
Chapter 9

RECURRENT AUTOASSOCIATIVE NETWORKS:
DEVELOPING DISTRIBUTED

REPRESENTATIONS OF HIERARCHICALLY
STRUCTURED SEQUENCES BY

AUTOASSOCIATION

Ivelin Stoianov

Department Alfa-Informatica
University of Groningen

The Netherlands

I. INTRODUCTION

 In spite of the growing research on connectionist Natural Language
Processing (NLP), there are still a number of challenges to be solved, for
example, the development of proper linguistic representations. Natural language
is a dynamic system with underlying hierarchical structure and sequential
external appearance. Therefore, NLP systems need an adequate hierarchical
system of linguistic representations. What we roughly distinguish as letters,
words, sentences, etc., needs to be encoded in a proper and systematic manner,
permitting direct, “holistic” operations over the resultant abstract representations
rather than over external sequential forms [Chalmers, 1990, Blank, 1992,
Hammerton, 1998]. Those representations should be static, unique
characterizations of the original objects, which is necessary for reproducing
them back into their sequential form. They should allow holistic transformations
and associations to representations from other modalities – visual, effectual, etc.
Natural language is not the only structured process where static representations
at different levels are necessary for modeling: consider composite actions,
dynamic visual processes and so on. We find other examples also outside of
cognitive modeling, such as modeling economic processes and physical
phenomena.
 A widely used practice in connectionist natural language modeling is
localistic and handcrafted feature based encoding [Seidenberg, 1989, Elman
1990, Plaut, 1996, Henderson, 1998], which restricts the capacity of the
processing system. It would be preferable that those representations evolve in
the course of experiencing the language in its external sequential form, which is
in accordance with our capacity to learn any language without any prior
knowledge of it. A first attempt to build such representations was suggested by
Pollack, [1990]. He extended the static Multilayered Perceptron [Rumelhart,

1986] to the Recursive Auto Associative Memory (RAAM) model, which
develops compact distributed representations of the static input patterns through
an autoassociation. RAAM was further extended to a Sequential RAAM
(SRAAM) for sequential processing. Different implementations of the latter
model had variable success even when applied to trivial data [Chalmers, 1990,
Blank, 1992, Blair, 1997, Kwasny, 1995, Hammerton, 1998].
 The development of global-memory recurrent neural networks, such as the
Jordan Recurrent Networks [Jordan, 1986] and the Simple Recurrent Networks
(SRN) by Elman [Elman, 1990] stimulated the development of models that
gradually build representations of their sequential input in this global memory.
The Sentence Gestalt Model [St. John, 1990] gradually encodes the input words
into a gestalt and questions it further for roles with another static network.
Similar architecture under the name “Movie Description Network” was
presented by Cottrell, Bartell, and Haupt [Cottrell, 1990] which was trained to
gather representations of the sequential visual input (a movie) and describe it
with some simple language. A more recent implementation of SRAAM by
Kwasny and Kalman [Kwasny, 1995] employs SRNs in order to build
representations of the sequential input.
 In this chapter, I propose a novel connectionist architecture designed to build
and process a hierarchical system of static distributed representations of
complex sequential data. It follows upon the idea of building complex static
representations of the input sequence, but has been extended with the ability to
reproduce these static representations in their original form, by building unique
representations for every input sequence. The model consists of sequential
autoassociative modules – Recurrent Autoassociative Networks (RANs). Each
of these modules learns to reproduce input sequences and, as a side effect,
develops static distributed representations of the sequences. If requested, these
modules unpack static representations into their original sequential form. The
complete architecture for processing sequentially represented hierarchical input
data consists of a cascade of RANs. The input tokens of a RAN module from
any but the lowest level in this cascade scheme are the static representations that
the RAN module from the lower level has produced. The input data of the
lowest level RAN module are percepts from the external world. The output of a
module from the lowest level can be associated with an effector. Then, given a
static representation set to the RAN hidden layer, this effector would receive
commands sequentially during the unpacking process.
 RAN is a recurrent neural network which conforms to the dynamics of natural
languages. Also, RANs produce representations of sequences and interpret them
by unpacking back to their sequential form. The more extended architecture – a
cascade of RANs – resembles the hierarchy in natural languages. Furthermore,
given representative training environment, this architecture has the capacity to
develop the distributed representations in a systematic way. The question
whether connectionist models can develop systematic representations has been
discussed ever since the challenge put by Fodor and Pylyshin [Fodor, 1988] that
only classical symbolic systems can guarantee systematicity (see Aydede [1997]
for review). Connectionist systems claimed to meet this challenge are the

RAAM and SRAAMs, and the Smolensky’s tensor products [Smolensky, 1990]
among others. Later in this chapter I will argue that RANs provide an account of
systematicity, too. Therefore, I believe that the RAN and the RAN cascade can
participate in a more global cognitive model, where the distributed
representations they produce are extensively transformed and associated.
 This chapter continues with a discussion of the hierarchy in dynamic data in
the next section. A review of connectionist sequential processing is given, after
which the RAN model is presented in detail in section four. In the same section
a small RAN example is presented for developing representations of syllables.
The cascade model is given in section five, where a two-level representation of
words is presented too. Next, I discuss some cognitive aspects related to RAN
and how this architecture might provide some answers for cognitive modeling.
After a discussion of RAN capacities and the representations it develops in
section seven, the chapter will finish with a conclusion.

II. SEQUENCES, HIERARCHY, AND
REPRESENTATIONS

 Static objects and dynamic processes are mutually interconnected. On one
hand, dynamic processes are ultimately composed of sequences of static objects
but, on another hand, the same dynamic processes are generated by single
objects and might be represented by these objects. This is more explicit in
discrete dynamic objects, such as sequences composed of discrete data. The
sequences are entities by themselves and consist of strings of tokens, but these
sequences might build even more complex sequences. Therefore, sequential data
might have some underlying structure more complex than linear: that is, there
might be some hierarchy within a long sequence composed of basic tokens. For
example, in natural languages, there are basic tokens – phonemes or letters;
next, there are words consisting of sequences of letters or phonemes, sentences
consisting of sequences of words, and so on (1). That is, in natural language,
dynamic objects are part of other, more complex dynamic objects. Hierarchical
objects naturally evolved during evolution are better suited to represent, process,
and transmit information, than linear objects. Another advantage of this
hierarchy is the redundancy among the linguistic objects, which makes the
transmission of the information content in this sequence more reliable.

 ((J o h n) (l o v e s) (M a - r y)) (1)

 Sequential data that have such composite structure might have very long
external representations, that is, representations consisting of rows of lowest
level tokens. For example, in natural languages average sentences have some 50
characters and the current chapter has more than 15,000 characters. This data is
difficult to represent and process in this external form. It has structure and I
believe we organize and remember the language we experience in accordance
with this structure. In the natural languages, for example, there are mechanisms
for referring to some substructures – e.g., definite markers and pronouns. When

it comes to processing those structures as single entities, we prefer to use
internal representations of those structures rather than their external forms.
Definite noun phrases and pronouns are just the external expressions of those
internal representations and we use them very often. Single internal
representations are much more economical to use when associating linguistic
expressions to visual objects, actions, etc. Those associations are made between
the internal representations of those complex objects rather than between their
external representations. Therefore, if we want to model a cognitive system
dealing with such a variety of data, it should properly organize a system of such
representations.
 Similar systems of representations naturally occur in symbolic approaches
when modeling cognition: the external terminal tokens are organized by a
system of rules with the help of internal non-terminal nodes, which in turn are
similar to the internal static representations discussed. People still argue that
because of this organization of the symbolic approach and its unlimited
representational capacity, cognitive modeling should be based on the classical
“language of thoughts” [Fodor, 1988], meaning the use of syntactically
structured representations and rules defined over those representations.
Connectionists object to this approach, mainly because of the so-called symbol
grounding problem – the problem of explaining the relations between
representations (symbols) and objects in the environment where a cognitive
agent exists [Searle, 1984, Dorffner, 1991]. Connectionist architectures are
particularly good at associating low level data – percepts or effectors – to higher
level processing systems. Another problem concerning the symbolic approach is
related to the "hardness" of its rule-based logical computations [Smolensky,
1991]. Models should accommodate the "softness" of cognition, as
connectionism does, by processing data in a more fuzzy, stochastic manner.
 Nevertheless, connectionism is still looking for an answer to the question of
how to organize the information coming from the external sensors. Some of the
available connectionist solutions are still not satisfactory. Although the
implementation of the sequential RAAM proposed by Kwasny and Kalman
[Kwasny, 1995] was promised to provide a better solution than the standard
sequential RAAM, Hammerton [Hammerton, 1998] found that in practice this
model did not learn even trivial data well. Therefore, the door is still open for
other more optimal solutions and, in section four of this chapter, I propose
another model: a cascade of Recurrent Autoassociation Neural Network to build
a system of such representations.
 In the next section I will present some details about a few connectionist
architectures for sequence processing, but before that, I will outline more
explicitly some features that connectionist systems and distributed
representations must meet.
 First, these representations should develop emergently, in the course of
experiencing the external training data. Different levels of representations
should develop consequently, one after another, possibly refining the
representations from the lower levels. The lowest level of representations should
be perceptual in case of dealing with sensors or effectual when producing

actions. This gradual representation development, together with latter
associations to representations from other modalities, solves the symbol
grounding problem. Multi-modal associations should develop in simultaneously
processing different modalities, for example, linguistic and visual.
 Next, in order to meet the cognitive modeling requirements [Fodor, 1988],
these representations should have a kind of structure allowing a combinatorial
syntax, not necessarily explicit as in the classical symbolic systems, but
understandable for other connectionist modules. This requirement is necessary
for emergence of systematicity among those representations and for holistic
computations [Hammerton, 1998, Smolensky, 1991]. The latter are structural
operators acting upon the whole complex static representations, rather than on
the token parts of the structure (sequence). Systematicity is the key to higher-
order cognitive processes.
 A failure to accommodate these features, when modeling language, results in
models with limited capacities and no lasting implications, which is typical for
many of the experiments reported that feature, for example, static language
processing and hand-coded data encoding. Neither of those two popular
approaches is in accordance with the spirit of natural language. We acquire
language sequentially, hearing sounds and building or recognizing gradually a
number of objects or temporal structures, such as, words, phrases and sentences.
Similarly, when thinking, we produce and articulate language sequentially
(possibly silently) by translating those structures back into temporal events,
finishing this process by executing motor commands. The number of those
structures is enormous and a designer's hardwired encoding does not seem
plausible at all. Also, the number of existing languages and our competence to
learn any of them implies that those objects should develop constantly during
the communication process, from the early childhood.

III. NEURAL NETWORKS AND SEQUENTIAL
PROCESSING

A. ARCHITECTURES
 For more that a decade, neural network research has been considered
important not only because it makes efforts toward explaining our intelligence,
but also because it provides effective working models for solving a wide range
of practical problems. Numerous researchers (e.g., [Rumelhart, 1986, Grossberg,
1982, Kohonen, 1984, and Hopfield, 1982]) established the theoretical
background in this field. The models they have developed – the Multilayer
Perceptron trained with supervised Backpropagation learning algorithm, the
ART & ART-Map, the self-organizing Kohonen Maps and the Hopfield
Networks, correspondingly – were theoretically [Hornik, 1989] and
experimentally [Lawrence, 1995] proven to be capable of solving many static
tasks. Although the response of some of these models to the input pattern
depends on their internal dynamics (Hopfield and Grossberg Neural Network
models), they are not endowed with the capacity to process dynamic or
sequential patterns. Hopfield NNs are designed to search iteratively for one of

the encoded attractors. ART models develop localistically represented
categories, which restricts their capacity when processing large variety of
sequences, even with some special encoding schemes.
 Problems such as language processing and robot control, which are essentially
dynamic, pushed the connectionist investigations toward searching for NN
models capable of handling such dynamic data. The first NN models were still
static, encoding limited dynamics by means of a window, shifting over
sequential data. The NETtalk model [Sejnowski, 1987] was trained to produce
phonetic representations of words, where the context required to map the current
letter was encoded within a shifting window of size seven – three letters on the
left and three letters on the right side of the letter to be pronounced. This is an
example of the so-called Finite Input Response filter, where the system response
to a given input is limited to a predefined number of steps.

Figure 1. Simple Recurrent Network that "reads" words, that is, maps orthographic to phonologic
lexical representations.

 The first real recurrent models were extensions of the Multilayer Perceptron
with recurrent connections. They implement another type of dynamics – Infinite
Input Response – where the input at a certain time influences the system
response until the dynamics are externally reset. Several recurrent versions of
the MLP were developed. In one of them [Jordan, 1986], the network state at
any point at a time is a function of the input at the current time step, plus the
state of the output units at the previous step. In another recurrent model
proposed by Elman [Elman, 1990] – Simple Recurrent Networks (SRNs) – the
network's current state depends on the current input and its own internal state,
which is represented by the activation of the hidden units in the previous
moment – see Fig.1. This internal state is considered as a context that provides
information for the past. The SRNs were successfully employed for many
linguistic and other tasks where the objects have sequential nature [Reilly, 1995,
Wilson, 1996, Cairns, 1997, Stoianov, 1998, Stoianov, 1999]. Simple Recurrent
Networks were initially trained by Elman with the standard backpropagation
(BP) learning algorithm, in which errors are computed and weights are updated
at each time step. While more biologically motivated because of the local-in-
time weight adjustments, the BP is not as effective as the backpropagation

Output Layer: 45

Input Layer: 27 Context: 200

... # | # | # | n | ε | t | s | # | …

... N | E | T | S | # | # | # | # | …

Hidden:200

through time (BPTT) learning algorithm, in which error signal is propagated
back through time and temporal dependencies are learned better. A detailed
technical description of the SRNs and the BPTT algorithm is presented in
section four.
 The static self-organizing Kohonen Map neural network was extended with
recurrent connections too, which made the network responses dependent on both
the current input and the last neural map activations. Models following this idea
are the Temporal Kohonen Map (TKM) by Chappell and Taylor [Chappell,
1993] and the Self-Organizing Feature Map for Sequences (SARDNET) by
James and Miikkulainen [James, 1995], among others. There are still other
connectionist architectures able to process dynamic data, usually by inducing
dynamics in existing static models with recurrent connections among neurons
(global memory) or implementing dynamics in neurons (local memory). The
latter types of architectures vary with regard to the place of the dynamics – in
the weights, in the activation function, or both [Lawrence, 1995, Tsoi, 1994].
 A common restriction on most of the recurrent models is that the input data
they process has to be linear in the temporal dimension. These networks are able
to recognize and classify the temporal sequences they have been trained on
(SRNs and Jordan Networks) or they have clustered during the self-organization
process (TKM and SARDNET), but they can not extract more complex temporal
features or substructures. In addition, as the length of the sequences becomes
greater, the performance worsens. This problem has been recognized by a
number of authors. Bengio, Simard, and Frasconi [Bengio, 1994] showed that
earning long-distance dependencies is difficult even for very simple tasks (long
strings of a few basic symbols). Miikkulainen and Dyer [Miikkulainen, 1991]
emphasized that the required network size, the number of training examples, and
the training time become intractable as the sequence temporal complexity
grows.

B. REPRESENTING NATURAL LANGUAGE
 As I discussed earlier in the previous section, an important moment when
dealing with sequences is the ability to develop a hierarchical structure of
representations of the processed sequences. This question is especially apparent
in natural language modeling. In earlier connectionist models, the lexemes were
represented in a static manner with some artificial and not always effective
encoding schemes (e.g., in Seidenberg [1989] and Plaut [1996]), and sentences
consisted of some artificial and very limited in number words [Elman, 1990,
Miikkulainen, 1991, Tabor, 1997]. When modeling some other problems, for
example learning lexical phonotactics [Stoianov, 1998, Stoianov, 1999] or
learning the mapping from orthographic to phonetic representations for certain
language [Stoianov, 1999], one does not really need static representations of
words, but in other cases, such as holistic computations or static associations,
this is obligatory. To my knowledge, there are no approaches that model
people’s full capacity to deal with structured dynamic data using

connectionism.1 People associate the sounds they hear with visual patterns or
actions. Similarly, they associate actions with words and sentences. All of these
objects are realized as sequences of small parts, spanning time. In order to treat
them as single entities, we shall enclose them and represent them statically. This
naturally leads to a search for methods packing sequences into static
representations and unfolding them back into their sequential form.
 High-level connectionist language modeling has focused on small illustrative
problems: as the learning is restricted to simple grammars and a very limited
number of words [Elman, 1990, Tabor, 1997] or word TAGs [Henderson, 1998].
I attribute this not to the connectionist models’ inability to learn complex
dependencies, but rather to the absence of adequate concepts of how to develop
high-level distributed representations. Thus far, representations have been
designed mostly by hand, either feature based or even simpler – localistically.
This works well at the bottom stages of language processing, where a very
limited number of characters and phonemes constitute words, but not at higher
linguistic levels, where large number of words, phrases, sentences build more
complex structures. The variety at those levels is enormous. How can
representations be developed for such objects? Hand-crafting here simply does
not work. Some cognitive scientists suggest “tensor products” [Smolensky,
1990], which expand with the increase of the data complexity. Others suggest
syntactic structures to be represented both in time and space (Temporal
Synchrony Variable Binding [Henderson, 1998], but these solutions do not
produce fixed-sized static representations for input objects of variable
complexity. Therefore, others support the more plausible idea of static, fixed-
size, emergently developed connectionist “symbols.” But how can such
representations be developed?
 A significant attempt toward a more systematic way of representing structures
and sequences was the development of the Recursive Auto-Associative Memory
(RAAM) by Jordan Pollack [Pollack, 1990]. This architecture is another simple
extension of MLP. The RAAMs auto-associate the input data, which is a
concatenation of two patterns, and use the activations of the hidden layer
neurons to represent this concatenation (Fig. 2a). This is equivalent to the
learning of a simple symbolic rule. When applied recursively, that is, when
using the developed representations as an input for another compression, RAAM
can learn a grammar and develop representations for the non-terminal symbols
in this grammar. This makes RAAM a connectionist implementation of a
symbolic processor. However, theoretical problems arise from connectionist
point of view, due to the need for an external symbolic mechanism to store
representations. Also, the training process is immensely difficult due to the
recursive reuse of the ever changing representations in the course of the training
[Kwasny, 1995].
 RAAMs were theoretically extended to model a stack, which made the model
capable of learning and representing sequences – Sequential RAAM (SRAAM).
However, this model needs an external stack during the training, which is a step

1 See the following discussion on the (S)RAAM connectionist models.

back from connectionism, as commented earlier. It is difficult for SRAAM to
learn even trivial structures and sequences, which makes it an impractical
model. Also, RAAM produces representations at every time step, to be reused as
inputs, while dynamic objects with uniform structure need single static
representations. In that respect, producing single representations of a whole
object is more economical – representations at certain level should be produced
only if there is a necessity of using them. In natural language, producing static
representations of items such as syllables, words and sentences is more useful
than producing representations of arbitrary combinations of letters, words, etc.
Syllables are involved in morphological transformations. Words are associated
with visual patterns and actions; sentences have more concrete semantic
meanings. We know that those linguistic objects are distinguished because they
have certain functions, and we make use of them. On the contrary, producing
representations of arbitrary combination of mixed items is not so useful.

 (a) (b)

Figure 2. (a) RAAM: left and right input tokens are autoassociated, which results in a single
compact representation of the input tokens at the hidden layer. (b) SRAAM: based on RAAM and
SRN. (I) Compression: tokens apply one at a time to the input and they are autoassociated, together
with the previous state of the context. This results in ever more compact representation of the input
sequence at the hidden layer. (II) Decompression: a compact representation applies to the hidden
layer and produces the last token from the encoded sequence and the previous state of the stack,
which in turn is applied again to the hidden layer.

 Another implementation of the sequential RAAM was presented by Kwasny
and Kalman [Kwasny, 1995]. Their SRAAM combines the architecture of the
Simple Recurrent Networks and the RAAM idea for autoassociation (Fig. 2b).
The stack that the RAAM requires during the learning is encoded in the
contextual memory of the SRN. This makes the training faster and easier.
Further, Kwasny and Kalman suggested a variation of the mean square error
function that boosts small differences between the targeted and resulted neuron
activations. When combined with a modified conjugate gradient training
algorithm, this reportedly improved the learning. And still another important
contribution in this work was a method for representing recursive structures – by
means of symbolic transformation of any tree structure into a binary tree, which
can easily be transformed to a sequence. Those two operations are reversible,

token L token R

token L token R

[tokenL-tokenR]

token t stack t-1

token t stack t-1

[stack t]

I

II

which allows reconstructing the original structures from their sequential
representations.
 Exploring holistic computations, Hammerton [Hammerton, 1998] attempted
to recreate the Chalmers [Chalmers, 1990] experiments using the Kwasny and
Kalman SRAAMs, which was promised to learn faster and more reliably. For
this purpose, he used the corpus from Chalmers, [1990] – a small corpus
containing 250 sequences built out of 13 distinct items. Standard
backpropagation learning algorithm and two variations of the Kwasny and
Kalman training algorithm were utilized. Hammerton reported that, with the best
learning algorithm (the noted earlier modified error function and the conjugate
gradient training), the network encoded and decoded up to 85% of the 130
training and 87.5% of the remaining 120 unseen testing sequences (Hammerton,
p. 43), which departs from the reported perfect learning by Kwasny and Kalman
(with SRAAM on a more complex task) and Chalmers (with RAAM on the
same task). Therefore, Hammerton concluded that “the SRAAM is not as
effective a vehicle for holistic symbol processing as it initially appeared.”
 Also, there are two other problems when those models are used to develop
sequential representations. First, as I said earlier, they produce static
representations at every time step, which is more useful for representing
recursive structures than sequential data. Next, due to the stack-based memory
organization, the input sequences are reproduced inversely. Therefore, one
would need another external mechanism to reverse those sequences. The
solution I propose in the next section is based on an autoassociation and SRN,
too, but it implements a queue rather than a stack mechanism, which leads to
reproducing the sequences in the right order.
 The first attempt to employ recurrent architectures for producing a 'gestalt' or
a single static representation of a sequence of words (statically represented) was
made by St. John and McClelland [St. John, 1990] – the Story Gestalt Model.
This model comprises two networks – a Jordan Recurrent Network which
gradually processes the input sentence and uses the activations of the output
layer to represent the sequence presented as input thus far. This compact
representation was called gestalt. The second NN is a static MLP, trained to
extract some information of interest for a sequence represented with its gestalt as
input to the MLP (Fig. 3). Another similar model, the Movie Description
Network by Cottrell, Bartell, and Haupt [Cottrell, 1990] uses the Simple
Recurrent Networks to develop representations of simple movies presented as
input to the SRN. A second SRN produces a verbal description of the input
movie. These are specific, rather than universal, models; they produce
representations which are not necessarily unique and can not be involved in a
hierarchical system of representations of composite data.
 The capacity of SRN to process sequential data was exploited in another
approach, aimed at obtaining static representations of syllables [Gasser, 1992].
In this model, one recurrent network was trained on a sequential mapping – an
input train of phones to an output train of patterns, which are concatenations of

Figure 3. Story Gestalt Model by St. John. In this architecture, a Jordan recurrent network (1)
gradually produces representations of the input sequence. Next, a MLP (2) extracts from these
representations some of the constituents of the sentence.

the same phones and a static lexical representation of the word the phones
belong to. The recurrent layer activations at the end of each syllable were
recorded and used by a second network that was trained to unpack these
representations to their original sequential form. Having originally the task of
word recognition, this scheme requires that both phones and lexical
representations be offered during training. Static syllable representations are
resulted as a side effect. This approach takes a direction which is opposite to the
gradual building of language representations. Instead of building word
representation, it does the opposite – it produces syllable representations in the
course of word recognition.
 The approach presented here takes another direction, consistent with the
principle of gradual language evolution and learning, by processing and
evolving language items of increasing complexity. Another problem with the
solution presented by Gasser is that because the packing and unpacking
processes are split, this method requires the training sequences during both
learning tasks, which is less plausible and increases the learning time. The
sequential autoassociative task in my approach requires only a short-term
memory to keep the sequence to be presented for a second time at the output
layer and the system only has to perceive the input the environment provides
throughout the learning (which may last indefinitely: we can keep the learning
going non-stop).

sentence gestalt

input word context

hidden layer
probe

hidden layer

role/filler

1

2

IV. RECURRENT AUTOASSOCIATIVE NETWORKS

 In this section I will present an architecture designed to develop and make use
of static, implicitly structured, interpretable representations of sequences. The
proposed model is an extension of the Simple Recurrent Networks [Elman,
1990]. Recall that SRN is a recurrent neural network architecture based on the
feedforward Multi Layered Perceptron with a global context memory storing the
recent activation of the SRN hidden layer,2 which is fed back as an additional
input to the hidden layer itself (Fig. 1). The context layer has the capacity to
encode all the information for the input provided to the network, since the
beginning of the sequence. Hence, if we reset the context layer and apply a
sequence, at every moment the hidden layer and the context layer (after a short
delay) will contain static distributed information for this sequence, which as we
will see later is not necessarily a representation of the input sequence, but rather
depends on the learning task.
 There are different possibilities to obtain static representations of the input
sequence. One of them is just to use the context layer activation after the whole
sequence has been processed in an item prediction task – similarly to the gestalt
models by St. John and McClelland [St. John, 1990] and Cottrell, Bartell, and
Haupt [Cottrell, 1990]. The networks there were trained to predict the next input
token, which forces the networks to learn information specific to this particular
task, but is insufficient for developing complete representations of the input
sequences. We need an organization or a learning task that guarantees that the
distributed representations developed by the network (1) contain all information
about the sequence, (2) are unique for each sequence, and (3) contain enough
information to reproduce the sequence, which is a consequence of (1) and (2).
 Representations satisfying the above requirements evolve naturally, if we
train the network on an autoassociation task, that is, to reproduce the input
sequence. But then, there is another problem – the timing, when to present the
input and the output patterns. One can try to reproduce the current input pattern
immediately, but this will not produce any useful hidden layer representations –
there will be no need of a context for this task. A delay of one step, or two, or
some other fixed number of steps would train the network to develop
information specific for the prediction task, but the representations would still
not necessarily satisfy the conditions 1 – 3. In order to produce such
representations, the network has to be trained on an autoassociative task in
which the input sequence starts to be reproduced after the whole input sequence
has been represented to the input, followed by a unique pattern, a trigger,
indicating the end of the sequence. This way, if the training set contains
sequences, which in turn contain another sequence in the training corpus as an
initial sub-sequence, then the network will still produce distinct representations
for both sequences. The static representation of the sequence will be just the

2 The term “layer activation” denotes a numerical vector with the activations of
all neurons in that layer.

hidden layer activations at the moment when the trigger has been applied and
processed by the network (Fig. 4).

(a)

(b)

Figure 4. Recurrent Autoassociative Network: (a) architecture and (b) functional temporal unfolding.
Operations: (I) input sequence packing (time steps 0–3), (II) obtaining or setting a static
representation (time step 3), and (III) unpacking the static representation to its sequential form (time
steps 3-6).

 There are some other details to be specified, namely the input pattern after the
trigger has been applied to the input layer, the target output pattern before that
and the target output pattern after the sequence has been reproduced. The target
output pattern after the reproduction of the whole input sequence is another
special pattern, labeled end-of-sequence, which will signal that the whole
sequence has been produced. The input patterns after the trigger might be either
the same trigger, repeatedly provided until the network produces the end-of-
sequence pattern, or, what I found more helpful to the network in learning this
difficult task, the last ouput pattern provided to the inner larger. The latter
approach provides guiding information about how far the network has

N E T # N E T

* * * N E T #

 0 1 2 3 4 5 6 … time
(I) pack (III) unpack

Output
layer

Hidden
layer

Input
layer

(II) Static
representation
of the input
sequence

RAN

Output Layer

Hidden Layer

Input Layer Context

… sequential association …
produced token by token

… sequential input …

I

II

III

Distributed
static

representations

progressed in reproducing the sequences, and experiments have demonstrated
that, indeed, it is easier for the network to learn the task with this approach.
 With regard to the output target patterns at the time when the sequence is still
being provided to the input, the learning algorithm used – backpropagation
through time [Haykin, 1994] – does not necessarily need target patterns at the
earlier moments, provided that an error signal is being propagated back through
time. Indeed, the sequential autoassociative task provides such an error, which
originates in the second phase of the autoassociation (Fig. 4, step III).
 Another possibility is to train the network at the same time on a prediction
task. First the network produces its anticipations about the coming patterns.
Next, it reproduces the whole sequence using no external input, but only what
the network has encoded at the context layer, perhaps reusing the produced
output pattern as input. The latter approach is more plausible considering what
each of us has observed when listening to a speech in a noisy environment, that
we use anticipations in interpreting that speech. In such a noisy environment,
having received some initial context, the network can produce the most probable
sequence for this left context and next to produce the static representation for
this sequence by presenting the triggering pattern. Both approaches were tested,
but in the latter case the performance was worse, which I attribute to the higher
computational complexity of this joint task. The network in the second approach
has to learn two tasks, which makes the learning harder. When using the first
approach, the network learns the autoassociative task faster and with fewer
errors. The first approach satisfies the above outlined requirements, concerning
the representations produced, and therefore it was used in the experiments
reported on here.
 In summary, by training a recurrent neural network on an autoassociation task
as described above with a training corpus containing a set of sequences, the
network learns to produce static distributed representations of these sequences.
The hidden layer activations, at the moment the triggering pattern is applied to
the input and processed by the network, are used for this purpose. The static
representations for each input sequence are unique due to the specific setting of
the autoassociative task. After successful training, a RAN network has two
functions: firstly, to generate the static representation of a given input sequence
(Fig. 4: steps I and II) and secondly, to reproduce the original sequential form
of a static representation, when the hidden layer is set to the static
representations (Fig. 4: steps II, III).

A. TRAINING RAN WITH THE BACKPROPOGATION
 THROUGH TIME LEARNING ALGORITHM
 The RAN (Fig. 4) and the SRN (Fig. 1) models have the same architecture
and share similar feedforward processing steps and learning algorithms.
However, when SRNs are trained on prediction task they can also be trained
with the standard error backpropagation algorithm, while RANs can only be
trained with backpropagation through time learning algorithm (Haykin 1994),
because in the first feedforward processing phase (Fig. 4, phase I), there is no
error signal originating at the output layer and backpropagated through the

network, but only error signal computed in the second phase (Fig.4, phase III)
and backpropagated through time. With regard to this, any other learning
algorithm that backpropagates error signal through time can be used, too. What
is important, when using BPTT to train RANs, is to set properly the sequence of
input-output training data, according to the scheme outlined earlier in this
section. The BPTT learning algorithm is generally known to the potential
readership, but for completeness, it will be described in this subsection.
 SRNs have two working regimens – a utilization of a trained network and
network training. The first one is simply applying a forward pass, where the
current input signal is propagated forward throughout the network and the
current context layer activation is used. After each forward step, the hidden layer
activation is copied to the context layer, to be used later. The network utilization
is the same as the forward step in the BPTT, which in turn is described in the
next section. The BPTT learning algorithm itself is more complicated. It
includes: firstly, a forward pass (2-5) for all input tokens, keeping the network
activations in a stack; secondly, a backward through time pass (6-9), where the
errors are computed at the output layer and backpropagated through the network
layers and through time, and thirdly, updating the weights with the accumulated
weight-updating values (10). During the second step, at each time moment but
the last one, a future error is used, processed and backpropagated further
through time.

1. Forward Pass
 In the following description, |IL|, |HL|, |CL|, |OL| stand for the size of the
input, hidden, context and output layers, correspondingly. The input signals
provided to the hidden layer neurons and output layer neurons are noted as
netH

i(t) and netO
l(t). Next, inj(t), cnk(t), hni(t) and onl(t) stand for the activations

of the j-th input, k-th context, i-th hidden and l-th output neurons at time t. And
finally, wH

ij , w
H

ik , and wO
li are the weights of the connections between j-th input

neuron and i-th hidden neuron, k-th context neuron and i-th hidden neuron, and
i-th hidden neuron and l-th output neuron, respectively. For convenience, the
bias for all layers is encoded as an extra input neuron (j=0; i=0) with constant
activation 1. The activation function f(.) is of sigmoidal type – the logistic
function or the hyperbolic tangent function.
 The items of the training/testing sequence S=[c1c2…c|S|] are referenced with
an index t, set to zero in the beginning of the sequence processing. Also, before
applying a new sequence, the context layer is reset by setting all context neurons
cnk(t=0) to zero (k=1…|CL|). The sequences are presented to the network one
token ct at a time. For each token, a forward pass is processed. Firstly, the
hidden layer is activated in accordance with (2) and (3):

netH
i (t) = Σ j= 0…|IL| w

H
ij inj(t) + Σ k= 1…|CL| w

H
ik cnk(t) (2)

 hni (t) = f (netH
i(t)) (3)

After the activation of the hidden neurons, their activation values are copied to
the context neurons. Next, the signal is propagated further to the output layer, by
activating all neurons at the output layer: (4,5).

 netO

l (t) = Σ i= 0…|HL| w
O

li hni (t) (4)
 onl (t) = f (netO

l (t)) (5)

 Specifically for the RANs, if the forward pass is a part of the BPTT learning
algorithm, a training sequence S of input/output patterns according the scheme
in Fig. 4b is built. On another hand, if the network is used for packing only, the
static distributed representation of a sequence being applied to the input layer is
the activation of the hidden layer at the moment when the delimiter pattern has
been processed. In turn, in order to unpack (decode) the static representation of a
sequence, it is applied to the hidden layer and propagated forward; the resulted
output pattern is the first element of the sequence. Next, this output pattern is
provided as an input to the network and propagated forward, by using the last
hidden layer activation as a context. This process is repeated until a pattern
recognized as a delimiter pattern is produced at the output layer.

2. Backward Through Time Pass
 The second step of the BPTT learning algorithm for a given training sequence
is propagating the error signal back through the network and time. We suppose
that the forward steps for each token in the sequence are already done, keeping
the activations and the target patterns in a stack. Next, error and weight updating
values are computed in an earlier time cycle, that is, starting from the last token.
Firstly, error deltas at the output layer and the updates of the weights connecting
the hidden layer to output layer are computed with (6) and (7). Note, that S
stands for the whole training sequence (the original sequence presented at the
input layer and targeted later at the output layer). Also, τ denotes a global time
index and ∆w(τ) stands for the accumulated ∆w(t) for all items from the current
sequence.

 δO

l (t) = f ′ (netO
l (t)) (Cl (t) – onl (t)) (6)

 ∆wO
li(τ) = η. Σt=1 … |S| δO

l (t) hni(t) (7)

In (6), Cl(t) denotes the desired activation of the l-th output neuron (l=1…|OL|)
at time t. Provided that the activation function f(x) is the logistic function f(x) =
(1+e(-x))-1, the derivative of f(x) is f ′(x) = x(1-x). Next, deltas and updating
values of the weights connecting the hidden layer to the input and the context
layers are computed in accordance to (8) and (9):

 δH

i(t) = f ′(netH
i(t)) [Σl=1…|OL|w

O
liδO

l (t) + Σk=1…|CL|w
H

ikδH
k (t+1)] (8)

 ∆wH
ij(τ) = η Σt=1…|S| δH

i (t) nj(t-1) (9)

where i = 1 … |HL|, j = 0 … (|IL| + |CL|) and n(t) is a joined vector containing
both in(t) and cn(t). The second sum in (8) represents the context layer delta-

term δk
C(t), computed by backpropagating the delta δH

i(t+1) through the weights
connecting the context neurons to the hidden neurons. And finally, all weights
are updated according to (10) with the accumulated weight-updating values,
computed with (7) and (9).

 w(τ) = w(τ-1) + ∆w(τ) (10)

Error Back propagation learning algorithms are known for the possibility of
getting stocked in a local minima on the error surface. There are number of
techniques designed to overcome this problem. The most useful technique is to
apply a momentum term α to (10), as is done in (11). The momentum term
keeps the movement over the weight error space for some time, even if the
network has fallen into a local minimum. Usually, α = 0.7.

 ∆w'(τ) = α ∆w(τ-1) + (1- α) ∆w(τ) (11)

Another technique that has similar effect is to apply initially a higher learning
coefficient η and, next, to decrease it gradually. This implements a quicker
rough search for the region where the global minimum is located. Later, the
exact location of the error minimum is searched with smaller steps. Usually, the
initial η = 0.2 and the decrease might be exponential with a very small step (e.g.,
0.9995). For further reading about SRN, BP, and BPTT and other recurrent
learning algorithms, one can refer to Haykin [1994].

B. EXPERIMENTING WITH RANs: LEARNING
 SYLLABLES
 The idea of using RAN to develop static representations of sequences was
tested on natural language data. A set of 140 distinct syllables was collected
from a list of 100 polysyllabic Dutch words. The syllables were represented as
sequences of Latin characters. The mean length of the syllables was 4.1 ± 1.12
σσσσ. The characters were represented orthogonally, in a vector of length 27, that is,
for every symbol there was a correspondent neuron which was set active any
time this symbol was encoded. The 27th position was activated when the special
triggering pattern for the input layer and the end-of-sequence pattern for the
output layer were presented or targeted. In order to speed up the training, the
non-active and active neuron states were set to 0.1 and 0.9 respectively, which
set the working regimen of the neuron activation functions within an almost
linear range rather than around the extremes zero and one, where the sigmoid
derivatives approach zero. The size of the hidden layer was set to 30. The
learning algorithm was backpropagation through time. The training was
organized in epochs, in which all patterns were presented randomly, according
to their frequency of occurrence in the corpus. The words were taken from the

CELEX3 lexical data base. The network error was measured after each training
epoch as percent character and syllable misprediction. During the training
process, the network error followed the standard pattern of quick initial error
drop and subsequent slow rate of decrease. After approximately 50 epochs, the
network error was reduced to 1%. Further training would reduce the error even
more, but it would take much more time.
 From an implemental point of view, it was interesting to test different
strategies for representing the trigger and end-of-sequence patterns, for instance,
whether it is possible to use only the neurons used for encoding the standard
input and output patterns, or whether an extra neuron is necessary. Tests were
conducted with patterns such as all neurons active, non-active, or taking a value
of 0.5. In all three cases, the performance was worse than the approach with an
extra, switching neuron. Therefore, the later approach was used in the following
experiments. It has the additional advantage of always allowing the encoding of
a distinct switching pattern, even if the above patterns are used to represent data.
 This first experiment suggests that SRNs can learn such a task. Now, it is
interesting to see what kind of static representations the network has developed
after the training. A simple observation of those vectors does not say much (Fig.
5, top), because the network has organized those representations just to
accomplish its task, not to make them readable by humans, which is the case in
the high-level symbolic systems. It is more important that the network itself can
‘read’ those representations, that is, it can reproduce the original sequential
form. Yet, some analysis might be useful in order to persuade the reader that
those representations are worth something. For this purpose, a Kohonen Map
neural network was trained to organize those representations. The Kohonen Map
is known as very useful for clustering such a data. The resultant map and a
minimal spanning tree are given in Figure 5, at the bottom.
 As expected, syllables with same front parts are located at similar positions
(e.g., ant, ann, aus, am, aan, a), but also, syllables with similar ends are placed
at close positions (e.g., pol - rol; tra - dra). The RAN very clearly has captured
the common external features among the training sequences: similar sequences
are mapped into close positions; that is, their distributed representations are
close. This raised expectations that the network would generalize, that is,
reproduce unseen input sequences (and produce their static representations).
This hypothesis was tested and the results demonstrated that RAN did
generalize, although very modestly. Among the tested sequences, unseen during
the training, only 15 syllables were successfully reproduced at the output, that is,
about 10% generalization. But the network was trained on a very small number
of sequences, therefore, I predicted that if the network were trained on a larger
data set, the percent of the generalization would be even larger. The second
experiment in section five confirmed this hypothesis.

3 The CELEX lexical database contains lexical data for Dutch, German, and
English languages. Address: Center for Lexical Information, POBox 310, 6500
AH Hijmegen, The Netherlands, http://www.kun.nl/celex/ Email: celex@mpi.nl

Figure 5. (top): Representations developed by the RAN. Each line stands for one vector. Each circle
represents one value in the representation. The larger the circles, the greater the correspondent
values. (bottom): A Kohonen Map neural network trained to cluster those representations (see text).
The network maps similar syllables into close positions, meaning that those representations are close
to each other. The lines connecting cells represent a minimal spanning tree.

V. A CASCADE OF RANs

 The main goal of this work, as stated earlier in the chapter, is to build a
connectionist model that develops static distributed representations of a set of
hierarchically structured sequences. Single Recurrent Autoassociative Networks
produce single-level static representations only. A natural development of RANs
to cope with hierarchically structured sequential data is to build a cascade of
RANs, in which each RAN deals with subsequences of the external patterns at
certain level. That is, the RANs from each level are fed with sequences of
patterns developed at lower-level RAN, produce static representations of those
sequences, and provide them as input patterns to the following-level RANs.
Also, whenever they are requested, those RAN modules will decode (unpack)
representations, for example, if the following-level RAN module needs to
decode some object into its sequential representation (Fig. 6).

Figure 6. RANs and the mechanism of multi-level sequence processing. Stream of chars is
presented to the input of the syllable-RAN (1a), which builds syllable-representations and provides
them to the word-RAN (1b), which, in turn, builds word-representations and exports them further
(1c). Similarly, if word-RAN is presented with a word-representation (2c), it will unpack it to train
of syllable-representations and will provide them to the syllable-RAN (2b), which in turn will
unpack them to train of chars (2a).

 Following the representations developed from the lowest to the higher level
RAN, note that this cascade model gradually transforms the temporal-dimension
complexity into a spatial-dimension complexity, that is, long sequences of
patterns of simple elements will be transformed into shorter sequences of
complex static representations, distributed among an increasing number of
neurons. This way, trains of percepts that implicitly contain high-level,
sequentially represented concepts will be transformed into static representations

RAN:
Word

Output Layer: (Syll)

Hidden Layer (Word)

Input Layer: (Syll) Context

RAN:
Syllable

Output Layer: (Chars)

Hidden Layer (Syll)

Input Layer: (Chars) Context

RAN-cascade: Output
 ... N | E | T | – | W | O | R | K | # ...

 ... N | E | T | – | W | O | R | K | # ...
RAN-cascade: Input

... [NET] – [WORK] – [#] ...
Word-RAN: Input

... [NET] – [WORK] – [#] ...
Word-RAN: Output

1a
1b

1c

2c

2b

2a

of those concepts and these representations will also be reconstructed back to
their external sequential form. This is important, as we will see in the next
section, for solving the symbol grounding problem. RANs also provide an
account of another important property – systematicity among the representations
built. The more sequences learned at a certain level, the larger the network
generalization will be; that is, after exploring many combinatorial possibilities
among the input data, the RAN modules will build static representations in a
systematic manner.
 Still, there are some questions to be answered. For instance, why do we need
such hierarchical structure, when a single RAN can be trained to produce the
same highest-level static distributed representations and to output sequential
associations? There are two points which speak in favor of the cascade structure.
First, it is difficult for one homogeneous network to learn long-distance
relationships [Miikkulainen, 1991] for discussion [Christiansen, 1999]. BPTT
learning algorithm propagates back error, but the more steps it propagates back,
the smaller the influence of those errors is to the earlier steps. Studying different
patterns of recursion, Christiansen and Chater found that the depth of embedding
(or recursion) SRNs can handle well is in the range 3 – 5 steps. Hence, learning
sequences longer than 5 tokens would be more difficult. Even if one uses some
techniques to improve the learning, the general tendency to perform worse on
longer sequences remains.
 Another advantage of the hierarchical system of representations is the
possibility to access intermediate representations of the input train of simple
elements (e.g., words), if we need to apply holistic operations or to interpret
them. In natural languages, when we hear a sentence, we have an access to its
constituents, each of which has some relations with other objects. Only a
hierarchical system can handle such intermediate representations and a RAN
cascade automatically develops such static representations.
 This cascade structure has one important limitation – that the cascade should
be designed in advance and remain fixed throughout its life. This raises two
design questions – how to determine the data structure and how to determine the
size of the RAN hidden layers, that is, the size of the representations at each
level. Also, there should be a segmentation mechanism that signals the end of
the sub-sequences for every cascade level.
 Different levels may be selected according to the natural hierarchy in the
input data. For example, when learning natural language, one might favor
learning representations of syllables, words, sentences and so on. The input
sequence might be split into sub-sequences either by use of some external
markers – syllabic delimiter, space between words, full-stop (or even larger
pause) – or by learning phonotactics and word order and segmenting at proper
points, where low-frequency combinations are about to be formed. Cairns,
Shillcock, Chater, and Levy [Cairns, 1997] have connectionist experiments on
this matter. Likewise, if we use the approach in which RAN both predicts the
following pattern and reproduces the sequence (see the previous section), then
RAN itself could be used to segment the input sequences.

 With regard to the structures that such a cascade architecture can represent,
this model imposes a few restrictions. First, one cascade may develop
representations of fixed-depth trees, where RANs at each cascade-level process
one tree-level. As a consequence, true recursive structures can not be fully
represented. Still, recursive structures can be approximated up to a certain depth.
Next, leaves (terminal patterns) may occur only at the bottom level of these
trees. For example, sequence (12a) with internal structure (12b) is illegal in a
two-level cascade because the token ‘d’ is at the second level rather than at the
bottom level. The allowed structures of this sequence are given in (12c). This
limitation corresponds to the gradual way of information entrance and
processing in the cognitive systems, starting from the bottom, perceptual level.

 a b c d (12a)
 ((abc) d) (12b)
 ((a) (bcd)) ((ab) (cd)) ((abc) (d)) (abcd) (12c)

In case we need to develop representations of any tree structures, such as (12b),
those tree structures can be transformed into plain sequences as in Kwasny,
[1995]. However, this method needs an external symbolic device that transforms
structures in both directions. Another solution might involve marking the
distributed representations with level-labels and providing them to the
correspondent RANs. This solution needs a supervisor that distributes the
patterns, and it is biologically more plausible than the first solution.
 Sequences with complex structure, such as sentences in natural language, may
be processed with one RAN-level, too. The sentence structure that is known as
syntax may simply evolve among the distributed representations, instead of
being taught explicitly. Similarly, Elman [Elman, 1990] trained the SRNs on a
prediction task and later found that the developed context layer representations
correspond at each time step to the syntactic category of the sequence processed
thus far.
 The size h of the hidden layers at each level should be based on the
informational content of the sequences the correspondent RAN is going to pack.
Parameters in this measure are the number of distinct tokens |C|, the number of
possible sequences |S|, the maximal length of the sequences to be represented k,
and the number of neuron states b.
 First, let us enumerate the maximal number of distinct patterns Pmax that the
RAN should encode in the hidden layer. The maximal number of strings
composed of up to k tokens is [(|C|k+1 – 1) / (|C| – 1) – 1], which is the total
number of permutations with repetition of 1, 2, 3, … k items selected from |C|
items. In the same way, the actual number of training strings is |S|. We should
count the maximal number of strings, because the network is expected to
generalize after the training, that is, to reproduce combinations of items, unseen
during training. Next, the number of distinct patterns that RANs need to
reproduce a sequence of k items is 2k+1, which is the number of context states
when autoassociating the input sequence (see section 4). Therefore, the maximal
number Pmax of distinct patterns necessary to produce unique representations of

strings composed of up to k tokens is [(|C| k+1 – 1) / (|C| – 1) – 1](2k + 1). The
actual number of necessary distinct patterns P satisfies condition (13).

 |S| (2k+1) ≤ P ≤ [(|C| k+1 – 1) /(|C| – 1) – 1] (2k+1) (13)

Next, the number N of patterns that h neurons can represent, each of which
having b distinct states is N=bh. That is, the number of neurons necessary to
represent N patterns is h=logb(N). Therefore, the number of hidden neurons
necessary to encode P distinct patterns is

 logb(|S| (2k+1)) ≤ h ≤ logb([(|C| k+1 – 1) /(|C| – 1) – 1] (2k+1)) (14)

from which we derive :

 logb(|S|)+logb (2k+1) ≤ h < (k+1)logb(|C|) – logb(|C|–1)+logb (2k+1) (15)

Formula (15) estimates the minimal number of neurons that is necessary to
represent a certain number of sequences with RAN. As mentioned earlier, the
right-hand side number should be used in order to achieve better generalization.
However, formula (15) does not guarantee that this number of hidden neurons is
enough for the network to perform the autoassociation task for all strings and
develop their distributed representations. In a recurrent neural network, hidden
layer neurons also have other functions, related to the network processing. In
addition, given the enormous complexity of the learning problem, it is very
difficult for the learning algorithm to find proper weights producing these
particular representations. Usually more neurons are necessary to learn a
particular task than the theoretical estimations. Therefore, a scaling coefficient
γ >1 will be applied to (15) that will account for these and other factors related
to the network processing mechanisms. This will give to the learning algorithm
more freedom to find a proper weight set solving the training problem.
 Now, let us find an estimation of the necessary RAN hidden layer size in the
previous example by using (15). The base b will be set to 2 states and the
coefficient γ to 5.0. The experiment was learning 140 syllables (|S|=140) built
out of 26 distinct letters (|C|=26). The maximal string length was 4 (k=4). Then
according to (15), 50 < hsyll_RAN < 110. In the reported experiments, 30 hidden
neurons were enough to encode almost all training sequences.
 Finally, let me discuss the strategy of the order in which the networks should
be trained at the different levels, and what training regime to select. This
includes the question of whether to train the different RAN levels gradually and
then keep them fixed, or to keep training them, while training the higher-level
networks simultaneously. We can also refine them in a later stage of the training
of the higher-level network, because initially the current network will generate
too large an error, which might destroy the developed representations. Another
completely different strategy for training the whole cascade is to train all RANs
simultaneously. However, this is a very complicated learning task and it is
doubtful whether the network cascade would get to the solution in reasonable

time. Instead, building the lower levels first and leaving a small amount of
freedom for later change is preferred. A behavior close to this strategy appears
to work with humans – initially people learn to produce simple syllables, next
more complex syllables, then words, small phrases, and so on. Which strategy is
better is a question of a lot of experiments. In the rest of the experiments, the
gradual development strategy was chosen – training the networks gradually,
starting from the lowest level and keeping them fixed later.

A. SIMULATION WITH A CASCADE OF RANs:
 REPRESENTING POLYSYLLABIC WORDS.
 A step toward building a hierarchical model of natural language according to
the hierarchical design presented earlier is a cascade model producing
representations of natural language polysyllabic words. This model involves two
RAN modules: a syllable-RAN, which builds static representations of syllables,
and a word-RAN, which builds static representations of words. In this
subsection I will present an experiment which is a natural extension of the
experiment described in the previous section. The syllable-RAN is be the same
as before – with 27 input and output neurons and 30 hidden neurons. This
means that the word-RAN input and output layers have to have 31 neurons, the
last one standing for representing the trigger and end-of-word patterns. The size
of the hidden layer is again 30, which is determined by the complexity of the
concrete learning task – there are only 100 sequences to be learned, consisting of
some 140 possible syllables, with average length of the input sequence 4
syllables. In a more complicated case, we would need many more hidden
neurons (see the previous subsection).
 The network training (BPTT) is organized as follows: First, a training word is
selected from the training corpus, containing pre-syllabified words. Next, for
each syllable in the selected word, the syllable-RAN produces the correspondent
static representation, which in turn is provided to the word-RAN input layer.
The static representations of the syllables belonging to the current word are kept
in a buffer until the learning procedure for the current word is finished. When
all the syllabic patterns are presented to the input of the second RAN, a
triggering pattern is provided to the word-RAN and the processed syllabic
patterns are presented as target patterns to the output layer, one at a time, and
error is calculated. The same targeting patterns, with one step delay, are
presented to the input layer again (see the previous section and Fig. 4 for
details). Next, during the second phase of BPTT learning algorithm, the
accumulated error is propagated back through time, till the beginning of the
sequence. Finally, the weights are updated with the accumulated weight-
updating values.
 The cascade is tested by encoding the training or testing words and decoding
(unfolding) the developed static representations of those words back to
sequential forms (string of letters), and comparing the resulting strings with the
expected strings. The RAN error is measured as the percent of erroneous
predictions of letters, syllables, and words. Syllables are considered to be
predicted correctly if all the correspondent letters are reproduced correctly.

Similarly, words are learned if all corresponded syllables are reproduced
correctly. The performance of the word-RAN after 100 training epochs was as
follows: 1.8% character error, 4% syllable error, and 6% word error.

B. A MORE REALISTIC EXPERIMENT: LOOKING FOR
 SYSTEMATICITY
 In this subsection a more realistic experiment will be presented – building the
representations of some 850 polysyllabic Dutch words, consisting of about 600
distinct syllables. The reason less complex examples were presented in the
earlier sections was, firstly for the reader to get an idea of the developed static
representations (Fig. 5) and, more importantly, to show that generalization
increases by increasing the number of combinations learned by the networks.
 We will use again (15) to estimate the necessary hidden layer size. For the
syllable-RAN, |C|=26, |S|=600, k=5. Then 70 < hsyll_RAN < 150. Similarly, for the
word-RAN, |C|=600, |S|=850, k=5. Then, 100 < hword_RAN < 300.
 The cascade consists again of two RANs – a syllable RAN and a word RAN.
The syllable-RAN has 100 hidden neurons. The word-RAN is set to 350 hidden
neurons. All other conditions are the same as in the first experiment. The
training of the syllable-RAN resulted in 0.6% erroneous letter prediction and
2.5% erroneous syllable prediction, that is, some 15 syllables were not entirely
learned. Further error analysis showed that there was one mispredicted letter
among those syllables, which means that those syllables were produced almost
correctly (3/4). The word-RAN did not reach the success of the syllable-RAN,
with 2.7% letter misprediction, 5.0% syllable misprediction and 14.1% word
misprediction.
 In order to examine the influence of the hidden layer size to the performance,
similar experiments were conducted with smaller hidden layers. The syllable-
RAN was tested with 50 and 30 hidden neurons. Word-RANs were tested with
300 and 250 hidden neurons, using the earlier reported syllable-RAN with 100
hidden neurons as syllabic pattern builder. With decreasing the hidden layer
size, the performance of both networks gradually dropped. The syllable-RANs
learned 70% and 28% training syllables, correspondingly (Table 1). The word-
RAN performance decreased too: 80.8% and 76.9% of the words were entirely
learned (Table 2). The performance measured at item-level decreased more
gradually. For the word-RAN, fewer syllables were erroneously reproduced and
even less letters were mistaken.

Table 1. The performance of the Syllable-RAN trained on 600 distinct syllables, when varying the
hidden layer size.

Hidden layer size Syllable
RAN

Error
 (%) 30 50 100

Syllables 72 30 2.9

M
is

pr
e-

di
ct

ed

Chars 18 7.2 1.1

 Those experiments support to some extent formula (15) that is based on the
information content of the hidden layer and number of data to be encoded. With
decreasing the number of hidden neurons below the suggested size, the
performance deteriorates. Nevertheless, there is another reason for this. The
error backpropagation learning algorithm more easily finds escape routes from
local minima when there are more weights – if some set of the weights are
trapped into a valley on the multi-dimensional error surface, other weights
would let the network drive out of this point. Therefore, the more complex the
task, the more neurons are necessary. If the number of the neurons seems very
large, consider the brain, where billions of neurons participate in different
cognitive tasks. Practically, with the ever increasing computational power, this
will not be a question in a few more years.

Table 2. Performance of the word-RAN trained on 850 polysyllabic words with input vector size
100, when varying the hidden layer size.

Hidden layer size Word
RAN

Error
 (%) 250 300 350

Words 23.1 19.2 14.1
Syllables 7.8 6.8 5.0

M
is

pr
e-

di
ct

ed

Chars 4.2 3.6 2.7

 The more interesting question now concerns the generalization of the syllable-
RAN and the word-RANs. Tested on a larger corpus with 9,000 words and
2,320 distinct syllables, the syllable-RAN successfully reproduced, that is,
generated unique representations of another 1150 syllables, which is more than
190% generalization as opposed to the first example with only 10%
generalization. This result shows that a network trained with more combinatorial
possibilities generalizes better. In turn, this shows the RAN capacity to produce
static distributed representations systematically (see section 7 for discussion).
 The word-RAN generalized well too, with successful reproduction of 1,500
words unseen during the training, which is about 180% generalization. It is
interesting to note that the word-RAN generalized as well as the syllable-RAN
after learning fewer combinatorial possibilities than the syllable-RAN did (850
words made out of 600 distinct syllables, while the 600 syllables are made out of
26 distinct letters). I attribute this to the nature of the input data of those two
RANs. On one hand, the syllable-RAN is provided with localistically encoded
letters, which gives no prior information about the similarity among the classes
they represent. On the other hand, the word-RAN is supplied with much more
“meaningful” distributed representations, systematically produced by the
syllable-RAN. This also suggests that if the letters were represented with
features (consonant/vowel, voiced, place, manner, etc.), perhaps the syllable-
RAN would learn the task even more easily, with fewer hidden neurons, and
would generalize better.

VI. GOING FURTHER TO A COGNITIVE MODEL

 Once we have a method to represent the complex structured data that we
experience externally in some dynamic (sequential) form, we can go further and
learn some relations between representations coming from different modalities.
For example, the auditory modality would produce representations of linguistic
objects, just as we discussed earlier in the chapter; visual modality is a source
for even more complex objects. In addition to those sensory modalities, there are
effector modalities – muscles, glands, and so on. Having representations of
objects of those modalities, we can make associations between them. And those
associations are the sources for representation grounding – multi-modal
associations.
 Complex multi-modal mappings can be effected with any static connectionist
model – self-organizing or trained by a teacher. And both would be biologically
motivated, because those associations can be made whenever two
representations occur in the same time and there is a will or attention to learn
those coincidences. Neural Network models that might be used for this purpose
are the supervised Multilayered Perceptron, the ART-Map network by Carpenter
and Grossberg [Carpenter, 1992] or the autoassociative memory by John
Hopfield [Hopfield, 1982], among other connectionist models.
 In the framework of RAN cascades, sequential patterns from each modality
have to be divided into different conceptual levels and correspondent RANs
have to be trained to produce static representations. Next, static associations
(mappings) between patterns from different modalities have to be learned with
static neural networks (Fig. 7). Then, when a sequence is applied as input to a
learned modality, that is, to its corresponding lowest-level RANs, higher level
representations will be produced. This in turn will activate corresponding
patterns in other modalities, which might be expanded to lower level sequences.
Activation of a high-level representation might also cause expansion to the
corresponding lowest-level sequence, as well as producing sequences of other
modalities.
 Yet another possible extension toward a more global cognitive model would
be a composite input pattern for certain RANs in the cascade. This composite
pattern might be the concatenation of representations from different modalities
(Fig. 8). The reason for such a concatenation will be presented with an example
from natural language. Word representations developed on the basis of the
external form of the words which would capture systematic dependencies related
to combinations of letters (phonemes) into words, but not categorical or
semantic information, which might be necessary when processing sentences.
Therefore, the input to a sentence-RAN might consist of the developed lexical
static representations and the associated patterns from visual modalities. This
would let the sentence-RAN develop sentence representations that properly
reflect the meanings of the words, not only their external auditory or visual
form. This makes the picture more difficult to implement, but the brain we are
trying to model is not less complex.

Figure 7. Cognitive model based on a network of RAN cascades. Each RAN-cascade (a column)
stands for different modality. The RANs in each cascade represent different conceptual levels. The
horizontal and diagonal bi-directional arrows represent static associations between different
modalities. In addition to this picture, there should be a central attentive system that directs the flow
of activations.

Figure 8. RAN developing static representations of multi-modal sequential data (auditory and

visual). The distributed representations developed would feature multi-modal systematicity.

 Using these complex schema, we can model complex associations we
encounter in our life. Still, there are a lot of other questions to be answered –
synchronization, more optimal learning, etc. This huge net of associations needs
some central supervisor directing the spread of activations. Modeling cognitive
processes such as attention, awareness, etc. maybe would resolve some of those
questions.

Syllable-RAN

…. phonemes …

Word-RAN

Sentence-RAN

Movement-RAN

… … … … …
… Vision …

… … … … …

Motion-RAN

Action-RAN

… motor-plan …

Object-RAN

Scene-RAN

Act-RAN

Auditory sensors Muscles

RAN[aud_vis]

Auditory Vision

VII. DISCUSSION

 The basic question addressed in this chapter is how to build static
representations of complex sequential data with connectionist models,
concerning primarily natural language. Dynamic data exist in any cognitive
modality, and it is important to have a mechanism that compresses (and
uncompresses) dynamic objects into the more convenient static representations.
Also, it would be useful if those representations were produced in a systematic
way. This would allow further complex processing (holistic computations), e.g.,
asking questions, change of tense, or even mathematical operations.
 Association is one of the basic forms of learning. Repetition, or auto-
association, provides a powerful mechanism for cognitive development, too. We
can observe this mechanism throughout the animal species. Baby animals
develop initial behavior without being taught, but just by attempting to imitate
their parents. Humans develop language in a similar way: infants initially start to
repeat sounds (babbling), next they repeat simple words, small phrases and so
on, until they develop full-scale language capacity [Jusczyk, 1997]. Infants left
out of language environment simply can not develop language or have great
difficulties developing language later. Similar motivations drove me to use
autoassociation in a connectionist model for developing representations of the
external world.
 Regarding the connectionist models that can process dynamic data, recurrent
neural networks are such connectionist models that allow us to process
sequential data. The more specific simple recurrent network is a powerful
universal model which I have exploited for this purpose, by setting an
autoassociation task and arranging the data to develop the desired static
representations. The suggested architecture is called recurrent autoassociative
network. The model was extended further to a cascade of RANs, aiming at
developing static representations of hierarchically structured sequential data. In
this cascade, RAN modules at each level are designated to develop static
representations of different level of complexity (or different conceptual levels) –
words, sentences, and so on.
 What is the importance of this model? To what extent does it increase the
capacity of connectionist modeling? The discussion in section two on the
representations of sequences that one needs when modeling natural languages
and the capacities of the connectionist models presented in section three clearly
demonstrate that the question of how to develop distributed representations of
composite dynamic data is still open. Local encoding is restricted, random
representations lack systematicity, and the feature-based representations are
limited and rather artificial. All those representations keep NNs away from real
data. In order to get closer to our cognitive capacity, we need a mechanism that
builds representations, starting from the bottom and gradually building ever
more complex representations.
 The idea of building a gestalt representing input data was promising, but it
was not elaborated further. The RAN model has something in common with the
earlier works on gestalt: they all develop representations of the sequential input

data in the network global memory. They differ in the learning task they set to
the SRN and in the way they use this context. The gestalt models use the context
developed for information retrieval at every moment, which causes
uncertainties, while the RANs develop unique static representations of the input
sequences by a special attack on the learning task, which makes the same RANs
able to reproduce the input sequence and which is not the case with the gestalt
models. The gestalt model needs a second network trained to extract information
from the context of the first network.
 The other similar and important architectures: RAAM and SRAAM were
initially reported to work well on sequential and recursive data, but other
experiments did not confirms the expected performance (Hammerton 1998).
Also, the RAAMs need an external stack and boot RAAM and SRAAM
reproduce the sequences in inverse order. This might cause interpretational
problem when processing longer sequences – it would require an external stack
to invert them back to the normal order. Still, the idea of RAN clearly owes the
idea of autoassociation as a source of developing compact representations to the
RAAM models.
 The experiments in section five on modeling sequences with a cascade of
RAN modules demonstrate that RANs handle reasonably well both locally
encoded low-level data (we can assume that this is a kind of perceptual data) and
continuous distributed data. The network learned to autoassociate in both cases,
although there were more difficulties in learning the latter types of patterns. I
attribute this to insufficient computational resources, because the larger the
hidden layer is, the better the performance is (see Table 2). On the other hand,
word-RAN generalized very well given the small number of training syllabic
combinations, which is due to the truly distributed syllabic patterns, as opposed
to the localistically encoding input for the syllable-RAN.
 With regard to the hidden layer size that is required for a RAN to learn a
particular task, it is difficult to find a theoretical measure because the
representations are continuous and, theoretically speaking, even one real value
number can encode any sequence. However, limitations from the limited
effective working range of the sigmoidal activation functions apply and by
enumerating the maximal number of distinct patterns to be encoded in the
hidden layer, an estimation of the required hidden layer size was derived (15).
Still, more theoretical and systematic experimental research is necessary in order
to determine other factors related to the hidden layer size, such as factors related
to the way the data is processed and encoded in the neural networks, especially
in recurrent models.
 Neural Networks were reproached by Fodor and Pylyshyn [1988] for not
being able to produce systematic representations. The ongoing debate on this
challenge inspired the development of a number of architectures that more or
less meet the requirements characterizing systematicity [Smolensky, 1990,
Smolensky, 1991, Aydede, 1997]. In this subsection I will explain how the
distributed representations developed by RAN account for systematicity. The
debate on this human cognitive property is important because it explains our
capacity to think. A classical example for systematicity is that if we can think of

"Mary loves John," then we can think of "John loves Mary" too. With this
simple example, one can distinguish a few descriptive characteristics of
systematicity: compositionality (atoms constitute thoughts), generalization (the
atoms "John" and "Mary" are semantically similar and therefore
interchangeable) and exploration of combinatorial possibilities (similar atoms
might apply at same position).
 The Fodor's classical "Language of Thoughts" respects fully the first and the
third characteristics and partially the second. The hard logic rules, which
underlie symbolism – the background of the classical cognitive explanation –
can not account for similarities across all items because they do not make use of
continuous metrics to compute such similarities. Therefore, in the symbolic
systems, similarities across items do not give rise to generalization unless a
system of artificially developed features characterizing the items is applied.
 On the contrary, an important property of connectionism is generalization, but
some connectionist representations do not feature the other characteristics, with
the localistic representations being such a very strong example. Feature-based
encoding comprises compositionality and allows combinatorial possibilities, but
it is rather artificial and symbolic in spirit. Other distributed representations,
such as those produced by the RAAM and the SRAAM models, show that
neural networks can produce distributed representations that have compositional
structure, although in an implicit manner [Chalmers, 1990, Blank,1992,
Hammerton, 1998].
 Similarly to the RAAM and symbolic models, RAN models produce
composite representations too. Of course, RANs are not aimed at producing
distributed representations understandable by humans. This is reserved for
symbolism. The representations that RANs produce are designed to be
understandable, firstly, by the RANs themselves and, secondly, by other
computational models able numerically to analyze data and eventually extract
useful features from this data. RANs can unpack representations to the original
row of tokens – this is part of the autoassociative task. With regard to the other
models, the Kohonen Map that was trained in section 4.2 to cluster the
distributed representations of syllables clearly demonstrates that other models
can "understand" those representations, too (Fig. 5). In this case, the Kohonen
Map was just an instrument to persuade the reader that those representations are
organized in a systematic way. In addition, similarly to the ability of RAN to
decode the distributed representations, other connectionist models should also be
able to extract information for the encoded items, that is, to do holistic
computations. Experiments with distributed representations produced by RAAM
and SRAAM show that this is possible [Chalmers, 1990, Hammerton, 1998] and
RANs produce distributed representations following the same principles as
SRAAM; only the order of reproducing the sequences is different. The
(S)RAAM models implement a stack, while the RANs implement a queue.
Therefore, I expect holistic computations will be able to apply on the distributed
representations developed by the RAN, too.
 With regard to the explorations of combinatorial possibilities, the models
should not only have the capacity to explore different combinations, but the

training environment should provide them to the networks, too. Similarly,
symbolic learning algorithms can extract rules only if the learning data provide
different examples. This is the same with humans, too. We start to combine
words properly after having had enough experience in a language environment.
Another example is related to algebra. Students learn to add and subtract first by
example, and then they realize the nature of the operators "add" and "subtract."
With regard to the capacity to explore such combinations, RANs have this
capacity, by allowing tokens to take any position in the input sequence.
Similarly to Deacon, [1997] I hypothesize that a systematic organization
emerges in RANs after exploring a great number of possible combinations of
patterns and starting to use and rely on some common features among the
representations rather than on particular patterns, which Deacon characterizes
also as example "forgetting."

VIII. CONCLUSIONS

 Sequential processing is recognized as a difficult problem, especially when
sequential complexity, in terms of length and internal structure, increases. In the
present chapter I proposed a framework for processing structured sequential
data, as found in natural languages, movies, actions, and so on. The approach is
based on the idea that by sequential autoassociation, a single recurrent NN –
recurrent autoassociative network – can develop static representations of
sequences composed of uniform items. A hierarchical set, or cascade of such
networks, develops static distributed representations of ever more complex
sequences, where each structural level in the data is processed by one RAN
module, and the input sequences for the upper levels are developed by the lower
level RAN. For this purpose, recurrent networks are trained on autoassociative
tasks (RAN modules), and they develop unique static representations of the
input sequences at their hidden layers (Fig. 4). Those static representations are
used as interface patterns for the next level RAN (Fig. 6). The static
representations at the highest level RAN are the distributed representations of
the most complex data or whole input sequence, e.g., sentences or stories. In
section five, an example was given of how this model might work for
developing representations of Dutch polysyllabic words. Further, in section six,
it was suggested how the cascade model might be extended to a more global
cognitive model, where the static representations at each level were suggested to
be associated with other static representations (of sequence of other modalities)
via static mappings. Such a net of multi-modal associations, I believe, would be
an implementation of natural language grounding and a base for semantics.
 Although I claim that this model will be able to solve the problem of
developing representations of hierarchically structured sequences, there are still
some questions that remain open, especially if we want to develop an
autonomous cognitive model. For instance, the learning processes and flow of
activations should be driven by a supervisor, similar to the attentive system.
Also, the learning algorithm can be replaced with a more effective one. Next,
instead of using SRN-based autoassociators, one might use other, more effective

or more neurobiologically motivated learning algorithms and neural network
models, for example, recurrent self-organization networks and the other models
presented in this book. Nevertheless, I believe the suggested model is an
important step in connectionist modeling, and I strongly encourage the reader to
experiment with the RAN cascade on different problems, especially to
investigate holistic computations with the distributed representations developed
by RANs.

ACKNOWLEDGMENTS

 I am grateful to my supervisor, Prof. Dr. John Nerbonne for his useful advice
and comments on this work, and to James Hammerton for his important remarks
and suggestions on (S)RAAMs and holistic computations. Also, I am thankful to
Dr. Larry Medsker for his cooperation in the course of writing this chapter. The
Kohonen Map tool for data analysis and visualization was provided by Peter
Kleiweg. The work is supported by a grant from the Behavioral and Cognitive
Neuroscience School at Groningen University, The Netherlands.

REFERENCES

Aydede, M., Language of thought: the connectionist contribution, Minds and
Machines (7), 57, 1997.

Altman, G. T. M., Cognitive Models of Speech Processing, MIT Press,
Cambridge, 1990.

Bengio, Y., Simard, P., and Frasconi, P. Learning long-term dependencies with
gradient descent is difficult, IEEE Transactions on Neural Networks, 5(2), 157,
1994.

Blank, D. S., Meeden, and L., Marsgall, J., Exploring the symbolic/subsymbolic
continuum: a case study of RAAM, in Closing the Gap: Symbolism vs.
Connectionism, Dinsmore, J., Ed., Lawrence Erlbaum Assocuiates, 1992.

Blair, A. D., Scaling-up RAAMs, Tech. Report CS-97-192, University of
Brandeis, 1997.

Cairns, P., Shillcock, R., Chater, N., and Levy, J., Bootstrapping word
boundaries: a bottom-up corpus-based approach to speech segmentations,
Cognitive Psychology, 32(2), 111, 1997.

Carpenter, G. and Grossberg, S., A self-organising neural network for
supervised learning, recognition and prediction, IEEE Communication
Magazine, 38, 1992.

Chalmers, D. J., Syntactic transformations on distributed representations,
Connection Science, 2(1,2), 53, 1990.

Chappell, C. J. and Taylor, J. G., The temporal Kohonen map, Neural Networks,
6, 441, 1993.

Christiansen, M. H. and Chater, N., Toward a connectionist model of recursion
in human linguistic performance, Cognitive Science, (in press), 1999.

Clark, A., Systematicity, structured representations and cognitive architecture: a
reply to Fodor and Pylyshyn, in Connectionism and the Philosophy of Mind,
Horgan, T. and Tienson, J., Eds., Kluwer Academic Publishers, Dordrecht, 198,
1991.

Cleeremans, A., Servan-Schreiber, D., and McClelland, J. L., Finite state
automata and simple recurrent networks, Neural Computation, 1, 372, 1989.

Cottrell, G. W., Bartell, B., and Haupt, C., Grounding meaning in perception,
German Workshop on Artificial Intelligence, 1990.

Deacon, T. W., The Symbolic Species, W. W. Norton & Co. Inc, New York,
1997.

Dorffner, G., "Radical" connectionism for natural language processing,
Proceedings of Spring Symposium on Connectionism, NLP, Standford, 95, 1991.

Elman, J. L., Finding structure in time, Cognitive Science, 14, 179, 1990.

Elman, J. L., Bates, E., Johnson, M. H., Karmiloff-Smith, A., Parisi, D., and
Plunket, K., Rethinking Innates, MIT Press, Cambridge, MA, 1996.

Fodor, J. and Pylyshyn, Z., Connectionism and cognitive architecture: a critical
analysis, Cognition, 28, 3, 1988.

Fodor, J. and McLaughlin, B., Connectionism and the problem of systematicity:
why Smolensky's solution doesn't work, in Connectionism and the Philosophy of
Mind, Horgan, T. and Tienson, J., Eds., Kluwer Academic Publishers, The
Netherlands, 1991.

Gasser, M., Learning distributed representations for syllables, Proceedings of
the 14th Annual Conference of the Cognitive Science Society, 396, 1992.

Grossberg, S., Studies of Mind and Brain, Kluwer Academic Publishers, Boston,
1982.

Hammerton, J. A., Exploiting holistic computations: an evaluation of the
sequential RAAM, Ph.D. thesis, University of Birmingham, UK, 1998.

Haykin, S., Neural Networks, Macmillan College Pub., 1994.

Henderson, J. Connectionist architecture with inherent systematicity,
Proceedings of the 18th Conference of the Cognitive Science Society, La Jolla,
CA, 1996.

Henderson, J. and Lane, P., A connectionist architecture for learning to parse.
Proceedings of COLING-ACL Conference, Montreal, 531, 1998.

Hirshman, E. and Jackson, E., Distinctive perceptual processing and memory,
Journal of Memory and Language, 36, 2, 1997.

Hornik, K., Stinchcombe, M., and White, H., Multilayer feedforward networks
are universal approximators, Neural Networks, 2, 359, 1989.

Hopfield, J. J., Neural networks and physical systems with emergent collective
computational abilities, Proceedings of the National Academy of Sciences,
USA, 79, 2554, 1982.

James, D. L. and Miikkulainen, R., SARDNET: a self-organising feature map
for sequences, in Advances in Neural Processing Systems, Tesauro, Touretzky,
and Leen, Eds., 7, 1995.

Jordan, M. I., Attractor dynamics and parallelism in a connectionist sequential
machine, Proceedings of the 8th Annual Conference of the Cognitive Science
Society, Amherst, MA, 531, 1986.

Jusczyk, P. W., The Discovery of Spoken Language, MIT Press, Cambridge,
MA, 1997.

Kohonen, T., Self-Organisation and Associative Memory. Springer-Verlag, New
York, 1984.

Kwasny, S. C. and Kalman, B. L., Tail-recursive distributed representations and
simple recurrent networks, Connectionist Science, 7(1), 61, 1995.

Lawrence S., Giles, C. L., and Fong, S., On the applicability of neural networks
and machine learning methodologies to natural language processing, Technical
Report UMIACS-TR-95-64 and CS-TR-3479, University of Maryland, 1995.

Miikkulainen, R. and Dyer, M., Natural language processing with modular PDP
networks and distributed representations, Cognitive Science, 15(3), 343, 1991.

Plate, T. A., Distributed representations and nested compositional structure,
Ph.D. thesis, University of Toronto, 1994.

Plaut, D. C., McClelland, J., and Seidenberg, M., Connectionist models of
memory and language, in Levy, J., Bairaktaris, D., Bullinaria, J., Cairns, P.,
Eds., UCL Press Ltd., London, 1995.

Plaut, D. C., McClelland, J., Seidenberg, M., and Patterson, K., Understanding
normal and impaired word reading: computational principles in quasi-regular
domains, Psychological Review, 103, 56, 1996.

Pollack, J. B., Recursive distributed representation, Artificial Intelligence, 46,
77, 1990.

Reilly, R. G., Sandy ideas and coloured days: some computational implications
of embodiment, Artificial Intelligence Review, 9, 305, 1995.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J., Parallel Distributed
Processes, 1&2, MIT Press, Cambridge, MA, 1986.

Searle, J. R., Minds, Brains and Science, Harvard University Press, Cambridge,
MA, 1984.

Seidenberg, M. S. and McClelland, J. L., A distributed, developmental model of
word recognition & naming, Psychological Review, 96, 523, 1989.

Sejnowski, T. J. and Rosenberg, C. R., Parallel networks that learn to pronounce
English text, Complex Systems, 1, 145, 1987.

Servan-Schreiber, D., Cleeremans, A., and McClelland, J. L., Graded state
machines: the representation of temporal contingencies in simple recurrent
networks, Machine Learning, 7, 161, 1991.

Smolensky, P., Tensor product variable binding and the representation of
symbolic structures in connectionist systems, Artificial Intelligence, 46, 159,
1990.

Smolensky, P., The constituent structure of mental states: a reply to Fodor and
Pylyshyn, in Connectionism and the Philosophy of Mind, Horgan, T. and
Tienson, J., Eds., Kluwer Academic Publishers, Dordrecht, 281, 1991.

Sperduti, A., On the computational power of recurrent neural networks for
structures, Neural Networks, 10(3), 395, 1997.

St. John, M. F. and McClelland, J. L., Learning and applying contextual
constraints in sentence comprehension, Artificial Intelligence, 46, 217, 1990.

Stoianov, I. P., Recurrent autoassociative networks and sequential processing,
Proceedings of the International Joint Conference on Neural Networks,
Washington, DC, 1999.

Stoianov, I. P., Nerbonne, J., and Bouma, H., Modelling the phonotactic
structure of natural language words with simple recurrent networks, in
Computational Linguistics in the Netherlands, Coppen, P.-A., van Halteren, H.,
and Teunissen, L., Eds., Rodopi, Amsterdam, 77, 1997.

Stoianov, I. P., Stowe, L., and Nerbonne, J., Connectionist learning to read aloud
and correlation to human data, 21st Annual Conference of the Cognitive Science
Society, Vancouver, 1999.

Tabor W., Juliano, C., and Tanenhaus, M. K, Parsing in an dynamical system:
an attractor-based account of the interaction of lexical structural constraints and
sentence processing, Language and Cognitive Processing, 1997.

Tsoi, A.C. and Back, A. D., Locally recurrent globally feedforward networks: a
critical review of architectures, IEEE Transactions on Neural Networks, 5, 229,
1994.

Wilson, W. H., Tower networks and letter prediction, Cognitive Modelling
Workshop of the 7th Australian Conference on Neural Networks,
http://psych.psy.uq.oz.au/workshop.html, 1996.

	RECURRENT NEURAL NETWORKS
	Table of Contents
	Chapter 9
	RECURRENT AUTOASSOCIATIVE NETWORKS: DEVELOPING DISTRIBUTED REPRESENTATIONS OF HIERARCHICALLY STRUCTURED SEQUENCES BY AUTOASSOCIATION
	I. INTRODUCTION
	II. SEQUENCES, HIERARCHY, AND REPRESENTATIONS
	III. NEURAL NETWORKS AND SEQUENTIAL PROCESSING
	A. ARCHITECTURES
	B. REPRESENTING NATURAL LANGUAGE

	IV. RECURRENT AUTOASSOCIATIVE NETWORKS
	A. TRAINING RAN WITH THE BACKPROPOGATION THROUGH TIME LEARNING ALGORITHM
	1. Forward Pass
	2. Backward Through Time Pass

	B. EXPERIMENTING WITH RANs: LEARNING SYLLABLES

	V. A CASCADE OF RANs
	A. SIMULATION WITH A CASCADE OF RANs: REPRESENTING POLYSYLLABIC WORDS.
	B. A MORE REALISTIC EXPERIMENT: LOOKING FOR SYSTEMATICITY

	VI. GOING FURTHER TO A COGNITIVE MODEL
	VII. DISCUSSION
	VIII. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

	© 2001 by CRC Press LLC: © 2001 by CRC Press LLC

