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0.1 Preface

Optimization is a rich and thriving mathematical disci-
pline. Properties of minimizers and maximizers of func-
tions rely intimately on a wealth of techniques from math-
ematical analysis, including tools from calculus and its
generalizations, topological notions, and more geomet-
ric ideas. The theory underlying current computational
optimization techniques grows ever more sophisticated —
duality-based algorithms and interior point methods are
typical examples. The powerful and elegant language of
convex analysis unifies much of this theory. Hence our
aim of writing a concise, accessible account of convex
analysis and its applications and extensions, for a broad
audience.

For students of optimization and analysis, there is great
benefit to blurring the distinction between the two dis-
ciplines. Many important analytic problems have illumi-
nating optimization formulations and hence can be ap-
proached through our main variational tools: subgradi-
ents and optimality conditions, the many guises of dual-
ity, metric regularity and so forth. More generally, the
idea of convexity is central to the transition from classi-
cal analysis to various branches of modern analysis: from
linear to nonlinear analysis, from smooth to nonsmooth,



and from the study of functions to multifunctions. Thus
although we use certain optimization models repeatedly
to illustrate the main results (models such as linear and
semidefinite programming duality and cone polarity), we
constantly emphasize the power of abstract models and
notation.

Good reference works on finite-dimensional convex anal-
ysis already exist. Rockafellar’s classic Convex Analy-
sishas been indispensable and ubiquitous since the 1970’s,
and a more general sequel with Wets, Variational Anal-
ysisappeared recently. Hiriart-Urruty and Lemaréchal’s
Convexr Analysis and Minimization Algorithms is a
comprehensive but gentler introduction. Our goal is not
to supplant these works, but on the contrary to promote
them, and thereby to motivate future researchers. This
book aims to make converts.

We try to be succinct rather than systematic, avoiding
becoming bogged down in technical details. Our style
is relatively informal: for example, the text of each sec-
tion sets the context for many of the result statements.
We value the variety of independent, self-contained ap-
proaches over a single, unified, sequential development.
We hope to showcase a few memorable principles rather
than to develop the theory to its limits. We discuss no al-
gorithms. We point out a few important references as we
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go, but we make no attempt at comprehensive historical
surveys.

Infinite-dimensional optimization lies beyond our im-
mediate scope. This is for reasons of space and accessi-
bility rather than history or application: convex analy-
sis developed historically from the calculus of variations,
and has important applications in optimal control and
other areas of infinite-dimensional optimization. How-
ever, rather like Halmos’s Finite Dimensional Vector
Spaces ease of extension beyond finite dimensions sub-
stantially motivates our choice of results and techniques.
We would, in part, like this book to be an entrée for
mathematicians to a valuable and intrinsic part of mod-
ern analysis. The final chapter illustrates some of the
challenges arising in infinite dimensions.

This book can serve as a teaching text, at roughly
the level of first year graduate students. In principle we
assume no knowledge of real analysis, although in prac-
tice we expect a certain mathematical maturity. While
the main body of the text is self-contained, each section
concludes with an often extensive set of optional exer-
cises. These exercises fall into three categories, marked
with zero, one or two asterisks respectively: examples
which illustrate the ideas in the text or easy expansions
of sketched proofs; important pieces of additional the-
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ory or more testing examples; longer, harder examples or

peripheral theory.

Many people have helped improve the presentation of
this material. We would like to thank all of them, but in
particular Heinz Bauschke, Guillaume Haberer, Claude

Lemaréchal, Olivier Ley, Hristo Sendov, Mike Todd and
Xianfu Wang,.



Chapter 1

Background

1.1 Euclidean spaces

We begin by reviewing some of the fundamental alge-
braic, geometric and analytic ideas we use throughout
the book. Our setting, for most of the book,
is an arbitrary Euclidean space E, by which we
mean a finite-dimensional vector space over the reals R
equipped with an inner product (-,-). We would lose no
generality if we considered only the space R" of real (col-
umn) n-vectors (with its standard inner product), but
a more abstract, coordinate-free notation is often more
flexible and elegant.

We define the norm of any point z in E by ||z| =

(z,x), and the unit ball is the set

B={z € E||z| <1}.
Any two points x and y in E satisfy the Cauchy-Schwarz
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§1.1 FEuclidean spaces 8

inequality
[{z, )| < ll=lllyll-
We define the sum of two sets C' and D in E by

C+D={z+y|lxeC, ye D}.

The definition of C' — D is analogous, and for a subset A
of R we define

ANC={X x| XeA, zeC}.

Given another Euclidean space Y, we can consider the
Cartesian product Euclidean space E x Y, with inner
product defined by {(e, z), (f,v)) = (e, f) + (x,y).

We denote the nonnegative reals by R... If C'is nonempty
and satisfies R, C = C we call it a cone. (Notice we re-
quire that cones contain 0.) Examples are the positive
orthant

R" = {z € R" | each z; > 0},

and the cone of vectors with nonincreasing components
R:={zcR"|z1>2>... > 1,}.

The smallest cone containing a given set D C E is clearly
R.D.

The fundamental geometric idea of this book is con-
vexity. A set C' in E is convez if the line segment joining
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any two points z and y in C is contained in C: alge-
braically, Az + (1 — A\)y € C whenever 0 < A < 1. An
easy exercise shows that intersections of convex sets are
COnvex.

Given any set D C E, the linear span of D, denoted
span (D), is the smallest linear space containing D. It
consists exactly of all linear combinations of elements of
D. Analogously, the convex hullof D, denoted conv (D),
is the smallest convex set containing D). It consists ex-
actly of all convex combinations of elements of D, that
is to say points of the form 7, \;z*, where \; € R and
z' € D for each i, and = \; = 1 (see Exercise 2.

The language of elementary point-set topology is fun-
damental in optimization. A point z lies in the interior
of the set D C E (denoted int D) if there is a real § > 0
satisfying x + 0 B C D. In this case we say D is a netg-
bourhood of z. For example, the interior of R is

R, ={z € R"|each z; > 0}.

We say the point z in E is the limit of the sequence of
points z',z%,... in E, written 2’ — x as i — oo (or
lim; o 2° = ), if ||2° — z|| — 0. The closure of D is
the set of limits of sequences of points in D, written cl D,
and the boundary of D is cl D \int D, written bd D. The

set D is openif D = int D, and is closed it D = cl D.
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Linear subspaces of E are important examples of closed
sets. Easy exercises show that D is open exactly when its
complement D€ is closed, and that arbitrary unions and
finite intersections of open sets are open. The interior of
D is just the largest open set contained in D, while cl D
is the smallest closed set containing D. Finally, a subset
G of D is open in D if there is an open set U C E with
G=DnNU.

Much of the beauty of convexity comes from duality
ideas, interweaving geometry and topology. The follow-
ing result, which we prove a little later, is both typical
and fundamental.

Theorem 1.1.1 (Basic separation) Suppose that
the set C C E 1is closed and convex, and that the
point y does not lie in C'. Then there exist real b and
a nonzero element a of E satisfying (a,y) > b > {(a, )
for all points x in C.

Sets in E of the form {z | (a,z) = b} and {z | (a,z) <
b} (for a nonzero element a of E and real b) are called
hyperplanes and closed halfspaces respectively. In this
language the above result states that the point y is sep-
arated from the set C' by a hyperplane: in other words,
C is contained in a certain closed halfspace whereas y is
not. Thus there is a ‘dual’ representation of C' as the
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intersection of all closed halfspaces containing it.

The set D is bounded if there is a real k satisfying
kB D D, and is compact if it is closed and bounded.
The following result is a central tool in real analysis.

Theorem 1.1.2 (Bolzano-Weierstrass) Any bounded
sequence in E has a convergent subsequence.

Just as for sets, geometric and topological ideas also
intermingle for the functions we study. Given a set D in
E, we call a function f : D — R continuous (on D) if
f(z') — f(z) for any sequence x' — x in D. In this
case it easy to check, for example, that for any real o the
level set {x € D | f(x) < a} is closed providing D is
closed.

Given another Euclidean space Y, we call a map A :
E — Y linearif any points x and z in E and any reals A
and p satisfy A(Az+pz) = AMAx+pAz. In fact any linear
function from E to R has the form (a, -) for some element
a of E. Linear maps and affine functions (linear functions
plus constants) are continuous. Thus, for example, closed
halfspaces are indeed closed. A polyhedron is a finite
intersection of closed halfspaces, and is therefore both
closed and convex. The adjoint of the map A above is
the linear map A* : Y — E defined by the property

(A*y,x) = (y, Az), for all points z in E and y in Y
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(whence A*™* = A). The null space of A is N(A) =
{z € E| Az = 0}. The inverse image of aset H CY
is the set A'H = {r € E| Az € H} (so for exam-
ple N(A) = A*{0}). Given a subspace G of E, the
orthogonal complement of GG is the subspace

Gt={ycE|(z,y) =0forall z € G},

so called because we can write E as a direct sum G®G+.
(In other words, any element of E can be written uniquely
as the sum of an element of G and an element of G*.)
Any subspace satisfies G+ = G. The range of any linear
map A coincides with N (A*)*.

Optimization studies properties of minimizers and max-
imizers of functions. Given a set A C R, the infimum of
A (written inf A) is the greatest lower bound on A, and
the supremum (written sup A) is the least upper bound.
To ensure these are always defined, it is natural to ap-
pend —oo and +00 to the real numbers, and allow their
use in the usual notation for open and closed intervals.
Hence inf ) = +o00 and supl) = —oo, and for example
(—o0, +00] denotes the interval R U {+00}. We try to
avoid the appearance of +00 — 0o, but when necessary
we use the convention +00 — 00 = 400, so that any two
sets C' and D in R satisfy inf C' + inf D = inf(C' + D).
We also adopt the conventions 0 (£o00) = (+o00)-0 = 0.
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A (global) minimizer of a function f : D — R is a point
Z in D at which f attains its infimum

i%ff = inf f(D) = inf{f(z) |z € D}.

In this case we refer to Z as an optimal solution of the
optimization problem infp f.

For a positive real § and a function ¢ : (0,9) — R, we
define

liminf g(¢) = liminf g, and

£10 t10 (0,t)
limsup g(t) = limsupg.
t10 t0 (0,1)

The limit lim;)o g(t) exists if and only if the above ex-
pressions are equal.

The question of the existence of an optimal solution
for an optimization problem is typically topological. The
following result is a prototype. The proof is a standard
application of the Bolzano-Weierstrass Theorem above.

Proposition 1.1.3 (Weierstrass) Suppose that the
set D C E is nonempty and closed, and that all the
level sets of the continuous function f : D — R are
bounded. Then f has a global minimizer.

Just as for sets, convexity of functions will be crucial
for us. Given a convex set C' C E, we say that the
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function f : C' — R is conver it

fAz+ (1 =XNy) <Af(z)+ 1 -Nf(y)

for all points z and y in C' and 0 < A < 1. The function f
is strictly convexif the inequality holds strictly whenever
x and y are distinct in C' and 0 < A < 1. It is easy to
see that a strictly convex function can have at most one
minimizer.

Requiring the function f to have bounded level sets
is a ‘growth condition’. Another example is the stronger

condition
lim inf M (z lim inf{ﬂw) 0#zx€ C’ﬂrB})
lall=o0 ||z r=ee ||

> 0.

Surprisingly, for convex functions these two growth con-
ditions are equivalent.

Proposition 1.1.4 For a convex set C' C E, a con-
vex function f : C' — R has bounded level sets if and
only if it satisfies the growth condition (1.1.4).



§1.2 Symmetric matrices 15

1.2 Symmetric matrices

Throughout most of this book our setting is an abstract
Euclidean space E. This has a number of advantages over
always working in R": the basis-independent notation is
more elegant and often clearer, and it encourages tech-
niques which extend beyond finite dimensions. But more
concretely, identifying EE with R"™ may obscure proper-
ties of a space beyond its simple Euclidean structure. As
an example, in this short section we describe a Euclidean
space which ‘feels’ very different from R™: the space S”
of n X n real symmetric matrices.

The nonnegative orthant R’ is a cone in R" which
plays a central role in our development. In a variety of
contexts the analogous role in S” is played by the cone
of positive semidefinite matrices, S”.. These two cones
have some important differences: in particular, R" is
a polyhedron whereas the cone of positive semidefinite
matrices S’ is not, even for n = 2. The cones R’} and
S” are important largely because of the orderings they
induce. For points x and y in R" we write x < y if
y—z € R}, and z < yif y —2z € R} (with analogous
definitions for > and >). The cone R” is a lattice cone:
for any points  and y in R" there is a point z satisfying

w>rxandw >y & w > z.
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(The point z is just the componentwise maximum of x

and y.) Analogously, for matrices X and Y in S" we
write X <Y ifY —-X e€S” and X <Y ifY — X

+)

lies in S”,, the set of positive definite matrices (with

analogous definitions for > and >). By contrast, S” is
not a lattice cone (see Exercise 4).

We denote the identity matrix by I. The trace of

a square matrix Z is the sum of the diagonal entries,

written tr Z. It has the important property tr (VW) =

tr (WV) for any matrices V' and W for which VW is

well-defined and square. We make the vector space S”

into a Euclidean space by defining the inner product
(X,Y) =tr(XY), for X,Y € S".

Any matrix X in S” has n real eigenvalues (counted
by multiplicity), which we write in nonincreasing order
AM(X) > X(X) > ... > A (X). In this way we define
a function A : S” — R". We also define a linear map
Diag : R™ — S", where for a vector x in R", Diagx is
an n X n diagonal matrix with diagonal entries x;. This
map embeds R" as a subspace of S" and the cone R} as
a subcone of S”. The determinant of a square matrix Z
is written det Z.

We write O for the group of n X n orthogonal ma-
trices (those matrices U satisfying UTU = I). Then
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any matrix X in S™ has an ordered spectral decomposi-
tion X = Ul (Diag A\(X))U, for some matrix U in O™,
This shows, for example, that the function A is norm-
preserving: || X|| = ||IMX)]| for all X in S™. For any X
in S, the spectral decomposition also shows there is a
unique matrix X*/2 in 8" whose square is X.

The Cauchy-Schwarz inequality has an interesting re-
finement in S™ which is crucial for variational properties
of eigenvalues, as we shall see.

Theorem 1.2.1 (Fan) Any matrices X andY in S”
satisfy the inequality

(1.2.2) tr (XY) < AMX)AY).

FEquality holds if and only if X and Y have a simul-
taneous ordered spectral decomposition: there
1s a matriz U in O™ with

X = U'(Diag\(X)U and Y = U"(Diag \(Y))U.i
(1.2.3)

A standard result in linear algebra states that matrices X
and Y have a simultaneous (unordered) spectral decom-
position if and only if they commute. Notice condition
(1.2.3) is a stronger property.

The special case of Fan’s inequality where both matri-
ces are diagonal gives the following classical inequality.
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For a vector z in R", we denote by [x]| the vector with
the same components permuted into nondecreasing order.
We leave the proof of this result as an exercise.

Proposition 1.2.3 (Hardy-Littlewood-Polya)
Any vectors x and y in R" satisfy the inequality

z'y < [2]"[y].

We describe a proof of Fan’s Theorem in the exercises,
using the above proposition and the following classical
relationship between the set I'" of doubly stochastic ma-
trices (square matrices with all nonnegative entries, and
each row and column summing to 1) and the set P" of
permutation matrices (square matrices with all entries 0
or 1, and with exactly one entry 1 in each row and in
each column).

Theorem 1.2.4 (Birkhoff) Any doubly stochastic ma-
triz 1s a convexr combination of permutation matrices.

We defer the proof to a later section (§4.1, Exercise 21).



Chapter 2

Inequality constraints

2.1 Optimality conditions

Early in multivariate calculus we learn the significance of
differentiability in finding minimizers. In this section we
begin our study of the interplay between convexity and
differentiability in optimality conditions.

For an initial example, consider the problem of min-
imizing a function f : ¢ —+ R on a set C' in E. We
say a point T in C' is a local minimizer of f on C if
f(z) > f(z) for all points z in C' close to Z. The di-
rectional derivative of a function f at z in a direction
de Eis

o) — g FE 1D = 1)
t}0 t

when this limit exists. When the directional derivative
f(%;d) is actually linear in d (that is, f'(Z;d) = (a,d)

19
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for some element a of E) then we say f is (Gateaur)
differentiable at T, with (Gateaux) derivative V f(T) =
a. If f is differentiable at every point in C' then we simply
say f is differentiable (on C'). An example we use quite
extensively is the function X € S, + logdet X: an
exercise shows this function is differentiable on S |, with
derivative X 1.

A convex cone which arises frequently in optimization
is the normal cone to a convex set C' at a point T €
C, written Ng(z). This is the convex cone of normal
vectors. vectors d in E such that (d,z — z) < 0 for all
points x in C.

Proposition 2.1.1 (First order necessary con-
dition) Suppose that C is a convex set in E, and
that the point T s a local minimizer of the function
f:C — R. Then for any point x in C, the direc-
tional derivative, if it exists, satisfies f'(z;x—2) > 0.
In particular, if f 1s differentiable at T then the con-
dition —V f(Z) € N¢(Z) holds.

Proof. If some point z in C satisfies f'(z;2 — z) < 0
then all small real ¢t > 0 satisfy f(Z +t(zx — %)) < f(Z),
contradicting the local minimality of Z. [

The case of this result where C' is an open set is the
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canonical introduction to the use of calculus in optimiza-
tion: local minimizers Z must be critical points (that is,
V f(Z) = 0). This book is largely devoted to the study
of first order necessary conditions for a local minimizer
of a function subject to constraints. In that case local
minimizers T may not lie in the interior of the set C' of
interest, so the normal cone N () is not simply {0}.

The next result shows that when f is convex the first
order condition above is sufficient for  to be a global
minimizer of f on C. The proof is outlined in Exercise
4).

Proposition 2.1.2 (First order sufficient condi-
tion) Suppose that the set C C E is convex and
that the function f : C' — R is convex. Then for
any points T and x wn C, the directional derivative
f(z;x — Z) exists in [—00,+00). If the condition
f(Z; 2 — x) > 0 holds for all  in C, or in partic-
ular if the condition —V f(Z) € N¢(Z) holds, then T
s a global minimizer of f on C.

Proof. A straightforward exercise using the convexity
of f shows the function

L f =) = 0

t e (0,1]
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is nondecreasing. The result then follows easily (Exercise

7). o

In particular, any critical point of a convex function is a
global minimizer.

The following useful result illustrates what the first
order conditions become for a more concrete optimization
problem.

Corollary 2.1.3 (First order conditions for lin-
ear constraints) Given a conver set C C E, a func-
tion f : C — R, a linear map A : E — Y (where
Y is a Fuclidean space) and a point b in'Y, consider
the optimization problem

(2.1.4) inf{f(z) |z € C, Az = b}.
Suppose the point T € int C' satisfies AT = b.

(a) If T is a local minimizer for the problem (2.1.4)
and f is differentiable at T then V f(Z) € A*Y.

(b) Conversely, if V f(z) € A*Y and f is convex then
T s a global minimizer for (2.1.4).

The element y € Y satisfying V f(Z) = A*y in the above
result is called a Lagrange multiplier. This kind of con-
struction recurs in many different forms in our develop-
ment.
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In the absence of convexity, we need second order infor-
mation to tell us more about minimizers. The following
elementary result from multivariate calculus is typical.

Theorem 2.1.5 (Second order conditions) Sup-
pose the twice continuously differentiable function f -
R" — R has a critical point . If T is a local min-
imizer then the Hessian V2f(Z) is positive semidef-
wmate. Conversely, if the Hessian is positive definite
then T 1s a local minimazer.

(In fact for Z to be a local minimizer it is sufficient for the
Hessian to be positive semidefinite locally: the function
z € R — z* highlights the distinction.)

To illustrate the effect of constraints on second or-
der conditions, consider the framework of Corollary 2.1.3
(First order conditions for linear constraints) in the case
E = R”, and suppose Vf(z) € A*Y and f is twice
continuously differentiable near z. If T is a local mini-
mizer then y' V2f(Z)y > 0 for all vectors y in N(A).
Conversely, if y' V2 f(zZ)y > 0 for all nonzero y in N(A)
then Z is a local minimizer.

We are already beginning to see the broad interplay
between analytic, geometric and topological ideas in op-
timization theory. A good illustration is the separation
result of §1.1, which we now prove.
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Theorem 2.1.6 (Basic separation) Suppose that
the set C' C E 1s closed and convex, and that the point
y does not lie in C. Then there exist a real b and a
nonzero element a of E such that {(a,y) > b > (a,x)
for all points x in C.

Proof. We may assume C' is nonempty, and define a
function f : E — R by f(z) = ||z — y||*/2. Now by the
Weierstrass Proposition (1.1.3) there exists a minimizer z
for f on C, which by the First order necessary condition
(2.1.1) satisfies =V f(Z) =y — & € No(Z). Thus (y —
z,z — Z) < 0 holds for all points z in C. Now setting
a=y—Zand b= (y — T, T) gives the result. [

We end this section with a rather less standard re-
sult, illustrating another idea which is important later:
the use of ‘variational principles’ to treat problems where
minimizers may not exist, but which nonetheless have
‘approximate’ critical points. This result is a precursor
of a principle due to Ekeland, which we develop in §6.1.

Proposition 2.1.7 If the function f : E — R s dif-
ferentiable and bounded below then there are points
where f has small derivative.

Proof. Fix any real € > 0. The function f + €| - || has
bounded level sets, so has a global minimizer z¢ by the
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Weierstrass Proposition (1.1.3). If the vector d = V f(z¢)
satisfies ||d|| > € then from the inequality

lim f(me - td) - f(xe) _ —<Vf($€), d>

t}0 t
= —lldlI” < —eld],

we would have, for small ¢ > 0, the contradiction

—telld]] > f(z* —td) — ()
= (f(z° = td) + €[]z — td]])
— (f (@) + ellz*[]) + e([]2 ]| — [l=° —tdl])
> —etl|d]],

by definition of x¢, and the triangle inequality. Hence

IV ()] < e L

Notice that the proof relies on consideration of a non-
differentiable function, even though the result concerns
derivatives.



§2.2 Theorems of the alternative 26

2.2 Theorems of the alternative

One well-trodden route to the study of first order con-
ditions uses a class of results called ‘theorems of the al-
ternative’, and in particular the Farkas Lemma (which
we derive at the end of this section). Our first approach,
however, relies on a different theorem of the alternative.

Theorem 2.2.1 (Gordan) For any elements a°, a',

..,a™ of B, exactly one of the following systems has
a solution:

%Aia’izoa %AZ::l) OS)\()))\la"w)\meR;
1=0 )

(2.2.2)
(a",z) < 0 fori=0,1,...,m, z€E.
(2.2.3)

Geometrically, Gordan’s Theorem says that 0 does not lie
in the convex hull of the set {a’,a',...,a™} if and only
if there is an open halfspace {y | (y,z) < 0} containing
{a®,al,...,a™} (and hence its convex hull). This is an-
other illustration of the idea of separation (in this case
we separate 0 and the convex hull).

Theorems of the alternative like Gordan’s Theorem
may be proved in a variety of ways, including separation
and algorithmic approaches. We employ a less standard
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technique, using our earlier analytic ideas, and leading to
a rather unified treatment. It relies on the relationship
between the optimization problem

(2.2.4) inf{f(z) |z € E},
where the function f is defined by

(2.2.5) f(z) =log (zg() exp{a’, CE>) ,

and the two systems (2.2.2) and (2.2.3). We return to the
surprising function (2.2.5) when we discuss conjugacy in
§3.3.

Theorem 2.2.6 The following statements are equiv-
alent:

(i) The function defined by (2.2.5) is bounded below.
(11) System (2.2.2) is solvable.
(111) System (2.2.8) is unsolvable.

Proof. The implications (ii) = (iii) = (i) are easy
exercises, so it remains to show (i) = (ii). To see this
we apply Proposition 2.1.7. We deduce that for each
k=1,2, ..., there is a point z* in E satisfying

IV f(h) = <1/k,

> Aa'
i=0




§2.2 Theorems of the alternative 28

where the scalars

exp(a’, z*)

A =

= >0
T S explar, )

satisfy £, A\¥ = 1. Now the limit A of any convergent
subsequence of the the bounded sequence (A*) solves sys-
tem (2.2.2). )

The equivalence of (ii) and (iii) now gives Gordan’s The-
orem.

We now proceed by using Gordan’s Theorem to de-
rive the Farkas Lemma, one of the cornerstones of many
approaches to optimality conditions. The proof uses the
idea of the projection onto a vector subspace Y of E.
Notice first that 'Y becomes a Euclidean space by equip-
ping it with the same inner product. The projection of
a point z in E onto Y, written Py, is simply the near-
est point to z in Y. This is well-defined (see Exercise 8
in §2.1), and is characterized by the fact that x — Pyx
is orthogonal to Y. A standard exercise shows Py is a
linear map.

Lemma 2.2.7 (Farkas) For any points a',a®, ..., a"
and ¢ in E, exactly one of the following systems has
a solution:
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g:l,uiai =c 0< i, oy, um € R;

(2.2.8)

(a",z) < 0 for i=1,2,...,m, {(c,z) >0, z€E.
(2.2.9)

Proof. Again, it is immediate that if system (2.2.8)
has a solution then system (2.2.9) has no solution. Con-
versely, we assume (2.2.9) has no solution, and deduce
that (2.2.8) has a solution by using induction on the num-
ber of elements m. The result is clear for m = 0.

Suppose then that the result holds in any Euclidean
space and for any set of m — 1 elements and any el-
ement c. Define a = —c. Applying Gordan’s Theo-
rem (2.2.1) to the unsolvability of (2.2.9) shows there are
scalars Ag, A1,..., A, > 0 in R, not all zero, satisfy-
ing Agc = =" Nja'. If Ay > 0 the proof is complete, so
suppose A\g = 0 and without loss of generality A,, > 0.

Define a subspace of E by Y = {y | (a",y) = 0}, so
by assumption the system

(a',y) <0 fori=1,2,...,m—1, (¢,y) >0, y€Y,
or equivalently

(Pya',y) <0 fori=1,2,...,m —1,(Pyc,y) >0,
(2.2.10) yeY,
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has no solution.

By the induction hypothesis applied to the subspace
Y, there are nonnegative reals pq, tto, . . ., thm_1 satisfy-
ing ™71 u;Pya’ = Pyc, so the vector ¢ — 7" y;a’
is orthogonal to the subspace Y = (span (a™))*. Thus
some real u,, satisfies

m—1 )
(2.2.10) uma™ =c— Y ua'.
1

If p,, is nonnegative we immediately obtain a solution of
(2.2.8), and if not then we can substitute a™ = —\1
>™=1 \;a’ in equation (2.2.10) to obtain a solution. @

Just like Gordan’s Theorem, the Farkas Lemma has
an important geometric interpretation which gives an al-
ternative approach to its proof (Exercise 6): any point ¢
not lying in the finitely generated cone

(2.2.11)C = {Z,uiai 10 < p1, oy - - . o € R}
1

can be separated from C' by a hyperplane. If x solves sys-
tem (2.2.9) then C' is contained in the closed halfspace
{a | {(a,z) < 0}, whereas ¢ is contained in the comple-
mentary open halfspace. In particular, it follows that any
finitely generated cone is closed.
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2.3 Max-functions and first order conditions

This section is an elementary exposition of the first order
necessary conditions for a local minimizer of a differen-
tiable function subject to differentiable inequality con-
straints. Throughout this section we use the term ‘dif-
ferentiable’ in the Gateaux sense, defined in §2.1. Our
approach, which relies on considering the local minimiz-
ers of a ‘max-function’

(2.3.1) g(x) = max {gi(z)},

1=0,1,...,m

illustrates a pervasive analytic idea in optimization: non-
smoothness. FEven if the functions g, 91,-.., g, are
smooth, g may not be, and hence the gradient may no
longer be a useful notion.

Proposition 2.3.2 (Directional derivatives of
max-functions) Let & be a point in the interior of
a set C C E. Suppose that continuous functions
90, 91,---,9m - C — R are differentiable at T, that
g 1is the maz-function (2.53.1), and define the index
set K = {i|g:(%) = g(Z)}. Then for all directions d
in K, the directional derivative of g is given by

(2.3.3) g'(z; d) = max{(Vgi(z), d) }.
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Proof. By continuity we can assume, without loss of
generality, K = {0,1,...,m}: those g; not attaining the
maximum in (2.3.1) will not affect ¢'(Z; d). Now for each
¢, we have the inequality

imint SE ) —9(@) o 6@+ td) — 6:(7)
t10 t tl0 t
Suppose
=4 td) — a(z
lim sup 9@ + t) 9(7) > max{(Vg,;(z),d)}.
£10 U

Then some real sequence tj, | 0 and real € > 0 satisfy

9(Z +tpd) — g()
g

> max{(Vgi(z),d)} + €,
forall kK € N

(where N denotes the sequence of natural numbers). We
can now choose a subsequence R of N and a fixed index j
so that all integers k in R satisty ¢(Z+trd) = g;(Z+tid).
In the limit we obtain the contradiction

(Vg,(@),d) > max{(Vgi(2), d)} + e

Hence

g 902+ 1) = (2)

t < m?X{(Vg¢<f)>d>}a
£10
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and the result follows. A

For most of this book we consider optimization prob-
lems of the form

[ inf f(x)
subject to g;(z) < 0, forie [,
(2:34) hj(z) = 0, forj e J,
x € C,

where C'is a subset of E, I and J are finite index sets,
and the objective function f and inequality and equality
constraint functions g; (¢ € I) and h; (j € J) respec-
tively are continuous from C' to R. A point z in C' is
feasible if it satisfies the constraints, and the set of all
feasible x is called the feastble region. If the problem
has no feasible points, we call it inconsistent. We say
a feasible point z is a local minimizer if f(x) > f(z)
for all feasible x close to Z. We aim to derive first order
necessary conditions for local minimizers.

We begin in this section with the differentiable, in-
equality constrained problem

inf f(z)
(2.3.5)4 subject to g;(x) <
<
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For a feasible point z we define the active set I(Z) =
{i| g;(z) = 0}. For this problem, assuming z € int C,
we call a vector A € R a Lagrange multiplier vector
for z if Z is a critical point of the Lagrangian

L(z; M) = f(z) + 531 Aigi(z)

(in other words, V f(Z) + £ \iVgi(Z) = 0) and comple-
mentary slackness holds: A; = 0 for indices ¢ not in
I(z).

Theorem 2.3.6 (Fritz John conditions) Suppose
problem (2.3.5) has a local minimizer &z € int C. If
the functions f,g; (i € I(Z)) are differentiable at
then there exist Ao, \; € Ry, (i € I(Z)), not all zero,
satisfying

i€l(z)

Proof. Consider the function
9(z) = max{f(z) — f(), gi(z) (i € 1(2))}.

Since Z is a local minimizer for the problem (2.3.5), it is a
local minimizer of the function g, so all directions d € E
satisfy the inequality

g(z;d) = max{(Vf(z),d),(Vgi(z),d) (i € I(z))} >0,
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by the First order necessary conditions (2.1.1) and Propo-
sition 2.3.2 (Directional derivatives of max-functions). Thus
the system

(Vf(z),d) <0, (Vgi(Z),d) <0 (i €I(z))

has no solution, and the result follows by Gordan’s The-
orem (2.2.1). 3

One obvious disadvantage remains with the Fritz John
first order conditions above: if A;j = 0 then the conditions
are independent of the objective function f. To rule out
this possibility we need to impose a regularity condition
or ‘constraint qualification’, an approach which is another
recurring theme. The easiest such condition in this con-
text is simply the linear independence of the gradients
of the active constraints {Vg;() | ¢ € I(z)}. The cul-
minating result of this section uses the following weaker
condition.

Assumption 2.3.7 (The Mangasarian-Fromowitz
constraint qualification) There is a direction d in
E satisfying (Vg;(Z),d) < 0 for all indices i in the
active set 1(Z).

Theorem 2.3.8 (Karush-Kuhn-Tucker conditions)
Suppose the problem (2.3.5) has a local minimizer T
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in int C. If the functions f,g; (fori € I(z)) are dif-
ferentiable at T, and if the Mangasarian-Fromowitz
constraint qualification (2.3.7) holds, then there is a
Lagrange multiplier vector for x.

Proof. By the trivial implication in Gordan’s Theorem

(2.2.1), the constraint qualification ensures Ay # 0 in the
Fritz John conditions (2.3.6). [ )



Chapter 3

Fenchel duality

3.1 Subgradients and convex functions

We have already seen, in the First order sufficient con-
ditions (2.1.2), one benefit of convexity in optimization:
critical points of convex functions are global minimizers.
In this section we extend the types of functions we con-
sider in two important ways:

(i) We do not require f to be differentiable;
(ii) We allow f to take the value +o0.

Our derivation of first order conditions in §2.3 illus-
trates the utility of considering nonsmooth functions even
in the context of smooth problems. Allowing the value
+00 lets us rephrase a problem like inf{g(x) |z € C'} as
inf g + d¢, where the indicator function ¢ (z) is 0 for
in C' and +o00 otherwise.

37



§3.1 Subgradients and convex functions 38

The domain of a function f : E — (—o00, +0o0] is the
set

dom f ={z € E| f(z) < +o0}.

We say f is convez if it is convex on its domain, and
proper if its domain is nonempty. We call a function
g : E — [—00,+00) concave if —g is convex, although
for reasons of simplicity we will consider primarily convex
functions. If a convex function f satisfies the stronger
condition

fQz+py) < Af(z)+pf(y) foralz,y € E, \,u € Ry

we say f is sublinear. If f(Az) = Af(x) for all x in
E and X\ in R, then f is positively homogeneous: in
particular this implies f(0) = 0. (Recall the convention
0-(+00)) =0.) If f(z+y) < f(z)+ f(y) forall z and y
in E then we say f is subadditive. It is immediate that
if the function f is sublinear then —f(z) < f(—=x) for
all z in E. The lineality space of a sublinear function f
is the set

linf = {r € B| — f(z) = f(~a)}.

The following result (left as an exercise) shows this set is
a subspace.
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Proposition 3.1.1 (Sublinearity) A function f -
E — (—o00,+00| is sublinear if and only if it is posi-
tively homogeneous and subadditive. For a sublinear
function f, the lineality space lin f is the largest sub-
space of E on which f is linear.

As in the First order sufficient condition (2.1.2), it is
easy to check that if the point Z lies in the domain of the
convex function f then the directional derivative f'(Z;-)
is well-defined and positively homogeneous, taking values
in [—o0, +00]. The core of a set C' (written core (C)) is
the set of points z in C' such that for any direction d in E,
x—+td lies in C for all small real £. This set clearly contains
the interior of C, although it may be larger (Exercise 2).

Proposition 3.1.2 (Sublinearity of the directional
derivative) If the function f : E — (—o00,400] is
convez then for any point T in core(dom f) the di-
rectional derivative f'(z;-) is everywhere finite and
sublinear.

Proof. For d in E and nonzero ¢ in R, define

f(z+td) — f(x
glarn) = T =)
By convexity we deduce, for 0 < t < s € R, the inequal-

1ty

9(d; —s) < g(d; —t) < g(d;t) < g(d; s).
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Since Z lies in core (dom f), for small s > 0 both g(d; —s)
and g(d; s) are finite, so as t | 0 we have

+o00 > g(d;s) > g(d;t) | f'(z;d) > g(d; —s) > —o0.
(3.1.3)
Again by convexity we have, for any directions d and e
in E and real £ > 0,

g(d+e;t) < g(d; 2¢) + g(e; 2¢).

Now letting ¢ | O gives subadditivity of f'(Z;-). The
positive homogeneity is easy to check. [

The idea of the derivative is fundamental in analy-
sis because it allows us to approximate a wide class of
functions using linear functions. In optimization we are
concerned specifically with the minimization of functions,
and hence often a one-sided approximation is sufficient.
In place of the gradient we therefore consider subgradi-
ents: those elements ¢ of E satistying

(3.1.4)

(p,x —z) < f(x)— f(&), for all points z in E.
We denote the set of subgradients (called the subdiffer-
ential) by 0f(Z), defining 0 f(Z) = ) for Z not in dom f.
The subdifferential is always a closed convex set. We can
think of 0f(Z) as the value at Z of the ‘multifunction’
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or ‘set-valued mapping’ 0f : E — E. The importance
of such mappings is another of our themes: we define its
domain

domdf ={z € E|0f(x) # 0}

(See Exercise 19.) We say f is essentially strictly convez

if it is strictly convex on any convex subset of dom 0 f.
The following very easy observation suggests the fun-

damental significance of subgradients in optimization.

Proposition 3.1.4 (Subgradients at optimality)
For any proper function f : E — (—o0,400], the
point T is a (global) minimizer of f if and only if the
condition 0 € 0f(Z) holds.

Alternatively put, minimizers of f correspond exactly to
‘zeroes’ of Of.

The derivative is a local property whereas the subgra-
dient definition (3.1.4) describes a global property. The
main result of this section shows that the set of sub-
gradients of a convex function is usually nonempty, and
that we can describe it locally in terms of the directional
derivative. We begin with another simple exercise.

Proposition 3.1.5 (Subgradients and directional
derivatives) If the function f : E — (—o0,+0o0] is
convex and the point T lies in dom f, then an element
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¢ of E s a subgradient of f at x if and only if it
satisfies (6,) < ['(7;").

The idea behind the construction of a subgradient for
a function f that we present here is rather simple. We
recursively construct a decreasing sequence of sublinear
functions which, after translation, minorize f. At each
step we guarantee one extra direction of linearity. The
basic step is summarized in the following exercise.

Lemma 3.1.6 Suppose that the function p : E —
(—o0, +00] is sublinear, and that the point T lies in
core (dom p). Then the function q(-) = p'(Z;-) satisfies
the conditions

(1) q(AZ) = Ap(z) for all real X,

(i) g < p, and
(171) lin g D lin p + span {Z}.

With this tool we are now ready for the main result,
giving conditions guaranteeing the existence of a subgra-
dient. Proposition 3.1.5 showed how to identify subgra-
dients from directional derivatives: this next result shows
how to move in the reverse direction.

Theorem 3.1.7 (Max Formula) If the function f
E — (—o0,+00] is conver then any point T in
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core (dom f) and any direction d in E satisfy

318)  f(5:d) = max{(g,d) | & € DF(2)}.
In particular, the subdifferential Of(Z) is nonempty.

Proof. In view of Proposition 3.1.5, we simply have to
show that for any fixed d in E there is a subgradient ¢ sat-
isfying (¢, d) = f'(Z;d). Choose a basis {ej,es,...,e,}
for E with e; = d if d is nonzero. Now define a sequence
of functions pyg, p1, - - . , pn recursively by po(-) = f'(z;-),
and pi(-) = pi_q(ex;+), for k = 1,2,...,n. We essen-
tially show that p,(-) is the required subgradient.

First note that, by Proposition 3.1.2, each p; is every-
where finite and sublinear. By part (iii) of Lemma 3.1.6
we know

linpg D linpg_1 +span{ey}, fork=1,2,... n,

SO py, is linear. Thus there is an element ¢ of E satisfying

Part (i) of Lemma 3.1.6 implies p, < pp1 < ... <

Po, so certainly, by Proposition 3.1.5, any point  in E
satisfies

pu(r — ) < pole — z) = f(T;2 — &) < f(z) — f(2).

Thus ¢ is a subgradient. If d is 0 then we have p,(0) =
0 = f'(z;0). Finally, if d is nonzero then by part (i) of
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Lemma 3.1.6 we see

pn(d) < po(d) = po(er) = —py(er; —er) =
—pi(—e1) = —p1(—d) < —pp(—d) = p,(d),

whence p,(d) = po(d) = f'(z;d). )

Corollary 3.1.9 (Differentiability of convex func-
tions) Suppose that the function f: E — (—o00, +o0]
is convex, and that the point T lies in core (dom f).
Then f s Gateaux differentiable at T exactly when
f has a unique subgradient at T (in which case this
subgradient is the derivative).

We say the convex function f is essentially smooth if
it is Gateaux differentiable on dom 0f. In other words,
essentially smooth functions have subdifferentials which
are either singleton or empty.

The Max Formula (Theorem 3.1.7) shows that con-
vex functions typically have subgradients. In fact this
property characterizes convexity (see Exercise 12). This
leads to a number of important ways of recognizing con-
vex functions, of which the following is an example. No-
tice how a locally defined analytic condition results in a
global geometric conclusion. The proof is outlined in the
exercises.
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Theorem 3.1.10 (Hessian characterization of con-
vexity) Given an open convezr set S C R", suppose
the continuous function f :cl S — R s twice contin-
wously differentiable on S. Then f is convex if and

only if its Hessian matrix is positive semidefinite ev-
erywhere on S.
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3.2 The value function

In this section we describe another approach to the Karush-
Kuhn-Tucker conditions (2.3.8) in the convex case, using
the existence of subgradients we established in the pre-
vious section. We consider the (inequality-constrained)
CONVET Program

inf f(z)
(3.2.1% subject to g;(z) < 0, fori=1,2,...,m,
x € E,
where the functions f, g1,92,...,9m : E = (—00, +0<]

are convex and satisfy () # dom f C N;dom g;. Denoting
the vector with components g;(z) by g(z), the function
L:E xR — (—00,+00] defined by

(3:2.2) Liz;\) = f(z) + \g(x),

is called the Lagrangian. A feasible solution is a point
x in dom f satisfying the constraints.

We should emphasize that the term ‘Lagrange mul-
tiplier’ has different meanings in different contexts. In
the present context we say a vector A € R is a La-
grange multiplier vector for a feasible solution z if x
minimizes the function L(-; \) over E and X satisfies the
complementary slackness conditions: \; = 0 whenever
9i(z) <0.
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We can often use the following principle to solve simple
optimization problems.

Proposition 3.2.3 (Lagrangian sufficient condi-
tions) If the point T is feasible for the convex program
(3.2.1) and there is a Lagrange multiplier vector, then
x 1s optimal.

The proof is immediate, and in fact does not rely on
convexity.

The Karush-Kuhn-Tucker conditions (2.3.8) are a con-
verse to the above result when the functions f, g1, go, . . .,
gm are convex and differentiable. We next follow a very
different, and surprising route to this result, circumvent-
ing differentiability. We perturb the problem (3.2.1),
and analyze the resulting value function v : R™ —
[—00, +00], defined by the equation

(3.2.4) v(b) = inf{f(z) | g(x) < b}.
We show that Lagrange multiplier vectors A correspond
to subgradients of v (see Exercise 9).

Our old definition of convexity for functions does not
naturally extend to functions h : E — [—00, +00] (due
to the possible occurrence of co — 00). To generalize it
we introduce the idea of the epigraph of h

(3.2.5) epi(h) ={(y,r) € ExR|h(y) <r},
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and we say h is a convez function if epi (h) is a convex
set. An exercise shows in this case that the domain

dom (h) = {y | h(y) < +o0}

is convex, and further that the value function v defined by
equation (3.2.4) is convex. We say h is proper if dom h is
nonempty and h never takes the value —oo: if we wish to
demonstrate the existence of subgradients for v using the
results in the previous section then we need to exclude
values —oo.

Lemma 3.2.6 If the function h : E — [—00,400]
is convex and some point y in core (dom h) satisfies
h(y) > —oo, then h never takes the value —oo.

Proof. Suppose some point y in E satisfies h(y) =
—o00. Since ¢ lies in core (dom h) there is a real ¢ > 0
with § + t(§ — y) in dom (h), and hence a real r with
(g+t(y—y),r) in epi (h). Now for any real s, (y, s) lies
in epi (h), so we know

t

r+1ts 1
1 _ -t (1 — _ € epi (h
(y, 1+t) 1+t(y+ (y y),?“)+1+t(y,3) epi (h),

Letting s — —oo gives a contradiction. A

In §2.3 we saw that the Karush-Kuhn-Tucker condi-
tions needed a regularity condition. In this approach we
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will apply a different condition, known as the Slater Con-
straint Qualification for the problem (3.2.1):

(3.2.7) There exists & in dom (f) with g;() < 0
fori=1,2,...,m.

Theorem 3.2.8 (Lagrangian necessary conditions)
Suppose that the point T in dom (f) is optimal for the
convez program (3.2.1), and that the Slater condition
(8.2.7) holds. Then there is a Lagrange multiplier
vector for .

Proof. Defining the value function v by equation (3.2.4),
certainly v(0) > —oo, and the Slater condition shows
0 € core(domw), so in particular Lemma 3.2.6 shows
that v never takes the value —oo. (An incidental conse-
quence, from §4.1, is the continuity of v at 0.) We now
deduce the existence of a subgradient —\ of v at 0, by
the Max Formula (3.1.7).

Any vector b in R obviously satisfies g(Z) < b, whence
the inequality

£(@) =v(0) <v®d)+ b < f(7)+ Ao

Hence A lies in R"'. Furthermore, any point z in dom f
clearly satisfies

f(@) > v(g(z)) > v(0) — Mg(z) = f(z) — M g(2).
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The case x = Z, using the inequalities A > 0 and g(z) <
0, shows A'g(Z) = 0, which yields the complementary
slackness conditions. Finally, all points  in dom f must

satisfy f(z) + XN g(z) > f(2) = f(z) + Ng(z). @

In particular, if in the above result Z lies in core (N;dom
g;Ndom f) and the functions f, g1, 9o, - - ., gm are differ-
entiable at T then

V(z)+ §X¢Vg¢(£) — 0,

so we recapture the Karush-Kuhn-Tucker conditions (2.3.8).
In fact in this case it is easy to see that the Slater con-
dition is equivalent to the Mangasarian-Fromowitz con-
straint qualification (Assumption 2.3.7).
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3.3 The Fenchel conjugate

In the next few sections we sketch a little of the elegant
and concise theory of Fenchel conjugation, and we use it
to gain a deeper understanding of the Lagrangian neces-
sary conditions for convex programs (3.2.8). The Fenchel
conjugate of a function h : E — [—00, +00] is the func-
tion h* : E — [—00, +00| defined by

h*(¢) = igg{w, z) — h(z)}.

The function A* is convex and if the domain of A is
nonempty then A* never takes the value —oo. Clearly
the conjugacy operation is order-reversing: for functions
f,g : E = [—00,+00], the inequality f > ¢ implies
fr<g"

Conjugate functions are ubiquitous in optimization.
For example, we have already seen the conjugate of the
exponential, defined by

tlogt —t (t > 0)
exp*(t) = 0 (t =0)
+oo  (t<0)
(see §3.1, Exercise 27). A rather more subtle example

is the function g : E — (—00, +00] defined, for points
a’,al,...,a™in E, by
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(3.3.8)
g(z) = inf {Zexp*(xi)
reRm+1 i

The conjugate is the function we used in §2.2 to prove

>z =1, inai = z}
1 1

various theorems of the alternative:
(3.3.1) 9" (y) = log (Z exp (a’, y))

(see Exercise 7).

As we shall see later (§4.2), many important convex
functions A equal their biconjugates h**. Such functions
thus occur as natural pairs, h and hA*. The table in this
section shows some elegant examples on R.

The following result summarizes the properties of two
particularly important convex functions.

Proposition 3.3.2 (Log barriers) The functions1b :
R" — (—o00,+00] and 1d : S" — (—o0,+00| defined
by

Ib(z) = { — i logx;, if v € R,

-+00, otherwise, and
—logdet X, of X € S"}_,
~+00, otherwise

d(X) = {

are essentially smooth, and strictly conver on their
domains. They satisfy the conjugacy relations

Ib*(z) = Ib(—x)—n, forallz e R", and
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d*(X) = ld(=X)—mn, forall X € S™

The perturbed functions b +{c,-) and1d +(C,-) have
compact level sets for any vector c € R and matrix
C' € S" . respectively.

(See §3.1, Exercise 21 (The log barrier), and §1.2, Exer-
cise 14 (Level sets of perturbed log barriers): the conju-
gacy formulas are simple calculations.) Notice the simple
relationships Ib = 1d o Diag and ld = Ib o A between
these two functions.

The next elementary but important result relates con-
jugation with the subgradient. The proof is an exercise.

Proposition 3.3.3 (Fenchel-Young inequality)
Any points ¢ in E and x in the domain of a function
h:E — (—o00,+o0] satisfy the inequality

h(z) +h*(¢) = (¢, ).
FEquality holds if and only if ¢ € Oh(z).

In §3.2 we analyzed the standard inequality constrained
convex program by studying its optimal value under per-
turbations. A similar approach works for another model
for convex programming, particularly suited to problems
with linear constraints. An interesting byproduct is a
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convex analogue of the chain rule for differentiable func-
tions, V(f + go A)(z) = Vf(z) + A*Vg(Az) (for a
linear map A).

In this section we fix a Euclidean space Y. We denote
the set of points where a function g : Y — [—o00, +00]
is finite and continuous by cont g.

Theorem 3.3.4 (Fenchel duality and convex cal-
culus) For given functions f : E — (—o0,+00]| and
g:Y — (—o00,+00]| and a linear map A:E =Y, let
p,d € [—00,400] be primal and dual values defined
respectively by the optimization problems

(335)  p = mf{f(z)+g(Az)}
(336)  d = sup{—f*(A"9) —g'(—9)}.
peY
These values satisfy the weak duality inequality p >

d. If furthermore f and g are convex and satisfy the
condition

(3.3.7) 0 € core (dom g — Adom f),
or the stronger condition

(3.3.8) Adom f Ncont g # 0,

then the values are equal (p = d), and the supremum
in the dual problem (3.53.6) is attained if finite.
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At any point x i E, the calculus rule
(33.9) O(f+goA)(z) DOf(x)+ A*0g(Ax)

holds, with equality if f and g are convex and condi-
tion (3.3.7) or (3.3.8) holds.

Proof. The weak duality inequality follows immedi-
ately from the Fenchel-Young inequality (3.3.3). To prove
equality we define an optimal value function A : Y —
[—00, +00] by

hw) = inf {f(z) + g(Az +u)}.

It is easy to check A is convex, and domh = domg —
Adom f. If p is —oo there is nothing to prove, while if
condition (3.3.7) holds and p is finite then Lemma 3.2.6
and the Max Formula (3.1.7) show there is a subgradient

—¢ € 0h(0). Hence we deduce
h(0) < h(u)+ (¢,u), foralu ey,
< flx)+g9(Az +u)+ (¢,u), forallueY, z € E,

= {f(z) - (A"¢,2)} +{9(Az +u) — (-¢, Az + u)}.

Taking the infimum over all points u, and then over all
points z gives the inequalities

h0) < —f(A"¢) — g"(—=¢) < d < p = h(0).
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Thus ¢ attains the supremum in problem (3.3.6), and
p = d. An easy exercise shows that condition (3.3.8)
implies condition (3.3.7). The proof of the calculus rule
in the second part of the theorem is a simple consequence
of the first part: see Exercise 9. Y

The case of the Fenchel theorem above when the func-
tion g is simply the indicator function of a point gives the
following particularly elegant and useful corollary.

Corollary 3.3.10 (Fenchel duality for linear
constraints) Given any function f : E — (—o0, +o0],
any linear map A: E — Y, and any element b of Y,
the weak duality inequality

inf {f(z) | Az = b} > 225{(1), o) — f*(A*p)}

zek

holds. If f is convexr and b belongs to core (Adom f)
then equality holds, and the supremum 1s attained
when finite.

A pretty application of the Fenchel duality circle of
ideas is the calculation of polar cones. The (negative)
polar cone of the set K C E is the convex cone

K ={¢o€E|{¢p,z) <0, forall z € K},

and the cone K~ is called the bipolar. A particularly
important example of the polar cone is the normal cone
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to a convex set C' C E at a point z in C, since N¢(x) =
(C—x)".

We use the following two examples extensively: the
proofs are simple exercises.

Proposition 3.3.11 (Self-dual cones)
(RY)” = —RY, and
(S1)” = —S.
The next result shows how the calculus rules above can

be used to derive geometric consequences.

Corollary 3.3.12 (Krein-Rutman polar cone cal-
culus) For any cones H C Y and K C E and any
linear map A : E —'Y, the relation

(KNAT'H)" D A*H™ + K~
holds. FEquality holds if H and K are convex and
satisfy H—AK =Y (or in particular AKNint H # ().

Proof. Rephrasing the definition of the polar cone
shows that for any cone K C E, the polar cone K~
is just 09k (0). The result now follows by the Fenchel
theorem above. [

The polarity operation arises naturally from Fenchel
conjugation, since for any cone K C E, we have dx- =
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0%, whence dg—— = 0%. The next result, which is an
elementary application of the Basic separation theorem
(2.1.6), leads naturally into the development of the next
chapter by identifying K=~ as the closed convex cone
generated by K.

Theorem 3.3.13 (Bipolar cone) The bipolar cone
of any nonempty set K C E s given by K== =
cl (conv (R K)).

For example, we deduce immediately that the normal
cone N¢(x) to a convex set C' at a point z in C, and the
(convex) tangent cone to C' at = defined by Tp(x) =
cl R4 (C — x), are polars of each other.

Exercise 20 outlines how to use these two results about
cones to characterize pointed cones (those closed convex
cones K satisfying K N —K = {0}).

Theorem 3.3.14 (Pointed cones) A closed convex
cone K C E is pointed if and only if there is an ele-
ment y of E for which the set

C={rek|(y) =1)

is compact and generates K (that is, K = R.C).



§3.3 The Fenchel conjugate

99

f(z) = g"(z) dom f 9(y) = f*(y) dom g
0 R 0 {0}
0 R. 0 ~R,
0 [—1,1] [yl R
0 [0,1] yt R
zP/p (1<peR)| R /g (G +,=1) R
zfP/p (1<peR)| Ry vt (G+5=1) R
—a?/p (p€(0,1)) | Ry —(~y)q G+5;=1) -Ryy
V1+a? R —V1-¢? [—1,1]
—logz R —1 —log(—y) Ry
cosh = R ysinh ' (y) — I+ ¢ R
— log(cos z) (—=5:5) || ytan'(y) — 3log(1 +y?) R
log(cosh x) R ytanh™' (y) + 2log(1 — %) |(-1,1)
o R { leg(@]J y Ezzog R.
ylogy + (1 —y)log(l —y)
log(1 + €*) R (y € (0,1)) [0,1]
0 (y=0,1)
ylogy — (1 +y)log(l +y)
—log(1 — €) R (y > 0) R,
0 (y =0)

Table 3.1: Conjugate pairs of convex functions on R
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f=9 g=1r
f(z) 9(y)
h(az) (a #0)| h*(y/a)
hz+0b) | h*(y) — by
ah(z) (a>0)| ah*(y/a)

Table 3.2: Transformed conjugates

60



Chapter 4

Convex analysis

4.1 Continuity of convex functions

We have already seen that linear functions are always
continuous. More generally, a remarkable feature of con-
vex functions on E is that they must be continuous on
the interior of their domains. Part of the surprise is that
an algebraic/geometric assumption (convexity) leads to
a topological conclusion (continuity). It is this powerful
fact that guarantees the usefulness of regularity condi-
tions like Adom f N cont g # () (3.3.8) that we studied in
the previous section.

Clearly an arbitrary function f is bounded above on
some neighbourhood of any point in cont f. In fact the
converse is also true, and in a rather strong sense, need-
ing the following definition. For a real L. > 0, we say
that a function f : E — (—o0,+00] is Lipschitz (with

61
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constant L) on a subset C of dom f if |f(x) — f(y)| <
L||x —y|| for any points z and y in C'. If f is Lipschitz on
a neighbourhood of a point z then we say that f is locally
Lipschitz around z. If Y is another Euclidean space we
make analogous definitions for functions F' : E — Y,

with [|[F(z) — F(y)|| replacing [f(z) — f(y)].

Theorem 4.1.1 (Local boundedness) Let f : E —
(—o0, +00] be a convex function. Then f is locally
Lipschitz around a point z in its domain if and only
iof 1t is bounded above on a neighbourhood of z.

Proof. One direction is clear, so let us without loss of
generality take z = 0, f(0) = 0, and suppose f < 1 on
2B: we shall deduce f is Lipschitz on B.

Notice first the bound f > —1 on 2B, since convexity
implies f(—z) > —f(x) on 2B. Now for any distinct
points z and y in B, define a = ||y — z|| and fix a point
w =y + o~ }(y — x), which lies in 2B. By convexity we

obtain
1
fy) = 1) < [ f@) + o fw) = f(@)
200
a

and the result now follows, since z and y may be inter-
changed. '
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This result makes it easy to identify the set of points
at which a convex function on E is continuous. First we
prove a key lemma.

Lemma 4.1.2 Let A be the simplex {z € R |z z; <
1}. If the function g : A — R is convex then it is con-
tinuous on int A.

Proof. By the above result, we just need to show g is
bounded above on A. But any point x in A satisfies

@) = g (S +(1-za)0)
< ixigw)m—zxi)gm)

< max{g(e'),g(¢"), ..., g(e"), 9(0)}
(where {el,e?, ..., e"} is the standard basis in R"). &

Theorem 4.1.3 (Convexity and continuity) Let
f:E — (—o00,+] be a convex function. Then f is
continuous (in fact locally Lipschitz) on the interior
of its domain.

Proof. We lose no generality if we restrict ourselves to
the case E = R”. For any point z in int (dom f) we can
choose a neighbourhood of x in dom f which is a scaled-
down, translated copy of the simplex (since the simplex
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is bounded, with nonempty interior). The proof of the
preceding lemma now shows f is bounded above on a
neighbourhood of x, and the result follows by Theorem
4.1.1 (Local boundedness). )

Since it is easy to see that if the convex function f is
locally Lipschitz around a point Z in int (dom f) with
constant L then 0f(Z) C LB, we can also conclude that
J0f(Z) is a nonempty compact convex set. Furthermore,
this result allows us to conclude quickly that ‘all norms
on E are equivalent’ (see Exercise 2).

We have seen that for a function f which is convex,
the two sets cont f and int (dom f) are identical. By
contrast, our algebraic approach to the existence of sub-
gradients involved core (dom f). It transpires that this is
the same set. To see this we introduce the idea of the
gauge function y¢o : E — (—00, 4+00] associated with a
nonempty set C' in E:

vo(z) =inf{\ € Ry |z € A\C}.

It is easy to check ~y¢ is sublinear (and in particular con-
vex) when C'is convex. Notice vg = || - ||.

Theorem 4.1.4 (Core and interior) The core and
the interior of any convex set in E are identical and
CONVEL.
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Proof. Any convex set C' C E clearly satisfies int C' C
core C. If we suppose, without loss of generality, 0 €
core C', then ~v¢ is everywhere finite, and hence continu-
ous by the previous result. We claim

int C = {z|vc(x) < 1}.

To see this, observe that the right hand side is contained
in C, and is open by continuity, and hence is contained in
int C'. The reverse inclusion is easy, and we deduce int C'
is convex. Finally, since v-(0) = 0, we see 0 € int C,
which completes the proof. [

The conjugate of the gauge function ~y¢ is the indicator
function of a set C° C E defined by

C°={peE|(dx) <1lforall xz € C}.

We call C° the polar set for C'. Clearly it is a closed
convex set containing 0, and when C' is a cone it coincides
with the polar cone C'~. The following result therefore
generalizes the Bipolar cone theorem (3.3.13).

Theorem 4.1.5 (Bipolar set) The bipolar set of
any subset C of E 1is given by

C°° = cl(conv (C' U {0})).
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The ideas of polarity and separating hyperplanes are inti-
mately related. The separation-based proof of the above
result (which we leave as an exercise) is a good example,
as is the next theorem, whose proof is outlined in Exercise
6.

Theorem 4.1.6 (Supporting hyperplane) Suppose
that the convex set C' C E has nonempty interior, and
that the point T lies on the boundary of C'. Then there
1s a supporting hyperplane to C at Z: there is a
nonzero element a of E satisfying (a,x) > {(a,Z) for
all points x in C'.

(The set {x € E | (a,z —z) = 0} is the supporting
hyperplane.)

To end this section we use this result to prove a re-
markable theorem of Minkowski describing an extremal
representation of finite-dimensional compact convex sets.
An extreme point of a convex set C' C E is a point z in
C whose complement C \ {x} is convex. We denote the
set of extreme points by ext C'.

Lemma 4.1.7 Given a supporting hyperplane H of a
convex set C' C E, any extreme point of C N H 1is also
an extreme point of C'.

Our proof of Minkowski’s theorem depends on two
facts: first, any convex set which spans E and contains
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0 has nonempty interior (see §1.1, Exercise 13(b))); sec-
ondly, we can define the dimension of a set C C E
(written dim C') as the dimension of span (C' — x) for
any point z in C (see §1.1, Exercise 12 (Affine sets)).

Theorem 4.1.8 (Minkowski) Any compact convex
set C C E is the convex hull of its extreme points.

Proof. Our proof is by induction on dim C': clearly the
result holds when dim C' = 0. Assume the result holds
for all sets of dimension less than dim C'. We will deduce
it for the set C.

By translating C', and redefining E, we can assume
0 € C and span C = E. Thus C has nonempty interior.

Given any point z in bd C', the Supporting hyperplane
theorem (4.1.6) shows C has a supporting hyperplane H
at x. By the induction hypothesis applied to the set
C N H we deduce, using Lemma 4.1.7,

x € conv (ext (C'N H)) C conv (ext C).

So we have proved bdC' C conv(extC), whence
conv (bd C') C conv (ext C'). But since C' is compact it is
easy to see conv (bd C') = C, and the result now follows.

)
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4.2 Fenchel biconjugation

We have seen that for many important convex functions
h : E — (—00,400], the biconjugate h** agrees identi-
cally with h. The table in §3.3 lists many one-dimensional
examples, and the Bipolar cone theorem (3.3.13) shows
dx = 0} for any closed convex cone K. In this section
we isolate exactly the circumstances when A = h**.

We can easily check that A** is a minorant of h (that
is, h** < h pointwise). Our specific aim in this sec-
tion is to find conditions on a point x in E guaranteeing
h**(x) = h(z). This becomes the key relationship for the
study of duality in optimization. As we see in this section,
the conditions we need are both geometric and topolog-
ical. This is neither particularly surprising or stringent.
Since any conjugate function must have a closed convex
epigraph, we cannot expect a function to agree with its bi-
conjugate unless it itself has a closed convex epigraph. On
the other hand, this restriction is not particularly strong
since, as the previous section showed, convex functions
automatically have strong continuity properties.

We say the function h : E — [—00, +00] is closed if
its epigraph is a closed set. We say h is lower semicon-
tinuous at a point x in E if

liminf h(z") (= lim inf h(z")) > h(z)
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for any sequence " — z. A function h : E — [—00, +00]
is lower semicontinuous if it is lower semicontinuous at
every point in E: this is in fact equivalent to h being
closed, which in turn holds if and only if A has closed
level sets. Any two functions A and g satisfying h < g
(in which case we call h a minorant of g) must satisfy
h* > ¢*, and hence h** < g**.

Theorem 4.2.1 (Fenchel biconjugation) The prop-
erties below are equivalent, for any function h : E —
(—00, +00]:

(a) h is closed and convex;
(b) h = h*;
(c) for all points x in E,
h(z) = sup{a(z) | @ an affine minorant of h}.

Hence the conjugacy operation induces a bijection be-
tween proper closed convex functions.

Proof. We can assume h is proper. Since conjugate
functions are always closed and convex we know property
(b) implies property (a). Also, any affine minorant « of
h satisfies a = o™ < h** < h, and hence property (c)
implies (b). It remains to show (a) implies (c).
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Fix a point ¥ in E. Assume first 2° € cl(dom k),
and fix any real r < h(z"). Since h is closed, the set
{z | h(x) > r} is open, so there is an open convex neigh-
bourhood U of x° with h(z) > 7 on U. Now note that
the set dom A M cont d;y is nonempty, so we can apply the
Fenchel theorem (3.3.4) to deduce that some element ¢
of E satisfies

(422)< inf{h(z) + dv(z)} = {=h"(¢) — dr(—9)}.

Now define an affine function a(-) = (¢, ) + d5;(—¢@) +
r. Inequality (4.2.2) shows that o minorizes h, and by
definition we know a(z") > r. Since r was arbitrary, (c)
follows at the point z = 2.

Suppose on the other hand z° does not lie in cl (dom ).
By the Basic separation theorem (2.1.6) there is a real b

and a nonzero element a of E satisfying
(a,z") > b > (a,z), for all points x in dom h.

The argument in the preceding paragraph shows there is
an affine minorant a of h. But now the affine function
a(-)+k({(a,-) —b) is a minorant of h forall k = 1,2, ...
Evaluating these functions at z = 2° proves property (c)
at 2V, The final remark follows easily. [

We can immediately deduce that a closed convex function
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h: E — [—o00,+00] equals its biconjugate if and only if
it is proper or identically 400 or —oo0.

Restricting the conjugacy bijection to finite sublinear
functions gives the following result.

Corollary 4.2.3 (Support functions) Fenchel con-
Jugacy induces a biyjection between everywhere-finite

sublinear functions and nonempty compact convezx sets

(a) If the set C C E is compact, convex and nonempty
then the support function d; is everywhere fi-
nite and sublinear.

(b) If the function h : E — R is sublinear then h* =
dc, where the set

C={pcE|(sd,d) <h(d) for all d € E}
1s nonempty, compact and conver.

Proof. See Exercise 9. Y

Conjugacy offers a convenient way to recognize when
a convex function has bounded level sets.

Theorem 4.2.4 (Moreau-Rockafellar) A closed con-
vex proper function on E has bounded level sets if and
only if its conjugate is continuous at 0.
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Proof. By Proposition 1.1.4, a convex function f :
E — (—00,+00] has bounded level sets if and only if it
satisfies the growth condition

lim inf @ > 0.

lzll =00 ||z ||
Since f is closed we can check that this is equivalent to
the existence of a minorant of the form €|| - || + & < f(-),
for some constants € > 0 and k. Taking conjugates, this
is in turn equivalent to f* being bounded above near
0, and the result then follows by Theorem 4.1.1 (Local

boundedness). )

Strict convexity is also easy to recognize via conjugacy,
using the following result — see Exercise 19 for the proof.

Theorem 4.2.5 (Strict-smooth duality) A proper
closed convex function on E is essentially strictly con-
vex if and only if its conjugate is essentially smooth.

What can we say about A** when the function A :
E — [—00,+00] is not necessarily closed? To answer
this question we introduce the idea of the closure of h,

denoted cl A, defined by
(4.2.6) epi (clh) = cl (epih).

It is easy to verify that clh is then well-defined. The
definition immediately implies cl h is the largest closed
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function minorizing h. Clearly if h is convex, so is cl h.
We leave the proof of the next simple result as an exercise.

Proposition 4.2.7 (Lower semicontinuity and clo-
sure) A convex function f : E — [—o0,+00] is lower
semicontinuous at a point x where it is finite if and
only if f(x) = (cl f)(x). In this case f is proper.

We can now answer the question we posed at the be-
ginning of the section.

Theorem 4.2.8 Suppose the function h : E — [—00, +00]
1S CONVEL.

(a) If h** is somewhere finite then h** = clh.

(b) For any point © where h is finite, h(x) = h**(z)
of and only if h is lower semicontinuous at x.

Proof. Observe first that since h** is closed and mi-
norizes h, we know h** < clh < h. If h*™* is somewhere
finite then h** (and hence cl h) is never —oo, by applying
Proposition 4.2.7 (Lower semicontinuity and closure) to
h**. On the other hand, if A is finite and lower semicon-
tinuous at = then Proposition 4.2.7 shows cl h(z) is finite,
and applying the proposition again to clh shows once
more that cl h is never —oo. In either case, the Fenchel bi-
conjugation theorem implies cl A = (cl h)** < h** < clh,
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so clh = h**. Part (a) is now immediate, while part (b)
follows by using Proposition 4.2.7 once more. [

Any proper convex function h with an affine minorant
has its biconjugate h** somewhere finite. (In fact, be-
cause E is finite-dimensional, h** is somewhere finite if
and only if h is proper — see exercise 25.)
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4.3 Lagrangian duality

The duality between a convex function h and its Fenchel
conjugate h* that we outlined earlier is an elegant piece
of theory. The real significance, however, lies in its power
to describe duality theory for convex programs, one of
the most far-reaching ideas in the study of optimization.

We return to the convex program that we studied in
§3.2:

inf f(z)
(4.3.1) subject to g(z) < 0,
z € E.
Here, the function f and the components g1, ¢o, ..., gm :

E — (—o00,400] are convex, and satisfy () # dom f C
N{'dom g;. As before, the Lagrangian function L : E X
R™ — (—00,+00] is defined by L(z; A) = f(z)+A g(x).

Notice that the Lagrangian encapsulates all the infor-
mation of the primal problem (4.3.1): clearly

{ f(z), if z is feasible,

Liw; \) =
sup (:EJ ) —|—OO, OtheI'Wise,

AeRT
so if we denote the optimal value of (4.3.1) by
p € [—00,400], we could rewrite the problem in the
following form:

(4.3.2) p=inf sup L(zx;\).

zeE /\ERT
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This makes it rather natural to consider an associated

problem:
(4.3.3) d = sup in}if3 L(z; ),

AERT T€
where d € [—00, +00] is called the dual value. Thus the
dual problem consists of maximizing over vectors A in R'!
the dual function ®(\) = inf, L(z; A). This dual prob-
lem is perfectly well-defined without any assumptions on
the functions f and g. It is an easy exercise to show the
‘weak duality inequality’ p > d. Notice ® is concave.

It can happen that the primal value p is strictly larger
than the dual value d (see Exercise 5). In this case we
say there is a duality gap. In this section we investigate
conditions ensuring there is no duality gap. As in §3.2,
the chief tool in our analysis is the primal value function
v: R™ — [—00, +00], defined by

(434)  o(b) = int{f(x) | g(x) < b}.

Below we summarize the relationships between these var-
ious ideas and pieces of notation.

Proposition 4.3.5 (Dual optimal value)
(a) The primal optimal value p is v(0).

(b) The conjugate of the value function satisfies
(o= { T 1220

+00,  otherwse.
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(c) The dual optimal value d is v**(0).

Proof. Part (a) is just the definition of p. Part (b)
follows from the identities

v*(=A) = sup{=A'b—v(b)|be R}

= sup{-\'b— f(z) | g(z) +2 =),
re€domf, be R™, z € R}

— sup{—NT(g(z) + 2) — f(z) | 2 € dom ,
z € R}

— —inf{f(z)+ N g(z) |z € dom f}
+sup{—\'z|z € R"}

B { —®()), if A >0,

+00,  otherwise.

Finally, we observe

d = sup P(A\) = — inf —P(A)

AER AeRY
= V(X = 0)
so part (c) follows. [ )

Notice the above result does not use convexity.

The reason for our interest in the relationship between
a convex function and its biconjugate should now be clear,
in light of parts (a) and (c) above.
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Corollary 4.3.6 (Zero duality gap) Suppose the
value of the primal problem (4.8.1) is finite. Then
the primal and dual values are equal if and only if the
value function v 1s lower semicontinuous at 0. In this
case the set of optimal dual solutions is —0v(0).

Proof. By the previous result, there is no duality gap
exactly when the values function satisfies v(0) = v**(0),
so Theorem 4.2.8 proves the first assertion. By part (b)
of the previous result, dual optimal solutions A are char-
acterized by the property 0 € v*(—\), or equivalently,
v*(=\)+v**(0) = 0. But we know v(0) = v**(0), so this
property is equivalent to —A € 0v(0). [

This result sheds new light on our proof of the La-
grangian necessary conditions (3.2.8): the proof in fact
demonstrates the existence of a dual optimal solution.
We consider below two distinct approaches to proving the
absence of a duality gap. The first uses the Slater condi-
tion, as in Theorem 3.2.8, to force attainment in the dual
problem. The second (dual) approach uses compactness
to force attainment in the primal problem.

Theorem 4.3.7 (Dual attainment) If the Slater
condition holds for the primal problem (4.3.1) then
the primal and dual values are equal, and the dual
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value is attained if finite.

Proof. If p is —oo there is nothing to prove, since we
know p > d. If on the other hand p is finite then, as in
the proof of the Lagrangian necessary conditions (3.2.8),
the Slater condition forces 0v(0) # (). Hence v is finite
and lower semicontinuous at 0 (§4.2, exercise 15), and the
result follows by Corollary 4.3.6 (Zero duality gap). &

An indirect way of stating the Slater condition is that
there is a point z in E for which the set {A € R'|L(z; A) >
a} is compact for all real a. The second approach uses
a ‘dual’ condition to ensure the value function is closed.

Theorem 4.3.8 (Primal attainment) Suppose
that the functions

f7917927-°'7gm'E_> (_OO +OO]

are closed, and that for some real Xo > 0 and some
vector \ in R, the function )\of + )\Tg has compact
level sets. Then the value function v defined by equa-
tion (4.8.4) is closed, and the infimum in this equa-
tion is attained when finite. Consequently, if the func-
tions f,q1,99,...,9m are in addition convex and the
dual value for the problem (4.3.1) is not —oo, then
the primal and dual values, p and d, are equal, and
the primal value is attained when finite.
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Proof. If the points (0", s,) lie in epiv for r = 1,2,.. .,
and approach the point (b, s), then for each integer r
there is a point " in E satisfying f(z") < s, +r ! and
g(x") < b". Hence we deduce

Mof +ATg)(@™) < Mo(sy + 771 + XT0" = Aos + ATh.

By the compact level set assumption, the sequence (z")
has a subsequence converging to some point Z, and since
all the functions are closed, we know f(Z) < s and
g9(Z) < b. We deduce v(b) < s, so (b,s) lies in epiv
as we required. When v(b) is finite, the same argument
with (0", s,) replaced by (b, v(b)) for each r shows the
infimum is attained.

If the functions f, g1, g9,...,9mn are convex then we
know (from §3.2) v is convex. If d is +oc then, then again
from the inequality p > d, there is nothing to prove. If
d (= v**(0)) is finite then Theorem 4.2.8 shows v** =
clv, and the above argument shows clv = v. Hence
p =v(0) = v**(0) = d, and the result follows.

Notice that if either the objective function f or any
one of the constraint functions ¢, ¢o, ..., g, has com-
pact level sets then the compact level set condition in the
above result holds.



Chapter 5

Special cases

5.1 Polyhedral convex sets and functions

In our earlier section on theorems of the alternative (§2.2),
we observed that finitely generated cones are closed. Re-
markably, a finite linear-algebraic assumption leads to a
topological conclusion. In this section we pursue the con-
sequences of this type of assumption in convex analysis.

There are two natural ways to impose a finite linear
structure on the sets and functions we consider. The first
we have already seen: a ‘polyhedron’ (or polyhedral set)
is a finite intersection of closed halfspaces in E, and we
say a function f : E — [—o00,+00] is polyhedral if its
epigraph is polyhedral. On the other hand, a polytope
is the convex hull of a finite subset of E, and we call
a subset of E finitely generated if it is the sum of a
polytope and a finitely generated cone (in the sense of

81
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formula (2.2.11)). Notice we do not yet know if a cone
which is a finitely generated set in this sense is finitely
generated in the sense of (2.2.11): we return to this point
later in the section. The function f is finitely generated
if its epigraph is finitely generated. A central result of
this section is that polyhedra and finitely generated sets
in fact coincide.

We begin with some easy observations collected to-
gether in the following two results.

Proposition 5.1.1 (Polyhedral functions)
Suppose the function f : E — [—00,400] is polyhe-
dral. Then f is closed and convex, and can be decom-
posed in the form

(5.1.2) f= max g; + op,

where the index set I is finite (and possibly empty),
the functions g; are affine, and the set P C E 1s poly-
hedral (and possibly empty). Thus the domain of f is
polyhedral, and coincides with dom Of if f is proper.

Proof. Since any polyhedron is closed and convex, so
is f, and the decomposition (5.1.2) follows directly from
the definition. If f is proper then both the sets I and P
are nonempty in this decomposition. At any point z in P
(= dom f) we know 0 € ddp(z), and the function max; g;
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certainly has a subgradient at = since it is everywhere
finite. Hence we deduce 0f () # 0. [ 3

Proposition 5.1.3 (Finitely generated functions)
Suppose the function f : E — [—oo,+00] is finitely

generated. Then f s closed and convex, and dom f s

finitely generated. Furthermore, f* 1s polyhedral.

Proof.  Polytopes are compact and convex (by

Caratheodory’s theorem (§2.2, Exercise 5)), and finitely
generated cones are closed and convex, so finitely gener-
ated sets (and therefore functions) are closed and convex,
by §1.1, Exercise 5(a). We leave the remainder of the
proof as an exercise. [

An easy exercise shows that a set P C E is polyhedral
(respectively, finitely generated) if and only if dp is like-
WISe.

To prove that polyhedra and finitely generated sets in
fact coincide, we consider the two extreme special cases:
first, compact sets, and secondly, cones. Observe first
that compact, finitely generated sets are just polytopes,
directly from the definition.

Lemma 5.1.4 Any polyhedron has at most finitely
many extreme points.
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Proof. Fix a finite set of affine functions {g; | i € I}
on E, and consider the polyhedron

P={xcE|g(z) <0foriel}.

For any point z in P, the ‘active set’is {¢ € I|g;(x) = 0}.
Suppose two distinct extreme points x and y of P have
the same active set. Then, for any small real €, the points
x + €(y — z) both lie in P. But this contradicts the
assumption that x is extreme. Hence different extreme
points have different active sets, and the result follows.

)

This lemma, together with Minkowski’s theorem (4.1.8)
reveals the nature of compact polyhedra.

Theorem 5.1.5 Any compact polyhedron is a poly-
tope.

We next turn to cones.

Lemma 5.1.6 Any polyhedral cone is a finitely gen-
erated cone (in the sense of (2.2.11)).

Proof. Given a polyhedral cone P C E, define a sub-
space . = P N —P, and a pointed polyhedral cone
K = PN L*. Observe the decomposition P = K @ L.
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By the Pointed cone theorem (3.3.14), there is an element
y of E for which the set

C={zeK|(y) =1}

is compact and satisfies K = R, C. Since C' is polyhe-
dral, the previous result shows it is a polytope. Thus K
is finitely generated, whence so is P. A

Theorem 5.1.7 (Polyhedrality) A set or function
1S polyhedral if and only if it is finitely generated.

Proof. For finite sets {a; |i € [} C E and {b; |i €
I} C R, consider the polyhedron in E defined by

P={x € E|{a;x) <b; foriel}.
The polyhedral cone in E x R defined by
Q={(z,r) e ExR|(a;,z) —br <0foriel}

is finitely generated, by the previous lemma, so there are
finite subsets {z; | j € J} and {y; |t € T'} of E with

Q = {Z Ai(z, 1) + X pe(ys,0)

jeJ teT
AeRiforjed wyeRyforteT}.
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We deduce
P = {(z,1) € @}
= conv{z;|j € J}+ { > Mty
teT

ut€R+f0rt€T},

so P is finitely generated. We have thus shown that any
polyhedral set (and hence function) is finitely generated.

Conversely, suppose the function f : E — [—00, +00]
is finitely generated. Consider first the case when f is
proper. By Proposition 5.1.3, f* is polyhedral, and hence
(by the above argument) finitely generated. But f is
closed and convex, by Proposition 5.1.3, so the Fenchel
biconjugation theorem (4.2.1) implies f = f**. By apply-
ing Proposition 5.1.3 once again we see f** (and hence f)
is polyhedral. We leave the improper case as an exercise.

)

Notice these two results show our two notions of a finitely
generated cone do indeed coincide.

The following collection of exercises shows that many
linear-algebraic operations preserve polyhedrality.

Proposition 5.1.8 (Polyhedral algebra) Consider
a Fuclidean space Y and a linear map A - E — Y.

(a) If the set P C E is polyhedral then so is its image
AP.
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(b) If the set K C'Y is polyhedral then so is its pre-
image A1K.

(c) The sum and pointwise mazimum of finitely many
polyhedral functions are polyhedral.

(d) If the function g : Y — [—00,400] is polyhedral
then so 1s the composite function go A.

(e) If the function q : E XY — [—00,+00] is polyhe-
dral then so is the function h :' Y — [—00,+0]
defined by h(u) = inf,cg q(x, u).

Corollary 5.1.9 (Polyhedral Fenchel duality)

All the conclusions of the Fenchel duality theorem
(3.3.4) remain valid if the regularity condition (3.3.7)
1s replaced by the assumption that the functions f and
g are polyhedral with dom g N Adom f nonempty.

Proof. We follow the original proof, simply observing
that the value function h defined in the proof is polyhe-
dral, by the Polyhedral algebra proposition above. Thus
when the optimal value is finite, h has a subgradient at

0. [

We conclude this section with a result emphasizing the
power of Fenchel duality for convex problems with linear
constraints.
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Corollary 5.1.10 (Mixed Fenchel duality) All the
conclusions of the Fenchel duality theorem (3.8.4) re-
main valid if the regularity condition (3.8.7) is re-
placed by the assumption that domg N Acont f s
nonempty and the function g s polyhedral.

Proof. Assume without loss of generality the primal
optimal value

p= inf{f(z)+g(An)} = _jnf_{f(x)+r|g(As) <1}

is finite. By assumption there is a feasible point for the
problem on the right at which the objective function is
continuous, so there is an affine function o : EXR — R
minorizing the function (z,7) + f(x) + r such that

p= nf _pla(z,r)|g(Az) <7}

(see §3.3, Exercise 13(c)). Clearly a has the form a(z, r)
= B(x) + r for some affine minorant 5 of f, so

p = inf {(2) + g(Az)}.

Now we apply the Polyhedral Fenchel duality theorem to
deduce the existence of an element ¢ of Y such that

p=—0(A"¢) —g"(—=¢) < —f(A"¢) —g"(—¢) <p

(using the weak duality inequality), and the duality result
follows. The calculus rules follow as before. A
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[t is interesting to compare this result with the ver-
sion of Fenchel duality using the Open mapping theorem
(§4.1, Exercise 9), where the assumption that g is poly-
hedral is replaced by surjectivity of A.
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5.2 Functions of eigenvalues

Fenchel conjugacy gives a concise and beautiful avenue to
many eigenvalue inequalities in classical matrix analysis.
In this section we outline this approach.

The two cones R’} and S” appear repeatedly in ap-
plications, as do their corresponding logarithmic barriers
Ib and 1d, which we defined in §3.3. We can relate the
vector and matrix examples, using the notation of §1.2,
through the identities

<5.2.1) 551 = 5R1 o )\, and 1d =1b o A.

We see in this section that these identities fall into a
broader pattern.

Recall the function [-] : R™ — R” rearranges compo-
nents into nonincreasing order. We say a function f on
R" is symmetricif f(x) = f([z]) for all vectors x in R™:
in other words, permuting components does not change
the function value. The following formula is crucial.

Theorem 5.2.2 (Spectral conjugacy) Any func-
tion f : R" — [—00, +00]| which is symmetric satisfies
the formula

(FoA)' =f o
Proof. By Fan’s inequality (1.2.2), any matrix Y in S”
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satisfies the inequalities

(foA)(Y) = sup{tr(XY) = fA(X))}
< Sl;{p{x(X)TA(Y) — f(AMX))}
< xseufgn{:cTA(Y) — f(z)}
= fr(AY)).

On the other hand, fixing a spectral decomposition
Y = U?(Diag \(Y))U for some matrix U in O" leads to
the reverse inequality:

F )
= sup {z'A(Y) - f(a)}
= sgp{tr((Diag:v)UYUT f(z)}

) _
— sgp{tr (UT(Diagx)UY) — f()\(UTDiag:vU))}
< up [ir(XY) — JOCX))}
= (foA)*(Y). [

This formula, for example, makes it very easy to calcu-
late Id * (see the Log barriers proposition (3.3.2)), and to
check the self-duality of the cone S”}.

Once we can compute conjugates easily, we can also
recognize closed convex functions easily, using the Fenchel
biconjugation theorem (4.2.1).
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Corollary 5.2.3 (Davis) Suppose the function f
R" — (—o00,+o0] is symmetric. Then the ‘spectral
function’ f o X is closed and convezx if and only if f s
closed and conver.

We deduce immediately that the logarithmic barrier 1d is
closed and convex, as well as the function X ~ tr (X 1)
on S” ,, for example.

Identifying subgradients is also easy using the conju-
gacy formula and the Fenchel-Young inequality (3.3.3).

Corollary 5.2.4 (Spectral subgradients) Suppose
f:R" = (—00,+0] is a symmetric function. Then
for any two matrices X and Y wn S", the following
properties are equivalent:

(1) Y € 0(f o A)(X);
(11) X andY have a simultaneous ordered spectral de-
composition and satisfy A(Y') € 0f(A(X));
(iii) X = UY(Diagz)U andY = U (Diagy)U for some

matriz U in O" and vectors x and y in R" satis-

fying y € 0f ().

Proof. Notice the inequalities

(foX)(X)+ (foA)(Y) = fFIMX))+ F(AY))
AX)IANY) > tr (XY).

1V
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The condition Y € 9(f o \)(X) is equivalent to equal-
ity between the left- and right-hand-sides (and hence
throughout), and the equivalence of properties (i) and (ii)
follows, using Fan’s inequality (1.2.1). For the remainder
of the proof, see Exercise 9. [

Corollary 5.2.5 (Spectral differentiability) Sup-
pose that the function f : R" — (—o00,+00] is sym-
metric, closed and convex. Then fo\ is differentiable
at a matriz X in S" if and only if f is differentiable
at AM(X).

Proof. If O(f o A)(X) is a singleton, so is 0 f(A(X)),
by the Spectral subgradients corollary above. Conversely,
suppose 0f(A(X)) consists only of the vector y € R".
Using Exercise 9(b), we see the components of y are non-
increasing, so by the same corollary, d(f o A)(X) is the
nonempty convex set

(U (Diagy)U | U € O", U'Diag (A\(X))U = X }.

But every element of this set has the same norm (namely
|ly]), so the set must be a singleton. o

Notice that the proof in fact shows that when f is differ-
entiable at A(X) we have the formula

(5.2.6) V(foA)(X)=UT(Diag V.f(MNX))U,
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for any matrix U in O" satisfying U” (Diag \(X))U = X.

The pattern of these results is clear: many analytic and
geometric properties of the matrix function f o A parallel
the corresponding properties of the underlying function
f. The following exercise is another example.

Corollary 5.2.7 Suppose the function f : R" —
(—o0, +00] is symmetric, closed and conver. Then
f o X is essentially strictly convex (respectively, es-
sentially smooth) if and only if f is likewise.

For example, the logarithmic barrier 1d is both essentially
smooth and essentially strictly convex.
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5.3 Duality for linear and semidefinite
programming

Linear programming is the study of optimization prob-
lems involving a linear objective function subject to linear
constraints. This simple optimization model has proved
enormously powerful in both theory and practice, so we
devote this section to deriving linear programming du-
ality theory from our convex-analytic perspective. We
contrast this theory with the corresponding results for
‘semidefinite programming’, a class of matrix optimiza-
tion problems analogous to linear programs but involving
the positive semidefinite cone.

Linear programs are inherently polyhedral, so our main
development follows directly from the polyhedrality sec-
tion (§5.1). But to begin, we sketch an alternative devel-
opment directly from the Farkas lemma (2.2.7). Given
vectors a', a?,...,a™ and ¢ in R" and a vector b in R™,

consider the primal linear program

inf (¢, )
subject to {(a’,z) —b; < 0, fori=1,2,...,m,
r € R"
(5.3.1)

Denote the primal optimal value by p € [—o0, +00]. In
the Lagrangian duality framework (§4.3), the dual prob-
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lem is
sup —bl'p
(5.3.2) subject to =, wia' = —c
poe RE,

with dual optimal value d € [—o0,4+00]. From §4.3 we
know the weak duality inequality p > d. If the pri-
mal problem (5.3.1) satisfies the Slater condition then
the Dual attainment theorem (4.3.7) shows p = d with
dual attainment when the values are finite. However, as
we shall see, the Slater condition is superfluous here.
Suppose the primal value p is finite. Then it is easy

to see that the ‘homogenized’ system of inequalities in
Rn+17

(a',x) — bz < 0, fori=1,2,...,m,
(5.3.3) —z < 0, and
(—c,z)+pz > 0, x€R", z€R,

has no solution. Applying the Farkas lemma (2.2.7) to
this system, we deduce there is a vector iz in R” and a
scalar 3 in R satisfying

f: fi(al, —b;) + B(0, —1) = (—¢, p).

Thus [ is a feasible solution for the dual problem (5.3.2),
with objective value at least p. The weak duality in-
equality now implies ji is optimal and p = d. We needed
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no Slater condition: the assumption of a finite primal
optimal value alone implies zero duality gap and dual
attainment.

We can be more systematic using our polyhedral the-
ory. Suppose that Y is a Euclidean space, that the map
A E — Y is linear, and consider cones H C Y and
K C E. For given elements c of E and b of Y, consider
the primal ‘abstract linear program’

inf (c,x)
(5.3.4) subject to Az —b € H,
r € K.

As usual, denote the optimal value by p. We can write
this problem in Fenchel form (3.3.5) if we define functions
fonEand gonY by f(z) = (¢, z) + 0x(x) and g(y) =
dr(y — b). Then the Fenchel dual problem (3.3.6) is

sup (b, )
(5.3.5) subject to A*¢—c € K,
¢ € _H_7

with dual optimal value d. If we now apply the Fenchel
duality theorem (3.3.4) in turn to problem (5.3.4), and
then to problem (5.3.5) (using the Bipolar cone theorem
(3.3.13)), we obtain the following general result.
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Corollary 5.3.6 (Cone programming duality)

Suppose the cones H and K in problem (5.3.4) are
conver.

(a) If any of the conditions
(i) b int (AK — H),
(ii)) be AK —int H, or
(i1i) b € A(int K) — H, and
H s polyhedral or

A 1s surjective

hold then there is no duality gap (p = d) and the
dual optimal value d 1s attained if finite.

(b) Suppose H and K are also closed. If any of the
conditions

(i) —c €int (A*H™ + K7),
(ii)) —c € A*H™ +int K—, or
(11i1) —c € A*(int H-) + K, and
K is polyhedral or
A* is surjective

hold then there is no duality gap and the primal
optimal value p is attained if finite.
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In both parts (a) and (b), the sufficiency of condition (iii)
follows by applying the Mixed Fenchel duality corollary
(5.1.10), or the Open mapping theorem (§4.1, Exercise
9). In the fully polyhedral case we obtain the following
result.

Corollary 5.3.7 (Linear programming duality)
Suppose the cones H and K wn the the dual pair of
problems (5.3.4) and (5.3.5) are polyhedral. If either
problem has finite optimal value then there is no du-
ality gap and both problems have optimal solutions.

Proof. We apply the Polyhedral Fenchel duality corol-
lary (5.1.9) to each problem in turn. [ )

Our earlier result, for the linear program (5.3.1), is clearly
just a special case of this corollary.

Linear programming has an interesting matrix ana-
logue. Given matrices A;, A, ..., A, and C'in S} and
a vector b in R™, consider the primal semidefinite pro-
gram

inf tr (CX)
subject to tr(A;X) = b, fori=1,2,...,m,
X e s
(5.3.8)
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This is a special case of the abstract linear program (5.3.4),
so the dual problem is

sup bl
(5.3.9) subject to C'— 2%, ¢;A; € ST,
¢ € R,
since (S%)” = —S7, by the Self-dual cones proposition

(3.3.11), and we obtain the following duality theorem
from the general result above.

Corollary 5.3.10 (Semidefinite programming du-
ality)

When the primal problem (5.8.8) has a positive def-
inite feasible solution, there is mo duality gap and
the dual optimal value is attained when finite. On
the other hand, if there is a vector ¢ in R™ with
C — % ¢;A; positive definite then once again there s
no duality gap and the primal optimal value is at-
tained when finite.

Unlike linear programming, we need a condition stronger
than mere consistency to guarantee no duality gap. For
example, if we consider the primal semidefinite program
(5.3.8) with

01 10
n2,m1,0(1 O)’AI(O O),andbO,
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the primal optimal value is 0 (and is attained), whereas
the dual problem (5.3.9) is inconsistent.
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5.4 Convex process duality

In this section we introduce the idea of a ‘closed convex
process’. These are set-valued maps whose graphs are
closed convex cones. As such, they provide a powerful
unifying formulation for the study of linear maps, convex
cones, and linear programming. The exercises show the
elegance of this approach in a range of applications.

Throughout this section we fix a Euclidean space Y.
For clarity, we denote the closed unit balls in E and Y by
Bg and By respectively. A multifunction ® : E —'Y
is a map from E to the set of subsets of Y. The domain
of ® is the set

D(®) = {z € E| ®(x) # 0}.
We say ® has nonempty tmages if its domain is E. For

any subset C' of E we write ®(C') for the image U ec®(),

and the range of ® is the set R(®) = ®(E). We say ® is
surjective if its range is Y. The graph of ® is the set

G(®)={(z,y) cEXY |y e d(x)},

and we define the inverse multifunction ! : Y — E
by the relationship

r€dHy) o yed(z), forrinEandyinY.

A multifunction is convex, or closed, or polyhedral, if
its graph is likewise. A process is a multifunction whose
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graph is a cone. For example, we can interpret linear
maps as closed convex processes in the obvious way.

Closure is one example of a variety of continuity prop-
erties of multifunctions we study in this section. We say
the multifunction ® is LSC at a point (xy, y) in its graph
if, for all neighbourhoods V' of y, the image ®(x) inter-
sects V for all points z close to xy. (In particular, x
must lie in int (D(®)).) Equivalently, for any sequence of
points (z,) approaching x, there is a sequence of points
Y, € ®(x,,) approaching y. If, for g in the domain, this
property holds for all points y in ®(xzg), we say ® is LSC
at zy. (The notation comes from ‘lower semicontinuous’,
a name we avoid in this context because of incompatibil-
ity with the single-valued case — see Exercise 5.)

On the other hand, we say ® is open at a point (z, y)
in its graph if, for all neighbourhoods U of z, the point
liesinint (®(U)). (In particular, yo must lie in int (R(®)).)
Equivalently, for any sequence of points (y,,) approaching
Yo there is a sequence of points (z,) approaching x such
that y, € ®(z,) for all n. If for yy in the range, this
property holds for all points z in & *(y), we say ® is
open at 1. These properties are inverse to each other, in
the following sense.

Proposition 5.4.1 (Openness and lower semi-
continuity) Any multifunction ® : E — Y is LSC
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at a point (z,y) in its graph if and only if ! is open
at (y,z).

We leave the proof as an exercise.

For convex multifunctions, openness at a point in the
graph has strong global implications: the following result
is another exercise.

Proposition 5.4.2 If a convex multifunction is open
at some point in its graph then it s open throughout
the interior of its range.

In particular, a convex process ® : E — Y is open at
(0,0) € E x Y if and only if it is open at 0 € Y: we just
say ® is open at zero (or, dually, ! is LSC at zero).

There is a natural duality for convex processes which
generalizes the adjoint operation for linear maps. Specif-
ically, for a convex process ® : E — Y, we define the
adjoint process * :' Y — E by

G(®) ={(w,v) | (v,—p) € G(®)7}.
Then an easy consequence of the Bipolar cone theorem
(3.3.13) is
G(®*) = —G(9),
providing @ is closed. (We could define a ‘lower’ adjoint

by the relationship ®,(u) = —®*(—p), in which case
(), = B)
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The language of adjoint processes is elegant and con-
cise for many variational problems involving cones. A
good example is the cone program (5.3.4). We can write
this problem as

inf {{c,) | b € W(a)},
where W is the closed convex process defined by
(5.43) W(@_){Ax@—H, if z € K,

for points cin E, b in Y, and closed convex cones H C
Y and K C E. An easy calculation shows the adjoint
process is

otherwise,

. A u+ K=, ifpe H™,
(5.4.4) xp(u):{ M@ a

so we can write the dual problem (5.3.5) as

(5.4.5) zggﬂb, p) | —ce v (=p)}.

otherwise,

Furthermore the constraint qualifications in the Cone
programming duality corollary (5.3.6) become simply b €
int R(V) and —c € int R(V*).

In §1.1 we mentioned the fundamental linear-algebraic
fact that the nullspace of any linear map A and the range
of its adjoint satisfy the relationship

(5.4.6) (A71(0))” = R(A").
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Our next step is to generalize this to processes. We begin
with an easy lemma.

Lemma 5.4.7 Any convex process ® : E — Y and
subset C' of Y satisfy ®*(C°) C (&~1(C))°.

Equality in this relationship requires more structure.

Theorem 5.4.8 (Adjoint process duality) Let &
E — Y be a convex process, and suppose the set C C
Y is convezx, with R(®) N C nonempty.

(a) Fither of the assumptions

(i) the multifunction x € E — ®(x) — C is open
at zero (or, in particular, int C' contains zero),
or

(1) ® and C are polyhedral,
imply
(@71(0))° = &*(C").

(b) On the other hand, if C' is compact and ® is closed
then
(27H(C))° =l (¥7(C")).

Proof. Suppose assumption (i) holds in part (a). For a
fixed element ¢ of (®1(C'))°, we can check that the ‘value
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function’ v : Y — [—00, +00] defined, for elements y of
Y, by

(5.4.9) v(y) = nf{—(d,2) |y € ®(x) — C}

zeE

is convex. The assumption ¢ € (®~1(C))° is equivalent
to v(0) > —1, while the openness assumption implies
0 € core (dom v). Thus v is proper, by Lemma 3.2.6, and
so the Max formula (3.1.7) shows v has a subgradient
—XA € Y at 0. A simple calculation now shows A €
C° and ¢ € ®*(\), which, together with Lemma 5.4.7,
proves the result.

If & and C' are polyhedral, the Polyhedral algebra
proposition (5.1.8) shows v is also polyhedral, so again
has a subgradient, and our argument proceeds as before.

Turning to part (b), we can rewrite ¢ € (®71(C))° as

(#,0) € (G(®) N (E x C))°,

and apply the polarity formula in §4.1, Exercise 8 to de-
duce

(6,0) € ol (G(®)™ + (0 x C°)).

Hence there are sequences (¢, —p,) in G(®)~ and p, in
C° with ¢, approaching ¢ and u, — p, approaching 0.
We deduce

On € (p*(pn) C (I)*<CO + EnBY)a
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where the real sequence €, = ||, — pnl|| approaches 0.
Since C'is bounded we know int (C) contains 0 (by §4.1,
Exercise 5), and the result follows using the the positive
homogeneity of ®*. [ )

The nullspace/range formula (5.4.6) thus generalizes to a
closed convex process ®:

(©71(0))° = cl (R(7)),

and the closure is not required if ® is open at zero.

We are mainly interested in using these polarity formu-
lae to relate two ‘norms’ for a convex process ® : E — Y.
The ‘lower norm’

|®]|; = inf{r € Ry{ | ®(z) NrBy # 0, Vx € Bg}

quantifies ® being LSC at zero: it is easy to check that ®
is LSC at zero if and only if its lower norm is finite. The
‘upper norm’

8], = inf{r € Ry, | ®(Bg) C By}

quantifies a form of ‘upper semicontinuity’ (see §7.2).
Clearly @ is bounded (that is, bounded sets have bounded
images), if and only if its upper norm is finite. Both
norms generalize the norm of a linear map A : E — Y,

defined by
[All = sup{[|Az|| | [z < 1}.
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Theorem 5.4.10 (Norm duality) Any closed con-
vex process O satisfies

121 = 197][u

Proof. Forany real r > ||®||; we know Bg C ®~!(rBy),
by definition. Taking polars implies Bg D r~'®*(By),
by the Adjoint process duality theorem (5.4.8), whence
1]l <7

Conversely, ||®*||, < r implies ®*(By) C rBg. Tak-
ing polars and applying the Adjoint process duality the-
orem again followed by the Bipolar set theorem (4.1.5)
shows Bg C r(cl (®71(By))). But since By is compact
we can check ®~1(By) is closed, and the result follows.

)

The values of the upper and lower norms of course de-
pend on the spaces E and Y. Our proof of the Norm
duality theorem above shows that it remains valid when
Bg and By denote unit balls for arbitrary norms (see
84.1, exercise 2), providing we replace them by their po-
lars By, and By in the definition of ||®*||,.

The next result is an immediate consequence of the
Norm duality theorem.

Corollary 5.4.11 A closed convex process is LSC at
zero if and only if its adjoint is bounded.
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We are now ready to prove the main result of this
section.

Theorem 5.4.12 (Open mapping) The following
properties of a closed convex process ® are equivalent:

(a) ® is open at zero;
(b) ()7 is bounded.
(c) @ is surjective.

Proof. The equivalence of parts (a) and (b) is just
Corollary 5.4.11 (after taking inverses and observing the
identity G((®*)™1) = —G((®~1)*). Part (a) clearly im-
plies part (c), so it remains to prove the converse. But if
® is surjective then we know

so 0 lies in the core, and hence the interior, of the convex
set ®(Bg). Thus @ is open at zero. [ )

Taking inverses gives the following equivalent result.

Theorem 5.4.13 (Closed graph) The following prop-
erties of a closed convex process ® are equivalent:

(a) ® is LSC at zero;
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(b) ®* is bounded.

(c) ® has nonempty images.



Chapter 6

The Variational Principle

6.1 An introduction to metric regularity

Our main optimization models so far are inequality-constrained.
A little thought shows our techniques are not useful for
equality-constrained problems like

inf{ f(z) | h(z) = 0}.

In this section we study such problems by linearizing the
feasible region h~1(0), using the contingent cone.

Throughout this section we consider an open set U C
E, a closed set S C U, a Euclidean space Y, and a
continuous map h : U — Y. The restriction of A to S
we denote h|g. The following easy result (see Exercise 1)
suggests our direction.

Proposition 6.1.1 If h is Fréchet differentiable at

112
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the point x € U then
Kh—l(h(:r))<w) C N(Vh(CC))

Our aim in this section is to find conditions guaranteeing
equality in this result.

Our key tool is the next result. It states that if a
closed function attains a value close to its infimum at
some point, then a nearby point minimizes a slightly per-
turbed function.

Theorem 6.1.2 (Ekeland variational principle)
Suppose the function f : E — (—o0,+00] is closed
and the point x € E satisfies f(z) < inf f + €, for
some real € > 0. Then for any real A > 0 there is a
point v € E satsifying the conditions

(a) |z —v]| < A,
(b) f(v) < f(z), and
(c) v is the unique minimizer of the function f(-) +

(/M- =l]-

Proof. We can assume f is proper, and by assumption
it is bounded below. Since the function

FO+51- =zl
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therefore has compact level sets, its set of minimizers
M C E is nonempty and compact. Choose a minimizer
v for f on M. Then for points z # v in M we know

F0) < £(2) < ) + Sz = oll,

while for z not in M we have
€ €
F)+ Sl = 2l < £) + 1z = all.

Part (c) follows by the triangle inequality. Since v lies in
M we have

flz) + §Hz — 2| > flv) + ;HU _z|| forall » in E.
Setting z = x shows the inequalities
fo)+ezinff+e> fla) > f(o) + 5 llv -]

Properties (a) and (b) follow. [ )

As we shall see, a precise calculation of the contingent
cone Kj-1(,(,)) () requires us first to bound the distance
of a point z to the set h~'(h(z)) in terms of the fun-
tion value h(z). This leads us to the notion of ‘metric
regularity’. In this section we present a somewhat sim-
plified version of this idea, which suffices for most of our
purposes: we defer a more comprehensive treatment to a
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later section. We say h is weakly metrically reqular on
S at the point = in S if there is a real constant k£ such
that

dsrn-1(n(2))(2) < k||h(2)—h(z)|| for all zin S close to z.

Lemma 6.1.3 Suppose 0 € S and h(0) = 0. If h is
not weakly metrically reqular on S at 0, there is a
sequence v, — 0 in S such that h(v,) # 0 for all r,
and a strictly positive sequence 0, | 0 such that the
function

[RC)E+0r ] - —or]

18 minimized on S at v,.

Proof. By definition there is a sequence z, — 0 in .S
such that

(6.1.4)  dgrp1(0)(wr) > rl|h(z,)]| for all 7.
For each index r we apply the Ekeland principle with
f=1nll+6s, €=lh(z)ll, A=min{re,ve},

and = z, to deduce the existence of a point v, in S
such that

(a) |2, — o] < min {r||a(z,)[l, /]|A(z,)[]}, and

(¢) v, minimizes the function

IAC)I + masc {r =, ) [} - —vr
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on S.

Property (a) shows v, — 0, while (c¢) reveals the min-
imizing property of v,. Finally, inequality (6.1.4) and
property (a) prove h(v,) # 0. [ )

We can now present a convenient condition for weak
metric regularity.

Theorem 6.1.5 (Surjectivity and metric regu-
larity) If h is strictly differentiable at the point x in
S and

Vh(z)(Ts(z)) =Y
then h is weakly metrically reqular on S at .

Proof. Notice first h is locally Lipschitz around z.
Without loss of generality, suppose £ = 0 and h(0) = 0.
If h is not weakly metrically regular on S at 0 then by
Lemma 6.1.3 there is a sequence v,, — 0 in .S such that
h(v,) # 0 for all 7, and a real sequence §, | 0 such that
the function
[R() =+ orl] - =]

is minimized on S at v,. Denoting the local Lipschitz
constant by L, we deduce, from the sum rule and the
Exact penalization proposition for Clarke subgradients,
the condition

0 € 8,(||hl)(v,) + 6,B + Lduds(v,).
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Hence there are elements wu, of d,(||h||)(v,) and w, of
LO.ds(v,) such that u, + w, approaches 0.
By choosing a subsequence we can assume

Hh(vr)”_lh@r) —y#0

and an exercise then shows u, — (Vh(0))*y. Since the
Clarke subdifferential is closed at 0 we deduce

—(VA(0))*y € Ldeds(0) C Ni(0).

But by assumption there is a nonzero element p of Ts(0)
such that VA(0)p = —y, so we arrive at the contradiction

0> (p, =(VR(0))*y) = (VA(0)p, —y) = [lyl|* > 0.
[

We can now prove the main result of this section.

Theorem 6.1.6 (Liusternik) If h is strictly differ-
entiable at the point x and Vh(x) is surjective, then
the set h™(h(z)) is tangentially reqular at z and

K10z (z) = N(Vh(z)).

Proof. Assume without loss of generality x = 0 and
h(0) = 0. In light of Proposition 6.1.1, it suffices to prove

N(Vh(())) C Th_l(O)(())'
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Fix any element p of N(Vh(0)) and consider a sequence
" — 0in h~1(0) and ¢, | 0 in R, . The previous result
shows h is weakly metrically regular at 0, so there is a
constant k£ such that

dy-1(0)(@" +t,p) < E[|h(z" +tp)

holds for all large r, and hence there are points z" in
h~1(0) satisfying
2" +trp — 2"|| < K[[h(z" + t,p)]|-
If we define directions p” = ¢, 1(2" — x") then clearly the
points z” + t,p" lie in A~1(0) for large 7, and since
lp=p"ll = llz" +tep— 27|/t

< kl|h(z" +tp) — h(z")||/t,

— E[[(VA(0))pll

= 0,

we deduce p € Tj-1(g). A



Chapter 7

Fixed points

7.1 Brouwer’s fixed point theorem

Many questions in optimization and analysis reduce to
solving a nonlinear equation h(x) = 0, for some function
h : E — E. Equivalently, if we define another map
f =T —h (where [ is the identity map), we seek a point
z in E satisfying f(z) = x: we call = a fized point of f.

The most potent fixed point existence theorems fall
into three categories: ‘geometric’ results, devolving from
the Banach contraction principle (which we state below),
order-theoretic results (to which we briefly return in §7.3),
and ‘topological’ results, for which the prototype is the
theorem of Brouwer forming the main body of this sec-
tion. We begin with Banach’s result.

Given a set ¢ C E and a continuous self map f :
C — C', we ask whether f has a fixed point. We call f a

119
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contraction if there is a real constant vy < 1 such that

(7L f (=) = F)ll < plle =yl forall z,y € C.

Theorem 7.1.2 (Banach contraction) Any con-
traction on a closed subset of E has a unique fized
point.

Proof. Suppose the set €' C E is closed and the
function f : C — C( satisfies the contraction condi-
tion (7.1.1). We apply the Ekeland variational principle
(6.1.2) to the function

lz=F(2)l, itz € C,

~+00, otherwise,

at an arbitrary point x in C', with the choice of constants
€

L=y
This shows there is a point v in C' satisfying
lo = f)l <llz = f2)| + 1 = p)llz — 2

for all points z # v in C'. Hence v is a fixed point, since
otherwise choosing z = f(v) gives a contradiction. The
uniqueness 1s easy. [

e=l|lz— f(z)]| and X =

What if the map f is not a contraction? A very useful
weakening of the notion is the idea of a nonexpansive
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map, which is to say a self map f satisfying

[f(2) = FWI < llz =yl forall z,y

(see Exercise 2). A nonexpansive map on a nonempty
compact set or a nonempty closed convex set may not
have a fixed point, as simple examples like translations on
R or rotations of the unit circle show. On the other hand,
a straightforward argument using the Banach contraction
theorem shows this cannot happen if the set is nonempty;,
compact and convex. However, in this case we have the
following more fundamental result.

Theorem 7.1.3 (Brouwer) Any continuous self map
of a nonempty compact convex subset of E has a fized
point.

In this section we present an ‘analyst’s approach’ to
Brouwer’s theorem. We use the two following impor-
tant analytic tools, concerning C') (continuously differ-
entiable) functions on the closed unit ball B C R".

Theorem 7.1.4 (Stone-Weierstrass) For any con-
tinuous map f : B — R™, there is a sequence of CV
maps f, : B — R" converging uniformly to f.

An easy exercise shows that, in this result, if f is a self
map then we can assume each f, is also a self map.
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Theorem 7.1.5 (Change of variable) Suppose that
the set W C R™ is open and that the CY map g
W — R" 1s one-to-one with Vg invertible throughout
W. Then the image g(W) is open, with measure

/W | det Vg|.

We also use the elementary topological fact that the open
unit ball int B is connected: that is, it cannot be written
as the disjoint union of two nonempty open sets.

The key step in our argument is the following topolog-
ical result.

Theorem 7.1.6 (Retraction) The unit sphere S is
not a CY) retract of the unit ball B: that is, there

is no CY map from B to S whose restriction to S is
the identity.

Proof. Suppose there is such a retraction map p : B —
S. For real t in [0, 1], define a self map of B by p; =
tp+(1—t)I. As a function of the variables x € B and t,
the function det Vp;(x) is continuous, and hence strictly
positive for small £. Furthermore, p; is one-to-one for
small ¢ (see Exercise 7).

If we denote the open unit ball B \ S by U, then the
change of variables theorem above shows, for small ¢, that
p(U) is open, with measure
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(7.1.7) v(t) = /U det Vpy.

On the other hand, by compactness, p;(B) is a closed
subset of B, and we also know p;(S) = S. A little ma-
nipulation now shows we can write U as a disjoint union
of two open sets:

(7.18) U= (p(U)NU)U (p(B)"NU).

The first set is nonempty, since p;(0) = tp(0) € U. But
as we observed, U is connected, so the second set must
be empty, which shows p;(B) = B. Thus the function
v(t) defined by equation (7.1.7) equals the volume of the
unit ball B for all small ¢.

However, as a function of ¢ € [0, 1], v(t) is a polyno-
mial, so it must be constant. Since p is a retraction we
know that all points z in U satisfy ||p(z)||*> = 1. Differen-
tiating implies (Vp(z))p(z) = 0, from which we deduce
det Vp(z) = 0, since p(z) is nonzero. Thus v(1) is zero,
which is a contradiction. [ )

Proof of Brouwer’s theorem Consider first a C'(1)

self map f on the unit ball B. Suppose f has no fixed
point. A straightforward exercise shows there are unique
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functions o : B — R, and p : B — § satisfying the
relationship

(7.1.9) p(x) =z + a(x)(z — f(z)), forall zin B.

Geometrically, p(z) is the point where the line extending
from the point f(z) through the point x meets the unit
sphere S. In fact p must then be a CV) retraction, con-
tradicting the retraction theorem above. Thus we have
proved that any C'V) self map of B has a fixed point.

Now suppose the function f is just continuous. By the
Stone-Weierstrass theorem (7.1.4), there is a sequence of
CW maps f, : B — R converging uniformly to f,
and by Exercise 4 we can assume each f, is a self map.
Our argument above shows each f, has a fixed point z".
Since B is compact, the sequence (z") has a subsequence
converging to some point x in B, which it is easy to see
must be a fixed point of f. So any continuous self map
of B has a fixed point.

Finally, consider a nonempty compact convex set C' C
E and a continuous self map g on C. Just as in our proof
of Minkowski’s theorem (4.1.8), we may as well assume C
has nonempty interior. Thus there is a homeomorphism
(a continuous onto map with continuous inverse) h : C' —
B — see Exercise 11 . Since h o g o h™! is a continuous
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self map of B, our argument above shows it has a fixed
point = in B, and therefore h~(z) is a fixed point of g.

)
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7.2 Selection results and the Kakutani-Fan
fixed point theorem

The Brouwer fixed point theorem in the previous section
concerns functions from a nonempty compact convex set
to itself. In optimization, as we have already seen in §5.4,
it may be convenient to broaden our language to consider
multifunctions ) from the set to itself and seek a fized
point — a point x satisfying € Q(x).

To begin this section we summarize some definitions
for future reference. We consider a subset K C E, a
Euclidean space Y, and a multifunction €2 : K — Y.
We say (2 is USC' at a point z in K if every open set U
containing 2(x) also contains €2(z) for all points z in K
close to x. Equivalently, for any sequence of points (z,,) in
K approaching z, any sequence of elements y,, € Q(x,,),
is eventually close to Q(x). If € is USC at every point in
K we simply call it USC. On the other hand, as in §5.4,
we say () is LSC'it, for every x in K, every neighbourhood
V of any point in Q(z) intersects 2(z) for all points z in
K close to x.

We refer to the sets Q(x) (z € K) as the images of Q.
The multifunction 2is a cuscoif it is USC with nonempty
compact convex images. Clearly such multifunctions are
locally bounded: any point in K has a neighbourhood
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whose image is bounded. Cuscos appear in several im-
portant optimization contexts. For example, the Clarke
subdifferential of a locally Lipschitz function is a cusco
(see Exercise 5).

To see another important class of examples we need a
further definition. We say a multifunction ® : E — E is
monotone if it satisfies the condition

(u—v,z—y) >0 whenever u € &(z) and v € P(y).

In particular, any (not necessarily self-adjoint) positive
semidefinite linear operator is monotone, as is the sub-
differential of any convex function. One multifunction
contains another if the graph of the first contains the
graph of the second. We say a monotone multifunc-
tion is maximal if the only monotone multifunction con-
taining it is itself. The subdifferentials of closed proper
convex functions are examples (see Exercise 16). Zorn’s
lemma (which lies outside our immediate scope) shows
any monotone multifunction is contained in a maximal
monotone multifunction.

Theorem 7.2.1 (Maximal monotonicity) Any
maximal monotone multifunction is a cusco on the
intertor of its domain.

Proof. See Exercise 16. A
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Maximal monotone multifunctions in fact have to be single-
valued generically, that is on sets which are ‘large’ in a
topological sense, specifically on a dense set which is a
‘G5’ (a countable intersection of open sets) — see Exer-
cise 17.

Returning to our main theme, the central result of this
section extends Brouwer’s theorem to the multifunction
case.

Theorem 7.2.2 (Kakutani-Fan) If the set C C E
18 nonempty, compact and convez, then any cusco ) :
C — C has a fized point.

Before we prove this result, we outline a little more
topology. A cover of a set K C E is a collection of
sets in E whose union contains K. The cover is open
if each set in the collection is open. A subcover is just
a subcollection of the sets which is also a cover. The
following result, which we state as a theorem, is in truth

the definition of compactness in spaces more general than
E.

Theorem 7.2.3 (General definition of compact-
ness)

Any open cover of a compact set in E has a finite
subcover.
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Given a finite open cover {O1,0s,...,0p} of a set
K C E, a partition of unity subordinate to this cover
is a set of continuous functions py, pa,...,pm : K — Ry
whose sum is identically 1 and satisfying p;(z) = 0 for
all points x outside O; (for each index i). We outline the
proof of the next result, a central topological tool, in the
exercises.

Theorem 7.2.4 (Partition of unity) There is a
partition of unity subordinate to any finite open cover
of a compact subset of E.

Besides fixed points, the other main theme of this sec-
tion is the idea of a continuous selection of a multifunc-
tion €2 on a set K C E, by which we mean a continuous
map f on K satisfying f(z) € Q(z) for all points z in K.
The central step in our proof of the Kakutani-Fan theo-
rem is the following ‘approximate selection’ theorem.

Theorem 7.2.5 (Cellina) Given any compact set
K C E, suppose the multifunction Q0 : K — Y 1is
USC with nonempty convex images. Then for any
real € > 0 there is a continuous map f : K — Y
which is an ‘approrimate selection’ of ) :

(7.2.6) dgy(z, f(x)) < e for all points x in K.

Furthermore the range of f is contained in the convex

hull of the range of €.
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Proof. We can assume the norm on E X Y is given by
Iz, y)llexy = [|z]e + [lylly forallz € Eandy €Y

(since all norms are equivalent — see §4.1, Exercise 2).
Now, since €2 is USC, for each point  in K there is a
real d, in the interval (0, €/2) satisfying

Q(z + §,Bg) C Qz) + gBy.

Since the sets = + (4,/2)int Bg (as the point x ranges
over K) comprise an open cover of the compact set K,
there is a finite subset {x1, z, . . ., &,y } of K with the sets
z; + (0;/2)int Bg comprising a finite subcover (where ¢;
is shorthand for ¢, for each index 7).
Theorem 7.2.4 shows there is a partition of unity p1, po,
.., pm : K — R, subordinate to this subcover. We
now construct our desired approximate selection f by
choosing a point y; from €(z;) for each ¢ and defining

(7.2.7) f(x) = % pi(x)y;, for all points z in K.
i=1

Fix any point x in K and define the set I = {i|p;(x) #
0}. By definition, z satisfies ||z — ;|| < d;/2 for each 7 in
I. If we choose an index j in [ maximizing d;, the triangle
inequality shows ||z; — ;|| < d;, whence we deduce the
inclusions

yi € Q(x;) C Qx; +6,;Bg) C Qz;) + %BY
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for all ¢+ in I. In other words, for each ¢ in I we know
da(;)(yi) < €/2. Since the distance function is convex,
equation (7.2.7) shows dq(,,)(f(z)) < €/2. Since we also
know ||z — z,|| < €/2, this proves inequality (7.2.6). The
final claim follows immediately from equation (7.2.7). &

Proof of the Kakutani-Fan theorem With the as-
sumption of the theorem, Cellina’s result above shows, for

each positive integer r, there is a continuous self map f;
of C satisfying

1
dao)(z, fr(x)) < — for all points z in C.
r

By Brouwer’s theorem (7.1.3), each f, has a fixed point
2" in C, which therefore satisfies

1
dao)(z",2") < — for each r.
r

Since C' is compact, the sequence (z") has a convergent
subsequence, and its limit must be a fixed point of 2
because (2 is closed, by Exercise 3(c) (Closed versus USC).

)

In the next section we describe some variational appli-
cations of the Kakutani-Fan theorem. But we end this
section with an exact selection theorem parallel to Cel-
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lina’s result but assuming a LSC rather than an USC
multifunction.

Theorem 7.2.8 (Michael) Given any closed set K C
E, suppose the multifunction €2 : K — Y s LSC
with nonempty closed convexr images. Then, given

any point (Z,7) in G(£2), there is a continuous se-
lection f of Q satisfying f(Z) = ¥.

We outline the proof in the exercises.
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7.3 Variational inequalities

At the very beginning of this book we considered the
problem of minimizing a differentiable function f : E —
R over a convex set C' C E. A necessary optimality
condition for a point x( in C' to be a local minimizer is

(7.3.1) (V f(zg),x — xg) > 0 for all points z in C,
or equivalently
0e Vf(ZC()) + Nc(ﬂfo).

If the function f is convex instead of differentiable, the
necessary and sufficient condition for optimality (assum-
ing a constraint qualification) is

0 € 0f(xo) + No(zo),

and there are analogous nonsmooth necessary conditions.

We call problems like (7.3.1) ‘variational inequalities’.
Let us fix a multifunction 2 : C' — E. In this section
we use the fixed point theory we have developed to study
the multivalued variational inequality

Find points z( in C and yg in (z)
VI(Q,C):  satisfying (yo, x — x9) > 0 for all points
z in C.
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A more concise way to write the problem is:

Find a point zg in C satisfying 0 € (zg) + Ne(zo).
(7.3.2)

Suppose the set C' is closed, convex and nonempty.
Recall that the projection Po : E — C'is the (continu-
ous) map which sends points in E to their unique nearest
points in C' (see §2.1, Exercise 8). Using this notation we
can also write the variational inequality as a fixed point
problem:

(7.3.3) Find a fixed point of Pgo (I —Q):C — C.

This reformulation is useful if the multifunction (2 is single
valued, but less so in general because the composition will
often not have convex images.

A more versatile approach is to define the (multival-
ued) normal mapping Q¢ = (o Po)+ I — Pg, and
repose the problem as:

(7.3.4) Find a point Z in E satisfying 0 € Q¢(Z);

then setting o = Po(Z) gives a solution to the original
problem. Equivalently, we could phrase this as:

(7.3.5) Find a fixed point of (I — Q) o Po : E — E.

As we shall see, this last formulation lets us immediately
use the fixed point theory of the previous section.
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The basic result guaranteeing the existence of solutions
to variational inequalities is the following.

Theorem 7.3.6 (Solvability of variational inequal-
ities) If the subset C' of E is compact, conver and
nonempty, then for any cusco ) : C — E the varia-
tional inequality VI1(Q, C) has a solution.

Proof. We in fact prove Theorem 7.3.6 is equiva-
lent to the Kakutani-Fan fixed point theorem
(7.2.2).

When €2 is a cusco its range 2(C) is compact — we
outline the proof in §7.2, Exercise 6. We can easily check
that the multifunction (I —2)o P is also a cusco, because
the projection P is continuous. Since this multifunction
maps the compact convex set conv (C' — Q(C)) into it-
self, the Kakutani-Fan theorem shows it has a fixed point,
which, as we have already observed, implies the solvabil-
ity of VI(€2,C).

Conversely, suppose the set C' C E is nonempty, com-
pact and convex. For any cusco €2 : C' — C', the Solvabil-
ity theorem (7.3.6) implies we can solve the variational
inequality VI(I —Q, C), so there are points z( in C' and
2o in Q(xg) satisfying

(g — 29, — x9) > 0 for all points x in C.

Setting = zg shows zy = zg, 80 xg is a fixed point. &
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An elegant application is von Neumann’s minimax the-
orem, which we proved by a Fenchel duality argument in
§4.2, Exercise 16. Consider Euclidean spaces Y and Z,
nonempty compact convex subsets F' C Y and G C Z,
and a linear map A : Y — Z. If we define a function
Q:FxG—=Y xZby Qy,z) = (—A%z, Ay), then it
is easy to see that a point (yo, 29) in F' X G solves the
variational inequality VI(S2, F' x G) if and only if it is a
saddlepoint:

(z0, Ay) < (20, Ayg) < (2, Ayy) forally € F, z € G.

In particular, by the Solvability of variational inequalities
theorem, there exists a saddlepoint, so

mip max (2, Ay) = maxmin (z, Ay).

Many interesting variational inequalities involve a non-
compact set C. In such cases we need to impose a growth
condition on the multifunction to guarantee solvability.
The following result is an example.

Theorem 7.3.7 (Noncompact variational inequal-
ities) If the subset C of E is nonempty, closed and
convex, and the cusco €2 : C — E s coercive, that
18, it satisfies the condition

(7.3.8) liminf inf (z,Q(z) + Ne(z)) > 0,

|z|| =00, zeC
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then the variational inequality VI(2,C') has a solu-
tion.

Proof. For any large integer r, we can apply the solv-
ability theorem (7.3.6) to the variational inequality V' I(€2, CN
rB) to find a point x, in C' N rB satisfying

0 € Qz,;)+ Nerrp(zy)
= Q(z,) + No(z) + Nyp(z))
C Qz,) + Ne(z,) + Ryz,

(using §3.3, Exercise 10). Hence for all large r, the point
x, satisfies

inf (x,, Ux,) + Neo(z,)) <0.

This sequence of points (x,.) must therefore remain bounded,
by the coercivity condition (7.3.8), and so x, lies in int r B
for large r and hence satisfies 0 € Q(x,) + No(z,), as re-
quired. [

A straightforward exercise shows in particular that the
growth condition (7.3.8) holds whenever the cusco 2 is
defined by z € R" — x! Az for a matrix A in S” .

The most important example of a noncompact varia-
tional inequality is the case when the set C is a closed
convex cone S C E. In this case VI(2,.S) becomes the
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multivalued complementarity problem:

<7.3.9)Find points .Cl?().in S and yo in Q(zo) N (=S7)
satisfying (xg, o) = 0.

As a particular example, we consider the dual pair of

abstract linear programs (5.3.4) and (5.3.5):

inf (¢, 2)
(7.3.10) subject to Az —b € H,
z € K,

(where Y is a Euclidean space, the map A : E — Y
is linear, the cones H C Y and K C E are closed and
convex, and b and c are given elements of Y and E re-
spectively), and

sup (b, &)
(7.3.11) subject to A*¢p—c € K,
p € —H".

As usual, we denote the corresponding primal and dual
optimal values by p and d. We consider the corresponding
variational inequality on the space E X Y,
VIQ,K x (—H™)), where
Qz,¢) = (c — A*¢p, Ax — b).
Theorem 7.3.13 (Linear programming and vari-
ational inequalities) Any solution of the above vari-
ational inequality (7.3.12) consists of a pair of opti-
mal solutions for the linear programming dual pair

(7.3.12)
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(7.3.10) and (7.3.11). The converse is also true, pro-
viding there is no duality gap (p = d).

We leave the proof as an exercise.

Notice that the linear map appearing in the above ex-
ample, M : E XY — E XY defined by M(z,¢) =
(—A*¢p, Az), is monotone. We study monotone comple-
mentarity problems further in Exercise 7.

To end this section we return to the complementarity
problem (7.3.9) in the special case where E is R", the
cone S is R}, and the multifunction €2 is single-valued:
Q(x) = {F(x)} for all points z in R’}. In other words,
we consider the following problem:

Find a point zy in R} satisfying F'(z¢) € R"

and (xg, F'(zg)) = 0.

The lattice operation A is defined on R™ by (x A y); =
min{z;,y;} for points z and y in R” and each index i.
With this notation we can rewrite the above problem as
an order complementarity problem:

OCP(F):  Find a point zy in R} satisfying

330/\F(£E0) = 0.

The map z € R"” — z A F(z) € R” is sometimes
amenable to fixed point methods.
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As an example, let us fix a real @ > 0, a vector ¢ €
R", and an n X n matrix P with nonnegative entries,
and define the map F' : R” — R” by F(z) = az —
Px +q. Then the complementarity problem OCP(F) is
equivalent to finding a fixed point of the map ¢ : R" —
R" defined by

(7.3.14) d(z) = é(o V (Pz - q)),

a problem which can be solved iteratively — see Exercise
8.
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