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Parameter optimization problems

1

1.1 Problems without constraints

The simplest class of parameter optimization problems involves find-

ing the values of m parameters u,,...,u,_ that minimize a perform-
ance index which is a function of these parameters,
Liu,...,u,).

For convenience, we shall use a more compact nomenclature; let

u1*|

oy

u=| + |= decision vector (1.1.1)
u

m

and write the performance index then as

L{u) . {1.1.2)

If there are no constraints on possible values of  and if the function
L{u) has first and second partial derivatives everywhere, necessary
conditions for a minimum are

— =1, (1.1.3)

by which we mean that dL/éu,=0,i=1,...,m, and

o S T
au2_0, (1.1.4)
by which we mean that the (m x m)-matrix whose components are
92Liou, du; must be positive semidefinite, i.e., have eigenvalues that
are zero or positive,
All points that satisfy (1.1.3) are called stationary points.
Sufficient conditions for a local minimum are (1.1.3) and
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ot L
ou’

>0

3

(1.1.5)

that is, all the eigenvalues must be positive.

If {1.1.3) is satisfied but 82Lfau? = 0, that is, the determinant of the
matrix is zero (meaning that one or more of its eigenvalues is zero),
additional information is needed to establish whether or not the point
is a minimum. Such a point is called a singular point. Note that, if L
is a linear function of u, then #*L/3u? = 0 everywhere, and, in general,
a minimum does not exist.

Examples for L= L{u u,).
(a) minimum: both eigenvalues of 8?L/du; du; > 0

L= [uu,] [_i—i] [:l]

2
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Figure 1.1.1. A minimum point.

{b) saddlepoint: one positive eigenvalue, one negative eigenvalue of

L/ ou, ou;
_ -L1][w
L=luu,] [ 1,3] [uz]
(¢} singular point: one positive eigenvalue, one zero eigenvalue

L = {u, — u2)u, — 3ul).

1.2 Problems with equality constraints;
necessary conditions for a stationary point

A more general class of parameter optimization problems involves
finding the values of m decision parameters #,, . - -, %, that minimize

Sec. 1.2 « Problems with Equality Constraints
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Figure 1.1.2. A saddle point.

Figure 1.1.3. A singular point.

a performance index which is a scalar function of n + m parameters,

Lix,...x

i 3 e s

“-fhere the n state parameters x,,. . ., x, are determined by the deci-
sion parameters through a set of n constraint relations,

fl(xl,...,xﬂ;ul,...,um)zo,

f;l(xl"' "xn;up" -3um)=0-

For convenience, we shall again use a2 more compact nomenclature.
Let
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.
u, £
=} |=decision vector, x =]+ |= state vector,
_um_ x?’l
A
f=1+ | =constraint vector.
;!

In this nomenclature, the problem may be stated as follows.
Find the decision vector u that minimizes

L{xu), (L.2.1)

where the state vector x is determined by the decision vector through
the constraint relations

flxuy=0 {n equations) . (1.2.2)

For a given parameter optimization problem, the choice of which
parameters to designate as decision parameters is not unique; it is
only a matter of convenience to make a distinction between decision
and state parameters. However, the choice must be such that u deter-
mines x through the constraint relations (1.2.2).

If the relations (1.2.1) and (1.2.2) are linear in both x and u, then, in
general, a minimum does not exist. Inequality constraints on the mag-
nitudes of x and/or u are necessary to make the problem meaningful;
such problems, treated in later sections of this chapter, are called
linear programming problems if the inequality constraints are also
linear in x and u.

In the first part of this chapter we shall discuss problems that have
some nonlinearity in (1.2.1) and (1.2.2). Of course, the presence of
nonlinearity does not, in itself, insure that a minimum exists.

A stationary point is one where dL =0, for arbitrary du, while
holding df = 0 (letting dx change as it will). Now we have

dL=L_dx+L,du, (1.2.3)
df =f, dx +f,du. (1.2.4)

When we require that df = 0, then, if f, is nonsingular (and it should
be if u determines x from (1.2.2)), (1.2.4) may be solved for dx

dx = —f;'f, du. {1.2.5)
Substituting (1.2.5) into (1.2.3) yields
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dL=(L,~ L f;'f,)du. (1.2.6)

Hence, if dI. is to be zero for arbitrary du, it is necessary that

L,—L.f;f,=0 {m equations). {1.2.7)

These m equations together with the n equations (1.2.2), determine
the m quantities ¢ and the n quantities x at stationary points. Note that
(1.2.7) represents the partial derivative of L with respect to u, holding
f constant, whereas L, represents the partial derivative of L with
respect to u, holding x constant.

Another {(equivalent) approach to Equation (1.2.7) is to notice that
(1.2.3) and (1.2.4), with dL =0, df =0, must be consistent linear
equations in dx and du at a stationary point. If they are consistent,

we should be able to find a set of n constants A, .. ., A, such that
n
ofi
L,+ AN—=—=0, 1.2.8
'y ; ; ay ( )
where
Y= (Xgy e v oy Xy Ugy - v - Uyy) (1.2.9)

that is, a linear combination of rows of f, must equal L. { For con-
venience, let

Then we may write {1.2.8) and (1.2.9) as
L +\f, =0 {n equations), (1.2.10)
L, +\f, =0 {m equations} . (1.2.11)

Equation (1.2.10) may be solved for AT (since f, must be nonsingular):

A= ~L.(f.)", {1.2.12)
which, in turn, may be substituted into (1.2.11) to vield (1.2.7).

tMore generally, consistency requires that the rank of the [{n + 1) X (n + m)])-matrix

e

be less than (n + 1}.
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The interpretation of A may be inferred from (1.2.3) and (1.2.4) by

placing du = 0 and eliminating dx
~A=L_(f, )" =(aL/of),;

that is, the X’s are partial derivatives of L with respect to f, holding u
constant, letting x change as required. This will have a special sig-
nificance in optimization problems with inequality constraints (Sec-
tion 1.7).

Still another {equivalent) approach, which we shall use many times
throughout the remainder of the book, is to “adjoin” the constraints
(1.2.2) to the performance index (1.2.1) by a set of n “undetermined

multipliers,” A, ..., A, ,* as follows:

HixuA) = L) + 3 A filxu) = Lixu) + A flre).  (1.2.13)
iz
Suppose we have chosen some nominal vilues of 4 and determined
the corresponding values of x from {1.2.2) so that L. = H. Differential
changes in H due to differential changes in x and u are given by

df =22 g, A8 . (1.2.14)
ax Ju

Since we are interested in how H (and, hence, L) changes as the con-
trol vector 4 changes, it is convenient to choose the A vector so that

aH oL aL -1
m=ﬁ+ATi=O$AT=—“(i) , {1.2.15)
ax ox ax dax \ox
which is, of course, the same as (1.2.12).
Since x was found from (1.2.2), it follows that
dLEdH=%g"du. (1.2.16)

Thus, éH/3u is the gradient of L with respect to u while holding
flxu)=0. '
At a stationary point in the u-space, dL vanishes for arbitrary du;
this can happen only if

dH oL d
—=—4+AT—=0, {1.2.17)
Ju  du au

Thus, necessary conditions for a stationary value of L(x,u) are

fleu)=0; (1.2.18)

*The constants A, .. ., k, are often referred to as Lagrange multipliers.
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aH
By 0, (1.2.19)
= where H = FLixu)+ Nflxu),
o 0, {1.2.20)

which are 2n + m equations for the 2n + m quantities x, A, and u.

Example 1. Find the scalar parameter u that yields a stationary value of

1 /22  u?
L‘E(EJ“F)’

fau)=x+mu—c=0,

with the linear constraint

where x is a scalar parameter and a, b, m, and ¢ are constants.
The curves of constant L are ellipses, with L increasing with the
size of the ellipse, whereas ¥ + mu — ¢ =0 is a fixed straight line.

L=constant x+mu—c=0

curves (x, &) for minimum L

3 v > U
L increasing J T

Figure 1.2.1. Example of minimization subject to a constraint.

Clearly, the minimum value of L satisfying the constraint is obtained
when the ellipse is just tangent to the straight line. Analytically, the
H tunction is

1 (x2 u?

HZE §+§)+A(x+mu—c),

and necessary conditions for a stationary value are

aH X oH U
x+mu—c=1 ERTE g TR A=0 i Am = (.
’ ax a? ’ au b2 0

These three equations for the three unknowns, x, u, A, have a simple
unigue solution:
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a’c __ b'me B ¢
@+ meb?’ a®+ mp?’

T a4+ mib?’
and the minimum value of L is thus given by

CE

J = Lnin = 2(a? + m2zb?)

Note that —A = 8f/ac = aJ/af .

Example 2. Maximum steady rate of climb for aircraft. The net force
on an aircraft maintaining a steady rate of climb must be zero. If we
choose force components parallel and perpendicular to the flight
path (see Figure 1.2.2), this requires that

filVya)=Tcos{a+e€)—D—mgsiny=0,

L (Vye)=Tsin @+e)+L -mgcosy=0,
where

V = velocity,

v = flight path angle to horizontal,

a = angle-of-attack,

m = mass of aircraft,
g = gravitational force per unit mass,
e = angle between thrust axis and zero-lift axis,

and, at a given altitude,

I. = L(V,a) = lift force,
D = D(V o) = drag force,
T = T(V) = thrust of engine.

Zero-lift axis
L \/

S Flight path {parallel
vV to velocity vector)

Horizontal ——

Figure 1.2.2. Force equilibrium of climbing aircraft.

The rate of climb is simply

1.3

See. 1.3 « Problems with Equality Constraints 9

Vsiny.

We choose V and v as state parameters and « as the control parameter
since, at a given altitude, a choice of & determines V, y from the two
force equilibrium relations.

The H functien is

H=Vsiny+ A (T cos (a + €) — D — mgsiny)
+ A{Tsin(a +€)+ L —mgcosvy).

Hence, the necessary conditions for a stationary value of rate of climb
are:

fi=TV)cos(a+¢e) —DV,a)—mgsiny=0,
f,=T(V)sin(a+€) — L(V,a) —mgcosy=0,

ag 51ny+)\[g‘€cos(a+e) ?3‘?7]4-}\[6‘1;“1’1(&4-6)4_%%]:0’
ol .

§=VCOS‘)¢—)\t mgeosy + A, mgsiny=90,

oH _ 1[—T5in(a+e)—£]+}\2[Tcos(a+e)+-a—L]=0_

da do dox

These five equations for the five unknowns, V, v, a, A, and A, , will,
in general, have to be solved numerically for realistic lift, drag, and
thrust functions.

Problems with equality constraints;
sufficient conditions for a local minimum

To second order, the differential changes of L{x,u) and flx,u) away
from a nominal point (x,u) are

it (5] S (L)

u.r’

= ot (o) - g e Gz ().

ur ?

IR 3 (LT
BT
™ u\ dx v oy \ox) 0 €

(1L.3.2)%

where

1This equation must be interpreted as applying to each component of f.
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If we multiply (1.3.2) by A7, determined from Equation (1.2.19),
where (H_=0), and add the result to (1.3.1), we obtain

dL=(0,H,) (jz) +%(de,duT) (f;f’ﬁ )(ii) ATdf, (1.3.3)

ur
where

H = Lix,u) + Aflx,u) . {1.3.4)

Let us assume that the nominal point (x,u) satisfies the constraints
Fflx,u) =0, We wish to examine the behavior of L{x.4) in an infinitesi-

mal neighborhood of this nominal point, keeping f(x,u) = 0 to second
order.
If we place df = 0 in (1.3.2), we can write for dx
dx = —f3;!f, du + second and higher-order terms in  (1.3.5)

components of du and dx .

Now, if the nominal point is a stationary point, then H,=0,and
(1.3.3) becomes, with df =0,

1 Moo s, f, lf]
= — AuT— = rr
dL = < dutl~ f1(f1), 1 [H,.: e ] [ Yllau 038
+ third and higher-order terms in components
of du and dx .
It follows that
2
(55) = Hum Hof2f = FUSD Hoy + SISO Hoo £, (137)

f=0
Thus, sufficient conditions for a local minimum are the stationarity
conditions (1.2.18) through (1.2.20) and the positive-definiteness of
the matrix in {1.3.7). Clearly, a necessary condition for a local mini-
mum is that the matrix in (1.3.7) be positive semidefinite. Note that
(1.3.6) could have been obtained directly by considering the aug-
mented criterion H to second order while considering the constraint
F =0 to first order only.

Furthermore, it is not necessary that H,, be positive semidefinite.

Example. Find the scalar quantity u that minimizes

1 (:c2 u2)
L==—=+-
2\a® b
with the quadratic constraint

fxu)=c—xu=0,

Sec. 1.3 « Problems with Equality Constraints 11

where x is a scalar parameter and a, b, and ¢ are positive constants.
The curves of constant L are ellipses, with L increasing with the size
of the ellipse, whereas ¢ — xu = 0 is a hyperbola with two branches,

X A
Xt =0C

L =constant

curves (x, u) for Ly,

—> U

L increasing
Xu=c
Figure 1.3.1. Example of minimization subject to a nonlinear

constraint.

The minimum value of L satisfying the constraint is obtained when
the ellipse is just tangent to the hyperbola. Analytically, the H func-
tion is

1 u?
H== ( +§)+)\(c—xu),
and necessary conditions for a stationary value are
c—xu=20, ifi:i—)\ =0, ﬁ:—u—khx=0.
ax  a? du b?

Using these relations, we find that

x=i\/%, u::wb—ac,

The sufficient condition {1.3.7) for this problem is

1 1] e
a a®’ ab b|_4
(-51) o T
ab’ b

which is clearly satisfied. Note that there are two points at which the
same minimum value of I occurs. Note, also, that

a=2L
ac
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Problem 1. Find the point nearest the origin on the line
x+ 2y + 3z =10, x—y+2z=1,
where z, ¢, z are rectangular coordinates; i.e., minimize
L=x*+y>+2
subject to the two linear constraints.

Problem 2. Find the rectangle of maximum perimeter that can be in-
scribed in an ellipse; i.e., maximize

P=4{x+y)
with the constraint

%2 T B

PRI

Problem 3. Find the rectangular parallelopiped of maximum volume
that can be contained in a given ellipsoid; i.e., maximize
V = 8xyz
with the constraint

I2 y2 Z2
@ T

o =1.

&

Problem 4. Quadratic performance index with linear constraints.
Show that the control vector u that minimizes the nonnegative defi-
nite quadratic form

1 1
= — T ;T
L 5% Qx+2uRu,

with the linear constraints
fxu)=x+Gu+c=0,
is
u=—(R+GTQG)Y'G"Qc.
Show, also, that the minimum value of L is
J = Liin = 2¢"(Q — QG(R + G"QG)'G'Q) ¢
and that
A={(Q - QG{R + G'QC)'G"Q) ¢
={(Q '+ GR'\G")1¢ if Q! exists;t
x=—(I — G(R + GTQG)GTQ) .
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Note, also, that

ol

dc

Problem 5. Sail setting and heading for maximum upwind velocity.
A simplified model of a sailboat moving at constant veloeity is shown
in Figure 1.3.2,

Keel force, K

Drag
force, =

Sail

Sail force, S

Figure 1.3.2. Force equilibrium of sailboat.

The sailboat’s velocity relative to the water is V, at an angle ¢ to
the wind, which is blowing with velocity W relative to the water.
The sail is set at an angle 8 to the centerline of the boat, and the aero-
dynamic force S is assumed to act normal to the sail. The hydro-
dynamic force on the hull is resolved into components perpendicular
to the centerline K and parallel to the centerline D. The magnitude
of § is assumed to vary with the square of the relative wind, V,, and
the sine of the sail angle of attack, «:

§=CVisina,

where C| is a constant and V, and « are as defined in Figure 1.3.2.
The drag is assumed to vary with the square of the boat velocity, V:

D=CV,

where C, is a constant. For equilibrium of forces parallel to the
centerline, we have

D=S8sind.

Show that: (a) For given ¥, maximum V is obtained when a = 6.
{b) The maximum velocity for ¥ = 18(° (running before the wind) is
Wu/{l + p) and is obtained when 8 = 90°, where p? = C,/C, . (¢) The
maximum upwind velocity, V cos ¢, is equal to Wu/4 and is ob-
tained when the sail setting and the heading are chosen to be

FThis is known as the “matrix inversion lemma.” See Section 12.2 for discussion of
its importance.

fbg
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O=[(u+2P +4]-12  y=45.

Assume for this part of the problem that @ and @ are small angles so
that sine=a,sinff=0,cosa=1,cos0=1.

Problem 6. Angle of attack and bank angle for maximum lateral range
glide. A quasisteady approximation for gliding turns of a low-speed
{subsonic) glider, made with constant angle of attack and constant
bank angle, gives lateral gliding range, y,, as

g = #(l - cos B,),

where
.2
r= ﬁm = radius of the helix,
o sing
%z, @sing
B, =, ———-——— = final heading angle,
£ sinycosy
62
y = tarr‘[(a + ZM) sec cr] = gliding helix angle,
o
and
o =Nk,

@ = angle of attack, } {decision parameters),

o = bank angle
z, = initial altitude,

= Sl = characteristic length (= 10 ft for typical sailplane),
pSCLu
§= :2.(77CD'J:"C;,,I)U2 = minimum drag to lift ratio (= 44 for typical sail-
plane),

n = efliciency factor (0 <n < 1).

24\

e~
Zp
3

/
7

Figure 1.3.3. Geometry of flight path for lateral turn.

y¥ r

W
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Show that the maximum value of y, for a given z, is obtained when we
have

8 8

27 1+ @ge)’

which may be regarded as a transcendental equation for B;as a func-
tion of { = z /¢ . The corresponding values of o, @, and y are obtained
from

tan

2B, o
= o= —
L 2Veos2a

Assume that o, v, 6 are << 1.

tano = y=2acoso.

[NoTE 1. Within this same approximation, the maximum value of X,
for given z is

T= z,/8
and is obtained with
oc=0>tany=34.]

INOTE 2: Further definition of symbols:

m = mass of glider, V = velocity,
p = density of the atmosphere {approximated
as constant in this problem),
C,, = lift coefficient slope,
C,, = zero-lift drag coeflicient
S = reference area for coefficients,
2
Lift=C,_ a%s . Drag=(C, +1C, &) ”5‘;
Problem 7. Maximum steady rate of climb for an aircraft. For the
problem stated in Example 2 of Section 1.2, find the maximum steady
rate of climb at sea level and at altitudes of 10,000 ft, 20,000 ft, 30,000
ft, and 40,000 ft for an airplane with weight mg = 34,000 Ibs and wing
area S = 530 {t2. The lift, drag, and thrust characteristics are given
below:

S.]

vz vz
£S5, D-(C, +nC, a0”

L-C, a S.

Here C, ;C, , and n are functions of Mach number M= VJ/c, as
shown in Figures 1.3.4 and 1.3.5; ¢ = speed of sound and p = density
of the air, both of which are functions of altitude, that is, ¢ = c¢{(h},
p = p(h). These functions are given in Table 1.3.1. The thrust, T,
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at full throttle, is a function of Mach number and altitude, as shown in
Figure 1.3.5. Use e = 3°.

32
Cp=Cp,+nCL a?
Ci, Cr=Cr,a
24—
Cra 1.0
L
1.6 g ~
\
Cp, X102 — /‘ ™ ]
8
[ CDn
0 0
0 .8 1.6 2.4 3.2 4.0

Mach number, M

Figure 1.3.4. Drag and lift coefficients as function af Mach
number.

Find, also, the altitude at which the maximum rate of ¢limb is zero.

This is called the “ceiling” of the airplane.

Table 1.3.1. Air density and speed of sound variation with altitude

Altitude ~h, Speed of sound ~C, Air density ~p,

ft ft/sec slugs/fes
0 1,116 2377 x 10-¢
5,000 1,097 2,048
10,000 Lo77 1,755
15,000 1,057 1,496
20,000 1,037 1,266
25,000 1,016 1,065
30,000 994.7 8849.3
36,090 968.1 706.1
40,000 968.1 585.1
45,000 968.1 460.1
50,000 968.1 361.8
35,000 968.1 254.5
60,000 968.1 223.8
70,000 968.1 1358.4
80,000 968.1 85.56
82,020 968.1 77.64
90,000 984.2 51.51
100,000 1,004 31.38

Sec. 1.3 « Problems with Equality Constraints 17

1.6

Static sea level thrust= 23,500 1b

Specific fuel consumption — gm/T=.29X 10-2
1b sec=1 per b of thrust

- Sea level
o
E 12 15,000 fi
= 25,000 fe
(3]
H / / 36,089 1t
2 /
]
= / / 45,0001
» .8
—
4
=}
o h
-3
= L 55,000 ft
2
-= s
B4 -
/ L. 65,000 ft
A n / 75,000 ft
/ /
L 82,021 ft
: ey 100,000 ft
1.0 20 30 4.0
Mach number

Figure 1.3.5. Thrust as function of Mach number and altitude
at full throttie.

Problem 8. Minimum fuel turn at constant altitude. A steady turn
(V=0,7=0) at constant altitude is described by

=L

2

sl
(CDU + 1r;pCLu at)——8=T {drag = thrust},
_ pV?
mg = C,‘a a—5— S {cos o) (weight = vertical component of lift),
. - pV? ; .
mvg = CLcr a’ty S (sing)  (turnrate = horizontal component

of lift),

where
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& = angle-of-attack,

decision parameters
o : bank angle } p

and the rest of the symbols are as defined in Problem 6.
Find & & na and o to minimize the fuel in making a turn from g = g,

to 8 = 8, where fuel is proportional to

Y o (%TdB_T,, ..
féJ;Tdt—J;a SE=S

that is, minimize
v
1 (Cl’o + "qCLa aZ}mV

g Cba asing
V2
subject to mg = C, a(p_) S coso.
g

ANSWER. a = (V3/2)8, a = cos '{1/V3) =54.7°,
where 8 =2VnC, /C, .

Note that this implies V= \/2gl/6, =(V3/2) (1/8) and T = 2mg § ,

2
where ¢ = CmnS .

L
Neighboring optimum solutions and the

interpretation of the Lagrange multipliers

Occasionally we wish to find how the optimum solution changes if
some of the constants in the constraint equations are changed by small
amounts.

Let us suppose that the constraints (1.2.2) are increased by infini-
tesimal amounts so that we have fix,u) = df, where df is an infinitesi-
mal constant vector. Then, assuming that the values of x and u for
the minimal solution will be changed by infinitesimal amounts dx
and du, we have, from (1.2.19), (1.2.20), (1.2.18),

dHT=H, dx+ H,_du +fTd\=0, (1.4.1)
dHI=H, dx + H, du +fTd\ =0, (1.4.2)
df =f,dx+f, du, (1.4.3)

where the partial derivatives are evaluated at the point corresponding
to the original optimum solution.

The 2n + m relations (1.4.1), (1.4.2), and (1.4.3) determine the
2n + m parameters dx, du, and d\. Since f, must be nonsingular for
du to determine dx, it follows from (1.4.3) and (1.4.1) that

Sec. 1.5 » Numerical Solution by a First-Order Gradient Method 19
dx = f df - f,f, du, (1.4.4)
dr=—-{f0)YH,_,dx+ H_ du). (1.4.5)

Substituting these relations into {1.4.2) and solving for du vields

du = - Cdf, (1.4.6)
where
gL\
- (auz)f_o (H,, - FIFD) H, 15, (1.4.7)

and {92L/3u).__ is as defined in Equation (1.3.7). Thus, the exist-
ence of nelgﬁbormg optimum solutions is guaranteed if the original
stationary point was a local minimum; that is, if (GZLfauE)fzo >0,

By substituting (1.4.4) into (1.3.3), with H, = 0, we obtain dL cor-
rect to second order, If, in addition, we substitute the expression for
du from (1.4.6) into {1.3.3), we have, after some manipulation,

dL= -\ df + (1/2) df [f=H,_ =~ CTL_Cldf + - - -, (1.4.8)

where
2
La=(2L) |
out /.,

which is given by (1.3.7).
Thus, we have

aLmin _ T

of = AT, (1.4.9)
&L

F f‘““‘ =FfH  f' - CILC . (1.4.10)

1.5 Numerical solution by a first-order gradient method#

Unless the relations for L(x,u) and f{x,u) in Section 1.2 are quite
simple, numerical methods must be used to determine the values ofu
that minimize H. A straightforward numerical method, in common
use for many vears, is that of steepest descent for finding minima (or
steepest ascent for finding maxima).

Steepest descent or gradient methods are characterized by iterative
algorithms for improving estimates of the control parameters, u, so
as to come closer to satisfying the stationarity conditions aH/du = 0.

The steps in using the gradient method are as follows:

tGrateful acknowledgment is made to Walter F. Denham for his assistance in writing

i this section.
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(a) Guess a set of values for u.

(b) Determine the values of x from flx,u)=0.

{c) Determine the values of A from AT = — (aL{ox)ofax)".

{d) Determine the values of dH/du = (sL{au) + A7(3f/8u), which,
in general, will not be zero.

(e) Interpreting 0H/du as a gradient vector, change the estimates
of u by amounts Au = —K(aH/éu)" , where K is a positive scalar
constant. The predicted change in the criterion, AJ, is thus
—~KiaH[auw)oHlouw) . (The “—"" is replaced by a “+”" if a maxi-
mum is being sought.)

() Repeat steps (a) through (f), using the revised estimates of u,
until (8H/ou)(8H/ou)" is very small,

There are many variations of this approach, and we will consider one
of them in the next section. Graphically, the gradient method (for
finding a maximum} is a hill-climbing technique in the u-space; if u
is a two-component vector, we can show contours of constant J in the
u-plane {see Figure 1.5.1). Starting with an initial guess of u, a se-
quence of changes Au is made. At each step, Au is in the direction
of the gradient 8H/du whose magnitude gives the steepest slope at
that point on the hill. The choice of K, which determines the magni-
tude of Au, involves judging the extent of nonlinearity so that the
linearized prediction will be reasonably accurate, while at the same
time trying to keep the number of steps in the sequence from becom-
ing excessive. K should almost always be varied in the sequence.

Uz A /Initial guess

Contours of
constant J

— T

Figure 1.5.1. Typical numerical procedure for first-order
gradient method.

Usually this will be done to decrease the magnitude of Au when it is
thought the minimum {or maximum) is near. As Figure 1.5.1 suggests,
it is easy to overshoot the extremal point. In problems of higher di-
mension, the geometrical concept of hypersurfaces of constant J in
the u-hyperspace provides valuable insight.
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Gradient methods usually show substantial improvements in the
first few iterations but have poor convergence characteristics as the
optimal solution is approached. Second-order gradient methods that
use the “curvature” as well as the “slope” at the nominal point are
discussed in the next section; they have excellent convergence
characteristics as the optimal solution is approached but may have
starting difficulties associated with picking a “convex” nominal
solution, }

1.6 Numerical solution by a second-order gradient method

Second-order gradient methodstt use information on the curvature
as well as the slope at the nominal point in the u-space. 1fu is a scalar,
we can sketch a simple description of the second-order gradient
method as in Figure 1.6.1.

L A Performance index
Actual curve

(not known)

> u

]
’ .
/ F ¥ w®u®  control parameter
—

Figure 1.6.1. Typical numerical procedure for second-order
ascent method.

The actual curve of performance index L vs. control parameter u
could, in principle, be calculated and the maximum picked out. How-
ever, this may involve an enormous amount of computation. Instead,
using the second-order gradient method, we guess a control parameter
4@ and determine x© from f(x®u*) =0, and then L{x®u®). We
then determine the first and second derivatives of L with respect to u,
holding fix,u) =0 using (1.2.6) and (1.3.7) and approximate the
(L vs. u)-curve by a quadratic curve (a parabola):

oL\ 1 /RL\
= L(x(0) g0} 0t o} 4. = g0
L= L{x@ u*) + (au)fﬂ(u u°} + 2( 2)f_o(u _uﬂ) ;

—

$By this we mean that the nominal approximating quadratic surface has a minimum.
t$These are often called Newton-Raphson methods.
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The value of u that yields the maximum of this approximate curve is
then easily determined; call it uV) . This value is taken as an improved
guess and the process is repeated. In Figure 1.6.1 it is apparent that
two steps in the iterative procedure already yield a good approxima-
tion to the maximizing value of u. In more complicated problems,
more steps may be required. Also, if the initial guess 4 is too far
away from the maximizing value, we may find that (*L/ou*)?_ > 0;
i.e., the curvature has the wrong sign. In this case, the method fails
completely; note, however, that the first-order gradient method may
still converge.

o A

Level curves of
osculating
quadric surface

Contours of constant
L (not known)

L

} > U
\/,
]
[
/
/
/
4
e

—
-

Figure 1.6.2. Two-dimensional illustration of second-order
gradient method.

Figure 1.6.2 shows a two-parameter maximization problem with
contours of constant performance index L, holding flx,u) =0 {un-
known to the optimizer). An initial guess is made at point 0, and an
osculating quadric surface is fitted locally to the region around 0 by
determining the first and second derivatives of L, holding flx,u) =0,
from (1.2.6) and (1.3.7). If this quadric surface turns out to be an
elliptic paraboloid with a maximum (that is, the matrix of second
derivatives is negative definite), the location of that maximum is
taken as the next guess (point 1).+ The procedure is repeated until
we have (3Lfou),_, = 0, hopefully with {3?L/éu?),_, <0 all the way.
Figure 1.6.2 shows the maximum being ach1evedfm six steps.

tIf the matrix of second derivatives is positive definite or indefinite, the procedure fails.
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The constraint relations flx,u) =0 are often so complicated that
numerical methods are needed just to determine x, given u. In this
case a slightly more general version of the second-order gradient
method may be used. Recall that necessary conditions for a stationary
value of L(x,u) are

H, =0, (1.6.2)
H, =0, (1.6.3)
fF=0, where Hixu )= Lixu) + A\Tflxu).  (1.6.4)

The steps in the generalized second-order gradient method are:

(a) Guess a set of values for x, u, and A; call them x°, u?, and A°,
{b) Determine the values of

H (x*u°\°) = H° | {1.6.3)

H,(x0u° \%) = Ho (1.6.6)

flxvu) = fo. (1.6.7)

{c¢) Linearize the relations {1.6.2}, {1.6.3), and (1.6.4) about x°, u°,
and A®:

Ho + He_dx + Ho, du + (FIp dr = 0, (1.6.8)

Hy + H, de+ Hy du+ (firdr=0, (1.6.9)

fe+frde+fodu=0. (1.6.10)

{d) Solve Equations (1.6.8), (1.6.9), and (1.6.10) for dx, du, and dA in
terms of He , H° | and f°},
{e) Repeat (a) through (d), using, as improved guesses,

x' = x4+ dx, w' = u® + du, Al =A% + dh,

The process is repeated until the necessary conditions (1.6.2), (1.6.3),
and (1.6.4) are satisfied to the desired degree of accuracy.

It the method converges at all, it may converge on a minimum, a
maximum, or a saddle point. To determine which of these it is, we
must examine the curvature matrix given in Equation (1.3.7). If the
matrix is positive definite, the point is a minimum; if the matrix is
negative definite, the point is a maximum; if the matrix is not singular
but is neither positive definite nor negative definite, the point is a
saddle point; if the matrix is singular, we do not know the nature of the
peint without going to higher derivatives.

tIf values of He |, HY, f* are such that dx, du, d\ obtained from step (d) are vefyfarge

then el | eH® efo may be used instead, where 0 < e < 1. Q BNig vy
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Problem. Another variant of the second-order gradient method would be

to guess only x and u, determining A from H,_ = 0. Work out the pro-
cedure for this variant.

1.7 Problems with inequality constraints

Parameter optimization problems involving inequality constraints
require extension of the methods treated in the previous sections. An
important class of problems of this type involves minimizing

L{y) (1.7.1)
subject to
fly) =0, (1.7.2)

where, in general, f and y are vectors of different dimension.t

Consider first the case in which y and f are scalars. There are two
possibilities for the optimal value of y, y°: fly*) <0 or fly*)=0. In
the former case, the constraint is not effective and can be ignored.
The situation remains the same as in Section 1.1. In the latter case,
consider small perturbations about y*; if L{y®) is a minimum, then we
have

_aL

dL =
dy

dy=0 (1.7.3)

for all admissible values of dy, which must satisfy

d
idyfﬂ. (1.7.4)

df ==

In order that Equations (1.7.3} and (1.7.4) be consistent, it is clearly
necessary that either

aL af aL
sgn oy sgn B or i
These two possibilities may be expressed in one relation as
ol  af
— +A—=—=0, AZ0. (1.7.5)
ay ay

tSuch problems, referred to as nonlinear programming problems, have been treated
extensively in the technical literature. We give only brief treatment in this section.
We will not distinguish between state and control variables as was done in Section 1.2.
Indeed, in many nonlinear programming problems, the dimension of £ is greater than
the dimension of y, so that it is not possible to decompose y into state and decision
variables.
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The two situations are shown geometrically in Figures 1.7.1(a) and (b).

LA LA
« Prrm<o b f91<0
|
N | L(y)

|

i\r/z(y) et

L ~

¥ 77 »o i
(a) (b)

Figure 1.7.1. One-dimensional illustration of two possible types
of minimum with inequality constraints.

The two cases may be treated analytically by adjoining (1.7.2} to
(1.7.1):

Hy,\) = Ly} + A fly) . (1.7.6)
The necessary conditions become
I _45 (1.7.7)
oy
and
fy)=0, (1.7.8)
where
z0, fly) =0,
A 1.7.9
20, <o L T:8)

When y is a vector but f is still a scalar, Equations (1.7.3), (1.7.4),
and (1.7.5) remain applicable if we interpret the symbols in vector
notation. We should interpret conclusion (1.7.5) to mean

d
a‘y parallel to a—': and pointing in opposite directions. (1.7.10)

The necessity of (1.7.10) is easily established by contradiction.
Let us suppose that (1,7.10) is not true as illustrated in two dimensions
in Figure 1.7.2. Then the cross-hatched region represents a region of
admissible y which will yield smaller L.

This and the other situation (namely, when fiy®) < 0) again can be
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ya A

Figure 1.7.2. Two-dimensicnal illustration showing the neces-
sity of Equation (1.7.10).

summarized by the necessary conditions stated by {1.7.7), (1.7.8),
and {1.7.9).

In the mare general case, when f itself is a vector, we can still
employ (1.7.4) and (1.7.5), noting that 8f/dy is now a matrix. If only
one component of f is effective, the problem is the same as that just
treated. If two components of f are effective, the situation, in two
dimensions, is as shown in Figure 1.7.3.

y
yap dfs oA
dy

ay

e
R

AL
dy

> N

Figure 1.7.3. Two-dimensional illustration of minimization
subject to two inequality constraints.

It is clear that, if * is to be an optimal point on f, =f, =0, then
aL/dy must lie between the negative gradients of f, and f,.+ Analyti-
cally, this means that 8L/3y can he expressed as a negative linear com-
bination of af,/éy and 8f,/dy . In general, when g components are
effective at a boundary optimal point, we must have

aL af,

a
L= PRy +.”+R;i=o (1.7.11)
Yy oy T oy

tRecall the parallelogram construction of a resultant from two components.
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or
aL a
ﬁ+)\T—f=0, (1.7.12)
dy ay
where
z0, fly=0
A ’ ’ 1.7.13
=0, fn<o; (L7139t

Hence, as in Section 1.2, we may define a quantity H=L + X7f and
write (1.7.12) as 3H/oy = 0. Equations (1.7,12) and (1.7.13) are nec-
cessary conditions for minimality. For a maximum, the sign of A
must be changed in {1.7.13). In words, the gradient of L with respect
to y at a minimum must be pointed in such a way that decrease of L
can only come by violating the constraints.

Let us suppose that y has p components and that n components of
the ineguality constraint are “effective,” that is,

fiy)=0,

The “ineffective” constraints, f(y} <0, i=n+1,...,may be dis-
regarded. It is clear that p=n. Next, take n of the components of y
and call them x; let the remaining p — n components be called u; that
is,

e e, (1 (1.7.14)

yr=(x,,. . ..x 50, .0, JAGT,4).
The choice must be such that
filxu) =0, i=1,...,n (1.7.15)

determines x when u is given. Then sufficient conditions for a local
minimum of L(y), with fly)= 0, are given in Section 1.3, to which
we must add the condition that X ,..., A, all be positive.} The latter
condition is easily interpreted from Equation (1.4.8) since —A, is
equal to (8L/3f,), , which must be negative (that is, dL > 0 for df, <0).

Example. Consider L{y,.y,) with f(y 4,)=0, i=12, and suppose the

level curves are as shown in Figure 1.7.4.
It is clear that f, <0 is “ineffective” and f, = 0. From Figure 1.7.4,
we have

A >0

———

tEquation (1.7.13) is understood, of course, ta be in the component-by-component
sense.

}For a precise staternent, see (3. McCormick, “Second Order Sufficient Conditions for
Constrained Minimum,” STAM Journal on Appl. Math., Vol. 15, No. 3, May 1967.
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f2=0

Admissible
region

. > Y1
dy
L =constant

Figure 1.7.4. Example of minimization subject to inequality
constraints.

Je>0

that is, grad L is parallel and in the opposite direction to grad f, .
Also, the “curvature” of L along f, = 0 is such that L increases on
f, = 0 away from the minimum; to show this analytically, we may let
y,=xand y, = u. Then we have

filxu)=0>x, given u,

and, from (1.3.7), we can compute (8?L/ou?), _, which, as we can see
from Figure 1.7.4, is positive.

Equations (1.7.12) and (1.7.13) are the essence of the Kuhn-Tucker
Theorem in nonlinear programming. The precise statement of the
condition requires the assumption of the so-called “constraint quali-
fication” on the set fly) = 0 (Kuhn-Tucker, p. 483). This qualification
is designed to rule out geometric situations as shown in Figure 1.7.5,
At the minimum point we see that {y .y,) = (1,0) and (aL/dy) is not
equal to any finite linear combination (8f,/9y) , (8f,/0y) .

L=-y

\/:?
S
3o

Admissible region

R LAS

(9f1/3»)

&
I
|
S
(3]
[}
<
ARNSYR Y

»n

(7777 Grd

1
(3L/3y) /

¢(af2/3}’)
fi=ya— (1= P3=0""

Figure 1.7.5. Exampie of Kuhn-Tucker constraints qualification.
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Another approach to sufficiency is the saddle-point theorem of
nonlinear programming. It is more elegant (but usually harder to
apply) than the conditions given above since it does not require the
arbitrary separation of y into x and u. Consider the function H{y ) =
L + ATf. Suppose that it is possible to find y* and A such that they
constitute a saddle point for H; that is,

H{y° \)= H{ye %)= H(y,\°) (1.7.16)

forall A= 0 and fly) = 0. Then we may conclude that 4° is a minimum
point for L{y) subject to fly) = 0, regardless of the nature of L and £.

Problem 1. Prove the saddle-point theorem. [HiNT: The left-hand

inequality in (1.7.16) implies that A¢f,(y*) = 0 for all i.]

Problem 2. Aircraft cruise condition for minimum fuel consumption.

For the airplane described in Example 2, Section 1.2, and in Prob-
lem 7, Section 1.3, find the steady level-flight (y = 0) condition for
minimum fuel consumption per unit distance. Assume constant
specific fuel consumption, & = .29 x 10-3 1b sec™! per 1b of thrust, so
that fuel consumption per unit distance is given by

_oT
J'_ V H

where
T = Thax(V,h}

and Tp,.4(V,h) is as given graphically in Problem 7, Section 1.3.
The constraint equations are

L-—mg+Tsin(la+e)=0, D—-Tcos{a+e€)=0,

where L= L(V.ha), D =D(V,ha)} are as given in Problem 7, Sec-
tion 1.3.

Problem 3. Write out a mathematical proof of the geometrical argument

of Figure 1.7.2. In particular, show why A= 0.

1.8 Linear programming problems

I both the performance index and the inequality constraints are
linear functions of y, the problem is called a linear programming
problem. Clearly, in this case, the minimum, if it exists, must occur on
the boundary since the curvature of L is zero everywhere. Let the
problem be to choose y to minimize
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L=bTy, (1.8.1)

subject to

ATy +c¢=0, (1.8.2)

where y is an n-vector and ¢ is an m-vector, m>n. If A is of rank n
and b7 is not collinear with any of the rows of A” or any negative linear
combinations of n + 1 rows of A7, the minimum, if it exists, must occur
at a point determined by the simultaneous satisfaction of n of the
constraints ATy + ¢ = 0. This result is not surprising to anyone with
geometric intuition; it is the fundamental theorem of linear program-
ming.

Minimize L = =5y, — y, subject to

fl:-ylf(), f2=*yzfo’ f32y|+yz—6<—:0’
f, =3y, +y,—12=0, f5=y1*2y‘2——250.

Figure 1.8.1 shows the admissible region, with contours of constant L.

Yz A
™
L=0
\ .
\
‘\ p Minimum
\
§ grad £y
Admissible—44 ~grad L
region \‘:
=
fll//yl \\\ > V1
i
\ \\ grad f;

Figure 1.8.1. Solution of the linear programming problem of
Example 1.

Obviously, the minimum occurs at point A, where we have 3y, + y, —
12=0andy, — 2y, —2=0>y, =3%,y, = %> Lo = —19%, and
grad L can be expressed as a negative linear combination of n {but not
n — 1) rows of AT (namely, grad f, and grad f,), as is obvious from Fig-
ure 1.8.1.

The implication of the fundamental theorem of linear programming
for the numerical solution of linear programming problems is clear.
Take n constraints at a time and treat them as equalities. Solving the
equalities yields one solution (assuming admissibility), which is
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either optimal or nonoptimal. In the latter case, we can discard one
of the constraints and, substituting another, repeat the process with
the requirement that the new solution be admissible and better.
Since there are only a finite number of such possibilities, this process
must eventually arrive at the optimal combination (if it exists). The
method that accomplishes this is known as the simplex method. We
shall say more about this in the next section.

Problem. Show that the necessary conditions for a maximum of

L=c"™,
subject to
AN+ b=0, AZ=0,

are simply (1.8.2) of the minimization problem discussed in this sec-
tion. These two problems are called duals of each other.

Example 2. A blending problem. There are many blending problems

that involve finding the cheapest mixture of several materials that
contains at least a certain fraction of specified ingredients. A typical
problem is to find the cheapest mixture of several feeds that contains
at least certain specified amounts of nutrients (proteins, fats, vitamins,
etc.).} Suppose that we are considering a mixture of three feeds and
we have three inequality specifications on nutrients. Table 1.8.1,
below, shows the fraction of each of the three nutrients contained in
each of the three feeds and the cost per unit amount of each of the
three feeds.

Table 1.8.1

Fraction of nutrient
in each feed

Feed 1 2 3 Cost
1 06 02 09 15
2 .03 .04 05 12
3 04 .01 .03 8

Our problem is to find the cheapest mixture of the three feeds such
that the fraction of nutrients one, two, three in the mixture is greater
than or equal to .04, .02, and .07, respectively.

Let F; = the fraction of feed j in the mixture, where j= 1,2, or 3;
these are the quantities we are trving to find (our design parameters).

——

|

P

tOther blending problems occur in mixing fuel oils and fertilizers.
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Let N, = fraction of nutrient i in the mixture, where i = 1,2, or 3; then
we have

N.=n,F +a,F, +nF,,
where n. = fraction of nutrient i in feed j (the data given in Table

1.8.1). Far this problem we have N, = .04, N, = .02, N, = .07.
Let C = cost per unit amount of the mixture and ¢; = cost per unit
amount of feed j (also given in Table 1.8.1}). Then we have

C =g B, +e.F & el

Of course, the fractions of the three feeds in the mixture must add up
to one:

F,+F,+F,=1.

The problem, then, is to find the two quantities F, and F, (using F, =
1 — F, — F,)to minimize C and satisfy the inequalities.t

N,zZN,, i=123, 0=F=1, j=12

where Ni is the minimum allowable fraction of nutrient { in the mix-
ture.

We draw a graph, using F, and F, as coordinates (see Figure 1.8.2).
The inequalities are shown as lines with arrows perpendicular to
them pointing in the “allowable” directions. In this problem, the
inequalities are

{a) N, =.06F + .03F,+ .04(1-F —F,)=.04 or 2F, —~ F,=0;
(b) N, =.02F, + 04F + .QL{1-F,~F,)= .02 or F +3F,=Z1;
() N,=.09F, + 05F +.03(1-F —F,) = .07 or SF. + B, =2
(d) F,=1-F, F.:‘U or E+F =21

(e) OfF]EI;

(f) 0=F,<1.

Note that the inequality F,=1—-F, - F,= 1 or F, + F, = 0 is redun-
dant since we have F, = 0 and F, = 0. Which of the other inequalities
are redundant? (See the graph, Figure 1.8.2.) The feasible region
is the region in the graph where all of the inequalities are satisfied,
it is clearly marked in Figure 1.8.2 and is surrounded by extra-heavy
lines.

The lines of constant cost are given by setting C =
stants in

C = 15F, + 12F, + 8(1-F,—F,) or

different con-

C=8+7F +4F,.

{Several of these turn out to be redundant; i.e., other inequalities automatically cause
them to be satisfied,
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Figure 1.8.2. Solution of the linear programming problem of
Example 2.

From Figure 1.8.2 it is clear that the cheapest feasible solution is one
that occurs at the corner where N, =N,andN, = N, . From above, this
requires that

F +3F,=1, 3F +F,=

These are two linear equations in two unknowns (F, and F); they are
easily solved to yield

F =% and F,=3%.

2

The amount of feed number three is obtained by substituting the
results above into F, =1 —F -~ F,. This yields

F,=1.
The minimum cost is given by
C =15&) + 12(3) + 8(3) = 12§ per unit amount of mixture.
The amount of nutrient one is above the minimum required fraction:
N, = .06() + .036) + .04(3) = .05125 > .04.
Notice, also, that the most expensive feasible solution is to use feed

number one all by itself.

fﬁXample 3. A transportation planning problem. A grain dealer owns
; 50,000 bushels of wheat in Grand Forks, North Dakota, and 40,000
bushels in Chicago. He has sold 20,000 bushels to a customer in
Denver, 36,000 bushels to a customer in Miami, and the remaining
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34,000 bushels to a customer in New York. He wishes to determine
the minimum-cost shipping schedule, given the following freight
rates in cents per bushel:

Table 1.8.2
Denver Miami New York
Grand Forks 42 55 60
Chicago 36 47 51

Different modes of shipment cause the rates not to be proportional
to the distance between the cities. For convenience, we can combine
our data into a table, leaving space for the answer, as follows:

Table 1.8.3
Destination
Denver Miami New York
Origin
42 55 60
Grand Forks 50,000
36 47 51
Chicago 40,000
20,000 36,000 34,000

The figure in the upper right-hand corner of each square is the freight
rate between the two cities.

Our problem is to find a nonnegative amount in each of the six
squares so that (a) the amounts in the first row add up to 50,000 and the
amounts in the second row add up to 40,000; (b) the amounts in the
first, second, and third columns add up to 20,000, 36,000, and 34,000,
respectively; (c) the total freight cost is a minimum; this cost is ob-
tained by multiplying the amount in each square by the rate in the
upper right-hand corner and adding these numbers together.

This problem is a little bit like a crossword puzzle, only harder,
since it is not sufficient just to get the rows and columns to add up
properly {(a feasible solution); we must, in addition, minimize the total
cost. By “cut and try” we might be able to find the solution. How-
ever, a systematic approach is apt to take less time, and, for problems
with more shipping points and more destinations, a systematic ap-
proach (an algorithm) and a computer are essential.
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Suppose we designate the amount from Grand Forks to Denver as
“¢” in thousands of bushels. Then, clearly, the amount from Chicago
to Denver must be 20 — x (see Table 1.8.4). Similarly, let us designate
the amount shipped from Grand Forks to Miami as “y”’; then the
amount from Chicago to Miami must be 36 —y. Now the amount
from Grand Forks to New York must be 50 — x — y, and the amount
from Chicago to New York must be 40— (20—x)— (36—y) =
x+y— 16, (We automatically satisfy the requirement that the total
shipped to New York be 34,000 since the total amount sold equals the
amount owned.)

Table 1.8.4
42 55 60
x Y 30 —x 30
-y
36 47 51
20 -=x 36—y x+ty 40
-16
20 36 34

We have reduced the number of unknowns to two, x and y, which
must satisfy six inequalities:

=0, y=0, 50 -x—-—y=0,
36 -y=0, x+y—16=0,

20-x>0,

We can conveniently plot all these inequalities on an (x versus y)-
graph as in Figure 1.8.3. Again, as in the previous section, there is a
feasible region where all the inequalities are satisfied.

Next, we calculate the cost in terms of x and y:

C = 1000/100 x [42x + 55y + 60(50—x—y) + 36(20—x) + 47(36—y)
+ 31(x+y—16)],

or

C =45,960 — 30x — 10y {in dollars}.

Lines of constant cost are shown in Figure 1.8.3 as dashed lines;
clearly, the feasible solution with minimum cost is at x = 20, y = 30
in Figure 1.8.3. This minimum cost solution is shown in Table 1.8.5.

Note that no wheat should be shipped from Chicago to Denver,
even though such shipment would involve the lowest rate per bushel.
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Figure 1.8.3. Solution to minimum cost shipping problem.

Table 1.8.5
42 35 60)
20 30 0 50
36 47 31
0 6 34 | 40
20 36 34

The difference between the best and the worst feasible solutions
is only $740 out of about $45,000. However, this 1.6% difference
could be a substantial per cent of the profit involved in the sales.

1.9 Numerical solution of problems with inequality constraints

Numerical solution of optimization problems with inequality con-
straints is one of the major concerns of the field of “mathematical
programming.” Numerous texts exist on the subject (e.g., Zoutendijk),
and we shall describe only the main features of the “method of
feasible directions” or “gradient projection method,” This method
is divided into two separate hut related steps:

STEP 1. Finding a feasible solution. With reference to Section 1.7,
locating a value of y such that fly) = 0 is often nof a trivial task. In
problems with equality constraints, such as those treated in Sections
1.5 and 1.6, finding a feasible solution is usually straightforward since
there are more variables (x and u) than there are constraint equations
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{(flx,u) = 0). In problems with inequality constraints, there are often
more constraint equations (components of f) than variables {com-
ponents of ). Finding a feasible solution may be appreached by
guessing a value for y, then considering a small perturbation, dy,
which will change f according to

of
df =—dy.
if= y Y
If certain components of f{y) are greater than zero, i.e., not feasible,
we require a dy such that the corresponding components of df are
less than zero. In other words, fly + dy) should be an improvement
toward a feasible solution, that is,

{1.9.1)

Fdy=0, (1.9.2)

where F contains only rows of df/dy corresponding to infeasible
values of f. The problem is thus reduced to finding feasible solutions
to successive linear inequalities (instead of nonlinear inequalities).

STEP 2. Finding a feasible improvement. If a feasible y can be
found, the next step is to find a dy which is not only feasible but
which also improves the performance index; that is, we must have

Ffy+dy)=0 and L{y + dy) < L(y)}. This gives rise to another set of
linear inequalities like {1.9.2} above:

ki

-dy=Hdy=0.

of
ay

(1.9.3)

Example. Quadratic performance index with linear inequality con-

straints. Minimize

722
L=%+(y?—l)2

subject to

3y, + 2y, —6=0, y, >0, y,>0.

A sketch of the admissible region with contours of constant L is shown

in Figure 1.9.1. If we guess y, =y, = ¥ to start with, we find that
oL _ _3 8L _
oy, 4’ ay,

Since we are minimizing, the greatest improvement will be in the
direction of the negative gradient that is shown at Aly, =y, = %). We
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Figure 1.9.1. Solution of the quadratic programming problem
of preceding example.

proceed in that direction until we reach a minimum (which may be on
a boundary). In this case we reach a2 minimum at point B in the in-
terior of the admissible region. Following the direction of the nega-
tive gradient at B, we reach point C on the constraint 3y, + 2y, —
6 =0. Here the negative gradient points cut of the admissible
region, so we take the component of the negative gradient along the
constraint boundary, which is up in this case. Moving along the
constraint, we finally arrive at the minimum at D, where the negative
gradient points out of the admissible region and is perpendicular to
the boundary.

As discussed in Section 1.8, linear programming problems have
gained a great importance in recent years. Thus, it seems worthwhile
to discuss briefly the special procedures applicable to them. Consider
again the problem of minimizing

L — bTy (1.9-4)
subject to
ATy +¢=0, (1.9.5)

where y is an n-vector, AT is an (m X n)-matrix, m > n . We know that
the minimum must occur at a point intersection of n hyperplanes }
whose normals are in the direction of rows of AT, We start the solu-
tion, then, by selecting n equations out of (1.9.5) and solving them

tThere are abnormal sitnations in which the minimum lies on an “edge” rather than
at a “point”; see conditions specified in Section 1.8 for a “point” solution.
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(set equal to zero). If this point is feasible, we then examine the n
“edges” leading away from this point (formed by the intersection of
the n sets of n—1 hyperplanes we have chosen); these “edges”™ will
have directions, away from the point, of €', €2, .. .,¢", where ¢l is a
unit n-vector along the ith edge. The gradient of L is simply b7, so
we consider the projection of the edge directions on b7; that is, we
consider the scalar products b%e ,i = 1,...,n. If all the scalar prod-
ucts are positive, it is not possible to move along any edge to obtain
an improvement (i.e., a smaller value of L), we have the optimal
solution. On the other hand, if some of the scalar products are nega-
tive, let us choose the one with the largest magnitude and move along
the corresponding edge until we encounter another constraint. This
new constraint and the n — 1 old constraints that form the “edge”
determine a new point at which the value of L is necessarily smaller
since we moved along a projected gradient b™e' < 0. The process is
then repeated over and over until a point is found at which we have
all b%eé’ > 0 ; that is, no improvement is possible. This is the basis of
the simplex algorithm proposed by Dantzig (1963), which uses,
essentially, a method of feasible directions.

Problem. Perform one step of the above-described process for Example 2

of Section 1.8. Why are we allowed te move as far as the next con-
straint boundary during each step of the simplex method?

1.10 The penalty function method

Another method for the handling of equality constraints as well as
inequality constraints is the so-called penalty function method. The
idea is quite simple. Suppose we wish to minimize L{y) subject to

fly)=0. (1.10.1)

Instead of solving the desired problem directly, we consider the mini-
mization of

L=L{y)+ K|fiy)lr (1.10.2)

subject to no constraints, where K is verv large.f If L attains a mini-
mum at y*, it is reasonable to expect that

fy*)=0 (1.10.3)
and

L{y*)==L{y°), (1.10.4)

1Other functions of f{y) that are zero when fly) = 0 and positive when fiy) = 0 are, of
course, possible.
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where y° is the value of y that minimizes L subject to fly) = 0. In
fact, it is possible to show that, in some cases,
lim y* —y*, lim L(y*) = L{y°) . (1.10.5)
K== Ko

Computationally, the penalty function method is appealing and has
been used both in parameter optimization problems and in function
optimization problems (see Chapters 2, 3, and 4).

Nevertheless, it is important to note that, in practice, the penalty
function method occasionally does not come very close to the proper
limit indicated in (1.10.5). One reason for this is as follows: The
augmented performance index (1.10.2}, with large K, has a long nar-
row “valley” containing the point y* at the “bottom” (see Figure
1.10.1). Gradient procedures for finding this point tend to go back and
forth, from one side of the narrow valley to the other side, instead of
down the “long” direction of the valley, Even worse, if K is very
large, the “*width” of the valley becomes comparable to the numerical
accuracy of the computation, and the gradient procedure breaks down
completely.

Another potential source of difficulty is the creation of artificial
minima that are not present in the original problem.

Example. Find y, and y, to minimize

L={y, -2F +y}

subject to y, = 0. Now, this is a trivial problem with the obvious
answer ¢, =y, = 0. However, if we use the penalty function ap-
proach, we minimize

2 v/ 1 4K
- i 2 2 = 2 =
L={y -2r+y; +Ky yz+[(y’ 1+K)/I+K]+1+K'

Contours of constant L are ellipses with centers at ¥, =(2/1 + K),
Y, = 0 and semi-axes in a ratio of V1 + K. Figure 1.10.1 shows con-
tours of constant L for K = 35. Note the long “valley” created by the
penalty function.

Inequality constraints can also be handled by the penalty function
method. Suppose that, instead of {1.10.1), we have

f=0. (1.10.6)

Then we may consider minimizing

L=L({y) + K[ 1L, (1.10.7)
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of L
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\ L=(y;—2)24y,?+ Ky, 2

Figure 1.10.1 Cost contours created by penalty functions in the
preceding example.

where 1{f) is the unit step function defined as

_[,  f=0,
l(f)‘{o, <0,

The use of penalty functions is often quite helpful during the initial
stages of numerical computation on problems with complex con-
straints.

(1.10.8)



Optimization problems
for dynamic systems

2

2.1 Single-stage systems

As an introduction to multistage systems, let us consider the simplest
nontrivial multistage system, namely, the single-stage system.

A system is initially in a known state described by x(0), an n-
dimensional state vector. Choice of an m-dimensional control vector
1(0) determines a transition to a state described by x(1) through the
relation

= fo[x(0), u(0)] (2.1.1)

which is shown schematically in Figure 2.1.1.

u(0)

x(0) —>{ f* —> x(1)

Figure 2.1.1. Flow chart for a singie-stage system.

_ We wish to choose ¢(0) to minimize a performance index of the form
J = olx(1)] + Lo[x(0), u(0}] . (2.1.2)

This is a parameter optimization problem with equality constraints,
exactly like the ones considered in Section 1.2. We shall treat it in the
same way, differing only slightly in our choice of an H-tunction; we
adjoin the constraints (2.1.1) to (2.1.2) with undetermined multipliers
A1)

T = ¢lx(1)] + Lo[x(0) , w(®)] + ATL{f°[x(0) , u(0)] — x(1)} . (2.1.3}

42

Sec. 2.2 = Multistage Systems 43
Now, let
He = L2[x(0) , u(0)] + AT(1) fo[x(0) (2.1.4)
so that (2.1.3) may be written as
J = ¢lx(1)] + H[x(0), w(0) , A(1)] — A7(1) x(1). (2.1.5)

Next, consider infinitesimal changes in J due to infinitesimal changes
in u(0), (1), and x(0) :

s a_d)_ T dH
& - [ax(l) 5 (1)] (1) + o

An expedient choice of A(1) is apparent from (2.1.6); to avoid deter-
mining dx(1) in terms of du{0) by differentiating (2.1.1}, we choose

¢

(7]

du(0) + dx( ). {2.1.8)

Bx( )

Thus aH*/3u(0) is the gradient of J with respect to ©(0), holding x{0)
constant and satisfying (2.1.1), and aH*/#x(0) is the gradient of J with
respect to x(0}, holding «{0) constant and satisfying (2.1.1). If x{0)
is given, we have dx(0) = 0.

Clearly, a stationary value of J and, hence, J, for given values of
x(0) , will be obtained if

aH?
au(0)

Note that (2.1.1), (2.1.7), and (2.1.9) constitute n + n + m equations for
determining the n + n + m quantities x(1), A(1), and w{0).

=0, (2.1.9)

22 Iflultistage systems; no terminal constraints,
fixed number of stages

Optimal programming problems for multistage systems are also
: Parameter optimization problems. Consider the multistage system
described by the nonlinear difference equations:

x(i+ 1) = fix(i) , u(@)] ; x(0) i =0 ., N=L;

which is nothing but a sequential set of equality constraints, where
x(i), a sequence of n-vectors, is determined by u(i). a sequence qf
m-vectors. This is shown schematically in Figure 2.2.1. ey

(<

given,

@.2.1)

T(1) = 2.1 ;
AT(1) TR (2.1.7)
As a result of this choice, (2.1.6) becomes
~ dH® aHe
df = p
i 5a(0) du(0) + 32(0) dx(0). (2.1.8)

B, .
A

B ik gy
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ul{0) u(l) u(N--1)
& x(1) @ x{2) x{(N—-1) @
x(0) ¢ o == f1 = = == x(V)

Figure 2.2.1. Flow chart for a multistage system.

Consider a performance index of the form

N—-1

J=o[x(N)] + _E Lix(i) , u(d)] . (2.2.2)

The problem is to find the sequence u(i) that minimizes (or maxi-
mizes} J. Adjoin the system equations (2.2.1) to J with a multiplier
sequence A(i) :
— N-1
J = olx(N)] + ¥ [Lix(i), u(i)] — =@ + 1)}].
<o 2.2.3)

w(i)] + AT+ D{fx()

Far convenience, define a scalar sequence H :

H = Li[x(#), w{i)] + AT(i + 1) filx(i}, uli)], i=0,...,N-1. (2.24)
Also, change indices of summation on the last term in (2.2.3), obtain-
ing

T = ¢lx(N)] - 2 Ya(i)] + He.  (2.2.5)

Now consider differential changes in J due to differential changes in
uli)

=285 -voolon 5 (2 v 2 )

du(0). (2.2.6)

dx(0) +

ax O 500

It would be tedious to determine the differential changes dx(i) pro-

duced by a given dul(i) sequence, so we choose the multiplier se-

quence A(i) so that we have

dH! - oL} AT 0 afi
= i) = + i+ 1)——;

ax) - VPN =gy TG DgG

‘+.

AT(‘E) =

with boundary conditions
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Equation (2.2.6) then becomes

T o OH! T 9 ¢
df = Z Sl )d w(i) + AT(0) dx(0) . (2.2.9)

i=0

Thus, dHi/ou(i) is the gradient of ] with respect to u(i} while holding

x(0} constant and satisfying (2.2.1), and AT(Q) = aH¢/ax(0) is the gradi-

ent of J with respect to x{0) while holding u{i) constant and satisfying
(2.2.1). If x{0) is given, we have dx(0} =0,

For an extremum, d] must be zero for arbitrary du(i) ; this can only

happen if we have
oH:
—— =10 i=0,... N—-1.
au{i) » t 1 » (22 10)

In summary, to find a control vector sequence u(:) that produces a
stationary value of the performance index J, we must solve the follow-
ing difference equations:

i+ 1) =fl=0) 2.2.11)
L[ S ) aLi if ‘
O R [M)} , 2.2.12)

where u(i) is determined by seeking a stationary point of H?, which
requires that we have

oMt _ oL of
el el

=1, i=0,...,N-1. (22.13)

" The boundary conditions for (2.2.11) and (2.2.12) are split; i.e., some

are given for i = 0, and some are given fori = N

x(0) given (2.2.14)
_[ % T ,
A(N) = [ax(N)] _ 2.2.15)

sz Such problems are called two-point boundary-value problems, and
i they are sometimes rather difficult to solve, even with a high-speed
- computer. Notice that the difference equations (2.2.11) and (2.2.12)
. are coupled since u(i) depends on A(i) through (2.2.13), and the co-

efficients of (2.2.12) depend, in general, on x(i) and u{i).
In order that J be a local minimum, not only must we have

3 OH{au(i) =0, but, in addition, the second-order expression for dJ
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with the constraint {2.2.1) must be nonnegative for all {infinitesimal)
values of du(i) ; that is, we must have dJ = O, where (from (2.2.3))

_1,, dp
4l = 5 dx'N) = Xy aw) )
#Hi H
- ; dx(i)
1 8= ax(i) ax(i) * ax(i) ouli)
E; [dx7(i) duT( )] vaH! ;2H'f‘ L J (2.2.16)
TTEA]

au(i) ax(i) * du(i) ouli)

The values of dx(i) are determined by the sequence du(i} from the
differential of (2.2.1).

af af
@ PO Sum

Methods for checking this criterion are given in Chapter 6.

dx(i+ 1) = du(i), dx(0)=0. (2.2.17)

Example. Quadratic performance index with linear system equations.
Find the control vector sequence u(f),i=0,...,N — | that minimizes
the quadratic form

J = 5T(N)A _2 x(i) + 3uT() B (@), (2.2.18)

where A(i) and B(i) are given positive definite matrices, with the
linear system equations

x(i + 1) = B(i)x(i) + ldhuli)
SOLUTION. The H' sequence for the problem is

Hi = 3x7(i) A(d) x() + 3u(i) B(i) u(i) + A7 + 1) [@(0) x(2) + TG u(@)],
(2.2.20)

x(0) given . (2.2.19)

where
ATEY=AT(E + 1) D) + xT{) A}) and  AT(N)=xT(NJAN). (2.2.21)
A stationary value of H! with respect to u(i) will occur where we have

aH!

Buld) =uT({) Bli)+ ANT(i + 1} T(§) =0, (2.2.22)
= u(i) = —[B@]7 IT({@) Al + 1). (2.2.23)

B Hence, we obtain
. x(i + 1) = ®@i) x(i) — TE) [BE)] ' TTEAGE+ 1) {2.2.24)
i A= ®TE MG+ 1)+ A@)x()); i=0,...,N-1, (2.2.25)
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with boundary conditions A(N) = A(N)x(N}and x(0) given. These are
coupled sets of linear difference equations with two-point boundary
values; the solution to this boundary-value problem yields the mini-
mizing sequence u(i) from (2.2.23).

problem 1. Show that the two-point boundary-value problem of the
Example can be solved by placing

A(d) = S{)x(8)
and determining S${i} from the backward recursive relations:
S(i) = D7) M(i + 1)®E) + AG) |

M@+ 1)=[SYi+ 1)+ TEB-) )], $=N-L....0;

or
Mi+1)=S8S{i+1)-86G+ 1)T3E [BG)
+ ') S(i + 1) T{EY- IFT 4583 + 1},
where
S(N)=A(N).
Having determined S(i), i=N—1,...,0, from the relations above,
we obtain
x4+ 1) =[I+T{)B- 1) TT{)S3E + 1) d(i)x(i), x(0) specified.

This is known as the sweep method for solving a linear two-point
boundary-value problem. (For more on this method see Sections 6.10
and 6.11.)

Problem 2. Consider the problem of this section as a parameter opti-
mization problem of Section. 1.2 where x denotes the vector with
component vectors x(1),. . .,x(N), u the vector with component vec-
tors u(0),...,u(N— 1), and f the vector with component vectors

Lo -0, x(2) = f,. .., x(N)— f¥-1. Show that the necessary condi-

tions of Section 1.2 reduces to that of Equations (2.2.11)-(2.2.15).

Continuous systems; no terminal constraints, fixed terminal time

Optimal programming | roblems for continuous systems are problems

in the calculus of variations. They may be considered as limiting
2B cases of optimal programming problems for multistage systems in

which the time increment between steps becomes small compared to
] times of interest. Actually, the reverse procedure is more common
f today; continuous systems are approximated by multistage systems
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for solution on digital computers. Consider the system described by
the following nonlinear differential equations:

= fx(t),ult),t]; x(,) LEEEE,

where x(t), an n-vector function, is determined by u(t), an m-vector
function. Consider a performance index (scalar) of the form

f]+J Llx(t),ut) , tl dt.

The problem is to find the functions u(t} that minimize (or maxi-
mize) J. Adjoin the system differential equations (2.3.1) to J with
multiplier functions A(t):

(2.3.1)

given,

J = elxl(t, (2.3.2}

T =lxtt) ] + [ LI ult) 1]+ N0 ute) 0] = £ .
o [3.39)

For convenience, define a scalar function H (the Hamiltonian), as
follows:

H[x(t), u(t) ,A(t) , t] = L{x(t) ,ult), t () flx(t) }.tl. (2.34)

Also, integrate the last term on the right side of {2.3.3} by parts,
yielding

£] + AT(t

J= plx(t) .t

J {H{x{t)

Now consider the variation in J due to variations in the control vector
{t) for fixed times t, and t,,

8] = [(7—?0") ] + [N 8x], L [(ﬂ+ )\T) 6x+%—’iau]dt.

a
It would be tedious to determine the variations 8x(t) produced by a
given 8u(t), so we choose the multiplier functions A(t) to cause the
coeflicients of 8x in (2.3.8} to vanish:

gro _oH _ L, of

ax ox ax’

tl — AT(txlt,) + N7(,) x(2, )

}ot]+ ATy x(2)} dt (2.3.5)

1=t
(2.3.6}

2.3.7)

with boundary conditions

e
ax(ts)”

AT(t) = (2.3.8)

Equation (2.3.6) then becomes
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(2.3.9)

a

aj=xf(to}ax(t)+ffﬂa dt.
to

Thus, AT{t,) is the gradient of J with respect to variations in the initial
conditions, while holding u(¢) constant and satisfying (2.3.1). The
: functions A(t) are also called influence functions on J of variations in
; x(t) since t, is arbitrary. The functions dH/du are called impulse re-
|~ sponse functions since each component of 9H/du represents the vari-
ation in J due to a unit impulse (Dirac function) in the corresponding
component of du at time ¢, while holding x(¢,) constant and satisfy-

é
!

ing (2.3.1).
For an extremum, 8] must be zero for arbitrary du(t); this can only
happen if
oH
731::0’ tnftftf. {2.3.10)
Equations (2.3.7}, (2.3.8), and (2.3.10) are known as the Euler

Lagrange equations in the calculus of variations.

In summary, to find a control vector function u(#) that produces a
stationary value of the performance index J, we must solve the follow-
ing differential equations:

x=flxut), (2.3.11)
; af\T 8L
where u(t) is determined by
oH af\T ALNT
S50 o (E) A+ (E) ~0. 2.3.13)

The boundary conditions for (2.3.11) and (2.3.12) are split; i.e., some
are given for t = £, ; and some are given for ¢t = R

x(t,)

o

Thus, as in the multistage system optimal programming problems,
we are faced with a two-peint boundary-value problem.

- A first integral of the boundary-value problem exists if L and fare
‘not explicit functions of the time ¢, since we have

H=H,+HI5c+Hua+)\Tf
=H,+H,u+ (H,+\")f
=H,+H.

given, (2.3.14)

(2.3.15)
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If I. and f (hence, H) are not explicit functions of £ and u(t) is an
optimal program (that is, aH/8u = 0), then we have

H=0 or H = constant on the optimal trajectory . (2.3.16)

In order that J be a local minimum, not only must we have
dH/3u = 0 but, in addition, the second-order expression for 3/, hold-
ing & — f= 0, must be nonnegative for all values (infinitesimal) of 8u ;
that is, we have

1 b
8f = ;[BxT 4 Sx]
t=tf

2 dx? iy
#H _&'H (2.3.17)

10y axt  axdu -

+5[ o o) Gy Tt || |40
o == == u
ouox = oul
where 8(x — f}=0, or
d af f
=—8&x+— =0 2.3.1
Tt (8x) o 5x 3 du , dx(t,) { 8)

Equation (2.3.18) determines 8x(¢) in terms of du(t), but in a compli-
cated way. We will have more to say about this second variation in
Chapter 6.

Example 1. Hamilton’s principle in mechanics. The motion of a con-

servative system, from time ¢, to ¢, is such that the integral

i
= f " Liu,qg) dt (2.3.19)
tﬂ
has a staticnary value, where
L = T{u,q) — V{g) = the Lagrangian of the system, .
T = kinetic energy of the system,
V = potential energy of the system, (2.3.20)
¢ = generalized coordinate vector (state of system),
1u = g = generalized velocity vector.
The Hamiltonian is then
H=L+Xu.t (2.3.21)t

Consequently, the Euler-Lagrange equations are

+In mechanics, H is defined as —L + AT u, and the vector A is usually called p, where p
is the generalized momentum vector.
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ar= -2 % (2.3.22)
f aq aq
p=tE_ 0 . (2.3.23)
ou ou
Combining these last two vector equations, we have
d (aL) aL
(5= -==0, 2.3.24
dt \8qg dq ()

which are Lagrange’s equations of motion for a conservative system.
If L is not an explicit function of time, a first integral of the motion
is H = constant:
al.

H:L——u:T—V—£u=c0nst.
ou

” (2.3.25)

Now T is a homogeneous quadratic form in u, so that we have

OT 57, (2.3.26)
ou
Hence, we have
—H=T+V =const; (2.3.27)

© that is, the kinetic plus potential energy is constant during the motion.

Example 2. Variational principle for nonconservative mechanical sys-

tems.! The motion of a nonconservative mechanical system from time
t,tot,is such that

5f'fT(u,q)dt + f’fof(q)ath =, (2.3.28)
L to

8q = du, (2.3.29)

and Q(q) is the generalized force vector. Q(g) is defined by the fact

that the work done on the system by these generalized forces is given

by the (path-dependent) line integral

W = f Y orig)dg. (2.3.30)
Iy

The second term in (2.3.28) is the time integral of the virtual work;

; note that it is not 8 ] Wdt, which prevents us from defining a Ham-

.-:fSee C. Lanczos, The Variational Principle of Mechanics. Toronto, Canada: Univer-
kisity of Toronto Press, 1949, Chapter 5.



52 Optimization Problems for Dynamic Systems « Ch. 2

iltonian for nonconservative systems. However, we can adjoin the
constraint (2.3.29) to Equation (2.3.28) with a Lagrange multiplier
vector, as follows:

t
ff[ﬂau + L sq + 0T 8q + AT(5u — aq)] dt=0. (2.331)
.. Lot oq

1]

Integrating the last term by parts, we have

lf 6_11 T) (£ T 'T) ] _
f,,,[(au“ B bl TQTT g de=0.  (Ra52)

As usual, we choose A{t) to make the coefficient of 8g vanish:

ar=-L or (2.3.33)
dq
Since u is arbitrary, the integral can vanish only if we have
§ e AL (2.3.34)
au
Combining (2.3.33) and (2.3.34) to eliminate A, we obtain
d (GT) oT i
Le) -2t 2.3.35
di\og) " aq or, ( )

which are Lagrange’s equations of motion for a nonconservative
mechanical system.

Example 3. Minimum-drag nose shape in hypersonic flow.* The pres-
sure drag of a body of revolution at zero angle of attack in hypersonic
flow is given quite accurately by the expression

D= —2itg f " cowdr, (2.3.36)
where -
q = dynamic pressure,
x = axial distance from point of maximum radius,
r = r{x) = radius of body,
—fil—;= —tan # (see Figure 2.3.1) {2.3.37)
C,= {2 Si(;l2 8 : gz 8} = pressure coefficient (Newtonian  (2.3.38)

approximation),}

+This was the first problem ever solved in the calculus of variations; it was set up and
solved in 1686 by Isaac Newton, whose model of aerodynamic forces happens to be
very good at hypersonic speeds but not very good at subsonic speeds,
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¢ = length of body,

{0} = ¢ = maximum radius of body,

rA 9
E ? Flow
3 <
a
_¥ i BT ——— T
./ €
f—ssm ]

Figure 2.3.1.
shape.

Nomenclature for analyzing minimum-drag nose

The problem is to find r{x) to minimize D for given values of ¢, #,
and a.
Let

il st (2.3.39)

dx

be the control variable, and allow for the possibility of a blunt tip by
writing (2.3.36) in the form

—u =

D 1 5 f T oyl
et . 2.3.40
dmq 2[r(/)]+.,l+u2dx (2:3:40)
The Hamiltonian of the system is, therefore,
m3
= AM—u). 2.34
L AW 2:341)
#. The Euler-Lagrange equations are

dr aH ul
Ha o0 , 2.3.42
dx ar 1+ u? { )

_oH  r*(3+u?)
= o ,—(1 o (2.3.43)

Now the first term on the right-hand side of (2.3.40) is a function of
r(¢). According to (2.3.8), the optimal value of #(#) is such that

A& =) (2.3.44)

Since r(0)=a is specified, A(0) is not specified. Thus, the two
1 ‘boundary conditions for the second-order system of differential equa-
b tions (2.3.37) and (2.3.42) are (2.3.44) and r(0) = a .

t  Instead of trying to solve (2.3.43) for 4 in terms of A, substituting
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into (2.3.37) and (2.3.42) and integrating, we can take advantage of
the fact that the Hamiltonian in (2.3.41) is not an explicit function
of x, so that H = constant is an integral of the system. Eliminating A
between (2.3.41) and (2.3.43) gives

T
H= —4(# = const. (2-3-45)

Eliminating A (#) between (2.3.43) and (2.3.44) yields

,M] _ .
r({’)[l Q=wr ). =0, (2.3.46)
which is satisfied by r{#) =0, or

u(f)=1. (2.3.47)
Using (2.3.47) in (2.3.45) at x = ¢, we find that

—-H= —rgg—) (2.3.48)

Using (2.3.453) and (2.3.48), we have the radius of the body in terms
of the slope u,

7 (1+utyp _
T (2.3.49)
From (2.3.37) and (2.3.39), we have
de 1
dr u
or
£-x (1 d (1+d?) .
ri¢) J:u wdu 4ud du (2.3.50)
Equation {2.3.50) can be integrated in terms of simple functions:
fox _1(8 1 7 o1 .
” _4(4u4+u2 : logu). (2.3.51)

Equations (2.3.49) and (2.3.51) are parametric equations for the
optimum body shape. The tip radius r(#) and the slope u, at x =0
must be obtained by solution of the transcendental equations

a (1+udp

- 2
{£) g (2.3.52)
£ 1/ 3 1 7 1 )
_— R 1 . 3
r(i¢) 4 (4ug * w4 Fu, (2.3.53)
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Figure 2.3.2 shows some of these shapes for fixed 2 and several values

of £.
The minimum-drag coefficient is given by

s D ug ( 0 2 4 6 4 1
TR \3 + 100 + 17u) + 2ul + 4u} log“_o) . (2.3.54)
As af¢ — 0, it is easily shown that

, /— x\3is
LAY ) (2.3.55)
A 4
27 fa\? a
cﬂaﬁ(—{;) ., Lo (2.3.56)
Gas
—
flow

Figure 2.3.2. Minimum-drag bodies of revolution in hypersonic
ftow for several fineness ratios.

. Continuous systems; some state variables specified at a
fixed terminal time

.Suppose that, in the optimization problem defined in Section 2.3,
- We wish to constrain some of the components of the state vector x(¢)

:'FO have prescribed values at t = t,. Section 2.3 applies up to and
including (2.3.7). Now, if x, (the ith component of the vector x)
: prescribed at ¢t = ¢, it follows that admissible variations must pro-
{n-druce 8x,(¢) =0 in (2.3.6). Thus, it is not necessary that [(a/ax,) —
_: l..=0. Essentially, we have traded this latter boundary condition
tor another, namely, x,(t,) given, so that the boundary-value problem
72.3.11)—(2.3.15) still has 2r boundary conditions.

g Similarly, if x, is not prescribed at £ = t, . it does not follow that
1-?.: %(t,) = 0; in fact, there will be an optimum value for x,.(¢,) and it
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will be such that 8] = 0 for arbitrary small variations of x,(t,) around
this value. For this to be the case, we choose

A dE) =0, (2.4.1)

which simply says that the influence of small changes in x,(¢,) on
J is zero. Again we have simply traded one boundary condition,
x,{t,) given, for another, (2.4.1). Boundary conditions like (2.4.1)
are sometimes called “natural boundary conditions.”

However, the necessary condition (2.3.13), éH/du = ¢, needs ad-
ditional justification for the problem with terminal constraints. In
Section 2.3, we derived it under the assumption that du(t) , f, <t <%,
is arbitrary. In the present case, 8u(t) is not completely arbitrary; the
set of admissible 8u{t} is restricted by the constraints

sx(t)=0, i=1,....,q, (2.4.2)

where we define “admissible” 8u(t), generally, as those du(t) which
satisfy all constraints of the problem, for example, (2.4.2).

Now, it is still possible to determine influence functions for the
performance index exactly as in Section 2.3. In this section we shall
designate these influence functions with a superscript “J.” However,
since x,(t,) for i=1,...,q are specified, it is consistent to regard

b=lxg, 00 Xdisy, (2.4.3}
Thus {cf., Equations {2.3.7) through (2.3.9), we have (for 8x(¢,) = 0)

[ 9L af
- St unr 2L
3] J:n [au + (AT au]ﬁu(t)dt, (2.4.4)
where
i af\T LA\T
A = (a_f) AL — (?‘)‘_x) (2.4.5)
x
0 3 j =1, 2 q
Ay =] ap PR " (2.4.6)
8%, t=zf’ ’

Suppose that, instead of J = ¢[x(¢/)] + f’f L(x,ut) dt , the perform-
ance index was J = x,(t,); i.e., the 1th Component of the state vector at
the final time. We could then determine influence functions for x,(¢, )
by specializing the relations above; we would put ¢ = x,(t;) and
Li(x,u,t)=0. We shall designate these influence functions with a
superscript “i.” Analogous to Equations (2.4.4), (2.4.5), and (2.4.6),
we have
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¢ o df

= (ayr L

J 8x,(t;) ft ) (A== du(t) dt (2.4.7)
where
o af\t
i) = | — (i) ¢
. 0, i#j,

A () = (2.4.9)
- I, i=j, j=1,...,n

We could, in fact, determine g sets of such influence functions for
i=1,...,q(see Appendix Ad).

We shall now construct a 8u(t) history that decreases J, i.e., pro-
duces 8] < 0, and satisfies the g terminal constraints (2.4.2). Multiply
each of the g equations in {2.4.7} by an undetermined constant, v, , and
add the resulting equations to (2.4.4):

8 + v5x, (tf)=f’{g-‘ri+ [AV) 4 p @7 f}au dt.t  (24.10)

Now choose

- k{( f) )+ p )U”]+(3i') } 2.4.11)

where k is a positive scalar constant, and substitute this expression
- into (2.4.10), as follows:

g (a_f)T ()\(J) + Vi)l(“) + (%)T

tp |\Ou

2

o + vdx(t) = —k di<0, (24.12)

which is negative unless the integrand vanishes over the whole inte-
. gration interval.

Next, we determine the v,’s so as to satisfy the terminal constraints
(2.4.2). Substituting (2.4.11) into (2.4.7), we have

- 0=sn )=~ [0 L [(E) o s i + () ] a

"0 'r W]T [( f) A (gi) ]dt+ Y J;f [M“]Tg—i(gf)qn,\mdt,

B T 1. :
_J’mepeated indices indicate summation over the range of that index, for example:

o Ox; = i pox; .
=1
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from which the appropriate choice of the »;'s is
v=-0Q7'g, (2.4.13)

where Q is a (g X g) matrix and g is a g-component vector:

Qij = !f (AU))Tfufz AU) dt H i:j = 1) gl q H (24'14)
te
! d of\" aLNT
- [foor L[ e (B Yo =10 2o
ty Ju L\ou ou

The existence of the inverse of Q is the controllability condition (see
Appendix B2 and Section 5.3). If O-' does not exist, it is not possible
to control the system with u(t) to satisfy one or more of the terminal
conditions.

We have thus constructed a du(t) history that decreases the per-
formance index and satisfies the terminal constraints (2.4.2); that is,
sult) is admissible and improving. From (2.4.12) the only case in
which we cannot decrease the performance index is when

aL af
— 4+ A+ AT —=0; t 2t (2.4.16)
ou ! i) ¢ f
If (2.4.16) is satisfied, we have a stationary solution that satisfies the
terminal constraints. Now, since the influence equations (2.4.5),
(2.4.6), (2.4.8), and (2.4.9) are linear, the necessary condition (2.4.16)
may be written as

L (2.4.17)
o
where
H=L{xut)+ AT f(xu.t) , {2.4.18)
and .
IJ'}. B j = 11 L
. ' (2.4.19)
T 5 s —
A H, \(t) ‘93 I VP,
ax. |, _
jle=tp

The development in this section represents the fundamental approach
to the modern calculus of variations. By construction, we arrive at the
equation

tr aH

8] = | H (t)dult)dt, where H (t)= o (2.4.20)
to

and the Hamiltonian is defined in terms of the multiplier functions

A(t) and multipliers v. We then show that, unless we have H (1) =0,
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| ifh f;;, ?lways pho.is;:blea( a(ssuming controllability; that is, Q™' exists) to

B, o e Vv suc at du(t) as given by (2.4.11) i ;
PROVING. y (2.4.11) is ADMISSIBLE and IM-
H, may be interpreted as a function-space gradient of the perform-

. ance index with respect to the control i
variable u(# i .
fixed the terminal values of x,, i = 1 (t), while holding

: ., g and satisfvi
of differential equations. a satisfying the system

Ex‘ampig. Maximum velocity transfer to a rectilinear path. Consider

particle of mass m, acted upon by a thrust force of magni'tude n:ta Wal
assume planar motion and use an inertial coordinate system x' te
locate the particle; the velocity components of the part);cle are,git vO

he thrust'directlon an&,le .5 1![6 ( Ill Il var E]I) e T e Qyﬁie"]
. . th S Yo
(See Flglll’e _.:.4 l ). l he equatiUnS Of mOtiOn are

u=acospf,
v=asinf,
ft=u,

y=v,

v Trajectory

> X

Figure 2.4.1.

Nomenc . ,
Sratian Son, lature for planar motion with thrust accel-

wher i i
e the thrust acceleration, a, is assumed to be a known function

of time. The equati
. atio i ;
Soygles q ns for the influence functions are particularly

NEA A=d, A=0, A =0,

X y ’
hese relations are easily integrated to yield

Fl')l' our N . &
410 isp;drggzt;:‘ 1nAthls sectfon, this“"ﬁrst-order" demonstration of the necessity of
X €. A more rigorous “second-order” demonstration is given in Syez

on 6.3, where it is sh
, wh own that the conc e ity”
. TG presitiehown ept of “normality” is really what is needed,
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A, =—ct+e,, A= t+e,, A,=c¢,, A =6,
where ¢,, ¢,, ¢,, ¢, are constants.

If we wish to extremalize a function of the end conditions only, then
we have L =0, and the Hamiltonian of the system is

H=2xacos B+ Masinf +ru+Ap,
which is constant for an optimal path if @ is constant.
The optimality condition is

L. SNt x cosf=0.

0B
Thus, the optimal control law is

A, —ct+ec
tang=—"t=—1>—2"
A, —cit+tg
which is often referred to as the “bilinear tangent law.”
We wish to transfer the particle to a path parallel to the x-axis, a
distance h away, in a given time T, arriving with the maximum value

of u(T). We do not care what the final x coordinate is (see Figure 2.4.2).

YA
a
t=T
u(M
8
- h
l—“,'- x
=0

Figure 2.4.2. Nomenclature for transfer to a rectilinear path.

Thus, the boundary conditions for the problem are
w(() =0, AT =1,

)=0, oT=0,A,T)=v,;
x0)=0, AT =0;

)=0, w(T)=h A(T)=r,;
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. where v, and v, are constants to be determined so that o{T) =0
y(T)=h.
With A, =0, it follows that A, =1 throughout the flight, so the
optimal control law becomes a “linear tangent law™:

3

tan B =tan 8, — ct, where tanB, =v, +v,T,c=v,.
For constant-thrust acceleration, a, the differential equations are
readily integrated with the linear tangent law, using g as the inde-
. pendent variable instead of t, to obtain
a tan 8, + sec B,

=—10 "
L gtanﬁ+sec,8

v=%(secﬁn —secf),

tan @B, + sec Bo)
b

a
x=§(secﬁo —sec B — tan B log tan B + sec B

. | y =§6;_2 [(tan B, — tan B) sec B, — (sec B, — sec 8} tan B
- log tan 8, + sec [30] .
b tan 8 + sec 8

The constants 8, and ¢ (and, hence, v, and v,) are determined by the
< two final boundary conditions ©v =0, y = h. These relations are im-
- plicit and may be put into the form

4h 1 sec B, + tan
s=——-——log By '60/2tan2[3,
al?  sing, sec B, — tan 8, ¢
2 tan B, 2t
c=T:>tan,8= tan,@o(l —71:) .

"C]e.arly, the one dimensionless quantity, h/aT?, determines B,
3 hich, in turn, determines ¢. The maximum velocity u,,, and the
-final value of x are then determined from

YUmax 2x sec + tan
=—L=1o By Bﬂ/2tanﬁo.
al'  aT sec B, —tan g,

’ hese relations are shown on Figures 2.4.3 and 2.4.4. Note, also, that

2 tan
szktanﬁo’ Vy:—T-LBi_
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90° - where B, is a constant. Note that this program gives ©(T) = 0. Find g,
=9()‘/ so that (T} = h and determine u(T}, x(T). Compare u(T) with uy,,
Bo
60 - ! in the example for a given hfaT2.
=75°
Bo ANSWER
0f ~
Bo=45 sin 8, = 4h2 s u(T)=aT cos B, , xT) = LaTg cos f3, .
0 5 > al 2
Bo=0
_3ol roblem 2. Airplane path in a wind to enclose maximum area in a
- given time. An airplane has a fixed velocity V with respect to the air,
—eob . and the wind velocity, u, is constant. Find the closed curve (as pro-
Y - jected on the ground) the airplane should fly to enclose the maximum
—opl—1 11 gL area in a given time T.
o =2 4 6 8 10

The equations of motion are
t/T

Figure 2.4.3. Thrust-angle programs for maximum velocity
transfer to a rectilinear path.

t=Vcosd+u, y=Vsing,

where we have chosen the x-axis to be in the direction of the wind.

10 If the airplane flies a closed curve, the area enclosed is given by
T
h\ A=§ydx=j yx dt.
.8 o
: ANSWER. The closed curve is an ellipse of eccentricity e = u/V,
. minor axis parallel to the wind, and the maximum area enclosed is
4h/aT? 2772 2 \3/2
e B
4 47 V?
2 \
| % 30° 60° 90°
Bo
Figure 2.4.4. Maximum final velocity (Umay) vs. initial thrust

angle {8,), and j, as a function of 4h/aT?.

Problem 1. Consider an approximation to the optimal thrust-direction
program in the example on pp. 59-62:

V

g, O <t<t,

8 2
-B,, %<t<T,

Figure 2.4.5. Aijrplane path in a wind to enclose maximum area
in a given time.
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Problem 3. Minimum surface of revolution connecting two coaxial
circular loops. Given two coaxial circular loops, of radius a which
are a distance 2¢ apart, find the surface of revolution containing the
two loops with minimum area. (This is the shape a soap film would
take if stretched between two rings.) [HINT: Choose cylindrical
coordinates r,x as shown in Figure 2.4.6. The annular element of

area is

dA = 2arV(dr? + (dxP,

so the prablem is to find u(x) to minimize the integral.

(4
A=21rj rV1+utdx,
—¢

where

dr _ _Ay =

—=u and ) =a,r(—¢)=a.
dx

g
a
x
bt 14
Figure 2.4.6. Minimum-area surface of revolution connecting

two coaxial circular loops.

ANSWER. For0 < & < .528, the minimizing curve is
a

r=H cosh—:’? s where% is determined by%% = cosh—g—.
This equation has two solutions for 0 <¢/a < .663 and no solution
for ¢la > 663. For ¢/a>.528, the minimizing curve is r=0; i.e.,
two discs, each with area a2 . The minimum area is given by

2#&2(tanh§ + HK sech? %) . 0< f <.528,

Amin =
= > .528.
a

2ma?,
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YA
y=c:c:sh}i1r

Two solutions —

|~

_4
Y=7

e

4

y= 6_(;3 " (limiting case}

=

o L

Figure 2.4.7. Soluti f - H
s¥edis olution of the minimum :

problem. surface of revolution

Problem 4. Find the minimum surface of revolution connecting two
coaxial circular loops a distance ¢ apart, where one loop has radius a
and the other loop has radius b <a. For each given value of bfa
sh.ov'v that a limiting value of ¢/a < (¢/a);n exists beyond which the’
;mmmum surface is r=0; that is, two flat discs within the circular
oops.

2.5 Continuous systems with functions of the state variables
prescribed at a fixed terminal time

In some problems we are interested in constraining functions of the
terminal state to have prescribed values: that is, we have
Plx(t)t] = 0
where ¥ is a g-vector (g=<n -1 fL=0,g=nifL=0).
As in the previous section, we adjoin (2.5.1) to the performance

. lndex‘by a multiplier vector » (a g-vector), also adjoining the system
- €equations as in Section 2.3:

f=¢hwuﬂ+W¢hwuﬂ+f%uﬂmmwﬂ+awf—ﬁna.mam
T If we define ’

{g equations}, (2.5.1)

¢=¢+7y, (2.5.3)

the development of Section 2.3 applies here without change. How-
ever, the final expressions for the necessary conditions for a stationary

value of J satisfying (2.5.1) must be interpreted in a manner similar
 to that of Section 2.4; that is, we have a set of parameters, v, which
g Must be chosen to satisfy the ¢ equations (2.5.1%.} In summa;‘y nec-
i essary conditions for J to have a stationary value are ’

§ A controllabili i
ty argument regarding the variations & g imil:
one made in Section 2.4, to justify (2.5.6).  8ult) can be made, similar to the
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e

% = flx,u,b) (n differential equations), (2.5.4) r = radial distance of spacecraft from attracting center

g = radial component of velocity

v = tangential component of velocity

m = mass of spacecraft, rh = fuel consumption rate (constant)
¢ = thrust direction angle

p = gravitational constant of attracting center

T aL T
A= —(a—f) A — (——) (n differential equations),  (2.5.5)
ax ox

HA\T IfAT LT
(9—) = (—f—) A +(—) =0 (m algebraic equations), (2.5.6)
du ou ot

Using this nomenclature, the problem may be stated as:

x,(t,) given or A\ (t) =0k =1,...,n Find ¢(t) to maximize r(t,) subject to

(n boundary conditions), (2.3.7)

r=u, {2.5.10)
ad ap - .
A(t) = (; + VT——‘) (n boundary conditions),  (2.5.8) SR LT} Tsin¢
ox x/\_y t=———+4+—- (2.5.11)
r ® m,— |m|t
ylx(tht) = 0 {g side conditions). (2.5.9) _w Teosd -
The stationarity conditions (2.5.6) determine the m-vector u(t). The _ o om,— |m|t’ ad2)
9n differential equations (2.5.4) and (2.5.5), with the 2n boundary and
conditions (2.5.7) and (2.5.8), form a two-point boundary-value prob-
lem with g parameters v to be found in (2.5.8) so that the g side con- r0)=r,, (2.5.13)
ditions (2.5.9) are satisfied. w(0) =0, (2.5.14)
Example. Maximum radius orbit transfer in a given time. Given a 3
| constant-thrust rocket engine, T = thrust, operating for a given length v(0) = r,’ (2.5.15)
of time, t,, we wish to find the thrust-direction history, ¢(f) , to trans- B B _
fer a rocket vehicle from a given initial circular orbit to the largest ¥ = ult) =0, (2.5.16)
possible circular orbit. The nomenclature is defined in Figure 2.5.1, i
below. = vlty) = rt) 0. (2.5.17)

The Hamiltonian is, therefore,

H=)\,,u+)\(-v—2—ﬁ+ Tsino',b)_|_)t _uv T cos ¢
“Nr 2 m,— |mlt v

P

E and

~
N
Fi l\\
1=t inal
orbit D = rie) + vult) + m|vlt) — 5|
\ e f
\\ Thus, the necessary conditions (2.5.5), (2.5.6), and (2.5.9) become
: . v 2u uv
fo= —;\u(k—k+—ﬁ) —A (——) 2.5.18)
Attracting r v 2/ (
/ center R "
r(0) t=0 A, = =AM+ )\07 . {(2.5.19)
Figure 2.5.1. Maximum radius orbit transfer in a given time (or N o E u
minimum time for a given final radius). o= Ay Tl 23.20)
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A
=+ 2.5.21
t:}tanqb " ( )

0=(N,cosd—A, sinqb)—'m——_"w

Vo V
Aty=1+ m‘;}‘ﬁz—m' ; (2.5.22)
M) = vy, (2.5.23)
i) =v,. (2.5.24)

The six differential equations (2.5.10), (2.5.11), (2.5.12), (2.5.18),
(2.5.19), and (2.5.20) are to be solved subject to the six boundary con-
ditions (2.5.13), (2.5.14), (2.5.15), (2.5.22), (2.5.23), and (2.5.24), with
the choice of », and v, available to satisfy the additional two boundary
conditions (2.5.16) and (2.5.17). The control ¢(t) is determined in
terms of A, and A, from (2.5.21).

Minimum-time low-thrust orbit transfer;
thrust constant at 0.85,
initial spacecraft weight, 10,000 1b,
fuel consumption 12.9 1b per day

/ f }

{—Mars !/ __ Earth \\

| orbit § orbit S \

f i Ul . e
0 0.5 1.0 1.5

Trip time= 193 days;
thrust direction shown every 19.3 days

Figure 2.5.2. A particular minimum-time low-thrust orbit trans-
fer path.

A numerical solution of this problem for
Tim,
uir?

has been given by Kopp and McGill.1 Interpreted for a 10,000-1b

t
= a| Valr, IT = —L 332
.1405 s Eml I-L/T“ /T 0.533 3 W’I

{See A. V. Balakrishnan and L. W. Neustadt (eds.), Computing Methods in Optimiza-
tion Problems. New York: Academic Press, 1964.
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spacecraft moving out from the earth’s orbit, the thrust would be
0.85 b, the fuel consumption 12.9 1b/day, and the trip time 193 days.
The optimal thrust direction and the resulting trajectory are shown
in Figure 2.5.2. Note that the radial component of thrust is outward
for the first half (roughly) of the flight, and inward for the second half.

* 6 Multistage systems; functions of the state variables specified
at the terminal stage

Multistage systems, while of importance in their own right, have
gained a special significance because of the use of digital computers
to solve continuous problems. For numerical solution on a digital
computer, the continuous optimization problems of Sections 2.3 to
2.5 must be converted to multistage optimization problems. Proper
multistage formulation of such problems contributes significantly to
the speed of convergence of iterative numerical solution procedures.

The following is a multistage version of the problems treated in
Section 2.5. It differs from Section 2.2 only in the inclusion of termi-

nal constraints. Find the sequence u{0),...,u(N — 1) to minimize
J = olx(N)] + Nf Lilx(1),u(i)] (2.6.1)
i=0
subject to the constraints
x(i + 1) = fila(i)ul@)], {2.6.2)
Ylx(N)] = 0, (2.6.3)

where x is an n-vector, u is an m-vector, and  is a g-vector function,
q=n.

As in Section 2.2, we adjoin Equation (2.6.2) to J with a multiplier
sequence A(i) and, in addition, we adjoin Equation (2.6.3) with a set
ot ¢ multipliers (v,,. . ., v) &7

T =01+ TN + S, (LT (.u()]
‘ TG+ DIPTx@ul)] — 26+ D]} . (2.6.4)

- For convenience, define a scalar sequence H' and a scalar function
D, as follows:

H' = Lilx()u(i)] + AT + 1) flx(d)uli)] (2.6.5)
@ = o[x(N)] + " $[x(N)] . (2.6.6)

Also, change indices of summation on the last term in (2.6.4),
t vielding
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T = ®[x(N)] - A"(N) x j @] + H.  (26.7)

Now consider differential changes in J due to differential changes
in u{i):

dx(0) + pos (O)d u(0) . (2.6.8)

oH®

+ 3x(0)

The coefficients multiplying dx(i)}i =0, . . ., n) vanish if we choose

the multiplier sequence (i) so that we have

T.ﬁaH"‘zo 9.6.9
MO g 263
or
T{) = : i+ 1 i, =0,...,N—1, (2.6.9a}
AT() P + AT(E+ 1) ox(d) i { a
with boundary conditions
o
= 2.6.10
AT(N) (N}’ { )
or
o oy
= 2.6.10¢
AT(N) =) + yTax(N) . ( a)
Equation (2.6.8) then becomes
— N-1 aH!
df = N10) dx(0) + 3 - dut). (2.6.11)

du(i)

Thus aH!/au(i) is the gradient of J w1th respect to u(i) while hold-
ing x(0) constant and satisfying {2.6.2), and A\7(0) is the gradient of
J with respect to z(0) while holding u(i} constant and satisfying (2.6.2).
If 2(0) is given, we have dx(0)=0.

For a stationary value of J, df must be zero for admissible du(i). if
u(i) is unconstrained and Ht is differentiable with respect to u(i) and
the problem is “normal”, this can happen only ift

OH'

—0, (2.6.12)
duli}

1See Sections 5.3 and 6.3 for the argument concerning “normality” which relates to the
existence of neighboring optimal paths.
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k- or

LA )
wm TV VG

In summary, to find a control-vector sequence u(i) that produces a
stationary value of the performance index J, we must solve the “two-
point boundary-value problem” defined by (2.6.2), (2.6.3), (2.6.9),
{2.6.10), and (2.6.12).

These equations constitute (2n+m) N+n +p equations for
as many unknowns: x(0),...,x(N) where x is an n-vector;
u(0),...,u(N—1), where u is an m-vector; A{o),A(1),...,A(N),
where A is an n-vector; and », a p-vector.

To solve (2.6.2) and (2.6.9a) together sequentially in the forward
i direction, using (2.6.12a) to determine u(i), it is necessary to solve
% (2.6.9a) for Al + 1) in terms of Al) and x(i) :

ail(;)] [aij(:)}_l ' (2.6.13)

=40, i=0,...,N-1. (2.6.12a)

M+ 1) = W) -

:.  The inverse of 3f/3x(i) exists since it is, essentially, the linearized
¥ transition-matrix;} however, the computation of this inverse is time-
consuming.}] The alternative of sequential backward solution offers
f.no improvement since (2.6.2), (2.6.9a}, and (2.6.12a) would have to be
: viewed as a set of implicit equations for x(i), A(i), and u(i), given
Cxli+ 1), M+ 1), uli+ 1),

E':(:ontinuous systems; some state variables specified at an
}pnspecmed terminal time (including minimum-time problems)

This is almost the same set of problems as in Section 2.4, with the
portant difference that the terminal time, t,, is not specified. It
is convenient to regard t, as a control parameter to be chosen in addi-
tion to the control functions, u(t), so as to minimize the performance
index and satisfy the constraints. We shall show that the same nec-
sary conditions apply as in Section 2.4, but, in addition, the follow-
g condition must be satisfied by the optimal choice of the terminal

(%3?+AT)‘"+L) =0.

i=1

. t

f  As in Section 2.3, we adjoin the system differential equations to the
erformance index, as follows:

Bee Appendix A3.
_ e computation of the inverse is circumverted in the algorithm given in Section 7.7.
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J = olxit)t] + L Y [Lixut) + M) flxa t) — Wil dt . (27.1)

The differential of {2.7.1), taking into account differential changes in
the terminal time, #;, is

dl = (6¢dt+2‘f ) + (L), ,fdt-k-jo[(—%%-kﬂ%)ﬁx

t=tf
oL d
+ (—~ + }\T—f) Su — )\T‘o‘x] dt. (2.7.2)
du ou

Integrating (2.7.2) by parts and collecting terms gives
- [ATSx]!:!f+

dl = [(—41+L)dt +—‘de]t ;

+£ [(ﬁﬂg er)a +(a + AT f) ]dt. (2.7.3)

[AT 8x],_ "

dx d
Now &x, the variation in x, means “for time held fixed,” so dx, the
differential in x, may be written (see Figure 2.7.1)
dx(t) = 8x(t) + x(t,) dt,. (2.7.4)
x A
i‘dtf
I
,4" .—4—‘— E dx(ff)
——
Nominal path ox(ts)
Neighboring pathJ -~ | dly
> t
to tr tptdty
Figure 2.7.1. Relationship between dx(t), 3x(t), and dt

From (2.7.4), we have 8x(t,} = dx(t) — x(t) dt, ; substituting this into
(2.7.3) and collecting terms gives

dj = [(ﬁ+L+ M) di, + (& -

ot ax

+I [(6L+M_f+m)a +(a LT 3f) ]dt. 2.7.5)

ax

)\T) dx]tit + NT(t,) 8x(t)

L
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Now, as in Section 2.4, we consider that

x;{t,) ; i=1,...,q are specified, {2.7.6)

-and, hence, it is consistent to consider ¢ to be a function only of the
unspecified state variables:

()5 = ‘b[xj(tf);tf] 5

Next, we choose the functions A{t) =
Lo 8x(t), and dx(t;) vanish in (2.7.5)

F=d 4 Lavasn (2.7.7)

AD{t) to make the coeflicients of

. al, d
A = — (@) (a-j) AW (2.7.8)
O k3 j = ls L] q >
AD(E) = (gﬂ) B2
F A i=qg+1,...
o), dTATL
:'This choice of A(£) leaves (2.7.5) in the form
L
dj = (—¢’ FL+MO)  dyr f {a_u 4 [W]Ti} sudt, (2.7.10)
t=t te

;-where we have placed 8x(t,) = 0 since x(t,) is given.

. Now, as in Section 2.4, let us consider the change in x{(t),
:i =1,...,q for arbitrary du(t). Using the concept of influence (ad-
3joint) functions (see Appendix A3) we have

oo af
dx,(t) = 1) dty+ [ )T Lsudr,  @71)
fwhere ’
s 1A
o= (a_J;) AGY (2.7.12)
_ 1, i=j,
NO(E) = {0, :;ej (2.7.13)

®Note that Equation (2.7.11) may be regarded as a special case of
- .7.10) by replacing ¢ with x, and placing L = 0.

We will now construct a 6u( ) history and select a value for dt
#hat produces df <0, and satisfies dx.(t i f) 0,i=1,...,q. Multlpl){
Bach of the g equations (2.7.11) by an undetermmed constant, v, , and
:;’ the resulting equations to (2.7.10)

df + v, dx(t;) = {—+L+[A‘J>]Tf+vf} dt,
t=tr

J' [— + (A + Mﬂ)ﬂ"a—f] dudt. (2.7.14)
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Now choose

dt,= —k {a“" L+ OFF+ vf} , (2.7.15)
-y
=k [(gi‘) + (af) AD + mw)] (2.7.16)

where k, and k, are positive constants; substituting (2.7.15) and
(2.7.16) into (2.7.14) yields

df + v, dx(t =~k"——+L+

(AD 4 pAO)YT aiﬂ?dtfo, (2.7.17)

which is negative unless the squared terms are identically zero.

Next, we determine the ».’s so as to satisfy the terminal constraints
(2.7.11) with dxi.(tf) =0,i=1,...,q. Substitute (2.7.15) and (2.7.16)
into (2.7.11}):

0=—-k{fill¢,+ L+ (AV)f+ V}f; }t:t
—k, | AOFFLE + fTO9 + p )] dt |, (2.7.18)

to

or

= -k {flo,+ L+ ()uJ>)Tf]}t=,f—k2 th'(hu))rfu[[‘: + fTAW] dt

Y e _
- {kl(fif})::xf + kzj; (R0 A )\mdt} v,

from which the appropriate choice of v is .

kl =t kl 2
_ e | '] 2.7.19)
[Q+k25] (g+k2r), (
where
t
Q4= J;f()\m)qfuﬁ’\mdt , Sy = (f,-fj),:,f,

(1]

&= [T 0OrfILT + Ao de

0
From (2.7.17), the only case in which we cannot decrease the per-
formance index is when

(d); + L+ (AW)f + ij;')tztfz 0, {2.7.20)

ro= (flg, + L+ OOPfl},_, .
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L+ (A9 + pAOYf, =0;  t,<t<t,. (2.7.21)
f.1f (2.7.20), (2.7.21) obtain, we have a stationary solution that satisfies
jithe terminal constraints.

i Using (2.7.20} in (2.7.18), we see that the »;’s for a stationary solution
are independent of k /k, and are given by

v=—0Q g, (2.7.22)
; hus, as in the fixed-terminal-time case, the existence of the inverse

f Q is the controllability condition. Since the influence eguations
e linear, the necessary conditions (2.7.20)—(2.7.21) may be written

(¢, + H),_ ;= 0, (2.7.23)
aH
—a':;—() t,<t<t, {2.7.24)
where
H=L+\Yf, (2.7.25)
. oH _ oL . of
A= — =i (2.7.26)
ax ox Bx :
Vjs jzl,---,Q:
- b
Aylty) = (—2) . j=q+1l,...,n. (2.7.27)
ox./, _
3=t

" We may regard the »,’s, i=1,...,q, as control parameters that
1: ontrol the terminal values of x,, i=1,.. ., g, which must have the
gpecified values for an admissible path. Similarly, t is a control
ameter that controls the terminal value of ¢, + H, which must
nish for a stationary path.

Conceptually, the problem of unspecified terminal time can always
€ approached as a series of optimization problems with fixed termi-
g2 time. In other words, we consider the terminal time ¢, as an addi-
fHonal control parameter and solve a series of identical optimization
_l‘oblemq as in Section 2.4, with different values of £.. The particular
palue of ¢, that yields the minimal value of J for the series of op-
pmization problems must be the solution to the problem with un-
gpecified terminal time. Thus, we can expect that all necessary
ponditions derived in Section 2.4 hold. There must also be one

e ?itional condition that determines the optimal value of By and this
B (2.7.23).
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Problem 1. Consider
_ t
J= o) t) + f fL(x,u,t) dt

and t, as a control parameter. What is the variation of J due to a vari-
ation of t. when all optimality conditions in Section 2.4 are to be
satisfied?” From this, derive the condition

0

—H(t,)
at, ¥
directly. [HINT:
—  4d dx aP
dj = e dE dt,+ a_tf dt, + Ldt, ]

MINIMUM-TIME SOLUTIONS. In many problems, the performance
index of interest is the elapsed time to transfer the system from its
initial state to a specified state. In this case, we may place

6=0, L=1, (2.7.28)
which implies that
J=t-t,. (2.7.29)

The minimum-time control program is obtained, then, by solving
the two-point boundary-value problem:

%= flxut); x(t,) givent (n initial conditions), (2.7.30)
A= —{F.\; x.(t,) specified; = s ;
fe 7 ’ (@131
AMit)=0,j=qg+1,...,n(n terminal conditions),
0 = f7x (m optimality Conditioﬁs}, (2.7.32)
(NTF)yey = 1. C @1.33)

Note that there are 2n boundary conditions for the 2n differential
equations {2.7.30)~(2.7.31), m optimality conditions (2.7.32) for the
m control variables, u, and one transversality condition (2.7.33) for
the terminal time, ¢,. The unspecified values of A(¢),ji=1,...,9,
which we have called v, above, are part of the solution.

Note, also, that at least one state variable must be specified at £ = 1,
and at t = t, or the minimum-time problem makes no sense.

HF x(t,) is not specified, we have Aft) = 0.
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ple 1. Minimum-time paths through a region of position-
pendent vector velocity (Zermelo’s problem).t A ship must travel
rough a region of strong currents. The magnitude and direction of
e currents are known as functions of position:

u=ulzry) and ov=ov(xy),

here (x,y) are rectangular coordinates and (u,v) are the velocity

.components of the current in the x and y directions, respectively. The

:magnitude of the ship’s velocity relative to the water is V, a constant.

“The problem is to steer the ship in such a way as to minimize the time
ecessary to go from a point A to a point B.

*  The equations of motion are

=Vcos+uxy), (2.7.34)
g =Vsing + o{xy), (2.7.35)

here 6 is the heading angle of the ship’s axis relative to the (fixed)
ordinate axes, and (x,y) represents the position of the ship.
he Hamiltonian of the system is

H=xVcosf+u)+ A (Vsing+uv)+1, (2.7.36)

o the Euler-Lagrange equations are

. aH ou ov
hom By By B
R e Wt (2.7.37)
. oH au v
Q< S
Y ay Jt‘ay Y ay ’ (2.7.38)
oH A
0=__66 = V(=A,sin@ + A, cos 9),:>tanB:T” . (2.7.39)

x

ce the Hamiltonian (2.7.36) is not an explicit function of time,
= constant is an integral of the system. Furthermore, since we are
Inimizing time, this constant must be 0. We may solve (2.7.36) and
7.39) for A, and Ry

—cos @

A =
V+ucos@+vsing’

&

(2.7.40)

R, = = Sinp _ 21,
¥ V4ucosf+ovsind 2.741)

f l' another derivation, using vector notation, see Section 3.2, Example 2, which
pats the problem in three dimensions (e.g., for an aircraft in a region of strong winds).



78 Optimization Problems for Dynamic Systems * Ch. 2

We may now substitute (2.7.40) and (2.7.41) into either {2.7.37) or
(2.7.38) (or demand consistency between Hy= 0, H,= 0) to obtain

f) = sin? B—(?B* + sinf cos @ (gti - Q) — cos? Ba—u . (2.7.42)
ax dx  dYy oy

This equation, solved simultaneously with (2.7.34) and (2.7.35), will
give the desired minimum time paths; in order to go through a par-
ticular point B, starting at a point A, we must pick the correct value
of §,.
Note that, if u and v are constant, (2.7.42) indicates that ¢ = const;
that is, the minimum-time paths are straight lines.

ANALOC TO SNELL'S Law. If we have u=u(y), v =oly), then
{2.7.37) becomes

)'\r = 0> X, = const. (2.7.43)
Equation (2.7.40) is then

cos
V + u(y)cos @ + v(y)sin §

= const, (2.7.44)

which is directly analogous to Snell’s Law in optics since it (im-
plicitly) gives the ship’s heading, 8, in terms of the local current
velocities.

Special case: linear variation of current velocity. 1f we have
u = —V(ylh),v =0, and we wish to find the minimum-time path from
a certain point x,, y, to the origin (0,0) then we may use (2.7.44) to
express the optimal heading angle, 8, in terms of the final heading
angle, 8, and the presenty coordinate, as follows:

cosf cos @
e e stant
V_Viglhcose v consand
CoS 0[ _ (2.7.45)

s = .
e 1+ (y/h}cos 6,

It is convenient to use & as the independent variable instead of .
From (2.7.45), we already have y(6),

% = sec — sect,. (2.7.46)
Equation (2.7.42} becomes
dt h Vit,— t)
e 2 = 9 _— . 7
7Rk, sec 6;‘>———f——h tan tan @, (2.7.47)

where t.— t is the time to go to the origin.
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gi— Vcos 8 + V(sec 8, — sec )

=

YA
h
1 ia o =
E 1 #
21|12 ¥ 0 2 3 1 5 >
- Current | “Final Current | i f
point Resultant
-1 _ velocity
Ship’s
velocity | /
relative Initial
i to water point \l/

—(V/h) cos? 8

—1.86 = sec 8, — secd,,

+ sin A1 (tan 8)—sinh~!{tan@)]. (2.7.51)

H he solution to these equations is

8,=105°,

_which may be integrated to give

: 3 1
33 sec 0 (tan 6, — tan #) — tan 6 (sec 0, — secf)

tan@,. +
., n o, secﬂf

tan 8 + sec#@

8,= 240°.

Finally, (2.7.34), using (2.7.46) and (2.7.47), becomes

: 3.66 = }[sec 0, (tan 6, — tan §,) — tan 6, (sec 8, — secf,)

= —h(sec® + sec 0,sec? @ — sec®d),
(2.7.48)

] . (2.7.49)
- Now, let us suppose that we want to find the minimum-time path from
x,(h = 366 » Yo/ h = —1.86 to the origin. Equations (2.7.46) and (2.7.49)

re implicit equations for 8, and 6., where 8, is the value of 8 at the
initial point, as follows; ’

(2.7.50)

‘From (2.7.47), the time to go from the initial point to the origin is

Figure 2.7.2. A minimum-time :
: e - ath th .
increasing current. path through a region of linearly
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on a circle rolling without slipping in a horizontal direction, and that

9 = constant.

Problem 7. (Courtesy T. N. Edelbaum). Find the path of minimum time
connecting two points on the surface of the earth through a tunnel in
the earth. The tunnel is assumed to be evacuated, gravity is the pro-
pelling force on the particle, and friction is negligible. Note that the
gravitational force per unit mass inside the earth is directed radially
toward the center of the earth and increases linearly with radius from

zero at the center.

ANSWER. The paths are hypocycloids, i.e., curves generated by a
point on a small circle rolling without slipping on the inside of the

earth’s surface.

Problem 8. Thrust-direction programming with negligible external
forces. This is one of the simplest problems, of some practical in-
terest, in optimal programming. As such, it is useful for fixing ideas.t
Counsider a particle of mass m, acted upon by a thrust force of magni-
tude ma. Assume planar motion and use an inertial coordinate system
x,y to locate the particle; the velocity components of the particle are
u,0. The thrust-direction angle 8(t) is the control variable for the sys-
tem (see Figure 2.4.1). The equations of motion are

t=acosf, p=asinf, i=u, y=uv,

where the thrust acceleration, @, is assumed to be a known function
of time. If we wish to extremalize a function of the end conditions
only or minimize the time, show that the optimal control law is
-y c,t+c, ’
—¢ct+ 6y
where ¢,, ¢,, ¢,, ¢, are constants. This is often referred to as the
“hilinear tangent law.” :

Problem 9. Minimum-time orbit injection {g = 0). We wish to transfer
the particle of Problem 8 to a path a distance h away, arriving with a
velocity of U parallel to the path in the least time; we do nof care what
the final x-coordinate is (see Figure 2.4.2).

Thus, the boundary conditions for the problem are
u((0)=0, uTy=U, p0) =0, o =0, x(0) =10,
AT)=0, y(0)=0,

(A, @acosB+rasinB),_,=—1.

tSee Example, Section 2.4.
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Since x(T) is unspecified, we have A, =c¢, =0, and the optimal con-
trol law becomes a “linear tangent law”’:
c C

C_g ,C= Z (see Problem 8).

where 4

tang8 =tan g8, —ct, tan B, =
For constant-thrust acceleration, a, and usi i

. . , a, sing B as the indepe
- variable instead of ¢, show that Pyt

u=£10 tan 8, + sec f,

u—ﬁ( _
c tan B + sec B = sec B, — sec ),

tan 3, + sec Bﬂ)

a
1=_(SBCB —secB -tanBlo
c? ’ Alog tan 8 + sec 8

= 2; [(tan B, — tan B} sec B, — (sec B, — sec B) tan 8

1o tan 8, + secﬁo]
tanB + secB i’

a a T
N 2sin 8,
v al ~’
1.25 T T
.. Tmin/z\/h_/a
; . 1.20 ]
L 90 T T aTmin/U
115} n
60 - ]
* ; 1.101 7
: 30 - 4
: 1.05+- -
- 0 I 1
i 1
3 0 .5 1.0 .5 0 1'000 .5 1.0 I5 0
dah/ U2 U2/4ak dah/ Uz Uz/dah
Figure 2.7.4. Initial thrust angle (8,} and minimum ti //-\
: time (Tyuia .
a function of 4ah/Le for minimum-otime transfer to a re((ztilin)eZ? Ny K
path. . 2 My« -.
i
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where the constants 8, and ¢, as well as the final (minimum) time, T,
are determined by the three final boundary conditions v = 0, u = U,
y = h. Show that these relations may be put into the form

4ah  tan B, sec B, — logtan [(m/4) + (1/2) B,

e {logtan [(mr/4) + (1/2) B,]}* ’
i_ tan 8,

U logtan [(w/4) + (1/2) B,]°
¢T=2tanfB, > tanf = (l —%:t)tanﬁo.

Clearly, the one dimensionless quantity, 4¢h/U* determines 8, and,
hence, also aT/U. These relationships are shown in Figure 2.74,
Thrust-direction programs for various values of B, are shown in
Figure 2.4.3.

Problem 10. Minimum-time interception of a nonmaneuvering target

(g = 0). Using the same equations of motion as in Problem 8, find the
thrust-direction angle history, 8(t), to go to the origin, x=y =0, in
minimum time, starting from a given initial point, x4, , with initial
velocity u,v,. Assume constant-thrust acceleration a. Note that the
final velocity is not specified, so this is an interception problem.

Probiem 11. Minimum-time rendezvous with a nonmaneuvering target

(g = 0). This is the same as Problem 10 except that the final velocity is
specified to be zero; that is, we have u, = v, = 0. This is a rendezvous
problem. Note that the “bilinear tangent law” can be put into the
form of a “linear tangent law™:

tan (6 — o) = tan (6, — al+cT—1),

where «, 6,, and ¢ are parameters.

Problem 12. Thrust-direction programming in a constant gravitational

field. 1f we align the y-axis in the opposite direction to the gravita-
tional force, the only change from Problem 8 (without gravitational
force) is in the vertical acceleration:

t=asinf3—g.
‘where g is the acceleration due to gravity. Show that the equations

for the influence functions are unchanged, so that the “bilinear
tangent law” is still the optimal law.
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jblem 13.  Minimum-time orbit injection (g = constant). Show that
e the only change from Problem 8 (with g = 0) is the addition of a term
§ —gt to the vertical velocity v, and a term —4g#? to the vertical height,
# y. For the case of constant-thrust acceleration a, there are three quan-
¥ tities to be determined: the initial thrust-direction angle, 8, ; the final
¢ thrust-direction angle, B;; and the minimum time, T. ShO':.D that the
% three equations available for determining them are

v =0=

) (sec, - sec ) - g,

SR

=h= 2%2 [(tan B, — tan B,) sec B, — (sec B, — sec B,) tan B,

t:
1o an f3, + secﬁo] —igTﬂ
tan B, + secB ]l 2 ’
a tan 8, + sec
' oM Bot 5CBy
c tan 8, + sec B,

a tanf, —tanf,

g secp, —secB,’

_ tan 8, + s
= [tan B, sec B, — tan B, sec B, — log H}
sec
f S
+ [Iog—tanﬁo + sec 50]2
“tan g+ sec,ef ,

ith

tan 8, + sec Bo]
tan B, + sec B, |’

Elearly, the quantities ah/U? and a/g determine By, 8;,aTIU, and cT.

.A

aT
Nils (tan 8, — tan ,Bf)/[log

perical Example. Figure 2.7.5 shows two example trajectories with
W& =3, calculated for lunar takeoffs, using the constant g approxima-
on. The moon’s surface gravity is 5.3 ft sec2, and the radius of the
oon is 938 nautical miles. Minimum-time ascent paths are shown
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for h = 100 nautical miles and h = 30,000 ft, the final velocity be-
ing circular-satellite velocity in the first case and slightly higher than
circular-satellite velocity in the second case. The “characteristic
velocity,” AV, required is simply aT for a = constant. For compari-
son, the impulsive injection into a 100 n mi orbit (Hohman transfer)
requires a characteristic velocity of 5,780 ft sec™! (5,640 at the moon’s
surface and 140 ft sec™! at apolune). The velocity at the end of the
50,000-ft ascent is such that the spacecraft will coast to 100 n mi on
the other side of the moon; there, an injection impulse of 464 ft sec™! is
required to put it into circular orbit at h = 100 n mi making the total
AV, = 6,584 ft sec™!. Note that the lunar surface is approximated as a
parabola, which significantly extends the usefulness of the constant g
approximation.

Obviously, the minimum-time “soft-landing” path with constant a
(with down-range not specified) is the same as the minimum-time
orbit-injection path run backwards.

T e
i

T=508 sec
AV, =8100 ft sec™1 L 60
Nautical
50:000 ft miles
perilune of L 40
synchronous

T=384 sec manster |,

AV =6120ft sect [

S{ _
0 20 O
80
i 140 120 100 Lunar surface l g=5.3 ft sec™?
180 Nautical miles

Figure 2.7.5. Minimum-time lunar take-offs (or landings) with
constant-thrust acceleration = 159 ft sec? {thrust direction
shown every tenth of total time).

Problem 14. (a) In the two-dimensional xt-plane, determine the extre-
mal curve of stationary length which starts on the circlex? + £ — 1 =0
and terminates on the linet =T = 2.

(b) Solve the same problem as (a) but consider that the termination is
on the line —x + t = 2V2,
[NOTE: Parts (a) and (b) are NOT to be solved by inspection.]

.dj=((£+L)dt+%§dx)
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Continuous systems; functions of the state variables
specified at an unspecified terminal time,
including minimum-time problems+t

We again consider the performance index
¢
J=dlxlt)t] + | LIx®ui) ) dt. (2.8.1)

to

We adjoin the constraints
!,tl[x(tf),tf] =0 {) a g-vector function) (2.8.2)
and the system differential equations
x=flx(t)u(t)t], ¢ given (2.8.3)

to the performance index with Lagrange multipliers v and A(t), as
follows:

J=lo+7 ‘f’]::zf +I‘f {Lixat) + AT[flxut) —x]}dt. {2.8.4)

_The Hamiltonian is defined as

H = Lix,ut) + AT(t} flx,u.t). (2.8.5)

The differential of (2.8.4), taking into account differential changes in

the terminal time, t,is

ot

!:if
+ftf(ﬂ6 + A s \rsi)de- L :
L Vo X = U — x) t—Lt=,odto, (2.8.6)
::' where
P=¢+ 17y, (2.8.7)

Integrating by parts and using 8x = dx — x dt, we have

f d]=(iqi+L+,\T5c)

o

ab
» dtf+ [(E - )\T) dx] + (AT 8x),_

t:tf (=¢f

Y[ {oH . aH
g _ T - .
L [( e 3 )Bx *ou 8"] dt Lli-¢ dt, . (2.8.8)

We now choose the functions A(t) to make the coefficients of &x(¢),
_dx(tf) » and dt, vanish (if t; is not prescribed):

V. Breakwell, “The Optimization of Trajectories,” SIAM Journal, Vol. 7, 1950,
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. oH af aL
M= ———= AT ——— (2.8.9)
ax ax dx’
P a d
A = (<) ( AP —l") , (2.8.10)
ax/,_, dx ax =t
D do
(_+L+J\Tx) (7 +L) =0, (2.8.11)
=y =y
where
b sl | 0D
dt o ax
As a result of this choice of A(t), (2.8.8) is simplified to
t.
df = Jf%au dt + NT(t,) dx (t)) — H(t,)dt,. (2.8.12)
to

Clearly, as before, A7(t) is the influence vector on J of changes in
initial conditions 8x(t,), while aH/ou is a set of impulse-response
functions indicating how J would change as a result of unit impulses
in the controls at any point in the interval {, =f=1¢ .

For a stationary value of J, clearly, we have

oH _of

= — LSt =1 2.8.13
ou ou  ou e ! { t

and if a component x,(t,) is not specified, we have A, (¢,) =0.

For minimum time, t,— t,, we may let ¢fx(t)t] =0 and L=1,
that condition (2.8.11) becomes
dd
(_ + 1) =0. (2.8.14)
dt r=t

=
As in Section 2.6, the g constants » must be determined to satisfy
the terminal constraints (2.8.2). The condition (2.8.14) is the extra
condition needed to determine the final time ¢,.
In summary, a set of necessary conditions for J to have a stationary
value is

x = flx,ut) (2.8.15}

- (N B

{An argument regarding admissibility, similar to the one made in Section 2.7, must be
made to justify (2.8.13).
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_(BHNT _ (3fNT | (OLNT
O_(au) 7(611) A+(au) @:8:17)
xdt,) given,  or A (t)=0 (2.8.18)

ab T
t\(tf) = (y + IITE)!_! {2.8.19
d¢ dp dep g
Q= Nk it = 2.8.2

[Bt ot +(ax i 6x)f+L],,f 0 2520
- lx(t t)t] = (2.8.21)

he optimality condition (2.8.17) determines the m-vector u(t). The
olution to the 2n differential equations (2.8.15) and (2.8.16) and the
¥ choice of the g+ 1 parameters v and ¢, are determined by the
k2n + 1 + g boundary conditions (2.8.18)-(2.8.21). Needless to say,
fthis boundary-value problem is, in general, not very easy to solve.
Notice, however, that if we were to specify v instead of ¥, and t,
stead of {1, (2.8.18) and (2.8.19) provide 2n boundary conditions for
fixed-terminal-time, two-point boundary-value problem of order 2n.
y changing values of » and ¢t,, it may be possible to bring ¢ and € to
frero at t = ¢, (see Chapter 7, Section 3).



