

Chapter 11

TRAINING ALGORITHMS FOR RECURRENT NEURAL
NETS THAT ELIMINATE THE NEED FOR

COMPUTATION OF ERROR GRADIENTS WITH
APPLICATION TO TRAJECTORY PRODUCTION

PROBLEM

Malur K. Sundareshan, Yee Chin Wong and Thomas
Condarcure

Department of Electrical and Computer Engineering

University of Arizona, Tucson, AZ 85721-0104

I. INTRODUCTION

 The most fundamental characteristic that enables a neural network to serve as
a useful computational device is its learning capability. The implementation of
an appropriately tailored learning algorithm, i.e., a rule for adaptive adjustment
of the network parameters such as the interconnection weights and gains of
nonlinear characteristics, can endow the network with the capability for evolving
into a structure that performs a desired computation. Designing a
computationally efficient and yet simply implemented learning algorithm is
hence at the core of successful neural network implementations for practical
problems. Although interest in general learning theory and development of
systematic training schemes has enjoyed a resurgence in recent times in the
context of neural networks applications, they have a much longer history, tracing
their origins to machine learning [Nilsson, 1965] and to adaptive learning control
systems [Mendel, 1970].
 When one narrows the discussion down to the specific context of neural
network training, there are two general guiding principles on which many
popular algorithms are based. These are Hebbian learning and gradient-descent
learning. While Hebbian learning derived its following from the parallels that
exist in biological systems, gradient-descent methods have attained a greater
importance more recently in spite of the lack of conclusive evidence of whether
biological systems employ such a mechanism for global learning of complex
behaviors. The reason why gradient-descent methods have become popular is the
optimization framework they facilitate not only to tailor specific training
algorithms but also to provide estimates of the convergence behavior under these
algorithms. A specific approach that has attained a considerable degree of
popularity in recent times is the backpropagation rule [Rumelhart, 1986], which
employs a gradient descent scheme to adjust the interconnection weights of a

multilayer neural net in order to minimize a measure of the deviation between
the actual network output and a reference entity. Alternate ways of specifying
this measure, or the “error norm,” can be used to develop different algorithms
that perform supervised training.
 Gradient descent-learning is conceptually very simple. However, in practical
implementations it may lead to several problems related to the need for precise
computation of gradients of the error function with respect to the network
parameters being adjusted for the algorithm to succeed, and the possibility of
being trapped at local minima of the error function that prevents the training
error to be minimized to its global minimum value. The problems are further
exacerbated when recurrent neural networks are attempted to be trained by this
approach due to the complexity of implementing the needed updating equations.
 Neural networks with recurrent connections and dynamical processing
elements are finding increasing applications in diverse areas. While feedforward
networks have been recognized to perform excellent pattern recognition even
with very complex nonlinear decision surfaces, they are limited to processing
stationary patterns (i.e., patterns that are invariant with time). It requires the
power of dynamical networks, such as networks with recurrent and feedback
connections, to handle the challenges posed in the storage of spatiotemporal
patterns and sequences.
 The recognition of the importance of training recurrent neural networks has
prompted a host of researchers to investigate devising schemes by which
gradient methods, and in particular backpropagation learning, could be extended
to these networks. Several notable schemes have been developed with some
early contributions made by numerous researchers. The backpropagation-
through-time approach of Werbos [Werbos, 1990] attempts to approximate the
time evolution of a recurrent net in terms of a sequence of static networks to
which gradient methods are applied. Lapedes and Farber [Lapedes, 1986]
propose a master slave formulation where deployment of a second neural
network (master net) is made to perform the required computations in
programming the attractors of the original dynamical network (slave net) to be
trained. Similarly, Pineda [Pineda, 1987] and Almeida [Almeida, 1987] propose
a second neural network, of the same dimension as the original one, for
implementing the backward propagation equation in order to avoid a more
complex matrix inversion in the weight adjustment process. A direct
differentiation of the neural activation dynamics to calculate the error gradients
is proposed by Williams and Zipser [Williams, 1989], which, although it
provides some benefits of reducing the storage capacity needed, is still
computationally very cumbersome and scales poorly to large networks
(i.e.,networks with large numbers of dynamical processing elements and a large
set of adjustable parameters). The algorithm proposed by Sato [Sato, 1990] is
based on Lagrange multipliers, while Pearlmutter [Pearlmutter, 1989] gives a
variational method that involves solving a set of “adjoint equations”. A detailed
survey of the various attempts to extend backpropagation learning to recurrent
networks is also given by Pearlmutter [Pearlmutter, 1995].

 A major problem with the backpropagation approach used for recurrent
network training is the computational intensity. For illustration, in the specific
formulation given by Pearlmutter [Pearlmutter, 1989] that utilizes variational
arguments, the complexity arises in the form of the need to solve a set of
differential equations backwards in time and the need to store variables for recall
later when the forward solution is implemented. Although this is not a drawback
unique to backpropagation methods and is shared by many optimal control
methods (such as dynamic programming [Bertsekas, 1987]), it certainly limits
the attractiveness of the training scheme. Also limiting the usefulness for
practical implementations is the fact that such gradient-based approaches do not
scale well for large-sized networks. For a typical trajectory learning problem that
involves training a continuous trajectory, defined over a time interval divided
into L time steps, to a network with N neurons, some estimates [Toomarian,
1992] indicate that the total number of multiplications and additions required for

the implementation of the required updating scales as O N L()4 . This clearly

imposes a significant computational burden and is practically infeasible even for
medium-sized networks. For overcoming the computational demands and
ensuring a relatively manageable implementation, one is usually forced to
making simplifying approximations, such as coarser gradient evaluations and
heuristic selections of high gains in the activation functions (instead of allowing
the network to find the optimized parameter values) [Sudharsanan, 1991,
Sudharsanan, 1994], which in turn lead to reduced training efficiency. In several
precision applications, as for instance those encountered in multijointed robot
control [Karakasoglu, 1993] and reliable tracking of target maneuvers in severe
clutter and noise environments [Wong, 1998], for which neural network-based
solutions are becoming very attractive, making such approximations could pose
serious limitations and alternate training procedures that bypass the need for
computation of gradients of the error function are clearly useful.
 The primary focus in this chapter is the design of supervised training schemes
for recurrent neural networks that do not require gradient evaluations. In
particular, we describe two distinct approaches, one that employs concepts from
the theory of learning automata and the other based on the classical simplex
optimization approach. Besides the elimination of the need for evaluation of
error gradients, these approaches result in simple training algorithms suitable for
implementation on low-end platforms such as personal computers. They also
offer the flexibility of tailoring a number of specific training schemes based on
the selection of linear and nonlinear reinforcement rules for updating automaton
action probabilities and specification of different error norms. For demonstrating
the training efficiency with these approaches, the illustrative task of
spatiotemporal signal production by a trained neural network will be considered.
To underscore the complexity involved in this task compared to learning of
isolated fixed points, one may note that while a variety of networks, both static
and dynamic, can be used for the fixed point learning problem even on
arbitrarily high dimensional spaces, the trajectory learning problem requires
exploiting the unique capability of recurrent neural networks for approximating

the temporal dynamics. The practical usefulness of this problem can also be
appreciated by noting that the ability of a recurrent neural net to be trained to
produce desired trajectories and to converge to attractor trajectories from
arbitrary starting points can be used effectively in several control applications,
particularly where precise repetitive actions are desired to be performed, such as
those arising in process control and robotic manipulator control.
 The structure of the chapter is as follows. In Section 2, we shall provide a
mathematical description of the learning problem in general dynamical systems
and specialize this to spatiotemporal training of recurrent neural networks.
Some important concepts such as incremental training and teacher forcing that
contribute to the efficiency of training are also discussed. In Section 3, some
basics on learning automata will be introduced and specific training policies that
can be developed utilizing a penalty-reward structure for reinforcement learning
will be discussed. Performance of these methods in training a recurrent neural
network to produce prespecified periodic trajectory patterns is also established.
The use of a nonlinear simplex optimization approach for neural network
training will be discussed in Section 4. Some basics on simplex optimization are
briefly introduced and a systematic training scheme for recurrent networks is
developed. For comparison with the earlier approach, the trajectory production
performance resulting from this approach is also established by considering
specific benchmark trajectory patterns.

II. DESCRIPTION OF THE LEARNING PROBLEM AND

SOME ISSUES IN SPATIOTEMPORAL TRAINING

A. GENERAL FRAMEWORK AND TRAINING GOALS
 For a precise description of the learning problem and the training objectives
considered in this article, it is useful to adopt the general framework afforded by
considering the problem of modifying the behavior of a general nonlinear
dynamical system to meet specified objectives. Consider the problem of training
an N-dimensional system whose dynamics are described by the nonlinear
differential equation

!() (, ,)x t x u= ℑ ℘ (1)

where x N(.):ℜ → ℜ is the N-dimensional vector that describes the evolution

of the system state, u m(.):ℜ → ℜ is a vector of external inputs (fixed or time-

varying), ℘ ∈ℜ M is a set of adjustable parameters and ℑ is a nonlinear

function whose properties can be specified to include different types of
dynamical behavior of interest. For instance, one may require ℑ to satisfy
Lipschitz conditions in all of its arguments to ensure continuity of system
trajectories, or to meet appropriate limiting conditions such as saturation limits
and limits on the rise time of the trajectories in order to ensure boundedness and

stability properties [Sudharsanan, 1991a]. The problem of interest is to develop
an organized procedure for adjusting the parameters in the set ℘such that the

dynamical system exhibits desired time-behavior when started at an initial state
x t x()0 0= . The system behavior desired may be specified in different ways

depending on the particular application to which the system may be employed,
such as: (i) requiring the system to exhibit an “asymptotically stable behavior”,

i.e., x t() bounded for all time t t≥ 0 and extxt =∞→)(lim , where xe is a

specified equilibrium state of system (1), or (ii) requiring the system to exhibit

an acceptable “tracking behavior”, i.e., x t x t() ()− ≤∗ ε for all t t≥ 0 , and

a specified 0>ε and a trajectory to be tracked x t∗ () .

 The specific problem cited above of training the network to ensure stability of
the equilibrium points is of importance for fixed point learning, and a variety of
applications such as associative memory designs and synthesis of nonlinear
input-output mappers can be based on this property. For illustration, in the case
of a network which is designed to serve as a reliable associative memory, the
information stored corresponds to its stable equilibria. It has been established
that by a careful selection of the nonlinear activation functions and of the
interconnection weights, the network can be endowed with a number of stable
equilibria, each of which corresponds to a to-be-stored memory vector.
Furthermore, the size of the basins of attraction for each of these stable equilibria
can be tailored in order to ensure desired levels of reliability in the memory
recall process. As shown in Sudharsanan [1994], there exists intricate
interrelations between the stability properties of the network equilibria and the
convergence properties of the training algorithms that can be synthesized for
these networks. In particular, one can attempt to utilize analytical stability results
for these networks [Sudharsanan, 1991a, Sudharsanan, 1991b] in order to pre-
select the shapes of the nonlinear activation functions (selection of the dc gain,
for instance), which in turn enables one to develop learning rules that
approximate gradient schemes but offer simple implementation possibilities. It
must however be appreciated that the a priori selection of the nonlinear gains
almost always leads to a suboptimal solution to the overall training of the
recurrent neural network.
 The second problem cited above of training the network to track a specified

trajectory x t∗ () is a more complex one. It is well known in the literature on

nonlinear dynamical systems [Khalil, 1992] that under certain conditions the
tracking problem can be reduced through an appropriate transformation to a
corresponding problem of ensuring the stability of an equilibrium point of a
transformed system. In particular, by defining the vector y t() as

y t x t x t() () ()*= − (2)

one can transform the nonlinear system described by (1) into an equivalent
system

!() (,)y t g y u= (3)

such that the tracking problem of forcing x t() to follow x t∗ () in system (1)

can be reduced to the problem of ensuring the stability of the equilibrium point
y t() = 0 in system (2). However, when the desired objective is one of training

system (1) to perform a desired task, i.e., explicitly adjust the parameters in the
set ℘ , such a reformulation of the problem may not be very useful in practice

since the transformation given by (2) makes an explicit handling of these
parameters almost always impossible. Consequently, any attempts at simplifying
training by approximations such as those discussed above for the fixed point
learning problem are more difficult to obtain in this case.
 It is evident from the above discussion that training a dynamical system to
produce state-space trajectories of specified forms constitutes a highly
challenging learning problem due to the diversity in the possible spatiotemporal
features that may need to be learned. A problem of particular interest is to train
the system to exhibit desired limit cycles, which focuses only on the asymptotic
behavior of the state-space trajectory to converge to a prespecified periodic
temporal behavior. In the context of neural network training, an aspect of
particular significance is ensuring the learning of the true spatiotemporal features
as opposed to a point-by-point memorization of the terminal trajectory. This
capability is provided by training the network to have the desired attractor
dynamics such that arbitrary starting motions are forced to converge to the
desired terminal periodic behavior. The complexity of implementing gradient-
based training methods for these problems makes the development of alternate
learning schemes that do not require the evaluation of gradients particularly
attractive.

B. RECURRENT NEURAL NETWORK ARCHITECTURES
 The training problems described in the previous section are quite general. For
the establishment of specific simple rules for parameter adjustment and also to
illustrate how well the training objectives are met in practice by different
algorithms, it is useful to consider specialized architectures for the nonlinear
dynamical system that is being trained. One such model that has been popular
with neural network researchers is the continuous-time recurrent network model
described by the set of coupled nonlinear differential equations

Nitvgtv
dt

dv N

j
iijiiii

i ...,,2,1,)(tanh)(
1

=





=+ ∑

=

ωττ (4)

where ℜ→ℜ⋅ :)(iv denotes the state of the ith neuron, ℜ∈iτ is a time

constant referred to as the relaxation time, ℜ∈ig is a parameter that controls

the slope of the sigmoidal activation function, and ℜ∈ijω denotes the

interconnection weight from the jth neuron to the ith neuron. The inputs to this

network come from the initial conditions)(0tvi and the outputs are the

observations of the behavior of the state trajectories)(tvi , for 0tt ≥ . The task

of training this network to serve as a useful computational device involves the
implementation of an algorithm for progressively updating the N2 + 2N

parameters }and,{ iiij gτω such that when the training is completed, the

network trajectories)(tvi starting from any initial states)(0tvi behave in a

prescribed manner to perform the desired computation.
 In several practical problems, observing only a subset of the state variables
may be of particular importance for checking whether the goals of the desired
computation are met, and consequently designation of a set ϑ of output neurons
(which is a subset of the total set of neurons) may be appropriate. Also, in
certain problems where the input-output mapping behavior of the neural network
is of interest, the use of externally applied time-dependent forcing signals to alter
the activation dynamics of one or more neurons may be necessary. In order to be
able to handle such problems, the dynamical framework can be expanded to

permit the introduction of external inputs mitIi ...,,2,1),(= , by modifying

the dynamical equation (4) into

NitItvgtv
dt

dv m

j
jij

n

j
jijiiii

i ...,,2,1,)(~)(tanh)(
11

=

















+=+ ∑∑

==

ωωττ

 (5)

The weights ijω~ , some of which could be zero, serve to fan-out the m input

signals Ii into the individual nodes of the network.1 The number of weight
parameters that need to be trained increases in this case to N2 +(m+2)N.
 Evidently, for Ij(t) = 0, (5) reduces to (4). In this chapter, we will exclusively
consider the specialized network architecture described by the dynamical
equation (4), since for trajectory learning problems that will be considered for
illustration here no external inputs are needed. A schematic of the general
recurrent network architecture described by (5) is shown in Fig. 1.

1 To conform this architecture to the more familiar multilayer configurations, the input
signals Ii can be considered as the input nodes of the network. These nodes, however, are
different from the N dynamical nodes in that they do not have recurrent or feedback
connections, but connect to the N dynamical nodes only in the feedforward direction
through the weights

ijω~ .

C. SOME ISSUES OF INTEREST IN NEURAL NETWORK
 TRAINING

1. AN OPTIMIZATION FRAMEWORK FOR
 SPATIOTEMPORAL LEARNING
 As noted earlier, a particularly challenging learning problem is that of training
a recurrent network to produce a continuous trajectory of a specified form or to
ultimately relax to a desired limit cycle behavior. In fact, this is also one of the
tasks where the greater capabilities of dynamical networks are brought into a
sharp focus. Recurrent network training to learn such trajectories has received
some attention in the recent past with the investigation of schemes which use
various forms of gradient descent algorithms. These include the real-time
recurrent learning (RTRL) scheme of Williams and Zipser [Williams, 1989], the
method of directed derivatives of Pearlmutter [Pearlmutter, 1989], and the
method of adjoint operators of Toomarian and Barhen [Toomarian, 1992]. These
works have shown that a dynamical network can indeed be trained to exhibit
desired limit cycle behavior (it may be noted that this behavior is not possible to
emulate in a static feedforward network) and have demonstrated the success of
their training algorithms by application to the problem of learning certain
benchmark trajectories. Some additional refinements to the use of gradient
methods for training to produce continuous trajectories have also been made
very recently by Lin et. al. [Lin, 1995] and by Ruiz et. al. [Ruiz, 1998]. While
the closeness with which the desired trajectory could be generated varies from
one algorithm to another, the required computation of gradients and other
implementation considerations for error backpropagation impose considerable
burden (in fact, the methods cited above differ from one another mainly in the
specific procedure employed for implementing the required gradient
computations). The application of alternate training procedures that eliminate the
need for gradient computations as will be described in this chapter are of
particular interest in the context of this problem.
 Two specific benchmark trajectories that have received wide attention in
performance evaluations are the “circle trajectory” and the “figure-eight
trajectory”. A recurrent network can be set up to produce these trajectories by
requiring two output nodes in the architecture shown in Fig. 1 to generate
oscillatory response of a sinusoidal form with a specified frequency. It is easy to
see that requiring the two outputs to oscillate according to the relation

o t A t1 () sin= ω and o t A t2 () cos= ω

Figure 1. General architecture of an N-node recurrent neural network with m external inputs

with an arbitrary frequency ω would generate a circle with center at the origin

and radius A on a two-dimensional plane with o t1 () and o t2 () as coordinates,

while requiring the two outputs to oscillate according to the relation

o t A t1 () sin= ω and o t A t2 2() sin= ω

would generate a figure-eight pattern passing through the origin of the
(o t1 () , o t2 ()) plane. It is also easy to see that since the latter trajectory

intersects on itself, the training problem is more challenging in this case
compared to one of training a non-intersecting trajectory pattern. While these
patterns are the ones that have been considered by earlier researchers to
demonstrate the training efficiency, more general trajectories can also be formed
by specifying the neural network outputs in appropriate forms.
 An optimization framework can be developed for such a spatiotemporal

learning task extending over a time horizon []t t f0 , by specifying an error

functional

∑∫
∈

−=
ϑ

ννε
i

t

t

d
ii

f

dtttf
0

))()((

where ϑ denotes the set of designated output nodes of the network and)(tvd
i ,

i∈ϑ, denote the desired output signals. The function f (.,.) can be specified in

various ways in terms of the L1 -norm or the L2 -norm of the deviation

v t v ti i
d() ()− or any other appropriate measure. The training problem then

reduces to minimizing this error functional with respect to the set of adjustable
network parameters. An issue of some significance for practical applications is
the flexibility available in tailoring an appropriate error functional. It may be
noted that conventional gradient-based training procedures typically require an

L2 -norm of the error, i.e., selection of f v v v vi i
d

i i
d(,) ()= − 2 , mainly for

simplicity in gradient evaluations. However, when an evaluation of error
gradients is not needed, as is the case with the training procedures discussed in
this article, we have a greater flexibility in formulating the error functional to be
minimized.

2. INCREMENTAL LEARNING
 When neural networks are trained in a supervised manner, there is a tendency
for the training to proceed rapidly reducing the value of the specified error for
some time, until a point is reached where no further training becomes possible.
This corresponds to the case when the training has proceeded to a local
minimum. In the present context, this condition may be visualized by
considering the error surface in an N2+2N+1 space (where the N2+2N axes
correspond to the adjustable parameters of the network and the final dimension
corresponds to the error function), which indicates that the error has been
reduced with respect to these parameters but has fallen into an energy well, from
which a recovery with the type of parameter changes already used is not
possible. In the specific application to the trajectory learning problem, which is
of particular interest in this chapter, this situation corresponds to the neural
network learning to generate a trajectory that reduces the error, but the generated
trajectory not having the same shape as the desired trajectory.
 In order to reduce the occurrence of becoming trapped in a local minimum,
some method of controlling the evolution of trajectories during learning could be
used. A simple way of overcoming the problem is by a process of incremental
learning, which generates a set of intermediate learning goals. Let ξo(t) denote
the trajectory generated by the neural network at the start of training and ξf(t)
denote the final trajectory. It is desired to establish M learning goals, where the
absolute error between one goal and the next is small. This can be accomplished
by defining a sequence of learning goals as

Mntnttn ...,,1,0,)()()(0 =∆⋅+= ξξξ (6)

where Mttt f /)]()([)(0ξξξ −=∆ .

 For illustration, suppose it is desired to train a dynamic recurrent neural
network of the form (1) to output the trajectory

0.10,)sin()(≤≤= tttv π . (7)

Let v to () denote the initial trajectory output of the network for some initial set

of parameters and initial states of neurons. An arbitrary number, say 100, of
learning targets can be selected as

.100...,,1,0,0.10for
100

)]()[sin(
)()(0

0 =≤≤−⋅+= nt
tvt

ntvtn

πξ

 (8)

When v0(t) ≈ ξi(t) within some predetermined error bound, the next learning
target becomes ξi+1(t). Learning progresses through these increments until the
final desired target is reached. Fig. 2 shows a succession of these desired
trajectories which represent incremental targets.

Figure 2. Target trajectories for increment learning

 It may be noted that since the neural network being trained is characterized by
nonlinear dynamics, the effort in moving from one incremental learning goal to
another may not be uniform even when a uniform distance between these
learning goals is implicit. This however is of no major consequence insofar as
the overall learning performance is concerned since the motivation for modifying
the learning goal is to provide a mechanism for perturbation of the error function

during the training process, and the objectives of incremental learning are
achieved when an appropriately large number of learning goals M is selected for
implementation.

3. TEACHER FORCING
 In training problems such as trajectory learning, where the desired output is
available at every instance of time during the training process, using an
appropriate mechanism to directly feed this information to alter the activation
dynamics of the neural network provides several benefits. This formalism,
referred to as Teacher Forcing, has been used by several previous researchers
[Williams, 1989, Toomarian, 1992] in one form or another. The idea of
including a teaching forcing signal in general supervised learning problems
comes from the desire to supply additional instantaneous information from the
teacher directly to the activation dynamics during the learning stage. The role of
including this signal on the training performance can be understood from the
analogy with the use of continuous feedback in reducing the error in closed-loop
control systems. A temporal modulation of this signal as learning proceeds is
often desirable so that the activation dynamics during learning progressively
reduce to the activation dynamics during the recall stage.
 In the present work, for improving the trajectory learning performance, a
method of teacher forcing similar to the one suggested originally by Williams
and Zipser [Williams, 1989] can be employed. In this scheme, the desired
network output signals are used in place of the actual network outputs when fed
back into the network via the recurrent connections. The actual outputs are still
used for computing the error in order to determine whether the parameter
updating action at any stage is favorable or not. The teacher forcing drives the
network outputs closer to the desired signals as training progresses and the
network is trained at each stage as if it were already generating the correct
signal. This seems to significantly speed up learning, particularly at the
beginning stages.
 Upon completion of successful training, i.e., when the error functional
becomes zero, the teacher forcing will no longer exist and the network dynamics
will revert to the usual dynamics described by (4). As pointed out by Toomarian
and Barhen [Toomarian, 1992], there exist training scenarios (particularly
arising in trajectory learning problems) where the error functional cannot be
reduced to zero and consequently the activation dynamics of the neural network
after training is completed, i.e., during the recall phase, will be different from
that specified by (4). To avoid this discrepancy, at some point in the training
process, when confidence in the shape of generated trajectories is developed, the
teacher forcing is disabled and the learning is progressed with the actual outputs
of the network. Alternately, a temporally modulated teacher forcing scheme
[Toomarian, 1992] that progressively reduces the amount of teacher intervention
during the training phase can be employed; a simple mechanism for
implementing such modulation is by multiplying the signal by a time-varying

gain ρελ /)(1)(tet −= , where ε(t) is the measured error and ρ is an

appropriately selected number sufficiently large (a large value of ρ relative to the
expected values of error is recommended to prevent λ(t) from becoming
negative).

III. TRAINING BY METHODS OF LEARNING
AUTOMATA

A. SOME BASICS ON LEARNING AUTOMATA
 A learning automaton interacts adaptively with the environment it is
operating in and updates its actions at each stage based on the response of the
environment to these actions [Lakshmivarahan, 1981, Narendra, 1989]. Hence
an automaton can be defined by the triple (α, β, T) where α denotes the set of
actions α = {α1, α2, ..., αr} available to the automaton at any stage, β = {β1, β2,
..., βm} is the set of observed responses from the environment, which are used by
the automaton as inputs, and T is an updating algorithm which the automaton
uses for selecting a particular action from the set α at any stage. In the present
context of neural network training, a specific action at any stage corresponds to
the updating of the values of one or more parameters of the network.
 For a stochastic learning automaton, the updating algorithm specifies a rule
for adjusting the probability pi(n) of choosing a particular action αi at stage n.
Such a rule may be generally described by a functional relation of the form

))(),(),(()1(nnnpFnp ii βα=+ . (9)

The learning procedure at each stage hence consists of two sequential steps. In
the first step the automaton chooses a specific action α(n) = αi from the finite set
of actions available, and in the second step, the probabilities of choosing the
actions are updated depending on the response of the environment to the action
in the first step, which influences the choice of future actions.
 An alternative way of specifying the updating algorithm is to define a state
vector for the automaton and consider the transition of the state due to a certain
action, which enables one to state the updating rule in terms of state transition
probabilities. This approach has been quite popular in the development of
learning automaton theory [Varshavskii, 1963]. For our application to neural
network training, however, the action probability updating approach, with the
updating algorithms specified in the form of equation (9), provides a simpler and
more convenient framework.
 For execution of training, the feedback signal from the environment, which
triggers the updating of the action probabilities by the automaton, can be given
by specifying an appropriate "error" function. The environmental response set
β(n) at any stage n can then be selected as the binary set β(n) = {0,1}, with β = 1
indicating that the selected action αi is not considered satisfactory by the
environment and β = 0 indicating that the action selected is considered

satisfactory.2 For a stochastic automaton with r available actions (i.e., α = {α1,
..., αr}), the updating rules can then be specified in a general form as follows:
 For the selected action at the nth stage α(n) = α1, if β(n) = 0 then

ijnpnpnp jjj ≠−=+ for))(()()1(γ

∑
≠
=

+=+
r

ij
j

jii npnpnp
1

))(()()1(γ (10)

whereas if β(n) = 1, then

))(()()1(npnpnp iii δ−=+

ijnp
r

npnp ijj ≠
−

+=+ ,))((
)1(

1
)()1(δ (11)

The functions γj(⋅) and δi(⋅) are appropriately selected continuous-valued
nonnegative functions. The summation Σγj in (10) and the division by (r-1) in
(11) are to ensure preservation of probability measure (i.e., sum of probabilities
at (n+1) equals one).
 The two sets of equations (10) and (11) specify a reinforcement learning
algorithm. By tailoring the functions γj(⋅) and δi(⋅) an appropriate degree of
reinforcement in the selection of a particular action can be introduced. A
scheme where both sets of equations are employed together is termed a reward-
penalty reinforcement scheme. It is evident that in this scheme an action that is
judged favorable is rewarded by having its probability of selection increased
while an unfavorable action is penalized by having its probability of selection
decreased. Another reinforcement scheme, termed reward-inaction scheme,
employs the updating only for β(n)=0, whereas for β(n)=1 the action
probabilities are maintained at the same values as before. These schemes and
several other variations of them have been discussed in the literature
[Lakshmivarahan, 1981, Narendra 1989]. Due to the stochastic nature of the
framework, however, very few analytical results can be developed for these
schemes and studies directed to the evaluation of performance (such as
convergence, asymptotic behavior) typically employ simulation experiments.
 It should be emphasized that (10) and (11) describe a general framework for
tailoring a variety of specific training algorithms useful in particular applications
by selecting γj(⋅) and δi(⋅) appropriately as linear or nonlinear functions. In fact,

2 In the literature on learning automata [Lakshmivarahan, 1981, Narendra, 1989], this
case of β allowed to take two distinct values only is referred to as the P-model. More
general models where β can take a number of values within an interval have also been
discussed.

a number of heuristic algorithms where γj(⋅) and δi(⋅) may not have an analytical
form can also be considered for realizing improved speed and accuracy in
training. In certain applications of neural network training such constructions
motivated by intuitive reasoning may indeed prove to be more efficient. An
illustrative example of this will be demonstrated in a later section for application
to the trajectory learning problem.

B. APPLICATION TO TRAINING RECURRENT
 NETWORKS
 A principal advantage of the learning automaton approach is its ability to
determine optimal actions among a set of possible actions and this is particularly
useful in neural network training where a number of possible actions exist. For
training the neural network described by (4), we will employ the learning
configuration schematically shown in Fig. 3. The automaton actions are defined
as either an increment or a decrement to any of the network parameters ωij, τi and
gi. For an N-neuron network, this corresponds to a set of 2(N2 + 2N) single
parameter updating actions. Multiple parameter actions can also be considered,
with the number of possible actions in this case increasing to 2(N2 + 2N)!
 The environment for this learning configuration comprises the neural network
itself together with an appropriately specified error functional ε defined over the
time interval [t0, tf] as discussed earlier. The feedback signal to the automaton
can be defined as

β = 0 for action that reduces the error
 (12)

β = 1 for action that does not reduce error.

As noted earlier, function f(⋅,⋅) for computing the training error can be specified
in various ways; for the examples that will be discussed later, we employed

d
ii

d
ii vvvvf −=),(to define the error functional ε. Subsequent to the

determination that an action has reduced the error, the corresponding changes to
the neural network parameters are retained. However, if the action increases the
error, the corresponding parameter changes are not kept. Thus, the only
modifications to the neural network structure come from those actions that
reduce the value of the specified error.

Figure 3. Learning configuration

 A probability of selection is initially assigned to each action. Since no a
priori knowledge generally exists as to which of the network parameters has the
greatest influence in reducing the specified error, the entropy in learning is
maximum at the beginning of training. Hence, a uniform distribution is used at
the beginning for the action probabilities. As learning progresses, the
probability associated with each action is changed. This probability determines
the relative frequency with which a particular action will be selected. Thus, the
more successful a particular action is at reducing the error, the more likely its
selection will be in the future stages.
 Any available prior knowledge on the qualitative behavior of the network
being trained can be utilized in the process of initializing the training algorithm.
The network described by (4) is one whose dynamics and equilibrium behavior
have been extensively studied in the past [Sudharsanan, 1994, Sudharsanan,
1991a, Sudharsanan, 1991b] and the correlations of these results with the
training performance can be exploited for the initial setting of parameter values.
For illustration, some past results that underscore the role of high gain sigmoidal
nonlinearities in ensuring desirable stability properties for the network equilibria
[Sudharsanan, 1991a] and the observed correlation between selection of high
gains and improvement in learning rates [Sudharsanan, 1991, Behrens 1991]
could be usefully employed in the initial selection of gi parameters for improving
the efficiency of the training process.
 In discussing the time-behavior of the training process, two types of
convergence come into the picture: convergence of the training error and
convergence of the automaton to some optimal action. Convergence of the error
is assured by the nature of the learning algorithm. Since changes to the neural

network structure come only from those actions that result in a reduction of the
error, starting from any finite positive initial error, a monotonic decreasing
sequence of positive real numbers is generated. This sequence is bounded and,
from the monotone convergence theorem [Bartle, 1992, Condarcure, 1991], is
convergent.
 Under certain conditions, the learning automaton will converge toward some
optimal action depending on the type of reinforcement rule used. By associating
with each action a penalty probability, it has been shown in the literature
[Narendra, 1989] that if the penalty probabilities are stationary, then the action
probabilities will converge to an optimal action. In particular, for the linear
reward-inaction scheme (i.e., for γj(⋅) a linear function of the argument and δi(⋅) =
0 in the updating rules (10) and (11)), convergence is assured in this sense. It
should however be noted that convergence of this type may not be desirable in
the present context of neural network training. The penalty probabilities are not
known at the start of training and their distribution may not be stationary since
the structure of the neural network is constantly changing during the training
process. An action that may produce a favorable response at some point in the
training process may not yield a favorable response at a later time. Furthermore,
the gains gi and the time constants τj are constrained to be nonnegative and hence
cannot be continually decremented to take on negative values. Therefore,
convergence of the learning automaton to an optimal action is not desirable and
will not occur when the reward-penalty reinforcement rules are used (since the
probability of any action approaching 1 is not possible with this reinforcement
scheme for a nonstationary environment [Narendra, 1989]).

C. TRAJECTORY GENERATION PERFORMANCE
 The performance of the training approach described in the last section has
been tested in the task of learning continuous trajectories. We shall give the
results for a circle trajectory of specified radius 0.5.
 Simulation experiments were conducted using a fourth-order Runge-Kutta
algorithm for studying the temporal dynamical behavior of the neural network.
A time increment of 0.02T was selected as the integration time constant, where T
is approximately the period of the trajectory to be generated. For implementing
the actions of the learning automaton, it is necessary to generate an output
function α(n), which maps the stage number n into a selection of the appropriate
action to take in a probabilistic fashion. Since these action probabilities are
unknown at the start of the experiment, they are initialized to a uniform
distribution. Then, as the experiment progresses and successful actions are
found, a discrete probability density function is built up, with the probability for
a particular action αi(n) being increased or decreased according to the specific
reinforcement in the form of (10) or (11). As the density function is being
generated, it is used for the selection of actions by an inverse distribution
method. This is done by generating uniformly distributed random numbers (by a
standard procedure such as the Lewis-Payne method [Lewis, 1973]) and then
summing the numbers in the density function to create a distribution function

until the generated random number is greater than the sum. The action is then
selected at the point where the sum of the densities is greater than the uniform
random number.
 A six-node network (i.e. N = 6) with two nodes designated as the output nodes
{o1, o2} and with no externally applied inputs was trained to generate the
desired circle trajectory. In order to attempt to better control the trajectory rise
time, rather than try to force the network to generate the circle with an unknown
rise time, a parameter η was introduced to modify the desired outputs in the form

tev

tev
td

o

td
o

π
π

η

η

cos)1(5.0

sin)1(5.0

2

1

−

−

−=

−=
 (13)

For initializing the network, the weights wij were set to 0.0, the gains gi were set
to 10.0, and the time constants τi were set to numbers randomly distributed
around 6.0. The initial states of the neurons vi(0) were chosen to be small
random numbers centered around zero. Incremental learning was used with 100
intermediate learning targets established as discussed in Section 2.C.
 A brief explanation on the role of parameter η seems useful. Observe that

with the selection of)(1 tvd
o and)(2 tvd

o as in (13), we have

)2(25.025.0)()(22
21

22 ttd
o

d
o eetvtv ηη −− −+=+

and hence as t becomes progressively larger,)(1 tvd
o and)(2 tvd

o approach the

desired signals 0.5sin(ω t) and 0.5cos(ω t) respectively for any selection of η >
0. However, by selection of a sufficiently large η, a scaling of time can be
achieved thus accelerating the convergence to desired final values. It may also

be noted that the use of)(1 tvd
o and)(2 tvd

o as in (10) is motivated by our desire

to generate the desired circle trajectory from the starting values of)(1 tvd
o = 0

and)(2 tvd
o = 0, which corresponds to a more challenging learning task than the

case when the initial point is selected to lie on the desired circle. Selection of η
hence offers a mechanism for controlling the trajectory rise time which is a
highly desirable feature. In the experiments that will be reported later, a
representative value of η = 10 was used.
 To test the effects of selecting alternate reinforcement rules and parameter
updating actions on the training performance, several experiments [Condarcure,
1991] were conducted. For the sake of brevity, only two illustrative cases will
be described in the following.

1. EXPERIMENT 1
 In this experiment, a simple linear reward-penalty reinforcement scheme
obtained by defining γj(⋅) and δi(⋅) in (10) and (11) as linear functions was used.
The reinforcement rules in this case will take the following form:
 For an automaton with r available actions, with the selected action at the nth
stage α(n) = αi, if β(n) = 0, then

ijnpnp jj ≠−=+ ,)()1()1(γ

and

)()1()1(npnp ii γγ −+=+ (14)

whereas if β(n) = 1, then

)()1()1(npnp ii δ−=+

and

ijnp
r

npnp ijj ≠−
−

+=+ ,)()1(
1

)()1(γδ
 (15)

In (14) and (15), γ and δ are constants that may be selected appropriately in the
ranges 0 < γ < 1 and 0 < δ < 1. Also, from (14) it is evident that an action αi
considered favorable will result in a reduction of the probabilities pj (for j ≠ i) by
a percentage γ while increasing the probability pi by an amount such that the
sum of the probabilities at stage (n+1) is 1. Similarly, when action αi is
unfavorable, the probability pi is reduced by a percentage δ while the remaining
probabilities pj (for j≠i) are correspondingly increased such that the sum of the
probabilities remains at 1, as reflected by the form of the updating rules in (15).
 For the numerical simulations we used the values γ = 0.02 (corresponding to
2% change in the case of a favorable action) and δ = 0.01 (corresponding to 1%
change in the case of an unfavorable action); these values were determined from
experimentation to give good results.3 A single parameter action (increment or
decrement), defined as an incremental change to one network parameter that is
continued until it is no longer successful for a given trial, was employed. The
error functional discussed earlier (viz. Eq. (5) with f(vi , vi

d) = |vi - vi
d|) was used

and it was required that the value of the error be reduced to 0.06 before moving
from one learning goal to the next. Teacher forcing was used to help accelerate
the learning process at the start and was disabled at the 50th learning increment
when the shape of the actual output trajectory was sufficiently close to the
desired trajectory.

3 In earlier work on learning automata [Lakshmivarahan, 1981, Narendra, 1989], it is
observed that a certain degree of asymmetry between the reward and the penalty
parameter results in general in a desirable training behavior, i.e. rewarding a favorable
response more than penalizing an unfavorable response is generally preferable.

 Fig. 4a depicts the parameter changes or actions that were attempted by the
automaton for each learning increment. It may be noted that learning was very
easy when teacher forcing was active, which agrees well with intuition. After the
50th step, when teacher forcing was disabled, learning became more difficult, as
the network must meet the learning goals on its own. This continued until about
step 82, when the automaton developed enough experience in making better
selections. The results of this experiment with the network trained for 4 cycles
(each cycle corresponding to one period of the sinusoidal waveforms) and then
continued to run for another 8 cycles is shown in Fig. 4b, which clearly indicates
the stability of the generated limit cycle. It may be noted that only the first three
cycles during which the trajectory evolves into the limit cycle are distinguishable
while the rest overlap.

2. EXPERIMENT 2
 In this experiment the primary goal was to study the effects of allowing
multiple parameter actions, i.e., sets of parameters to be updated simultaneously.
It is to be noted that since the neural network is nonlinear, the effect of changing
more than one parameter at a time is not the same as the combined effect
resulting from changing them one after another. For a 6-node network (N = 6),
the number of possible actions now increases to 48! (i.e., (N2+2N)!).
Consequently, to reduce the memory requirements, two options were exercised.
The first is to limit the actions to those that update 10 parameters or less at a
time. The second is to store the successful actions in a repertoire for a
preferential selection at the later stages. An action is added to the repertoire if it
is used successfully to reduce the error, which is the reward. If an action in the
repertoire does not successfully reduce the error, it is penalized by being
removed from the repertoire. Once all actions existing in the repertoire are used
at any stage, new actions are selected randomly from the remaining set of
available actions based on a uniform distribution. The following learning
reinforcement is also used. When rewarded, the probability for an action in the
repertoire stays at its previous value, whereas for a successful action not in the
repertoire it is increased from its value in the uniform distribution to a higher
value. When penalized, the action probability is reduced to its value in the
uniform distribution.
 In the framework of the reinforcement rules discussed earlier, the present
updating mechanism corresponds to a nonlinear reinforcement scheme, more
general than the linear reinforcement rules used in Experiment 1. An analytical
modeling of the updating rules is however more difficult to obtain in this case.

Figure 4a. Automaton actions per learning increment

Figure 4b. Neural net output trajectory in Experiment 1

Figure 4c. Trajectory generated in Experiment 2

 To provide a greater ease of implementation, in this experiment the activation
gains gi were permanently set to the value 10.0 and learning was restricted to
changes in the other parameters (wij and τi). Incremental learning was used as
before with 100 learning steps. The result of this experiment is shown in Fig. 4c,
which indicates a substantial improvement in the achieved performance over the
linear reinforcement-single parameter action case considered in Experiment 1.
As can be observed, the trajectory rise time is also significantly reduced in this
case (to about 0.2 sec) and the evolution into the final orbit is almost complete
within half a cycle. Fig. 4 shows the results of the experiment with the network
trained for 4 cycles and then continued to run for another 8 cycles. The
remarkable accuracy with which the recall cycles overlap is worthy of emphasis
and this represents a level of performance significantly better than that provided
by any of the existing training procedures.
 As a further note, in the two experiments described above, the training took
approximately 2500 attempted actions to reach the final learning goal. It must be
emphasized that the computations required at each step are extremely simple
(involving updating of probability vectors) and are almost negligible compared
to the evaluation of gradients required by existing methods, which makes the
present scheme more attractive to implement. Also, comparing the performance
depicted in Figs. 4b and 4c with the other available results for the trajectory
learning problem, it may be noted that this level of accuracy in generating the
circle trajectory could only be achieved in Toomarian [1992] when the learning
was started with the initial values of the neuron states adjusted such that the
initial point is already on the desired circle (specifically, case 3 in Toomarian
[1992]). In contrast, in our case the learning was started with the initial states set
at arbitrary small random values. It must also be noted that this level of
performance was achieved even when the learning was restricted to only the
weights wij and the time constants τi. It is conceivable that even better
performance levels can be realized by permitting the activation gains also to be
updated, although at the cost of increased memory requirements. What is
particularly noteworthy, however, is the significant reduction in computational
requirements compared to the conventional gradient-based algorithms.

IV. TRAINING BY SIMPLEX OPTIMIZATION METHOD

A. SOME BASICS ON SIMPLEX OPTIMIZATION
 In order to facilitate some understanding on the basics and motivation for the
Simplex algorithm, consider the following simple example. Suppose a simple
guessing game is being played between a player and a computer. Suppose that
the computer has selected an arbitrary nonlinear function, for example

)(xfy = , and that the player has to guess the value of the variable x that when

substituted into the above nonlinear equation (unknown to him) would result in
the global minimum of the function. The player can guess the variable value by
keying into the computer a number and observing the corresponding function
output provided by the computer (if the player somehow manages to guess the

correct value of the parameter, the computer would inform him that he has
achieved minimality).
 There are several ways by which the player can obtain the parameter that
would result in the minimum value of the function. First, he can keep guessing
the parameter randomly until he found the correct one. This method, however,
could take an infinitely long period of time, especially when presented with a
highly nonlinear and complex multivariable function (i.e., x becomes a vector
variable). Second, he can try to compute the gradient of the function and use it
to guide him to the correct parameter. However, with this method if the function
is nonlinear, complex, and multivariate, its gradient may be difficult and
expensive to compute. Third, he can make use of the knowledge given to him by
the computer, i.e., use the returned value of y to strategically locate the desired
value of x. Consider the following simplified example. Suppose that the
function selected by the computer is as shown in Fig. 5.

Figure 5. Illustration of the structured search approach of the Simplex optimization algorithm

Also suppose that the first two guesses are 1x and 2x , and the corresponding

results are 1y and 2y respectively (see Fig. 5). Further suppose that with the

knowledge obtained, i.e., the values of 1y and 2y , an estimate of the variable

3x resulting in a lower functional value than those given by 1x and 2x can be

obtained and that this process can be repeated until some degree of optimality is

reached. It is easy to see that if such a structured iterative optimization method

can be implemented and applied to this example, the parameter 4x whose

corresponding functional value is the lowest among the four guesses can be
obtained. Indeed, the described process is that offered by the Simplex
optimization algorithm. Hence the Simplex algorithm may be viewed as a
method that strategically searches for the optimal solution based on the
information obtained, without needing to know the mathematical expression for
the function itself or calculate its gradient at every iteration. The fact that
function gradients need not be computed with this method makes it an attractive
optimization method especially when applied to complex multivariate functions
or to systems such as a recurrent net. Another characteristic of this method that
is of significance is its ability to escape the local minima of a function even
though it is a simple downhill direct search method. This characteristic is also
illustrated in Fig. 5. Before describing the series of steps involved in the simplex
iteration, it is appropriate at this point to give a brief discussion on the
development of the present algorithm.
 A simplex is a geometrical figure consisting of N+1 points (or vertices) in an
N-dimensional space. In a two-dimensional space, a simplex is a triangle and in
a three-dimensional space, it is a tetrahedron. The Simplex algorithm described
here is due to Nelder and Mead [Nelder, 1965] and is not to be confused with the
Simplex method associated with linear programming. It is a direct downhill
search method applicable to any multidimensional problem that requires only
function evaluations and not the derivatives. This method, though extremely
robust, can be slow in converging especially for problems of high
dimensionality. However, in regard to neural network training, the inefficiency
of this method, i.e., its slow convergence in high dimensional spaces, can be
reduced significantly as will be discussed in a later section. The storage
requirement of this method is approximately N2.
 The reason for requiring N+1 simplex vertices for an N-dimensional
optimization problem can be readily shown. Consider for illustration the one-
dimensional function,)(xfy = . In order to search a region for x, some sort of

boundary must be defined. In the one-dimensional case where the region is
bounded by lines or curves, only two points are needed to enclose a region as
illustrated in Fig. 6. With these two points the entire region of the function can
be searched, if necessary, using the basic operations of expansion and
contraction associated with the Simplex algorithm. These are implemented by
keeping the better of the two points fixed, and by either expanding or contracting
the other point (worse point) with respect to the fixed point the entire region
bounded by the lines or curves can be searched if necessary. Similarly, for a
two-dimensional function, such as yxz 35 += , a region (within a plane) can

be uniquely defined, enclosed, and searched by three points following the same
expansion and contraction operations. Extending the argument to an N-
dimensional function, it is clear that N+1 vertices are required to bound and
search a N-dimensional region.

Figure 6. Searching in the N-dimensional space with N+1 simplex points

 The simplex algorithm starts with N+1 points that can be either arbitrarily
chosen or strategically obtained. The algorithm then moves the set of simplex
points downhill in the function space, however complex it may be, through a
series of steps. Most of the steps executed involve moving the point
corresponding to the highest functional value (or lowest functional value in a
maximization problem) through the opposite face of the simplex to a point with a
lower functional value. This process is illustrated in Fig. 7, which shows 4
simplex points in a 3-dimensional space. In Fig. 7, it can be seen that the
simplex point with the highest functional value is moved across the face of the
simplex formed by the remaining 3 simplex points, the face being a plane
defined by the 3 points in this case, to a location with a lower functional value.
This step is generally called a reflection operation. If allowed to do so, the
method expands the simplex in steps in one direction or another (a precise

mathematical description of the expansion operation will be given in the next
section). Contraction of a simplex point occurs when neither the reflection
operation nor the expansion operations yield a better simplex point. In the event
that neither the contraction, expansion, nor reflection operation yields a lower
functional value, the method shrinks itself around the best point.

Figure 7. Illustration of reflexion point

 The series of steps mentioned above can be mathematically represented by
two basic expressions. Let us first define the various parameters that will be

needed. Let spH denote the simplex point with the highest functional value,

spN denote the new simplex point that will replace spH (that needs to be

computed), spR denote the remaining simplex points (all points excluding

spH), spL denote the simplex point with the lowest functional value, and spS

denote the simplex point to be shrunk. Also, let α denote the parameter that
controls the amount of expansion or contraction, and ϕ denote the parameter that

controls the amount of shrinking. Let DN denote the dimensionality of the

problem (i.e., number of points in the simplex).

 The two equations that summarize the various steps encountered in the
Simplex algorithm are

() αα sp
D

sp
sp H

N

R
N +−= 1 (16)

ϕϕ spspsp SLN +−=)1((17)

Eq. (16) is used for reflecting, expanding, or contracting a simplex point with the
parameter α controlling the amount of expansion or contraction. Note that the
reflection operation is similar to the expansion operation. The difference
between them is the amount by which they are moved across the simplex face.
More specifically, in the reflection operation the simplex point is moved to a
location across the simplex face that is exactly the same distance away from the
face before it is moved; hence the term reflection (see Fig. 7 for clearer
illustration). The expansion operation on the other hand moves the simplex
point across the face of the simplex to a distance farther away as illustrated in
Fig. 8. Since α controls the amount of expansion and contraction, it is clear that
α must take on specific values for executing the three operations. Specifically,
reflection across the simplex face is achieved with α = -1, expansion across the
simplex face is achieved by a value of α < -1, while contraction is achieved with
a value of α satisfying 0 < α < 1.
 The flow of the Simplex algorithm, i.e., the order in which the
abovementioned operations are performed, will be discussed in a later section.
Although (16) is used for reflecting, expanding, and contracting a simplex point
depending on the value of α, the three different operations will be differentiated
for clarity from here on. In particular, for reflection operation, (16) is kept
unchanged with the parameter α, whereas for the expansion and contraction
operations, the parameter α in (16) will be replaced by β and γ, respectively.

Note that the fraction
D

sp

N
R in (16) is a point on the simplex face. In fact, it

can be readily shown that
D

sp

N
R is the center-of-mass of the simplex face and

hence is termed the centroid in the later discussion. Eq. (17) is used when
neither reflection, expansion, nor contraction of the simplex point yields a lower
functional value point. Eq. (17) is in fact a contraction operation around the

simplex point with the lowest functional value spL . The parameter ϕ in (17)

controls the amount of shrinking and can only take on values between 0 and 1.
The detailed implementation strategy for neural network training is discussed in
the next section.

Figure 8. Illustration of expansion point

B. APPLICATION TO TRAINING RECURRENT
NETWORKS
 The simplex approach is a powerful optimization tool and has been used quite
successfully in handling a variety of optimization problems [Wong, 1998,
Duan, 1992] with nonlinear objective functions. The motivation for employing
this approach in the present work of training a neural network, particularly in
preference to the error backpropagation methods (and also to the more general
steepest descent optimization approaches), can be explained from the following
simple analogy.
 The backpropagation approach can be regarded as similar to physically
placing a person in a mountainous terrain with his objective being to move to the
lowest elevation in that particular terrain (the mountainous terrain symbolizes, in
the context of optimization, the peaks and valleys of the object function to be
minimized). Having no additional information, other than the knowledge of his
own initial elevation, his wisest option is to go down the steepest slope he can
find and hope that it will lead him to the lowest elevation. Obviously his ending
point will depend on where he starts. If he had been placed right above the

global minimum elevation, then he will easily fulfill his objective with the
selected strategy. However such a situation could indeed be very rare.
Furthermore, how will he know that he has reached the lowest elevation if at all
he does? It is more likely that he will stop at the first valley he reaches (a local
minimum) and assume that he has found the global lowest elevation when clearly
he has not (this illustrates the reason why backpropagation almost always ends
up with a sub-optimal solution). Of course if he has enough energy left after the
descent, he can always climb out of the valley he has found and try to find a
lower elevation (similar to the operations of some modified backpropagation
algorithms with a momentum term). However the question still remains
unanswered - How will he know that he has indeed reached the global minimum?
 With the simplex approach however, it is like randomly placing a group of
people, instead of one person, at various selected initial points on the
mountainous terrain. Now each person within this group knows his own
elevation and spatial position but not the elevations and positions of the others.
What would they do to meet the combined objective of finding the lowest
elevation point? The wisest thing is to share their information, which is their
elevation and spatial position, and have the person with the highest elevation
move to a new position calculated from the rest of the group’s elevations and
positions on the terrain. Once this person has reached his new calculated
position he would then report back his new elevation and spatial position to the
group and the whole process starts again. With enough iterations, the group
must finally converge to a point that will be close to the lowest elevation. One
can see that the Simplex algorithm logically and efficiently overcomes settling
into a sub-optimal solution as in the backpropagation algorithm. By a repetitive
implementation with different sets of initial starting locations, the outcome of the
simplex search can be made even more efficient in seeking out the true global
minimum elevation. Observe that if the group of people were to record the
spatial position and elevation of the point at which they converge, randomly re-
position themselves around the terrain, and start the process all over again, they
may eventually converge to an elevation that is closer to the true minimum. By
repeating this process an arbitrarily large number of times, the group is bound to
find the global lowest elevation with probability approaching 1. However the
only drawback of this implementation is that if there are too many people in the
group, the amount of computation needed to find the new position will increase
correspondingly since there is now more information to process.
 An implementation of this strategy for a supervised training of the neural
network in order to minimize the training error

∑∑
∈

=
−=

Oi

K

k ii koko
K

|)(ˆ)(|
1

1
ε (18)

will now be described. In the error criterion formulated above)(ˆ koi ,

i=1,2,…,n, denotes the neural network outputs which are the estimates of the

desired outputs denoted by)(koi , i=1, 2, …, n, where n denotes the total

number of neural network outputs and K is the total number of training vectors
used. The simplex is initialized by selecting an arbitrary set of N+1 points in the
N-dimensional weight space, where each point corresponds to a selection of
weight values (i.e. a vector of dimension N). This selection is made by randomly
assigning all weight values within certain chosen bounds Wmax and Wmin. With
respect to a neural network, the dimension of the weight space, N in this case, is
determined by the size of the neural network (i.e. N is the total number of
interconnections). Fig. 9 shows an illustrative case of 4 simplex points (for a
problem with 3-dimensional weight vectors). The simplex evolution strategy
[Nelder, 1965] is then executed, which involves determining the point where ε
has the largest value and computing the centroid of the remaining simplex points.

ε is a function of the neural network's output)(ˆ koi and the desired output

)(koi (for i=1, 2, …, n). For a recurrent neural network, such as that shown in

Fig. 4, the neural network output is given by

∑
=

=
p

i
jijij nynwno

0

)()()(ˆ (19)

where)(nwji is the synaptic weight connecting the output of neuron i (in the

hidden layer in this case) to the input of neuron j (in the output layer in this case)

at iteration n, and)(ny ji - is the output signal of neuron i going into the input of

neuron j at iteration n.
 Note that there are p+1 neurons in the hidden layer as formulated in (19). The
centroid of the simplex points, excluding the highest ε, is calculated by
averaging the sum of the corresponding elements of each of the simplex points.
For example, to illustrate the calculation the centroid of the remaining three
simplex points, s1, s2, and s3, in Fig. 9, let the weight values associated with them
be
















=
















=
















=

33

32

31

3

23

22

21

2

13

12

11

1 ,'

w

w

w

s

w

w

w

s

w

w

w

s . (20)

Figure 9. Convergence of Simplex algorithm to a global solution

The centroid, c, is

















++
++
++

=
3/)(

3/)(

3/)(

332313

322212

312111

www

www

www

c . (21)

In general, for an N-dimensional weight space, the centroid may be calculated as

iw
N

c
N

j
jii ∀= ∑

=

,
1

1

. (22)

After the centroid is calculated, a new simplex point is then created by a
reflection, expansion, or contraction which involves an operation that consists of
joining the centroid computed to the simplex point with the highest ε by an
invisible line and locating an expansion point or a contraction point on this line
as shown in Fig. 10. The highest ε point is then replaced by the newly generated

point to form the new simplex on which the set of operations is repeated. The
reflection, expansion, and contraction points are new points obtained using the
centroid and the highest ε point via operations similar to extrapolation and
interpolation between these two points. First the ε value corresponding to the
centroid is found with (18) and (19).

Figure 10. Illustration of reflection, expansion, and contraction operations in the Simplex algorithm

Next, the reflection point along with its ε is calculated. The reflection point is
calculated by

() αα sp
sp

sp H
N

R
Rf +−= 1 (23)

where spRf is the reflection point, spH is the simplex point with the highest ε,

N is the dimension of the weight space (in this case the total number of

interconnections in the recurrent network), spR denotes the remaining simplex

points excluding spH , and α, a parameter that controls the scale of reflection, is

selected to be –1 as discussed earlier. If the ε associated with this reflection
point is less than the highest ε point, the reflection point is further expanded via
the following equation

() ββ sp
sp

sp H
N

R
Ex +−= 1 (24)

where spEx is the expanded simplex point and β, a parameter that controls the

amount of expansion, is selected to be less than -1 (all other parameters in (24)
are those defined in (23)). The specific value of β to be selected needs
determination through conducting simulation experiments. In the present work,
a value of β = -3 was found to yield the best results. In general β can take other
values for different applications. If the expanded point of (24) is still less than
the highest ε point, it becomes the new simplex point, else the reflected point
found in (23) becomes the new simplex point.
 If however ε for the extrapolated point is greater than the highest ε value

(i.e., spH), the centroid becomes the new simplex point. If the ε value

corresponding to the centroid is greater than the highest ε value, the contraction
point, along with its ε, is calculated via an operation similar to interpolation.
That is, the contraction point is calculated by

() γγ sp
sp

sp H
N

R
Cn +−= 1 (25)

where spCn is the contracted simplex point and γ, a parameter that controls the

amount of contraction, is selected to be less than 1 (all other parameters in (25)
are, again, those defined in (23)). Once again, an appropriate value of γ needs to
be determined from experimentation, and it was determined for the present
application that 0.5 yielded the best results. If the ε of the contraction point is
less than the highest ε point, the contraction point then becomes the new simplex
point. If however the ε of the contraction point is higher than the highest ε point,
another action would have to be taken. At this point, it is apparent that the set of
simplex points is located in an adverse situation. In such scenarios, the simplex
points are contracted relative to the best simplex point in all directions thereby
shrinking the size of the simplex. Consequently the new set of simplex points is
obtained with

ϕϕ spspsp SLN +−=)1((26)

where spN is the shrunk simplex point, spL denotes the simplex point with the

lowest ε, spS denotes the simplex point to be shrunk, and ϕ, a parameter that

controls the amount of shrinkage, is selected to be 0.75 (once again after several
simulation exercises).
 For implementation in the present context, the algorithm can be designed with
two distinct stopping criteria. The search for the weights of a specified network
structure can be terminated when either the maximum spread of the simplex
points is smaller than a prespecified threshold (with the centroid being selected
as the optimal one in this case), or the number of iterations performed exceeds a

preset threshold. Other criteria can be used to terminate the evolution of the
simplex, one such criterion being when the difference in error falls below a
preset threshold.
 As noted earlier, the only undesirable feature of this training scheme is that as
the size of the simplex (number of simplex points) increases, the computational
burden correspondingly increases. This however is not unique to the present
training scheme since the size of the simplex, viz. (N+1), depends on the size of
the weight vector, which in turn is a function of the total number of
interconnections in the neural net, and it is rather well known that the training
complexity increases with the size of the neural network. In an attempt to reduce
the training complexity, one may place arbitrary limits on the number of
interconnections, which however is not attractive. Some reduction in the overall
training complexity without arbitrarily limiting the network size can be achieved
by partitioning the neural network into a linear and a nonlinear portion, with the
nonlinear portion comprising the connections between the input nodes and the
hidden nodes while the linear portion consists of the connections between the
hidden nodes and the output nodes (an example of which is to have the network
outputs formed as a weighted sum of the outputs of the hidden nodes). The
simplex optimization is then performed to find the optimal weights in the
nonlinear portion, while a linear least squares minimization is used to determine
the optimal weights in the linear portion of the network.
 A factor of particular significance in the use of the simplex optimization
approach to neural network training is the possibility of approaching the true
global minimum by a reinitialization of the simplex, as outlined earlier in the
discussion of the analogy. It is well known that implementing the simplex
algorithm with multiple restart operation (i.e., reinitializing the simplex and
executing the algorithm on the new simplex points) has global search property
and hence prevents the training procedure from being trapped by local minima
of the error function. Furthermore, it is argued in the literature that multiple
restarts of the simplex search each time a convergence to a small cluster is
attained, has the effect of moving the procedure towards finding a globally
optimal solution with probability approaching 1.0. An aspect that deserves some
emphasis in regard to practical implementation is that these multiple restarts can
be executed in parallel, thus reducing the training time considerably. The
flowchart shown in Fig. 11 summarizes the above discussion on the evolution of
the simplex points.

Figure 11. The evolution of the Simplex algorithm

C. TRAJECTORY GENERATION PERFORMANCE

1. EXPERIMENT 1
 In this experiment, the recurrent network was trained to generate a circular
trajectory centered at (0.5, 0.5) in the Cartesian coordinate space. The x and y
components of the trajectory can be mathematically represented as

btAtx +=)cos()(ω (27a)

btAty +=)sin()(ω (27b)

where b is introduced to shift the center of the trajectory. In this experiment b in
both (27a) and (27b) is set to 0.5 so as to shift trajectory to center at the point
(0.5, 0.5). As discussed earlier, parameter A in Eqs. (27a) and (27b) specifies
the radius of the circular trajectory and the parameter ω denotes the angular
frequency. For this experiment, and also for all the other experiments in this
section, A is selected to be 0.2 and ω is selected to be 0.02π.
 A recurrent network with the architecture shown in Fig. 4 with five neurons
was trained with the Simplex optimization algorithm to produce the desired
trajectory. Two of the five neurons were arbitrarily chosen to be the outputs of
the recurrent net (giving the x and y components). As with the experiments in
the previous section, the recurrent network was driven only by the initial state of
its neurons and hence no external input into the system is required. In this
experiment, the initial states of the two output neurons were selected to be on the
trajectory while the initial states of the other neurons were randomly chosen
about zero according to the following distribution, N(0, 0.00001) (i.e., a normal
or gaussian distribution with zero mean and a variance of 0.00001).
 The training was conducted with teacher forcing, which was maintained until
the average absolute errors of the estimates, in both the x and y components,
were less than a preset value, δ (δ was chosen to be 0.06 in all of the experiments
performed in this section). That is

δ

ε

<

−= ∑
=

K

i
xxx ioio

K 1

)(ˆ)(
1

 (28a)

δ

ε

<

−= ∑
=

K

i
yyy ioio

K 1

)(ˆ)(
1

 (28b)

where xε and yε are the average errors of the x and y components respectively,

xo and yo are the desired outputs, xô and yô are the network estimated

outputs, and K is the length of the training vector presented to the recurrent net.
Recall that teacher forcing learning is the process of feeding back, through the
output recurrent connections, the desired outputs instead of the actual network
outputs. In this manner, the network was trained for one complete cycle of the
trajectory. After the training was completed, the network was tested for its
ability to produce a stable circular trajectory, given any initial states, when the
actual network outputs were fed back.
 Interestingly enough, even without removing the teacher forcing during
training, the network was able to produce a very stable and roughly circular
trajectory. In fact, the recurrent net was run continuously for about 100 cycles
and it was found that after some brief period of transient response, the network
converged to a single trajectory with only very slight deviations. With this
satisfying result, the network was retrained, this time with the teacher forcing
slowly removed according to the following equation

)()1()()(iDiAiR ojojoj χχ −+= (29)

where j = x, y and i = 1, 2, …, K with ojA and ojD denoting the actual output

and desired output, respectively. The parameter χ was incremented from 0 to 1
with a step size of 0.1 each time the average absolute error for each of the
components for a specific value of χ reduced to less than 0.06, thus
progressively reducing the teacher forcing term.
 Figs. 12a-c show the results of one retraining experiment. One may observe
that the network converges to a single trajectory that is approximately circular.
The generated trajectory can be made more accurate by enforcing a more
stringent requirement on the absolute errors before terminating the training (for
instance, by requiring the average absolute errors to be less than 0.01).
 Of particular interest in this experiment is the sensitivity of the trained neural
network to the initial state of neurons. To test this feature, several different
simulations were conducted. First, the initial states of the output neurons were
set to a point on the trajectory, while the remaining neurons were started at an
initial state that is normally distributed around zero according to N(0, 0.00001)
(i.e., similar to the initial state conditions of the recurrent net used during
training). In all of the simulations conducted with this setup, the network
converged to a single circular trajectory after a brief transient period. This is to
be expected since this is the manner in which the network was trained. A more
challenging scenario would be to set the initial states of all the neurons,
including the output neurons, to a value normally distributed around zero with
variance 0.00001. The results of several simulations conducted with this set-up
also demonstrate that the network converges to a single circular trajectory in all
the cases. To further challenge the stability of the recurrent net, several

Figure 12a. Desired trajectory of Experiment

Figure 12b. Generated trajectory of a simplex trained recurrent network (Experiment 1)

Figure 12c. Overlaid trajectories – desired and generated trajectory (Experiment 1)

simulations with the initial state of all the neurons set randomly according to
N(100,5) were conducted. Again, all the results obtained demonstrate
convergence of the network to a single circular trajectory. One example of the
various simulations is shown in Figs. 12a-c and 13a-b. Figs. 13a and b show the
outputs of the two output neurons which demonstrate that the recurrent network
has indeed captured the oscillating behavior required to generate the desired
circular trajectory. Figs. 12a-c show the desired trajectory, the trajectory
produced by the network, and both trajectories overlaid, which confirm that the

network has indeed been trained by the Simplex optimization algorithm. The
convergence of the recurrent network to produce the same attractor trajectory in
all the simulations regardless of the initial states of the neurons illustrates the
robustness of the trained network.

Figure 13a. Desired and generated x-coordinate output of a trained recurrent network
(Experiment 1)

Figure 13b. Desired and generated y-coordinate output of a trained recurrent network
(Experiment 1)

2. EXPERIMENT 2
 Although convergence of the recurrent net to the desired trajectory was
obtained in all of simulations conducted in Experiment 1, the transient response
of the network does not appear to be as smooth and as controllable as desired. A
more desirable response of the network is shown in Fig. 14a. As noted, the
trajectory of the desired response starts at the center of the trajectory. The
trajectory then slowly and smoothly diverges from the center and converges onto
the circular attractor pattern. This smoother, more controllable and predictable
response is particularly important in control applications where a smooth and
predictable transient response is critical to the operation of the control system.
 For this experiment, the same five-neuron recurrent net was utilized. The
recurrent net was again trained for one complete cycle of the trajectory. The

Figure 14b. Generated trajectory of a simplex trained recurrent network (Experiment 2)

Figure 14c. Overlaid trajectories – desired and generated trajectory (Experiment 2)

equations governing the trajectory were modified slightly to accommodate the
smoother and more predictable transient response given by

btAetx t +−= −∂)cos()1()(ω (30a)

 btAety t +−= −∂)sin()1()(ω (30b)

(as in Experiment 1, b is set to 0.5). Note that Eqs. (30a) and (30b) differ from

(27a) and (27b) with the introduction of the exponential term,)1(te−∂− . The

exponential term is introduced to control the growth of the trajectory from its
initial point. The parameter ∂ is preset to achieve the desired trajectory growth.

 The training was commenced with teacher forcing learning. The initial states
of the output neurons were normally distributed according to N(0.5, 0.00001),
while the initial states of the rest of the neurons were selected according to N(0,
0.00001). The training was stopped when the same error criterion as used in
Experiment 1 was met (i.e., the average absolute errors in (28a) and (28b) were
satisfied with δ chosen to be 0.06). After the training was completed in this
manner, several validating simulations were conducted to investigate the
response of the network for arbitrary initial states. In the various experiments
conducted with the initial states of the network selected according to the specific
distributions used in the training process, the network converged to a single
circular trajectory in all instances with a much smoother and more predictable
transient response. A representative trajectory generated by the network is
shown in Fig. 14b. Clearly the transient response of the generated trajectory is
similar to the desired transient response illustrated in Fig. 14a (Fig. 14c shows an
overlay of the desired trajectory and the trajectory generated by the network).
Figs. 15a and b indicate that the network has indeed captured the oscillating
behavior required for trajectory generation. An important outcome from this set
of experiments is the demonstration that the network can be trained to produce a
desired trajectory with specific transient response. As noted before, this
characteristic can be exploited in designing control systems with specified
trajectory paths.
 Also of interest in this experiment was the investigation of how the network
would respond when the network was started at initial states different from the
one used during training. To test this feature, several simulations were
conducted with the initial states of the network selected randomly outside the
area enclosed by the trajectory. It is interesting to note that the network failed to
converge to the desired trajectory in all instances. Hence it seems that in training
the network to produce a smoother and more predictable transient response, the
robustness of the network demonstrated in Experiment 1 is lost. In other words,
the network trained in this manner is sensitive to the initial states of its neurons.
It may be noted, in conclusion, that a more desirable result, i.e., a smoother and
more circular trajectory, can be achieved by retraining the network with the
teacher forcing term slowly removed according to (29), and enforcing a more
stringent stopping requirement (i.e., by requiring the average absolute errors to
be less than 0.01 for example).

Figure 15a. Desired and generated x-coordinate output of a trained recurrent network
(Experiment 2)

Figure 15b. Desired and generated y-coordinate output of a trained recurrent network
(Experiment 2)

3. EXPERIMENT 3
 To further examine the optimization prowess of the Simplex algorithm, an
attempt is made to train a recurrent network to generate an even more complex
trajectory - the figure-eight pattern. As noted earlier, the figure eight trajectory
can be produced by requiring the neural network outputs to converge to the
periodic signals

btAtx +=)sin()(ω (31a)

btAty +=)2sin()(ω . (31b)

The parameters A, b, and ω were selected to be the same as in the earlier
experiments. All the training conditions, including the selection of the initial
states, were maintained similar to Experiment 1. Initially a five-neuron network
was utilized for this purpose. However, with the selected structure, the network
training, with teacher forcing learning implemented, failed to converge to the
desired trajectory. Hence, the network size was increased from five neurons to
ten neurons. The training was repeated and this time, after a longer period of
training than that required for the simpler trajectory - circular pattern, the

network converged to the desired trajectory. The results of this experiment are
shown in Figs. 16a-b and 17a-d. These results indicate that the network has
indeed been trained to generate autonomously the desired trajectory. It should
however be mentioned that unlike in the earlier experiments, the network does
not demonstrate convergence to a single trajectory. Instead it converges to a
series of trajectories.

Figure 16a. Desired trajectory of Experiment 3

Figure 16b. Generated trajectory of a simplex trained recurrent network (Experiment 3)

Figure 17a. Desired x-coordinate output of Experiment 3

Figure 17b. Generated x-coordinate output of a trained recurrent network (Experiment 3)

Figure 17c. Desired y-coordinate output of Experiment 3

Figure 17d. Generated y-coordinate output of a trained recurrent network (Experiment 3)

V. CONCLUSIONS

Two distinct methods for training recurrent neural networks that eliminate
the need for the computation of error gradients were presented in this article.
Since gradient computation constitutes the major part of the overall training
complexity in the use of gradient-based methods such as backpropagation
learning, the methods discussed in this article provide attractive alternatives to
the training of neural networks in general and recurrent networks in particular.
One of these methods based on the theory of learning automata utilizes the
concepts of reinforcement learning and employs use of penalty-reward methods
for tailoring specific training policies. The other method utilizes the nonlinear
simplex optimization approach and provides a systematic procedure for the
adjustment of neural network parameters. The training performance resulting
from the two approaches was demonstrated by application to a complex
spatiotemporal learning problem of designing a dynamical neural network that
outputs a prescribed attractor trajectory pattern. Simulation experiments
conducted here with specific benchmark trajectory patterns confirm the efficacy
of the learning automata approach and the simplex optimization approach for a
simple and efficient training of recurrent nets.

REFERENCES

Almeida, L. B. A learning rule for asynchronous perceptrons with feedback in a
combinatorial environment, Proc. of the IEEE 1st Annual Intl. Conf. on Neural
Networks, 609, San Diego, 1987.

Bartle, R. and Sherbet, D., Introduction to Real Analysis. Wiley: New York,
1992.

Behrens, H., Gawronska, D., Hollatz, J. and Schurmann, B., Recurrent and
feedforward backpropagation for time-independent pattern recognition, in Proc.
1991 Intl. Joint Conf. on Neural Networks (IJCNN), Seattle, July 1991.

Bertsekas, D. P., Dynamic Programming, Prentice-Hall: Englewood Cliffs, NJ,
1987.

Condarcure, T., A learning automaton approach to trajectory learning and
control system design using dynamic recurrent neural networks, M.S. Thesis,
ECE Department, The University of Arizona, 1991.

Duan, Q., Gupta, H. V., and Sorooshian, S., Effective and efficient global
optimization for conceptual rainfall-runoff models, Water Resources Research,
28, 1015, 1992.

Karakasoglu, A., Sudharsanan, S. I., and Sundareshan, M. K., Identification and
decentralized adaptive control using dynamical neural networks with application
to robotic manipulators, IEEE Trans. on Neural Networks, 4, 919, 1993.

Khalil, H. K., Nonlinear Systems, Macmillan: New York, 1992.

Lakshmivarahan, S., Learning Algorithms: Theory and Applications. New
York: Springer-Verlag, 1981.

Lapedes, A. and Farber, R., Programming a massively parallel computation
universal system: static behavior, in Neural Networks for Computing, Denker, J.
S., Ed., AIP Conference Proceedings, 151, 283, 1986.

Lewis, T. and Payne, W. H., Generalized feedback shift register pseudorandom
number algorithm, Journal of the Association for Computing Machinery, 20 (3),
456, 1973.

Lin, D. T., Dayhoff, J. E., and Ligomenides, P. A., Trajectory production with
the adaptive time-delay neural network, Neural Networks, 8, 447, 1995.

Mendel, J. M. and Fu, K. S., Eds., Adaptive, Learning and Pattern Recognition
Systems, Academic: New York, 1970.

Narendra, K. S. and Thathachan, M. A. L. Learning Automata, an Introduction,
Addison Wesley, Reading, MA, 1989.

Nelder, A. J. and Mead, R., A simplex method for function minization, Comput.
Journal, 7, 308, 1965.

Nilsson, N. J., Learning Machines: Foundations of Trainable Pattern
Classifying Systems, McGraw-Hill: New York, 1965.

Pearlmutter, B. Learning state space trajectories in recurrent neural networks,
Neural Computation, 1, 263, 1989.

Pearlmutter, B. Gradient calculations for dynamic recurrent neural networks: a
survey, IEEE Trans. on Neural Networks, 6, 1212, 1995.

Pineda, F. J. Generalization of backpropagation in recurrent neural networks,
Physical Review Letters, 59 (19), 2229, 1987.

Ruiz, A., Owens, D. H., and Townley, S., Existence, learning, and replication of
periodic motions in recurrent neural networks, IEEE Trans. on Neural Networks,
9, 651, 1998.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J., Learning internal
representations by error propagation, in Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, Rumelhart, D. E. and
McClelland, J. L., Eds., MIT Press: Cambridge, 45, 1986.

Sato, M. A real time running algorithm for recurrent neural networks, Biological
Cybernetics, 62, 237, 1990.

Sudharsanan, S. I. and Sundareshan, M. K., Training of a three layer recurrent
neural network for nonlinear input-output mapping, Proc. 1991 Intl. Joint Conf.
on Neural Networks (IJCNN-91), Seattle, 1991.

Sudharsanan, S. I. and Sundareshan, M. K., Supervised training of dynamical
neural networks for associative memory design and identification of nonlinear
maps, Intl. J. of Neural Systems, 5, 165, September 1994.

Sudharsanan, S. I. and Sundareshan, M. K., Equilibrium characterization of
dynamical neural networks and a systematic synthesis procedure for associative
memories, IEEE Trans. on Neural Networks, 2, 509, September 1991a.

Sudharsanan, S. I. and Sundareshan, M. K., Exponential stability and a
systematic synthesis of a neural network for quadratic minimization, Neural
Networks, 4, 599, 1991b.

Toomarian, N. and Barhen, J., Learning a trajectory using adjoint functions and
teacher forcing, Neural Networks, 5, 473, 1992.

Varshavskii, V. I. and Vorontsova, I. P., On the behavior of stochastic automata
with variable structure, Automat. Remote Contr., 24, 327, 1963.

Werbos, P., Backpropagation through time: what it does and how to do it, Proc.
of the IEEE, 78, 1550, 1990.

Williams, R. and Zipser, D., A learning algorithm for continually running fully
recurrent neural networks, Neural Computation, 1, 270, 1989.

Wong, Y. C. and Sundareshan, M. K., A simplex trained neural network
architecture for sensor fusion and tracking of target maneuvers, Kybernetika, No.
4-5, 1999.

	RECURRENT NEURAL NETWORKS
	Table of Contents
	Chapter 11
	TRAINING ALGORITHMS FOR RECURRENT NEURAL NETS THAT ELIMINATE THE NEED FOR COMPUTATION OF ERROR GRADIENTS WITH APP
	I. INTRODUCTION
	II. DESCRIPTION OF THE LEARNING PROBLEM AND SOME ISSUES IN SPATIOTEMPORAL TRAINING
	A. GENERAL FRAMEWORK AND TRAINING GOALS
	B. RECURRENT NEURAL NETWORK ARCHITECTURES
	C. SOME ISSUES OF INTEREST IN NEURAL NETWORK TRAINING
	1. AN OPTIMIZATION FRAMEWORK FOR SPATIOTEMPORAL LEARNING
	2. INCREMENTAL LEARNING
	3. TEACHER FORCING

	III. TRAINING BY METHODS OF LEARNING AUTOMATA
	A. SOME BASICS ON LEARNING AUTOMATA
	B. APPLICATION TO TRAINING RECURRENT NETWORKS
	C. TRAJECTORY GENERATION PERFORMANCE
	1. EXPERIMENT 1
	2. EXPERIMENT 2

	IV. TRAINING BY SIMPLEX OPTIMIZATION METHOD
	A. SOME BASICS ON SIMPLEX OPTIMIZATION
	B. APPLICATION TO TRAINING RECURRENT NETWORKS
	C. TRAJECTORY GENERATION PERFORMANCE
	1. EXPERIMENT 1
	2. EXPERIMENT 2
	3. EXPERIMENT 3

	V. CONCLUSIONS
	REFERENCES

	© 2001 by CRC Press LLC: © 2001 by CRC Press LLC
	Figure 14a:
	 Desired trajectory of Experiment 2 : Figure 14a. Desired trajectory of Experiment 2

