
CHAPTER   3 Response surface

methodology

3.1 Introduction

Response surface methodology (RSM) is a collection of mathematical and statistical

techniques for empirical model building.  By careful design of experiments, the

objective is to optimize a response (output variable) which is influenced by several

independent variables (input variables). An experiment is a series of tests, called

runs, in which changes are made in the input variables in order to identify the

reasons for changes in the output response.

Originally, RSM was developed to model experimental responses (Box and

Draper, 1987), and then migrated into the modelli ng of numerical experiments.  The

difference is in the type of error generated by the response.  In physical experiments,

inaccuracy can be due, for example, to measurement errors while, in computer

experiments, numerical noise is a result of incomplete convergence of iterative

processes, round-off errors or the discrete representation of continuous physical

phenomena (Giunta et al., 1996; van Campen et al., 1990, Toropov et al., 1996).  In

RSM, the errors are assumed to be random.
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The application of RSM to design optimization is aimed at reducing the cost of

expensive analysis methods (e.g. finite element method or CFD analysis) and their

associated numerical noise. The problem can be approximated as described in

Chapter 2 with smooth functions that improve the convergence of the optimization

process because they reduce the effects of noise and they allow for the use of

derivative-based algorithms. Venter et al. (1996) have discussed the advantages of

using RSM for design optimization applications.

For example, in the case of the optimization of the calcination of Roman

cement described in Section 6.3, the engineer wants to find the levels of temperature

(x1) and time (x2) that maximize the early age strength (y) of the cement.  The early

age strength is a function of the levels of temperature and time, as follows:

y   =   f (x1, x2)  +  ε (3.1)

where ε represents the noise or error observed in the response y.  The surface

represented by f(x1, x2) is called a response surface.

The response can be represented graphically, either in the three-dimensional

space or as contour plots that help visualize the shape of the response surface.

Contours are curves of constant response drawn in the xi, xj plane keeping all other

variables fixed. Each contour corresponds to a particular height of the response

surface, as shown in Figure 3.1.
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Figure 3.1 Three-dimensional response surface and the corresponding contour plot

for the early age strength of Roman cement where x1 is the calcination

temperature (°C) and x2 is the residence time (mins).

This chapter reviews the two basic concepts in RSM, first the choice of the

approximate model and, second, the plan of experiments where the response has to

be evaluated.

3.2 Approximate model function

Generally, the structure of the relationship between the response and the independent

variables is unknown.  The first step in RSM is to find a suitable approximation to

the true relationship.  The most common forms are low-order polynomials (first or

second-order).

In this thesis a new approach using genetic programming is suggested.  The

advantage is that the structure of the approximation is not assumed in advance, but is

given as part of the solution, thus leading to a function structure of the best possible

quali ty.  In addition, the complexity of the function is not limited to a polynomial but

can be generalised with the inclusion of any mathematical operator (e.g.
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trigonometric functions), depending on the engineering understanding of the

problem.  The regression coeff icients included in the approximation model are called

the tuning parameters and are estimated by minimizing the sum of squares of the

errors (Box and Draper, 1987):
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where wp is a weight coefficient that characterizes the relative contribution of the

information of the original function at the point p, p=1,...,P.

The construction of response surface models is an iterative process.  Once an

approximate model is obtained, the goodness-of-f it determines if the solution is

satisfactory.  If this is not the case, the approximation process is restarted and further

experiments are made or the GP model is evolved with different parameters, as

explained in Chapter 4.

To reduce the number of analyses in computer simulations, sensitivity data

may be used in the model fitting, although this information is not always available at

low cost.  If in addition to the values of the original function Fp = F(xp) their first

order derivatives at point p p
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 (i=1,…,N, p=1,…,P) are known, the

problem (3.2) is replaced by the following one (Toropov et al., 1993):
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where γ >0 is the parameter characterizing a degree of inequali ty of the contribution

of the response and the sensitivity data.  In this thesis, γ is taken as 0.5, following

recommendations by Toropov et al. (1993).

Van Keulen et al. (2000) have presented a methodology for the construction of

responses using both function values and derivatives on a weighted least-squares

formulation.  The authors conclude that the use of derivatives provides better

accuracy and requires a reduced number of data.

3.3 Design of experiments

An important aspect of RSM is the design of experiments (Box and Draper, 1987),

usually abbreviated as DoE.  These strategies were originally developed for the

model fitting of physical experiments, but can also be applied to numerical

experiments.  The objective of DoE is the selection of the points where the response

should be evaluated.

Most of the criteria for optimal design of experiments are associated with the

mathematical model of the process.  Generally, these mathematical models are

polynomials with an unknown structure, so the corresponding experiments are

designed only for every particular problem.  The choice of the design of experiments
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can have a large influence on the accuracy of the approximation and the cost of

constructing the response surface.

In a traditional DoE, screening experiments are performed in the early stages of

the process, when it is li kely that many of the design variables initially considered

have littl e or no effect on the response.  The purpose is to identify the design

variables that have large effects for further investigation.  Genetic Programming has

shown good screening properties (Gilbert et al., 1998), as will be demonstrated in

Section 6.2, which suggests that both the selection of the relevant design variables

and the identification of the model can be carried out at the same time.

A detailed description of the design of experiments theory can be found in Box

and Draper (1987), Myers and Montgomery (1995) and Montgomery (1997), among

many others.  Schoofs (1987) has reviewed the application of experimental design to

structural optimization, Unal et al. (1996) discussed the use of several designs for

response surface methodology and multidisciplinary design optimization and

Simpson et al. (1997) presented a complete review of the use of statistics in design.

As introduced in Section 3.1, a particular combination of runs defines an

experimental design. The possible settings of each independent variable in the N-

dimensional space are called levels.  A comparison of different methodologies is

given in the next section.

3.3.1 Full factor ial design

To construct an approximation model that can capture interactions between N design

variables, a full factorial approach (Montgomery, 1997) may be necessary to
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investigate all possible combinations. A factorial experiment is an experimental

strategy in which design variables are varied together, instead of one at a time.

The lower and upper bounds of each of N design variables in the optimization

problem needs to be defined.  The allowable range is then discretized at different

levels.  If each of the variables is defined at only the lower and upper bounds (two

levels), the experimental design is called 2N full factorial. Similarly, if the midpoints

are included, the design is called 3N full factorial and shown in Figure 3.2.
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Figure 3.2 A 33 full factorial design (27 points)

Factorial designs can be used for fitting second-order models.  A second-order

model can significantly improve the optimization process when a first-order model

suffers lack of f it due to interaction between variables and surface curvature.  A

general second-order model is defined as
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where xi and xj are the design variables and a are the tuning parameters.

The construction of a quadratic response surface model in N variables requires

the study at three levels so that the tuning parameters can be estimated.  Therefore, at
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least (N+1) (N+2) / 2 function evaluations are necessary.  Generally, for a large

number of variables, the number of experiments grows exponentially (3N for a full

factorial) and becomes impractical.  A full factorial design typically is used for five

or fewer variables.

If the number of design variables becomes large, a fraction of a full factorial

design can be used at the cost of estimating only a few combinations between

variables.  This is called fractional factorial design and is usually used for screening

important design variables.  For a 3N factorial design, a 
p
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fraction can be

constructed, resulting in 3N-p points.  For example, for p=1 in a 33 design, the result is

a one-third fraction, often called 33-1 design, as shown in Figure 3.3 (Montgomery,

1997).
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Figure 3.3 Three one-third fractions of the 33 design

3.3.2 Central composite design

A second-order model can be constructed eff iciently with central composite designs

(CCD) (Montgomery, 1997).  CCD are first-order (2N) designs augmented by

additional centre and axial points to allow estimation of the tuning parameters of a

second-order model.  Figure 3.4 shows a CCD for 3 design variables.
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Figure 3.4 Central composite design for 3 design variables at 2 levels

In Figure 3.4, the design involves 2N factorial points, 2N axial points and 1

central point.  CCD presents an alternative to 3N designs in the construction of

second-order models because the number of experiments is reduced as compared to a

full factorial design (15 in the case of CCD compared to 27 for a full -factorial

design).  CCD have been used by Eschenauer and Mistree (1997) for the

multiobjective design of a flywheel.

In the case of problems with a large number of designs variables, the

experiments may be time-consuming even with the use of CCD.

3.3.3 D-optimal designs

The D-optimali ty criterion enables a more efficient construction of a quadratic model

(Myers and Montgomery, 1995). The objective is to select P design points from a

larger set of candidate points.

Equation (3.4) can be expressed in matrix notation as:
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Y    =    X  *  B    +    e (3.5)

where Y is a vector of observations, e is a vector of errors, X is the matrix of the

values of the design variables at plan points and B is the vector of tuning parameters.

B can be estimated using the least-squares method as:

B    =    ( XT  *  X )-1   XT   Y (3.6)

The D-optimali ty criterion states that the best set of points in the experiment

maximizes the determinant  | XT  X |.  "D" stands for the determinant of the XT X

matrix associated with the model. From a statistical point of view, a D-optimal

design leads to response surface models for which the maximum variance of the

predicted responses is minimized.  This means that the points of the experiment will

minimize the error in the estimated coefficients of the response model.

The advantages of this method are the possibili ty to use irregular shapes and

the possibili ty to include extra design points. Generally, D-optimali ty is one of the

most used criteria in computer-generated design of experiments.

Several applications are described in Giunta et al. (1996) for the wing design of

a high-speed civil transport and Unal et. al. (1996) for a multidisciplinary design

optimization study of a launch vehicle.  Haftka and Scott (1996) have reviewed the

use of D-optimali ty criteria for the optimization of experimental designs.

3.3.4 Taguchi' s contr ibution to experimental design

Taguchi's methods (Montgomery, 1997) study the parameter space based on the

fractional factorial arrays from DoE, called orthogonal arrays. Taguchi argues that it
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is not necessary to consider the interaction between two design variables explicitly,

so he developed a system of tabulated designs which reduce the number of

experiments as compared to a full factorial design.  An advantage is the abili ty to

handle discrete variables.  A disadvantage is that Taguchi ignores parameter

interactions.

3.3.5 Latin hypercube design

Latin hypercube design (McKay et al., 1979) can be viewed as an N-dimensional

extension of the traditional Latin square design (Montgomery, 1997).  On each level

of every design variable only one point is placed.  There are the same number of

levels as runs and the levels are assigned randomly to runs.

This method ensures that every variable is represented, no matter if the

response is dominated by only a few ones. Another advantage is that the number of

points to be analyzed can be directly defined.

An example of the use of such plans can be found in Schoofs et al. (1997).

3.3.6 Audze-Eglais' approach

Audze and Eglais (1977) suggested a non-traditional criterion for elaboration of

plans of experiments which, similar to the Latin hypercube design, is not dependent

on the mathematical model of the problem under consideration. The input data for

the elaboration of the plan only include the number of factors N (number of design

variables) and the number of experiments K.  The main principles in this approach

are as follows:
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1. The number of levels of factors (same for each factor) is equal to the number of

experiments and for each level there is only one experiment.  This is similar to

the Latin hypercube design.

2. The points of experiments are distributed as uniformly as possible in the domain

of variables. There is a physical analogy with the minimum of potential energy of

repulsive forces for a set of points of unit mass, if the magnitude of these

repulsive forces is inversely proportional to the distance squared between the

points:
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where Lpq is the distance between the points having numbers p and q (p≠q).

The elaboration of the plans is time consuming, so each plan of experiment is

elaborated only once and stored in a matrix characterized by the levels of factors for

each of P experiments. For example, for a number of factors (design variables) N = 2

and P = 10, the matrix is

39245861071

17593264108
(3.8)

The plan (3.8) is represented in Figure 3.5 and compared with a CCD for two design

variables with 9 runs.
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Figure 3.5 Comparison between CCD (a), Latin hypercube design (b) and Audze-
Eglais design (c)

The advantages of this method are the space-filli ng property as shown in

Figure 3.5 and the presentation of the data as tabulated designs.  A disadvantage is

that once a design has been defined, no extra points can be added to the initial set.

This approach has been used by Rikards (1993) to design composite materials with

predicted properties (weight, price, etc.).
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3.3.7 Van Keulen's approach

In the course of an iterative optimization process modelled by approximations, new

points must be generated in specified domains of the design variable space. A new

scheme for the design of experiments (Van Keulen and Toropov, 1999) has been

formulated with the following characteristics:

1. The scheme works eff iciently even if only a single additional design point is

generated to the existing plan. For a number of new design points, the algorithm

is used several times.

2. The scheme remains effective if different types of functions are used within the

same optimization task to approximate the objective function and the constraints.

The approach distributes points as homogeneously as possible in the sub-

domains of interest. This is done by the introduction of the following cost function:
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which is minimized with respect to the location of the new point d. Symbols denoted

�  refer to coordinates which are normalized in the sub-domain of interest. The first

term in the expression attempts to maximize the distance between points, and the

second term promotes a homogeneous distribution along the coordinate axes. The

third and fourth terms ensure that points do not belong to the boundary of the sub-



Response surface methodology 29

domain. The last term prevents points from aligning along the diagonal of the search

sub-region when only a few points are available.

3.4 Conclusion

The response surface methodology analysis has been reviewed.  RSM can be used

for the approximation of both experimental and numerical responses.  Two steps are

necessary, the definition of an approximation function and the design of the plan of

experiments.  As concluded in Chapter 2, genetic programming is the method of

choice to find a suitable approximation function and will be described in Chapter 4.

A review of different designs for fitting response surfaces has been given.  A

desirable design of experiments should provide a distribution of points throughout

the region of interest, which means to provide as much information as possible on the

problem.  This "space-filli ng" property is a characteristic of three plans: Latin

hypercube sampling, Audze-Eglais and van Keulen. All three plans are independent

of the mathematical model of the approximation.  However, Latin hypercube

sampling distributes the points randomly in the space, while Audze-Eglais uses a

distribution based on maximum separation between points.  The Audze-Eglais plan

has been chosen in this thesis.

It should be noted that if the model building is to be repeated within an

iterative scheme (e.g. with mid-range approximations), van Keulen’s plan would

become an attractive alternative as it adds points to an existing plan.  This thesis is

primarily focused on building global approximations.


