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I. INTRODUCTION

Recurrent neural networks are universal approximators of dynamic systems
and hence can be used to model the behavior of a wide range of practical systems
which can be described by ordinary differential equations [Funashi and
Nakamura, 1993]. The ability to model such systems is an important task for
nonlinear control systems design, system identification, and testing.

An interesting feature of recurrent neural networks is their ability to “learn” a
trajectory from training data. Under certain conditions, these networks can also
generalize [Hassoun, 1995; Hagner, 1999] from the training data to produce
smooth and consistent dynamic behavior for entirely new inputs or new regions
of state space (i.e., inputs or regions of state space not encountered during
training).

In this chapter, we discuss the use of single-and multilayer recurrent neural
networks for the approximation of two famous 2-dimensional limit cycles: the
circle and the figure-eight. We will give a qualitative and quantitative analysis of
the neural net approximations of these autonomous systems for various network
architectures (internally and externally recurrent), learning rules (incremental and
conjugate gradient descent, and three variations of the extended Kalman filter),
and initial conditions (previous states on the trajectory and previous states set
near the origin).

A variety of approaches and architectures has been proposed in the literature
for approximating such trajectories, including discrete-time, feedforward



networks with tapped delay line external recurrence [Tsung and Cottrell, 1995];
discrete-time, feedforward networks with adaptable time delays [Lin, Dayhoff,
and Ligomenides, 1995]; discrete-time, single-layer, recurrent networks with
adaptable time constants [Sundareshan and Condarcure, 1998]; continuous time,
single-layer recurrent networks with adaptable time constants [Toomarian and
Barhen, 1992; Pearlmutter, 1995]; and continuous time, single-layer recurrent
networks with adaptable time constants and adaptable time delays [Cohen, Saad,
and Marom, 1997].

Previous studies of two-dimensional limit cycle trajectories have involved
simulations of one architecture and one learning algorithm, and used only one set
of initial conditions. Several studies also investigated only the circle trajectory,
which proved to be relatively easy for any architecture/algorithm combination to
learn, and thus does not provide a test able to delineate the differences in
performance. Recurrent network architectures have been experimentally
compared [Horne and Giles, 1995], though not on autonomous network
applications like those considered here. Additionally, recurrent network learning
algorithms have been compared [Logar, Corwin, and Oldham, 1993; Williams
and Zipser, 1995], though with a focus on algorithm speed, and not on
architecture and performance (defined here as the ability of the network to
accurately match the desired training data).

The remainder of this chapter is organized as follows. Section 2 reviews the
structure of recurrent neural network architectures and gives definitions of
internal and external recurrence. Section 3 discusses how the training sets for the
circle and the figure-eight are generated. Section 4 presents the quantitative error
measures and performance metrics which are used to assess the quality of the
network dynamics during the playback phase. Section 5 briefly reviews the five
training algorithms which are simulated. Section 6 describes the simulations
performed in this work and the results of these simulations, and provides
comparative analyses of network architecture and training algorithm
performances and properties. Section 7 presents the conclusions reached
concerning the capabilities and limitations of the network architectures and
training algorithms when applied to learning the limit cycle trajectories, and a
discussion of possible future extensions of this work.

II. ARCHITECTURE

Feedforward neural networks can model static mappings, but do not have the
capability to generate dynamic behavior. By adding recurrent connections,
though, a feedforward network can be transformed into a recurrent network
which can be used to model dynamic systems. For the recurrent networks
described here, we will start with a multilayer feedforward neural net, where
neurons are grouped into layers and layers are cascaded one after the next. We
will assume full interconnectivity between layers, but each layer will be
connected to the layer which immediately follows. For example, in a 3-layer



network, layer 1 will be fully connected to layer 2, and layer 2 fully connected to
layer 3, but no direct feedforward connections will be present between layer 1
and layer 3.

Once the feedforward structure of the network is fixed, recurrent connections
can be added by using two main types of recurrence: internal and external.
Internal recurrence is defined here as the connection of outputs of units of a given
layer to the inputs of units in that same layer. External recurrence is defined as
the connection of outputs of the final (output) layer of a network to the inputs of
units in the first (input) layer. This type of network that has both feedforward and
recurrent layers has been termed a recurrent multilayer perceptron (RMLP)
network [Puskorius and Feldkamp, 1994], and combines the instantaneous
mapping capabilities of multilayer feedforward networks (often referred to as
multilayer perceptron, or MLP, networks) with the system state memory, or
dynamics, of recurrent networks.

Each unit in the recurrent network has inputs from other units, as well as a
single output to other units (and possibly the external environment). The output y
of a unit at time step n+1 is given by its describing function

Here, x1(n), x2(n), . . ., xJ(n) are the inputs to the neuron at (discrete) time step n.
Note that in general, the total input vector x is composed of outputs of other units,
bias inputs, and external inputs, though for the autonomous networks considered
here, there will be no external inputs. Associated with each input is a weight
w1(n), w2(n), . . ., wJ(n), which, during the training phase, also evolves in time. In
this chapter, the discussion will focus on activation functions which are either lin-
ear: f(x) = x, or sigmoidal: f(x) = tanh(x).

An example of a 3-layer recurrent network is shown in Figure 1. This
network has three feedforward units in layer 1, two recurrent units in layer 2, and
two feedforward units in layer 3. In addition, this network has external recurrence
with two unit time delays. We will use the notation to represent

this structure. The subscript R indicates that the layer has recurrent connections
(output of the layer is fed back into the input of that layer). The 2 in parenthesis at
the end indicates that the network has external recurrence with two delays.

Various architectures were tested initially to determine the advantages and
disadvantages of the different architecture types, and to determine which subset
of the many possible architectures would be used for the final comparison
analysis with the different training algorithms. The variations studied were 1)
linear vs. sigmoidal unit activation functions, 2) single recurrent layer vs. hidden
recurrent layers with a two-unit feedforward output layer, 3) single vs. multiple
hidden feedforward layers with a two-unit feedforward output layer, 4) recurrent
layer networks with and without external recurrence, and 5) up to five unit delays
used for external recurrence.

y n 1+( ) f x j n( )w j n( )
j 1=

J

∑=

3 2R 2 2( )××



During initial network simulation analysis, it was found that if a network
contained a single layer, the units required sigmoidal activation functions to learn
the trajectories, and if the network employed an output layer with feedforward
linear units, the hidden layer (recurrent or feedforward) similarly required
sigmoidal units. This is as expected for this application of learning nonlinear
trajectories where a linear combination of unit values is not sufficient.

Figure 1. A 3-layer network with three units in layer 1, two recurrent
units in layer 2, and 2 units in layer 3. This network has external feedback with 2 unit
delays.

For a feedforward output layer with or without external recurrence, only two
units are required, as any additional units’ outputs would not be connected. For a
feedforward output layer, linear units provided faster convergence, but the
solutions exhibited inferior off-trajectory performance compared to feedforward
output layers with sigmoidal units. These trajectories were similar to the center,
or vortex trajectories generated by two-dimensional linear systems with a purely
imaginary conjugate pair of eigenvalues (for a description of phase-plane
analysis of linear and non-linear systems, see Van De Vegte [1986] and
Dickinson [1991], indicating that the network was not exploiting the
nonlinearities of the hidden units). Additionally, feedforward output layers with
sigmoidal units were more robust during training, whereas linear unit learning
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often diverged during training. Thus sigmoidal activation functions were used for
all units in both hidden and output layers.

It was found that single recurrent layer networks performed well, and the
addition of hidden recurrent layers did not provide any noticeable benefits.
Coupling these findings with the fact that the addition of external recurrence to a
single layer recurrent network would be redundant, the only recurrent unit
architecture to be tested in the final analysis was a single layer of recurrent units
with sigmoidal activation functions.

Externally recurrent networks with one hidden layer generally performed as
well as networks with multiple hidden layers. Additionally, externally recurrent
networks with a recurrent hidden layer provided no noticeable benefit over
networks with a single recurrent layer, or compared to externally recurrent
networks with a single feedforward hidden layer.

As indicated above, the only two architectures that both provided good
performance and were also different enough to warrant further comparison were
the single layer recurrent nR and single hidden layer feedforward with external

recurrence .
Initial experimentation with the number of units and the number of delays

determined that the minimum network sizes for the circle trajectory were 2R and

for internal and external recurrence, respectively. One larger network
(for each architecture) was then chosen to provide a significant increase in the
number of parameters (weights), without increasing the network size such that it
became computationally prohibitive. These network sizes were 4R and .
Thus the total number of architecture/algorithm combinations to be compared for
the circle trajectory was 4 networks x 5 algorithms =20.

Similar experimentation for the figure-eight trajectory led to the
determination that the minimum network sizes were 4R and for internal
and external recurrence, respectively. Two additional, larger networks (for each
architecture) were chosen for the figure-eight trajectory to be 6R, 8R, ,

and . Thus the total number of architecture/algorithm combinations to
be compared for the figure-eight trajectory was 6 networks x 5 algorithms = 30.

III. TRAINING SET

The training set for the circle and the figure-eight consists of 2-dimensional
samples of the trajectory, as shown in Figures 2a and b.

For both trajectories, M = 100 samples are used because this value offered a
balance between a smaller M that provided more distinction between data points
(beneficial because incremental training algorithms tend to optimize for the
current region if that region presents little new information) and a larger M that
provided a smoother, more accurate representation of the continuous-time
trajectory.

n L D( )×

2 2 1( )×

4 2 1( )×

4 2 4( )×
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Figure 2. (a) The circle and (b) figure-eight training sets; both contain M = 100 samples.

In the case of the circle, the target vector d at time step n is given by

and for the figure-eight trajectory, the target vector is given by

To train the network to learn the limit cycle trajectories, the target values,
d(n), were taken as the coordinates of the subsequent point on the trajectory, and
the target value for the final, Mth point was the first point, to train the network to
oscillate around the trajectory.

IV. ERROR FUNCTION AND PERFORMANCE METRIC

One way to assess network performance is by formulating an error function
which measures the difference between the neural net approximation and the
desired trajectory. A common measure is the standard sum of squared errors
defined by

(1)
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where dl(n) is the target value and yl(n) is the actual output of output unit l at time
step n. The error function given here is called the batch error, because it contains
the sum of the errors over the entire training set; that is, the error over all M time
steps. Some training algorithms make use of this error function, and others make
use of the instantaneous error,

(2)

where the errors are summed only over the L output units, and not over time, and
thus may be written as E(w, n). Both definitions of the error function will be used
in the discussion of training algorithms in the next section, as this work considers
both incremental and batch training algorithms.

In training mode, as the network output is computed for each step and the
error vector calculated, a technique called teacher forcing may be employed,
which substitutes the previous target values for the past network output values
after the computation of the error and prior to computing the next step. This has
been shown to be an effective technique for maintaining training algorithm
stability [Puskorius and Feldkamp, 1994; Williams, 1992; Hagner, 1999]. In full
teacher forcing, the previous target value is substituted; for partial teacher
forcing, a weighted sum of the previous target value and the network output value
is used [Hagner, 1999].

Besides the use of error functions, network performance may also be
qualitatively assessed by visual comparison of the network trajectory to the target
trajectory. The network trajectory is generated in the recall, or playback mode,
after the training mode is finished. In playback mode, a set of initial conditions is
provided, and the network output is computed for the first time step. These results
are then used to generate the network output for the second time step, etc., until
the desired number of steps is taken. Because it is desired that the trajectory be a
limit cycle trajectory (i.e., once the network output approaches the target
trajectory, it remains on that trajectory) and there may be transient effects due to
initial conditions, the network will be run through 10M steps, with all steps
plotted, providing both the transient and steady-state portions of the trajectory.

A network's performance may be measured quantitatively by the error
function and qualitatively by visual inspection of the network trajectory. These
two measures often do not correlate well, as the error function calculated using
teacher forcing may be quite different from the error function calculated during
playback (which represents a network’s true performance), when teacher forcing
is not used. Additionally, the trajectory generated during playback may become
unstable after a certain number of steps, indicating that the network has not
generated a true limit cycle, and thus a measurement of trajectory stability is also
desirable.

A network's performance generally improves as the error decreases during
training, but the relationship is often not smooth, as shown in Figure 3, and may
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vary by large amounts in only a few training cycles. For example, during a
training run on the figure-eight trajectory, the value of the training error
(calculated with teacher forcing) might decrease rapidly while the network
trajectory is confined near a single point, and thus the trajectory error (calculated
without teacher forcing) is large. As training continues and the training error
decreases more slowly as a minimum is approached, a sudden improvement in
performance may be seen as the network begins oscillation, or the trajectory
changes abruptly from an elliptical oscillation to a figure-eight. Sometimes the
error decreases quickly during these performance improvements, as the
algorithm leaves a local minimum or a long, flat valley, and sometimes it changes
little. At other points in training, a network's performance may be fairly good for
a period of time (the algorithm may be in a plateau), and then may deteriorate
rapidly as the algorithm enters a new region of weight space, even though the
training error decreases continuously.

Figure 3. Performance and error vs. training cycles for an network trained
with incremental gradient descent to learn the figure-eight trajectory.

Figure 3 shows the dependence of training error, trajectory error (with initial
conditions on the trajectory), and performance (quantitatively given below in
Equation 3) for one simulation of the incremental gradient descent algorithm on
the figure-eight trajectory. Note the large variation in the performance metric for
smoothly decreasing training and trajectory errors after 100,000 cycles, and also
the variation in the trajectory error for smoothly decreasing training error around
25,000 cycles.

0 5 10 15

x 10
4

10
0

10
1

10
2

performance

trajectory error x 100

training error x 105

10

1

100

0 50000 100000 150000
cycles

m
ea

su
re

8 2 4( )×



The trajectory without teacher forcing, made during playback, may be
quantitatively measured. The straightforward method of calculating the value of
the error function during playback provides a measure of the performance, but it
is calculated over the first “ loop” of M steps, and thus may contain transient
characteristics of the playback, and may not represent the quality of the steady-
state trajectory. Thus a measure of the error function is needed for the steady-state
trajectory (as stated previously, 10 “ loops” were sufficient for the networks to
reach steady-state conditions, and thus the performance metric is defined over the
last loop, or last M steps of the playback trajectory). The errors during the
transients typically cause the trajectory to “ fall behind” the target trajectory,
because the network trajectory typically starts at a point off the target trajectory
and eventually is attracted to it, though when this happens the points are not
synchronized. A network trajectory that is on the target trajectory but
unsynchronized, or out of phase with respect to the target trajectory, is defined
here to be perfectly good; the network has learned the limit cycle trajectory, and
because there is no external input to serve as a clock signal, the fact that the
trajectories overlap is sufficient.

A measure of the amount of trajectory “overlap” is thus required; the
standard error function will not provide a relevant result, because it relies on the
synchronization of the trajectory points and would provide a poor result for an
exact trajectory match that is out of phase. The measure of trajectory overlap is
accomplished by performing a convolution of the last M steps of the network
trajectory and the target trajectory. The value of the error function is calculated
for the target trajectory and the network trajectory M times, where for each
instance the starting point of the network trajectory is shifted 1 step. The minimal
value of the convolution occurs for the shifted trajectory that provides the
minimum error; this value is used as the measure of overlap. The error minimum
obtained from the convolution is then used to calculate a performance measure,
on the scale from 0 to 100, where 100 indicates an almost perfect overlap of
trajectories.

The steady-state performance measure is given by

(3)

where is a constant chosen for the specific figure or trajectory such that visu-

ally “ fair” steady-state trajectories achieved performance measures between 80
and 90, “very good” trajectories achieved performance measures between 90 and
95, and “excellent” trajectories achieved performance measures between 95 and
100, Ess1(w) is the value of the error function that provided the minimum during
the convolution procedure for the first set of initial conditions (on-trajectory), and
Ess2(w) is the value of the error function that provided the minimum during the
convolution procedure for the second set of initial conditions (off-trajectory). The
network’s overall performance measure was thus the average of the individual
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performance measures for the two steady-state trajectories resulting from the two
sets of initial conditions. For a network to achieve an “excellent” overall perfor-
mance measure of 95 to 100, both steady-state trajectories must achieve “excel-
lent” performance measures (e.g., if the on-trajectory performance measure was
95 and the off-trajectory performance measure was 11, the resulting overall per-
formance measure would be 53, indicating “poor”  performance).

V. TRAINING ALGORITHMS

There are several training algorithms that have been developed and applied
to training recurrent neural networks, the principal ones being the real-time
recurrent learning (RTRL) algorithm [Williams and Zipser, 1989a],
backpropagation-through-time (BPTT) [Rumelhart, Hinton, and Williams, 1986;
Werbos, 1990], and the extended Kalman filter [Williams, 1992; Puskorius and
Feldkamp, 1994]. These algorithms all make use of the gradient of the error
function with respect to the weights to perform the weight updates (the specific
method in which gradient is incorporated into the weight updates distinguishes
the different methods). RTRL computes the gradient information by integrating
forward in time as the network runs, while BPTT integrates backwards in time
after the network takes a single step forward (other variations of the BPPT
algorithm use various quantities for the number of forward steps and the number
of backward integration steps [Williams and Zipser, 1995]). BPTT and RTRL are
considered gradient-descent algorithms. The extended Kalman filter algorithm
uses the gradient in the linearization of the system, such that the method of
Kalman filtering may be applied, and is not a gradient-descent algorithm. All
three algorithms have been implemented as incremental algorithms, though
BPTT has also been modified for use in batch mode [Williams and Zipser, 1995].

The incremental versions of BPTT and RTRL are relatively slow, due
primarily to the fact that small learning rates are typically used in order to keep
the algorithms stable during training. The batch version of BPTT is faster, as it
performs the backwards error integration every M steps, and it can provide the
same gradient information as RTRL in a more efficient manner [Williams and
Zipser, 1995]. Batch versions also have the attractive quality that they may be
used with second-order gradient techniques which generally converge to a
minimum in fewer cycles than first-order, incremental algorithms. The extended
Kalman filter algorithm has also been shown to converge to a solution in
relatively fewer steps [Singhal and Wu, 1989; Shah and Palmieri, 1990;
Puskorius and Feldkamp, 1994], and may be implemented with gradient
information obtained similarly to RTRL. Therefore, to commonize the
development of the algorithms for this analysis, the RTRL method of obtaining
gradient information was used and applied to all the algorithms tested here:
incremental gradient descent, conjugate gradient descent, and the extended
Kalman filter. Note that a faster conjugate gradient algorithm would have used
the batch version of BPTT, but RTRL provided the same gradient information



and was also applicable in its incremental form for all the other algorithms.
The following sections briefly review gradient-descent-based and Kalman

filter-based training algorithms. A more complete discussion can be found in
Hagner [1999].

A. GRADIENT DESCENT AND CONJUGATE GRADIENT
DESCENT

In gradient descent, the parameters (in this case the weights) of the system
are adjusted at each step in the direction of steepest descent, or in the direction of
the negative of the gradient vector of the error function. For batch mode, the
weights are thus updated according to

where is a positive learning rate parameter, and is the gradient of the
error function with respect to the weight vector.

If the instantaneous, or incremental, error function is used instead of the
batch error function, the resulting algorithm will not follow the true gradient, but
rather an approximation to it. The weights generated by this algorithm will thus
have a component of randomness, and therefore this incremental algorithm is
termed stochastic gradient descent. It is also referred to as the least mean squares
(LMS) algorithm [Haykin, 1994; Hassoun, 1995] or incremental gradient
descent. The weight updates are made every step, based on the incremental error
of Equation 2.

Gradient descent methods that use second-order information about the error
surface to determine (and thus vary) during training offer improved
performance, especially if the error function is a quadratic function of the weights
(or close to quadratic). Newton's method [Haykin, 1994; Hassoun, 1995] uses the

Hessian matrix along with the current gradient to generate

the weight updates according to

This method has the serious drawback that the inverse of the Hessian matrix
of the error function (with respect to the weights) is prohibitively time-consuming
to calculate for most networks with more than a few weights (the size of the
Hessian is the square of the number of weights), and is thus impractical.
Additionally, and possibly more importantly, the inverse of the Hessian is
required, and there is no guarantee that this matrix is nonsingular at each step.

A more useful method that also employs the Hessian matrix is the conjugate
gradient algorithm [Press et al., 1992; Haykin, 1994; Hassoun, 1995], which uses
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the Hessian matrix implicitly in its calculation of weight updates. It uses the
previous gradient and the last step direction to compute a new direction that is
conjugate to both, and it does so iteratively without requiring the calculation of
either the Hessian or its inverse. The direction vector is calculated in terms of the
previous direction vector as

where the scalar is here taken from the Polak-Ribiere conjugate gradient
formulation [Press et al., 1992; Haykin, 1994] given by

Here all the weights of the network have been collected in a single vector w,
and the gradient components have also been arranged in a vector. A line-
minimization routine is employed to search in the direction v to find where the
error function takes on its smallest value (along the vector v). The step size which
results in this minimal value is for this update. The update to the weight

vector is then

The conjugate gradient method provides determination of , as well as a

greatly increased convergence rate compared to incremental or batch gradient
descent. A reduction in the number of training cycles required for convergence of
one to two orders of magnitude was typical for simulations conducted here. The
conjugate gradient algorithm has been applied to the training of feedforward
neural networks [Makram-Ebeid, Sirat, and Viala, 1989; van der Smagt, 1994].
The conjugate gradient algorithm applied here to the RTRL dynamic derivatives
has exhibited very large learning rates at times during the training process, but
this does not seem to hamper its performance (it has been reported in Williams
and Zipser [1989a] that small learning rates are required for stable algorithm
performance).

The conjugate gradient algorithm is by definition a batch algorithm, and as
such is not suited for on-line training, where the size of the training data set is not
known a priori. However, for the application of trajectory learning here, this was
not an issue.
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B. RECURSIVE LEAST SQUARES AND THE KALMAN
FILTER

The formulation of the least squares algorithm that computes parameter
updates based on past parameter estimates is termed the recursive least squares
(RLS) filter and is a special case of the more general Kalman filter. For a
complete derivation of both, see Haykin [1996]. Both algorithms generate an
estimate of an optimal parameter vector that minimizes an error measure
(typically the sum of squared error) for a linear system and therefore are
applicable to the training of neural networks.

In the case of a single unit, and taking the activation function to be linear

such that the unit response is given by y = wTx, the method of linear least squares
filtering may be employed to find a set of weights that minimizes the weighted
sum of squared error given by

where e(i) = d(i) - y(i), d(i) is the target value at time i, and is an exponential

forgetting factor, , used to decrease the effect of past data and permit
the algorithm to track variations in data.

The RLS algorithm may be adapted for the case of a network that contains
hidden units as well as visible output units, and for the case of units that have
nonlinear activation functions (the least squares method and the Kalman filter are
methods directly applicable to linear systems). This algorithm is called the
extended RLS, the extended Kalman filter (EKF), or equivalently the global
extended Kalman filter (GEKF); global because the algorithm is applied to the
network as a whole, extended because the linear RLS has been extended to the
nonlinear case, and Kalman filter because RLS is a special case of the Kalman
filter.

The learning equations [Haykin, 1996] which result from the Kalman filter
approach are given below in Equations (4) - (7). Further discussion and analysis
of these equations can be found in Hagner [1999].

(4)

(5)

(6)

(7)

Here, H(n) is a matrix of derivatives of the network unit outputs with respect to
the network weights, K(n) is the Kalman gain matrix, P(n) is the conditional error
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covariance matrix, and Q(n) is a diagonal covariance matrix which introduces
artificial process noise.

It should be noted that the GEKF algorithm formulation given in Equations
(4) - (7) has been derived from the RLS algorithm with exponential forgetting.
The forgetting factor is not employed (or, equivalently, set to unity) in the EKF
formulation of Singhal and Wu [1989] and the GEKF formulations of Puskorious
and Feldkamp [1994], and thus the GEKF algorithm presented here is slightly
different. A variable scalar learning rate, , is used in Puskorious and
Feldkamp [1994] which results in a formula for the Kalman gain, K(n), different
from (4), given by

where is typically set to a value less than unity at the start of training and
increases to unity as training progresses.

The GEKF algorithm is computationally intensive due primarily to the
update calculations for the approximate (due to the linear system approximation)
conditional error covariance matrix P(n), which scales as the square of the
number of weights in the network. A modification to the GEKF algorithm that
assumes certain interactions between weights are negligible is the decoupled
extended Kalman filter (DEKF) algorithm [Puskorius and Feldkamp, 1994]. The
negligible weight interactions are accounted for as zeros in the P(n) matrix, and if
the weights are grouped such that there are assumed to be no interactions
between weights in different groups, the P(n) matrix can be arranged in block-
diagonal form. If the groups are chosen such that weights feeding a unit make up
a group, then the decoupling is termed node-decoupled, and the algorithm is
called node-decoupled EKF, or NDEKF [Puskorius and Feldkamp, 1994].

The derivation of the DEKF (or NDEKF) algorithm proceeds similarly to
that for the GEKF algorithm, except that the block-diagonal form of P(n) is
exploited to reduce the computational complexity. For the case of g groups of
weights, there will now be g weight vectors w(n), as well as g H(n), P(n), and
K(n) matrices, which are subsets of their full, GEKF counterparts.

A variation of the single-unit RLS algorithm that employs linearization of
the nonlinear unit activation function (similarly to the EKF algorithms described
above), and an approximation to the estimation error, e(n), has been developed
and termed the multiple extended Kalman algorithm (MEKA) [Shah and
Palmieri, 1990], and is applicable to multi-layered networks. This algorithm in
effect applies an RLS optimization separately to the individual units of the
network, whereas the NDEKF algorithm, which includes only weight
interactions in a unit’s weight group, carries out a global filtering (estimation)
operation.

Various EKF algorithms have been successfully applied to the training of
both feedforward (MLP) [Shah and Palmieri, 1990] and recurrent [Singhal and
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Wu, 1989; Williams, 1992; Puskorius and Feldkamp, 1994] networks. GEKF is
computationally intensive, and the modifications (DEKF and MEKA) to the
standard algorithm have provided substantial reduction in the computations
required, resulting in faster algorithms that retain much of the power of GEKF.
These applications of EKF algorithms have been shown to provide convergence
in relatively few training iterations, offset partially by an increase in
computations over gradient-based algorithms.

VI. SIMULATIONS

A. ALGORITHM SPEED
Comparisons have been made among the speeds of training algorithms for

recurrent networks [Logar, Corwin, and Oldham, 1993; Williams and Zipser,
1995]. The focus of this work is on the effects of recurrence on network
performance and the efficacy of various training algorithms for architectures with
recurrence, and thus the analysis here has been limited to only five training
algorithms in a primary effort to find the common effects of recurrence, and
secondarily to compare the algorithms' performances on the applications
considered here (the ability of the algorithm to converge to a good solution was
analyzed in more detail than its pure computational complexity).

All of the algorithms obtained the gradient information from the identical

RTRL calculation, which has a computational complexity of O(n2), where n is the
number of weights. The optimization algorithms had complexities of O(n) for the

incremental and conjugate gradient descent algorithms; where ni is

the number of weights for a given unit, and g is the total number of units in the

network for the MEKA and NDEKF algorithms; and O(n2) for the GEKF
algorithm. Therefore, the overall training algorithm speed was dominated by the
common RTRL calculation.

The RTRL type of calculation for obtaining the gradient, , that

includes dependence on past values of the gradient, is required for internally
recurrent networks and for externally recurrent networks that use less than full
teacher forcing. If an externally recurrent network uses full teacher forcing, then
the current gradient does not depend on past values, because the output units had
their values set to the target values before each step, and these target values are
constants and have no dependence on the weights. This permits a straightforward
backpropogation of the error to obtain the gradient, with only partial derivatives
and no total derivatives used, which has a computational complexity of O(n). This
would have been applicable to all the externally recurrent networks using full
teacher forcing, resulting in increased training speed for all the algorithms, but
especially for the incremental and conjugate gradient-descent algorithms, which
would have had a total computational complexity of O(n). RLS algorithms’ speed

O ni
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would have then been dominated by the RLS complexity of for the

for the MEKA and NDEKF algorithms, and O(n2) for the GEKF algorithm.
The resulting algorithm computational complexities were measured for a

fixed number of iterations, and calculated in units of seconds/cycle, where each
cycle involved one pass through the M data points. These values were then
plotted versus the square of the number of weights, as shown in Figure 4, to

check the overall O(n2) dependence expected.

Figure 4. Training algorithm computation time (for internally recurrent networks) in
seconds per training cycle vs. the square of the number of network weights (using a 200
MHz Pentium CPU). Approximate slopes of linear trend lines are shown.

The approximately linear dependence on n2 is evident for all the algorithms,
and the slopes of the linear trend lines may be compared to give the relative
speeds of the training algorithms. Normalizing the speed of the slowest algorithm
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(GEKF) to 1, the relative speeds of the other algorithms are approximately 3.3 for
the MEKA and NDEKF algorithms, 6.0 for the conjugate gradient, and 7.5 for
the incremental gradient-descent algorithm. This gives approximate confirmation
to the speed-up expected for the MEKA and NDEKF algorithms over the GEKF

algorithm (e.g., for a network with 6 units, n = 42, n2 = 1764, and ,

the expected order of speed-up is 1764/294 = 6, which is relatively close to the
3.3 obtained experimentally). Additionally, both the incremental and conjugate
gradient algorithms are faster than the RLS algorithms, as expected, with the
conjugate gradient algorithm being somewhat slower than the incremental
gradient algorithm, due to the computational burden of performing the conjugate
direction calculation, minimum bracketing, and line minimization routines.

Algorithm computation times for externally recurrent networks are not
shown in Figure 4, due to the lack of validity of comparison with internally
recurrent networks. In fact, because of the use of the RTRL algorithm to obtain
gradient information instead of using standard backpropogation for the externally
recurrent networks with full teacher forcing, all the algorithms ran more slowly
on these networks than on the internally recurrent networks, due to the additional
computations for multiple layers and delays (standard backpropogation would
have enabled externally recurrent networks to train more quickly than internally
recurrent networks). So, while the externally recurrent networks could have been
faster, they were approximately twice as slow in experimental computation time
measurements.

B. CIRCLE RESULTS
To learn the circle trajectory, all algorithms used full teacher forcing, as it

generally provided the fastest and most robust learning. Partial teacher forcing
sometimes resulted in very fast convergence, but was not a robust technique;
learning often diverged as the algorithms became unstable.

The network weights for all the architectures and algorithms were obtained
from a uniform random distribution from -0.1 to +0.1.

The incremental gradient descent algorithm for the circle trajectory
employed learning rates for the feedforward weights and recurrent weights of
0.002. Larger learning rates decreased the number of cycles required for
convergence, but resulted in solutions with lower performance due to the
algorithm taking relatively large steps around the vicinity of the minimum. The
value used here provided a good trade-off between performance and convergence
speed. The figure-eight trajectory simulations used learning rates for the
feedforward weights of between 0.1 and 0.2 for the externally recurrent
architectures, and a feedforward weight learning rate of .01 and recurrent weight
learning rate of 0.2 for the internally recurrent architectures. The learning rates
for the figure-eight trajectory were larger than those for the circle trajectory
because of the large number of iterations needed to approach convergence; the
largest rates possible that permitted stable algorithm performance were used. It
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was found that for the internally recurrent architectures, a feedforward weight
learning rate that was smaller than the recurrent weight learning rate by at least a
factor of ten ensured algorithm stability.

The RLS algorithms (GEKF, NDEKF, MEKA) were “ tuned” for the
different algorithm/architecture combinations, though the parameters that were
varied were within the following typical ranges. The process noise matrix, Q, was

diagonal with elements typically set to 10-4. The forgetting factor, , was

typically set to the schedule of 0.999 - 0.9999, increasing by each
step.

Two sets of initial conditions were tested for the results presented here, the
first providing the output units with initial condition values on the trajectory, and
the second with values off the trajectory. Note that for externally recurrent
networks it is possible to obtain initial conditions that place the network exactly
on the desired trajectory, because the initial unit output values have no effect (the
network output is a function of only the input and the weights). However, for the
internally recurrent networks this exact placement is not possible, because the
initial unit output values do contribute to the network output, and these unit
values are not known. In these simulations, a “best” estimate for the internally
recurrent network initial unit output values was used, which was the actual unit
output values at the last or Mth step during training. Thus as the internally
recurrent network training error was reduced, the initial conditions of the hidden
unit outputs more closely matched those required to be on the target trajectory.

A typical simulation result is shown in Figure 5, which shows a network’s
output for 10 “ loops” (one loop is defined as taking M steps, where M is the
number of training points, 100 in these simulations) starting from the two
different initial conditions on and off the desired trajectory. The result shown is
for an internally recurrent network with 2R architecture, trained with the
conjugate gradient algorithm for 7 cycles.

The first step that the network takes from these initial conditions is indicated
on the plots by the small circle indicating the first trajectory point. The trajectory
with initial conditions off-trajectory provides some measure of a solution's basin
of attraction, and the degree to which the limit cycle trajectory is an attractor. The
trajectory shown in Figure 5 is a stable attractor, with the off-trajectory initial
condition resulting in a trajectory that spirals outward from the origin in a few
loops to converge to the limit cycle oscillation of the desired trajectory. Note that
all 10 loops are shown in both plots, indicating both the degree to which the
trajectory is stable, and the closeness to which it follows the desired trajectory
(the target trajectory is indicated by the dotted line).

A limit cycle will exhibit convergence from both sides of the trajectory, and
this characteristic is able to be seen in Figure 6. The results are for the same
network as in Figure 5, though with two different initial conditions, one inside
and one outside of the trajectory, obtained by setting the initial unit values to 0.07
and 0.27, respectively.
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Figure 5. Circle trajectory generated by 2R network trained with the conjugate gradient
algorithm for 7 cycles (performance measurement: 99.7).

Figure 6. Two convergence regions for the same 2R network as in Figure 5.

Figure 7 shows the resulting trajectories for the larger, network,
trained with the GEKF algorithm for 300 cycles. In general, the faster trajectory
convergence shown here, compared to that for the smaller, 2R network (shown in
Figure 5), was typical for the larger networks, possibly because the smaller
networks required the units to operate further in their nonlinear regions to achieve
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the nonlinear trajectories, and possibly due simply to the convergence dynamics
resulting from a larger number of units.

Figure 7. Circle trajectory generated by network trained with the GEKF
algorithm for 300 cycles (performance measurement: 100).

All 20 architecture/algorithm combinations learned the circle trajectory and
provided excellent performance for the 100 simulations, as shown in Table 1.
Each architecture/algorithm was trained 5 times with different initial weight
values to provide some measure of the learning performance repeatability, and
the initial weight values were identical for all algorithms and a given architecture.

A performance was counted as successful if it provided stable, limit cycle
oscillation for both on- and off-trajectory initial conditions (this stability was
determined by visual inspection). The table row labeled “Success” gives the
number of stable solutions out of 5 runs total. The row labeled “Ave
Performance” gives the average performance value of those solutions that were
stable. The row labeled “Ave Cycles” gives the average number of cycles
required during learning to achieve the given performance for the stable
solutions. The row labeled “Training Time” is an estimate of the total training
time, in minutes, for the algorithm to iterate through the “Ave Cycles” given,
calculated from the algorithms’ computation times given by the linear trend lines
in Figure 4.

As expected, the conjugate gradient, GEKF, NDEKF, and MEKA algorithms
in general converged to solutions in far fewer cycles than the incremental
gradient algorithm (on the order of 100 times fewer cycles for the internally
recurrent architecture, and approximately 5 times fewer cycles, on average, for
the externally recurrent architecture). The one notable exception was the
performance of the NDEKF algorithm on the architecture: this
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algorithm required a relatively large number (14400 on average) of cycles and
time to converge, possibly due to the effect of neglecting the coupling of weights
in the conditional error covariance matrix, P(n).

Training
Algorithm

Metric

Architecture

Single Layer Tap Delay Net

2R 4R 2x2(1) 4x2(1)

Incremental
Gradient
Descent

Success 5 5 5 5

Ave Performance 99.7 99.6 99.1 99.1

Ave Cycles 3000 3000 6400 4000

Training Time (min) 0.1 0.8 12.3 2.6

Conjugate
Gradient
Descent

Success 5 5 5 5

Ave Performance 99.7 99.5 99.8 99.9

Ave Cycles 7 11 1100 1440

Training Time (min) 0.0002 0.004 0.3 1.2

GEKF

Success 5 5 5 5

Ave Performance 99.4 99.6 100 100

Ave Cycles 19 31 680 720

Training Time (min) 0.003 0.1 1.0 3.5

NDEFK

Success 5 5 5 5

Ave Performance 99.4 99.4 97.4 98.6

Ave Cycles 17 34 144000 1200

Training Time (min) 0.001 0.02 6.2 1.7

MEKA

Success 5 5 5 5

Ave Performance 99.4 99.3 99.5 99.5

Ave Cycles 20 22 360 340

Training Time (min) 0.001 0.01 0.2 0.5

Table 1. Circle trajectory simulation results.



There was no performance improvement for the larger networks compared to
their smaller counterpart [4R vs. 2R and vs. ], indicating that
the smaller networks were adequate to learn the circle trajectory and were not
affecting network or algorithm performances (except for convergence dynamics,
as noted earlier).

The primary conclusion drawn from the above experimental analysis is that
the speed of convergence of the conjugate gradient, GEKF, NDEKF, and MEKA
algorithms for the internally recurrent architectures was much greater than for the
externally recurrent architectures. The internally recurrent networks converged in
at least 10 times fewer (and often 100 times fewer) cycles, and in at least 50 times
less (and often 200 times less) time.

It is also notable that for this trajectory, the very simple algorithm of
incremental gradient descent provided solutions with performances comparable
to those for the more complex algorithms, indicating that for certain trajectories,
incremental gradient descent is adequate. And though incremental gradient
descent required many more training cycles, it had the smallest cycle
computation time, resulting in total training times comparable to the other
algorithms.

C. FIGURE-EIGHT RESULTS
The initial weights, teacher forcing, and algorithm parameters were set to

values similar to those used for the circle trajectory. It was found that full teacher
forcing again provided the best learning performance.

The resulting figure-eight trajectories for the different successful (stable
attractor) solutions were dissimilar for the different simulations, unlike the circle
results, which were almost identical. The trajectories shown in Figures 8 and 9
show the results of solutions for the 4R architecture trained with GEKF for 2000
cycles, and the 8R architecture trained with GEKF for 500 cycles, respectively.
Both trajectories are stable attractors and the basins of attraction exhibit quite
different dynamics prior to convergence to the final trajectory. As for the circle
trajectory, it was found that, in general, the larger the network, the smoother the
convergence from the off-trajectory starting point to the final trajectory,
consistent with the results shown in Figures 8 and 9.

The results for the 150 simulations of the single layer architectures are given
in Table 2, and the results for the tap delay networks are given in Table 3. Again,
the numbers in the tables represent the results of 5 different runs.

The figure-eight was, in general, far more difficult to learn for all the
networks and training algorithms than the circle. This is most likely because the
trajectory crosses itself in output-unit (phase-plane) space, so that the network
must store not only the past state of the trajectory, but also information about
multiple previous states (e.g., storing the direction, or derivative of the
trajectory).
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Figure 8. Figure-eight trajectory generated by 4R network trained with the GEKF
algorithm for 2000 cycles (performance measurement: 100).

Figure 9. Figure-eight trajectory generated by 8R network trained with the GEKF
algorithm for 500 cycles (performance measurement: 99.9).

As with the circle trajectory, the conjugate gradient, GEKF, NDEKF, and
MEKA algorithms converged to solutions in far fewer cycles than the incremental
gradient algorithm (on the order of 15 times fewer cycles for the internally
recurrent architecture and approximately 150 times fewer cycles, on average, for
the externally recurrent architecture).

The incremental gradient descent and MEKA algorithms exhibited some
performance improvement for the larger internally recurrent networks compared
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to their smaller counterparts, as did the conjugate gradient algorithm for the
externally recurrent architecture. This does not, however, indicate that the smaller
networks were inadequate to learn the figure-eight trajectory, because the
excellent performances of the networks trained by the GEKF algorithm show that
all the networks contained ample representational capability.

Training
Algorithm

Metric

Single Layer

Architecture

4R 6R 8R

Incremental
Gradient
Descent

Success 1 1 2

Ave Performance 91.7 95.5 97.1

Ave Cycles 48000 14000 29000

Training Time (min) 12.8 16.5 100.2

Conjugate
Gradient
Descent

Success 0 0 0

Ave Performance - - -

Ave Cycles - - -

Training Time (min) - - -

GEKF

Success 3 3 3

Ave Performance 99.3 99.6 99.8

Ave Cycles 1470 900 770

Training Time (min) 2.94 7.9 20.0

NDEFK

Success 2 2 4

Ave Performance 98.1 98.6 98.6

Ave Cycles 2900 2050 475

Training Time (min) 1.74 5.4 3.7

MEKA

Success 1 2 4

Ave Performance 85.1 98.4 97.9

Ave Cycles 1200 2100 2050

Training Time (min) 0.72 5.6 15.9

Table 2. Figure-eight trajectory simulation results.



The primary conclusion drawn from the figure-eight trajectory simulations is
that 4 out of the 5 training algorithms were able to converge to good solutions for
the internally recurrent network, and only 2 out of the 5 were able to do so for the
externally recurrent architectures, indicating that for this limit cycle trajectory,
the internally recurrent architecture is the better choice.

Training
Algorithm

Metric

Tap Delay Net

Architecture

4x2(4) 6x2(4) 8x2(4)

Incremental
Gradient
Descent

Success 0 0 0

Ave Performance - - -

Ave Cycles - - -

Training Time (min) - - -

Conjugate
Gradient
Descent

Success 2 1 2

Ave Performance 95.3 97.6 99.4

Ave Cycles 4500 9000 10000

Training Time (min) 15.9 69.4 135.0

GEKF

Success 1 4 3

Ave Performance 98.6 99.6 99.2

Ave Cycles 800 730 600

Training Time (min) 16.9 33.8 48.6

NDEFK

Success 0 0 0

Ave Performance - - -

Ave Cycles - - -

Training Time (min) - - -

MEKA

Success 0 0 1

Ave Performance - - 89.5

Ave Cycles - - 450

Training Time (min) - - 10.9

Table 3. Figure-eight trajectory simulation results.



The internally recurrent architecture did, however, pose difficulty for the
conjugate gradient algorithm, which became quickly trapped in poor local
minima for all of the 15 simulations. This may indicate that internal recurrence
results in more local minima than external recurrence, and that the 4 incremental
algorithms are robust enough to escape these minima but the conjugate gradient
algorithm is not.

The other notable conclusion is that the GEKF learning algorithm was far
superior to the other 4 algorithms for this trajectory. The GEKF algorithm
reached good solutions 57% of the time (17 out of 30 simulations), and
converged to good solutions for all 6 of the architectures. None of the other
algorithms was able to reach good solutions for all the architectures or both types
of recurrence, as indicated by the blank entries in Tables 2 and 3. Of course, it is
possible that the other algorithms might have reached good solutions for these
architectures if additional simulations had been run. Additionally, the
performances of the solutions obtained with the GEKF algorithm were in all
simulations superior to those obtained by the other algorithms. This excellent
performance indicates that the capability of the algorithm more than made up for
its relatively high computational complexity, with the result that it is the preferred
algorithm for learning this figure-eight trajectory.

D. ALGORITHM ANALYSIS
Incremental gradient descent. This algorithm was relatively slow, as

expected, compared to the other, second-order algorithms. This was not a large
problem for networks learning the circle trajectory, as this algorithm found
minima that provided excellent performance results very similar to the other
algorithms. This was most likely due to the shape of the error cost function in
weight space, which appeared to contain very few, if any, local minima. This
shape of the error surface permitted all the algorithms to find minima with good
solutions (in fact, very often the different algorithms running with different initial
weight values converged to the same minimum, identified by the nearly identical
final weight vector).

When this algorithm was applied to the figure-eight trajectory, however, it
performed poorly. The algorithm converged very slowly, requiring tens of
thousands of training cycles to approach a minimum, which was often one that
provided poor performance. Gradient descent was so slow that it was impractical
for use with the figure-eight trajectory, compared to the superior convergence
properties of the second-order algorithms. (Gradient descent required almost 2
hours to reach a good (though poorer than the other 4 algorithms) solution for the
8R network, and almost 24 hours for the network; note that the

solutions for the network were not counted as stable, as the
performance metric never became consistent). An advantage of this algorithm is
that it was very robust (given small enough learning rates), requiring no
heuristics to keep the algorithm from diverging or to optimize performance.

8 2 4( )×
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Conjugate gradient descent. This algorithm converged in relatively few
iterations, compared to the incremental gradient-descent algorithm, as expected.
It performed very well on the circle trajectory, but less well on the figure-eight.
This algorithm, due to its inherent line minimization routine, was susceptible to
becoming trapped in local minima, which was evident for the internally recurrent
architecture learning the figure-eight trajectory. It performed better with the
externally recurrent architecture on the figure-eight, though its convergence rate
was inferior to those of the RLS algorithms. As was the case for the incremental
gradient-descent algorithm, this method was very robust, requiring no heuristic
adjustments to algorithm parameters to ensure stable convergence characteristics.

Recursive least squares. These algorithms also converged in far fewer
iterations than did the incremental gradient-descent algorithm. In addition, as a
group they performed better than the incremental and conjugate gradient-descent
methods. They did, however, require the appropriate setting of algorithm
parameters to optimize performance, which required additional “set-up” time not
necessary for the gradient-descent algorithms. It was necessary to set two primary
parameters, the process noise matrix Q and the forgetting factor , to values
appropriate for the application.

Values for Q in the range of 10-2 to 10-6 were best, and typically 10-4 was
used in the simulations. While the inclusion of the process noise matrix is not
included in the standard RLS algorithm derivation, it is a standard part of the
Kalman filter algorithm. Because of the similarity of these algorithms, the
process noise matrix was tested with the RLS algorithms, found to be very
beneficial in increasing the convergence rate, and was thus used in all the
simulations.

The use of forgetting factor , (a positive number less than unity called the
exponential forgetting factor [Åström and Wittenmark, 1989]), provides an
ability for the estimator to track variation in the input or, equivalently, to discount
old data by weighting it less. Values less than unity also had the effect of
increasing the rate of convergence quite substantially, most likely due to the fact
that the forgetting of old information when the actual trajectory was far from the
desired trajectory was beneficial. Initial values smaller than final values
provided even faster convergence, and the typical schedule was 0.999 - 0.9999,

increasing by 4.5x10-6 each step (this implied reaching the final value in 200
steps, or 2 training cycles, for the 100-point data sets used here). Forgetting factor
values less than unity did, however, cause the RLS algorithms to become unstable
during periods when the updates to the weights were small, as will be discussed
in the following section.

E. ALGORITHM STABILITY
The conjugate gradient-descent algorithm was the most stable of the five

tested here. It never diverged during training, and required no tuning of
parameters to ensure this stability. However, this stability sometimes came at the
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cost of the algorithm becoming trapped in local minima. The incremental
gradient descent algorithm was also very stable. The algorithm diverged only
when too large a learning rate was chosen. This was easily remedied by
decreasing the learning rate through trial-and-error to find the largest value that
was stable.

The RLS algorithms were not as stable as the other two algorithms just
discussed. There were two sources of instability: the process noise matrix Q and
the forgetting factor .

If Q was too large, the algorithm would not converge, in effect attempting to
estimate the noise rather than learning the trajectory. This problem was addressed
by the trial-and-error method to choose the largest element values for Q that
permitted smooth error reduction during training.

The forgetting factor was typically chosen, as previously indicated, to

vary over the range of 0.999 to 0.9999, incrementing by 4.5 x 10-6 each step. If
values much smaller than 0.999 were used for the initial value, the algorithm was
unstable during the period in which was small. If values much smaller than
0.9995 were used for the final value, the algorithm reduced error rapidly but
sometimes became unstable before reaching a minimum. A final value of 1.0 was
stable, but resulted in very slow reduction of error.

As indicated above, the use of exponential forgetting provides an ability for
the RLS estimator to track variation in the input and discount old data. When the
algorithm enters a region where the updates to the weights are very small, then
the inputs to the estimator are fairly constant, and there is little new information
provided by each step. P(n) increases exponentially, leading to what is termed
estimator windup [Åström and Wittenmark, 1989].

Exponential forgetting is thus sensitive to the degree to which the system is
persistently excited, or the amount of new information that is provided at each
step. Unfortunately in the problems considered here, where there is no external
input (excitation), the input will not be (sufficiently) persistently excited during
all phases of training, and methods to ensure sufficient excitation that are useful
on certain system identification problems, such as injecting extra perturbation
signals, are not applicable here, as perturbation would cause the system to learn a
response different from the desired limit cycle oscillation.

Other methods to avoid estimator windup are to keep P(n) bounded, to stop
weight updates when the estimator error is small, and to adjust the forgetting
factor automatically [Haykin, 1996] or by a schedule such as setting to 1.0
after a predetermined number of cycles or at a certain level of estimator error.
Methods for ensuring P(n) remains bounded, such as by keeping the trace of the
P(n) matrix constant at each iteration or selectively forgetting information only in
the direction generating new information, are given in [Haykin, 1996].

The problem of estimator windup was evident in all three RLS algorithms
after they had reached points at which the weight updates were very small, but
had a more deleterious effect on both the MEKA and NDEKF algorithms, as
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indicated in Tables 2 and 3 by their relatively poor performances on the figure-
eight trajectory for internally recurrent architectures and the lack of stable
solutions found for the externally recurrent architectures. These algorithms often
diverged before the error had been reduced to values small enough to result in
good performances. In this respect, these versions of the RLS algorithm were
more susceptible to estimator windup than the GEKF algorithm, which did
exhibit divergence, though after the algorithm had advanced sufficiently close to
minima providing good performance. It is unknown if these algorithms could
have efficiently reduced the error further, and if this would have resulted in
solutions with better performance, though the ability of the conjugate gradient
descent algorithm to do so for the externally recurrent networks suggests that this
is the case. It is thus likely that the MEKA and NDEKF algorithms could benefit
significantly from the use of the stabilizing heuristics mentioned above for
avoiding estimator windup, or from the use of different variations of the RLS
algorithm such as the square-root adaptive filter [Söderström and Stoica, 1989;
Haykin, 1996].

It should be noted that the instability caused by estimator windup is due to
the exponential forgetting employed in the RLS derivation. It is not a problem for
the slightly different EKF algorithms that are derived using Kalman filter
methods [Singhal and Wu, 1989; Puskorius and Feldkamp, 1994], and thus these
formulations may provide more stable operation than those derived here using
RLS methods. It is not known, however, how the benefits of the learning rate
heuristic used in Puskorius and Feldkamp [1994] for the GEKF and NDEKF
algorithms compare to those exhibited by the exponential forgetting in the RLS-
derived GEKF and NDEKF algorithms given here.

F. CONVERGENCE CRITERIA
The learning algorithms occasionally generated network weights that

provided good results prior to convergence, and poor results once convergence
was attained. These good solutions were not due to weights that constituted a
minimum in the error surface, and thus the algorithms passed through these
regions of weight space on the way to a minimum.

Training was stopped for the simulations in this work if convergence was
reached (for the conjugate gradient and RLS algorithms, this was fairly evident
by the fact that the reduction of training error at successive iterations became
negligible), or if the reduction in training error was small and the performance
value for successive iterations remained within a band, typically units of the
performance metric used here, given in Equation 3.

The good solutions obtained in the middle of training did not usually meet
these convergence criteria, and thus were not accepted as valid. This did not
greatly affect the number of good solutions found by the architecture/algorithm
combinations because algorithms tended to converge later to minima with
solutions of equal or higher performance. However, for some simulations,
especially for incremental gradient descent, convergence resulted in poor results,
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indicating that the algorithm was beginning to overfit the data and had passed the
point where the network generalizes well. In these instances, it would have been
possible to employ a form of early stopping [Hassoun, 1995] to stop training in a
region of weight space that provided good performance, though prior to
convergence. For example, the early stopping technique could have been used
during the simulation depicted in Figure 3, where the training had relatively short
periods where the performance was good, prior to and after convergence.

G. TRAJECTORY STABILITY AND CONVERGENCE
DYNAMICS

The basin of attraction that a trained network exhibits is one measure of the
stability of the network, or its robustness with respect to initial conditions. To
study this property, the networks were tested with starting points far from the
trajectory. As stated above, for the circle trajectory the initial condition values
were 0.0001 and for the figure-eight 0.01.

All 100 of the circle simulations resulted in a similar basin of attraction for
the initial condition off the trajectory, as shown in Figure 5. The trajectory
spiraled out from the origin, taking several “ loops” to converge to the desired
circle trajectory. Ten loops of network trajectory are shown in the plot, indicating
that the remaining loops were coincident, and therefore had converged to a stable
trajectory. Thus the trajectory was a stable attractor.

As seen in Tables 2 and 3, only 38 out of 150 (or 25%) of the simulations for
the figure-eight resulted in networks that produced stable attractors. Many of the
simulations did produce sustained oscillators (the on-trajectory initial conditions
resulted in a trajectory following the target trajectory), but not attractors (the off-
trajectory initial conditions resulted in a trajectory that failed to converge to the
desired trajectory within 10M steps). In some simulations this may have been due
to the trajectories being similar to the center, or vortex, trajectories generated by
two-dimensional linear systems with a purely imaginary conjugate pair of
eigenvalues, indicating that the network was not exploiting the nonlinearities of
the hidden units. The statistics were not kept for this subset of results, as the
interest was is generating stable attractor trajectories.

In some of the figure-eight simulations, when the algorithms were near
convergence to a minimum, the performance would sometimes switch between
excellent (values in the high 90's) and poor (values in the high 40's) as the off-
trajectory result changed from converging to the desired trajectory to not
converging (not an attractor), as shown in Figure 3. Because the on-trajectory
result was still good (the trajectory was stable) and the contribution of the off-
trajectory result was zero, the total performance measure was reduced by a factor
of two. This indicated that the off-trajectory performance was very sensitive to
the initial conditions. If only small changes in the weights could cause the
trajectory to switch between converging and not converging, it is most likely that
changes to the values of the off-trajectory initial conditions would also have a
dramatic effect on the trajectory convergence characteristics.



Note that in the simulations presented above, the neural nets were trained
only with data on the trajectory itself, and not with noisy data, or data from a
basin of attraction around the trajectory. Although not explicitly trained to learn
an attractor limit cycle, the simulation results show that the networks do, in fact,
produce such asymptotically stable attractors. This inherent stability was evident
for both the internally and externally recurrent networks and has been previously
reported [Williams and Zipser, 1989b; Pearlmutter, 1995; Tsung and Cottrell,
1995; Cohen, Saad, and Marom, 1997]. The basins of attraction for these types of
figures were studied in Tsung and Cottrell [1995] and Sundareshan and
Condarcure [1998], but in Tsung and Cottrell [1995] the training data were
chosen specifically to produce desired basins of attraction, and in Sundareshan
and Condarcure [1998] the desired trajectory data included the initial, transient
trajectory from the origin out to the final circle trajectory and thus was explicitly
trained.

Why recurrent neural nets, trained only with data on the trajectory, are able
to produce stable attractor limit cycles is not clear. Further, the use of full teacher
forcing in effect trains the network to step to a point close to the trajectory,
starting from a point on the trajectory, as discussed in Tsung and Cottrell [1995].
This is the opposite of what is required for a limit cycle, for which the network
needs to step to a point on the trajectory, starting from a point off the trajectory
(as is done when no teacher forcing is used). Thus the limit cycle properties
observed in these simulations are inherent characteristics of the resultant network
dynamics.

VII. CONCLUSIONS

Internally recurrent hidden layers did not increase network performance over
single-layer internally recurrent networks, and multiple feedforward hidden
layers did not improve the performance of feedforward, externally recurrent
networks, for the limit cycle trajectories considered in this work.

All the architecture/algorithm combinations were able to learn the circle
trajectory, with the internally recurrent architectures providing convergence in far
fewer cycles than the externally recurrent architectures, especially for the
conjugate gradient and RLS algorithms.

The figure-eight trajectory proved to be much more difficult to learn than the
circle, presumably due to the trajectory’s crossing itself. In this case, two
different points on the trajectory require the network to produce identical output
values. The internally recurrent architectures permitted convergence to good
solutions more often than did the externally recurrent architectures (28 vs. 14
good solutions out of 75 simulations each for the internally and externally
recurrent networks, respectively). The GEKF algorithm proved to be the superior
training algorithm for this trajectory, providing the most good solutions and the
solutions with the best performances. The GEKF algorithm found limit cycle
solutions for 17 of the 30 possible (compared to 8, 8, 5, and 4 for the NDEKF,
MEKA, conjugate gradient, and incremental gradient algorithms, respectively).



GEKF was able to repeatedly find good solutions for both the internally and
externally recurrent network architectures, an ability that was not achieved by
any of the other algorithms. It appears that the excellent performance of the
GEKF algorithm was due to its ability to converge to minima with very low
values of error, and it did so in relatively few training cycles. While initial
experimentation on nonlinear single input-single output system identification
shows agreement with the above findings, further analysis is needed to determine
if these results are applicable to problems of nonlinear dynamic system
modeling.

The incremental and conjugate gradient-descent algorithms are quite stable,
while the RLS algorithms suffer from instability due to estimator windup near
convergence, though this was less of a problem for the GEKF algorithm.

The networks were, in general, able to learn to generate limit cycle
trajectories, with basins of attraction in which trajectories converged to final,
steady-state trajectories. This convergence property was inherent in the resulting
network dynamics, and not explicitly part of the training method.

In retrospect, it would have been beneficial to separate the performances for
the two initial conditions tested, and thus have distinct metrics for the network’s
performance as a sustained oscillator and as an oscillator that was an attractor.
Also, testing trained networks with multiple off-trajectory initial conditions
(rather than only one) would have provided more information about the basin of
attraction for the trajectories. Cursory testing of the figure-eight trajectories with
multiple initial conditions indicates that these trajectories had complex attractor
characteristics, where some initial conditions resulted in convergence to limit
cycles, some converged to fixed points, and some produced chaotic trajectories
that did not appear to either converge or diverge.

A possibility for future work would be to continue the initial analysis on
identification of nonlinear systems, and extend this by studying the performances
of the recurrent network architectures and training algorithms for identification of
real physical systems with experimentally collected data sets. This would
indicate if the findings here were applicable to a broader class of systems, and
facilitate analysis of the capabilities of the networks and learning algorithms to
model systems when presented with noisy, real data.
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