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Abstract 

 

In this study we attempt to predict the daily excess returns of FTSE 500 and S&P 500 

indices over the respective Treasury Bill rate returns. Initially, we prove that the excess 

returns time series do not fluctuate randomly. Furthermore we apply two different types 

of prediction models: Autoregressive (AR) and feed forward Neural Networks (NN) to 

predict the excess returns time series using lagged values. For the NN models a Genetic 

Algorithm is constructed in order to choose the optimum topology. Finally we evaluate 

the prediction models on four different metrics and conclude that they do not manage to 

outperform significantly the prediction abilities of naï ve predictors. 
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Chapter 1 
 

 

 

Introduction 

 

 

 

It is nowadays a common notion that vast amounts of capital are traded through the 

Stock Markets all around the world. National economies are strongly linked and heavily 

influenced of the performance of their Stock Markets. Moreover, recently the Markets 

have become a more accessible investment tool, not only for strategic investors but for 

common people as well. Consequently they are not only related to macroeconomic 

parameters, but they influence everyday life in a more direct way. Therefore they 

constitute a mechanism which has important and direct social impacts. 

 

The characteristic that all Stock Markets have in common is the uncertainty, which is 

related with their short and long-term future state. This feature is undesirable for the 

investor but it is also unavoidable whenever the Stock Market is selected as the 

investment tool. The best that one can do is to try to reduce this uncertainty. Stock 

Market Prediction (or Forecasting) is one of the instruments in this process. 

 

1.1 Aims and Objectives 
 
The aim of this study is to attempt to predict the short-term term future of the Stock 

Market. More specifically prediction of the returns provided by the Stock Market on 

daily basis is attempted. The Stock Markets indices that are under consideration are the 

FTSE 500 and the S&P 500 of the London and New York market respectively. 
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The first objective of the study is to examine the feasibility of the prediction task and 

provide evidence that the markets are not fluctuating randomly. The second objective is, 

by reviewing the literature, to apply the most suitable prediction models and measure 

their efficiency. 

 

1.2 Rationale 
 
There are several motivations for trying to predict the Stock Market. The most basic of 

these is the financial gain. Furthermore there is the challenge of proving whether the 

markets are predictable or not. The predictability of the market is an issue that has been 

much discussed by researchers and academics. In finance a hypothesis has been 

formulated, known as the Efficient Market Hypothesis (EMH), which implies that there 

is no way to make profit by predicting the market, but so far there has been no 

consensus on the validity of EMH [1].  

 
1.3 Stock Market Prediction 
 
The Stock Market prediction task divides researchers and academics into two groups 

those who believe that we can devise mechanisms to predict the market and those who 

believe that the market is efficient and whenever new information comes up the market 

absorbs it by correcting itself, thus there is no space for prediction (EMH). Furthermore 

they believe that the Stock Market follows a Random Walk, which implies that the best 

prediction you can have about tomorrow’s value is today’s value. 

 

In literature a number of different methods have been applied in order to predict Stock 

Market returns. These methods can be grouped in four major categories: i) Technical 

Analysis Methods, ii) Fundamental Analysis Methods, iii) Traditional Time Series 

Forecasting and iv) Machine Learning Methods.  Technical analysts, known as chartists, 

attempt to predict the market by tracing patterns that come from the study of charts 

which describe historic data of the market. Fundamental analysts study the intrinsic 

value of an stock and they invest on it if they estimate that its current value is lower that 

its intrinsic value. In Traditional Time Series forecasting an attempt to create linear 

prediction models to trace patterns in historic data takes place. These linear models are 

divided in two categories: the univariate and the multivariate regression models, 

depending on whether they use one of more variables to approximate the Stock Market 
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time series. Finally a number of methods have been developed under the common label 

Machine Learning these methods use a set of samples and try to trace patterns in it 

(linear or non-linear) in order to approximate the underlying function that generated the 

data. 

 
The level of success of these methods varies from study to study and it is depended on 

the underlying datasets and the way that these methods are applied each time. However 

none of them has been proven to be the consistent prediction tool that the investor 

would like to have. In this study our attention is concentrated to the last two categories 

of prediction methods. 

 

1.4 Organization of the Study 
 
The complementation of the aims and objectives of this study as described earlier takes 

place throughout five chapters. Here we present a brief outline of the content of each 

chapter: 

 

In Chapter 2, initially an attempt to define formally the prediction task takes place. In 

order to be able to predict the market we have to be certain that it is not fluctuating 

randomly. We search the relevant literature to find out whether there are studies, which 

prove that the Stock Market does not fluctuate randomly and in order to see which are 

the methods that other studies have used so far to predict the market as well as their 

level of success and we present our findings. In the last part of this chapter we select, 

based on our literature review, the prediction models and the type of data we will use to 

predict the market on daily basis.  

 

Chapter 3 presents in detail the datasets we will use: the FTSE 500 and S&P 500. Firstly 

it presents the initial data sets we obtained and covers issues such as: source, descriptive 

statistics, quality, etc. Secondly it describes the way that we integrate these datasets in 

order to construct the time series under prediction (excess returns time series). In the 

last part of Chapter 3 two distinct randomness tests are presented and applied to the 

excess returns time series. The tests are: a) the Run and b) the BDS test.  

 

In Chapter 4, we present in detail the models we will apply in this study: the 

autoregressive (AR) and the feed-forward neural network (NN) models. For each 



 14

category of model firstly, a description of how they function is given; then the 

parameters that influence their performance are presented and analysed. Additionally 

we attempt to set these parameters in such a way that the resulting models will perform 

optimally in the frame of our study. To accomplish this, we use the Akaike Information 

Criterion (AIC) and the Bayesian Information Criterion (BIC) to define the lag structure 

of the AR models; for the NN models we choose a number of the parameters based on 

findings of other studies and use a Genetic Algorithm (GA) to find the optimum 

topology. Finally we evaluate these models using four different metrics. Three of these 

are benchmarks that compare the prediction abilities of our models with naï ve 

prediction models, while the last one is the mean absolute prediction error. 

 

In Chapter 5, two major experiments are reported. These experiments use the models 

described in the previous chapter. Experiment I applies AIC and BIC and determines 

the optimum lags, for the AR models. These models are applied to predict the excess 

returns time series and then their performance is evaluated on all four metrics. 

Experiment II initially applies the GA to find the optimum topology for the NNs 

models. Then it evaluates the performance of the resulted NN models on all four 

different metrics. For the adjustment of the parameters of both categories of models, as 

well as for their evaluation, the same data sets are used to enable a comparison to be 

made. 

 

Chapter 6, summarizes the findings of this study as well as the conclusions we have 

drawn. Finally it presents some of our suggestions for future work on the field of Stock 

Market prediction. 
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Chapter 2 
 

 

 

Stock Markets and Prediction 
 

 

 

This chapter attempts to give a brief overview of some of the theories and concepts that 

are linked to stock markets and their prediction. Issues such as investment theories, 

identification of available data related to the market, predictability of the market, 

prediction methodologies applied so far and their level of success are some of the topics 

covered. All these issues are examined under the ‘daily basis prediction’ point of view 

with the objective of incorporating in our study the most appropriate features. 

 

2.1 The Stock Market 
 

2.1.1 Investment Theories 
 
An investment theory suggests what parameters one should take into account before 

placing his (or her) capital on the market. Traditionally the investment community 

accepts two major theories: the Firm Foundation and the Castles in the Air [1]. 

Reference to these theories allows us to understand how the market is shaped, or in 

other words how the investors think and react. It is this sequence of ‘thought and 

reaction’ by the investors that defines the capital allocation and thus the level of the 

market.  

 

There is no doubt that the majority of the people related to stock markets is trying to 

achieve profit. Profit comes by investing in stocks that have a good future (short or long 

term future). Thus what they are trying to accomplish one way or the other is to predict 
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the future of the market. But what determines this future? The way that people invest 

their money is the answer; and people invest money based on the information they hold. 

Therefore we have the following schema:  

 

 

 

Figure 2.1: Investment procedure. 

 

The factors that are under discussion on this schema are: the content of the 

‘Information’ component and the way that the ‘Investor’ reacts when having this info. 

 

According to the Firm Foundation theory the market is defined from the reaction of the 

investors, which is triggered by information that is related with the ‘real value’ of firms. 

The ‘real value’ or else the intrinsic value is determined by careful analysis of present 

conditions and future prospects of a firm [1]. 

 

On the other hand, according to the Castles in the Air theory the investors are triggered 

by information that is related to other investors’ behavior. So for this theory the only 

concern that the investor should have is to buy today with the price of 20 and sell 

tomorrow with the price of 30, no matter what the intrinsic value of the firm he (or she) 

invests on is. 

 

Therefore the Firm Foundation theory favors the view that the market is defined mostly 

by logic, while the Castles in the Air theory supports that the market is defined mostly 

by psychology. 

 

2.1.2 Data Related to the Market 
 
The information about the market comes from the study of relevant data. Here we are 

trying to describe and group into categories the data that are related to the stock 

markets. In the literature these data are divided in three major categories [2]: 

• Technical data: are all the data that are referred to stocks only. Technical data 

include:  

§ The price at the end of the day. 

Information Investor Market Level 
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§ The highest and the lowest price of a trading day. 

§ The volume of shares traded per day. 

• Fundamental data: are data related to the intrinsic value of a company or category 

of companies as well as data related to the general economy. Fundamental data 

include: 

§ Inflation 

§ Interest Rates 

§ Trade Balance 

§ Indexes of industries (e.g. heavy industry) 

§ Prices of related commodities (e.g. oil, metals, currencies) 

§ Net profit margin of a firm. 

§ Prognoses of future profits of a firm 

§ Etc. 

• Derived data: this type of data can be produced by transforming and combining 

technical and/or fundamental data. Some commonly used examples are: 

§ Returns: One-step returns R(t) is defined as the relative increase in price 

since the previous point in a time series. Thus if y(t) is the value of a stock 

on day t, R(t)=
)1(

)1()(

−
−−

ty

tyty
. 

§ Volatility: Describes the variability of a stock and is used as a way to 

measure the risk of an investment. 

 

The study (process) of these data permit us to understand the market and some of the 

rules it follows. In our effort to predict the future of the market we have to study its past 

and present and infer from them. It is this inference task that all prediction methods are 

trying to accomplish. The way they do it and the different subsets of data they use is 

what differentiates them. 

 

2.2 Prediction of the Market 
 

2.2.1 Defining the prediction task 
 

Before having any further discussion about the prediction of the market we define the 

task in a formal way.  
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“Given a sample of N examples {(xi, yi), i=1, …,N} where f(xi)= yi, ∀i, 
return a function g that approximates f in the sense that the norm of the error 
vector E=(e1,…,eN) is minimized. Each ei is defined as ei=e(g(xi), yi) where e 
is an arbitrary error function”[2]. 
 

In other words the definition above indicates that in order to predict the market you 

should search historic data and find relationships between these data and the value of 

the market. Then try to exploit these relationships you have found on future situations. 

This definition is based on the assumption that such relationships do exist. But do they? 

Or do the markets fluctuate in a totally random way leaving us no space for prediction? 

This is a question that has to be answered before any attempt for prediction is made. 

 

2.2.2 Is the Market predictable? 
 
The predictability of the market is an issue that has been discussed a lot by researchers 

and academics. In finance a hypothesis has been formulated known as the Efficient 

Market Hypothesis (EMH), which implies that there is no way to make profit by 

predicting the market. The EMH states that all the information relevant to a market is 

contained in the prices and each time that new information arises the market corrects 

itself and absorbs it, in other words the market is efficient, therefore there is no space 

for prediction. More specifically the EMH has got three forms [1]: 

• Weak: States that you cannot predict future stock prices on the basis of past stock 

prices. 

• Semi-Strong: States that you cannot even utilize published information to predict 

future prices. 

• Strong: Claims that you cannot predict the market no matter what information you 

have available. 

According to the above the market fluctuations are based on the ‘Random Walk’ model. 

Which more formally stated is equivalent to: 

y(t)=y(t-1) + rs   

where y(t) is the value of the market on time t and rs is an Independent and Identically 

Distributed (IID)1 variable. If we accept the validity of this model we imply that the 

best prediction that you can have about tomorrow’s value is today’s value. 

 

                                                
1 IID implies randomness. 
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Research has been done on the data of stock markets in order to prove that the market is 

predictable. Hsieh (1991) proved for the S&P 500 that the weekly returns from 1962 

until 1989, the daily returns from 1983 until 1989 and the 15 minutes returns during 

1988 are not IDD [3]. Tsibouris and Zeidenberg (1996) tested the weak form of EMH 

by using daily returns of stocks from U.S. stock market (from 1988 until 1990) and they 

did manage to find evidence against it [4]. White (1993) did not manage to find enough 

evidence to reject the EMH when he tried to predict the IBM stock returns on daily 

basis using data from 1972 to 1980 [5].  

 

The conclusion from the results of these studies is that there is no clear evidence 

whether the market is predictable or not. We have an indication that the daily returns 

(for the S&P 500) in which we are interested in are not randomly distributed (at least 

from the period from 1983 until 1989). Therefore the methodology that we use in this 

study is to test the time series that we are attempting to predict for randomness. If 

proven non-random we will proceed with the implementation of prediction models. At 

this point we have to make clear that non-randomness does not imply that no matter 

what prediction model you will apply you will manage to predict the market 

successfully; all it states is that the prediction task is not impossible. 

 

2.2.3 Prediction Methods 
 
The prediction of the market is without doubt an interesting task. In the literature there 

are a number of methods applied to accomplish this task. These methods use various 

approaches, ranging from highly informal ways (e.g. the study of a chart with the 

fluctuation of the market) to more formal ways (e.g. linear or non-linear regressions). 

We have categorized these techniques as follows: 

• Technical Analysis Methods,  

• Fundamental Analysis Methods,  

• Traditional Time Series Prediction Methods 

• and Machine Learning Methods.  

The criterion to this categorization is the type of tools and the type of data that each 

method is using in order to predict the market. What is common to these techniques is 

that they are used to predict and thus benefit from the market’s future behavior. None of 

them has proved to be the consistently correct prediction tool that the investor would 
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like to have. Furthermore many analysts question the usefulness of many of these 

prediction techniques. 

 

2.2.3.1 Technical Analysis 
 
“Technical analysis is the method of predicting the appropriate time to buy or sell a 

stock used by those believing in the castles-in-the-air view of stock pricing” (p. 119) 

[1]. The idea behind technical analysis is that share prices move in trends dictated by the 

constantly changing attributes of investors in response to different forces. Using 

technical data such as price, volume, highest and lowest prices per trading period the 

technical analyst uses charts to predict future stock movements. Price charts are used to 

detect trends, these trends are assumed to be based on supply and demand issues which 

often have cyclical or noticeable patterns. From the study of these charts trading rules 

are extracted and used in the market environment. The technical analysts are known and 

as ‘chartists’. Most chartists believe that the market is only 10 percent logical and 90 

percent psychological [1]. The chartist’s belief is that a careful study of what the other 

investors are doing will shed light on what the crowed is likely to do in the future. 

 

This is a very popular approach used to predict the market, which has been heavily 

criticized. The major point of criticism is that the extraction of trading rules from the 

study of charts is highly subjective therefore different analysts might extract different 

trading rules by studying the same charts. Although it is possible to use this 

methodology to predict the market on daily basis we will not follow this approach on 

this study due to its subjective character. 

 

2.2.3.2 Fundamental Analysis 
 
‘Fundamental analysis is the technique of applying the tenets of the firm foundation 

theory to the selection of individual stocks”[1]. The analysts that use this method of 

prediction use fundamental data in order to have a clear picture of the firm (industry or 

market) they will choose to invest on. They are aiming to compute the ‘real’ value of 

the asset that they will invest in and they determine this value by studying variables 

such as the growth, the dividend payout, the interest rates, the risk of investment, the 

sales level, the tax rates an so on. Their objective is to calculate the intrinsic value of an 

asset (e.g. of a stock). Since they do so they apply a simple trading rule. If the intrinsic 
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value of the asset is higher than the value it holds in the market, invest in it. If not, 

consider it a bad investment and avoid it. The fundamental analysts believe that the 

market is defined 90 percent by logical and 10 percent by physiological factors. 

 

This type of analysis is not possible to fit in the objectives of our study. The reason for 

this is that the data it uses in order to determine the intrinsic value of an asset does not 

change on daily basis. Therefore fundamental analysis is helpful for predicting the 

market only in a long-term basis. 

 

2.2.3.3 Traditional Time Series Prediction 
 
The Traditional Time Series Prediction analyzes historic data and attempts to 

approximate future values of a time series as a linear combination of these historic data. 

In econometrics there are two basic types of time series forecasting: univariate (simple 

regression) and multivariate (multivariate regression)[6].  

 

These types of regression models are the most common tools used in econometrics to 

predict time series. The way they are applied in practice is that firstly a set of factors 

that influence (or more specific is assumed that influence) the series under prediction is 

formed. These factors are the explanatory variables xi of the prediction model. Then a 

mapping between their values xit and the values of the time series yt (y is the to-be 

explained variable) is done, so that pairs {xit , yt} are formed. These pairs are used to 

define the importance of each explanatory variable in the formulation of the to-be 

explained variable. In other words the linear combination of xi that approximates in an 

optimum way y is defined. Univariate models are based on one explanatory variable 

(I=1) while multivariate models use more than one variable (I>1). 

 

Regression models have been used to predict stock market time series. A good example 

of the use of multivariate regression is the work of Pesaran and Timmermann (1994) 

[7]. They attempted prediction of the excess returns time series of S&P 500 and the 

Dow Jones on monthly, quarterly and annually basis. The data they used was from Jan 

1954 until Dec 1990. Initially they used the subset from Jan 1954 until Dec 1959 to 

adjust the coefficients of the explanatory variables of their models, and then applied the 

models to predict the returns for the next year, quarter and month respectively. 



 22

Afterwards they adjusted their models again using the data from 1954 until 1959 plus 

the data of the next year, quarter or month. This way as their predictions were shifting 

in time the set that they used to adjust their models increased in size. The success of 

their models in terms of correct predictions of the sign of the market (hit rate) are 

presented in the next table: 

 

Period from 1960-1990 
 S&P 500 Dow Jones 

Annually 80.6% 71.0% 
Quarterly 62.1% 62.1% 
Monthly 58.1% 57.3% 
Table 2.1: Percentage of correct predictions of the regression models. 

 

Moreover, they applied these models in conjunction with the following trading rule: If 

you hold stocks and the model predicts for the next period of time (either month, quarter 

or year) negative excess returns sell the stocks and invest in bonds, else if the prediction 

is for positive returns keep the stocks. In case you hold bonds a positive prediction 

triggers a buying action while a negative prediction a hold action. Their study took into 

consideration two scenarios one with and one without transaction costs. Finally they 

compared the investment strategy which used their models with a buy and hold strategy. 

The results they obtained (for the S&P500, for 1960 to 1990) are the following: 

 

Change of profits compared to a buy/hold strategy 
 No Transaction Cost High Transaction Cost 

Annually 1.9% 1.5% 
Quarterly 2.2% 1.1% 
Monthly 2.3% -1.0% 

Table 2.2: Comparison of the profits of the regression models with those of a buy/hold strategy.  
 

The results for Dow Jones were similar to those above. 

 

Initially they used four explanatory variables the dividend yields, the inflation rate, 

change in the industrial production, and the interest rates. They have computed the 

coefficients of their models and after studying the residuals of those models they 

discovered that they were not randomly distributed. This fact led them to add more 

explanatory variables (lagged rates of changes in the business cycle). They did manage 

to improve their models but still they had non-IID residuals. The final improvement 

they made was that they have used non-linear explanatory variables (lagged values of 
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square returns) in an effort to capture non-linear patterns that might exist in the time 

series data, the results they had (Table 2.2) indicated that the annual regression did not 

improve while the quarterly and mostly the monthly regression did.  

 

The conclusions we draw from this case study are the following: 

• In order to make profit out of the market a prediction model is not enough, what you 

need is a prediction model in conjunction with a trading rule. 

• Transaction costs play a very important role in this procedure. From table 2.2 it is 

clear that for the prediction on monthly basis presence of transaction costs cancel 

the usefulness of their model. It is rational that in our case of daily prediction the 

presence of the transaction cost will be more significant. 

• The improvement they managed to give to their models by adding non-linear 

explanatory variables raises questions as to whether or not there are non-linear 

patterns in the excess returns time series of the stock market. And more specifically 

we observed that as the length of the prediction period was reduced (year, quarter, 

month) these patterns seem to be more and more non-linear. 

• Finally we observe that as the prediction horizon they used was getting smaller the 

hit rate of their models decreased. Thus in terms of hit rate the smaller the horizon 

the worst the results. 

 

To sum up, it is possible to apply this methodology to predict the market on a daily 

basis. Additionally it is widely used by the economists and therefore it is a methodology 

that we can use for the purposes of the present study. 

 

2.2.3.4 Machine Learning Methods 
 
Several methods for inductive learning have been developed under the common label 

“Machine Learning”. All these methods use a set of samples to generate an 

approximation of the underling function that generated the data. The aim is to draw 

conclusions from these samples in such way that when unseen data are presented to a 

model it is possible to infer the to-be explained variable from these data. The methods 

we discuss here are: The Nearest Neighbor and the Neural Networks Techniques. Both 

of these methods have been applied to market prediction; particularly for Neural 

Networks there is a rich literature related to the forecast of the market on daily basis. 
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2.2.3.4.1 Nearest Neighbor Techniques 
 
The nearest neighbor technique is suitable for classification tasks. It classifies unseen 

data to bins by using their ‘distance’ from the k bin centroids. The ‘distance’ is usually 

the Euclidean distance. In the frame of the stock market prediction this method can be 

applied by creating three (or more) bins. One to classify the samples that indicate that 

the market will rise. The second to classify the samples that indicate fall and the third 

for the samples related with no change of the market. 

 

Although this approach can be used to predict the market on daily basis we will not 

attempt to apply it on this study. The main reason is that we will not attempt a 

classification but a regression task. The classification task has the disadvantage that it 

flattens the magnitude of the change (rise of fall). On the other hand it has the advantage 

that as a task it is less noisy comparing to regression. Our intention is to see how well a 

regression task can perform on the prediction of the market. 

 

2.2.3.4.2 Neural Networks 
 
‘A neural network may be considered as a data processing technique that maps, or 

relates, some type of input stream of information to an output stream of data‘ [8].  

 

Neural Networks (NNs) can be used to perform classification and regression tasks. 

More specifically it has been proved by Cybenko (cited in Mitchel, 1997) that any 

function can be approximated to arbitrary accuracy by a neural network [9]. 

 

NNs are consisted of neurons (or nodes) distributed across layers. The way these 

neurons are distributed and the way they are linked with each other define the structure 

of the network. Each of the links between the neurons is characterized by a weight 

value. A neuron is a processing unit that takes a number of inputs and gives a distinct 

output. Apart from the number of its inputs it is characterized by a function f known as 

transfer function. The most commonly used transfer functions are: the hardlimit, the 

pure linear, the sigmoid and the tansigmoid function2.  

 

                                                
2 A more detailed description follows in Chapter 4. 
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There are three types of layers the input layer, the hidden layers, and the output layer. 

Each network has exactly one input and one output layer. The number of hidden layers 

can vary from 0 to any number. The input layer is the only layer that does not contain 

transfer functions. An example of a NN with two hidden layers is depicted in the next 

figure [10]. 

 

Figure 2.2: NN structure with two hidden layers. 

 

The architecture of this network is briefly described by the string: ‘R-S1-S2-S3’, which 

implies that the input layer is consisted of R different inputs, there are two hidden layers 

with S1 and S2 neurons respectively and the output layer has S3 neurons. In our study we 

will use this notion each time that we want to refer to the architecture of a network. 

 

Once the architecture and the transfer function of each neuron have been defined for a 

network the values of its weights should be defined. The procedure of the adjustment of 

weights is known as training of the NN. The training procedure ‘fits’ the network to a 

set of samples (training set). The purpose of this fitting is that the fitted network will be 

able to generalize on unseen samples and allow us to infer from them.  

 

In literature NNs have been used in a variety of financial tasks such as [11]: 

• Credit Authorization screening 

• Mortgage risk assessment 

• Financial and economic forecasting 

• Risk rating of investments 

• Detection of regularities in security price movements. 
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Relatively to the present study we found examples of stock market prediction on daily 

basis [4], [5], [12], [13] using NNs. A brief description of each one of these case studies 

follows among with our conclusions and comments. 

 

Case Study 1: “The case of IBM Daily Stock Returns” 

 
In this study the daily returns of the IBM stock are considered (White) [5]. The data 

used concern the period from 1972 until 1980. The returns are computed as: 

rt=
1

1

−

− +−

t

ttt

p

dpp
, where pt is the value of the share the day t and dt the dividend paid 

on day t. Two prediction models were created: an AR model and a feed forward NN. 

The samples that are used to compute the coefficients of the AR model and train the NN 

are: [rt-5 rt-4 rt-3 rt-2 rt-1 | rt ], rt is the target value. The period from the second half of 1974 

until first half of 1978 was used for training (1000 days), while the periods from 1972 

until first half of 1974 (500 days) and from the second half of 1978 until the end of 

1980 (500 days) for testing the constructed models (test sets). 

 

The AR model was rt= á + â1rt-1 + â2rt-2 + â3rt-3 + â4rt-4 + â5rt-5 + rst, where rst are the 

residuals of the models. The NN had a 5-5-1 architecture. Its hidden layer used 

squashing transfer functions (sigmoid or tansigmoid) and the output layer a linear 

function. The training algorithm used was the back propagation. 

 

The metric according to which the author made his conclusions was 2R =1-
t

t

r

rs

var

var
. Two 

experiments took place. In the first one the coefficients of the AR model were 

calculated on the training set and then rt and rst was calculated on the test sets. For both 

of the test sets 2R  was calculated: 

 

 1972-1974 1978-1980 
R2 0.0996 -0.207 

Table 2.3: 2R for the AR model. 

 

The second data set gave a significant negative result. This means that var rst > var rt, 

fact that indicates that the prediction model is of no use. While for the first test set R2 is 
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close to zero this implies that var rst ≅ var rt, so the AR model did not manage to 

capture the patterns in rt. This fact can be explained in two ways (according to the 

writer) either there were no patterns, which means that the market is efficient or there 

are non-linear patterns that cannot be captured by the AR model. In order to check for 

non-linear patterns that might exist a NN was trained and R2 was computed again: 

 

 1972-1974 1978-1980 
R2 0.0751 -0.0699 

Table 2.4: 2R for the NN model. 

 

These results proved (according to the writer) that the weak form of market efficiency is 

valid since var rst ≅ var rt and there are no patterns linear or non in the residuals 

produced by the prediction model. 

 

A first comment on this study is that there is no proof or at least an indication whether 

the AR model used here is the optimum linear model so perhaps there is another linear 

model (with higher lags than 5) that makes the variance of the residuals smaller and 

therefore R2 greater. Secondly the author used a NN to capture the non-linearity that 

might exist and since he failed he assumed that there is no non-linearity. What if this 

NN he used is not able to capture it and a more complex network is required? In this 

case the conclusion that the market is efficient is not valid. 

 

Case Study 2: “Testing the EMH with Gradient Descent Algorithms” 

 
The present case study attempts to predict the sign of the excess returns of six 

companies traded in New York’s stock market (Tsibouris and Zeidenberg) [4]. The 

companies are: Citicorp (CCI), Jonh Deere (DE), Ford (F), General Mils (GIS), GTE 

and Xerox (XRX). The prediction is attempted on daily basis. The models created are 

NN trained with back-propagation techniques. The data considered are from 4 Jan 1988 

until 31 Dec 1990. The period from 4 Jan 1988 until 29 Dec 1989 is used to extract data 

to train the networks, while the returns from 2 Jan 1990 until 31 Dec 1990 are used to 

test the constructed models. The form of the input data is [rt-264 rt-132 rt-22 rt-10 rt-5 rt-4 rt-3 rt-

2 rt-1 | rt ], rt is the sign of the excess return for day t. 
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The NNs trained and tested were feed forward networks 9-5-1. All the neurons used the 

sigmoid transfer function. The evaluation criterion used by the author was the hit rate of 

the model. Hit rate is defined as the percentage of correct predictions of the sign of the 

return. The results obtained were: 

 

Company Hit Rate on the Test Set 
CCI 60.87% 
DE 48.22% 
F 60.08% 
GIS 53.36% 
GTE 53.36% 
XRX 54.15% 

Table 2.5: The Hit rate of the NN for each one of the stocks considered. 

 

On average the hit rate was 55,01 %. From this statistic the conclusion of the author was 

that there is evidence against the EMH. Assuming that a naï ve prediction model that 

would have been based on a random choice of the sign of the return would gave a hit 

rate of 50%. 

 

As a side note in the study it is referred that an alternative specification using signed 

magnitudes as inputs and signs and magnitudes as two separate outputs was attempted 

but it did not perform well. 

 

This study managed to create models that on average outperformed a naï ve prediction 

model. The way this naive model is defined makes it too lenient. A fairer benchmark 

would compare the hit rate of the neural network with the hit rate of a prediction model 

that for the entire test period predicts steadily rise of fall depending on which is met 

more frequently in the training set. Another option could have been to compare the 

models with the random walk model. A second interesting point from this study is that 

when the NN was trained on the actual returns and not their sign performed worse. The 

reason for this might be that the training set with the actual values is noisier than the 

one with the signs of the values. Therefore a NN has greater difficulty to trace the real 

patterns in the input data. 
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Case Study 3: “Neural Networks as an Alternative Stock Market Model” 

 
This case study investigates the performance of several models to forecast the return of 

a single stock (Steiner and Wittkemper) [12]. A number of stocks are predicted, all these 

stocks are traded in Frankfurt’s stock market. They are grouped by the authors in two 

categories: 

 

Group A: ‘dax-values’ Group B: ‘ndax-values’ 
Siemens Didier 
BASF PWA 
Kaufhof KHD 

Blue Chips Smaller Companies 
Table 2.6: The stocks grouped in two categories dax-values and ndax-values.  

 

The data used consists of the logarithmic value of the daily returns (T) of each one of 

the stocks above as well as the daily returns of DAX index (D), West LB index (W) and 

the Index der Frankfurter Werpapierborsen (F). Chronologically they were from the 

beginning of 1983 until the end of 1986. The training and test sets were defined as 

follows: 

 

1983 
(training set) 

250 days 
→ 

1984 
(test set) 
250 days 

1984 
(training set) 

250 days 
→ 

1985 
(test set) 
250 days 

 

 

 
1985 

(training set) 
250 days 

→ 
1986 

(test set) 
250 days 

Figure 2.3: The training and test sets used in the study. 

 

Initially data from 1983 was used to train the models and the data from 1984 to test 

them. Then the data used shifted in time by a full year, which means that the data from 

1984 was used for training while data from 1985 for testing. Finally the models were 

trained and tested using the data from 1985 and 1986 respectively. 

 

In total nine models were created to predict the returns rt from each stock, five of them 

were based of NN and the rest on linear regressions (univariate and multivariate). Three 

of the networks were feed forward and the rest were recurrently structured (the outputs 
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of some of the neurons were used as inputs to others that did not belong to the next 

layers). More specifically the models were: 

 

Linear Models 
linear regression rt = á + â1Dt-1 
linear regression (a=0) rt = â1Dt-1 
multivariate regression rt = á + â1Dt-1 + â2Wt-1 + â3Ft-1 + â4Tt-1 
linear regression* rt = á + â1Dt-1 

Table 2.7: Linear regression models. 

 

Neural Network Models 
 Structure Inputs 
NN 1 1-10-1 Dt-1 

NN 2 1-5-5-1 Dt-1 

NN 3 4-10-1 Dt-1, Wt-1, Ft-1, Tt-1 

NN 4 1(2)-10 (2)-1 Dt-1 
NN 5 4(8)-10 (2)-1 Dt-1, Wt-1, Ft-1, Tt-1 

Table 2.8: Neural network models. 

 

The fourth model is not an actual prediction model since its coefficients were always 

calculated on the test set and not on the training set. NN 4 and NN 5 are recurrent 

networks and in their architecture string the numbers in brackets indicate the number of 

recurrent neurons used. For NN 1, NN 2 and NN 4 the input used was Dt-1, while for 

NN 3 and NN 5 the inputs used were Dt-1, Wt-1, Ft-1 and Tt-1. All the data used to train 

and test the NNs where normalized in order to be in the interval [0,1]. The training 

algorithm was the back propagation (with learning rate 0.0075 with no momentum 

term). The error function used was the mean absolute error (mae): 

mae= ∑
=

−
n

t
tt ar

n 1

1
 (2.1) 

where at is the prediction that the model gave for the return of day t. 

 

The rank of the models in terms of mae was the following: 
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Model dax-value 
mae 

ndax-value 
mae 

Total mae 
dax-

values 
Rank 

ndax-
values 
Rank 

Total 
Rank 

linear regression 0.0081259 0.0123370 0.0102314 8 8 8 
linear regression (á=0) 0.0081138 0.0123136 0.0102137 7 7 7 
linear regression* 0.0080028 0.0120792 0.0100410 5 4 5 
multivariate regression 0.0071830 0.0121974 0.0096902 2 6 3 
NN 1 0.0080565 0.0121543 0.0101054 6 5 6 
NN 2 0.0089707 0.0127085 0.0108396 9 9 9 
NN 3 0.0071691 0.0118060 0.0095010 3 2 2 
NN 4 0.0078866 0.0120313 0.0099590 4 3 4 
NN 5 0.0071732 0.0116660 0.0094196 1 1 1 

Table 2.9: The performance of all models in mae terms. 

 

The NNs did better than the linear regression models. Moreover the best results came 

from a recurrent network. Indeed a strict rank of the models based on the mae give us 

this conclusion. But the differences between the mae of most of the models are very 

small. For instance in the ‘Total mae’ the difference between the first and the second 

model is 0.0000814 while between the first and the third 0,0002706. Although mae is 

scale variant (it depends on the scale of the input data) this type of differences are small 

even for returns and thus cannot give us a clear rank for the tested models. Having also 

in mind that the performance of a NN is heavily influenced by the way its parameters 

are initialised (weight initialisation) at least for the NN models it would be safer to rank 

them having in mind the mean and the standard deviation of their performance for 

various initialisations of their weights. Further more this study gave us no indication of 

how well these models would do if they were applied to predict the market and make 

profit out of it (or against a naï ve prediction model e.g. the random walk model). 

 

However we can say that at least for the specific experiments described by the table 

above univariate regression models seem to be steadily worse than the NNs (apart from 

NN2). Also it seems that NNs with the same number of layers and nodes performed 

better when they were fed with more input data (NN1 and NN3). Another observation is 

that networks with the same inputs but different structures (NN1 and NN2) had 

significant difference in their performance; therefore the topology of the network seems 

to influence heavily the mae. 
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Case Study 4: “A multi-component nonlinear prediction system for the S&P 500 

Index.” 

 
Two experiments of daily and monthly prediction of the Standard and Poor Composite 

Index (S&P 500) excess returns were attempted by Chenoweth and Obradovich [13]. 

The daily data used starts from 1 Jan 1985 and ends at 31 Dec 1993. The data set 

consists of a total of 2,273 ordered financial time series patterns. Initially, each pattern 

consisted of 24 monthly (e.g. Rate of change in Treasury Bills lagged for 1 month) and 

8 daily features (e.g. Return on the S&P Composite Index lagged for 1 day). A feature 

selection procedure3 resulted in only 6 of the initial features: 

• Return on 30 year Government Bonds. 

• Rate of Change in the Return On U.S. Treasury Bills lagged for 1 Month. 

• Rate of Change in the Return On U.S. Treasury Bills lagged for 2 Months. 

• Return on the S&P Composite Index. 

• Return on the S&P Composite Index lagged for 1 day 

• Return on the S&P Composite Index lagged for 2 days. 

The initial training set contained 1000 patterns4 from 1 Jan 1985 until 19 Dec 1988. The 

models were trained on this set and then were used to predict the market at the first 

trading day after the 19 Dec1988, Dayt. The next step was to include a new pattern 

based on Dayt excess return in the training set (removing the oldest pattern) and retrain 

the model. That way the training set had always the same size (window size) but it was 

shifting through time. This training approach that was followed by the authors is based 

on their belief that you cannot base your prediction model on the way that the market 

behaved a long period ago because these historical data may represent patterns that no 

longer exist. 

 

The monthly historic data consisted of an initial training window of 162 patterns formed 

using data from Jan 1973 to Feb 1987 and actual predictions were made for the 70-

                                                
3 A search algorithm was applied to determine a subset of the existing features that maximized the 
differences between the classes based on criteria such as Euclidian, Patrick-Fisher, Mahalanobis and 
Bhattacharyya distance. These classes were created from a clustering algorithm applied on patterns with 
various numbers of features. This way the patterns that created the ‘clearest’ clustering were finally 
selected. 
4 Apart from this case there was another training set initially created that was consisted of 250 patterns. 
Each one of these training sets was applied to different models. 
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month period from Mar 1987 to Dec 1992. The initial monthly data set contained 29 

features per pattern that was reduced to 8. 

 

Six different models were created, all using feed forward NN trained with a back-

propagation technique. Three of the models were used for the prediction on a daily basis 

and the other three for prediction on a monthly basis. 

 

Daily Prediction Monthly Prediction  
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Architecture 32-4-1 6-4-1 
6-4-1 
6-4-1 

29-4-1 8-3-1 
8-3-1 
8-3-1 

Training 
Window 

250 250 1000 162 162 162 

Table 2.10: The models considered in the study. 

 

Models 1 and 4 were trained and tested on the initial features data sets while models 2 

and 5 where trained and tested on fewer features. Each off these models (1,4,2,5) was 

then combined with a simple trading rule: if prediction is that the market will appreciate 

invest in the market else invest in bonds. Assuming that the transaction costs are zero 

the annual rate of return (ARR) for each model was calculated.  

 

 Daily Monthly 
Processing Model ARR Trades Model ARR Trades 
Initial features 1 -2.16% 905 4 -1.67% 62 
Reduced features 2 2.86% 957 5 -3.33% 56 
Reduced features and 
0.5 % noise removal (h) 

2 5.61% 476 5 -2.97% 52 

Table 2.11: The annual return rates provided by models 1, 2, 4 and 5. 

 

For daily prediction feature reduction improved the annualized returns. Furthermore a 

strategy of removing from the dataset those patterns with a target value close to zero 

was applied. According to this strategy if the target value of a pattern was greater than -

h and smaller than h this pattern was removed from the training set. This type of noise 

removal improved the performance of the predictor significantly. 

 

For the monthly prediction case the features reduction had the opposite results, while 

the noise removal improved the performance slightly. 
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The architecture of the NNs was determined experimentally through the trial and error 

approach on a small set of training data. 

 

Models 3 and 6 consist of two NNs each. The first of these NN was trained on positive 

samples (samples that indicate that the market appreciates) while the second was trained 

on negative samples (samples that indicate that the market depreciates). The way that 

these NNs were used is shown in the following figure: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: The stock market prediction system that uses models 3 and 6. 

 

Firstly the feature space was reduced; later on the data was filtered and dived into two 

groups those that indicate appreciation of the market and those that indicate 

depreciation. The NNs were trained separately. Once the nets were trained each unseen 

sample (from the test set) were through the both NNs. Therefore two predictions were 

made for the same sample. These predictions were fed to a trading rule that decided the 

trading action. Three different trading rules were tested. 

 

Rule 1: Maintain current position until a clear buy/sell recommendation is received. 

Rule 2: Hold a long position in the market unless a clear sell recommendation is 

received. 

Rule 3:  Stay out of the market unless a clear buy/sell recommendation is received. 

 

Historical Data 

Feature Selection 

Data Filter 

Up NN Down NN 

Decision Rule 

Trading Action 
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A number of experiments for different definitions of the ‘clear buy/sell signal’ and 

different noise clearance levels took place. For daily prediction Rule 2 resulted in an 

annual return rate of 13.35%, while a buy and hold strategy for the same period gave a 

return of 11.23%. The predictions based on Rules 1,3 did not manage to exceed the buy 

and hold strategy. 

 

On the other hand, the prediction on monthly basis for the optimum configuration of the 

‘clear buy/sell signal’ and noise clearance level gave annual return of 16.39% (based 

again on Rule 2). While the annual return rate for a buy and hold strategy was 8.76%. 

 

This case study led us to the following conclusions. Firstly more input features do not 

necessarily imply better results. By introducing new features to the input of your model 

you do not always introduce new information but you always introduce new noise. We 

also have an indication of what features are important on daily basis market prediction. 

Of course this does not imply by any means that the list of input features used on this 

study is exhaustive. Furthermore, this study proved how important is the use of the 

correct trading rule in a prediction system. Therefore it is not enough to create robust 

prediction models, you also need robust trading rules that, working in conjunction with 

your prediction model, can give you the ability to exploit the market. Another point that 

is clear from the study is that by selecting your initial data (e.g. noise removal) you can 

improve your prediction ability. Lastly the evaluation strategy followed by the current 

case study is perhaps the optimum way to evaluate a model’s predictive power. The 

only drawback is that it did not incorporate transaction costs. 

 

All the case studies reported in this section make clear that it is possible to use NNs in 

the frame of daily basis prediction. The success of NNs varies from one study to the 

other depending on their parameters settings and the underlying data.  

 

2.3 Defining The Framework Of Our Prediction Task  
 

2.3.1 Prediction of the Market on daily Basis 
 
In this paragraph we attempt to sum up our review to the literature in order to define 

some basic characteristics of our study. These characteristics concern the exact 
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definition of our prediction task, the models and the input data we are going to use in 

order to accomplish this task. 

 

The case studies we have seen so far led us to a number of conclusions. Firstly the work 

of Hsieh [3] and Tsibouris et al [4] gave us clear indications that the market does not 

fluctuate randomly, at least for the markets and the time periods they are concerned 

with. On the other hand White’s study [5] suggests that since neither the linear model 

nor the NN manage to find patterns in the data there are no patterns in it.  

 

Secondly, we have indications from the work of Pesaran & Timmerman [7] and Steiner 

& Wittkemper [12] that there are non-linear relationships in the stock market data; the 

first two did not study daily data but it is clear from their work that when the prediction 

horizon decreased from year to quarter and then month the non-liner patters in the data 

increased. 

 

Thirdly, the work of Chenoweth & Obradovic [13] proved that NNs that use input data 

with large dimension do not necessarily perform better; on the contrary large 

dimensionality of the input data led to worse performance. Whereas the experiments of 

Steiner & Wittkemper [12] indicated that networks with few inputs under perform 

comparing with others that used more. Therefore too much information or little 

information can lead to underperformance. 

 

Additionally it became clear that a prediction model has to be used in conjunction with 

a trading rule, in this case the presence of transaction costs is heavily influential to the 

profit we can have from the market [7]. The nature of the trading rule is also heavily 

influential as Chenoweth & Obradovic [13] proved. Their work indicates that using 

their prediction models with Rules 1 and 3 resulted in useless models (in terms of their 

ability to beat a buy and hold strategy) while the use of trading Rule 2 allowed them to 

beat the buy and hold strategy. 

 

Finally, as the work of Steiner & Wittkemper [12] indicated and as far as the specific 

experiments they did are concerned the NNs performed steadily better comparing to the 

univariate regression models, whereas they performed closer to multivariate regression 

models.  
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None of these studies though compared the prediction ability of the models constructed 

with the random walk model. Also in the cases that NN models were trained and tested 

the choice of their architecture was not based on a rational methodology. Additionally 

issues such as validation5 and variance of the prediction ability of the NN models due to 

the random way that their weights are initialized were not examined by these studies. 

 

Having in mind the above we attempt to define the basic characteristics of our study. 

The first decision we have to make is related to the type of time series we want to 

predict. The most obvious option would be the actual index of the market on daily basis. 

But is this the most appropriate? The second decision concerns the type of prediction 

models we are going to use. Is it going to be NNs, traditional time series regression or 

both? Finally we have to select the kind of input data we will use in conjunction with 

our models. 

 

2.3.2 Defining the Exact Prediction Task 
 
As already has been stated the most obvious prediction task that one could attempt is the 

prediction of the time series of the actual value of the market. But is this a good choice? 

As far as the presented case studies are concerned, none of them adopted this strategy. 

Instead they select to use the daily return rt. Some reasons for this are [2]: 

• rt has a relatively constant range even if data for many years are used as input. The 

prices pt obviously vary more and make it difficult to create a model compatible 

with data over a long period of time. 

• It is easier computationally to evaluate a prediction model that is based on returns 

and not in actual values. 

Therefore the case of using returns seems to be more eligible.  

 

The return rt for day t is defined as 
1

1

−

−−

t

tt

p

pp
 where pt is the actual price of the market 

on day t. What the return describes, is to what extend (in percentage) the investor 

manage to gain or loose money once using the stock market as a tool of investment. 

Thus if pt is greater than pt-1 this implies positive returns therefore gains for the investor. 

                                                
5 The role of validation is discussed in details in Chapter 4 
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Is this approach correct? The gains depend not only on the sign of the return but on its 

magnitude too. If the alternative for the investor was just to keep his capital without 

investing it then the sign would be enough, but this is not a realistic scenario. Capitals 

never ‘rest’. A more realistic scenario is to assume that if an investor does not place his 

capital to the stock market (or to any other investment tool) he would at least enjoy the 

benefits of the bond market. Therefore we need another way to calculate the excess 

return of the market by incorporating the ‘worst’ case of profit if not investing to the 

market. In such a scenario the excess return would be: 

Rt= rt- bt 

where bt is the daily return if investing in bonds. The calculation of bt will be based on 

the treasury bill (T-Bill) rates announced by the central bank of each country a certain 

number of times per year (that varies from one country to the other). This is the type6 of 

time series we are trying to predict on this study.  

 

2.3.3 Model Selection 
 
The literature review indicates that for a prediction on daily basis we can use models 

such as Traditional Time Series Models and the NNs. In order to have a clearer view for 

them we list their benefits and drawbacks. 

Traditional Time Series Models: 

• Widely accepted by economists. 

• Not expensive computationally. 

• Widely used in the literature. 

• Difficult to capture non-linear patterns. 

• Their performance depends on few parameter settings. 

Neural Networks: 

• Able to trace both linear and non-linear patterns. 

• More expensive computationally. 

• Not equally accepted by economists in respect with the traditional time series 

approach. 

• Their performance depends on a large number of parameter settings. 

                                                
6 More specific this time series is going to be transformed using natural logs. This is not a straightforward 
task thus it is going to be analysed in details in the next chapter. 
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It is clear that each category of models has its strong and weak points. In our attempt to 

compare them we did not manage to select one and neglect the other. Instead we are 

going to use both and compare their efficiency on the attempted task. More specifically, 

at the first stage we will use Traditional Time Series prediction models and we will 

examine if they manage to capture all the patterns that exist in our data, if not we will 

use NN models to attempt to capture these patterns. The case studies we have examined 

clearly indicate that there are non-linear relationships in the data sets used. Thus our 

intuition is that in our case study too the Traditional Time Series prediction models will 

not be able to take advantage of all the patterns that exist in our data sets. 

 

2.3.4 Data Selection 
 
The evidence we have from the fourth case study is that at least for the NN models the 

more input features you include the more noise you incorporate without necessarily to 

offer new information to your model. In this sense the less features you include in your 

input data the better. On the other hand case study three indicated that networks with 

structure x-10-1 performed significantly better in case that x=4 that when x=1 or in 

other words performed better when 3 extra input features were feed into the model. The 

conclusion we have is that there is a clear trade off between noise and new information 

when adding features in your input space. 

 

In the present study we will attempt to predict the excess return time series by using 

only lagged values of the series. In that way we are trying to keep the inserted noise to 

our data set as low as possible. The cost we pay for this is that perhaps the information 

fed to our models is not enough to give us the opportunity for good predictions. An 

additional reason we adopt this strategy is that we want to see how well predictions we 

can have by using the information that the time series itself carries. The size of the 

optimum lag is an issue we have to investigate.  

 

Summary 

 
In this chapter we described the main investment theories and the way these theories 

influence the market. This description allowed us to understand the way that the market 

is defined. Furthermore we concluded that in order to attempt a prediction task we have 

to be certain that such a task is feasible. If the market fluctuates randomly then there is 
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no space for predictions. Therefore our first concern should be to get evidence against 

randomness in the series we would try to predict. Secondly we categorized the available 

prediction methods and we spotted those that are possible to fit in the frame of our 

study. For each one of them we presented case studies. Then based on the evidence we 

found we selected the most appropriate characteristics for the prediction task attempted 

in our study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 41

 

 

 

 

Chapter 3 
 

 

 

Data 
 

 

 

In this chapter we consider the datasets we use in our study. Initially topics such as the 

origin of the data, their description in statistical terms as well as their quality are 

covered. Later on we describe the procedure of their integration in order to create the 

excess returns time series. Furthermore we format these series in such a way that will be 

compatible with the models we will use. Lastly the excess returns time series are tested 

for randomness. 

 

3.1 Data Understanding 
 

3.1.1 Initial Data Collection 
 
The data considered in this study are obtained from DataStream International [14]. We 

are concerned with the London and the New York stock markets and more specifically 

with the FTSE-500 and the S&P-500 indices.  In order to form the data series we have 

described in the previous chapter we have obtained the following time series: FTSE-100 

index, T-Bill Rates of UK, S&P-500 index, T-Bill Rates of US.  

 

The FTSE-500 data consist of 3275 daily observations of the index from 4 Jan 1988 

until 12 Dec 2000 and the respective T-Bill rates for the same period and frequency. 

The UK T-Bill rates are on an annualized scale with maturity of one month. The S&P-

500 data concern the value of the index on daily basis from 4 Jan 1988 until 12 Dec 

2000, a total of 3277 observations. The US T-Bill rates cover the same period, 
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frequency and scale but they have a thirteen-week maturity. These characteristics of our 

initial datasets are summarized in the following table: 

 

Series From To Observations 
FTSE 500 Index 04/01/1988 12/12/00 3275 
UK T-Bill rates 04/01/1988 12/12/00 3275 
S&P 500 Index 04/01/1988 12/12/00 3277 
US T-Bill rates 04/01/1988 12/12/00 3277 

Table 3.1: Initial datasets. 

 

3.1.2 Data Description 
 
A detailed description of each one of these series follows. A list of descriptive statistics 

is presented as well as graphs with their values over time. 

 

For the series of FTSE 500, UK T-Bill rates, S&P 500 and US T-Bills we have: 
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Figure 3.1: Time series of FTSE 500, UK T-Bill rates, S&P 500 and US T-Bills. 
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Statistic FTSE 500 UK T-Bills % S&P 500 US T-Bills % 
Mean 1860.049814 8.140526718 778.3715777 5.334599939 
Standard Error 11.89038006 0.055489607 8.172531339 0.025619592 
Median 1659.2 6.5938 542.13 5.12 
Mode 1021.4 7.1875 374.6 5.03 
Standard Deviation 680.4581006 3.175537887 467.8372685 1.466595797 
Sample Variance 463023.2266 10.08404087 218871.7098 2.15090323 
Kurtosis -0.775200553 -0.63554572 -0.34451257 -0.365324091 
Skewness 0.680275287 0.902097111 1.015461827 0.372249529 
Range 2462.84 10.2656 1639.23 6.43 
Minimum 958.79 4.7813 278.41 2.67 
Maximum 3421.63 15.0469 1917.64 9.1 
Observations 3275 3275 3277 3277 
Table 3.2: Descriptive statistics of FTSE 500, UK T-Bill rates, S&P 500 and US T-Bills. 

 

Their plots over time clearly indicate trends. The FTSE and S&P series has a trend 

upwards while the T-Bill rates have a reversed trend. Thus there is a clear relationship 

between the value of the stock market and the value of T-Bill rates. In other words these 

graphs describe that: decrease of the interest rates implies increase in the market. 

Moreover comparing the type of fluctuations for the FTSE - S&P couple and UK T-

Bills – US T-Bills couple we can see that they fluctuate similarly. This is reasonable 

since the economies of the two countries are traditionally highly correlated. 

 

3.1.3 Data Quality 
 
In all four datasets there are no missing values. However very often in datasets, there 

exist samples that do not comply with the general behavior or model of the data. Such 

data samples, which are grossly different from or inconsistent with the remaining set of 

data, are called outliers [15]. Our next step is to investigate the datasets described above 

for outliers. 

 

In order to check for outliers we calculate the first (Q1) and the third  (Q3) quartile of 

the distribution our data. The fist and the third quartile of a distribution are defined as its 

25-th and 75-th percentiles respectively. A value xp is called the k-th percentile of a 

given distribution if P(X<xp)=k/100, where X is a random variable [16]. Therefore the 

25-th percentile is a value that splits our dataset in two subsets that each one contains 

25% and 75% of the mass of our samples respectively. The 50-th percentile is the 

median of our data. 
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For each of the sets above we calculate Q1 and Q3. Then we form the quantity Q3-Q1 

and we call an extreme outlier any value in our dataset that is greater than Q3+3(Q3-

Q1) or lower than Q1-3(Q3-Q1). This being the case we have checked all four datasets 

and we found no extreme outliers.  

 

3.2 Data Preparation 
 

3.2.1 Data Construction 
 
In the previous chapter we set the objective to predict the excess returns that come from 

the stock market. The excess returns were defined as the difference between the returns 

from the market and the returns from T-Bills on a daily basis. The stock market returns 

rt are defined as 
1

1

−

−−

t

tt

p

pp
 (3.1) where pt is the index on day t. Moreover the returns 

from the T-Bill rates on a daily basis can be calculated as bt=
100

1

360
1−trate

 (3.2), where 

ratet-1 is the annualised value of the T-Bill rate on day t-1 as a percentage. By setting 

1−tc =
100

1
ratet-1 we transform (3.2) to bt=

360
1−tc

 (3.3). From (3.1) and (3.3) the excess 

return is Rt=rt−bt.  

 

In our study we choose to transform the returns from the market and the T-Bill rates 

before we calculate the excess returns. The transformation we introduce is taking the 

natural logs of these returns. The problem we face is that although we can calculate the 

logarithm of bt we cannot do the same for rt. This is due to the fact that rr is not always 

positive and thus its logarithm cannot be calculated for the negative values. The way we 

bypass this problem is that we rescale rt by adding 1 to it. Therefore for the stock market 

returns we have: 

 

1+rt=1+
1

1

−

−−

t

tt

p

pp
=

1−t

t

p

p
 (3.4) 
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The result of applying logarithms on (3.4) is ln(
1−t

t

p

p
). Similarly for the T-Bill rates we 

rescale (3.3) and the we transform it resulting to ln(
360

1−tc
+1). The excess returns of the 

stock market is defined as: 

 

y(t)= ln(
1−t

t

p

p
)−ln(

360
1−tc

+1) =ln(
1

360
1

1

+−

−

t

t

t

c

p

p

) (3.5) 

 

The following table is mapping the relationship between the data series we obtained 

from DataStream and the symbols we use here. 

 

DataStream Series Symbol 
FTSE 500, S&P 500 pt 

UK T-Bill, US T-Bill ratet 

Table 3.3: The symbols used for each one of the initial time series. 

 

The outcome of this procedure is two time series with the excess returns of FTSE and 

S&P respectively. The next table presents some basic statistics that describe these 

series. 

 

Statistic FTSE 500 S&P 500 
Mean 0.000118258 0.000372266 
Standard Error 0.000139216 0.000166938 
Median 0.000270064 0.000469634 
Mode #N/A -0.000205812 
Standard Deviation 0.007965796 0.009554908 
Sample Variance 6.34539E-05 9.12963E-05 
Kurtosis 2.25058397 5.888557517 
Skewness -0.094864286 -0.522411917 
Range 0.095780447 0.127418966 
Minimum -0.041583703 -0.074574421 
Maximum 0.054196744 0.052844545 
Count 3274 3276 

Table 3.4: Descriptive statistics of the excess returns of FTSE and S&P. 

 

Moreover the value of the series against time is presented by the following graphs: 
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Figure 3.2: The excess returns time series for FTSE and S&P. 

 

From these graphs it is clear that the S&P returns are more volatile, it also appears to 

have more extreme values. Another observation is that FTSE and S&P excess returns 

fluctuate in a similar way; there are periods that both series have a ‘narrow’ fluctuation 

and others that have a ‘wider’ one. This is rational since the FTSE 500 and the S&P 500 

indices and the UK and US T-Bills fluctuate similarly. 

 

3.2.2 Data Formation 
 
For the needs of the traditional time series regression models and the neural networks 

we divide the excess returns time series into subsets. These subsets form two major 

categories, sets that will be used to define the parameters of the models and sets that 

will be used to measure their prediction ability. For each category of models we form a 

different number of subsets. 

 

Traditional time series regression models adjust their explanatory variables in a set of 

data called in sample data, and can be used to make predictions on a second set of data 

called the out of sample data. Thus we divide the excess returns datasets (Set A) into 

two subsets: 

 

 

 

Figure 3.3: Training (B) and Test (C) Sets. 

 

Set B contains approximately 90% of the samples in Set A and Set C the rest 10%. 

Set A 

Set B Set C 
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In a similar way the neural networks are adjusted (trained) on a part of the available data 

and tested on another part. Again we will use Set B to adjust the parameters of the 

models and Set C to measure their prediction ability. This way we will be able to make 

comparisons of the performance of both types of models on the same dataset. In this 

study we will use the term ‘Training set’ for Set B and ‘Test set’ for Set C. 

Additionally, due to the nature of the parameters adjustment of the neural network 

models we need to divide the training set (Set B) into three new subsets: 

 

 

 

Figure 3.4: Training1 (D), Validation1 (E) and Validation2 (F) sets. 

 

We will use the terms Training1, Validation1 and Validation2 set for Set D, Set E and 

Set F respectively. The purposes that each one of these subsets serves are described in 

details in chapter 4. 

 

Training and Test sets have a predefined size while the size of training1, validation1 

and validation2 sets can vary. More specifically for the Training and Test sets we have 

that: 

 

Set Market Samples From To 
FTSE 2974 Training 
S&P 2976 

5/1/88 6/10/99 

FTSE 300 
Test 

S&P 300 
7/10/00 12/12/00 

Table 3.5: The size of training and test sets for FTSE and S&P.  

 

3.3 Testing For Randomness 
 

3.3.1 Randomness 
 
“Randomness in a sequence of observations is defined in terms of the inability to device 

a system to predict where in a sequence a particular observation will occur without prior 

knowledge of the sequence”. (Von Mises, sited in [17])  

 

Set B 

Set D Set E Set F 
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It is clear from this definition that whenever one has a random sequence he is unable to 

device a system to predict the sequence. Bennett also states “the meaning of randomness 

is the unpredictability of future events based on past events”. Therefore it is essential 

for us to prove or at least to have strong indications that the time series of data produced 

by the stock markets are not random. Only then it will be possible to create systems that 

can predict the market. 

 

In the literature there are a number of tests that can be used to prove whether a sequence 

is random or not. These tests are divided into two major categories empirical and 

theoretical tests [18]. In empirical tests we manipulate groups of numbers of a sequence 

and evaluate certain statistics (Frequency test, Ferial test, Gap test, Run test, Collision 

test, Serial Correlation test).  In the theoretical tests we establish characteristics of the 

sequence by using number theoretic methods based on the recurrence rule used to form 

the sequence. Whenever a test fails to prove that a sequence is non-random we are a 

step closer to accept that this specific sequence is random. A test might fail to prove that 

a sequence is non-random but second one might prove that the same sequence is non-

random. 

 

In this study we use two randomness tests that both belong to the category of empirical 

tests, ‘Run’ and ‘BDS’ test. The results we obtained from both of these tests gave us 

indications of non-randomness for the data (Training sets) on which they were applied 

to. 

 

3.3.2 Run Test 
 
A run in a sequence of symbols is a group of consecutive symbols of one kind preceded 

and followed by (if anything) symbols of another kind [16].  For example, in the 

sequence: 

+ + + - + + - - - - + + - -  

the runs can be exhibited by putting vertical bars at the changes of the symbol: 

+ + + | - | + + | - - - - | + + | - - 

In this sequence we have three runs of  ‘+’ and three runs of ‘-’.  
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We consider now the series of a stock market and we calculate its median7. To each one 

of the excess returns we assign the symbol ‘+’ if it is above the median and ‘-’ if it is 

below. The outcome of this procedure is a new series let’s name it S (S will contain 

only ‘+’s and ‘–’s).  If the initial sequence contains an odd number of points we neglect 

the median. This way S will contain m ‘+’s and m ‘-’s, thus the length of S will be 2m. 

We also define as +r  and −r the number of runs that contain ‘+’ and ‘-’ respectively and 

r to be equal to +r + −r . If r is even then in S we have +r = −r , if r is odd then either 

+r = −r +1 or −r = +r +1. The run test is based on the intuitive notion that an unusually 

large or an unusually small value of r would suggest lack of randomness. More 

specifically it has been proven that for a random series S, r is approximately normally 

distributed with mean: 

E(r)=m+1 (3.6) 

and variance: 

var(r)= )12(
4

1

1-2m

1)m(m
−≅

+
m  (3.7) 

 

The tactic we follow here is that for the Training sets of the excess returns series of both 

markets we calculate r and we compare it with the distribution that r would follow if the 

series were random (according to equations 3.6 and 3.7). 

 

A second practice we adopt is that we create 5000 series with the same length as the 

excess returns time series. The series are consisted of random numbers belonging in the 

interval [0,1]. For this task we use the random number generator of Matlab 5.2. We plot 

the distribution of r for these 5000 series and then again we compare the runs we found 

in the stock market series with this distribution.  

 

The training sets for FTSE and S&P contain 2974 and 2976 samples respectively. For 

the FTSE training set we found rFTSE =1441 and mFTSE =1487, while for the S&P we 

found rS&P=1483 and mS&P =1488. Thus according to (3.6) and (3.7) the number of runs 

in a sequence of length 2974 and 2976 should follow normal distributions with mean 

and variance (1488, 743.25) and (1489, 743.75) respectively. The figures below indicate 

these results. 

                                                
7 Median is the number that divides a set into two equal, in terms of mass of elements, subsets. 
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Figure 3.5: The Runs in the FTSE and S&P excess return series. 

 

The dotted lines indicate the number of runs in each set of excess returns (FTSE and 

S&P), while the red lines describe the distribution of r in random series which have the 

same length with our excess return series (base on equations 3.6 and 3.7). Finally the 

blue lines describe the distribution of r for the simulation we did using 5000 random 

series. 

 

Moreover we convert all the distributions to standard normal distributions N(0, 1). The 

conversion is done according to: Z = 
var(r)

E(r)-X
, where X are the values of the initial 

distributions. Then we calculate the probability P(Y ≤  FTSEr
_

), where FTSEr
_

=
var(r)

E(r)-rFTSE  

and Y is a random variable of the standard normal distribution. P(Y ≤  FTSEr
_

) equals to 

0.04, which implies that random series with smaller or equal numbers of runs 

comparing to the FTSE series occur with frequency 4%. Thus we can be confident by 

96% that the FTSE series is not a random series. Similarly for the S&P we calculated 

P(Y ≤  PSr &

_

) and we found that approximately 45% of the random time series has the 

same or less runs. Thus we did not find evidence against the randomness of the S&P 

series. 

 

To sum up the results we obtained from the run test we say that the run test gave us 

indication for non-randomness in the FTSE excess returns but did not manage to 

indicate non-randomness for the S&P series. 
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3.3.3 BDS Test 
 
BDS test originally introduced by Brock, Dechert and Scheinkman in 1987 is “a non-

parametric method for testing for serial dependence and non-linear structure in a time 

series”[19]. This method can be applied to a time series and prove whether the members 

of the series are Independently and Identically Distributed (IID), the IID consists the 

null hypothesis for the BDS test. IID implies randomness; therefore if a series is proved 

to be IID it is random. In this study we use BDS to test for both serial dependence and 

non-linear structure of time series. 

 

Why BDS test? Because it has been used and analyzed by many researchers and it has 

been applied extensively on finance data. Some examples include:  Kosfeld and Rode 

(1999) [20], Barnes and De Lima (1999) [21], Barcoulas, Baum and Onochie (1997) 

[22], Afonso and Teixeira (1999) [23], Johnson and McClelland (1998) [24], Koèenda 

(1998) [25], Robinson (1998) [26] and Kyrtsou, Labys and Terraza (2001) [27]. Also a 

number of software packages have been developed that implement the test in Matlab, C, 

Pascal [28]. 

 

For a time series Txxxx ,...,,, 321  the test constructs the vectors iY =( 11 ,...,, −++ Miii xxx ) for 

i=1,…,T-M+1, where the parameter Ì is called the ‘embedded’ dimension. BDS in 

order to describe the correlation between the members of a time series the BDS uses the 

correlation integral TC (å,Ì). The correlation integral is the portion of pairs iY , jY  

lying within a distance of å of each other, for a given dimension M. 

TC ( å,Ì)= ∑ ∑
−

=

+−

−=+−−

MT

i

MT

ij
ijX

MTMT 1

1

1

  
)1)((

2
 (3.8) 

where ijX  equals 1 , if || iY - jY ||<å  and equals 0 , if || iY - jY ||>=å . ||.|| is the 

Euclidean Distance or any other metric. It has been proved (by Brock et al [19]) that if 

iY , i=1,…,T-M+1 is IID then   

0)),(),((lim =−
+∞→

M
TT

T
MCMC εε  (3.9). 

 

The BDS test is based on the discrepancy between (3.9) and the estimated correlation 

integrals of a given the time series. 
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),( ΜεTBDS =
),(

)1,(),(

M

CMC TT

εσ
εε

Τ

−
Τ  (3.10) 

 

It has also been proved that if the null hypothesis of IID holds then ),( ΜεTBDS  

asymptotically follows standard normal distribution (Brock et at [19]). Where ),( Mεσ Τ  

is the standard sample deviation of Τ  [ )1,(),( εε TT CMC − ]. 

 

Before applying the BDS to a time series we have to define two parameters, the distance 

å and the embedded dimension M. Hsieh (1989) suggests for å the values 0.50, 0.75, 

1.00, 1.25, 150; Girerd-Potin and Tamasco (1994) use the values 0.25, 0.50, 0.75, 1.00, 

2.00; whereas Brock, Hsieh and LeBaron (1992) indicate å equal to 0.25, 0.50, 1.00, 

1.50, 2.00 (sited in Kyrtsou et al [27]). For the embedded dimension M the values from 

2~10 are suggested and commonly used, (Hsieh, sited in Kosfeld et al [20]). In our 

study we apply the BDS test for å: 0.25, 0.5, 0.75, 1, 1.25, 1.5 and we assign to M 

values from 2~10.  

  

We applied the BDS test on the Training sets of both FTSE and S&P, the results we 

obtained are described by the following tables: 

 

å M BDS å M BDS 
2 3.9348 2 4.4823 
3 6.3502 3 7.5251 
4 8.4794 4 9.2272 
5 9.2951 5 10.5554 
6 6.9667 6 11.9176 
7 6.0857 7 13.9070 
8 -3.1901 8 15.7533 
9 -9.0164 9 17.7098 

0.25 

10 -7.4865 

1.00 

10 19.6577 
2 3.7778 2 5.0746 
3 6.9087 3 8.0995 
4 8.7623 4 9.8059 
5 10.3623 5 11.0114 
6 11.8521 6 12.1681 
7 14.3864 7 13.7664 
8 16.3714 8 15.2015 
9 16.9425 9 16.6403 

0.50 

10 13.2973 

1.25 

10 18.0410 
2 4.0192 2 5.7753 0.75 
3 7.1819 

1.50 
3 8.8488 
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4 8.8148 4 10.5193 
5 10.1926 5 11.5957 
6 11.5726 6 12.5416 
7 13.5498 7 13.8322 
8 15.5559 8 14.9446 
9 17.5544 9 16.0614 

 

10 19.5031 

 

10 17.0744 
 

Table 3.6: The BDS statistic for FTSE excess returns calculated for various values of å and M. 

 

Since the BDS statistic follows a standard normal distribution N(0,1) in case that the 

series is random, the probability of the BDS to be out of the interval [-3.2905, 3.2905] is 

less than 0.1 %. From the table above it is clear that none of the values of BDS is in this 

interval. Therefore the BDS test gives us a strong indication that there is serial 

dependence in the FTSE Training Set.  

 

å M BDS å M BDS 
2 4.7884 2 5.1170 
3 7.0203 3 7.3578 
4 8.7744 4 8.7767 
5 10.7293 5 10.7505 
6 12.3894 6 12.7289 
7 13.7319 7 14.9321 
8 9.9366 8 17.0988 
9 5.6920 9 19.6354 

0.25 

10 -5.1686 

1.00 

10 22.3334 
2 4.5101 2 5.3932 
3 6.6254 3 7.6109 
4 8.3061 4 8.9667 
5 10.5839 5 10.6594 
6 12.5269 6 12.3456 
7 15.0612 7 14.1469 
8 17.4929 8 15.8594 
9 20.5513 9 17.7409 

0.50 

10 25.0099 

1.25 

10 19.5920 
2 4.6522 2 5.7625 
3 6.8370 3 7.8769 
4 8.3712 4 9.1629 
5 10.5478 5 10.5516 
6 12.6793 6 11.9329 
7 15.1086 7 13.3657 
8 17.5403 8 14.7237 
9 20.6471 9 16.1866 

0.75 

10 24.1886 

1.50 

10 17.5113 
 

Table 3.7: The BDS statistic for S&P excess returns calculated for various values of å and M. 
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Similarly for the S&P case we get the BDS statistic even more clearly out of the interval 

[-3.2905, 3.2905]. Thus again we obtained strong evidence against the randomness of 

the series. 

 

Summary 
 
In this chapter we gave a description of the data we have collected in order to construct 

the excess returns time series we will attempt to predict. We also indicated the 

procedure we followed to construct this series. Lastly we applied two randomness tests 

and we proved that the FTSE and S&P excess returns series are not random therefore 

we proved that the task of predicting these series is not impossible. 
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Chapter 4 
 

 

 

Models 
 

 

 

In this chapter a detailed description of the models we will use to predict the market 

takes place. Furthermore selection of their optimum parameters is attempted. In order to 

achieve the optimum parameters setting we introduce methods such as Information 

Criteria and Genetic Algorithms.  

 

4.1 Traditional Time Series Forecasting 
 

4.1.1 Univariate and Multivariate linear regression 
 
As has already been stated Traditional Time Series Forecasting models are widely used 

in econometrics for time series prediction. These models are capable of mining linear 

relationships between factors that influence the market and the value of the market. 

Therefore they assume that there is a function f such as [6]:  

 

yt= f(x1t, x2t,…, xkt)= á + â1x1t +  â2x2t + … + âkxkt + rst  for t=1,…,N  (4.1) 

 

where: 

• xi, are called explanatory variables 

• y, is the explained variable 

• âi for i=1,..,k are the coefficients 

• y1, …, yN, is the time series we are trying to predict.  

• and rst is an independent and identically distributed (IID) noise component.  
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Based upon this assumption Traditional Time Series Forecasting models are attempting, 

given a sample of N examples {(x1t,…,xkt, yt), t=1,…,N}, to return a function g that 

approximates f in a sense that the norm of the error vector E=(e1,…,et) is minimized. 

Each et is defined as ei=e(g(x1t,…, xkt ), yt) where e is an arbitrary error function. 

Function g is defined as: 

 

−

ty = g(x1t, x2t,…, xkt)= 
_

α + 
_

1β x1t +  
_

2β x2t + … + 
_

kβ xkt  for t=1,…,N  (4.2) 

 

where: 

• 
_

α , 
_

iβ  for i=1,..,k are the estimators of the coefficients 

• 
−

ty , is the prediction for yt.  

The error function e is usually either the mean square error (mse) function or the mean 

absolute error (mae) function: 

mse=
N

1 ∑
=

−

−
N

t
tt yy

1

2)(  (4.3) 

mae=
N

1 ∑
=

−

−
N

t
tt yy

1

||   (4.4) 

In our case study we will use with our regression model the mse function.  

 

The estimators of the coefficients 
_

α , 
_

iβ , i=1,..,k given that the error function of the 

model is the mse function are calculated as follows: 

The mse equals to 

Q=
N

1 ∑
=

−

−
N

t
tt yy

1

2)( =
N

1 ∑
=

−
N

t
ty

1

(
_

α  − 
_

1β x1t −
_

2β x2t − … −
_

kβ xkt
2) , 

our objective is to select 
_

α , 
_

iβ , i=1,..,k in a way that Q is minimized. But Q is 

minimized relatively to 
_

α , 
_

iβ , i=1,..,k at the points that its first partial derivatives are 

zero. Therefore the estimators of the coefficients come from the solution of the 

following system of equations: 

_

α∂

∂Q
=0, 

_

i

Q

β∂

∂
=0, for i=1,…,k 
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 In (4.2) for k=1 we have a univariate regression model while for k>1 we get a 

multivariate regression model. 

 

Furthermore having in mind that in our case we will use only lagged values to predict 

the returns of the market (4.2) is transformed to:  

_

ty =∑
=

−+
k

i
iti ya

1

__

β , for t=1,…,N  (4.5) 

Equation (4.5) is known as autoregressive model of order k (or AR(k))[29]. We will use 

this model and we will adjust its coefficients on 90% of the data samples that we have 

and then we will measure its ability to generalize on the remaining 10% of our data. 

 

For an autoregressive model apart from the error function the only parameter we have to 

define is the size of the lag k we are going to use. In order to do so we will use two 

different Information Criteria the Akaike and the Bayesian Information Criterion. These 

methods will allow us to select the value of k that offers the most information to our AR 

model without incorporating redundant complexity. 

 

4.1.2 Use of Information Criteria to define the optimum lag structure 
 
Information criteria are based on a principle proposed by Box and Jenkins (1976), the 

principle of parsimony, which states that given several adequate models, the one with 

the smallest possible number of parameters should be selected (sited in [30]). This 

principle can be formalized as a rule, in which the closeness of fit is traded-off against 

the number of parameters. In the time series literature several information criteria have 

been proposed, with the model which is selected being the one for which the criterion is 

minimized.  

 

If N is the number of observations used to calculate the estimators of the coefficients of 

an AR model, Var(åt) is the variance of the residuals of the prediction model (åt= yt-
−

ty ) 

and k the number of explanatory variables, then the Akaike Information Criterion (AIC) 

is equal to: 

 

AIC=N log(Var(åt))+2k (4.6) 
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This gives a non-linear trade-off between the residuals variance and the value of k, since 

a model with a higher k will only be preferred if there is a proportionally larger fall in 

var(åt). Geweke and Meese (1981) have suggested the Bayesian Informaion Criterion 

defined by (sited in [30]): 

 

BIC=N log(Var(åt))+k log(N) (4.7) 

 

The BIC gives more weight to k than AIC, so that an increase in k requires a larger 

reduction in var(åt) under BIC than under AIC. 

 

In our study we will calculate both BIC and AIC to select the optimum value for k. This 

way we will be able to define all the parameters related with our AR model and then use 

it as a prediction tool. 

 

4.1.3 Evaluation of the AR model 
 
The effectiveness of the AR model will be measured on a set of unseen data (~10% of 

all available data). The issue that arises is the choice of metrics we will use to evaluate 

its performance. Two types of metrics will be used in this study: the mean absolute 

prediction error, and benchmarks that will compare the predictive power of our model 

with the Random Walk Model. Both metrics are widely used in econometrics to describe 

the effectiveness of prediction models. 

 

The mae is described by equation (4.4). It is quite clear that the closest to zero the mae 

is the better our model or else the closest our predictions 
−

ty  to the actual values yt. 

 

 In order to use the second metric and compare the AR model with the Random Walk 

(RW) model we will use a coefficient suggested by Henry Theil (1966), the Theil 

coefficient. Theil coefficient (or inequality coefficient) is defined as [31]: 
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It is the fraction of the mse of our model in respect to the mse of the RW. The prediction 

of the RW model for day t is in terms of returns 0% (the same price as day t-1). That is 

why the mse of the RW equals to the denominator of the fraction above. In case that 

Theil is less than one we have a model that outperforms the RW, while in case that 

Theil is close to one our model is as good as the RW. 

 

Equation (4.8) is proposed for series of returns but in our case does not manage to 

depict properly the RW on the excess returns series we use, which is: 

 

yt = ln(
1−t

t

p

p
) − ln(

360
1−tc

+1) 

 

If we want to be precise and depict the mse of the RW model on the actual prices of the 

market, then we would have that the prediction of the price of the market for day t (pt) is 

equal to the price of day t-1 (pt-1): 

 

=

tp = pt-1, where 
=

tp is the prediction of the RW for day t. 

 

From the last two equations we have that the prediction of the excess returns on day t 

according to the RW on prices is: 

 

=

ty  = − ln(
360

1−tc
+1) (4.9) 

 

Using (4.9) the Theil Coefficient would be: 

Theil=
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A third approach is to assume that the excess returns time series itself follows a random 

walk. In this case the Theil that would compare our model with this type of RW would 

be: 

 

Theil=
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−
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yy
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2
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2
_
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 (4.11) 

The RW on the denominator this time indicates that the prediction of the return on day t 

is going to be equal with the return on day t-1.  

 

In conclusion the metrics we will use to evaluate the AR model are: 

 

Metric Equation Description 
Mae (4.4) Mean absolute error 
Theil A (4.10) Comparison of the AR model with the RW on prices pt 

Theil B (4.11) Comparison of the AR model with the RW on excess returns yt 

Theil C (4.8) 

Comparison of the AR model with the model which states that 
the price of the market tomorrow will be such that will allow us 
to have the same profits that we would have by investing in 
bonds. 

Table 4.1: The metrics we will use to evaluate the AR models. 

 

For simplicity reasons we will refer to equations (4.10), (4.11) and (4.8) as TheilA, 

TheilB and TheilC respectively. 

 

4.1.4 Checking the residuals for non-linear patters 
 
It is clear from the way it is defined that an AR model is capable of finding linear 

patterns that exist in the data set A={(x1t,…,xit, yt), t=1,…,N}, under the assumption 

that such patterns do exist. But an AR model has no ability to trace non-linear patterns 

that might exist in A.  

 

Having this in mind we will apply the BDS test in order check for non-linear patterns in 

the residuals åt produced by the in sample observations. In case that BDS proves that 

non-linearity does not exist then the AR model should manage to capture all patterns 

that exist in our sample. If not, we have to apply other models capable of capturing not 
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only the linear but also the non-linear patterns in A. This being the case we will use feed 

forward Artificial Neural Networks. 

 

4.1.5 Software 
 
The software we will use in order to calculate the estimators of the coefficients of the 

AR model as well as the optimum lag structure is Microfit 4.0 [32]. Microfit is a 

package for the econometric analysis of time series data. This package offers the 

possibility to create multivariate regression models and apply Akaike and Bayesian 

Information Criteria. As output from Microfit we will have the residuals of the AR 

model based on the in sample data and the predictions of the model on the out of sample 

(unseen) data. Then we will use code in Matlab to apply the BDS test on the residuals åt 

[28], calculated on the in sample data, and estimate the mae and the Theil coefficients 

(TheilA, TheilB and TheilC) on the unseen data. 

 

4.2 Artificial Neural Networks 
 

4.2.1 Description 
 
The concept of Artificial Neural Networks (ANN) has a biological background. ANNs 

imitate loosely the way that the neurons in human brain function. An ANN is consisted 

of a set of interconnected processing units, neurons. According to an illustrative 

definition a NN is: 

 

‘… an interconnected assembly of single processing elements, units or 
nodes, whose functionality is loosely based on the animal neuron. The 
processing ability of the network is stored in the inter-unit connection 
strengths, or weights, obtained by a process of adaptation to, or learning 
from, a set of training patterns’ [33]. 

 

ANNs provide a general, practical method for learning real-valued, discrete-valued, and 

vector valued functions from examples. Thus, in our project we will attempt to create 

ANNs that will learn the function that generates the time series we are trying to predict.  

 

A brief description of the concepts related to NNs follows.   
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4.2.1.1 Neurons 
 
A neuron is a processing unit that takes a number of inputs and gives a distinct output. 

The figure below depicts a single neuron with R inputs p1,p2, …, pR, each input is 

weighted with a value w11, wl2 , …, wlR and the output of the neuron a equals to f(w11 p1 

+ w12 p2 + … + w1R pR). 

 

Figure 4.1: A simple neuron with R inputs.  

 

Each neuron apart from the number of its inputs is characterized by the function f 

known as transfer function. The most commonly used transfer functions are: the 

hardlimit, the pure linear, the sigmoid and the tansigmoid function. 

 

hardlimit purelinear sigmoid tansigmoid 




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f(x)∈{0,1} f(x)∈(-∞ ,+∞) f(x)∈[0,1] f(x)∈[-1,1] 
Table 4.2: The most commonly used Transfer functions. 

 

The preference on these functions derives from their characteristics. Hardlimit maps any 

value that belongs to (-∞,+∞) into two distinct values {0,1}, thus it is preferred for 

networks that perform classification tasks (multiplayer perceptrons MLP ). Sigmoid and 

tansigmoid, known as squashing functions, map any value from (-∞,+∞) to  the intervals 

[0,1] and [-1,1] respectively. Lastly purelinear is used due to its ability to return any 

real value and is mostly used at the neurons that are related with the output of the 

network. 

 

4.2.1.2 Layers 
 
As has already been referred the neurons of a network are distributed across layers. 

Each network has got exactly one input layer, zero or more hidden layers and one output 

layer. All of them apart from the input layer consist of neurons. The number of inputs to 
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the NN equals to the dimension of our input samples, while the number of the outputs 

we want from the NN defines the number of neurons in the output layer. In our case the 

output layer will have exactly one neuron since the only output we want from the 

network is the prediction of tomorrow’s excess return. The mass of hidden layers as 

well as the mass of neurons in each hidden layer is proportional to the ability of the 

network to approximate more complicated functions. Of course this does not imply by 

any means that networks with complicated structures will always perform better. The 

reason for this is that the more complicated a network is the more sensitive it becomes 

to noise or else, it is easier to learn apart from the underlying function the noise that 

exists in the input data. Therefore it is clear that there is a trade off between the 

representational power of a network and the noise it will incorporate. 

 

4.2.1.3 Weights Adjustment 
 
The power of NN models lies in the way that their weights (inter unit-connection 

strengths) are adjusted. The procedure of adjusting the weights of a NN based on a 

specific dataset is referred as the training of the network on that set (training set). The 

basic idea behind training is that the network will be adjusted in a way that will be able 

to learn the patterns that lie in the training set. Using the adjusted network in future 

situations (unseen data) it will be able based on the patterns that learnt to generalize 

giving us the ability to make inferences. In our case we will train NN models on a part 

of our time series (training set) and we will measure their ability to generalize on the 

remaining part (test set). The size of the test set is usually selected to be 10% of the 

available samples [9]. 

 

The way that a network is trained is depicted by the following figure. Each sample 

consists of two parts the input and the target part (supervised learning). Initially the 

weights of the network are assigned random values (usually within [-1 1]). Then the 

input part of the first sample is presented to the network. The network computes an 

output based on: the values of its weights, the number of its layers and the type and 

mass of neurons per layer.    
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Figure 4.2: The training procedure of a Neural Network. 

 

This output is compared with the target value of the sample and the weights of the 

network are adjusted in a way that a metric that describes the distance between outputs 

and targets is minimized. 

 

There are two major categories of network training the incremental and the batch 

training. During the incremental training the weights of the network are adjusted each 

time that each one of the input samples are presented to the network, while in batch 

mode training the weights are adjusted only when all the training samples have been 

presented to the network [9]. The number of times that the training set will be feed to 

the network is called number of epochs. 

 

Issues that arise and are related to the training of a network are: what exactly is the 

mechanism by which weights are updated, when does this iterative procedure cease, 

which metric is to be used to calculate the distance between targets and outputs? 

Answers to these questions are given in the next paragraphs. 

 

Error Function 

 
The error function or the cost function is used to measure the distance between the 

targets and the outputs of the network. The weights of the network are updated in the 

direction that makes the error function minimum. The most common error functions are 

the mse (4.3) and the mae (4.4). In our case study the networks we will be trained and 

tested using the mse function.   

 

 

 

 

Neural Network 
Weights 

Compare 

Adjust Weights 

Target 

Input 
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Training Algorithms 

 
The mechanism of weights update is known as training algorithm. There are several 

training algorithms proposed in the literature. We will give a brief description of those 

that are related with the purposes of our study. The algorithms described here are related 

to feed-forward networks. A NN is characterized as feed-forward network “if it is 

possible to attach successive numbers to the inputs and to all of the hidden and output 

units such that each unit only receives connections from inputs or units having a smaller 

number”[34]. All these algorithms use the gradient of the cost function to determine 

how to adjust the weights to minimize the cost function. The gradient is determined 

using a technique called backpropagation, which involves performing computations 

backwards through the network. Then the weights are adjusted in the direction of the 

negative gradient. 

 

Gradient descent 

 
In this paragraph we will describe in detail the way that the weights of a feed forward 

network are updated using the backpropagation gradient descent algorithm. The 

following description is related with the incremental training mode.  

 

Firstly we introduce the notion we will use. If EN is the value of the error function for 

the sample N and 
→

w  the vector with all the weights of the network then the gradient of 

EN in respect to 
→

w  is: 
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where wji is the weight that is related with the neuron j and its input i. “When 

interpreted as a vector in weight space, the gradient specifies the direction that 

produces the steepest increase in EN. The negative of this vector therefore gives the 

direction of the steepest decrease”[9]. Based on this concept we are trying to update the 

weights of the network according to: 

 

→
′w =

→

w +Ä
→

w  (4.13) 

where 
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Ä
→

w = −ç )(
→

∇ wEN  (4.14) 

Here ç is a positive constant called the learning rate; the greater ç is the greater the 

change in 
→

w .  

We as well introduce the following notion: 

• xji, is the i-th input of unit j, assuming that each neuron is assigned a number 

successively. 

• wji, the weight associated with the i-th input to neuron j. 

• netj=∑
i

jiji xw  (the weighted sum of inputs of neuron j) 

• áj, the output computed by node j. 

• tj, the target of output unit j. 

• ó, the sigmoid function 

• outputs, the set of nodes in the final layer of the network 

• Downstream(j), the set of neurons whose immediate inputs include the output of 

neuron j. 

If we make the assumption that we have a network with neurons that use the sigmoid 

transfer function (ó) then we will try to calculate the gradient 
ji

N

w

E

∂
∂

. Using the chain 

rule we have that: 
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Given equation (4.15), our remaining task is to derive a convenient expression for 

j

N

net

E

∂
∂

. We will consider two cases: (i) the case where neuron j is an output neuron for 

the network and (ii) and the case that j is an internal neuron (belongs to a hidden layer). 

 

Case 1: Since netj can influence the network only through áj. Therefore we can have 

that: 

j

N
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The error function we are using is: EN= ∑
∈

−
outputsk

kt 2)(
2

1
κα  (4.17), which is a variation of 

the mse function (4.3). This is done due to the fact that if you calculate the derivative of 

(4.17) 
2

1
 is reduced while if we used the mse (4.3) 

N

1
 would not have been reduced 

and we would have the factor 
N

2
. Now by considering just the first term in equation 

(4.16) 
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The derivatives 
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)( kk at −  will be zero apart from the case that k=j. Thus the above 

equation is transformed to: 
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For the second term in (4.16) we have that since we assumed that all the transfer 

function are sigmoids áj=ó(netj). Thus the derivative 
j

j

net∂

∂α
 is just the derivative of 

function ó(netj), which is equal to ó(netj)(1− ó(netj)). Therefore, 
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 =áj(1− áj) (4.19) 

Combining (4.16), (4.18) and (4.19) we get that: 

 

j

N
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=  )( jj at −−  áj(1− áj) (4.20) 

Then from (4.13), (4.14) and (4.15): 

wji= wji + ç )( jj at −  áj(1− áj) xji (4.21) 

This is the way that the wji, where j is a node in the output layer, are updated for a given 

sample N. 
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Case 2: In this case j is an internal neuron; therefore the derivation of the training rule 

must take in account the indirect ways in which wji can influence EN. At this point we 

have to notice that netj can influence the network outputs only through the neurons in 

Downstream(j). Thus, we can have: 
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From (4.13), (4.14), (4.15) and (4.22) we have: 

jiw ′ =wji+ç äj xji (4.23) 

� 

In conclusion we have that after a single sample N is presented to the network the error 

function is computed according to (4.17). Then the weights of the network are adjusted 

starting from the output layer and moving towards the first hidden layer according to: 

 

1. For each output neuron k calculate: 

äk ← )( kk at −  ák(1− ák) (4.24) 

2. For each hidden neuron h calculate: 

äh ← áh(1− áh) kh
hDownstreamk

w∑
∈ )(

κδ   (4.25) 

3. Update each network weight wji: 

wji=wji+ Äwji  (4.26) 

where: 
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Äwji=çäjxji  (4.27) 

 

The same computations have to be done in the case of batch training, the only difference 

is that the gradient descent is calculated for all the training samples and it is summed up 

and then the adjustments of the weights take place based on the total of gradient 

descents. 

 

The parameters that have to be set and are related to these two training algorithms are: 

the error function, the learning rate and the number epochs. Relatively to the learning 

rate it is clear that the larger the learning rate the bigger the step. If the learning rate is 

made too large the algorithm will become unstable and will not converge to the 

minimum of the error function. If the learning rate is set too small, the algorithm will 

take a long time to converge. A second issue is related with the number of epochs since 

we have to cease training before we overfit the network to the specific dataset (training 

set) canceling in that way its ability to generalize on unseen data.   

 

 

Gradient descent with momentum 

 
The gradient descent with momentum works in a similar way with the gradient descent 

but adjusts the weights of the network not based on (4.27) but according to [9]: 

 

Äwji(n)=çäjxji + ì Äwji(n-1)  (4.28) 

 

Äwji(n) indicates the change of 
→

w at the n-th iteration and ì is a term called momentum. 

The momentum takes values in [0,1]. When the momentum constant is close to zero a 

weight change is mainly based on the gradient descent. While when it is close to 1 the 

change in the weights is heavily influenced by their last change. The addition of ì 

Äwji(n-1) term in (4.28) has as result not to permit to the training algorithm to get stuck 

to a shallow local minimum of the error function. It also has the effect of gradually 

increasing the step size on the search regions where the gradient is unchanging, thereby 

speeding convergence. 
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The gradient descent with momentum algorithm works in incremental as well as in 

batch mode and the parameters related to it are: the error function, the learning rate 

value, the momentum value, and the number of epochs. 

 

Gradient Descent with variable learning rate 

 
With the standard gradient descent algorithm the learning rate parameter is set to a 

constant value. The performance of the algorithm is sensitive to the proper setting of the 

learning rate, as it has been stated above. Even the optimum learning rate value it might 

be too small for parts of the training or too large for others. The solution to this problem 

is to set a variable learning rate. The rate is initialized having a specific value (lr_init). 

Then if the error decreases in a stable way the learning rate is increased by a constant 

value (lr_incr). This way the algorithm converges more rapidly. While if the error 

fluctuates by being increased and decreased in an unstable way then the learning rate is 

decreased by a constant value (lr_decr)[10]. 

The gradient Descent with variable learning rate can be applied only to batch training 

mode and the parameters related to it are: the error function, the lr_init, lr_incr, lr_decr, 

and the number of epochs. 

 

Resilient Backpropagation 

 
Multilayer networks typically use on their hidden layers squashing functions (sigmoid 

or tansigmoid). These functions are mainly used due to their ability to squash an infinity 

input range to a finite output space ([0,1] or [-1,1]). Squashing functions are 

characterized by the fact that their slope (or else their derivative) approach zero as the 

input gets large or more specifically when its absolute value gets large. This causes a 

problem when the algorithms described above are used since the gradient descent can 

have very small magnitude and therefore even in the case that converges it does so very 

slowly.  

 

The resilient backpropagation algorithm updates the weights of the network based only 

on the sign of the gradient descent and not on its magnitude. The sign is used to define 

the direction to which the update will be done. The magnitude of the change is 

initialized for all weights to a value (delta_init). Each time that for two successive 
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iterations the derivative of the error function in respect to a specific weight has the same 

sign, the magnitude for that weight is increased by a value (delta_incr). While in the 

case that for two successive iterations the sign of the derivative is not the same, the 

magnitude for the weight is decreased by a value (delta_decr). This way the training 

will converge even if the derivative of the error function in respect to the weights is too 

close to zero [10]. 

 

The resilient backpropagation algorithm works only in batch mode and the parameters 

related to it are; the error function, the delta_init, delta_incr, delta_decr and the number 

of epochs. 

 

Stop Training 

 
A significant decision related with the training of a NN is the time on which its weight 

adjustment will be ceased. As we have explained so far over-trained networks become 

over-fitted to the training set and they are useless in generalizing and inferring from 

unseen data. While under-trained networks do not manage to learn all the patterns in the 

underlying data and due to this reason under perform on unseen data. Therefore there is 

a tradeoff between over-training and under-training our networks. 

 

The methodology that is used to overcome this problem is called validation of the 

trained network. Apart from the training set a second set, the validation set, which 

contains the same number of samples is used.  The weights of the network are adjusted 

using the samples in the training set only. Each time that the weights of the network are 

adjusted its performance (in terms of error function) is measured on the validation set. 

During the initial period of training both the errors on training and validation sets are 

decreased. This is due to the fact that the network starts to learn the patterns that exist in 

the data. From a number of iterations of the training algorithm and beyond the network 

will start to overfit to the training set. If this is the case, the error in the validation set 

will start to rise. In the case that this divergence continues for a number of iterations the 

training is ceased. The output of this procedure would be a not overfitted network. 

 

After describing the way that a NN works and the parameters that are related to its 

performance we select these parameters in a way that will allow us to achieve optimum 



 72

performance in the task we are aiming to accomplish. The methodology will follow in 

order to define these parameters is described in the next paragraph. 

 

4.2.2 Parameters Setting 
 

4.2.2.1 Neurons 
 
The properties related to a neuron are the transfer function it uses as well as the way it 

processes its inputs before feeding them to the transfer function. The NNs we will create  

use neurons that preprocess the input data as follows: If x1,…, xN are the inputs to the 

neuron and w1,…, wN their weights the value fed to the transfer function would be 

∑
=

N

i
ii wx

1

. In order to define the transfer functions of the neurons in our networks we will 

use the work of Cybenko (1988) who proved that any function can be approximated to 

arbitrary accuracy by a network with three layers of neurons. More specifically he 

defined that this network would have linear transfer functions in its output layer and 

squashing transfer functions in the other two hidden layers (sited in [9]). Therefore the 

neurons in the output layer will use the purelinear function while the neurons in the 

hidden layers the tansigmoid function. We select the tansigmoid and not the sigmoid 

since the excess returns time series contains values in [-1,1], thus the representational 

abilities of a tansigmoid function fit in a better way the series we attempt to predict 

comparing to those of the sigmoid’s. 

 

4.2.2.2 Layers 
 
The NNs that interest us has the following structure: x-y-z-1 where x, y can be any 

integer greater than one, while z can be any non-negative integer. So far we have fully 

defined the characteristics of the output layer and for the hidden layers the properties of 

their nodes. What remains open is the number of hidden units per layer as well as the 

number of inputs. Since there is no rational way of selecting one structure and 

neglecting the others we will use a search algorithm to help us to choose the optimum 

number of units per layer. The algorithm we will use is a Genetic Algorithm (GA). The 

GA will search a part of the space defined by x-y-z-1 and will converge towards the 

network structures that perform better on our task. Detailed description of the way that a 
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GA works as well as how it will be used in the frame of our study will be presented in 

following paragraphs. 

 

4.2.2.3 Weights Adjustment 
 
Error function 

 
The error function we will use is the mse function. We select the mse function in both 

cases (AR model or a NN model) to minimize the same cost function. This way the 

comparison of the models will be more representative. In fact in the case of NNs we 

will not use the mse as it is described by (4.3) but a slight variation described by (4.17) 

due to reasons described in paragraph 4.2.2.3. This change does not alter the cost 

function since both (4.3) and (4.17) have minima at the same spots. 

 

Training algorithm 

 
The training algorithms we have referred to so far will be tested on a specific 

architecture. This architecture will be used as benchmark in order to see which of them 

converges faster. In total six different training algorithms will be tested: 

• Gradient descent (incremental mode) 

• Gradient descent (batch mode) 

• Gradient descent with momentum (incremental mode) 

• Gradient descent with momentum (batch mode) 

• Gradient descent with variable learning rate 

• Resilient Backpropagation 

Then we will use the fastest of these algorithms in all our experiments. Given the fact 

that the performance of the algorithms above is related with a number of parameters the 

result that we will have might not be the optimum solution. But we will try to get an 

indication of which of these algorithms given a small variation in their parameters 

converges faster on our problem. 

 

Stop Training 

 
For deciding where to stop the training we will use as validation set the ‘Validation1 

set’. Therefore we will train a network on the ‘Training1 set’ and validate its 
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performance on the ‘Validation1 set’. This procedure will give us the number of epochs 

below which the specific network will not be over-trained (let’s assume k). Then we 

will train the network for k epochs on the new set that will come from the concatenation 

of the Training1 and Validation1 sets (‘Training set’). 

 

4.2.3 Genetic Algorithms 
 

4.2.3.1 Description 
 
The basic principles of Genetic Algorithms (GAs) were proposed by Holland in 1975 

(sited in [35]). Genetic Algorithms are inspired by the mechanism of natural selection 

where stronger individuals are likely the winners in a competing environment. They 

have been applied with success to domains such as: optimization, automatic 

programming, machine learning, economics, immune systems, ecology, population 

genetics, evolution and learning, social systems [36]. The Genetic Algorithms are 

defined as: 

 
“… search algorithms based on the mechanics of natural selection and natural 
genetics. They combine survival of the fittest among string structures with a 
structured yet randomized information exchange to form a search algorithm with 
some of the innovative flair of human search. In every generation, a new set of 
artificial creatures (strings) is created using bits and pieces of the fittest of the old; 
an occasional new part is tried for good measure. While randomized, genetic 
algorithms are no simple random walk. They efficiently exploit historical 
information to speculate on new search points with expected improved 
performance”[35]. 

 

In the present study we will use GAs to search for the optimum topology (architecture) 

of a NN given a specific fitness criterion.  

 

4.2.3.2 A Conventional Genetic Algorithm 
 
A genetic algorithm has three major components. The first component is related with 

the creation of an initial population of m randomly selected individuals. The initial 

population shapes the first generation. The second component inputs m individuals and 

gives as output an evaluation for each of them based on an objective function known as 

fitness function. This evaluation describes how close to our demands each one of these 

m individuals is. Finally the third component is responsible for the formulation of the 

next generation. A new generation is formed based on the fittest individuals of the 
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previous one. This procedure of evaluation of generation N and production of 

generation N+1 (based on N) is iterated until a performance criterion is met. The 

creation of offspring based on the fittest individuals of the previous generation is known 

as breeding. The breeding procedure includes three basic genetic operations: 

reproduction, crossover and mutation.  

 

Reproduction selects probabilistically one of the fittest individuals of generation N and 

passes it to generation N+1 without applying any changes to it. On the other hand, 

crossover selects probabilistically two of fittest individuals of generation N; then in a 

random way chooses a number of their characteristics and exchanges them in a way that 

the chosen characteristics of the first individual would be obtained by the second an vice 

versa. Following this procedure creates two new offspring that both belong to the new 

generation. Finally the mutation selects probabilistically one of the fittest individuals 

and changes a number of its characteristics in a random way. The offspring that comes 

out of this transformation is passed to the next generation [36]. 

 

The way that a conventional GA works by combining the three components described 

above is depicted in the following flowchart [37]: 
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Figure 4.3: A conventional Genetic Algorithm. 

 

As it has been stated each one of the individuals have a certain number of 

characteristics. For these characteristics the term genes is used. Furthermore according 

to the biological paradigm the set off all genes of an individual form its chromosome. 

Thus each individual is fully depicted by its chromosome and each generation can be 

fully described by a set of m chromosomes. 
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It is clear from the flowchart of the GA that each member of a new generation comes 

either from a reproduction, crossover or mutation operation. The operation that will be 

applied each time is selected based upon a probabilistic schema. Each one of the three 

operations is related with a probability Preproduction, Pcrossover, and Pmutation in a way that  

Preproduction + Pcrossover + Pmutation=1 

Therefore the number of offspring that come from reproduction, crossover or mutation 

is proportional to Preproduction, Pcrossover, and Pmutation respectively [37]. 

 

Relatively to the way that the selection of an individual (or two in the case of crossover) 

according to its fitness is done, again the selection is based on a probabilistically 

method. The selection is implemented by a scheme known in literature as roulette wheel 

[36,37,38]. In GAs the higher the fitness value of an individual the better the individual.  

Based upon this fact a roulette wheel is created by the following steps [38]: 

• Place all population members in a specific sequence 

• Sum the fitness off all population members Fsum. 

• Generate a random number (r) between 0 and Fsum. 

• Return the first population member whose fitness value added to the fitness of the 

preceding population members, is greater than or equal to (r). 

In case we want to select two individuals (crossover) we create the roulette wheel twice, 

the first time using all fitness values and the second time using all apart from the fitness 

value that corresponds to the chromosome selected from the firstly created roulette 

wheel. This guarantee us that we will not crossover between the same chromosomes, 

which would mean that the crossover operation would be equivalent to a reproduction 

operation twice on the same chromosome. 

 

Another issue that is related to a GA is the nature of the termination criterion. This can 

be either a number of evolution cycles (generations), or the amount of variation of 

individuals between two successive generations, or a pre-defined value of fitness [38]. 

 

4.2.3.3 A GA that Defines the NN’s Structure  
 
In this paragraph we describe the way we use Genetic Algorithms in order to search a 

space of NN topologies and select those that match optimally our criteria. The 
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topologies that interest us have at most two hidden layers and their output layer has one 

neuron (x-y-z-1). Due to computational limitations it is not possible search the full space 

defined by ‘x-y-z-1’. What we can do is to search the space defined by xMax-yMax-

zMax-1, where xMax, yMax and zMax are upper limits we set for x, y and z respectively.  

 

Initial Generation 

 
Firstly we have to define the genes and the chromosome of an individual. In our case we 

have three genes, which describe the number of inputs and the number of neurons in 

each one of the two hidden layers. The values that these genes can have are: 

• x: integer values from 1 to xMax 

• y: integer values from 1 to yMax 

• z: integer values from 0 to zMax 

z equal to zero implies absence of the second hidden layer. We have preferred not to 

consider NNs that have no hidden layers (y=0 and z=0) because they depict linear 

models such as the ones we have already considered with the AR models. Having in 

mind the above we define a chromosome as the triplet ‘x y z’. 

 

The initial population consists of m randomly selected chromosomes. The way that this 

population is initialized does not permit replicates, which implies that we cannot have 

chromosome ‘a b c’ more than once in the initial generation. Thus each time that a new 

chromosome is generated it is compared with the ones created so far, if it has a replicate 

it is neglected and a new one is generated if not it becomes a member of the first 

generation. This approach concerns only the first generation and it is adopted because it 

allows us to start our search from a more diverse position. 

 

Fitness Function 
 
Once the first generation has been defined a fitness mechanism has to be used in order 

to evaluate each one of the m chromosomes of a generation. The present GA allows us 

to use a number of different ways to calculate the fitness of a chromosome. It uses four 

different functions either TheilA, or TheilB, or TheilC, or the mae. Assuming that the 

chromosome we want to evaluate is ‘x y z’ the steps that describe this evaluation 

procedure are: 
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• Create a NN using the parameters described in 4.2.2 and architecture ‘x-y-z-1’. 

• Train it and stop its training according to the methodology analyzed in 4.2.2. 

• Measure its performance either on TheilA, or TheilB, or TheilC or the mae. 

 

This way all the members of the generation will have a value that depicts how well they 

perform based on one of the metrics mentioned above. This initial form of fitness 

function is not suitable for the GA for two reasons. Firstly because the fittest the 

individual the closest the value to zero, which implies that the roulette wheel selection 

will not work properly in case it will be based on these values. Secondly these values 

for various chromosomes differ by small quantities therefore if the probability of 

selecting chromosome A over B is linearly proportional to them, this would have as 

result to flatten our selection. So if this would be the case chromosome A will have 

approximately the same probability to be selected comparing to B even though their 

fitness values are ‘significantly’ different for our domain. 

 

In order to overcome the first problem we reverse the values by applying the following 

linear transformation [38]: 

fi = −g i + max{gi} i=1,…,m (4.29) 

The greater the value of fi the best chromosome i. Based on fi we can use the roulette 

wheel selection but still there is a problem with the fact that the magnitudes of fi are 

very close. In literature two ways have been proposed to overcome this type of problem 

the Power Law Scaling and the Sigma Truncation [38]. In Power Law Scaling you 

apply the following transformation: Fiti=fi
k  (4.30) where k is a problem dependent 

constant or variable. In Sigma Truncation we have that: Fiti= fi − ))var((
_

ii fcf −  (4.31) 

where c is a small integer and 
_

if  is the mean of values fi for i=1,…,m [38]. 

 

In the current GA we adopt a variation of the second approach. Due to the nature of fi 

(values close to zero) we did not manage to find a value for k that would globally (for 

TheilA, TheilB, TheilC and mae) give us fitness values with “clear” differences such that 

the roulette wheel would premium the best chromosomes. The transformation we use is: 
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Fiti= fi − 
3

2 _

if . This way the individuals that have fi less than 2/3 of the mean will have 

a negative Fiti value. The individuals that form the new generation come only from 

those with a positive Fiti value. Therefore the roulette wheel is formed only from the 

fitness values (Fiti) that belong to individuals with positive Fiti. 

 

Breeding 
 
Each one of the chromosomes of a new generation is created by either a reproduction, 

or crossover, or mutation operation. The selection of operation is done probabilistically 

with the method described in paragraph 4.2.3.2. 

 

The reproduction selects a chromosome from generation N based on a roulette wheel 

created on the fitness function (Fiti) and pass it to generation N+1. 

 

Crossover operation selects the chromosomes of two of the fittest individuals C1 and C2 

where C1=’a1 b1 c1’ and C2=’a2 b2 c2’. It then chooses randomly the genes on which 

crossover will be done and produces two offspring that are both passed to the next 

generation. For example if it is indicated that the crossover will be done on genes a and 

c we would have the offspring C1
*=’ a2 b1 c2’ and C2

*=’a1 b2 c1’. 

 

Lastly mutation selects probabilistically a chromosome that belongs to one of the fittest 

individuals C=’a b c’ and changes (mutates) a random number of genes. For example if 

in C genes a and b are mutated then a new offspring C* is created where C*=’a* b* c’ 

where a* is a random number between 1 and xMax and b* a random number between 1 

and yMax. 

 

Termination Criterion 
 
The termination criterion we have chosen for the algorithm is related with the number of 

generations formed. Thus when the algorithm reaches a specific number of generations 

(MaxGen) it stops and returns a structure with all chromosomes of the individuals 

considered clustered in generations along with their gi value. 
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4.2.4 Evaluation of the NN model 
 
The procedure of selecting the optimum NN will result a number of networks, which are 

expected to have the highest possible performance. This set of networks will be 

evaluated on unseen data (10% of the available data) and more specific on the same 

dataset that the AR models will be evaluated on (‘Test set’). The metrics we will use are 

again: the mae, TheilA, TheilB and TheilC. This way the comparison of the NN and the 

AR models is going to be feasible. 

 

4.2.5 Software 
 
The software we use to train, validate and test the feed-forward NNs we consider in this 

study is the “Neural Networks Toolbox” of Matlab 5.2 [10,39]. The Genetic Algorithm 

is implemented on Matlab 5.2 as well. It is created based on the principles described in 

paragraphs 4.2.3.2 and 4.2.3.3. The code that implements the Genetic Algorithm is 

included in the CD-ROM, which is sited at the end of this study. 

 

Summary 
 
In this chapter we have presented the models we will use to predict the excess returns 

time series. We have also attempted to select rationally their parameters and in some 

cases to describe a methodology that would allow us to do so. For the AR models we 

decided to use the AIC and the BIC to define the best lag structure we can have; while 

for the NNs we will test a number of different training algorithms and we will define 

their optimum structure using a GA. All the models will be evaluated on the same 

dataset in terms of four different metrics the mae,TheilA ,TheilB and TheilC. 

 

 

 

 

 

 

 

 

 

 



 82

 

 

 

 

Chapter 5 
 

 

 

Experiments and Results 
 

 

 

In Chapter 3 we proved that both FTSE and S&P excess return time series do not 

fluctuate randomly. In this chapter we describe the experiments we undertook to predict 

these excess returns. We also report the results we obtained along with the parameters 

used in order to obtain them. Two experiments took place, using the autoregressive 

(AR) and the neural network (NN) models. In each experiment a rational method was 

used to select the best model and its performance was evaluated on unseen data based 

on various metrics. 

 

5.1 Experiment I: Prediction Using Autoregressive Models 

 

5.1.1 Description 

 
In this experiment we applied AR models to predict the excess returns time series for 

both FTSE and S&P. The only parameter we had to define with the AR models was the 

lag structure. To do so we used the Akaike and the Bayesian Information Criterion. For 

the lag structure each of these criteria indicated, we constructed the relative model and 

adjusted its parameters on the Training Set (Training1 Set+Validation1 Set) and then we 

measured its performance on the Test Set. 
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5.1.2 Application of Akaike and Bayesian Information Criteria 

 
For the FTSE Training Set we applied the Akaike and the Bayesian Information 

Criterion. We calculated the value that AIC and BIC gave us for lag structures from 1 to 

24. The values we obtained are presented in the following figure: 
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Figure 5.1: AIC and BIC for the FTSE data. 

 

Both criteria are at their maximum for lag structure of one. Thus we attempted to predict 

the FTSE excess returns using AR model with lag one. 

 

Similarly we calculated the AIC and the BIC for the S&P for lag structures between 1 

and 24 and we obtained the following results: 
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Figure 5.2: AIC and BIC for the S&P data. 

 

For the S&P data the information criteria indicated different lag structures. AIC 

indicated lag 7 while BIC indicated lag 1. This difference, as we explained in chapter 4, 

is due to the fact that the BIC is stricter in adding extra parameters to the model 
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comparing to the AIC. The strategy we adopted was that we created two AR models 

using lags of seven and one respectively then we adjusted their parameters on the 

Training Set and tested their performance on the Test set. 

 
5.1.3 AR Model Adjustment 

 
The adjustment of the coefficients of the AR model for the FTSE (using lag 1) gave us 

the following model: 

 

ARFTSE(1): yt= 0.0001128+0.097838 yt-1 (5.1) 
 

The model was adjusted using the first 2974 observations of the FTSE excess returns 

series. 

 

On the other hand, the AR models we obtained from the S&P data for lags of 1 and 7 

are described by the following equations: 

 

ARS&P(1): yt=  0.0004262 –0.0071121 yt-1 (5.2) 
 

ARS&P(7): yt= 0.0005265 –0.0046695yt-1  
 -0.016224yt-2 –0.043845yt-3  
 -0.020708yt-4 –0.047547yt-5  
 -0.021831yt-6 –0.044306yt-7 (5.3) 

 

Both of these AR models were adjusted on the first 2976 observations of the S&P 

excess returns time series (Training Set). 

 
 
5.1.4 Evaluation of the AR models 

 
In this paragraph we present the evaluation of the performance of the AR models based 

on four different metrics: TheilA, TheilB, TheilC and mae. The evaluation of the all AR 

models is based on the Test Set. Equation (5.1) gave us the following Theils and mae: 

 

Metric FTSE Lag 1 
TheilA 1.00015406818713 
TheilB 0.72262111020458 
TheilC 1.00013360604923 
Mae 0.00859109183946 

Table 5.1: Evaluation of ARFTSE(1) 
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From these results it is clear that the AR model manages to beat only the random walk 

model based on the excess returns (TheilB). Theils A and C indicate that there are naï ve 

models that can perform as well as the AR model. Therefore using this linear model we 

did not manage to have robust predictions. 

 

For the S&P dataset (Test Set) we obtained for each one of the models (5.2) and (5.3) 

the following results: 

 

Metric S&P Lag 1 S&P Lag 7 
TheilA 1.00092521883907 1.00022106510965 
TheilB 0.70577780771898 0.70076320655560 
TheilC 1.00082560834712 1.00024229730378 
Mae 0.01037401820067 0.01030333781570 

Table 5.2: Evaluation of ARS&P(1) and ARS&P(7)   
 

Both AR models with lag one and seven, in this case too, did not manage to give robust 

predictions. The performance of ARS&P(7) and ARS&P(1)  according to all metrics is 

almost the same. Therefore the inclusion of the extra number of lags did not help the 

model to give better predictions.  

 

A comparison of the predictions for the FTSE and S&P datasets indicates that we 

obtained different results for TheilB and for the mae. TheilB for FTSE was 0.722 while 

for S&P we obtained a significantly better result 0.700. On the contrary according to the 

mae the AR models performed better on the FTSE than they did on the S&P. The last 

comparison is valid, although mae is a scale variant meric8, due to the fact that the 

magnitude of the values of the points in both excess return series we are trying to 

predict is similar. 

  

In conclusion, the application of the AR models in our task did not manage to help us 

have better predictions comparing to those of naï ve prediction models. Additionally 

from all three benchmarks we have used the ones that involved TheilA and TheilC 

proved to be the harsher. The random walk model on the excess returns proved to be a 

model easy to beat (TheilB). 

 

                                                
8 Its value depends on the scale of the data we are trying to predict 
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5.1.5 Investigating for Non-linear Residuals 

 
As we have shown the AR models did not help us to overcome the predictive power of 

naï ve models. In this paragraph we investigate the residuals of the AR models on the 

Training Set in order to find out whether there are remaining patterns in them that the 

AR models did not manage to capture due to their linear character. In order to do so we 

applied the BDS test on the residuals of equations (5.1), (5.2) and (5.3). 

 

The BDS test on the residuals of (5.1) for the parameters selected in paragraph 3.3.3 

gave us the following results: 

 

å M BDS å M BDS 
2 4.2945 2 5.1469 
3 6.7116 3 8.1120 
4 8.3880 4 9.6382 
5 9.6352 5 10.8927 
6 7.3070 6 12.3159 
7 2.2999 7 14.3000 
8 -2.8054 8 16.1296 
9 -9.3721 9 17.9941 

0.25 

10 -7.7163 

1.00 

10 20.0585 
2 4.5195 2 5.7956 
3 7.4705 3 8.6833 
4 9.2221 4 10.1793 
5 10.8393 5 11.3325 
6 12.6673 6 12.5669 
7 15.5165 7 14.1998 
8 17.8999 8 15.6098 
9 18.6337 9 16.9470 

0.5 

10 17.3384 

1.25 

10 18.4779 
2 4.7781 2 6.6440 
3 7.7361 3 9.5223 
4 9.2349 4 10.9874 
5 10.5312 5 11.9804 
6 11.9115 6 13.0024 
7 13.9996 7 14.3276 
8 16.0357 8 15.4195 
9 18.3490 9 16.3955 

0.75 

10 20.7299 

1.5 

10 17.5797 
Table 5.3: The BDS test on the residuals of ARFTSE(1). 

 

According to BDS test the BDS statistic for a random time series follows standard 

normal distribution N(0,1). Therefore since in a N(0,1) 99% of the samples belong to 

the interval [-2.5758, 2.5758] the magnitudes of the BDS statistic presented in the table 

above give us very strong indications that the residuals of this AR model are not IID; 

thus, they contain patterns. 
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For the residuals of the ARS&P(1) we obtained the following values for the BDS 

statistic: 

 

å M BDS å M BDS 
2 4.8240 2 5.1482 
3 7.0039 3 7.3134 
4 8.5678 4 8.5837 
5 10.2717 5 10.6012 
6 11.9532 6 12.6366 
7 13.5690 7 14.8745 
8 9.8014 8 17.0307 
9 5.5463 9 19.4555 

0.25 

10 -5.1100 

1.00 

10 22.2355 
2 4.4807 2 5.4220 
3 6.5671 3 7.5899 
4 8.1318 4 8.7670 
5 10.3735 5 10.5390 
6 12.2892 6 12.3065 
7 14.7803 7 14.1371 
8 17.0889 8 15.8366 
9 20.0027 9 17.5773 

0.5 

10 24.2057 

1.25 

10 19.5444 
2 4.6547 2 5.7821 
3 6.7947 3 7.8644 
4 8.2262 4 8.9259 
5 10.4272 5 10.4560 
6 12.5967 6 11.9403 
7 15.0374 7 13.3968 
8 17.4382 8 14.7473 
9 20.4227 9 16.0366 

0.75 

10 23.9908 

1.5 

10 17.5164 

Table 5.4: The BDS test on the residuals of ARS&P(1). 

 

These again indicate lack of randomness in the residuals of model (5.2). Moreover we 

observe that for the S&P data the BDS statistic has more extreme values that indicate 

with greater certainty that there are patterns in the underlying data. 

 

Finally the results of the BDS test on the residuals of (5.3) are the ones presented in the 

next table: 

 

å M BDS å M BDS 
2 4.8351 2 4.9570 
3 7.1520 3 7.1002 
4 8.8854 4 8.5542 
5 10.6666 5 10.4192 
6 14.5545 6 12.3562 
7 17.7491 7 14.5539 
8 14.0296 8 16.6036 
9 19.6583 9 19.0126 

0.25 

10 -5.1917 

1.00 

10 21.7998 
2 4.4540 2 5.1761 
3 6.5743 3 7.3170 
4 8.1465 4 8.7586 
5 10.2581 5 10.4384 

0.5 

6 12.1726 

1.25 

6 12.0562 
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7 14.5305 7 13.8607 
8 16.7316 8 15.4371 
9 19.4631 9 17.1770 

 

10 22.8129 

 

10 19.0589 
2 4.6998 2 5.5171 
3 6.8104 3 7.5818 
4 8.3812 4 9.0058 
5 10.3980 5 10.4667 
6 12.4742 6 11.7427 
7 14.7956 7 13.1882 
8 17.0902 8 14.4146 
9 20.0824 9 15.7054 

0.75 

10 23.6145 

1.5 

10 17.1291 
Table 5.5: The BDS test on the residuals of ARS&P(7). 

 

These results also lead us to the same conclusions as the one obtained for ARS&P(1). 

Furthermore we observe that all BDS tests undertaken indicate that the bigger the lag 

structure (M) the clearer the higher the certainty for correlations in the underlying data. 

 

Therefore our conclusion from the study of the residuals of the AR models is that these 

specific models did not manage to capture the patterns that according to the BDS test do 

exist in the residuals. Having in mind that the AR models are capable of capturing only 

linear patterns in the second part of this chapter we present another experiment we 

undertook using Neural Network models, which are capable of capturing linear but also 

non-linear patterns. 

 

5.2 Experiment II: Prediction Using Neural Networks 

 

5.2.1 Description 

 
In the second experiment we attempted to predict the excess returns time series using 

neural network models. The results of Experiment I gave us extra motivation to apply 

this type of models since the AR models not only did not manage to give better 

predictions than the naï ve prediction models, but it seems that they did not manage to 

capture the patterns in the underling data. 

 

Similarly to the first experiment our aim was to select those NN models that perform 

optimally in the frame of our study. The parameters that influence the performance of a 

NN model are numerous and more complex than those that influence the performance 

of an AR model. In chapter 4 we selected some of these parameters rationally and we 
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proposed the methods which we will use to define the rest. Here we present an 

experiment we undertook in which we applied these methods and we obtained a set of 

NNs that serve the purposes of our study optimally. 

 

The experiment consisted of three phases (Figure 5.3). In the first phase a genetic 

algorithm (GA) searched the space of NNs with different structures and resulted a 

generation with the fittest of all networks searched based on a metric which was either: 

TheilA or TheilB or TheilC or MAE. The GA search was repeated three times for each 

metric. Then the best three networks were selected from each repetition of the GA 

search and for each one of the metrics. The output of the first phase was a set of thirty-

six network structures.  

 

In the second phase for each one of the thirty-six resulting network structures we 

applied the following procedure. We trained (on Training1 set) and validated (on 

Validation1 set) the network. Then we used the indicated number of epochs from the 

validation procedure and based on it we retrained the network on the Training1 plus the 

Validation1 set. Finally we tested the performance of the network on unseen data 

(Validation2 set). This procedure was repeated 50 times for each network structure for 

random initializations of its weights. From the nine networks for each performance 

statistic, we selected the most stable in terms of standard deviation of their performance. 

Thus the output of the second phase was a set of four network structures. 

 

During the third phase for each one of these four networks we applied the following 

procedure 50 times. We trained each network on the first half of the Training Set and 

we used the remaining half for validation. Then, using the indicated epochs by the 

validation procedure, we retrained the network on the complete Training Set. Finally we 

tested the network on the Test Set calculating all four metrics. The performance for each 

network on each metric was measured again in terms of standard deviation and mean of 

its performance over 50 times that it was trained, validated and tested. The following 

figure depicts all the phases of Experiment II: 
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Figure 5.3: Experiment II 

 

Experiment II was repeated for both FTSE and S&P data. For this scenario the final 

outcome was a set of 8 networks (4 for FTSE and 4 for S&P) evaluated on each one of 

TheilA, TheilB, TheilC and MAE. 

 

The next paragraphs present in details the parameters we used for the experiment along 

with the results we obtained. 

 

5.2.2 Search Using the Genetic Algorithm 

 

The first set of parameters for Experiment II is related to the size of the space that the 

GA will search. For the software we constructed this is set through variables xMax, 

yMax and zMax which represent the size of the input, the first hidden and the second 

hidden layers respectively. For all the GAs in this study we have used xMax =20, 

yMax=30 and zMax=30. This decision was made having in mind that the larger the 

space the smaller the probability of neglecting network structures that might perform 

well in our task. On the other hand a larger space implies greater computational cost 
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(more complicated network structures). Thus we have selected the larger space that we 

could search keeping in mind our computational constraints. However all the 

experiments proved that the most interesting part of our search space was not close to 

these bounds; therefore we concluded that the search space needed no expansion. 

 

The second set of parameters includes Preproduction, Pcrossover, Pmutation, maxGen and m. 

Preproduction, Pcrossover and Pmutation, are the probabilities of selecting either a reproduction, a 

crossover or a mutation operation, while maxGen is the termination criterion and m is 

the number of chromosomes (individuals) per generation. In the literature, we found 

that there is relationship between the values of these parameters [38]. More specifically 

the larger the population size the smaller the crossover and mutation probabilities. For 

instance, DeJong and Spears (1990, sited in [38]) suggest for large population size 

(m=100), Pcrossover=0.6 and Pmutation=0.001, while for small population size (m=30), 

Pcrossover=0.9 and Pmutation=0.01. In our study we applied the GA for m=40 and 

maxGen=25. Again higher values of m and maxGen imply more expensive experiments 

in terms of computations as well as more efficient search since the mass of the networks 

that will be considered is equal to m õ maxGen. We also selected Pcrossover=0.6, 

Pmutation=0.1 and Preproduction=0.3. Compared with the suggestions of DeJong and Spears, 

we used higher mutation and smaller crossover probabilities (having in mind that m=40 

and maxGen=25). We selected this type of settings because we wanted to force the GA 

to make a sparser search in our space. The cost of adopting this strategy is that it is more 

difficult for our GA to converge to a singe network structure. We dealt with this 

consequence by selecting not only the best, but the three best network structures from 

the final generation of our GA. 

  

Additionally the size of Training1, Validation1 and Validation2 sets had to be selected. 

As we have already presented in chapter 3 the size of Training1+ Validation1+ 

Validation2 set (Training set) is predefined at 90% of all the data we have (leaving 10% 

of the data for testing). The software we created allows us to define the size of 

Training1, Validation1 and Validation2. We refer to the size of these sets using the 

variables a, b and c respectively. They are defined as: a=
) ( 

) 1( 

SetTrainingofsize

SetTrainingofsize
, 

b=
) ( 

) 1( 

SetTrainingofsize

SetValidationofsize
 and c=

) ( 

) 2( 

SetTrainingofsize

SetValidationofsize
; thus they must satisfy the 
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equation a+b+c=1. In our experiments we selected a=0.45, b=0.45 and c=0.1. We chose 

to split this data set like this in order to train and validate our networks in data sets with 

the same size and test their performance on the remaining 10% of the data (Valiadtion2 

set) 

 

In order to decide which was the most appropriate training algorithm of those we 

described in chapter 4, we experimented on specific network structures. We observed 

that the Resilient Backpropagation is the algorithm that converged fastest and in fewest 

epochs. Our observations on the performance of these algorithms agree with the 

observations of Demuth and Beale [10]. They also experimented on specific network 

structures using different data and they found that the Resilient Backpropagation 

converges faster than all the other algorithms we considered in our study9. Therefore all 

the networks in this study were trained using the Resilient Backpropagation algorithm 

with the following parameters:  

 

Parameter Value 
delta_init 0.07 
delta_incr 1.2 
delta_decr 0.5 

Table 5.6: Parameter Settings for Resilient Backpropagation. 

 

In the next two paragraphs we present the results obtained for each one of the FTSE and 

S&P datasets by applying the first phase (GA search) of Experiment II using the 

parameters described above. 

 

5.2.2.1 FTSE 

 
For the FTSE data we searched the space defined above 12 times using 3 repetitions for 

each one of our metrics (TheilA, TheilB, TheilC and mae). 

 

TheilA 

By evaluating the networks based on TheilA the GA search for the first repetition gave 

us the following results: 

                                                
9 Gradient descent (incremental mode), Gradient descent (batch mode), Gradient descent with momentum 
(incremental mode), Gradient descent with momentum (batch mode) and Gradient descent with variable 
learning rate. 
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TheilA: Repetition 1 
Generation 1 Generation 25 

20-7-18-1 1.06350539553255 1-2-3-1 1.00354334885323 
10-27-23-1 2.30858017421321 4-16-3-1 1.01215179900625 
10-1-25-1 1.00269691369670 1-16-3-1 0.99754014836206 
9-19-24-1 1.08635203261823 1-5-3-1 1.01017235795989 
19-23-5-1 1.01497802812205 16-16-3-1 1.02915976153979 
9-29-28-1 1.12007657009537 4-7-3-1 1.00847125353051 
9-27-1-1 1.00788656553931 4-16-5-1 1.02490905958634 
8-25-0-1 1.08241362171488 1-16-3-1 1.00733686649310 
3-7-6-1 1.01340403091858 1-16-3-1 0.99893836431798 
13-9-6-1 1.01529661748052 1-16-3-1 0.99722773505604 

1-23-13-1 1.00551557236577 1-16-3-1 1.00907178974319 
19-14-12-1 1.02309501148313 8-7-3-1 1.00154842651733 
17-16-6-1 1.00484848467691 1-24-3-1 1.02192266247044 
14-26-0-1 1.14620810155970 1-7-3-1 1.00596858445865 
14-12-25-1 1.04558150203962 1-16-3-1 1.00026579681361 
11-22-13-1 1.05937744091558 1-7-3-1 1.00158144785892 

7-6-5-1 1.01119829442827 4-2-3-1 1.00239669676666 
14-10-16-1 1.04447280928690 1-16-3-1 1.01988982852211 
4-21-11-1 1.02466543026586 8-16-3-1 0.99906947893202 
18-26-18-1 1.01362277667090 1-24-3-1 1.00727513395514 
10-27-25-1 1.17120092130550 4-7-3-1 0.99944244510115 
13-25-20-1 1.06251295833906 16-5-3-1 0.99986474756803 
7-9-10-1 1.00332369301496 11-3-3-1 1.01187873218257 

11-22-9-1 1.05275238968699 1-9-5-1 1.01065141746981 
17-18-11-1 1.05177689669111 1-2-5-1 1.00104824838857 
15-17-13-1 1.12672178790905 4-2-20-1 1.01240011451441 
14-19-24-1 1.06368010060186 2-18-15-1 1.04118128784757 
20-16-27-1 1.14482653303276 1-7-3-1-1 1.00483294107884 
4-30-8-1 1.01845896498870 1-5-3-1 1.00907864972665 

6-27-22-1 1.12487280379806 16-7-3-1 1.02807603776250 
3-1-27-1 1.03064399476638 15-21-4-1 1.01826933865850 
4-9-20-1 1.00651905602084 1-9-3-1 0.99692989257736 
6-15-2-1 1.00508575508379 1-9-10-1 1.01923851814870 

20-18-13-1 1.08370349086986 15-18-24-1 1.05450729598077 
11-11-13-1 1.11253383002727 1-16-3-1 0.99468176119214 
5-18-23-1 1.04264815817443 4-16-3-1 1.00052611521396 
11-20-6-1 1.01970682681941 4-7-5-1 1.00898729968813 
8-24-21-1 1.09730624076398 1-16-3-1 1.00393645957885 
10-18-24-1 1.14351384228981 4-16-3-1 1.00718340326268 
2-19-1-1 1.01585718519519 1-7-3-1 1.01469631847196 
Average 1.08678552007508 Average 1.00989628912891 

STD 0.20405508788295 STD 0.01249876088049 
Table 5.7: The results of the First Repetition of the GA search on the FTSE data using TheilA. 

 

The first two columns of Table 5.7 describe the initial generation that contains 40 

randomly selected networks and their performance (TheilA), while the next two 

columns give the individuals of the last generation with their performance. 

 

The ten network structures that was mostly visited by the algorithm as well as the 

frequency with which they were met in the 25th generation are indicated by the 

following table: 
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Top 10 
Structure Times Considered Times in Final Generation 

1-9-3-1 25 1 
4-2-3-1 25 1 
4-10-3-1 27 0 
4-16-5-1 29 1 
1-2-3-1 30 1 
4-16-3-1 36 3 
1-7-3-1 46 4 
4-7-3-1 50 2 
1-16-3-1 50 9 
4-9-3-1 61 0 

Table 5.8: The most frequently visited networks in Repetition 1 using TheilA for the FTSE data. 

 

From this table we have that the network with structure ‘4-9-3-1’ was considered by the 

algorithm 61 times and it was not present in the final generation, while network ‘1-16-3-

1’ was considered 50 times and it was met 9 times in the 25th generation. 

 

Table 5.7 indicates that the variance of the performance of the networks in Generation 1 

is small and their average is close to one. Furthermore the performance of the networks 

belonging to the last generation indicates that most of them performed only as well as 

the random walk (RW) model (based on the price of the market) did; only a few of them 

managed to outperform slightly the RW. This can be either due to the fact that there are 

no structures that give significantly better results comparing to the RW model or that 

the path that our algorithm followed did not manage to discover these networks. 

Therefore, in order to have safer conclusions we selected to repeat the search twice. A 

second comment is that there are network structures that seem to perform very badly, 

for instance ‘10-27-23-1’ gave us a TheilA of 2.3. Furthermore from Table 5.7 it is clear 

that the GA did manage to converge to networks with smaller Theils (in both terms of 

mean and standard deviation). Relatively to the type of network structures we got in the 

final generation the only pattern we observed was a small second hidden layer and more 

specifically 3 neurons for most of our structures.  

 

On the other hand Table 5.8 indicates how fit individuals proved to be throughout the 

search that the algorithm performed. For instance the network ‘4-9-3-1’ was visited 60 

times, which implies that for a specific time period this individual managed to survive 

but further search of the algorithm proved that new fittest individuals came up and ‘4-9-

3-1’ did not manage to have a place at the 25th generation. 

 



 95

In the next step we repeated the GA search two more times. The results we obtained in 

terms of mean and standard deviation of the first and last generations were: 

 

 Repetition 2 Repetition 3 
Generation first last first last 
Average 1.041067446 1.011567960 1.045704902 1.006809744 
Std 0.044528247 0.022214392 0.044429286 0.014169245 

Table 5.9: Average and Std for Repetitions 2 and 3 for the FTSE data using Theil A. 

 

From table 5.9 it is clear that for repetitions two and three we obtained similar results. 

The tables that describe the first and the last generations in details as well as the 10 

mostly considered network structures are sited in Appendix I. 

 

The following plots give the mean and the standard deviation of TheilA for each 

generation (from 1 to 25); their exact values are also presented in Appendix I. In 

addition the overall generations mean and standard deviation is reported. 
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Repetition 1 Minimum: 0.97671930169372 
Maximum: 2.52275580003591 
Mean: 1.02207085491744 
StDev: 0.07824383121909 

Repetition 2 Minimum: 0.98957358857492 
Maximum: 5.85488876487303 
Mean: 1.02660903986000 
StDev: 0.21474983505232 

Repetition 3  Minimum: 0.98404884361730 
Maximum: 1.74004580914482 
Mean: 1.01714630587486 
StDev: 0.03754714419798  

Figure 5.4: Mean and Std of TheilA throughout all generations for the FTSE data.  
  

The above plots make clear that in all three repetitions the GA converged giving us 

networks with smaller Theils  (on average). It is also clear that the standard deviation of 
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the Theils across generations also converged to smaller values. However in none of 

these experiments did we obtain a network structure that clearly beats the random walk 

model. Furthermore the patterns we managed to observe in the topologies of the 

networks that belonged to the last generations are: firstly, topologies with many neurons 

in both hidden layers and in the input layer were not preferred and secondly, the fittest 

networks proved to be those with one or three neurons in the second hidden layer. The 

most occurrences that a specific topology managed to have in a last generation were 9, 

thus we discovered no network that was by far better than all the others. 

 

The distribution that the TheilA follows for each one of the repetitions of the GA is 

indicated from the following plots.  
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Figure 5.5: Distributions of TheilA for the FTSE data. 
 

These plots clearly show that the best performance that a network had in terms of the 

TheilA statistic was close to 0.98; the best performance overall generations and 

repetitions was 0.976. It is also clear that all these distributions are peaked at one. 

Therefore the majority of network structures visited by the GA search over all 

repetitions performed close to one. 
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TheilB 

Similarly, we used the GA to search the space of network topologies using TheilB as 

fitness function. The means and standard deviations of the first and last generation for 

all three repetitions are presented in the following table: 

 

 Repetition 1 Repetition 2 Repetition 3 
Generation first Last first last first last 
Average 0.770746593 0.731308699 0.771319021 0.734567075 0.784200620 0.734334912 
Std 0.048951168 0.010639918 0.044459446 0.012125911 0.151177675 0.015118571 

Table 5.10: Average and Std for Repetitions 1,2 and 3 using Theil B for the FTSE data. 

 

The complete results we obtained are sited in Appendix I.  

 

These results show that the NN models managed to beat clearly the predictions of the 

RW model (based on the excess returns) by achieving on average Theils close to 0.73. 

A second important comment is that the GA converged significantly both in terms of 

mean and standard deviation. While for TheilA the average performance in both the first 

and the last generations was close to one and the only thing that the algorithm managed 

to achieve was to reduce the variance of the performance, for TheilB we observed a 

significant improvement not only to the variance but to the average of the performance 

as well. 

 

Further more in the first repetition of the GA search we obtained a topology that proved 

to be clearly the fittest; it was present 28 times in the last generation and it was visited 

by the GA 231 times. The topology was ‘4-4-1-1’. 

 

The mean and standard deviation we obtained for each generation in each one of the 

three repetitions are depicted by the following figure:  
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Repetition 1 Minimum:   0.71677280560165 
Maximum: 3.11386940390831 
Mean: 0.74663261780309 
StDev:  0.09808917369218 

Repetition 2 Minimum: 0.71681199758096 
Maximum: 3.51396781794589 
Mean: 0.74409963818560 
StDev: 0.09292444036595 

Repetition 3 Minimum: 0.71417276606778 
Maximum: 2.21826149929806 
Mean: 0.74543227276977 
StDev: 0.06939122297471  

Figure 5.6: Mean and Std of TheilB throughout all generations for the FTSE data. 
 

From these plots it is clear that the GA converged in all three repetitions both in terms 

of standard deviation and mean. This convergence was not always stable. For instance, 

in the second repetition the GA started to converge during generations 1,2 and 3; then 

both the standard deviation and mean of the Theils increased substantially. This is 

because a significant number of the characteristics of the new offspring are defined 

randomly and therefore there are cases in which the new offspring perform badly. We 

observed this phenomenon at generations 4 and 5 but then the algorithm managed to 

converge again excluding the individuals that were not fit. 

 

The distributions that TheilB followed in each repetition of the GA are: 
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Figure 5.7: Distributions of TheilB for the FTSE data. 
 

The distributions indicate that most of the networks visited have Theils close to 0.74 but 

none of them performed better than 0.714. Additionally the shape of these plots is 

similar to those we obtained for TheilA with the difference that they are peaked at a 

value close to 0.74. 

 

TheilC 

The GA search using as fitness function TheilC gave us again values close to one. Thus 

in this case too it is indicated that the NN models did not manage to beat clearly the 

model which states that the gains we will have from the stock market are exactly those 

that we would have from bonds. More specifically, the mean and the standard deviation 

of the first and the last generations for each one of the three repetitions were: 

 

 Repetition 1 Repetition 2 Repetition 3 
Generation first Last first last first last 
Average 1.135509075 1.004348794 1.038396719 1.011435866 1.056811551 1.003928808 
Std 0.403973152 0.013590195 0.038226957 0.015577890 0.083453020 0.012347686 

Table 5.11: Average and Std for Repetitions 1,2 and 3 using TheilC for the FTSE data. 
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Here again in repetitions one and three we had that the fittest network topologies had a 

second hidden layer that consisted of one or two nodes.  

 

The mean and standard deviation throughout the 25 generations converged to smaller 

values but in all three repartitions they moved asymptotically close to one; similarly to 

the case we used as fitness function the TheilA. 
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Repetition 1 Minimum: 0.98471207595642 
Maximum: 3.23988730241465 
Mean: 1.02393878735438 
StDev: 0.10382601318306 

Repetition 2 Minimum: 0.98575813300736 
Maximum: 3.37015399275916 
Mean: 1.02520083191677 
StDev: 0.10253037985643 

Repetition 3 Minimum: 0.98296919468033 
Maximum: 1.63179232305404 
Mean: 1.01584954778234 
StDev: 0.04033390484253  

Figure 5.8: Mean and Std of TheilC throughout all generations for the FTSE data. 
 

The distributions of TheilC as well are similar to those of TheilA; most of the values are 

close to one but none of them below 0.982. 
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Figure 5.9: Distributions of TheilC for the FTSE data. 
 

To sum up, from all the repetitions of the GA search using both TheilA and TheilC it 

became clear that the predictive power of all three types of prediction models that are 

involved is similar. 

  

MAE 

The mean absolute error (mae) as it has already been stated is a scale variant metric. 

The reason we evaluate our models based on it is that it is commonly used. Thus the 

comparison of the results of our study with past or future studies will be feasible. The 

GA search for each one of the three repetitions gave us the following results: 

 

 Repetition 1 Repetition 2 Repetition 3 
Generation first Last first last first last 
Average 0.008989344 0.008708330 0.008964180 0.008677859 0.009182516 0.008788057 
Std 0.000353321 0.000121448 0.000214911 0.000076273 0.001194585 0.000212327 

Table 5.12: Average and Std for Repetitions 1,2 and 3 using mae for the FTSE data 

. 
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In this case also for all repetitions the GA converged to network structures that gave 

smaller mae. Consistently with all the GA searches performed so far there seem to exist 

a threshold beyond which our models cannot improve. In mae terms none of the models 

performed better than 0.0846. 
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Repetition 1 Minimum: 0.00853135361487 
Maximum: 0.02323824192185 
Mean: 0.00880856731319 
StDev: 5.906423693747e-004 

Repetition 2 Minimum: 0.00846596364725 
Maximum: 0.02982130692326 
Mean: 0.00878950669852 
StDev: 7.811038840676e-004 

Repetition 3 Minimum: 0.00853588229231 
Maximum: 0.02495979417695 
MeanValue: 0.00896776988746 
StDev: 0.00102266557975  

Figure 5.10: Mean and Std of mae throughout all generations for the FTSE data. 
 

As the distributions of mae show the standard deviation is relatively small and the 

majority of the models are close to the mean. Therefore as for all metrics used so far 

there are two categories of models, having in mind their performance, those close to the 

mean and those that perform worse than the mean. 
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Figure 5.11: Distributions of mae for the FTSE data. 
 

In conclusion the GA managed to indicate network structures that performed better than 

others on unseen data in terms of the four different metrics. From the results we 

obtained we can say that the NN models beat clearly only the random walk (RW) on 

excess returns (TheilB). The RW on the value of the market (TheilA) as well as the 

prediction model which states that the value of the market tomorrow will be such that 

will allows us to have exactly the same benefit as we would have if we invested in 

bonds (TheilC) seem to perform closely to the fittest NNs.  

 

The repetitions of the GA showed it did converge giving us generations with smaller 

mean and standard deviation of the metric used each time. However this convergence 

was not smooth; the GA during its search went through generations with bad 

performance (on average) before converging to fittest generations. 

 

Furthermore in all cases the distributions of the metrics showed that most of the 

network topologies considered performed close to the mean (which was different for 

each metric). Those networks that were not close to the mean always performed worse. 
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5.2.2.2 S&P 

 
In this section we present the results we obtained from the GA search using the S&P 

data. Again we used the same metrics (TheilA, TheilB TheilC and mae) and we 

repeated the GA search three times for each metric. The complete list of results we 

obtained is sited in sited in Appendix II. 

 

TheilA and TheilC 

In spite the fact that we used new data (S&P data) the results we obtained from the GA 

search using TheilA and TheilC were similar to those we obtained for the FTSE data. 

For this reason we present both the results for TheilA and TheilC in the same section.  

 

The use of TheilA as fitness function for the GA applied on S&P data and for all three 

repetitions gave us the following results: 

 

 Repetition 1 Repetition 2 Repetition 3 
Generation first Last first last first last 
Average 1.031026029 1.007563784 1.046308123 1.000894766 1.034200219 1.040926853 
Std 0.036859389 0.041011029 0.090209632 0.016385514 0.050289075 0.265116720 

Table 5.13: Average and Std for Repetitions 1,2 and 3 using TheilA for the S&P data. 

 

While using TheilC we obtained: 

 

 Repetition 1 Repetition 2 Repetition 3 
Generation first Last first last first last 
Average 1.150810389 1.002527788 1.032370207 1.004155361 1.031988377 1.001011443 
Std 0.459013220 0.027139328 0.056570654 0.022147295 0.044957192 0.018254567 

Table 5.14: Average and Std for Repetitions 1,2 and 3 using TheilC for the S&P data.  

 

From all repetitions of the GA based on either the TheilA or TheilC it became clear that 

we none of the neural network structures did manage to perform significantly better that 

the random walk on the value of the market or than the predictor which states that the 

value of the market tomorrow will be such that will allow us to have the same profits 

that we would have by investing to bonds. Furthermore in the third repetition for TheilA 

the GA did not manage to converge to a generation with smaller Theils (in both average 

and standard deviation terms) comparing to the respective first generation. 
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Moreover the most occurrences that a neural network topology managed to have in a 

last generation for both TheilA and TheilC were 11 (‘3-8-3-1’). Also the topologies that 

were preferred by the GA were not complicated ones and more specifically most of the 

fittest topologies had a small number of neurons in their second hidden layer. 

 

The next figure presents the mean and the standard deviation throughout generations 1 

to 25 for the first repetition of the GA search using TheilA and TheilC. It also presents 

the mean, the standard deviation, the best and worse Theils overall generations in each 

repetition using TheilA and TheilC.  
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Repetition 1 Minimum: 0.95543615106433 
Maximum: 2.11678033562905 
Mean: 1.01441600193977 
StDev: 0.06815235398677 

Repetition 2 Minimum: 0.96446950743347 
Maximum: 6.09555291707932 
Mean: 1.03229514295346 
StDev: 0.22283831470531 

Repetition 3 Minimum: 0.95958074018409 
Maximum: 2.67201086723304 
MeanValue: 1.01506249386896 
StDev: 0.07306944063927  
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Repetition 1 Minimum: 0.95947511864954 
Maximum: 9.20182663548363 
Mean: 1.08141304925925 
StDev: 0.48382376757874 

Repetition 2 Minimum: 0.96155747751406 
Maximum: 3.20491277773598 
Mean: 1.01245408293492 
StDev: 0.08902262332255 

Repetition 3 Minimum: 0.93472483022005 
Maximum: 3.75728197821118 
MeanValue: 1.01668225434724 
StDev: 0.14580623775927  

Figure 5.12: Mean and Std of TheilA and C for Repetition 1 throughout all generations for the S&P data. 
 

The best TheilA that a NN gave us was 0.955; while the best TheilC we obtained was 

0.934. The way that the GA converged is similar to what we had for the FTSE excess 

returns. It did not converge smoothly but for some generations the mean and the 

standard deviation increased rapidly while later on it managed again to select the fittest 

individuals and converge to generations with smaller mean and standard deviation. 
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The distributions for TheilA and TheilC for all repetitions of the GA search where again 

peaked at the value of one. Therefore we can say that in this case too we had two groups 

of models those that gave Theils close to one and those that gave Theils significantly 

larger than one. None of the NN models managed to give a Theil significantly less than 

one.  
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Figure 5.13: Distributions of TheilA and C for Repetition 1 and for the S&P data. 

 

Here we present only the distribution of TheilA and TheilC for the first repetition of the 

GA search, the rest are similar and are sited in Appendix II. 

 

TheilB 

As with the FTSE dataset, the NN models did manage to beat clearly the random walk 

model based on excess returns. As the following table indicates we obtained Theils 

significantly less than one. 

 

 Repetition 1 Repetition 2 Repetition 3 
Generation first Last first last first last 
Average 0.711798721 0.683356399 0.717174110 0.694143061 0.710648728 0.687398788 
Std 0.033821879 0.017246014 0.040166282 0.025064648 0.043682594 0.023336711 

Table 5.15: Average and Std for Repetitions 1,2 and 3 using TheilB for the S&P data.. 
 

The Theils obtained in the last generations of all three repetitions are on average smaller 

than 0.7 while the respective values in the case of the FTSE data were all above 0.73. 

This phenomenon can be either due to the fact that the NNs managed to find more 

patterns in the S&P data or due to the fact that the RW model (on excess returns) in the 

case of S&P data performed worse.  
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For all three repetitions the GA gave final generations with smaller TheilB in both terms 

of means and standard deviations comparing to those of the first generations. The best 

TheilB obtained was 0.656, which is much better than the best TheilB we obtained for 

FTSE dataset. 
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Repetition 1 Minimum: 0.65801387240786 
Maximum: 4.90344838578297 
Mean: 0.69820374170794 
StDev: 0.14180041538561 

Repetition 2 Minimum: 0.65632890143622 
Maximum: 3.06145783099977 
MeanValue: 0.71351487669808 
StDev: 0.14408791190612 

Repetition 3 Minimum: 0.66140932153077 
Maximum: 2.28875675929357 
Mean: 0.69449753655453 
StDev: 0.05799444472298  

Figure 5.14: Mean and Std of TheilB for Repetition 1 throughout all generations for the S&P data.  
 

The distributions of TheilB are similar to those obtained for the FTSE data with the 

difference that they are slightly shifted to the left. We present here only the distribution 

of the first repetition, the rest are sited in Appendix II. 
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Figure 5.15: Distribution of TheilB for Repetition 1 and for the S&P data. 

 

MAE 

The performance of the NN models that were selected by the GA in mae terms for the 

repetitions one, two and three of the GA are indicated by the following table: 

 

 Repetition 1 Repetition 2 Repetition 3 
Generation first Last first last first last 
Average 0.010460053 0.010116900 0.010313421 0.010219387 0.010434636 0.010269318 
Std 0.000366989 0.000130348 0.000291728 0.000307676 0.000479851 0.000584384 

Table 5.16: Average and Std for Repetitions 1,2 and 3 using mae for the S&P data. 
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It is clear from table 5.16 that there is a very small variation in the performance of NNs 

but this fact due to the nature of mae (depended on the scale of target data) is not 

informative by itself.  

 

A second comment we can make about the magnitude of the mae is that its larger than 

the one we obtained for FTSE data. Having in mind that the magnitude of the values of 

target data for both FTSE and S&P is almost the same we can infer that NN managed to 

do better in the FTSE data. Therefore the better Theils we obtained in the S&P dataset 

for the TheilB are due to the fact that the RW on the excess returns is a worse model for 

the S&P than it is for FTSE. 

 
The next plot verifies our observation that the variation of the mae is very small. It also 

indicates that we had very small changes in the mean of the mae throughout the 25 

generations. For repetitions two and three we obtained similar plots. 
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Repetition 1 Minimum: 0.00980390701485 
Maximum: 0.01865772289184 
Mean: 0.01024977636134 
StDev: 3.8476067494e-004 

Repetition 2 Minimum: 0.00988940190652 
Maximum: 0.03591933673879 
Mean: 0.01021539665984 
StDev: 8.711272711571e-004 

Repetition 3 Minimum: 0.00984895417788 
Maximum: 0.02950493566814 
MeanValue: 0.01025785873425 
StDev: 7.416538535514e-004  

Figure 5.16: Mean and Std of mae for Repetition 1 throughout all generations for the S&P data.  
 

The distributions we obtained are similar to the ones obtained for the FTSE data. The 

difference is that for the S&P data the distributions are peaked at a smaller value, close 

to 0.0102 while for FTSE we had distributions peaked close to 0.0086. 
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Figure 5.17: Distribution of mae for Repetition 1 and for the S&P data. 

 

To sum up, for the S&P dataset we obtained similar results to the ones we had for the 

FTSE dataset. Again the NN models managed to beat clearly only the random walk 

based on excess returns. The network structures that were favored by the GA were ones 

with small number of neurons in the second hidden layer. Furthermore from the 

distributions of models based on their performance on each one of the four metrics we 

had that most of the networks performed close to a specific value, which was dependent 

on the metric we used each time.  

 

5.2.3 Selection of the fittest Networks  

 
In this section we study the behavior of the network topologies that were indicated to be 

the fittest from the Genetic Algorithm. More specifically we selected from each 

repetition of the GA search the 3 fittest network topologies and we trained, validated 

and tested them 50 times each, in order to observe the variations that they give on their 

performance. 

 

Initially we defined the procedure according to which we chose the 3 fittest networks 

from each repetition. The selection was based on the following rules: 

1. For each repetition of the GA search select those three networks that have the most 

representatives in the final generation. 

2. If there is a tie, select those that are visited the most by the GA, based on the top 10 

most visited topologies tables. If this does not break the tie, select those networks 

that have the simplest structures. 
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An example of the application of these rules follows. Applying the first repetition of the 

GA search for the FTSE data and for TheilA we obtained Table 5.7. In the last 

generation of Table 5.7 the structures with the most representatives are ‘1-16-3-1’, ‘1-7-

3-1’ and ‘4-16-3-1’ with 9, 4 and 3 representatives respectively. For the second 

repetition of the GA in the 25th generation we obtained: ‘7-3-1-1’ 12 times, ‘7-21-1-1’ 9 

times and ‘4-3-1-1’, ‘8-3-7-1’, ‘7-4-1-1’, ’20-7-2-1’ 2 times each. In this case we select 

‘7-3-1-1’, ‘7-21-1-1’ and from the topologies that were met twice ‘4-3-1-1’, because 

comparing to the others it was the one higher ranked in the top 10 visited structures 

table. 

 

The rationale behind this selection is that the networks that survived in the last 

generation and managed to have as many representatives as possible are the ones that 

proved to be the best comparing to all the networks visited by the GA. Furthermore for 

two networks that have the same number of representatives in the last generation the 

more trustworthy would be the one that passed through more comparisons with others 

and thus the one that was mostly visited by the algorithm. 

 

The result of applying the above procedure for each evaluation function to both FTSE 

and S&P datasets is the following network structures: 

 

 FTSE 
 TheilA TheilB ThelC MAE 

1-16-3-1 4-4-1-1 14-3-2-1 6-22-2-1 
1-7-3-1 4-20-1-1 5-3-2-1 6-3-2-1 

Repetition 1 

4-16-3-1 7-4-1-1 1-3-1-1 6-9-2-1 
7-3-1-1 1-4-1-1 3-1-5-1 4-10-1-1 

7-21-1-1 8-4-2-1 8-7-5-1 4-5-1-1 
Repetition 2 

4-3-1-1 8-27-1-1 3-7-5-1 4-24-1-1 
18-3-2-1 12-4-2-1 3-2-1-1 9-2-1-1 
4-3-2-1 6-4-2-1 7-8-1-1 9-6-1-1 

Repetition 3 

18-1-2-1 3-4-2-1 1-2-1-1 17-2-5-1 
Table 5.17: The fittest networks indicated from the GA for the FTSE data. 

 

 S&P 
 TheilA TheilB ThelC MAE 

2-27-3-1 5-8-1-1 7-13-7-1 6-26-4-1 
2-27-1-1 5-8-4-1 7-17-7-1 6-9-4-1 

Repetition 1 

1-27-1-1 5-14-4-1 7-26-7-1 6-22-4-1 
3-8-3-1 2-24-5-1 6-4-7-1 1-22-2-1 

3-28-3-1 5-6-5-1 3-4-7-1 1-7-2-1 
Repetition 2 

3-8-6-1 5-24-5-1 6-4-9-1 1-22-1-1 
6-7-2-1 1-8-1-1 6-3-3-1 3-19-3-1 
6-7- 4-1 1-1-1-1 6-1-3-1 3-2-3-1 

Repetition 3 

6-10-2-1 1-6-1-1 6-8-3-1 3-2-9-1 

Table 5.18: The fittest networks indicated from the GA for the S&P data. 
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The performance of the NN models indicated from the GA search for the FTSE dataset 

is presented in the following table in terms of standard deviation and mean of the 50 

times that each of them was trained, validated and tested: 

 

FTSE 
TheilA TheilB 

Network Std Mean Network Std Mean 
1-16-3-1 0.01961388350674  1.00820477542185 4-4-1-1 0.00764454969274 0.72811491206436 
1-7-3-1 0.00730024490453  1.00486862998961 4-20-1-1 0.01498936547448 0.73127557331337 

4-16-3-1 0.02227707500624  1.01490731794973 7-4-1-1 0.00276503486501 0.72957651884349 
7-3-1-1 0.00601270754165  1.00232906250210 1-4-1-1 0.01305596328701 0.73171096444132 

7-21-1-1 0.01773028475136  1.00756216483921 8-4-2-1 0.05431578620745 0.73460451486896 
4-3-1-1 0.00404845348991  1.00169508751301 8-27-1-1 0.00794325186130 0.72868313431556 
18-3-2-1 0.02015297311220  1.01052429503033 12-4-2-1 0.00753825474067 0.73113202218734 
4-3-2-1 0.00929797288659  1.00486080826453 6-4-2-1 0.00587907837145 0.73070643233284 

18-1-2-1 0.00704993212946  1.00485862617409 3-4-2-1 0.01095648721657 0.73413207001749 
TheilC MAE 

Network Std Mean Network Std Mean 
14-3-2-1 0.01198078182824 1.00649878339865 6-22-2-1 0.00016037861097 0.00874153571250 
5-3-2-1 0.00856002245574 1.00217202008705 6-3-2-1 0.00011690678857 0.00868423516488 
1-3-1-1 0.00503070769684 1.00178010066804 6-9-2-1 0.00008668171981 0.00873069227919 
3-1-5-1 0.01504994905024 1.00719625256695 4-10-1-1 0.00010903989598 0.00869744812727 
8-7-5-1 0.02070863638320 1.01600112999146 4-5-1-1 0.00008475362041 0.00867094497344 
3-7-5-1 0.01389195219445 1.01342547307135 4-24-1-1 0.00010230611792 0.00867438401744 
3-2-1-1 0.00407566006554 1.00137507210356 9-2-1-1 0.00008050708332 0.00870733038017 
7-8-1-1 0.00508396558151 1.00355605401049 9-6-1-1 0.00015444671828 0.00874366288006 
1-2-1-1 0.00265946720559 1.00020411240575 17-2-5-1 0.00012086822896 0.00872765526934 

Table 5.19: The fittest networks indicated from the GA based on TheilA, TheilB, TheilC and 
MAE for the FTSE data, trained 50 times each. 

 
The network structures that for each metric gave the smallest standard deviation are 

indicated in bold font. 

 

On the other hand, the network topologies indicated as the fittest by the GA search on 

the S&P data are presented by the next table: 

 
S&P 

TheilA TheilB 
Network Std Mean Network Std Mean 
2-27-3-1 0.01626082090294 0.99725453419637 5-8-1-1 0.01043867315151 0.68603732344611 
2-27-1-1 0.01336374201237 0.99972555422971 5-8-4-1 0.01770519355545 0.67986871258394 
1-27-1-1 0.01023786430509 0.99961096871444 5-14-4-1 0.01044678974676 0.67758424031563 
3-8-3-1 0.01633486431797 0.99685412816632 2-24-5-1 0.02073133096139 0.69405258038825 

3-28-3-1 0.03061797189849 1.00324864853158 5-6-5-1 0.01059525043127 0.67750409049392 
3-8-6-1 0.05626706151184 1.01568823203417 5-24-5-1 0.01764378089270 0.68135829536472 
6-7-2-1 0.01588399010866 0.99391544441447 1-8-1-1 0.00706379523034 0.68305327390241 
6-7- 4-1 0.01505263024837 0.99213093392555 1-1-1-1 0.00579286757204 0.68479563672748 
6-10-2-1 0.01332876088743 0.99413023768472 1-6-1-1 0.01025710778822 0.68304738930744 

TheilC MAE 
Network Std Mean Network Std Mean 
7-13-7-1 0.12091917711418 1.01801983060678 6-26-4-1 0.00019506396082 0.01014302717174 
7-17-7-1 0.02805762767076 1.00169434789846 6-9-4-1 0.00012645439429 0.01013162000197 
7-26-7-1 0.02312257352437 0.99911646039530 6-22-4-1 0.00018126501997 0.01015238208799 
6-4-7-1 0.02581666176588 0.99985924397347 1-22-2-1 0.00012603965727 0.01012772287673 
3-4-7-1 0.02036573379806 1.00278153996161 1-7-2-1 0.00027350628720 0.01017535974777 
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6-4-9-1 0.01750129730863 1.00152217344163 1-22-1-1 0.00008240215742 0.01011905829710 
6-3-3-1 0.02205633408582 0.99968154545860 3-19-3-1 0.00027204478516 0.01015573976091 
6-1-3-1 0.00888277464947 0.99717433585876 3-2-3-1 0.00006889143559 0.01011199750553 
6-8-3-1 0.02274086699402 0.99922362442379 3-2-9-1 0.00084008608651 0.01033375024713 

Table 5.20: The fittest networks indicated from the GA based on TheilA, TheilB, TheilC and 
MAE for the S&P data, trained 50 times each. 

 

From Tables 5.19 and 5.20 we conclude that the most stable network structures or else 

the network structures that gave results with the smaller variation are the simplest ones 

in terms of mass of neurons across their layers.  

 

Additionally the comparison of the standard deviation and the mean even for the 

networks indicated as the most stable does not prove that they are able to perform 

clearly better than the set of network structures present in the final generations. 

Therefore, all that the GA helped us to do was to avoid the network structures that 

performed badly rather than indicating those networks that are clearly the best. Having 

in mind the distributions of the networks based on the magnitude of the metric used 

each time we conclude that there is no specific network structure that performs clearly 

better than others. Instead there are areas in the search space, which contain network 

structures that give the best performance we can have. The common characteristic that 

the members of these areas seem to have is that they have small number of neurons in 

the second hidden layer, usually one, two or three neurons; a first hidden layer that can 

have any number of neurons and input layer that in most cases has size smaller than ten. 

 

The evaluation of the NN models that we have used so far was based on unseen data 

and more specifically on the Validation2 Set. We repeatedly tested our models on the 

Validation2 Set and we selected those that proved to perform optimally on it. Therefore 

we have adjusted our selection on the specific dataset. Since this is the case, we want to 

see how well the models we have selected to be among those that perform optimally 

will perform on totally unseen data. For this reason in the next paragraph we present the 

way that the four most stable topologies (one for each metric) performed on the Test 

Set. 

 

5.2.4 Evaluation of the fittest Networks 

 
The network structures that we consider for the FTSE and S&P data are the following: 
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Metric used by the GA FTSE S&P 
TheilA 4-3-1-1 1-27-1-1 
TheilB 7-4-1-1 1-1-1-1 
TheilC 1-2-1-1 6-1-3-1 
MAE 9-2-1-1 3-2-3-1 

Table 5.21: The most stable networks for FTSE and S&P. 

 

These are the topologies that proved to give predictions with the smallest variation 

among the ones indicated as fittest by the GA. Each topology was indicated by a GA 

search that used as fitness function TheilA, TheilB, TheilC and mae respectively. 

 

We trained these networks on the first half of the data in the Training Set (Training1+ 

Validation1) and we validated them on the rest. Then we obtained the number of epochs 

beyond which the networks were over-trained and we retrained them on the full 

Training Set. Finally we tested them on the Test Set measuring their performance in all 

four metrics we used so far. We repeated this procedure 50 times for each topology. The 

next tables present the results we obtained for FTSE and S&P respectively: 

 

 FTSE 
4-3-1-1 7-4-1-1  

STD Mean STD Mean 
TheilA 0.00490524354536  1.00084379707917 0.01217835101753 1.00173239514676 
TheilB 0.00355189314151  0.72471227691297 0.00876287957261 0.72079219346014 
TheilC 0.00490511152001  1.00081685922117 0.01217983627077 1.00185456491230 
MAE 0.00005769674067  0.00861328995057 0.00011569949816 0.00860158798788 

1-2-1-1 9-2-1-1  
STD Mean STD Mean 

TheilA 0.01704100294014 1.00312032669417 0.00523010070187 1.00125915576285 
TheilB 0.01231229153117 0.72476426102874 0.00376342342959 0.72047602535458 
TheilC 0.01704065429850 1.00309980386964 0.00523053618550 1.00134252547137 
MAE 0.00016784218965 0.00861483152375 0.00004514328093 0.00856787013755 

Table 5.22: The performance of the most stable networks on the FTSE data measured in all four 
metrics. 

 
 

S&P 
1-27-1-1 1-1-1-1  

STD Mean STD Mean 
TheilA 0.00594101933794 0.99911360283886 0.00920940387806 1.00322121138992 
TheilB 0.00418916371076 0.70450039123972 0.00649378470751 0.70739677041328 
TheilC 0.00594042809710 0.99901417263607 0.00920848737278 1.00312137240443 
MAE 0.00006221326788 0.01036938479925 0.00009056576407 0.01039824144737 

6-1-3-1 3-2-3-1  
STD Mean STD Mean 

TheilA  0.02892992971359 1.00867440565435 0.01991734563816 1.00128205208748 
TheilB  0.02034385470023 0.70931128252377 0.01404976099285 0.70630764630154 
TheilC  0.02892865489642 1.00862995772570 0.01991463695066 1.00114588132332 
MAE  0.00030655403019 0.01046133149094 0.00021918549958 0.01040772292645 

Table 5.23: The performance of the most stable networks on the S&P data measured in all four 
metrics. 
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These results are similar to those obtained by testing our models on the Validation2 Set. 

Therefore, it seems that the predictive ability of the NN models indicated by the GA is 

not dependent on a specific dataset. TheilA and TheilC obtained are close to one; 

TheilB is close to 0.72 for FTSE and 0.70 for S&P, while the MAE for FTSE is close to 

0.008 and for the S&P close to 0.010. 

 

5.2.5 Discussion of the outcomes of Experiment II 

 
The outcomes of experiment two lead us to the following conclusions: 

 

The benchmarks that the NN models did not manage to beat were: a) the ones that 

compared their predictive ability with the random walk model on the value of the 

market (TheilA) and b) the ones that compared their predictive ability with the model 

which states that the value of the market tomorrow will be such that will allow us to 

have the same benefit from the stock market as we would have from the bond market 

(TheilC). The benchmark that compared the NN models with the random walk model 

on the excess returns turned out to be easy to beat in all cases. Furthermore according to 

all the benchmarks that involved TheilA or TheilC there are naive prediction models 

(e.g the RW based on the value of the market) that can perform equally well with the 

best NNs, thus the NNs did not manage to outperform the predictive power of these 

models. The comment we must make here about TheilA, B and C is that the naï ve 

predictors related with TheilA and TheilC compare the prediction abilities of our 

models with naï ve models that indicate no change in the value of the market. Indeed, 

apart from TheilA which was defined to have this characteristic this statement is true for 

TheilC because the daily interest rate based on the Treasury Bill rates is so small that 

the prediction we obtain from the naï ve model used in TheilC is always very close to 

today’s value. However we cannot say the same for the naï ve predictor we use in TheilB 

(random walk on the excess returns); this predictor attempts to give us a prediction 

other that no change in the value of the market. Therefore the naive predictors that are 

based (or are close) to the statement that there will be no change  (or no significant 

change) to the value of the market seems to be the most difficult to beat. 

 

Due to the exhaustive search we performed in the experiment we have no doubt as to 

whether there might be a network topology for which the NNs will be able to give better 
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predictions. The search we have done indicated that there is no specific network 

structure that performs significantly better than the others, rather there is a group of 

structures that gave us optimal performance, even though this performance is no better 

than that provided by a random walk. 

 

Lastly, as our models did not manage to beat the naï ve models described they failed to 

find the patterns that we showed existed in the excess returns time series of both FTSE 

and S&P. 

 

5.3 Conclusions 

 
In chapter 3, we applied two randomness tests to both excess returns times series, which 

gave us strong indications that these series are not random, thus they contain patterns. 

 

However, the experiments we conducted in the current chapter showed that neither the 

autoregressive nor the neural network models managed to find these patterns. They even 

failed to outperform the prediction abilities of naï ve predictors such as the Random 

Walk model based on the actual value of the market or the model which states that the 

value of the market tomorrow will be such that will allow us to have the same gains as 

we would have by investing in bonds. 

 

Therefore our research was lead to the following findings: 

• The excess returns times series of both FTSE and S&P are not random 

• The autoregressive models did not manage to beat certain naï ve prediction models. 

• The Neural Networks did not manage to beat the same naï ve prediction models. 

 

Before drawing any conclusions based on these findings we investigate whether other 

studies that have been conducted so far and applied similar methodologies gave results 

that agree with the results we obtained from our study.  

 

Relative to our first finding the work of Hsieh (1991) also proved that the S&P 500 

time series (consisted of daily basis samples) is not random for the period from 1983 to 

1998 [3]. Therefore we do have another study that agrees with the part of our work 

which is related to the randomness of the datasets we used. 
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Furthermore the work of Steiner and Wittkemper (1996, case study 3) which used data 

from the Frankfurt stock market proved that in terms of mae, the multivariate linear 

regression models that were applied performed closely to the best NN models. More 

specifically the multivariate linear regression model gave mae of 0.0096902 while the 

best NN topology 0.0094196 [12]. The difference in the performance of these models is 

insignificant and therefore you cannot clearly rank these models in terms of mae 

performance. This finding agrees with the results of our experiments; furthermore our 

experiments showed that such small differences in the mae cannot give significantly 

different results in the performance of models in terms of TheilA, B, or C. Having 

always in mind that the work of Steiner and Wittkemper uses data which is similarly 

scaled to the data we use, we can have some indications comparing the mae of their 

models with the ones that ours gave. The comparison states that in mae terms the results 

that their models gave are better than the ones we obtained for the S&P data but worse 

than the ones we obtained for the FTSE data. The conclusion we draw out of this 

comparison is not related to the rank we have just described; it is related to the fact that 

the mae that the models gave in both studies are close. Therefore, although in case study 

3 the models were not tested against naï ve predictors, judging from the mae that are 

presented, their models performed about as well as ours. Unfortunately none of the case 

studies we presented in chapter 2 compared their models with naï ve predictors and thus 

we are obliged to make comparisons only in mae terms. 

 

To sum up, we do have strong indications that the findings of our study do not 

contradict with the findings of other studies in the literature. Therefore keeping in mind 

these findings of experiments I and II we are lead to the following conclusions: 

 

Conclusion 1: 

Using the type of data we have used in conjunction with AR or feed forward NN 

models to capture ‘global patterns’ that exist (or not) in the stock market data you will 

not be able to overcome the predictive ability of naï ve predictors no matter which 

parameters you will select for your models. 

 

The term ‘global patterns’ is used here to describe patterns that exist (or not) in the 

stock market data constantly for long time periods. The above conclusion excludes the 
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case that other types of input data will be used and might offer extra information to the 

models. Another comment we have to make here is that randomness of the data does not 

necessarily imply that there are global patterns in it. An assumption one can make is 

that the time series are not random because there are patterns that are only stable over 

smaller chronological periods (local patterns) than the one we selected to apply to our 

models. If this is the case and these patterns are contradictory then it is reasonable that 

the AR and the NN models are not able to trace them since they are fed with lengthy 

(chronologically) data. 

 

Conclusion 2: 

Metrics, such as mae, in most cases do not reveal all the truth about the predictive 

power of a model. What we suggest is to undertake benchmarks using naï ve predictors. 

Although naï ve, as our experiments indicated, they are difficult to beat. The benchmarks 

we suggest is the comparison of the prediction models with: a) the RW model based on 

the value of the stock market and b) the model which states that the value of the stock 

market tomorrow will be such that will allow us to have the same profit as we would 

have by investing in the bond market. A third benchmark, which compared our models 

with the RW model based on returns proved to be lenient and thus it is not 

recommended. The characteristic which made the first two prediction models difficult to 

beat is that they predicted no change (or almost no change) in the value of the market, 

while the third one made predictions using more information (information for the last 

two days) and gave predictions different than the ‘no change’ in the value of the market. 

 

Conclusion 3: 

Finally, the Neural Network models are superior compared to the AR models because 

they are able to capture not only linear but also non linear patterns in the underlying 

data; but their performance is influenced by the way that their weights are initialized. 

Therefore the evaluation of NN models should be done not in terms of any one specific 

initialization of their weights, but in terms of mean and standard deviation of a number 

of randomly selected initializations. 
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Chapter 6 
 

 

 

Conclusion 
 

 

 

6.1 Summary of Results 
 
 
In the current study prediction of the Stock Market excess returns on daily basis was 

attempted. More specifically we attempted to predict the excess returns of FTSE 500 

and S&P 500 indices of the London and New York Stock Market, over the respective 

Treasury-Bill rates. The time series data of stock prices was transformed into the returns 

the investor would have if he selected the Stock Market instead of placing his capital in 

the bond market (excess returns time series). In our prediction task we used lagged 

values of the excess returns time series to predict the excess returns of the market on 

daily basis. We applied two different randomness tests on the excess returns time series, 

the Run and the BDS test, and we rejected randomness. Thus, we proved that the 

prediction task is feasible. 

 

Our review of the literature showed that two different types of prediction models were 

potentially the most suitable for our purposes: a) the autoregressive AR and b) the feed 

forward Neural Network (NN) models. Furthermore we used the Akaike and the 

Bayesian Information Criteria to define the optimum lag structure for the AR models. 

For the FTSE data both the AIC and the BIC indicated lag of one, while for the S&P 

data they indicated lag structures of one and seven respectively. For the NN models we 

applied a Genetic Algorithm to define the optimum topology. The Genetic Algorithm 

did not indicate a single network topology as optimum. Instead, a number of different 
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topologies were indicated to perform optimally. The common pattern in all of the 

topologies was the small number of neurons in their second hidden layer. 

 

The parameters of these models were calculated on datasets that included data of a 

period of approximately eleven years and their predictive ability was measured on 

datasets that concerned daily data of approximately one year. We measured the 

performance of our models in terms of mean absolute error (mae) and we compared 

them with three naï ve prediction models: 

a. The random walk (RW) model based on the value of the market.  

b. The random walk model based on the excess returns.  

c. And, a model which states that the value of the market tomorrow will be such that 

will allow us to have the exact same profit that we will have if we invest in bonds. 

 

In terms of mae the performance of our models was close to the performance reported 

by other studies in literature. On the other hand, the comparison of our prediction 

models with the naï ve predictors described above proved that they managed to beat 

clearly only model b, while models a and c performed as good as the AR and the NNs. 

The comparison between the AR and the NNs favored insignificantly the NNs. 

 

6.2 Conclusions 
 
Having in mind the findings of our study we resulted in the following conclusions: 

 

Using the type of data we have used, in conjunction with AR or feed forward NN 

models to capture patterns in the stock market data over long time periods, it will not be 

possible to improve on the predictive ability of naï ve predictors, no matter which 

parameters are selected for the models. Having in mind that the randomness tests 

rejected randomness for all our series, we believe that their inability to beat naï ve 

predictors is due to the following facts: a) The use of daily data makes it difficult for the 

models to recognize clearly trends and patterns that exist in the data, in other words 

daily data include high level of noise and b) We tried to find patterns in our datasets 

throughout long time periods, perhaps such global patterns do not exist. This does not 

imply randomness; there might be patterns in smaller sets (local patterns) that in total 
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are not recognizable because those of one period refute those of another. Case study 4 

indicated that such patterns do exist. 

  

Furthermore the use of naï ve predictors as benchmarks for the models we constructed 

proved that, although naï ve, some of them are difficult to beat. The most difficult to 

beat were proved to be those that predicted no change or almost no change of the value 

of the Market (a and c). Out of all naï ve predictors we applied we suggest predictors a 

and c, or else we suggest the use of predictors that are based on the ‘no change of the 

value of the market’ concept. Evaluation of the performance using metrics such as the 

mean absolute error (mae) cannot depict clearly the predictive power of a model and 

their interpretation can easily result to misleading conclusions, as it did in case study 3 

(paragraph 2.2.3.4).  

 

6.3 Future Work 
 
 
In this paragraph we indicate the directions towards which we believe that we should 

move in order to improve the predictive ability of our models. More specifically we 

discuss here three suggestions that are related with the input data, the pattern detection 

and the noise reduction. 

  

6.3.1 Input Data 

 
In our study we made the assumption that all the information we need in order to predict 

the excess return time series is included in the series. But is this assumption valid or 

there are other forms of input data that can offer extra information to our models? The 

method we would apply if it was to start our study now would be to gather those data 

we suspect that can influence the market and undertake Principle Component Analysis 

(PCA) in order to reduce the dimension of the input space by keeping simultaneously 

the information that the input data can offer to the models. This way we would have the 

certainty that we offered to our models all the information that we can gather from 

historic data. 
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6.3.2 Pattern Detection 

 
As it has already been stated our experiments proved that neither the autoregressive 

(AR) nor the neural network (NN) models managed to trace patterns in the datasets they 

were applied to (or at least better than naï ve predictors). In order to be certain that they 

cannot find patterns in the excess returns time series we have to examine the case of 

tracing patterns in smaller time periods than the ones we used. Intuitively we can say 

that the ‘rules’ that the Stock Markets followed in 1988 are not the same with the ones 

they follow today. The financial, social and political status worldwide changes 

constantly and with it the way that markets function. Therefore our suggestion is that we 

should evaluate our models by allowing them to shift through our data by adjusting their 

parameters in recent historic data and make predictions on close future data. 

 

6.3.3 Noise Reduction 

 
Finally, we consider that the daily Stock Market data are highly noisy data. Therefore 

we believe that in future studies we have to find a way of reducing the noise of the data 

we feed our models with. Two ways in which we can achieve this target are: a) by 

moving from daily data to weekly or monthly average data, this way the trends that 

exist in the data would be clearer and thus easier to be traced by the prediction models 

and b) by classifying the excess returns into n-bins based on their magnitude, and then 

attempt to predict to which bin tomorrow’s return will fall into. The simplest case of 

this scenario is to attempt to predict whether the market tomorrow will go up or down 

significantly. 
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Appendix I 
 

 

 
 
In this appendix we present the complete list of results we obtained from the Genetic 

Algorithm search based on the FTSE datasets for all metrics (TheilA, TheilB, TheilC 

and mae) in all repetitions. More specifically we present for each repetition three tables 

that include: a) the first and the last generation of the GA search, b) the ten most visited 

network structures by the GA as well as the frequency in which they were met in the 

last generation and c) the mean and the standard deviation of the metric used each time 

throughout all generations (from 1 to 25). 

 
q Metric Used: TheilA 
 
 

Repetition 1 
 

TheilA: Repetition 1 
Generation 1 Generation 25 

20-7-18-1 1.06350539553255 1-2-3-1 1.00354334885323 
10-27-23-1 2.30858017421321 4-16-3-1 1.01215179900625 
10-1-25-1 1.00269691369670 1-16-3-1 0.99754014836206 
9-19-24-1 1.08635203261823 1-5-3-1 1.01017235795989 
19-23-5-1 1.01497802812205 16-16-3-1 1.02915976153979 
9-29-28-1 1.12007657009537 4-7-3-1 1.00847125353051 
9-27-1-1 1.00788656553931 4-16-5-1 1.02490905958634 
8-25-0-1 1.08241362171488 1-16-3-1 1.00733686649310 
3-7-6-1 1.01340403091858 1-16-3-1 0.99893836431798 
13-9-6-1 1.01529661748052 1-16-3-1 0.99722773505604 

1-23-13-1 1.00551557236577 1-16-3-1 1.00907178974319 
19-14-12-1 1.02309501148313 8-7-3-1 1.00154842651733 
17-16-6-1 1.00484848467691 1-24-3-1 1.02192266247044 
14-26-0-1 1.14620810155970 1-7-3-1 1.00596858445865 
14-12-25-1 1.04558150203962 1-16-3-1 1.00026579681361 
11-22-13-1 1.05937744091558 1-7-3-1 1.00158144785892 

7-6-5-1 1.01119829442827 4-2-3-1 1.00239669676666 
14-10-16-1 1.04447280928690 1-16-3-1 1.01988982852211 
4-21-11-1 1.02466543026586 8-16-3-1 0.99906947893202 
18-26-18-1 1.01362277667090 1-24-3-1 1.00727513395514 
10-27-25-1 1.17120092130550 4-7-3-1 0.99944244510115 
13-25-20-1 1.06251295833906 16-5-3-1 0.99986474756803 
7-9-10-1 1.00332369301496 11-3-3-1 1.01187873218257 

11-22-9-1 1.05275238968699 1-9-5-1 1.01065141746981 
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17-18-11-1 1.05177689669111 1-2-5-1 1.00104824838857 
15-17-13-1 1.12672178790905 4-2-20-1 1.01240011451441 
14-19-24-1 1.06368010060186 2-18-15-1 1.04118128784757 
20-16-27-1 1.14482653303276 1-7-3-1-1 1.00483294107884 
4-30-8-1 1.01845896498870 1-5-3-1 1.00907864972665 

6-27-22-1 1.12487280379806 16-7-3-1 1.02807603776250 
3-1-27-1 1.03064399476638 15-21-4-1 1.01826933865850 
4-9-20-1 1.00651905602084 1-9-3-1 0.99692989257736 
6-15-2-1 1.00508575508379 1-9-10-1 1.01923851814870 

20-18-13-1 1.08370349086986 15-18-24-1 1.05450729598077 
11-11-13-1 1.11253383002727 1-16-3-1 0.99468176119214 
5-18-23-1 1.04264815817443 4-16-3-1 1.00052611521396 
11-20-6-1 1.01970682681941 4-7-5-1 1.00898729968813 
8-24-21-1 1.09730624076398 1-16-3-1 1.00393645957885 
10-18-24-1 1.14351384228981 4-16-3-1 1.00718340326268 
2-19-1-1 1.01585718519519 1-7-3-1 1.01469631847196 
Average 1.08678552007508 Average 1.00989628912891 
Table I.1: The results of the first Repetition of the GA search on the FTSE data using TheilA. 

 
TheilA: Repetition 1 

Top 10 
Structure Times Considered Times in Final Generation 

1-9-3-1 25 1 
4-2-3-1 25 1 
4-10-3-1 27 0 
4-16-5-1 29 1 
1-2-3-1 30 1 
4-16-3-1 36 3 
1-7-3-1 46 4 
4-7-3-1 50 2 
1-16-3-1 50 9 
4-9-3-1 61 0 

Table I.2: The most frequently visited networks in repetition 1 using TheilA for the FTSE data. 

 
TheilA: Repetition 1 

Generation Mean STD 
1 1.08678552007508 0.20405508788295 
2 1.03935078221888 0.03602938840117 
3 1.10714011077766 0.29021390916461 
4 1.03299940158742 0.03427207205730 
5 1.03185315512521 0.03611051076312 
6 1.01213054130883 0.01325122529524 
7 1.01465125813734 0.01718716677158 
8 1.01291125746099 0.01891781262948 
9 1.01206527576169 0.01686073134542 
10 1.01800895566742 0.03424491355265 
11 1.01621771456402 0.04686524668659 
12 1.01285307428506 0.02724353547456 
13 1.01019678515465 0.02360160963930 
14 1.01617158007458 0.03697318528337 
15 1.01605007723046 0.02247191709692 
16 1.01556420422961 0.02759774903873 
17 1.01515654809810 0.02735970200787 
18 1.00661233527168 0.00848711748322 
19 1.00912721263499 0.02502545116507 
20 1.01403566680733 0.03275040959333 
21 1.01260517766040 0.02886033959374 
22 1.01209680795179 0.01980344746897 
24 1.01134892925481 0.02171552074739 
24 1.00594271246919 0.01179454551189 
25 1.00989628912891 0.01249876088049 

Figure I.3: Mean and Std of TheilA throughout all generations in repetition 1 for the FTSE data. 
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Repetition 2 
 

TheilA: Repetition 2 
Generation 1 Generation 25 

2-24-26-1 1.11813766718096 20-7-2-1 1.00184661293818 
4-8-19-1 1.17547334620910 8-3-7-1 1.01982076483303 
3-11-7-1 1.02290497005809 7-3-1-1 0.99906109307869 

17-20-3-1 1.04370455350328 7-21-1-1 1.01492191599385 
11-8-1-1 1.01618179638309 4-21-1-1 0.99355051782963 

14-19-14-1 1.06544645423544 7-3-1-1 1.00406950269047 
7-3-2-1 1.00306435368849 3-21-1-1 1.00451122525557 

12-10-10-1 1.02774092907466 7-3-1-1 1.00071844558870 
13-26-0-1 1.06849786152071 7-4-1-1 0.99846880533535 
14-29-12-1 1.06570885228095 12-21-20-1 1.05364777222097 
3-28-8-1 1.01503466812073 7-3-1-1 1.00162607211633 

20-29-13-1 1.10093332444841 7-21-1-1 1.00099231062299 
2-21-16-1 1.03497249080513 7-4-1-1 1.00838621581456 
1-10-8-1 1.02292798211608 12-3-20-1 1.06941416411512 
8-3-1-1 1.00696517211468 8-3-7-1 1.03367141438730 
3-26-4-1 0.99041696462295 20-7-2-1 1.01929737935196 

9-25-11-1 1.04154889257945 7-4-20-1 1.01707982819114 
6-23-10-1 1.01175916610557 12-21-1-1 1.01397585383556 
14-16-17-1 1.13148582523777 15-7-30-1 1.11219281900278 
3-15-20-1 1.16615487946461 7-3-1-1 1.00393592062611 
17-24-6-1 1.03067901498808 7-21-1-1 0.99744081489836 
8-21-27-1 1.02313159538776 7-21-1-1 1.00021557930861 
18-5-2-1 1.01082904625174 4-3-1-1 1.00062657570077 

17-6-19-1 1.01704232318767 7-8-1-1 1.00077838160404 
15-16-3-1 0.99898079746182 4-3-1-1 0.99647920075373 
2-10-1-1 1.00580552885653 20-7-22-1 1.02148015510226 
8-8-19-1 1.03099355302045 7-3-1-1 1.01479569929501 

12-24-4-1 0.99808296787421 7-3-1-1 1.00537717836183 
7-26-12-1 1.04283095885825 7-3-1-1 1.00235838587736 
10-28-20-1 1.02868081928977 7-21-7-1 1.02311176788348 
20-8-5-1 1.02389450695595 7-3-1-1 0.99960937160581 
7-19-6-1 1.00808883654680 7-21-1-1 1.00295503621555 

11-11-12-1 1.02528904060568 7-21-1-1 1.00355797862279 
16-16-27-1 1.09480676948671 7-21-1-1 1.00432958891701 
14-3-3-1 0.98957358857492 2-8-1-1 1.01128687384650 

15-6-14-1 1.03634943283935 7-21-1-1 1.00621614313891 
12-22-12-1 1.01704910192153 7-21-1-1 1.00000534794055 
8-8-12-1 1.02584117445122 7-3-1-1 0.99477243986251 

19-24-11-1 1.03814028682443 7-3-1-1 1.00088293250760 
2-16-10-1 1.06754836075064 7-3-1-1 1.00525034292916 
Average 1.04106744634709 Average 1.01156796070500 

Table I.4: The results of the second Repetition of the GA search on the FTSE data using TheilA. 

 
TheilA: Repetition 2 

Top 10 
Structure Times Considered Times in Final Generation 

9-3-7-1 16 0 
12-21-2-1 16 0 

2-3-1-1 16 0 
12-3-1-1 18 0 
4-3-1-1 20 2 
7-1-1-1 23 0 
7-28-1-1 25 0 
7-3-7-1 41 0 
7-21-1-1 48 9 
7-3-1-1 172 12 

Table I.5: The most frequently visited networks in repetition 2 using TheilA for the FTSE data. 

 
TheilA: Repetition 2 

Generation Mean STD 
1 1.04106744634709 0.04452824737631 
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2 1.07666112823947 0.31101831986027 
3 1.14731797667752 0.76385704141927 
4 1.02714164901533 0.03396242058969 
5 1.02615290449167 0.05818261348035 
6 1.02276162812629 0.04115356995870 
7 1.02096276305827 0.02416273516764 
8 1.01721341176217 0.02434382410621 
9 1.03476139479343 0.13677545850175 
10 1.01413546878791 0.01939270874050 
11 1.01411110942541 0.02942813022045 
12 1.01076692489960 0.01620021736039 
13 1.01917932504770 0.03689994429588 
14 1.00922504654240 0.01433801040983 
15 1.01008914497963 0.03135775463240 
16 1.00787911533916 0.01633475868070 
17 1.11092307633909 0.66079694013901 
18 1.00562319752609 0.01606409492627 
19 1.00757091693364 0.01336817190826 
20 1.00628795659829 0.01096133188920 
21 1.00493068979808 0.01113060772240 
22 1.00791199066484 0.01806210093525 
24 1.00332611650870 0.00620794256018 
24 1.00765765389310 0.02100123935119 
25 1.01156796070500 0.02221439207968 

Figure I.6: Mean and Std of TheilA throughout all generations in repetition 1 for the FTSE data. 

 
 

Repetition 3 
 

TheilA: Repetition 3 
Generation 1 Generation 25 

5-29-9-1 0.99816748884017 4-3-23-1 1.01006614077786 
2-29-19-1 1.09854728841160 4-3-2-1 1.01515098653632 
3-8-25-1 1.02106240158269 18-3-2-1 1.00740640796372 

17-28-28-1 1.19559897349382 2-2-21-1 0.99715018267172 
13-13-6-1 1.01578585304786 4-30-2-1 1.01211821671603 
15-12-0-1 0.99301574507889 13-1-5-1 0.99824039352116 
14-23-3-1 1.07551267584720 4-1-2-1 1.00179127439447 
20-30-2-1 0.99633481903537 18-3-2-1 0.99810573548878 
14-18-14-1 1.08288786858866 18-1-4-1 1.01670631310201 
13-29-16-1 1.12156627154233 18-1-5-1 1.03112721490660 
19-3-4-1 1.01869802871080 18-3-2-1 1.01195404438461 

13-22-5-1 1.00986672387720 7-1-2-1 1.00335253299096 
9-10-29-1 1.04552330640827 7-3-4-1 1.00298894043260 
15-12-20-1 1.08340137503222 18-1-2-1 1.00428343897891 
17-21-4-1 1.11057320042797 4-3-4-1 0.99879935785336 
20-28-1-1 0.99247692322188 6-1-4-1 1.00056493476465 
18-19-16-1 1.03413139443074 4-3-2-1 0.99902127396198 
17-10-4-1 1.00502613761163 4-3-4-1 1.00217008648749 
19-5-27-1 1.09675975922842 14-3-17-1 1.07589279997397 
9-13-21-1 1.03511485755200 18-3-2-1 1.00112679360615 
14-8-15-1 1.06146983619133 18-1-4-1 1.00030086043270 
11-16-20-1 1.07638544136352 18-1-5-1 1.00121367450953 
12-19-17-1 1.02038574768492 4-3-2-1 1.00541045074627 
15-27-19-1 1.01537002830371 4-1-4-1 0.99956198380551 
2-20-9-1 1.07324166385468 18-3-2-1 1.00738837334297 
5-7-28-1 1.00815496450509 13-3-2-1 1.00882617176923 

14-9-16-1 1.03983171675952 18-1-2-1 0.99982786362810 
20-8-3-1 1.01233880839697 18-3-2-1 1.00351555721259 

20-5-26-1 1.00440687448385 18-3-2-1 1.00147389261749 
3-21-22-1 1.10705072537003 11-6-10-1 1.02854596539663 
3-29-4-1 1.04223667103795 4-3-2-1 0.99984366724032 

17-17-3-1 0.99854716192115 18-1-2-1 1.00241106485686 
17-19-29-1 1.08915751504048 7-1-2-1 1.00061579922015 
4-13-7-1 1.01826717422046 6-3-4-1 1.00433115068912 
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18-9-9-1 1.01792679186201 18-16-4-1 1.01672120329510 
3-4-9-1 1.01758234329760 6-3-4-1 0.98901578570703 
1-3-18-1 1.04889446555361 4-3-2-1 1.00225292665755 
8-3-28-1 1.01569791260743 18-3-2-1 0.98981524151261 

19-19-23-1 1.07113447894981 18-3-2-1 1.00334554868613 
17-16-5-1 1.06006467149002 7-3-2-1 1.01995552296237 
Average 1.04570490212160 Average 1.00680974434504 

Table I.7: The results of the third Repetition of the GA search on the FTSE data using TheilA. 

 
TheilA: Repetition 3 

Top 10 
Structure Times Considered Times in Final Generation 

7-3-2-1 16 1 
20-30-2-1 18 0 
20-30-4-1 19 0 
20-17-2-1 22 0 
18-1-2-1 22 3 
4-30-4-1 30 0 
4-30-2-1 33 1 
4-3-4-1 45 2 
18-3-2-1 48 9 
4-3-2-1 49 5 

Table I.8: The most frequently visited networks in repetition 3 using TheilA for the FTSE data. 

 
TheilA: Repetition 3 

Generation Mean STD 
1 1.04570490212160 0.04442928664854 
2 1.03592523678858 0.03782682803399 
3 1.04561346461301 0.11821214549655 
4 1.03168815333548 0.04194332789306 
5 1.01669796518995 0.02106891344061 
6 1.01079576244850 0.01269078989694 
7 1.01546998892848 0.02465587821756 
8 1.01862141977780 0.03568230941754 
9 1.01696161114399 0.02854026600792 
10 1.00801276807151 0.01175593102620 
11 1.01406906806150 0.02230958725612 
12 1.01199572013683 0.01833673833645 
13 1.01376159078949 0.03853727942206 
14 1.01961680335092 0.03995135536375 
15 1.01387049461365 0.03245406573664 
16 1.01720892970320 0.03667665729174 
17 1.01080768608946 0.02185646735145 
18 1.01968820665845 0.03491308409599 
19 1.01089223061804 0.01469030491868 
20 1.01277741300207 0.02421245241713 
21 1.00576676983489 0.01087026955868 
22 1.01093147745980 0.02402188369827 
24 1.00778003771309 0.01683386501529 
24 1.00719020207630 0.02275792050249 
25 1.00680974434504 0.01416924596758 

Figure I.9: Mean and Std of TheilA throughout all generations in repetition 3 for the FTSE data. 

 
q Metric Used: TheilB 
 
 

Repetition 1 
 

TheilB: Repetition1 
Generation 1 Generation 25 

17-20-26-1 0.79782489901060 4-4-1-1 0.72624612002890 
1-23-12-1 0.91464782836897 4-4-1-1 0.72548064571460 
5-1-20-1 0.76736227737376 4-4-1-1 0.72652977737784 
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2-12-15-1 0.75859197147524 4-4-1-1 0.73405956725773 
11-4-20-1 0.73331165221857 4-4-1-1 0.72464984015399 
14-12-15-1 0.75796024647650 4-4-4-1 0.76174453112638 
14-28-29-1 0.82628871315510 4-4-1-1 0.76005304367667 
11-16-17-1 0.87357011987555 4-30-1-1 0.73962413774381 
3-3-20-1 0.73643075294891 4-4-1-1 0.72501636126733 

20-25-17-1 0.74299880298685 4-4-1-1 0.72392018612007 
20-20-18-1 0.75934378970419 4-4-1-1 0.72881049362646 
7-22-24-1 0.74748140203163 4-4-1-1 0.72190082909092 
1-25-14-1 0.73426885526110 4-4-1-1 0.72587841879972 
7-18-19-1 0.88641351836711 4-4-1-1 0.73397489389653 
14-25-4-1 0.72303704729465 13-13-13-1 0.75243344253102 
11-21-19-1 0.74447460436379 4-20-1-1 0.72551921199357 
10-1-26-1 0.90376200763706 4-4-1-1 0.72564947085065 
5-9-0-1 0.74954222649254 4-4-1-1 0.72868713115569 

11-1-25-1 0.76654062438866 4-20-1-1 0.72659318915690 
2-19-4-1 0.76137234018741 4-4-1-1 0.73052783841434 
3-11-0-1 0.75216067119434 4-20-1-1 0.72446516684313 

3-30-22-1 0.81221652266947 4-4-1-1 0.72451852217900 
20-15-1-1 0.72335873987966 4-20-1-1 0.73646662343769 
3-5-1-1 0.72831507349469 4-4-1-1 0.73203752942552 
7-20-7-1 0.75580848112956 4-4-1-1 0.72664261786896 

20-23-21-1 0.78534702072948 4-4-1-1 0.72710091643839 
7-2-0-1 0.72711531735740 4-4-1-1 0.72528051638007 
8-7-13-1 0.74474973638331 4-4-1-1 0.72821783350419 

4-23-25-1 0.73008494790145 4-4-1-1 0.73167255060008 
17-13-27-1 0.77524256613413 4-4-1-1 0.72556654753416 
3-14-12-1 0.75681840093618 6-20-1-1 0.72479444898119 
19-16-11-1 0.75544362001270 4-20-1-1 0.72763019291423 
16-25-16-1 0.74736720109773 6-4-1-1 0.72822099896469 
10-17-28-1 0.77067698285754 11-24-14-1 0.76778426344268 
19-12-14-1 0.73160606408486 4-4-1-1 0.72928007427502 
10-30-12-1 0.74467316296382 4-24-1-1 0.73242308470911 
17-13-21-1 0.77192557147770 4-4-1-1 0.72870646033906 
1-3-18-1 0.72876219983049 4-4-1-1 0.73067328227481 
11-4-8-1 0.78654851366164 4-4-1-1 0.72819602812919 

2-14-30-1 0.81641925843869 4-20-1-1 0.72537119340421 
Average 0.77074659329633 Average 0.73130869954071 

Table I.10: The results of the first Repetition of the GA search on the FTSE data using TheilB. 

 
TheilB: Repetition 1 

Top 10 
Structure Times Considered Times in Final Generation 

7-4-4-1 10 0 
3-20-1-1 11 0 
3-19-1-1 13 0 
7-20-4-1 18 0 
7-19-1-1 19 0 
7-19-4-1 22 0 
7-20-1-1 55 0 
7-4-1-1 79 0 
4-20-1-1 97 6 
4-4-1-1 231 28 

Table I.11: The most frequently visited networks in repetition 1 using TheilB for the FTSE data. 

 
TheilB: Repetition 1 

Generation Mean STD 
1 0.77074659329633 0.04895116803940 
2 0.80467739321147 0.23756742909623 
3 0.76045367399991 0.03459716794868 
4 0.78281940951393 0.15766828731724 
5 0.75108841699404 0.03223155848477 
6 0.74831874049448 0.02614997642620 
7 0.74664313157668 0.01935973263036 
8 0.82018033721078 0.37640961448349 
9 0.74591594072900 0.02497184849329 
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10 0.74358097825910 0.01987993826175 
11 0.73982733138751 0.01672987541425 
12 0.73365259111065 0.00909445043497 
13 0.73587272042600 0.01504699792679 
14 0.73635836199576 0.01337626748970 
15 0.73347424395583 0.01148152080390 
16 0.73455510558827 0.01731003870323 
17 0.73034853187984 0.00727871706537 
18 0.73252303930752 0.01065345603196 
19 0.73278387811338 0.02613906018687 
20 0.73144540201148 0.00972029392602 
21 0.73026983594524 0.00966730383648 
22 0.73058783386472 0.00632433787093 
24 0.72852518134133 0.00781936719191 
24 0.72985807332325 0.00740410215431 
25 0.73130869954071 0.01063991802019 

Figure I.12: Mean and Std of TheilB throughout all generations in repetition 1 for the FTSE data. 

 
 

Repetition 2 
 

TheilB: Repetition 2 
Generation 1 Generation 25 

10-17-16-1 0.76255605064605 19-4-1-1 0.74078352853616 
11-24-6-1 0.79995204529445 8-19-3-1 0.72337560308454 
15-15-19-1 0.81497699756415 1-4-1-1 0.72758169447964 
15-10-22-1 0.85731762161783 1-4-1-1 0.72832878976486 
19-25-1-1 0.72670769704184 8-4-2-1 0.73472438343445 
15-13-7-1 0.79722671749949 1-4-1-1 0.72963808228680 
10-24-14-1 0.75724522565000 8-27-2-1 0.73413610078024 
10-24-24-1 0.78984825511080 19-15-1-1 0.73122666193466 
13-23-6-1 0.73716475253647 8-27-1-1 0.73446833051836 
10-24-11-1 0.75608268461777 12-27-1-1 0.73121559201995 
18-15-4-1 0.73143476457716 11-15-6-1 0.73638550375113 
14-5-1-1 0.73993035757330 8-15-2-1 0.72215990417771 

19-17-24-1 0.79015658877448 1-4-1-1 0.72901157502917 
7-9-9-1 0.78273922142957 1-4-2-1 0.73399399669247 

13-17-19-1 0.76242172604959 1-4-1-1 0.76110526186065 
6-11-17-1 0.73415207053374 8-27-1-1 0.73960245057910 
10-2-22-1 0.73142398946553 8-27-3-1 0.73057376376052 
11-9-4-1 0.73820759673540 8-4-2-1 0.72662565701605 

19-3-17-1 0.75905542349020 8-4-2-1 0.72519902896838 
11-20-15-1 0.80915317759243 4-28-3-1 0.73428185046846 
17-28-27-1 0.77392365312294 2-27-20-1 0.77604891964398 
13-22-27-1 0.77404377826343 8-4-1-1 0.72764973555345 
3-25-5-1 0.73087740578314 8-4-2-1 0.74950012216169 

20-17-24-1 0.79266344519399 19-4-2-1 0.72628551346770 
9-21-2-1 0.74565645988304 8-4-2-1 0.72671767380432 

10-20-21-1 0.88034882421206 1-27-2-1 0.72664049748227 
7-8-0-1 0.76994442977303 1-15-1-1 0.73293676242410 

2-24-16-1 0.75240319809561 1-15-2-1 0.72602615817803 
20-19-30-1 0.76985226884836 8-27-1-1 0.72648983222761 
20-22-23-1 0.77541720329423 1-4-1-1 0.72748270897881 
12-23-13-1 0.77290214153685 19-4-1-1 0.73840660656907 
13-5-21-1 0.72228274016821 1-27-1-1 0.75813837715832 
20-16-6-1 0.75833389816282 1-4-2-1 0.72983628826863 
4-8-23-1 0.72774666929478 12-27-2-1 0.72323756221698 

9-19-26-1 0.77668271360736 1-27-1-1 0.72685534831228 
20-21-24-1 0.94979587410256 8-27-2-1 0.72373717107182 
20-27-4-1 0.74084134200264 8-27-2-1 0.75994167960964 
7-26-4-1 0.75693014648560 8-27-1-1 0.75009938167650 

20-19-20-1 0.76318305005566 19-27-1-1 0.72643210000112 
13-9-12-1 0.74117866553761 8-27-1-1 0.74580283919670 
Average 0.77131902178060 Average 0.73456707592866 

Table I.13: The results of the second Repetition of the GA search on the FTSE data using TheilB. 
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TheilB: Repetition 2 

Top 10 
Structure Times Considered Times in Final Generation 
8-27-2-1 17 3 
1-27-1-1 22 2 
8-4-2-1 23 5 
8-27-1-1 23 5 
8-4-1-1 26 1 
1-4-2-1 26 2 
1-4-1-1 28 6 

19-27-2-1 38 0 
1-15-1-1 38 1 
1-27-2-1 46 1 

Table I.14: The most frequently visited networks in repetition 2 using TheilB for the FTSE data. 

 
TheilB: Repetition 2 

Generation Mean STD 
1 0.77131902178060 0.04445944686711 
2 0.76442157749507 0.02856377327300 
3 0.76129349745041 0.04111999844688 
4 0.75535715868057 0.05068644155445 
5 0.81693560427959 0.43772442822191 
6 0.76221362671730 0.09760803893110 
7 0.74346274163658 0.01580153177733 
8 0.74599086591583 0.02093897414905 
9 0.74164990571886 0.01939217891660 
10 0.74347510847027 0.02159351599604 
11 0.73390951145325 0.01177502920533 
12 0.73346321237139 0.00874922125478 
13 0.73375037042562 0.01025618334001 
14 0.73320490042625 0.00856283213162 
15 0.73726156173633 0.02439442204190 
16 0.73491758789636 0.01446666449812 
17 0.73593488188912 0.01544095823912 
18 0.73094067421410 0.00783955610980 
19 0.73311226640041 0.01201815470220 
20 0.72979997926893 0.00567693217366 
21 0.73193488334635 0.01023653031223 
22 0.73110120070384 0.00841515113653 
24 0.73268356890142 0.00906320401021 
24 0.72979017153292 0.00776409317098 
25 0.73456707592866 0.01212591192593 

Figure I.15: Mean and Std of TheilB throughout all generations in repetition 2 for the FTSE data. 

 
 

Repetition 3 
 

TheilC: Repetition 3 
Generation 1 Generation 25 

6-6-23-1 0.74293593850553 3-4-2-1 0.73952218870213 
11-19-18-1 0.80663630134728 3-4-2-1 0.72470169708509 

13-6-1-1 0.73023084993958 12-4-2-1 0.72921636359840 
10-17-8-1 0.72459022847379 12-4-2-1 0.72545271427825 
12-6-30-1 0.75730406932868 5-4-2-1 0.73412703076486 
18-12-9-1 0.77460459492606 12-10-24-1 0.75124840457393 
15-1-17-1 0.80463496312655 12-4-2-1 0.72777199206735 
12-17-24-1 0.78461372281948 12-4-2-1 0.72478677085075 
8-18-11-1 0.76225098250142 12-4-2-1 0.73646485031424 
9-15-9-1 0.75536320819926 12-4-2-1 0.73719350193292 

6-15-10-1 0.77669302015239 6-4-2-1 0.73687837296668 
3-22-25-1 0.80170088491421 12-2-5-1 0.72172802173590 
1-18-3-1 0.73175128217320 3-3-2-1 0.72899376205883 
8-3-21-1 0.78174725589263 12-4-2-1 0.75079038769573 
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12-1-3-1 0.74383098656436 12-3-16-1 0.72179549143087 
5-18-16-1 0.75473668788821 5-4-2-1 0.73208390020234 
5-26-14-1 0.74226868484395 12-9-11-1 0.72658980095446 
13-15-6-1 0.76132787248539 14-4-8-1 0.74622538224083 
6-23-24-1 0.74986988370283 5-3-2-1 0.72998609759347 
13-7-11-1 0.73326520531415 12-4-16-1 0.74062676853138 
3-4-29-1 0.74726004082433 12-4-2-1 0.73064543178641 

17-29-1-1 0.72616319277977 2-11-23-1 0.81380359847045 
13-18-6-1 0.74267043549530 12-4-2-1 0.72747936993212 
5-4-10-1 0.73042152290924 12-4-5-1 0.74634642272964 

13-11-30-1 0.80693970027569 18-4-2-1 0.73364857026966 
17-29-25-1 0.80149747302230 15-4-2-1 0.73282527986571 

1-7-0-1 0.73896805012793 12-4-2-1 0.72491529473417 
12-14-28-1 1.69183076649090 12-4-2-1 0.72712925641952 
3-7-27-1 0.75362126614326 12-4-2-1 0.73676794502639 

13-28-0-1 0.83767534606713 12-4-2-1 0.72782020445862 
3-21-19-1 0.76087409282584 6-4-2-1 0.73084875004671 
11-23-8-1 0.73178143464029 12-4-2-1 0.72345528713565 
16-26-14-1 0.74618410727018 12-4-2-1 0.72698769494556 
15-15-3-1 0.73083156366432 12-4-2-1 0.73054532211167 
9-25-9-1 0.89051024335805 6-4-2-1 0.74040228376699 

17-19-11-1 0.75188516757149 12-4-2-1 0.72295977817666 
2-8-16-1 0.76338625503702 12-4-2-1 0.74588435960812 
19-5-8-1 0.73461236363999 6-4-2-1 0.72493574989443 

20-4-13-1 0.73165942302732 12-4-2-1 0.72593237228551 
16-4-14-1 0.72889573235544 5-10-2-1 0.73388003290609 
Average 0.78420062001562 Average 0.73433491260371 

Table I.16: The results of the third repetition of the GA search on the FTSE data using TheilB. 

 
TheilB: Repetition 3 

Top 10 
Structure Times Considered Times in Final Generation 

3-4-6-1 11 0 
12-28-2-1 11 0 
12-27-2-1 12 0 
12-28-1-1 13 0 
12-1-1-1 19 0 
3-4-1-1 21 0 
3-4-16-1 23 0 
12-4-1-1 53 0 
3-4-2-1 131 2 
12-4-2-1 247 19 

Table I.17: The most frequently visited networks in repetition 3 using TheilB for the FTSE data. 

 
TheilB: Repetition 3 

Generation Mean STD 
1 0.78420062001562 0.15117767558147 
2 0.76298502842435 0.03857488804010 
3 0.77348370147352 0.13823222913569 
4 0.76148698172130 0.04867290111032 
5 0.76162962695504 0.07193547862366 
6 0.78747710690305 0.23360690788595 
7 0.75595743469110 0.04858207629080 
8 0.74724781344474 0.02314303823169 
9 0.74278773089516 0.02207925782823 
10 0.73955757165335 0.02282004731523 
11 0.73935179796536 0.02537101034329 
12 0.73294340706796 0.00952915618925 
13 0.73346929377066 0.01329082246750 
14 0.73363709371557 0.01002702346253 
15 0.73409868840459 0.01317178693899 
16 0.73047621697051 0.00505292088679 
17 0.73094387730163 0.00608332851271 
18 0.73407638633097 0.00953079495459 
19 0.73146904096522 0.00951466087344 
20 0.73350210683748 0.00952783177244 
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21 0.73819756476797 0.02730341590094 
22 0.73714505657302 0.02071786523091 
24 0.73220892036801 0.00727128205486 
24 0.74313883942427 0.06121214459898 
25 0.73433491260371 0.01511857138976 

Figure I.18: Mean and Std of TheilB throughout all generations in repetition 3 for the FTSE data. 

 
q Metric Used: TheilC 
 
 

Repetition 1 
 

TheilC: Repetition 1 
Generation 1 Generation 25 

15-3-23-1 1.02593630699472 1-3-2-1 1.00337135708724 
9-22-14-1 1.03598308619011 5-3-2-1 0.99724835686376 
11-25-5-1 1.03189353787474 18-3-12-1 1.00029409637481 
19-30-16-1 1.02678392758229 5-3-1-1 1.00295843100880 
1-22-27-1 1.04878415138520 5-10-2-1 0.99681261036375 
14-8-16-1 1.05101170915501 5-3-18-1 0.99860174054073 
7-7-24-1 0.99266010831460 14-3-1-1 0.99951949648666 

15-6-15-1 1.24523180295957 14-3-2-1 1.01555108114665 
2-9-21-1 1.03470837129502 11-3-1-1 1.00096317466229 

10-14-17-1 1.06733633562815 5-3-2-1 0.99935221231490 
2-24-24-1 1.08114261594356 5-10-1-1 0.99971051037159 
3-10-8-1 1.02517700027565 1-3-2-1 0.99689959843596 

18-18-26-1 1.10048590348531 14-3-2-1 1.00983872288599 
8-13-30-1 1.02296341135953 1-10-1-1 0.99786033322468 
3-8-1-1 0.99723827774618 14-3-2-1 1.01134272904002 

18-4-14-1 1.03481494598171 14-3-12-1 1.00311910264319 
14-22-13-1 1.03992766782176 5-3-1-1 1.00947499234082 

8-1-8-1 1.08122858463245 18-3-2-1 1.00200606686272 
13-16-8-1 1.02047545037958 14-3-2-1 1.00284778485376 
13-19-17-1 1.04757605275091 1-3-1-1 0.99760648199359 
14-9-0-1 1.06366848666875 11-10-1-1 1.00003237662241 

15-11-13-1 1.07306781669173 3-3-2-1 1.00134714246391 
18-25-20-1 3.23988730241465 3-3-1-1 0.99882409193274 
7-15-26-1 1.04669607202909 3-3-1-1 0.99389705667613 
2-7-24-1 1.05952079488423 1-3-1-1 0.99656729742038 

13-30-6-1 1.00912577445924 18-10-12-1 1.02615262246525 
7-10-15-1 1.03538191146802 11-3-1-1 1.00099942664480 
8-14-11-1 1.02219447149530 10-17-26-1 1.07534924081868 
9-21-20-1 1.05365270394263 5-3-2-1 1.00067235689485 
5-10-2-1 1.00682301192624 3-10-1-1 1.00537583023018 
8-8-19-1 1.02591173310196 1-10-1-1 0.99716602400200 

14-20-26-1 1.13381817624170 11-3-1-1 1.02780621111697 
4-6-18-1 1.01901901472843 5-3-2-1 0.99237207146608 
2-3-27-1 1.00119154652541 1-3-1-1 1.00378299827320 

12-20-20-1 1.01432362494014 1-3-1-1 0.99988140323891 
19-9-30-1 1.06313719517930 1-3-2-1 1.00187782922889 
17-20-9-1 1.01521306953014 3-10-1-1 1.00138224253317 
17-15-29-1 2.38438553175818 14-3-2-1 1.00269621867499 
7-8-19-1 1.00934249399307 5-3-2-1 0.99949500448009 

4-15-16-1 1.13264304110830 14-3-2-1 1.00289546698067 
Average 1.13550907552106 Average 1.00434879479166 

Table I.19: The results of the first Repetition of the GA search on the FTSE data using TheilC. 

 
TheilC: Repetition 1 

Top 10 
Structure Times Considered Times in Final Generation 
3-10-2-1 15 0 
5-3-2-1 16 5 
4-3-1-1 17 0 
3-3-1-1 24 2 
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1-3-2-1 24 3 
11-3-1-1 31 3 
3-3-2-1 38 1 
14-3-1-1 40 1 
11-3-2-1 47 0 
14-3-2-1 72 6 

Table I.20: The most frequently visited networks in repetition 1 using TheilC for the FTSE data. 

 
TheilC: Repetition 1 

Generation Mean STD 
1 1.13550907552106 0.40397315241053 
2 1.03798037616445 0.03258630114314 
3 1.03109000066956 0.03011804991534 
4 1.06559369913039 0.20490738454098 
5 1.02460266408795 0.03177198806815 
6 1.02918137566744 0.03213562874884 
7 1.04349184177495 0.15524470194918 
8 1.01487792558385 0.01843770955181 
9 1.02014682226235 0.02624025037345 
10 1.01137144157985 0.02214717599637 
11 1.01383217620482 0.02397693705126 
12 1.01103787770476 0.01676462668561 
13 1.00921166673809 0.01849660269077 
14 1.01478002936466 0.04417103643028 
15 1.00968323941814 0.01271905404460 
16 1.00934123118825 0.01571423210930 
17 1.02768388955141 0.12117398285663 
18 1.02318040347753 0.04135691828891 
19 1.00760477588269 0.01489073879709 
20 1.00890832936560 0.01803108317812 
21 1.01196902174108 0.02179472491668 
22 1.01648993933705 0.03874000923503 
24 1.00863069818654 0.01977130671574 
24 1.00792238846531 0.01234806934442 
25 1.00434879479166 0.01359019547158 

Figure I.21: Mean and Std of TheilC throughout all generations in repetition 1 for the FTSE data. 

 
 

Repetition 2 
 

TheilC: Repetition 2 
Generation 1 Generation 25 

10-2-26-1 1.03655337078927 8-4-14-1 1.01719990760559 
14-19-27-1 1.05538527031850 3-7-5-1 1.01714738333103 
13-17-15-1 1.04342383822502 4-7-14-1 1.02903464527979 
5-15-4-1 1.01067965660619 4-7-5-1 1.00750393257849 
7-11-5-1 1.00103469044560 8-7-5-1 0.99803729509583 

19-7-16-1 1.03472554411983 3-1-5-1 1.00099602099411 
9-6-14-1 1.01069526078735 3-2-5-1 1.00987598160475 

6-13-12-1 1.03911899480850 3-1-14-1 1.04647696605205 
5-15-14-1 1.06361476917331 4-1-14-1 0.99931339628120 
9-5-3-1 1.00310583341832 4-7-5-1 1.06405163953827 

8-21-23-1 1.12062082132039 3-4-5-1 1.01904575843927 
6-29-19-1 1.05938120835122 8-1-5-1 1.00816521922633 
16-3-9-1 0.99817869436170 3-1-5-1 1.00067117367900 

4-21-18-1 1.20094391851956 4-1-5-1 0.99760706387498 
7-14-30-1 1.05194611073932 8-7-5-1 1.00351252803548 
4-14-16-1 1.04178283947176 8-7-5-1 1.00576746701579 
20-22-19-1 1.05053612287807 3-7-5-1 0.99536869693794 
17-13-9-1 1.03625659427663 3-1-5-1 1.00122694414256 
20-5-20-1 1.04908972321100 3-7-5-1 1.00764796349476 
17-28-5-1 1.02350344088493 4-2-5-1 0.99599623816473 
5-11-27-1 1.06007805730425 3-1-5-1 1.00240485943143 
18-8-5-1 1.06925092745343 3-4-5-1 1.00373767313624 

16-14-18-1 1.02873757154273 3-1-5-1 1.00177312026809 
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7-12-30-1 1.08710281233147 8-7-5-1 1.00371980827939 
16-27-4-1 1.03009418724811 4-1-5-1 1.00077491171257 
7-14-4-1 1.00961471132723 4-7-14-1 1.02412559654018 
17-7-7-1 1.01458868467658 4-1-5-1 1.00254205164671 
10-3-0-1 1.00604553837792 8-1-5-1 1.00889960991655 
5-5-0-1 1.02078706170967 3-2-5-1 1.01847624908139 
3-3-14-1 1.00975497319317 3-7-14-1 1.04365434267609 
16-2-1-1 1.01424188871495 3-7-5-1 1.03597708888867 

20-25-11-1 1.02840986192786 3-1-5-1 1.00199821877471 
11-18-13-1 1.02435151634814 4-2-14-1 1.03387331977261 

2-4-6-1 1.00351432048884 3-7-5-1 1.00948223820116 
15-22-20-1 1.08018310212650 8-7-5-1 1.02148921642927 
11-9-4-1 1.00429944212166 3-2-14-1 1.00010886782646 

8-17-11-1 1.00555094290246 3-4-14-1 1.01693393074859 
14-30-5-1 0.99726816083567 3-2-5-1 1.00478164725574 
11-27-9-1 1.05874742069763 3-1-5-1 0.99839936562070 
16-13-7-1 1.05267090072190 4-1-5-1 0.99963631623437 
Average 1.03839671961892 Average 1.01143586634532 

Table I.22: The results of the second Repetition of the GA search on the FTSE data using TheilC. 

 
TheilC: Repetition 2 

Top 10 
Structure Times Considered Times in Final Generation 

3-2-5-1 17 3 
4-1-5-1 19 4 
14-4-5-1 23 0 
8-4-5-1 26 0 
4-7-5-1 31 2 
3-7-5-1 32 5 
8-1-5-1 36 2 
14-7-5-1 46 0 
3-1-5-1 63 7 
8-7-5-1 105 5 

Table I.23: The most frequently visited networks in repetition 2 using TheilC for the FTSE data. 

 
TheilC: Repetition 2 

Generation Mean STD 
1 1.03839671961892 0.03822695795035 
2 1.02511982206707 0.02397340248970 
3 1.02021942796966 0.02048337689386 
4 1.05043277748730 0.13871543781286 
5 1.03147311434886 0.04105035980513 
6 1.01948291362973 0.02627953655254 
7 1.02196301083359 0.02903958929662 
8 1.02430266345901 0.02771158111552 
9 1.02612730920877 0.03621783782763 
10 1.03262812598979 0.04371434365855 
11 1.12536365988086 0.46909451927490 
12 1.02902398168248 0.03724927116347 
13 1.02566041011639 0.03959187164820 
14 1.01447010307616 0.01842506159039 
15 1.01292273316017 0.02045183997605 
16 1.01963634403375 0.02896695980843 
17 1.01619936468210 0.02064670500389 
18 1.01242682436156 0.02206486921513 
19 1.01384727911084 0.01514713211335 
20 1.01466839103730 0.01811668712588 
21 1.01226138194281 0.01467094251392 
22 1.01096434504512 0.01650245159862 
24 1.01300812191500 0.01258750969559 
24 1.00798610691671 0.01663381672781 
25 1.01143586634532 0.01557789029345 

Figure I.24: Mean and Std of TheilC throughout all generations in repetition 2 for the FTSE data. 
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Repetition 3 
 

TheilC: Repetition 3 
Generation 1 Generation 25 

1-13-10-1 1.01196508296996 12-23-9-1 1.02084349748395 
12-22-12-1 1.51701115607429 10-14-1-1 0.99994510751456 
6-26-11-1 1.03126667385435 3-2-1-1 1.00588156237620 
15-16-2-1 0.99932693575644 7-2-1-1 1.00186443156866 
11-11-11-1 1.08649928881197 7-8-1-1 1.00361598589367 
7-19-12-1 1.03068724363147 7-8-1-1 0.99325675408299 
3-22-14-1 1.06849581824158 1-8-1-1 0.99783843853638 
8-9-5-1 1.01808478655022 7-2-1-1 0.99788583302726 

19-2-10-1 1.01305625098337 1-1-1-1 1.00312361688543 
6-20-21-1 1.06752790805617 3-8-1-1 0.99803688595290 
9-11-5-1 1.00178893705345 11-2-1-1 1.07088710265842 

19-17-27-1 1.12812578120427 8-8-1-1 0.99913591929483 
12-14-14-1 1.06275407783698 7-11-1-1 1.02159302312244 
15-8-9-1 1.05827879825117 3-14-1-1 0.99998581250209 

14-22-20-1 1.04294361758566 6-8-1-1 1.00005407226925 
19-25-12-1 1.07445738452332 1-2-1-1 1.00192851793992 
18-1-2-1 0.99960363982928 3-2-1-1 1.00596772084431 

14-3-17-1 1.02473967356294 8-14-1-1 0.99582218081463 
12-1-0-1 1.01440200564075 1-2-1-1 0.99791634354506 
7-9-5-1 1.02238932230959 3-2-1-1 1.00900460901345 

19-12-12-1 1.01955328537027 3-25-1-1 1.00394191832084 
11-30-27-1 1.13445513328596 3-2-1-1 0.99795866981909 
12-25-30-1 1.02746942224864 3-2-1-1 1.00978991960966 
6-29-10-1 1.00900675226308 7-8-1-1 1.00138759043449 
15-27-26-1 1.05803278121184 3-2-1-1 0.99753703020452 
8-26-26-1 1.05267107903009 1-2-1-1 0.99980296613168 
4-26-21-1 1.05843043437764 8-2-1-1 0.99938605574754 
11-22-13-1 1.09864395671269 3-14-1-1 1.00397076315221 
18-14-22-1 1.09044336817123 1-2-4-1 0.99946404914577 
16-3-10-1 1.02616675050456 3-2-1-1 0.99513068297738 
3-6-0-1 1.02373174156495 3-2-1-1 1.00655997711277 

13-21-22-1 1.09689385923325 3-14-1-1 1.00261142990486 
3-17-9-1 1.02351376256036 11-8-1-1 1.00118059689926 

18-11-13-1 1.02502554943982 6-8-1-1 1.00052521245670 
14-19-10-1 1.06066641038923 3-2-1-1 0.99987973557755 
15-1-0-1 1.00908833652573 3-2-1-1 1.01050848597008 
10-2-1-1 0.99641869830255 1-2-4-1 0.99996233666810 

2-18-26-1 1.03173819906985 3-2-1-1 1.00634377296038 
8-20-5-1 1.02399611452763 7-2-1-1 0.99691242506699 

8-27-27-1 1.13311205121694 3-8-1-1 0.99971130452011 
Average 1.05681155171834 Average 1.00392880845016 

Table I.25: The results of the third Repetition of the GA search on the FTSE data using TheilC. 

 
TheilC: Repetition 3 

Top 10 
Structure Times Considered Times in Final Generation 

3-6-1-1 24 0 
8-3-1-1 24 0 
6-2-1-1 24 0 
6-6-1-1 25 0 
7-8-1-1 31 3 
8-8-1-1 31 1 
3-14-1-1 31 2 
3-8-1-1 40 2 
6-8-1-1 42 2 
3-2-1-1 58 11 

Table I.26: The most frequently visited networks in repetition 3 using TheilC for the FTSE data. 

 
TheilC: Repetition 3 

Generation Mean STD 
1 1.05681155171834 0.08345302055968 



 135

2 1.04357616836592 0.05494210684191 
3 1.03521179471531 0.04101974858396 
4 1.04175972761468 0.09962968783019 
5 1.02108923496715 0.02568697215322 
6 1.02225751413128 0.03453057774673 
7 1.01588931202835 0.04786512182141 
8 1.01336187854518 0.02316709203519 
9 1.02172539382458 0.06494489909299 
10 1.01013125193652 0.02024340192529 
11 1.01385745356517 0.02679167928423 
12 1.00806950650078 0.00880076844817 
13 1.01379033965025 0.04010478612978 
14 1.00558934285116 0.01185278648792 
15 1.00795597710469 0.01622553431482 
16 1.00703398841169 0.01124911475968 
17 1.00716858900608 0.01249239339100 
18 1.00738397997532 0.02074599809597 
19 1.00554016776548 0.01265055932840 
20 1.00925934556580 0.02940863999516 
21 1.00541407181875 0.00819104038935 
22 1.00502861374714 0.00879756487632 
24 1.01017251746689 0.03034653774740 
24 1.00423216483188 0.01028352798556 
25 1.00392880845016 0.01234768690916 

Figure I.27: Mean and Std of TheilC throughout all generations in repetition 3 for the FTSE data. 

 
q Metric Used: MAE 
 
 

Repetition 1 
 

MAE: Repetition 1 
Generation 1 Generation 25 

18-15-29-1 0.00972124986667 6-3-2-1 0.00868427980048 
16-15-10-1 0.00877673761978 6-22-2-1 0.00865447608136 

5-6-23-1 0.00891051947370 6-1-2-1 0.00858813374620 
20-12-21-1 0.00872705430365 6-20-2-1 0.00862569101658 

6-9-3-1 0.00869710184667 11-26-9-1 0.00877028308233 
14-6-13-1 0.00902607687438 6-3-2-1 0.00853135361487 
5-17-27-1 0.00955041442937 6-1-2-1 0.00867213493446 
20-4-27-1 0.00858536429038 6-3-2-1 0.00871208777344 
17-26-2-1 0.00864180214005 6-3-2-1 0.00875471331486 
19-20-19-1 0.00884666186967 6-3-2-1 0.00863561231051 
8-10-12-1 0.00887081524655 6-22-2-1 0.00884817751580 
20-23-3-1 0.00878141268714 6-3-2-1 0.00866013791024 
3-9-18-1 0.00899374697932 6-1-2-1 0.00863422050258 

10-10-27-1 0.00897309124154 6-3-2-1 0.00864928605432 
12-3-1-1 0.00873206436583 6-22-2-1 0.00867839461032 

10-13-9-1 0.00889687378157 6-20-2-1 0.00861246494076 
8-13-24-1 0.00894324640393 6-22-2-1 0.00871951911985 
8-23-25-1 0.00915426659893 6-9-2-1 0.00869223699977 
3-12-7-1 0.00896620130055 6-22-2-1 0.00855575101310 

19-2-27-1 0.00867976167075 6-3-2-1 0.00921396976875 
17-14-30-1 0.01039621774471 6-3-2-1 0.00879469940856 

9-7-3-1 0.00884404011489 6-22-2-1 0.00871712990846 
13-16-13-1 0.00944668899992 6-3-2-1 0.00870162816656 
5-20-23-1 0.00901243244162 6-22-2-1 0.00883944638464 
20-4-18-1 0.00865417035085 6-9-2-1 0.00876704440055 
13-24-14-1 0.00941793468744 6-22-2-1 0.00895133642145 
4-15-16-1 0.00877659907427 6-22-2-1 0.00874513518887 
2-18-20-1 0.00937184410246 6-22-2-1 0.00863636134353 
11-2-27-1 0.00897068431244 6-3-2-1 0.00869019039138 
18-8-10-1 0.00888245423601 6-16-18-1 0.00885193139134 
12-8-28-1 0.00939793781624 6-9-2-1 0.00866161747229 
6-22-2-1 0.00873621745520 6-20-2-1 0.00867230781519 
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6-3-21-1 0.00876358258486 6-22-2-1 0.00885278996875 
8-10-17-1 0.00874098476160 6-3-2-1 0.00855832481974 
1-15-13-1 0.00912819561004 6-22-2-1 0.00871339401391 
5-9-10-1 0.00884405723294 6-3-2-1 0.00859279636663 
6-11-4-1 0.00866647833221 13-1-2-1 0.00867129786273 

15-14-13-1 0.00918707452686 6-22-2-1 0.00873971462032 
3-16-0-1 0.00898128026728 6-22-2-1 0.00864540087871 

10-5-17-1 0.00888045236944 6-22-2-1 0.00863775451904 
Average 0.00898934475029 Average 0.00870833063633 
Table I.28: The results of the first Repetition of the GA search on the FTSE data using MAE. 

 
MAE: Repetition 1 

Top 10 
Structure Times Considered Times in Final Generation 

3-3-2-1 16 0 
3-9-2-1 17 0 
6-1-2-1 18 3 
3-7-2-1 25 0 
6-20-2-1 28 3 
6-16-2-1 33 0 
6-9-2-1 40 3 
3-22-2-1 68 0 
6-3-2-1 102 13 
6-22-2-1 165 15 

Table I.29: The most frequently visited networks in repetition 1 using MAE for the FTSE data. 

 
MAE: Repetition 1 

Generation Mean STD 
1 0.00898934475029 0.00035332146784 
2 0.00928440396751 0.00227860107989 
3 0.00892718825394 0.00028564757771 
4 0.00884261515381 0.00019855821514 
5 0.00878938652122 0.00015523049383 
6 0.00875488224217 0.00011489559859 
7 0.00874814482435 0.00010964657459 
8 0.00878618515200 0.00011065342783 
9 0.00881219136233 0.00016829048108 
10 0.00901058663670 0.00151927544552 
11 0.00882249238259 0.00018045077483 
12 0.00877864289294 0.00018950823660 
13 0.00876655189764 0.00013064768318 
14 0.00878792194224 0.00013327277366 
15 0.00878609609235 0.00019456205381 
16 0.00873833694645 0.00014497241828 
17 0.00873386287771 0.00010730833115 
18 0.00873864947919 0.00018220936539 
19 0.00871195280365 0.00008219948753 
20 0.00872174002837 0.00011499489960 
21 0.00872086371588 0.00012454658379 
22 0.00880915111966 0.00061816366915 
24 0.00871897499454 0.00017954218192 
24 0.00872568615577 0.00016551860545 
25 0.00870833063633 0.00012144813268 

Figure I.30: Mean and Std of MAE throughout all generations in repetition 1 for the FTSE data. 

 
 

Repetition 2 
 

MAE: Repetition 2 
Generation 1 Generation 25 

4-20-29-1 0.00910685202639 4-5-1-1 0.00863541421825 
10-22-21-1 0.00929378150623 4-10-1-1 0.00856599620030 

7-7-16-1 0.00911903376524 4-5-1-1 0.00871488523699 
12-5-4-1 0.00883720813502 4-2-1-1 0.00864911250171 
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11-4-18-1 0.00890534972873 4-5-1-1 0.00870528589543 
7-2-24-1 0.00874509975229 4-5-1-1 0.00866316739761 

11-18-1-1 0.00886358959881 4-26-15-1 0.00900999257388 
12-15-29-1 0.00913278190338 4-7-1-1 0.00869817309000 
13-3-23-1 0.00877404086728 4-10-1-1 0.00863747417365 
2-5-21-1 0.00896217602044 4-2-1-1 0.00867195231522 
7-6-3-1 0.00871357559745 4-10-1-1 0.00863591121872 
4-7-0-1 0.00871278082116 4-24-1-1 0.00865562986823 

19-24-23-1 0.00912673768459 4-3-1-1 0.00868033584098 
4-1-4-1 0.00860908894043 4-5-1-1 0.00870402248270 

15-4-28-1 0.00891434423342 4-10-1-1 0.00866125695271 
12-12-18-1 0.00919767994232 4-10-1-1 0.00874789025836 
2-20-1-1 0.00884885953568 4-3-1-1 0.00862830301856 

20-20-13-1 0.00922639219903 4-24-1-1 0.00858689676531 
16-25-21-1 0.00929437137030 4-10-1-1 0.00879278863021 
5-7-28-1 0.00874110418965 4-5-1-1 0.00868254120351 

15-11-0-1 0.00896936052959 4-7-1-1 0.00865822465685 
1-1-30-1 0.00869667184604 4-5-1-1 0.00866255762752 

15-28-29-1 0.00956457641402 4-10-1-1 0.00859640777061 
8-4-10-1 0.00919894570270 4-24-1-1 0.00862747863008 
8-24-0-1 0.00903194444188 4-10-1-1 0.00875347771847 

15-10-28-1 0.00933298743440 4-5-1-1 0.00875235677188 
2-2-10-1 0.00879241347003 4-24-1-1 0.00871466978993 
10-5-7-1 0.00887952334172 9-5-1-1 0.00865521062571 
3-18-6-1 0.00885315386873 4-24-1-1 0.00859131835426 
2-3-16-1 0.00870788089428 4-3-1-1 0.00861253794580 
1-1-13-1 0.00874060170979 4-10-1-1 0.00860959378599 

19-5-24-1 0.00896812557146 4-24-1-1 0.00858480492802 
14-21-22-1 0.00914891241715 4-10-1-1 0.00872627909366 
14-4-30-1 0.00892338872239 4-2-1-1 0.00869863768500 
2-26-23-1 0.00907402022963 4-10-1-1 0.00874411431092 
17-5-14-1 0.00900486353861 4-5-1-1 0.00870606338296 
11-9-14-1 0.00894949130915 4-5-1-1 0.00873682984398 
20-13-17-1 0.00882948082486 4-5-1-1 0.00866740863700 
13-11-16-1 0.00905788637045 4-24-1-1 0.00860480162461 
7-3-25-1 0.00871814152316 4-10-1-1 0.00868456406711 
Average 0.00896418044945 Average 0.00867785917732 

Table I.31: The results of the second Repetition of the GA search on the FTSE data using MAE. 

 
MAE: Repetition 2 

Top 10 
Structure Times Considered Times in Final Generation 
11-2-1-1 9 0 
4-3-1-1 10 3 
4-9-1-1 13 0 
4-24-1-1 17 7 
4-1-1-1 20 0 
4-7-1-1 20 2 
4-19-1-1 25 0 
4-2-1-1 111 3 
4-5-1-1 145 11 
4-10-1-1 171 12 

Table I.32: The most frequently visited networks in repetition 2 using MAE for the FTSE data. 

 
MAE: Repetition 2 

Generation Mean STD 
1 0.00896418044945 0.00021491112595 
2 0.00882519532730 0.00017999658034 
3 0.00890847174519 0.00049510683972 
4 0.00947243811638 0.00349395011968 
5 0.00883321074771 0.00025144610690 
6 0.00878587445198 0.00025777889118 
7 0.00880597460072 0.00026518213990 
8 0.00874469851872 0.00017440373774 
9 0.00903535177039 0.00132169657237 
10 0.00873701044106 0.00015309453325 
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11 0.00872914534725 0.00012210195513 
12 0.00870862424203 0.00021035430604 
13 0.00870846387100 0.00008404757738 
14 0.00870664798721 0.00015984556888 
15 0.00869591370301 0.00010355994819 
16 0.00871849054105 0.00013450060533 
17 0.00869299331398 0.00011916720727 
18 0.00869874200689 0.00012878599374 
19 0.00869750065933 0.00012731881638 
20 0.00867296992890 0.00009398474016 
21 0.00877427351247 0.00038416543205 
22 0.00873282495574 0.00018211561655 
24 0.00871929493363 0.00013811994922 
24 0.00869151711414 0.00009762570032 
25 0.00867785917732 0.00007627391053 

Figure I.33: Mean and Std of MAE throughout all generations in repetition 2 for the FTSE data. 

 
 

Repetition 3 
 

MAE: Repetition 3 
Generation 1 Generation 25 

9-18-6-1 0.00865725266898 9-30-1-1 0.00889152737719 
20-6-30-1 0.00895240327346 12-14-5-1 0.00891380747521 
20-4-5-1 0.00904845346457 15-30-1-1 0.00864708875187 

15-24-26-1 0.00901408812660 9-14-1-1 0.00876106145566 
15-16-7-1 0.00898923178902 1-2-1-1 0.00869987157346 
3-3-6-1 0.00889132302369 17-2-5-1 0.00885751893075 

9-25-23-1 0.00923316802102 9-2-1-1 0.00864215330168 
6-7-27-1 0.00886283069982 17-2-5-1 0.00874375291972 

9-27-28-1 0.00916976010885 1-2-4-1 0.00863252595120 
12-12-0-1 0.00925824142155 19-2-1-1 0.00869622778946 
20-17-1-1 0.00869057378029 1-2-1-1 0.00864999704989 
15-16-9-1 0.00864897788727 9-6-1-1 0.00887804989550 
16-1-11-1 0.00884916094533 17-2-1-1 0.00878062097174 
6-21-17-1 0.00936353884797 9-6-1-1 0.00885913190899 
10-12-23-1 0.00903095970356 17-6-10-1 0.00897236408932 
10-4-22-1 0.00872355300211 17-12-1-1 0.00875663119065 
7-24-20-1 0.00943413030509 9-6-1-1 0.00936442586176 
11-6-24-1 0.00901295129659 12-30-1-1 0.00873040059843 
16-5-29-1 0.00873000355225 9-30-5-1 0.00971354863764 
11-28-26-1 0.01639337421547 15-2-1-1 0.00884062671625 
17-27-14-1 0.00905416718624 9-30-1-1 0.00872695239465 
4-3-11-1 0.00977099662963 1-2-1-1 0.00870809493213 
5-8-16-1 0.00916073409238 17-2-5-1 0.00883557428706 
5-4-17-1 0.00881574712371 9-2-5-1 0.00856791481129 

5-25-17-1 0.00883126266076 15-30-1-1 0.00859144488516 
20-6-28-1 0.00908954544771 9-30-1-1 0.00875014026028 
8-6-3-1 0.00875170872971 12-2-1-1 0.00873842002998 

17-21-17-1 0.00901444132651 15-2-1-1 0.00874657723062 
20-10-1-1 0.00874104804208 9-2-5-1 0.00862456319611 
9-12-7-1 0.00910724700802 17-2-5-1 0.00853893735409 
2-4-29-1 0.00898027680706 9-2-1-1 0.00881921234457 

6-24-20-1 0.00936382644490 17-2-1-1 0.00869006418613 
7-5-5-1 0.00876981622838 9-2-1-1 0.00869411402953 

3-14-25-1 0.00914456447640 9-6-1-1 0.00870008438791 
4-23-5-1 0.00870241920776 15-2-1-1 0.00909621733973 
3-8-18-1 0.00886223502629 17-30-1-1 0.00860083087461 

19-15-11-1 0.00881746093788 9-2-5-1 0.00885526099485 
20-7-25-1 0.00925173238778 9-2-1-1 0.00882351211862 
16-26-27-1 0.00922801095741 9-2-1-1 0.00864101401446 
3-11-7-1 0.00888945666675 9-6-1-1 0.00874202121812 
Average 0.00918251683802 Average 0.00878805708341 
Table I.34: The results of the third Repetition of the GA search on the FTSE data using MAE. 
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MAE: Repetition 3 
Top 10 

Structure Times Considered Times in Final Generation 
17-2-1-1 18 2 
9-6-29-1 20 0 
9-2-24-1 22 0 
9-2-11-1 24 0 
9-6-11-1 26 0 
9-2-5-1 36 3 
9-6-24-1 42 0 
9-6-5-1 55 0 
9-6-1-1 56 5 
9-2-1-1 103 5 

Table I.35: The most frequently visited networks in repetition 3 using MAE for the FTSE data. 

 
MAE: Repetition 3 

Generation Mean STD 
1 0.00918251683802 0.00119458516803 
2 0.00914842802760 0.00149602577539 
3 0.00916296044402 0.00117238799254 
4 0.00898908454527 0.00026119323173 
5 0.00929868332462 0.00184899283046 
6 0.00899525937609 0.00064003738245 
7 0.00898938481793 0.00036465574474 
8 0.00894118827839 0.00023973175697 
9 0.00892147660347 0.00023587064167 
10 0.00902235726579 0.00090625709386 
11 0.00914962197157 0.00145456005575 
12 0.00911534169104 0.00187158187296 
13 0.00887168137131 0.00033275617599 
14 0.00883221941329 0.00029864062209 
15 0.00896830611358 0.00104921095002 
16 0.00884087629838 0.00022887215476 
17 0.00877479170502 0.00018103503628 
18 0.00887481813997 0.00067410419385 
19 0.00906942591748 0.00136775819649 
20 0.00883263518041 0.00023154102604 
21 0.00882025781654 0.00032198030364 
22 0.00914905451396 0.00256819837559 
24 0.00873382809305 0.00014487145697 
24 0.00872199235632 0.00011337961631 
25 0.00878805708341 0.00021232700109 

Figure I.36: Mean and Std of MAE throughout all generations in repetition 3 for the FTSE data. 
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Appendix II 

 

 

 

 

In appendix II we present the complete list of results we obtained from the Genetic 

Algorithm search based on the S&P datasets for all metrics (TheilA, TheilB, TheilC and 

mae) in all repetitions. More specifically we present for each repetition three tables that 

include: a) the first and the last generation of the GA search, b) the ten most visited 

network structures by the GA as well as the frequency in which they were met in the 

last generation and c) the mean and the standard deviation of the metric used each time 

throughout all generations (from 1 to 25). We present as well the figures which depict: 

a) the mean and the standard deviation for each metric and each repetition throughout 

all 25 generations and b) The distribution for each metric in each repetition. 

 

q Metric Used: TheilA 
 
 

Repetition 1 
 

TheilA: Repetition 1 
Generation 1 Generation 25 

10-9-3-1 1.01674032123354 2-10-3-1 0.99617102462064 
11-8-19-1 1.06152126924323 2-27-3-1 0.99314061108058 
8-16-12-1 0.99741854995173 2-27-1-1 0.99286125024988 
11-26-3-1 1.00965490224592 2-10-3-1 1.02802014941916 
16-5-17-1 1.02660616864941 2-27-3-1 1.06496157467294 
19-8-17-1 1.03204549213933 2-27-3-1 1.00767330608999 
12-9-26-1 1.00253200965297 2-25-13-1 1.01631550284512 
2-27-9-1 1.01016294837508 1-27-1-1 0.99814602390372 

12-9-22-1 1.12140366253561 2-27-3-1 0.99772182877575 
5-3-14-1 0.98507744075772 15-27-1-1 1.00688275376560 
5-17-1-1 1.00171701448101 20-10-3-1 1.00161738790905 

12-3-29-1 0.99058305290029 2-27-3-1 0.98002218134218 
19-9-21-1 1.02995035716883 2-27-3-1 0.99269079809153 
9-25-26-1 1.06959026441482 1-25-1-1 0.99818805089038 
14-23-14-1 1.08247398192704 2-25-13-1 0.99548025051562 
14-27-1-1 1.02367460511902 15-27-3-1 1.00614286190132 
16-26-11-1 0.99732068967256 2-27-1-1 1.00302482432601 
13-28-15-1 0.97833415614826 2-29-1-1 0.99887165876673 
10-15-1-1 0.98518295150281 2-10-13-1 0.99142977676360 
20-18-16-1 1.04891889982107 2-25-1-1 0.99748074099401 
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1-21-17-1 1.00622900927090 2-27-3-1 0.99599663291651 
1-9-10-1 1.02913465242850 2-10-3-1 0.99470069037489 

15-27-7-1 1.00757509920938 1-27-1-1 0.99805520343116 
20-10-7-1 1.02872845236987 2-27-3-1 0.99326228194394 
4-18-18-1 1.02603701913459 2-27-1-1 0.99804610190767 
5-26-24-1 1.01630113429424 2-27-13-1 1.04908872403441 
1-30-6-1 0.99933564406770 2-25-3-1 0.98523490098971 

20-18-14-1 1.02479058657248 2-27-1-1 1.01413611950403 
19-2-28-1 1.04932259067562 2-25-1-1 0.98865826922526 
4-25-14-1 1.00462661998162 2-27-3-1 0.98413214510922 
1-17-23-1 1.09859855723603 2-27-1-1 0.99839252213163 
18-11-6-1 1.04755684068926 1-25-1-1 1.00248052000429 
20-16-1-1 1.01338529617733 3-7-1-1 0.99280273841346 
17-24-19-1 1.06476058304878 15-11-20-1 1.24115210119972 
19-3-3-1 1.07832171866701 2-27-1-1 0.99807048081832 

10-15-16-1 1.03916685246834 3-27-1-1 1.00496325771956 
4-28-30-1 1.13343465805010 1-7-3-1 0.99749706125562 
7-20-10-1 0.98948140807188 15-24-6-1 1.01093309968983 
13-10-15-1 1.04998410604530 3-7-1-1 0.99806395511542 
10-18-29-1 1.06336160608450 1-27-1-1 0.99004201146639 
Average 1.03102602931209 Average 1.00756378435437 
Table II.1: The results of the first Repetition of the GA search on the S&P data using TheilA. 

 
TheilA: Repetition 1 

Top 10 
Structure Times Considered Times in Final Generation 
1-27-5-1 17 0 
1-27-7-1 17 0 

11-27-1-1 18 0 
11-27-3-1 20 0 
4-27-3-1 31 0 
2-27-5-1 38 0 
1-27-1-1 40 3 
1-27-3-1 51 0 
2-27-1-1 77 6 
2-27-3-1 153 9 

Table II.2: The most frequently visited networks in repetition 1 using TheilA for the S&P data. 

 
TheilA: Repetition 1 

Generation Mean STD 
1 1.03102602931209 0.03685938937668 
2 1.07515876345684 0.20113917810003 
3 1.03657408510144 0.08345848935369 
4 1.02877704484134 0.04147552202173 
5 1.02367819524646 0.05088335539216 
6 1.02672603238816 0.07464021324217 
7 1.03585102028240 0.17657016017945 
8 1.01680902823607 0.03673615402445 
9 1.00708812163881 0.02366692213190 
10 1.00886601985485 0.02469038544834 
11 1.01891953395836 0.09411205805880 
12 1.01222973326057 0.05581799449547 
13 1.00380755343800 0.01759827519680 
14 0.99885813558073 0.01516077770100 
15 1.00582130586593 0.02136918286419 
16 0.99979665848459 0.01432169121900 
17 1.00377706767460 0.03003203275375 
18 1.00164688066194 0.02163475758187 
19 1.00612533534150 0.02123338722841 
20 1.00346669465632 0.01706522542128 
21 1.00092473180676 0.01580683002060 
22 1.00185611532501 0.01988124507503 
24 1.00387535417187 0.02920974492628 
24 1.00117682355519 0.02667998089688 
25 1.00756378435437 0.04101102941005 

Figure II.3: Mean and Std of TheilA throughout all generations in repetition 1 for the S&P data. 
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Repetition 2 
 

TheilA: Repetition 2 
Generation 1 Generation 25 

9-28-1-1 1.00382890795919 2-8-3-1    0.99164419230536 
4-9-1-1 0.99964182072060 3-26-6-1    0.98149079822034 

14-14-2-1 1.00400000221744 1-8-3-1    0.99806759373223 
19-24-22-1 1.12324795520694 3-8-3-1    0.99858126457773 
7-23-29-1 1.01502784920761 3-8-3-1    1.01008739926850 
15-2-16-1 1.04784944232386 3-28-3-1    0.99931259628266 
12-2-15-1 1.00744862911104 3-8-8-1    1.05483250891300 
2-20-7-1 1.50756627541676 3-26-15-1    1.06409823203046 

2-27-28-1 1.04728927064332 7-30-10-1    1.00033542683217 
9-3-22-1 1.16499120841988 3-22-3-1    0.99343183708843 
8-21-8-1 1.01663538373660 3-8-3-1    0.98452311650220 

13-15-5-1 1.01563178435262 3-8-3-1    0.98906151142631 
9-13-10-1 1.03917739597152 3-12-8-1    0.98874801698079 
15-5-18-1 1.04604238576553 3-8-3-1    0.98452142481181 
14-19-24-1 1.00127424332762 3-8-8-1    1.00485014160360 
12-11-24-1 1.15617180506800 3-6-3-1    1.00143626700946 
5-20-1-1 0.99310701711722 3-8-2-1    0.99639637661406 

11-15-22-1 1.03287285052711 3-8-3-1    0.99563885940733 
17-9-5-1 1.03308412492395 2-8-3-1    1.02914617603958 
9-28-4-1 0.99145796362705 3-28-3-1    1.00430588051317 

14-13-30-1 1.01003281078810 3-8-6-1    0.98822474063799 
8-2-20-1 0.99042402366628 3-8-3-1    1.00714933389583 
14-7-7-1 1.02651783301094 2-8-3-1    0.99073438910318 
7-5-10-1 1.02210718727811 3-8-3-1    0.98538048971950 

17-29-11-1 1.04030997367422 3-11-3-1    0.99764525388294 
3-12-24-1 1.02826813517832 3-8-6-1    1.00881010375646 
16-23-9-1 1.00182027003093 3-28-3-1    1.00607625094766 
15-16-5-1 1.03143037850492 3-22-3-1    1.00161121404454 
13-6-3-1 1.00653832071521 3-8-3-1    1.00050315354271 

15-7-19-1 1.05442534560716 3-28-3-1    0.99649679695580 
16-18-27-1 1.06395030932731 3-8-6-1    0.99016179042100 
5-17-22-1 1.02731182595737 3-12-3-1    0.98892292398429 
4-1-20-1 0.99755188563277 3-12-3-1    0.99809776934564 

15-6-12-1 1.21904950775875 3-8-3-1    0.99546869356681 
7-11-10-1 1.01705727915059 3-12-3-1    0.99418152809191 
3-26-12-1 0.99166260903375 3-8-3-1    0.99611890187084 
10-8-27-1 1.01786185027106 3-28-2-1    1.00063377364922 
2-18-12-1 0.97369310146501 3-6-2-1    0.99716195996563 
15-7-29-1 1.07230371477054 3-28-8-1    1.00899082777641 
14-28-12-1 1.01366225432207 3-26-3-1    1.01291113416774 
Average 1.04630812329468 Average    1.00089476623713 

Table II.4: The results of the second Repetition of the GA search on the S&P data using TheilA. 

 
TheilA: Repetition 2 

Top 10 
Structure Times Considered Times in Final Generation 

1-8-8-1 16 0 
1-26-3-1 16 0 
3-8-2-1 18 1 
3-22-3-1 20 2 
3-28-8-1 24 1 
3-8-12-1 27 0 
3-26-3-1 39 1 
3-26-8-1 48 0 
3-8-8-1 50 2 
3-8-3-1 93 11 

Table II.5: The most frequently visited networks in repetition 2 using TheilA for the S&P data. 

 
TheilA: Repetition 2 

Generation Mean STD 
1 1.04630812329468 0.09020963254430 
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2 1.05804997868736 0.15746028217796 
3 1.14866745286417 0.62149960277385 
4 1.16817408956494 0.80103338903237 
5 1.03020761290137 0.03962951767915 
6 1.06022901211300 0.16483343543114 
7 1.02078867378932 0.02762307913314 
8 1.01472780175725 0.02552452814620 
9 1.02433632686368 0.04915280791921 
10 1.01261124502234 0.03994771040294 
11 1.01037665034755 0.03078120241819 
12 1.05582614165554 0.24040679149753 
13 1.02390169823368 0.04823449023874 
14 1.04469698992567 0.20900662508499 
15 1.00503115234038 0.01583682083762 
16 1.01592560279906 0.05820414314095 
17 1.00410733590162 0.02305575139415 
18 1.00727429712349 0.01987909076842 
19 1.00906363153772 0.04348136859581 
20 1.00029563130607 0.01407444614466 
21 1.00752591263887 0.04412970661510 
22 1.02053112283162 0.11737558836433 
24 1.01341730951552 0.06545756092918 
24 1.00441001458449 0.03898519565716 
25 1.00089476623713 0.01638551410462 

Figure II.6: Mean and Std of TheilA throughout all generations in repetition 2 for the S&P data. 

 
 

Repetition 3 
 

TheilA: Repetition 3 
Generation 1 Generation 25 

12-9-20-1 0.98892887948957 8-6-2-1 0.98924684615325 
3-5-12-1 1.06749253580088 6-7-4-1 0.98676150477196 

9-18-16-1 1.04145100883170 11-10-2-1 0.99499422543083 
20-12-6-1 1.02448368209515 12-22-2-1 0.99791425787662 
7-7-9-1 1.02089673002327 6-7-2-1 1.01372490919178 

5-19-18-1 1.07608189039220 12-7-2-1 1.00670505555468 
9-20-29-1 1.05682427916788 1-10-2-1 1.01275248139166 
2-17-21-1 0.99145668282378 6-6-2-1 0.99794663021328 
4-12-3-1 0.99725423516924 1-3-16-1 0.98572435651090 

20-14-7-1 1.02756726057120 8-5-2-1 1.01448177281263 
2-17-28-1 1.06084018008798 19-7-22-1 1.01784642582344 
12-17-2-1 1.00736639010816 6-10-2-1 1.00360562075025 
11-2-28-1 1.04449189983866 6-6-4-1 0.99734218938980 
5-3-19-1 0.99271867579604 6-5-4-1 0.98005273498159 

19-16-18-1 1.03649467715470 12-10-4-1 0.98982536368004 
8-5-4-1 0.97482624376742 14-5-4-1 1.01799319411598 
17-7-5-1 1.03358033638196 19-7-22-1 1.04090741373705 

15-24-15-1 1.00431840405814 6-5-2-1 0.98742298707030 
10-20-30-1 1.09071670369404 6-7-2-1 0.98220961873415 
3-20-20-1 0.99494479790514 4-30-29-1 2.67201086723304 
13-5-5-1 1.01649119202247 12-10-2-1 0.99164213878266 

9-16-25-1 1.09411478012979 3-1-4-1 0.99663723696081 
4-27-28-1 1.02096632483180 6-7-2-1 0.99856726233776 
6-23-30-1 1.00745373215685 6-6-5-1 0.96253303737967 
17-2-0-1 1.00141553330503 6-6-4-1 0.99992050755834 

12-22-27-1 1.00243550238285 6-6-22-1 1.04344386759136 
5-16-16-1 0.98933100436657 6-4-4-1 1.00157816020721 
11-4-9-1 0.99681944734160 8-10-2-1 1.00140323647320 

6-11-13-1 1.01212621822098 12-7-4-1 0.98467065007620 
14-14-11-1 1.05734804094705 6-4-2-1 1.00306374149422 
20-4-3-1 1.04916052903597 12-10-4-1 0.98217393018468 

16-28-30-1 1.25918116183688 6-7-4-1 0.97188152266876 
2-29-24-1 1.02356273290070 12-10-2-1 0.98498649938606 
10-5-14-1 0.99892559339866 4-7-4-1 0.98956810916584 
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2-30-18-1 1.00674693160346 6-7-4-1 1.00438751206512 
19-26-26-1 1.11144882162755 6-7-2-1 0.99050153754485 
1-21-13-1 1.01132149995692 12-10-2-1 1.02874421602256 
1-24-27-1 1.04077085248445 6-10-2-1 1.03839942817996 
13-24-24-1 1.02214635313019 6-10-2-1 0.97460282005598 
10-4-21-1 1.11350704933510 3-6-2-1 0.99890026640013 
Average 1.03420021985430 Average 1.04092685339896 
Table II.7: The results of the third Repetition of the GA search on the S&P data using TheilA. 

 
TheilA: Repetition 3 

Top 10 
Structure Times Considered Times in Final Generation 
11-7-2-1 14 0 
3-7-4-1 15 0 
3-14-2-1 17 0 

12-14-2-1 18 0 
3-5-2-1 27 0 
6-10-2-1 36 3 
3-10-2-1 43 0 
3-10-4-1 44 0 
6-7-2-1 44 4 
3-7-2-1 59 0 

Table II.8: The most frequently visited networks in repetition 3 using TheilA for the S&P data. 

 
TheilA: Repetition 3 

Generation Mean STD 
1 1.03420021985430 0.05028907541858 
2 1.04847993440806 0.09146271967752 
3 1.03336720446340 0.04211376465622 
4 1.02190651963839 0.04306416461799 
5 1.02807575061685 0.04605627957523 
6 1.02025947109491 0.04540223032579 
7 1.01774271453529 0.03148993363317 
8 1.00898322149018 0.02884002896741 
9 1.01063789275734 0.03214695091722 
10 1.01143402039930 0.02832553334035 
11 1.00860141726667 0.02102981183655 
12 1.00733088359693 0.02449937399139 
13 1.00519649106312 0.03182746792233 
14 0.99989357528340 0.01399523789161 
15 1.00430636695155 0.02920888927487 
16 1.00740212635680 0.03771533050717 
17 1.00433262919855 0.02454580411744 
18 1.01681354490186 0.05517028338221 
19 1.00865153093969 0.03387558995550 
20 1.00304746573789 0.02978227440289 
21 1.00128793342908 0.04396480629388 
22 1.00161308962195 0.02787699881861 
24 1.03135833163462 0.16165680097021 
24 1.00071315808487 0.01973543167513 
25 1.04092685339896 0.26511672068132 

Figure II.9: Mean and Std of TheilA throughout all generations in repetition 3 for the S&P data. 
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Repetition 1 Minimum: 0.95543615106433 
Maximum: 2.11678033562905 
Mean: 1.01441600193977 
StDev: 0.06815235398677 

Repetition 2 Minimum: 0.96446950743347 
Maximum: 6.09555291707932 
Mean: 1.03229514295346 
StDev: 0.22283831470531 

Repetition 3 Minimum: 0.95958074018409 
Maximum: 2.67201086723304 
MeanValue: 1.01506249386896 
StDev: 0.07306944063927  

Figure II.1: Mean and Std of TheilA throughout all generations for S&P data  
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Figure II.2: Distributions of TheilA for the S&P data. 

 
q Metric Used: TheilB 
 
 

Repetition 1 
 

TheilB: Repetition1 
Generation 1 Generation 25 

6-29-10-1 0.69402640608358 5-8-4-1 0.74245392734983 
1-8-30-1 0.69221953636456 5-14-1-1 0.68201955182204 

16-11-14-1 0.70457250494219 5-8-1-1 0.68292785962835 
19-21-1-1 0.69344103699837 5-30-1-1 0.67063045728494 
16-16-29-1 0.71664594722315 5-8-28-1 0.68932271061489 
15-28-7-1 0.73782589353192 5-14-1-1 0.67614000764103 
19-1-24-1 0.75639552449061 5-15-11-1 0.67040771021457 
11-12-14-1 0.69224854944453 5-8-4-1 0.67862873053819 
19-29-0-1 0.86694465064241 5-8-1-1 0.68128618372687 
3-23-26-1 0.68530912213062 5-14-4-1 0.66229141047792 
11-29-2-1 0.69662374672499 5-8-1-1 0.68198817678510 
20-23-2-1 0.69539841018868 5-8-1-1 0.68299402459088 
5-25-16-1 0.67810337052783 5-8-4-1 0.73001306515439 
11-26-11-1 0.73403699385381 5-8-4-1 0.67827142597409 
4-19-28-1 0.70360969831549 5-8-11-1 0.68094019747031 
5-23-5-1 0.66263222564995 5-8-1-1 0.66431776468434 

9-13-12-1 0.73103887185464 5-8-1-1 0.67785050693753 
16-14-15-1 0.70646850957191 5-14-4-1 0.68095477947510 
15-10-1-1 0.71447470230284 5-8-1-1 0.68337507717604 
10-9-2-1 0.69269414744817 1-8-29-1 0.68783013746018 

6-25-10-1 0.69098114690989 5-8-4-1 0.67841253085053 
12-14-12-1 0.73102906286734 5-8-11-1 0.70810041072052 
7-20-16-1 0.70179263212717 5-15-4-1 0.66380280434184 
10-10-4-1 0.68494139378727 5-8-4-1 0.70455854213615 
8-25-4-1 0.68188940868894 5-5-4-1 0.66684441391692 

7-26-28-1 0.70695807037813 5-14-4-1 0.67547314260186 
9-8-8-1 0.75674567199455 5-8-1-1 0.68268464846331 
10-1-4-1 0.68826759650912 3-29-10-1 0.68286114248838 
14-5-1-1 0.69158353298780 5-8-4-1 0.65979698432567 

19-11-8-1 0.74337892397498 5-8-1-1 0.70203338922179 
11-18-7-1 0.68873884646873 5-8-4-1 0.66917116531587 
1-13-14-1 0.68750210793105 5-22-27-1 0.67761097337484 
6-17-30-1 0.73386157863712 5-8-4-1 0.67409492537802 
19-30-11-1 0.69323736699251 5-8-1-1 0.68302034556526 
7-4-11-1 0.70584742716032 5-8-4-1 0.69702786803216 

19-5-22-1 0.71121931205457 5-8-4-1 0.71561061937991 
2-21-29-1 0.73470402428047 5-5-4-1 0.66586916472402 
16-24-12-1 0.71696095056949 5-8-1-1 0.67906554733599 
18-19-16-1 0.72228668741762 5-6-1-1 0.68039653720582 
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20-6-17-1 0.74531327951611 1-5-4-1 0.68317713752578 
Average 0.71179872173859 Average 0.68335639994778 

Table II.10: The results of the first Repetition of the GA search on the S&P data using TheilB. 

 
TheilB: Repetition 1 

Top 10 
Structure Times Considered Times in Final Generation 
11-14-1-1 14 0 
15-21-1-1 15 0 

6-5-1-1 16 0 
6-21-1-1 17 0 
5-5-1-1 25 0 
5-14-4-1 28 3 
5-5-4-1 34 2 
5-14-1-1 42 2 
5-8-1-1 64 11 
5-8-4-1 104 11 

Table II.11: The most frequently visited networks in repetition 1 using TheilB for the S&P data. 

 
TheilB: Repetition 1 

Generation Mean STD 
1 0.71179872173859 0.03382187902311 
2 0.70141180367685 0.02328051021601 
3 0.69515957008248 0.02050218565968 
4 0.73510368814496 0.17101654993517 
5 0.80291814310880 0.66524160479464 
6 0.69560812801306 0.02393160832130 
7 0.69470226493938 0.02054786634272 
8 0.69295361172128 0.02243389936192 
9 0.69493269979713 0.02260243084875 
10 0.69297844147294 0.01691673407539 
11 0.69610076439150 0.02384675958139 
12 0.70452168576096 0.08391258127204 
13 0.69059628126288 0.01556658636915 
14 0.69032219055344 0.01501335052918 
15 0.68934845553206 0.02308888136983 
16 0.69598890348128 0.04124601881118 
17 0.69012273885057 0.02507016739980 
18 0.68480823107874 0.01491875799046 
19 0.68473065011144 0.01591618394063 
20 0.67915074392762 0.01241722585699 
21 0.67917119827313 0.00929109749427 
22 0.68228983689630 0.02018829457647 
24 0.68588679030745 0.02474692772195 
24 0.70113159962782 0.10423227445488 
25 0.68335639994778 0.01724601473687 

Figure II.12: Mean and Std of TheilB throughout all generations in repetition 1 for the S&P data. 

 
 

Repetition 2 
 

TheilB: Repetition 2 
Generation 1 Generation 25 

10-17-13-1 0.71283243582108 20-3-7-1 0.68291785198663 
14-9-23-1 0.74407599616666 9-26-15-1 0.72816142823464 
7-11-4-1 0.69051663510100 3-6-5-1 0.67226008117247 

16-2-20-1 0.72625211166162 3-24-10-1 0.71372809959724 
2-12-9-1 0.69010764344036 6-27-11-1 0.81065124017392 

3-11-26-1 0.68906525504324 6-27-7-1 0.67433384581398 
3-16-19-1 0.74834809318176 5-24-5-1 0.70633707605777 
12-1-4-1 0.70050761568713 3-6-10-1 0.70372551773268 

14-23-26-1 0.72141147477459 9-3-5-1 0.69276241771761 
13-23-28-1 0.69828511491073 6-24-11-1 0.69272944026763 
14-30-10-1 0.70067039968538 3-24-11-1 0.69318431697219 
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10-28-19-1 0.82591159259536 2-24-5-1 0.67251184848005 
20-24-18-1 0.74659018199425 5-24-5-1 0.66896718665487 
14-10-3-1 0.69468024609951 11-27-5-1 0.69124669094238 
6-6-9-1 0.67738854073737 6-6-5-1 0.69356816222432 

2-23-22-1 0.69532854159151 3-9-5-1 0.67784940744659 
9-18-16-1 0.70057330089406 5-24-10-1 0.67797063462224 
12-24-7-1 0.73182855289443 9-24-5-1 0.69807755975257 
16-12-21-1 0.75821845191271 9-27-10-1 0.70981876042601 
8-5-16-1 0.68694773089132 9-24-10-1 0.74380033086422 

2-24-19-1 0.69203996579844 2-6-5-1 0.68191454752207 
19-2-18-1 0.70245994729280 5-5-5-1 0.69540756002251 
9-30-22-1 0.70884530073371 5-26-15-1 0.70645316154481 
14-28-11-1 0.85825374255046 5-6-5-1 0.66781309175073 
20-12-16-1 0.69166410996147 3-11-5-1 0.67216181179770 
10-12-26-1 0.76340043320400 2-24-5-1 0.70987348526188 
14-7-14-1 0.74471850305307 11-24-5-1 0.69808759854852 
5-26-27-1 0.69985233504398 3-24-5-1 0.69023295326908 
9-4-2-1 0.73484066323215 2-9-10-1 0.67876318800019 

10-11-5-1 0.69181549589757 3-9-5-1 0.67816251383342 
19-8-27-1 0.70189552284871 15-13-18-1 0.68712156929140 
11-30-22-1 0.79777464357140 2-24-5-1 0.70073397168819 
6-3-27-1 0.70322100647675 9-27-10-1 0.68834427224697 
9-3-15-1 0.73788007654446 2-24-5-1 0.68669736631903 

6-19-21-1 0.70847492999187 11-6-5-1 0.67777008512657 
5-14-27-1 0.67665960368114 5-27-5-1 0.68319286606697 
8-24-1-1 0.68156768110030 3-9-10-1 0.68668208484530 

13-2-12-1 0.68849561240277 5-6-5-1 0.68449749018671 
1-10-28-1 0.69467827848856 9-24-10-1 0.71373874980683 
7-5-16-1 0.66888666624490 5-26-5-1 0.67347217637990 
Average 0.71717411083006 Average 0.69414306101622 

Table II.13: The results of the second Repetition of the GA search on the S&P data using TheilB. 

 
TheilB: Repetition 2 

Top 10 
Structure Times Considered Times in Final Generation 
6-5-11-1 13 0 
5-5-5-1 14 1 
5-24-5-1 14 2 

6-24-11-1 15 1 
3-5-11-1 15 0 
6-5-5-1 22 0 

3-24-11-1 29 1 
3-5-5-1 30 0 
6-24-5-1 54 0 
3-24-5-1 70 1 

Table II.14: The most frequently visited networks in repetition 2 using TheilB for the S&P data. 

 
TheilB: Repetition 2 

Generation Mean STD 
1 0.71717411083006 0.04016628224090 
2 0.74080094767905 0.21418127706747 
3 0.70032737488139 0.02956473921564 
4 0.74651661568058 0.15975860517528 
5 0.77474255509688 0.23876414867291 
6 0.71071139639619 0.03100438598837 
7 0.78261468401863 0.37294811949089 
8 0.70691588978741 0.03169752384880 
9 0.70362564763802 0.03056063713399 
10 0.70003204801989 0.04177420744423 
11 0.72784390569737 0.15666732941127 
12 0.68737154379940 0.01622069312188 
13 0.69257524035989 0.04395240421040 
14 0.69803926331108 0.06696781479911 
15 0.69337435223419 0.02271992980077 
16 0.74304037503525 0.32268991018835 
17 0.69340383733837 0.04516544169418 
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18 0.69093384728701 0.02486720407850 
19 0.69746830167550 0.05458505109784 
20 0.72931201013539 0.26306919086252 
21 0.68728681390040 0.01243947589559 
22 0.69362499762337 0.04400261935057 
24 0.71419570552291 0.10647267775306 
24 0.71179739248754 0.12403524250175 
25 0.69414306101622 0.02506464852767 

Figure II.15: Mean and Std of TheilB throughout all generations in repetition 2 for the S&P data. 

 
 

Repetition 3 
 

TheilC: Repetition 3 
Generation 1 Generation 25 

8-13-0-1 0.71916442001415 3-8-1-1 0.68266969632829 
7-30-25-1 0.87963098934679 3-1-1-1 0.73842352043891 
17-28-6-1 0.71660758761507 1-1-1-1 0.69810312773029 
16-3-13-1 0.69659099538981 1-1-1-1 0.68565899556320 
18-1-30-1 0.70850688696663 1-8-1-1 0.68360612697136 
8-14-4-1 0.73120262494365 1-8-4-1 0.67454777413676 
20-1-2-1 0.68883963811900 1-8-1-1 0.67657973566247 
3-6-15-1 0.70400038486082 3-6-1-1 0.68022211434828 
11-3-7-1 0.68524757152200 1-6-1-1 0.67502220755333 
2-1-5-1 0.70635467350505 1-8-1-1 0.68332312387201 
7-10-5-1 0.66760745550999 1-6-1-1 0.67139771909341 
7-28-5-1 0.68435168857503 1-6-1-1 0.68131886267254 
3-2-19-1 0.70302942353287 1-1-4-1 0.68249737207816 

8-25-10-1 0.68393490518279 1-6-1-1 0.68451845852368 
15-16-24-1 0.73023438600910 1-1-1-1 0.68324166734494 
8-17-3-1 0.71999936576128 1-1-1-1 0.68350036212110 

15-16-10-1 0.70103419456432 1-1-1-1 0.68425247043304 
11-23-4-1 0.70807709401127 1-1-1-1 0.68376416260145 
18-29-27-1 0.74625088580754 1-6-1-1 0.67713450803963 
1-8-24-1 0.72582144383957 3-1-1-1 0.68473829178320 

12-13-4-1 0.68653911012982 1-1-1-1 0.68440086890815 
8-21-12-1 0.67606801964813 1-6-1-1 0.68276288930984 
14-26-7-1 0.70463914154845 1-8-1-1 0.68236209000969 
1-6-29-1 0.67453895498009 14-22-1-1 0.69350951180859 
1-20-4-1 0.68411672983186 1-8-4-1 0.69350204096795 

15-23-2-1 0.67210010716423 4-1-1-1 0.69265187385419 
2-3-5-1 0.68496736360049 1-8-1-1 0.68326440919969 
5-11-8-1 0.67402749228686 11-6-1-1 0.68739282509479 

1-19-14-1 0.68061629351643 1-12-1-1 0.68546340464013 
14-26-22-1 0.86148052618263 1-8-1-1 0.68198659406048 
19-9-25-1 0.76599155868841 3-2-4-1 0.68277603258168 
11-15-29-1 0.70163376586139 8-25-28-1 0.81617246080167 
15-11-9-1 0.67899509022506 1-8-1-1 0.68200121371241 
16-30-24-1 0.73736264297528 1-8-1-1 0.68335246212669 
2-12-29-1 0.68781111478460 3-1-1-1 0.67588511006702 
6-15-15-1 0.70402177848009 1-8-1-1 0.67772004218626 
11-20-1-1 0.68789431474524 3-8-1-1 0.67441594863378 
13-8-8-1 0.73949906704385 1-8-1-1 0.68338998448511 

3-24-25-1 0.72882940982318 1-6-1-1 0.67280342182900 
11-2-15-1 0.68833004161005 1-8-4-1 0.68561807037001 
Average 0.71064872845507 Average 0.68739878879858 

Table II.16: The results of the third Repetition of the GA search on the S&P data using TheilB. 

 
TheilB: Repetition 3 

Top 10 
Structure Times Considered Times in Final Generation 

1-1-4-1 14 1 
1-2-1-1 19 0 
1-26-1-1 19 0 
1-8-4-1 19 3 
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3-8-1-1 23 2 
1-8-1-1 37 10 
1-6-1-1 51 7 
3-1-1-1 53 3 
1-1-1-1 56 7 
3-6-1-1 62 1 

Table II.17: The most frequently visited networks in repetition 3 using TheilB for the S&P data. 

 
TheilB: Repetition 3 

Generation Mean STD 
1 0.71064872845507 0.04368259478079 
2 0.70737541991906 0.03522081801646 
3 0.69865278686966 0.02480095044211 
4 0.69011796931026 0.01372494302950 
5 0.70082099035223 0.02651996058387 
6 0.69718063514431 0.01842019563136 
7 0.70634564839249 0.07035365118345 
8 0.69291554106168 0.01658292617884 
9 0.69596404823704 0.03437592342208 
10 0.68962956039022 0.01887190797087 
11 0.69133664636112 0.01453505117466 
12 0.68949116661525 0.02834634108135 
13 0.69074785727804 0.03172875559544 
14 0.68692633292179 0.01153190781914 
15 0.69373933215179 0.05276327306662 
16 0.68795516206104 0.01719646355370 
17 0.69282944888119 0.02299106482548 
18 0.68898525130176 0.01838667595506 
19 0.69102926619919 0.02323978779823 
20 0.68796271711173 0.01196846161570 
21 0.68547996904250 0.01047762379208 
22 0.68630319815234 0.01143863317073 
24 0.68790537157307 0.01611159069729 
24 0.72469657728196 0.25385680701469 
25 0.68739878879858 0.02333671167448 

Figure II.18: Mean and Std of TheilB throughout all generations in repetition 3 for the S&P data. 
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Repetition 1 Minimum: 0.65801387240786 
Maximum: 4.90344838578297 
Mean: 0.69820374170794 
StDev: 0.14180041538561 

Repetition 2 Minimum: 0.65632890143622 
Maximum: 3.06145783099977 
MeanValue: 0.71351487669808 
StDev: 0.14408791190612 

Repetition 3 Minimum: 0.66140932153077 
Maximum: 2.28875675929357 
Mean: 0.69449753655453 
StDev: 0.05799444472298  

Figure II.3: Mean and Std of TheilB throughout all generations for S&P data  
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Figure II.4: Distributions of TheilB for the S&P data. 

 
 
q Metric Used: TheilC 
 
 

Repetition 1 
 

TheilC: Repetition 1 
Generation 1 Generation 25 

19-28-8-1 1.01731908253829 7-13-7-1 0.99814272979818 
17-18-23-1 1.01776685688234 4-23-7-1 0.99795284802898 
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11-10-14-1 1.01502385726268 7-17-7-1 0.96951169816745 
4-8-20-1 0.98074855226521 1-13-7-1 1.01932865335758 

19-11-19-1 1.08280675720682 1-17-7-1 1.00524309930048 
2-22-7-1 1.02626878260514 7-6-13-1 1.12505360330236 

14-14-28-1 1.09488804140101 7-17-7-1 1.01827353998814 
15-17-7-1 1.03597351998646 5-26-12-1 0.96671365987616 
11-15-26-1 1.00384213878940 4-13-7-1 0.98577246051998 
3-27-21-1 1.16812815644992 1-6-7-1 0.98867882077986 
13-23-12-1 1.08195230423459 7-13-2-1 0.97131690636599 
3-4-25-1 1.00416872000730 1-23-7-1 1.00349000467989 

18-18-29-1 1.09149726435464 7-17-16-1 1.02591512097822 
14-20-13-1 3.13276676848730 1-13-7-1 1.00138535559976 
14-8-2-1 0.98316310294573 7-13-7-1 0.98945534278777 
8-25-1-1 1.05286720293340 4-6-6-1 0.98139032187209 

20-15-13-1 1.03434164479650 2-17-20-1 1.01018487848453 
11-7-29-1 1.00749175768566 7-13-16-1 0.98032682768603 
8-7-7-1 1.02213733635671 4-6-7-1 1.00307421168352 

13-16-29-1 1.19205442900254 7-17-12-1 1.03174197995604 
12-12-10-1 0.98092529488107 7-13-7-1 1.01829267947295 
2-10-25-1 1.03595285766531 5-17-23-1 1.01681861094554 
11-29-26-1 3.10042217056751 16-20-30-1 1.05925351899758 
4-27-28-1 1.07994669963528 4-6-12-1 0.98633021651383 
9-29-11-1 1.07732852408503 7-26-7-1 1.00797969816978 
3-17-18-1 1.10015189394248 1-26-7-1 1.00248638659167 
4-13-7-1 1.01942974711795 8-17-12-1 1.02013374156683 

19-20-13-1 1.06545620186317 7-6-7-1 0.98904183184807 
15-19-24-1 1.07761073677863 7-17-7-1 1.00762280906556 
10-14-0-1 1.06152326233530 7-26-7-1 0.99966569858334 
2-2-14-1 0.99941420819261 7-13-16-1 1.01944832952608 

20-16-13-1 1.03309929009005 7-12-12-1 0.98776502091965 
7-6-0-1 1.01588814336733 4-6-7-1 0.98748569376481 

14-26-20-1 1.01613994122301 7-17-16-1 0.97828066782478 
17-6-27-1 1.05727268023110 2-13-7-1 0.98625636228499 
13-19-5-1 1.04752365524730 6-6-16-1 0.98800776822600 
14-16-25-1 1.11108617247612 4-12-7-1 0.99108154541474 
10-23-24-1 1.04127807693848 7-13-7-1 1.00276582399729 
17-28-30-1 1.04420917412263 7-6-12-1 0.99061846102576 
17-24-30-1 1.02255055556200 7-26-6-1 0.98882463010328 
Average 1.15081038906285 Average 1.00252778895139 

Table II.19: The results of the first Repetition of the GA search on the S&P data using TheilC. 

 
TheilC: Repetition 1 

Top 10 
Structure Times Considered Times in Final Generation 

8-5-12-1 11 0 
7-6-7-1 12 1 
7-13-7-1 12 4 

2-26-12-1 14 0 
7-26-12-1 14 0 
7-6-12-1 14 1 
7-26-7-1 15 2 
8-6-7-1 17 0 

2-13-12-1 22 0 
8-26-12-1 28 0 

Table II.20: The most frequently visited networks in repetition 1 using TheilC for the S&P data. 

 
TheilC: Repetition 1 

Generation Mean STD 
1 1.15081038906285 0.45901322062614 
2 1.12002831853205 0.35929179730852 
3 1.10158146313436 0.35458298145988 
4 1.06415867440215 0.14943776724159 
5 1.06689651499668 0.19655074576051 
6 1.21304516710555 1.01568105591982 
7 1.07719461122750 0.22418445854493 
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8 1.54080703699033 1.74355247404193 
9 1.04093063596092 0.04805864666446 
10 1.08313823721226 0.19616635337521 
11 1.23924457579548 0.91843058937567 
12 1.03847006685350 0.06520006343272 
13 1.03241137011405 0.04231942099160 
14 1.05392843070739 0.20836896576336 
15 1.03016724728643 0.03937635807287 
16 1.01905793492849 0.03180702623512 
17 1.01909623587441 0.03380121922683 
18 1.01611985934268 0.03635511711087 
19 1.01567023848110 0.03701060400241 
20 1.05784862537154 0.28573401389322 
21 1.02544956321815 0.04875543080990 
22 1.01004153870473 0.02921630635168 
24 1.00830818696947 0.02608147579613 
24 1.00839352025788 0.03994011477012 
25 1.00252778895139 0.02713932856248 

Figure II.21: Mean and Std of TheilC throughout all generations in repetition 1 for the S&P data. 

 
 

Repetition 2 
 

TheilC: Repetition 2 
Generation 1 Generation 25 

20-28-24-1 1.06217767825929 6-4-7-1 0.99287916843563 
11-8-30-1 1.07840273362353 1-3-9-1 0.99972448106942 
15-3-1-1 1.00116859408204 3-3-7-1 0.99044245849590 

19-11-27-1 1.04084219858633 6-4-9-1 1.00935358471270 
11-26-5-1 0.97707536324280 7-13-7-1 1.03675487245426 
18-12-12-1 1.01488240106260 3-4-1-1 0.99891987615435 
15-18-8-1 1.02188789690440 3-3-7-1 1.00120846521469 
17-26-18-1 1.04559907543637 3-3-1-1 1.00151655667184 
6-15-9-1 1.32508491633297 6-4-7-1 1.00687084376682 

7-13-12-1 0.99051557857617 4-6-7-1 0.98802841332583 
3-16-19-1 1.02099508041393 7-23-24-1 1.06436554071977 
10-18-17-1 1.05545644057526 6-4-9-1 0.98941734088501 
8-3-15-1 1.02673075679420 6-25-7-1 0.99595614615815 

17-28-9-1 1.03594575784108 3-4-7-1 0.98914422210900 
4-15-14-1 0.99440155673454 3-4-7-1 0.99179939427543 
10-17-25-1 1.01200127053257 4-3-7-1 0.99021532625432 
20-10-9-1 1.04442592500618 4-6-7-1 1.01062395446783 
4-13-2-1 0.99749520906810 3-4-7-1 1.00314417686150 

11-16-27-1 1.08559011749108 6-3-7-1 0.99256248634962 
8-17-20-1 1.03944330932485 6-4-7-1 0.99249342281028 
8-22-27-1 1.09205474035813 6-3-9-1 1.00172365012060 
11-14-20-1 1.05269078411314 3-4-7-1 1.01171458398735 
4-2-20-1 1.00741221618469 7-22-0-1 1.04919494726432 
4-18-4-1 0.96319387754033 6-4-7-1 0.98506711192513 
17-1-2-1 0.99488813021926 6-4-9-1 0.99890290243690 
3-17-5-1 1.02693763933513 4-3-7-1 0.98987830658354 

19-22-16-1 1.07558358402188 3-30-7-1 1.00720329192511 
6-28-7-1 0.98838218570635 19-3-9-1 1.00581621261333 

20-2-13-1 1.01987014678329 6-4-7-1 1.00087621737651 
11-4-26-1 1.04531415090429 3-13-7-1 1.02116837497123 
3-12-23-1 1.00665249780319 3-20-7-1 0.99362097177874 
4-24-17-1 1.00898451294384 6-30-7-1 0.98362768338278 
6-11-7-1 0.98867156608099 3-20-2-1 0.98364706210897 
13-4-8-1 1.01606200487068 6-25-7-1 0.99984533775869 

3-23-21-1 1.03915686612047 6-25-7-1 1.01018154902036 
3-3-3-1 0.99231114613215 1-4-7-1 0.99288584333619 

12-15-22-1 1.03731672596817 6-3-7-1 1.03338059484848 
10-3-1-1 1.00051387427026 6-23-7-1 0.98660915380679 
9-13-6-1 1.00400157663589 6-3-7-1 1.08597112360685 

16-23-7-1 1.06468823197557 4-4-7-1 0.97947879120799 
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Average 1.03237020794640 Average 1.00415536103131 
Table II.22: The results of the second Repetition of the GA search on the S&P data using TheilC. 

 
TheilC: Repetition 2 

Top 10 
Structure Times Considered Times in Final Generation 

6-4-9-1 18 3 
3-6-7-1 18 0 
3-4-2-1 21 0 
3-3-9-1 26 0 
3-13-7-1 27 1 
4-4-7-1 30 1 
4-3-7-1 31 2 
6-4-7-1 40 5 
3-3-7-1 58 2 
3-4-7-1 58 4 

Table II.23: The most frequently visited networks in repetition 2 using TheilC for the S&P data. 

 
TheilC: Repetition 2 

Generation Mean STD 
1 1.03237020794640 0.05657065455373 
2 1.01614393921500 0.05187475295012 
3 1.01016059635000 0.02110125180680 
4 1.00234996615996 0.02053948109474 
5 1.00576176779611 0.02600444267451 
6 1.01013091400801 0.04207053163655 
7 1.01586261065026 0.06169990369676 
8 1.07658039065531 0.36596671384823 
9 1.00655751865237 0.02029176469790 
10 1.02917967836887 0.16803095434958 
11 1.00811622684539 0.03043250622790 
12 1.00636352590795 0.03062219384388 
13 1.00948269229709 0.03578304986517 
14 1.01820689400517 0.09078202248591 
15 0.99911235319766 0.01289625696924 
16 1.00479797986096 0.02979133084417 
17 1.01302286278111 0.04790720001658 
18 1.00929317918300 0.03697120892311 
19 1.00128777454089 0.02500862287800 
20 0.99896067622350 0.01504147830072 
21 1.01729156612463 0.04033411067374 
22 1.00782920354181 0.03137631722520 
24 1.00454588783890 0.02560848884762 
24 1.00378830019127 0.02534215590043 
25 1.00415536103131 0.02214729569558 

Figure II.24: Mean and Std of TheilC throughout all generations in repetition 2 for the S&P data. 

 
 

Repetition 3 
 

TheilC: Repetition 3 
Generation 1 Generation 25 

5-25-2-1 1.00364292643304 7-4-5-1 0.98114496499651 
14-17-8-1 1.06096301088784 3-1-3-1 0.99894515849469 
7-9-22-1 1.04450569868948 6-3-30-1 0.99971351688454 

15-16-30-1 1.02618259488852 6-21-14-1 1.08688157352096 
17-1-5-1 1.02460030708669 6-3-3-1 1.01061142531444 
1-7-11-1 0.99653559496828 3-3-30-1 0.99659195017947 
3-4-13-1 1.02672449459175 6-8-3-1 1.01841676854069 
16-6-5-1 0.98181194691247 6-3-14-1 1.01103894411632 

4-22-28-1 1.01550858528331 6-1-3-1 0.99916452123975 
20-7-12-1 1.01439927241823 6-21-3-1 0.97838187415264 
7-5-27-1 1.02671556549764 6-21-5-1 1.00076067277786 
8-16-4-1 0.98129219363814 6-4-5-1 0.97439610927693 
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9-8-24-1 1.07222901641924 6-4-26-1 1.02415676595732 
8-6-2-1 1.00548169139534 1-16-3-1 0.99901056892274 
3-1-26-1 1.01566513712496 6-3-3-1 1.00001860585609 

2-21-21-1 1.00784445017699 6-1-3-1 0.99762200677821 
6-20-18-1 0.99085745561966 7-20-5-1 1.01315330370910 
4-15-14-1 1.01188007782690 6-21-3-1 0.99807085140847 
9-17-10-1 1.11684914807256 6-16-3-1 1.01523918552402 
18-20-25-1 1.09653392002525 6-3-3-1 0.98612093987832 
5-3-24-1 1.00083572070873 3-4-3-1 0.99150263526705 
13-4-9-1 1.01642343643323 6-3-3-1 1.00085238422724 

18-23-6-1 1.02958421207990 3-21-3-1 1.00407264172778 
16-21-4-1 0.98747684503884 6-4-3-1 0.98998756167666 
3-14-21-1 1.06315507751588 3-1-5-1 1.00212268740161 
6-3-21-1 1.05075757403626 3-3-3-1 0.98659139066831 

20-12-18-1 1.11970584109305 6-3-3-1 1.01256111677542 
3-30-19-1 1.02666713275115 6-4-5-1 0.98460463618307 
10-29-17-1 1.01952342285834 3-16-3-1 1.00338100462916 
5-16-0-1 0.99774111336865 6-1-3-1 0.98627954186294 

14-6-13-1 1.01228527380682 6-4-3-1 0.99664628309507 
4-13-15-1 1.00369903162600 3-3-5-1 0.98253993465572 
16-1-26-1 1.16371359376290 3-4-3-1 1.00640097103321 
2-20-12-1 0.99484591705222 6-3-3-1 0.99843473001173 
10-3-18-1 1.00658268289922 6-21-14-1 1.01700309776023 
6-30-18-1 0.98327191992003 3-3-30-1 1.01569283653616 
20-6-30-1 1.06407669401275 3-1-5-1 0.99618001389025 
14-3-13-1 1.01225474508108 6-1-3-1 0.99913481179003 
5-3-25-1 1.05235391039384 6-8-3-1 0.98188380509502 

9-26-27-1 1.15435786290132 6-8-3-1 0.99514595528172 
Average 1.03198837738241 Average    1.00101144367744    

Table II.25: The results of the third Repetition of the GA search on the S&P data using TheilC. 

 
TheilC: Repetition 3 

Top 10 
Structure Times Considered Times in Final Generation 
3-21-3-1 19 1 
3-3-3-1 20 1 
6-4-3-1 21 2 
4-3-5-1 22 0 
6-21-5-1 27 1 
6-21-3-1 30 2 
6-4-5-1 33 2 
3-3-5-1 36 1 
6-3-3-1 47 6 
6-3-5-1 52 0 

Table II.26: The most frequently visited networks in repetition 3 using TheilC for the S&P data. 

 
TheilC: Repetition 3 

Generation Mean STD 
1 1.03198837738241 0.04495719251051 
2 1.07751992993298 0.35268246169815 
3 1.02437165612007 0.03287815572548 
4 1.04425968798508 0.15380363433146 
5 1.03111307646401 0.08435654218854 
6 1.08879344877237 0.43462512737003 
7 1.01591339865194 0.03746149697033 
8 1.01306184445016 0.03450195182923 
9 1.00193863905894 0.01824666591080 
10 1.07296894247444 0.40649476561851 
11 1.00203258202310 0.01804776630134 
12 1.00060072605838 0.01761156307757 
13 1.00565978157107 0.02302560410018 
14 0.99716326134888 0.01792317213655 
15 1.00565582967919 0.04138664009639 
16 0.99631603456002 0.01587538998262 
17 0.99941007619267 0.01675582951651 
18 1.00717317480486 0.06796700817528 
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19 0.99831309347034 0.01630745123277 
20 0.99459017452436 0.01266585121335 
21 1.00153010270498 0.02134512615499 
22 1.00427504249839 0.02651149665148 
24 0.99870675193108 0.02169844925055 
24 1.00268928234377 0.02492875587567 
25 1.00101144367744 0.01825456736131 

Figure II.27: Mean and Std of TheilC throughout all generations in repetition 3 for the S&P data. 
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Repetition 1 Minimum: 0.95947511864954 
Maximum: 9.20182663548363 
Mean: 1.08141304925925 
StDev: 0.48382376757874 

Repetition 2 Minimum: 0.96155747751406 
Maximum: 3.20491277773598 
Mean: 1.01245408293492 
StDev: 0.08902262332255 

Repetition 3 Minimum: 0.93472483022005 
Maximum: 3.75728197821118 
MeanValue: 1.01668225434724 
StDev: 0.14580623775927  

Figure II.5: Mean and Std of TheilC throughout all generations for S&P data  

 
 

0 0.5 1 1.5 2 2.5
0

50

100

150

200

250

300
Repetition 1

TheilC

O
cc

ur
en

ce
s

Distribution of TheilC

 
0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25
0

20

40

60

80

100

120
Repetition 2

TheilC

O
cc

ur
en

ce
s

Distribution of TheilC

 



 157

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
0

20

40

60

80

100

120

140

160

180
Repetition 3

TheilC

O
cc

ur
en

ce
s

Distribution of TheilC

 

 

Figure II.6: Distributions of TheilC for the S&P data. 

 
q Metric Used: MAE 
 
 

Repetition 1 
 

MAE: Repetition 1 
Generation 1 Generation 25 

8-26-17-1 0.01082148677787 13-2-4-1 0.01018086944186 
1-11-19-1 0.01027539359744 5-29-4-1 0.01025466382724 
18-23-9-1 0.01033594635379 6-9-4-1 0.01003349123162 
9-29-29-1 0.01165545754764 6-22-4-1 0.01019623187658 
15-28-7-1 0.01028731024147 6-9-4-1 0.01024907871274 
13-20-3-1 0.01012573956822 13-2-4-1 0.01022911795834 
3-6-29-1 0.01018434110585 4-3-24-1 0.01029937435314 

10-13-29-1 0.01078501379046 6-26-4-1 0.01008630989484 
12-7-24-1 0.01055129654693 6-9-4-1 0.01005359315849 
3-25-15-1 0.01059555267155 6-2-4-1 0.01007997324157 
1-24-11-1 0.01007180588011 13-2-4-1 0.01001765771189 
20-29-21-1 0.01153937589747 6-26-4-1 0.01007285661144 
6-15-22-1 0.01078922786428 6-22-4-1 0.01009894728859 
8-23-15-1 0.01055309878220 6-26-4-1 0.01012038931752 
6-15-12-1 0.01006163191842 6-26-4-1 0.01014469377460 
11-23-19-1 0.01021781356864 6-24-4-1 0.01014618721788 
17-25-20-1 0.01011060161736 6-26-8-1 0.01052742594827 
10-16-27-1 0.01032377200493 6-26-4-1 0.00997822770917 
7-24-18-1 0.01032789211906 13-2-4-1 0.01036412317804 
11-23-4-1 0.01031558993825 6-9-4-1 0.01012919239167 
4-4-9-1 0.01010062997034 6-26-4-1 0.01027004895053 

12-8-25-1 0.01056444295301 6-24-4-1 0.01016168620318 
3-29-30-1 0.01056723481496 6-24-4-1 0.01009454980765 
4-15-17-1 0.01042068414873 6-22-4-1 0.01022978828066 
9-24-22-1 0.01006241360333 6-26-4-1 0.01015008808923 
19-9-4-1 0.01053170707434 20-16-4-1 0.01009073411875 

20-30-24-1 0.01082652296372 6-26-4-1 0.00983047478051 
18-16-19-1 0.01043071759173 6-26-4-1 0.01012645241927 
13-16-26-1 0.01080469249030 6-9-4-1 0.00998556703755 
11-3-24-1 0.01014775738173 6-9-4-1 0.00989313802305 
16-30-16-1 0.01068841726874 6-26-4-1 0.01000915070926 
11-7-7-1 0.01009846945984 6-24-4-1 0.00993013250097 

12-15-16-1 0.01068760616444 6-9-4-1 0.01014556451736 
8-9-4-1 0.01028721659842 6-2-4-1 0.01012801070643 

14-8-19-1 0.01032018565074 6-26-4-1 0.01005305496014 
1-9-9-1 0.01024687463883 6-9-4-1 0.01003803795492 

17-24-28-1 0.01063022567389 6-26-4-1 0.00993344934517 
18-24-17-1 0.01086925606620 6-22-4-1 0.01002516348673 
1-7-21-1 0.01005463584433 6-22-4-1 0.01014284329963 
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5-23-9-1 0.01013410054665 6-9-4-1 0.01017566114932 
Average 0.01046005346741 Average 0.01011690002965 
Table II.28: The results of the first Repetition of the GA search on the S&P data using MAE. 

 
MAE: Repetition 1 

Top 10 
Structure Times Considered Times in Final Generation 
6-20-4-1 14 0 
6-19-4-1 16 0 
6-9-8-1 17 0 
6-9-11-1 20 0 
12-9-4-1 21 0 
6-9-12-1 23 0 
6-26-4-1 42 12 
6-22-4-1 42 5 
6-24-4-1 53 4 
6-9-4-1 208 9 

Table II.29: The most frequently visited networks in repetition 1 using MAE for the S&P data. 

 
MAE: Repetition 1 

Generation Mean STD 
1 0.01046005346741 0.00036698955031 
2 0.01041190346023 0.00030505419144 
3 0.01049539122420 0.00134648160959 
4 0.01031635703317 0.00026671326211 
5 0.01031677703834 0.00024966264000 
6 0.01042261441872 0.00034434546370 
7 0.01017621732596 0.00020223572476 
8 0.01022179688198 0.00023692735144 
9 0.01026817729007 0.00033169403989 
10 0.01032202531960 0.00035393722123 
11 0.01031907408842 0.00053265437380 
12 0.01026289618738 0.00025520156019 
13 0.01022619247343 0.00020450279448 
14 0.01016382852648 0.00015119078171 
15 0.01016530153170 0.00019833516641 
16 0.01020409839946 0.00019801293950 
17 0.01021584902694 0.00030912126295 
18 0.01017021305833 0.00015550118608 
19 0.01015047614309 0.00024435996339 
20 0.01013550789649 0.00010608272551 
21 0.01019151826061 0.00025377555163 
22 0.01009294169913 0.00012021678220 
24 0.01020137473906 0.00015279738737 
24 0.01021692351367 0.00027348351891 
25 0.01011690002965 0.00013034879532 

Figure II.30: Mean and Std of MAE throughout all generations in repetition 1 for the S&P data. 

 
 

Repetition 2 
 

MAE: Repetition 2 
Generation 1 Generation 25 

12-8-14-1 0.01061952071906 1-7-2-1 0.01001007873398 
15-23-27-1 0.01070182089781 1-19-4-1 0.01016153427295 

3-30-9-1 0.01018003542960 1-22-2-1 0.01007575427999 
19-7-18-1 0.01091125845474 1-7-2-1 0.00997335395368 
14-8-4-1 0.01016895350561 1-7-1-1 0.01032138908545 

19-4-14-1 0.01007609845537 6-22-2-1 0.01041825555326 
17-29-13-1 0.01018153960122 1-7-2-1 0.01012233266405 
4-10-2-1 0.01005558740288 1-22-2-1 0.01006281494254 

17-29-19-1 0.01103265595856 1-7-2-1 0.01008702396355 
3-16-4-1 0.01016699281026 1-12-1-1 0.01009687975505 

17-15-23-1 0.01058824909676 1-7-2-1 0.01011527398696 
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15-11-15-1 0.01041236513722 1-22-1-1 0.01036188784720 
8-24-9-1 0.01000909661910 1-22-2-1 0.01015508574221 

18-17-0-1 0.01043836969710 1-22-2-1 0.01031810615012 
5-7-13-1 0.01034750019893 1-22-2-1 0.01014997656796 

6-27-13-1 0.01063510801161 1-7-1-1 0.01006925605898 
4-15-6-1 0.01000767592185 1-22-1-1 0.01049884609528 

12-25-1-1 0.01004597534891 1-22-2-1 0.01004195101056 
2-15-5-1 0.01018518725356 1-22-2-1 0.01058703761546 

16-11-29-1 0.01080663667206 6-22-2-1 0.01106494312374 
5-1-8-1 0.01008865070814 1-7-1-1 0.01021334291007 
6-4-21-1 0.01010419628811 1-12-1-1 0.01009051642187 

20-17-6-1 0.01031458460684 1-7-2-1 0.01000892312319 
8-3-13-1 0.01030025052740 1-22-2-1 0.01011749595975 

20-14-24-1 0.01039665229254 20-23-23-1 0.01169731957641 
7-18-19-1 0.01053120070625 1-7-2-1 0.01014012565679 
19-22-1-1 0.01008613558996 1-22-2-1 0.01026993188154 
5-24-14-1 0.01038903448452 1-7-2-1 0.01019903030010 
6-2-4-1 0.00988940190652 1-22-2-1 0.01009495415453 
3-30-5-1 0.00997760291548 1-22-2-1 0.01010237876559 

7-20-10-1 0.01018997308305 1-22-2-1 0.01014192779225 
11-7-7-1 0.01010683875638 1-22-1-1 0.01008312179469 

20-2-25-1 0.01020866746597 1-22-1-1 0.01009249414311 
6-8-9-1 0.00996034458774 1-22-2-1 0.01009430857259 
3-2-21-1 0.01023964515497 1-22-5-1 0.01013520692974 

19-27-1-1 0.01032801408326 1-12-1-1 0.01009884697809 
15-11-30-1 0.01100302364945 1-22-2-1 0.01009603943686 

1-2-2-1 0.01009507039063 1-7-1-1 0.01007983654398 
2-12-12-1 0.01022521406019 1-22-2-1 0.01019792435930 
5-23-22-1 0.01053174335775 1-22-2-1 0.01012997654455 
Average 0.01031342179518 Average 0.01021938708120 

Table II.31: The results of the second Repetition of the GA search on the S&P data using MAE. 

 
MAE: Repetition 2 

Top 10 
Structure Times Considered Times in Final Generation 

6-2-2-1 17 0 
6-2-1-1 17 0 
6-22-1-1 18 0 
1-2-1-1 24 0 
1-12-2-1 25 0 
1-2-2-1 27 0 
6-22-2-1 54 2 
1-7-2-1 72 8 
1-22-1-1 73 4 
1-22-2-1 160 16 

Table II.32: The most frequently visited networks in repetition 2 using MAE for the S&P data. 

 
MAE: Repetition 2 

Generation Mean STD 
1 0.01031342179518 0.00029172827038 
2 0.01024527968772 0.00036620515007 
3 0.01020781589501 0.00016871155123 
4 0.01020573101983 0.00016073062138 
5 0.01025570233463 0.00056421710020 
6 0.01015273221242 0.00014582434786 
7 0.01079352026520 0.00407706246931 
8 0.01018119032119 0.00022216388591 
9 0.01028804893218 0.00061772106307 
10 0.01016684773465 0.00029762463784 
11 0.01018803712457 0.00018124086054 
12 0.01018765534536 0.00032988769229 
13 0.01035210480876 0.00078162886624 
14 0.01016199086112 0.00014074525602 
15 0.01015144118232 0.00015363159368 
16 0.01013365722448 0.00008554035076 
17 0.01012364548914 0.00010122513119 
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18 0.01012509235873 0.00012100932051 
19 0.01018424939633 0.00027135499847 
20 0.01013650911176 0.00019928435170 
21 0.01014494657141 0.00025238223659 
22 0.01016864734467 0.00027638722176 
24 0.01012568176948 0.00007574897826 
24 0.01017158062873 0.00023732166063 
25 0.01021938708120 0.00030767688317 

Figure II.33: Mean and Std of MAE throughout all generations in repetition 2 for the S&P data. 

 
 

Repetition 3 
 

MAE: Repetition 3 
Generation 1 Generation 25 

3-19-10-1 0.01033437364966 3-2-9-1 0.00999551029143 
17-24-21-1 0.01097296265831 7-11-3-1 0.01002251215414 
4-30-13-1 0.01057143472116 3-2-3-1 0.01010151158032 
4-20-12-1 0.01014783165871 3-2-3-1 0.01003620417210 
13-9-3-1 0.01046426210220 3-19-3-1 0.00998681296993 

16-25-9-1 0.01053713480109 3-2-9-1 0.01016262772498 
14-7-2-1 0.01041129695636 3-19-3-1 0.01041665406289 
7-2-16-1 0.01009411471769 3-11-9-1 0.01028798253078 

16-22-15-1 0.01105293191777 3-2-3-1 0.01005607533735 
16-2-5-1 0.00993659092232 3-19-3-1 0.01014618181002 

3-12-18-1 0.01120065755211 3-11-9-1 0.00999033563591 
9-4-14-1 0.01026868829576 3-19-3-1 0.01022339117734 

20-21-1-1 0.01033003592977 7-30-29-1 0.01365646745190 
19-26-3-1 0.01014067841733 3-12-1-1 0.01002470106983 
18-9-1-1 0.01004172597260 3-2-3-1 0.01015132545909 

16-28-9-1 0.01078608192637 3-19-3-1 0.01010732212111 
4-23-8-1 0.01034585428016 3-2-3-1 0.01000608412603 

15-20-17-1 0.01048222851366 3-2-9-1 0.01010126382177 
14-9-30-1 0.01000035981498 3-2-3-1 0.01007543952001 
7-29-26-1 0.01007022402815 3-19-3-1 0.01001121665420 
11-27-20-1 0.01240441643928 3-19-1-1 0.01013510260381 
14-4-25-1 0.01044589314371 3-12-9-1 0.01003080381138 
9-21-24-1 0.01103799752853 3-19-1-1 0.01011542123362 
16-6-20-1 0.01011813814072 14-25-0-1 0.01076179890738 
9-28-17-1 0.01041877219201 7-2-9-1 0.01018721013366 
13-9-4-1 0.01017024796633 7-2-1-1 0.00990344340126 

13-25-7-1 0.01021292897667 20-15-10-1 0.01052204584358 
17-23-28-1 0.01093644621452 3-13-6-1 0.01035854889887 

3-8-0-1 0.01005296344796 7-2-9-1 0.01038938110287 
18-29-6-1 0.01012913180668 3-11-9-1 0.01017535459143 
20-25-16-1 0.01049766670799 19-21-23-1 0.01075983642058 
17-3-1-1 0.01010518397569 3-12-28-1 0.01048288833839 
9-29-9-1 0.01008641357279 3-11-1-1 0.01005875206094 

6-17-11-1 0.01044070559333 3-19-3-1 0.01022942228014 
17-14-9-1 0.01044075247411 3-19-3-1 0.01035745124680 
2-13-26-1 0.01024966640167 7-19-3-1 0.01020242733745 
7-4-14-1 0.00987221179891 3-12-1-1 0.01030189934430 

8-29-13-1 0.01018161273335 3-19-3-1 0.01021818212223 
13-20-14-1 0.01131340579108 3-2-9-1 0.01009597204686 
11-26-6-1 0.01008144096557 3-2-3-1 0.00992719517675 
Average 0.01043463661768 Average 0.01026931891434 
Table II.34: The results of the third Repetition of the GA search on the S&P data using MAE. 

 
MAE: Repetition 3 

Top 10 
Structure Times Considered Times in Final Generation 
3-19-1-1 19 2 
7-2-9-1 20 2 
3-12-1-1 21 2 
3-12-9-1 22 1 
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3-19-3-1 26 9 
7-2-1-1 28 1 
3-2-3-1 28 7 
3-14-1-1 32 0 
3-2-1-1 41 0 
3-2-9-1 44 4 

Table II.35: The most frequently visited networks in repetition 3 using MAE for the S&P data. 

 
MAE: Repetition 3 

Generation Mean STD 
1 0.01043463661768 0.00047985147492 
2 0.01038563099491 0.00039042746740 
3 0.01032175710452 0.00027100571948 
4 0.01042954307744 0.00032540767903 
5 0.01024617133289 0.00023771320203 
6 0.01029355863461 0.00028277333313 
7 0.01024641588921 0.00027126191413 
8 0.01021487279662 0.00013085158123 
9 0.01026138243293 0.00045085330090 
10 0.01015267275046 0.00013716872743 
11 0.01016650215329 0.00016068620961 
12 0.01018522395239 0.00034844036877 
13 0.01013844588551 0.00014068857570 
14 0.01041987769172 0.00139422038167 
15 0.01020193203535 0.00022507837164 
16 0.01073813192864 0.00311941223590 
17 0.01015601045978 0.00028542162492 
18 0.01013659100774 0.00009296598643 
19 0.01016204433271 0.00015622259278 
20 0.01011637045638 0.00023768049959 
21 0.01020663859573 0.00020876138275 
22 0.01019087833275 0.00019067470163 
24 0.01017288307835 0.00030220310993 
24 0.01019897790019 0.00018711566351 
25 0.01026931891434 0.00058438451446 

Figure II.36: Mean and Std of MAE throughout all generations in repetition 3 for the S&P data. 
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Repetition 1 Minimum: 0.00980390701485 
Maximum: 0.01865772289184 
Mean: 0.01024977636134 
StDev: 3.8476067494e-004 

Repetition 2 Minimum: 0.00988940190652 
Maximum: 0.03591933673879 
Mean: 0.01021539665984 
StDev: 8.711272711571e-004 

Repetition 3 Minimum: 0.00984895417788 
Maximum: 0.02950493566814 
MeanValue: 0.01025785873425 
StDev: 7.416538535514e-004  

Figure II.7: Mean and Std of mae throughout all generations for S&P data  
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Figure II.8: Distributions of mae for the S&P data. 
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