Chapter 12

TRAINING RECURRENT NETWORKS
FOR FILTERING AND CONTROL

Martin T. Hagan, Orlando De Jesus, Roger Schultz

School of Electrical and Computer Engineering
Oklahoma State University, Stillwater, Oklahoma

[. INTRODUCTION

Neural networks can be classified into recurrent and nonrecurrent categories.
Nonrecurrent (feedforward) networks have no feedback elements; the output is
calculated directly from the input through feedforward connections. In recurrent
networks the output depends not only on the current input to the network, but also
on the current or previous outputs or states of the network. For this reason,
recurrent networks are more powerful than nonrecurrent networks and have
important uses in control and signal processing applications.

This chapter introduces the Layered Digital Recurrent Network (LDRN),
develops a general training algorithm for this network, and demonstrates the
application of the LDRN to problems in controls and signal processing. In Section
Il we present the notation necessary to represent the LDRN. Section Ill contains
a discussion of the dynamic backpropagation algorithms that are required to
compute training gradients for recurrent networks. The concepts underlying the
backpropagation-through-time and forward perturbation algorithms are presented
in a unified framework and are demonstrated for a simple, single-loop recurrent
network. In Section IV we describe a general forward perturbation algorithm for
computing training gradients for the LDRN. Two application sections follow the
discussion of dynamic backpropagation: neurocontrol and nonlinear filtering.
These sections demonstrate the implementation of the general dynamic
backpropagation algorithm. The control section (Section V) applies a
neurocontrol architecture to the automatic equalization of an acoustic transmitter.
The nonlinear filtering section (Section VI) demonstrates the application of a
recurrent filtering network to a noise-cancellation application.

[I. PRELIMINARIES

In this section we want to introduce the types of neural networks that are
discussed in the remainder of this chapter. We also present the notation that we
use to represent these networks. The networks we use are Layered Digital
Recurrent Networks (LDRN). They are a generalization of the Layered
Feedforward Network (LFFN), which has been modified to include feedback

© 2001 by CRC Press LLC

connections and delays. We begin here with a description of the LFFN and then
show how it can be generalized to obtain the LDRN.

A. LAYERED FEEDFORWARD NETWORK

Figure 1 is an exarple of alayered feetbrward network (two layers in this
case). (See Demutt al.[1998] for a full descrlptlon of the notatlon used here.)
The input vectorto the netwak isrepresenta by p which has R' elemetts. The
superscript represents the input number, since it is possible to have more than one
input vector. The input is connected to Layer 1 through the input wmﬁt ,
where the first superscript represents the layer number and the second superscript
represents the input number. The bias for the first layer is represerined by .The
net input to Layer 1 is denoted hy , and is computed as

=iwhpl+b ()

The output of Layer 1a , Is computed by passing the net input through a transfer
function, according ta’ = f (nl) .The outputkds elements. The output of the
first layer is input to the second layer through the layer weILgNt . The
overall output of the network is labelgd . This is typically chosen to be the output
of thelast layer in the network, asit isin Figure 1, although it coud bethe autput

of any layer in the network.

Input Layer 1 Layer 2

ai=f1 (I W1ip1 +b1) a2 =f2 (LW2,1a1+ bz)

Figure 1. Example of a Layered Feedforward Network

Each layer in the LFFN is made up of 1) a set of weight matrices that come
into that layer (which may connect from other layers or from external inputs), 2)
a bias vector, 3) a summing junction, and 4) a transfer function. (In the LDRN, a
set of tapped delay lines may also be included in a layer, as we will see later.) In
the exanple given in Figure 1, there is aly one weidt matrix associated with
each layer, but it is possible to have weight matrices that are connected from
several different input vectors and layer outputs. This will become clear whea we
introducethe LDRN network. Also, the exkamge in Figure 1 has only two layers;
our general LFFN can hae an arlitrary number d layers. The layers do rot have
to be connected in sequence from Layer 1 to Layer M. For example Layer 1 could
be connected to both Layer 3 and Layer 4, by we|gms Land * ,

© 2001 by CRC Press LLC

respectively. Although the layers do not have to be connected in a linear sequence
by layer number, it must be possible to compute the output of the network by a
simple sequence of calculations. There cannot be any feedback loops in the
network. The order in which the individual layer outputs must be computed in
order to obtain the correct network output is calledsthmulation order

B. LAYERED DIGITAL RECURRENT NETWORK

We now introduce a class of recurrent networks that are based on the LFFN.
The LFFN is a static network, in the sense that the network output can be
computed directly from the network input, without the knowledge of initial
network states. A Layered Digital Recurrent Network (LDRN) can contain
feedback loops and time delays. The network response is a function of network
inputs, as well as initial network states.

The components of the LDRN are the same as those of the LFFN, with the
addition of the tapped deay line (TDL), which is shown in Figure 2 The aitput
of the TDL is a vector containing current and previous values of the TDL input.
In Figure 2 we stow two ablreviatedrepresentatias for the TDL. In the caseon
the left, the undelayed value of the input variable is included in the output vector.
In the case on the right, only delayed values of the input are included in the output.

a(t) e— —» at)
Abbreviated Notation

Undelayed Value Undelayed Value
—» at-1) Included Discarded

at) T X® a) T x(t)
. D

sa L sarpxa a1 Ll swa
[d | [d|

Figure 2. Tapped Delay Line

Ly at-d)

Figure 3 is anexample of an LDRN. Like theLFFN, theLDRN is made up
of layers. In addition to the weight matrices, bias, summing junction, and transfer
function, which make up the layers of the LFFN, the layers of the LDRN also
include any tapped delay lines that appear at the input of a weight matrix. (Any
weight matrix in an LDRN can be proceeded by a tapped delay line.) For example,
Layer 1 of Figure 3contains the weaght LW " ?and the TDL atitsinput. Note that
all of the layer outputs and net inputs in the LDR£\I are explicit functions of time.
Theoutput of theTDL in Figure 3islabeled a” (t). Thisindicatesthatit is
a composite vector made up of delayed values of the output of Subnet 2 (indicated
by the second superscript) and is an input to Subnet 2 (indicated by the first
superscript). (A subnet is a series of layers which have no internal tapped delay

© 2001 by CRC Press LLC

lines. The number of the subnet is the same as the number of its output layer.
These concepts are defined more carefully in a later section.) These TDL outputs
are important variables in our training algorithm for the LDRN.

Input Layer 1 Layer 2

N

Figure 3. Layered Digital Recurrent Network Example

In the LDRN, feedback is added to an LFFN. Therefore, unlike the LFFN, the
output of the network is a function not only of the weights, biases, and network
input, but also of the outputs of some of the network layers at previous points in
time. For this reason, it is not a simple matter to calculate the gradient of the
network output with respect to the weights and biases (which is needed to train the
network). This is because the weights and biases have two different effects on the
network output. The first is the direct effect, which can be calculated using the
standard backpropagation algorithm [Hagatnal, 1996]. The second is an
indirect effect, since some of the inputs to the network, suéh' 4 ag) , are also
functions of the weights and biases. In the next section we briefly descrlbe the
gradient calculations for the LFFN and show how they must be modified for the
LDRN. The main development of the next two sections is a general gradient
calculation for arbitrary LDRN’s.

[ll. PRINCIPLES OF DYNAMIC LEARNING

Consider aggain the multilayer nework of Figure 1 The baic dmulation
equation of such a network is

i 0
a“ = oS IW p'+ 5 LW I +b'E, 2
§ z 0 &)
wherek is incremented through the simulation order.
The task of the network is to learn associations between a specified set of

input/output pairs: {01, t1), (o2, t2), ... , g, to)} The performance index for the
network is

© 2001 by CRC Press LLC

Q Q
FOO = (tg=Yg) (tq=Yg) = T €€ 3)
q=1

q=1

wherey,, is the output of the network when dﬁéinput, Pq » is presented, and
is a vector containing all of the weights and biases in the network. (Later we use
x' to represent the weights and biases in Laydhe network should learn the
vector that minimizes

For the standard backpropagation algorithm [Hagial, 1996] we use a
steepest descent learning rule. The performance index is approximated by:

F= eqTeq, 4)
where the total sum of squares is replaced by the squared errors for a single input/
output pair. The approximate steepest (gradient) descent algorithm is then:

k | 0!5 0!5

k
Aw' = —0——, Ab; = —-0— (5)
" ow by
wherea is the learning rate. Define
SIkE oF 6)

as the sensitivity of the performance index to changes in the net input birunit
layerk. Using the chain rule, we can show that

~ ~ m
oF _ oF On
m, |
i,

~ ~ am
oF _oF 9N _

m | _ m.
m, | m T mi o S P m, | m =S8,
Oiwi; on 0w ; olw; j on; dlw

£ e on"
e)

ob" on" ab;"

It can also be shown that the sensitivities satisfy the following recurrence relation,
in which m is incremented through tHeackpropagation orderwhich is the
reverse of the simulation order:

sm=#Wnﬁz(UN“%¥‘ @8)

where

© 2001 by CRC Press LLC

)y o .. 0
E™nm 0 fn3) ... 0 ©)
o 0 .. fm(ngm)_
and
oy = L0 (10)
on

]
This recurrence relation is initialized at the output layer:
M ‘MM
s ==2F (n")(tq-Yy) - (12)

The overall learning algorithm now proceeds as follows: first, propagate the
input forward using Eq. (2); next, propagate the sensitivities back using Eq. (11)
and Eq. (8); and finally, update the weights and biases using Eq. (5) and Eq. (7).

Now cansider an LERN, such ashe one show in Figure 3 Supposethat we
use the same gradient descent algorithm, Eq. (5), that is used in the standard
backpropagation algorithm. The problem in this case is that when we try to find
the equivalent of Eq. (7) we note that the weights and biases have two different
effects on the network output. The first is the direct effect, which is accounted for
by Eq. (7). The 1scgcond is an indirect effect, since some of the inputs to the
network, such aa™ “(t) , are also functions of the weights and biases. To account
for this indirect effect we must use dynamic backpropagation.

To illustrate dynamic backpropagation [Yaeg al, 1993, Yang, 1994],
congder Figure 4, which is a simplerecurent network. It consists & anLFFN
with a single feedback loop added from the output of the network, which is
connected to the input of the network through a single delay. In this figure the
vector x represents all of the network parameters (weights and biases) and the
vectora(t) represents the output of the LFFN at time step

p(t)

I—> LFFN

’_, Dl a(t) = NN(p(t),a(t-1),x)

Figure 4. Simple Recurrent Network

a(t)

© 2001 by CRC Press LLC

Now suppose that we want to minimize

Q
F(x) =% (t(t)-a(t) (t(t) -a(t) 12)

t=1

In order to use gradient descent, we need to find the gradiEnwithi respect to
the network parameters. There are two different approaches to this problem. They
both use the chain rule, but are implemented in different ways:

Q
oF _ da(t)1™ . o°F
x Z[ax] * a0 (13)
t=1
or
ko %a)1’ . oF
% 2 e (14)
t=1

where the superscriptindicates an explicit derivative, not accounting for indirect
effects through time. The explicit derivatives can be obtained with the standard
backpropagation algorithm, as in Eq. (8). To find the complete derivatives that are
required in Eq. (13) and Eq. (14), we need the additional equations:

da(t) _ aea(t)+ d°a(t) | oa(t-1)

0X 0X oa(t-1) 0X (15)

and

e e
oOF _ o°F d%a(t+1) _ oF

da(t) oda(t) oa(t) ~ oa(t+1) (16)

Eg. (13) and Eq. (15) make up the forward perturbation (FP) algorithm. Note that
the key term is

oa(t)
™ a7

which must be propagated forward through time.
Eg. (14) and Eg. (16) make up the backpropagation-through-time (BTT)
algorithm. Here the key term is

oF
00 (18)

© 2001 by CRC Press LLC

which must be propagated backward through time.

In general, the FP algorithm requires somewhat more computation than the
BTT algorithm. However, the BTT algorithm cannot be implemented in real time,
since the outputs must be computed for all time steps, and then the derivatives
must be backpropagated back to the initial time point. The FP algorithm is well
suited for real time implementation, since the derivatives can be calculated at each
time step.

IV. DYNAMIC BACKPROP FOR THE LDRN

In this section, we generalize the FP algorithm, so that it can be applied to
arbitrary LDRN'’s. This is followed by applications of the LDRN and dynamic
backpropagation to problems in filtering and control.

A. PRELIMINARIES

To explain this algorithm, we must create certain definitions related to the
LDRN. We do that in the following paragraphs.

First, as we stated earlier,layer consists of a set afieights associated
tapped delay lingsasumming functionand aransfer function The network has
inputsthat are connected to special weights, catipdt weightsanddenoted by
IWii, wherej denotes the number of the input vector that enters the weight, and
i denotes the number of the layer to which the weight is connected. The weights
connecting one layer to another are call@ger weightsand are denoted by
LWii wherej denotes the number of the layer coming into the weight and
denotes the number of the layer at the output of weight. In order to calculate the
network response in stages, layer by layer, we need to proceed in the proper layer
order, so that the necessary inputs at each layer will be available. This ordering of
layers is called theimulation order In order to backpropagate the derivatives for
the gradient calculations, we must proceed in the opposite order, which is called
thebackpropagation order

In order to simplify the description of the training algorithm, the LDRN is
divided intosubnets A subnet is a section of a network that has no tapped delay
lines, except at the subnet input. Every LDRN can be organized as a collection of
subnets. We define the subnets by proceeding backwards from the last subnet to
the first subnet. To locate the last subnet, start at the first layer in the
backpropagation order and proceed through the backpropagation order until you
find a layer containing delays, which becomes the first layer in the last subnet. The
last subnet is then defined as containing all of the layers beginning at the layer
containing delays and continuing through the simulation order to the first layer in
the backpropagation order (or the last layer in the simulation order). This defines
the last subnet. To find the preceding subnet, start with the next layer in the
backpropagation order and proceed in the same way until you find the next layer
with delays. This process continues until you reach the last layer in the
backpropagation order, at which time the fasbnetis defined. As with the layer

© 2001 by CRC Press LLC

simulation order, we can also definsw@bnet simulation ordethat starts at the
first subnet and continues until the last subnet.

For exanple, the LDRN shown in Figure 5 has thee lgers andwo subnets.
To simplify the algorithm, the subnet is denoted by the number of its output layer.
For this network the simulation order is 1-2-3, the backpropagation order is 3-2-1
and the subnet simulation order is 1-3.

Layer 1 Layer 2 Layer 3
- N\ N\ A\

y(®
ns(t) as(t)

ad
f3

Subnet 1 Subnet 3

Figure 5. Three-layer LDRN with Two Subnets

B. EXPLICIT DERIVATIVES

We want to generalize the forward perturbation (FP) algorithm of Eq. (13)
and Eq. (15) so that it can be applied to an arbitrary LDRN. Notice that we have
two terms on the right-hand side of Eq. (15). We have an explicit derivative of the
performance with respect to the weights, which accounts for the direct effect of
the weights on the performance and can be computed through the standard
backpropagation algorithm, as in Eq. (8). We also have a second term, which
accounts for the fact that the weights have a secondary effect through the previous
network output. In the general LDRN, we may have many different feedback
loops, and therefore there could be many different terms on the right of Eq. (15),
and each of those terms would have a separate equation like Eq. (15) to update the
total derivative through time. For our development of the FP algorithm, we have
one term (and an additional equation) for every place where one subnet is input to
another subnet. Recall that the subnet boundaries are determined by the locations
of the tapped delay lines. Within a subnet, standard backpropagation, as in Eq. (8),
can be used to propagate the explicit derivatives, but at the subnet boundaries an
equation like Eq. (15) must be used to calculate the total derivative, which
includes both direct and indirect effects. In this subsection we describe the

© 2001 by CRC Press LLC

computation of the explicit derivatives, and then in the following subsection we
explain the total derivative computation.

A backpropagation process to calculate the explicit derivatives is needed for
each subnet. These equations involve calculating the derivative of the subnet
output with respect to each layer output in the subnet. The basic equation is

e_jz e k e.jz
0% _ oy 0% (19)
aai(t) > dai(t) ank(t)
whereaiz(t) represents a subnet outgilt) is the output of a layer in @jbnet

nk(t) is the net input of layek, which has a connection from layieiThe index
is incremented through the backpropagation order. If we define

e_jz e k
skiz=22) and note thal U = Lwki | (20)
ank(t) oa'(y)

then we can write Eq. (19) as

aeajz(t) - K ix S jz
i %LW x Sk iz (21)

This recursion, where is incremented along the backpropagation order,
begins at the last layer in the subnet:

%) _
daiz(t) ! (22)

wherel is an identity matrix whose dimension is the size of layer

C. COMPLETE FP ALGORITHM FOR THE LDRN

We are now ready to describe a generalized FP algorithm for the arbitrary
LDRN. There are two parts to the FP algorithm: Eq. (13) and Eq. (15). Eq. (13)
remains thesame br the LDRN &s for the simple netwok in Figure 4 Eg.(15),
however, must be modified. For the general case we have one equation like Eq.
(15) for each subnet output. Each of these equations has a term for the explicit
derivative and one additional term for each subnet output.

The complete FP algorithm for the LDRN network is given in the following
flowchart. It contains three major sections. The first section computes the explicit
(static) derivatives, as in Eg. (21), which are needed as part of the dynamic
equations. The second section computes the dynamic derivatives of the subnet
outputs with respect to the weights, as in Eq. (15). The final section computes the
dynamic derivatives of performance with respect to the weights, as in Eq. (13).

© 2001 by CRC Press LLC

Initialize oF _ 0 for all weights and bias

in the networkX); Set initial timet =1

/prlicit (Static) Derivative} Y
Select = last layer in
backpropagation orde

=

Selecti = next layer in
. P
| backpropagation orde

-

Isi Yes
NO “output of
* a subnet? +
oa’(t) LW ixSKie Setjz =i
I e_Jz
a4 Set 2(1)
for all k layers connected oal(t)
to layeri

a%ai7(t)
L —d
Calculate PRI

e .
Calculate % for weights and biases in layx')

Y

Isi
input of
a subnet?

For each layeythat
connects to layer | Yes

calculate %aiz(1)
CEE)

\ End v
0 backprop- €s
agation ? >®

/

© 2001 by CRC Press LLC

Dynamic Derivatives of Netwo \

Outputs with Respect to Weigh s@

jz = First subnetjj = First subnet

>$

. e .
Initialize 92%(t) _ 0°@%(t) for all weights and biasex)
0X 0X

the
output of
subnetjj an inp
to subnejz

Calculate 9a%(t) _ daix(t) , a%ai*(1) 9a™* V(1)
ax ox ga?l) ox

for all weights and biases in networg.(

Incrementjj

Incrementz; jj = First subner

Is
iz > last_Yes
lszuznii ? >®
- J

No

© 2001 by CRC Press LLC

ﬂ)ynamic Derivatives \

of Performance with
\Respect to Weights

‘ jz = Last subnet‘
for the output layer
0aiz(t) putlaye

v

Calculate 9F _ 5_F+MDT£
ox ox U oax Uaaiz(t)

for all weights and biases in the netwoxk

€,
Calculate -9 F

‘ Increment timet = t+ 1 ‘

in training
set ?

V. NEUROCONTROL APPLICATION

In this section we illustrate the application of the LDRN and dynamic
backpropagation to a control problem. We wish to control the output of an
aooudic transmiter, whose schematitiagramis shown in Figure 6

Binary data is transmitted via acoustic signals from one pipeline location to
another. Acoustic stress waves are imparted into the pipeline by the acoustic
transmitter. The stress waves propagate through the pipeline to the acoustic
receiver, which receives the transmitted signal. Tone bursts of different
frequencies are used to represent either a 1 or a 0. The acoustic channel provided
by the pipeline causes heavy distortion in the transmitted signal. There are often
extraneous unwanted acoustic stress waves created by external sources, such as
engines, geartrains, and pumps, that are imparted into the pipeline. The inherent
channel distortion and the unwanted external noise can degrade the transmitted

© 2001 by CRC Press LLC

signal such that signal detection and interpretation at the receiver are unreliable or
impossible. One method of enhancing communication performance is to equalize
the effects of the transmission channel by adjusting the transmitter output so that
the measured signal imparted to the pipeline at a short distance from the
transmitter is the desired signal. Ideally, the feedback measurement of this signal
is taken at the receiver. Of course, in practice, the feedback signal is measured
near the transmitter. To alleviate the effects of unwanted disturbance noise, the
transmitter can actively cancel the disturbance noise by way of destructive
interference. The transmitter creates stress waves that are out of phase with, and
of equal magnitude to, the undesired signals. In this example, a neural network
controller is used as both a channel equalizer and an active noise canceller.

Amplifier
» Neurocontroller
Acoustic Acoustic
Transmitter Pipeline Receiver
A

-] | ’ 9 —

[~

Accelerometer

Figure 6. Schematic of Acoustic Transmitter/Receiver System.

In addition to illustrating dynamic backpropagation on the neurocontroller for
the acoustic transmitter, this section also demonstrates the effect of training with
approximations to true dynamic derivatives. The evaluation is based on squared
error performance and floating point operations. When approximations are used,
the computational burden can be reduced, but the errors generally increase.

Figure 7 is aschematic of the ontrol system. In this system, model reference
adaptive control (MRAC) [Narendra, 1990] is applied to the control of the
acoustic transmitter. The plant model is used only as a backpropagation path for
the derivatives needed to adjust the controller weights; the plant model weights are
not adjusted. The plant model is a 2-layer LDRN, with 10 input taps, 50 feedback
taps, and 15 hidden neurons. The controller weights are adjusted such that the
errore.(t), between a delayed reference ingit and the actual plant outpe(t),
is minimized. The controller structure consists of 40 input taps, 50 controller
feedback taps, 75 plant output feedback taps, and 15 hidden neurons.

© 2001 by CRC Press LLC

r(t)

=
D LW12

L| a

(0] 220) at) na(t)

LW24

\ f2
AD

1P b2 j 1P| b2

21 Acoustic
Transmitter
T a0 ns(t) s ()
DL Waz L Wasa
L ™ f
(¥
19 bs % 19 be

T
D L W34
L

asa(t)

J

N

Neural Network Controller

Neural Network Plant Model

Figure 7. Self-Equalizing Acoustic Transmitter

If we apply the concepts described in the previous sections to the system
shown in Figure 7, we notice lvat the total systemsian LDRN that carnbe diided
into two subnets. The last subnet (number 4) corresponds to the Neural Network
Plant Model (with a4(t) as the subnet output). The first subnet (number 2)
corresponds to the Neural Controller (wiaﬁ(t) as the subnet output). The
subnets are fully connected, so we have two sets of training equations:

dat(t) _ o‘a%(t) , a%ad(n aat A , a%a(n aat (b
oX X aa*t) ox gatHr) O

(23)

and

oa2(t) _ o'a(1) , a%a2(n) 9a* () , a%a2(1) 98> (1)
X X 9% 4t) Ox 02> (1) Ox

(24)

We now show how these equations can be developed using our general FP
algorithm, which was described in the flowchart in the previous section. We start
in the last layer in the backpropagation order (layer 4), obtaining:

e 4 e 4
0a(t) _ . qaa0a(t) _ g4 4
T l:S i F (n%
%) _ o4 a4 3%ad(t) _ 2t 4 ogr
304 F(n); LW 43 F (n") da’(t)]

Layer 3 is not the output of a subnet, so we apply:

4
%’ () = LW43x Sh4
a(t)

4 .
83,45aea (t) - LW4Y3><S4'4>< |:3(n3)

n3(t)

a%d(t) _ 3 3
W = LW4’3x84’4XF (I"l)
aea“(t) 3 3 242, T
— L = LW43xSH4xF (n7) x[a™“(t
LW 32 (n7) x[a™“(t)]

© 2001 by CRC Press LLC

a%ad(t)
LW 34

= LW43xSh4x F'S(n3) x[a* %117

Layer 3 has two inputs with delays, therefore it is the beginning of the last subnet,
and we calculate:

e .

aéa“(t) = LW43xSh4x Fs(ns) x LW 3 2
oa* (1)
a%a%(t) 3 3

— = LW43xS%4xF (n°)xLW?34
aa* 4(t)

Layer 2 in the neural controller is the end of the first subnet. So we apply the
equations:

&) _ . 22 - F
_az(t)_l's = =F (n")

0%2(t) _ <2 2 . d%a(t) _ 22, 2
02 F(n%); SIwal F (n%) datm]"
Layer 1 is not the output of a subnet, so we apply:

%a°() _

LW21xS22
al(t)

e_2 .
Sl,ZEaa (t) - LW2v1xSZv2xF1(nl)

ni(t)
ae:;it) - LW21xS22xEY(nY
aﬁ\z/(lt,)l = LW21xS22x lfl(nl) JEON
a?_e\a/l\z/(:,)l = LW21xS22x lfl(nl) JESRON

© 2001 by CRC Press LLC

0%a2(t)
oW L1

= LW21xS22x F () x [F(1)]

Layer 1 has two inputs with delays, so it is the end of the first subnet, and we
calculate

aeaZ(t) = LW 2,1x82,2x [:'1(n1) x LW 1,2
02 ()

9%a2(t) 1

— = LW21xS22xF (n)xLW1L4
0a% 4(t)

Now that we have finished with the backpropagation step, we have the
explicit derivatives for all of the weights and biases in the system. We are now
ready to calculate the dynamic derivatives. We initialize

9a2(t) _ 0%a2(t)
0X 0X

and calculate

0a%(t) _ 9a2(t) , o°a() 9a* (1)
X X 9a®t) OX

and

da(t) _ da(t) , 0%a2(t) 92 (t)
ox X 9a>%t) ox

This gives us Eq. (24) for all weights and biases. A similar process is performed
for subnet 4 to obtain Eq. (23).

We have now computed all of the dynamic derivatives of the outputs of the
subnets with respect to the weights. The next step is to compute the derivatives of
the performance function with respect to the weights. We must first calculate

€

0F

- _ _a4
s = 2 0-a‘w),

to obtain

© 2001 by CRC Press LLC

40T 8%
OF _ oF _ at()d o

ox ox U oax Uaadt)

for all the weights and biases in the neural controller. The process is repeated for
each sample time in the training set.

The LDRN was trained using the preceding equations. Now we demonstrate
the performance of the closed-loop acoustic transmitter system. The reference
input used in the simulation consisted of a random sequence of tone burst pulses,
asshown in Figure 8. The tane bursts are evenly spacedral ajpear ramlomly at
one of two frequencies. In order to investigate the robustness of the controller, a
periodic disturbance noise was added to the plant input, representing extraneous
acoustic stress waves created by external sources. The open-loop plant response,
with no cortroller, is shown in Figure 9 The dosed{oop response, after the
controll er was trained to convergence,is shownin Figure 10.

o o o o

o o o o
b @ o s N o N B & @ k

200 400 600 800 1000 1200 1400 1600 1800 2000

Figure 8. Tone Burst Reference Input

In the next test, dynamic backpropagation was used in plant model, but was
not used in backpropagating derivatives in the controller. Only static
backpropagation was used in the controller. (In Eq. (24) only the explicit
derivative terms are calculated.) This procedure requires less computation than the
full dynamic backpropagation but may not be as accurate. The results are shown
in Figure 11.

For the last test, dynamic backpropagation was only used to compute a
dynamic derivative across the first delay in the tapped-delay line between the plant
model and the controller. All other derivatives were computed using only explicit
(static) derivatives. The controller weights never converged in this case, so a plot
of theresults is not sbwn. The results are sumarized inTable 1

© 2001 by CRC Press LLC

0.8 | 4

1k 4

200 400 600 800 1000 1200 1400 1600 1800 2000

Figure 9. Open-loop Plant Response

0.8 | 4

a1k 4

200 400 600 800 1000 1200 1400 1600 1800 2000

Figure 10. Closed-Loop System Response (Full Dynamic Training)

0 500 1000 1500 2000

Figure 11. Response without Dynamic Controller Training

© 2001 by CRC Press LLC

Table 1 provides asummary of the peformanceresults for al three tests.
These results highlight the increased computational burden when calculating
dynamic derivatives instead of simply static derivatives. In this example,
reasonable performance was possible even when dynamic derivatives were used
only in the plant model. This derivative approximation decreased the
computational burden by approximately 65%. Using essentially no dynamic
derivatives in training reduced the computational burden by approximately 98%.
However, performance in this case was unacceptable.

Derivative Sum Squared
Method Flops/Sample Error
Full Dynamic 0.83x 18 43.44
Plant Only
Dynamic 3.48x 168 55.53
No Dynamic 1.85x 14 127.88

Table 1. Simulation Results for the Neural Controller

VI. RECURRENT FILTER

This section provides a second example of the application of the LDRN and
dynamic backpropagation. We use a multi-loop recurrent network to predict an
experimental acoustic signal. The prediction of acoustic signals is crucial in active
sound cancellation systems. Acoustic environments are often very complex, due
to the complexity of typical sound sources and the presence of reflected sound
waves. The dynamic nature of acoustical systems makes the use of recurrent filter
structures of great interest for prediction and control of this type of system.

— »| AcousTicNOISE
UNDESIRED FILTER PATH
NOISE D
+ v
MIC 1 \ -

»| NEURAL NETWORK _<D ERROR
MIC 2

Noise Control Zone

Figure 12. Active Noise Control System

Figure 12depics a typical Active Noise Control (ANC) system. An aagstic
noise source creates undesirable noise in a surrounding area. The goal of the active
noise suppression system is to reduce the undesirable noise at a particular location

© 2001 by CRC Press LLC

by using a loudspeaker to produce “anti-noise” that attenuates the unwanted noise
by destructive interference. In order for a system of this type to work effectively,

it is critical that the ANC system be able to predict (and then cancel) unwanted
sound in the noise control zone.

In the first part of this section we develop the dynamic training equations for
the ANC system. Then we present experimental results showing the prediction
performance.

Figure 13shows thestructure o the LDRN used for predicting the acastic
data. In this network there are 3 cascaded recurrent structures. If we follow the
methods described in Section IV, we see that the system is composed of three
subnets. Therefore, we have three sets of training equations:

oas(t) _ o%ab(t) , a%ad(n) 9a> () , a%ad(n) 98" () (25)
X ox 0a%4t) ox 0a%6t) ox
oat(t) _ o%a%(y) , a%ad(n aa* A , a%a(n aat (b (26)
X X ga*?t) Ox oat) Ox
da%(t) _ o%a(t) , a%a2(t) 9a* A1) 27)
ox X ga%?t) OX

Notice that in Eq. (27) there is only one dynamic term. This is because there is
only one tapped-delay input that comes from a subnet.

We now show how these equations can be developed using our general FP
procedure, which was described in the flowchart of Section IV. We start in the last
layer in the backpropagation order (Layer 6) to get the following equations:

%% _ | ep6.00°() _ 6, 6
0ab(t) hS TonS(t) ()
O%ab(t) _ 26 6 07@%(t) _ 28 6 gt
e = F (), Sk = F (n°) das(]

© 2001 by CRC Press LLC

re = nt) au(t) n2t) ax(t)
D W11 L W21
\ f \ f2
e ! 9
19| be j 1P| b2 j
TlLe
—» D—P{L W12
1 2ea()
O
TlLe
" D—PpL W3z
Ll &
[51 20 fnsr) as(t) na(t) a(t)
Tre
D W31 L W2
g ™ ! ¢
m Ok
1P bs j 1P| b4 j
Tle
—» E —P{L Wa4
N '\44(t)
O
TlLe
" D—P|L W54
L| o
5] 20 fnsy as(t) ns(t) as(t)
Tre
D W51 LW24
i N ™ ¢
10 e 6
19| bs j 19| bs j
T
LWss
L

'ée,e(t)

Figure 13. Cascaded Recurrent Neural Network

© 2001 by CRC Press LLC

e(t)

Layer 5 is not the output of a subnet, so the resulting equations are:

3%a°() _

LW6 5x S6.6
9a’(t)

e 6 .
ss6=93 () _ LW6,5xs6,6x|:5(n5)

ans(t)
ae:sfst) = LW Sx S0.0xF (n°)
(% = LW®65x S5 6x I55(n5) <[40 4T
;%v;(st,)l = LW65x S5:6x F (n°) x [F (0]
;_eaTS(;)G = LW65x S 6x F'5(n5) x[ae, G(t)]T

Layer 5 has two tapped-delay inputs from subnets, so we must calculate the

explicit derivatives of the subnet output with respect to these inputs to yield:
9%ab(t)
0a% 4(t)

= LW6:5x S6.6x F (n%) x LW 5.4

0°a%(t) _ |\ 6 5x 56 6x Fo(n%) x LW 56
aaG, G(t)

Layer 4 is the end of the second subnet, so we now calculate the explicit
derivatives with respect to the second subnet output.

0%a%(t) _ (. caa 0'®) _ 24 4
o o Cany (M)

© 2001 by CRC Press LLC

e 4 "
a:bgt) = F

Eqd
) 0 a*(t)

ERVEER F'(n") e

Layer 3 is not the output of a subnet, so the resulting equations are:

%'t

= LW43xS44

0as(t)

aea4(t) 3 3

S TSR

e_4 -3
a:bgt) = LW43xSh4xF (n%)

e 4 -3 A

e_ 4 -3 =

e_4 -3 2
% = LW43xSh4xF (n3)>‘[""4'4(t)]T

Layer 3 has two delayed inputs from other subnets, so we must compute the
following explicit derivatives:

e .

aéa“(t) = LW43xSh4x Fs(ns) x LW 3 2
oa* (1)
a%a%(t) 3 3

— = LW43xS%4xF (n")xLW?34
aa* 4(t)

Layer 2 is the end of the first subnet, so we apply the equations

8%t _
9a2(t)

e 2 "
;5222980 - £

Ton3(t)

© 2001 by CRC Press LLC

e 2 .2
a:bgt) = F(n”

)
) 0 a-(t)

TaLw2l F (%) qal(o)T

Layer 1 is not the output of a subnet, so we apply

o%%(t) _

- LW21lxS22
dal(t)

e 2 1
sms‘zr?l((tt)) = LW21xS22xF (n?)
€32 ‘1
a:bgt) —LW2lxs22xF (nl)
021 _ 2ty Bl ly L BT
WLl LW21xS%2xF (n7) x[r(t)]
€52 ‘1 N
L2l = Lw2 s 20 F(n') < (& 0]

Layer 1 has one delayed input from another subnet, so we calculate

9%a2(t)
0a% (1)

- LW21xS22xF (nY) x LW L2

At this point, we have the explicit derivatives for all the weights and biases in
the system. These explicit derivatives are used with Eq. (25) — Eq. (27) to compute
the dynamic derivatives we need for training the network. Notice that the solution
to Eq. (27) is an input to Eq. (26) and Eq. (27) on the following time step. The
solution to Eq. (26) is an input to Eq. (25) and Eq. (26) on the following time step.
Finally, the solution to Eq. (25) is an input to Eq. (25) on the following time step.

After all the dynamic derivatives of the output of the system with respect to
the weights and biases have been computed, we must calculate

F

- _ _ a6
s = 2r©-atw)

We can then compute the derivative of the cost function with respect to all the
weights and biases using

© 2001 by CRC Press LLC

6 T A9
OF _ oF _ ab()] o

ox ox U oax Uaab(t)

The process is repeated for each sample time in the training set.

After the network was trained, it was used to predict experimentally recorded
noise. Theresult 6 shown in Figure 14. The data was dlectedin an acaustically
“live” environment that was conducive to sound reflection. The prediction results
for the LDRN, trained with full dynamic backpropagation, is compared to two
other systems. The first comparison system is an LDRN that is trained only with
static derivatives. The second comparison system is a non-recurrent LFFN system
with a tgped-delay line at te input. Figure 14 shows the atual and predicted
signalswhen full dynamic ba&propagationis used to train the LBN. Figure 15
is a plot of the errors between actual and predicted signals.

L —actual 1
- predicted 1

o o o o

o o o o
A ® @ & N o N B o @ =»

o o o o o

a2 ® N R O R N w & @

o o o o o

Figure 15. Errors for LDRN with Full Dynamic Training

The next experiment uses the same data, but only explicit (static) derivatives
wereused. The erors between actual drpredictel signals are showin Figure
16.

© 2001 by CRC Press LLC

© o o o o

a h w N R o B N ow & @&

o © o o o

Figure 16. Prediction Errors for Static Training

The results shown in Figure 16 are reasaably good. We can see some
degradation in performance, which might be critical in certain situations. In sound
cancellation applications, for example, the differences would certainly be
detectable by the human ear.

As a final experiment, the data was processed using an LFFN, with TDL
input. The network size was adjusted so that the number of weights was
comparable to the LDRN used in the previous experiment. The prediction errors
for theLFFN areshown in Figure 17.

o o o o o

a2 ® N R O R N w & @

o o o o o

Figure 17. LFFN Prediction Results

The LFFN prediction performance is not too bad, but is significantly worse
than the LDRN performance, when trained with full dynamic backpropagation. A
summary of the simulation results is provided in Table 2. Notice the dramatic
increase in floating point operations required to process each sample when
dynamic training is used.

© 2001 by CRC Press LLC

Prediction Flops/Sample Mean Squared
Method Prediction Error
LDRN

Full Dynamic 4.32 x 1¢ .0050

Training
LDRN
Static 519 x 16 .0087

Training
LFFN 1.85 x 16 .0120

Table 2. Simulation Results

VIl. SUMMARY

This chapter has discussed the training of recurrent neural networks for
control and signal processing. When computing training gradients in recurrent
networks, there are two different effects that we must account for. The first is a
direct effect, which explains the immediate impact of a change in the weights on
the output of the network at the current time. The second is an indirect effect,
which accounts for the fact that some of the inputs to the network are previous
network outputs, which are also functions of the weights. To account for this
indirect effect we must use dynamic backpropagation.

This chapter has introduced the Layered Digital Recurrent Network (LDRN),
which is a general class of recurrent network. A universal dynamic training
algorithm for the LDRN was also developed. The LDRN was then applied to
problems in control and signal processing. A number of practical issues must be
addressed when applying dynamic training. Computational requirements for
dynamic training can be much higher than those for static training, but static
training is not as accurate and may not converge. The appropriate form of training
to use (dynamic, static, or some combination) varies from problem to problem.

REFERENCES

Demuth, H. B. and Beale, MJsers’ Guide for the Neural Network Toolbox for
MATLAB,The Mathworks, Natick, MA, 1998.

Hagan, M.T., Demuth, H. B., Beale, MNeural Network DesignPWS
Publishing Company, Boston, 1996.

© 2001 by CRC Press LLC

Narendra, K. S. and Parthasrathy, A. M., Identification and control for dynamic
systems using neural networkSEE Transactions on Neural Networlig}l), 4,
1990.

Yang, W.,Neurocontrol Using Dynamic LearninBoctoral Thesis, Oklahoma
State University, Stillwater, 1994.

Yang, W. and Hagan, M.T., Training recurrent netwokksceedings of the 7th
Oklahoma Symposium on Artificial Intelligen&illwater, 226, 1993.

© 2001 by CRC Press LLC

	RECURRENT NEURAL NETWORKS
	Table of Contents
	Chapter 12
	TRAINING RECURRENT NETWORKS FOR FILTERING AND CONTROL
	I. INTRODUCTION
	II. PRELIMINARIES
	A. LAYERED FEEDFORWARD NETWORK
	B. LAYERED DIGITAL RECURRENT NETWORK

	III. PRINCIPLES OF DYNAMIC LEARNING
	IV. DYNAMIC BACKPROP FOR THE LDRN
	A. PRELIMINARIES
	B. EXPLICIT DERIVATIVES
	C. COMPLETE FP ALGORITHM FOR THE LDRN

	V. NEUROCONTROL APPLICATION
	VI. RECURRENT FILTER
	VII. SUMMARY
	REFERENCES

	© 2001 by CRC Press LLC: © 2001 by CRC Press LLC

