CHAPTER 3 Response surface
methodol ogy

3.1 Introduction

Resporse surface methoddogy (RSM) is a @lledion d mathematicd and statisticd
techniques for empiricd model building. By careful design of experiments, the
objedive is to optimize aresponse (output variable) which is influenced by several
independent variables (inpu variables). An experiment is a series of tests, called
runs, in which changes are made in the inpu variables in order to identify the

reasons for changes in the output resporse.

Originally, RSM was developed to model experimenta resporses (Box and
Draper, 1987, and then migrated into the modelli ng of numerical experiments. The
differenceisin the type of error generated by the resporse. In physicd experiments,
inacaracy can be due, for example, to measurement errors while, in computer
experiments, numericd noise is a result of incomplete @nvergence of iterative
processes, roundoff errors or the discrete representation d continuows physicd
phenomena (Giunta d al., 1996 van Campen et al., 1990,Toropovet a., 1999. In

RSM, the arors are ssumed to be randam.
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The gplication d RSM to design optimizationis amed at reducing the aost of
expensive analysis methods (e.g. finite dement method or CFD analysis) and their
asociated numericd noise. The problem can be gproximated as described in
Chapter 2 with smocth functions that improve the wnwvergence of the optimization
process because they reduce the dfeds of noise and they alow for the use of
derivative-based algorithms. Venter et al. (199%6) have discussd the advantages of

using RSM for design optimization applications.

For example, in the cae of the optimization d the cdcination d Roman
cement described in Sedion 6.3,the engineer wants to find the levels of temperature
(x1) and time (xo) that maximize the ealy age strength (y) of the cement. The early

age strength isafunction d the levels of temperature andtime, as foll ows:

y = f(xu,x) + ¢ (3.2

where € represents the noise or error observed in the resporse y. The surface

represented by f(xi, X,) is cal ed aresponse surface.

The resporse can be represented graphically, either in the three-dimensional
space or as contour plots that help visuaize the shape of the resporse surface
Contours are aurves of constant respornse drawn in the x;, X plane keeping all other
variables fixed. Each contour corresponds to a particular height of the resporse

surface, as svown in Figure 3.1.
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Figure 3.1 Threedimensional resporse surface and the arrespondng contour plot
for the early age strength of Roman cement where x; is the cdcination
temperature (°C) and x; is the residencetime (mins).

This chapter reviews the two basic concepts in RSM, first the choice of the

approximate model and, seand, the plan of experiments where the resporse has to

be evaluated.

3.2 Approximate model function

Generdly, the structure of the relationship between the resporse and the independent
variables is unknavn. The first step in RSM is to find a suitable gproximation to
the true relationship. The most common forms are low-order polynomials (first or

second-order).

In this thesis a new approach using genetic programming is suggested. The
advantage is that the structure of the gproximationis not assumed in advance bu is
given as part of the solution, thus leading to a function structure of the best passble
quality. In addition, the complexity of the functionis not limited to a poynomial but

can be generalised with the incluson d any mathematica operator (e.g.
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trigonametric functions), depending on the elgineering understanding of the
problem. The regresson coefficients included in the gproximation model are called
the tuning parameters and are estimated by minimizing the sum of squares of the

errors (Box and Draper, 1987):

Gla) = z @’Vp (Fp - IEp(a) )Zﬁ ~ min (3.2
p=1

where w, is a weight coefficient that charaderizes the relative ntribution d the

information d the original function at the paint p, p=1,...P.

The oonstruction d resporse surface models is an iterative process Once an
approximate model is obtained, the goodress-of-fit determines if the solution is
satisfadory. If thisisnot the cae, the goproximation processis restarted and further
experiments are made or the GP model is evolved with dfferent parameters, as

explained in Chapter 4.

To reduce the number of analyses in computer simulations, sensitivity data
may be used in the mode fitting, although this informationis nat always avail able &
low cost. If in addition to the values of the original function F, = F(xp) their first

order derivatives at paint p Fo. :ain (i=1,...N, p=1,...P) are known, the
’ Xl

problem (3.2) is replaced by the following one (Toropovet al., 1993:
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where y >0 is the parameter charaderizing a degree of inequality of the contribution
of the resporse and the sensitivity data. In this thesis, yis taken as 0.5, foll owing

recommendations by Toropovet a. (1993.

Van Keulen et al. (2000 have presented a methoddogy for the @nstruction o
resporses using both function values and cerivatives on a weighted least-squares
formulation. The aithors conclude that the use of derivatives provides better

acaracy and requires areduced nunber of data.

3.3 Design of experiments

An important asped of RSM is the design of experiments (Box and Draper, 1987,
usually abbreviated as DoE. These strategies were originally developed for the
mode fitting of physicd experiments, bu can aso be gplied to numericd
experiments. The objedive of DoE is the seledion d the points where the resporse

shoud be evaluated.

Most of the aiteria for optimal design of experiments are asciated with the
mathematicd model of the process Generaly, these mathematical models are
paynomials with an unknavn structure, so the crrespondng experiments are

designed only for every particular problem. The dhoice of the design of experiments
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can have alarge influence on the accuracy of the gproximation and the st of

constructing the resporse surface

In atraditional DoOE, screening experiments are performed in the early stages of
the process when it is likely that many of the design variables initially considered
have little or no effed on the resporse. The purpose is to identify the design
variables that have large dfeds for further investigation. Genetic Programming has
shown good screening properties (Gilbert et al., 1999, as will be demonstrated in
Sedion 6.2,which suggests that both the seledion d the relevant design variables

and the identification d the moddel can be caried ou at the sametime.

A detail ed description d the design of experiments theory can be foundin Box
and Draper (1987), Myers and Montgomery (1995 and Montgomery (1997), among
many others. Schod's (1987 has reviewed the gplication d experimental design to
structural optimization, Unal et al. (1996 discussed the use of several designs for
resporse surface methoddogy and multidisciplinary design optimization and

Simpson et a. (1997 presented a complete review of the use of statisticsin design.

As introdwed in Sedion 3.1, a particular combination d runs defines an
experimental design. The possble settings of each independent variable in the N-
dimensional spaceare caled levels. A comparison d different methoddogies is

given in the next sedion.

3.3.1 Full factorial design

To construct an approximation model that can capture interadions between N design

variables, a full fadoria approach (Montgomery, 1997) may be necessary to
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investigate dl possble mmbinations. A factorial experiment is an experimental

strategy in which design variables are varied together, instead of one & atime.

The lower and upper bounds of each of N design variables in the optimization
problem neeads to be defined. The dlowable range is then discretized at different
levels. If each of the variables is defined at only the lower and uger bounds (two
levels), the experimental design is cdled 2" full factorial. Similarly, if the midpants

areincluded, the design is cdled 3" full factorial and shown in Figure 3.2.

Figure 3.2 A 3* full fadoria design (27 pants)

Fadorial designs can be used for fitting second-order models. A second-order
mode can significantly improve the optimization processwhen a first-order model
suffers lack of fit due to interadion between variables and surface wrvature. A

general second-order model is defined as
n n n n
2
y = @ + a X + ajj -+ ajj X Xj (3.4)

where x; and x; are the design variables and a are the tuning parameters.

The @nstruction d a quadratic resporse surface model in N variables requires

the study at threelevels 9 that the tuning parameters can be estimated. Therefore, at
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least (N+1) (N+2) / 2 function evaluations are necessary. Generaly, for a large
number of variables, the number of experiments grows exporentialy (3" for a full
fadorial) and becomes impradical. A full factoria design typicdly is used for five

or fewer variables.

If the number of design variables becomes large, a fradion d a full fadoria
design can be used at the st of estimating only a few combinations between

variables. Thisis cdled fractional factorial design and is usually used for screening

important design variables. For a 3" factorid design, a %Hufraction can be

constructed, resulting in 3*° paints. For example, for p=1in a 3® design, the result is
a one-third fradion, dten cdled 3** design, as shown in Figure 3.3 (Montgomery,

1997).

Figure 3.3 Threeone-third fradions of the 3 design

3.3.2 Central composite design

A semnd-order model can be anstructed efficiently with central composite designs
(CCD) (Montgomery, 1997. CCD are first-order (2) designs augmented by
additional centre and axial points to allow estimation d the tuning parameters of a

second-order model. Figure 3.4showsa CCD for 3 design variables.
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Figure 3.4 Central compasite design for 3 design variables at 2 levels

In Figure 3.4, the design involves 2" fadoria points, 2N axia points and 1
central paint. CCD presents an alternative to 3" designs in the @nstruction o
send-order models because the number of experimentsis reduced as compared to a
full fadorial design (15 in the cae of CCD compared to 27 for a full-factorial
design). CCD have been used by Eschenauer and Mistree (1997 for the

multiobjedive design of aflywhedl.

In the cae of problems with a large number of designs variables, the

experiments may be time-consuming even with the use of CCD.

3.3.3 D-optimal designs

The D-optimality criterion enables amore dficient construction o a quadratic model
(Myers and Montgomery, 19%). The objective is to seled P design pants from a

larger set of candidate points.

Equation (3.4) can be expressed in matrix notation as:
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Y = X*B + e (3.5
where Y is a vedor of observations, e is a vedor of errors, X is the matrix of the

values of the design variables at plan pants and B is the vedor of tuning parameters.

B can be estimated using the |least-squares method as:

B = (X' *X)' XY (3.6)

The D-optimality criterion states that the best set of points in the experiment
maximizes the determinant | X' X |. "D" stands for the determinant of the X" X
matrix associated with the model. From a statisticd point of view, a D-optimal
design leads to resporse surface models for which the maximum variance of the
predicted resporses is minimized. This means that the points of the experiment will

minimize the eror in the estimated coefficients of the response model.

The alvantages of this method are the posshbility to use irregular shapes and
the posshility to include extra design pants. Generally, D-optimality is one of the

most used criteriain computer-generated design of experiments.

Severa applications are described in Giunta d a. (1996 for the wing design of
a high-sped civil transport and Unal et. al. (1996 for a multidisciplinary design
optimization study of alaunch vehicle. Haftka and Scott (1996 have reviewed the

use of D-optimality criteriafor the optimization d experimental designs.

3.3.4 Taguchi'scontribution to experimental design

Taguchi's methods (Montgomery, 1997 study the parameter space based on the

fradional fadoria arrays from DoE, cdled orthogonal arrays. Taguchi argues that it
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is not necessary to consider the interadion between two design variables explicitly,
so he developed a system of tabulated designs which reduce the number of
experiments as compared to a full fadorial design. An advantage is the aility to
hande discrete variables. A disadvantage is that Taguchi ignores parameter

interadions.

3.3.5 Latin hypercube design

Latin hypercube design (McKay et a., 190) can be viewed as an N-dimensional
extension d the traditional Latin square design (Montgomery, 1997). On each level
of every design variable only one paint is placel. There are the same number of

levels asruns and the levels are assgned randamly to runs.

This method ensures that every variable is represented, no matter if the
resporse is dominated by only a few ones. Anather advantage is that the number of

pointsto be analyzed can be diredly defined.

An example of the use of such plans can be foundin Schodset a. (1997).

3.3.6 AudzeEglais approach

Audze and Eglais (1977 suggested a nontraditiona criterion for elaboration d
plans of experiments which, similar to the Latin hypercube design, is not dependent
on the mathematicd model of the problem under consideration. The inpu data for
the daboration d the plan orly include the number of fadors N (number of design
variables) and the number of experiments K. The main principles in this approach

are s follows:
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1. The number of levels of factors (same for each factor) is equal to the number of
experiments and for each level there is only one experiment. Thisis smilar to

the Latin hypercube design.

2. The points of experiments are distributed as uniformly as possble in the domain
of variables. Thereis a physicd analogy with the minimum of potential energy of
repulsive forces for a set of points of unit mass if the magnitude of these
repulsive forces is inversely proportional to the distance squared between the

points:

P P L
z z T min 3.7
pq

p=1 g=p+1
where Ly is the distance between the points having numbers p and q (pzq).

The daboration d the plans is time cnsuming, so each plan of experiment is
elaborated oy once and stored in a matrix charaderized by the levels of factors for
eat o P experiments. For example, for a number of fadors (design variables) N = 2

andP =10,thematrix is

8 10 4 6 2 3 9 5 71

1 7 10 6 8 54 2 9 3 (39

The plan (3.8) is represented in Figure 3.5 and compared with a CCD for two design

variables with 9runs.
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Figure 3.5 Comparison ketween CCD (a), Latin hypercube design (b) and Audze-
Eglaisdesign (¢)

The alvantages of this method are the spacefilling property as own in
Figure 3.5 and the presentation d the data & tabulated designs. A disadvantage is
that once adesign has been defined, noextra points can be alded to the initial set.
This approach has been used by Rikards (1993 to design composite materials with

predicted properties (weight, price etc.).
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3.3.7 Van Keulen'sapproach

In the course of an iterative optimization process modelled by approximations, new
points must be generated in specified damains of the design variable space A new
scheme for the design of experiments (Van Keulen and Toropov, 199) has been

formulated with the foll owing charaderistics:

1. The scheme works efficiently even if only a single aditional design pant is
generated to the existing plan. For a number of new design pants, the dgorithm

is used several times.

2. The scheme remains effedive if different types of functions are used within the

same optimization task to approximate the objedive function and the wnstraints.

The gproadch dstributes points as homogeneously as passble in the sub-

domains of interest. Thisis dore by the introduction d the following cost function:

n n

T +ZZ[,]p *

11=1 1=1

N 3.9

o
+ 71 + n
(2-2d;)? 2 Zl d, -dj)

1=1 I =1 j=i+
which is minimized with resped to the locaion d the new point d. Symbals denoted
... refer to coordinates which are normalized in the sub-domain of interest. The first
term in the expresgon attempts to maximize the distance between pants, and the

seaond term promotes a homogeneous distribution along the coordinate axes. The

third and fourth terms ensure that paints do nd belong to the bourdary of the sub-
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domain. The last term prevents paoints from aligning along the diagonal of the search

sub-regionwhen orly afew points are avail able.

3.4 Conclusion

The resporse surface methoddogy analysis has been reviewed. RSM can be used
for the goproximation d both experimental and numerical resporses. Two steps are
necessary, the definition d an approximation function and the design o the plan of
experiments. As concluded in Chapter 2, genetic progranming is the method of

choiceto find a suitable approximation function and will be described in Chapter 4.

A review of different designs for fitting resporse surfaces has been given. A
desirable design of experiments shoud provide adistribution d paints throughou
theregion d interest, which meansto provide a much information as possble onthe
problem. This "spacefilling' property is a caraderistic of three plans. Latin
hypercube sampling, Audze-Eglais and van Keulen. All three plans are independent
of the mathematicd model of the gproximation. However, Latin hypercube
sampling distributes the points randamly in the space while Audze-Eglais uses a
distribution based on maximum separation between pants. The Audze-Eglais plan

has been chosen in this thesis.

It shoud be noted that if the model building is to be repeaed within an
iterative scheme (e.g. with mid-range gproximations), van Keulen's plan would
bemme an attradive dternative & it adds paints to an existing plan. This thesisis

primarily focused on bul ding gobal approximations.



