
Recurrent Neural Networks for Prediction
Authored by Danilo P. Mandic, Jonathon A. Chambers

Copyright c©2001 John Wiley & Sons Ltd
ISBNs: 0-471-49517-4 (Hardback); 0-470-84535-X (Electronic)

RECURRENT
NEURAL

NETWORKS
FOR PREDICTION

WILEY SERIES IN ADAPTIVE AND LEARNING SYSTEMS FOR
SIGNAL PROCESSING, COMMUNICATIONS, AND CONTROL
Editor: Simon Haykin

Beckerman/ADAPTIVE COOPERATIVE SYSTEMS

Chen and Gu/CONTROL-ORIENTED SYSTEM IDENTIFICATION: An H
Approach

Cherkassky and Mulier/LEARNING FROM DATA: Concepts, Theory and Methods

Diamantaras and Kung/PRINCIPAL COMPONENT NEURAL NETWORKS:
Theory and Applications

Haykin and Puthusserypady/CHAOTIC DYNAMICS OF SEA CLUTTER

Haykin/NONLINEAR DYNAMICAL SYSTEMS: Feedforward Neural Network
Perspectives

Haykin/UNSUPERVISED ADAPTIVE FILTERING, VOLUME I: Blind Source
Separation

Haykin/UNSUPERVISED ADAPTIVE FILTERING, VOLUME II: Blind
Deconvolution

Hines/FUZZY AND NEURAL APPROACHES IN ENGINEERING

Hrycej/NEUROCONTROL: Towards an Industrial Control Methodology

Krstic, Kanellakopoulos, and Kokotovic/NONLINEAR AND ADAPTIVE
CONTROL DESIGN

Mann/INTELLIGENT IMAGE PROCESSING

Nikias and Shao/SIGNAL PROCESSING WITH ALPHA-STABLE
DISTRIBUTIONS AND APPLICATIONS

Passino and Burgess/STABILITY ANALYSIS OF DISCRETE EVENT SYSTEMS

Sanchez-Peña and Sznaier/ROBUST SYSTEMS THEORY AND APPLICATIONS

Tao and Kokotovic/ADAPTIVE CONTROL OF SYSTEMS WITH ACTUATOR
AND SENSOR NONLINEARITIES

Van Hulle/FAITHFUL REPRESENTATIONS AND TOPOGRAPHIC MAPS:
From Distortion- to Information-Based Self-Organization

Vapnik/STATISTICAL LEARNING THEORY

Werbos/THE ROOTS OF BACKPROPAGATION: From Ordered Derivatives to
Neural Networks and Political Forecasting

Yee and Haykin/REGULARIZED RADIAL-BASIS FUNCTION NETWORKS:
Theory and Applications

RECURRENT
NEURAL

NETWORKS
FOR PREDICTION

LEARNING ALGORITHMS,
ARCHITECTURES AND STABILITY

Danilo P. Mandic
School of Information Systems,
University of East Anglia, UK

Jonathon A. Chambers
Department of Electronic and Electrical Engineering,

University of Bath, UK

JOHN WILEY & SONS, LTD
Chichester • New York • Weinheim • Brisbane • Singapore • Toronto

Copyright c©2001 John Wiley & Sons, Ltd
Baffins Lane, Chichester,
West Sussex, PO19 1UD, England
National 01243 779777
International (+44) 1243 779777

e-mail (for orders and customer service enquiries): cs-books@wiley.co.uk

Visit our Home Page on http://www.wiley.co.uk or http://www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, scanning or otherwise, except under the terms of the Copyright Designs and
Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency
Ltd, 90 Tottenham Court Road, London, W1P 0LP, UK, without the permission in writing
of the Publisher, with the exception of any material supplied specifically for the purpose
of being entered and executed on a computer system, for exclusive use by the purchaser of
the publication.

Neither the author(s) nor John Wiley & Sons Ltd accept any responsibility or liability for
loss or damage occasioned to any person or property through using the material, instruc-
tions, methods or ideas contained herein, or acting or refraining from acting as a result of
such use. The author(s) and Publisher expressly disclaim all implied warranties, including
merchantability of fitness for any particular purpose.
Designations used by companies to distinguish their products are often claimed as trade-
marks. In all instances where John Wiley & Sons is aware of a claim, the product names
appear in initial capital or capital letters. Readers, however, should contact the appropriate
companies for more complete information regarding trademarks and registration.

Other Wiley Editorial Offices

John Wiley & Sons, Inc., New York, USA

WILEY-VCH Verlag GmbH, Weinheim, Germany

John Wiley & Sons Australia, Ltd, Queensland

John Wiley & Sons (Canada) Ltd, Ontario

John Wiley & Sons (Asia) Pte Ltd, Singapore

Library of Congress Cataloging-in-Publication Data

Mandic, Danilo P.
Recurrent neural networks for prediction : learning algorithms, architectures, and

stability / Danilo P. Mandic, Jonathon A. Chambers.
p. cm - - (Wiley series in adaptive and learning systems for signal processing,

communications, and control)
Includes bibliographical references and index.
ISBN 0-471-49517-4 (alk. paper)
1. Machine learning. 2. Neural networks (Computer science) I. Chambers, Jonathon A.

II. Title. III. Adaptive and learning systems for signal processing, communications, and
control.

Q325.5 .M36 2001
006.3′2- -dc21 2001033418

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0-471-49517-4

Produced from LATEX files supplied by the author, typeset by T&T Productions Ltd, London.
Printed and bound in Great Britain by Antony Rowe, Chippenham, Wiltshire.
This book is printed on acid-free paper responsibly manufactured from sustainable forestry, in
which at least two trees are planted for each one used for paper production.

To our students and families

Contents

Preface xiv

1 Introduction 1

1.1 Some Important Dates in the History of Connectionism 2
1.2 The Structure of Neural Networks 2
1.3 Perspective 4
1.4 Neural Networks for Prediction: Perspective 5
1.5 Structure of the Book 6
1.6 Readership 8

2 Fundamentals 9

2.1 Perspective 9
2.1.1 Chapter Summary 9

2.2 Adaptive Systems 9
2.2.1 Configurations of Adaptive Systems Used in Signal

Processing 10
2.2.2 Blind Adaptive Techniques 12

2.3 Gradient-Based Learning Algorithms 12
2.4 A General Class of Learning Algorithms 14

2.4.1 Quasi-Newton Learning Algorithm 15
2.5 A Step-by-Step Derivation of the Least Mean Square (LMS)

Algorithm 15
2.5.1 The Wiener Filter 16
2.5.2 Further Perspective on the Least Mean Square (LMS)

Algorithm 17
2.6 On Gradient Descent for Nonlinear Structures 18

2.6.1 Extension to a General Neural Network 19
2.7 On Some Important Notions From Learning Theory 19

2.7.1 Relationship Between the Error and the Error Function 19
2.7.2 The Objective Function 20
2.7.3 Types of Learning with Respect to the Training Set

and Objective Function 20
2.7.4 Deterministic, Stochastic and Adaptive Learning 21
2.7.5 Constructive Learning 21

viii CONTENTS

2.7.6 Transformation of Input Data, Learning and
Dimensionality 22

2.8 Learning Strategies 24
2.9 General Framework for the Training of Recurrent Networks by

Gradient-Descent-Based Algorithms 24
2.9.1 Adaptive Versus Nonadaptive Training 24
2.9.2 Performance Criterion, Cost Function, Training Function 25
2.9.3 Recursive Versus Nonrecursive Algorithms 25
2.9.4 Iterative Versus Noniterative Algorithms 25
2.9.5 Supervised Versus Unsupervised Algorithms 25
2.9.6 Pattern Versus Batch Learning 26

2.10 Modularity Within Neural Networks 26
2.11 Summary 29

3 Network Architectures for Prediction 31
3.1 Perspective 31
3.2 Introduction 31
3.3 Overview 32
3.4 Prediction 33
3.5 Building Blocks 35
3.6 Linear Filters 37
3.7 Nonlinear Predictors 39
3.8 Feedforward Neural Networks: Memory Aspects 41
3.9 Recurrent Neural Networks: Local and Global Feedback 43
3.10 State-Space Representation and Canonical Form 44
3.11 Summary 45

4 Activation Functions Used in Neural Networks 47
4.1 Perspective 47
4.2 Introduction 47
4.3 Overview 51
4.4 Neural Networks and Universal Approximation 51
4.5 Other Activation Functions 54
4.6 Implementation Driven Choice of Activation Functions 57
4.7 MLP versus RBF Networks 60
4.8 Complex Activation Functions 60
4.9 Complex Valued Neural Networks as Modular Groups of

Compositions of Möbius Transformations 65
4.9.1 Möbius Transformation 65
4.9.2 Activation Functions and Möbius Transformations 65
4.9.3 Existence and Uniqueness of Fixed Points in a Complex

Neural Network via Theory of Modular Groups 67
4.10 Summary 68

CONTENTS ix

5 Recurrent Neural Networks Architectures 69
5.1 Perspective 69
5.2 Introduction 69
5.3 Overview 72
5.4 Basic Modes of Modelling 72

5.4.1 Parametric versus Nonparametric Modelling 72
5.4.2 White, Grey and Black Box Modelling 73

5.5 NARMAX Models and Embedding Dimension 74
5.6 How Dynamically Rich are Nonlinear Neural Models? 75

5.6.1 Feedforward versus Recurrent Networks for Nonlinear
Modelling 76

5.7 Wiener and Hammerstein Models and Dynamical Neural Networks 77
5.7.1 Overview of Block-Stochastic Models 77
5.7.2 Connection Between Block-Stochastic Models and

Neural Networks 78
5.8 Recurrent Neural Network Architectures 81
5.9 Hybrid Neural Network Architectures 84
5.10 Nonlinear ARMA Models and Recurrent Networks 86
5.11 Summary 89

6 Neural Networks as Nonlinear Adaptive Filters 91
6.1 Perspective 91
6.2 Introduction 91
6.3 Overview 92
6.4 Neural Networks and Polynomial Filters 92
6.5 Neural Networks and Nonlinear Adaptive Filters 95
6.6 Training Algorithms for Recurrent Neural Networks 101
6.7 Learning Strategies for a Neural Predictor/Identifier 101

6.7.1 Learning Strategies for a Neural Adaptive Recursive Filter 103
6.7.2 Equation Error Formulation 104
6.7.3 Output Error Formulation 104

6.8 Filter Coefficient Adaptation for IIR Filters 105
6.8.1 Equation Error Coefficient Adaptation 107

6.9 Weight Adaptation for Recurrent Neural Networks 107
6.9.1 Teacher Forcing Learning for a Recurrent Perceptron 108
6.9.2 Training Process for a NARMA Neural Predictor 109

6.10 The Problem of Vanishing Gradients in Training of Recurrent
Neural Networks 109

6.11 Learning Strategies in Different Engineering Communities 111
6.12 Learning Algorithms and the Bias/Variance Dilemma 111
6.13 Recursive and Iterative Gradient Estimation Techniques 113
6.14 Exploiting Redundancy in Neural Network Design 113
6.15 Summary 114

x CONTENTS

7 Stability Issues in RNN Architectures 115
7.1 Perspective 115
7.2 Introduction 115
7.3 Overview 118
7.4 A Fixed Point Interpretation of Convergence in Networks with

a Sigmoid Nonlinearity 118
7.4.1 Some Properties of the Logistic Function 118
7.4.2 Logistic Function, Rate of Convergence and

Fixed Point Theory 121
7.5 Convergence of Nonlinear Relaxation Equations Realised

Through a Recurrent Perceptron 124
7.6 Relaxation in Nonlinear Systems Realised by an RNN 127
7.7 The Iterative Approach and Nesting 130
7.8 Upper Bounds for GAS Relaxation within FCRNNs 133
7.9 Summary 133

8 Data-Reusing Adaptive Learning Algorithms 135
8.1 Perspective 135
8.2 Introduction 135

8.2.1 Towards an A Posteriori Nonlinear Predictor 136
8.2.2 Note on the Computational Complexity 137
8.2.3 Chapter Summary 138

8.3 A Class of Simple A Posteriori Algorithms 138
8.3.1 The Case of a Recurrent Neural Filter 140
8.3.2 The Case of a General Recurrent Neural Network 141
8.3.3 Example for the Logistic Activation Function 141

8.4 An Iterated Data-Reusing Learning Algorithm 142
8.4.1 The Case of a Recurrent Predictor 143

8.5 Convergence of the A Posteriori Approach 143
8.6 A Posteriori Error Gradient Descent Algorithm 144

8.6.1 A Posteriori Error Gradient Algorithm for Recurrent
Neural Networks 146

8.7 Experimental Results 146
8.8 Summary 147

9 A Class of Normalised Algorithms for Online Training
of Recurrent Neural Networks 149
9.1 Perspective 149
9.2 Introduction 149
9.3 Overview 150
9.4 Derivation of the Normalised Adaptive Learning Rate for a

Simple Feedforward Nonlinear Filter 151
9.5 A Normalised Algorithm for Online Adaptation of Recurrent

Neural Networks 156
9.6 Summary 160

CONTENTS xi

10 Convergence of Online Learning Algorithms in Neural
Networks 161
10.1 Perspective 161
10.2 Introduction 161
10.3 Overview 164
10.4 Convergence Analysis of Online Gradient Descent Algorithms

for Recurrent Neural Adaptive Filters 164
10.5 Mean-Squared and Steady-State Mean-Squared Error Convergence 167

10.5.1 Convergence in the Mean Square 168
10.5.2 Steady-State Mean-Squared Error 169

10.6 Summary 169

11 Some Practical Considerations of Predictability and
Learning Algorithms for Various Signals 171
11.1 Perspective 171
11.2 Introduction 171

11.2.1 Detecting Nonlinearity in Signals 173
11.3 Overview 174
11.4 Measuring the Quality of Prediction and Detecting

Nonlinearity within a Signal 174
11.4.1 Deterministic Versus Stochastic Plots 175
11.4.2 Variance Analysis of Delay Vectors 175
11.4.3 Dynamical Properties of NO2 Air Pollutant Time Series 176

11.5 Experiments on Heart Rate Variability 181
11.5.1 Experimental Results 181

11.6 Prediction of the Lorenz Chaotic Series 195
11.7 Bifurcations in Recurrent Neural Networks 197
11.8 Summary 198

12 Exploiting Inherent Relationships Between
Parameters in Recurrent Neural Networks 199
12.1 Perspective 199
12.2 Introduction 199
12.3 Overview 204
12.4 Static and Dynamic Equivalence of Two Topologically Identical

RNNs 205
12.4.1 Static Equivalence of Two Isomorphic RNNs 205
12.4.2 Dynamic Equivalence of Two Isomorphic RNNs 206

12.5 Extension to a General RTRL Trained RNN 208
12.6 Extension to Other Commonly Used Activation Functions 209
12.7 Extension to Other Commonly Used Learning Algorithms for

Recurrent Neural Networks 209
12.7.1 Relationships Between β and η for the Backpropaga-

tion Through Time Algorithm 210
12.7.2 Results for the Recurrent Backpropagation Algorithm 211

xii CONTENTS

12.7.3 Results for Algorithms with a Momentum Term 211
12.8 Simulation Results 212
12.9 Summary of Relationships Between β and η for General

Recurrent Neural Networks 213
12.10 Relationship Between η and β for Modular Neural Networks:

Perspective 214
12.11 Static Equivalence Between an Arbitrary and a Referent

Modular Neural Network 214
12.12 Dynamic Equivalence Between an Arbitrary and a Referent

Modular Network 215
12.12.1 Dynamic Equivalence for a GD Learning Algorithm 216
12.12.2 Dynamic Equivalence Between Modular Recurrent

Neural Networks for the ERLS Learning Algorithm 217
12.12.3 Equivalence Between an Arbitrary and the Referent PRNN 218

12.13 Note on the β–η–W Relationships and Contractivity 218
12.14 Summary 219

Appendix A The O Notation and Vector and Matrix
Differentiation 221

A.1 The O Notation 221
A.2 Vector and Matrix Differentiation 221

Appendix B Concepts from the Approximation Theory 223

Appendix C Complex Sigmoid Activation Functions,
Holomorphic Mappings and Modular Groups 227

C.1 Complex Sigmoid Activation Functions 227
C.1.1 Modular Groups 228

Appendix D Learning Algorithms for RNNs 231

D.1 The RTRL Algorithm 231
D.1.1 Teacher Forcing Modification of the RTRL Algorithm 234

D.2 Gradient Descent Learning Algorithm for the PRNN 234
D.3 The ERLS Algorithm 236

Appendix E Terminology Used in the Field of Neural
Networks 239

Appendix F On the A Posteriori Approach in Science
and Engineering 241

F.1 History of A Posteriori Techniques 241
F.2 The Usage of A Posteriori 242

F.2.1 A Posteriori Techniques in the RNN Framework 242

CONTENTS xiii

F.2.2 The Geometric Interpretation of A Posteriori Error
Learning 243

Appendix G Contraction Mapping Theorems 245
G.1 Fixed Points and Contraction Mapping Theorems 245

G.1.1 Contraction Mapping Theorem in R 245
G.1.2 Contraction Mapping Theorem in R

N 246
G.2 Lipschitz Continuity and Contraction Mapping 246
G.3 Historical Perspective 247

Appendix H Linear GAS Relaxation 251
H.1 Relaxation in Linear Systems 251

H.1.1 Stability Result for
∑m

i=1 ai = 1 253
H.2 Examples 253

Appendix I The Main Notions in Stability Theory 263

Appendix J Deseasonalising Time Series 265

References 267

Index 281

Preface

New technologies in engineering, physics and biomedicine are creating problems in
which nonstationarity, nonlinearity, uncertainty and complexity play a major role.
Solutions to many of these problems require the use of nonlinear processors, among
which neural networks are one of the most powerful. Neural networks are appealing
because they learn by example and are strongly supported by statistical and opti-
misation theories. They not only complement conventional signal processing tech-
niques, but also emerge as a convenient alternative to expand signal processing hori-
zons.

The use of recurrent neural networks as identifiers and predictors in nonlinear
dynamical systems has increased significantly. They can exhibit a wide range of
dynamics, due to feedback, and are also tractable nonlinear maps.

In our work, neural network models are considered as massively interconnected
nonlinear adaptive filters. The emphasis is on dynamics, stability and spatio-temporal
behaviour of recurrent architectures and algorithms for prediction. However, wherever
possible the material has been presented starting from feedforward networks and
building up to the recurrent case.

Our objective is to offer an accessible self-contained research monograph which can
also be used as a graduate text. The material presented in the book is of interest to
a wide population of researchers working in engineering, computing, science, finance
and biosciences. So that the topics are self-contained, we assume familiarity with
the basic concepts of analysis and linear algebra. The material presented in Chap-
ters 1–6 can serve as an advanced text for courses on neural adaptive systems. The
book encompasses traditional and advanced learning algorithms and architectures for
recurrent neural networks. Although we emphasise the problem of time series predic-
tion, the results are applicable to a wide range of problems, including other signal
processing configurations such as system identification, noise cancellation and inverse
system modelling. We harmonise the concepts of learning algorithms, embedded sys-
tems, representation of memory, neural network architectures and causal–noncausal
dealing with time. A special emphasis is given to stability of algorithms – a key issue
in real-time applications of adaptive systems.

This book has emerged from the research that D. Mandic has undertaken while
at Imperial College of Science, Technology and Medicine, London, UK. The work
was continued within the vibrant culture of the University of East Anglia, Norwich,
UK.

xvi PREFACE

Acknowledgements

Danilo Mandic acknowledges Dr M. Razaz for providing a home from home in the
Bioinformatics Laboratory, School of Information Systems, University of East Anglia.
Many thanks to the people from the lab for creating a congenial atmosphere at work.
The Dean of the School of Information Systems, Professor V. Rayward-Smith and
his predecessor Dr J. Glauert, deserve thanks for their encouragement and support.
Dr M. Bozic has done a tremendous job on proofreading the mathematics. Dr W. Sher-
liker has contributed greatly to Chapter 10. Dr D. I. Kim has proofread the mathe-
matically involved chapters. I thank Dr G. Cawley, Dr M. Dzamonja, Dr A. James
and Dr G. Smith for proofreading the manuscript in its various phases. Dr R. Harvey
has been of great help throughout. Special thanks to my research associates I. Krcmar
and Dr R. Foxall for their help with some of the experimental results. H. Graham
has always been at hand with regard to computing problems. Many of the results
presented here have been achieved while I was at Imperial College, where I greatly
benefited from the unique research atmosphere in the Signal Processing Section of the
Department of Electrical and Electronic Engineering.

Jonathon Chambers acknowledges the outstanding PhD researchers with whom he
has had the opportunity to interact, they have helped so much towards his orientation
in adaptive signal processing. He also acknowledges Professor P. Watson, Head of
the Department of Electronic and Electrical Engineering, University of Bath, who
has provided the opportunity to work on the book during its later stages. Finally,
he thanks Mr D. M. Brookes and Dr P. A. Naylor, his former colleagues, for their
collaboration in research projects.

Danilo Mandic
Jonathon Chambers

List of Abbreviations

ACF Autocorrelation function
AIC Akaike Information Criterion
ANN Artificial Neural Network
AR Autoregressive
ARIMA Autoregressive Integrated Moving Average
ARMA Autoregressive Moving Average
ART Adaptive Resonance Theory
AS Asymptotic Stability
ATM Asynchronous Transfer Mode
BIC Bayesian Information Criterion
BC Before Christ
BIBO Bounded Input Bounded Output
BP Backpropagation
BPTT Backpropagation Through Time
CM Contraction Mapping
CMT Contraction Mapping Theorem
CNN Cellular Neural Network
DC Direct Current
DR Data Reusing
DSP Digital Signal Processing
DVS Deterministic Versus Stochastic
ECG Electrocardiagram
EKF Extended Kalman Filter
ERLS Extended Recursive Least Squares
ES Exponential Stability
FCRNN Fully Connected Recurrent Neural Network
FFNN Feedforward Neural Network
FIR Finite Impulse Response
FPI Fixed Point Iteration
GAS Global Asymptotic Stability
GD Gradient Descent
HOS Higher-Order Statistics
HRV Heart Rate Variability
i.i.d. Independent Identically Distributed
IIR Infinite Impulse Response
IVT Intermediate Value Theorem
KF Kalman Filter

xviii LIST OF ABBREVIATIONS

LMS Least Mean Square
LPC Linear Predictive Coding
LRGF Locally Recurrent Globally Feedforward
LUT Look-Up Table
MA Moving Average
MLP Multi-Layer Perceptron
MMSE Minimum Mean Square Error
MPEG Moving Pictures Experts Group
MSLC Multiple Sidelobe Cancellation
MSE Mean Squared Error
MVT Mean Value Theorem
NARMA Nonlinear Autoregressive Moving Average
NARMAX Nonlinear Autoregressive Moving Average with eXogenous input
NARX Nonlinear Autoregressive with eXogenous input
NGD Nonlinear Gradient Descent
NNGD Normalised Nonlinear Gradient Descent
NLMS Normalised Least Mean Square
NMA Nonlinear Moving Average
NN Neural Network
NO2 Nitrogen dioxide
NRTRL Normalised RTRL algorithm
pdf probability density function
PG Prediction Gain
PRNN Pipelined Recurrent Neural Network
PSD Power Spectral Density
RAM Random Access Memory
RBF Radial Basis Function
RBP Recurrent Backpropagation
RLS Recursive Least Squares
RNN Recurrent Neural Network
ROM Read-Only Memory
R–R Distance between two consecutive R waves in ECG
RTRL Real-Time Recurrent Learning
SG Stochastic Gradient
SP Signal Processing
VLSI Very Large Scale Integration
WGN White Gaussian Noise
WWW World Wide Web

Mathematical Notation

z′ First derivative of variable z
{·} Set of elements
α Momentum constant
β Slope of the nonlinear activation function Φ
γ Contraction constant, gain of the activation function
Γ Modular group of compositions of Möbius transformations
Γ (k) Adaptation gain vector
δi Gradient at ith neuron
δij Kronecker delta function
ε(k) Additive noise
η Learning rate
∇xY Gradient of Y with respect to x
| · | Modulus operator
‖ · ‖p Vector or matrix p-norm operator
∗ Convolution operator
∝ Proportional to
0 Null vector
λ Forgetting factor
λi Eigenvalues of a matrix
µ Step size in the LMS algorithm
µ Mean of a random variable
ν(k) Additive noise
Ωk Set of nearest neighbours vectors
|Ωk| Number of elements in set Ωk

πj
n,l Sensitivity of the jth neuron to the change in wn,l

Φ Nonlinear activation function of a neuron
Φ′

x First derivative of Φ with respect to x
Π Matrix of gradients at the output neuron of an RNN
∂ Partial derivative operator∑

Summation operator
σ Variance
σ(x) General sigmoid function
Σ(k) Sample input matrix
τ Delay operator
Θ General nonlinear function
Θ(k) Parameter vector

xx MATHEMATICAL NOTATION

(·)T Vector or matrix transpose
CL(·) Computational load
B Backshift operator
C Set of complex numbers
Cn(a, b) The class of n-times continuously differentiable

functions on an open interval (a, b)
d(k) Desired response
deg(·) Degree of a polynomial
diag[·] Diagonal elements of a matrix
E(k) Cost function
E[·] Expectation operator
E[y | x] Conditional expectation operator
e(k) Instantaneous prediction error
ē(k) A posteriori prediction error
F (·, ·) Nonlinear approximation function
G(·) Basis function
I Identity matrix
inf Infimum
J(k) Cost function
J Non-negative error measure
J Jacobian
k Discrete time index
H Hessian matrix
H(z) Transfer function in z-domain
H∞ The infinity norm quadratic optimisation
L Lipschitz constant
Lp Lp norm
lim Limit
max Maximum
min Minimum
N Set of natural numbers
N (µ, σ2) Normal random process with mean µ and variance σ2

O(·) Order of computational complexity
P (f) Power spectral density
q(k) Measurement noise
R Set of real numbers
R

+ {x ∈ R | x > 0}
R

n The n-dimensional Euclidean space
Rp Prediction gain
Rx,y, Rx,y Correlation matrix between vectors x and y
S Class of sigmoidal functions
sgn(·) Signum function
span(·) Span of a vector
sup Supremum
T Contraction operator
tr{·} Trace operator (sum of diagonal elements of a matrix)

MATHEMATICAL NOTATION xxi

u(k) Input vector to an RNN
v Internal activation potential of a neuron
v(k) System noise
w(k) Weight vector
∆w(k) Correction to the weight vector
w̃(k) Optimal weight vector
w̆(k) Weight error vector
ŵ(k) Weight vector estimate
wi,j Weight connecting neuron j to neuron i
W (k) Weight matrix of an NN
∆W (k) Correction to the weight matrix
x(k),X(k) External input vector to an NN
xl(k) ∈ X(k) The lth element of vector X(k)
x̂ Estimated value of x
x∗ Fixed point of the sequence {x}
y Output of an NN
yi,j Output of the jth neuron of the ith module of the PRNN
z−k The kth-order time delay
Z The Z transform
Z−1 The inverse Z transform

Recurrent Neural Networks for Prediction
Authored by Danilo P. Mandic, Jonathon A. Chambers

Copyright c©2001 John Wiley & Sons Ltd
ISBNs: 0-471-49517-4 (Hardback); 0-470-84535-X (Electronic)

1

Introduction

Artificial neural network (ANN) models have been extensively studied with the aim
of achieving human-like performance, especially in the field of pattern recognition.
These networks are composed of a number of nonlinear computational elements which
operate in parallel and are arranged in a manner reminiscent of biological neural inter-
connections. ANNs are known by many names such as connectionist models, parallel
distributed processing models and neuromorphic systems (Lippmann 1987). The ori-
gin of connectionist ideas can be traced back to the Greek philosopher, Aristotle, and
his ideas of mental associations. He proposed some of the basic concepts such as that
memory is composed of simple elements connected to each other via a number of
different mechanisms (Medler 1998).

While early work in ANNs used anthropomorphic arguments to introduce the meth-
ods and models used, today neural networks used in engineering are related to algo-
rithms and computation and do not question how brains might work (Hunt et al.
1992). For instance, recurrent neural networks have been attractive to physicists due
to their isomorphism to spin glass systems (Ermentrout 1998). The following proper-
ties of neural networks make them important in signal processing (Hunt et al. 1992):
they are nonlinear systems; they enable parallel distributed processing; they can be
implemented in VLSI technology; they provide learning, adaptation and data fusion
of both qualitative (symbolic data from artificial intelligence) and quantitative (from
engineering) data; they realise multivariable systems.

The area of neural networks is nowadays considered from two main perspectives.
The first perspective is cognitive science, which is an interdisciplinary study of the
mind. The second perspective is connectionism, which is a theory of information pro-
cessing (Medler 1998). The neural networks in this work are approached from an
engineering perspective, i.e. to make networks efficient in terms of topology, learning
algorithms, ability to approximate functions and capture dynamics of time-varying
systems. From the perspective of connection patterns, neural networks can be grouped
into two categories: feedforward networks, in which graphs have no loops, and recur-
rent networks, where loops occur because of feedback connections. Feedforward net-
works are static, that is, a given input can produce only one set of outputs, and hence
carry no memory. In contrast, recurrent network architectures enable the informa-
tion to be temporally memorised in the networks (Kung and Hwang 1998). Based
on training by example, with strong support of statistical and optimisation theories

2 SOME IMPORTANT DATES IN THE HISTORY OF CONNECTIONISM

(Cichocki and Unbehauen 1993; Zhang and Constantinides 1992), neural networks
are becoming one of the most powerful and appealing nonlinear signal processors for
a variety of signal processing applications. As such, neural networks expand signal
processing horizons (Chen 1997; Haykin 1996b), and can be considered as massively
interconnected nonlinear adaptive filters. Our emphasis will be on dynamics of recur-
rent architectures and algorithms for prediction.

1.1 Some Important Dates in the History of Connectionism

In the early 1940s the pioneers of the field, McCulloch and Pitts, studied the potential
of the interconnection of a model of a neuron. They proposed a computational model
based on a simple neuron-like element (McCulloch and Pitts 1943). Others, like Hebb
were concerned with the adaptation laws involved in neural systems. In 1949 Donald
Hebb devised a learning rule for adapting the connections within artificial neurons
(Hebb 1949). A period of early activity extends up to the 1960s with the work of
Rosenblatt (1962) and Widrow and Hoff (1960). In 1958, Rosenblatt coined the name
‘perceptron’. Based upon the perceptron (Rosenblatt 1958), he developed the theory
of statistical separability. The next major development is the new formulation of
learning rules by Widrow and Hoff in their Adaline (Widrow and Hoff 1960). In
1969, Minsky and Papert (1969) provided a rigorous analysis of the perceptron. The
work of Grossberg in 1976 was based on biological and psychological evidence. He
proposed several new architectures of nonlinear dynamical systems (Grossberg 1974)
and introduced adaptive resonance theory (ART), which is a real-time ANN that
performs supervised and unsupervised learning of categories, pattern classification and
prediction. In 1982 Hopfield pointed out that neural networks with certain symmetries
are analogues to spin glasses.

A seminal book on ANNs is by Rumelhart et al. (1986). Fukushima explored com-
petitive learning in his biologically inspired Cognitron and Neocognitron (Fukushima
1975; Widrow and Lehr 1990). In 1971 Werbos developed a backpropagation learn-
ing algorithm which he published in his doctoral thesis (Werbos 1974). Rumelhart
et al . rediscovered this technique in 1986 (Rumelhart et al. 1986). Kohonen (1982),
introduced self-organised maps for pattern recognition (Burr 1993).

1.2 The Structure of Neural Networks

In neural networks, computational models or nodes are connected through weights
that are adapted during use to improve performance. The main idea is to achieve
good performance via dense interconnection of simple computational elements. The
simplest node provides a linear combination of N weights w1, . . . , wN and N inputs
x1, . . . , xN , and passes the result through a nonlinearity Φ, as shown in Figure 1.1.

Models of neural networks are specified by the net topology, node characteristics
and training or learning rules. From the perspective of connection patterns, neural
networks can be grouped into two categories: feedforward networks, in which graphs
have no loops, and recurrent networks, where loops occur because of feedback con-
nections. Neural networks are specified by (Tsoi and Back 1997)

INTRODUCTION 3

1
1

2

N

0i i

N

2

i

0

node

+1

= (x wy

x

x

x

w

w

w

w

+w)...
Φ Σ

Figure 1.1 Connections within a node

• Node: typically a sigmoid function;

• Layer: a set of nodes at the same hierarchical level;

• Connection: constant weights or weights as a linear dynamical system, feedfor-
ward or recurrent;

• Architecture: an arrangement of interconnected neurons;

• Mode of operation: analogue or digital.

Massively interconnected neural nets provide a greater degree of robustness or fault
tolerance than sequential machines. By robustness we mean that small perturbations
in parameters will also result in small deviations of the values of the signals from their
nominal values.

In our work, hence, the term neuron will refer to an operator which performs the
mapping

Neuron: R
N+1 → R (1.1)

as shown in Figure 1.1. The equation

y = Φ

(N∑
i=1

wixi + w0

)
(1.2)

represents a mathematical description of a neuron. The input vector is given by x =
[x1, . . . , xN , 1]T, whereas w = [w1, . . . , wN , w0]T is referred to as the weight vector of
a neuron. The weight w0 is the weight which corresponds to the bias input, which is
typically set to unity. The function Φ : R → (0, 1) is monotone and continuous, most
commonly of a sigmoid shape. A set of interconnected neurons is a neural network
(NN). If there are N input elements to an NN and M output elements of an NN, then
an NN defines a continuous mapping

NN: R
N → R

M . (1.3)

4 PERSPECTIVE

1.3 Perspective

Before the 1920s, prediction was undertaken by simply extrapolating the time series
through a global fit procedure. The beginning of modern time series prediction was
in 1927 when Yule introduced the autoregressive model in order to predict the annual
number of sunspots. For the next half century the models considered were linear, typ-
ically driven by white noise. In the 1980s, the state-space representation and machine
learning, typically by neural networks, emerged as new potential models for prediction
of highly complex, nonlinear and nonstationary phenomena. This was the shift from
rule-based models to data-driven methods (Gershenfeld and Weigend 1993).

Time series prediction has traditionally been performed by the use of linear para-
metric autoregressive (AR), moving-average (MA) or autoregressive moving-average
(ARMA) models (Box and Jenkins 1976; Ljung and Soderstrom 1983; Makhoul 1975),
the parameters of which are estimated either in a block or a sequential manner with
the least mean square (LMS) or recursive least-squares (RLS) algorithms (Haykin
1994). An obvious problem is that these processors are linear and are not able to
cope with certain nonstationary signals, and signals whose mathematical model is
not linear. On the other hand, neural networks are powerful when applied to prob-
lems whose solutions require knowledge which is difficult to specify, but for which
there is an abundance of examples (Dillon and Manikopoulos 1991; Gent and Shep-
pard 1992; Townshend 1991). As time series prediction is conventionally performed
entirely by inference of future behaviour from examples of past behaviour, it is a suit-
able application for a neural network predictor. The neural network approach to time
series prediction is non-parametric in the sense that it does not need to know any
information regarding the process that generates the signal. For instance, the order
and parameters of an AR or ARMA process are not needed in order to carry out the
prediction. This task is carried out by a process of learning from examples presented
to the network and changing network weights in response to the output error.

Li (1992) has shown that the recurrent neural network (RNN) with a sufficiently
large number of neurons is a realisation of the nonlinear ARMA (NARMA) process.
RNNs performing NARMA prediction have traditionally been trained by the real-
time recurrent learning (RTRL) algorithm (Williams and Zipser 1989a) which pro-
vides the training process of the RNN ‘on the run’. However, for a complex physical
process, some difficulties encountered by RNNs such as the high degree of approxi-
mation involved in the RTRL algorithm for a high-order MA part of the underlying
NARMA process, high computational complexity of O(N4), with N being the number
of neurons in the RNN, insufficient degree of nonlinearity involved, and relatively low
robustness, induced a search for some other, more suitable schemes for RNN-based
predictors.

In addition, in time series prediction of nonlinear and nonstationary signals, there
is a need to learn long-time temporal dependencies. This is rather difficult with con-
ventional RNNs because of the problem of vanishing gradient (Bengio et al. 1994).
A solution to that problem might be NARMA models and nonlinear autoregressive
moving average models with exogenous inputs (NARMAX) (Siegelmann et al. 1997)
realised by recurrent neural networks. However, the quality of performance is highly
dependent on the order of the AR and MA parts in the NARMAX model.

INTRODUCTION 5

The main reasons for using neural networks for prediction rather than classical time
series analysis are (Wu 1995)

• they are computationally at least as fast, if not faster, than most available
statistical techniques;

• they are self-monitoring (i.e. they learn how to make accurate predictions);

• they are as accurate if not more accurate than most of the available statistical
techniques;

• they provide iterative forecasts;

• they are able to cope with nonlinearity and nonstationarity of input processes;

• they offer both parametric and nonparametric prediction.

1.4 Neural Networks for Prediction: Perspective

Many signals are generated from an inherently nonlinear physical mechanism and have
statistically non-stationary properties, a classic example of which is speech. Linear
structure adaptive filters are suitable for the nonstationary characteristics of such
signals, but they do not account for nonlinearity and associated higher-order statistics
(Shynk 1989). Adaptive techniques which recognise the nonlinear nature of the signal
should therefore outperform traditional linear adaptive filtering techniques (Haykin
1996a; Kay 1993). The classic approach to time series prediction is to undertake an
analysis of the time series data, which includes modelling, identification of the model
and model parameter estimation phases (Makhoul 1975). The design may be iterated
by measuring the closeness of the model to the real data. This can be a long process,
often involving the derivation, implementation and refinement of a number of models
before one with appropriate characteristics is found.

In particular, the most difficult systems to predict are

• those with non-stationary dynamics, where the underlying behaviour varies with
time, a typical example of which is speech production;

• those which deal with physical data which are subject to noise and experimen-
tation error, such as biomedical signals;

• those which deal with short time series, providing few data points on which to
conduct the analysis, such as heart rate signals, chaotic signals and meteorolog-
ical signals.

In all these situations, traditional techniques are severely limited and alternative
techniques must be found (Bengio 1995; Haykin and Li 1995; Li and Haykin 1993;
Niranjan and Kadirkamanathan 1991).

On the other hand, neural networks are powerful when applied to problems whose
solutions require knowledge which is difficult to specify, but for which there is an
abundance of examples (Dillon and Manikopoulos 1991; Gent and Sheppard 1992;
Townshend 1991). From a system theoretic point of view, neural networks can be
considered as a conveniently parametrised class of nonlinear maps (Narendra 1996).

6 STRUCTURE OF THE BOOK

There has been a recent resurgence in the field of ANNs caused by new net topolo-
gies, VLSI computational algorithms and the introduction of massive parallelism into
neural networks. As such, they are both universal function approximators (Cybenko
1989; Hornik et al. 1989) and arbitrary pattern classifiers. From the Weierstrass The-
orem, it is known that polynomials, and many other approximation schemes, can
approximate arbitrarily well a continuous function. Kolmogorov’s theorem (a neg-
ative solution of Hilbert’s 13th problem (Lorentz 1976)) states that any continuous
function can be approximated using only linear summations and nonlinear but contin-
uously increasing functions of only one variable. This makes neural networks suitable
for universal approximation, and hence prediction. Although sometimes computation-
ally demanding (Williams and Zipser 1995), neural networks have found their place
in the area of nonlinear autoregressive moving average (NARMA) (Bailer-Jones et
al. 1998; Connor et al. 1992; Lin et al. 1996) prediction applications. Comprehensive
survey papers on the use and role of ANNs can be found in Widrow and Lehr (1990),
Lippmann (1987), Medler (1998), Ermentrout (1998), Hunt et al. (1992) and Billings
(1980).

Only recently, neural networks have been considered for prediction. A recent compe-
tition by the Santa Fe Institute for Studies in the Science of Complexity (1991–1993)
(Weigend and Gershenfeld 1994) showed that neural networks can outperform conven-
tional linear predictors in a number of applications (Waibel et al. 1989). In journals,
there has been an ever increasing interest in applying neural networks. A most com-
prehensive issue on recurrent neural networks is the issue of the IEEE Transactions of
Neural Networks, vol. 5, no. 2, March 1994. In the signal processing community, there
has been a recent special issue ‘Neural Networks for Signal Processing’ of the IEEE
Transactions on Signal Processing, vol. 45, no. 11, November 1997, and also the issue
‘Intelligent Signal Processing’ of the Proceedings of IEEE, vol. 86, no. 11, November
1998, both dedicated to the use of neural networks in signal processing applications.

Figure 1.2 shows the frequency of the appearance of articles on recurrent neural net-
works in common citation index databases. Figure 1.2(a) shows number of journal and
conference articles on recurrent neural networks in IEE/IEEE publications between
1988 and 1999. The data were gathered using the IEL Online service, and these publi-
cations are mainly periodicals and conferences in electronics engineering. Figure 1.2(b)
shows the frequency of appearance for BIDS/ATHENS database, between 1988 and
2000,1 which also includes non-engineering publications. From Figure 1.2, there is a
clear growing trend in the frequency of appearance of articles on recurrent neural
networks. Therefore, we felt that there was a need for a research monograph that
would cover a part of the area with up to date ideas and results.

1.5 Structure of the Book

The book is divided into 12 chapters and 10 appendices. An introduction to connec-
tionism and the notion of neural networks for prediction is included in Chapter 1. The
fundamentals of adaptive signal processing and learning theory are detailed in Chap-
ter 2. An initial overview of network architectures for prediction is given in Chapter 3.

1 At the time of writing, only the months up to September 2000 were covered.

INTRODUCTION 7

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
0

20

40

60

80

100

120

140
Number of journal and conference papers on Recurrent Neural Networks via IEL

Year

N
um

be
r

(a) Appearance of articles on Recurrent Neural Networks in
IEE/IEEE publications in period 1988–1999

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
0

10

20

30

40

50

60

70
Number of journal and conference papers on Recurrent Neural Networks via BIDS

Year

N
um

be
r

(b)

(b) Appearance of articles on Recurrent Neural Networks in
BIDS database in period 1988–2000

Figure 1.2 Appearance of articles on RNNs in major citation databases. (a) Appearance
of articles on recurrent neural networks in IEE/IEEE publications in period 1988–1999. (b)
Appearance of articles on recurrent neural networks in BIDS database in period 1988–2000.

8 READERSHIP

Chapter 4 contains a detailed discussion of activation functions and new insights are
provided by the consideration of neural networks within the framework of modu-
lar groups from number theory. The material in Chapter 5 builds upon that within
Chapter 3 and provides more comprehensive coverage of recurrent neural network
architectures together with concepts from nonlinear system modelling. In Chapter 6,
neural networks are considered as nonlinear adaptive filters whereby the necessary
learning strategies for recurrent neural networks are developed. The stability issues
for certain recurrent neural network architectures are considered in Chapter 7 through
the exploitation of fixed point theory and bounds for global asymptotic stability are
derived. A posteriori adaptive learning algorithms are introduced in Chapter 8 and
the synergy with data-reusing algorithms is highlighted. In Chapter 9, a new class
of normalised algorithms for online training of recurrent neural networks is derived.
The convergence of online learning algorithms for neural networks is addressed in
Chapter 10. Experimental results for the prediction of nonlinear and nonstationary
signals with recurrent neural networks are presented in Chapter 11. In Chapter 12,
the exploitation of inherent relationships between parameters within recurrent neural
networks is described. Appendices A to J provide background to the main chapters
and cover key concepts from linear algebra, approximation theory, complex sigmoid
activation functions, a precedent learning algorithm for recurrent neural networks, ter-
minology in neural networks, a posteriori techniques in science and engineering, con-
traction mapping theory, linear relaxation and stability, stability of general nonlinear
systems and deseasonalising of time series. The book concludes with a comprehensive
bibliography.

1.6 Readership

This book is targeted at graduate students and research engineers active in the areas
of communications, neural networks, nonlinear control, signal processing and time
series analysis. It will also be useful for engineers and scientists working in diverse
application areas, such as artificial intelligence, biomedicine, earth sciences, finance
and physics.

Recurrent Neural Networks for Prediction
Authored by Danilo P. Mandic, Jonathon A. Chambers

Copyright c©2001 John Wiley & Sons Ltd
ISBNs: 0-471-49517-4 (Hardback); 0-470-84535-X (Electronic)

2

Fundamentals

2.1 Perspective

Adaptive systems are at the very core of modern digital signal processing. There are
many reasons for this, foremost amongst these is that adaptive filtering, prediction or
identification do not require explicit a priori statistical knowledge of the input data.
Adaptive systems are employed in numerous areas such as biomedicine, communica-
tions, control, radar, sonar and video processing (Haykin 1996a).

2.1.1 Chapter Summary

In this chapter the fundamentals of adaptive systems are introduced. Emphasis is
first placed upon the various structures available for adaptive signal processing, and
includes the predictor structure which is the focus of this book. Basic learning algo-
rithms and concepts are next detailed in the context of linear and nonlinear structure
filters and networks. Finally, the issue of modularity is discussed.

2.2 Adaptive Systems

Adaptability, in essence, is the ability to react in sympathy with disturbances to the
environment. A system that exhibits adaptability is said to be adaptive. Biological
systems are adaptive systems; animals, for example, can adapt to changes in their
environment through a learning process (Haykin 1999a).

A generic adaptive system employed in engineering is shown in Figure 2.1. It consists
of

• a set of adjustable parameters (weights) within some filter structure;

• an error calculation block (the difference between the desired response and the
output of the filter structure);

• a control (learning) algorithm for the adaptation of the weights.

The type of learning represented in Figure 2.1 is so-called supervised learning,
since the learning is directed by the desired response of the system. Here, the goal

10 ADAPTIVE SYSTEMS

Input
Signal

Desired
Response

Comparator

Error
Control

Algorithm

Filter
Structure

+_
Σ

Figure 2.1 Block diagram of an adaptive system

is to adjust iteratively the free parameters (weights) of the adaptive system so as to
minimise a prescribed cost function in some predetermined sense.1 The filter structure
within the adaptive system may be linear, such as a finite impulse response (FIR) or
infinite impulse response (IIR) filter, or nonlinear, such as a Volterra filter or a neural
network.

2.2.1 Configurations of Adaptive Systems Used in Signal Processing

Four typical configurations of adaptive systems used in engineering are shown in
Figure 2.2 (Jenkins et al. 1996). The notions of an adaptive filter and adaptive system
are used here interchangeably.

For the system identification configuration shown in Figure 2.2(a), both the adap-
tive filter and the unknown system are fed with the same input signal x(k). The error
signal e(k) is formed at the output as e(k) = d(k) − y(k), and the parameters of the
adaptive system are adjusted using this error information. An attractive point of this
configuration is that the desired response signal d(k), also known as a teaching or
training signal, is readily available from the unknown system (plant). Applications of
this scheme are in acoustic and electrical echo cancellation, control and regulation of
real-time industrial and other processes (plants). The knowledge about the system is
stored in the set of converged weights of the adaptive system. If the dynamics of the
plant are not time-varying, it is possible to identify the parameters (weights) of the
plant to an arbitrary accuracy.

If we desire to form a system which inter-relates noise components in the input
and desired response signals, the noise cancelling configuration can be implemented
(Figure 2.2(b)). The only requirement is that the noise in the primary input and the
reference noise are correlated. This configuration subtracts an estimate of the noise
from the received signal. Applications of this configuration include noise cancellation

1 The aim is to minimise some function of the error e. If E[e2] is minimised, we consider minimum
mean squared error (MSE) adaptation, the statistical expectation operator, E[·], is due to the
random nature of the inputs to the adaptive system.

FUNDAMENTALS 11

x(k) d(k)

Σ
+

_

System

Adaptive

Filter

Input

Unknown

Output

y(k)

e(k)

(a) System identification configuration

No(k)+s(k)N (k)1

d(k)
+

_

Σ

Adaptive

Filter

Primary inputReference input

e(k)

x(k) y(k)

(b) Noise cancelling configuration

d(k)

x(k) y(k)

+

_

Σ

Delay
Adaptive

Filter

e(k)

(c) Prediction configuration

x(k)

y(k)

d(k)
+

_

Σ

System
Unknown Adaptive

Filter

Delay

e(k)

(d) Inverse system configuration

Figure 2.2 Configurations for applications of adaptive systems

in acoustic environments and estimation of the foetal ECG from the mixture of the
maternal and foetal ECG (Widrow and Stearns 1985).

In the adaptive prediction configuration, the desired signal is the input signal
advanced relative to the input of the adaptive filter, as shown in Figure 2.2(c). This
configuration has numerous applications in various areas of engineering, science and
technology and most of the material in this book is dedicated to prediction. In fact,
prediction may be considered as a basis for any adaptation process, since the adaptive
filter is trying to predict the desired response.

The inverse system configuration, shown in Figure 2.2(d), has an adaptive system
cascaded with the unknown system. A typical application is adaptive channel equal-
isation in telecommunications, whereby an adaptive system tries to compensate for
the possibly time-varying communication channel, so that the transfer function from
the input to the output of Figure 2.2(d) approximates a pure delay.

In most adaptive signal processing applications, parametric methods are applied
which require a priori knowledge (or postulation) of a specific model in the form of
differential or difference equations. Thus, it is necessary to determine the appropriate
model order for successful operation, which will underpin data length requirements.
On the other hand, nonparametric methods employ general model forms of integral

12 GRADIENT-BASED LEARNING ALGORITHMS

Channel
Adaptive

Σ

Zero

Memory

NonlinearityEqualiser

_ +

d(k)y(k)s(k) x(k)

Figure 2.3 Block diagram of a blind equalisation structure

equations or functional expansions valid for a broad class of dynamic nonlinearities.
The most widely used nonparametric methods are referred to as the Volterra–Wiener
approach and are based on functional expansions.

2.2.2 Blind Adaptive Techniques

The presence of an explicit desired response signal, d(k), in all the structures shown
in Figure 2.2 implies that conventional, supervised, adaptive signal processing tech-
niques may be applied for the purpose of learning. When no such signal is available,
it may still be possible to perform learning by exploiting so-called blind, or unsuper-
vised, methods. These methods exploit certain a priori statistical knowledge of the
input data. For a single signal, this knowledge may be in the form of its constant mod-
ulus property, or, for multiple signals, their mutual statistical independence (Haykin
2000). In Figure 2.3 the structure of a blind equaliser is shown, notice the desired
response is generated from the output of a zero-memory nonlinearity. This nonlinear-
ity is implicitly being used to test the higher-order (i.e. greater than second-order)
statistical properties of the output of the adaptive equaliser. When ideal convergence
of the adaptive filter is achieved, the zero-memory nonlinearity has no effect upon
the signal y(k) and therefore y(k) has identical statistical properties to that of the
channel input s(k).

2.3 Gradient-Based Learning Algorithms

We provide a brief introduction to the notion of gradient-based learning. The aim is
to update iteratively the weight vector w of an adaptive system so that a nonnegative
error measure J (·) is reduced at each time step k,

J (w + ∆w) < J (w), (2.1)

where ∆w represents the change in w from one iteration to the next. This will gener-
ally ensure that after training, an adaptive system has captured the relevant properties
of the unknown system that we are trying to model. Using a Taylor series expansion

FUNDAMENTALS 13

1x

x 2

3x

4x

w

w

w

=0.01

=0.1

=1

=101

2

3

4w

yΣ

Figure 2.4 Example of a filter with widely differing weights

to approximate the error measure, we obtain2

J (w) + ∆w
∂J (w)

∂w
+ O(w2) < J (w). (2.2)

This way, with the assumption that the higher-order terms in the left-hand side of
(2.2) can be neglected, (2.1) can be rewritten as

∆w
∂J (w)

∂w
< 0. (2.3)

From (2.3), an algorithm that would continuously reduce the error measure on the
run, should change the weights in the opposite direction of the gradient ∂J (w)/∂w,
i.e.

∆w = −η
∂J
∂w

, (2.4)

where η is a small positive scalar called the learning rate, step size or adaptation
parameter.

Examining (2.4), if the gradient of the error measure J (w) is steep, large changes
will be made to the weights, and conversely, if the gradient of the error measure J (w)
is small, namely a flat error surface, a larger step size η may be used. Gradient descent
algorithms cannot, however, provide a sense of importance or hierarchy to the weights
(Agarwal and Mammone 1994). For example, the value of weight w1 in Figure 2.4 is
10 times greater than w2 and 1000 times greater than w4. Hence, the component of
the output of the filter within the adaptive system due to w1 will, on the average,
be larger than that due to the other weights. For a conventional gradient algorithm,
however, the change in w1 will not depend upon the relative sizes of the coefficients,
but the relative sizes of the input data. This deficiency provides the motivation for
certain partial update gradient-based algorithms (Douglas 1997).

It is important to notice that gradient-descent-based algorithms inherently forget old
data, which leads to a problem called vanishing gradient and has particular importance
for learning in filters with recursive structures. This issue is considered in more detail
in Chapter 6.

2 The explanation of the O notation can be found in Appendix A.

14 A GENERAL CLASS OF LEARNING ALGORITHMS

2.4 A General Class of Learning Algorithms

To introduce a general class of learning algorithms and explain in very crude terms
relationships between them, we follow the approach from Guo and Ljung (1995). Let
us start from the linear regression equation,

y(k) = xT(k)w(k) + ν(k), (2.5)

where y(k) is the output signal, x(k) is a vector comprising the input signals, ν(k)
is a disturbance or noise sequence, and w(k) is an unknown time-varying vector of
weights (parameters) of the adaptive system. Variation of the weights at time k is
denoted by n(k), and the weight change equation becomes

w(k) = w(k − 1) + n(k). (2.6)

Adaptive algorithms can track the weights only approximately, hence for the following
analysis we use the symbol ŵ. A general expression for weight update in an adaptive
algorithm is

ŵ(k + 1) = ŵ(k) + ηΓ (k)(y(k) − xT(k)ŵ(k)), (2.7)

where Γ (k) is the adaptation gain vector, and η is the step size. To assess how far an
adaptive algorithm is from the optimal solution we introduce the weight error vector,
w̆(k), and a sample input matrix Σ(k) as

w̆(k) = w(k) − ŵ(k), Σ(k) = Γ (k)xT(k). (2.8)

Equations (2.5)–(2.8) yield the following weight error equation:

w̆(k + 1) = (I − ηΣ(k))w̆(k) − ηΓ (k)ν(k) + n(k + 1). (2.9)

For different gains Γ (k), the following three well-known algorithms can be obtained
from (2.7).3

1. The least mean square (LMS) algorithm:

Γ (k) = x(k). (2.10)

2. Recursive least-squares (RLS) algorithm:

Γ (k) = P (k)x(k), (2.11)

P (k) =
1

1 − η

[
P (k − 1) − η

P (k − 1)x(k)xT(k)P (k − 1)
1 − η + ηxT(k)P (k − 1)x(k)

]
. (2.12)

3. Kalman filter (KF) algorithm (Guo and Ljung 1995; Kay 1993):

Γ (k) =
P (k − 1)x(k)

R + ηxT(k)P (k − 1)x(k)
, (2.13)

P (k) = P (k − 1) − ηP (k − 1)x(k)xT(k)P (k − 1)
R + ηxT(k)P (k − 1)x(k)

+ ηQ. (2.14)

3 Notice that the role of η in the RLS and KF algorithm is different to that in the LMS algorithm.
For RLS and KF we may put η = 1 and introduce a forgetting factor instead.

FUNDAMENTALS 15

The KF algorithm is the optimal algorithm in this setting if the elements of n(k)
and ν(k) in (2.5) and (2.6) are Gaussian noises with a covariance matrix Q > 0 and a
scalar value R > 0, respectively (Kay 1993). All of these adaptive algorithms can be
referred to as sequential estimators, since they refine their estimate as each new sample
arrives. On the other hand, block-based estimators require all the measurements to
be acquired before the estimate is formed.

Although the most important measure of quality of an adaptive algorithm is gen-
erally the covariance matrix of the weight tracking error E[w̆(k)w̆T(k)], due to the
statistical dependence between x(k), ν(k) and n(k), precise expressions for this covari-
ance matrix are extremely difficult to obtain.

To undertake statistical analysis of an adaptive learning algorithm, the classical
approach is to assume that x(k), ν(k) and n(k) are statistically independent. Another
assumption is that the homogeneous part of (2.9)

w̆(k + 1) = (I − ηΣ(k))w̆(k) (2.15)

and its averaged version

E[w̆(k + 1)] = (I − ηE[Σ(k)])E[w̆(k)] (2.16)

are exponentially stable in stochastic and deterministic senses (Guo and Ljung 1995).

2.4.1 Quasi-Newton Learning Algorithm

The quasi-Newton learning algorithm utilises the second-order derivative of the objec-
tive function4 to adapt the weights. If the change in the objective function between
iterations in a learning algorithm is modelled with a Taylor series expansion, we have

∆E(w) = E(w + ∆w) − E(w) ≈ (∇wE(w))T∆w + 1
2∆wTH∆w. (2.17)

After setting the differential with respect to ∆w to zero, the weight update equation
becomes

∆w = −H−1∇wE(w). (2.18)

The Hessian H in this equation determines not only the direction but also the step
size of the gradient descent.

To conclude: adaptive algorithms mainly differ in their form of adaptation gains.
The gains can be roughly divided into two classes: gradient-based gains (e.g. LMS,
quasi-Newton) and Riccati equation-based gains (e.g. KF and RLS).

2.5 A Step-by-Step Derivation of the Least Mean Square (LMS)
Algorithm

Consider a set of input–output pairs of data described by a mapping function f :

d(k) = f(x(k)), k = 1, 2, . . . , N. (2.19)

4 The term objective function will be discussed in more detail later in this chapter.

16 A STEP-BY-STEP DERIVATION OF THE LMS ALGORITHM

x(k)

w w w w1 2 3 N

z z z z-1 -1 -1 -1

y(k)

(k)(k)

x(k-1) x(k-2)

(k) (k)

x(k-N+1)

Figure 2.5 Structure of a finite impulse response filter

The function f(·) is assumed to be unknown. Using the concept of adaptive systems
explained above, the aim is to approximate the unknown function f(·) by a function
F (· ,w) with adjustable parameters w, in some prescribed sense. The function F is
defined on a system with a known architecture or structure. It is convenient to define
an instantaneous performance index,

J(w(k)) = [d(k) − F (x(k),w(k))]2, (2.20)

which represents an energy measure. In that case, function F is most often just the
inner product F = xT(k)w(k) and corresponds to the operation of a linear FIR filter
structure. As before, the goal is to find an optimisation algorithm that minimises the
cost function J(w). The common choice of the algorithm is motivated by the method
of steepest descent, and generates a sequence of weight vectors w(1),w(2), . . . , as

w(k + 1) = w(k) − ηg(k), k = 0, 1, 2, . . . , (2.21)

where g(k) is the gradient vector of the cost function J(w) at the point w(k)

g(k) =
∂J(w)

∂w

∣∣∣∣
w=w(k)

. (2.22)

The parameter η in (2.21) determines the behaviour of the algorithm:

• for η small, algorithm (2.21) converges towards the global minimum of the error
performance surface;

• if the value of η approaches some critical value ηc, the trajectory of convergence
on the error performance surface is either oscillatory or overdamped;

• if the value of η is greater than ηc, the system is unstable and does not converge.

These observations can only be visualised in two dimensions, i.e. for only two param-
eter values w1(k) and w2(k), and can be found in Widrow and Stearns (1985). If the
approximation function F in the gradient descent algorithm (2.21) is linear we call
such an adaptive system a linear adaptive system. Otherwise, we describe it as a
nonlinear adaptive system. Neural networks belong to this latter class.

2.5.1 The Wiener Filter

Suppose the system shown in Figure 2.1 is modelled as a linear FIR filter (shown in
Figure 2.5), we have F (x,w) = xTw, dropping the k index for convenience. Con-
sequently, the instantaneous cost function J(w(k)) is a quadratic function of the

FUNDAMENTALS 17

weight vector. The Wiener filter is based upon minimising the ensemble average of
this instantaneous cost function, i.e.

JWiener(w(k)) = E[[d(k) − xT(k)w(k)]2] (2.23)

and assuming d(k) and x(k) are zero mean and jointly wide sense stationary. To find
the minimum of the cost function, we differentiate with respect to w and obtain

∂JWiener

∂w
= −2E[e(k)x(k)], (2.24)

where e(k) = d(k) − xT(k)w(k).
At the Wiener solution, this gradient equals the null vector 0. Solving (2.24) for

this condition yields the Wiener solution,

w = R−1
x,xrx,d, (2.25)

where Rx,x = E[x(k)xT(k)] is the autocorrelation matrix of the zero mean input
data x(k) and rx,d = E[x(k)d(k)] is the crosscorrelation between the input vector
and the desired signal d(k). The Wiener formula has the same general form as the
block least-squares (LS) solution, when the exact statistics are replaced by temporal
averages.

The RLS algorithm, as in (2.12), with the assumption that the input and desired
response signals are jointly ergodic, approximates the Wiener solution and asymptot-
ically matches the Wiener solution.

More details about the derivation of the Wiener filter can be found in Haykin
(1996a, 1999a).

2.5.2 Further Perspective on the Least Mean Square (LMS) Algorithm

To reduce the computational complexity of the Wiener solution, which is a block
solution, we can use the method of steepest descent for a recursive, or sequential,
computation of the weight vector w. Let us derive the LMS algorithm for an adaptive
FIR filter, the structure of which is shown in Figure 2.5. In view of a general adaptive
system, this FIR filter becomes the filter structure within Figure 2.1. The output of
this filter is

y(k) = xT(k)w(k). (2.26)

Widrow and Hoff (1960) utilised this structure for adaptive processing and proposed
instantaneous values of the autocorrelation and crosscorrelation matrices to calcu-
late the gradient term within the steepest descent algorithm. The cost function they
proposed was

J(k) = 1
2e2(k), (2.27)

which is again based upon the instantaneous output error e(k) = d(k)−y(k). In order
to derive the weight update equation we start from the instantaneous gradient

∂J(k)
∂w(k)

= e(k)
∂e(k)
∂w(k)

. (2.28)

18 ON GRADIENT DESCENT FOR NONLINEAR STRUCTURES

x(k)

w w w w1 2 3 N

y(k)

z z z z-1 -1 -1 -1

(k) (k) (k) (k)

x(k-N+1)

Φ

x(k-1) x(k-2)

Figure 2.6 The structure of a nonlinear adaptive filter

Following the same procedure as for the general gradient descent algorithm, we obtain

∂e(k)
∂w(k)

= −x(k) (2.29)

and finally
∂J(k)
∂w(k)

= −e(k)x(k). (2.30)

The set of equations that describes the LMS algorithm is given by

y(k) =
N∑

i=1

xi(k)wi(k) = xT(k)w(k),

e(k) = d(k) − y(k),
w(k + 1) = w(k) + ηe(k)x(k).

(2.31)

The LMS algorithm is a very simple yet extremely popular algorithm for adaptive
filtering. It is also optimal in the H∞ sense which justifies its practical utility (Hassibi
et al. 1996).

2.6 On Gradient Descent for Nonlinear Structures

Adaptive filters and neural networks are formally equivalent, in fact, the structures of
neural networks are generalisations of linear filters (Maass and Sontag 2000; Nerrand
et al. 1991). Depending on the architecture of a neural network and whether it is used
online or offline, two broad classes of learning algorithms are available:

• techniques that use a direct computation of the gradient, which is typical for
linear and nonlinear adaptive filters;

• techniques that involve backpropagation, which is commonplace for most offline
applications of neural networks.

Backpropagation is a computational procedure to obtain gradients necessary for
adaptation of the weights of a neural network contained within its hidden layers and
is not radically different from a general gradient algorithm.

As we are interested in neural networks for real-time signal processing, we will
analyse online algorithms that involve direct gradient computation. In this section we
introduce a learning algorithm for a nonlinear FIR filter, whereas learning algorithms
for online training of recurrent neural networks will be introduced later. Let us start
from a simple nonlinear FIR filter, which consists of the standard FIR filter cascaded

FUNDAMENTALS 19

with a memoryless nonlinearity Φ as shown in Figure 2.6. This structure can be seen
as a single neuron with a dynamical FIR synapse. This FIR synapse provides memory
to the neuron. The output of this filter is given by

y(k) = Φ(xT(k)w(k)). (2.32)

The nonlinearity Φ(·) after the tap-delay line is typically a sigmoid. Using the ideas
from the LMS algorithm, if the cost function is given by

J(k) = 1
2e2(k) (2.33)

we have

e(k) = d(k) − Φ(xT(k)w(k)), (2.34)
w(k + 1) = w(k) − η∇wJ(k), (2.35)

where e(k) is the instantaneous error at the output neuron, d(k) is some teach-
ing (desired) signal, w(k) = [w1(k), . . . , wN (k)]T is the weight vector and x(k) =
[x1(k), . . . , xN (k)]T is the input vector.

The gradient ∇wJ(k) can be calculated as

∂J(k)
∂w(k)

= e(k)
∂e(k)
∂w(k)

= −e(k)Φ′(xT(k)w(k))x(k), (2.36)

where Φ′(·) represents the first derivative of the nonlinearity Φ(·) and the weight
update Equation (2.35) can be rewritten as

w(k + 1) = w(k) + ηΦ′(xT(k)w(k))e(k)x(k). (2.37)

This is the weight update equation for a direct gradient algorithm for a nonlinear
FIR filter.

2.6.1 Extension to a General Neural Network

When deriving a direct gradient algorithm for a general neural network, the network
architecture should be taken into account. For large networks for offline processing,
classical backpropagation is the most convenient algorithm. However, for online learn-
ing, extensions of the previous algorithm should be considered.

2.7 On Some Important Notions From Learning Theory

In this section we discuss in more detail the inter-relations between the error, error
function and objective function in learning theory.

2.7.1 Relationship Between the Error and the Error Function

The error at the output of an adaptive system is defined as the difference between
the output value of the network and the target (desired output) value. For instance,

20 ON SOME IMPORTANT NOTIONS FROM LEARNING THEORY

the instantaneous error e(k) is defined as

e(k) = d(k) − y(k). (2.38)

The instantaneous error can be positive, negative or zero, and is therefore not a good
candidate for the criterion function for training adaptive systems. Hence we look for
another function, called the error function, that is a function of the instantaneous
error, but is suitable as a criterion function for learning. Error functions are also called
loss functions. They are defined so that an increase in the error function corresponds
to a reduction in the quality of learning, and they are nonnegative. An error function
can be defined as

E(N) =
N∑

i=0

e2(i) (2.39)

or as an average value

Ē(N) =
1

N + 1

N∑
i=0

e2(i). (2.40)

2.7.2 The Objective Function

The objective function is a function that we want to minimise during training. It can
be equal to an error function, but often it may include other terms to introduce con-
straints. For instance in generalisation, too large a network might lead to overfitting.
Hence the objective function can consist of two parts, one for the error minimisa-
tion and the other which is either a penalty for a large network or a penalty term for
excessive increase in the weights of the adaptive system or some other chosen function
(Tikhonov et al. 1998). An example of such an objective function for online learning
is

J(k) =
1
N

N∑
i=1

(e2(k − i + 1) + G(‖w(k − i + 1)‖2
2)), (2.41)

where G is some linear or nonlinear function. We often use symbols E and J inter-
changeably to denote the cost function.

2.7.3 Types of Learning with Respect to the Training Set and Objective Function

Batch learning

Batch learning is also known as epochwise, or offline learning, and is a common
strategy for offline training. The idea is to adapt the weights once the whole training
set has been presented to an adaptive system. It can be described by the following
steps.

1. Initialise the weights

2. Repeat

• Pass all the training data through the network

FUNDAMENTALS 21

• Sum the errors after each particular pattern

• Update the weights based upon the total error

• Stop if some prescribed error performance is reached

The counterpart of batch learning is so-called incremental learning, online, or pat-
tern learning. The procedure for this type of learning is as follows.

1. Initialise the weights

2. Repeat

• Pass one pattern through the network

• Update the weights based upon the instantaneous error

• Stop if some prescribed error performance is reached

The choice of the type of learning is very much dependent upon application. Quite
often, for networks that need initialisation, we perform one type of learning in the
initialisation procedure, which is by its nature an offline procedure, and then use some
other learning strategy while the network is running. Such is the case with recurrent
neural networks for online signal processing (Mandic and Chambers 1999f).

2.7.4 Deterministic, Stochastic and Adaptive Learning

Deterministic learning is an optimisation technique based on an objective function
which always produces the same result, no matter how many times we recompute it.
Deterministic learning is always offline.

Stochastic learning is useful when the objective function is affected by noise and
local minima. It can be employed within the context of a gradient descent learning
algorithm. The idea is that the learning rate gradually decreases during training and
hence the steps on the error performance surface in the beginning of training are
large which speeds up training when far from the optimal solution. The learning rate
is small when approaching the optimal solution, hence reducing misadjustment. This
gradual reduction of the learning rate can be achieved by e.g. annealing (Kirkpatrick
et al. 1983; Rose 1998; Szu and Hartley 1987).

The idea behind the concept of adaptive learning is to forget the past when it is
no longer relevant and adapt to the changes in the environment. The terms ‘adaptive
learning’ or ‘gear-shifting’ are sometimes used for gradient methods in which the
learning rate is changed during training.

2.7.5 Constructive Learning

Constructive learning deals with the change of architecture or interconnections in
the network during training. Neural networks for which topology can change over
time are called ontogenic neural networks (Fiesler and Beale 1997). Two basic classes
of constructive learning are network growing and network pruning. In the network
growing approach, learning begins with a network with no hidden units, and if the

22 ON SOME IMPORTANT NOTIONS FROM LEARNING THEORY

error is too big, new hidden units are added to the network, training resumes, and so
on. The most used algorithm based upon network growing is the so-called cascade-
correlation algorithm (Hoehfeld and Fahlman 1992). Network pruning starts from a
large network and if the error in learning is smaller than allowed, the network size is
reduced until the desired ratio between accuracy and network size is reached (Reed
1993; Sum et al. 1999).

2.7.6 Transformation of Input Data, Learning and Dimensionality

A natural question is whether to linearly/nonlinearly transform the data before feed-
ing them to an adaptive processor. This is particularly important for neural networks,
which are nonlinear processors. If we consider each neuron as a basic component of a
neural network, then we can refer to a general neural network as a system with compo-
nentwise nonlinearities. To express this formally, consider a scalar function σ : R → R

and systems of the form,

y(k) = σ(Ax(k)), (2.42)

where the matrix A is an N × N matrix and σ is applied componentwise

σ(x1(k), . . . , xN (k)) = (σ(x1(k)), . . . , σ(xN (k))). (2.43)

Systems of this type arise in a wide variety of situations. For a linear σ, we have a
linear system. If the range of σ is finite, the state vector of (2.42) takes values from
a finite set, and dynamical properties can be analysed in time which is polynomial in
the number of possible states. Throughout this book we are interested in functions, σ,
and combination matrices, A, which would guarantee a fixed point of this mapping.
Neural networks are commonly of the form (2.42). In such a context we call σ the
activation function. Results of Siegelmann and Sontag (1995) show that saturated
linear systems (piecewise linear) can represent Turing machines, which is achieved by
encoding the transition rules of the Turing machine in the matrix A.

The curse of dimensionality

The curse of dimensionality (Bellman 1961) refers to the exponential growth of com-
putation needed for a specific task as a function of the dimensionality of the input
space. In neural networks, a network quite often has to deal with many irrelevant
inputs which, in turn, increase the dimensionality of the input space. In such a case,
the network uses much of its resources to represent and compute irrelevant informa-
tion, which hampers processing of the desired information. A remedy for this prob-
lem is preprocessing of input data, such as feature extraction, and to introduce some
importance function to the input samples. The curse of dimensionality is particularly
prominent in unsupervised learning algorithms. Radial basis functions are also prone
to this problem. Selection of a neural network model must therefore be suited for a
particular task. Some a priori information about the data and scaling of the inputs
can help to reduce the severity of the problem.

FUNDAMENTALS 23

Transformations on the input data

Activation functions used in neural networks are centred around a certain value in
their output space. For instance, the mean of the logistic function is 0.5, whereas
the tanh function is centred around zero. Therefore, in order to perform efficient
prediction, we should match the range of the input data, their mean and variance,
with the range of the chosen activation function. There are several operations that
we could perform on the input data, such as the following.

1. Normalisation, which in this context means dividing each element of the input
vector x(k) by its squared norm, i.e. xi(k) ∈ x(k) → xi(k)/‖x(k)‖2

2.

2. Rescaling, which means transforming the input data in the manner that we
multiply/divide them by a constant and also add/subtract a constant from the
data.5

3. Standardisation, which is borrowed from statistics, where, for instance, a ran-
dom Gaussian vector is standardised if its mean is subtracted from it, and the
vector is then divided by its standard deviation. The resulting random vari-
able is called a ‘standard normal’ random variable with zero mean and unity
standard deviation. Some examples of data standardisation are

• Standardisation to zero mean and unity standard deviation can be per-
formed as

mean =
∑

i Xi

N
, std =

√∑
i(Xi − mean)2

N − 1
.

The standardised quantity becomes Si = (Xi − mean)/std.

• Standardise X to midrange 0 and range 2. This can be achieved by

midrange = 1
2 (max

i
Xi + min

i
Xi), range = max

i
Xi − min

i
Xi,

Si =
Xi − midrange

range/2
.

4. Principal component analysis (PCA) represents the data by a set of unit norm
vectors called normalised eigenvectors. The eigenvectors are positioned along
the directions of greatest data variance. The eigenvectors are found from the
covariance matrix R of the input dataset. An eigenvalue λi, i = 1, . . . , N , is
associated with each eigenvector. Every input data vector is then represented
by a linear combination of eigenvectors.

As pointed out earlier, standardising input variables has an effect on training, since
steepest descent algorithms are sensitive to scaling due to the change in the weights
being proportional to the value of the gradient and the input data.

5 In real life a typical rescaling is transforming the temperature from Celsius into Fahrenheit scale.

24 LEARNING STRATEGIES

Nonlinear transformations of the data

This method to transform the data can help when the dynamic range of the data is
too high. In that case, for instance, we typically apply the log function to the input
data. The log function is often applied in the error and objective functions for the
same purposes.

2.8 Learning Strategies

To construct an optimal neural approximating model we have to determine an appro-
priate training set containing all the relevant information of the process and define
a suitable topology that matches the complexity and performance requirements. The
training set construction issue requires four entities to be considered (Alippi and Piuri
1996; Bengio 1995; Haykin and Li 1995; Shadafan and Niranjan 1993):

• the number of training data samples ND;

• the number of patterns NP constituting a batch;

• the number of batches NB to be extracted from the training set;

• the number of times the generic batch is presented to the network during learn-
ing.

The assumption is that the training set is sufficiently rich so that it contains all the
relevant information necessary for learning.

The requirement coincides with the hypothesis that the training data have been
generated by a fully exciting input signal, such as white noise, which is able to excite
all the process dynamics. White noise is a persistently exciting input signal and is
used for the driving component of moving average (MA), autoregressive (AR) and
autoregressive moving average (ARMA) models.

2.9 General Framework for the Training of Recurrent Networks by
Gradient-Descent-Based Algorithms

In this section we summarise some of the important concepts mentioned earlier.

2.9.1 Adaptive Versus Nonadaptive Training

The training of a network makes use of two sequences, the sequence of inputs and the
sequence of corresponding desired outputs. If the network is first trained (with a train-
ing sequence of finite length) and subsequently used (with the fixed weights obtained
from training), this mode of operation is referred to as non-adaptive (Nerrand et al.
1994). Conversely, the term adaptive refers to the mode of operation whereby the net-
work is trained permanently throughout its application (with a training sequence of
infinite length). Therefore, the adaptive network is suitable for input processes which
exhibit statistically non-stationary behaviour, a situation which is normal in the fields
of adaptive control and signal processing (Bengio 1995; Haykin 1996a; Haykin and

FUNDAMENTALS 25

Li 1995; Khotanzad and Lu 1990; Narendra and Parthasarathy 1990; Nerrand et al.
1994).

2.9.2 Performance Criterion, Cost Function, Training Function

The computation of the coefficients during training aims at finding a system whose
operation is optimal with respect to some performance criterion which may be either
qualitative, e.g. (subjective) quality of speech reconstruction, or quantitative, e.g.
maximising signal to noise ratio for spatial filtering. The goal is to define a positive
training function which is such that a decrease of this function through modifications
of the coefficients of the network leads to an improvement of the performance of the
system (Bengio 1995; Haykin and Li 1995; Nerrand et al. 1994; Qin et al. 1992). In the
case of non-adaptive training, the training function is defined as a function of all the
data of the training set (in such a case, it is usually termed as a cost function). The
minimum of the cost function corresponds to the optimal performance of the system.
Training is an optimisation procedure, conventionally using gradient-based methods.

In the case of adaptive training, it is impossible, in most instances, to define a
time-independent cost function whose minimisation leads to a system that is optimal
with respect to the performance criterion. Therefore, the training function is time
dependent. The modification of the coefficients is computed continually from the
gradient of the training function. The latter involves the data pertaining to a time
window of finite length, which shifts in time (sliding window) and the coefficients are
updated at each sampling time.

2.9.3 Recursive Versus Nonrecursive Algorithms

A nonrecursive algorithm employs a cost function (i.e. a training function defined on a
fixed window), whereas a recursive algorithm makes use of a training function defined
on a sliding window of data. An adaptive system must be trained by a recursive
algorithm, whereas a non-adaptive system may be trained either by a nonrecursive or
by a recursive algorithm (Nerrand et al. 1994).

2.9.4 Iterative Versus Noniterative Algorithms

An iterative algorithm performs coefficient modifications several times from a set of
data pertaining to a given data window, a non-iterative algorithm makes only one
(Nerrand et al. 1994). For instance, the conventional LMS algorithm (2.31) is thus a
recursive, non-iterative algorithm operating on a sliding window.

2.9.5 Supervised Versus Unsupervised Algorithms

A supervised learning algorithm performs learning by using a teaching signal, i.e. the
desired output signal, while an unsupervised learning algorithm, as in blind signal
processing, has no reference signal as a teaching input signal. An example of a super-
vised learning algorithm is the delta rule, while unsupervised learning algorithms are,

26 MODULARITY WITHIN NEURAL NETWORKS

Input
Module 1 Module 2 Module N

Output

Figure 2.7 A cascaded realisation of a general system

for example, the reinforcement learning algorithm and the competitive rule (‘winner
takes all’) algorithm, whereby there is some sense of concurrency between the elements
of the network structure (Bengio 1995; Haykin and Li 1995).

2.9.6 Pattern Versus Batch Learning

Updating the network weights by pattern learning means that the weights of the
network are updated immediately after each pattern is fed in. The other approach is
to take all the data as a whole batch, and the network is not updated until the entire
batch of data is processed. This approach is referred to as batch learning (Haykin and
Li 1995; Qin et al. 1992).

It can be shown (Qin et al. 1992) that while considering feedforward networks
(FFN), after one training sweep through all the data, the pattern learning is a first-
order approximation of the batch learning with respect to the learning rate η. There-
fore, the FFN pattern learning approximately implements the FFN batch learning
after one batch interval. After multiple sweeps through the training data, the dif-
ference between the FFN pattern learning and FFN batch learning is of the order6

O(η2). Therefore, for small training rates, the FFN pattern learning approximately
implements FFN batch learning after multiple sweeps through the training data. For
recurrent networks, the weight updating slopes for pattern learning and batch learn-
ing are different7 (Qin et al. 1992). However, the difference could also be controlled
by the learning rate η. The difference will converge to zero as quickly as η goes to
zero8 (Qin et al. 1992).

2.10 Modularity Within Neural Networks

The hierarchical levels in neural network architectures are synapses, neurons, layers
and neural networks, and will be discussed in Chapter 5. The next step would be
combinations of neural networks. In this case we consider modular neural networks.
Modular neural networks are composed of a set of smaller subnetworks (modules),
each performing a subtask of the complete problem. To depict this problem, let us
recourse to the case of linear adaptive filters described by a transfer function in the

6 In fact, if the data being processed exhibit highly stationary behaviour, then the average error
calculated after FFN batch learning is very close to the instantaneous error calculated after FFN
pattern learning, e.g. the speech data can be considered as being stationary within an observed frame.
That forms the basis for use of various real-time and recursive learning algorithms, e.g. RTRL.

7 It can be shown (Qin et al. 1992) that for feedforward networks, the updated weights for both
pattern learning and batch learning adapt at the same slope (derivative dw/dη) with respect to the
learning rate η. For recurrent networks, this is not the case.

8 In which case we have a very slow learning process.

FUNDAMENTALS 27

Input

Module 1

Module 2

Module N

Output
Σ

Figure 2.8 A parallel realisation of a general system

z-domain H(z) as

H(z) =

M∑
k=0

b(k)z−k

1 +
N∑

k=1

a(k)z−k

. (2.44)

We can rearrange this function either in a cascaded manner as

H(z) = A

max{M,N}∏
k=1

1 − βkz−1

1 − αkz−1 , (2.45)

or in a parallel manner as

H(z) =
N∑

k=1

Ak

1 − αkz−1 , (2.46)

where for simplicity we have assumed first-order poles and zeros of H(z). A cascaded
realisation of a general system is shown in Figure 2.7, whereas a parallel realisation
of a general system is shown in Figure 2.8. We can also combine neural networks
in these two configurations. An example of cascaded neural network is the so-called
pipelined recurrent neural network, whereas an example of a parallel realisation of a
neural network is the associative Gaussian mixture model, or winner takes all network.
Taking into account that neural networks are nonlinear systems, we talk about nested
modular architectures instead of cascaded architectures. The nested neural scheme can
be written as

F (W, X) = Φ

(∑
n

wnΦ

(∑
i

viΦ

(
· · ·Φ

(∑
j

ujXj

)
· · ·

)))
, (2.47)

where Φ is a sigmoidal function. It corresponds to a multilayer network of units that
sum their inputs with ‘weights’ W = {wn, vi, uj , . . . } and then perform a sigmoidal

28 MODULARITY WITHIN NEURAL NETWORKS

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

argument

fir
st

 n
on

lin
ea

r
pa

ss

−10 −5 0 5 10
0.5

0.55

0.6

0.65

0.7

0.75

argument

se
co

nd
 n

on
lin

ea
r

pa
ss

−10 −5 0 5 10
0.62

0.63

0.64

0.65

0.66

0.67

0.68

argument

th
ird

 n
on

lin
ea

r
pa

ss

−10 −5 0 5 10
0.65

0.655

0.66

0.665

argument

fo
ur

th
 n

on
lin

ea
r

pa
ss

Figure 2.9 Effects of nesting sigmoid nonlinearities: first, second, third and fourth pass

transformation of this sum. Its motivation is that the function

F (W, X) = Φ

(∑
n

wnΦ

(∑
j

ujXj

))
(2.48)

can approximate arbitrarily well any continuous multivariate function (Funahashi
1989; Poggio and Girosi 1990).

Since we use sigmoid ‘squashing’ activation functions, modular structures con-
tribute to a general stability issue. The effects of a simple scheme of nested sigmoids
are shown in Figure 2.9. From Figure 2.9 we see that pure nesting successively reduces
the range of the output signal, bringing this composition of nonlinear functions to the
fixed point of the employed nonlinearity for sufficiently many nested sigmoids.

Modular networks possess some advantages over classical networks, since the overall
complex function is simplified and modules possibly do not have hidden units which
speeds up training. Also, input data might be decomposable into subsets which can
be fed to separate modules. Utilising modular neural networks has not only compu-
tational advantages but also development advantages, improved efficiency, improved
interpretability and easier hardware implementation. Also, there are strong sugges-
tions from biology that modular structures are exploited in cognitive mechanisms
(Fiesler and Beale 1997).

FUNDAMENTALS 29

2.11 Summary

Configurations of general adaptive systems have been provided, and the prediction
configuration has been introduced within this framework. Gradient-descent-based
learning algorithms have then been developed for these configurations, with an empha-
sis on the LMS algorithm. A thorough discussion of learning modes and learning
parameters is given. Finally, modularity within neural networks has been addressed.

Recurrent Neural Networks for Prediction
Authored by Danilo P. Mandic, Jonathon A. Chambers

Copyright c©2001 John Wiley & Sons Ltd
ISBNs: 0-471-49517-4 (Hardback); 0-470-84535-X (Electronic)

3

Network Architectures for
Prediction

3.1 Perspective

The architecture, or structure, of a predictor underpins its capacity to represent the
dynamic properties of a statistically nonstationary discrete time input signal and
hence its ability to predict or forecast some future value. This chapter therefore pro-
vides an overview of available structures for the prediction of discrete time signals.

3.2 Introduction

The basic building blocks of all discrete time predictors are adders, delayers, multipli-
ers and for the nonlinear case zero-memory nonlinearities. The manner in which these
elements are interconnected describes the architecture of a predictor. The foundations
of linear predictors for statistically stationary signals are found in the work of Yule
(1927), Kolmogorov (1941) and Wiener (1949). The later studies of Box and Jenkins
(1970) and Makhoul (1975) were built upon these fundamentals. Such linear structures
are very well established in digital signal processing and are classified either as finite
impulse response (FIR) or infinite impulse response (IIR) digital filters (Oppenheim
et al. 1999). FIR filters are generally realised without feedback, whereas IIR filters1

utilise feedback to limit the number of parameters necessary for their realisation. The
presence of feedback implies that the consideration of stability underpins the design of
IIR filters. In statistical signal modelling, FIR filters are better known as moving aver-
age (MA) structures and IIR filters are named autoregressive (AR) or autoregressive
moving average (ARMA) structures. The most straightforward version of nonlinear
filter structures can easily be formulated by including a nonlinear operation in the
output stage of an FIR or an IIR filter. These represent simple examples of nonlinear
autoregressive (NAR), nonlinear moving average (NMA) or nonlinear autoregressive
moving average (NARMA) structures (Nerrand et al. 1993). Such filters have immedi-
ate application in the prediction of discrete time random signals that arise from some

1 FIR filters can be represented by IIR filters, however, in practice it is not possible to represent
an arbitrary IIR filter with an FIR filter of finite length.

32 OVERVIEW

nonlinear physical system, as for certain speech utterances. These filters, moreover,
are strongly linked to single neuron neural networks.

The neuron, or node, is the basic processing element within a neural network. The
structure of a neuron is composed of multipliers, termed synaptic weights, or simply
weights, which scale the inputs, a linear combiner to form the activation potential, and
a certain zero-memory nonlinearity to model the activation function. Different neural
network architectures are formulated by the combination of multiple neurons with
various interconnections, hence the term connectionist modelling (Rumelhart et al.
1986). Feedforward neural networks, as for FIR/MA/NMA filters, have no feedback
within their structure. Recurrent neural networks, on the other hand, similarly to
IIR/AR/NAR/NARMA filters, exploit feedback and hence have much more potential
structural richness. Such feedback can either be local to the neurons or global to the
network (Haykin 1999b; Tsoi and Back 1997). When the inputs to a neural network are
delayed versions of a discrete time random input signal the correspondence between
the architectures of nonlinear filters and neural networks is evident.

From a biological perspective (Marmarelis 1989), the prototypical neuron is com-
posed of a cell body (soma), a tree-like element of fibres (dendrites) and a long fibre
(axon) with sparse branches (collaterals). The axon is attached to the soma at the
axon hillock, and, together with its collaterals, ends at synaptic terminals (boutons),
which are employed to pass information onto their neurons through synaptic junc-
tions. The soma contains the nucleus and is attached to the trunk of the dendritic
tree from which it receives incoming information. The dendrites are conductors of
input information to the soma, i.e. input ports, and usually exhibit a high degree of
arborisation.

The possible architectures for nonlinear filters or neural networks are manifold.
The state-space representation from system theory is established for linear systems
(Kailath 1980; Kailath et al. 2000) and provides a mechanism for the representation
of structural variants. An insightful canonical form for neural networks is provided
by Nerrand et al. (1993), by the exploitation of state-space representation which
facilitates a unified treatment of the architectures of neural networks.2

3.3 Overview

The chapter begins with an explanation of the concept of prediction of a statistically
stationary discrete time random signal. The building blocks for the realisation of linear
and nonlinear predictors are then discussed. These same building blocks are also shown
to be the basic elements necessary for the realisation of a neuron. Emphasis is placed
upon the particular zero-memory nonlinearities used in the output of nonlinear filters
and activation functions of neurons.

An aim of this chapter is to highlight the correspondence between the structures
in nonlinear filtering and neural networks, so as to remove the apparent boundaries
between the work of practitioners in control, signal processing and neural engineering.
Conventional linear filter models for discrete time random signals are introduced and,

2 ARMA models also have a canonical (up to an invariant) representation.

NETWORK ARCHITECTURES FOR PREDICTION 33

Σ i

Discrete
Time

k

i=1

p
a y(k-i)

y(k)^

(k-1)(k-2)

y(k-2)

y(k-1)

y(k-p)

(k-p)

Figure 3.1 Basic concept of linear prediction

with the aid of statistical modelling, motivate the structures for linear predictors;
their nonlinear counterparts are then developed.

A feedforward neural network is next introduced in which the nonlinear elements
are distributed throughout the structure. To employ such a network as a predictor, it
is shown that short-term memory is necessary, either at the input or integrated within
the network. Recurrent networks follow naturally from feedforward neural networks
by connecting the output of the network to its input. The implications of local and
global feedback in neural networks are also discussed.

The role of state-space representation in architectures for neural networks is de-
scribed and this leads to a canonical representation. The chapter concludes with some
comments.

3.4 Prediction

A real discrete time random signal {y(k)}, where k is the discrete time index and
{ · } denotes the set of values, is most commonly obtained by sampling some analogue
measurement. The voice of an individual, for example, is translated from pressure
variation in air into a continuous time electrical signal by means of a microphone and
then converted into a digital representation by an analogue-to-digital converter. Such
discrete time random signals have statistics that are time-varying, but on a short-term
basis, the statistics may be assumed to be time invariant.

The principle of the prediction of a discrete time signal is represented in Figure 3.1
and forms the basis of linear predictive coding (LPC) which underlies many com-
pression techniques. The value of signal y(k) is predicted on the basis of a sum of
p past values, i.e. y(k − 1), y(k − 2), . . . , y(k − p), weighted, by the coefficients ai,
i = 1, 2, . . . , p, to form a prediction, ŷ(k). The prediction error, e(k), thus becomes

e(k) = y(k) − ŷ(k) = y(k) −
p∑

i=1

aiy(k − i). (3.1)

The estimation of the parameters ai is based upon minimising some function of the
error, the most convenient form being the mean square error, E[e2(k)], where E[·]
denotes the statistical expectation operator, and {y(k)} is assumed to be statistically

34 PREDICTION

wide sense stationary,3 with zero mean (Papoulis 1984). A fundamental advantage of
the mean square error criterion is the so-called orthogonality condition, which implies
that

E[e(k)y(k − j)] = 0, j = 1, 2, . . . , p, (3.2)

is satisfied only when ai, i = 1, 2, . . . , p, take on their optimal values. As a consequence
of (3.2) and the linear structure of the predictor, the optimal weight parameters may
be found from a set of linear equations, named the Yule–Walker equations (Box and
Jenkins 1970),

ryy(0) ryy(1) · · · ryy(p − 1)
ryy(1) ryy(0) · · · ryy(p − 2)

...
...

. . .
...

ryy(p − 1) ryy(p − 2) · · · ryy(0)

a1

a2
...

ap

 =

ryy(1)
ryy(2)

...
ryy(p)

 , (3.3)

where ryy(τ) = E[y(k)y(k + τ)] is the value of the autocorrelation function of {y(k)}
at lag τ . These equations may be equivalently written in matrix form as

Ryya = ryy, (3.4)

where Ryy ∈ R
p×p is the autocorrelation matrix and a, ryy ∈ R

p are, respectively,
the parameter vector of the predictor and the crosscorrelation vector. The Toeplitz
symmetric structure of Ryy is exploited in the Levinson–Durbin algorithm (Hayes
1997) to solve for the optimal parameters in O(p2) operations. The quality of the
prediction is judged by the minimum mean square error (MMSE), which is calculated
from E[e2(k)] when the weight parameters of the predictor take on their optimal
values. The MMSE is calculated from ryy(0) −

∑p
i=1 airyy(i).

Real measurements can only be assumed to be locally wide sense stationary and
therefore, in practice, the autocorrelation function values must be estimated from
some finite length measurement in order to employ (3.3). A commonly used, but
statistically biased and low variance (Kay 1993), autocorrelation estimator for appli-
cation to a finite length N measurement, {y(0), y(1), . . . , y(N − 1)}, is given by

r̂yy(τ) =
1
N

N−τ−1∑
k=0

y(k)y(k + τ), τ = 0, 1, 2, . . . , p. (3.5)

These estimates would then replace the exact values in (3.3) from which the weight
parameters of the predictor are calculated. This procedure, however, needs to be
repeated for each new length N measurement, and underlies the operation of a block-
based predictor.

A second approach to the estimation of the weight parameters a(k) of a predictor is
the sequential, adaptive or learning approach. The estimates of the weight parameters
are refined at each sample number, k, on the basis of the new sample y(k) and the
prediction error e(k). This yields an update equation of the form

â(k + 1) = â(k) + ηf(e(k), y(k)), k � 0, (3.6)

3 Wide sense stationarity implies that the mean is constant, the autocorrelation function is only
a function of the time lag and the variance is finite.

NETWORK ARCHITECTURES FOR PREDICTION 35

Z
−1

y(k) y(k−1)

(a)

b

a+ba

(b)

b

a ab

(c)

Figure 3.2 Building blocks of predictors: (a) delayer, (b) adder, (c) multiplier

where η is termed the adaptation gain, f(·) is some function dependent upon the
particular learning algorithm, whereas â(k) and y(k) are, respectively, the estimated
weight vector and the predictor input vector. Without additional prior knowledge,
zero or random values are chosen for the initial values of the weight parameters in
(3.6), i.e. âi(0) = 0, or ni, i = 1, 2, . . . , p, where ni is a random variable drawn from a
suitable distribution. The sequential approach to the estimation of the weight param-
eters is particularly suitable for operation of predictors in statistically nonstationary
environments. Both the block and sequential approach to the estimation of the weight
parameters of predictors can be applied to linear and nonlinear structure predictors.

3.5 Building Blocks

In Figure 3.2 the basic building blocks of discrete time predictors are shown. A simple
delayer has input y(k) and output y(k−1), note that the sampling period is normalised
to unity. From linear discrete time system theory, the delay operation can also be
conveniently represented in Z-domain notation as the z−1 operator4 (Oppenheim et
al. 1999). An adder, or sumer, simply produces an output which is the sum of all the
components at its input. A multiplier, or scaler, used in a predictor generally has two
inputs and yields an output which is the product of the two inputs. The manner in
which delayers, adders and multipliers are interconnected determines the architecture
of linear predictors. These architectures, or structures, are shown in block diagram
form in the ensuing sections.

To realise nonlinear filters and neural networks, zero-memory nonlinearities are
required. Three zero-memory nonlinearities, as given in Haykin (1999b), with inputs
v(k) and outputs Φ(k) are described by the following operations:

Threshold: Φ(v(k)) =

{
0, v(k) < 0,

1, v(k) � 0,
(3.7)

Piecewise-linear: Φ(v(k)) =

0, v(k) � −1
2 ,

v(k), − 1
2 < v(k) < + 1

2 ,

1, v(k) � 1
2 ,

(3.8)

Logistic: Φ(v(k)) =
1

1 + e−βv(k) , β � 0. (3.9)

4 The z−1 operator is a delay operator such that Z(y(k − 1)) = z−1Z(y(k)).

36 BUILDING BLOCKS

+1

y(k)

y(k-1)

y(k-p)

Σ v(k)
v(k) Φ ()

delayed
inputs

Synaptic Part Somatic Part

^

scaler p

scaler 1

bias

unity bias input

Figure 3.3 Structure of a neuron for prediction

The most commonly used nonlinearity is the logistic function since it is continuously
differentiable and hence facilitates the analysis of the operation of neural networks.
This property is crucial in the development of first- and second-order learning algo-
rithms. When β → ∞, moreover, the logistic function becomes the unipolar threshold
function. The logistic function is a strictly nondecreasing function which provides
for a gradual transition from linear to nonlinear operation. The inclusion of such a
zero-memory nonlinearity in the output stage of the structure of a linear predictor
facilitates the design of nonlinear predictors.

The threshold nonlinearity is well-established in the neural network community as
it was proposed in the seminal work of McCulloch and Pitts (1943), however, it has
a discontinuity at the origin. The piecewise-linear model, on the other hand, operates
in a linear manner for |v(k)| < 1

2 and otherwise saturates at zero or unity. Although
easy to implement, neither of these zero-memory nonlinearities facilitates the analysis
of the operation of nonlinear structures, because of badly behaved derivatives.

Neural networks are composed of basic processing units named neurons, or nodes, in
analogy with the biological elements present within the human brain (Haykin 1999b).
The basic building blocks of such artificial neurons are identical to those for nonlinear
predictors. The block diagram of an artificial neuron5 is shown in Figure 3.3. In the
context of prediction, the inputs are assumed to be delayed versions of y(k), i.e. y(k−
i), i = 1, 2, . . . , p. There is also a constant bias input with unity value. These inputs
are then passed through (p+1) multipliers for scaling. In neural network parlance, this
operation in scaling the inputs corresponds to the role of the synapses in physiological
neurons. A sumer then linearly combines (in fact this is an affine transformation)
these scaled inputs to form an output, v(k), which is termed the induced local field or
activation potential of the neuron. Save for the presence of the bias input, this output
is identical to the output of a linear predictor. This component of the neuron, from
a biological perspective, is termed the synaptic part (Rao and Gupta 1993). Finally,

5 The term ‘artificial neuron’ will be replaced by ‘neuron’ in the sequel.

NETWORK ARCHITECTURES FOR PREDICTION 37

v(k) is passed through a zero-memory nonlinearity to form the output, ŷ(k). This zero-
memory nonlinearity is called the (nonlinear) activation function of a neuron and can
be referred to as the somatic part (Rao and Gupta 1993). Such a neuron is a static
mapping between its input and output (Hertz et al. 1991) and is very different from
the dynamic form of a biological neuron. The synergy between nonlinear predictors
and neurons is therefore evident. The structural power of neural networks in prediction
results, however, from the interconnection of many such neurons to achieve the overall
predictor structure in order to distribute the underlying nonlinearity.

3.6 Linear Filters

In digital signal processing and linear time series modelling, linear filters are well-
established (Hayes 1997; Oppenheim et al. 1999) and have been exploited for the
structures of predictors. Essentially, there are two families of filters: those without
feedback, for which their output depends only upon current and past input values;
and those with feedback, for which their output depends both upon input values
and past outputs. Such filters are best described by a constant coefficient difference
equation, the most general form of which is given by

y(k) =
p∑

i=1

aiy(k − i) +
q∑

j=0

bje(k − j), (3.10)

where y(k) is the output, e(k) is the input,6 ai, i = 1, 2, . . . , p, are the (AR) feedback
coefficients and bj , j = 0, 1, . . . , q, are the (MA) feedforward coefficients. In causal sys-
tems, (3.10) is satisfied for k � 0 and the initial conditions, y(i), i = −1, −2, . . . ,−p,
are generally assumed to be zero. The block diagram for the filter represented by
(3.10) is shown in Figure 3.4. Such a filter is termed an autoregressive moving aver-
age (ARMA(p, q)) filter, where p is the order of the autoregressive, or feedback, part
of the structure, and q is the order of the moving average, or feedforward, element
of the structure. Due to the feedback present within this filter, the impulse response,
namely the values of y(k), k � 0, when e(k) is a discrete time impulse, is infinite in
duration and therefore such a filter is termed an infinite impulse response (IIR) filter
within the field of digital signal processing.

The general form of (3.10) is simplified by removing the feedback terms to yield

y(k) =
q∑

j=0

bje(k − j). (3.11)

Such a filter is termed moving average (MA(q)) and has a finite impulse response,
which is identical to the parameters bj , j = 0, 1, . . . , q. In digital signal processing,
therefore, such a filter is named a finite impulse response (FIR) filter. Similarly, (3.10)

6 Notice e(k) is used as the filter input, rather than x(k), for consistency with later sections on
prediction error filtering.

38 LINEAR FILTERS

b1

b0
−1z

−1z

−1z

I/P = input
O/P = output

−1z

−1z

−1z

bq

a

a p

1

y(k−p)

y(k−1)

e(k)

Σ

y(k)

I/P

I/P

I/P

I/P

I/P O/P

e(k−1)

e(k−q)

Figure 3.4 Structure of an autoregressive moving average filter (ARMA(p, q))

is simplified to yield an autoregressive (AR(p)) filter

y(k) =
p∑

i=1

aiy(k − i) + e(k), (3.12)

which is also termed an IIR filter. The filter described by (3.12) is the basis for mod-
elling the speech production process (Makhoul 1975). The presence of feedback within
the AR(p) and ARMA(p, q) filters implies that selection of the ai, i = 1, 2, . . . , p, coef-
ficients must be such that the filters are BIBO stable, i.e. a bounded output will result
from a bounded input (Oppenheim et al. 1999).7 The most straightforward way to
test stability is to exploit the Z-domain representation of the transfer function of the
filter represented by (3.10):

H(z) =
Y (z)
E(z)

=
b0 + b1z

−1 + · · · + bqz
−q

1 − a1z−1 − · · · − apz−p
=

N(z)
D(z)

. (3.13)

To guarantee stability, the p roots of the denominator polynomial of H(z), i.e. the
values of z for which D(z) = 0, the poles of the transfer function, must lie within
the unit circle in the z-plane, |z| < 1. In digital signal processing, cascade, lattice,
parallel and wave filters have been proposed for the realisation of the transfer function
described by (3.13) (Oppenheim et al. 1999). For prediction applications, however, the
direct form, as in Figure 3.4, and lattice structures are most commonly employed.

In signal modelling, rather than being deterministic, the input e(k) to the filter in
(3.10) is assumed to be an independent identically distributed (i.i.d.) discrete time
random signal. This input is an integral part of a rational transfer function dis-
crete time signal model. The filtering operations described by Equations (3.10)–(3.12),

7 This type of stability is commonly denoted as BIBO stability in contrast to other types of
stability, such as global asymptotic stability (GAS).

NETWORK ARCHITECTURES FOR PREDICTION 39

together with such an i.i.d. input with prescribed finite variance σ2
e , represent respec-

tively, ARMA(p, q), MA(q) and AR(p) signal models. The autocorrelation function
of the input e(k) is given by σ2

eδ(k) and therefore its power spectral density (PSD) is
Pe(f) = σ2

e , for all f . The PSD of an ARMA model is therefore

Py(f) = |H(f)|2Pe(f) = σ2
e |H(f)|2, f ∈ (− 1

2 , 1
2], (3.14)

where f is the normalised frequency. The quantity |H(f)|2 is the magnitude squared
frequency domain transfer function found from (3.13) by replacing z = ej2πf . The
role of the filter is therefore to shape the PSD of the driving noise to match the
PSD of the physical system. Such an ARMA model is well motivated by the Wold
decomposition, which states that any stationary discrete time random signal can be
split into the sum of uncorrelated deterministic and random components. In fact, an
ARMA(∞, ∞) model is sufficient to model any stationary discrete time random signal
(Theiler et al. 1993).

3.7 Nonlinear Predictors

If a measurement is assumed to be generated by an ARMA(p, q) model, the optimal
conditional mean predictor of the discrete time random signal {y(k)}

ŷ(k) = E[y(k) | y(k − 1), y(k − 2), . . . , y(0)] (3.15)

is given by

ŷ(k) =
p∑

i=1

aiy(k − i) +
q∑

j=1

bj ê(k − j), (3.16)

where the residuals ê(k − j) = y(k − j) − ŷ(k − j), j = 1, 2, . . . , q. Notice the predic-
tor described by (3.16) utilises the past values of the actual measurement, y(k − i),
i = 1, 2, . . . , p; whereas the estimates of the unobservable input signal, e(k − j),
j = 1, 2, . . . , q, are formed as the difference between the actual measurements and the
past predictions. The feedback present within (3.16), which is due to the residuals
ê(k − j), results from the presence of the MA(q) part of the model for y(k) in (3.10).
No information is available about e(k) and therefore it cannot form part of the pre-
diction. On this basis, the simplest form of nonlinear autoregressive moving average
NARMA(p, q) model takes the form,

y(k) = Θ

(p∑
i=1

aiy(k − i) +
q∑

j=1

bje(k − j)
)

+ e(k), (3.17)

where Θ(·) is an unknown differentiable zero memory nonlinear function. Notice e(k)
is not included within Θ(·) as it is unobservable. The term NARMA(p, q) is adopted
to define (3.17), since save for the e(k), the output of an ARMA(p, q) model is simply
passed through the zero-memory nonlinearity Θ(·).

The corresponding NARMA(p, q) predictor is given by

ŷ(k) = Θ

(p∑
i=1

aiy(k − i) +
q∑

j=1

bj ê(k − j)
)

, (3.18)

40 NONLINEAR PREDICTORS

Σ

a y(k-i)iΣ
p

i=1

Σ

-1z

-1z

Σ
q

j=1
b e(k-j)j

^

For NAR and
NARMA parts

-1z

-1z

y(k)^

Linear
Combination

e(k-q)^

e(k-1)^

Linear
Combination y(k)

nonlinearity

For NARMA
part

y(k-2)

y(k-p)

_

+

y(k-1)

Θ().

Figure 3.5 Structure of NARMA(p, q) and NAR(p) predictors

where the residuals ê(k − j) = y(k − j) − ŷ(k − j), j = 1, 2, . . . , q. Equivalently, the
simplest form of nonlinear autoregressive (NAR(p)) model is described by

y(k) = Θ

(p∑
i=1

aiy(k − i)
)

+ e(k) (3.19)

and its associated predictor is

ŷ(k) = Θ

(p∑
i=1

aiy(k − i)
)

. (3.20)

The associated structures for the predictors described by (3.18) and (3.20) are shown
in Figure 3.5. Feedback is present within the NARMA(p, q) predictor, whereas the
NAR(p) predictor is an entirely feedforward structure. The structures are simply
those of linear filters described in Section 3.6 with the incorporation of a zero-memory
nonlinearity.

In control applications, most generally, NARMA(p, q) models also include so-called
exogeneous inputs, u(k − s), s = 1, 2, . . . , r, and following the approach of (3.17) and
(3.19) the simplest example takes the form

y(k) = Θ

(p∑
i=1

aiy(k − i) +
q∑

j=1

bje(k − j) +
r∑

s=1

csu(k − s)
)

+ e(k) (3.21)

and is termed a nonlinear autoregressive moving average with exogeneous inputs
model, NARMAX(p, q, r), with associated predictor

ŷ(k) = Θ

(p∑
i=1

aiy(k − i) +
q∑

j=1

bj ê(k − j) +
r∑

s=1

csu(k − s)
)

, (3.22)

which again exploits feedback (Chen and Billings 1989; Siegelmann et al. 1997). This
is the most straightforward form of nonlinear predictor structure derived from linear
filters.

NETWORK ARCHITECTURES FOR PREDICTION 41

-1z

-1z

-1z

-1z

y(k)^

input layer hidden layer output layer

y(k-p)

neuron

neuron

neuron

y(k-2)

y(k-p+1)

y(k-1)

y(k)

Figure 3.6 Multilayer feedforward neural network

3.8 Feedforward Neural Networks: Memory Aspects

The nonlinearity present in the predictors described by (3.18), (3.20) and (3.22) only
appears at the overall output, in the same manner as in the simple neuron depicted in
Figure 3.3. These predictors could therefore be referred to as single neuron structures.
More generally, however, in neural networks, the nonlinearity is distributed through
certain layers, or stages, of processing.

In Figure 3.6 a multilayer feedforward neural network is shown. The measurement
samples appear at the input layer, and the output prediction is given from the output
layer. To be consistent with the problem of prediction of a single discrete time random
signal, only a single output is assumed. In between, there exist so-called hidden layers.
Notice the outputs of each layer are only connected to the inputs of the adjacent
layer. The nonlinearity inherent in the network is due to the overall action of all the
activation functions of the neurons within the structure.

In the problem of prediction, the nature of the inputs to the multilayer feedforward
neural network must capture something about the time evolution of the underlying
discrete time random signal. The simplest situation is for the inputs to be time-delayed
versions of the signal, i.e. y(k − i), i = 1, 2, . . . , p, and is commonly termed a tapped
delay line or delay space embedding (Mozer 1993). Such a block of inputs provides the
network with a short-term memory of the signal. At each time sample, k, the inputs
of the network only see the effect of one sample of y(k), and Mozer (1994) terms this
a high-resolution memory. The overall predictor can then be represented as

ŷ(k) = Φ(y(k − 1), y(k − 2), . . . , y(k − p)), (3.23)

where Φ represents the nonlinear mapping of the neural network.

42 FEEDFORWARD NEURAL NETWORKS: MEMORY ASPECTS

Σ
ŷ(k)

Φ(v(k))

bias

y(k-p)

unity bias input

y(k-1)

synaptic FIR

synaptic FIR
filter 1

filter p

v(k)

+1

Figure 3.7 Structure of the neuron of a time delay neural network

Other forms of memory for the network include: samples with nonuniform delays,
i.e. y(k − i), i = τ1, τ2, . . . , τp; exponential, where each input to the network, denoted
ỹi(k), i = 1, 2, . . . , p, is calculated recursively from ỹi(k) = µiỹi(k −1)+(1−µi)yi(k),
where µi ∈ [−1, 1] is the exponential factor which controls the depth (Mozer 1993) or
time spread of the memory and yi(k) = y(k − i), i = 1, 2, . . . , p. A delay line memory
is therefore termed high-resolution low-depth, while an exponential memory is low-
resolution but high-depth. In continuous time, Principe et al. (1993) proposed the
Gamma memory, which provided a method to trade resolution for depth. A discrete
time version of this memory is described by

ỹµ,j(k) = µỹµ,j(k − 1) + (1 − µ)ỹµ,j−1(k − 1), (3.24)

where the index j is included because it is necessary to evaluate (3.24) for j =
0, 1, . . . , i, where i is the delay of the particular input to the network and ỹµ,−1(k) =
y(k + 1), for all k � 0, and ỹµ,j(0) = 0, for all j � 0. The form of the equation is,
moreover, a convex mixture. The choice of µ controls the trade-off between depth and
resolution; small µ provides low-depth and high-resolution memory, whereas high µ
yields high-depth and low-resolution memory.

Restricting the memory in a multilayer feedforward neural network to the input
layer may, however, lead to structures with an excessively large number of parameters.
Wan (1993) therefore utilises a time-delay network where the memory is integrated
within each layer of the network. Figure 3.7 shows the form of a neuron within a
time-delay network, in which the multipliers of the basic neuron of Figure 3.3 are
replaced by FIR filters to capture the dynamics of the input signals. Networks formed
from such neurons are functionally equivalent to networks with only the memory at
their input but generally have many fewer parameters, which is beneficial for learning
algorithms.

The integration of memory into a multilayer feedforward network yields the struc-
ture for nonlinear prediction. It is clear, therefore, that such networks belong to the
class of nonlinear filters.

NETWORK ARCHITECTURES FOR PREDICTION 43

-1z

-1z

-1z

-1z

y(k)^

y(k-p)

global feedback

local feedback

local feedback

neuron

neuron

neuron

y(k-2)

y(k-p+1)

y(k-1)

y(k)

Figure 3.8 Structure of a recurrent neural network with local and global feedback

3.9 Recurrent Neural Networks: Local and Global Feedback

In Figure 3.6, the inputs to the network are drawn from the discrete time signal y(k).
Conceptually, it is straightforward to consider connecting the delayed versions of the
output, ŷ(k), of the network to its input. Such connections, however, introduce feed-
back into the network and therefore the stability of such networks must be considered,
this is a particular focus of later parts of this book. The provision of feedback, with
delay, introduces memory to the network and so is appropriate for prediction.

The feedback within recurrent neural networks can be achieved in either a local
or global manner. An example of a recurrent neural network is shown in Figure 3.8
with connections for both local and global feedback. The local feedback is achieved
by the introduction of feedback within the hidden layer, whereas the global feedback
is produced by the connection of the network output to the network input. Inter-
neuron connections can also exist in the hidden layer, but they are not shown in
Figure 3.8. Although explicit delays are not shown in the feedback connections, they
are assumed to be present within the neurons in order that the network is realisable.
The operation of a recurrent neural network predictor that employs global feedback
can now be represented by

ŷ(k) = Φ(y(k − 1), y(k − 2), . . . , y(k − p), ê(k − 1), . . . , ê(k − q)), (3.25)

44 STATE-SPACE REPRESENTATION AND CANONICAL FORM

where again Φ(·) represents the nonlinear mapping of the neural network and

ê(k − j) = y(k − j) − ŷ(k − j), j = 1, . . . , q.

A taxonomy of recurrent neural networks architectures is presented by Tsoi and Back
(1997). The choice of structure depends upon the dynamics of the signal, learning
algorithm and ultimately the prediction performance. There is, unfortunately, no hard
and fast rule as to the best structure to use for a particular problem (Personnaz and
Dreyfus 1998).

3.10 State-Space Representation and Canonical Form

The structures in this chapter have been developed on the basis of difference equation
representations. Simple nonlinear predictors can be formed by placing a zero-memory
nonlinearity within the output stage of a classical linear predictor. In this case, the
nonlinearity is restricted to the output stage, as in a single layer neural network
realisation. On the other hand, if the nonlinearity is distributed through many layers
of weighted interconnections, the concept of neural networks is fully exploited and
more powerful nonlinear predictors may ensue. For the purpose of prediction, memory
stages may be introduced at the input or within the network. The most powerful
approach is to introduce feedback and to unify feedback networks. Nerrand et al.
(1994) proposed an insightful canonical state-space representation:

Any feedback network can be cast into a canonical form that consists
of a feedforward (static) network:

whose outputs are the outputs of the neurons that have desired
values, and the values of the state variables,

whose inputs are the inputs of the network and the values of the state
variables, the latter being delayed by one time unit.

Note that in the prediction of a single discrete-time random signal, the network will
have only one output neuron with a predicted value. For a dynamic system, such as
a recurrent neural network for prediction, the state represents a set of quantities that
summarizes all the information about the past behaviour of the system that is needed
to uniquely describe its future behaviour, except for the purely external effects arising
from the applied input (excitation) (Haykin 1999b).

It should be noted that, whereas it is always possible to rewrite a nonlinear input-
output model in a state-space representation, an input–output model equivalent to a
given state-space model might not exist and, if it does, it is surely of higher order.
Under fairly general conditions of observability of a system, however, an equivalent
input–output model does exist but it may be of high order. A state-space model is
likely to have lower order and require a smaller number of past inputs and, hopefully,
a smaller number of parameters. This has fundamental importance when only a lim-
ited number of data samples is available. Takens’ theorem (Wan 1993) implies that
for a wide class of deterministic systems, there exists a diffeomorphism (one-to-one
differential mapping) between a finite window of the time series and the underlying

NETWORK ARCHITECTURES FOR PREDICTION 45

external
inputs Static

Feedforward
Network

unit
delays

^

variables
at time (k)

statestate

at time (k-1)
variables

y(k)

y(k-1)

y(k-p)

s(k)s(k-1)

Figure 3.9 Canonical form of a recurrent neural network for prediction

state of the dynamic system which gives rise to the time series. A neural network can
therefore approximate this mapping to realise a predictor.

In Figure 3.9, the general canonical form of a recurrent neural network is repre-
sented. If the state is assumed to contain N variables, then a state vector is defined
as s(k) = [s1(k), s2(k), . . . , sN (k)]T, and a vector of p external inputs is given by
y(k − 1) = [y(k − 1), y(k − 2), . . . , y(k − p)]T. The state evolution and output equa-
tions of the recurrent network for prediction are given, respectively, by

s(k) = ϕ(s(k − 1), y(k − 1), ŷ(k − 1)), (3.26)
ŷ(k) = ψ(s(k − 1), y(k − 1), ŷ(k − 1)), (3.27)

where ϕ and Ψ represent general classes of nonlinearities. The particular choice of
N minimal state variables is not unique, therefore several canonical forms8 exist.
A procedure for the determination of N for an arbitrary recurrent neural network
is described by Nerrand et al. (1994). The NARMA and NAR predictors described
by (3.18) and (3.20), however, follow naturally from the canonical state-space rep-
resentation because the elements of the state vector are calculated from the inputs
and outputs of the network. Moreover, even if the recurrent neural network contains
local feedback and memory, it is still possible to convert the network into the above
canonical form (Personnaz and Dreyfus 1998).

3.11 Summary

The aim of this chapter has been to show the commonality between the structures
of nonlinear filters and neural networks. To this end, the basic building blocks for
both structures have been shown to be adders, delayers, multipliers and zero-memory
nonlinearities, and the manner in which these elements are interconnected defines

8 These canonical forms stem from Jordan canonical forms of matrices and companion matrices.
Notice that in fact ŷ(k) is a state variable but shown separately to emphasise its role as the predicted
output.

46 SUMMARY

the particular structure. The theory of linear predictors, for stationary discrete time
random signals, which are optimal in the minimum mean square prediction error sense,
has been shown to be well established. The structures of linear predictors have also
been demonstrated to be established in signal processing and statistical modelling.
Nonlinear predictors have then been developed on the basis of defining the dynamics
of a discrete time random signal by a nonlinear model. In essence, in their simplest
form these predictors have two stages: a weighted linear combination of inputs and/or
past outputs, as for linear predictors, and a second stage defined by a zero-memory
nonlinearity.

The neuron, the fundamental processing element in neural networks, has been intro-
duced. Multilayer feedforward neural networks have been introduced in which the
nonlinearity is distributed throughout the structure. To operate in a prediction mode,
some local memory is required either at the input or integral to the network structure.
Recurrent neural networks have then been formulated by connecting delayed versions
of the global output to the input of a multilayer feedforward structure; or by the
introduction of local feedback within the network. A canonical state-space form has
been used to represent an arbitrary neural network.

Recurrent Neural Networks for Prediction
Authored by Danilo P. Mandic, Jonathon A. Chambers

Copyright c©2001 John Wiley & Sons Ltd
ISBNs: 0-471-49517-4 (Hardback); 0-470-84535-X (Electronic)

4

Activation Functions Used in
Neural Networks

4.1 Perspective

The choice of nonlinear activation function has a key influence on the complexity
and performance of artificial neural networks, note the term neural network will be
used interchangeably with the term artificial neural network. The brief introduction
to activation functions given in Chapter 3 is therefore extended. Although sigmoidal
nonlinear activation functions are the most common choice, there is no strong a priori
justification why models based on such functions should be preferred to others.

We therefore introduce neural networks as universal approximators of functions and
trajectories, based upon the Kolmogorov universal approximation theorem, which
is valid for both feedforward and recurrent neural networks. From these universal
approximation properties, we then demonstrate the need for a sigmoidal activation
function within a neuron. To reduce computational complexity, approximations to
sigmoid functions are further discussed. The use of nonlinear activation functions
suitable for hardware realisation of neural networks is also considered.

For rigour, we extend the analysis to complex activation functions and recognise
that a suitable complex activation function is a Möbius transformation. In that con-
text, a framework for rigorous analysis of some inherent properties of neural networks,
such as fixed points, nesting and invertibility based upon the theory of modular groups
of Möbius transformations is provided.

All the relevant definitions, theorems and other mathematical terms are given in
Appendix B and Appendix C.

4.2 Introduction

A century ago, a set of 23 (originally) unsolved problems in mathematics was proposed
by David Hilbert (Hilbert 1901–1902). In his lecture ‘Mathematische Probleme’ at the
second International Congress of Mathematics held in Paris in 1900, he presented 10
of them. These problems were designed to serve as examples for the kinds of prob-
lems whose solutions would lead to further development of disciplines in mathematics.

48 INTRODUCTION

His 13th problem concerned solutions of polynomial equations. Although his original
formulation dealt with properties of the solution of the seventh degree algebraic equa-
tion,1 this problem can be restated as: Prove that there are continuous functions of n
variables, not representable by a superposition of continuous functions of (n−1) vari-
ables. In other words, could a general algebraic equation of a high degree be expressed
by sums and compositions of single-variable functions?2 In 1957, Kolmogorov showed
that the conjecture of Hilbert was not correct (Kolmogorov 1957).

Kolmogorov’s theorem is a general representation theorem stating that any real-
valued continuous function f defined on an n-dimensional cube In (n � 2) can be
represented as

f(x1, . . . , xn) =
2n+1∑
q=1

Φq

(n∑
p=1

ψpq(xp)
)

, (4.1)

where Φq(·), q = 1, . . . , 2n + 1, and ψpq(·), p = 1, . . . , n, q = 1, . . . , 2n + 1, are
typically nonlinear continuous functions of one variable.

For a neural network representation, this means that an activation function of a
neuron has to be nonlinear to form a universal approximator. This also means that
every continuous function of many variables can be represented by a four-layered neu-
ral network with two hidden layers and an input and output layer, whose hidden units
represent mappings Φ and ψ. However, this does not mean that a network with two
hidden layers necessarily provides an accurate representation of function f . In fact,
functions ψpq of Kolmogorov’s theorem are quite often highly nonsmooth, whereas
for a neural network we want smooth nonlinear activation functions, as is required
by gradient-descent learning algorithms (Poggio and Girosi 1990). Vitushkin (1954)
showed that there are functions of more than one variable which do not have a rep-
resentation by superpositions of differentiable functions (Beiu 1998). Important ques-
tions about Kolmogorov’s representation are therefore existence, constructive proofs
and bounds on the size of a network needed for approximation.

Kolmogorov’s representation has been improved by several authors. Sprecher (1965)
replaced functions ψpq in the Kolmogorov representation by λpqψq, where λ is a
constant and ψq are monotonic increasing functions which belong to the class of
Lipschitz functions. Lorentz (1976) showed that the functions Φq can be replaced by
only one function Φ. Hecht-Nielsen reformulated this result for MLPs so that they are
able to approximate any function. In this case, functions ψ are nonlinear activation
functions in hidden layers, whereas functions Φ are nonlinear activation functions in
the output layer. The functions Φ and ψ are found, however, to be generally highly
nonsmooth. Further, in Katsuura and Sprecher (1994), the function ψ is obtained
through a graph that is the limit point of an iterated composition of contraction
mappings on their domain.

In applications of neural networks for universal approximation, the existence proof
for approximation by neural networks is provided by Kolmogorov’s theorem, which

1 Hilbert conjectured that the roots of the equation x7 + ax3 + bx2 + cx + 1 = 0 as functions of
coefficients a, b, c are not representable by sums and superpositions of functions of two coefficients, or
‘Show the impossibility of solving the general seventh degree equation by functions of two variables.’

2 For example, function xy is a composition of functions g(·) = exp(·) and h(·) = log(·),
therefore xy = elog(x)+log(y) = g(h(x) + h(y)) (Gorban and Wunsch 1998).

ACTIVATION FUNCTIONS USED IN NEURAL NETWORKS 49

in the neural network community was first recognised by Hecht-Nielsen (1987) and
Lippmann (1987). The first constructive proof of neural networks as universal approx-
imators was given by Cybenko (1989). Most of the analyses rest on the denseness
property of nonlinear functions that approximate the desired function in the space
in which the desired function is defined. In Cybenko’s results, for instance, if σ is a
continuous discriminatory function,3 then finite sums of the form,

g(x) =
N∑

i=1

wiσ(aT
i x + bi), (4.2)

where wi, bi, i = 1, . . . , N , are coefficients, are dense in the space of continuous
functions defined on [0, 1]n. Following the classical approach to approximation, this
means that given any continuous function f defined on [0, 1]N and any ε > 0, there
is a g(x) given by (4.2) for which |g(x) − f(x)| < ε for all x ∈ [0, 1]N . Cybenko then
concludes that any bounded and measurable sigmoidal function is discriminatory
(Cybenko 1989), and that a three-layer neural network with a sufficient number of
neurons in its hidden layer can represent an arbitrary function (Beiu 1998; Cybenko
1989).

Funahashi (1989) extended this to include sigmoidal functions so that any con-
tinuous function is approximately realisable by three-layer networks with bounded
and monotonically increasing activation functions within hidden units. Hornik et al.
(1989) showed that the output function does not have to be continuous, and they also
proved that a neural network can approximate simultaneously both a function and its
derivative (Hornik et al. 1990). Hornik (1990) further showed that the activation func-
tion has to be bounded and nonconstant (but not necessarily continuous), Kurkova
(1992) revealed the existence of an approximate representation of functions by super-
position of nonlinear functions within the constraints of neural networks. Leshno et
al. (1993) relaxed the condition for the activation function to be ‘locally bounded
piecewise continuous’ (i.e. if and only if the activation function is not a polynomial).
This result encompasses most of the activation functions commonly used.

Funahashi and Nakamura (1993), in their article ‘Approximation of dynamical sys-
tems by continuous time recurrent neural networks’, proved that the universal approx-
imation theorem also holds for trajectories and patterns and for recurrent neural
networks. Li (1992) also showed that recurrent neural networks are universal approx-
imators. Some recent results, moreover, suggest that ‘smaller nets perform better’
(Elsken 1999), which recommends recurrent neural networks, since a small-scale RNN
has dynamics that can be achieved only by a large scale feedforward neural network.

3 σ(·) is discriminatory if for a Borel measure µ on [0, 1]N ,∫
[0,1]N

σ(aTx + b) dµ(x) = 0, ∀a ∈ R
N , ∀b ∈ R,

implies that µ = 0. The sigmoids Cybenko considered had limits

σ(t) =

{
0, t → −∞,

1, t → ∞.

This justifies the use of the logistic function σ(x) = 1/(1 + e−βx) in neural network applications.

50 INTRODUCTION

Sprecher (1993) considered the problem of dimensionality of neural networks and
demonstrated that the number of hidden layers is independent of the number of input
variables N . Barron (1993) described spaces of functions that can be approximated
by the relaxed algorithm of Jones using functions computed by single-hidden-layer
networks or perceptrons. Attali and Pages (1997) provided an approach based upon
the Taylor series expansion. Maiorov and Pinkus have given lower bounds for neural
network based approximation (Maiorov and Pinkus 1999). Approximation ability of
neural networks has also been rigorously studied in Williamson and Helmke (1995).

Sigmoid neural units usually use a ‘bias’ or ‘threshold’ term in computing the
activation potential (combination function, net input net(k) = xT(k)w(k)) of the
neural unit. The bias term is a connection weight from a unit with a constant value
as shown in Figure 3.3. The bias unit is connected to every neuron in a neural network,
the weight of which can be trained just like any other weight in a neural network.

From the geometric point of view, for an MLP with N output units, the operation
of the network can be seen as defining an N -dimensional hypersurface in the space
spanned by the inputs to the network. The weights define the position of this surface.
Without a bias term, all the hypersurfaces would pass through the origin (Mandic and
Chambers 2000c), which in turn means that the universal approximation property of
neural networks would not hold if the bias was omitted.

A result by Hornik (1993) shows that a sufficient condition for the universal approx-
imation property without biases is that no derivative of the activation function van-
ishes at the origin, which implies that a fixed nonzero bias can be used instead of a
trainable bias.

Why use activation functions?

To introduce nonlinearity into a neural network, we employ nonlinear activation (out-
put) functions. Without nonlinearity, since a composition of linear functions is again
a linear function, an MLP would not be functionally different from a linear filter
and would not be able to perform nonlinear separation and trajectory learning for
nonlinear and nonstationary signals.

Due to the Kolmogorov theorem, almost any nonlinear function is a suitable can-
didate for an activation function of a neuron. However, for gradient-descent learning
algorithms, this function ought to be differentiable. It also helps if the function is
bounded.4 For the output neuron, one should either use an activation function suited
to the distribution of desired (target) values, or preprocess the inputs to achieve this
goal. If, for instance, the desired values are positive but have no known upper bound,
an exponential nonlinear activation function can be used.

It is important to identify classes of functions and processes that can be approxi-
mated by artificial neural networks. Similar problems occur in nonlinear circuit the-
ory, where analogue nonlinear devices are used to synthesise desired transfer functions
(gyrators, impedance converters), and in digital signal processing where digital filters

4 The function f(x) = ex is a suitable candidate for an activation function and is suitable for
unbounded signals. It is also continuously differentiable. However, to control the dynamics, fixed
points and invertibility of a neural network, it is desirable to have bounded, ‘squashing’ activation
functions for neurons.

ACTIVATION FUNCTIONS USED IN NEURAL NETWORKS 51

are designed to approximate arbitrarily well any transfer function. Fuzzy sets are also
universal approximators of functions and their derivatives (Kreinovich et al. 2000;
Mitaim and Kosko 1996, 1997).

4.3 Overview

We first explain the requirements of an activation function mathematically. We will
then introduce different types of nonlinear activation functions and discuss their prop-
erties and realisability. Finally, a complex form of activation functions within the
framework of Möbius transformations will be introduced.

4.4 Neural Networks and Universal Approximation

Learning an input–output relationship from examples using a neural network can be
considered as the problem of approximating an unknown function f(x) from a set of
data points (Girosi and Poggio 1989a). This is why the analysis of neural networks
for approximation is important for neural networks for prediction, and also system
identification and trajectory tracking. The property of uniform approximation is also
found in algebraic and trigonometric polynomials, such as in the case of Weierstrass
and Fourier representation, respectively.

A neural activation function σ(·) is typically chosen to be a continuous and dif-
ferentiable nonlinear function that belongs to the class S = {σi | i = 1, 2, . . . , n} of
sigmoid5 functions having the following desirable properties6

(i) σi ∈ S for i = 1, . . . , n;

(ii) σi(xi) is a continuously differentiable function;

(iii) σ′
i(xi) =

dσi(xi)
dxi

> 0 for all xi ∈ R;

(iv) σi(R) = (ai, bi), ai, bi ∈ R, ai �= bi;

(v) σ′
i(x) → 0 as x → ±∞;

(vi) σ′
i(x) takes a global maximal value maxx∈R σ′

i(x) at a unique point x = 0;

(vii) a sigmoidal function has only one inflection point, preferably at x = 0;

(viii) from (iii), function σi is monotonically nondecreasing, i.e. if x1 < x2 for each
x1, x2 ∈ R ⇒ σi(x1) � σi(x2);

(ix) σi is uniformly Lipschitz, i.e. there exists a constant L > 0 such that ‖σi(x1) −
σi(x2)‖ � L‖x1 − x2‖, ∀x1, x2 ∈ R, or in other words

σi(x1) − σi(x2)
x1 − x2

� L, ∀x1, x2 ∈ R, x1 �= x2.

5 Sigmoid means S-shaped.
6 The constraints we impose on sigmoidal functions are stricter than the ones commonly employed.

52 NEURAL NETWORKS AND UNIVERSAL APPROXIMATION

−10 −5 0 5 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

sigmoid function σ
derivative of σ

(a) Sigmoid function σ1 and its derivative

−10 −5 0 5 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

sigmoid function σ
derivative of σ

(b) Sigmoid function σ2 and its derivative

−10 −5 0 5 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

sigmoid function σ
derivative of σ

(c) Sigmoid function σ3 and its derivative

−10 −5 0 5 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

sigmoid function σ
derivative of σ

(d) Sigmoid function σ4 and its derivative

Figure 4.1 Sigmoid functions and their derivatives

We will briefly discuss some of the above requirements. Property (ii) represents
continuous differentiability of a sigmoid function, which is important for higher order
learning algorithms, which require not only existence of the Jacobian matrix, but also
the existence of a Hessian and matrices containing higher-order derivatives. This is
also necessary if the behaviour of a neural network is to be described via Taylor series
expansion about the current point in the state space of the network. Property (iii)
states that a sigmoid should have a positive first derivative, which in turn means that
a gradient descent algorithm which is employed for training of a neural network should
have gradient vectors pointing towards the bottom of the bowl shaped error perfor-
mance surface, which is the global minimum of the surface. Property (vi) means that
the point around which the first derivative is centred is the origin. This is connected
with property (vii) which means that the second derivative of the activation function
should change its sign at the origin. Going back to the error performance surface, this

ACTIVATION FUNCTIONS USED IN NEURAL NETWORKS 53

means that irrespective of whether the current prediction error is positive or negative,
the gradient vector of the network at that point should point downwards. Monotonic-
ity, required by (viii) is useful for uniform convergence of algorithms and in search for
fixed points of neural networks. Finally, the Lipschitz condition is connected with the
boundedness of an activation function and degenerates into requirements of uniform
convergence given by the contraction mapping theorem for L < 1.

Surveys of neural transfer functions can be found in Duch and Jankowski (1999)
and Cichocki and Unbehauen (1993). Examples of sigmoidal functions are

σ1(x) =
1

1 + e−βx
, β ∈ R,

σ2(x) = tanh(βx) =
eβx − e−βx

eβx + e−βx
, β ∈ R,

σ3(x) =
2
π

arctan(1
2πβx), β ∈ R,

σ4(x) =
x2

1 + x2 sgn(x),

(4.3)

where σ(x) = Φ(x) as in Chapter 3. For β = 1, these functions and their derivatives
are given in Figure 4.1. The function σ1, also known as the logistic function,7 is
unipolar, whereas the other three activation functions are bipolar. Two frequently
used sigmoid functions in neural networks are σ1 and σ2. Their derivatives are also
simple to calculate, and are

σ′
1(x) = βσ1(x)(1 − σ1(x)),

σ′
2(x) = β sech2(x) = β(1 − σ2

2(x)).

}
(4.4)

We can easily modify activation functions to have different saturation values. For the
logistic function σ1(x), whose saturation values are (0, 1), to obtain saturation values
(−1, 1), we perform

σs(x) =
2

1 + e−βx
− 1. (4.5)

To modify the input data to fall within the range of an activation function, we can
normalise, standardise or rescale the input data, using mean µ, standard deviation std
and the minimum and maximum range Rmin and Rmax.8 Cybenko (1989) has shown
that neural networks with a single hidden layer of neurons with sigmoidal functions are

7 The logistic map ḟ = rf(1 − f/K) (Strogatz 1994) is used to describe population dynamics,
where f is the growth of a population of organisms, r denotes the growth rate and K is the so-called
carrying capacity (population cannot grow unbounded). Fixed points of this map in the phase space
are 0 and K, hence the population always approaches the carrying capacity. Under these conditions,
the graph of f(t) belongs to the class of sigmoid functions.

8 To normalise the input data to µ = 0 and std = 1, we calculate

µ =
∑N

i=1 xi

N
, std =

√∑N
i=1(xi − µ)2

N
,

and perform the standardisation of the input data as x̃i = (xi−µ)/std. To translate data to midrange

54 OTHER ACTIVATION FUNCTIONS

universal approximators and provided they have enough neurons, can approximate an
arbitrary continuous function on a compact set with arbitrary precision. These results
do not mean that sigmoidal functions always provide an optimal choice.9

Two functions determine the way signals are processed by neurons.

Combination functions. Each processing unit in a neural network performs some
mathematical operation on values that are fed into it via synaptic connections
(weights) from other units. The resulting value is called the activation potential
or ‘net input’. This operation is known as a ‘combination function’, ‘activation
function’ or ‘net input’. Any combination function is a net: R

N → R function,
and its output is a scalar. Most frequently used combination functions are inner
product (linear) combination functions (as in MLPs and RNNs) and Euclidean
or Mahalanobis distance combination functions (as in RBF networks).

Activation functions. Neural networks for nonlinear processing of signals map their
net input provided by a combination function onto the output of a neuron using
a scalar function called a ‘nonlinear activation function’, ‘output function’ or
sometimes even ‘activation function’. The entire functional mapping performed
by a neuron (composition of a combination function and a nonlinear activation
function) is sometimes called a ‘transfer’ function of a neuron σ : R

N → R.
Nonlinear activation functions with a bounded range are often called ‘squashing’
functions, such as the commonly used tanh and logistic functions. If a unit does
not transform its net input, it is said to have an ‘identity’ or ‘linear’ activation
function.10

Distance based combination functions (proximity functions) D(x; t) ∝ ‖x − t‖, are
used to calculate how close x is to a prototype vector t. It is also possible to use some
combination of the inner product and distance activation functions, for instance in
the form αwTx + β‖x − t‖ (Duch and Jankowski 1999). Many other functions can
be used to calculate the net input, as for instance

A(x,w) = w0 +
N∑

i=1

wixi + wN+1

N∑
i=1

x2
i

(Ridella et al. 1997).

4.5 Other Activation Functions

By the universal approximation theorems, there are many choices of the nonlin-
ear activation function. Therefore, in this section we describe some commonly used
application-motivated activation functions of a neuron.

0 and standardise to range R, we perform

Z =
maxi{xi} + mini{xi}

R
, Sx = max

i
{xi} − min

i
{xi}, xn

i =
xi − Z

Sx/R
.

9 Rational transfer functions (Leung and Haykin 1993) and Gaussian transfer functions also allow
NNs to implement universal approximators.
10 http://www.informatik.uni-freiburg.de/˜heinz/faq.html

ACTIVATION FUNCTIONS USED IN NEURAL NETWORKS 55

−10 −5 0 5 10 15
−1

−0.5

0

0.5

1

1.5

2

θ

x

S
te

p
fu

nc
tio

n

(a) Step activation function

−10 −5 0 5 10 15
−1

−0.5

0

0.5

1

1.5

2

x

S
em

ili
ne

ar
 fu

nc
tio

n

θ
1

θ
2

(b) Semilinear activation function

Figure 4.2 Step and semilinear activation function

The hard-limiter Heaviside (step) function was frequently used in the first imple-
mentations of neural networks, due to its simplicity. It is given by

H(x) =

{
0, x � θ,

1, x > θ,
(4.6)

where θ is some threshold. A natural extension of the step function is the multistep
function HMS(x; θ) = yi, θi � x � θi+1. A variant of this function resembles a
staircase θ1 < θ2 < · · · < θN ⇔ y1 < y2 < · · · < yN , and is often called the staircase
function. The semilinear function is defined as

HSL(x; θ1, θ2) =

0, x � θ1,

(x − θ1)/(θ2 − θ1), θ1 < x � θ2,

1, x > θ2.

(4.7)

The functions (4.6) and (4.7) are depicted in Figure 4.2. Both the above mentioned
functions have discontinuous derivatives, preventing the use of gradient-based training
procedures. Although they are, strictly speaking, S-shaped, we do not use them for
neural networks for real-time processing, and this is why we restricted ourselves to
differentiable functions in our nine requirements that a suitable activation function
should satisfy. With the development of neural network theory, these discontinuous
functions were later generalised to logistic functions, leading to the graded response
neurons, which are suitable for gradient-based training. Indeed, the logistic function

σ(x) =
1

1 + e−βx
(4.8)

degenerates into the step function (4.6), as β → ∞.
Many other activation functions have been designed for special purposes. For in-

stance, a modified activation function which enables single layer perceptrons to solve

56 OTHER ACTIVATION FUNCTIONS

−10 −5 0 5 10
−1

−0.5

0

0.5

1

1.5

2

x

A
ct

iv
at

io
n

fu
nc

tio
n

1/
(1

+
ex

p(
−

x2))

(a) The function (4.9)

−10 −5 0 5 10
−1

−0.5

0

0.5

1

1.5

2

x

A
ct

iv
at

io
n

fu
nc

tio
n

λ
σ(

x)
 +

 (
1−

λ)
H

(x
)

(b) The function (4.10) for λ = 0.4

Figure 4.3 Other activation functions

some linearly inseparable problems has been proposed in Zhang and Sarhadi (1993)
and takes the form,

f(x) =
1

1 + e−(x2+bias) . (4.9)

The function (4.9) is differentiable and therefore a network based upon this function
can be trained using gradient descent methods. The square operation in the exponen-
tial term of the function enables individual neurons to perform limited nonlinear
classification. This activation function has been employed for image segmentation
(Zhang and Sarhadi 1993). There have been efforts to combine two or more forms of
commonly used functions to obtain an improved activation function. For instance, a
function defined by

f(x) = λσ(x) + (1 − λ)H(x), (4.10)
where σ(x) is a sigmoid function, H(x) is a hard-limiting function and 0 � λ � 1, has
been used in Jones (1990). The function (4.10) is a weighted sum of functions σ and
H. The functions (4.9) and (4.10) are depicted in Figure 4.3.

Another possibility is to use a linear combination of sigmoid functions instead of a
single sigmoid function as an activation function of a neuron. A sigmoid packet f is
therefore defined as a linear combination of a set of sigmoid functions with different
amplitudes h, slopes β and biases b (Peng et al. 1998). This function is defined as

f(x) =
N∑

n=1

hnσn =
N∑

n=1

hn

1 + e−βnx+bn
. (4.11)

During the learning phase, all parameters (h, β, b) can be adjusted for adaptive shape-
refining. Intuitively, a Gaussian-shaped activation function can be, for instance, ap-
proximated by a difference of two sigmoids, as shown in Figure 4.4. Other options
include spline neural networks11 (Guarnieri et al. 1999; Vecci et al. 1997) and wavelet

11 Splines are piecewise polynomials (often cubic) that are smooth and can retain the ‘squashing
property’.

ACTIVATION FUNCTIONS USED IN NEURAL NETWORKS 57

−5 0 5 10 15 20
0

0.5

1

x
σ 1(x

)

−5 0 5 10 15 20
0

0.5

1

x

σ 2(x
)

−5 0 5 10 15 20
0

0.5

1

xF
=

σ 1(x
)

−
 σ

2(x
)

Figure 4.4 Approximation capabilities of sigmoid functions

based neural networks (Zhang et al. 1995), where the structure of the network is sim-
ilar to the RBF, except that the RBFs are replaced by orthonormal scaling functions
that are not necessarily radial-symmetric.

For neural systems operating on chaotic input signals, the most commonly used
activation function is a sinusoidal function. Another activation function that is often
used in order to detect chaos in the input signal is the so-called saturated-modulus
function given by (Dogaru et al. 1996; Nakagawa 1996)

ϕ(x) =

{
|x|, |x| � 1,

1, |x| > 1.
(4.12)

This activation function ensures chaotic behaviour even for a very small number of
neurons within the network. This function corresponds to the rectifying operation
used in electronic instrumentation and is therefore called a saturated modulus or
saturated rectifier function.

4.6 Implementation Driven Choice of Activation Functions

When neurons of a neural network are realised in hardware, due to the limitation
of processing power and available precision, activation functions can be significantly
different from their ideal forms (Al-Ruwaihi 1997; Yang et al. 1998). Implementations
of nonlinear activation functions of neurons proposed by various authors are based
on a look-up table, McLaurin polynomial approximation, piecewise linear approxima-
tion or stepwise linear approximation (Basaglia et al. 1995; Murtagh and Tsoi 1992).
These approximations require more iterations of the learning algorithm to converge
as compared with standard sigmoids.

For neurons based upon look-up tables, samples of a chosen sigmoid are put into a
ROM or RAM to store the desired activation function. Alternatively, we use simplified
activation functions that approximate the chosen activation function and are not
demanding regarding processor time and memory. Thus, for instance, for the logistic
function, its derivative can be expressed as σ′(x) = σ(x)(1 − σ(x)), which is simple

58 IMPLEMENTATION DRIVEN CHOICE OF ACTIVATION FUNCTIONS

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

Lo
gi

st
ic

 fu
nc

tio
n

 a
nd

 it
s

ap
pr

ox
im

at
io

n
0.

5
+

 x
(1

−
|x

|/2
),

 fo
r

|x
|<

1
Logistic function
Approximation

Figure 4.5 Logistic function and its approximation

to calculate. The logistic function can be approximated using

f(x) =

0, x � −1,

0.5 + x(1 − |x|/2), −1 < x < 1,

1, x � 1.

(4.13)

The maximal absolute deviation between this function and the logistic function is less
than 0.02.12 The function (4.13) is compared with the logistic function and shown
in Figure 4.5. There are several other approximations. To save on computational
complexity, we can approximate sigmoid functions with a series of straight lines,
i.e. by a piecewise-linear functions. Another sigmoid was proposed by David Elliott
(Elliott 1993)

σ(x) =
x

1 + |x| (4.14)

with derivative
σ′ =

1
(1 + |x|)2 = (1 − |σ|)2,

which is also easy to calculate. The function (4.14) and its derivative are shown in
Figure 4.6.

In a digital VLSI implementation of an MLP, the computation of the activation
function of each neuron is performed using a look-up table (LUT), i.e. a RAM or

12 http://www.dontveter.com/bpr/bpr.html

ACTIVATION FUNCTIONS USED IN NEURAL NETWORKS 59

−10 −8 −6 −4 −2 0 2 4 6 8 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

S
ig

m
oi

d
x/

(1
+

|x
|)

 a
nd

 it
s

de
riv

at
iv

e

Sigmoid σ=x/(1+|x|)
Its derivative (1−|σ|)2

Figure 4.6 Sigmoid function and its derivative
... W(k)

net(k) y(k)
Σ ...

Look-Up-Table

x(k)

x(k-1)

x(k-N+1)

Figure 4.7 LUT neuron

ROM memory which is addressed in some way (Piazza et al. 1993). An adaptive LUT
based neuron is depicted in Figure 4.7.

Although sigmoidal functions are a typical choice for MLPs, several other functions
have been considered. Recently, the use of polynomial activation functions has been
proposed (Chon and Cohen 1997; Piazza et al. 1992; Song and Manry 1993). Networks
with polynomial neurons have been shown to be isomorphic to Volterra filters (Chon
and Cohen 1997; Song and Manry 1993). However, calculating a polynomial activation

f(x) = a0 + a1(x) + · · · + aMxM (4.15)

for every neuron and every time instant is extremely computationally demanding and
is unlikely to be acceptable for real-time applications. Since their calculation is much
slower than simple arithmetic operations, other sigmoidal functions might be useful

60 MLP VERSUS RBF NETWORKS

for hardware implementations of neural networks for online applications. An overview
of such functions is given in Duch and Jankowski (1999).

4.7 MLP versus RBF Networks

MLP- and RBF-based neural networks are the two most commonly used types of feed-
forward networks. A fundamental difference between the two is the way in which hid-
den units combine values at their inputs. MLP networks use inner products, whereas
RBFs use Euclidean or Mahalanobis distance as a combination function. An RBF is
given by

f(x) =
N∑

i=1

ciG(x; ti), (4.16)

where G(·) is a basis function, ci, i = 1, . . . , N , are coefficients, ti, i = 1, . . . , N , are
centres of radial bases, and x is the input vector.

Both multilayer perceptrons and RBFs have good approximation properties and
are related for normalised inputs. In fact, an MLP network can always simulate a
Gaussian RBF network, whereas the converse is true only for certain values of the
bias parameter (Poggio and Girosi 1990; Yee et al. 1999).

4.8 Complex Activation Functions

Recent results suggest that despite the existence of the universal approximation prop-
erty, approximation by real-valued neural networks might not be continuous (Kainen
et al. 1999) for some standard types of neural networks, such as Heaviside percep-
trons or Gaussian radial basis functions.13 For many functions there is not a best
approximation in R. However, there is always a unique best approximation in C.

Many apparently real-valued mathematical problems can be better understood if
they are embedded in the complex plane. Every variable is then represented by a
complex number z = x + j y, where x and y are real numbers and j =

√
−1. Example

problems cast into the complex plane include the analysis of transfer functions and
polynomial equations. This has motivated researchers to generalise neural networks to
the complex plane (Clarke 1990). Concerning the hardware realisation, the complex
weights of the neural network represent impedance as opposed to resistance in real-
valued networks.

If we again consider the approximation,

f(x) =
N∑

i=1

ciσ(x − ai), (4.17)

where σ is a sigmoid function, different choices of σ will give different realisations of f .
An extensive analysis of this problem is given in Helmke and Williamson (1995) and

13 Intuitively, since a measure of the quality of an approximation is a distance function, for instance,
the L2 distance given by (

∫ b
a (f(x) − g(x))2 dx)1/2, there might occur a case where we have to calcu-

late an integral which is not possible to be calculated within the field of real numbers R, but which
is easy to calculate in the field of complex numbers C – recall the function e−x2

.

ACTIVATION FUNCTIONS USED IN NEURAL NETWORKS 61

Williamson and Helmke (1995). Going back to elementary function approximation, if
σ(x) = x−1, then (4.17) represents a partial fraction expansion of a rational function
f . The coefficients ai and ci are, respectively, poles and residuals of (4.17). Notice,
however, that both ai and ci are allowed to be complex.14

A complex sigmoid is naturally obtained by analytic continuation of a real-valued
sigmoid onto the complex plane. In order to extend a gradient-based learning algo-
rithm for complex signals, the employed activation function should be analytic. Using
analytic continuation to extend an activation function to the complex plane, however,
has a consequence that, by the Liouville Theorem (Theorem C.1.4), the only bounded
differentiable functions defined on the entire complex plane are constant functions.
For commonly used activation functions, however, the singularities occur in a limited
set.15 For the logistic function

σ(z) =
1

1 + e−z
= u + jv,

if z approaches any value in the set {0± j(2n+1)π, n ∈ Z}, then |σ(z)| → ∞. Similar
conditions for the tanh are {0 ± j((2n + 1)/2)π, n ∈ Z}, whereas for e−z2

, we have
singularities for z = 0 + jy (Georgiou and Koutsougeras 1992).

Hence, a function obtained by an analytic continuation to the complex plane is
generally speaking not an appropriate activation function. Generalising the discussion
for real activation functions, properties that a function σ(z) = u(x, y)+jv(x, y) should
satisfy so that it represents a suitable activation function in the complex plane are
(Georgiou and Koutsougeras 1992)

• u and v are nonlinear in x and y;

• σ(z) is bounded ⇒ u and v are bounded;

• σ(z) has bounded partial derivatives ux, uy, vx, vy, which satisfy the Cauchy–
Riemann conditions (Mathews and Howell 1997);

• σ(z) is not entire (not a constant).

Regarding fixed point iteration and global asymptotic stability of neural networks,
which will be discussed in more detail in Chapter 7, complex-valued neural networks
can generate the dynamics

z ← Φ(z). (4.18)

Functions of the form cz(1 − z), for instance, give rise to the Mandelbrot and Julia
sets (Clarke 1990; Devaney 1999; Strogatz 1994). A single complex neuron with a
feedback connection is thus capable of performing complicated discriminations and
generation of nonlinear behaviour.

14 Going back to transfer function approximation in signal processing, functions of the type (4.17)
are able to approximate a Butterworth function of any degree if (4.17) is allowed to have complex
coefficients (such as in the case of an RLC realisation). On the other hand, functions with real
coefficients (an RC network) cannot approximate a Butterworth function whose order is � 2.
15 The exponential function exp : C → C \ {0} maps the set {z = a + (2k + 1)jπ}, a ∈ R, k ∈ Z

onto the negative real axis, which determines singularities of complex sigmoids.

62 COMPLEX ACTIVATION FUNCTIONS

−10

−5

0

5

10

−10

−5

0

5

10
0

2

4

6

8

10

Real partImaginary part

C
om

pl
ex

 e
xt

en
si

on
 o

f t
he

 lo
gi

st
ic

 fu
nc

tio
n

σ(
z)

=
1/

(1
+

ex
p(

−
z)

)

Figure 4.8 Complex extension of the logistic function σ(z) = 1/(1 + e−z)

To provide conditions on the capability of complex neural networks to approximate
nonlinear dynamics, a density theorem for complex MLPs with nonanalytic activation
function and a hidden layer is proved in Arena et al. (1998b). The often cited denseness
conditions are, as pointed out by Cotter (1990), special cases of the Stone–Weierstrass
theorem.

In the context of learning algorithms, Leung and Haykin (1991) developed their
complex backpropagation algorithm considering the following activation function,

f(z) =
1

1 + e−z
: C

N → C, (4.19)

whose magnitude is shown in Figure 4.8. This complex extension of the logistic func-
tion has singularities due to the complex exponential in the denominator of (4.19).
It is safe to use (4.19) if the inputs are scaled to the range of the complex logistic
function where it is analytic. In Benvenuto and Piazza (1992), the following activation
function is proposed,

σ(z) = σ(x) + jσ(y), (4.20)

where σ(z) is a two-dimensional extension of a standard sigmoid. The magnitude of
this function is shown in Figure 4.9. The function (4.20) is not analytic and bounded
on C. It is, however, discriminatory, and linear combinations of functions of this type
are dense in C (Arena et al. 1998a).

Another proposed complex sigmoid is (Benvenuto and Piazza 1992)

σ(z) =
2c1

1 + e−c2z
− c1, (4.21)

ACTIVATION FUNCTIONS USED IN NEURAL NETWORKS 63

−10

−5

0

5

10

−10

−5

0

5

10
0

0.5

1

1.5

Real partImaginary part

F
un

ct
io

n
ab

s(
σ(

z)
=

σ(
x)

 +
 i*

σ(
y)

)

Figure 4.9 Complex sigmoid σ(z) = σ(zr) + jσ(zi)

where c1, c2 are suitable parameters. The derivative of this function is

σ′(z) =
c2

2c1
(c2

1 − σ2(z)). (4.22)

Other work on complex backpropagation was proposed in Kim and Guest (1990).
A suitable complex activation function would have the property that an excitation

near zero would remain close to zero, and large excitations would be mapped into
bounded outputs. One such function is given by (Clarke 1990)

σ(z) =
(cos θ + j sin θ)(z − s)

1 − α∗z
, (4.23)

where θ is a rotation angle and α is a complex constant of magnitude less than one.
The operator (·)∗ denotes complex conjugation; the sign of the imaginary part of the
asterisked variable is changed. This function is a conformal mapping of the unit disc in
the complex plane onto itself and is unique. Further, σ maps large complex numbers
into −1/α and thus satisfies the above criteria. The one flaw in σ is a singularity at
z = 1/α, but in view of Liouville’s theorem this is unavoidable. The magnitude plot
of this function is shown in Figure 4.10.

A simple function that satisfies all the above properties is (Georgiou and Kout-
sougeras 1992)

f(z) =
z

c + (1/r)|z| , (4.24)

where c and r are real positive constants. This function maps any point in the complex
plane onto the open disc {z : |z| < r}, as shown in Figure 4.11.

64 COMPLEX ACTIVATION FUNCTIONS

−5

0

5

−5

0

5
0

5

10

15

20

25

30

Real partImaginary part

M
ag

ni
tu

de

Figure 4.10 A complex activation function

−5

0

5

−5

0

5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Real partImaginary part

M
ag

ni
tu

de
 o

f f
un

ct
io

n
f(

z)
=

1/
(c

+
1/

r
z)

Figure 4.11 Magnitude of the function (4.24)

ACTIVATION FUNCTIONS USED IN NEURAL NETWORKS 65

4.9 Complex Valued Neural Networks as Modular Groups of
Compositions of Möbius Transformations

We next offer a different perspective upon some inherent properties of neural networks,
such as fixed points, nesting and invertibility, by exposing the representations of neural
networks in the framework of Möbius transformations. This framework includes the
consideration of complex weights and inputs to the network together with complex
sigmoidal activation functions.

4.9.1 Möbius Transformation

Observation 4.9.1.

(i) The map g : C → C, with g(z) = ez is holomorphic on C.

(ii) The complex sigmoidal activation function f(z) of a neuron in a neural network
is holomorphic and conformal.

Definition 4.9.2 (Möbius mapping (Apostol 1997)). Let a, b, c and d denote
four complex constants with the restriction that ad �= bc. The function

w = f(z) =
az + b

cz + d
(4.25)

is called a Möbius transformation, bilinear transformation or linear fractional trans-
formation.

The condition ad �= bc is necessary, since for complex variables z1 and z2,

f(z1) − f(z2) =
(ad − bc)(z1 − z2)
(cz1 + d)(cz2 + d)

,

which is constant for ad − bc = 0. The Möbius transformation is analytic everywhere
except for a pole at z = −d/c, and also one-to-one and onto a half-plane, and vice
versa, which means that its inverse is also a Möbius transformation.

Remark 4.9.3. The Möbius transformation does not determine the coefficients a, b,
c, d uniquely, i.e. if ϕ ∈ C \ {0}, then coefficients ϕa, ϕb, ϕc, ϕd correspond to the
same transformation.

In addition, every Möbius transformation (except f(z) = z) has one or two fixed
points16 z∗, such that f(z∗) = z∗ (Apostol 1997).

4.9.2 Activation Functions and Möbius Transformations

Equating the coefficients associated with the powers of z in the transfer function of a
sigmoid activation function, to those in a general form of the Möbius transformation
(4.25), i.e.

1 − e−β net

1 + e−β net =
az + b

cz + d
(4.26)

16 See Definition 4.9.7.

66 NEURAL NETWORKS AND MÖBIUS TRANSFORMATIONS

we see that the tanh function satisfies the conditions of a Möbius transformation for
z = e−β net and (Mandic 2000c)

a = −1, b = 1, c = 1, d = 1. (4.27)

Also, the condition ad − bc �= 0 is satisfied. Therefore, the hyperbolic tangent
activation function is a Möbius transformation and holomorphic. So too is the logistic
function, for which a = 0, b = 1, c = 1, d = 1 and ad − bc �= 0.

Proposition 4.9.4 (see Dumitras and Lazarescu 1997). The sigmoidal transfor-
mation f(z) performed by a neuron in a neural network on a complex signal z = α+jβ
is a Möbius transformation.

To analyse an N -dimensional nested nonlinear system, as exhibited by a feedforward
and recurrent neural network with hidden neurons, we use the notion of a modular
group (Apostol 1997), which is explained in detail in Appendix C.1.1.

Example 4.9.5. Show that the transfer function between neurons in consecutive
layers within a general neural network belongs to a modular group Γ of compositions
of Möbius transformations.

Solution. Without loss in generality let us consider only two neurons from consecutive
layers. Notice that their nonlinear functions are nested. Let us denote the functions
performed by these two neurons by

H1(z) =
a1z + b1

c1z + d1
and H2(z) =

a2z + b2

c2z + d2
.

Then their composition (transfer function from a layer to a layer) is H1(H2(z)) =
H1 ◦ H2 and can be expressed as

H1 ◦ H2 =
(

a1
a2z + b2

c2z + d2
+ b1

)/(
c1

a2z + b2

c2z + d2
+ d1

)

=
(a1a2 + b1c2)z + a1b2 + b1d2

(a2c1 + c2d1)z + b2c1 + d1d2
, (4.28)

which belongs to group Γ . Also if the Möbius mappings performed by H1 and H2 are,
respectively, described by matrices

M1 =
[
a1 b1

c1 d1

]
and M2 =

[
a2 b2

c2 d2

]
,

then the composition H1 ◦ H2 is described by

H(z) = H1(z) ◦ H2(z) ⇔ (M1 × M2)z =
([

a1 b1

c1 d1

]
×

[
a2 b2

c2 d2

])
z

=
[
a1a2 + b1c2 a1b2 + b1d2

a2c1 + c2d1 b2c1 + d1d2

]
z = Mz, (4.29)

which again belongs to the group Γ .

Observation 4.9.6 (see Mandic 2000b,c). The global input–output relationship
in a neural network can be considered as a Möbius transformation.

ACTIVATION FUNCTIONS USED IN NEURAL NETWORKS 67

4.9.3 Existence and Uniqueness of Fixed Points in a Complex Neural Network via
Theory of Modular Groups

Definition 4.9.7. A point x∗ which is mapped onto itself under a map G so that
x∗ = G(x∗) is called a fixed point.

Since by the Brower fixed point theorem (Zeidler 1986), a continuous function on a
convex, closed and bounded set has a fixed point, so too Möbius transformations have
fixed points. Therefore, it suffices to investigate the characteristics of the nonlinear
activation function to obtain fixed points for a general neural network based nonlinear
system. In that case, both the external input vector to the system x(k) and the
parameter vector w(k) are assumed to form a time-invariant part of the variable net.

In Zakeri (1996), it is proven that a proper holomorphic map in the complex plane
is uniquely determined up to post-composition with a Möbius transformation by its
critical points. To connect fixed (critical) points and nested Möbius transformations,
which occur in RNN-based architectures, we use the following observation.

Observation 4.9.8 (see Mandic 2000b). For a given architecture, fixed points of
the complex activation function employed in a neural network determine the fixed
points of the neural network considered.

Existence. The existence conditions for a fixed point of a sigmoid activation function
are provided by recognising that a sigmoid activation function is a Möbius trans-
formation (Proposition 4.9.4). Since every Möbius map has one or two fixed points
(Mathews and Howell 1997), so too does a sigmoid activation function of a neuron.
By Observation 4.9.6, a global input–output relationship in a neural network can be
considered in the framework of compositions of Möbius transformations, and hence
has fixed points.

Uniqueness. By Theorem C.1.5, transfer functions of two neurons in consecu-
tive layers can be described by matrices M1 = Tn1STn2S · · ·STnk and M2 =
Tm1STn2S · · ·STml . Using the property described in Zakeri (1996), the composi-
tion of their activation functions (nested nonlinearities) represented by the product
M1 × M2 has critical points defined by M1 and M2.

As a consequence of complex activation functions being Möbius transformations,
we also conclude that (Mandic 2000c)

• a general neural network has an inverse (the existence of an inverse);

• the inverse of a neural network is not necessarily unique (the uniqueness of an
inverse).

Since the input–output relationship in a complex neural network can be considered
in the framework of Möbius transformations (which has an inverse, which is again a
Möbius transformation), a general complex neural network has an inverse (existence).
On the other hand, Möbius transformations are uniformly determined up to a mul-
tiplication by a constant. This means that there is more than one solution to the
inverse problem (uniqueness).

68 SUMMARY

4.10 Summary

An overview of nonlinear activation functions used in neural networks has been pro-
vided. We have started from the problem of function approximation and trajectory
learning and evaluated neural networks suitable for these problems. Properties of neu-
ral networks realised in hardware have also been addressed. For rigour, the analysis
has been extended to neural networks with complex activation functions, for which
we have built a unified framework via modular groups of Möbius transformations.

Existence and uniqueness conditions of fixed points and invertibility of such map-
pings have been derived. These results apply both for the general input–output rela-
tionship in a neural network as well as for a single neuron. This analysis provides a
strong mathematical background for further analysis of neural networks for adaptive
filtering and prediction.

Recurrent Neural Networks for Prediction
Authored by Danilo P. Mandic, Jonathon A. Chambers

Copyright c©2001 John Wiley & Sons Ltd
ISBNs: 0-471-49517-4 (Hardback); 0-470-84535-X (Electronic)

5

Recurrent Neural Networks
Architectures

5.1 Perspective

In this chapter, the use of neural networks, in particular recurrent neural networks,
in system identification, signal processing and forecasting is considered. The ability
of neural networks to model nonlinear dynamical systems is demonstrated, and the
correspondence between neural networks and block-stochastic models is established.
Finally, further discussion of recurrent neural network architectures is provided.

5.2 Introduction

There are numerous situations in which the use of linear filters and models is limited.
For instance, when trying to identify a saturation type nonlinearity, linear models will
inevitably fail. This is also the case when separating signals with overlapping spectral
components.

Most real-world signals are generated, to a certain extent, by a nonlinear mech-
anism and therefore in many applications the choice of a nonlinear model may be
necessary to achieve an acceptable performance from an adaptive predictor. Commu-
nications channels, for instance, often need nonlinear equalisers to achieve acceptable
performance. The choice of model has crucial importance1 and practical applications
have shown that nonlinear models can offer a better prediction performance than their
linear counterparts. They also reveal rich dynamical behaviour, such as limit cycles,
bifurcations and fixed points, that cannot be captured by linear models (Gershenfeld
and Weigend 1993).

By system we consider the actual underlying physics2 that generate the data,
whereas by model we consider a mathematical description of the system. Many vari-
ations of mathematical models can be postulated on the basis of datasets collected
from observations of a system, and their suitability assessed by various performance

1 System identification, for instance, consists of choice of the model, model parameter estimation
and model validation.

2 Technically, the notions of system and process are equivalent (Pearson 1995; Sjöberg et al. 1995).

70 INTRODUCTION

−5 0 5
−1

−0.5

0

0.5

1

y=
ta

nh
(v

)

−5

0

5
−5 0 5

Input signal

−5 0 5
−1

−0.5

0

0.5

1

N
eu

ro
n

ou
tp

ut

Figure 5.1 Effects of y = tanh(v) nonlinearity in a neuron model upon two example
inputs

metrics. Since it is not possible to characterise nonlinear systems by their impulse
response, one has to resort to less general models, such as homomorphic filters, mor-
phological filters and polynomial filters. Some of the most frequently used polynomial
filters are based upon Volterra series (Mathews 1991), a nonlinear analogue of the
linear impulse response, threshold autoregressive models (TAR) (Priestley 1991) and
Hammerstein and Wiener models. The latter two represent structures that consist
of a linear dynamical model and a static zero-memory nonlinearity. An overview of
these models can be found in Haber and Unbehauen (1990). Notice that for nonlinear
systems, the ordering of the modules within a modular structure3 plays an important
role.

To illustrate some important features associated with nonlinear neurons, let us con-
sider a squashing nonlinear activation function of a neuron, shown in Figure 5.1. For
two identical mixed sinusoidal inputs with different offsets, passed through this non-
linearity, the output behaviour varies from amplifying and slightly distorting the input
signal (solid line in Figure 5.1) to attenuating and considerably nonlinearly distorting
the input signal (broken line in Figure 5.1). From the viewpoint of system theory,
neural networks represent nonlinear maps, mapping one metric space to another.

3 To depict this, for two modules performing nonlinear functions H1 = sin(x) and H2 = ex, we
have H1(H2(x)) �= H2(H1(x)) since sin(ex) �= esin(x). This is the reason to use the term nesting
rather than cascading in modular neural networks.

RECURRENT NEURAL NETWORKS ARCHITECTURES 71

Nonlinear system modelling has traditionally focused on Volterra–Wiener analysis.
These models are nonparametric and computationally extremely demanding. The
Volterra series expansion is given by

y(k) = h0 +
N∑

i=0

h1(i)x(k − i) +
N∑

i=0

N∑
j=0

h2(i, j)x(k − i)x(k − j) + · · · (5.1)

for the representation of a causal system. A nonlinear system represented by a Volterra
series is completely characterised by its Volterra kernels hi, i = 0, 1, 2, The
Volterra modelling of a nonlinear system requires a great deal of computation, and
mostly second- or third-order Volterra systems are used in practice.

Since the Volterra series expansion is a Taylor series expansion with memory, they
both fail when describing a system with discontinuities, such as

y(k) = A sgn(x(k)), (5.2)

where sgn(·) is the signum function.
To overcome this difficulty, nonlinear parametric models of nonlinear systems,

termed NARMAX, that are described by nonlinear difference equations, have been
introduced (Billings 1980; Chon and Cohen 1997; Chon et al. 1999; Connor 1994).
Unlike the Volterra–Wiener representation, the NARMAX representation of nonlinear
systems offers compact representation.

The NARMAX model describes a system by using a nonlinear functional depen-
dence between lagged inputs, outputs and/or prediction errors. A polynomial expan-
sion of the transfer function of a NARMAX neural network does not comprise of
delayed versions of input and output of order higher than those presented to the net-
work. Therefore, the input of an insufficient order will result in undermodelling, which
complies with Takens’ embedding theorem (Takens 1981).

Applications of neural networks in forecasting, signal processing and control require
treatment of dynamics associated with the input signal. Feedforward networks for
processing of dynamical systems tend to capture the dynamics by including past
inputs in the input vector. However, for dynamical modelling of complex systems,
there is a need to involve feedback, i.e. to use recurrent neural networks. There are
various configurations of recurrent neural networks, which are used by Jordan (1986)
for control of robots, by Elman (1990) for problems in linguistics and by Williams and
Zipser (1989a) for nonlinear adaptive filtering and pattern recognition. In Jordan’s
network, past values of network outputs are fed back into hidden units, in Elman’s
network, past values of the outputs of hidden units are fed back into themselves,
whereas in the Williams–Zipser architecture, the network is fully connected, having
one hidden layer.

There are numerous modular and hybrid architectures, combining linear adaptive
filters and neural networks. These include the pipelined recurrent neural network and
networks combining recurrent networks and FIR adaptive filters. The main idea here
is that the linear filter captures the linear ‘portion’ of the input process, whereas a
neural network captures the nonlinear dynamics associated with the process.

72 OVERVIEW

5.3 Overview

The basic modes of modelling, such as parametric, nonparametric, white box, black
box and grey box modelling are introduced. Afterwards, the dynamical richness of
neural models is addressed and feedforward and recurrent modelling for noisy time
series are compared. Block-stochastic models are introduced and neural networks are
shown to be able to represent these models. The chapter concludes with an overview of
recurrent neural network architectures and recurrent neural networks for NARMAX
modelling.

5.4 Basic Modes of Modelling

The notions of parametric, nonparametric, black box, grey box and white box mod-
elling are explained. These can be used to categorise neural network algorithms, such
as the direct gradient computation, a posteriori and normalised algorithms. The basic
idea behind these approaches to modelling is not to estimate what is already known.
One should, therefore, utilise prior knowledge and knowledge about the physics of the
system, when selecting the neural network model prior to parameter estimation.

5.4.1 Parametric versus Nonparametric Modelling

A review of nonlinear input–output modelling techniques is given in Pearson (1995).
Three classes of input–output models are parametric, nonparametric and semipara-
metric models. We next briefly address them.

• Parametric modelling assumes a fixed structure for the model. The model iden-
tification problem then simplifies to estimating a finite set of parameters of this
fixed model. This estimation is based upon the prediction of real input data,
so as to best match the input data dynamics. An example of this technique is
the broad class of ARIMA/NARMA models. For a given structure of the model
(NARMA for instance) we recursively estimate the parameters of the chosen
model.

• Nonparametric modelling seeks a particular model structure from the input
data. The actual model is not known beforehand. An example taken from non-
parametric regression is that we look for a model in the form of y(k) = f(x(k))
without knowing the function f(·) (Pearson 1995).

• Semiparametric modelling is the combination of the above. Part of the model
structure is completely specified and known beforehand, whereas the other part
of the model is either not known or loosely specified.

Neural networks, especially recurrent neural networks, can be employed within esti-
mators of all of the above classes of models. Closely related to the above concepts are
white, grey and black box modelling techniques.

RECURRENT NEURAL NETWORKS ARCHITECTURES 73

5.4.2 White, Grey and Black Box Modelling

To understand and analyse real-world physical phenomena, various mathematical
models have been developed. Depending on some a priori knowledge about the pro-
cess, data and model, we differentiate between three fairly general modes of modelling.
The idea is to distinguish between three levels of prior knowledge, which have been
‘colour-coded’. An overview of the white, grey and black box modelling techniques
can be found in Aguirre (2000) and Sjöberg et al. (1995).

Given data gathered from planet movements, then Kepler’s gravitational laws might
well provide the initial framework in building a mathematical model of the process.
This mode of modelling is referred to as white box modelling (Aguirre 2000), under-
lying its fairly deterministic nature. Static data are used to calculate the parameters,
and to do that the underlying physical process has to be understood. It is therefore
possible to build a white box model entirely from physical insight and prior knowl-
edge. However, the underlying physics are generally not completely known, or are too
complicated and often one has to resort to other types of modelling.

The exact form of the input–output relationship that describes a real-world system
is most commonly unknown, and therefore modelling is based upon a chosen set of
known functions. In addition, if the model is to approximate the system with an
arbitrary accuracy, the set of chosen nonlinear continuous functions must be dense.
This is the case with polynomials. In this light, neural networks can be viewed as
another mode of functional representations. Black box modelling therefore assumes
no previous knowledge about the system that produces the data. However, the chosen
network structure belongs to architectures that are known to be flexible and have
performed satisfactorily on similar problems. The aim hereby is to find a function F
that approximates the process y based on the previous observations of process yPAST

and input u, as

y = F (yPAST, u). (5.3)

This ‘black box’ establishes a functional dependence between the input and out-
put, which can be either linear or nonlinear. The downside is that it is gener-
ally not possible to learn about the true physical process that generates the data,
especially if a linear model is used. Once the training process is complete, a neu-
ral network represents a black box, nonparametric process model. Knowledge about
the process is embedded in the values of the network parameters (i.e. synaptic
weights).

A natural compromise between the two previous models is so-called grey box mod-
elling. It is obtained from black box modelling if some information about the system
is known a priori. This can be a probability density function, general statistics of
the process data, impulse response or attractor geometry. In Sjöberg et al. (1995),
two subclasses of grey box models are considered: physical modelling, where a model
structure is built upon understanding of the underlying physics, as for instance the
state-space model structure; and semiphysical modelling, where, based upon physical
insight, certain nonlinear combinations of data structures are suggested, and then
estimated by black box methodology.

74 NARMAX MODELS AND EMBEDDING DIMENSION

z-1

z-M

z-N

z-1

u(k) y(k)

e(k)

y(k)

I

II

ν(k)

+ +

+
_

^

...
...

Neural
Network
Model

Σ

Σ

Figure 5.2 Nonlinear prediction configuration using a neural network model

5.5 NARMAX Models and Embedding Dimension

For neural networks, the number of input nodes specifies the dimension of the network
input. In practice, the true state of the system is not observable and the mathematical
model of the system that generates the dynamics is not known. The question arises:
is the sequence of measurements {y(k)} sufficient to reconstruct the nonlinear sys-
tem dynamics? Under some regularity conditions, Takens’ (1981) and Mane’s (1981)
embedding theorems establish this connection. To ensure that the dynamics of a non-
linear process estimated by a neural network are fully recovered, it is convenient to
use Takens’ embedding theorem (Takens 1981), which states that to obtain a faithful
reconstruction of the system dynamics, the embedding dimension d must satisfy

d � 2D + 1, (5.4)

where D is the dimension of the system attractor. Takens’ embedding theorem (Takens
1981; Wan 1993) establishes a diffeomorphism between a finite window of the time
series

[y(k − 1), y(k − 2), . . . , y(k − N)] (5.5)

and the underlying state of the dynamic system which generates the time series. This
implies that a nonlinear regression

y(k) = g[y(k − 1), y(k − 2), . . . , y(k − N)] (5.6)

can model the nonlinear time series. An important feature of the delay-embedding
theorem due to Takens (1981) is that it is physically implemented by delay lines.

RECURRENT NEURAL NETWORKS ARCHITECTURES 75

1
w0

x(k-1)
w1

y(k-1) 2

y(k)
w

Figure 5.3 A NARMAX recurrent perceptron with p = 1 and q = 1

There is a deep connection between time-lagged vectors and underlying dynamics.
Delay vectors are not just a representation of a state of the system, their length is
the key to recovering the full dynamical structure of a nonlinear system. A general
starting point would be to use a network for which the input vector comprises delayed
inputs and outputs, as shown in Figure 5.2. For the network in Figure 5.2, both the
input and the output are passed through delay lines, hence indicating the NARMAX
character of this network. The switch in this figure indicates two possible modes of
learning which will be explained in Chapter 6.

5.6 How Dynamically Rich are Nonlinear Neural Models?

To make an initial step toward comparing neural and other nonlinear models, we
perform a Taylor series expansion of the sigmoidal nonlinear activation function of a
single neuron model as (Billings et al. 1992)

Φ(v(k)) =
1

1 + e−βv(k) =
1
2

+
β

4
v(k)− β3

48
v3(k)+

β5

480
v5(k)− 17β7

80 640
v7(k)+ · · · . (5.7)

Depending on the steepness β and the activation potential v(k), the polynomial rep-
resentation (5.7) of the transfer function of a neuron exhibits a complex nonlinear
behaviour.

Let us now consider a NARMAX recurrent perceptron with p = 1 and q = 1,
as shown in Figure 5.3, which is a simple example of recurrent neural networks. Its
mathematical description is given by

y(k) = Φ(w1x(k − 1) + w2y(k − 1) + w0). (5.8)

Expanding (5.8) using (5.7) yields

y(k) = 1
2+ 1

4 [w1x(k−1)+w2y(k−1)+w0]− 1
48 [w1x(k−1)+w2y(k−1)+w0]3+· · · , (5.9)

where β = 1. Expression (5.9) illustrates the dynamical richness of squashing activa-
tion functions. The associated dynamics, when represented in terms of polynomials
are quite complex. Networks with more neurons and hidden layers will produce more
complicated dynamics than those in (5.9). Following the same approach, for a general

76 HOW DYNAMICALLY RICH ARE NONLINEAR NEURAL MODELS?

recurrent neural network, we obtain (Billings et al. 1992)

y(k) = c0 + c1x(k − 1) + c2y(k − 1) + c3x
2(k − 1)

+ c4y
2(k − 1) + c5x(k − 1)y(k − 1) + c6x

3(k − 1)

+ c7y
3(k − 1) + c8x

2(k − 1)y(k − 1) + · · · . (5.10)

Equation (5.10) does not comprise delayed versions of input and output samples of
order higher than those presented to the network. If the input vector were of an
insufficient order, undermodelling would result, which complies with Takens’ embed-
ding theorem. Therefore, when modelling an unknown dynamical system or tracking
unknown dynamics, it is important to concentrate on the embedding dimension of
the network. Representation (5.10) also models an offset (mean value) c0 of the input
signal.

5.6.1 Feedforward versus Recurrent Networks for Nonlinear Modelling

The choice of which neural network to employ to represent a nonlinear physical process
depends on the dynamics and complexity of the network that is best for representing
the problem in hand. For instance, due to feedback, recurrent networks may suffer
from instability and sensitivity to noise. Feedforward networks, on the other hand,
might not be powerful enough to capture the dynamics of the underlying nonlinear
dynamical system. To illustrate this problem, we resort to a simple IIR (ARMA)
linear system described by the following first-order difference equation

z(k) = 0.5z(k − 1) + 0.1x(k − 1). (5.11)

The system (5.11) is stable, since the pole of its transfer function is at 0.5, i.e. within
the unit circle in the z-plane. However, in a noisy environment, the output z(k) is
corrupted by noise e(k), so that the noisy output y(k) of system (5.11) becomes

y(k) = z(k) + e(k), (5.12)

which will affect the quality of estimation based on this model. This happens because
the noise terms accumulate during recursions4 (5.11) as

y(k) = 0.5y(k − 1) + 0.1x(k − 1) + e(k) − 0.5e(k − 1). (5.13)

An equivalent FIR (MA) representation of the same filter (5.11), using the method
of long division, gives

z(k) = 0.1x(k − 1) + 0.05x(k − 2) + 0.025x(k − 3) + 0.0125x(k − 4) + · · · (5.14)

and the representation of a noisy system now becomes

y(k) = 0.1x(k−1)+0.05x(k−2)+0.025x(k−3)+0.0125x(k−4)+ · · ·+e(k). (5.15)

4 Notice that if the noise e(k) is zero mean and white it appears coloured in (5.13), i.e. correlated
with previous outputs, which leads to biased estimates.

RECURRENT NEURAL NETWORKS ARCHITECTURES 77

Clearly, the noise in (5.15) is not correlated with the previous outputs and the esti-
mates are unbiased.5 The price to pay, however, is the infinite length of the exact
representation of (5.11).

A similar principle applies to neural networks. In Chapter 6 we address the modes
of learning in neural networks and discuss the bias/variance dilemma for recurrent
neural networks.

5.7 Wiener and Hammerstein Models and Dynamical Neural Networks

Under relatively mild conditions,6 the output signal of a nonlinear model can be
considered as a combination of outputs from some suitable submodels. The structure
identification, model validation and parameter estimation based upon these submodels
are more convenient than those of the whole model. Block oriented stochastic models
consist of static nonlinear and dynamical linear modules. Such models often occur in
practice, examples of which are

• the Hammerstein model, where a zero-memory nonlinearity is followed by a lin-
ear dynamical system characterised by its transfer function H(z) = N(z)/D(z);

• the Wiener model, where a linear dynamical system is followed by a zero-memory
nonlinearity.

5.7.1 Overview of Block-Stochastic Models

The definitions of certain stochastic models are given by the

1. Wiener system
y(k) = g(H(z−1)u(k)), (5.16)

where u(k) is the input to the system, y(k) is the output,

H(z−1) =
C(z−1)
D(z−1)

is the z-domain transfer function of the linear component of the system and
g(·) is a nonlinear function;

2. Hammerstein system
y(k) = H(z−1)g(u(k)); (5.17)

3. Uryson system, defined by

y(k) =
M∑
i=1

Hi(z−1)gi(u(k)). (5.18)

5 Under the usual assumption that the external additive noise e(k) is not correlated with the input
signal x(k).

6 A finite degree polynomial steady-state characteristic.

78 WIENER AND HAMMERSTEIN MODELS AND DYNAMICAL NNs

u(k) v(k) y(k)N(z)
D(z)

nonlinear
function

(a) The Hammerstein stochastic model

u(k) v(k) y(k)N(z) nonlinear
functionD(z)

(b) The Wiener stochastic model

Figure 5.4 Nonlinear stochastic models used in control and signal processing

Theoretically, there are finite size neural systems with dynamic synapses which
can represent all of the above. Moreover, some modular neural architectures, such
as the PRNN (Haykin and Li 1995), are able to represent block-cascaded Wiener–
Hammerstein systems described by (Mandic and Chambers 1999c)

y(k) = ΦN (HN (z−1)ΦN−1(HN−1(z−1) · · ·Φ1(H1(z−1)u(k)))) (5.19)

and
y(k) = HN (z−1)ΦN (HN−1(z−1)ΦN−1 · · ·Φ1(H1(z−1u(k)))) (5.20)

under certain constraints relating the size of networks and order of block-stochastic
models. Due to its parallel nature, however, a general Uryson model is not guaranteed
to be representable this way.

5.7.2 Connection Between Block-Stochastic Models and Neural Networks

Block diagrams of Wiener and Hammerstein systems are shown in Figure 5.4. The
nonlinear function from Figure 5.4(a) can be generally assumed to be a polynomial,7

i.e.

v(k) =
M∑
i=0

λiu
i(k). (5.21)

The Hammerstein model is a conventional parametric model, usually used to rep-
resent processes with nonlinearities involved with the process inputs, as shown in
Figure 5.4(a). The equation describing the output of a SISO Hammerstein system
corrupted with additive output noise η(k) is

y(k) = Φ[u(k − 1)] +
∞∑

i=2

hiΦ[u(k − i)] + ν(k), (5.22)

where Φ is a nonlinear function which is continuous. Other requirements are that the
linear dynamical subsystem is stable. This network is shown in Figure 5.5.

RECURRENT NEURAL NETWORKS ARCHITECTURES 79

+
+

u(k)
Φ

ν(k)

{h}
y(k)

Σ

Figure 5.5 Discrete-time SISO Hammerstein model with observation noise

v(k)

y(k)

w

w

N(z)

u

...

u

u

Σ
p(k)

(k)2

(k)1

(k)

(k)
MemoryLinear

p

1

x(k)

Zero
Transfer Function Nonlinearity

D(z)

Figure 5.6 Dynamic perceptron

Neural networks with locally distributed dynamics (LDNN) can be considered as
locally recurrent networks with global feedforward features. An example of these net-
works is the dynamical multilayer perceptron (DMLP) which consists of dynamical
neurons and is shown in Figure 5.6. The model of this dynamic perceptron is described
by

y(k) = Φ(v(k)),

v(k) =
deg(N(z))∑

i=0

ni(k)x(k − i) + 1 +
deg(D(z))∑

j=1

dj(k)v(k − j),

x(k) =
p∑

l=1

wl(k)ul(k),

(5.23)

where ni and di denote, respectively, the coefficients of the polynomials in N(z) and
D(z) and ‘1’ is included for a possible bias input. From Figure 5.6, the transfer
function between y(k) and x(k) represents a Wiener system. Hence, combinations
of dynamical perceptrons (such as a recurrent neural network) are able to represent
block-stochastic Wiener–Hammerstein models. Gradient-based learning rules can be
developed for a recurrent neural network representing block-stochastic models. Both
the Wiener and Hammerstein models can exhibit a more general structure, as shown
in Figure 5.7, for the Hammerstein model. Wiener and Hammerstein models can be
combined to produce more complicated block-stochastic models. A representative of
these models is the Wiener–Hammerstein model, shown in Figure 5.8. This figure
shows a Wiener stochastic model, followed by a linear dynamical system represented
by its transfer function H2(z) = N2(z)/D2(z), hence building a Wiener–Hammerstein

7 By the Weierstrass theorem, polynomials can approximate arbitrarily well any nonlinear function,
including sigmoid functions.

80 WIENER AND HAMMERSTEIN MODELS AND DYNAMICAL NNs

ν(k)

Η

Η (z)

(z)

2(k)

Η (z)
N(k)

N multiplications

u(k) y(k)

...

u

u
Π

Π 2

1

N

Σ

Figure 5.7 Generalised Hammerstein model

u(k) y(k)nonlinear
function

N
D2

2(z)1N (z)
D (z) (z)1

Figure 5.8 The Wiener–Hammerstein model

block-stochastic system. In practice, we can build complicated block cascaded systems
this way.

Wiener and Hammerstein systems are frequently used to compensate each other
(Kang et al. 1998). This includes finding an inverse of the first module in the com-
bination. If these models are represented by neural networks, Chapter 4 provides a
general framework for uniqueness, existence and convergence of inverse neural mod-
els. The following example from Billings and Voon (1986) shows that the Wiener
model can be represented by a NARMA model, which, in turn can be modelled by a
recurrent neural network.

Example 5.7.1. The Wiener model

w(k) = 0.8w(k − 1) + 0.4u(k − 1),

y(k) = w(k) + w3(k) + e(k),

}
(5.24)

was identified as

y(k) = 0.7578y(k − 1) + 0.3891u(k − 1) − 0.037 23y2(k − 1)

+ 0.3794y(k − 1)u(k − 1) + 0.0684u2(k − 1) + 0.1216y(k − 1)u2(k − 1)

+ 0.0633u3(k − 1) − 0.739e(k − 1) − 0.368u(k − 1)e(k − 1) + e(k), (5.25)

which is a NARMA model, and hence can be realised by a recurrent neural network.

RECURRENT NEURAL NETWORKS ARCHITECTURES 81

u(k)

... y(k)v(k)Dynamical
Linear

System
ΦΣ

(a) Activation feedback scheme

u(k)

v(k) y(k)
Φ

...

Linear

Dynamical

System
Σ

(b) Output feedback scheme

Figure 5.9 Recurrent neural network architectures

5.8 Recurrent Neural Network Architectures

Two straightforward ways to include recurrent connections in neural networks are
activation feedback and output feedback , as shown, respectively, in Figure 5.9(a) and
Figure 5.9(b). These schemes are closely related to the state space representation of
neural networks. A comprehensive and insightful account of canonical forms and state
space representation of general neural networks is given in Nerrand et al. (1993) and
Dreyfus and Idan (1998). In Figure 5.9, the blocks labelled ‘linear dynamical systems’
comprise of delays and multipliers, hence providing linear combination of their input
signals. The output of a neuron shown in Figure 5.9(a) can be expressed as

v(k) =
M∑
i=0

wu,i(k)u(k − i) +
N∑

j=1

wv,j(k)v(k − j),

y(k) = Φ(v(k)),

 (5.26)

where wu,i and wv,j correspond to the weights associated with u and v, respectively.
The transfer function of a neuron shown in Figure 5.9(b) can be expressed as

v(k) =
M∑
i=0

wu,i(k)u(k − i) +
N∑

j=1

wy,j(k)y(k − j),

y(k) = Φ(v(k)),

 (5.27)

82 RECURRENT NEURAL NETWORK ARCHITECTURES

H

H

H

u (k)

u

u

(k)

H
(k)

y(k)
Φ...

1

2

M

1

2

M FB

Σ

Figure 5.10 General LRGF architecture

Feedback
with

Delay

x x x

z

y(k)

z z(k) (k)

1(k)

1 3(k)

z2(k)

(k−1)1 (k−1)22

Figure 5.11 An example of Elman recurrent neural network

where wy,j correspond to the weights associated with the delayed outputs. A compre-
hensive account of types of synapses and short-term memories in dynamical neural
networks is provided by Mozer (1993).

The networks mentioned so far exhibit a locally recurrent architecture, but when
connected into a larger network, they have a feedforward structure. Hence they are
referred to as locally recurrent–globally feedforward (LRGF) architectures. A gen-
eral LRGF architecture is shown in Figure 5.10. This architecture allows for the
dynamic synapses both within the input (represented by H1, . . . , HM) and the out-
put feedback (represented by HFB), hence comprising some of the aforementioned
schemes.

The Elman network is a recurrent network with a hidden layer, a simple example
of which is shown in Figure 5.11. This network consists of an MLP with an additional
input which consists of delayed state space variables of the network. Even though it
contains feedback connections, it is treated as a kind of MLP. The network shown in

RECURRENT NEURAL NETWORKS ARCHITECTURES 83

Feedback
with

Delay

x x x

z

1 3(k) y1(k−1) y

1

z (k)

y1(k) y (k)

2

2

2(k−1)(k)(k)

2

(k)

Figure 5.12 An example of Jordan recurrent neural network

Figure 5.12 is an example of the Jordan network. It consists of a multilayer perceptron
with one hidden layer and a feedback loop from the output layer to an additional input
called the context layer. In the context layer, there are self-recurrent loops. Both
Jordan and Elman networks are structurally locally recurrent globally feedforward
(LRGF), and are rather limited in including past information.

A network with a rich representation of past outputs, which will be extensively
considered in this book, is a fully connected recurrent neural network, known as
the Williams–Zipser network (Williams and Zipser 1989a), shown in Figure 5.13.
We give a detailed introduction to this architecture. This network consists of three
layers: the input layer, the processing layer and the output layer. For each neuron
i, i = 1, 2, . . . , N , the elements uj , j = 1, 2, . . . , p + N + 1, of the input vector to
a neuron u (5.31), are weighted, then summed to produce an internal activation
function of a neuron v (5.30), which is finally fed through a nonlinear activation
function Φ (5.28), to form the output of the ith neuron yi (5.29). The function Φ is
a monotonically increasing sigmoid function with slope β, as for instance the logistic
function,

Φ(v) =
1

1 + e−βv
. (5.28)

At the time instant k, for the ith neuron, its weights form a (p + N + 1) ×
1 dimensional weight vector wT

i (k) = [wi,1(k), . . . , wi,p+N+1(k)], where p is the
number of external inputs, N is the number of feedback connections and (·)T
denotes the vector transpose operation. One additional element of the weight vec-
tor w is the bias input weight. The feedback consists of the delayed output
signals of the RNN. The following equations fully describe the RNN from Fig-

84 HYBRID NEURAL NETWORK ARCHITECTURES

Outputs

...

...
... ...

...
...

External
Inputs

...
...

z-1

z-1

z-1

z-1

Processing layer of
hidden and outputand

connections

I/O layer

y

Feedforward

Feedback

Feedback
inputs

s(k-1)

s(k-p)

neurons

Figure 5.13 A fully connected recurrent neural network

ure 5.13,

yi(k) = Φ(vi(k)), i = 1, 2, . . . , N, (5.29)

vi(k) =
p+N+1∑

l=1

wi,l(k)ul(k), (5.30)

uT
i (k) = [s(k − 1), . . . , s(k − p), 1, y1(k − 1), y2(k − 1), . . . , yN (k − 1)], (5.31)

where the (p + N + 1) × 1 dimensional vector u comprises both the exter-
nal and feedback inputs to a neuron, as well as the unity valued constant bias
input.

5.9 Hybrid Neural Network Architectures

These networks consist of a cascade of a neural network and a linear adaptive filter.
If a neural network is considered as a complex adaptable nonlinearity, then hybrid
neural networks resemble Wiener and Hammerstein stochastic models. An example of
these networks is given in Khalaf and Nakayama (1999), for prediction of noisy time
series. A neural subpredictor is cascaded with a linear FIR predictor, hence making
a hybrid predictor. The block diagram of this type of neural network architecture is

RECURRENT NEURAL NETWORKS ARCHITECTURES 85

z-1

x(k)

y y(k)Predictor
Linear

Network
Neural

Signal

NN

+
_

+
_

(k)

Desired

ΣΣ

Figure 5.14 A hybrid neural predictor

yout

weight matrix W

module M module (M-1) module 1

weight matrix W weight matrix W

z

z

-1

-1 I

z z z

zz

-1

-1-1

-1-1

I

I

I

I I

yM y(M-1),1 ,12y,1

,1

p

ppp

(N-1) (N-1) (N-1)

My (k-1)

s(k-M) s(k-M+1) s(k-M+2)

(k) (k) (k) (k)

s(k-1) s(k)

Figure 5.15 Pipelined recurrent neural network

given in Figure 5.14. The neural network from Figure 5.14 can be either a feedforward
neural network or a recurrent neural network.

Another example of hybrid structures is the so-called pipelined recurrent neural
network (PRNN), introduced by Haykin and Li (1995) and shown in Figure 5.15. It
consists of a modular nested structure of small-scale fully connected recurrent neural
networks and a cascaded FIR adaptive filter. In the PRNN configuration, the M
modules, which are FCRNNs, are connected as shown in Figure 5.15. The cascaded
linear filter is omitted. The description of this network follows the approach from
Mandic et al. (1998) and Baltersee and Chambers (1998). The uppermost module of
the PRNN, denoted by M , is simply an FCRNN, whereas in modules (M − 1, . . . , 1),
the only difference is that the feedback signal of the output neuron within module
m, denoted by ym,1, m = 1, . . . , M − 1, is replaced with the appropriate output
signal ym+1,1, m = 1, . . . , M − 1, from its left neighbour module m + 1. The (p × 1)-
dimensional external signal vector sT(k) = [s(k), . . . , s(k − p + 1)] is delayed by m
time steps (z−mI) before feeding the module m, where z−m, m = 1, . . . , M , denotes
the m-step time delay operator and I is the (p × p)-dimensional identity matrix. The
weight vectors wn of each neuron n, are embodied in an (p+N +1)×N dimensional
weight matrix W (k) = [w1(k), . . . ,wN (k)], with N being the number of neurons in

86 NONLINEAR ARMA MODELS AND RECURRENT NETWORKS

each module. All the modules operate using the same weight matrix W . The overall
output signal of the PRNN is yout(k) = y1,1(k), i.e. the output of the first neuron
of the first module. A full mathematical description of the PRNN is given in the
following equations:

yi,n(k) = Φ(vi,n(k)), (5.32)

vi,n(k) =
p+N+1∑

l=1

wn,l(k)ui,l(k), (5.33)

uT
i (k) = [s(k − i), . . . , s(k − i − p + 1), 1,

yi+1,1(k), yi,2(k − 1), . . . , yi,N (k − 1)] for 1 � i � M − 1, (5.34)

uT
M (k) = [s(k − M), . . . , s(k − M − p + 1), 1,

yM,1(k − 1), yM,2(k − 1), . . . , yM,N (k − 1)] for i = M. (5.35)

At the time step k for each module i, i = 1, . . . , M , the one-step forward prediction
error ei(k) associated with a module is then defined as a difference between the desired
response of that module s(k−i+1), which is actually the next incoming sample of the
external input signal, and the actual output of the ith module yi,1(k) of the PRNN,
i.e.

ei(k) = s(k − i + 1) − yi,1(k), i = 1, . . . , M. (5.36)

Thus, the overall cost function of the PRNN becomes a weighted sum of all squared
error signals,

E(k) =
M∑
i=1

λi−1e2
i (k), (5.37)

where ei(k) is defined in Equation (5.36) and λ, λ ∈ (0, 1], is a forgetting factor.
Other architectures combining linear and nonlinear blocks include the so-called

‘sandwich’ structure which was used for estimation of Hammerstein systems (Ibnkahla
et al. 1998). The architecture used was a linear–nonlinear–linear combination.

5.10 Nonlinear ARMA Models and Recurrent Networks

A general NARMA(p, q) recurrent network model can be expressed as (Chang and
Hu 1997)

x̂(k) = Φ

(p∑
i=1

w1,i(k)x(k − i) + w1,p+1(k) +
p+q+1∑
j=p+2

w1,j(k)ê(k + j − 2 − p − q)

+
p+q+N∑

l=p+q+2

w1,l(k)yl−p−q(k − 1)
)

. (5.38)

A realisation of this model is shown in Figure 5.16. The NARMA(p, q) scheme shown
in Figure 5.16 is a common Williams–Zipser type recurrent neural network, which

RECURRENT NEURAL NETWORKS ARCHITECTURES 87

...

...

...

...
...

+_

z

z

z

-1

-1

-1

y ^

+1

z

z

-1

-1

y2

yN

ê

^

^

z

z

-1

-1

e(k-1)

e(k-q)

x(k-1)

x(k-2)

x(k-p)

x(k)

(k)
(k) x(k)

(k)

(k)

Σ
1

=

Figure 5.16 Alternative recurrent NARMA(p, q) network

consists of only two layers, the output layer of output and hidden neurons y1, . . . , yN ,
and the input layer of feedforward and feedback signals

x(k − 1), . . . , x(k − p), +1, ê(k − 1), . . . , ê(k − q), y2(k − 1), . . . , yN (k − 1).

The nonlinearity in this case is determined by both the nonlinearity associated with
the output neuron of the recurrent neural network and nonlinearities in hidden neu-
rons.

The inputs to this network, given in (5.38), however, comprise the prediction error
terms (residuals) ê(k−1), . . . , ê(k−q), which make the learning in such networks diffi-
cult. Namely, the well-known real-time recurrent learning (RTRL) algorithm (Haykin
1994; Williams and Zipser 1989a) was derived to minimise the instantaneous squared
prediction error ê(k), and hence cannot be applied directly to the RNN realisations
of the NARMA(p, q) network, as shown above, since the inputs to the network com-
prise the delayed prediction error terms {ê}. It is therefore desirable to find another

88 NONLINEAR ARMA MODELS AND RECURRENT NETWORKS

equivalent representation of the NARMA(p, q) network, which would be more suited
for the RTRL-based learning.

If, for the sake of clarity, we denote the predicted values x̂ by y, i.e. to match the
notation common in RNNs with the NARMA(p, q) theory, and have y1(k) = x̂(k),
and keep the symbol x for the exact values of the input signal being predicted, the
NARMA network from (5.38), can be approximated further as (Connor 1994)

y1(k) = h(x(k − 1), x(k − 2), . . . , x(k − p), ê(k − 1), ê(k − 2), . . . , ê(k − q))
= h(x(k − 1), x(k − 2), . . . , x(k − p), (x(k − 1) − y1(k − 1)), . . .

. . . , (x(k − q) − y1(k − q)))
= H(x(k − 1), x(k − 2), . . . , x(k − p), y1(k − 1), . . . , y1(k − q)). (5.39)

In that case, the scheme shown in Figure 5.16 should be redrawn, remaining topolog-
ically the same, with y1 replacing the corresponding ê terms among the inputs to the
network.

On the other hand, the alternative expression for the conditional mean predictor,
depicted in Figure 5.16 can be written as

x̂(k) = Φ

(p∑
i=1

w1,i(k)x(k − i) + w1,p+1(k) +
p+q+1∑
j=p+2

w1,j(k)x̂(k + j − 2 − p − q)

+
p+q+N∑

l=p+q+2

w1,l(k)yl−p−q(k − 1)
)

(5.40)

or, bearing in mind (5.39), the notation used earlier (Haykin and Li 1995; Mandic
et al. 1998) for the examples on the prediction of speech, i.e. x(k) = s(k), and that
y1(k) = ŝ(k),

ŝ(k) = Φ

(p∑
i=1

w1,i(k)s(k − i) + w1,p+1(k) +
p+q+1∑
j=p+2

w1,j(k)y1(k + j − 2 − p − q)

+
p+q+N∑

l=p+q+2

w1,l(k)yl−p−q(k − 1)
)

, (5.41)

which is the common RNN lookalike notation. This scheme offers a simpler solution to
the NARMA(p, q) problem, as compared to the previous one, since the only nonlinear
function used is the activation function of a neuron Φ, while the set of signals being
processed is the same as in the previous scheme. Furthermore, the scheme given in
(5.41) and depicted in Figure 5.17 resembles the basic ARMA structure.

Li (1992) has shown that the recurrent network of (5.41) with a sufficiently large
number of neurons and appropriate weights can be found by performing the RTRL
algorithm such that the sum of squared prediction errors E < δ for an arbitrary
δ > 0. In other words, ‖s − ŝ‖D < δ, where ‖ · ‖D denotes the L2 norm with respect
to the training set D. Moreover, this scheme, shown also in Figure 5.17, fits into the
well-known learning strategies, such as the RTRL algorithm, which recommends this

RECURRENT NEURAL NETWORKS ARCHITECTURES 89

...

...

...
...

...

...

z

z

z

-1

-1

-1

+1

z

z

-1

-1

y2

yN

z

z

-1

-1

1

1

y

y (k-1)

(k)

(k)

(k)

s(k-1)

s(k-2)

s(k-p)

(k-q)

s(k)

s(k)^y1

Figure 5.17 Recurrent NARMA(p, q) implementation of prediction model

scheme for NARMA/NARMAX nonlinear prediction applications (Baldi and Atiya
1994; Draye et al. 1996; Kosmatopoulos et al. 1995; McDonnell and Waagen 1994;
Nerrand et al. 1994; Wu and Niranjan 1994).

5.11 Summary

A review of recurrent neural network architectures in the fields of nonlinear dynamical
modelling, system identification, control, signal processing and forecasting has been
provided. A relationship between neural network models and NARMA/NARMAX
models, as well as Wiener and Hammerstein structures has been established. Partic-
ular attention has been devoted to the fully connected recurrent neural network and
its use in NARMA/NARMAX modelling has been highlighted.

Recurrent Neural Networks for Prediction
Authored by Danilo P. Mandic, Jonathon A. Chambers

Copyright c©2001 John Wiley & Sons Ltd
ISBNs: 0-471-49517-4 (Hardback); 0-470-84535-X (Electronic)

6

Neural Networks as Nonlinear
Adaptive Filters

6.1 Perspective

Neural networks, in particular recurrent neural networks, are cast into the framework
of nonlinear adaptive filters. In this context, the relation between recurrent neural
networks and polynomial filters is first established. Learning strategies and algorithms
are then developed for neural adaptive system identifiers and predictors. Finally, issues
concerning the choice of a neural architecture with respect to the bias and variance
of the prediction performance are discussed.

6.2 Introduction

Representation of nonlinear systems in terms of NARMA/NARMAX models has been
discussed at length in the work of Billings and others (Billings 1980; Chen and Billings
1989; Connor 1994; Nerrand et al. 1994). Some cognitive aspects of neural nonlinear
filters are provided in Maass and Sontag (2000). Pearson (1995), in his article on
nonlinear input–output modelling, shows that block oriented nonlinear models are
a subset of the class of Volterra models. So, for instance, the Hammerstein model,
which consists of a static nonlinearity f(·) applied at the output of a linear dynamical
system described by its z-domain transfer function H(z), can be represented1 by the
Volterra series.

In the previous chapter, we have shown that neural networks, be they feedforward
or recurrent, cannot generate time delays of an order higher than the dimension of
the input to the network. Another important feature is the capability to generate
subharmonics in the spectrum of the output of a nonlinear neural filter (Pearson
1995). The key property for generating subharmonics in nonlinear systems is recursion,
hence, recurrent neural networks are necessary for their generation. Notice that, as

1 Under the condition that the function f is analytic, and that the Volterra series can be thought
of as a generalised Taylor series expansion, then the coefficients of the model (6.2) that do not vanish
are hi,j,...,z �= 0 ⇔ i = j = · · · = z.

92 OVERVIEW

pointed out in Pearson (1995), block-stochastic models are, generally speaking, not
suitable for this application.

In Hakim et al. (1991), by using the Weierstrass polynomial expansion theorem,
the relation between neural networks and Volterra series is established, which is then
extended to a more general case and to continuous functions that cannot be expanded
via a Taylor series expansion.2 Both feedforward and recurrent networks are charac-
terised by means of a Volterra series and vice versa.

Neural networks are often referred to as ‘adaptive neural networks’. As already
shown, adaptive filters and neural networks are formally equivalent, and neural net-
works, employed as nonlinear adaptive filters, are generalisations of linear adaptive
filters. However, in neural network applications, they have been used mostly in such
a way that the network is first trained on a particular training set and subsequently
used. This approach is not an online adaptive approach, which is in contrast with
linear adaptive filters, which undergo continual adaptation.

Two groups of learning techniques are used for training recurrent neural net-
works: a direct gradient computation technique (used in nonlinear adaptive filtering)
and a recurrent backpropagation technique (commonly used in neural networks for
offline applications). The real-time recurrent learning (RTRL) algorithm (Williams
and Zipser 1989a) is a technique which uses direct gradient computation, and is used
if the network coefficients change slowly with time. This technique is essentially an
LMS learning algorithm for a nonlinear IIR filter. It should be noticed that, with the
same computation time, it might be possible to unfold the recurrent neural network
into the corresponding feedforward counterparts and hence to train it by backprop-
agation. The backpropagation through time (BPTT) algorithm is such a technique
(Werbos 1990).

Some of the benefits involved with neural networks as nonlinear adaptive filters are
that no assumptions concerning Markov property, Gaussian distribution or additive
measurement noise are necessary (Lo 1994). A neural filter would be a suitable choice
even if mathematical models of the input process and measurement noise are not
known (black box modelling).

6.3 Overview

We start with the relationship between Volterra and bilinear filters and neural net-
works. Recurrent neural networks are then considered as nonlinear adaptive filters and
neural architectures for this case are analysed. Learning algorithms for online training
of recurrent neural networks are developed inductively, starting from corresponding
algorithms for linear adaptive IIR filters. Some issues concerning the problem of van-
ishing gradient and bias/variance dilemma are finally addressed.

6.4 Neural Networks and Polynomial Filters

It has been shown in Chapter 5 that a small-scale neural network can represent high-
order nonlinear systems, whereas a large number of terms are required for an equiv-

2 For instance nonsmooth functions, such as |x|.

NEURAL NETWORKS AS NONLINEAR ADAPTIVE FILTERS 93

alent Volterra series representation. For instance, as already shown, after performing
a Taylor series expansion for the output of a neural network depicted in Figure 5.3,
with input signals u(k − 1) and u(k − 2), we obtain

y(k) = c0 + c1u(k − 1) + c2u(k − 2) + c3u
2(k − 1) + c4u

2(k − 2)

+ c5u(k − 1)u(k − 2) + c6u
3(k − 1) + c7u

3(k − 2) + · · · , (6.1)

which has the form of a general Volterra series, given by

y(k) = h0 +
N∑

i=0

h1(i)x(k − i) +
N∑

i=0

N∑
j=0

h2(i, j)x(k − i)x(k − j) + · · · , (6.2)

Representation by a neural network is therefore more compact. As pointed out in
Schetzen (1981), Volterra series are not suitable for modelling saturation type non-
linear functions and systems with nonlinearities of a high order, since they require a
very large number of terms for an acceptable representation. The order of Volterra
series and complexity of kernels h(·) increase exponentially with the order of the
delay in system (6.2). This problem restricts practical applications of Volterra series
to small-scale systems.

Nonlinear system identification, on the other hand, has been traditionally based
upon the Kolmogorov approximation theorem (neural network existence theorem),
which states that a neural network with a hidden layer can approximate an arbitrary
nonlinear system. Kolmogorov’s theorem, however, is not that relevant in the con-
text of networks for learning (Girosi and Poggio 1989b). The problem is that inner
functions in Kolmogorov’s formula (4.1), although continuous, have to be highly non-
smooth. Following the analysis from Chapter 5, it is straightforward that multilayered
and recurrent neural networks have the ability to approximate an arbitrary nonlinear
system, whereas Volterra series fail even for simple saturation elements.

Another convenient form of nonlinear system is the bilinear (truncated Volterra)
system described by

y(k) =
N−1∑
j=1

cjy(k − j) +
N−1∑
i=0

N−1∑
j=1

bi,jy(k − j)x(k − i) +
N−1∑
i=0

aix(k − i). (6.3)

Despite its simplicity, this is a powerful nonlinear model and a large class of nonlinear
systems (including Volterra systems) can be approximated arbitrarily well using this
model. Its functional dependence (6.3) shows that it belongs to a class of general
recursive nonlinear models. A recurrent neural network that realises a simple bilinear
model is depicted in Figure 6.1. As seen from Figure 6.1, multiplicative input nodes
(denoted by ‘×’) have to be introduced to represent the bilinear model. Bias terms
are omitted and the chosen neuron is linear.

Example 6.4.1. Show that the recurrent network shown in Figure 6.1 realises a
bilinear model. Also show that this network can be described in terms of NARMAX
models.

94 NEURAL NETWORKS AND POLYNOMIAL FILTERS

a

a

b

b

c

y(k)

x(k)

z−1

z−1

1,1

1

1

0

0,1

Σ

+

+

y(k-1)

x(k-1)

Figure 6.1 Recurrent neural network representation of the bilinear model

Solution. The functional description of the recurrent network depicted in Figure 6.1
is given by

y(k) = c1y(k−1)+b0,1x(k)y(k−1)+b1,1x(k−1)y(k−1)+a0x(k)+a1x(k−1), (6.4)

which belongs to the class of bilinear models (6.3). The functional description of the
network from Figure 6.1 can also be expressed as

y(k) = F (y(k − 1), x(k), x(k − 1)), (6.5)

which is a NARMA representation of model (6.4).

Example 6.4.1 confirms the duality between Volterra, bilinear, NARMA/NARMAX
and recurrent neural models. To further establish the connection between Volterra
series and a neural network, let us express the activation potential of nodes of the
network as

neti(k) =
M∑

j=0

wi,jx(k − j), (6.6)

where neti(k) is the activation potential of the ith hidden neuron, wi,j are weights
and x(k−j) are inputs to the network. If the nonlinear activation functions of neurons
are expressed via an Lth-order polynomial expansion3 as

Φ(neti(k)) =
L∑

l=0

ξil netl
i(k), (6.7)

3 Using the Weierstrass theorem, this expansion can be arbitrarily accurate. However, in practice
we resort to a moderate order of this polynomial expansion.

NEURAL NETWORKS AS NONLINEAR ADAPTIVE FILTERS 95

then the neural model described in (6.6) and (6.7) can be related to the Volterra
model (6.2). The actual relationship is rather complicated, and Volterra kernels are
expressed as sums of products of the weights from input to hidden units, weights
associated with the output neuron, and coefficients ξil from (6.7). Chon et al. (1998)
have used this kind of relationship to compare the Volterra and neural approach when
applied to processing of biomedical signals.

Hence, to avoid the difficulty of excessive computation associated with Volterra
series, an input–output relationship of a nonlinear predictor that computes the output
in terms of past inputs and outputs may be introduced as4

ŷ(k) = F (y(k − 1), . . . , y(k − N), u(k − 1), . . . , u(k − M)), (6.8)

where F (·) is some nonlinear function. The function F may change for different
input variables or for different regions of interest. A NARMAX model may therefore
be a correct representation only in a region around some operating point. Leontaritis
and Billings (1985) rigorously proved that a discrete time nonlinear time invariant
system can always be represented by model (6.8) in the vicinity of an equilibrium
point provided that

• the response function of the system is finitely realisable, and

• it is possible to linearise the system around the chosen equilibrium point.

As already shown, some of the other frequently used models, such as the bilinear
polynomial filter, given by (6.3), are obviously cases of a simple NARMAX model.

6.5 Neural Networks and Nonlinear Adaptive Filters

To perform nonlinear adaptive filtering, tracking and system identification of nonlinear
time-varying systems, there is a need to introduce dynamics in neural networks. These
dynamics can be introduced via recurrent neural networks, which are the focus of this
book.

The design of linear filters is conveniently specified by a frequency response which
we would like to match. In the nonlinear case, however, since a transfer function
of a nonlinear filter is not available in the frequency domain, one has to resort to
different techniques. For instance, the design of nonlinear filters may be thought of as
a nonlinear constrained optimisation problem in Fock space (deFigueiredo 1997).

In a recurrent neural network architecture, the feedback brings the delayed outputs
from hidden and output neurons back into the network input vector u(k), as shown in
Figure 5.13. Due to gradient learning algorithms, which are sequential, these delayed
outputs of neurons represent filtered data from the previous discrete time instant.
Due to this ‘memory’, at each time instant, the network is presented with the raw,

4 As already shown, this model is referred to as the NARMAX model (nonlinear ARMAX), since
it resembles the linear model

ŷ(k) = a0 +
N∑

j=1

ajy(k − j) +
M∑

i=1

biu(k − i).

96 NEURAL NETWORKS AND NONLINEAR ADAPTIVE FILTERS

z-1

z-1

z-1

z-1

z-1

x(k-1)

x(k-2)

x(k-M)

+1

y(k-N)

y(k-1)

y(k)

w

w

w

w

w

1

w

2

M

M+1

M+N+1

M+2...
...

Output

x(k)

Input

Figure 6.2 NARMA recurrent perceptron

possibly noisy, external input data s(k), s(k − 1), . . . , s(k − M) from Figure 5.13 and
Equation (5.31), and filtered data y1(k − 1), . . . , yN (k − 1) from the network output.
Intuitively, this filtered input history helps to improve the processing performance of
recurrent neural networks, as compared with feedforward networks. Notice that the
history of past outputs is never presented to the learning algorithm for feedforward
networks. Therefore, a recurrent neural network should be able to process signals
corrupted by additive noise even in the case when the noise distribution is varying
over time.

On the other hand, a nonlinear dynamical system can be described by

u(k + 1) = Φ(u(k)) (6.9)

with an observation process

y(k) = ϕ(u(k)) + ε(k), (6.10)

where ε(k) is observation noise (Haykin and Principe 1998). Takens’ embedding theo-
rem (Takens 1981) states that the geometric structure of system (6.9) can be recovered

NEURAL NETWORKS AS NONLINEAR ADAPTIVE FILTERS 97

A(z)

B(z)

x(k) y(k+1)

(a) A recurrent nonlinear neural filter

A(z)

B(z)

C(z)

D(z)

x(k) y(k+1)

yN(k+1)

yL(k+1)

Σ

Σ

(b) A recurrent linear/nonlinear neural filter
structure

Figure 6.3 Nonlinear IIR filter structures

from the sequence {y(k)} in a D-dimensional space spanned by5

y(k) = [y(k), y(k − 1), . . . , y(k − (D − 1))] (6.11)

provided that D � 2d+1, where d is the dimension of the state space of system (6.9).
Therefore, one advantage of NARMA models over FIR models is the parsimony of
NARMA models, since an upper bound on the order of a NARMA model is twice the
order of the state (phase) space of the system being analysed.

The simplest recurrent neural network architecture is a recurrent perceptron, shown
in Figure 6.2. This is a simple, yet effective architecture. The equations which describe
the recurrent perceptron shown in Figure 6.2 are

y(k) = Φ(v(k)),

v(k) = uT(k)w(k),

}
(6.12)

where u(k) = [x(k − 1), . . . , x(k − M), 1, y(k − 1), . . . , y(k − N)]T is the input vector,
w(k) = [w1(k), . . . , wM+N+1(k)]T is the weight vector and (·)T denotes the vector
transpose operator.

5 Model (6.11) is in fact a NAR/NARMAX model.

98 NEURAL NETWORKS AND NONLINEAR ADAPTIVE FILTERS

x(k)

w w w w1 2 3 N

y(k)

z z z z-1 -1 -1 -1

(k) (k) (k) (k)

x(k-N+1)

Φ

x(k-1) x(k-2)

Figure 6.4 A simple nonlinear adaptive filter

Φ

Φ

Φ

z

z

z

-1

-1

-1

x(k)

y(k)

x(k-1)

x(k-2)
......

x(k-M)

...

Σ

Σ

Σ

Σ

Figure 6.5 Fully connected feedforward neural filter

A recurrent perceptron is a recursive adaptive filter with an arbitrary output func-
tion as shown in Figure 6.3. Figure 6.3(a) shows the recurrent perceptron structure
as a nonlinear infinite impulse response (IIR) filter. Figure 6.3(b) depicts the parallel
linear/nonlinear structure, which is one of the possible architectures. These structures
stem directly from IIR filters and are described in McDonnell and Waagen (1994),
Connor (1994) and Nerrand et al. (1994). Here, A(z), B(z), C(z) and D(z) denote
the z-domain linear transfer functions. The general structure of a fully connected,
multilayer neural feedforward filter is shown in Figure 6.5 and represents a general-
isation of a simple nonlinear feedforward perceptron with dynamic synapses, shown
in Figure 6.4. This structure consists of an input layer, layer of hidden neurons and
an output layer. Although the output neuron shown in Figure 6.5 is linear, it could
be nonlinear. In that case, attention should be paid that the dynamic ranges of the
input signal and output neuron match.

Another generalisation of a fully connected recurrent neural filter is shown in Fig-
ure 6.6. This network consists of nonlinear neural filters as depicted in Figure 6.5,
applied to both the input and output signal, the outputs of which are summed
together. This is a fairly general structure which resembles the architecture of a lin-

NEURAL NETWORKS AS NONLINEAR ADAPTIVE FILTERS 99

Φ

Φ

Φ

Φ

Φ

z-1

z -1

z -1

z -1

z -1

z -1

Φ

x(k)

x(k-1)

x(k-2)

x(k-M)

y(k-1)

y(k-2)

y(k-N)

Σ

Σ

Σ

Σ Σ

Σ

Σ

...

...

y(k)

Figure 6.6 Fully connected recurrent neural filter

ear IIR filter and is the extension of the NARMAX recurrent perceptron shown in
Figure 6.2.

Narendra and Parthasarathy (1990) provide deep insight into structures of neural
networks for identification of nonlinear dynamical systems. Due to the duality between
system identification and prediction, the same architectures are suitable for predic-
tion applications. From Figures 6.3–6.6, we can identify four general architectures of
neural networks for prediction and system identification. These architectures come as
combinations of linear/nonlinear parts from the architecture shown in Figure 6.6, and
for the nonlinear prediction configuration are specified as follows.

(i) The output y(k) is a linear function of previous outputs and a nonlinear function
of previous inputs, given by

y(k) =
N∑

j=1

aj(k)y(k − j) + F (u(k − 1), u(k − 2), . . . , u(k − M)), (6.13)

where F (·) is some nonlinear function. This architecture is shown in Fig-
ure 6.7(a).

(ii) The output y(k) is a nonlinear function of past outputs and a linear function of
past inputs, given by

y(k) = F (y(k − 1), y(k − 2), . . . , y(k − N)) +
M∑
i=1

bi(k)u(k − i). (6.14)

This architecture is depicted in Figure 6.7(b).

(iii) The output y(k) is a nonlinear function of both past inputs and outputs. The
functional relationship between the past inputs and outputs can be expressed

100 NEURAL NETWORKS AND NONLINEAR ADAPTIVE FILTERS

F()

u(k-M)

|
|
|

|
|
|

-1

-1

-1

-1

-1

a

a

1

N

Σ Σ 2a

-1
Z

Z

Z

Z

Z

Z

u(k)

y(k-2)

y(k-N)

u(k-1)

u(k-2)

y(k-1)

y(k)

.

(a) Recurrent neural filter (6.13)

Σ Σb2

F()
|
|
|

|
|
|

-1

-1

-1 -1

-1

-1

b

bM

1

Z

Z

ZZ

Z

Z

u(k)

y(k-1)

u(k-M) y(k-N)

u(k-2)

u(k-1)

y(k)

y(k-2)

(b) Recurrent neural filter (6.14)

ΣG() F()
|
|
|

|
|
|

-1

-1

-1 -1

-1

-1

u(k-1)

u(k-2)

Z

Z

Z Z

Z

Z

u(k)

y(k-2)

y(k-1)

u(k-M) y(k-N)

y(k)

(c) Recurrent neural filter (6.15)

F()

|
|
|

|
|
|

-1

-1

-1

-1Z

Z

Z

Z

u(k-1)

u(k-M)

y(k-N)

y(k-1)

u(k)

y(k)

(d) Recurrent neural filter (6.16)

Figure 6.7 Architectures of recurrent neural networks as nonlinear adaptive filters

in a separable manner as

y(k) = F (y(k − 1), . . . , y(k − N)) + G(u(k − 1), . . . , u(k − M)). (6.15)

This architecture is depicted in Figure 6.7(c).

(iv) The output y(k) is a nonlinear function of past inputs and outputs, as

y(k) = F (y(k − 1), . . . , y(k − N), u(k − 1), . . . , u(k − M)). (6.16)

This architecture is depicted in Figure 6.7(d) and is most general.

NEURAL NETWORKS AS NONLINEAR ADAPTIVE FILTERS 101

z -1

z -1

z -1

z -1

z -1
Neural

Identifier
y(k)

u(k)

y(k-1)

y(k-2)

y(k-N)

u(k-M)

u(k-1)

Figure 6.8 NARMA type neural identifier

6.6 Training Algorithms for Recurrent Neural Networks

A natural error criterion, upon which the training of recurrent neural networks is
based, is in the form of the accumulated squared prediction error over the whole
dataset, given by

E(k) =
1

M + 1

M∑
m=0

λ(m)e2(k − m), (6.17)

where M is the length of the dataset and λ(m) are weights associated with a par-
ticular instantaneous error e(k − m). For stationary signals, usually λ(m) = 1,
m = 1, 2, . . . , M , whereas in the nonstationary case, since the statistics change over
time, it is unreasonable to take into account the whole previous history of the errors.
For this case, a forgetting mechanism is usually employed, whereby 0 < λ(m) < 1.
Since many real-world signals are nonstationary, online learning algorithms commonly
use the squared instantaneous error as an error criterion, i.e.

E(k) = 1
2e2(k). (6.18)

Here, the coefficient 1
2 is included for convenience in the derivation of the algorithms.

6.7 Learning Strategies for a Neural Predictor/Identifier

A NARMA/NARMAX type neural identifier is depicted in Figure 6.8. When con-
sidering a neural predictor, the only difference is the position of the neural module
within the system structure, as shown in Chapter 2. There are two main training
strategies to estimate the weights of the neural network shown in Figure 6.8. In the
first approach, the links between the real system and the neural identifier are as
depicted in Figure 6.9. During training, the configuration shown in Figure 6.9 can be

102 LEARNING STRATEGIES FOR A NEURAL PREDICTOR/IDENTIFIER

z -1

z -1

z -1

z -1

z -1

z -1

Algorithm
Adaptation

Process

+

_

Σ

y(k)

y(k)e(k)

^

u(k)

u(k-1)

u(k-2)

u(k-M)

y(k-1)

y(k-2)

y(k-N)

Neural

Network

Figure 6.9 The nonlinear series–parallel (teacher forcing) learning configuration

z -1

z -1

z -1

z -1

z -1

z -1

Process

Adaptation
Algorithm

u(k)

u(k-1)

u(k-2)

u(k-M)

y(k)e(k)

y(k-1)

y(k-2)

y(k-N)

+

^

^

^

Σ

_

Neural

Network

y(k)^

Figure 6.10 The nonlinear parallel (supervised) learning configuration

described by

ŷ(k) = f(u(k), . . . , u(k − M), y(k − 1), . . . , y(k − N)), (6.19)

which is referred to as the nonlinear series–parallel model (Alippi and Piuri 1996; Qin
et al. 1992). In this configuration, the desired signal y(k) is presented to the network,
which produces biased estimates (Narendra 1996).

NEURAL NETWORKS AS NONLINEAR ADAPTIVE FILTERS 103

z-1

z-1

z-1

z-1

z-1

y(k)

Output

b1

b2

bM

aN

a

Input

1

y(k-1)

x(k-M)

y(k-N)

x(k-1)

x(k-2)

x(k)

Σ

...
...

Figure 6.11 Adaptive IIR filter

To overcome such a problem, a training configuration depicted in Figure 6.10 may
be considered. This configuration is described by

ŷ(k) = f(u(k), . . . , u(k − M), ŷ(k − 1), . . . , ŷ(k − N)). (6.20)

Here, the previous estimated outputs ŷ(k) are fed back into the network. It should
be noticed that these two configurations require different training algorithms. The
configuration described by Figure 6.10 and Equation (6.20) is known as the nonlinear
parallel model (Alippi and Piuri 1996; Qin et al. 1992) and requires the use of a
recursive training algorithm, such as the RTRL algorithm.

The nonlinear prediction configuration using a recurrent neural network is shown
in Figure 5.2, where the signal to be predicted u(k) is delayed through a tap delay
line and fed into a neural predictor.

6.7.1 Learning Strategies for a Neural Adaptive Recursive Filter

To introduce learning strategies for recurrent neural networks, we start from corre-
sponding algorithms for IIR adaptive filters. An IIR adaptive filter can be thought
of as a recurrent perceptron from Figure 6.2, for which the neuron is linear, i.e. it
performs only summation instead of both summation and nonlinear mapping. An IIR

104 LEARNING STRATEGIES FOR A NEURAL PREDICTOR/IDENTIFIER

adaptive filter in the prediction configuration is shown in Figure 6.11. A comprehen-
sive account of adaptive IIR filters is given in Regalia (1994).

Two classes of adaptive learning algorithms used for IIR systems are the equation
error and output error algorithms (Shynk 1989). In the equation error configuration,
the desired signal d(k) is fed back into the adaptive filter, whereas in the output error
configuration, the signals that are fed back are the estimated outputs ŷ(k).

6.7.2 Equation Error Formulation

The output yEE(k) of the equation error IIR filter strategy is given by

yEE(k) =
N∑

i=1

ai(k)d(k − i) +
M∑

j=1

bj(k)x(k − j), (6.21)

where {ai(k)} and {bj(k)} are adjustable coefficients which correspond, respectively,
to the feedback and input signals. Since the functional relationship (6.21) does not
comprise of delayed outputs yEE(k), this filter does not have feedback and the output
yEE(k) depends linearly on its coefficients. This means that the learning algorithm
for this structure is in fact a kind of LMS algorithm for an FIR structure with inputs
{d(k)} and {x(k)}. A more compact expression for filter (6.21) is given by

yEE(k) = A(k, z−1)d(k) + B(k, z−1)x(k), (6.22)

where

A(k, z−1) =
N∑

i=1

ai(k)z−i and B(k, z−1) =
M∑

j=1

bj(k)z−j .

The equation error eEE(k) = d(k) − yEE(k) can be expressed as

eEE(k) = d(k) − [1 − A(k, z−1)]d(k) − B(k, z−1)x(k), (6.23)

whereby the name of the method is evident. Since eEE(k) is a linear function of
coefficients {ai(k)} and {bj(k)}, the error performance surface in this case is quadratic,
with a single global minimum. In the presence of noise, however, this minimum is in
a different place from in the output error formulation.

6.7.3 Output Error Formulation

The output yOE(k) of the output error learning strategy is given by

yOE(k) =
N∑

i=1

ai(k)yOE(k − i) +
M∑

j=1

bj(k)x(k − j). (6.24)

A more compact form of Equation (6.24) can be expressed as

yOE(k) =
B(k, z−1)

1 − A(k, z−1)
x(k). (6.25)

NEURAL NETWORKS AS NONLINEAR ADAPTIVE FILTERS 105

The output error eOE(k) = d(k) − yOE(k) is the difference between the teaching
signal d(k) and output yOE(k), hence the name of the method. The output yOE(k) is
a function of the coefficients and past outputs, and so too is the error eOE(k). As a
consequence, the error performance surface for this strategy has potentially multiple
local minima, especially if the order of the model is smaller than the order of the
process.

Notice that the equation error can be expressed as a filtered version of the output
error as

eEE(k) = [1 − A(k, z−1)]eOE(k). (6.26)

6.8 Filter Coefficient Adaptation for IIR Filters

We first present the coefficient adaptation algorithm for an output error IIR filter. In
order to derive the relations for filter coefficient adaptation, let us define the gradient
∇Θ(E(k)) for the instantaneous cost function E(k) = 1

2e2(k) as

∇ΘE(k) =
∂E(k)
∂Θ(k)

= eOE(k)∇ΘeOE(k) = −eOE(k)∇ΘyOE(k), (6.27)

where Θ(k) = [b1(k), . . . , bM (k), a1(k), . . . , aN (k)]T. The gradient vector consists of
partial derivatives of the output with respect to filter coefficients

∇ΘyOE(k) =
[
∂yOE(k)
∂b1(k)

, . . . ,
∂yOE(k)
∂bM (k)

,
∂yOE(k)
∂a1(k)

, . . . ,
∂yOE(k)
∂aN (k)

]T

. (6.28)

To derive the coefficient update equations, notice that the inputs {x(k)} are indepen-
dent from the feedback coefficients ai(k). Now, take the derivatives of both sides of
(6.24) first with respect to ai(k) and then with respect to bj(k) to obtain

∂yOE(k)
∂ai(k)

= yOE(k − i) +
N∑

m=1

am(k)
∂yOE(k − m)

∂ai(k)
,

∂yOE(k)
∂bj(k)

= x(k − j) +
N∑

m=1

am(k)
∂yOE(k − m)

∂bj(k)
.

(6.29)

There is a difficulty in practical applications of this algorithm, since the partial deriva-
tives in Equation (6.29) are with respect to current values of am(k) and bm(k), which
makes Equation (6.29) nonrecursive. Observe that if elements of Θ were indepen-
dent of {y(k − i)}, then the gradient calculation would be identical to the FIR case.
However, we have delayed samples of yOE(k) involved in calculation of Θ(k) and an
approximation to algorithm (6.29), known as the pseudolinear regression algorithm
(PRA), is used. It is reasonable to assume that with a sufficiently small learning rate
η, the coefficients will adapt slowly, i.e.

Θ(k) ≈ Θ(k − 1) ≈ · · · ≈ Θ(k − N). (6.30)

106 FILTER COEFFICIENT ADAPTATION FOR IIR FILTERS

The previous approximation is particularly good for N small. From (6.29) and (6.30),
we finally have the equations for LMS IIR gradient adaptation,

∂yOE(k)
∂ai(k)

≈ yOE(k − i) +
N∑

m=1

am(k)
∂yOE(k − m)
∂ai(k − m)

,

∂yOE(k)
∂bj(k)

≈ x(k − j) +
N∑

m=1

am(k)
∂yOE(k − m)
∂bj(k − m)

.

(6.31)

The partial derivatives

∂yOE(k − m)
∂ai(k − m)

and
∂yOE(k − m)
∂bj(k − m)

admit computation in a recursive fashion. For more details see Treichler (1987),
Regalia (1994) and Shynk (1989).

To express this algorithm in a more compact form, let us introduce the weight
vector w(k) as

w(k) = [b1(k), b2(k), . . . , bM (k), a1(k), a2(k), . . . , aN (k)]T (6.32)

and the IIR filter input vector u(k) as

u(k) = [x(k − 1), . . . , x(k − M), y(k − 1), . . . , y(k − N)]T. (6.33)

With this notation, we have, for instance, w2(k) = b2(k), wM+2(k) = a2(k), uM (k) =
x(k−M) or uM+1(k) = y(k−1). Now, Equation (6.31) can be rewritten in a compact
form as

∂yOE(k)
∂wi(k)

≈ ui(k) +
N∑

m=1

wm+M (k)
∂yOE(k − m)
∂wi(k − m)

. (6.34)

If we denote

πi(k) =
∂yOE(k)
∂wi(k)

, i = 1, . . . , M + N,

then (6.34) becomes

πi(k) ≈ ui(k) +
N∑

m=1

wm+M (k)πi(k − m). (6.35)

Finally, the weight update equation for a linear IIR adaptive filter can be expressed
as

w(k + 1) = w(k) + η(k)e(k)π(k), (6.36)

where π(k) = [π1(k), . . . , πM+N (k)]T.
The adaptive IIR filter in a system identification configuration for the output error

formulation is referred to as a model reference adaptive system (MRAS) in the control
literature.

NEURAL NETWORKS AS NONLINEAR ADAPTIVE FILTERS 107

6.8.1 Equation Error Coefficient Adaptation

The IIR filter input vector u(k) for equation error adaptation can be expressed as

u(k) = [x(k − 1), . . . , x(k − M), d(k − 1), . . . , d(k − N)]T. (6.37)

Both the external input vector x(k) = [x(k − 1), . . . , x(k − M)]T and the vector of
teaching signals d(k) = [d(k − 1), . . . , d(k − N)]T are not generated through the filter
and are independent of the filter weights. Therefore, the weight adaptation for an
equation error IIR adaptive filter can be expressed as

w(k + 1) = w(k) + η(k)e(k)u(k), (6.38)

which is identical to the formula for adaptation of FIR adaptive filters. In fact, an
equation error IIR adaptive filter can be thought of as a dual input FIR adaptive
filter.

6.9 Weight Adaptation for Recurrent Neural Networks

The output of a recurrent perceptron, shown in Figure 6.2, with weight vectors
wa(k) = [wM+2, . . . , wM+N+1]T and wb(k) = [w1, w2, . . . , wM , wM+1]T, which com-
prise weights associated with delayed outputs and inputs, respectively, is given by

y(k) = Φ(net(k)),

net(k) =
M∑

j=1

wj(k)x(k − j) + wM+1(k) +
N∑

m=1

wm+M+1(k)y(k − m),

 (6.39)

where wi(k) ∈ w(k) = [wT
b (k),wT

a (k)]T, i = 1, . . . , M + N + 1. The instantaneous
output error in this case is given by

e(k) = d(k) − y(k), (6.40)

where d(k) denotes the desired (teaching) signal, whereas the cost function is E =
1
2e2(k). In order to obtain the weight vector w(k + 1), we have to calculate the
gradient ∇wE(k) and the weight update vector ∆w(k) for which the elements ∆wi(k),
i = 1, . . . , M + N + 1, are

∆wi(k) = −η
∂E(k)
∂wi(k)

= −ηe(k)
∂e(k)
∂wi(k)

= +ηe(k)
∂y(k)
∂wi(k)

. (6.41)

From (6.39), we have
∂y(k)
∂wi(k)

= Φ′(net(k))
∂ net(k)
∂wi(k)

. (6.42)

Following the analysis provided for IIR adaptive filters (6.34), we see that the partial
derivatives of outputs with respect to weights form a recursion. Thus, we have

∂y(k)
∂wi(k)

≈ Φ′(net(k))
[
ui(k) +

N∑
m=1

wm+M+1(k)
∂y(k − m)
∂wi(k − m)

]
, (6.43)

108 WEIGHT ADAPTATION FOR RECURRENT NEURAL NETWORKS

where vector u(k) = [x(k), . . . , x(k − M), 1, y(k), . . . , y(k − N)]T comprises the set
of all input signals to a recurrent perceptron, including the delayed inputs, delayed
outputs and bias, and i = 1, . . . , M + N + 1. If we introduce notation

πi(k) =
∂y(k)
∂wi(k)

,

then (6.43) can be rewritten as

πi(k) = Φ′(net(k))
[
ui(k) +

N∑
m=1

wm+M+1(k)πi(k − m)
]
. (6.44)

In control theory, coefficients πi(k) are called sensitivities. It is convenient to assume
zero initial conditions for sensitivities (6.44) (Haykin 1994), i.e.

πi(0) = 0, i = 1, . . . , M + N + 1.

The analysis presented so far is the basis of the real-time recurrent learning (RTRL)
algorithm. The derivation of this online direct-gradient algorithm for a general recur-
rent neural network is more involved and is given in Appendix D.

Finally, the weight update equation for a nonlinear adaptive filter in the form of a
recurrent perceptron can be expressed as

w(k + 1) = w(k) + η(k)e(k)π(k), (6.45)

where π(k) = [π1(k), . . . , πM+N+1(k)]T. In order to calculate vector π(k), we have to
store the following matrix:

Π(k) =

π1(k − 1) π2(k − 1) · · · πM+N+1(k − 1)
π1(k − 2) π2(k − 2) · · · πM+N+1(k − 2)

...
...

. . .
...

π1(k − N) π2(k − N) · · · πM+N+1(k − N)

 . (6.46)

The learning procedure described above is the so-called supervised learning (or output
error learning) algorithm for a recurrent perceptron.

6.9.1 Teacher Forcing Learning for a Recurrent Perceptron

The input vector u(k) for teacher forced adaptation of a recurrent perceptron can be
expressed as

u(k) = [x(k − 1), . . . , x(k − M), 1, d(k − 1), . . . , d(k − N)]T. (6.47)

The analysis of this algorithm is analogous to that presented in Section 6.8.1. Hence,
the weight adaptation for a teacher forced recurrent perceptron can be expressed as

w(k + 1) = w(k) + η(k)e(k)Φ′(net(k))u(k), (6.48)

which is identical to the formula for adaptation of dual-input nonlinear FIR adaptive
filters.

NEURAL NETWORKS AS NONLINEAR ADAPTIVE FILTERS 109

6.9.2 Training Process for a NARMA Neural Predictor

Algorithms for training of recurrent neural networks have been extensively studied
since the late 1980s. The real-time recurrent learning (RTRL) algorithm (Robinson
and Fallside 1987; Williams and Zipser 1989a) enabled training of simple RNNs,
whereas Pineda provided recurrent backpropagation (RBP) (Pineda 1987, 1989).
RTRL-based training of the RNN employed as a nonlinear adaptive filter is based
upon minimising the instantaneous squared error at the output of the first neuron
of the RNN (Williams and Zipser 1989a), which can be expressed as min(e2(k)) =
min([s(k)− y1(k)]2), where e(k) denotes the error at the output of the RNN and s(k)
is the teaching signal. It is an output error algorithm. The correction ∆W (k) to the
weight matrix W (k) of the RNN for prediction is calculated as

∆W (k) = −η
∂E(k)
∂W (k)

= ηe(k)
∂y1(k)
∂W (k)

, (6.49)

which turns out to be based upon a recursive calculation of the gradients of the
outputs of the neurons (Mandic et al. 1998; Williams and Zipser 1989a). A detailed
gradient descent training process (RTRL) for RNNs is given in Appendix D.

Similarly to the analysis for IIR filters and recurrent perceptrons, in order to make
the algorithm run in real time, an approximation has to be made, namely that for a
small learning rate η, the following approximation,

∂yi(k − m)
∂W (k)

≈ ∂yi(k − m)
∂W (k − m)

, i, m = 1, . . . , N, (6.50)

holds for slowly time-varying input statistics.
Another frequently used algorithm for training recurrent neural networks is a vari-

ant of the extended Kalman filter algorithm called the linearised recursive least-
squares (LRLS) algorithm (Baltersee and Chambers 1998; Mandic et al. 1998). Its
derivation is rather mathematically involved and is given in Appendix D. This algo-
rithm is related to the previously mentioned gradient-based algorithms, and it modifies
both the weights and the states of the network on an equal basis.

6.10 The Problem of Vanishing Gradients in Training of Recurrent
Neural Networks

Recently, several empirical studies have shown that when using gradient-descent learn-
ing algorithms, it might be difficult to learn simple temporal behaviour with long time
dependencies (Bengio et al. 1994; Mozer 1993), i.e. those problems for which the out-
put of a system at time instant k depends on network inputs presented at times
τ � k. Bengio et al. (1994) analysed learning algorithms for systems with long time
dependencies and showed that for gradient-based training algorithms, the information
about the gradient contribution K steps in the past vanishes for large K. This effect
is referred to as the problem of vanishing gradient , which partially explains why gra-
dient descent algorithms are not very suitable to estimate systems and signals with
long time dependencies. For instance, common recurrent neural networks encounter

110 VANISHING GRADIENTS IN TRAINING OF RECURRENT NNs

problems when learning information with long time dependencies, which is a problem
in prediction of nonlinear and nonstationary signals.

The forgetting behaviour experienced in neural networks is formalised in Defini-
tion 6.10.1 (Frasconi et al. 1992).

Definition 6.10.1 (forgetting behaviour). A recurrent network exhibits forgetting
behaviour if

lim
K→∞

∂zi(k)
∂zj(k − K)

= 0 ∀ k ∈ K, i ∈ O, j ∈ I, (6.51)

where z are state variables, I denotes the set of input neurons, O denotes the set of
output neurons and K denotes the time index set.

A state space representation of recurrent NARX neural networks can be expressed
as

zi(k + 1) =

{
Φ(u(k),z(k)), i = 1,

zi(k), i = 2, . . . , N,
(6.52)

where the output y(k) = z1(k) and zi, i = 1, 2, . . . , N , are state variables of a recur-
rent neural network. To represent mathematically the problem of vanishing gradients,
recall that the weight update for gradient-based methods for a neural network with
one output neuron can be expressed as

∆w(k) = ηe(k)
(

∂y(k)
∂w(k)

)
= ηe(k)

∑
i

(
∂y(k)
∂zi(k)

∂zi(k)
∂w(k)

)
. (6.53)

Expanding Equation (6.53) and using the chain rule, we have

∆w(k) = ηe(k)
∑

i

(
∂yi(k)
∂zi(k)

k∑
l=1

∂zi(k)
∂zi(k − l)

∂zi(k − l)
∂w(k − l)

)
. (6.54)

Partial derivatives of the state space variables ∂zi(k)/∂zi(l) from (6.54) build a Jaco-
bian matrix J(k, k − l),6 which is given by

J(k) =

∂y(k)
∂z1(k)

∂y(k)
∂z2(k)

· · · ∂y(k)
∂zN (k)

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 0

. (6.55)

If all the eigenvalues of Jacobian (6.55) are inside the unit circle, then the corre-
sponding transition matrix of J(k) is an exponentially decreasing function of k. As a
consequence, the states of the network will remain within a set defined by a hyperbolic
attractor, and the adaptive system will not be able to escape from this fixed point.

6 Notice that the Jacobian (6.55) represents a companion matrix. The stability of these matrices
is analysed in Mandic and Chambers (2000d) and will be addressed in Chapter 7.

NEURAL NETWORKS AS NONLINEAR ADAPTIVE FILTERS 111

Hence, a small perturbation in the weight vector w affects mostly the near past.
This means that even if there was a weight update ∆w(k) that would move the
current point in the state space of the network from a present attractor, the gradient
∇wE(k) would not carry this information, due to the effects of vanishing gradient.
Due to this effect, the network for which the dynamics are described above, is not
able to estimate/represent long term dependencies in the input signal/system (Haykin
1999b).

Several approaches have been suggested to circumvent the problem of vanishing
gradient in training RNNs. Most of them rest upon embedding memory in neural
networks, whereas several propose improved learning algorithms, such as the extended
Kalman filter algorithm (Mandic et al. 1998), Newton type algorithms, annealing
algorithms (Mandic and Chambers 1999c; Rose 1998) and a posteriori algorithms
(Mandic and Chambers 1998c). The deterministic annealing approach, for instance,
offers (Rose 1998) (i) the ability to avoid local minima, (ii) applicability to many
different structures/architectures, (iii) the ability to minimise the cost function even
when its gradients tend to vanish for time indices from the distant past.

Embedded memory is particularly significant in recurrent NARX and NARMAX
neural networks (Lin et al. 1997). This embedded memory can help to speed up
propagation of gradient information, and hence help to reduce the effect of vanish-
ing gradient (Lin et al. 1996). There are various methods to introduce memory and
temporal information into neural networks. These include (Kim 1998) (i) creating a
spatial representation of temporal pattern, (ii) putting time delays into the neurons or
their connections, (iii) employing recurrent connections, (iv) using neurons with acti-
vations that sum inputs over time, (v) using some combination of these. The PRNN,
for instance, uses the combination of (i) and (iii).

6.11 Learning Strategies in Different Engineering Communities

Learning strategies classification for a broad class of adaptive systems is given in
Nerrand et al. (1994), where learning algorithms are classified as directed, semidirected
and unidirected. Directed algorithms are suitable mostly for the modelling of noiseless
dynamical systems, or for systems with noise added to the state variables of the black-
box model of the system, whereas unidirected algorithms are suitable for predicting
the output of systems for which the output is corrupted by additive white noise.
For instance, the RTRL algorithm is a unidirected algorithm, whereas a posteriori
(data-reusing) algorithms are unidirected–directed.

There is a need to relate terms coming from different communities, which refer
to the same learning strategies. This correspondence for terms used in the signal
processing, system identification, neural networks and adaptive systems communities
is shown in Table 6.1.

6.12 Learning Algorithms and the Bias/Variance Dilemma

The optimal prediction performance would provide a compromise between the bias
and the variance of the prediction error achieved by a chosen model. An analogy with

112 LEARNING ALGORITHMS AND THE BIAS/VARIANCE DILEMMA

Table 6.1 Terms related to learning strategies used in different communities

Signal Processing System ID Neural Networks Adaptive Systems

Output Error Parallel Supervised Unidirected
Equation Error Series–Parallel Teacher Forcing Directed

polynomials, which to a certain extent applies for trajectory-tracking problems, shows
that if a number of points is approximated by a polynomial of an insufficient order,
the polynomial fit has errors, i.e. the polynomial curve cannot pass through every
point. On the other hand, if the order of the polynomial is greater that the number
of points through which to fit, the polynomial will pass exactly through every point,
but will oscillate in between, hence having a large variance.

If we consider a measure of the error as

E[(d(k) − y(k))2], (6.56)

then adding and subtracting a dummy variable E[y(k)] within the square brackets of
(6.56) yields (Principe et al. 2000)

E[(d(k) − y(k))2] = E[E(y(k)) − d(k)]2 + E[(y(k) − E[y(k)])2]. (6.57)

The first term on the right-hand side of (6.57) represents the squared bias term,
whereas the second term on the right-hand side of (6.57) represents the variance.
An inspection of (6.57) shows that teacher forcing (equation error) algorithms suffer
from biased estimates, since d(k) �= E[y(k)] in the first term of (6.57), whereas the
supervised (output error) algorithms might suffer from increased variance.

If the noise term ε(k) is included within the output, for the case when we desire to
approximate mapping f(x(k)) by a neural network for which the output is y(k), we
want to minimise

E[y(k) − f(x)]. (6.58)

If
y(k) = f∗(k) + ε(k), f∗(k) = E[y|x],

E[ε|x] = 0, f̄ = E[f(x)],

}
(6.59)

where, for convenience, the time index k is dropped, we have (Gemon 1992)

E[f(x)] = E[ε2] + E[f∗ − f̄]2 + E[(f − f̄)2] = σ2 + B2 + var(f). (6.60)

In Equation (6.60), σ2 denotes the noise variance, B2 = E[f∗ − f̄]2 is the squared bias
and var(f) = E[(f − f̄)2] denotes the variance. The term σ2 cannot be reduced, since
it is due to the observation noise. The second and third term in (6.60) can be reduced
by choosing an appropriate architecture and learning strategy, as shown before in this
chapter. A thorough analysis of the bias/variance dilemma can be found in Gemon
(1992) and Haykin (1994).

NEURAL NETWORKS AS NONLINEAR ADAPTIVE FILTERS 113

6.13 Recursive and Iterative Gradient Estimation Techniques

Since, for real-time applications, the coefficient update in the above algorithms is
finished before the next input sample arrives, there is a possibility to reiterate learning
algorithms about the current point in the state space of the network. Therefore, a
relationship between the iteration index l and time index k can be established. The
possibilities include the following.

• A purely recursive algorithm – one gradient iteration (coefficients update) per
sampling interval k, i.e. l = 1. This is the most commonly used technique for
recursive filtering algorithms.

• Several coefficients updates per sampling interval, i.e. l > 1 – this may improve
the nonlinear filter performance, as for instance in a posteriori algorithms, where
l � 2 for every time instant (Mandic and Chambers 2000e).

• P coefficients with greatest magnitude updated every sampling period – this
helps to reduce computational complexity (Douglas 1997).

• Coefficients are only updated every K sampling periods – useful for processing
signals with slowly varying statistics.

6.14 Exploiting Redundancy in Neural Network Design

Redundancy encountered in neural network design can improve the robustness and
fault tolerance in the neural network approach to a specific signal processing task,
as well as serve as a basis for network topology adaptation due to statistical changes
in the input data. It gives more degrees of freedom than necessary for a particular
task. In the case of neural networks for time series prediction, the possible sources of
redundancy can be

• Redundancy in the global network architecture, which includes design with

– more layers of neurons than necessary, which enables network topology
adaptation while in use and improves robustness in the network,

– more neurons within the layers than necessary, which improves robustness
and fault-tolerance in the network,

– memory neurons (Poddar and Unninkrishnan 1991), which are specialised
neurons added to the network to store the past activity of the network.
Memory neurons are time replicae of processing neurons, in all the network
layers except the output layer.

• Redundancy among the internal connections within the network. According to
the level of redundancy in the network we can define

– fully recurrent networks (Connor 1994; McDonnell and Waagen 1994),

– partially recurrent networks (Bengio 1995; Haykin and Li 1995),

114 SUMMARY

– time delays in the network as a source of redundancy (Baldi and Atiya
1994; Haykin and Li 1995; Nerrand et al. 1994).

• Data reusing, where we expect to make the trajectory along the error perfor-
mance surface ‘less stochastic’.7

6.15 Summary

It has been shown that a small neural network can represent high-order nonlinear
systems, whereas a very large number of terms are required for an equivalent Volterra
series representation. We have shown that when modelling an unknown dynamical sys-
tem, or tracking unknown dynamics, it is important to concentrate on the embedding
dimension of the network.

Architectures for neural networks as nonlinear adaptive filters have been introduced
and learning strategies, such as equation error and output error strategy have been
explained. Connection between the learning strategies from different engineering com-
munities has been established. The online real-time recurrent learning algorithm for
general recurrent neural networks has been derived inductively, starting from a linear
adaptive IIR filter, via a recurrent perceptron, through to a general case. Finally,
sources of redundancies in RNN architectures have been addressed.

7 We wish to speed up the convergence of learning trajectory along the error performance surface.
It seems that reusing of ‘good’ data can improve the convergence rate of a learning algorithm. This
data reusing makes a learning algorithm iterative as well as recursive.

Recurrent Neural Networks for Prediction
Authored by Danilo P. Mandic, Jonathon A. Chambers

Copyright c©2001 John Wiley & Sons Ltd
ISBNs: 0-471-49517-4 (Hardback); 0-470-84535-X (Electronic)

7

Stability Issues in RNN
Architectures

7.1 Perspective

The focus of this chapter is on stability and convergence of relaxation realised through
NARMA recurrent neural networks. Unlike other commonly used approaches, which
mostly exploit Lyapunov stability theory, the main mathematical tool employed in
this analysis is the contraction mapping theorem (CMT), together with the fixed
point iteration (FPI) technique. This enables derivation of the asymptotic stability
(AS) and global asymptotic stability (GAS) criteria for neural relaxive systems. For
rigour, existence, uniqueness, convergence and convergence rate are considered and the
analysis is provided for a range of activation functions and recurrent neural networks
architectures.

7.2 Introduction

Stability and convergence are key issues in the analysis of dynamical adaptive sys-
tems, since the analysis of the dynamics of an adaptive system can boil down to the
discovery of an attractor (a stable equilibrium) or some other kind of fixed point. In
neural associative memories, for instance, the locally stable equilibrium states (attrac-
tors) store information and form neural memory. Neural dynamics in that case can be
considered from two aspects, convergence of state variables (memory recall) and the
number, position, local stability and domains of attraction of equilibrium states (mem-
ory capacity). Conveniently, LaSalle’s invariance principle (LaSalle 1986) is used to
analyse the state convergence, whereas stability of equilibria are analysed using some
sort of linearisation (Jin and Gupta 1996). In addition, the dynamics and conver-
gence of learning algorithms for most types of neural networks may be explained and
analysed using fixed point theory.

Let us first briefly introduce some basic definitions. The full definitions and further
details are given in Appendix I. Consider the following linear, finite dimensional,

116 INTRODUCTION

autonomous system1 of order N

y(k) =
N∑

i=1

ai(k)y(k − i) = aT(k)y(k − 1). (7.1)

Definition 7.2.1 (see Kailath (1980) and LaSalle (1986)). The system (7.1)
is said to be asymptotically stable in Ω ⊆ R

N , if for any y(0), limk→∞ y(k) = 0, for
a(k) ∈ Ω.

Definition 7.2.2 (see Kailath (1980) and LaSalle (1986)). The system (7.1) is
globally asymptotically stable if for any initial condition and any sequence a(k), the
response y(k) tends to zero asymptotically.

For NARMA systems realised via neural networks, we have

y(k + 1) = Φ(y(k), w(k)). (7.2)

Let Φ(k, k0, Y0) denote the trajectory of the state change for all k � k0, with
Φ(k0, k0, Y0) = Y0. If Φ(k, k0, Y

∗) = Y ∗ for all k � 0, then Y ∗ is called an equi-
librium point. The largest set D(Y ∗) for which this is true is called the domain of
attraction of the equilibrium Y ∗. If D(Y ∗) = R

N and if Y ∗ is asymptotically stable,
then Y ∗ is said to be asymptotically stable in large or globally asymptotically stable.

It is important to clarify the difference between asymptotic stability and abso-
lute stability. Asymptotic stability may depend upon the input (initial conditions),
whereas global asymptotic stability does not depend upon initial conditions. There-
fore, for an absolutely stable neural network, the system state will converge to one
of the asymptotically stable equilibrium states regardless of the initial state and the
input signal. The equilibrium points include the isolated minima as well as the maxima
and saddle points. The maxima and saddle points are not stable equilibrium points.
Robust stability for the above discussed systems is still under investigation (Bauer et
al. 1993; Jury 1978; Mandic and Chambers 2000c; Premaratne and Mansour 1995).

In conventional nonlinear systems, the system is said to be globally asymptotically
stable, or asymptotically stable in large, if it has a unique equilibrium point which is
globally asymptotically stable in the sense of Lyapunov. In this case, for an arbitrary
initial state x(0) ∈ R

N , the state trajectory φ(k,x(0), s) will converge to the unique
equilibrium point x∗, satisfying

x∗ = lim
k→∞

φ[k,x(0), s]. (7.3)

Stability in this context has been considered in terms of Lyapunov stability and M -
matrices (Forti and Tesi 1994; Liang and Yamaguchi 1997). To apply the Lyapunov
method to a dynamical system, a neural system has to be mapped onto a new system
for which the origin is at an equilibrium point. If the network is stable, its ‘energy’ will
decrease to a minimum as the system approaches and attains its equilibrium state. If
a function that maps the objective function onto an ‘energy function’ can be found,
then the network is guaranteed to converge to its equilibrium state (Hopfield and

1 Stability of systems of this type is discussed in Appendix H.

STABILITY ISSUES IN RNN ARCHITECTURES 117

0 1 2 3 4 5 6
0

1

2

3

4

5

6

K(x)=sqrt(2x+3)

y=x

Fixed Point x*=3

x

K
(x

),
y

Figure 7.1 FPI solution for roots of F (x) = x2 − 2x − 3

Tank 1985; Luh et al. 1998). The Lyapunov stability of neural networks is studied in
detail in Han et al. (1989) and Jin and Gupta (1996).

The concept of fixed point will be central to much of what follows, for which the
basic theorems and principles are introduced in Appendix G.

Point x∗ is called a fixed point of a function K if it satisfies K(x∗) = x∗, i.e. the
value x∗ is unchanged under the application of function K. For instance, the roots of
function F (x) = x2 − 2x − 3 can be found by rearranging xk+1 = K(xk) =

√
2xk + 3

via fixed point iteration. The roots of the above function are −1 and 3. The FPI
which started from x0 = 4 converges to within 10−5 of the exact solution in nine
steps, which is depicted in Figure 7.1. This example is explained in more detail in
Appendix G.

One of the virtues of neural networks is their processing power, which rests upon
their ability to converge to a set of fixed points in the state space. Stability analysis,
therefore, is essential for the derivation of conditions that assure convergence to these
fixed points. Stability, although necessary, is not sufficient for effective processing
(see Appendix H), since in practical applications, it is desirable that a neural system
converges to only a preselected set of fixed points. In the remainder of this chapter,
two different aspects of equilibrium, i.e. the static aspect (existence and uniqueness
of equilibrium states) and the dynamic aspect (global stability, rate of convergence),
are studied. While analysing global asymptotic stability,2 it is convenient to study the
static problem of the existence and uniqueness of the equilibrium point first, which is
the necessary condition for GAS.

2 It is important to note that the iterates of random Lipschitz functions converge if the functions
are contracting on the average (Diaconis and Freedman 1999). The theory of random operators is
a probabilistic generalisation of operator theory. The study of probabilistic operator theory and its
applications was initiated by the Prague school under the direction of Antonin Spacek, in the 1950s
(Bharucha-Reid 1976). They recognised that it is necessary to take into consideration the fact that
the operators used to describe the behaviour of systems may not be known exactly. The application
of this theory in signal processing is still under consideration and can be used to analyse stochastic
learning algorithms (Chambers et al. 2000).

118 OVERVIEW

7.3 Overview

The role of the nonlinear activation function in the global asymptotic convergence of
recurrent neural networks is studied. For a fixed input and weights, a repeated appli-
cation of the nonlinear difference equation which defines the output of a recurrent
neural network is proven to be a relaxation, provided the activation function satis-
fies the conditions required for a contraction mapping. This relaxation is shown to
exhibit linear asymptotic convergence. Nesting of modular recurrent neural networks
is demonstrated to be a fixed point iteration in a spatial form.

7.4 A Fixed Point Interpretation of Convergence in Networks with a
Sigmoid Nonlinearity

To solve many problems in the field of optimisation, neural control and signal process-
ing, dynamic neural networks need to be designed to have only a unique equilibrium
point. The equilibrium point ought to be globally stable to avoid the risk of spuri-
ous responses or the problem of local minima. Global asymptotic stability (GAS) has
been analysed in the theory of both linear and nonlinear systems (Barnett and Storey
1970; Golub and Van Loan 1996; Haykin 1996a; Kailath 1980; LaSalle 1986; Priest-
ley 1991). For nonlinear systems, it is expected that convergence in the GAS sense
depends not only on the values of the parameter vector, but also on the parameters
of the nonlinear function involved. As systems based upon sigmoid functions exhibit
stability in the bounded input bounded output (BIBO) sense, due to the saturation
type sigmoid nonlinearity, we investigate the characteristics of the nonlinear activa-
tion function to obtain GAS for a general RNN-based nonlinear system. In that case,
both the external input vector to the system x(k) and the parameter vector w(k) are
assumed to be a time-invariant part of the system under fixed point iteration.

7.4.1 Some Properties of the Logistic Function

To derive the conditions which the nonlinear activation function of a neuron should
satisfy to enable convergence of real-time learning algorithms, activation functions
of a neuron are analysed in the framework of contraction mappings and fixed point
iteration.

Observation 7.4.1. The logistic function

Φ(x) =
1

1 + e−βx
(7.4)

is a contraction on [a, b] ∈ R for 0 < β < 4 and the iteration

xi+1 = Φ(xi) (7.5)

converges to a unique solution x∗ from ∀x0 ∈ [a, b] ∈ R.

Proof. By the contraction mapping theorem (CMT) (Appendix G), function K is a
contraction on [a, b] ∈ R if

STABILITY ISSUES IN RNN ARCHITECTURES 119

a bK(a) K(b)

Figure 7.2 The contraction mapping

(i) x ∈ [a, b] ⇒ K(x) ∈ [a, b],

(ii) ∃γ < 1 ∈ R
+ s.t. |K(x) − K(y)| � γ|x − y| ∀x, y ∈ [a, b].

The condition (i) is illustrated in Figure 7.2. The logistic function (7.4) is strictly
monotonically increasing, since its first derivative is strictly greater than zero. Hence,
in order to prove that Φ is a contraction on [a, b] ∈ R, it is sufficient to prove that it
contracts the upper and lower bound of interval [a, b], i.e. a and b, which in turn gives

• a − Φ(a) � 0,

• b − Φ(b) � 0.

These conditions will be satisfied if the function Φ is smaller in magnitude than the
curve y = x, i.e. if

|x| >

∣∣∣∣ 1
1 + e−βx

∣∣∣∣, β > 0. (7.6)

Condition (ii) can be proven using the mean value theorem (MVT) (Luenberger 1969).
Namely, as the logistic function Φ (7.4) is differentiable, for ∀x, y ∈ [a, b], ∃ξ ∈ (a, b)
such that

|Φ(x) − Φ(y)| = |Φ′(ξ)(x − y)| = |Φ′(ξ)||x − y|. (7.7)

The first derivative of the logistic function (7.4) is

Φ′(x) =
(

1
1 + e−βx

)′
=

βe−βx

(1 + e−βx)2
, (7.8)

which is strictly positive, and for which the maximum value is Φ′(0) = β/4. Hence,
for β � 4, the first derivative Φ′ � 1. Finally, for γ < 1 ⇔ β < 4, function Φ given
in (7.4) is a contraction on [a, b] ∈ R.

Convergence of FPI: if x∗ is a zero of x − Φ(x) = 0, or in other words the fixed
point of function Φ, then for γ < 1 (β < 4)

|xi − x∗| = |Φ(xi−1) − Φ(x∗)| � γ|xi−1 − x∗|. (7.9)

Thus, since for γ < 1 ⇒ {γ}i i−→ 0

|xi − x∗| � γi|x0 − x∗| ⇒ lim
i→∞

xi = x∗ (7.10)

and iteration xi+1 = Φ(xi) converges to some x∗ ∈ [a, b].

Convergence/divergence of the FPI clearly depends on the size of slope β in Φ.
Considering the general nonlinear system Equation (7.2), this means that for a fixed
input vector to the iterative process and fixed weights of the network, an FPI solution
depends on the slope (first derivative) of the nonlinear activation function and some
measure of the weight vector. If the solution exists, that is the only value to which

120 CONVERGENCE IN NETWORKS WITH A SIGMOID NONLINEARITY

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

Φ
(x

)

(a) The logistic nonlinear function

−10 −5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

x

Φ
′ (x

)

(b) The first derivative of the logistic
function

Figure 7.3 The logistic function and its derivative

−5 0 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

y=x

x

Φ
(x

)

β=1
β=0.25
β=8

(a) Centred logistic functions

−5 0 5
−0.5

0

0.5

1

1.5

y=x

x

Φ
(x

)

β=1
β=0.25
β=8

(b) Unipolar logistic functions

Figure 7.4 Various logistic functions

such a relaxation algorithm converges. Figure 7.3 shows the logistic function and its
first derivative for β = 1. To depict Observation 7.4.1 further, we use a centred logistic
function (Φ−mean(Φ)), as shown in Figure 7.4(a). For Φ a contraction, the condition
(i) from CMT (Appendix G) must be satisfied. That is the case if the values of Φ are
smaller in magnitude than the corresponding values of the function y = x. As shown
in Figure 7.4(a), that condition is satisfied for a range of logistic functions with the
slope 0 < β < 4. Indeed, e.g. for β = 8, the logistic function has an intersection
with the function y = x (dotted curve in Figure 7.4(a)), which means that for β > 4,
there are regions in Φ where (a − Φ(a)) 	� 0, which violates condition (i) of CMT and
Observation 7.4.1.

STABILITY ISSUES IN RNN ARCHITECTURES 121

7.4.2 Logistic Function, Rate of Convergence and Fixed Point Theory

The rate of convergence of a fixed point iteration can be judged by the closeness of
xk+1 to x∗ relative to the closeness of xk to x∗ (Dennis and Schnabel 1983; Gill et al.
1981).

Definition 7.4.2. A sequence {xk} is said to converge towards its fixed point x∗

with order r if

0 � lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖r

< ∞, (7.11)

where r ∈ N is the largest number such that the above inequality holds.

Since we are interested in the value of r that occurs in the limit, r is sometimes
called the asymptotic convergence rate. If r = 1, the sequence is said to exhibit linear
convergence, if r = 2, the sequence is said to exhibit quadratic convergence.

Definition 7.4.3. For a sequence {xk} which has an order of convergence r, the
asymptotic error constant of the fixed point iteration is the value γ ∈ R

+ which
satisfies

γ = lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖r

. (7.12)

When r = 1, i.e. for linear convergence, γ must be strictly less than unity in order
for convergence to occur (Gill et al. 1981).

Example 7.4.4. Show that the convergent FPI process

xi+1 = Φ(xi) (7.13)

exhibits a linear asymptotic convergence for which the error constant equals |Φ′(x∗)|.

Solution. Consider the ratio |ei+1|/|ei| of successive errors, where ei = xi − x∗

|ei+1|
|ei|

=
|xi+1 − x∗|
|xi − x∗| =

|Φ(xi) − Φ(x∗)|
|xi − x∗|

MVT= |Φ′(ξ)| (7.14)

for some ξ ∈ (xi, x
∗). Having in mind that the iteration (7.13) converges to x∗ when

i → ∞
lim

i→∞

|ei+1|
|ei|

= lim
i→∞

|Φ′(ξ)| = |Φ′(x∗)|. (7.15)

Therefore, iteration (7.13) exhibits linear asymptotic convergence with convergence
rate |Φ′(x∗)|.

Example 7.4.5. Derive the error bound ei = |xi − x∗| for the FPI process

xi+1 = Φ(xi). (7.16)

Solution. Rewrite the error bound as

xi − x∗ = Φ(xi−1) − Φ(xi) + Φ(xi) − Φ(x∗) (7.17)

and therefore
|xi − x∗| � γ|xi−1 − xi| + γ|xi − x∗|. (7.18)

122 CONVERGENCE IN NETWORKS WITH A SIGMOID NONLINEARITY

Table 7.1 Fixed point iterates for the logistic function

Starting value x0 −10 10

First iterate 0.000 045 1
Second iterate 0.5 0.7311
Third iterate 0.6225 0.6750
Fourth iterate 0.6508 0.6626
Fifth iterate 0.6572 0.6598
Sixth iterate 0.6586 0.6592
Seventh iterate 0.6589 0.6591

1 2 3 4 5 6 7 8
−10

−8

−6

−4

−2

0

2

4

6

8

10

Number of iteration

Ite
ra

te
s

Initial value x
0
=−10

Initial value x
0
=10

Figure 7.5 FPI for a logistic function and different initial values

Hence
|xi − x∗| � γ

1 − γ
|xi−1 − xi|. (7.19)

Example 7.4.6. Show that when repeatedly applying logistic function Φ the interval
[−10, 10] degenerates towards a point ζ ∈ [−10, 10].

Solution. Observation 7.4.1 provides a general background for this example. Notice
that β = 1. In order to show that a function converges in the FPI sense, it is sufficient
to show that it contracts the bound points of the interval [−10, 10], since it is a strictly
monotonically increasing function. Let us therefore set up the iteration

xi+1 = Φ(xi), x0 ∈ {−10, 10}. (7.20)

STABILITY ISSUES IN RNN ARCHITECTURES 123

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

slope of nonlinearity

fix
ed

 p
oi

nt

Figure 7.6 Fixed points for the logistic nonlinearity, as a function of slope β and starting
point x0 = 10

The results of the iteration are given in Table 7.1 and Figure 7.5. As seen from
Table 7.1, for both initial values, function Φ provides a contraction of the underlying
interval, i.e. it provides a set of mappings

Φ : [−10, 10] → [0.000 045, 1],
Φ : [0.000 045, 1] → [0.5, 0.7311],

...
Φ : ζ → ζ.

(7.21)

Indeed, the iterates from either starting point x0 ∈ {−10, 10} converge to a value
ζ ∈ [0.6589, 0.6591] ∈ [−10, 10]. It can be shown that after 24 iterations, the fixed
point ζ is

Φ : [−10, 10] i−→ ζ = 0.659 046 068 407 41, (7.22)

which is shown in Figure 7.5.

Example 7.4.7. Plot the fixed points of the logistic function

Φ(x) =
1

1 + e−βx
(7.23)

for a range of β.

Solution. The result of the experiment is shown in Figure 7.6. From Figure 7.6, the
values of the fixed point increase with β and converge to unity when β increases.

Example 7.4.8. Show that the logistic function from Example 7.4.6, exhibits a linear
asymptotic convergence for which the convergence rate is γ = 0.2247.

124 CONVERGENCE OF NONLINEAR RELAXATION

Table 7.2 Error convergence for the FPI of the logistic function

x0 = −10 ei ei/ei−1 x0 = 10 ei ei/ei−1

First iterate 0.000 045 0.659 — 1 0.341 —
Second iterate 0.5 0.159 0.2413 0.7311 0.0721 0.2114
Third iterate 0.6225 0.0365 0.2296 0.6750 0.016 0.2219
Fourth iterate 0.6508 0.0082 0.2247 0.6626 0.0036 0.2246
Fifth iterate 0.6572 0.0018 0.2247 0.6598 0.0008 0.2247
Sixth iterate 0.6586 0.0004 0.2247 0.6592 0.0002 0.2247
Seventh iterate 0.6589 0.0001 0.2247 0.6591 0.0001 0.2247

Solution. To show that the rate of convergence of the iterative process (7.13) is
|Φ′(x∗)|, let us calculate Φ′(x∗) ≈ Φ′(0.659) = 0.2247. Let us now upgrade Table 7.1
in order to show the rate of convergence. The results are shown in Table 7.2. As
Φ′(x∗) ≈ 0.2247, it is expected that, according to CMT, the ratio of successive errors
converges to Φ′(x∗). Indeed, for either initial value in the FPI, the errors ei = xi −x∗

decrease with the order of iteration and the ratio of successive errors ei+1/ei converges
to 0.2247 and reaches that value after as few iterations as i = 4 for x0 = −10 and
i = 5 for x0 = 10.

Properties of the tanh activation function in this context are given in Krcmar et
al. (2000).

Remark 7.4.9. The function

tanh(βx) =
eβx − e−βx

eβx + e−βx

provides contraction mapping for 0 < β < 1.

This is easy to show, following the analysis for the logistic function and noting that
tanh′(βx) = 4β/(e−βx + eβx)2, which is strictly positive and for which the maximum
value is β = 1 for x = 0. Convergence of FPI for β = 1 and β = 1.2 for a tanh
activation function is shown in Figure 7.7. The graphs show convergence from two
different starting values, y = −10 and y = 10. For β = 1, relaxations from both
starting values converge towards zero, whereas for β = 1.2, which is greater than the
bound given in Remark 7.4.9, we have two different fixed points. For convergence of
learning algorithms for adaptive filters based upon neural networks, we desire only
one stable fixed point, and the further emphasis will be on bounds on the weights and
nonlinearity which preserve this condition.

7.5 Convergence of Nonlinear Relaxation Equations Realised Through a
Recurrent Perceptron

We next analyse convergence towards an equilibrium based upon a recurrent percep-
tron using contraction mapping and corresponding fixed point iteration. Unlike in
the linear case, the external input data to (7.2) do not need to be a zero vector, but
simply kept constant.

STABILITY ISSUES IN RNN ARCHITECTURES 125

0 20 40 60 80 100 120 140 160 180 200
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

y
0
=−10, β=1

y
0
=10, β=1

y
0
=10, β=1.2

y
0
=−10, β=1.2

Iteration number

O
ut

pu
t o

f F
P

I f
or

 ta
nh

Figure 7.7 Fixed points for the tanh activation function

Proposition 7.5.1 (see Mandic and Chambers 1999b). GAS relaxation for a
recurrent perceptron given by

y(k + 1) = Φ(u(k)Tw(k)), (7.24)

where uT
k = [y(k−1), . . . , y(k−N), 1, x(k−1), . . . , x(k−M)], is a contraction mapping

and converges to some value y∗ ∈ (0, 1) for β
∑N

j=1 |wj(k)| < 4.

Proof. Equation (7.24) can be written as

y(k + 1) = Φ

(N+M+1∑
j=1

wjzj(k)
)

, (7.25)

where zj(k) is the jth element of input u(k). The iteration (7.25) is biased and can
be expressed as

y(k + 1) = Φ(y(k), . . . , y(k − N + 1), const.). (7.26)

The existence, uniqueness and convergence features of mapping (7.24), follow from
properties of the logistic function. Iteration (7.24), for a contractive Φ converges to a
fixed point y∗ = Φ(y∗ + const.), where the constant is given by

const. =
(N+M+1∑

j=N+1

wjzj(k)
)

.

It is assumed that the weights are not time-variant. Since the condition for convergence
of the logistic function to a fixed point is 0 < β < 4, it follows that the slope in
the logistic function β and the weights w1, . . . , wN in the weight vector w are not

126 CONVERGENCE OF NONLINEAR RELAXATION

Table 7.3 Fixed point iterates for the NARMA perceptron

Starting value y0 −10 10

First iterate 0.006 68 0.795 71
Second iterate 0.445 10 0.520 35
Third iterate 0.487 69 0.494 82
Fourth iterate 0.491 73 0.492 41
Fifth iterate 0.492 11 0.492 18
Sixth iterate 0.492 15 0.492 16

independent and that the effective slope in the logistic function now becomes the
product β

∑N
j=1 wj . Therefore

∣∣∣∣β
N∑

j=1

wj

∣∣∣∣ � β

N∑
j=1

|wj | < 4 ⇔ ‖w‖1 <
4
β

(7.27)

is the condition of GAS convergence of (7.2) realised through a recurrent NARMA
perceptron.

A comparison of the nonlinear GAS result (7.27) with its linear counterpart shows
that they are both based upon the ‖ · ‖1 norm of the corresponding coefficient vector.
In the nonlinear case, however, the measure of nonlinearity is also included.

Example 7.5.2. Show that the iteration

y(k) = Φ(y(k − 1)) =
1

1 + e−0.25y(k−1)+0.5 (7.28)

with initial values y0 = −10 and y0 = 10 converges towards a point y∗ ∈ [−10, 10].

Solution. Note that β = 0.25 and w = 1. The numerical values for iteration (7.28)
are given in Table 7.3. Indeed, the iterates from either starting point converge to a
value y∗ ∈ [0.492 15, 0.492 16] ⊂ [−10, 10]. It can be shown that after 15 iterations
for y0 = −10 and 16 iterations for y0 = 10, the fixed point to which the FPI (7.28)
converges is y∗ = 0.492 159 969 021 68.

Corollary 7.5.3 (see Mandic and Chambers 1999b). In the case of the real-
isation of (7.2) by a NARMA recurrent perceptron, convergence towards a point in
the FPI sense does not depend on the number of external input signals, nor on their
values, as long as they are finite.

The convergence rate is the ratio of the distances between the current and previous
iterate of an FPI and a fixed point y∗, i.e. (y(k) − y∗)/(y(k − 1) − y∗). This reveals
how quickly an FPI process converges towards a point.

Observation 7.5.4 (see Mandic and Chambers 1999b). A realisation of an
iterative process (7.2) by a recurrent perceptron converges towards a fixed point y∗

exhibiting linear convergence with convergence rate Φ′(y∗) (Example 7.4.8).

STABILITY ISSUES IN RNN ARCHITECTURES 127

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

slope of nonlinearity

fix
ed

 p
oi

nt

Xo=10

Xo=−10

Figure 7.8 Fixed points for the biased logistic nonlinearity

Example 7.5.5. Plot the fixed points of the biased logistic function

Φ(x) =
1

1 + e−βx+bias (7.29)

for a range of β and bias = 2.

Solution. To depict the effects of varying β, noise was added to the system. From
Figure 7.8, the values of fixed points increase with β and converge to unity when
β increases. However, for β large enough, the fixed points to which the iteration
xi+1 = Φ(xi) converges might not be unique. Indeed, the broken line in Figure 7.8
represents the iteration whose starting value was x0 = 10, while the solid line in
Figure 7.8 represents the case with x0 = −10. For a range of β around β = 4, the
iterations from different starting points do not converge to the same value. The values
of fixed points for the biased logistic function differ from the corresponding values for
the pure logistic function. Moreover, the fixed points differ for various values of the
bias in the biased logistic function.

Remark 7.5.6. For stability of FPI for a tanh activation function replace the bound
β < 4 by β < 1, i.e. ‖w‖1 < 1/β.

7.6 Relaxation in Nonlinear Systems Realised by an RNN

Let Yi = [yi
1, . . . , y

i
N]T be a vector comprising the outputs of a general RNN

at iteration i of the FPI. The input vector to a network is ui = [yi
1, . . . , y

i
N ,

1, xN+1, . . . , xN+M+1]T. The weight matrix W consists of N rows and N + M + 1
columns. Then, by a CMT in R

N , the iterative process applied on the general RNN
converges, if M = [a, b]N is a closed subset of R

N such that

128 RELAXATION IN NONLINEAR SYSTEMS REALISED BY AN RNN

(i) Φ : M → M ;

(ii) if for some norm ‖ · ‖, ∃γ < 1 such that ‖Φ(x)−Φ(y)‖ � γ‖x−y‖, ∀x, y ∈ M
the equation

x = Φ(x) (7.30)
has a unique solution x∗ ∈ M , and the iteration

xi+1 = Φ(xi) (7.31)

converges to x∗ for any starting value x0 ∈ M .

Actually, since the function Φ in this case is a multivariate function, Φ =
[Φ1, . . . , ΦN]T, where N is the number of neurons of the RNN, we have a set of
mappings

yi
1 = Φ1(uT

i−1W1),
...

...

yi
N = ΦN (uT

i−1WN),

 (7.32)

where {Wi} are the appropriate columns in W . An obvious problem is that the
convergence is norm dependent. Therefore, that condition should be replaced by some
condition based upon the features of Φ.

Let us denote the Jacobian of Φ by J . If M ∈ R
N is a convex set and Φ is

continuously differentiable on M = [a, b]N ⊂ R
N and satisfies the conditions of the

CMT, then
max
z∈M

‖J(z)‖ � γ. (7.33)

For convergence, the FPI at every neuron should be convergent. The following analysis
gives the bound for the elements of the weight matrix W of the RNN with respect
to the derivatives of the components of Φ = [Φ1, . . . , ΦN]. Recall that for the case of
a single recurrent perceptron, the condition for GAS was

N∑
j=1

|wj | <
4
β

⇔ ‖w‖1 <
4
β

=
1

Φ′
max

.

However, for a network of N neurons, it is possible to have a convergent FPI, even if
some of the neurons violate the previous conditions. When it comes to the monotonic
convergence, it is important that the process at every neuron converges uniformly.
This is straightforward to show, since for any x, y ∈ R

N , which are processed by a
neural network, we have

|Φ(x) − Φ(y)| =
N∑

i=1

∣∣∣∣
N∑

j=1

wi,jΦj(xj) −
N∑

j=1

wi,jΦj(yj)
∣∣∣∣

�
N∑

i=1

N∑
j=1

|wi,j ||Φj(xj) − Φj(yj)|

�
N∑

j=1

|Φ′
max||xj − yj |

N∑
i=1

|wi,j |. (7.34)

STABILITY ISSUES IN RNN ARCHITECTURES 129

1 2 3 4 5 6 7 8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of iteration

O
ut

pu
ts

 o
f n

eu
ro

ns

y
1

y
2

y
3

Figure 7.9 FPI for a general RNN

For uniform convergence at every particular neuron, it is the diagonal weights of the
weight matrix (self-feedback) which together with the slope βi have an influence on
the convergence in the FPI sense. As in the case of a recurrent NARMA perceptron,
the feedback of a general RNN may consist of a number n of delayed versions of its
output, in addition to the state feedback from the remaining neurons in the network.
In that case, the number of feedback inputs to the network becomes N + n − 1 and
the condition for GAS becomes

max
1�k�N

{|wk,k|, |wk,N+1|, . . . , |wk,N+n−1|} <
4

(N + n − 1) max1�i�N βi
. (7.35)

Observation 7.6.1. The rate of convergence of relaxation in RNNs does not depend
on the length of the tap delay input line.

Proof. It is already shown that all the variables related to the MA part of the under-
lying NARMA process form a constant during the FPI iteration, while the feedback
variables are updated in every iteration. Hence, no matter how many external input
signals, their contribution to the FPI relaxation is embodied in a constant. Therefore,
the iteration

Yi+1 = Φ(Yi, X, W) (7.36)

does not depend on the number of external input samples.

Example 7.6.2. Analyse the convergence of the iteration process for a general RNN
with three neurons and six external input signals and a logistic activation function.

Solution. Let us choose the initial values X0 = rand(10, 1)∗1, W = rand(10, 3)∗2−1,
using the notation of MATLAB, and start the iteration process. Here rand(M, N)

130 THE ITERATIVE APPROACH AND NESTING

-1

No

k+1 k

y

i=1

i

i=i+1

i>m

yi

W X

z

(a) Iterative process

module 1 module 2 module m

yy yW X W X W X...
1 2 m

(b) Iterative process realised spatially

Figure 7.10 Spatial realisation of an iterative process

denotes an (M × N)-dimensional matrix of uniformly distributed random numbers
∈ [0, 1]. The convergence of the outputs of neurons in the FPI sense is depicted in
Figure 7.9. For every neuron, the iteration process converges or, if in vector form, the
output vector of the RNN converges to a fixed vector of the iteration.

7.7 The Iterative Approach and Nesting

Nesting corresponds to the procedure of reducing the interval size in set theory. In
signal processing, however, nesting is essentially a nonlinear spatial structure which
corresponds to the cascaded structure in linear signal processing (Baltersee and Cham-
bers 1998; Haykin and Li 1995; Mandic and Chambers 1998b; Mandic et al. 1998).
The RNN-based nested sigmoid scheme can be written as (Haykin 1994; Poggio and
Girosi 1990)

F (W, X) = Φ

(∑
n

wnΦ

(∑
i

viΦ

(
· · ·Φ

(∑
j

ujXj

)
· · ·

)))
, (7.37)

where Φ is a sigmoidal function. This corresponds to a multilayer network of units
that sum their inputs with ‘weights’ W = {wn, vi, . . . , uj , . . . } and then perform a
sigmoidal transformation of this sum. Our aim is to show that nesting can exhibit
contraction mapping and that repeatedly applied nesting can lead to convergence
in the FPI sense. Therefore, instead of having a spatial, nested, pipelined structure,
nesting can be obtained through a temporal, iterative, relaxive structure (Mandic and
Chambers 2000c), as shown in Figure 7.10. Quantities that change under iteration in
Figure 7.10 have a bar above the symbol.

STABILITY ISSUES IN RNN ARCHITECTURES 131

Observation 7.7.1. The compound nested logistic functions

x̂ = Φ(xN)
= Φ(Φ(xN−1))

...

= Φ

(
Φ(Φ(· · · (Φ(x1)) · · ·))︸ ︷︷ ︸

N

)
(7.38)

provide a contraction mapping for β < 4 and the FPI converges towards a point
x∗ ∈ [a, b].

Proof. Notice that the nesting process (7.38) represents an implicitly written fixed
point iteration process

xi+1 = Φ(xi) ⇔ xi+1 = Φ(Φ(xi−1)) = Φ

(
Φ(Φ(· · · (Φ(x1)) · · ·))︸ ︷︷ ︸

N

)
. (7.39)

Hence, nesting (7.38) and fixed point iteration (7.13) are a realisation of the same
process and have already been considered. Let us therefore just show the diagram of
the effects of the nesting process for the logistic function with slope β = 1, depicted in
Figure 7.11. From Figure 7.11, it is apparent that nesting (7.38) provides contraction
mapping of its argument. Hence, it is expected that the nesting process (7.38) with
N stages converges towards the point x∗ ∈ [|Φ′(x∗)|Na, |Φ′(x∗)|Nb]. For N small, the
fixed point iteration achieved through a nesting process (7.38) may not reach its fixed
point. However, from Tables 7.1 and 7.2 and Figure 7.11, even with N = 4, the error
|x4 − x∗| < 0.01, which suffices for practical applications.

To summarise:

• for the nesting process to be a contraction mapping, the range of slopes β for
the logistic function Φ should be bounded, with 0 < β < 4;

• the nesting process of a sufficient order applied to an interval [a, b] ∈ R converges
to a point x∗ ∈ [a, b], which is a fixed point of the fixed point iteration xi+1 =
Φ(xi);

• the nesting process (7.38) exhibits a linear asymptotic convergence whose rate
is |Φ′(x∗)|, where x∗ is the fixed point of mapping Φ.

The nesting process (7.38) provides the iteration spatially, rather than temporally.
Such a strategy is known as pipelining and is widely used in advanced computer
architectures (Hwang and Briggs 1986). Using the pipelining strategy, a task is divided
in subtasks, each of them being represented by a module. Pipelining corresponds to
unfolding the finite iterative process into a spatial structure of the same length as
the number of iterations in the former. Now, from (7.37), the pipelined structure
represents indeed a spatial realisation of an essentially temporal iterative process, and
converges under the same conditions as the nesting process (7.38). A realisation of

132 THE ITERATIVE APPROACH AND NESTING

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

argument

fir
st

 n
on

lin
ea

r
pa

ss

−10 −5 0 5 10
0.5

0.55

0.6

0.65

0.7

0.75

argument

se
co

nd
 n

on
lin

ea
r

pa
ss

−10 −5 0 5 10
0.62

0.63

0.64

0.65

0.66

0.67

0.68

argument

th
ird

 n
on

lin
ea

r
pa

ss

−10 −5 0 5 10
0.65

0.655

0.66

0.665

argument

fo
ur

th
 n

on
lin

ea
r

pa
ss

Figure 7.11 Nested logistic nonlinearity

yout

weight matrix W

module M module (M-1) module 1

weight matrix W weight matrix W

z

z

-1

-1 I

z z z

zz

-1

-1-1

-1-1

I

I

I

I I

yM y(M-1),1 ,12y,1

,1

p

ppp

(N-1) (N-1) (N-1)

My (k-1)

s(k-M) s(k-M+1) s(k-M+2)

(k) (k) (k) (k)

s(k-1) s(k)

Figure 7.12 Pipelined Recurrent Neural Network

process (7.38) is the so-called pipelined recurrent neural network (PRNN) (Haykin and
Li 1995), shown in Figure 7.12, which provides a spatial form of the iteration (7.37).
Therefore, for instance, instead of having a temporal FPI on a recurrent perceptron
(Figure 6.2), it suffices, for a finite-length FPI, to consider a spatial PRNN structure.

STABILITY ISSUES IN RNN ARCHITECTURES 133

7.8 Upper Bounds for GAS Relaxation within FCRNNs

Neural systems of the form

x(k + 1) = Ax(k) + Bσ[Wx(k) + s] (7.40)

have been widely considered (Jin et al. 1994). Here, x is the state vector of the network
and σ(·) is a vector of nonlinear activation functions. On the other hand, the weight
matrix W of a recurrent neural network can be split up into the feedback part (index
a) and the feedforward part (index b), which gives Y (k+1) = Φ(WaY (k)+Wbx(k)),
which can degenerate into the form (7.40). Namely, for a contractive activation func-
tion Φ, we have (Mandic and Chambers 2000e)

Φ(a + b) < Φ(a) + Φ(b) < a + Φ(b), (7.41)

and results for system (7.40) provide the upper bound for stability of the fully con-
nected RNN system described above (Mandic et al. 2000).

7.9 Summary

The relationships between the number of neurons in the RNN, the slope in the activa-
tion function β and a measure of W have been provided, which guarantee convergence
of a relaxation process realised by fully connected recurrent neural networks. Based
upon the fixed point iteration (FPI), it has been shown that these conditions rest
entirely upon the slope of the activation function β and a measure of the ‖ · ‖1 norm
of the weight vector of a recurrent perceptron. A connection between nesting and
FPI, which is the basis of the GAS convergence, has been established, and a pipelined
recurrent neural network (PRNN) has been shown to be a spatial realisation of the
FPI process. The results obtained can be applied when recurrent neural networks are
used as computational models, in particular, as optimisation models. The results can
also be used as stability analysis tools for some classes of nonlinear control systems.

Recurrent Neural Networks for Prediction
Authored by Danilo P. Mandic, Jonathon A. Chambers

Copyright c©2001 John Wiley & Sons Ltd
ISBNs: 0-471-49517-4 (Hardback); 0-470-84535-X (Electronic)

8

Data-Reusing Adaptive
Learning Algorithms

8.1 Perspective

In this chapter, a class of data-reusing learning algorithms for recurrent neural net-
works is analysed. This is achieved starting from a case of feedforward neurons,
through to the case of networks with feedback, trained with gradient descent learn-
ing algorithms. It is shown that the class of data-reusing algorithms outperforms the
standard (a priori) algorithms for nonlinear adaptive filtering in terms of the instanta-
neous prediction error. The relationships between the a priori and a posteriori errors,
learning rate and the norm of the input vector are derived in this context.

8.2 Introduction

The so-called a posteriori error estimates provide us with, roughly speaking, some
information after computation. From a practical point of view, they are valuable and
useful, since real-life problems are often nonlinear, large, ill-conditioned, unstable or
have multiple solutions and singularities (Hlavacek and Krizek 1998). The a posteriori
error estimators are local in a computational sense, and the computational complexity
of a posteriori error estimators should be far less expensive than the computation of
an exact numerical solution of the problem. An account of the essence of a posteriori
techniques is given in Appendix F.

In the area of linear adaptive filters, the most comprehensive overviews of a poste-
riori techniques can be found in Treichler (1987) and Ljung and Soderstrom (1983).
These techniques are also known as data-reusing techniques (Douglas and Rupp 1997;
Roy and Shynk 1989; Schnaufer and Jenkins 1993; Sheu et al. 1992). The quality of an
a posteriori error estimator is often measured by its efficiency index , i.e. the ratio of
the estimated error to the true error. It has been shown that the a posteriori approach
in the neural network framework introduces a kind of normalisation of the employed
learning algorithm (Mandic and Chambers 1998c). Consequently, it is expected that
the instantaneous a posteriori output error ē(k) is smaller in magnitude than the

136 INTRODUCTION

corresponding a priori error e(k) for a non-expansive nonlinearity Φ (Mandic and
Chambers 1998c; Treichler 1987).

8.2.1 Towards an A Posteriori Nonlinear Predictor

To obtain an a posteriori RNN-based nonlinear predictor, let us, for simplicity, con-
sider a NARMA recurrent perceptron, the output of which can be expressed as

y(k) = Φ(uT(k)w(k)), (8.1)

where the information vector

u(k) = [x(k − 1), . . . , x(k − M), 1, y(k − 1), . . . , y(k − N)]T (8.2)

comprises both the external input and feedback signals. As the updated weight vector
w(k+1) is available before the arrival of the next input vector u(k+1), an a posteriori
output estimate ȳ(k) can be formed as

ȳ(k) = Φ(uT(k)w(k + 1)). (8.3)

The corresponding instantaneous a priori and a posteriori errors at the output neuron
of a neural network are given, respectively, as

e(k) = d(k) − y(k) a priori error, (8.4)
ē(k) = d(k) − ȳ(k) a posteriori error, (8.5)

where d(k) is some teaching signal. The a posteriori outputs (8.3) can be used to form
an a posteriori information vector

ū(k) = [x(k − 1), . . . , x(k − M), 1, ȳ(k − 1), . . . , ȳ(k − N)]T, (8.6)

which can replace the a priori information vector (8.2) in the output (8.3) and weight
update calculations (6.43)–(6.45). This also results in greater accuracy (Ljung and
Soderstrom 1983). An alternate representation of such an algorithm is the so-called
a posteriori error gradient descent algorithm (Ljung and Soderstrom 1983; Treichler
1987), explained later in this chapter.

A simple data-reusing algorithm for linear adaptive filters

The procedure of calculating the instantaneous error, output and weight update may
be repeated for a number of times, keeping the same external input vector x(k) and
teaching signal d(k), which results in improved error estimation. Let us consider such
a data-reusing LMS algorithm for FIR adaptive filters, described by (Mandic and
Chambers 2000e)

ei(k) = d(k) − xT(k)wi(k),
wi+1(k) = wi(k) + ηei(k)x(k),

subject to |ei+1(k)| � γ|ei(k)|, 0 < γ < 1, i = 1, . . . , L.

 (8.7)

DATA-REUSING ADAPTIVE LEARNING ALGORITHMS 137

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-6

-5

-4

-3

-2

-1

0
Data-reusing algorithms - Linear case

Sample number

N
W

E
V

 (
d
B

)
Input: Speech signal recording
Filter: MATLAB filter(1,[1 0.5 0.2],...)
Noise: 20dB SNR Gaussian
Step size: 0.01

N=1

N=2

N=3

N=4

N=5

Figure 8.1 Convergence curves for a repeatedly applied data-reusing algorithm

From (8.7), w(k + 1) is associated with the index (L + 1), i.e. w(k + 1) = wL+1(k),
whereas for L = 1, the problem reduces to the standard a priori algorithm, i.e.
w1(k) = w(k), w2(k) = w(k + 1). Convergence curves for such a reiterated LMS
algorithm for a data-reusing FIR filter applied to echo cancellation are shown in Fig-
ure 8.1. The averaged squared prediction error becomes smaller with the number of
iterations, N . For N → ∞, the prediction error becomes the one of the NLMS1 algo-
rithm. A geometrical perspective of the procedure (8.7) is given in Appendix F and
Figures F.2 and F.3. This provides advantageous stabilising features as compared to
standard algorithms. This is further elaborated in Section F.2.2 of Appendix F. In
practice, however, the advantage of the a posteriori algorithms is not always signifi-
cant, and depends on the physics of the problem and the chosen filter.

8.2.2 Note on the Computational Complexity

It has been shown that the computational complexity of the a priori RTRL algorithm
is O(N4) (Haykin 1994; Williams and Zipser 1995), with N denoting the number of
neurons in the RNN. If, in order to improve the performance, the number of neurons in
the network is increased from N to (N +1), the time required for the new adaptation
process to finish can be dramatically increased. To depict that problem, the relative
change in the computational load when the number of neurons increases, i.e. the ratio
(N +1)4/N4, is shown in Figure 8.2. In other words, that means that the a posteriori

1 In fact, for the linear case, the NLMS algorithm is approached by repeating this kind of data-
reusing for an infinite number of times (Nitzberg 1985; Roy and Shynk 1989; Schnaufer and Jenkins
1993). For further details, see Appendix F.

138 A CLASS OF SIMPLE A POSTERIORI ALGORITHMS

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

Number of neurons in RNN

C
om

pu
ta

tio
na

l c
om

pl
ex

ity
 r

at
io

 [(
N

+
1)

^4
]/[

N
^4

]

Figure 8.2 Ratio of the increase of computational burden with N

procedure applied to the network with N neurons should have the computational load
CL given by

CL(N4) � CL a posteriori < CL((N + 1)4). (8.8)

8.2.3 Chapter Summary

A detailed account of various data-reusing techniques for nonlinear adaptive filters
realised as neural networks is provided. The relationships between the a priori and
a posteriori errors are derived and the corresponding bounds on learning rates are
analysed. This class of algorithms performs better than standard algorithms, does
not introduce a significant additional computational burden, and for a class of data-
reusing algorithms, when iterated for an infinite number of times, converges to a class
of normalised algorithms.

8.3 A Class of Simple A Posteriori Algorithms

Consider a simple computational model of a feedforward neural adaptive filter shown
in Figure 6.4. The aim is to preserve

|ē(k)| � γ|e(k)|, 0 � γ < 1 (8.9)

at each iteration, for both feedforward and recurrent neural networks acting as a
nonlinear predictor. The problem of obtaining the a posteriori error can be represented
in the gradient descent setting as (Mandic and Chambers 2000e)

w(k + 1) = w(k) − η∇wE(k),

ē(k) = d(k) − Φ(xT(k)w(k + 1)),
subject to |ē(k)| � γ|e(k)|, 0 < γ < 1.

 (8.10)

DATA-REUSING ADAPTIVE LEARNING ALGORITHMS 139

From (8.10), the actual learning is performed in the standard manner, i.e. a priori
using e(k), whereas an improved a posteriori error ē(k) is calculated at every discrete
time interval using the updated weight vector w(k+1). The gradient descent algorithm
for this computational model, with the cost function in the form of E(k) = 1

2e2(k), is
given by

e(k) = d(k) − Φ(xT(k)w(k)),

w(k + 1) = w(k) + η(k)e(k)Φ′(xT(k)w(k))x(k),

ē(k) = d(k) − Φ(xT(k)w(k + 1)).

 (8.11)

This case represents a generalisation of the LMS algorithm for FIR adaptive linear
filters. Let us express the a posteriori error term from above as

ē(k) = d(k) − Φ(xT(k)w(k)) − [Φ(xT(k)w(k + 1)) − Φ(xT(k)w(k))]. (8.12)

Using the CMT, for a contractive, monotonically increasing Φ and positive e(k) and
ē(k), we have

Φ(xT(k)w(k + 1)) − Φ(xT(k)w(k)) = α(k)xT(k)∆w(k), (8.13)

where α(k) = Φ′(ξ) < 1, ξ ∈ (xT(k)w(k), xT(k)w(k + 1)). Using (8.11)–(8.13) yields

ē(k) = [1 − η(k)α(k)Φ′(k)‖x(k)‖2
2]e(k), (8.14)

where Φ′(k) = Φ′(xT(k)w(k)). The learning rate

η(k) =
1

α(k)Φ′(k)‖x(k)‖2
2
,

which minimises (8.14), is approximately that of a normalised nonlinear gradient
descent algorithm (9.15), given in Chapter 9.

To obtain the bounds of such an a posteriori error, premultiplying the weight
update equation in (8.11) by xT(k) and applying the nonlinear activation function Φ
on either side yields (Mandic and Chambers 2000e)

Φ(xT(k)w(k + 1)) = Φ(xT(k)w(k) + η(k)e(k)Φ′(k)‖x(k)‖2
2). (8.15)

Further analysis depends on the function Φ, which can exhibit either contractive or
expansive behaviour. For simplicity, let us consider a class of contractive functions Φ,
which satisfy2

Φ(a + b) � Φ(a) + Φ(b). (8.16)

With a = xT(k)w(k) and b = η(k)e(k)Φ′(k)‖x(k)‖2
2, applying (8.16) to (8.15) and

subtracting d(k) from both sides of the resulting equation, due to contractivity of Φ,
we obtain

ē(k) � e(k) − Φ(η(k)e(k)Φ′(k)‖x(k)‖2
2). (8.17)

2 This is the case, for instance, for many sigmoid functions. For many other functions this is
satisfied in a certain range of interest. For instance, for a = 0, positive b and a saturating, mononically
increasing, positive sigmoid, Φ(a + b) < Φ(b) < b. The condition Φ(a + b) � Φ(a) + Φ(b) is satisfied
for the logistic function on all of its range and for the positive range of the tanh activation function.
For many other functions, |Φ(a + b)| � |Φ(a) + Φ(b)|.

140 A CLASS OF SIMPLE A POSTERIORI ALGORITHMS

For Φ a contraction, |Φ(ξ)| < |ξ|, ∀ ξ ∈ R, and (8.17) finally becomes

ē(k) > [1 − η(k)Φ′(k)‖x(k)‖2
2]e(k), (8.18)

which is the lower bound for the a posteriori error for a contractive nonlinear activa-
tion function. In this case, the range allowed for the learning rate η(k) in (8.18) with
constraint (8.9) is3

0 < η(k) <
1

Φ′(k)‖x(k)‖2
2
. (8.19)

For Φ a linear function,

0 < η(k) <
1

‖x(k)‖2
2
, (8.20)

which boils down to the learning rate of the NLMS algorithm. Therefore, the a poste-
riori algorithm in this context introduces a kind of normalisation of the corresponding
learning algorithm.

8.3.1 The Case of a Recurrent Neural Filter

In this case, the gradient updating equation regarding a recurrent perceptron can be
symbolically expressed as (Haykin 1994) (see Appendix D)

∂y(k)
∂w(k)

= Π(k + 1) = Φ′(uT(k)w(k))[u(k) + wa(k)Π(k)], (8.21)

where the vector Π denotes the set of corresponding gradients of the output neuron
and the vector u(k) encompasses both the external and feedback inputs to the recur-
rent perceptron. The correction to the weight vector at the time instant k becomes

∆w(k) = η(k)e(k)Π(k). (8.22)

Following the same principle as for feedforward networks, the lower bound for the a
posteriori error algorithm in single-node recurrent neural networks with a contractive
activation function is obtained as

ē(k) > [1 − η(k)uT(k)Π(k)]e(k), (8.23)

whereas the corresponding range allowed for the learning rate η(k) is given by

0 < η(k) <
1

|uT(k)Π(k)| . (8.24)

3 Condition (8.18) is satisfied for any η > 0. However, we want to preserve |ē(k)| < |e(k)| (8.10),
with the constraint that both ē(k) and e(k) have the same sign, and hence the learning rate η has
to satisfy (8.19).

DATA-REUSING ADAPTIVE LEARNING ALGORITHMS 141

8.3.2 The Case of a General Recurrent Neural Network

For recurrent neural networks of the Williams–Zipser type (Williams and Zipser
1989a), with N neurons, one of which is the output neuron, the weight matrix update
for an RTRL training algorithm can be expressed as

∆W (k) = η(k)e(k)
∂y1(k)
∂W (k)

= η(k)e(k)Π1(k), (8.25)

where W (k) represents the weight matrix and

Π1(k) =
∂y1(k)
∂W (k)

is the matrix of gradients at the output neuron

π1
n,l(k) =

∂y1(k)
∂wn,l

,

where the index n runs along the N neurons in the network and the index l runs
along the inputs to the network. This equation is similar to the one for a recurrent
perceptron, with the only difference being that weight matrix W replaces weight
vector w and gradient matrix Π = [Π1, . . . ,ΠN] replaces gradient vector Π. Notice
that in order to update matrix Π1, a modified version of (8.21) has to update gradient
matrices Πi, i = 2, . . . , N . More details about this procedure can be found in Williams
and Zipser (1989a) and Haykin (1994).

The lower bound for the a posteriori error obtained by an a priori learning –
a posteriori error RTRL algorithm (8.25) with constraint (8.9), and a contractive
nonlinear activation function Φ – is therefore

ē(k) > [1 − η(k)uT(k)Π1(k)]e(k), (8.26)

whereas the range of allowable learning rates η(k) is

0 < η(k) <
1

|uT(k)Π1(k)| . (8.27)

8.3.3 Example for the Logistic Activation Function

It is shown in Chapter 7 that the condition for the logistic activation function to be
a contraction is β < 4. As such a function is monotone and ascending, the bound on
its first derivative is Φ′(ξ) � β/4, ∀ ξ ∈ R. That being the case, the bounds on the a
posteriori error and learning rate for the feedforward case become, respectively,

ē(k) > 1
4 [4 − η(k)β‖x(k)‖2

2]e(k) (8.28)

and
0 < η(k) <

4
β‖x(k)‖2

2
. (8.29)

Similar conditions can be derived for the recurrent case. Further relationships between
η, β and w are given in Chapter 12.

142 AN ITERATED DATA-REUSING LEARNING ALGORITHM

8.4 An Iterated Data-Reusing Learning Algorithm

This class of algorithms employs L reuses of the weight update per sample and is a
nonlinear version of algorithm (8.7). A data-reusing gradient descent algorithm for
a nonlinear FIR filter is given by (Douglas and Rupp 1997; Mandic and Chambers
1998c)

ei(k) = d(k) − Φ(xT(k)wi(k)), i = 1, . . . , L,

wi+1(k) = wi(k) + η(k)ei(k)Φ′(xT(k)wi(k))x(k),
subject to |ei+1(k)| � γ|ei(k)|, 0 < γ < 1, i = 1, . . . , L,

 (8.30)

where wi(k) is the weight vector at the ith iteration of (8.30), x(k) is the input vector,
d(k) is some teaching signal and ei(k) is the prediction error from the ith iteration of
(8.30). For L = 1, the problem reduces to the standard a priori algorithm, whereas
w(k + 1) is associated with the index (L + 1), i.e.

w1(k) = w(k),
wL+1(k) = w(k + 1).

}
(8.31)

Starting from the last iteration in (8.30), i.e. for i = L, we obtain

w(k + 1) = wL+1(k) = wL(k) + η(k)eL(k)Φ′(xT(k)wL(k))x(k)

= wL−1(k) + η(k)eL−1(k)Φ′(xT(k)wL−1(k))x(k)

+ η(k)eL(k)Φ′(xT(k)wL(k))x(k)

= w(k) +
L∑

i=1

η(k)ei(k)Φ′(xT(k)wi(k))x(k). (8.32)

Consider the expression for the instantaneous error from the (i+1)th iteration at the
output neuron

ei+1(k) = d(k) − Φ(xT(k)wi+1(k))

= [d(k) − Φ(xT(k)wi(k))] − [Φ(xT(k)wi+1(k)) − Φ(xT(k)wi(k))]. (8.33)

The second term on the right-hand side of (8.33) depends on the function Φ, which
can exhibit either contractive or expansive behaviour (Appendix G). For a contractive
Φ, assuming positive quantities, ∃α(k) = Φ′(ξ), ξ ∈ (xT(k)wi(k), xT(k)wi+1(k))
such that the right-hand term in square brackets from (8.33) can be replaced by
α(k)xT(k)∆wi(k), which yields

ei+1(k) = ei(k)[1 − η(k)α(k)Φ′(xT(k)wi(k))‖x(k)‖2
2]. (8.34)

To calculate the bound on such an error, premultiplying the first equation in (8.30)
by xT(k) and applying the nonlinear activation function Φ on either side yields

Φ(xT(k)wi+1(k)) = Φ(xT(k)wi(k) + η(k)ei(k)Φ′(xT(k)wi(k))‖x(k)‖2
2). (8.35)

DATA-REUSING ADAPTIVE LEARNING ALGORITHMS 143

Further analysis depends on whether Φ is a contraction or an expansion. It is con-
venient to assume that ei(k), i = 1, . . . , L, have the same sign during iterations
(Appendix F, Figure F.3). From (8.15)–(8.18), we have

ei+1(k) > [1 − η(k)Φ′(xT(k)wi(k))‖x(k)‖2
2]ei(k) (8.36)

from iteration to iteration of (8.30). Assume that

Φ′(k) ≈ Φ′(xT(k)w1(k)) ≈ · · · ≈ Φ′(xT(k)wL(k)),

then after L iterations4 of (8.36), we have

e(k + 1) > [1 − η(k)Φ′(k)‖x(k)‖2
2]

Le(k). (8.37)

The term in the square brackets from above has its modulus less than unity. In that
case, the whole procedure is a fixed point iteration, whose convergence is given in
Appendix G.

From (8.37) and the condition |ē(k)| < |e(k)|, the range allowed for the learning
rate η(k) in the data-reusing adaptation (8.30) is

0 < η(k) <
1

Φ′(k)‖x(k)‖2
2
. (8.38)

8.4.1 The Case of a Recurrent Predictor

The correction to the weight vector of the jth neuron, at the time instant k becomes

∆wj(k) = η(k)e(k)Π(j)
1 (k), (8.39)

where Π
(j)
1 (k) represents the jth row of the gradient matrix Π1(k). From the above

analysis

0 < η(k) < max
j

1

|uT(k)Π(j)
1 (k)|

. (8.40)

8.5 Convergence of the A Posteriori Approach

In the case of nonlinear adaptive filters, there is generally no Wiener solution, and
hence the convergence is mainly considered through Lyapunov stability (DeRusso et
al. 1998; Zurada and Shen 1990), or through contraction mapping (Mandic and Cham-
bers 1999b). Here, due to the assumption that for this class of data-reusing algorithms,
the a priori and the a posteriori errors have the same sign through the data-reusing
fixed point iteration, and |ē(k)| < |e(k)|, convergence of the a posteriori (data-reusing)
error algorithm is defined by convergence of the underlying a priori error learning
algorithm, which is detailed in Chapter 10. The limit behaviour of the above class of
algorithms can be achieved for the infinite number of data-reuse iterations, i.e. when

4 The term in the square brackets from (8.37) is strictly less than unity and becomes smaller
with L. Also, e(k) = e1(k), e(k + 1) = eL+1(k). In fact, the relation (8.36) represents a fixed point
iteration, which, due to CMT, converges for |1 − η(k)Φ′(xT(k)wi(k))‖x(k)‖2

2| < 1.

144 A POSTERIORI ERROR GRADIENT DESCENT ALGORITHM

L → ∞. In that case, for instance, ei(k) > [1− η(k)Φ′(k)‖x(k)‖2
2]

i−1e(k), which from
(8.36) forms a geometric series, which converges to a normalised nonlinear gradient
descent algorithm (Figure F.3), and consequently the ratio ei+1(k)/ei(k) → 0.

8.6 A Posteriori Error Gradient Descent Algorithm

The a posteriori outputs (8.3) can be used to form an updated a posteriori information
vector

ū(k) = [x(k − 1), . . . , x(k − M), 1, ȳ(k − 1), . . . , ȳ(k − N)]T, (8.41)

which can replace the a priori information vector (8.2) in the output (8.3) and weight
update calculations (6.43)–(6.45). An alternate representation of such an algorithm
is the so-called a posteriori error gradient descent algorithm (Ljung and Soderstrom
1983; Treichler 1987), which is the topic of this section. Since the updated weight
vector w(k+1) is available before the new input vector x(k+1) arrives, an a posteriori
error gradient can be expressed as (Douglas and Rupp 1997; Ljung and Soderstrom
1983; Treichler 1987)

∇̄w(1
2 ē2(k)) =

∂(1
2 ē2(k))

∂w(k + 1)
. (8.42)

Using the above expression and, for simplicity, constraining the a posteriori infor-
mation vector ū(k) to the case of a nonlinear dynamical neuron without feedback
yields (Ljung and Soderstrom 1983; Treichler 1987)

∂(1
2 ē2(k))

∂w(k + 1)
= −Φ′(xT(k)w(k + 1))ē(k)x(k). (8.43)

The a posteriori error can be now expressed as (Mandic and Chambers 1998b,c)

ē(k) = d(k) − Φ(xT(k)w(k + 1))

= d(k) − Φ(xT(k)w(k)) + Φ(xT(k)w(k)) − Φ(xT(k)w(k + 1))

= e(k) − [Φ(xT(k)w(k + 1)) − Φ(xT(k)w(k))], (8.44)

which contains terms with the time index (k + 1). Let us therefore express the term5

Φ(xT(k)w(k + 1)) = Φ(xT(k)w(k) + xT(k)∆w(k)) (8.45)

via its first-order Taylor expansion about the point xT(k)w(k) as

Φ(xT(k)w(k + 1)) ≈ Φ(xT(k)w(k)) +
∂Φ(xT(k)w(k))

∂w(k)
∆w(k)

= Φ(xT(k)w(k)) + ηē(k)Φ′2(k)xT(k)x(k), (8.46)

5 Notice that using Lipschitz continuity of Φ, the modulus of the term on the right-hand side of
(8.44), i.e. [Φ(xT(k)w(k + 1)) − Φ(xT(k)w(k))] is bounded from above by

|ηē(k)Φ′(xT(k)w(k + 1))xT(k)x(k)|.

DATA-REUSING ADAPTIVE LEARNING ALGORITHMS 145

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Φ′

e ap
/e

Figure 8.3 Ratio between the a posteriori and a priori errors for various slopes of the
activation function

where Φ′(k) = Φ′(xT(k)w(k)) ≈ Φ′(xT(k)w(k+1)). Now, combining (8.44) and (8.46)
yields the a posteriori error

ē(k) =
e(k)

1 + ηΦ′2(k)xT(k)x(k)
=

e(k)
1 + ηΦ′2(k)‖x(k)‖2

2
. (8.47)

The a posteriori error ē(k) (8.47) is smaller in magnitude than the corresponding a
priori error e(k), since the denominator of (8.47) is strictly greater than unity. For
expansive activation functions, Φ′ > 1 and the effect described by (8.47) is even more
emphasised. However, the a priori error in this case can be quite large in magnitude.
The effective learning rate for this algorithm becomes6

η(k) =
1

1 + ηΦ′2(k)‖x(k)‖2
2
, (8.48)

which does not exhibit the problem of unboundedness of η for small ‖x(k)‖2
2, as

experienced with the class of normalised algorithms. The ratio between ē and e as
defined by (8.47) is shown in Figure 8.3. For the simulation, the parameters were
η = 0.1 and ‖x‖ = 1. The a posteriori error is clearly smaller than the a priori
error for any Φ′ of interest. For expansive functions, the ratio is smaller than for
contractive functions, which means that data-reusing has the effect of stabilisation of
the algorithm in this case.

6 For a linear Φ, using the matrix inversion lemma, the learning rate (8.48) is equivalent to the
learning rate of a general NLMS algorithm µ0(k)/‖x(k)‖2

2 (Douglas and Rupp 1997).

146 EXPERIMENTAL RESULTS

8.6.1 A Posteriori Error Gradient Algorithm for Recurrent Neural Networks

Recall that when using the a posteriori information vector (8.41), the output of a
recurrent perceptron becomes

ȳ(k) = Φ

(M∑
j=1

wj(k+1)x(k−j)+wM+1(k+1)+
N∑

m=1

wm+M+1(k+1)ȳ(k−m)
)

, (8.49)

or compactly as
ȳ(k) = Φ(ūT(k)w(k + 1)). (8.50)

Following the approach from Treichler (1987) and the above analysis, the a posteriori
error gradient adaptation regarding the recurrent perceptron can be symbolically
expressed as

Π̄(k + 1) = Φ′(ūT(k)w(k + 1))[ū(k) + w(k + 1)Π̄(k)]. (8.51)

Using the a posteriori error gradient technique from Ljung and Soderstrom (1983)
and Treichler (1987), the weight update of this algorithm becomes

ηē(k)Π̄(k), (8.52)

where ē(k) = d(k)−Φ(ūT(k)w(k +1)). Hence (Mandic and Chambers 1998c, 1999d),

ē(k) =
d(k) − Φ(ūT(k)w(k))

1 + η‖Π̄(k)‖2
2

. (8.53)

The denominator in (8.53) is strictly greater than unity, which makes the a posteriori
error ē(k) smaller in magnitude than the a priori error (Mandic and Chambers 1998a).
The analysis for a full recurrent neural network is straightforward.

8.7 Experimental Results

The simulations on two speech signals, denoted by s1 and s2, which come from two
different individuals, were undertaken in order to support the derived algorithms.
The amplitudes of the signals were adjusted to lie within the range of the function
Φ, i.e. within (0, 1) for the logistic function. The measure that was used to assess the
performance of the predictors was the forward prediction gain Rp given by

Rp
�
= 10 log10

(
σ̂2

s

σ̂2
e

)
dB, (8.54)

where σ̂2
s denotes the estimated variance of the speech signal {s(k)}, whereas σ̂2

e
denotes the estimated variance of the forward prediction error signal {e(k)}. In the
experiments, the initialisation procedure used the same strategy, namely epochwise,
with 200 epochs ran over 300 samples, as described in Mandic et al. (1998) and Bal-
tersee and Chambers (1998). The network chosen for the analysis was with N = 2
neurons and one external input signal to the network. Such a network was tested on
both the a priori and a posteriori algorithms and the simulation results are shown

DATA-REUSING ADAPTIVE LEARNING ALGORITHMS 147

Table 8.1 Comparison between prediction gains Rp between an a priori scheme and
various a posteriori schemes

Prediction gain s1 s2

Rp (dB) a priori scheme 7.78 8.48
W (k), feedback nonupdated, N = 2

Rp (dB) a posteriori scheme 7.84 8.55
W (k + 1), feedback nonupdated, N = 2

Rp (dB) a posteriori scheme 9.23 8.78
W (k + 1), feedback updated, a posteriori Π̄, N = 2

Rp (dB) a priori scheme 7.79 8.49
W (k), feedback nonupdated, N = 3

in Table 8.1. In order to show the merit of the a posteriori approach on the net-
work with N = 2 neurons, the results achieved were further compared to the perfor-
mance obtained using the a priori network with N = 3 neurons. The results show
that the performance of an RNN predictor improves with the amount of a poste-
riori information involved. The best results were achieved for the scheme with the
a posteriori gradients, which were used in the recursive weights adaptation algo-
rithm, and the corresponding feedback values were updated, i.e. the a posteriori
information vector was used. The improvement in the performance in that case, as
compared with the a priori scheme with N = 3, was, for example, 1.44 dB for the
signal s1.

In the second experiment, an a posteriori algorithm with an updated a posteriori
information vector was applied to modular nested recurrent architectures (PRNN) as
described in Mandic et al. (1998) and Baltersee and Chambers (1998). The exper-
iments were undertaken on speech. For modular networks with typically M = 5
modules and N = 2 neurons per recurrent module, there was not much improvement
in prediction gain between the a posteriori gradient formulation and the standard
algorithm. However, for an ERLS learning algorithm (Appendix D), there was an
improvement of several percent in the prediction gain when using the algorithm with
an updated a posteriori information vector (8.41).

8.8 Summary

Relationships between the a priori and a posteriori prediction error, learning rate
and slope of the nonlinear activation function of a nonlinear adaptive filter realised
by a neural network have been derived. This has been undertaken for learning
algorithms based upon gradient descent for both the feedforward and recurrent
case. A general data-reusing (a posteriori adaptation) adaptive algorithm for non-
linear adaptive filters realised as neural networks was then analysed. These algo-
rithms use L weight updates per fixed external input vector and teaching sig-
nal. Therefore, their performance is in between the standard gradient descent and
normalised algorithm. Relationships between the errors from consecutive iterations

148 SUMMARY

of the algorithm are derived based upon the corresponding a priori prediction
error and gradients of the nonlinear activation function of a neuron, as well as
the L2 norm of the input data vector and the learning rate η. However, in prac-
tice, the benefits of data-reusing techniques may not be significant. Relationships
between η, β and ‖x‖2

2 deserve more attention and will be addressed in Chap-
ter 12.

Recurrent Neural Networks for Prediction
Authored by Danilo P. Mandic, Jonathon A. Chambers

Copyright c©2001 John Wiley & Sons Ltd
ISBNs: 0-471-49517-4 (Hardback); 0-470-84535-X (Electronic)

9

A Class of Normalised
Algorithms for Online Training
of Recurrent Neural Networks

9.1 Perspective

A normalised version of the real-time recurrent learning (RTRL) algorithm is intro-
duced. This has been achieved via local linearisation of the RTRL around the current
point in the state space of the network. Such an algorithm provides an adaptive learn-
ing rate normalised by the L2 norm of the gradient vector at the output neuron. The
analysis is general and also covers simpler cases of feedforward networks and linear
FIR filters.

9.2 Introduction

Gradient-descent-based algorithms for training neural networks, such as the back-
propagation, backpropagation through time, recurrent backpropagation (RBP) and
real-time recurrent learning (RTRL) algorithm, typically suffer from slow convergence
when dealing with statistically nonstationary inputs. In the area of linear adaptive
filters, similar problems with the LMS algorithm have been addressed by utilising
normalised algorithms, such as NLMS. We therefore introduce a normalised RTRL-
based learning algorithm with the idea to impose similar stabilisation and convergence
effects on training of RNNs, as normalisation imposes on the LMS algorithm.

In the area of linear FIR adaptive filters, it is shown (Soria-Olivas et al. 1998) that
a normalised gradient-descent-based learning algorithm can be derived starting from
the Taylor series expansion of the instantaneous output error of an adaptive FIR filter,
given by

e(k + 1) = e(k) +
N∑

i=1

∂e(k)
∂wi(k)

∆wi(k) +
1
2!

N∑
i=1

N∑
j=1

∂2e(k)
∂wi(k)∂wj(k)

∆wi(k)∆wj(k) + · · · .

(9.1)

150 OVERVIEW

From the mathematical description of LMS1 from Chapter 2, we have

∂e(k)
∂wi(k)

= −x(k − i + 1), i = 1, 2, . . . , N, (9.2)

and

∆wi(k) = µ(k)e(k)x(k − i + 1), i = 1, 2, . . . , N. (9.3)

Due to the linearity of the FIR filter, the second- and higher-order partial derivatives
in (9.1) vanish.

Combining (9.1)–(9.3) yields

e(k + 1) = e(k) − µ(k)e(k)‖x(k)‖2
2 (9.4)

for which the nontrivial solution gives the learning rate of a normalised LMS algorithm

µNLMS(k) =
1

‖x(k)‖2
2
. (9.5)

The stability analysis of adaptive algorithms can be undertaken using contractive
operators and fixed point iteration. For the contractive operator T , it follows that

‖Tz1 − Tz2‖ � γ‖z1 − z2‖, 0 � γ < 1, z1,z2 ∈ R
N . (9.6)

The convergence analysis of LMS, for instance, can be undertaken starting from the
misalignment2 vector v(k) = w(k) − w̃(k) by setting z1 = v(k + 1), z2 = v(0)
and T = [I − µ(k)x(k)xT(k)] (Gholkar 1990). Detailed convergence analysis for a
class of gradient-based learning algorithms for recurrent neural networks is given in
Chapter 10.

9.3 Overview

A class of normalised gradient-based algorithms is derived starting from the LMS
algorithm for linear adaptive filters through to a normalised algorithm for training
recurrent neural networks. For each case the adaptive learning rate has been derived.
Stability of such algorithms is addressed in Chapter 10. The normalised algorithms
are shown to outperform standard algorithms with fixed learning rate.

1 The two core equations for adaptation of the LMS algorithm are

e(k) = d(k) − xT(k)w(k),

w(k + 1) = w(k) + µ(k)e(k)x(k).

2 The misalignment vector is defined as v(k) = w(k) − w̃(k), where w̃(k) is the set of optimal
weights of the system.

A CLASS OF NORMALISED ALGORITHMS FOR TRAINING OF RNNs 151

100 200 300 400 500 600 700 800 900 1000
−30

−25

−20

−15

−10

−5

0

Number of iteration

A
ve

ra
ge

d
sq

ua
re

d
pr

ed
ic

tio
n

er
ro

r
in

 d
B

NGD

LMS

NLMS

NNGD

Figure 9.1 Comparison of convergence of the averaged squared prediction error with the
LMS, NLMS, NGD and NNGD algorithms, with logistic activation function, for a coloured
input

9.4 Derivation of the Normalised Adaptive Learning Rate for a Simple
Feedforward Nonlinear Filter

The equations that define the adaptation for a neural adaptive filter with one neuron
(Figure 2.6), trained by a nonlinear gradient descent (NGD) algorithm, are

e(k) = d(k) − Φ(xT(k)w(k)), (9.7)

w(k + 1) = w(k) + η(k)Φ′(xT(k)w(k))e(k)x(k), (9.8)

where e(k) is the instantaneous error at the output neuron, d(k) is some train-
ing (desired) signal, x(k) = [x1(k), . . . , xN (k)]T is the input vector, w(k) =
[w1(k), . . . , wN (k)]T is the weight vector, Φ(·) is a nonlinear activation function of
a neuron and (·)T denotes the vector transpose. The learning rate η is supposed to
be a small positive real number. Following the approach from Mandic (2000a), if the
output error (9.7) is expanded using a Taylor series expansion, we have

e(k + 1) = e(k) +
N∑

i=1

∂e(k)
∂wi(k)

∆wi(k) +
1
2!

N∑
i=1

N∑
j=1

∂2e(k)
∂wi(k)∂wj(k)

∆wi(k)∆wj(k) + · · · .

(9.9)
From (9.7) and (9.8), the elements of (9.9) are

∂e(k)
∂wi(k)

= −Φ′(xT(k)w(k))xi(k), i = 1, 2, . . . , N, (9.10)

152 DERIVATION OF THE NORMALISED ALGORITHM

0 100 200 300 400 500 600 700 800 900 1000
−30

−25

−20

−15

−10

−5

NNGD

NLMS

LMS

Number of iteration

A
ve

ra
ge

d
sq

ua
re

d
pr

ed
ic

tio
n

er
ro

r
in

 d
B

Figure 9.2 Comparison of convergence of the averaged squared prediction error of the
LMS, NLMS and NNGD algorithms for a coloured input and tanh activation function with
β = 1

and

∆wi(k) = wi(k + 1) − wi(k) = η(k)Φ′(xT(k)w(k))e(k)xi(k), i = 1, 2, . . . , N.
(9.11)

The second partial derivatives are

∂2e(k)
∂wi(k)∂wj(k)

= −Φ′′(xT(k)w(k))xi(k)xj(k), i, j = 1, 2, . . . , N. (9.12)

Let us denote net(k) = xT(k)w(k). Combining (9.9)–(9.12) yields

e(k + 1) = e(k) − η(k)[Φ′(net(k))]2e(k)
N∑

i=1

x2
i (k)

− 1
2!

η2(k)e2(k)[Φ′(net(k))]2Φ′′(net(k))
N∑

i=1

N∑
j=1

x2
i (k)x2

j (k) + · · · . (9.13)

A truncated Taylor series expansion of (9.13) gives

e(k + 1) = e(k)[1 − η(k)[Φ′(net(k))]2‖x(k)‖2
2]. (9.14)

A CLASS OF NORMALISED ALGORITHMS FOR TRAINING OF RNNs 153

0 500 1000 1500 2000 2500 3000
−24

−22

−20

−18

−16

−14

−12

−10

−8

−6

−4

Number of iteration

A
ve

ra
ge

d
sq

ua
re

d
pr

ed
ic

tio
n

er
ro

r
in

 d
B

IIR LMS

LMS

Rec Per

NNGD

NLMS

Figure 9.3 Convergence comparison of averaged squared prediction error for feedforward
and recurrent structures, tanh activation function with β = 4 and coloured input

The aim is for the error e(k+1) in (9.14) to vanish, which is the case for the nontrivial
solution

ηOPT(k) =
1

[Φ′(net(k))]2‖x(k)‖2
2
, (9.15)

which is the step size of a normalised gradient descent (NNGD) algorithm for a non-
linear FIR filter. Taking into account the bounds3 on the values of higher derivatives
of Φ, for a contractive activation function we may adjust the derived learning rate
with a positive constant C, as

ηOPT(k) =
1

C + [Φ′(net(k))]2‖x(k)‖2
2
. (9.16)

The magnitude of the learning rate varies in time with the tap input power and
the first derivative of the activation function, which provides a normalisation of the
algorithm. Further discussion on the size and role of constant C in (9.16) can be
found in Mandic and Krcmar (2001) and Krcmar and Mandic (2001). The adaptive
learning rate from (9.15) degenerates into the learning rate of the NLMS algorithm
for a linear activation function. A normalised backpropagation algorithm for a general
feedforward neural network is given in Mandic and Chambers (2000f). Although the

3 For the logistic function, for instance, the second-order term in the Taylor series expansion is
positive.

154 DERIVATION OF THE NORMALISED ALGORITHM

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Discrete time sample

S
pe

ec
h

si
gn

al

(a) The input speech signal

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Discrete time sample

S
qu

ar
ed

 p
re

di
ct

io
n

er
ro

r

(b) Standard RTRL algorithm

Figure 9.4 Squared instantaneous prediction error for the RTRL and NRTRL algorithms
with speech inputs

A CLASS OF NORMALISED ALGORITHMS FOR TRAINING OF RNNs 155

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Discrete time sample

S
qu

ar
ed

 p
re

di
ct

io
n

er
ro

r

(c) Normalised RTRL algorithm

Figure 9.4 Cont.

derivation of the normalised algorithm is simple, it assumes statistical independence
between the weights, input vector, teaching signal and learning rate, which is often not
the case in practical applications. Therefore, the optimal learning rate for practical
applications should be chosen to be smaller than the one derived above. This is one
of the reasons why there is a need to add a positive constant C to the denominator
of (9.15).

In Mandic (2000a), a simulation was undertaken on speech, a nonlinear and nonsta-
tionary signal, for a nonlinear FIR filter with tap length N = 10, with η = 0.3, C = 1
and β = 4. The quantitative performance measure was the standard prediction gain, a
logarithmic ratio between the expected signal and error variances Rp = 10 log(σ̂2

s /σ̂2
e).

For this setting, the prediction gain for the LMS was 7.24 dB, 8.26 dB for the NLMS,
7.67 dB for a nonlinear GD and 9.28 dB for the NNGD algorithm, confirming the
analysis from the previous section.

We next compare the performances of FIR filters trained by LMS and NLMS,
IIR filters trained by LMS, nonlinear FIR filters trained by NGD and NNGD and
a NARMA recurrent perceptron trained by the RTRL. The order of FIR filters was
N = 10. The input was a white noise sequence passed through an AR channel given by

y(k) = 1.79y(k − 1) − 1.85y(k − 2) + 1.27y(k − 3) − 0.41y(k − 4) + ν(k), (9.17)

where ν(k) denotes the white input noise. The resulting input signal was rescaled so
as to fit within the range of the logistic and tanh activation function. A Monte Carlo
simulation with 200 trials was undertaken for all the experiments.

156 A NORMALISED ALGORITHM FOR RNNs

Figure 9.1 shows a comparison between convergence curves for the LMS, NLMS,4

NGD (a standard nonlinear gradient descent) and NNGD algorithms for a coloured
input from AR channel (9.17). The slope of the logistic function was β = 4, which
partly coincides with the linear curve y = x. The NNGD algorithm for a feedfor-
ward dynamical neuron clearly outperforms the other employed algorithms. The NGD
algorithm also outperformed the LMS and NLMS algorithms. Figure 9.2 shows the
convergence curves for a tanh activation function and the input from the same AR
channel. The NNGD algorithm has consistently improved convergence performance
over the LMS and NLMS algorithms.

Convergence curves for LMS, NLMS, NNGD, IIR LMS and a NARMA(6,1) recur-
rent perceptron for a correlated input (AR channel) and tanh activation function
with β = 4 are shown in Figure 9.3. A NARMA recurrent perceptron outperformed
all the other algorithms in simulations. This does not mean, however, that recurrent
structures perform best in all practical applications.

9.5 A Normalised Algorithm for Online Adaptation of Recurrent
Neural Networks

An output error of a fully connected recurrent neural network can be expanded via a
Taylor series expansion as (Mandic and Chambers 2000b)

e(k + 1) = e(k) +
N∑

i=1

M+N+1∑
j=1

∂e(k)
∂wi,j(k)

∆wi,j(k)

+
1
2!

N∑
i=1

M+N+1∑
m=1

N∑
j=1

M+N+1∑
n=1

∂2e(k)
∂wi,m(k)∂wj,n(k)

∆wi,m(k)∆wj,n(k) + · · · ,

(9.18)

where M is the order of the input signal tap delay line and N is the number of neurons.
This is a complicated expression and only the first two terms of (9.18) will be con-
sidered. Due to the internal feedback in RNNs, the partial derivatives ∂e(k)/∂wi,j(k)
are not straightforward to calculate (Appendix D). From (9.18), using an approach
similar to the one explained for a simple feedforward neural filter and neglecting the
higher-order terms in the Taylor series expansion gives

e(k + 1) = e(k) − η(k)e(k)
N∑

i=1

M+N+1∑
j=1

[
∂y1(k)

∂wi,j(k)

]2

= e(k) − η(k)e(k)
N∑

i=1

‖Π
(i)
1 (k)‖2

2, (9.19)

4 For numerical stability, the learning rate for NLMS was chosen as µ(k) = µ0/(ε + ‖x‖2
2), where

µ0 < 1 is a positive constant and ε is some small positive constant that prevents divergence for small
‖x‖2. This explains the better performance of NNGD over NLMS for an input coming from a linear
AR channel.

A CLASS OF NORMALISED ALGORITHMS FOR TRAINING OF RNNs 157

0 100 200 300 400 500 600 700 800 900 1000
−22

−20

−18

−16

−14

−12

−10

−8

−6

−4

Number of iteration

A
ve

ra
ge

d
sq

ua
re

d
pr

ed
ic

tio
n

er
ro

r
in

 d
B

NRTRL

RTRL

(a) Convergence comparison between RTRL and NRTRL

0 100 200 300 400 500 600 700 800 900 1000
−22

−20

−18

−16

−14

−12

−10

−8

−6

−4

Number of iteration

A
ve

ra
ge

d
sq

ua
re

d
pr

ed
ic

tio
n

er
ro

r
in

 d
B

RTRL

NRTRL

(b) Convergence comparison between RTRL and NRTRL when
RTRL fails

Figure 9.5 Convergence comparison of averaged squared prediction error for a RTRL and
NRTRL trained recurrent structure, tanh activation function with β = 2 and coloured input

158 A NORMALISED ALGORITHM FOR RNNs

0 100 200 300 400 500 600 700 800 900 1000
−26

−24

−22

−20

−18

−16

−14

−12

−10

−8

−6

Number of iteration

A
ve

ra
ge

d
sq

ua
re

d
pr

ed
ic

tio
n

er
ro

r
in

 d
B

NLMS

NARMA(6,1) Recurrent Perceptron

(a) Convergence curves for NLMS for N = 10 and RTRL for a
NARMA(4,1) recurrent perceptron for a nonlinear input (9.22),
logistic activation function with β = 4

0 100 200 300 400 500 600 700 800 900 1000
−35

−30

−25

−20

−15

−10

−5

Number of iteration

A
ve

ra
ge

d
sq

ua
re

d
pr

ed
ic

tio
n

er
ro

r
in

 d
B

RTRL

NRTRL

(b) Convergence curves for RTRL and NRTRL, for a
NARMA(10,2) recurrent perceptron, tanh activation function
with β = 8 for a nonlinear input (9.23)

Figure 9.6 Convergence of RTRL and NRTRL for nonlinear inputs

A CLASS OF NORMALISED ALGORITHMS FOR TRAINING OF RNNs 159

where Π
(i)
1 denotes the gradients at the output neuron y1 with respect to the weights

from the ith neuron. Hence, the optimal value of learning rate ηOPT(k) for an RTRL
trained RNN is

ηOPT(k) =
1∑N

i=1 ‖Π
(i)
1 (k)‖2

2

. (9.20)

The normalisation factor is the tap input power to an RNN multiplied by the deriva-
tive of the nonlinear activation function and augmented by the product of gradients
and feedback weights. Hence, we will refer to the result from (9.20) as the normalised
real-time recurrent learning (NRTRL) algorithm. For a normalised algorithm for a
recurrent perceptron, we have

ηOPT(k) =
1

‖Π(k)‖2
2
. (9.21)

Due to the derivation of ηOPT from a truncated Taylor series expansion, a positive
constant C should be added to the term in the denominator of (9.20) and (9.21).

Figure 9.4 shows the comparison of instantaneous squared prediction errors between
the RTRL and NRTRL for a nonstationary (speech) signal. The NRTRL algorithm
from Figure 9.4(c), clearly achieves significantly better performance than the RTRL
algorithm (Figure 9.4(b)). To quantify this, if the measure of performance is the stan-
dard prediction gain, the NRTRL achieved approximately 7 dB better performance
than the RTRL algorithm. Convergence comparison between the RTRL and NRTRL
algorithms for the cases where both algorithms converge (Figure 9.5(a)) and when
RTRL diverges (Figure 9.5(b)) is shown in Figure 9.5. A small constant was added
to the denominator of the optimal learning rate ηOPT. The input was a coloured sig-
nal from an AR channel and the slope of the tanh activation function was β = 2
(notice that the contractivity might have been violated). In both cases depicted in
Figure 9.5, the NRTRL comprehensively outperformed the RTRL algorithm. In Fig-
ure 9.6, a comparison between convergence curves for benchmark nonlinear inputs
defined as (Narendra and Parthasarathy 1990)

y(k + 1) =
y(k)y(k − 1)y(k − 2)x(k − 1)[y(k − 2) − 1] + x(k)

1 + y2(k − 1) + y2(k − 2)
, (9.22)

y(k + 1) =
y(k)

1 + y2(k)
+ x3(k), (9.23)

is given. In Figure 9.6(a), a NARMA(4,1) recurrent perceptron trained by RTRL
outperformed a FIR filter with N = 10 trained by NLMS for input (9.22).

In Figure 9.6(b), comparison between convergence curves for RTRL and NRTRL on
a benchmark nonlinear input (9.23) is given. The employed tanh activation function
was expansive with β = 8 and the simulations were undertaken for a NARMA(10,2)
recurrent perceptron. The NRTRL outperformed RTRL for this case.

Simulations show that the performance of the NRTRL is highly dependent on the
choice of the constant C in the denominator of the optimal learning rate. Dependent on
the choice of C, the NRTRL can have worse, similar or better performance than RTRL.
However, in most practical cases, C < 1 is a sufficiently good range for the NRTRL
to outperform the RTRL. To further depict the dependence of performance on the

160 SUMMARY

0 1 2 3 4 5
3

4

5

6

7

8

9

10

Constant C

P
re

di
ct

io
n

ga
in

(a) NARMA(4,2), tanh
function, β = 1

0 1 2 3 4 5
3

4

5

6

7

8

9

10

Constant C

P
re

di
ct

io
n

ga
in

(b) NARMA(6,1), tanh
function, β = 1

0 1 2 3 4 5
3

4

5

6

7

8

9

10

Constant C

P
re

di
ct

io
n

ga
in

(c) NARMA(6,1), tanh
function, β = 4

Figure 9.7 Prediction gain versus the Taylor series remainder C for a speech signal and
NARMA recurrent perceptrons

value of C, three experiments were undertaken on a real speech signal. The prediction
gain was calculated for various values of parameter C. The filter used was a NARMA
recurrent perceptron. In Figure 9.7(a), prediction gain for a NARMA(4,2) perceptron
with a tanh activation function with β = 1 had its maximum for C = 0.3. The
experiment was repeated for a NARMA(6,1) recurrent perceptron, and the maximum
of the prediction gain was obtained for C = 0.22, which is shown in Figure 9.7(b).
Finally, for the same network, an expansive tanh activation function was used, with
β = 4. As expected, in this case, the best performance was achieved for C > 1, which
is shown in Figure 9.7(c).

9.6 Summary

An optimal adaptive learning rate has been derived for the RTRL algorithm for con-
tinually running fully connected recurrent neural networks. The learning rate is opti-
mal in the sense that it minimises the instantaneous squared prediction error at the
output neuron for every time instant while the network is running. This algorithm
normalises the learning rate of the RTRL and is hence referred to as the normalised
RTRL (NRTRL) algorithm. The NRTRL is stabilised by the L2 norm of the input
data vector and local gradients at the output neuron of the network. The additional
computational complexity involved is not significant, when compared to the entire
computational complexity of the RTRL algorithm. Simulations show that normalised
algorithms outperform the standard algorithms in both the feedforward and recurrent
case.

Recurrent Neural Networks for Prediction
Authored by Danilo P. Mandic, Jonathon A. Chambers

Copyright c©2001 John Wiley & Sons Ltd
ISBNs: 0-471-49517-4 (Hardback); 0-470-84535-X (Electronic)

10

Convergence of Online
Learning Algorithms in
Neural Networks

10.1 Perspective

An analysis of convergence of real-time algorithms for online learning in recurrent
neural networks is presented. For convenience, the analysis is focused on the real-time
recurrent learning (RTRL) algorithm for a recurrent perceptron. Using the assump-
tion of contractivity of the activation function of a neuron and relaxing the rigid
assumptions of the fixed optimal weights of the system, the analysis presented is gen-
eral and is applicable to a wide range of existing algorithms. It is shown that some of
the results obtained for stochastic gradient algorithms for linear systems can be con-
sidered as a bound for stability of RNN-based algorithms, as long as the contractivity
condition holds.

10.2 Introduction

The following criteria (Bershad et al. 1990) are most commonly used to assess the
performance of adaptive algorithms.

1. Convergence (consistency of the statistics).

2. Transient behaviour (how quickly the algorithm reacts to changes in the statis-
tics of the input).

3. Convergence rate (how quickly the algorithm approaches the optimal solution),
which can be linear, quadratic or superlinear.

The standard approach for the analysis of convergence of learning algorithms for
linear adaptive filters is to look at convergence of the mean weight error vector, con-
vergence in the mean square and at the steady-state misadjustment (Gholkar 1990;
Haykin 1996a; Kuan and Hornik 1991; Widrow and Stearns 1985). The analysis of
convergence of steepest-descent-based algorithms has been ongoing ever since their

162 INTRODUCTION

introduction (Guo and Ljung 1995; Ljung 1984; Slock 1993; Tarrab and Feuer 1988).
Some of the recent results consider the exact expectation analysis of the LMS algo-
rithm for linear adaptive filters (Douglas and Pan 1995) and the analysis of LMS
with Gaussian inputs (Bershad 1986). For neural networks as nonlinear adaptive fil-
ters, the analysis is far more difficult, and researchers have often resorted to numerical
experiments (Ahmad et al. 1990). Convergence of neural networks has been consid-
ered in Shynk and Roy (1990), Bershad et al. (1993a) and Bershad et al. (1993b),
where the authors used the Gaussian model for input data and a Rosenblatt percep-
tron learning algorithm. These analyses, however, were undertaken for a hard limiter
nonlinearity, which is not convenient for nonlinear adaptive filters. Convergence of
RTRL was addressed in Mandic and Chambers (2000b) and Chambers et al. (2000).

An error equation for online training of a recurrent perceptron can be expressed as

e(k) = s(k) − Φ(uT(k)w(k)), (10.1)

where s(k) is the teaching (desired) signal, w(k) = [w1(k), . . . , wN (k)]T is the weight
vector and u(k) = [u1(k), . . . , uN (k)]T is an input vector. A weight update equation
for a general class of stochastic gradient-based nonlinear neural algorithms can be
expressed as

w(k + 1) = w(k) + η(k)F (u(k))g(u(k),w(k)), (10.2)

where η(k) is the learning rate, F : R
N → R

N usually consists of N copies of the
scalar function f and g(·) is a scalar function related to the error e(k). The function
F is related to data nonlinearities, which have an influence on the convergence of
the algorithm. The function g is related to error nonlinearities, and it affects the cost
function to be minimised. Error nonlinearities are mostly chosen to be sign-preserving
(Sethares 1992).

Let us assume additive noise q(k) ∼ N (0,σ2
q) in the output of the system, which

can be expressed as
s(k) = Φ(uT(k)w̃(k)) + q(k), (10.3)

where w̃(k) are optimal filter weights and q(k) is an i.i.d. sequence. The error equa-
tion (10.1) now becomes

e(k) = Φ(uT(k)w̃(k)) − Φ(uT(k)w(k)) + q(k). (10.4)

To examine the stability of algorithm (10.2), researchers often resort to linearisation.
For RTRL, F is an identity matrix and g is some nonlinear, sign-preserving function
of the output error. A further assumption is that the learning rate η is sufficiently
small to allow the algorithm to be linearised around its current point in the state
space. From Lyapunov stability theory, the system

z(k + 1) = F (k,z(k)) (10.5)

can be analysed via its linearised version

z(k + 1) = A(k)z(k), (10.6)

where A is the Jacobian of F . This is the Lyapunov indirect method and assumes
that A(k) is bounded in the neighbourhood of the current point in the state space

CONVERGENCE OF LEARNING ALGORITHMS IN NNs 163

and that

lim
‖z‖→0

max
k

‖F (k,z) − A(k)z‖
‖z‖ = 0, (10.7)

which guarantees that time variation in the nonlinear terms of the Taylor series expan-
sion of (10.5) does not become arbitrarily large in time (Chambers et al. 2000). Results
on Lyapunov stability for a class of nonlinear systems can be found in Wang and
Michel (1994) and Tanaka (1996).

Averaging methods for the analysis of stability and convergence of adaptive algo-
rithms, for instance, use a linearised version of the system matrix of (10.2)

v(k) = [I − ηu(k)uT(k)]w̃(k), (10.8)

which is then replaced by the ensemble average (Anderson et al. 1986; Kushner 1984;
Solo and Kong 1994)

E[I − ηu(k)uT(k)] = I − ηRu,u, (10.9)

where v(k) is the misalignment vector which will be defined later and Ru,u is the
autocorrelation matrix of the tap-input vector u(k).

It is also often assumed that the filter coefficients are statistically independent
of the input data currently in the filter memory, which is convenient, but essentially
incorrect. This assumption is one of the independence assumptions, which are (Haykin
1996a)

1. the sequence of tap input vectors are statistically independent;

2. the tap input vector is statistically independent of all the previous samples of
the desired response;

3. the desired response is statistically independent of all the previous samples of
the desired response; and

4. the tap input vector and the desired response consist of mutually Gaussian-
distributed random variables.

The weight error vector hence depends on the previous sample input vectors, the
previous samples of the desired response and the initial value of the tap weight vector.
Convergence analysis of stochastic gradient algorithms is still ongoing, mainly to relax
the independence assumptions (Douglas and Pan 1995; Guo et al. 1997; Solo and Kong
1994).

The following are the most frequently used convergence criteria in the analysis of
adaptive algorithms:

1. convergence of the weight fluctuation in the mean ‖E[v(k)]‖ → 0, as k → ∞,
where v(k) = w(k) − w̃(k);

2. mean squared error convergence calculated from E[v(k)vT(k)]; and

3. steady-state mean squared error, which is obtained from mean squared error
convergence (misadjustment).

164 OVERVIEW

To allow for time-varying input signal statistics, in the following analysis we use
a fairly general condition that the optimal filter weights w̃(k) are governed by the
modified first-order Markov model as (Bershad et al. 1990),

w̃(k + 1) = λw̃(k) +
√

1 − λ2n(k), (10.10)

where λ ∈ [0, 1] is the parameter which defines the time variation of w̃(k) and n(k) is
an i.i.d. Gaussian noise vector. A zero-mean initialisation of model (10.10) is assumed
(E[w̃(k)] = 0). This model covers most of the learning algorithms employed, be they
linear or nonlinear. For instance, the momentum algorithm models the weight update
as an AR process. In addition, learning algorithms based upon the Kalman filter
model weight fluctuations as a white noise sequence (random walk), which is in fact
a first-order Markov process (Appendix D). The standard case of a single optimal
solution to the stochastic gradient optimisation process (non time-varying) can be
obtained by setting λ = 1.

10.3 Overview

Based upon the stability results introduced in Chapter 7, the analysis of convergence
for stochastic gradient algorithms for nonlinear adaptive filters is provided. The anal-
ysis is mathematically strict and covers most of the previously introduced algorithms.
This approach can be extended to more complicated architectures and learning algo-
rithms.

10.4 Convergence Analysis of Online Gradient Descent Algorithms for
Recurrent Neural Adaptive Filters

The problem of optimal nonlinear gradient-descent-based training can be presented
in a similar fashion to the linear case (Douglas 1994), as

minimise ‖w(k + 1) − w(k)‖ (10.11)

subject to s(k) − Φ(uT(k)w(k + 1)) = 0, (10.12)

where ‖ · ‖ denotes some norm (most commonly the 2-norm). The equation that
defines the adaptation of a recurrent neural network is

w(k + 1) = w(k) − η(k)∇w(k)E(k), (10.13)

where E(k) = 1
2e2(k) is the cost function to be minimised. The correction to the

weight vector for a recurrent perceptron at time instant k becomes (Williams and
Zipser 1989a)

∆w(k) = η(k)e(k)Π(k), (10.14)

where

Π(k) =
[

∂y(k)
∂w1(k)

, . . . ,
∂y(k)

∂wN (k)

]T

CONVERGENCE OF LEARNING ALGORITHMS IN NNs 165

represents the gradient vector at the output of the neuron. Consider the weight update
equation for a general RTRL trained RNN

w(k + 1) = w(k) + η(k)e(k)Π(k). (10.15)

Following the approach from Chambers et al. (2000) and using (10.4) and (10.15), we
have

w(k+1) = w(k)+η(k)q(k)Π(k)+η(k)Φ(uT(k)w̃(k))Π(k)−η(k)Φ(uT(k)w(k))Π(k).
(10.16)

The misalignment vector v can be expressed as

v(k) = w(k) − w̃(k). (10.17)

Let us now subtract w̃(k + 1) from both sides of (10.16), which yields

v(k + 1) = w(k) − w̃(k + 1) + η(k)q(k)Π(k)

− η(k)[Φ(uT(k)w(k)) − Φ(uT(k)w̃(k))]Π(k).

Using (10.10), we have

v(k + 1) = w(k) − w̃(k) + w̃(k) − λw̃(k) −
√

1 − λ2n(k) + η(k)q(k)Π(k)

− η(k)[Φ(uT(k)w(k)) − Φ(uT(k)w̃(k))]Π(k). (10.18)

It then follows that v(k + 1) becomes

v(k + 1) = v(k) + η(k)q(k)Π(k) − η(k)[Φ(uT(k)w(k)) − Φ(uT(k)w̃(k))]Π(k)

+ (1 − λ)w̃(k) −
√

1 − λ2n(k). (10.19)

For Φ(k) a sign-preserving1 contraction mapping (as in the case of the logistic
function), the term in the square brackets from (10.19) is bounded from above by
Θ|uT(k)v(k)|, 0 < Θ < 1 (Mandic and Chambers 2000e). Further analysis towards
the weight convergence becomes rather involved because of the nature of Π(k). Let
us denote uT(k)w(k) = net(k). Since the gradient vector Π is a vector of partial
derivatives of the output y(k),

Π(k) =
∂y(k)
∂w(k)

= Φ′(net(k))[u(k) + wa(k)Πa(k)], (10.20)

where the subscript ‘a’ denotes the elements which are due to the feedback of the
system, we restrict ourselves to an approximation,

Π(k) −→ Φ′(net(k))u(k).

1 For the sake of simplicity, we assume Φ sign preserving, i.e. for positive a, b, b > a, Φ(b)−Φ(a) <
b−a. For other contractive activation functions, |Φ(a)−Φ(b)| < |a−b|, and norms of the correspond-
ing expressions from the further analysis should be taken into account. The activation functions
most commonly used in neural networks are sigmoidal, monotonically increasing, contractive, with
a positive first derivative, so that this assumption holds.

166 CONVERGENCE OF GD ALGORITHMS FOR RNNs

This should not affect the generality of the result, since it is possible to return to the
Π terms after the convergence results are obtained. In some cases, due to the problem
of vanishing gradient, this approximation is quite satisfactory (Bengio et al. 1994).
In fact, after approximating Π, the structure degenerates into a single-layer, single
neuron feedforward neural network (Mandic and Chambers 2000f). For Φ a mono-
tonic ascending contractive activation function, ∃α(k) ∈ (0, Θ], such that the term
[Φ(uT(k)w(k)) − Φ(uT(k)w̃(k))] from (10.19) can be replaced2 by α(k)uT(k)v(k).
Now, analysing (10.19) with the newly introduced parameter α(k), we have

v(k + 1) = v(k) + η(k)q(k)Φ′(net(k))u(k) − α(k)η(k)uT(k)v(k)Φ′(net(k))u(k)

+ (1 − λ)w̃(k) −
√

1 − λ2n(k). (10.21)

For a contractive activation function 0 < Φ′(net(k)) < 1 (Mandic and Chambers
1999b) and can be replaced3 by γ(k). Equation (10.21) now becomes

v(k + 1) = v(k) + γ(k)η(k)q(k)u(k) − α(k)γ(k)η(k)u(k)uT(k)v(k)

+ (1 − λ)w̃(k) −
√

1 − λ2n(k). (10.22)

After including the zero-mean assumption for the driving noise, n(k) and the mutual
statistical independence assumption between η(k), u(k), n(k), w̃(k), α(k), γ(k) and
v(k), we have

E[v(k + 1)] = E[I − αγη(k)u(k)uT(k)]E[v(k)], (10.23)

where γ = E[γ(k)] and α = E[α(k)], which are also in the range (0, 1). For conver-
gence,

0 < ‖E[I − αγη(k)u(k)uT(k)]‖ < 1

as both α and γ are positive scalars for monotonic ascending contractive activation
functions. For stability of the algorithm, the limits on η(k) are thus4

0 < η(k) < E

[
2

αγuT(k)u(k)

]
. (10.24)

Equation (10.24) tells us that the stability limit for the NLMS algorithm is the bound
for the simplified recurrent perceptron algorithm. By continuity, the NLMS algorithm
for IIR adaptive filters is the bound for the stability analysis of a single-neuron RTRL
algorithm. The mean square and steady-state convergence analysis follow the same
form and are presented below.

2 In fact, by the CMT, ∃ξ ∈ (uT(k)w(k), uT(k)w̃(k)) such that

|Φ(uT(k)w(k)) − Φ(uT(k)w̃(k))| = |Φ′(ξ)||uT(k)w(k) − uT(k)w̃(k)| = |Φ′(ξ)||uT(k)v(k)|.

Hence, for a sigmoidal monotonic ascending, contractive Φ (logistic, tanh), the first derivative is
strictly positive and α(k) = Φ′(ξ). Assume positive a, b, b > a, then Φ(b) − Φ(a) = α(k)(b − a).

3 From (10.20), there is a finite γ(k) such that ‖Π(k)‖ = γ(k)‖u(k)‖. For simplicity, we approx-
imate Π(k) as above and use γ(k) as defined by the CMT. The derived results, however, are valid
for any finite γ(k), i.e. are directly applicable for both the recurrent and feedforward architectures.

4 Using the independence assumption, E[u(k)uT(k)] is a diagonal matrix and its norm can be
replaced by E[uT(k)u(k)].

CONVERGENCE OF LEARNING ALGORITHMS IN NNs 167

10.5 Mean-Squared and Steady-State Mean-Squared Error Convergence

To investigate the mean squared convergence properties of stochastic gradient descent
algorithms for recurrent neural networks, we need to analyse Rv,v(k + 1) which is
defined as Rv,v(k + 1) = E[v(k + 1)vT(k + 1)]. From (10.22), cross-multiplying and
applying the expectation operator to both sides and using the definition of Rv,v(k+1),
α and γ and the previous assumptions, we obtain5

Rv,v(k +1) = Rv,v(k)−αγE[η(k)u(k)uT(k)]Rv,v(k)−Rv,v(k)E[u(k)uT(k)η(k)]γα

+ α2γ2E[η(k)u(k)uT(k)v(k)vT(k)u(k)uT(k)η(k)]

+ γ2E[η(k)u(k)uT(k)η(k)]σ2
q

+ (1 − λ)2E[w̃(k)w̃T(k)] + (1 − λ2)E[n(k)nT(k)], (10.25)

where σ2
q is the variance of the noise signal q(k). The expectation terms are now

evaluated using η = E[η(k)] and σ2
u as the variance of the i.i.d. input signal u(k),

which implies

E[η(k)u(k)uT(k)]Rv,v(k) = Rv,v(k)E[u(k)uT(k)η(k)] = ησ2
uRv,v(k), (10.26)

E[η(k)u(k)uT(k)η(k)] = η2σ2
uI (10.27)

and by the fourth-order standard factorisation property of zero mean Gaussian vari-
ables6 (Papoulis 1984)

E[η(k)u(k)uT(k)v(k)vT(k)u(k)uT(k)η(k)] = η2σ4
u[2Rv,v(k) + I tr{Rv,v(k)}].

(10.28)

5 For small quantities E[x2(k)] ≈ (E[x(k)])2, so that E[α2(k)] ≈ α2, E[γ2(k)] ≈ γ2 and E[η2(k)] ≈
η2. Experiments show that this is a realistic assumption for the range of allowed α(k), γ(k) and η(k).
Moreover, if η is fixed, η(k) = η and E[η2] = η2.

6 E[xnxT
nxnxT

n]kl = E[x(n − k)
∑N

i=1 x2(n − i)x(n − l)], which by the standard factorisation
property of real, zero mean Gaussian variables becomes

E[x1xT
2 x3xT

4]kl = E[x1x2]E[x3x4] + E[x1x3]E[x2x4] + E[x1x4]E[x2x3]

= 2
N∑

i=1

E[x(n − k)x(n − i)]E[x(n − l)x(n − i)]

+ E[x(n − k)x(n − l)]
N∑

i=1

E[x2(n − i)],

which, in turn, implies
E[xnxT

nxnxT
n] = 2R2 + R tr {R},

where tr{ · } is the trace operator. Now for i.i.d. Gaussian input signals xn, we have

E[x(n − i)x(n − j)] =

{
0, if i �= j,

σ2
x, if i = j,

so that

E[xnxT
nxnxT

n]kl =

{
0, if l �= k,

(N + 2)σ4
x, if l = k,

and E[xnxT
nxnxT

n] = (N + 2)σ4
xI,

as required.

168 MS AND STEADY-STATE MSE CONVERGENCE

The first-order Markov model (10.10) used as the time-varying optimal weight system
implies7 that

E[w̃(k)w̃T(k)] = σ2
nI, (10.29)

E[n(k)nT(k)] = σ2
nI, (10.30)

where σ2
n is the variance of the signal n(k). Combining (10.25)–(10.30), we have

Rv,v(k + 1) = Rv,v(k) − 2αγησ2
uRv,v(k) + α2γ2η2σ4

u[2Rv,v(k) + I tr{Rv,v(k)}]

+ γ2η2σ2
uσ2

qI + 2(1 − λ)σ2
nI. (10.31)

The mean squared misalignment ξ, which is a commonly used quantity in the assess-
ment of the performance of an algorithm, can be now defined as

ξ(k + 1) = E[vT(k + 1)v(k + 1)], (10.32)

which can be obtained from Rv,v(k + 1) by taking its trace. Thus, we have

ξ(k + 1) = [1 − 2αγησ2
u + α2γ2η2σ4

u(N + 2)]ξ(k)

+ γ2η2σ2
uσ2

qN + 2(1 − λ)Nσ2
n, (10.33)

where N is the length of vector u(k).

10.5.1 Convergence in the Mean Square

In order to guarantee convergence of the mean-square error (MSE), which is given
under the above assumptions as

MSE(k) = σ2
uξ(k),

the update of the MSE has to be governed by a contraction mapping, i.e. from (10.33)

0 < |αγησ2
u[2 − αγησ2

u(N + 2)]| < 2.

For convergence, the bounds on the learning rate η become8

0 < η <
2

αγσ2
u(N + 2)

. (10.34)

The derived result is the upper bound for the learning rate which preserves the mean
square convergence of the RTRL algorithm for a recurrent perceptron. Depending on
the choice of γ, this is directly applicable for learning algorithms for both feedforward
and recurrent neural networks. For a highly contractive Φ, α is small and η can be
larger. For a linear activation function, α = γ = 1, and the result (10.34) degenerates
into the result for the LMS for linear FIR filters.

7 Vectors w̃ and n are drawn from the same statistical distribution N (0, σ2
nI).

8 Compare (10.34) with (10.24). From (10.24), for an i.i.d. input,

E

[
2

αγuT(k)u(k)

]
≈ 2

αγNσ2
u

,

which means that the MSE stability condition (10.34) is more stringent than the mean weight error
stability condition (10.24).

CONVERGENCE OF LEARNING ALGORITHMS IN NNs 169

10.5.2 Steady-State Mean-Squared Error

Let us first derive the steady-state misalignment. Normally, this is obtained by setting
ξ = ξ(k) = ξ(k + 1) in (10.33) and solving for ξ, and thus

ξ =
γ2η2σ2

uσ2
qN + 2(1 − λ)Nσ2

n

αγησ2
u[2 − αγησ2

u(N + 2)]

=
γησ2

qN

α[2 − αγησ2
u(N + 2)]

+
2(1 − λ)Nσ2

n

αγησ2
u[2 − αγησ2

u(N + 2)]
. (10.35)

The steady-state MSE is then
MSE = σ2

uξ. (10.36)

The results for systems with a single fixed optimal weight solution can be obtained
from the above by setting λ = 1.

10.6 Summary

Techniques for convergence analysis for an online stochastic gradient descent algo-
rithm for neural adaptive filters have been provided. These are based upon the pre-
viously addressed contraction mapping properties of nonlinear neurons. The analysis
has been undertaken for a general case of time-varying behaviour of the optimal
weight vector. The learning algorithms for linear filters have been shown to be the
bounds for the algorithms employed for neural networks. The analysis is applicable to
both recurrent and feedforward architectures and can be straightforwardly extended
to more complicated structures and learning algorithms.

Recurrent Neural Networks for Prediction
Authored by Danilo P. Mandic, Jonathon A. Chambers

Copyright c©2001 John Wiley & Sons Ltd
ISBNs: 0-471-49517-4 (Hardback); 0-470-84535-X (Electronic)

11

Some Practical Considerations
of Predictability and Learning
Algorithms for Various Signals

11.1 Perspective

In this chapter, predictability, detecting nonlinearity and performance with respect to
the prediction horizon are considered. Methods for detecting nonlinearity of signals
are first discussed. Then, different algorithms are compared for the prediction of
nonlinear and nonstationary signals, such as real NO2 air pollutant and heart rate
variability signals, together with a synthetic chaotic signal. Finally, bifurcations and
attractors generated by a recurrent perceptron are analysed to demonstrate the ability
of recurrent neural networks to model complex physical phenomena.

11.2 Introduction

When modelling a signal, an initial linear analysis is first performed on the signal, as
linear models are relatively quick and easy to implement. The performance of these
models can then determine whether more flexible nonlinear models are necessary to
capture the underlying structure of the signal. One such standard model of linear
time series, the auto-regressive integrated moving average, or ARIMA(p, d, q) model
popularised by Box and Jenkins (1976), assumes that the time series xk is generated
by a succession of ‘random shocks’ εk, drawn from a distribution with zero mean
and variance σ2

ε . If xk is non-stationary, then successive differencing of xk via the
differencing operator, ∇xk = xk −xk−1 can provide a stationary process. A stationary
process zk = ∇dxk can be modelled as an autoregressive moving average

zk =
p∑

i=1

aizk−i +
q∑

i=1

biεk−i + εk. (11.1)

Of particular interest are pure autoregressive (AR) models, which have an easily
understood relationship to the nonlinearity detection technique of DVS (deterministic

172 INTRODUCTION

0 500 1000 1500 2000 2500 3000
0

20

40

60

80

100

120

Time scale in hours

M
e

a
s
u

re
m

e
n

ts
 o

f
N

O
2
 l
e

v
e

l

(a) The raw NO2 time series

Figure 11.1 The NO2 time series and its autocorrelation function

versus stochastic) plots. Also, an ARMA(p, q) process can be accurately represented
as a pure AR(p′) process, where p′ � p + d (Brockwell and Davis 1991). Penalised
likelihood methods such as AIC or BIC (Box and Jenkins 1976) exist for choosing
the order of the autoregressive model to be fitted to the data; or the point where the
autocorrelation function (ACF) essentially vanishes for all subsequent lags can also
be used. The autocorrelation function for a wide-sense stationary time series xk at lag
h gives the correlation between xk and xk+h; clearly, a non-zero value for the ACF
at a lag h suggests that for modelling purposes at least the previous h lags should be
used (p � h).

For instance, Figure 11.1 shows a raw NO2 signal and its autocorrelation function
(ACF) for lags of up to 40; the ACF does not vanish with lag and hence a high-order
AR model is necessary to model the signal. Note the peak in the ACF at a lag of 24
hours and the rise to a smaller peak at a lag of 48 hours. This is evidence of seasonal
behaviour, that is, the measurement at a given time of day is likely to be related to
the measurement taken at the same time on a different day. The issue of seasonal
time series is dealt with in Appendix J.

SOME PRACTICAL CONSIDERATIONS OF PREDICTABILITY 173

0 10 20 30 40

0.0
0.2

0.4
0.6

0.8
1.0

Lag

AC
F

Series NO2

(b) The ACF of the NO2 series

Figure 11.1 Cont.

11.2.1 Detecting Nonlinearity in Signals

Before deciding whether to use a linear or nonlinear model of a process, it is impor-
tant to check whether the signal itself is linear or nonlinear. Various techniques exist
for detecting nonlinearity in time series. Detecting nonlinearity is important because
the existence of nonlinear structure in the series opens the possibility of highly accu-
rate short-term predictions. This is not true for series which are largely stochastic
in nature. Following the approach from Theiler et al. (1993), to gauge the efficacy
of the techniques for detecting nonlinearity, a surrogate dataset is simulated from
a high-order autoregressive model fit to the original series. Two main methods to
achieve this exist, the first involves fitting a finite-order ARMA(p, q) model (we use
a high-order AR(p) model to fit the data). The model coefficients are then used to
generate the surrogate series, with the surrogate residuals εk taken as random permu-
tations of the residuals from the original series. The second method involves taking a
Fourier transform of the series. The phases at each frequency are replaced randomly
from the uniform (0, 2π) distribution while keeping the magnitude of each frequency
the same as for the original series. The surrogate series is then obtained by taking
the inverse Fourier transform. This series will have approximately the same autocor-

174 OVERVIEW

relation function as the original series, with the approximation becoming exact in
the limit as N → ∞. A discussion of the respective merits of the two methods of
generating surrogate data is given in Theiler et al. (1993), the method used here is
the former. Evidence of nonlinearity from any method of detection is negated if the
method gives a similar result when applied to the surrogate series, which is known to
be linear (Theiler et al. 1993).

11.3 Overview

This chapter deals with some practical issues when performing prediction of non-
linear and nonstationary signals. Techniques for detecting nonlinearity and chaotic
behaviour of signals are first introduced and a detailed analysis is provided for the
NO2 air pollutant measurements taken at hourly intervals from the Leeds meteo sta-
tion, UK. Various linear and nonlinear algorithms are compared for prediction of air
pollutants, heart rate variability and chaotic signals. The chapter concludes with an
insight into the capability of recurrent neural networks to generate and model complex
nonlinear behaviour such as chaos.

11.4 Measuring the Quality of Prediction and Detecting Nonlinearity
within a Signal

Existence and/or discovery of an attractor in the phase space demonstrates whether
the system is deterministic, purely stochastic or contains elements of both. To recon-
struct the attractor examine plots in the m-dimensional space of [xk, xk−τ , . . . ,
xk−(m−1)τ]T. It is critically important for the dimension of the space, m, in which
the attractor resides, to be large enough to ‘untangle’ the attractor. This is known as
the embedding dimension (Takens 1981). The value of τ , the lag time or lag spacing,
is also important, particularly with noise present. The first inflection point of the
autocorrelation function is a possible starting value for τ (Beule et al. 1999). Alter-
natively, if the series is known to be sampled coarsely, the value of τ can be taken as
unity (Casdagli and Weigend 1993). A famous example of an attractor is given by the
Lorenz equations (Lorenz 1963)

ẋ = σ(y − x),
ẏ = rx − y − xz,

ż = xy − bz,

(11.2)

where σ, r and b > 0 are parameters of the system of equations. In Lorenz (1963) these
equations were studied for the case σ = 10, b = 8

3 and r = 28. A Lorenz attractor is
shown in Figure 11.13(a). The discovery of an attractor for an air pollution time series
would demonstrate chaotic behaviour; unfortunately, the presence of noise makes such
a discovery unlikely. More robust techniques are necessary to detect the existence of
deterministic structure in the presence of substantial noise.

SOME PRACTICAL CONSIDERATIONS OF PREDICTABILITY 175

11.4.1 Deterministic Versus Stochastic Plots

Deterministic versus stochastic (DVS) plots (Casdagli and Weigend 1993) display the
(robust) prediction error E(n) for local linear models against the number of nearest
neighbours, n, used to fit the model, for a range of embedding dimensions m. The
data are separated into a test set and a training set, where the test set is the last
M elements of the series. For each element in the test set xk, its corresponding delay
vector in m-dimensional space

x(k) = [xk−τ , xk−2τ , . . . , xk−mτ]T (11.3)

is constructed. This delay vector is then examined against the set of all the delay
vectors constructed from the training set. From this set the n nearest neighbours are
defined to be the n delay vectors x(k′) which have the shortest Euclidean distance to
x(k). These n nearest neighbours x(k′) along with their corresponding target values
xk′ are used as the variables to fit a simple linear model. This model is then given
x(k) as an input which provides a prediction x̂k for the target value xk, with a robust
prediction error of

|xk − x̂k|. (11.4)

This procedure is repeated for all the test set, enabling calculation of the mean robust
prediction error,

E(n) =
1
M

∑
xk∈T

|xk − x̂k|, (11.5)

where T is the test set. If the optimal number of nearest neighbours n, taken to be the
value giving the lowest prediction error E(n), is at, or close to, the maximum possible
n, then globally linear models perform best and there is no indication of nonlinearity
in the signal. As this global linear model uses all possible length m vectors of the series,
it is equivalent to an AR model of order m when τ = 1. Small optimal n suggests
local linear models perform best, indicating nonlinearity and/or chaotic behaviour.

11.4.2 Variance Analysis of Delay Vectors

Closely related to DVS plots is the nonlinearity detection technique introduced in
Khalaf and Nakayama (1998). The general idea is not to fit models, linear or otherwise,
using the nearest neighbours of a delay vector, but rather to examine the variability
of the set of targets corresponding to groups of close (in the Euclidean distance sense)
delay vectors. For each observation xk, k � m+1 construct the group, Ωk, of nearest
neighbour delay vectors given by

Ωk = {x(k′) : k′ �= k & dkk′ � αAx}, (11.6)

where x(k′) = {xk′−1, xk′−2, . . . , xk′−m}, dkk′ = ‖x(k′) − x(k)‖ is the Euclidean
distance, 0 < α � 1,

Ax =
1

N − m

N∑
k=m+1

|xk|

176 DETECTING NONLINEARITY WITHIN A SIGNAL

0 1000 2000 3000 4000 5000
0

50

100

150

200

250

Time in hours (k)

N
O

2 le
ve

l

0 1000 2000 3000 4000 5000
−150

−100

−50

0

50

100

Time in hours (k)

N
O

2 le
ve

l

0 1000 2000 3000 4000 5000
−200

−100

0

100

200

Time in hours (k)

N
O

2 le
ve

l

0 1000 2000 3000 4000 5000
−200

−100

0

100

200

Time in hours (k)

N
O

2 le
ve

l

Figure 11.2 Time series plots for NO2. Clockwise, starting from top left: raw, simulated,
simulated deseasonalised, deseasonalised

and N is the length of the time series. If the series is linear, then the similar patterns
x(k′) belonging to a group Ωk will map onto similar xk′s. For nonlinear series, the
patterns x(k′) will not map onto similar xk′s. This is measured by the variance σ2 of
each group Ωk

σ2
k =

1
|Ωk|

∑
k

(xk′ − µk)2, x(k′) ∈ Ωk.

The measure of nonlinearity is taken to be the mean of σ2
k over all the Ωk, denoted

σ2
N , normalised by dividing through by σ2

x, the variance of the entire time series

σ2 =
σ2

N

σ2
x

.

The larger the value of σ2 the greater the suggestion of nonlinearity (Khalaf and
Nakayama 1998). A comparison with surrogate data is especially important with this
method to get evidence of nonlinearity.

11.4.3 Dynamical Properties of NO2 Air Pollutant Time Series

The four time series generated from the NO2 dataset are given in Figure 11.2, with
the deseasonalised series on the bottom and the simulated series on the right. The

SOME PRACTICAL CONSIDERATIONS OF PREDICTABILITY 177

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F

Series NO2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F

Series NO2

0 10 20 30 40

−0
.5

0.
0

0.
5

1.
0

Lag

AC
F

Series NO2

0 10 20 30 40

−0
.5

0.
0

0.
5

1.
0

Lag

AC
F

Series NO2

Figure 11.3 ACF plots for NO2. Clockwise, starting from top left: raw, simulated,
simulated deseasonalised, deseasonalised

sine wave structure can clearly be seen in the raw (unaltered) time series (top left),
evidence confirming the relationship between NO2 and temperature. Also note that
once an air pollutant series has been simulated or deseasonalised, the condition that
no readings can be below zero no longer holds. The respective ACF plots for the
NO2 series are given in Figure 11.3. The raw and simulated ACFs (top) are virtually
identical – as should be the case, since the simulated time series is based on a linear
AR(45) fit to the raw data, the correlations for the first 45 lags should be the same.
Since generating the deseasonalised data involves application of the backshift operator,
the autocorrelations are much reduced, although a ‘mini-peak’ can still be seen at a
lag of 24 hours.

Nonlinearity detection in NO2 signal

Figure 11.4 shows the two-dimensional attractor reconstruction for the NO2 time
series after it has been passed through a linear filter to remove some of the noise

178 DETECTING NONLINEARITY WITHIN A SIGNAL

0 20 40 60 80

0
20

40
60

80

xk

x k+
τ

NO2

−40 −20 0 20

−4
0

−2
0

0
20

xk

x k+
τ

NO2

−6 −4 −2 0 2 4 6

−6
−4

−2
0

2
4

6

xk

x k+
τ

NO2

−5 0 5

−5
0

5

xk

x k+
τ

NO2

Figure 11.4 Attractor reconstruction plots for NO2. Clockwise, starting from top left:
raw, simulated, simulated deseasonalised and deseasonalised

present. This graph shows little regularity and there is little to distinguish between
the raw and the simulated plots. If an attractor does exist, then it is in a higher-
dimensional space or is swamped by the random noise. The DVS plots for NO2 are
given in Figure 11.5, the DVS analysis of a related air pollutant can be found in Foxall
et al. (2001). The optimal n (that is, the value of n corresponding to the minimum
of E(n)), is clearly less than the maximum of n for the raw data for each of the
embedding dimensions (m) examined. However, the difference is not great and the
minimum occurs quite close to the maximum n, so this only provides weak evidence
for nonlinearity. The DVS plot for the simulated series obtains the optimal error
measure at the maximum n, as is expected. The deseasonalised DVS plots follow
the same pattern, except that the evidence for nonlinearity is weaker, and the best
embedding dimension now is m = 6 rather than m = 2. Figure 11.6 shows the results
from analysing the variance of the delay vectors for the NO2 series. The top two plots
show lesser variances for the raw series, strongly suggesting nonlinearity. However, for

SOME PRACTICAL CONSIDERATIONS OF PREDICTABILITY 179

5 50 500 5000

0.35

0.40

0.45

n

E
(n

)

m=2
m=4
m=6
m=8
m=10

NO2

5 50 500 5000

0.40

0.45

0.50

n
E

(n
)

m=2
m=4
m=6
m=8
m=10

NO2

5 50 500 5000

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.46

n

E
(n

)

m=2
m=4
m=6
m=8
m=10

NO2

5 50 500 5000

0.36

0.38

0.40

0.42

0.44

0.46

0.48

n

E
(n

)

m=2
m=4
m=6
m=8
m=10

NO2

Figure 11.5 DVS plots for NO2. Clockwise, starting from top left: raw, simulated,
simulated deseasonalised and deseasonalised

Table 11.1 Performance of gradient descent algorithms in prediction of the NO2 time
series

Recurrent
NGD NNGD perceptron NLMS

Predicted gain (dB) 5.78 5.81 6.04 4.75

the deseasonalised series (bottom) the variances are roughly equal, and indeed greater
for higher embedding dimensions, suggesting that evidence for nonlinearity originated
from the seasonality of the data.

To support the analysis, experiments on prediction of this signal were performed.
The air pollution data represent hourly measurements of the concentration of nitro-
gen dioxide (NO2), over the period 1994–1997, provided by the Leeds meteo station.

180 DETECTING NONLINEARITY WITHIN A SIGNAL

0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

α

m=2
m=4
m=6
m=8
m=10σ2

NO2

0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

α

m=2
m=4
m=6
m=8
m=10σ2

NO2

0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

α

m=2
m=4
m=6
m=8
m=10σ2

NO2

0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

α

m=2
m=4
m=6
m=8
m=10σ2

NO2

Figure 11.6 Delay vector variance plots for NO2. Clockwise, starting from top left: raw,
simulated, simulated deseasonalised and deseasonalised

In the experiments the logistic function was chosen as the nonlinear activation func-
tion of a dynamical neuron (Figure 2.6). The quantitative performance measure was
the standard prediction gain, a logarithmic ratio between the expected signal and
error variances Rp = 10 log(σ̂2

s /σ̂2
e). The slope of the nonlinear activation function

of the neuron β was set to be β = 4. The learning rate parameter η in the NGD
algorithm was set to be η = 0.3 and the constant C in the NNGD algorithm was
set to be C = 0.1. The order of the feedforward filter N was set to be N = 10.
For simplicity, a NARMA(3,1) recurrent perceptron was used as a recurrent network.
The summary of the performed experiments is given in Table 11.1. From Table 11.1,
the nonlinear algorithms perform better than the linear one, confirming the analysis
which detected nonlinearity in the signal. To further support the analysis given in
the DVS plots, Figure 11.7(a) shows prediction gains versus number of taps for linear
and nonlinear feedforward filters trained by the NGD, NNGD and NLMS algorithms,
whereas Figure 11.7(b) shows prediction performance of a recurrent perceptron (Fox-

SOME PRACTICAL CONSIDERATIONS OF PREDICTABILITY 181

all et al. 2001). Both the nonlinear filters trained by the NGD and NNGD algorithms
outperformed the linear filter trained by the NLMS algorithm. For the tap length up
to N = 10, the NNGD was outperforming the NGD; the worse performance of the
NNGD over the NGD for N > 10 can be explained by the insufficient approximation
of the remainder of the Taylor series expansion within the derivation of the algorithm
for large N . The recurrent structure achieved better performance for a smaller number
of tap inputs than the standard feedforward structures.

11.5 Experiments on Heart Rate Variability

Information about heart rate variability (HRV) is extracted from the electrocardio-
gram (ECG). There are different approaches to the assessment of HRV from the
measured data, but most of them rely upon the so-called R–R intervals, i.e. distance
in time between two successive R waves in the HRV signal. Here, we use the R–R
intervals that originate from ECG obtained from two patients. The first patient (A)
was male, aged over 60, with a normal sinus rhythm, while patient (B) was also male,
aged over 60, who suffered a miocardial infarction. In order to examine predictability
of HRV signals, we use various gradient-descent-based neural adaptive filters.

11.5.1 Experimental Results

Figure 11.8(a) shows the HRV for patient A, while Figure 11.8(b) shows HRV for
patient B. Prediction was performed using a logistic activation function Φ of a dynam-
ical neuron with N = 10. The quantitative performance measure was the standard
prediction gain Rp = 10 log(σ̂2

s /σ̂2
e). The slope of the nonlinear activation function of

the neuron β was set to be β = 4. Due to the saturation type logistic nonlinearity,
input data were prescaled to fit within the range of the neuron activation function.
Both the standard NGD and the data-reuse modifications of the NGD algorithm
were used. The number of data-reuse iterations L was set to be L = 10. The perfor-
mance comparison between the NGD algorithm and a data-reusing NGD algorithm
is shown in Figure 11.9. The plots show the prediction gain versus the tap length
and the prediction horizon (number of steps ahead in prediction). In all the cases
from Figure 11.9, the data-reusing algorithms outperformed the standard algorithms
for short-term prediction. The standard algorithms showed better prediction results
for long-term prediction. As expected, the performance deteriorates with the order of
prediction ahead. In the next experiment we compare the performance of a recurrent
perceptron trained with the fixed learning rate η = 0.3 and a recurrent perceptron
trained by the NRTRL algorithm on prediction of the HRV signal. In the experi-
ment the MA and the AR part of the recurrent perceptron vary from 1 to 15, while
prediction horizon varies from 1 to 10. The results of the experiment are shown in Fig-
ures 11.10 and 11.11. From Figure 11.10, for a relatively large input line and feedback
tap delay lines, there is a saturation in performance. This confirms that the recur-
rent structure was able to capture the dynamics of the HRV signal. The prediction
performance deteriorates with the prediction step, and due to the recurrent nature
of the filter, the performance is not good for a NARMA recurrent perceptron with

182 EXPERIMENTS ON HEART RATE VARIABILITY

0 5 10 15 20 25
1

2

3

4

5

6

7

The tap length

Pr
ed

ic
tio

n
ga

in
 [d

B]

NNGD

NGD

NLMS

(a) Performance of the NGD, NNGD and NLMS algorithms in the
prediction of NO2 time series

0
2

4
6

8
10

0

2

4

6

8

10
0

1

2

3

4

5

6

The MA partThe AR part

Pr
ed

ic
tio

n
ga

in
 [d

B]

(b) Performance of the recurrent perceptron in the prediction of NO2
time series

Figure 11.7 Performance comparison of various structures for prediction of NO2 series

a small order of the AR and MA part. Figure 11.11 shows the results of an exper-
iment similar to the previous one, with the exception that the employed algorithm
was the NRTRL algorithm. The NARMA(p, q) recurrent perceptron trained with this

SOME PRACTICAL CONSIDERATIONS OF PREDICTABILITY 183

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Number of samples

H
ea

rt
ra

te
 v

ar
ia

bi
lit

y

(a) HRV signal for patient A

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Number of samples

H
ea

rt
ra

te
 v

ar
ia

bi
lit

y

(b) HRV signal for patient B

Figure 11.8 Heart rate variability signals for patients A and B

algorithm persistently outperformed the standard recurrent perceptron trained by the
RTRL.

Figure 11.12 shows performance of the recurrent perceptron with fixed η in predic-
tion of HRV time series (patient B), for different prediction horizons. Similar argu-
ments as for patient A are applicable.

184 EXPERIMENTS ON HEART RATE VARIABILITY

0
2

4
6

8
10

0

5

10

15

20

25

30
−4

−2

0

2

4

6

8

Prediction horizonThe tap length

P
re

di
ct

io
n

ga
in

 [d
B

]

(a) Performance of the NGD algorithm in prediction of HRV time
series, patient A

0
2

4
6

8
10

0

5

10

15

20

25

30
0

2

4

6

8

10

12

14

Prediction horizonThe tap length

P
re

di
ct

io
n

ga
in

 [d
B

]

(b) Performance of the NGD algorithm in prediction of HRV time
series, patient B

Figure 11.9 Performance comparison between standard and data-reusing algorithms for
prediction of HRV signals

SOME PRACTICAL CONSIDERATIONS OF PREDICTABILITY 185

0
2

4
6

8
10

0

5

10

15

20

25

30
−2

0

2

4

6

8

10

12

Prediction horizonThe tap length

P
re

di
ct

io
n

ga
in

 [d
B

]

(c) Performance of the data-reusing NGD algorithm in prediction of
HRV time series, patient A, L = 10

0
2

4
6

8
10

0

5

10

15

20

25

30
0

5

10

15

20

Prediction horizonThe tap length

P
re

di
ct

io
n

ga
in

 [d
B

]

(d) Performance of the data-reusing NGD algorithm in prediction of
HRV time series, patient B, L = 10

Figure 11.9 Cont.

186 EXPERIMENTS ON HEART RATE VARIABILITY

0

5

10

15

0

5

10

15
0

1

2

3

4

5

6

7

The MA partThe AR part

P
re

di
ct

io
n

ga
in

 [d
B

]

(a) Performance of the recurrent perceptron with fixed learning rate in
prediction of HRV time series, patient A, prediction horizon is 1

0

5

10

15

0

5

10

15
0

1

2

3

4

5

6

7

The MA partThe AR part

Pr
ed

ic
tio

n
ga

in
 [d

B]

(b) Performance of the recurrent perceptron with fixed learning rate in
prediction of HRV time series, patient A, prediction horizon is 2

Figure 11.10 Performance of a NARMA recurrent perceptron on prediction of HRV
signals for different prediction horizons

SOME PRACTICAL CONSIDERATIONS OF PREDICTABILITY 187

0

5

10

15

0

5

10

15
0

1

2

3

4

5

6

7

8

The MA partThe AR part

P
re

di
ct

io
n

ga
in

 [d
B

]

(c) Performance of the recurrent perceptron with fixed learning rate in
prediction of HRV time series, patient A, prediction horizon is 5

0

5

10

15

0

5

10

15
0

1

2

3

4

5

6

7

8

The MA partThe AR part

P
re

di
ct

io
n

ga
in

 [d
B

]

(d) Performance of the recurrent perceptron with fixed learning rate in
prediction of HRV time series, patient A, prediction horizon is 10

Figure 11.10 Cont.

188 EXPERIMENTS ON HEART RATE VARIABILITY

0

5

10

15

0

5

10

15
0

1

2

3

4

5

6

7

The MA partThe AR part

P
re

di
ct

io
n

ga
in

 [d
B

]

(a) Performance of the recurrent perceptron trained with the NRTRL
algorithm in prediction of HRV time series, patient A, prediction
horizon is 1

0

5

10

15

0

5

10

15
0

1

2

3

4

5

6

7

The MA partThe AR part

P
re

di
ct

io
n

ga
in

 [d
B

]

(b) Performance of the recurrent perceptron trained with the NRTRL
algorithm in prediction of HRV time series, patient A, prediction
horizon is 2

Figure 11.11 Performance of the NRTRL algorithms on prediction of HRV, for different
prediction horizons

SOME PRACTICAL CONSIDERATIONS OF PREDICTABILITY 189

0

5

10

15

0

5

10

15
0

1

2

3

4

5

6

7

The MA partThe AR part

P
re

di
ct

io
n

ga
in

 [d
B

]

(c) Performance of the recurrent perceptron trained with the NRTRL
algorithm in prediction of HRV time series, patient A, prediction
horizon is 5

0

5

10

15

0

5

10

15
0

1

2

3

4

5

6

7

The MA partThe AR part

P
re

di
ct

io
n

ga
in

 [d
B

]

(d) Performance of the recurrent perceptron trained with the NRTRL
algorithm in prediction of HRV time series, patient A, prediction
horizon is 10

Figure 11.11 Cont.

190 EXPERIMENTS ON HEART RATE VARIABILITY

0

5

10

15

0

5

10

15
0

2

4

6

8

10

12

The MA partThe AR part

P
re

di
ct

io
n

ga
in

 [d
B

]

(a) Performance of the recurrent perceptron with fixed learning rate in
prediction of HRV time series, patient B, prediction horizon is 1

0

5

10

15

0

5

10

15
0

2

4

6

8

10

12

The MA partThe AR part

P
re

di
ct

io
n

ga
in

 [d
B

]

(b) Performance of the recurrent perceptron with fixed learning rate in
prediction of HRV time series, patient B, prediction horizon is 2

Figure 11.12 Performance of a recurrent perceptron for prediction of HRV signals for
different prediction horizons

SOME PRACTICAL CONSIDERATIONS OF PREDICTABILITY 191

0

5

10

15

0

5

10

15
0

2

4

6

8

10

12

The MA partThe AR part

P
re

di
ct

io
n

ga
in

 [d
B

]

(c) Performance of the recurrent perceptron with fixed learning rate in
prediction of HRV time series, patient B, prediction horizon is 5

0

5

10

15

0

5

10

15
0

2

4

6

8

10

12

The MA partThe AR part

P
re

di
ct

io
n

ga
in

 [d
B

]

(d) Performance of the recurrent perceptron with fixed learning rate in
prediction of HRV time series, patient B, prediction horizon is 10

Figure 11.12 Cont.

192 EXPERIMENTS ON HEART RATE VARIABILITY

0
10

20
30

40
50

−20

−10

0

10

20
−30

−20

−10

0

10

20

30

ZX

Y

(a) The Lorenz attractor

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−20

−15

−10

−5

0

5

10

15

20

Discrete time instant

X
 c

o
m

p
o

n
e

n
t

o
f

th
e

 L
o

re
n

z
 a

tt
ra

c
to

r

(b) The x-component of Lorenz attractor

Figure 11.13 The Lorenz attractor and its x-component

SOME PRACTICAL CONSIDERATIONS OF PREDICTABILITY 193

0

5

10

15

0

5

10

15
0

5

10

15

20

The MA partThe AR part

P
re

di
ct

io
n

ga
in

 [d
B

]

(a) Performance of the recurrent perceptron with fixed learning
rate in prediction of the x-component of Lorenz system,
prediction horizon is 1

0

5

10

15

0

5

10

15
0

5

10

15

20

The MA partThe AR part

P
re

di
ct

io
n

ga
in

 [d
B

]

(b) Performance of the recurrent perceptron with fixed learning
rate in prediction of the x-component of Lorenz system,
prediction horizon is 2

Figure 11.14 Performance of algorithms for prediction of the x-component of the Lorenz
system

194 EXPERIMENTS ON HEART RATE VARIABILITY

0

5

10

15

0

5

10

15
0

5

10

15

20

The MA partThe AR part

P
re

di
ct

io
n

ga
in

 [d
B

]

(c) Performance of the recurrent perceptron with fixed learning
rate in prediction of the x-component of Lorenz system,
prediction horizon is 5

0

5

10

15

0

5

10

15
0

5

10

15

20

The MA partThe AR part

P
re

di
ct

io
n

ga
in

 [d
B

]

(d) Performance of the recurrent perceptron with fixed learning
rate in prediction of the x-component of Lorenz system,
prediction horizon is 10

Figure 11.14 Cont.

SOME PRACTICAL CONSIDERATIONS OF PREDICTABILITY 195

0 5 10 15 20 25 30 35 40 45 50
−0.5

−0.499

−0.498

−0.497

−0.496

−0.495

−0.494

Discrete time instant

O
ut

pu
t o

f t
he

 n
eu

ro
n

(y
(k

) =
 1

/(1
+e

xp
(−

β n
et

(k
)+

b)
−0

.5
)

β = 5

bias = −1.01

(a) Output of the recurrent perceptron with the logistic activation
function, w = [1, 1.5, 1.5]

50 100 150 200 250
−0.5

0

0.5

1

Discrete time instant

O
ut

pu
t o

f t
he

 n
eu

ro
n

(y
(k

) =
 1

/(1
+e

xp
(−

β
ne

t(k
)+

b)
−0

.5
)

β = 5

bias = −1.01

(b) Output of the recurrent perceptron with the logistic activation
function, w = [−1, −1.5, −1.5]

Figure 11.15 Output of a perceptron for different activation functions

11.6 Prediction of the Lorenz Chaotic Series

The Lorenz attractor is a system of three nonlinear coupled differential equations,
given by (11.2). In order to perform experiments on the Lorenz system, the set of

196 PREDICTION OF THE LORENZ CHAOTIC SERIES

−0.5

0

0.5

−0.5

0

0.5
−0.5

0

0.5

x
1

x
2

x 3

(a) Attractor of the recurrent perceptron with the logistic activation
function, bias = −0.01

−0.5

0

0.5

−0.5

0

0.5
−0.5

0

0.5

x
1

x
2

x 3

(b) Attractor of the recurrent perceptron with the logistic activation
function, bias = −1.01

Figure 11.16 Attractor diagrams for a recurrent perceptron and various biases

nonlinear Equations (11.2) was integrated using the Runge–Kutta method of numer-
ical integration, starting from the initial state [5, 20,−5]T. Thus, we obtained three
discrete time series, sampled with sampling frequency fs = 40 Hz. Figure 11.13 shows

SOME PRACTICAL CONSIDERATIONS OF PREDICTABILITY 197

the Lorenz attractor and its x-component. Different GD-based neural adaptive filters
were employed in prediction of the x-component of the Lorenz system. In applied
neural adaptive filters the parameters of the filters were the same as for the previ-
ous experiments. Due to the saturation type of logistic nonlinearity, input data were
prescaled to fit within the range of a neuron activation function. In the experiment the
MA and the AR part of the recurrent perceptron vary from 1 to 15, while the predic-
tion horizon varies from 1 to 10. Figure 11.14 shows the performance of the recurrent
perceptron with fixed η in prediction of the x-component of the Lorenz system, for
different prediction horizons. Again, the recurrent structure was able to capture the
dynamics of the modelled signal. As expected, due to the nature of the signal, the
nonlinear structures were able to achieve good short term prediction performance,
whereas the long term prediction performance was bad.

11.7 Bifurcations in Recurrent Neural Networks

Presence of feedback in a neural network structure may result in a very complex
output behaviour. The output of the RNN is bounded, due to the saturation type of
nonlinear activation function of an output neuron. Further, behaviour of an RNN can
be described by the set of nonlinear difference equations. Evidence of chaotic motion
within the dynamics of an RNN has been given in Dror and Tsodyks (2000) and Chen
and Aihara (1997). Even though the recurrent perceptron has a simple structure, for
certain values of the network parameters, the dynamics of a recurrent perceptron can
exhibit a very complex behaviour. Here, we look at the value of the slope β of a neuron
activation function and the value of the bias term b. Figure 11.15(a) shows the output
of the recurrent perceptron with the logistic activation function shifted by −0.5, i.e.
y = (1/(1 + e−βx)) − 0.5, with β = 5 and q = 3,1 weight vector w = [1, 1.5, 1.5]T

and bias = −1.01. Figure 11.15(b) shows the output of the recurrent perceptron
with the logistic activation function shifted by −0.5, i.e. y = (1/(1 + e−βx)) − 0.5,
with β = 5, q = 3, weight vector w = [−1,−1.5,−1.5]T and bias = −1.01. In both
cases, the dynamics of the recurrent system were autonomous, hence performing a
kind of fixed point iteration and producing the so-called bifurcation maps. From the
figure, the recurrent structures produce complex dynamical behaviour. To further
depict the ability of recurrent neural networks to produce complex dynamics, we
plot the attractors for the above simulated bifurcation diagrams. Figure 11.16(a)
shows the attractor of the recurrent perceptron with the logistic activation function
shifted by −0.5, i.e. y = (1/(1 + exp(−βx))) − 0.5, with β = 5, q = 3, weight vector
w = [−1,−1.5,−1.5]T and bias = −0.01. Figure 11.16(b) shows the attractor of
the recurrent perceptron with the logistic activation function shifted by −0.5, i.e.
y = (1/(1+exp(−βx)))−0.5, with β = 5, q = 3, weight vector w = [−1,−1.5,−1.5]T

and bias = −1.01. The x1-, x2- and x3-axes from Figure 11.16 represent, respectively,
the outputs y(k), y(k − 1) and y(k − 2) from a recurrent perceptron. The attractors
show regularity and change the shape according to the change in the input parameters.
Further reading on chaos in neural networks can be found in Haykin and Principe
(1998).

1 This q is within the NARMA(p, q) model of a recurrent perceptron, i.e. the order of the feedback.

198 SUMMARY

11.8 Summary

To demonstrate some practical issues and difficulties with modelling and prediction of
real-time signals, an analysis of nonlinearity, predictability and performance of nonlin-
ear adaptive algorithms has been undertaken. These issues, especially the detection of
nonlinearity, are often neglected by practitioners in the area. The experimental results
confirm the superiority of nonlinear architectures and algorithms over the linear ones
for modelling a nonlinear signal. Finally, the ability of recurrent structures to exhibit
complex dynamical behaviour, such as bifurcations and attractors is briefly demon-
strated. In the experiments, recurrent perceptrons are used due to their simplicity
and due to the fact that to make a fair comparison with the feedforward and linear
structures, a simple recurrent structure ought to be used.

Recurrent Neural Networks for Prediction
Authored by Danilo P. Mandic, Jonathon A. Chambers

Copyright c©2001 John Wiley & Sons Ltd
ISBNs: 0-471-49517-4 (Hardback); 0-470-84535-X (Electronic)

12

Exploiting Inherent
Relationships Between
Parameters in Recurrent
Neural Networks

12.1 Perspective

Optimisation of complex neural network parameters is a rather involved task. It
becomes particularly difficult for large-scale networks, such as modular networks, and
for networks with complex interconnections, such as feedback networks. Therefore, if
an inherent relationship between some of the free parameters of a neural network can
be found, which holds at every time instant for a dynamical network, it would help
to reduce the number of degrees of freedom in the optimisation task of learning in a
particular network.

We derive such relationships between the gain β in the nonlinear activation function
of a neuron Φ and the learning rate η of the underlying learning algorithm for both
the gradient descent and extended Kalman filter trained recurrent neural networks.

The analysis is then extended in the same spirit for modular neural networks.
Both the networks with parallel modules and networks with nested (serial) modules
are analysed. A detailed analysis is provided for the latter, since the former can be
considered a linear combination of modules that consist of feedforward or recurrent
neural networks.

For all these cases, the static and dynamic equivalence between an arbitrary neural
network described by β, η and W (k) and a referent network described by βR = 1,
ηR and W R(k) are derived. A deterministic relationship between these parameters is
provided, which allows one degree of freedom less in the nonlinear optimisation task
of learning in this framework. This is particularly significant for large-scale networks
of any type.

12.2 Introduction

When using neural networks, many of their parameters are chosen empirically. Apart
from the choice of topology, architecture and interconnection, the parameters that

200 INTRODUCTION

influence training time and performance of a neural network are the learning rate η,
gain of the activation function β and set of initial weights W0. The optimal values
for these parameters are not known a priori and generally they depend on external
quantities, such as the training data. Other parameters that are also important in
this context are

• steepness of the sigmoidal activation function, defined by γβ; and

• dimensionality of the input signal to the network and dimensionality and char-
acter of the feedback for recurrent networks.

It has been shown (Thimm and Fiesler 1997a,b) that the distribution of the initial
weights has almost no influence on the training time or the generalisation performance
of a trained neural network. Hence, we concentrate on the relationship between the
parameters of a learning algorithm (η) and those of a nonlinear activation function (β).

To improve performance of a gradient descent trained network, Jacobs (1988) pro-
posed that the acceleration of convergence of learning in neural networks be achieved
through the learning rate adaptation. His arguments were that

1. every adjustable learning parameter of the cost function should have its own
learning rate parameter; and

2. every learning rate parameter should vary from one iteration to the next.

These arguments are intuitively sound. However, if there is a dependence between
some of the parameters in the network, this approach would lead to suboptimal learn-
ing and oscillations, since coupled parameters would be trained using different learning
rates and different speed of learning, which would deteriorate the performance of the
network. To circumvent this problem, some heuristics on the values of the parameters
have been derived (Haykin 1994). To shed further light onto this problem and offer
feasible solutions, we therefore concentrate on finding relationships between coupled
parameters in recurrent neural networks. The derived relationships are also valid for
feedforward networks, since recurrent networks degenerate into feedforward networks
when the feedback is removed.

Let us consider again a common choice for the activation function,

Φ(γ, β, x) =
γ

1 + e−βx
. (12.1)

This is a Φ : R → (0, γ) function. The parameter β is called the gain and the product
γβ the steepness (slope) of the activation function.1 The reciprocal of gain is also
referred to as the temperature. The gain γ of a node in a neural network is a constant
that amplifies or attenuates the net input to the node. In Kruschke and Movellan
(1991), it has been shown that the use of gradient descent to adjust the gain of the
node increases learning speed.

Let us consider again the general gradient-descent-based weight adaptation algo-
rithm, given by

W (k) = W (k − 1) − η∇W E(k), (12.2)

1 The gain and steepness are identical for activation functions with γ = 1. Hence, for such networks,
we often use the term slope for β.

RELATIONSHIPS BETWEEN PARAMETERS IN RNNs 201

where E(k) = 1
2e2(k) is a cost function, W (k) is the weight vector/matrix at the

time-instant k and η is a learning rate. The gradient ∇W E(k) in (12.2) comprises
the first derivative of the nonlinear activation function (12.1), which is a function of
β (Narendra and Parthasarathy 1990). For instance, for a simple nonlinear FIR filter
shown in Figure 12.1, the weight update is given by

w(k + 1) = w(k) + ηΦ′(xT(k)w(k))e(k)x(k). (12.3)

For a function Φ(β, x) = Φ(βx), which is the case for the logistic, tanh and arctan
nonlinear functions,2 Equation (12.3) becomes

w(k + 1) = w(k) + ηβΦ′(xT(k)w(k))e(k)x(k). (12.4)

From (12.4), if β increases, so too will the step on the error performance surface for a
fixed η. It seems, therefore, advisable to keep β constant, say at unity, and to control
the features of the learning process by adjusting the learning rate η, thereby having one
degree of freedom less, when all of the parameters in the network are adjustable. Such
reduction may be very significant for nonlinear optimisation algorithms employed for
parameter adaptation in a particular recurrent neural network.

A fairly general gradient algorithm that continuously adjusts parameters η, β and
γ can be expressed by

y(k) = Φ(X(k), W (k)),
e(k) = s(k) − y(k),

W (k + 1) = W (k) − η(k)
2

∂e2(k)
∂W (k)

,

η(k + 1) = η(k) − ρ

2
∂e2(k)
∂η(k)

,

β(k + 1) = β(k) − θ

2
∂e2(k)
∂β(k)

,

γ(k + 1) = γ(k) − ζ

2
∂e2(k)
∂γ(k)

,

(12.5)

where ρ is a small positive constant that controls the adaptive behaviour of the step
size sequence η(k), whereas small positive constants θ and ζ control the adaptation

2 For the logistic function

σ(β, x) =
1

1 + e−βx
= σ(βx),

its first derivative becomes
dσ(β, x)

dx
= − βe−βx

(1 + e−βx)2
,

whereas for the tanh function

tanh(β, x) =
eβx − e−βx

eβx + e−βx
= tanh(βx),

we have
d tanh(βx)

dx
= β

d tanh(βx)
dβx

.

The same principle is valid for the Gaussian and inverse tangent activation functions.

202 INTRODUCTION

x(k)

w w w w1 2 3 N

y(k)

z z z z-1 -1 -1 -1

(k) (k) (k) (k)

x(k-N+1)

Φ

x(k-1) x(k-2)

Figure 12.1 A simple nonlinear adaptive filter

of the gain of the activation function β and gain of the node γ, respectively. We will
concentrate only on adaptation of β and η.

The selection of learning rate η is critical for the gradient descent algorithms (Math-
ews and Xie 1993). An η that is small as compared to the reciprocal of the input signal
power will ensure small misadjustment in the steady state, but the algorithm will con-
verge slowly. A relatively large η, on the other hand, will provide faster convergence at
the cost of worse misadjustment and steady-state characteristics. Therefore, an ideal
choice would be an adjustable η which would be relatively large in the beginning of
adaptation and become gradually smaller when approaching the global minimum of
the error performance surface (optimal values of weights).

We illustrate the above ideas on the example of a simple nonlinear FIR filter, shown
in Figure 12.1, for which the output is given by

y(k) = Φ(xT(k)w(k)). (12.6)

We can continually adapt the step size using a gradient descent algorithm so as to
reduce the squared estimation error at each time instant. Extending the approach
from Mathews and Xie (1993) to the nonlinear case, we obtain

e(k) = s(k) − Φ(xT(k)w(k)),
w(k) = w(k − 1) + η(k − 1)e(k − 1)Φ′(k − 1)x(k − 1),

η(k) = η(k − 1) − ρ

2
∂

∂η(k − 1)
e2(k)

= η(k − 1) − ρ

2
∂Te2(k)
∂w(k)

∂w(k)
∂η(k − 1)

= η(k − 1) + ρe(k)e(k − 1)Φ′(k)Φ′(k − 1)xT(k − 1)x(k),

(12.7)

where Φ′(k) = Φ′(xT(k)w(k)), Φ′(k − 1) = Φ′(xT(k − 1)w(k − 1)) and ρ is a small
positive constant that controls the adaptive behaviour of the step size sequence η(k).

If we adapt the step size for each weight individually, we have

ηi(k) = ηi(k−1)+ρe(k)e(k−1)Φ′(k)Φ′(k−1)xi(k)xi(k−1), i = 1, . . . , N, (12.8)

and
wi(k + 1) = wi(k) + ηi(k)e(k)xi(k), i = 1, . . . , N. (12.9)

These expressions become much more complicated for large and recurrent networks.
As an alternative to the continual learning rate adaptation, we might consider

continual adaptation of the gain of the activation function Φ(βx). The gradient descent

RELATIONSHIPS BETWEEN PARAMETERS IN RNNs 203

algorithm that would update the adaptive gain can be expressed as

e(k) = s(k) − Φ(wT(k)x(k)),
w(k) = w(k − 1) + η(k − 1)e(k − 1)Φ′(k − 1)x(k − 1),

β(k) = β(k − 1) − θ

2
∂

∂β(k − 1)
e2(k)

= β(k − 1) − θ

2
∂Te2(k)
∂w(k)

∂w(k)
∂β(k − 1)

= β(k − 1) + θη(k − 1)e(k)e(k − 1)Φ′(k)Φ′′
β(k − 1)xT(k − 1)x(k).

(12.10)

For the adaptation of β(k) there is a need to calculate the second derivative of the
activation function, which is rather computationally involved. Such an adaptive gain
algorithm was, for instance, analysed in Birkett and Goubran (1997). The proposed
function was

σ(x, a) =

x, |x| � a,

sgn(x)
[
(1 − a) tanh

(
|x| − a

1 − a

)
+ a

]
, |x| > a,

(12.11)

where x is the input signal and a defines the adaptive linear region of the sigmoid.
This activation function is shown in Figure 12.2. Parameter a is updated according
to the stochastic gradient rule. The benefit of this algorithm is that the slope and
region of linearity of the activation function can be adjusted. Although this and
similar approaches are an alternative to the learning rate adaptation, researchers have
not taken into account that parameters β and η might be coupled. If a relationship
between them can be derived, then we choose adaptation of the parameter that is
less computationally expensive to adapt and less sensitive to adaptation errors. As
shown above, adaptation of the gain β is far more computationally expensive that
adaptation of η. Hence, there is a need to mathematically express the dependence
between the two and reduce the computational load for training neural networks.

Thimm et al. (1996) provided the relationship between the gain β of the logistic
activation function,

Φ(β, x) =
1

1 + e−βx
, (12.12)

and the learning rate η for a class of general feedforward neural networks trained
by backpropagation. They prove that changing the gain of the activation function is
equivalent to simultaneously changing the learning rate and the weights. This simpli-
fies the backpropagation learning rule by eliminating one of its parameters (Thimm
et al. 1996). This concept has been successfully applied to compensate for the non-
standard gain of optical sigmoids for optical neural networks. Relationships between
η and β for recurrent and modular networks were derived by Mandic and Chambers
(1999a,e).

Basic modular architectures are the parallel and serial architecture. Parallel archi-
tectures provide linear combinations of neural network modules, and learning algo-
rithms for them are based upon minimising the linear combination of the output

204 OVERVIEW

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

T
he

 a
da

pt
iv

e
si

gm
oi

d

a=0
a=0.5
a=1

Figure 12.2 An adaptive sigmoid

errors of particular modules. Hence, the algorithms for training such networks are
extensions of standard algorithms designed for single modules. Serial (nested) modu-
lar architectures are more complicated, an example of which is a pipelined recurrent
neural network (PRNN). This is an emerging architecture used in nonlinear time
series prediction (Haykin and Li 1995; Mandic and Chambers 1999f). It consists of a
number of nested small-scale recurrent neural networks as its modules, which means
that a learning algorithm for such a complex network has to perform a nonlinear
optimisation task on a number of parameters. We look at relationships between the
learning rate and the gain of the activation function for this architecture and for
various learning algorithms.

12.3 Overview

A relationship between the learning rate η in the learning algorithm and the gain β
in the nonlinear activation function, for a class of recurrent neural networks (RNNs)
trained by the real-time recurrent learning (RTRL) algorithm is provided. It is shown
that an arbitrary RNN can be obtained via the referent RNN, with some deterministic
rules imposed on its weights and the learning rate. Such relationships reduce the
number of degrees of freedom when solving the nonlinear optimisation task of finding
the optimal RNN parameters. This analysis is further extended for modular neural
architectures.

We define the conditions of static and dynamic equivalence between a referent net-
work, with β = 1, and an arbitrary network with an arbitrary β. Since the dynamic
equivalence is dependent on the chosen learning algorithm, the relationships are pro-
vided for a variety of both the gradient descent (GD) and the extended recursive

RELATIONSHIPS BETWEEN PARAMETERS IN RNNs 205

least-squares (ERLS) classes of learning algorithms and a general nonlinear activa-
tion function of a neuron.

By continuity, the derived results are also valid for feedforward networks and their
linear and nonlinear combinations.

12.4 Static and Dynamic Equivalence of Two Topologically Identical
RNNs

As the aim is to eliminate either the gain β or the learning rate η from the paradigm of
optimisation of the RNN parameters, it is necessary to derive the relationship between
a network with arbitrarily chosen parameters β and η and the referent network, so as
the outputs of the networks are identical for every time instant. An obvious choice for
the referent network is the network with the gain of the activation function β = 1. Let
us therefore denote all the entries in the referent network, which are different from
those of an arbitrary network, with the superscript ‘R’ joined to a particular variable,
i.e. βR = 1.

For two networks to be equivalent, it is necessary that their outputs are identical
and that this is valid for both the trained network and while on the run, i.e. while
tracking some dynamical process. We therefore differentiate between the equivalence
in the static and dynamic sense. We define the static and dynamic equivalence between
two networks below.

Definition 12.4.1. By static equivalence, we consider the equivalence of the outputs
of an arbitrary network and the referent network with fixed weights, for a given input
vector u(k), at a fixed time instant k.

Definition 12.4.2. By dynamic equivalence, we consider the equivalence of the out-
puts between an arbitrary network and the referent network for a given input vector
u(k), with respect to the learning algorithm, while the networks are running.

The static equivalence is considered for already trained networks, whereas both
static and dynamic equivalence are considered for networks being adapted on the
run. We can think of the static equivalence as an analogue to the forward pass in
computation of the outputs of a neural network, whereas the dynamic equivalence
can be thought of in terms of backward pass, i.e. weight update process. We next
derive the conditions for either case.

12.4.1 Static Equivalence of Two Isomorphic RNNs

In order to establish the static equivalence between an arbitrary and referent RNN,
the outputs of their neurons must be the same, i.e.

yn(k) = yR
n (k) ⇔ Φ(uT

n (k)wn(k)) = ΦR(uT
n (k)wR

n (k)), (12.13)

where the index ‘n’ runs over all neurons in an RNN, and wn(k) and un(k) are,
respectively, the set of weights and the set of inputs which belong to the neuron n.
For a general nonlinear activation function, we have

Φ(β,wn, un) = Φ(1, wR
n , un) ⇔ βwn = wR

n . (12.14)

206 STATIC AND DYNAMIC EQUIVALENCE OF TWO RNNs

To illustrate this, consider, for instance, the logistic nonlinearity, given by

1
1 + e−βuT

nwn
=

1
1 + e−uT

nwR
n

⇔ βwn = wR
n , (12.15)

where the time index (k) is neglected, since all the vectors above are constant during
the calculation of the output values. As the equality (12.14) should be valid for every
neuron in the RNN, it is therefore valid for the complete weight matrix W of the
RNN.

The essence of the above analysis is given in the following lemma, which is inde-
pendent of the underlying learning algorithm for the RNN, which makes it valid for
two isomorphic3 RNNs of any topology and architecture.

Lemma 12.4.3 (see Mandic and Chambers 1999e). For a recurrent neural
network, with weight matrix W and gain of the activation function β, to be equivalent
in the static sense to the referent network, characterised by W R and βR = 1, with
the same topology and architecture (isomorphic), the following condition must be
satisfied:

βW (k) = W R(k). (12.16)

12.4.2 Dynamic Equivalence of Two Isomorphic RNNs

The equivalence of two RNNs, includes both the static equivalence and dynamic
equivalence. As in the learning process (12.2), the learning rate η is multiplied by the
gradient of the cost function, we shall investigate the role of β in the gradient of the
cost function for the RNN. We are interested in a general class of nonlinear activation
functions where

∂Φ(β, x)
∂x

=
∂Φ(βx)
∂(βx)

∂(βx)
∂x

= β
∂Φ(βx)
∂(βx)

= β
∂Φ(1, x)

∂x
. (12.17)

In our case, it becomes
Φ′(β,w, u) = βΦ′(1, wR, u). (12.18)

Indeed, for a simple logistic function (12.12), we have

Φ′(x) =
βe−βx

(1 + e−βx)2
= βΦ′(xR),

where xR = βx denotes the argument of the referent logistic function (with βR = 1),
so that the network considered is equivalent in the static sense to the referent net-
work. The results (12.17) and (12.18) mean that wherever Φ′ occurs in the dynamical
equation of the RTRL-based learning process, the first derivative (or gradient when
applied to all the elements of the weight matrix W) of the referent function equivalent
in the static sense to the one considered, becomes multiplied by the gain β.

The following theorem provides both the static and dynamic interchangeability of
the gain in the activation function β and the learning rate η for the RNNs trained by
the RTRL algorithm.

3 Isomorphic networks have identical topology, architecture and interconnections.

RELATIONSHIPS BETWEEN PARAMETERS IN RNNs 207

Theorem 12.4.4 (see Mandic and Chambers 1999e). For a recurrent neural
network, with weight matrix W , gain of the activation function β and learning rate in
the RTRL algorithm η, to be equivalent in the dynamic sense to the referent network,
characterised by W R, βR = 1 and ηR, with the same topology and architecture
(isomorphic), the following conditions must hold.

(i) The networks are equivalent in the static sense, i.e.

W R(k) = βW (k). (12.19)

(ii) The learning rate η of the network considered and the learning rate ηR of the
referent network are related by

ηR = β2η. (12.20)

Proof. From the equivalence in the static sense, the weight update equation for the
referent network can be written as

W R(k) = W R(k − 1) + β∆W (k), (12.21)

which gives

∆W R(k) = β∆W (k) = β

(
ηe(k)

∂y1(k)
∂W (k)

)
= ηβe(k)Π1(k), (12.22)

where Π1(k) is the matrix with elements π1
n,l(k).

Now, in order to derive the conditions of dynamical equivalence between an arbi-
trary and the referent RNN, the relationship between the appropriate matrices Π1(k)
and ΠR

1 (k) must be established. That implies that, for all the neurons in the RNN, the
matrix Π(k), which comprises all the terms ∂yj/∂wn,l, ∀wn,l ∈ W , j = 1, 2, . . . , N ,
must be interrelated to the appropriate matrix ΠR(k), which represents the referent
network.

We shall prove this relationship by induction. For convenience, let us denote
net(k) = uT(k)w(k) and netR(k) = uT(k)wR(k).

Given:

W R(k) = βW (k) (static equivalence),

Φ′(netR(k)) =
1
β

Φ′(net(k)) (activation function derivative),

yR
j (k) = Φ(netR(k))

= Φ(net(k))

= yj(k), j = 1, . . . , N (activation).

208 EXTENSION TO A GENERAL RTRL TRAINED RNN

Induction base: the recursion (D.11) starts as

(πj
n,l(k = 1))R = Φ′(netR(k))

[N∑
m=1

wR
j,m+p+1(k = 0)πm

n,l(k = 0) + δnjul(k = 0)
]

=
1
β

Φ′(net(k))δnjul(k = 0)

=
1
β

πj
n,l(k = 1),

which gives ΠR(k = 1) = (1/β)Π(k = 1).

Induction step:

(πj
n,l(k))R =

1
β

πj
n,l(k) and ΠR(k) =

1
β

Π(k) (assumption).

Now, for the (k + 1)st step we have

(πj
n,l(k + 1))R = Φ′(netR)

[N∑
m=1

wR
j,m+p+1(k)πm

n,l(k) + δnjul(k)
]

=
1
β

Φ′(net)
[N∑

m=1

βwj,m+p+1(k)
1
β

πm
n,l(k) + δnjul(k)

]

=
1
β

πj
n,l(k + 1),

which means that
ΠR(k + 1) =

1
β

Π(k + 1).

Based upon the established relationship, the learning process for the referent RNN
can be expressed as

∆W R(k) = β∆W (k) = βηe(k)Π1(k) = β2ηe(k)ΠR
1 (k) = ηRe(k)ΠR

1 (k). (12.23)

Hence, the referent network with the learning rate ηR = β2η and gain βR = 1 is
equivalent in the dynamic sense, with respect to the RTRL algorithm, to an arbitrary
RNN with gain β and learning rate η.

12.5 Extension to a General RTRL Trained RNN

It is now straightforward to show that the conditions for static and dynamic equiv-
alence derived so far are valid for a general recurrent neural network trained by a
gradient algorithm. For instance, for a general RTRL trained RNN, the cost function
comprises squared error terms over all the output neurons, i.e.

E(k) = 1
2

∑
j∈C

e2
j (k), (12.24)

RELATIONSHIPS BETWEEN PARAMETERS IN RNNs 209

where C denotes the set of those neurons whose outputs are included in the cost
function. The crucial equations for the static and dynamic equivalence remain intact.
It should, however, be noted that the weight update equation in the RTRL algorithm
(12.23) now becomes

∆W R(k) = β∆W (k) = βη
∑
i∈C

ei(k)Π(k)

= β2η
∑
i∈C

ei(k)ΠR(k) = ηR
∑
i∈C

ei(k)ΠR(k), (12.25)

which is structurally the same as the one used in the proof of Theorem 12.4.4. Hence
the relationships between β and η derived for a single-output neuron RNN are valid
for a general RNN with any number of output neurons.

12.6 Extension to Other Commonly Used Activation Functions

Other frequently used nonlinear activation functions of a neuron, such as the hyper-
bolic tangent Φ(x) = tanh(βx) and inverse tangent Φ(x) = arctan(βx), have the
same functional dependence between β, x and their derivatives as the logistic func-
tion. Since for the dynamic equivalence of two isomorphic networks, it is crucial to
consider the first derivative of the underlying activation function, let us recall that for
all of the nonlinear activation functions mentioned, the first derivative of a function
with an arbitrary gain can be connected to the derivative with respect to variable x
as

β
dΦ(β, x)
d(βx)

=
dΦ(β, x)

dx
, (12.26)

which means that the results derived for the logistic activation function are also valid
for a large class of nonlinear activation functions with the first derivative that satisfies
(12.26). This can be formally expressed as follows (Mandic and Krcmar 2000).

Corollary 12.6.1. Theorem 12.4.4 holds for every differentiable nonlinear activation
function with the first derivative that satisfies

β
dΦ(β, x)
d(βx)

=
dΦ(β, x)

dx
. (12.27)

12.7 Extension to Other Commonly Used Learning Algorithms for
Recurrent Neural Networks

After having derived the relationship between the learning rate η and the gain in the
activation function β for the RTRL trained recurrent neural network of an arbitrary
size, and knowing that the dynamical equivalence of an arbitrary and the referent
network is highly dependent on the learning algorithm chosen, let us consider two
other frequently used learning algorithms for a general RNN, namely the backprop-
agation through time (BPTT) algorithm and the recurrent backpropagation (RBP)
algorithm.

210 EXTENSION TO OTHER ALGORITHMS FOR RNNs

In both cases, the derivation of the conditions of the static equivalence between an
arbitrary and the referent network follow the same spirit as for the RTRL trained
RNN, and will be omitted. Moreover, the analysis given in Section 12.6, holds for
these algorithms, and we will therefore consider the whole class of functions for which
(12.26) holds, without going into detail for a particular function belonging to the
class.

12.7.1 Relationships Between β and η for the Backpropagation Through Time
Algorithm

The backpropagation through time algorithm for training a recurrent neural network
stems from the common backpropagation algorithm. It may be derived by unfolding
the temporal operation of the network into a multilayer feedforward network, the
topology of which grows by one such block at every time step (Haykin 1994; Werbos
1990). As our intention is to show the conditions of dynamical equivalence between
an arbitrary and referent RNN, with respect to the parameters β and η, we will
concentrate only on the points that are specific to BPTT with regards to the RTRL
algorithm. Therefore, the correction to the element wi,j(k) of the weight matrix W
for the BPTT trained RNN can be expressed as

∆wi,j(k) = −η

k1∑
k=k0+1

δj(k)xi(k − 1), (12.28)

where the BPTT is performed back to time (k0 +1) and the gradients δ are calculated
as (Haykin 1994; Werbos 1990)

δj(k) =

Φ′(vj(k))ej(k), k = k1,

Φ′(vj(k))
[
ej(k) +

∑
i∈A

wi,jδi(k − 1)
]
, k0 < k < k1.

(12.29)

The symbol A denotes the set of output neurons and ej(k), j ∈ A, are the corre-
sponding errors. The first line in (12.29) is structurally the same as in the standard
backpropagation algorithm, whereas in the second line in (12.29), there is a sum of
product terms wi,jδi(k − 1), which is different from the backpropagation algorithm,
since it comprises the unfolded feedback terms. Examining these product terms, which
are structurally the same as appropriate terms in (D.11), it follows that (Mandic and
Chambers 1999a)

wi,jδi = wR
i,jδ

R
i . (12.30)

Now, from the results obtained for the RTRL trained RNN and relationships for
feedforward networks trained by backpropagation (Thimm et al. 1996), the conditions
of static and dynamic equivalence of an arbitrary and the referent BPTT trained RNN
are expressed in the following corollary.

Corollary 12.7.1. For a recurrent neural network, with weight matrix W , gain in
the activation function β and learning rate in the BPTT algorithm η, to be equivalent
to the referent network, characterised by W R, βR = 1 and ηR, with the same topology
and architecture (isomorphic), the following conditions must hold.

RELATIONSHIPS BETWEEN PARAMETERS IN RNNs 211

(i) The networks are equivalent in the static sense, i.e.

W R(k) = βW (k). (12.31)

(ii) The learning rate η of the network considered and the learning rate ηR of the
equivalent referent network are related by

ηR = β2η. (12.32)

As seen from Corollary 12.7.1, the conditions for the static and dynamic equivalence
of an arbitrary and the referent RNN trained by the BPTT algorithm are the same
as for the RTRL trained RNN.

12.7.2 Results for the Recurrent Backpropagation Algorithm

Without going deeply into the core of the RBP algorithm (Haykin 1994; Pineda
1989), let us only consider the key relation for the gradient calculation, which can be
expressed as

δn(k) = Φ′
(∑

i

δi(k)wi,n(k) + en(k)
)

, n = 1, . . . , N, (12.33)

which is structurally the same as the appropriate term for the RTRL algorithm.
Therefore, we can express the conditions of the static and dynamic equivalence of an
arbitrary and the referent RBP trained RNN, as follows.

Corollary 12.7.2. The conditions of static and dynamic equivalence of an arbitrary
and the referent RNN trained by the recursive backpropagation algorithm are the
same as for the RTRL and BPTT trained networks.

By continuity, the analysis provided so far is valid for an RNN of any size, number
of hidden layers and character of feedback.

12.7.3 Results for Algorithms with a Momentum Term

A momentum term can be introduced into the update equation of gradient learning
algorithms as (Haykin 1994)

∆W (k) = α∆W (k − 1) − η∇W (k−1)E(k), (12.34)

where α is a momentum constant. This introduces an infinite impulse response element
into the learning rule, which in some cases helps to increase the rate of convergence
of a gradient algorithm (An et al. 1994). To preserve stability of (12.34), 0 < α < 1.

As (12.34) is linear in W , the analysis for the plain gradient algorithm for neural
networks, applies also for the momentum algorithm, as shown in Mandic and Krcmar
(2000).

212 SIMULATION RESULTS

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.5

1

S
pe

ec
h

si
gn

al
 s

1

Relating the slope of the activation function and the learning rate

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−1

−0.5

0

P
re

di
ct

io
n

er
ro

r

Nonlinear GD, gain=4.923 dB, (18.8908 dB), N=10, β=1, η=0.3

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−1

−0.5

0

P
re

di
ct

io
n

er
ro

r

Nonlinear GD, gain=4.923 dB, (18.8908 dB), N=10, β=2, η=0.0750

Figure 12.3 Verification of the β–η–W relationships based upon the prediction of the
speech signal s1

Corollary 12.7.3. The conditions of static and dynamic equivalence of an arbitrary
and the referent recurrent neural network trained by a gradient descent algorithm
with a momentum factor are the same as for the previously analysed algorithms,
providing

αR = α, (12.35)

where αR is the momentum constant of a referent network, whereas α is the momen-
tum constant of an arbitrary network.

12.8 Simulation Results

To support the analysis, simulation results that illustrate the derived relationships are
provided. A tap delay line of length N = 10 was used to feed a neuron that performed
prediction, trained by a direct gradient descent algorithm.4 The input signals were two
speech signals denoted by s1 and s2. Firstly, the data were fed into a referent network
with β = 1, the network was adapted and the outputs were recorded. Afterwards the
learning rate of an arbitrary network was adjusted according to the β–η relationship
and the whole procedure was repeated. The results of simulations for signal s1 are
shown in Figure 12.3, whereas Figure 12.4 shows the results of simulations for signal

4 The aim was not to build a good predictor, but to demonstrate the validity of the derived results,
hence the quality of the performance was not important for this experiment.

RELATIONSHIPS BETWEEN PARAMETERS IN RNNs 213

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.5

1

S
pe

ec
h

si
gn

al
 s

2

Relating the slope of the activation function and the learning rate

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−1.5

−1

−0.5

0

P
re

di
ct

io
n

er
ro

r

Nonlinear GD, gain=4.0468 dB, (20.7134), N=10, β=1, η=0.3

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−1.5

−1

−0.5

0

P
re

di
ct

io
n

er
ro

r

Nonlinear GD, gain=4.0468 dB, (20.7134), N=10, β=2, η=0.0750

Figure 12.4 Verification of the β–η–W relationships based upon the prediction of the
speech signal s2

s2. It was first ensured that the conditions of static equivalence W R(k) = βW (k) were
preserved. In both Figures 12.3 and 12.4, the top graph shows the input signal to the
adaptive neuron. The middle graph shows the output prediction error for the referent
network with β = 1, whereas the bottom graph shows the output prediction error for
an arbitrary network. For the gain β = 2 for the arbitrary network used to generate
the results in Figure 12.3, after the conditions of static and dynamic equivalence were
satisfied, the learning rate became η = ηR/β2 = 0.3/4 = 0.075, and likewise for the
situation shown in Figure 12.4. The output prediction error and the ratio between
the signal and error variance (and the signal and error power in brackets) in decibels
were identical for the referent and arbitrary network, as expected.

12.9 Summary of Relationships Between β and η for General Recurrent
Neural Networks

The relationship between the gain β in a general activation function of a neuron
and the step size η in the RTRL-based training of a general RNN is provided. Both
static and dynamic equivalence of an arbitrary RNN and the referent network, with
respect to β and η have been provided. As the conditions of dynamical equivalence
are dependent on the choice of the underlying learning algorithm, the same analysis
has been undertaken for two frequently used learning algorithms for training RNNs,
namely the BPTT and the RBP algorithms. It has been shown that a general RNN

214 RELATIONSHIP BETWEEN η AND β FOR MODULAR NNs

can be replaced with the referent isomorphic RNN, with gain βR = 1 and modified
learning rate ηR, hence providing one degree of freedom less in a nonlinear optimi-
sation paradigm of training RNNs. Although the analysis has been undertaken on
the example of the logistic nonlinearity, it is shown that it holds for a large class of
C1(−∞, +∞) functions with the first derivative which satisfies

β
dΦ(β, x)
d(βx)

=
Φ(β, x)

dx
.

12.10 Relationship Between η and β for Modular Neural Networks:
Perspective

We next provide the relationship between the learning rate and the gain of a nonlin-
ear activation function of a neuron within the framework of modular neural networks.
This leads to reduction in the computational complexity of learning algorithms which
continuously adapt the weights of a modular network because there is a smaller num-
ber of independent parameters to optimise. Although the analysis is provided for
networks with recurrent modules, and particular algorithms are analysed for nested
modular recurrent networks, the results obtained are valid for any modular networks
trained by the algorithms under consideration.

Based upon results for ordinary recurrent neural networks, we extend our analysis
to modular neural networks and provide the static and dynamic equivalence between
an arbitrary modular network described by β, η and W (k) and a referent modular
network described by βR = 1, ηR and W R(k). We show that there is a deterministic
relationship between them, which allows one degree of freedom less in the nonlinear
optimisation task of learning in such a framework. The relationships are provided
for both the gradient descent (GD) and the extended recursive least-squares (ERLS)
learning algorithms (Baltersee and Chambers 1998; Mandic et al. 1998), and a general
nonlinear activation function of a neuron.

12.11 Static Equivalence Between an Arbitrary and a Referent Modular
Neural Network

By static equivalence between two modular neural networks, we consider the equiv-
alence between the outputs of the neurons in an arbitrary modular network and the
outputs of the corresponding neurons in a referent modular network (Mandic and
Chambers 1999a), for a fixed time-instant k, i.e.

yi,n(k) = yR
i,n(k) ⇔ Φ(β,wi,n(k), ui,n(k))

= Φ(1, wR
i,n(k), ui,n(k)) ⇔ βwi,n(k) = wR

i,n(k), (12.36)

where wi,n(k) and ui,n(k) are, respectively, the set of weights and the set of inputs
which belong to the neuron n, n = 1, . . . , N , in module i, i = 1, . . . , M . This is valid
irrespectively whether the modules are parallel or nested. For the ith neuron in the
nth module and the logistic nonlinearity we have

1

1 + e−βuT
i,nwi,n

=
1

1 + e−uT
i,nwR

i,n

⇔ βwi,n = wR
i,n, (12.37)

RELATIONSHIPS BETWEEN PARAMETERS IN RNNs 215

where the time index k is neglected and illustrates the extension of the previous
analysis result for a general modular neural network.

The following lemma, which is independent of the underlying learning algorithm,
comprises the above analysis.

Lemma 12.11.1 (see Mandic and Chambers 1999a). An arbitrary modular
network with weight matrix W (k), and a gain in the activation function β, is equiva-
lent in the static sense to the isomorphic referent modular network, characterised by
W R(k) and βR = 1, if

βW (k) = W R(k). (12.38)

12.12 Dynamic Equivalence Between an Arbitrary and a Referent
Modular Network

While by static equivalence between two networks we consider the calculation of
the outputs of the networks, for a given weight matrix and input vector, by dynamic
equivalence, we consider the equality between two networks in the sense of adaptation
of the weights. Hence, it is dependent on the underlying learning algorithm. Since we
have to concentrate on a particular algorithm for a particular neural network, it
is convenient to use the already described pipelined recurrent neural network. The
overall cost function of the PRNN is given by5 (Haykin and Li 1995)

E(k) = 1
2

M∑
i=1

λi−1e2
i (k), (12.39)

where ei(k) is the instantaneous output error from module i and a weighting factor
λ ∈ (0, 1], is introduced which determines the weighting of the individual modules
(Haykin and Li 1995). Obviously, this function introduces some sense of forgetting for
nested modules and importance for parallel modules. The following analysis is hence
independent of the chosen configuration.

For a general class of nonlinear activation functions, the weight updating includes
the first derivative of a nonlinear activation function of a neuron, where

Φ′(β,w, u) = βΦ′(1, wR, u). (12.40)

For the logistic function, for instance, we have

Φ′(x) =
βe−βx

(1 + e−βx)2
= βΦ′(xR), (12.41)

where xR = βx denotes the argument of the referent logistic function (with βR = 1),
so that the network considered is equivalent in the static sense to the referent network.

5 The same form of the cost function is used for parallel modular networks. If the modules are of
equal importance, then λ = 1/M .

216 DYNAMIC EQUIVALENCE BETWEEN MODULAR NNs

12.12.1 Dynamic Equivalence for a GD Learning Algorithm

Since recurrent modules degenerate into feedforward ones when the feedback is
removed, for generality, we provide the analysis for recurrent modules. All the results
so derived are also valid for the feedforward modules. From the equivalence in the
static sense, the weight update equation for the referent network, can be written as

W R(k) = W R(k − 1) + β∆W (k), (12.42)

which gives

∆W R(k) = β∆W (k) = β

(
η

M∑
i=1

ei(k)
∂yi,1(k)
∂W (k)

)
= ηβ

M∑
i=1

ei(k)Πi,1(k), (12.43)

where Πi,1(k) is the matrix with elements πi,1
n,l(k) (D.23)–(D.30).

The matrix Π(k), which comprises all the terms

∂yi,j

∂wn,l
, ∀wn,l ∈ W , i = 1, . . . , M, j = 1, . . . , N,

must be related to the appropriate matrix ΠR(k), which represents the gradients of
the referent network. Thus, we have

(πi,j
n,l(k + 1))R = Φ′(vR

i,j(k))
[N∑

m=1

wR
j,m+p+1(k)πi,m

n,l (k) + δnjui,l(k)
]

=
1
β

Φ′(vi,j(k))
[N∑

m=1

βwj,m+p+1(k)
1
β

πi,m
n,l (k) + δnjul(k)

]

=
1
β

πi,j
n,l(k + 1), (12.44)

which gives

ΠR(k + 1) =
1
β

Π(k + 1). (12.45)

The weight adaptation process for the referent PRNN can be now expressed as

∆W R(k) = β∆W (k) = βη

M∑
i=1

ei(k)Πi,1(k)

= β2η

M∑
i=1

ei(k)ΠR
i,1(k) = ηR

M∑
i=1

ei(k)ΠR
i,1(k), (12.46)

which gives the required dynamic relationship and is encompassed in the following
lemma.

Lemma 12.12.1 (see Mandic and Chambers 1999a). An arbitrary modular
neural network represented by β, η and W (k) is equivalent in the dynamic sense

RELATIONSHIPS BETWEEN PARAMETERS IN RNNs 217

in terms of gradient-descent-based learning to a referent isomorphic modular neural
network represented by βR = 1, ηR and W R(k) = βW (k), if

ηR = β2η. (12.47)

12.12.2 Dynamic Equivalence Between Modular Recurrent Neural Networks for the
ERLS Learning Algorithm

The extended recursive least-squares algorithm, given in Appendix D.3, as introduced
in Baltersee and Chambers (1998) and Mandic et al. (1998) is based upon representing
the dynamics of the PRNN in the state space form (Puskoris and Feldkamp 1994; Ruck
et al. 1992)

w(k) = w(k − 1) + q(k) system equation,

x(k) = h(w(k)) + v(k) measurement equation,

}
(12.48)

where w(k) is the N(N + p + 1) × 1 vector obtained by rearranging the weight
matrix W (k), x(k) is an M × 1 observation vector, q(k) ∼ N (0, Q) is a vector of
white Gaussian noise (WGN), as well as v(k) ∼ N (0, C) (Williams 1992). The first
equation in (12.48) is the system equation, represented by a random walk, and satisfies
the properties of the static equivalence, given in Lemma 12.11.1. The measurement
equation in (12.48) is linearised using a first-order Taylor expansion, i.e.

h(w(k)) ≈ h(ŵ(k | k − 1)) + ∇hT(ŵ(k | k − 1))[w(k) − ŵ(k | k − 1)], (12.49)

where the gradient of h(·) can be expressed as

∇hT =
∂h(ŵ(k | k − 1))

∂ŵ(k | k − 1)
= H(k). (12.50)

Furthermore, the vector h(k), which is the result of the nonlinear mapping h(k) =
h(w(k)) is actually the M × 1 vector of the outputs of the PRNN modules (Baltersee
and Chambers 1998; Mandic et al. 1998):

hT(k) = [y1,1(k), y2,1(k), . . . , yM,1(k)] (12.51)

That means that the equivalence needed for the observation equation boils down to
the dynamic equivalence derived for the GD learning (12.44)–(12.46).

Lemma 12.12.2 (see Mandic and Chambers 1999a). An arbitrary modular
recurrent neural network represented by β, η and W (k) is equivalent in the dynamic
sense in terms of the extended recursive least-squares learning algorithm to a referent
isomorphic modular recurrent neural network represented by βR = 1, ηR and W R(k),
if

(i) they are equivalent in the static sense, W R(k) = βW (k), and

(ii) the learning rates are related as ηR = β2η.

Notice that condition (i) is correspondent to the system equation of (12.48), whereas
the condition (ii) corresponds to the measurement equation of (12.48).

218 NOTE ON THE β–η–W RELATIONSHIPS AND CONTRACTIVITY

12.12.3 Equivalence Between an Arbitrary and the Referent PRNN

Some other learning algorithms for training modular neural networks rest upon either
general backpropagation, such as the BPTT algorithm (Werbos 1990), or combine
general backpropagation and the direct gradient descent algorithms (RTRL), such as
the RBP algorithm (Pineda 1987). Naturally, from Mandic and Chambers (1999e)
and the above analysis, the relationships derived are valid for both the BPTT and
RBP algorithms. From the static equivalence given in Lemma 12.11.1 and dynamic
equivalence given in Lemmas 12.12.1 and 12.12.2, the following theorem encompasses
a general equivalence between an arbitrary modular neural network and the referent,
modular neural network.

Theorem 12.12.3 (see Mandic and Chambers 1999a). An arbitrary modular
neural network represented by β, η and W (k) is equivalent to a referent isomorphic
modular neural network represented by βR = 1, ηR and W R(k), if

(i) they are equivalent in the static sense, i.e. W R(k) = βW (k), and

(ii) they are equivalent in the dynamic sense, i.e. ηR = β2η.

As pointed out for common recurrent neural networks, the above analysis is also
valid for the hyperbolic tangent γ tanh(βx) : R → (−γ, γ).

12.13 Note on the β–η–W Relationships and Contractivity

Sigmoid activation functions used in neural networks have been shown to be either
contractive or expansive. It is important to preserve this property for functionally
equivalent networks that have different parameters, since the a posteriori and nor-
malised algorithms rely upon contractivity of the nonlinear activation function of a
neuron. In a real neural network, for the logistic activation function Φ(ξ) = 1/(1 +
e−βξ), for instance, ξ is replaced by the activation potential net(k) = xT(k)w(k). As
the conditions of static and dynamic equivalence derived in this chapter effectively
change the weights and learning rates, there is a need to address the contractiv-
ity/expansivity preservation between an arbitrary and the referent network.

A close inspection of the static equivalence equations shows that their form is

wR(k) = βwarbitrary(k). (12.52)

Recall that for the referent network β = 1, the activation potentials of the referent
and arbitrary network are given, respectively, by

netR(k) = xTwR(k) (12.53)

and

net(k) = xT wR(k)
β

. (12.54)

However, the outputs of either network are identical, since for the arbitrary network

Φ(β, net(k)) = Φ(β net(k)) = Φ

(
βxT wR(k)

β

)
= Φ(1, netR(k)). (12.55)

RELATIONSHIPS BETWEEN PARAMETERS IN RNNs 219

Hence, the contractivity/expansivity is preserved upon application of the equivalence
relationships between an arbitrary and a referent neural network.

12.14 Summary

The relationship between the learning rate η and the gain in the general activation
function β for a nonlinear optimisation algorithm which adapts the weights of the
modular neural network has been derived. This relationship is derived both in the
static sense (equality of the outputs of the neurons) and the dynamic sense (equality
in learning processes), for both the gradient descent (GD) and the extended recursive
least-squares (ERLS) algorithms. Such a result enables the use of one degree of free-
dom less when adjusting variable parameters of a general neural network, and hence
reduces computational complexity of learning. The results provided are shown to be
easily extended for the backpropagation through time and the recurrent backpropa-
gation algorithms, when applied in this framework.

Recurrent Neural Networks for Prediction
Authored by Danilo P. Mandic, Jonathon A. Chambers

Copyright c©2001 John Wiley & Sons Ltd
ISBNs: 0-471-49517-4 (Hardback); 0-470-84535-X (Electronic)

Appendix A

The O Notation and Vector
and Matrix Differentiation

A.1 The O Notation

Definition A.1.1. Let f and g be f, g : R
+ → R

+ functions. If there exist positive
numbers n0 and c such that f(n) � cg(n) for all n � n0, the O notation can be
introduced as

f(n) = O(g(n)), (A.1)

i.e. function f is asymptotically dominated by function g.

An algorithm is said to run in polynomial time if there exists k ∈ Z such that
(Blondel 2000)

T (s) = O(sk), (A.2)

where T (s) is the execution time and s is the length of the input.

A.2 Vector and Matrix Differentiation

Let us denote vectors by lowercase bold letters and matrices by capital bold letters.
Some frequently used vector and matrix differentiation rules used in this book are

• d(xTA)
dx

= A,

• d(xTAy)
dA

= xyT,

• d(Ax + b)TC(Dx + e)
dx

= ATC(Dx + e) + DTCT(Ax + b),

(i)
d(xTAx)

dx
= (A + AT)x,

(ii)
d(xTx)

dx
= 2x,

222 APPENDIX A

• d2(yTx)
dx2 = 0,

• d2(Ax + b)C(Dx + e)
dx2 = ATCD + DTCTA.

Recurrent Neural Networks for Prediction
Authored by Danilo P. Mandic, Jonathon A. Chambers

Copyright c©2001 John Wiley & Sons Ltd
ISBNs: 0-471-49517-4 (Hardback); 0-470-84535-X (Electronic)

Appendix B

Concepts from the
Approximation Theory

Definition B.1.1 (see Mhaskar and Micchelli 1992). The function σ : R → R

(not necessarily continuous) is called a Kolmogorov function, if for any integer s � 1,
any compact set K ⊂ R

s, any continuous function f : K → R and any ε > 0, there
exists an integer N , numbers ck, tk ∈ R and λk ∈ R

s, 1 � k � N , possibly depending
upon s, K, f , ε, such that

sup
x∈K

∣∣∣∣f(x) −
N∑

k=1

ckσ(λkx − tk)
∣∣∣∣ < ε. (B.1)

Definition B.1.2. A sigmoidal function with properties,

lim
x→−∞

σ(x)
xk

= 0,

lim
x→+∞

σ(x)
xk

= 1,

(B.2)

|σ(x)| � K(1 + |x|)k, K > 0, (B.3)

is called the kth degree sigmoidal function.

In other words, these functions are bounded on R by a polynomial of degree d � k.
It follows that function σ is a candidate for a Kolmogorov function if it is not a

polynomial.

Theorem B.1.3 (see Kolmogorov 1957). There exist fixed increasing continuous
functions ψpq(x), on I = [0, 1] so that each continuous function f on In can be written
in the form

f(x1, . . . , xn) =
2n+1∑
q=1

Φq

(n∑
p=1

ψpq(xp)
)

, (B.4)

where Φq are properly chosen continuous functions of one variable.

This result asserts that every multivariate continuous function can be represented
by the superposition of a small number of univariate continuous functions.

224 APPENDIX B

Theorem B.1.4 (Kolmogorov–Sprecher Theorem). For each integer n � 2,
there exists a real monotonic increasing function ψ(x), ψ([0, 1]) = [0, 1], dependent on
n and having the following property.

For each preassigned number δ > 0, there is a rational number ε, 0 < ε < δ, such
that every real continuous function of n variables, φ(x), defined on In, can be exactly
represented by

f(x) =
2n+1∑
j=1

χ

[n∑
i=1

λiψ(xi + ε(j − 1)) + j − 1
]
, (B.5)

where χ is a real and continuous function dependent upon f and λ is a constant
independent of f .

Since no constructive method for the determination of χ is known, a direct appli-
cation of the Kolmogorov–Sprecher Theorem is rather difficult.

Theorem B.1.5 (Weierstrass Theorem). If f is a continuous real-valued function
on [a, b] ∈ R, then for any ε > 0, there exists a polynomial P on [a, b] ∈ R such that

|f(x) − P (x)| < ε, ∀x ∈ [a, b]. (B.6)

In other words, any continuous function on a closed and bounded interval can be
uniformly approximated on that interval by polynomials to any degree of accuracy.

Definition B.1.6. Let P be a probability measure on R
m. For measurable functions

f1, f2 : R
m → R we say that f1 approximates f2 with accuracy ε > 0 and confidence

δ > 0 in probability if

P (x ∈ R
m | |f1(x) − f2(x)| > ε) < δ. (B.7)

The function f1 interpolates f2 on p examples x1, . . . , xp if f1(xi) = f2(xi), i =
1, . . . , p.

Definition B.1.7. A function f that satisfies the condition

|f(x) − f(y)| � L|x − y|, x, y ∈ R, L = const., (B.8)

is called a Lipschitz function.

Definition B.1.8. A closure of a subset D of a topological space S, usually denoted
by D̄, is the set of points in S with the property that every neighbourhood of such a
point has a nonempty intersection with D.

If S is a set, then by the closure S̄ of S we mean the set of all points in S together
with the set of all limit points of S. A set S is closed if it is identical to its closure S̄.

Definition B.1.9. A subset D of a topological space S is called dense if D̄ = S.

Topologies considered are naturally defined by a metric. The most commonly used
metrics are Lp, and among them the supremum metric. If D is dense in S, then each
element of S can be approximated arbitrarily well by elements of D. Examples are
the set of rational numbers, which is dense in R, and the set of polynomials that is
dense in the space of continuous functions.

APPENDIX B 225

Definition B.1.10. A compact set is one in which every infinite subset contains at
least one limit point.

Every closed, bounded, finite-dimensional set in a metric linear space is compact.

Definition B.1.11. A cubic spline is a spline constructed of piecewise third-order
polynomials defined by a set of control points.

A spline is an interpolating polynomial which uses information from neighbouring
points to obtain smoothness.

Recurrent Neural Networks for Prediction
Authored by Danilo P. Mandic, Jonathon A. Chambers

Copyright c©2001 John Wiley & Sons Ltd
ISBNs: 0-471-49517-4 (Hardback); 0-470-84535-X (Electronic)

Appendix C

Complex Sigmoid Activation
Functions, Holomorphic
Mappings and Modular
Groups

C.1 Complex Sigmoid Activation Functions

Summarising some important notions from complex analysis, let w and z be complex
numbers. Some of the elementary transformations defined on these complex numbers
are given in the following table.

Mapping Formula Domain

Inversion f(z) = 1/z

Magnification f(z) = az a ∈ R �= 0,
Magnification + Rotation f(z) = az a ∈ C �= 0,

Möbius Transformation f(z) =
az + b

cz + d
a, b, c, d ∈ C,

Rotation f(z) = ejθ θ ∈ R,
Translation f(z) = z + a a ∈ C.

A linear transformation can be considered as a composition of a rotation, magnifica-
tion and translation.

Definition C.1.1. A differentiable function of a complex variable is holomorphic if
its derivative is continuous. If the first derivative of a holomorphic function is nonzero
at some point z0, then that function is conformal at z0.

Definition C.1.2. A complex function which is analytic at all finite points of the
complex plane is called entire.

Definition C.1.3. A meromorphic function has only a finite number of isolated poles
and zeros. It can be thought of as a rational function of two entire functions.

228 APPENDIX C

Definition C.1.4 (Liouville Theorem). A bounded entire function in the complex
plane is constant.

Cauchy–Riemann Equations: for a total derivative df/dz of a complex function
f(x, y) = u(x, y)+jv(x, y), where z = x+jy and dz = dx+j dy, to exist, the following
conditions, also known as Cauchy–Riemann equations, have to be satisfied:

∂u

∂x
=

∂v

∂y
,

∂v

∂x
= −∂u

∂y
.

(C.1)

Some properties of complex activation functions

For a function approximation problem, we have

f(x) =
n∑

i=1

ciσ(x − ai) =
n∑

i=1

ci

1 + e−xeai
= ex

n∑
i=1

ci
1

ex + eai
, (C.2)

which becomes

f(x) = z

n∑
i=1

ci

z + αi
= r(z) (C.3)

with the change of variables z = ex and αi = eai . The rational function r(z) is given
by

r(z) =
n∑

i=1

ci

z + αi
=

P (z)
Q(z)

, z ∈ C. (C.4)

Recall that any analytic function σ : R → R such as the standard sigmoid has a
convergent power series expansion σ(x) =

∑∞
i=0 σi(x−a)i about a point a ∈ R. When

we substitute x by a complex number z = x + jy, we obtain a series
∑∞

i=0 σi(z − a)i,
which converges in a disc |z − a| < R, where R is the radius of convergence of power
series. Coefficients ai correspond to the poles αi = eai , whereas scaling factors ci

represent the residues of r(z) at eai (Williamson and Helmke 1995).

C.1.1 Modular Groups

Since a Möbius transformation remains unchanged if all the coefficients (a, b, c, d) are
multiplied by the same nonzero constant, we will assume ad − bc = 1.

If we associate a matrix

A =
[
a b

c d

]
(C.5)

with a Möbius transformation, then its determinant ∆ = ad − bc = 1. If A and B
are matrices associated with Möbius transformations f and g, then a composition
f ◦ g is described by the matrix product AB. In order to show that the set of all
Möbius transformations forms a group under composition, we introduce the identity
transformation

f(z) = z =
1z + 0
0z + 1

,

APPENDIX C 229

which is described by the identity matrix I, which is the neutral element of the group.
The matrix inverse A−1 is associated with the inverse of f given by

f−1(z) =
dz − b

−cz + a
, (C.6)

which is the last condition for the set of all Möbius transformations to form the group
under composition. Now, the set of all Möbius transformations of the form,

f(z) =
az + b

cz + d
,

where a, b, c, d are integers with ad − bc = 1 forms a modular group and is denoted
by Γ . This allows us to express the Möbius transformation as

Az =
az + b

cz + d
. (C.7)

The next theorem shows that the group Γ is generated by two transformations, Tz =
z + 1 and Sz = −1/z (Apostol 1997).

Theorem C.1.5 (see Apostol 1997). The modular group Γ is generated by the
two matrices

T =
[
1 1
0 1

]
and S =

[
0 −1
1 0

]
(C.8)

and every A ∈ Γ can be expressed in the form,

A = Tn1STn2S · · ·STnk , (C.9)

where ni are integers.

So, for instance, a modular representation for the matrix

A =
[

4 9
11 25

]

is A = ST−3ST−4ST 2. However, this solution is generally not unique.

Recurrent Neural Networks for Prediction
Authored by Danilo P. Mandic, Jonathon A. Chambers

Copyright c©2001 John Wiley & Sons Ltd
ISBNs: 0-471-49517-4 (Hardback); 0-470-84535-X (Electronic)

Appendix D

Learning Algorithms for RNNs

D.1 The RTRL Algorithm

The structure of a single RNN is shown in Figure D.1. The neurons (nodes) are
depicted by circles and incorporate the operation Φ(sum of inputs). For the nth
neuron, its weights form a (p + F + 1) × 1 dimensional weight vector wT

n =
[wn,1, . . . , wn,p+F+1], where p is the number of external inputs and F is the num-
ber of feedback connections, one remaining element of the weight vector w being the
bias input weight. The feedback connections represent the delayed output signals of
the RNN. In the case of the network shown in Figure D.1, we have N = F . Such a
network is called a fully connected recurrent neural network (FCRNN) (Williams and
Zipser 1989a). The following equations fully describe the FCRNN,

yn(k) = Φ(vn(k)), n = 1, 2, . . . , N, (D.1)

vn(k) =
p+N+1∑

l=1

wn,l(k)ul(k), (D.2)

uT
n (k) = [s(k − 1), . . . , s(k − p), 1, y1(k − 1), y2(k − 1), . . . , yN (k − 1)], (D.3)

where the (p + N + 1) × 1 dimensional vector u comprises both the external and
feedback inputs to a neuron, with vector u having ‘unity’ for the constant bias
input.

For the nonlinear time series prediction paradigm, there is only one output neuron
of the RNN. RTRL-based training of the RNN is based upon minimising the instan-
taneous squared error at the output of the first neuron of the RNN (Haykin 1994;
Williams and Zipser 1989a), which can be expressed as

min(1
2e2(k)) = min(1

2 [s(k) − y1(k)]2), (D.4)

where e(k) denotes the error at the output y1 of the RNN and s(k) is the teaching
signal. Hence, the correction for the lth weight of neuron k at the time instant k can

232 APPENDIX D

Outputs

...

...
... ...

...
...

External
Inputs

...
...

z-1

z-1

z-1

z-1

Processing layer of
hidden and outputand

connections

I/O layer

y

Feedforward

Feedback

Feedback
inputs

s(k-1)

s(k-p)

neurons

Figure D.1 Single recurrent neural network

be derived as follows:

∆wn,l(k) = −η

2
∂

∂wn,l(k)
e2(k)

= −ηe(k)
∂e(k)

∂wn,l(k)
. (D.5)

Since the external signal vector s does not depend on the elements of W , the error
gradient becomes

∂e(k)
∂wn,l(k)

= − ∂y1(k)
∂wn,l(k)

. (D.6)

Using the chain rule, this can be rewritten as1

∂y1(k)
∂wn,l(k)

= Φ′(v1(k))
∂v1(k)

∂wn,l(k)

= Φ′(v1(k))
(N∑

α=1

∂yα(k − 1)
∂wn,l(k)

w1,α+p+1(k) + δn1ul(k)
)

, (D.7)

1 A detailed derivation of the RTRL algorithm can be found in Williams and Zipser (1989a),
Haykin (1994) and Williams and Zipser (1989b).

APPENDIX D 233

where

δnl =

{
1, n = l,

0, n �= l.
(D.8)

Under the assumption, also used in the RTRL algorithm (Narendra and Parthasarathy
1990; Robinson and Fallside 1987; Williams and Zipser 1989a), that when the learning
rate η is sufficiently small, we have

∂yα(k − 1)
∂wn,l(k)

≈ ∂yα(k − 1)
∂wn,l(k − 1)

. (D.9)

A triply indexed set of variables {πj
n,l(k)} can be introduced to characterise the RTRL

algorithm for the RNN, as

πj
n,l =

∂yj(k)
∂wn,l

1 � j, n � N, 1 � l � p + 1 + N, (D.10)

which is used to compute recursively the values of πj
n,l for every time step k and all

appropriate j, n and l as follows,

πj
n,l(k + 1) = Φ′(vj)

[N∑
m=1

wj,m+p+1(k)πm
n,l(k) + δnjul(k)

]
, (D.11)

with the values for j, n and l as in (D.11) and the initial conditions

πj
n,l(0) = 0. (D.12)

To simplify the presentation, we introduce three new matrices, the N × (N + p + 1)
matrix Πj(k), the N × (N + p + 1) matrix Uj(k) and the N × N diagonal matrix
F (k), as (Haykin 1999b)

Πj(k) =
∂y(k)
∂wj(k)

, y = [y1(k), . . . , yN (k)], j = 1, 2, . . . , N, (D.13)

Uj(k) =

0
...

u(k)
...
0

← jth row, j = 1, 2, . . . , N, (D.14)

F (k) = diag[Φ′(u(k)Tw1(k)), . . . , Φ′(u(k)TwN (k))]. (D.15)

Hence, the gradient updating equation regarding the recurrent neuron can be sym-
bolically expressed as (Haykin 1994; Williams and Zipser 1989a)

Πj(k + 1) = F (k)[Uj(k) + Wa(k)Πj(k)], j = 1, 2, . . . , N, (D.16)

where Wa denotes the set of those entries in W which correspond to the feedback
connections.

234 APPENDIX D

yout

weight matrix W

module M module (M-1) module 1

weight matrix W weight matrix W

z

z

-1

-1 I

z z z

zz

-1

-1-1

-1-1

I

I

I

I I

yM y(M-1),1 ,12y,1

,1

p

ppp

(N-1) (N-1) (N-1)

My (k-1)

s(k-M) s(k-M+1) s(k-M+2)

(k) (k) (k) (k)

s(k-1) s(k)

Figure D.2 Pipelined recurrent neural network

D.1.1 Teacher Forcing Modification of the RTRL Algorithm

The idea is to replace the actual output y1(k) by a teacher signal s(k) in subsequent
computation of the behaviour of the network. The derivation of the algorithm follows
the same concept as for the RTRL algorithm. Notice that the partial derivatives of
s(k) with respect to W (k) are zero. Having this in mind, the equations that calculate
the sensitivities Π have the same form as for the RTRL, except that the values of Π
that refer to s(k) are zero.

D.2 Gradient Descent Learning Algorithm for the PRNN

The PRNN is a modular neural network and consists of a certain number M of RNNs
as its modules, with each module consisting of N neurons. In the PRNN configu-
ration, the M modules, which are RNNs, are connected as shown in Figure D.2.
The (p × 1)-dimensional external signal vector sT(k) = [s(k − 1), . . . , s(k − p)] is
delayed by m time steps (z−mI) before feeding the module m. All the modules oper-
ate using the same weight matrix W . The overall output signal of the PRNN is
yout(k) = y1,1(k), i.e. the output of the first neuron of the first module. Thus, the
overall cost function of the PRNN becomes (Baltersee and Chambers 1998; Haykin
and Li 1995)

E(k) = 1
2

M∑
i=1

λi−1e2
i (k), (D.17)

where ei(k) is the error from module i and a forgetting factor λ ∈ (0, 1], is introduced
which determines the weighting of the individual modules.

APPENDIX D 235

A full mathematical description of the PRNN is given in the following equations:

yi,n(k) = Φ(vi,n(k)), i = 1, . . . , M, n = 1, . . . , N, (D.18)

vi,n(k) =
p+N+1∑

l=1

wn,l(k)ui,l(k), (D.19)

uT
i (k) = [s(k − i), . . . , s(k − i − p + 1), 1, yi+1,1(k),

yi,2(k − 1), . . . , yi,N (k − 1)] for 1 � i � M − 1, (D.20)
uT

M (k) = [s(k − M), . . . , s(k − M − p + 1), 1, yM,1(k − 1),
yM,2(k − 1), . . . , yM,N (k − 1)] for i = M. (D.21)

At the time step k, for each module i, i = 1, . . . , M , the one-step forward prediction
error ei(k) associated with a module, is

ei(k) = s(k − i + 1) − yi,1(k). (D.22)

The cost function for the PRNN is

E(k) = 1
2

M∑
i=1

λi−1e2
i (k), (D.23)

i.e. a weighted sum of squared errors at the output of every module of the PRNN.
Hence, the correction for the lth weight of neuron n at the time instant k is derived
as follows:

∆wn,l(k) = −η

2
∂

∂wn,l(k)

(M∑
i=1

λi−1e2
i (k)

)

= −η

M∑
i=1

λi−1ei(k)
∂ei(k)

∂wn,l(k)
. (D.24)

Now,
∂ei(k)

∂wn,l(k)
= − ∂yi,1(k)

∂wn,l(k)
, (D.25)

which can be rewritten as

∂yi,1(k)
∂wn,l(k)

= Φ′(vi,1(k))
∂vi,1(k)
∂wn,l(k)

. (D.26)

Now, inserting (D.18)–(D.21) into (D.26) yields (Baltersee and Chambers 1998;
Haykin and Li 1995)

Φ′(vi,1(k))
∂vi,1(k)
∂wn,l(k)

= Φ′(vi,1(k))
(p+N+1∑

α=1

(
∂w1,α(k)
∂wn,l(k)

ui,α(k) +
∂ui,α(k)
∂wn,l(k)

w1,α(k)
))

.

(D.27)
The first term in (D.27) is zero except for n = 1 and l = α (Williams and Zipser
1989a), and the only elements of the input vector u that depend on the elements of

236 APPENDIX D

W are the feedback values. Therefore, Equation (D.27) can be simplified to

Φ′(vi,1(k))
∂vi,1(k)
∂wn,l(k)

= Φ′(vi,1(k))
(N∑

α=1

∂yi,α(k − 1)
∂wn,l(k)

w1,α+p+1(k) + δn1ui,l(k)
)

,

(D.28)
where

δnl =

{
1, n = l,

0, n �= l.
(D.29)

A quadruply indexed set of variables {πij
n,l(k)} = ∂yi,j(k)/∂wn,l can be introduced to

characterise the RTRL algorithm for the PRNN, as

πij
n,l =

∂yi,j(k)
∂wn,l

, 1 � i � M, 1 � j, n � N, 1 � l � p + 1 + N. (D.30)

The variant of the RTRL algorithm suitable for the PRNN is used to compute recur-
sively the values of πij

n,l for every time step k and all appropriate i, j, n and l as
follows,

πij
n,l(k + 1) = Φ′(vi,j)

[N∑
m=1

wj,m+p+1(k)πim
n,l(k) + δnjui,l(k)

]
, (D.31)

with the values for i, j, n and l as in (D.31) and the initial conditions,

πij
n,l(0) = 0, (D.32)

where ui,l and vi,j are, respectively, the lth input to the ith module of the PRNN
and the internal activation function of the jth neuron in the ith module. Updating
process (D.30) can be written in the same matrix form as (D.16).

D.3 The ERLS Algorithm

The extended recursive least-squares (ERLS) algorithm, which is presented here (Bal-
tersee and Chambers 1998; Mandic et al. 1998), is based upon the idea of the extended
Kalman filter (EKF)(Haykin 1996a; Iiguni and Sakai 1992; Kay 1993). It is presented
for the general case of the PRNN and boils down to the ERLS algorithm for the RNN
for a PRNN with one module. The cost function of the PRNN becomes

EERLS(k) = 1
2

k∑
l=1

ξk−lE(l), (D.33)

which is to be minimised with respect to the elements of the weight matrix W . The
newly introduced constant ξ ∈ (0, 1] represents a forgetting factor so that the resulting
learning algorithm becomes suitable for the prediction task of non-stationary signals.
The ERLS algorithm is used to solve the nonlinear minimisation problem of (D.33).
In order to derive the ERLS algorithm, the vector state–vector observation Kalman

APPENDIX D 237

filter equations are considered (Haykin et al. 1997; Kay 1993),

w(k) = a(w(k − 1)) + u(k), (D.34)
x(k) = h(w(k)) + v(k), (D.35)

where w(k) becomes the N(N +p+1)×1 weight vector, x(k) is the M ×1 observation
(signal) vector, u(k) is a white Gaussian noise vector, u ∼ N (0,Q) and v(k) is
observation noise, WGN vector v ∼ N (0,C).2 Furthermore, we have the nonlinear
mapping functions,

a : R
N(N+p+1) → R

N(N+p+1) (D.36)

and
h : R

N(N+p+1) → R
M , (D.37)

which, respectively, map the space spanned over the weighting vector w onto the
same space and the weight vector space onto the ‘output of the PRNN’-dimensional
space. For prediction of speech, however, the function a(·) is unknown, so that the
state Equation (D.34) may be approximated by the random walk model (Haykin 1994;
Puskoris and Feldkamp 1994; Ruck et al. 1992)

w(k) = w(k − 1) + u(k). (D.38)

As for the EKF, the nonlinear mapping function h(·) is linearised using the first-
order Taylor expansion around the estimate of w(k), based on the previous data, i.e.
ŵ(k | k − 1), which yields

h(w(k)) ≈ h(ŵ(k | k − 1) + ∇hT[w(k) − ŵ(k | k − 1)], (D.39)

where the gradient of h(·) can be written as

∇hT =
∂h(ŵ(k | k − 1))

∂ŵ(k | k − 1)
= H(k) (D.40)

so that the observation equation becomes

x(k) = H(k)w(k) + v(k) + [h(ŵ(k | k − 1)) − H(k)ŵ(k | k − 1)]. (D.41)

Moreover, the correlation matrix of the process state noise vector u(k) equals a scaled
version of the minimum mean square error matrix of the EKF (Haykin 1994; Kay 1993)

Q(k) = E[u(k)uT(k)] = (ξ−1 − 1)M(k), (D.42)

where ξ is the forgetting factor of (D.33). Using (D.34), (D.41), (D.42) and the defi-
nition of the EKF in Kay (1993), the final equations of the ERLS algorithm for the
PRNN become (Baltersee and Chambers 1998; Mandic et al. 1998)

K(k) = ξ−1M(k − 1)HT[C(k) + ξ−1H(k)M(k − 1)HT(k)]−1, (D.43)
ŵ(k) = ŵ(k − 1) + K(k)[x(k) − h(ŵ(k − 1))], (D.44)

M(k) = ξ−1[I − K(k)H(k)]M(k − 1). (D.45)

2 Although the observation noise vector v is to be, generally speaking, described by its covari-
ance matrix, C, we will assume that that matrix is diagonal, i.e. that the observation noise v is
satisfactorily described by its variance vector, together with its mean value.

238 APPENDIX D

For the PRNN, the (M × 1)-dimensional vector x(k) becomes

xT(k) = [s(k), s(k − 1), . . . , s(k − M + 1)], (D.46)

which is the input signal itself. Furthermore, the (M × 1)-dimensional vector, h(k) =
h(w(k)) becomes

hT(k) = [y1,1(k), y2,1(k), . . . , yM,1(k)]. (D.47)

Now, since by (D.34), (D.38)

ŵ(k | k − 1) = ŵ(k − 1 | k − 1) = ŵ(k − 1)

the gradient matrix H = ∇h becomes

H(k) =
∂h(ŵ(k − 1))

∂ŵ(k − 1)
(D.48)

the elements of which are available from Mandic et al. (1998) and Baltersee and
Chambers (1998)

∂yM,j(k)
∂wn,l(k)

≈ Φ′(vM,j(k))
[N∑

α=1

∂yM,α(k − 1)
∂wn,l(k − 1)

wj,α+p+1(k) + δnjuM,l(k)
]

(D.49)

for i = M , and

∂yi,j(k)
∂wn,l(k)

≈ Φ′(vi,j(k))
[
∂yi+1,j(k)
∂wn,l(k)

wj,p+2(k)

+
N∑

α=2

∂yi,α(k − 1)
∂wn,l(k − 1)

wj,α+p+1(k) + δnjui,l(k)
]

(D.50)

for i �= M , where δnj is given by (D.8), so that the derivation of the ERLS algorithm
for the PRNN is now complete. The ERLS algorithm for an RNN can be obtained
from the derived algorithm, for the number of modules M = 1.

Recurrent Neural Networks for Prediction
Authored by Danilo P. Mandic, Jonathon A. Chambers

Copyright c©2001 John Wiley & Sons Ltd
ISBNs: 0-471-49517-4 (Hardback); 0-470-84535-X (Electronic)

Appendix E

Terminology Used in the Field
of Neural Networks

The field of artificial neural networks has developed alongside many disciplines, such as
neurobiology, mathematics, statistics, economics, computer science, engineering and
physics, to mention but a few. Consequently, the terminology used in the field varies
from discipline to discipline. An initiative from the IEEE Neural Networks Council
to standardise the terminology has resulted in recommended terminology and several
definitions (Eberhart 1990). We present four of them.

Activation Function. Algorithm for computing the activation value of a neurode
as a function of its net input. Net input is typically the sum of weighted inputs
to the neurode.

Feedforward Network. Network ordered into layers with no feedback paths. The
lowest layer is the input layer, the highest is the output layer. The outputs of a
given layer go only to higher layers and its inputs come only from lower layers.

Supervised Learning. Learning procedure in which a network is presented with a
set of input pattern and target pairs. The network can compare its output to
the target and adapt itself according to the learning rules.

Unsupervised Learning. Learning procedure in which the network is presented
with a set of input patterns. The network adapts itself according to the statistical
associations in the input patterns.

A later effort by Fiesler (1994), which appeared in Computer Standards and Inter-
faces, further tackles this issue. In particular, Fiesler considers functions important
for neural networks, such as

1. neuron functions (or transfer functions) which specify the output of a neuron,
given its inputs (this includes nonlinearity);

2. learning rules (or learning laws) which define how weights (and offsets) will be
updated;

240 APPENDIX E

3. clamping functions, which determine if and when certain neurons will be insus-
ceptible to incoming information, i.e. they retain their present activation value;
and

4. ontogenic functions, which specify changes in the neural network topology.

Hence, a neural network is described by its topology, constraints, initial state and
transition function. Topology includes the frame and interconnection structure. In
our work we refer to frame as topology and interconnection structure as architecture.

Ljung and Sjöberg have offered a link between terms from the areas of control
theory and neural networks (Ljung and Sjöberg 1992), of which we present several
frequently used ones:

model structure net,
model order number of hidden units,

estimation training, learning,
iteration training cycle,

recursive gradient algorithm backpropagation,

overfit overtraining.

Recurrent Neural Networks for Prediction
Authored by Danilo P. Mandic, Jonathon A. Chambers

Copyright c©2001 John Wiley & Sons Ltd
ISBNs: 0-471-49517-4 (Hardback); 0-470-84535-X (Electronic)

Appendix F

On the A Posteriori Approach
in Science and Engineering

F.1 History of A Posteriori Techniques

In the Oxford Interactive Encyclopedia, 1997, the notions of a priori and a posteriori
are defined as follows: ‘a priori is a term from epistemology meaning knowledge
or concepts which can be gained independently of all experience. It is contrasted
with a posteriori knowledge, in which experience plays an essential role’. A posteriori
techniques have been considered for more than two millennia now. Probably the oldest
written study on a posteriori reasoning techniques in logic was by Aristotle, sometime
between 343 BC and 323 BC (Aristotle 1975). He developed a posteriori conclusion
techniques. In the late sixteenth century, Galileo composed a manuscript between
1589 and 1591, nowadays known as MS27, while he was teaching or preparing to teach
at the University of Pisa (Wallace 1992). The manuscript was a study, based upon
Aristotle’s famous books Prior Analytics and Posterior Analytics1 (Aristotle 1975),
upon which logic had been taught at universities ever since the fourth century BC.
Galileo’s work, based upon the canons introduced by Aristotle in Posterior Analytics,
includes Discourse on Bodies on or in Water and Letters on Sunspots. He studies
the role of the notions of foreknowledge and demonstration in science in general. ‘A
science can give a real definition of its total subject a posteriori only, because the
real definition is not foreknown in the science, therefore it is sought, therefore it is
demonstrable’ (Wallace 1992). ‘We know something either a posteriori or a priori,
a posteriori through demonstration of the fact, a priori through demonstration of
the reasoned fact. A posteriori is referred to as demonstration from an effect or
conjectural ’ (Wallace 1992).

Galileo also adapted the regressus procedure to accommodate it with his exper-
imental techniques. The regressus, after Galileo, required that cause and effect be
convertible.

1 Aristotle used the word analytics to represent today’s meaning of logic.

242 APPENDIX F

discrete
time

X

W

X

k k+1

k+1W

Xk

Wk+1

Πk+1

k

Xk

k

k k+1

e

e

...

k

Figure F.1 Time management of the a posteriori approach

F.2 The Usage of A Posteriori

The notion a posteriori is also used in the work based upon Bayes’ theorem, in solving
linear differential equations, and in Kalman filtering. In modern technical disciplines,
a priori quantities are estimated from past measurements of a process in hand or
presupposed by experience, while a posteriori quantities are measured or computed
from observations (Stark and Woods 1986).

The a posteriori quantities in learning algorithms, such as an error or output,
are based upon the newly calculated set of weights W (k + 1), which is available
sometime between the consecutive discrete time instants k and (k+1). The a posteriori
quantities will be denoted with the same symbol as the corresponding a priori ones,
with the addition of a bar, i.e. ē(k) is the a posteriori error at the time instant k,
calculated as ē(k) = d(k) − Φ(XT(k)W (k + 1)), where X(k) is some general input
vector and W (k) some general set of weights. The corresponding a priori error e(k)
is calculated as e(k) = d(k) − Φ(XT(k)W (k)).

For prediction applications, for instance, there may not be sufficient information to
track the trajectory in the state space uniquely, or noise in the observable time series
may add too much uncertainty to be able to satisfy the prediction requirements.

A way to avoid these problems is to involve some sort of regularisation through,
for instance, the use of the prior knowledge of the system. A posteriori techniques
naturally use such prior knowledge, by data-reusing, and the equations which describe
such algorithms exhibit normalisation, which additionally stabilised the system.

F.2.1 A Posteriori Techniques in the RNN Framework

To further illustrate this concept in adaptive real-time algorithms, let us consider the
situation shown in Figure F.1. All relevant time instants in Figure F.1 are denoted in
the index of the appropriate variable, e.g. Xk instead of X(k). At the discrete time
interval k, the RNN has vectors X(k) and W (k) (and inherently Π(k)) available for

APPENDIX F 243

x

y

z

X

W

∆W

k

k

k

Wk+1

Figure F.2 Weight updating by the LMS

further calculation. For either the a priori or a posteriori approach, there is a need
to calculate W (k+1), which must be done before the time instant (k+1). Therefore,
speaking in terms of discrete time, it appears before (k + 1) and thus belongs to k,
but this is not strictly true, since W (k + 1) is not available at k. Reiterating this
idea, all the variables necessary for a posteriori techniques are shown in Figure F.1,
together with the notion of the time of their availability.

F.2.2 The Geometric Interpretation of A Posteriori Error Learning

For the sake of simplicity we treat only the linear feedforward case with only one
node. The equations which specify the algorithm can be written as

wi+1(k) = wi(k) + ηei(k)x(k), i = 1, . . . , L,

ei(k) = d(k) − xT(k)wi(k),

}
(F.1)

where w1(k) = w(k) and w(k +1) = wL+1(k). For L = 1 Equation (F.1) degenerates
into the LMS algorithm. From (F.1), it is obvious that the direction of the vectors
∆wi(k) is the same as the direction of the input vector x(k) (collinear). This is
further depicted in Figure F.2 (Widrow and Lehr 1990). As the LMS gives only an
approximate solution of the Wiener filtering problem, the quadratic surface defined
by e2(k) has a solution set which is a linear variety, instead of a single minimum.
Hence, the space of solution is a hyperplane (Schnaufer and Jenkins 1993), whose
dimension is one less that the space upon it rests, and vector x(k) is perpendicular
to the solution hyperplane S(k). Figure F.3 provides the geometric interpretation
of the relation between the LMS, NLMS and a posteriori (data-reusing) LMS. The
direction of vectors w is w(k) + span(x(k)) (Schnaufer and Jenkins 1993). As the
LMS algorithm is an approximative algorithm which uses instantaneous estimates

244 APPENDIX F

w (k)

w(k+1)

(k)w

(k)w(k)w

(k)w

LMS

e(k)>0

S(k)

NLMS

e(k)=0
lim

S(k)

e(k)<0

LMS

S(k)S(k)

w(k+1)

w(k+1) (k+1)w

i−> 8

e (k) = 0

Data reusing LMS

i

i

Figure F.3 Geometric interpretation of data-reusing techniques

instead of statistical expectations, the output error of a filter trained by LMS is
either positive (the weight update short of an optimal weight update) or negative
(the weight update exceeds the optimal weight update), which is shown in the top
two diagrams of Figure F.3. The NLMS algorithm, on the other hand is defined to
minimise the instantaneous output error (e(k) = 0), which is geometrically shown
in the bottom left diagram in the figure. The a posteriori (data-reuse) algorithms
start either from the situation described by e(k) > 0 or e(k) < 0, i.e. from either of
the top two diagrams in Figure F.3. The iterative weight updates then approach the
performance of normalised algorithms as the number of iterations increases, as shown
in the bottom right diagram in the figure. From Figure F.3, it is evident that repeating
a data-reusing technique for a sufficient number of times, the process approaches the
normalised (zero-error) solution.

Recurrent Neural Networks for Prediction
Authored by Danilo P. Mandic, Jonathon A. Chambers

Copyright c©2001 John Wiley & Sons Ltd
ISBNs: 0-471-49517-4 (Hardback); 0-470-84535-X (Electronic)

Appendix G

Contraction Mapping
Theorems

G.1 Fixed Points and Contraction Mapping Theorems

When numerically solving F : R → R for its zeros, i.e. to find an x∗ such that
F (x∗) = 0, a convenient approach is to rearrange F (x) = 0 into x = K(x) and
undertake the iteration (Dennis and Schnabel 1983),

xi+1 = K(xi), x0 chosen. (G.1)

If (G.1) converges to x∗, then, by continuity,

x∗ = lim
i→∞

K(xi) = K(x∗). (G.2)

Hence, x∗ is a fixed point of K and thus a zero of F .

G.1.1 Contraction Mapping Theorem in R

Theorem G.1.1. If

(i) x ∈ [a, b] ⇒ K(x) ∈ [a, b],

(ii) ∃γ < 1 such that |K(x) − K(y)| � γ|x − y|, ∀x, y ∈ [a, b],

then the equation x = K(x) has a unique solution x∗ ∈ [a, b] and the iteration

xi+1 = K(xi) (G.3)

converges to x∗ for any x0 ∈ [a, b].

Proof. Existence: From (i), we have a − K(a) � 0 and b − K(b) � 0, as shown in
Figure G.1. The intermediate value theorem (IVT) shows that there is some solution
x∗ ∈ [a, b] such that x∗ = K(x∗).

Uniqueness: If x̄ ∈ [a, b] is also a solution of (G.3), then

|x̄ − x∗| = |K(x̄) − K(x∗)| � γ|x̄ − x∗|. (G.4)

246 APPENDIX G

a bK(a) K(b)

Figure G.1 The contraction mapping

Since γ < 1, this is a contradiction unless x̄ ≡ x∗.
Convergence: We have

|xi − x∗| = |K(xi−1) − K(x∗)| � γ|xi−1 − x∗|. (G.5)

Thus |xi − x∗| � γi|x0 − x∗| and limi→∞ γi = 0. Hence {xi}
i−→ x∗.

Condition (ii) from Theorem G.1.1 is checked by showing that |K ′(x)| � γ < 1,
∀x ∈ (a, b). Namely the mean value theorem (MVT) shows that ∃ξ ∈ (a, b) such that

|K(x)−K(y)| = |K ′(ξ)(x−y)| = |K ′(ξ)||x−y| � γ|x−y|, x, y ∈ [a, b], ξ ∈ (a, b).
(G.6)

G.1.2 Contraction Mapping Theorem in R
N

Theorem G.1.2. Let M be a closed subset of R
N such that

(i) K : M → M,

(ii) ∃γ < 1 such that ‖K(x) − K(y)‖ � γ‖x − y‖, ∀x,y ∈ M,

then equation
x = K(x) (G.7)

has a unique solution x∗ ∈ M and the iteration

xi+1 = K(xi) (G.8)

converges to x∗ for any starting value x0 ∈ M.

G.2 Lipschitz Continuity and Contraction Mapping

We first give the definition of a Lipschitz continuous function.

Definition G.2.1. Let X be a complete metric space with metric d containing a
closed nonempty set Ω and let g : Ω → Ω. The function g is said to be Lipschitz
continuous with Lipschitz constant γ ∈ R if

∀x, y ∈ Ω, d[g(x), g(y)] � γd(x, y).

From Definition G.2.1 we differentiate the following cases.

(i) For 0 � γ < 1, g is a contraction mapping on Ω and γ defines the rate of
convergence.

(ii) For γ = 1, g is a nonexpansive mapping.

(iii) For γ > 1, g is a Lipschitz continuous mapping on Ω.

APPENDIX G 247

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

K(x) = (x+2/x)/2 y=x

x

K
(x

),
y

Fixed Point

Figure G.2 Babylonian iteration

The following application of the IVT gives an important criterion for the existence
of the fixed point.

Lemma G.2.2 (Brower’s Fixed Point Theorem (Devaney 1989)). Let Ω =
[a, b]N be a closed set of R

N and f : Ω → Ω be a continuous vector-valued function.
Then f has at least one fixed point in Ω.

The behaviour of state trajectories (orbits) in the vicinity of fixed points defines the
character of fixed points. For an asymptotically stable (or attractive) fixed point x∗ of
a function F , there exists a neighbourhood O(x∗) of x∗ such that limk→∞ F (xk) = x∗,
for all xk ∈ O(x∗). In this case, each eigenvalue λ of the Jacobian of F at x∗, is less
than unity in magnitude. Eigenvalues of the Jacobian of F which are greater than
unity in magnitude give rise to an expansion, whereas eigenvalues smaller than unity
provide a contraction. In the former case of F an expansion x∗ is a repulsive point or
repellor. If some eigenvalues of the Jacobian of F are greater and some smaller than
unity, x∗ is called a saddle point.

G.3 Historical Perspective

Evidence from clay tablets held within the Yale University Babylonian collection
suggests that iterative techniques for finding square roots go back several thousand
years (Kreith and Chakerian 1999). One such clay tablet depicts how to calculate the
diagonals of a square. Babylonians used a positional, base 60 number system. On this

248 APPENDIX G

0 1 2 3 4 5 6
0

1

2

3

4

5

6

K(x)=sqrt(2x+3)

y=x

Fixed Point x*=3

x

K
(x

),
y

Figure G.3 FPI solution for SQRT

tablet, 30
√

2 is calculated as 42 + 25
60 + 35

602 ≈ 42.426 389 geometrically via iteration of
doubled squares.

In terms of modern mathematics, the Babylonians employed an iterator

x = K(x) =
1
2

(
x +

2
x

)
(G.9)

so that successive applications of K(x), which start from x0 = 4.5, give x1 = K(x0) =
3
2 , x2 = K(x1) = 17

12 , x3 = K(x2) = 577
408 (Kreith and Chakerian 1999), as shown in

Figure G.2. The point of intersection of curves K(x) and y = x can be found by
solving 1

2 (x + 2/x) = x, which has the value x =
√

2 and is a fixed point of K and a
solution of K(x) = x.

The next example shows how to set up a fixed point iteration.

Example G.3.1. Find the roots of function F (x) = x2 − 2x − 3.

Solution. Roots of function F (x) = x2 − 2x − 3 can be found by rearranging x =
K(x) =

√
2x + 3. The roots of function F are −1 and 3. The FPI which started from

x0 = 4 gives the sequence of iterates 3.3116, 3.1037, 3.0344, 3.0114, 3.0038, 3.0013,
3.0004, 3.0001, 3.000, whereby x∗ = 3 is the fixed point and a solution of the equation.
The fixed point iteration is illustrated in Figure G.3.

Fixed point iterations for another two characteristic cases, namely an oscilla-
tory convergence and divergence are given, respectively, in Figure G.4(a) and Fig-
ure G.4(b). For the case depicted in Figure G.4(b), the value of the first derivative

APPENDIX G 249

−6 −5 −4 −3 −2 −1 0 1 2 3
−6

−5

−4

−3

−2

−1

0

1

2

x

K
(x

),
y

K(x)=3/(x−2)

y=x

Fixed Point x*=−1

(a) Oscillatory FPI for K(x) = 3/(x − 2)

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Fixed Point x*=3

x

K
(x

),
y

y=x

K(x)=(x2−3)/2

(b) A repellor for K(x) = (x2 − 3)/2

Figure G.4 FPI for an oscillatory case and the case of a repellor

250 APPENDIX G

of function K(x) = (x2 − 3)/2 is greater than unity for x > x∗ = 3. Hence, by CMT
(Theorem G.1.1), function K is an expansion and a fixed point iteration for starting
values x0 > 3 diverges. Notice, however, that an FPI with a starting value x0 < 3
would converge to fixed point x∗ = 3 by virtue of CMT. Hence, fixed point x∗ = 3
is an unstable fixed point of function K. For the case of function K(x) =

√
2x + 3

depicted in Figure G.3, an FPI which starts from x0 < 3 would still converge to fixed
point x∗ = 3 (|K ′(x)| < 1), hence point x∗ = 3 is a stable fixed point of function K.

Recurrent Neural Networks for Prediction
Authored by Danilo P. Mandic, Jonathon A. Chambers

Copyright c©2001 John Wiley & Sons Ltd
ISBNs: 0-471-49517-4 (Hardback); 0-470-84535-X (Electronic)

Appendix H

Linear GAS Relaxation

H.1 Relaxation in Linear Systems

The problem of global asymptotic stability (GAS) of an Nth-order time-variant dif-
ference equation,

y(k) = aT(k)y(k − 1) = a1(k)y(k − 1) + · · · + aN (k)y(k − N), (H.1)

is important in the theory of linear systems (Barnett and Storey 1970; Golub and Van
Loan 1996; Haykin 1996a; Kailath 1980; LaSalle 1986). Equation (H.1) represents an
autonomous system, in fact, it is a relaxation equation (Basar and Bernhard 1995)
which stems from a general linear system representation,

Y (k + 1) = A(k)Y (k) + B(k)u(k), (H.2)

for the zero exogenous input vector u(k) = 0, ∀k > 0 (Kailath 1980; LaSalle 1986).
The matrix form of Equation (H.1) now becomes

y(k + 1)
y(k)

...
y(k − N + 1)

 =

a1(k) a2(k) · · · aN (k)
1 0 · · · 0
...

...
. . .

...
0 · · · 1 0

y(k)
y(k − 1)

...
y(k − N)

or

Y (k + 1) = A(k)Y (k)

and

y(k + 1) = [1 0 · · · 0]Y (k + 1). (H.3)

The matrix A is a Frobenius matrix, which is a special form of the companion matrix.
The fundamental theorem of matrices (Horn and Johnson 1985; Wilkinson 1965)
states that every matrix A can be reduced by a similarity transformation to a sum
of Frobenius matrices (Ciarlet 1989; Wilkinson 1965). That is why it is important
to consider the stability results for the Frobenius matrix A (H.3), since a stability

252 APPENDIX H

0 5 10 15 20 25 30 35 40
−0.5

0

0.5

1

1.5

2

Number of Iteration

O
ut

pu
t y

(k
)

a=[0.2 0.15 0.05 0.2]

a=[0.7 0.1 0.05 0.05]

max(a)>1/N
max(a)<1/N

Figure H.1 The monotonic and nonmonotonic convergence

result of a general system Cx = y can be obtained through the stability result of
(H.3). Moreover, the analysis of convergence and stability of some learning algorithms
for adaptive systems can be undertaken using this approach (Mandic and Chambers
2000a). The following analysis gives the stability conditions for relaxation (H.1), for
systems with positive coefficients. The analysis of robust relaxation for nonlinear
dynamical systems embarks upon this result and can be found in Mandic and Cham-
bers (2000c). The bound on the size of the parameter vector for convergence in the
CMT sense is provided below (Mandic and Chambers 2000d). In order to preserve
contractivity of relaxation (H.1), we have

|y(k)| = |a1(k)y(k − 1) + · · · + aN (k)y(k − N)|
� a1|y(k − 1)| + · · · + aN |y(k − N)|
< (a1(k) + · · · + aN (k))|y(k − 1)|
� N max

ai(k), i=1,...,N
ai(k)|y(k − 1)|. (H.4)

From (H.4),

max
ai(k), i=1,...N

ai(k) >
1
N

⇔ ‖a(k)‖∞ >
1
N

.

APPENDIX H 253

Figure H.1 shows two cases, the strict aperiodic convergence and a pseudoperiodic
convergence. The solid line in Figure H.1 decays monotonically towards zero for lags
k > 4. The dashed line in Figure H.1 decays in an oscillatory way towards zero for
lags k > 4.

Observation H.1.1. The system (H.3) with the constraint ‖a(k)‖1 < 1 converges
towards zero in the fixed point iteration (FPI) sense, exhibiting linear convergence,
with the convergence rate ‖a(k)‖.

This is straightforward to show using results from Appendix G.

H.1.1 Stability Result for
∑m

i=1 ai = 1

Let us consider the case with constant parameter vector a = [a1, . . . , aN]T, where
‖a‖1 = 1. In that case, matrix A from (H.3) becomes a stochastic matrix (Golub and
Van Loan 1996; Lipschutz 1965; Stark and Woods 1986), since each of its rows is a
probability vector, and process (H.3) can be rewritten as

Y (k + 1) = AY (k) = A2Y (k − 1) = · · · = AkY (0), (H.5)

whereby the dynamics of (H.3) are fully described by its initial state Y (0) and the
system matrix A. Since the product of two stochastic matrices is a stochastic matrix,
there is a unique fixed vector t = [t1, . . . , tN]T such that (Golub and Van Loan 1996;
Lipschutz 1965)

tA = t. (H.6)

Vector t is a probability vector, i.e. ‖t‖1 = 1. Therefore, FPI gives

Ak =

a1 a2 · · · aN

1 0 · · · 0
...

...
. . .

...
0 · · · 1 0

k

k→∞−−−−→

t1 t2 · · · tN
t1 t2 · · · tN
...

...
. . .

...
t1 t2 · · · tN

 . (H.7)

Observation H.1.2 (see Mandic and Chambers 2000d). The process (H.1)
with the constant nonnegative coefficient vector a = [a1, . . . , aN]T, converges to

(i) |y∞| =
∣∣∣∣

N∑
i=1

tiy(k − i)
∣∣∣∣ � 0 for ‖a‖1 = 1,

(ii) y∞ = 0 for ‖a‖1 < 1,

from any finite initial state Y (0).

H.2 Examples

We next present some results which depict the need for a strict analysis of relaxation
type equations. The initial condition for all examples below was Y = [1 2]T.

254 APPENDIX H

0 5 10 15 20 25 30 35 40
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Number of iteration

O
ut

pu
t y

(k
)

(a) The output y(k)

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

y(k)

y(
k−

1)

(b) Convergence of Y in the phase plane

Figure H.2 Convergence of the process Y (k) = AY (k − 1)

APPENDIX H 255

0 5 10 15 20 25 30 35 40
2.04

2.06

2.08

2.1

2.12

2.14

2.16

2.18

2.2

Number of iteration

||
Y

 (
k)

|| 2

(c) Convergence of Y in the ‖ · ‖2 norm

0 5 10 15 20 25 30 35 40
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Number of iteration

1
an

d
∞

 n
or

m
s

of
 Y

(k
)

1 − norm

∞ − norm

(d) Convergence of Y in the ‖ · ‖1 and ‖ · ‖∞ norm

Figure H.2 Cont.

256 APPENDIX H

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

Number of iteration

O
ut

pu
t y

(k
)

(a) The output y(k)

0 0.5 1 1.5
0

0.5

1

1.5

y(k)

y(
k−

1)

(b) Convergence of Y in the phase plane

Figure H.3 Convergence of the process Y (k) = AY (k − 1)

APPENDIX H 257

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

y(k)

||
Y

 (
k)

|| 2

(c) Convergence of Y in the ‖ · ‖2 norm

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

y(k)

1
an

d
∞

 n
or

m
s

of
 Y

(k
)

∞ − norm

1 − norm

(d) Convergence of Y in the ‖ · ‖1 and ‖ · ‖∞ norm

Figure H.3 Cont.

258 APPENDIX H

0 5 10 15 20 25 30 35 40
−2

−1.5

−1

−0.5

0

0.5

1

1.5

Number of iteration

O
ut

pu
t y

(k
)

(a) The output y(k)

−2 −1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

y(k)

y(
k−

1)

(b) Convergence of Y in the phase plane

Figure H.4 Convergence of the process Y (k) = AY (k − 1)

APPENDIX H 259

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of iteration

||
Y

 (
k)

|| 2

(c) Convergence of Y in the ‖ · ‖2 norm

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

Number of iteration

1
an

d
∞

 n
or

m
s

of
 Y

(k
)

1 − norm

∞ − norm

(d) Convergence of Y in the ‖ · ‖1 and ‖ · ‖∞ norm

Figure H.4 Cont.

260 APPENDIX H

0 5 10 15 20 25 30 35 40
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Number of iteration

O
ut

pu
t y

(k
)

(a) The output y(k)

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

y(k)

y(
k−

1)

(b) Convergence of Y in the phase plane

Figure H.5 Convergence of the process Y (k) = AY (k − 1)

APPENDIX H 261

0 5 10 15 20 25 30 35 40
0.5

1

1.5

2

Number of iteration

||
Y

 (
k)

|| 2

(c) Convergence of Y in the ‖ · ‖2 norm

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

Number of iteration

1
an

d
∞

 n
or

m
s

of
 Y

(k
)

∞ − norm

1 − norm

(d) Convergence of Y in the ‖ · ‖1 and ‖ · ‖∞ norm

Figure H.5 Cont.

262 APPENDIX H

(a) For a system described by coefficients a1 = 0.15, a2 = 0.85, the relaxation is
shown in Figure H.2. The output converges oscillatorily towards a point, as
shown in Figure H.2(a). The geometric convergence of points Y (k) in the phase
plane is oscillatory towards a point, forming a line in the plane (Figure H.2(b)).
The 2 norm, shown in Figure H.2(c) and the 1 and ∞ norm, shown in Fig-
ure H.2(d) all exhibit a relaxive behaviour.

(b) For a system described by coefficients a1 = 0.15, a2 = 0.65, the corresponding
relaxation diagrams are shown in Figure H.3. Here, ‖a‖1 < 1, and the elements
of a are positive. Relaxation in the 1 and 2 norm is aperiodic, whereas the
output and phase plane convergence are oscillatory.

(c) For a system described by coefficients a1 = 0.15, a2 = −0.85, the relaxation
diagrams are shown in Figure H.4. Here, ‖a‖1 = 1, but not all the elements of
a are positive. There is a clear difference between the relaxation behaviour of
the output and the phase space diagram (Figure H.4(a) and H.4(b)) and the
convergence in the norm (Figure H.4(c) and H.4(d)).

(d) For a system described by coefficients a1 = −0.15, a2 = 0.85, the convergence is
shown in Figure H.5. Here, ‖a‖1 = 1, but not all elements of a are nonnegative.
The process (H.1) converges in all the norms (Figure H.5(c) and H.5(d)), but
not in either the output or the geometric sense in the phase plane (Figure H.5(a)
and H.5(b)), where it achieves its limit cycle, for there are two distinct points,
with the same norm, to which the process converges.

Hence the following observation.

Observation H.2.1. For the system (H.1), with ‖a‖1 = 1, convergence in the norm
does not imply convergence in the geometric sense.

These situations depict the need for the use of alternative techniques for the analysis
of relaxation and learning algorithms for nonlinear systems, such as the use of CMT
and FPI as introduced in Chapter 7 and Appendix G (Mandic 2000b,c).

Recurrent Neural Networks for Prediction
Authored by Danilo P. Mandic, Jonathon A. Chambers

Copyright c©2001 John Wiley & Sons Ltd
ISBNs: 0-471-49517-4 (Hardback); 0-470-84535-X (Electronic)

Appendix I

The Main Notions in Stability
Theory

The roots of stability theory in physics and engineering can be traced down to Alexan-
der Mikhailovitch Lyapunov (1857–1918). He developed the so-called ‘Lyapunov’s sec-
ond method’ in his PhD thesis ‘The General Problem of the Stability of Motion’ in
18921. The following are definitions of notions from the stability theory. They are
similar to those given in Sastry and Bodson (1989), but rearranged and updated due
to the specific requirements of this work. Let us consider the following differential
equation:

ẋ = f(t, x), x(t0) = x0. (I.1)

Definition I.1.2 (autonomous systems). The system defined by (I.1) is called
autonomous or time-invariant, if f does not depend on t.

Definition I.1.3 (linearity). The system is said to be linear if f(t, x) = A(t)x for
some A : R

+ → R
n×n.

The properties of systems defined on a closed ball Bh with radius h centred at
0 ∈ R

n, are considered

(i) locally, if true for all x0 ∈ Bh,

(ii) globally, if true for all x0 ∈ R
n,

(iii) in any closed ball, if true for all x0 ∈ Bh, with h arbitrary,

(iv) uniformly, if true for all t0 > 0.

Definition I.1.4 (Lipschitz function). The function f is said to be Lipschitz in x
if, for some h > 0, there exists l � 0 such that

‖f(t, x1) − f(t, x2)‖ � L‖x1 − x2‖ (I.2)

for all x1, x2 ∈ Bh, t � 0. The constant L is called the Lipschitz constant.

1 Lyapunov was interested in the problem of equilibrium figures of a rotating liquid, which was
also treated by Maclaurin, Jacobi and Laplace.

264 APPENDIX I

Definition I.1.5 (equilibrium). Point x is called an equilibrium point of (I.1), if
f(t, x) = 0 for all t � 0.

Definition I.1.6 (stability). Point x = 0 is called a stable equilibrium point of
(I.1), if, for all t0 � 0 and ε > 0, there exists δ(t0, ε) such that

‖x0‖ < δ(t0, ε) ⇒ ‖x(t)‖ < ε, for all t � t0, (I.3)

where x(t) is the solution of (I.1) with initial conditions x0 and t0.

Definition I.1.7 (uniform stability). Point x = 0 is called a uniformly stable
equilibrium point of (I.1) if, in the preceding definition, δ can be chosen independent
of t0.

In other words, the equilibrium point is not growing progressively less stable with
time.

Definition I.1.8 (asymptotic stability). Point x = 0 is called an asymptotically
stable equilibrium point if

(a) x = 0 is a stable equilibrium point,

(b) x = 0 is attractive, i.e. for all t0 � 0, there exists δ(t0), such that

‖x0‖ < δ ⇒ lim
t→∞

‖x(t)‖ = 0. (I.4)

Definition I.1.9 (uniform asymptotic stability). Point x = 0 is called a uni-
formly asymptotically stable equilibrium point of (I.1) if

(a) x = 0 uniformly stable,

(b) trajectory x(t) converges to 0 uniformly in t0.

The previous definitions are local, since they concern neighbourhoods of the equi-
librium point. The following definition treats global asymptotic stability (GAS).

Definition I.1.10 (global asymptotic stability). Point x = 0 is called a globally
asymptotically stable equilibrium point of (I.1), if it is asymptotically stable and
limt→∞ ‖x(t)‖ = 0, for all x0 ∈ R

n.

Global uniform asymptotic stability is defined likewise.

Definition I.1.11 (exponential stability). Point x = 0 is called an exponentially
stable equilibrium point of (I.1) if there exist m, α > 0, such that the solution x(t)
satisfies

‖x(t)‖ � me−α(t−t0)‖x0‖ (I.5)

for all x0 ∈ Bh, t � t0 � 0. The constant α is called the rate of convergence.

By GAS we mean that the system is stable for any x0 ∈ R
n. Exponential stability

in any closed ball is similar except that m and α may be functions of h. Exponential
stability is uniform with respect to t0.

Recurrent Neural Networks for Prediction
Authored by Danilo P. Mandic, Jonathon A. Chambers

Copyright c©2001 John Wiley & Sons Ltd
ISBNs: 0-471-49517-4 (Hardback); 0-470-84535-X (Electronic)

Appendix J

Deseasonalising Time Series

Forecasting methods which do not account for seasonal characteristics are likely to
perform poorly when applied to time series that contain such components. We present
three different methods of deseasonalising time series – each method being appropriate
for different forms of seasonal behaviour.

The first method assumes that the seasonal component of the time series is constant.
The series is written as

xk = mk + sk + yk, (J.1)

where mk is the trend component, sk is the seasonal component and yk is the random
noise component. It is desirable to remove the trend and seasonal components and
then, if the remaining random noise component is linear and stationary, it can be
fitted by an ARIMA model. Denote the length of the time series by N and the period
of the seasonal component by d. In the air pollutant series, for instance, two seasonal
effects would be expected; one with a period of a day (24 hours), the other with period
of a year (365 × 24 = 8760 hours).

A moving average is applied to the series to eliminate the seasonal component. If
d is even let d = 2q, otherwise let d = 2q + 1. Let

m̂k = (0.5xk−q + xk−q+1 + · · · + xk+q−1 + 0.5xk+q) if d is even,

m̂k = (xk−q + xk−q+1 + · · · + xk+q−1 + xk+q) if d is odd.

For each hour, the seasonal component can be estimated by the average deviation

wc =
1

N∑

k=1

I((k − c) mod d = 0)

N∑

k=1

I((k − c) mod d = 0)(xk − m̂k),

where c = 1, . . . , d and I(·) is the indicator function, I(x) = 1 if x is true, otherwise
I(x) = 0. To ensure the seasonal components sc sum to zero, they are calculated as

ŝc = wc − 1
d

d∑

i=1

wi

266 APPENDIX J

for c = 1, . . . , d. The series ŝc is replicated approximately N/d times, i.e. until it is of
the same length as xk, and the deseasonalised series is defined to be

dk = xk − ŝk.

The trend of the deseasonalised series dk can now be estimated simply with a poly-
nomial fit via least squares.

The second method of deseasonalising differs from the previous one in that it is
no longer assumed that the seasonality component is constant. This is known as
SARIMA modelling, or seasonal ARIMA (Box and Jenkins 1976). In terms of a season
with period 24 hours, it is reasonable to expect that the behaviour of the series at
a particular time is closely related to the behaviour of the series at the same time
during the previous day, as well as being related to the behaviour of the series during
the hour immediately preceding. Thus, a multiplicative model is used, involving a
component which is a standard ARIMA model with parameters p, d and q, and a
seasonal component, given by

zk =
P∑

i=1

aizk−i∗S +
Q∑

i=1

biεk−i∗S + εk, (J.2)

where zk = ∇Dxk. This model is written as

(p, d, q) × (P, D, Q)S ,

where S is the period of seasonality.
Finally, when it is suspected that there is an approximately sinusoidal seasonal

behaviour present in the time series – a likely scenario in air pollutant measurements
given the interaction between climate and air pollutants and the known result that
temperature approximately follows a sine wave with period one year – the sinusoidal
component can be removed directly. This is done via the following filter

yk = (1 − aB + B2)xk, (J.3)

where a = 2 cos(2π/b) and b = 24 × 365, the number of measurements taken in one
year; B is the backshift operator, defined by

Bj(xk) = xk−j .

The result (J.3) follows from the use of the Z-transform to model the sine wave and
find its inverse, details of which can be found in many signal processing texts (see,
for example, Vaidyanathan and Mitra 1987).

References

Recurrent Neural Networks for Prediction
Authored by Danilo P. Mandic, Jonathon A. Chambers

Copyright c©2001 John Wiley & Sons Ltd
ISBNs: 0-471-49517-4 (Hardback); 0-470-84535-X (Electronic)

Agarwal A and Mammone RJ 1993 Long-term memory for neural networks. In Artificial
Neural Networks for Speech and Vision (ed. Mammone RJ), pp. 171–193. Chapman &
Hall.

Aguirre LA 2000 A nonlinear dynamical approach to system identification. IEEE Circuits
Systems Soc. Newslett. 1(2), 10–23.

Ahmad S, Tesauro G and He Y 1990 Asymptotic convergence of backpropagation: numerical
experiments. In Advances in Neural Information Processing Systems 2 (ed. Touretzky
DS), pp. 606–613. Morgan Kaufmann.

Alippi C and Piuri V 1996 Experimental neural networks for prediction and identification.
IEEE Trans. Instrument. Measurement 45, 670–676.

Al-Ruwaihi KM 1997 CMOS analogue neurone circuit with programmable activation func-
tions utilising MOS transistors with optimised process/device parameters. IEE Proc. Cir-
cuits Devices Systems 144, 318–322.

An PE, Brown M and Harris CJ 1994 Aspects of instantaneous on-line learning rules. In
Proc. Int. Conf. on Control, vol. I, pp. 646–651.

Anderson BDO, Bitmead RR, Johnson Jr CR, Kokotovic PV, Kosut RL, Mareels IMY, Praly
L and Riedle BD 1986 Stability of Adaptive Systems: Passivity and Averaging Analysis.
MIT Press.

Apostol TM 1997 Modular Functions and Dirichlet Series in Number Theory, 2nd edn.
Springer.

Arena P, Fortuna L, Muscato G and Xibilia MG 1998a Neural Networks in Multidimensional
Domains: Fundamentals and New Trends in Modelling and Control. Springer.

Arena P, Fortuna L and Xibilia MG 1998b On the capability of neural networks. In Proc.
IEEE Int. Conf. on Circuits and Systems, vol. 4, pp. 1271–1274.

Aristotle 1975 Posterior Analytics (translated in English by J Barnes). Clarendon Press,
Oxford.

Attali JG and Pages G 1997 Approximations of functions by a multilayer perceptron: a new
approach. Neural Networks 10, 1069–1081.

Bailer-Jones CA, MacKay DJC and Whiters PJ 1998 A recurrent neural network for mod-
elling dynamical systems. Network: Computation in Neural Systems 9, 531–547.

Baldi P and Atiya AF 1994 How delays affect neural dynamics and learning. IEEE Trans.
Neural Networks 5, 612–621.

Baltersee J and Chambers JA 1998 Non-linear adaptive prediction of speech signals using a
pipelined recurrent neural network. IEEE Trans. Signal Processing 46, 2207–2216.

Barnett S and Storey C 1970 Matrix Methods in Stability Theory. Nelson.
Barron AR 1993 Universal approximation bounds for superpositions of a sigmoidal function.

IEEE Trans. Information Theory 39, 930–945.
Basaglia A, Fornaciari W and Salice F 1995 Behaviour-driven minimal implementation of

digital ANNs. In Proc. Int. Conf. on Neural Networks, vol. 4, pp. 1644–1649.

268 REFERENCES

Basar T and Bernhard P 1995 H∞-Optimal Control and Relaxed Minimax Design Problems.
Birkhäuser.

Bauer P, Mansour M and Duran J 1993 Stability of polynomials with time-varying coeffi-
cients. IEEE Trans. Circuits and Systems. I. Fundamental Theory and Applications 40,
423–426.

Beiu V 1998 On Kolmogorov’s superpositions and Boolean functions. In Proc. 5th Brazilian
Symp. on Neural Networks, pp. 55–60.

Bellman R 1961 Adaptive Control Processes: A Guided Tour. Oxford University Press.
Bengio Y 1995 Neural Networks for Speech and Sequence Recognition. International Thomson

Publishing.
Bengio Y, Simard P and Frasconi P 1994 Learning long-term dependencies with gradient

descent is difficult. IEEE Trans. Neural Networks 5, 157–166.
Benvenuto N and Piazza F 1992 On the complex backpropagation algorithm. IEEE Trans.

Signal Processing 40, 967–969.
Bershad NJ 1986 Analysis of the normalised LMS algorithm with Gaussian inputs. IEEE

Trans. Acoustics Speech Signal Processing ASSP-34 :793–806.
Bershad NJ, McLaughlin S and Cowan CFN 1990 Performance comparison of RLS and LMS

algorithms for tracking a first order Markov communications channel. In Proc. Int. Symp.
on Circuits and Systems, vol. 1, pp. 266–270.

Bershad NJ, Shynk JJ and Feintuch PL 1993a Statistical analysis of the single-layer back-
propagation algorithm. Part I. Mean weight behaviour. IEEE Trans. Signal Processing
41, 573–582.

Bershad NJ, Shynk JJ and Feintuch PL 1993b Statistical analysis of the single-layer back-
propagation algorithm. Part II. MSE and classification performance. IEEE Trans. Signal
Processing 41, 583–591.

Beule D, Herzel H, Uhlmann E, Kruger J and Becker F 1999 Detecting nonlinearities in time
series of machining processes. Proc. American Control Conf., pp. 694–698.

Bharucha-Reid AT 1976 Fixed point theorems in probabilistic analysis. Bull. Am. Math.
Soc. 82, 641–657.

Billings SA 1980 Identification of nonlinear systems—a survey. IEE Proc. D127(6), 272–285.
Billings SA and Voon WSF 1986 Correlation based model validity tests for non-linear models.

Int. J. Control 44, 235–244.
Billings SA, Jamaluddin HB and Chen S 1992 Properties of neural networks with applications

to modelling non-linear dynamical systems. Int. J. Control 55, 193–224.
Birkett AN and Goubran RA 1997 Nonlinear adaptive filtering with FIR synapses and adap-

tive activation functions. In Proc. Int. Conf. on Acoustics, Speech and Signal Processing
(ICASSP’97), pp. 3321–3324.

Blondel VD and Tsitsiklis JN 2000 A survey of computational complexity results in systems
and control. Automatica 36, 1249–1274.

Box GEP and Jenkins GM 1970 Time Series Analysis: Forecasting and Control. Holden-Day.
Box GEP and Jenkins GM 1976 Time Series Analysis: Forecasting and Control, 2nd edn.

Holden-Day.
Brockwell PJ and Davis RA 1991 Time Series: Theory and Methods. Springer, New York.
Burr DJ 1993 Artificial neural networks: a decade of progress. In Artificial Neural Networks

for Speech and Vision (ed. Mammone RJ). Chapman & Hall.
Casdagli MC and Weigend AS 1993 Exploring the continuum between deterministic and

stochastic modeling. In Time Series Prediction: Forecasting the Future and Understanding
the Past (ed. Weigend AS and Gershenfeld NA), pp. 347–366. Addison Wesley.

Chambers JA, Sherliker W and Mandic DP 2000 A normalised gradient algorithm for an
adaptive recurrent perceptron. In Proc. Int. Conf. on Acoustics, Speech and Signal Pro-
cessing (ICASSP-2000), vol. I, pp. 396–399.

REFERENCES 269

Chang P-R and Hu J-T 1997 Optimal nonlinear adaptive prediction and modeling of MPEG
video in ATM networks using pipelined recurrent neural networks. IEEE J. Selected Areas
Commun. 15, 1087–1100.

Chen C and Aihara K 1997 Chaos and asymptotical stability in discrete-time neural net-
works. Physica D104(3–4):286–325.

Chen S and Billings SA 1989 Representations of non-linear systems: the NARMAX model.
Int. J. Control 49, 1013–1032.

Chen T 1997 The past, present, and future of neural networks for signal processing. IEEE
Signal Processing Mag. 14(6), 28–48.

Chon KH and Cohen RJ 1997 Linear and nonlinear ARMA model parameter estimation
using an artificial neural network. IEEE Trans. Biomedical Engng 44(3), 168–174.

Chon KH, Holstein-Rathlou N-H, Marsh DJ and Marmarelis VZ 1998 Comparative non-
linear modeling of renal autoregulation in rats: Volterra approach versus artificial neural
networks. IEEE Trans. Neural Networks 9, 430–435.

Chon KH, Hoyer D, Armoundas AA, Holstein-Rathlou N-H and Marsh DJ 1999 Robust non-
linear autoregressive moving average model parameter estimation using stochastic recur-
rent artificial neural networks. Ann. Biomed. Engng 27, 538–547.

Ciarlet PG 1989 Introduction to numerical linear algebra and optimization. Cambridge Uni-
versity Press.

Cichocki A and Unbehauen R 1993 Neural Networks for Optimization and Signal Processing.
Wiley.

Clarke TL 1990 Generalization of neural networks to the complex plane. In Proc. Int. Joint
Conf. on Neural Networks (IJCNN90), vol. II, pp. 435–440.

Connor J, Atlas LE and Martin DR 1992 Recurrent networks and NARMA modeling. In
Advances in Neural Information Processing Systems 4 (ed. Moody JE, Hanson SJ and
Lippmann RP), pp. 301–308. Morgan Kaufmann.

Connor JT, Martin RD and Atlas LE 1994 Recurrent neural networks and robust time series
prediction. IEEE Trans. Neural Networks 5, 240–254.

Cotter NE 1990 The Stone–Weierstrass theorem and its applications to neural networks.
IEEE Trans. Neural Networks 1, 290–295.

Cybenko G 1989 Approximation by superpositions of a sigmoidal function. Math. Control
Signals Systems 2, 303–314.

deFigueiredo RJP 1997 Optimal neural network realisations of nonlinear FIR and IIR filters.
In Proc. IEEE Int. Symp. on Circuits and Systems, pp. 709–712.

Dennis Jr JE and Schnabel RB 1983 Numerical Methods for Unconstrained Optimization
and Nonlinear Equations. Prentice-Hall Series in Computational Mathematics, 1983.

DeRusso PM, Roy RJ, Close CM and Desrochers AA 1998 State Variables for Engineers,
2nd edn. Wiley.

Devaney RL 1989 An Introduction to Chaotic Dynamical Systems. Addison-Wesley.
Devaney RL 1999 The Mandelbrot set and the Farey tree, and the Fibonacci sequence. Am.

Math. Mon. 106, 289–302.
Diaconis P and Freedman D 1999 Iterated random functions. SIAM Rev. 41, 719–741.
Dillon RM and Manikopoulos CN 1991 Neural net nonlinear prediction for speech data.

Electron. Lett. 27(10), 824–826.
Dogaru R, Murgan AT, Ortmann S and Glesner M 1996 Searching for robust chaos in discrete

time neural networks using weight space exploration. In Proc. IEEE Int. Conf. on Neural
Networks, vol. 2, pp. 688–693.

Douglas SC 1994 A family of normalized LMS algorithms. IEEE Signal Processing Lett. 1(3),
49–51.

Douglas SC 1997 Adaptive filters employing partial updates. IEEE Trans. Circuits and
Systems. II. Analog and Digital Signal Processing 44, 209–216.

270 REFERENCES

Douglas SC and Pan W 1995 Exact expectation analysis of the LMS adaptive filter. IEEE
Trans. Signal Processing 43, 2863–2871.

Douglas SC and Rupp M 1997 A posteriori updates for adaptive filters. In Conf. Record 31st
Asilomar Conf. on Signals, Systems and Computers, vol. 2, pp. 1641–1645.

Draye J-PS, Pavisic DA, Cheron GA and Libert GA 1996 Dynamic recurrent neural networks:
A dynamical analysis. IEEE Trans. Systems Man. Cybernetics. Part B. Cybernetics 26,
692–706.

Dreyfus G and Idan Y 1998 The canonical form of nonlinear discrete-time models. Neural
Computation 10, 133–136.

Dror G and Tsodyks M 2000 Chaos in neural networks with dynamics synapses. Neurocom-
puting 32–33:365–370.

Duch W and Jankowski N 1999 Survey of neural transfer functions. Neural Computing Surv.
2, 163–212.

Dumitras A and Lazarescu V 1997 On viewing the transform performed by a hidden layer in a
feedforward ANN as a complex Möbius mapping. In Proc. Int. Conf. on Neural Networks,
vol. 2, pp. 1148–1151.

Eberhart RC 1990 Standardization of neural network terminology. IEEE Trans. Neural Net-
works 1, 244–245.

Elliott DL 1993 A better activation function for artificial neural networks. Tech. Rep. TR
93-8. Institute for Systems Research, University of Maryland.

Elman JL 1990 Finding structure in time. Cognitive Sci. 14, 179–211.
Elsken T 1999 Smaller nets may perform better: special transfer functions. Neural Networks

12, 627–645.
Ermentrout B 1998 Neural systems as spatio-temporal pattern-forming systems. Rep. Prog.

Phys. 61, 353–430.
Fiesler E 1994 Neural network formalization. Computer Standards Interfaces 16(3), 231–239.
Fiesler E and Beale R (eds) 1997 Handbook of Neural Computation. Institute of Physics

Publishing and Oxford University Press.
Forti M and Tesi A 1994 Conditions for global stability of some classes of nonsymmetric

neural networks. In Proc. 33rd Conf. on Decision and Control, pp. 2488–2493.
Foxall R, Krcmar I, Cawley G, Dorling S and Mandic DP 2001 On nonlinear processing of air

pollution time series. In Proc. Int. Conf. on Artificial Neural Nets and Genetic Algorithms,
ICANNGA-2001, pp. 477–480.

Frasconi P, Gori M and Soda G 1992 Local feedback multilayered networks. Neural Compu-
tation 4, 120–130.

Fukushima K 1975 Cognitron: a self-organized multilayered neural network. Biol. Cybernet.
23, 121–136.

Funahashi K 1989 On the approximate realisation of continuous mappings by neural net-
works. Neural Networks 2, 183–192.

Funahashi K and Nakamura Y 1993 Approximation of dynamical systems by continuous
time recurrent neural networks. Neural Networks 6, 801–806.

Gemon S, Bienenstock E and Doursat R 1992 Neural networks and the bias/variance
dilemma. Neural Computation 4(1), 1–58.

Gent CR and Sheppard CP 1992 Predicting time series by a fully connected neural network
trained by backpropagation. Computing Control Engng J., pp. 109–112.

Georgiou GM and Koutsougeras C 1992 Complex domain backpropagation. IEEE Trans.
Circuits and Systems. II. Analog and Digital Signal Processing 39, 330–334.

Gershenfeld NA and Weigend AS 1993 The future of time series: learning and understand-
ing. In Time Series Prediction: Forecasting the Future and Understanding the Past (ed.
Weigend AS and Gershenfeld NA), pp. 1–70. Addison-Wesley.

Gholkar VA 1990 Mean square convergence analysis of LMS algorithm. Electron. Lett. 26,
1705–1706.

REFERENCES 271

Gill PE, Murray W and Wright MH 1981 Practical Optimization. Academic Press, London.
Girosi F and Poggio T 1989a Networks and the best approximation property. Tech. Rep. TR

1164. Artificial Intelligence Laboratory, Massachusetts Institute of Technology.
Girosi F and Poggio T 1989b Representation properties of networks: Kolmogorov’s theorem

is irrelevant. Neural Computation 1, 465–469.
Golub GH and Van Loan CF 1996 Matrix Computation, 3rd edn. The Johns Hopkins Uni-

versity Press.
Gorban AN and Wunsch II DC 1998 The general approximation theorem. In Proc. IEEE

World Congress on Computational Intelligence, vol. 2, pp. 1271–1274.
Grossberg S 1974 Classical and instrumental learning by neural networks. Prog. Theoret.

Biol. 3, 51–141.
Guarnieri S, Piazza F and Uncini A 1999 Multilayered feedforward networks with adaptive

spline activation function. IEEE Trans. Neural Networks 10, 672–683.
Guo L and Ljung L 1995 Exponential stability of general tracking algorithms. IEEE Trans.

Automatic Control 40, 1376–1387.
Guo L, Ljung L and Wang G-J 1997 Necessary and sufficient conditions for stability of LMS.

IEEE Trans. Automatic Control 42, 761–770.
Haber R and Unbehauen H 1990 Structure identification of nonlinear dynamic systems—a

survey on input/output approaches. Automatica 26, 651–677.
Hakim NZ, Kaufman JJ, Cerf G and Meadows HE 1991 Volterra characterization of neural

networks. In Conf. Record 25th Asilomar Conf. on Signals, Systems and Computers, vol. 2,
pp. 1128–1132.

Han JY, Sayeh MR and Zhang J 1989 Convergence and limit points of neural network
and its applications to pattern recognition. IEEE Trans. Systems Man. Cybernetics 19,
1217–1222.

Hassibi B, Sayed AH and Kailath T 1996 H∞ optimality of the LMS algorithm. IEEE Trans.
Signal Processing 44, 267–280.

Hayes M 1997 Statistical Signal Processing. Wiley.
Haykin S 1994 Neural Networks: A Comprehensive Foundation. Prentice-Hall.
Haykin S 1996a Adaptive Filter Theory, 3rd edn. Prentice-Hall.
Haykin S 1996b Neural networks expand SP’s horizons. IEEE Signal Processing Mag. 13(2),

24–49.
Haykin S 1999a Lessons on adaptive systems for signal processing, communications, and

control. IEEE Signal Processing Mag. 16(5), 39–48.
Haykin S 1999b Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice-Hall.
Haykin S (ed.) 2000 Unsupervised Adaptive Filtering, vol. 1: Blind Separation. Wiley.
Haykin S and Li L 1995 Nonlinear adaptive prediction of nonstationary signals. IEEE Trans.

Signal Processing 43, 526–535.
Haykin S and Principe J 1998 Using neural networks to dynamically model chaotic events

such as sea clutter. IEEE Signal Processing Mag. 15(3), 66–81.
Haykin S, Sayed AH, Zeidler JR, Yee P and Wei PC 1997 Adaptive tracking of linear time-

variant systems by extended RLS algorithms. IEEE Trans. Signal Processing 45, 1118–
1128.

Hebb DO 1949 The Organization of Behaviour. Wiley.
Hecht-Nielsen R 1987 Kolmogorov’s mapping neural networks existence theorem. In Proc.

Int. Joint Conf. on Neural Networks, vol. 3, pp. 11–14.
Helmke U and Williamson RC 1995 Neural networks, rational functions, and realisation

theory. Math. Control Signals Systems 8, 27–49.
Hertz J, Krogh A and Palmer RG 1991 Introduction to the Theory of Neural Computation

Addison-Wesley.
Hilbert D 1901–1902 Mathematical problems. Bull. Am. Math. Soc. 8, 437–479.

272 REFERENCES

Hlavacek I and Krizek M 1998 A posteriori error estimates for three-dimensional axisym-
metric elliptic problems. In Finite Element Methods (ed. Krizek M, Neittaanmaki P and
Stenberg R), pp. 147–154. Marcel Dekker.

Hoehfeld M and Fahlman SE 1992 Learning with limited numerical precision using the
cascade-correlation algorithm. IEEE Trans. Neural Networks 3, 602–611.

Hopfield JJ and Tank DW 1985 ‘Neural’ computation of decisions in optimisation problems.
Biol. Cybernetics 52, 141–152.

Horn RA and Johnson CA 1985 Matrix Analysis. Cambridge University Press.
Hornik K 1990 Approximation capabilities of multilayer feedforward networks. Neural Net-

works 4, 251–257.
Hornik K 1993 Some new results on neural network approximation. Neural Networks 8,

1069–1072.
Hornik K, Stinchcombe M and White H 1989 Multilayer feedforward networks are universal

approximators. Neural Networks 2, 359–366.
Hornik K, Stinchcombe M and White H 1990 Universal approximation of an unknown map-

ping and its derivatives using multilayer feedforward network. Neural Networks 3, 551–560.
Hunt KJ, Sbarbaro D, Zbikowski R and Gawthrop PJ 1992 Neural networks for control

systems—a survey. Automatica 28, 1083–1112.
Hwang K and Briggs FA 1986 Computer Architectures and Parallel Processing. McGraw-Hill.
Ibnkahla M, Bershad NJ, Sombrin J and Castanie F 1998 Neural network modelling and

identification of nonlinear channels with memory: algorithms, applications, and analytic
models. IEEE Trans. Signal Processing 46, 1208–1220.

Iiguni Y and Sakai H 1992 A real-time learning algorithm for a multilayered neural network
based on the extended Kalman filter. IEEE Trans. Signal Processing 40, 959–966.

Jacobs RA 1988 Increased rates of convergence through learning rate adaptation. Neural
Networks 1, 295–307.

Jenkins WK, Hull AW, Strait JC, Schnaufer BA and Li X 1996 Advanced Concepts in
Adaptive Signal Processing. Kluwer.

Jin L and Gupta MM 1996 Globally asymptotical stability of discrete-time analog neural
networks. IEEE Trans. Neural Networks 7, 1024–1031.

Jin L, Nikiforuk PN and Gupta MM 1994 Absolute stability conditions for discrete-time
recurrent neural networks. IEEE Trans. Neural Networks 5, 954–964.

Jones LK 1990 Constructive approximations for neural networks by sigmoidal functions.
Proc. IEEE 78, 1586–1589.

Jordan MI 1986 Serial order: a parallel distributed processing approach. Tech. Rep. TR-8604,
UC San Diego, Institute for Cognitive Science.

Jury EI 1978 Stability of multidimensional scalar and matrix polynomials. Proc. IEEE 66,
1018–1047.

Kailath T 1980 Linear Systems. Prentice-Hall.
Kailath T, Sayed AH and Hassibi B 2000 Linear Estimation. Prentice-Hall.
Kainen PC, Kurkova V and Vogt A 1999 Approximation by neural networks is not continu-

ous. Neurocomputing 29, 47–56.
Kang HW, Cho YS and Youn DH 1998 Adaptive precompensation of Wiener systems. IEEE

Trans. Signal Processing 46, 2825–2829.
Katsuura H and Sprecher DA 1994 Computational aspects of Kolmogorov’s superposition

theorem. Neural Networks 115, 455–461.
Kay SM 1993 Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice-

Hall International.
Khalaf AAM and Nakayama K 1998 A cascade form predictor of neural and FIR filters and

its minimum size estimation based on nonlinearity analysis of time series. IEICE Trans.
Fundamentals E81A(3), 364–373.

REFERENCES 273

Khalaf AAM and Nakayama K 1999 A hybrid nonlinear predictor: analysis of learning process
and predictability for noisy time series. IEICE Trans. Fundamentals E82A(8), 1420–1427.

Khotanzad A and Lu J 1990 Non-parametric prediction of AR processes using neural net-
works. In Proc. Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP-90),
pp. 2551–2555.

Kim MS and Guest CC 1990 Modification of backpropagation networks for complex-valued
signal processing in frequency domain. In Proc. Int. Joint Conf. on Neural Networks
(IJCNN90), vol. III, pp. 27–31.

Kim S-S 1998 Time-delay recurrent neural network for temporal correlations and prediction.
Neurocomputing 20, 253–263.

Kirkpatrick S, Gelatt CD and Vecchi MP 1983 Optimization by simulated annealing. Science
220, 671–680.

Kohonen T 1982 Self-organized formation of topologically correct feature maps. Biol. Cyber-
netics 43, 59–69.

Kolmogorov AN 1941 Interpolation and extrapolation von stationären zufäfolgen. Bull. Acad.
Sci. (Nauk) 5, 3–14.

Kolmogorov AN 1957 On the representation of continuous functions of several variables
by superposition of continuous functions of one variable and addition. Dokl. Akad. Nauk
SSSR 114, 953–956.

Kosmatopoulos EB, Polycarpou MM, Christodoulou MA and Ioannou PA 1995 High-order
neural network structures for identification of dynamical systems. IEEE Trans. Neural
Networks 6, 422–431.

Krcmar IR and Mandic DP 2001 A fully adaptive NNGD algorithm. Accepted for ICASSP-
2001.

Krcmar IR, Bozic MM and Mandic DP 2000 Global asymptotic stability of RNNs with
bipolar activation functions. In Proc. 5th IEEE Seminar on Neural Networks Applications
in Electrical Engineering (NEUREL2000), pp. 33–36.

Kreinovich V, Nguyen HT and Yam Y 2000 Fuzzy systems are universal approximators for
a smooth function and its derivatives. Int. J. Intellig. Syst. 15, 565–574.

Kreith K and Chakerian D 1999 Iterative Algebra and Dynamic Modeling. Springer.
Kruschke JK and Movellan JR 1991 Benefits of gain: speeded learning and minimal hidden

layers in back-propagation networks. IEEE Trans. Syst. Man. Cybernetics 21(1), 273–280.
Kuan C-M and Hornik K 1991 Convergence of learning algorithms with constant learning

rates. IEEE Trans. Neural Networks 2, 484–489.
Kung S-Y and Hwang J-N 1998 Neural networks for intelligent multimedia processing. Proc.

IEEE 86, 1244–1272.
Kurkova V 1992 Kolmogorov’s theorem and multilayer neural networks. Neural Networks 5,

501–506.
Kushner HJ 1984 Approximation and Weak Convergence Methods for Random Processes with

Applications to Stochastic System Theory. MIT Press.
LaSalle JP 1986 The Stability and Control of Discrete Processes. Springer.
Leontaritis IJ and Billings SA 1985 Input–output parametric models for nonlinear systems.

Int. J. Control 41, 303–344.
Leshno M, Lin VY, Pinkus A and Schocken S 1993 Multilayer feedforward neural networks

with a nonpolynomial activation function can approximate any function. Neural Networks
6, 861–867.

Leung H and Haykin S 1991 The complex backpropagation algorithm. IEEE Trans. Signal
Processing 39, 2101–2104.

Leung H and Haykin S 1993 Rational neural networks. Neural Computation 5, 928–938.
Li LK 1992 Approximation theory and recurrent networks. In Proc. Int. Joint Conf. on

Neural Networks, vol. II, pp. 266–271.

274 REFERENCES

Li L and Haykin S 1993 A cascaded neural networks for real-time nonlinear adaptive filtering.
In Proc. IEEE Int. Conf. on Neural Networks (ICNN’93), pp. 857–862.

Liang X-B and Yamaguchi T 1997 Necessary and sufficient conditions for absolute expo-
nential stability of a class of nonsymmetric neural networks. IEICE Trans. Inform. Syst.
E80D(8), 802–807.

Lin T, Horne BG, Tino P and Lee Giles C 1996 Learning long-term dependencies in NARX
recurrent neural networks. IEEE Trans. Neural Networks 7, 1329–1338.

Lin T-N, Lee Giles C, Horne BG and Kung S-Y 1997 A delay damage model selection
algorithm for NARX neural networks. IEEE Trans. Signal Processing 45, 2719–2730.

Lippmann RP 1987 An introduction of computing with neural nets. IEEE Acoust. Speech
Signal Processing Mag. 4(2), 4–22.

Lipschutz S 1965 Theory and Problems of Probability. Schaum’s Outline Series. McGraw-Hill.
Ljung L 1984 Analysis of stochastic gradient algorithms for linear regression problems. IEEE

Trans. Information Theory IT-30(2):151–160.
Ljung L and Sjöberg J 1992 A system identification perspective of neural nets. In Proc. II

IEEE Workshop on Neural Networks for Signal Processing (NNSP92), pp. 423–435.
Ljung L and Soderstrom T 1983 Theory and Practice of Recursive Identification. MIT Press.
Lo JT-H 1994 Synthetic approach to optimal filtering. IEEE Trans. Neural Networks 5,

803–811.
Lorentz GG 1976 The 13th problem of Hilbert. In Mathematical Developments Arising from

Hilbert Problems (ed. Browder FE). American Mathematical Society.
Lorenz EN 1963 Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141.
Luenberger DG 1969 Optimization by Vector Space Methods. Wiley.
Luh PB, Zhao X and Wang Y 1998 Lagrangian relaxation neural networks for job shop

scheduling. In Proc. 1998 IEEE Int. Conf. on Robotics and Automation, pp. 1799–1804.
Maass W and Sontag ED 2000 Neural systems as nonlinear filters. Neural Computation 12,

1743–1772.
McCulloch WS and Pitts W 1943 A logical calculus of the ideas immanent in nervous activity.

Bull. Math. Biophys. 5, 115–133.
McDonnell JR and Waagen D 1994 Evolving recurrent perceptrons for time-series modelling.

IEEE Trans. Neural Networks 5, 24–38.
Maiorov V and Pinkus A 1999 Lower bounds for approximation by MLP neural networks.

Neurocomputing 25, 81–91.
Makhoul J 1975 Linear prediction: a tutorial overview. Proc. IEEE 63, 561–580.
Mandic DP 2000a NNGD algorithm for neural adaptive filters. Electron. Lett. 36, 845–846.
Mandic DP 2000b On fixed points of a general neural network via Möbius transformations.

In Proc. 5th Int. Conf. on Mathematics in Signal Processing.
Mandic DP 2000c The use of Möbius transformations in neural networks and signal process-

ing. In Proc. Xth IEEE Workshop on Neural Networks for Signal Processing (NNSP2000),
pp. 185–194.

Mandic DP and Chambers JA 1998a Advanced PRNN based nonlinear prediction/System
identification. In Digest of the IEE Colloquium on Non-Linear Signal and Image Process-
ing, pp. 11/1–11/6.

Mandic DP and Chambers JA 1998b From an a priori RNN to an a posteriori PRNN non-
linear predictor. In Proc. VIII IEEE Workshop on Neural Networks for Signal Processing
(NNSP98), pp. 174–183.

Mandic DP and Chambers JA 1998c A posteriori real time recurrent learning schemes for
a recurrent neural network based non-linear predictor. IEE Proc. Vision Image Signal
Processing 145, 365–370.

Mandic DP and Chambers JA 1999a Exploiting inherent relationships in RNN architectures.
Neural Networks 12, 1341–1345.

REFERENCES 275

Mandic DP and Chambers JA 1999b Global asymptotic stability of nonlinear relaxation
equations realised through a recurrent perceptron. In Proc. Int. Conf. on Acoustics, Speech
and Signal Processing (ICASSP-99), vol. 2, pp. 1037–1040.

Mandic DP and Chambers JA 1999c A nonlinear adaptive predictor realised via recurrent
neural networks with annealing. In Digest of the IEE Colloquium Statistical Signal Pro-
cessing, pp. 2/1–2/6.

Mandic DP and Chambers JA 1999d A posteriori error learning in nonlinear adaptive filters.
IEE Proc. Vision, Image and Signal Processing 146(6), 293–296.

Mandic DP and Chambers JA 1999e Relationship between the slope of the activation function
and the learning rate for the RNN. Neural Computation 11, 1069–1077.

Mandic DP and Chambers JA 1999f Toward an optimal PRNN based nolinear predictor.
IEEE Trans. Neural Networks 10, 1435–1442.

Mandic DP and Chambers JA 2000a Advanced RNN based NARMA predictors. J. VLSI
Signal Processing Syst. Signal Image Video Technol. 26, 105–117.

Mandic DP and Chambers JA 2000b A normalised real time recurrent learning algorithm.
Signal Processing 80, 1909–1916.

Mandic DP and Chambers JA 2000c On robust stability of time-variant discrete-time non-
linear systems with bounded parameter perturbations. IEEE Trans. Circuits Systems. I.
Fundamental Theory and Applications 47, 185–188.

Mandic DP and Chambers JA 2000d On stability of relaxive systems described by polynomi-
als with time-variant coefficients. IEEE Trans. Circuits Systems. I. Fundamental Theory
and Applications 47, 1534–1537.

Mandic DP and Chambers JA 2000e Relations between the a priori and a posteriori errors
in nonlinear adaptive neural filters. Neural Computation 12, 1285–1292.

Mandic DP and Chambers JA 2000f Towards an optimal learning rate for backpropagation.
Neural Processing Lett. 11(1), 1–5.

Mandic DP and Krcmar IR 2000 On training with slope adaptation for feedforward neu-
ral networks. In Proc. 5th IEEE Seminar on Neural Networks Applications in Electrical
Engineering (NEUREL2000), pp. 42–45.

Mandic DP and Krcmar IR 2001 Stability of the NNGD algorithm for nonlinear system
identification. Electron. Lett. 37, 200–202.

Mandic DP, Baltersee J and Chambers JA 1998 Nonlinear prediction of speech with a
pipelined recurrent neural network and advanced learning algorithms. In Signal Analysis
and Prediction (ed. Prochazka A, Uhlir J, Rayner PJW and Kingsbury NG), pp. 291–309.
Birkhäuser, Boston.

Mandic DP, Chambers JA and Bozic MM 2000 On global asymptotic stability of fully con-
nected recurrent neural networks. In Proc. Int. Conf. on Acoustics, Speech and Signal
Processing (ICASSP-2000), vol. VI, pp. 3406–3409.

Mane R 1981 On the dimension of the compact invariant sets of certain nonlinear maps. In
Dynamical Systems and Turbulence (ed. Rand D and Young LS). Warwick 1980 Lecture
Notes in Mathematics, vol. 898. Springer.

Marmarelis VZ 1989 Signal transformation and coding in neural systems. IEEE Trans.
Biomed. Engng 36(1), 15–24.

Mathews VJ 1991 Adaptive polynomial filters. IEEE Signal Processing Mag. 8(3), 10–26.
Medler DA 1998 A brief history of connectionism. Neural Computing Surveys 1, 61–101.
Mathews JH and Howell RW 1997 Complex Analysis: for Mathematics and Engineering, 3rd

edn. Jones and Bartlett.
Mathews VJ and Xie Z 1993 A stochastic gradient adaptive filter with gradient adaptive

step size. IEEE Trans. Signal Processing 41, 2075–2087.
Mitaim S and Kosko B 1996 What is the best shape for a fuzzy set in function approximation?

In Proc. 5th IEEE Int. Conf. on Fuzzy Systems (FUZZ-96), pp. 542–560.
Mitaim S and Kosko B 1997 Adaptive joint fuzzy sets for function approximation. In Proc.

Int. Conf. on Neural Networks (ICNN-97), pp. 537–542.

276 REFERENCES

Mhaskar HN and Micchelli C 1992 Approximation by superposition of sigmoidal and radial
basis functions. Adv. Appl. Math. 13, 350–373.

Minsky M and Papert SA 1969 Perceptrons: An Introduction to Computational Geometry.
MIT Press.

Mozer MC 1993 Neural net architectures for temporal sequence processing. In Time Series
Prediction: Forecasting the Future and Understanding the Past (ed. Weigend AS and Ger-
shenfeld NA). Addison-Wesley.

Murtagh P and Tsoi AC 1992 Implementation issues of sigmoid function and its derivative
for VLSI digital neural networks. IEE Proc. E139(3).

Nakagawa M 1996 An autonomously controlled chaos neural network. In Proc. IEEE Int.
Conf. on Neural Networks, vol. 2, pp. 862–867.

Narendra KS 1996 Neural networks for control: theory and practice. Proc. IEEE 84, 1385–
1406.

Narendra KS and Parthasarathy K 1990 Identification and control of dynamical systems
using neural networks. IEEE Trans. Neural Networks 1, 4–27.

Nerrand O, Roussel-Ragot P, Personnaz L and Dreyfus G 1991 Neural network training
schemes for non-linear adaptive filtering and modelling. In Proc. Int. Joint Conf. on Neural
Networks (IJCNN-91), vol. I, pp. 61–66.

Nerrand O, Roussel-Ragot P, Personnaz L and Dreyfus G 1993 Neural networks and nonlinear
adaptive filtering: unifying concepts and new algorithms. Neural Computation 5, 165–199.

Nerrand O, Roussel-Ragot P, Urbani D, Personnaz L and Dreyfus G 1994 Training recurrent
neural networks: Why and how? An illustration in dynamical process modelling. IEEE
Trans. Neural Networks 5, 178–184.

Niranjan M and Kadirkamanathan V 1991 A nonlinear model for time series prediction
and signal interpolation. In Proc. Int. Conf. on Acoustics, Speech and Signal Processing
(ICASSP-91), pp. 1713–1716.

Nitzberg R 1985 Application of the normalized LMS algorithm to MSLC. IEEE Trans.
Aerospace Electron. Syst. AES-21(1):79–91.

Oppenheim AV, Buck JR and Schafer RW 1999 Discrete-Time Signal Processing. Prentice-
Hall.

Papoulis A 1984 Probability, Random Variables, and Stochastic Processes. McGraw-Hill.
Pearson RK 1995 Nonlinear input/output modelling. J. Process Control 5(4), 197–211.
Peng HC, Sha LF, Gan Q and Wei Y 1998 Combining adaptive sigmoid packet and trace

neural networks for fast invariance learning. Electron. Lett. 34, 898–899.
Personnaz L and Dreyfus G 1998 Comment on ‘Discrete-time recurrent neural network archi-

tectures: a unifying review’. Neurocomputing 20, 325–331.
Piazza F, Uncini A and Zenobi M 1992 Artificial neural networks with adaptive polynomial

activation function. In Proc. Int. Joint Conf. on Neural Networks, vol. II, pp. 343–349.
Piazza F, Uncini A and Zenobi M 1993 Neural networks with digital LUT activation func-

tions. In Proc. 1993 Int. Joint Conf. on Neural Networks, pp. 1401–1404.
Pineda FJ 1987 Generalization of backpropagation to recurrent neural networks. Phys. Rev.

Lett. 59, 2229–2232.
Pineda FJ 1989 Recurrent backpropagation and the dynamical approach to adaptive neural

computation. Neural Computation 1, 161–172.
Poddar P and Unninkrishnan KP 1991 Non-linear prediction of speech signals using memory

neuron networks. In Proc. IEEE Workshop NNSP I, pp. 395–404.
Poggio T and Girosi F 1990 Networks for approximation and learning. Proc. IEEE 78,

1481–1497.
Premaratne K and Mansour M 1995 Robust stability of time-variant discrete-time systems

with bounded parameter perturbations. IEEE Trans. Circuits and Systems. I. Fundamen-
tal Theory and Applications 42, 40–45.

REFERENCES 277

Priestley MB 1991 Non-Linear and Non-Stationary Time Series Analysis. Academic Press,
London.

Principe JC, deVries B and deOliveira PG 1993 The Gamma filter—a new class of adaptive
IIR filters with restricted feedback. IEEE Trans. Signal Processing 41, 649–656.

Principe JC, Euliano NR and Lefebvre WC 2000 Neural and Adaptive Systems. Wiley.
Puskoris GA and Feldkamp LA 1994 Neurocontrol of nonlinear dynamical systems with

Kalman filter trained recurrent networks. IEEE Trans. Neural Networks 5, 279–297.
Qin SZ, Su HT and Mc-Avoy TJ 1992 Comparison of four neural net learning methods for

dynamic system identification. IEEE Trans. Neural Networks 3, 122–130.
Rao DH and Gupta MM 1993 Dynamic neural units and function approximation. In Proc.

IEEE Int. Conf. on Neural Networks, vol. 2, pp. 743–748.
Reed R 1993 Pruning algorithms—a survey. IEEE Trans. Neural Networks 4, 740–747.
Regalia PA 1994 Adaptive IIR Filtering in Signal Processing and Control. Marcel Dekker.
Ridella S, Rovetta S and Zunino R 1997 Circular backpropagation networks for classification.

IEEE Trans. Neural Networks 8, 84–97.
Robinson AJ and Fallside F 1987 The utility driven dynamic error propagation network.

Tech. Rep. CUED/F–INFENG/TR.1, Cambridge University Engineering Department.
Rose K 1998 Deterministic annealing for clustering, compression, classification, regression,

and related optimization problems. Proc. IEEE 86, 2210–2239.
Rosenblatt F 1958 The perceptron: a probabilistic model for information storage and orga-

nization in the brain. Psychol. Rev. 65, 386–408.
Rosenblatt F 1962 Principles of Neuro-Dynamics. Washington, DC, Spartan.
Roy S and Shynk JJ 1989 Analysis of the data-reusing LMS algorithm. In Proc. 32nd Midwest

Symp. on Circuits and Systems, vol. 2, pp. 1127–1130.
Ruck DW, Rogers SK, Kabrisky M, Maybeck PS and Oxley ME 1992 Comparative analysis

of backpropagation and the extended Kalman filter for training multilayer perceptrons.
IEEE Trans. Pattern Analysis and Machine Intelligence 14, 686–691.

Rumelhart DE, Hinton GE and Williams R 1986 Learning internal representation by error
propagation. Nature 323, 533–536.

Sastry S and Bodson M 1989 Adaptive Control: Stability, Convergence, and Robustness.
Prentice-Hall International.

Schetzen M 1981 Nonlinear system modelling based on the Wiener theory. Proc. IEEE 69,
1557–1574.

Schnaufer BA and Jenkins WK 1993 New data-reusing LMS algorithms for improved conver-
gence. In Conf. Record 27th Asilomar Conf. on Signals and Systems, vol. 2, pp. 1584–1588.

Sethares WA 1992 Adaptive algorithms with nonlinear data and error functions. IEEE Trans.
Signal Processing 40, 2199–2206.

Shadafan RS and Niranjan M 1993 A dynamic neural network architecture by sequential
partitioning of the input space. In Proc. IEEE Int. Conf. on Neural Networks, pp. 226–
231.

Sheu M-H, Wang J-F, Chen J-S, Suen A-N, Jeang Y-L and Lee J-Y 1992 A data-reuse
architecture for gray-scale morphologic operations. IEEE Trans. Circuits and Systems. II.
Analog and Digital Signal Processing 39, 753–756.

Shynk J 1989 Adaptive IIR filtering. IEEE Acoust. Speech and Signal Processing (ASSP)
Mag. 6(2), 4–21.

Shynk JJ and Roy S 1990 Convergence properties and stationary points of a perceptron
learning algorithm. Proc. IEEE 78, 1599–1604.

Siegelmann H and Sontag ED 1995 On the computational power of neural networks. J.
Computat. Syst. Sci. 45, 132–150.

Siegelmann HT, Horne BG and Giles CL 1997 Computational capabilities of recurrent NARX
neural networks. IEEE Trans. Systems Man. Cybernetics. Part B. Cybernetics 27(2), 208–
215.

278 REFERENCES

Sjöberg J, Zhang Q, Ljung L, Benveniste A, Delyon B, Glorennec P-Y, Hjalmarsson H
and Juditsky A 1995 Nonlinear black-box modelling in system identification: a unified
overview. Automatica 31, 1691–1724.

Slock DTM 1993 On the convergence properties of the LMS and the normalized LMS algo-
rithms. IEEE Trans. Signal Processing 41, 2811–2825.

Solo V and Kong X 1994 Adaptive Signal Processing Algorithms: Stability and Performance.
Prentice-Hall.

Song M and Manry MT 1993 Conventional modeling of the multilayer perceptron using
polynomial basis functions. IEEE Trans. Neural Networks 4, 164–166.

Soria-Olivas E, Calpe-Maravilla J, Guerrero-Martinez JF Martinez-Sober M and Espi-Lopez
J 1998 An easy demonstration of the optimum value of the adaptation constant in the
LMS algorithm. IEEE Trans. Education 41(1), 81.

Sprecher DA 1965 On the structure of continuous functions of several variables. Trans. Am.
Math. Soc. 115, 340–355.

Sprecher DA 1993 A universal mapping for Kolmogorov’s superposition theorem. Neural
Networks 6, 1089–1094.

Stark H and Woods JW 1986 Probability, Random Processes and Estimation Theory for
Engineers. Prentice-Hall.

Strogatz SH 1994 Nonlinear Dynamics and Chaos With Applications to Physics, Biology,
Chemistry, and Engineering. Perseus Books.

Sum J, Leung C-S, Young GH and Kan W-K 1999 On the Kalman filtering method in neural
network training and pruning. IEEE Trans. Neural Networks 10, 161–166.

Szu H and Hartley R 1987 Nonconvex optimization by fast simulated annealing. Proc. IEEE
75, 1538–1540.

Takens F 1981 On the numerical determination of the dimension of an attractor. In Dynam-
ical Systems and Turbulence (ed. Rand D and Young LS). Warwick 1980 Lecture Notes
in Mathematics, vol. 898. Springer.

Tanaka K 1996 Stability analysis of neural networks via Lyapunov approach. In Proc. Int.
Conf. on Neural Networks, vol. 6, pp. 3192–3197.

Tarrab M and Feuer A 1988 Convergence and performance analysis of the normalized LMS
algorithm with uncorrelated Gaussian data. IEEE Trans. Information Theory 34, 680–
691.

Theiler J, Lindsay PS and Rubin DM 1993 Detecting nonlinearity in data with long coher-
ence times with internal delays. In Time Series Prediction: Forecasting the Future and
Understanding the Past (ed. Weigend AS and Gershenfeld NA). Addison-Wesley.

Thimm G and Fiesler E 1997a High order and multilayer perceptron initialisation. IEEE
Trans. Neural Networks 8, 349–359.

Thimm G and Fiesler E 1997b Optimal setting of the weights, learning rate, and gain. Tech.
Rep. IDIAP-RR-97-04, Institut Dalle Molle D’Intelligence Artificielle Perceptive, Martigny
Valais, Switzerland.

Thimm G, Moerland P and Fiesler E The interchangeability of learning rate and gain in
backpropagation neural networks. Neural Computation 8, 451–460, 1996.

Tikhonov AN, Leonov AS and Yagola AG 1998 Nonlinear ill-posed problems. Applied Math-
ematics and Mathematical Computation. Chapman & Hall, London.

Townshend B 1991 Nonlinear prediction of speech. In Proc. Int. Conf. on Acoustics, Speech
and Signal Processing (ICASSP-91), pp. 425–428.

Treichler JR, Johnson Jr CR and Larimore MG 1987 Theory and Design of Adaptive Filters.
Wiley.

Tsoi CA and Back A 1997 Discrete time neural network architectures: a unifying review.
Neurocomputing 15(3), 183–223.

Vaidyanathan PP and Mitra SK 1987 A unified structural interpretation of some well-known
stability-test procedures for linear systems. Proc. IEEE 75, 478–497.

REFERENCES 279

Vecci L, Campolucci P, Piazza F and Uncini A 1997 Approximation capabilities of adaptive
spline neural neworks. In Proc. Int. Conf. on Neural Networks, vol. 1, pp. 260–265.

Vitushkin AG 1954 On Hilbet’s thirteenth problem. Dokl. Akad. Nauk SSSR 95, 701–704.
Waibel A, Hanazawa T, Hinton G, Shikano K and Lang K 1989 Phoneme recognition using

time-delay neural networks. IEEE Trans. Acoustics, Speech and Signal Processing 37,
328–339.

Wallace WA 1992 Galileo’s Logical Treatises (A Translation, with Notes and Commentary,
of His Appropriated Latin Questions on Aristotle’s Posteriori Analytics). Kluwer.

Wan EA 1993 Time series prediction by using a connectionist network with internal delay
lines. In Time Series Prediction: Forecasting the Future and Understanding the Past (ed.
Weigend AS and Gershenfeld NA). Addison-Wesley.

Wang K and Michel AN 1994 On Lyapunov stability of a family of nonlinear time-varying
systems. In Proc. 33rd Conf. on Decision and Control, pp. 2131–2136.

Weigend AS and Gershenfeld NA (eds) 1994 Time Series Prediction: Forecasting the Future
and Understanding the Past. Santa Fe Institute Studies in the Sciences of Complexity.
Addison-Wesley.

Werbos P 1974 Beyond Regression: New Tools for Prediction and Analysis in the Behavioral
Science. PhD thesis, Harvard University, Cambridge, MA.

Werbos P 1990 Backpropagation through time: what it does and how to do it. Proc. IEEE
78, 1550–1560.

Widrow B and Hoff ME 1960 Adaptive switching circuits. In Proc. WESCON Convention,
vol. IV, pp. 96–104.

Widrow B and Lehr MA 1990 30 years of adaptive neural networks: perceptron, madaline,
and backpropagation. Proc. IEEE 78, 1415–1442.

Widrow B and Stearns SD 1985 Adaptive Signal Processing. Prentice-Hall.
Wiener N 1949 The Extrapolation, Interpolation and Smoothing of Stationary Time Series

with Engineering Applications. Wiley.
Williams RJ 1992 Training recurrent networks using the extended Kalman filter. In Proc.

Int. Joint Conf. on Neural Networks (IJCNN’92), vol. IV, pp. 241–246.
Williams R and Zipser D 1989a A learning algorithm for continually running fully recurrent

neural networks. Neural Computation 1, 270–280.
Williams RJ and Zipser D 1989b Experimental analysis of the real-time recurrent learning

algorithm. Connection Sci. 1(1), 87–111.
Williams RJ and Zipser D 1995 Gradient-based algorithms for recurrent networks and their

computational complexity. In Backpropagation: Theory, Architectures, and Applications
(ed. Chauvin Y and Rumelhart DE). Lawrence Erlbaum Associates.

Williamson RC and Helmke U 1995 Existence and uniqueness results for neural network
approximations. IEEE Trans. Neural Networks 6, 2–13.

Wilkinson JH 1965 The Algebraic Eigenvalue Problem. Oxford University Press.
Wu L and Niranjan M 1994 On the design of nonlinear speech predictors with recurrent

nets. In Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP-94),
pp. 529–532.

Wu S-I 1995 Mirroring our thought processes. IEEE Potentials 14, 36–41.
Yang J, Ahmadi M, Jullien GA and Miller WC 1998 Model validation and determination for

neural network activation function modelling. In Proc. 1998 Midwest Symp. on Circuits
and Systems, pp. 548–551.

Yee P and Haykin S 1999 A dynamic regularized radial basis function network for nonlinear,
nostationary time series prediction. IEEE Trans. Signal Processing 47, 2503–2521.

Yule GU 1927 On a method of investigating periodicities in disturbed series,with special
reference to Wölfer’s sunspot numbers. Phil. Trans. R. Soc. Lond. A226, 267–298.

Zakeri S 1996 On critical points of proper holomorphic maps on the unit disc. Bull. Lond.
Math. Soc. 30, 62–66.

280 REFERENCES

Zeidler E 1986 Nonlinear Functional Analysis and its Applications, vol. 1: Fixed-Point The-
orems. Springer.

Zhang J, Walter GG, Miao Y and Lee WNW 1995 Wavelet neural networks for function
learning. IEEE Trans. Signal Processing 43, 1485–1497.

Zhang S and Constantinides AG 1992 Lagrange programming neural networks. IEEE Trans.
Circuits and Systems. II. Analog and Digital Signal Processing 37, 441–452.

Zhang Z and Sarhadi M 1993 A modified neuron activation function which enables single
layer perceptrons to solve some linearly inseparable problems. In Proc. 1993 Int. Conf. on
Neural Networks, pp. 2723–2726.

Zhang Z and Sarhadi M 1993 Performance aspects of a novel neuron activation function
in multilayer feedforward networks. In Proc. 1993 Int. Joint Conf. on Neural Networks,
pp. 2727–2730.

Zurada JM and Shen W 1990 Sufficient condition for convergence of a relaxation algorithm
in actual single-layer neural networks. IEEE Trans. Neural Networks 1, 300–303.

Index

Activation functions
continual adaptation 202
definition 239
desirable properties 51
examples 53
properties to map to the complex

plane 61
steepness 200
temperature 200
why nonlinear 50

Activation potential 36, 54
Adaline 2
Adaptability 9
Adaptation gain

behaviour of steepest descent 16
Adaptive algorithms

convergence criteria 163
momentum 211
performance criteria 161

Adaptive learning 21
Adaptive resonance theory 2
Adaptive systems

configurations 10
generic structure 9

Analytic continuation 61
A posteriori

algorithms 113, 138
computational complexity 138
error 135
techniques 241

Asymptotic convergence rate 121
Asymptotic stability 116
Attractors 115
Autonomous systems 263
Autoregressive (AR) models

coefficients 37

Autoregressive integrated moving
average (ARIMA) model 171

Autoregressive moving average
(ARMA) models

filter structure 37
Averaging methods 163

Backpropagation 18
normalised algorithm 153
through time 209
through time dynamical

equivalence 210
Batch learning 20
Bias/variance dilemma 112
Bilinear model 93
Black box modelling 73
Blind equalizer 12
Block-based estimators 15
Bounded Input Bounded Output

(BIBO) stability 38, 118
Brower’s Fixed Point Theorem 247

Recurrent Neural Networks for Prediction
Authored by Danilo P. Mandic, Jonathon A. Chambers

Copyright c©2001 John Wiley & Sons Ltd
ISBNs: 0-471-49517-4 (Hardback); 0-470-84535-X (Electronic)

Canonical state-space representation
44

Cauchy–Riemann equations 228
Channel equalisation 11
Clamping functions 240
Classes of learning algorithm 18
Cognitive science 1
Complex numbers

elementary transformations 227
Connectionist models 1

dates 2
Constructive learning 21
Contraction mapping theorem 245
Contractivity of relaxation 252
Curse of dimensionality 22

281

282 INDEX

David Hilbert 47
Data-reusing 114, 135, 142

stabilising features 137, 145
Delay space embedding 41
Deseasonalising data 265
Deterministic learning 21
Deterministic versus stochastic (DVS)

plots 172, 175
Directed algorithms 111
Domain of attraction 116
Dynamic multilayer perceptron

(DMLP) 79

Efficiency index 135
Electrocardiogram (ECG) 181
Embedding dimension 74, 76, 174, 178
Embedded memory 111
Equation error 104

adaptation 107
Equilibrium point 264
Error criterion 101
Error function 20
Exogeneous inputs 40
Exponentially stable 264
Extended Kalman filter 109
Extended recursive least squares

algorithm 217, 236

Feedforward network
definition 239

Fixed point
iteration 143
theory 117, 245

Forgetting behaviour 110
Forgetting mechanism 101
Frobenius matrix 251
Function definitions

conformal 227
entire 227
meromorphic 227

Gamma memory 42
Gaussian variables

fourth order standard factorisation
167

Gear shifting 21
Global asymptotic stability (GAS)

116, 118, 251, 264

Gradient-based learning 12
Grey box modelling 73

Hammerstein model 77
Heart rate variability 181
Heaviside function 55
Hessian 15, 52
Holomorphic function 227
Hyperbolic attractor 110

Incremental learning 21
Independence assumptions 163
Independent Identically Distributed

(IID) 38
Induced local field 36
Infinite Impulse Response (IIR)

equation error adaptive filter 107
Input transformations 23

Kalman Filter (KF) algorithm 14
Kolmogorov function 223
Kolmogorov’s theorem 6, 93, 223

universal approximation theorem
47, 48

Kolmogorov–Sprecher Theorem 224

Learning rate 13
continual adaptation 202
selection 202

Learning rate adaptation 200
Least Mean Square (LMS) algorithm

14, 18
data-reusing form 136

Linear filters 37
Linear prediction

foundations 31
Linear regression 14
Liouville Theorem 61, 228
Lipschitz function 224, 246, 263
Logistic function 36, 53

a contraction 118
approximation 58
fixed points of biased form 127

Lorenz equations 174, 195
Lyapunov stability 116, 143, 162

indirect method 162

INDEX 283

Mandelbrot and Julia sets 61
Markov model

first order 164
Massive parallelism 6
Misalignment 168, 169
Möbius transformation 47, 228

fixed points 67
Model reference adaptive system

(MRAS) 106
Modular group 229

transfer function between neurons
66

Modular neural networks
dynamic equivalence 215
static equivalence 214

NARMA with eXogeneous inputs
(NARMAX) model

compact representation 71
validity 95

Nearest neighbours 175
Nesting 130
Neural dynamics 115
Neural network

bias term 50
free parameters 199
general architectures for prediction

and system identification 99
growing and pruning 21
hybrid 84
in complex plane 60
invertibility 67
modularity 26, 199, 214
multilayer feedforward 41
nesting 27
node structure 2
ontogenic 21
properties 1
radial basis function 60
redundancy 113
specifications 2
spline 56
time-delay 42
topology 240
universal approximators 49, 54
wavelet 57

with locally distributed dynamics
(LDNN) 79

Neuron
biological perspective 32
definition 3
structure 32, 36

Noise cancellation 10
Nonlinear Autoregressive (NAR)

model 40
Nonlinear Autoregressive Moving

Average (NARMA) model 39
recurrent perceptron 97

Nonlinear Finite Impulse Response
(FIR) filter

learning algorithm 18
normalised gradient descent,

optimal step size 153
weight update 201

Nonlinear gradient descent 151
Nonlinear parallel model 103
Nonlinearity detection 171, 173
Nonparametric modelling 72
Non-recursive algorithm 25
Normalised LMS algorithm

learning rate 150

O notation 221
Objective function 20
Ontogenic functions 241
Orthogonal condition 34
Output error 104

adaptive infinite impulse response
(IIR) filter 105

learning algorithm 108

Parametric modelling 72
Pattern learning 26
Perceptron 2
Phase space 174
Piecewise-linear model 36
Pipelining 131
Polynomial equations 48
Polynomial time 221
Prediction

basic building blocks 35
conditional mean 39, 88
configuration 11

284 INDEX

difficulties 5
history 4
principle 33
reasons for using neural networks 5

Preservation of
contractivity/expansivity 218

Principal component analysis 23
Proximity functions 54
Pseudolinear regression algorithm 105

Quasi-Newton learning algorithm 15

Rate of convergence 121
Real time recurrent learning (RTRL)

92, 108, 231
a posteriori form 141
normalised form 159
teacher forcing 234
weight update for static and

dynamic equivalence 209
Recurrent backpropagation 109, 209

static and dynamic equivalence 211
Recurrent neural filter

a posteriori form 140
fully connected 98
stability bound for adaptive

algorithm 166
Recurrent neural networks (RNNs)

activation feedback 81
dynamic behaviour 69
dynamic equivalence 205, 207
Elman 82
fully connected, relaxation 133
fully connected, structure 231
Jordan 83
local or global feedback 43
locally recurrent–globally

feedforward 82
nesting 130
output feedback 81
pipelined (PRNN) 85, 132, 204, 234
rate of convergence of relaxation

127
relaxation 129
RTRL optimal learning rate 159
static equivalence 205, 206
universal approximators 49

Williams–Zipser 83
Recurrent perceptron

GAS relaxation 125
Recursive algorithm 25
Recursive Least-Squares (RLS)

algorithm 14
Referent network 205
Riccati equation 15
Robust stability 116

Sandwich structure 86
Santa Fe Institute 6
Saturated-modulus function 57
Seasonal ARIMA model 266
Seasonal behaviour 172
Semiparametric modelling 72
Sensitivities 108
Sequential estimators 15
Set

closure 224
compact 225
dense subset 224

Sigmoid packet 56
Sign-preserving 162
Spin glass 2
Spline, cubic 225
Staircase function 55
Standardisation 23
Stochastic learning 21
Stochastic matrix 253
Stone–Weierstrass theorem 62
Supervised learning 25

definition 239
Surrogate dataset 173
System identification 10
System linearity 263

Takens’ theorem 44, 71, 96
tanh activation function

contraction mapping 124
Teacher forced adaptation 108
Threshold nonlinearity 36
Training set construction 24
Turing machine 22

Unidirected algorithms 111
Uniform approximation 51

INDEX 285

Uniform asymptotic stability 264
Uniform stability 264
Unsupervised learning 25

definition 239
Uryson model 77

Vanishing gradient 109, 166
Vector and matrix differentiation

rules 221
Volterra series

expansion 71

Weierstrass Theorem 6, 92, 224
White box modelling 73
Wiener filter 17
Wiener model 77

represented by NARMA model 80
Wiener–Hammerstein model 78
Wold decomposition 39

Yule–Walker equations 34

Zero-memory nonlinearities 31
examples 35

