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I. INTRODUCTION

Neural networks can be classified into recurrent and nonrecurrent catego
Nonrecurrent (feedforward) networks have no feedback elements; the outp
calculated directly from the input through feedforward connections. In recur
networks the output depends not only on the current input to the network, bu
on the current or previous outputs or states of the network. For this rea
recurrent networks are more powerful than nonrecurrent networks and 
important uses in control and signal processing applications.

This chapter introduces the Layered Digital Recurrent Network (LDR
develops a general training algorithm for this network, and demonstrates
application of the LDRN to problems in controls and signal processing. In Sec
II we present the notation necessary to represent the LDRN. Section III con
a discussion of the dynamic backpropagation algorithms that are require
compute training gradients for recurrent networks. The concepts underlying
backpropagation-through-time and forward perturbation algorithms are prese
in a unified framework and are demonstrated for a simple, single-loop recu
network. In Section IV we describe a general forward perturbation algorithm
computing training gradients for the LDRN. Two application sections follow 
discussion of dynamic backpropagation: neurocontrol and nonlinear filter
These sections demonstrate the implementation of the general dyn
backpropagation algorithm. The control section (Section V) applies
neurocontrol architecture to the automatic equalization of an acoustic transm
The nonlinear filtering section (Section VI) demonstrates the application 
recurrent filtering network to a noise-cancellation application.

II. PRELIMINARIES

In this section we want to introduce the types of neural networks that
discussed in the remainder of this chapter. We also present the notation th
use to represent these networks. The networks we use are Layered D
Recurrent Networks (LDRN). They are a generalization of the Laye
Feedforward Network (LFFN), which has been modified to include feedb
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connections and delays. We begin here with a description of the LFFN and
show how it can be generalized to obtain the LDRN.

A.  LAYERED FEEDFORWARD NETWORK
Figure 1 is an example of a layered feedforward network (two layers in this

case). (See Demuth et al. [1998] for a full description of the notation used here
The input vector to the network is represented by , which has elements. The
superscript represents the input number, since it is possible to have more tha
input vector. The input is connected to Layer 1 through the input weight 
where the first superscript represents the layer number and the second supe
represents the input number. The bias for the first layer is represented by 
net input to Layer 1 is denoted by , and is computed as

(1)

The output of Layer 1, , is computed by passing the net input through a tra
function, according to . The output has  elements. The output of
first layer is input to the second layer through the layer weight . T
overall output of the network is labeled . This is typically chosen to be the ou
of the last layer in the network, as it is in Figure 1, although it could be the output
of any layer in the network.

Figure 1.  Example of a Layered Feedforward Network

Each layer in the LFFN is made up of 1) a set of weight matrices that c
into that layer (which may connect from other layers or from external inputs
a bias vector, 3) a summing junction, and 4) a transfer function. (In the LDR
set of tapped delay lines may also be included in a layer, as we will see late
the example given in Figure 1, there is only one weight matrix associated with
each layer, but it is possible to have weight matrices that are connected 
several different input vectors and layer outputs. This will become clear when we
introduce the LDRN network. Also, the example in Figure 1 has only two layers;
our general LFFN can have an arbitrary number of layers. The layers do not have
to be connected in sequence from Layer 1 to Layer M. For example, Layer 1 c
be connected to both Layer 3 and Layer 4, by weights  and 
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respectively. Although the layers do not have to be connected in a linear seq
by layer number, it must be possible to compute the output of the network 
simple sequence of calculations. There cannot be any feedback loops i
network. The order in which the individual layer outputs must be compute
order to obtain the correct network output is called the simulation order.

B.  LAYERED DIGITAL RECURRENT NETWORK
We now introduce a class of recurrent networks that are based on the L

The LFFN is a static network, in the sense that the network output ca
computed directly from the network input, without the knowledge of init
network states. A Layered Digital Recurrent Network (LDRN) can cont
feedback loops and time delays. The network response is a function of net
inputs, as well as initial network states. 

The components of the LDRN are the same as those of the LFFN, with
addition of the tapped delay line (TDL), which is shown in Figure 2. The output
of the TDL is a vector containing current and previous values of the TDL in
In Figure 2 we show two abbreviated representations for the TDL. In the case on
the left, the undelayed value of the input variable is included in the output ve
In the case on the right, only delayed values of the input are included in the ou

Figure 2.  Tapped Delay Line

Figure 3 is an example of an LDRN. Like the LFFN, the LDRN is made up
of layers. In addition to the weight matrices, bias, summing junction, and tran
function, which make up the layers of the LFFN, the layers of the LDRN a
include any tapped delay lines that appear at the input of a weight matrix. 
weight matrix in an LDRN can be proceeded by a tapped delay line.) For exam
Layer 1 of Figure 3 contains the weight and the TDL at its input. Note that
all of the layer outputs and net inputs in the LDRN are explicit functions of tim

The output of the TDL in Figure 3 is labeled . This indicates that it is
a composite vector made up of delayed values of the output of Subnet 2 (indi
by the second superscript) and is an input to Subnet 2 (indicated by the
superscript). (A subnet is a series of layers which have no internal tapped 
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lines. The number of the subnet is the same as the number of its output 
These concepts are defined more carefully in a later section.) These TDL ou
are important variables in our training algorithm for the LDRN. 

Figure 3.  Layered Digital Recurrent Network Example

In the LDRN, feedback is added to an LFFN. Therefore, unlike the LFFN,
output of the network is a function not only of the weights, biases, and netw
input, but also of the outputs of some of the network layers at previous poin
time. For this reason, it is not a simple matter to calculate the gradient o
network output with respect to the weights and biases (which is needed to tra
network). This is because the weights and biases have two different effects o
network output. The first is the direct effect, which can be calculated using
standard backpropagation algorithm [Hagan et al., 1996]. The second is an
indirect effect, since some of the inputs to the network, such as , are
functions of the weights and biases. In the next section we briefly describe
gradient calculations for the LFFN and show how they must be modified for
LDRN. The main development of the next two sections is a general grad
calculation for arbitrary LDRN’s.

III. PRINCIPLES OF DYNAMIC LEARNING

Consider again the multilayer network of Figure 1. The basic simulation
equation of such a network is

, (2)

where k is incremented through the simulation order. 
The task of the network is to learn associations between a specified s

input/output pairs: {(p1, t1), (p2, t2), ... , (pQ, tQ)}. The performance index for the
network is
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where  is the output of the network when the qth input, , is presented, and 
is a vector containing all of the weights and biases in the network. (Later we

 to represent the weights and biases in Layer i.) The network should learn the 
vector that minimizes . 

For the standard backpropagation algorithm [Hagan et al., 1996] we use a
steepest descent learning rule. The performance index is approximated by:

, (4)

where the total sum of squares is replaced by the squared errors for a single
output pair. The approximate steepest (gradient) descent algorithm is then:

, (5)

where α is the learning rate. Define

(6)

as the sensitivity of the performance index to changes in the net input of uni in
layer k. Using the chain rule, we can show that

, , 

(7)

It can also be shown that the sensitivities satisfy the following recurrence rela
in which m is incremented through the backpropagation order, which is the
reverse of the simulation order:

(8)
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This recurrence relation is initialized at the output layer:

. (11)

The overall learning algorithm now proceeds as follows: first, propagate
input forward using Eq. (2); next, propagate the sensitivities back using Eq.
and Eq. (8); and finally, update the weights and biases using Eq. (5) and Eq

Now consider an LDRN, such as the one shown in Figure 3. Suppose that we
use the same gradient descent algorithm, Eq. (5), that is used in the sta
backpropagation algorithm. The problem in this case is that when we try to
the equivalent of Eq. (7) we note that the weights and biases have two diff
effects on the network output. The first is the direct effect, which is accounte
by Eq. (7). The second is an indirect effect, since some of the inputs to
network, such as , are also functions of the weights and biases. To ac
for this indirect effect we must use dynamic backpropagation.

To illustrate dynamic backpropagation [Yang et al., 1993, Yang, 1994],
consider Figure 4, which is a simple recurrent network. It consists of an LFFN
with a single feedback loop added from the output of the network, whic
connected to the input of the network through a single delay. In this figure
vector  represents all of the network parameters (weights and biases) an
vector  represents the output of the LFFN at time step t.

Figure 4.  Simple Recurrent Network
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 Now suppose that we want to minimize

(12)

In order to use gradient descent, we need to find the gradient of F with respect to
the network parameters. There are two different approaches to this problem.
both use the chain rule, but are implemented in different ways:

(13)

or

(14)

where the superscript e indicates an explicit derivative, not accounting for indire
effects through time. The explicit derivatives can be obtained with the stan
backpropagation algorithm, as in Eq. (8). To find the complete derivatives tha
required in Eq. (13) and Eq. (14), we need the additional equations:

(15)

and

(16)

Eq. (13) and Eq. (15) make up the forward perturbation (FP) algorithm. Note
the key term is

(17)

which must be propagated forward through time.
Eq. (14) and Eq. (16) make up the backpropagation-through-time (B

algorithm. Here the key term is

(18)
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which must be propagated backward through time.
In general, the FP algorithm requires somewhat more computation than

BTT algorithm. However, the BTT algorithm cannot be implemented in real ti
since the outputs must be computed for all time steps, and then the deriv
must be backpropagated back to the initial time point. The FP algorithm is 
suited for real time implementation, since the derivatives can be calculated a
time step.

IV. DYNAMIC BACKPROP FOR THE LDRN

In this section, we generalize the FP algorithm, so that it can be applie
arbitrary LDRN’s. This is followed by applications of the LDRN and dynam
backpropagation to problems in filtering and control.

A.  PRELIMINARIES
To explain this algorithm, we must create certain definitions related to

LDRN. We do that in the following paragraphs.
First, as we stated earlier, a layer consists of a set of weights, associated

tapped delay lines, a summing function, and a transfer function. The network has
inputs that are connected to special weights, called input weights, and denoted by

, where  denotes the number of the input vector that enters the weight
 denotes the number of the layer to which the weight is connected. The we

connecting one layer to another are called layer weights and are denoted by
, where  denotes the number of the layer coming into the weight an

denotes the number of the layer at the output of weight. In order to calculat
network response in stages, layer by layer, we need to proceed in the prope
order, so that the necessary inputs at each layer will be available. This order
layers is called the simulation order. In order to backpropagate the derivatives f
the gradient calculations, we must proceed in the opposite order, which is c
the backpropagation order.

In order to simplify the description of the training algorithm, the LDRN 
divided into subnets. A subnet is a section of a network that has no tapped de
lines, except at the subnet input. Every LDRN can be organized as a collecti
subnets. We define the subnets by proceeding backwards from the last sub
the first subnet. To locate the last subnet, start at the first layer in 
backpropagation order and proceed through the backpropagation order unt
find a layer containing delays, which becomes the first layer in the last subnet
last subnet is then defined as containing all of the layers beginning at the 
containing delays and continuing through the simulation order to the first lay
the backpropagation order (or the last layer in the simulation order). This de
the last subnet. To find the preceding subnet, start with the next layer in
backpropagation order and proceed in the same way until you find the next 
with delays. This process continues until you reach the last layer in 
backpropagation order, at which time the first subnet is defined. As with the layer

IW i j, j
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LW i j, j i
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simulation order, we can also define a subnet simulation order that starts at the
first subnet and continues until the last subnet.

For example, the LDRN shown in Figure 5 has thee layers and two subnets.
To simplify the algorithm, the subnet is denoted by the number of its output la
For this network the simulation order is 1-2-3, the backpropagation order is 3
and the subnet simulation order is 1-3.

Figure 5.  Three-layer LDRN with Two Subnets

B.  EXPLICIT DERIVATIVES
We want to generalize the forward perturbation (FP) algorithm of Eq. (

and Eq. (15) so that it can be applied to an arbitrary LDRN. Notice that we h
two terms on the right-hand side of Eq. (15). We have an explicit derivative o
performance with respect to the weights, which accounts for the direct effe
the weights on the performance and can be computed through the sta
backpropagation algorithm, as in Eq. (8). We also have a second term, w
accounts for the fact that the weights have a secondary effect through the pre
network output. In the general LDRN, we may have many different feedb
loops, and therefore there could be many different terms on the right of Eq. 
and each of those terms would have a separate equation like Eq. (15) to upd
total derivative through time. For our development of the FP algorithm, we h
one term (and an additional equation) for every place where one subnet is in
another subnet. Recall that the subnet boundaries are determined by the loc
of the tapped delay lines. Within a subnet, standard backpropagation, as in E
can be used to propagate the explicit derivatives, but at the subnet boundar
equation like Eq. (15) must be used to calculate the total derivative, w
includes both direct and indirect effects. In this subsection we describe
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computation of the explicit derivatives, and then in the following subsection
explain the total derivative computation.

A backpropagation process to calculate the explicit derivatives is neede
each subnet. These equations involve calculating the derivative of the su
output with respect to each layer output in the subnet. The basic equation is

(19)

where  represents a subnet output,  is the output of a layer in subnjz,
 is the net input of layer k, which has a connection from layer i. The index i

is incremented through the backpropagation order. If we define

, and note that , (20)

then we can write Eq. (19) as

. (21)

This recursion, where i is incremented along the backpropagation ord
begins at the last layer in the subnet:

, (22)

where  is an identity matrix whose dimension is the size of layer .

C.  COMPLETE FP ALGORITHM FOR THE LDRN
We are now ready to describe a generalized FP algorithm for the arbi

LDRN. There are two parts to the FP algorithm: Eq. (13) and Eq. (15). Eq. 
remains the same for the LDRN as for the simple network in Figure 4. Eq. (15),
however, must be modified. For the general case we have one equation lik
(15) for each subnet output. Each of these equations has a term for the e
derivative and one additional term for each subnet output.

The complete FP algorithm for the LDRN network is given in the followi
flowchart. It contains three major sections. The first section computes the ex
(static) derivatives, as in Eq. (21), which are needed as part of the dyn
equations. The second section computes the dynamic derivatives of the s
outputs with respect to the weights, as in Eq. (15). The final section compute
dynamic derivatives of performance with respect to the weights, as in Eq. (1
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V. NEUROCONTROL APPLICATION

In this section we illustrate the application of the LDRN and dynam
backpropagation to a control problem. We wish to control the output of
acoustic transmitter, whose schematic diagram is shown in Figure 6. 

Binary data is transmitted via acoustic signals from one pipeline locatio
another. Acoustic stress waves are imparted into the pipeline by the aco
transmitter. The stress waves propagate through the pipeline to the aco
receiver, which receives the transmitted signal. Tone bursts of diffe
frequencies are used to represent either a 1 or a 0. The acoustic channel pr
by the pipeline causes heavy distortion in the transmitted signal. There are 
extraneous unwanted acoustic stress waves created by external sources, s
engines, geartrains, and pumps, that are imparted into the pipeline. The inh
channel distortion and the unwanted external noise can degrade the trans
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signal such that signal detection and interpretation at the receiver are unrelia
impossible. One method of enhancing communication performance is to equ
the effects of the transmission channel by adjusting the transmitter output so
the measured signal imparted to the pipeline at a short distance from
transmitter is the desired signal. Ideally, the feedback measurement of this s
is taken at the receiver. Of course, in practice, the feedback signal is mea
near the transmitter. To alleviate the effects of unwanted disturbance noise
transmitter can actively cancel the disturbance noise by way of destru
interference. The transmitter creates stress waves that are out of phase wit
of equal magnitude to, the undesired signals. In this example, a neural ne
controller is used as both a channel equalizer and an active noise canceller.

Figure 6.  Schematic of Acoustic Transmitter/Receiver System.

In addition to illustrating dynamic backpropagation on the neurocontroller
the acoustic transmitter, this section also demonstrates the effect of training
approximations to true dynamic derivatives. The evaluation is based on squ
error performance and floating point operations. When approximations are u
the computational burden can be reduced, but the errors generally increase

Figure 7 is a schematic of the control system. In this system, model reference
adaptive control (MRAC) [Narendra, 1990] is applied to the control of 
acoustic transmitter. The plant model is used only as a backpropagation pa
the derivatives needed to adjust the controller weights; the plant model weigh
not adjusted. The plant model is a 2-layer LDRN, with 10 input taps, 50 feed
taps, and 15 hidden neurons. The controller weights are adjusted such th
error ec(t), between a delayed reference input r (t) and the actual plant output c(t),
is minimized. The controller structure consists of 40 input taps, 50 contro
feedback taps, 75 plant output feedback taps, and 15 hidden neurons.
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Figure 7.  Self-Equalizing Acoustic Transmitter
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If we apply the concepts described in the previous sections to the sy
shown in Figure 7, we notice that the total system is an LDRN that can be divided
into two subnets. The last subnet (number 4) corresponds to the Neural Ne
Plant Model (with  as the subnet output). The first subnet (numbe
corresponds to the Neural Controller (with  as the subnet output). 
subnets are fully connected, so we have two sets of training equations:

(23)

and

(24)

We now show how these equations can be developed using our gener
algorithm, which was described in the flowchart in the previous section. We 
in the last layer in the backpropagation order (layer 4), obtaining:

;       

;       

Layer 3 is not the output of a subnet, so we apply:
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Layer 3 has two inputs with delays, therefore it is the beginning of the last su
and we calculate:

      

      

Layer 2 in the neural controller is the end of the first subnet. So we apply
equations:

;       

;       

Layer 1 is not the output of a subnet, so we apply:

      

      

      

      

      

a4 t( )
e

∂
LW 3 4,∂

--------------------- LW 4 3, S4 4,× F
·3

n3( )× a4 4, t( )[ ]T×=

a4 t( )e∂
a4 2, t( )∂

-------------------- LW 4 3, S4 4,× F
·3

n3( )× LW 3 2,×=

a4 t( )
e

∂
a4 4, t( )∂

-------------------- LW 4 3, S4 4,× F
·3

n3( )× LW 3 4,×=

ae 2
t( )∂

a2 t( )
----------------- I= S2 2, ae 2

t( )∂
n2 t( )

-----------------≡ F
·2

n2( )=

a2 t( )
e

∂
b2∂

----------------- F
·2

n2( )=
a2 t( )

e
∂
LW 2 1,∂

--------------------- F
·2

n2( ) a1 t( )[ ]T⋅=

ae 2
t( )∂

a1 t( )
----------------- LW 2 1, S2 2,×=

S1 2, ae 2
t( )∂

n1 t( )
-----------------≡ LW 2 1, S2 2,× F

·1
n1( )×=

a2 t( )
e

∂
b1∂

----------------- LW 2 1, S2 2,× F
·1

n1( )×=

a2 t( )
e

∂
LW 1 1,∂

--------------------- LW 2 1, S2 2,× F
·1

n1( )× a2 2, t( )[ ]T×=

a2 t( )e∂
LW 4 1,∂

--------------------- LW 2 1, S2 2,× F
·1

n1( )× a2 4, t( )[ ]T×=



d we

 the
now

med

 the
es of
      

Layer 1 has two inputs with delays, so it is the end of the first subnet, an
calculate

      

      

Now that we have finished with the backpropagation step, we have
explicit derivatives for all of the weights and biases in the system. We are 
ready to calculate the dynamic derivatives. We initialize

      

and calculate

      

and

.       

This gives us Eq. (24) for all weights and biases. A similar process is perfor
for subnet 4 to obtain Eq. (23).

We have now computed all of the dynamic derivatives of the outputs of
subnets with respect to the weights. The next step is to compute the derivativ
the performance function with respect to the weights. We must first calculate

,       

to obtain
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for all the weights and biases in the neural controller. The process is repeat
each sample time in the training set.

The LDRN was trained using the preceding equations. Now we demons
the performance of the closed-loop acoustic transmitter system. The refe
input used in the simulation consisted of a random sequence of tone burst p
as shown in Figure 8. The tone bursts are evenly spaced and appear randomly at
one of two frequencies. In order to investigate the robustness of the contro
periodic disturbance noise was added to the plant input, representing extra
acoustic stress waves created by external sources. The open-loop plant res
with no controller, is shown in Figure 9. The closed-loop response, after the
controller was trained to convergence, is shown in Figure 10. 

Figure 8.  Tone Burst Reference Input

In the next test, dynamic backpropagation was used in plant model, but
not used in backpropagating derivatives in the controller. Only st
backpropagation was used in the controller. (In Eq. (24) only the exp
derivative terms are calculated.) This procedure requires less computation th
full dynamic backpropagation but may not be as accurate. The results are s
in Figure 11.

For the last test, dynamic backpropagation was only used to compu
dynamic derivative across the first delay in the tapped-delay line between the
model and the controller. All other derivatives were computed using only exp
(static) derivatives. The controller weights never converged in this case, so a
of the results is not shown. The results are summarized in Table 1.
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Figure 9.  Open-loop Plant Response

Figure 10.  Closed-Loop System Response (Full Dynamic Training)

Figure 11.  Response without Dynamic Controller Training
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Table 1 provides a summary of the performance results for all three tests.
These results highlight the increased computational burden when calcul
dynamic derivatives instead of simply static derivatives. In this exam
reasonable performance was possible even when dynamic derivatives were
only in the plant model. This derivative approximation decreased 
computational burden by approximately 65%. Using essentially no dyna
derivatives in training reduced the computational burden by approximately 9
However, performance in this case was unacceptable.

VI. RECURRENT FILTER

This section provides a second example of the application of the LDRN
dynamic backpropagation. We use a multi-loop recurrent network to predic
experimental acoustic signal. The prediction of acoustic signals is crucial in a
sound cancellation systems. Acoustic environments are often very complex
to the complexity of typical sound sources and the presence of reflected s
waves. The dynamic nature of acoustical systems makes the use of recurren
structures of great interest for prediction and control of this type of system. 

Figure 12.  Active Noise Control System

Figure 12 depicts a typical Active Noise Control (ANC) system. An acoustic
noise source creates undesirable noise in a surrounding area. The goal of the
noise suppression system is to reduce the undesirable noise at a particular lo

Derivative 
Method

Flops/Sample
Sum Squared 

Error

Full Dynamic 9.83 x 105 43.44

Plant Only 
Dynamic 3.48 x 105 55.53

No Dynamic 1.85 x 104 127.88

Table 1.   Simulation Results for the Neural Controller
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by using a loudspeaker to produce “anti-noise” that attenuates the unwanted
by destructive interference. In order for a system of this type to work effectiv
it is critical that the ANC system be able to predict (and then cancel) unwa
sound in the noise control zone. 

In the first part of this section we develop the dynamic training equations
the ANC system. Then we present experimental results showing the predi
performance.

Figure 13 shows the structure of the LDRN used for predicting the acoustic
data. In this network there are 3 cascaded recurrent structures. If we follow
methods described in Section IV, we see that the system is composed of
subnets. Therefore, we have three sets of training equations:

(25)

(26)

(27)

Notice that in Eq. (27) there is only one dynamic term. This is because the
only one tapped-delay input that comes from a subnet.

We now show how these equations can be developed using our gener
procedure, which was described in the flowchart of Section IV. We start in the
layer in the backpropagation order (Layer 6) to get the following equations:
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,       
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Figure 13.  Cascaded Recurrent Neural Network
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Layer 5 is not the output of a subnet, so the resulting equations are:

      

      

      

      

      

      

Layer 5 has two tapped-delay inputs from subnets, so we must calculat
explicit derivatives of the subnet output with respect to these inputs to yield:

      

      

Layer 4 is the end of the second subnet, so we now calculate the ex
derivatives with respect to the second subnet output.
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Layer 3 is not the output of a subnet, so the resulting equations are:

      

      

      

      

      

      

Layer 3 has two delayed inputs from other subnets, so we must comput
following explicit derivatives:

      

      

Layer 2 is the end of the first subnet, so we apply the equations
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Layer 1 is not the output of a subnet, so we apply

      

      

      

      

      

Layer 1 has one delayed input from another subnet, so we calculate

      

At this point, we have the explicit derivatives for all the weights and biase
the system. These explicit derivatives are used with Eq. (25) – Eq. (27) to com
the dynamic derivatives we need for training the network. Notice that the solu
to Eq. (27) is an input to Eq. (26) and Eq. (27) on the following time step. 
solution to Eq. (26) is an input to Eq. (25) and Eq. (26) on the following time s
Finally, the solution to Eq. (25) is an input to Eq. (25) on the following time st

After all the dynamic derivatives of the output of the system with respec
the weights and biases have been computed, we must calculate

      

We can then compute the derivative of the cost function with respect to al
weights and biases using
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The process is repeated for each sample time in the training set.
After the network was trained, it was used to predict experimentally reco

noise. The result is shown in Figure 14. The data was collected in an acoustically
“live” environment that was conducive to sound reflection. The prediction res
for the LDRN, trained with full dynamic backpropagation, is compared to t
other systems. The first comparison system is an LDRN that is trained only
static derivatives. The second comparison system is a non-recurrent LFFN s
with a tapped-delay line at the input. Figure 14 shows the actual and predicted
signals when full dynamic backpropagation is used to train the LDRN. Figure 15
is a plot of the errors between actual and predicted signals.

Figure 14.  Prediction Results for LDRN with Full Dynamic Training 

Figure 15.  Errors for LDRN with Full Dynamic Training

The next experiment uses the same data, but only explicit (static) deriva
were used. The errors between actual and predicted signals are shown in Figure
16.
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Figure 16.  Prediction Errors for Static Training

The results shown in Figure 16 are reasonably good. We can see some
degradation in performance, which might be critical in certain situations. In so
cancellation applications, for example, the differences would certainly 
detectable by the human ear. 

As a final experiment, the data was processed using an LFFN, with T
input. The network size was adjusted so that the number of weights 
comparable to the LDRN used in the previous experiment. The prediction e
for the LFFN are shown in Figure 17.

Figure 17.  LFFN Prediction Results

The LFFN prediction performance is not too bad, but is significantly wo
than the LDRN performance, when trained with full dynamic backpropagation
summary of the simulation results is provided in Table 2. Notice the dramatic
increase in floating point operations required to process each sample 
dynamic training is used.
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VII. SUMMARY

This chapter has discussed the training of recurrent neural networks
control and signal processing. When computing training gradients in recu
networks, there are two different effects that we must account for. The first
direct effect, which explains the immediate impact of a change in the weigh
the output of the network at the current time. The second is an indirect e
which accounts for the fact that some of the inputs to the network are prev
network outputs, which are also functions of the weights. To account for 
indirect effect we must use dynamic backpropagation. 

This chapter has introduced the Layered Digital Recurrent Network (LDR
which is a general class of recurrent network. A universal dynamic train
algorithm for the LDRN was also developed. The LDRN was then applied
problems in control and signal processing. A number of practical issues mu
addressed when applying dynamic training. Computational requirements
dynamic training can be much higher than those for static training, but s
training is not as accurate and may not converge. The appropriate form of tra
to use (dynamic, static, or some combination) varies from problem to proble
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Table 2.    Simulation Results
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