47
Mahnig...................... 6.1 partition function............ 8, 25
master equation 24 phenotype 20
meanvalue.................... 8. PIPE . .t 131
memoryleak................ 131 PolioVirus Type 1........... 133
Merit-factor................... 36 population
method genetics 36
direct 44 SIZE. . 58, 63

164 INDEX
potential 8. SIMRNA 77,80
potentialenergy 8. Simulated Annealing. .. 10, 21, 27
probability.................. 7,15 slot.......................L. 131
density.................. 7,16 sourcecode ..., 77
pseudoloop.................. 40 SPECHIUM ..o, 47
purines 38 Spinglass................. 28, 36
pyrimidines.................. 38 standard deviation 8.
Q Standard Deviation Schedule . 61
QtGUItoolKit 131 steepestdescent............. 13.
Steinberg.................... 31
R stepfunction................. 27
random...................... 12 STL. . 131
randomwalk..........o ar stochastic.................... 11
relative ensemble dispersion 7, 66
strategy
relaxation coefficient 28, 59 :
mixed..................... 25
RNA
_ o structure
folding kinetics 38 :
primary 38
secondary structure . 10, 38, 80
secondary............. 38,40
sequence.............. 38, 39
S T
sample ... 47 temperature................ 8,.27
Schuster..............co..... 63 thermodynamical system 15
second law of thermodynamics 23 thermodynamics.............. 27
selection................. 12 20 thread 78
probability 7,26 Thymine..................... 38
signal 131 time............. 8.
SImEngel.................... 77 tournament selection.......... 27
SimLabs..................... 17 twistedpair.................. 38

165

INDEX
U

Uracil 38
V

varianCe, 8,17

vectorclass................. 131

VISBD . . oo 130
W

Watson-Crick 38

weight, statistical........... 8,17
X

XMGrace...........ccoevu... 130

166 INDEX

Appendix C

Acknowledgment

The author wishes to thank thBeutsche Forschungsgemeinschafivho has
financially supported this work in the framework of the special research field
‘Sonderforschungsbereich 555 — Komplexe Nichtlineare Prozesse’.

| am furthermore indebted to:

e Prof. Dr. Werner Ebeling for supervising this work and numerous fruitful
discussions,

e Dr. Lutz Molgedey for his seemingly endless patience in repeatedly ex-
plaining gory mathematical details,

e Dipl. BW Claudia Lehmann for her moral and practical support in every-
day life, and

e Ruth Perkins for proof-reading this document (in an intermediate state;
so | had enough time to introduce new mistakes) and answering uncounted
style and grammar-related questions.

167

168

169

Author’s Publication List

1. W. Ebeling, L. Molgedey, and A. Reimann, “Stochastic urn models of in-
novation and search dynamic#&hysica Avol. 287, pp. 599-612, 2000.

2. W. Ebeling and A. Reimann, iBiological Evolution and Statistical Physics
ch. Evolutionary Strategies for Solving Optimization Problems. Springer,
2002. M. Lassig and A. Valleriani, eds.

3. W. Ebeling and A. Reimann, “Ensemble-based control of search dynamics
with application to string optimization”Z. Phys. Chem.vol. 216 (01),
pp. 065—-075, 2002.

4. A. Reimann and W. Ebeling, “Ensemble based control of evolutionary op-
timization algorithms”Phys. Rev. Evol. 65 (046106), 2002.

170

Selbstandigkeitserklarung

Hiermit versichere ich, die vorliegende Arbeit setbsdig angefertigt und keine
weiteren als die gegebenen Hilfsmittel verwendet zu haben.

Axel ReimannBerlin den:

	Introduction
	Learning from Nature
	The Theoretical Framework
	The Concept of Fitness Landscapes
	Properties of Fitness Landscapes
	The Density of States
	The Autocorrelation Function

	Stochastic Modeling of Basic Evolutionary Strategies
	The Darwin Strategy
	The Boltzmann Strategy
	The Mixed Boltzmann-Darwin Strategy

	Other Stochastic Optimization Strategies
	Simulated Annealing
	Genetic Algorithms

	Model Problems
	Correlated Random Landscapes
	Frustrated Periodic Sequences
	The LABS Problem
	The RNA and NK Model Compared
	The NK Model
	RNA Secondary Structures

	Optimizing the Search Process
	Exact Stochastic Simulations
	The Direct Method
	The First Reaction Method
	The Next Reaction Method

	The Evolutionary Window
	Comparing Fitness Landscapes
	Exploring Parameter Windows
	1. Constant Temperature
	2. Variable Temperature

	Mastering Intrinsic Search Parameters
	Ensemble Size Adaptation
	Temperature Adaptation
	Mutation Rate Adaptation
	First Approach: The Ensemble Variability
	Second Approach: The Relative Ensemble Dispersion
	Third Approach: The Ensemble Entropy

	An Adaptive Evolutionary Algorithm

	Software
	Newly Developed Software
	Optimization Programs
	The User Interface
	The Workflow

	The SimRNA Mutation Operator
	The SimRNA Source Code
	The RNA-Strand Class
	The Main Loop

	MPI_generate

	Open Source Software
	The Message Passing Interface MPI
	The Vienna RNA Package
	Free Visualization Software
	Free External Libraries

	Polio Virus Type 1 Subsequence
	Glossary
	Acknowledgment

