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I. INTRODUCTION 
 
    In spite of the growing research on connectionist Natural Language 
Processing (NLP), there are still a number of challenges to be solved, for 
example, the development of proper linguistic representations. Natural language 
is a dynamic system with underlying hierarchical structure and sequential 
external appearance. Therefore, NLP systems need an adequate hierarchical 
system of linguistic representations. What we roughly distinguish as letters, 
words, sentences, etc., needs to be encoded in a proper and systematic manner, 
permitting direct, “holistic” operations over the resultant abstract representations 
rather than over external sequential forms [Chalmers, 1990, Blank, 1992, 
Hammerton, 1998]. Those representations should be static, unique 
characterizations of the original objects, which is necessary for reproducing 
them back into their sequential form. They should allow holistic transformations 
and associations to representations from other modalities – visual, effectual, etc. 
Natural language is not the only structured process where static representations 
at different levels are necessary for modeling: consider composite actions, 
dynamic visual processes and so on. We find other examples also outside of 
cognitive modeling, such as modeling economic processes and physical 
phenomena. 
    A widely used practice in connectionist natural language modeling is 
localistic and handcrafted feature based encoding [Seidenberg, 1989, Elman 
1990, Plaut, 1996, Henderson, 1998], which restricts the capacity of the 
processing system. It would be preferable that those representations evolve in 
the course of experiencing the language in its external sequential form, which is 
in accordance with our capacity to learn any language without any prior 
knowledge of it. A first attempt to build such representations was suggested by  
Pollack, [1990]. He extended the static Multilayered Perceptron [Rumelhart, 



1986] to the Recursive Auto Associative Memory (RAAM) model, which 
develops compact distributed representations of the static input patterns through 
an autoassociation. RAAM was further extended to a Sequential RAAM 
(SRAAM) for sequential processing. Different implementations of the latter 
model had variable success even when applied to trivial data [Chalmers, 1990, 
Blank, 1992, Blair, 1997, Kwasny, 1995, Hammerton, 1998]. 
    The development of global-memory recurrent neural networks, such as the 
Jordan Recurrent Networks [Jordan, 1986] and the Simple Recurrent Networks 
(SRN) by Elman [Elman, 1990] stimulated the development of models that 
gradually build representations of their sequential input in this global memory. 
The Sentence Gestalt Model [St. John, 1990] gradually encodes the input words 
into a gestalt and questions it further for roles with another static network. 
Similar architecture under the name “Movie Description Network” was 
presented by Cottrell, Bartell, and Haupt [Cottrell, 1990] which was trained to 
gather representations of the sequential visual input (a movie) and describe it 
with some simple language. A more recent implementation of SRAAM by 
Kwasny and Kalman [Kwasny, 1995] employs SRNs in order to build 
representations of the sequential input. 
    In this chapter, I propose a novel connectionist architecture designed to build 
and process a hierarchical system of static distributed representations of 
complex sequential data. It follows upon the idea of building complex static 
representations of the input sequence, but has been extended with the ability to 
reproduce these static representations in their original form, by building unique 
representations for every input sequence. The model consists of sequential 
autoassociative modules – Recurrent Autoassociative Networks (RANs). Each 
of these modules learns to reproduce input sequences and, as a side effect, 
develops static distributed representations of the sequences. If requested, these 
modules unpack static representations into their original sequential form. The 
complete architecture for processing sequentially represented hierarchical input 
data consists of a cascade of RANs. The input tokens of a RAN module from 
any but the lowest level in this cascade scheme are the static representations that 
the RAN module from the lower level has produced. The input data of the 
lowest level RAN module are percepts from the external world. The output of a 
module from the lowest level can be associated with an effector. Then, given a 
static representation set to the RAN hidden layer, this effector would receive 
commands sequentially during the unpacking process. 
    RAN is a recurrent neural network which conforms to the dynamics of natural 
languages. Also, RANs produce representations of sequences and interpret them 
by unpacking back to their sequential form. The more extended architecture – a 
cascade of RANs – resembles the hierarchy in natural languages. Furthermore, 
given representative training environment, this architecture has the capacity to 
develop the distributed representations in a systematic way. The question 
whether connectionist models can develop systematic representations has been 
discussed ever since the challenge put by Fodor and Pylyshin [Fodor, 1988] that 
only classical symbolic systems can guarantee systematicity (see Aydede [1997] 
for review). Connectionist systems claimed to meet this challenge are the 



 

RAAM and SRAAMs, and the Smolensky’s tensor products [Smolensky, 1990] 
among others. Later in this chapter I will argue that RANs provide an account of 
systematicity, too. Therefore, I believe that the RAN and the RAN cascade can 
participate in a more global cognitive model, where the distributed 
representations they produce are extensively transformed and associated. 
    This chapter continues with a discussion of the hierarchy in dynamic data in 
the next section. A review of connectionist sequential processing is given, after 
which the RAN model is presented in detail in section four. In the same section 
a small RAN example is presented for developing representations of syllables. 
The cascade model is given in section five, where a two-level representation of 
words is presented too. Next, I discuss some cognitive aspects related to RAN 
and how this architecture might provide some answers for cognitive modeling. 
After a discussion of RAN capacities and the representations it develops in 
section seven, the chapter will finish with a conclusion. 
 

II. SEQUENCES,  HIERARCHY, AND 
REPRESENTATIONS 

 
    Static objects and dynamic processes are mutually interconnected. On one 
hand, dynamic processes are ultimately composed of sequences of static objects 
but, on another hand, the same dynamic processes are generated by single 
objects and might be represented by these objects. This is more explicit in 
discrete dynamic objects, such as sequences composed of discrete data. The 
sequences are entities by themselves and consist of strings of tokens, but these 
sequences might build even more complex sequences. Therefore, sequential data 
might have some underlying structure more complex than linear: that is, there 
might be some hierarchy within a long sequence composed of basic tokens. For 
example, in natural languages, there are basic tokens – phonemes or letters; 
next, there are words consisting of sequences of letters or phonemes, sentences 
consisting of sequences of words, and so on (1). That is, in natural language, 
dynamic objects are part of other, more complex dynamic objects. Hierarchical 
objects naturally evolved during evolution are better suited to represent, process, 
and transmit information, than linear objects. Another advantage of this 
hierarchy is the redundancy among the linguistic objects, which makes the 
transmission of the information content in this sequence more reliable. 
 
  ( ( J o h n ) ( l o v e s ) ( M a - r y ) )                                      (1) 
 
    Sequential data that have such composite structure might have very long 
external representations, that is, representations consisting of rows of lowest 
level tokens. For example, in natural languages average sentences have some 50 
characters and the current chapter has more than 15,000 characters. This data is 
difficult to represent and process in this external form. It has structure and I 
believe we organize and remember the language we experience in accordance 
with this structure. In the natural languages, for example, there are mechanisms 
for referring to some substructures – e.g., definite markers and pronouns. When 



it comes to processing those structures as single entities, we prefer to use 
internal representations of those structures rather than their external forms. 
Definite noun phrases and pronouns are just the external expressions of those 
internal representations and we use them very often. Single internal 
representations are much more economical to use when associating linguistic 
expressions to visual objects, actions, etc. Those associations are made between 
the internal representations of those complex objects rather than between their 
external representations. Therefore, if we want to model a cognitive system 
dealing with such a variety of data, it should properly organize a system of such 
representations.  
    Similar systems of representations naturally occur in symbolic approaches 
when modeling cognition: the external terminal tokens are organized by a 
system of rules with the help of internal non-terminal nodes, which in turn are 
similar to the internal static representations discussed. People still argue that 
because of this organization of the symbolic approach and its unlimited 
representational capacity, cognitive modeling should be based on the classical 
“language of thoughts” [Fodor, 1988], meaning the use of syntactically 
structured representations and rules defined over those representations. 
Connectionists object to this approach, mainly because of the so-called symbol 
grounding problem – the problem of explaining the relations between 
representations (symbols) and objects in the environment where a cognitive 
agent exists [Searle, 1984, Dorffner, 1991]. Connectionist  architectures are 
particularly good at associating low level data – percepts or effectors – to higher 
level processing systems. Another problem concerning the symbolic approach is 
related to the "hardness" of its rule-based logical computations [Smolensky,  
1991]. Models should accommodate the "softness" of cognition, as 
connectionism does, by processing data in a more fuzzy, stochastic manner. 
    Nevertheless, connectionism is still looking for an answer to the question of 
how to organize the information coming from the external sensors. Some of the 
available connectionist solutions are still not satisfactory. Although the 
implementation of the sequential RAAM proposed by Kwasny and Kalman 
[Kwasny, 1995] was promised to provide a better solution than the standard 
sequential RAAM, Hammerton [Hammerton, 1998] found that in practice this 
model did not learn even trivial data well. Therefore, the door is still open for 
other more optimal solutions and, in section four of this chapter, I propose 
another model: a cascade of Recurrent Autoassociation Neural Network to build 
a system of such representations. 
    In the next section I will present some details about a few connectionist 
architectures for sequence processing, but before that, I will outline more 
explicitly some features that connectionist systems and distributed 
representations must meet. 
    First, these representations should develop emergently, in the course of 
experiencing the external training data. Different levels of representations 
should develop consequently, one after another, possibly refining the 
representations from the lower levels. The lowest level of representations should 
be perceptual in case of dealing with sensors or effectual when producing 



 

actions. This gradual representation development, together with latter 
associations to representations from other modalities, solves the symbol 
grounding problem. Multi-modal associations should develop in simultaneously 
processing different modalities, for example, linguistic and visual. 
    Next, in order to meet the cognitive modeling requirements [Fodor, 1988], 
these representations should have a kind of structure allowing a combinatorial 
syntax, not necessarily explicit as in the classical symbolic systems, but 
understandable for other connectionist modules. This requirement is necessary 
for emergence of systematicity among those representations and for holistic 
computations [Hammerton, 1998, Smolensky, 1991]. The latter are structural 
operators acting upon the whole complex static representations, rather than on 
the token parts of the structure (sequence). Systematicity is the key to higher-
order cognitive processes. 
    A failure to accommodate these features, when modeling language, results in 
models with limited capacities and no lasting implications, which is typical for 
many of the experiments reported that feature, for example, static language 
processing and hand-coded data encoding. Neither of those two popular 
approaches is in accordance with the spirit of natural language. We acquire 
language sequentially, hearing sounds and building or recognizing gradually a 
number of objects or temporal structures, such as, words, phrases and sentences. 
Similarly, when thinking, we produce and articulate language sequentially 
(possibly silently) by translating those structures back into temporal events, 
finishing this process by executing motor commands. The number of those 
structures is enormous and a designer's hardwired encoding does not seem 
plausible at all. Also, the number of existing languages and our competence to 
learn any of them implies that those objects should develop constantly during 
the communication process, from the early childhood. 
 

III. NEURAL NETWORKS AND SEQUENTIAL 
PROCESSING 

 
A. ARCHITECTURES 
    For more that a decade, neural network research has been considered 
important not only because it makes efforts toward explaining our intelligence, 
but also because it provides effective working models for solving a wide range 
of practical problems. Numerous researchers (e.g., [Rumelhart, 1986, Grossberg, 
1982, Kohonen, 1984, and Hopfield, 1982]) established the theoretical 
background in this field. The models they have developed – the Multilayer 
Perceptron trained with supervised Backpropagation learning algorithm, the 
ART & ART-Map, the self-organizing Kohonen Maps and the Hopfield 
Networks, correspondingly – were theoretically [Hornik, 1989] and 
experimentally [Lawrence, 1995] proven to be capable of solving many static 
tasks. Although the response of some of these models to the input pattern 
depends on their internal dynamics (Hopfield and Grossberg Neural Network 
models), they are not endowed with the capacity to process dynamic or 
sequential patterns. Hopfield NNs are designed to search iteratively for one of 



the encoded attractors. ART models develop localistically represented 
categories, which restricts their capacity when processing large variety of 
sequences, even with some special encoding schemes. 
    Problems such as language processing and robot control, which are essentially 
dynamic, pushed the connectionist investigations toward searching for NN 
models capable of handling such dynamic data. The first NN models were still 
static, encoding limited dynamics by means of a window, shifting over 
sequential data. The NETtalk model [Sejnowski, 1987] was trained to produce 
phonetic representations of words, where the context required to map the current 
letter was encoded within a shifting window of size seven – three letters on the 
left and three letters on the right side of the letter to be pronounced. This is an 
example of the so-called Finite Input Response filter, where the system response 
to a given input is limited to a predefined number of steps. 

 
Figure 1.  Simple Recurrent Network that "reads" words, that is, maps orthographic to phonologic 
lexical representations. 
 
    The first real recurrent models were extensions of the Multilayer Perceptron 
with recurrent connections. They implement another type of dynamics – Infinite 
Input Response – where the input at a certain time influences the system 
response until the dynamics are externally reset. Several recurrent versions of 
the MLP were developed. In one of them [Jordan, 1986], the network state at 
any point at a time is a function of the input at the current time step, plus the 
state of the output units at the previous step. In another recurrent model 
proposed by Elman [Elman, 1990] – Simple Recurrent Networks (SRNs) – the 
network's current state depends on the current input and its own internal state, 
which is represented by the activation of the hidden units in the previous 
moment – see Fig.1. This internal state is considered as a context that provides 
information for the past. The SRNs were successfully employed for many 
linguistic and other tasks where the objects have sequential nature [Reilly, 1995, 
Wilson, 1996, Cairns, 1997, Stoianov, 1998, Stoianov, 1999]. Simple Recurrent 
Networks were initially trained by Elman with the standard backpropagation 
(BP) learning algorithm, in which errors are computed and weights are updated 
at each time step. While more biologically motivated because of the local-in-
time weight adjustments, the BP is not as effective as the backpropagation 
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through time (BPTT) learning algorithm, in which error signal is propagated 
back through time and temporal dependencies are learned better. A detailed 
technical description of the SRNs and the BPTT algorithm is presented in 
section four. 
    The static self-organizing Kohonen Map neural network was extended with 
recurrent connections too, which made the network responses dependent on both 
the current input and the last neural map activations. Models following this idea 
are the Temporal Kohonen Map (TKM) by Chappell and Taylor [Chappell, 
1993] and the Self-Organizing Feature Map for Sequences (SARDNET) by 
James and Miikkulainen [James, 1995], among others. There are still other 
connectionist architectures able to process dynamic data, usually by inducing 
dynamics in existing static models with recurrent connections among neurons 
(global memory) or implementing dynamics in neurons (local memory). The 
latter types of architectures vary with regard to the place of the dynamics – in 
the weights, in the activation function, or both [Lawrence, 1995, Tsoi, 1994]. 
    A common restriction on most of the recurrent models is that the input data 
they process has to be linear in the temporal dimension. These networks are able 
to recognize and classify the temporal sequences they have been trained on 
(SRNs and Jordan Networks) or they have clustered during the self-organization 
process (TKM and SARDNET), but they can not extract more complex temporal 
features or substructures. In addition, as the length of the sequences becomes 
greater, the performance worsens. This problem has been recognized by a 
number of authors. Bengio, Simard, and Frasconi [Bengio, 1994] showed that 
earning long-distance dependencies is difficult even for very simple tasks (long 
strings of a few basic symbols). Miikkulainen and Dyer [Miikkulainen, 1991] 
emphasized that the required network size, the number of training examples, and 
the training time become intractable as the sequence temporal complexity 
grows. 
 
B. REPRESENTING NATURAL LANGUAGE 
    As I discussed earlier in the previous section, an important moment when 
dealing with sequences is the ability to develop a hierarchical structure of 
representations of the processed sequences. This question is especially apparent 
in natural language modeling. In earlier connectionist models, the lexemes were 
represented in a static manner with some artificial and not always effective 
encoding schemes (e.g., in Seidenberg [1989] and Plaut [1996]), and sentences 
consisted of some artificial and very limited in number words [Elman, 1990, 
Miikkulainen, 1991, Tabor, 1997]. When modeling some other problems, for 
example learning lexical phonotactics [Stoianov, 1998, Stoianov, 1999] or 
learning the mapping from orthographic to phonetic representations for certain 
language [Stoianov, 1999], one does not really need static representations of 
words, but in other cases, such as holistic computations or static associations, 
this is obligatory. To my knowledge, there are no approaches that model 
people’s full capacity to deal with structured dynamic data using 



connectionism.1 People associate the sounds they hear with visual patterns or 
actions. Similarly, they associate actions with words and sentences. All of these 
objects are realized as sequences of small parts, spanning time. In order to treat 
them as single entities, we shall enclose them and represent them statically. This 
naturally leads to a search for methods packing sequences into static 
representations and unfolding them back into their sequential form. 
    High-level connectionist language modeling has focused on small illustrative 
problems: as the learning is restricted to simple grammars and a very limited 
number of words [Elman, 1990, Tabor, 1997] or word TAGs [Henderson, 1998]. 
I attribute this not to the connectionist models’ inability to learn complex 
dependencies, but rather to the absence of adequate concepts of how to develop 
high-level distributed representations. Thus far, representations have been 
designed mostly by hand, either feature based or even simpler – localistically. 
This works well at the bottom stages of language processing, where a very 
limited number of characters and phonemes constitute words, but not at higher 
linguistic levels, where large number of words, phrases, sentences build more 
complex structures. The variety at those levels is enormous. How can 
representations be developed for such objects? Hand-crafting here simply does 
not work. Some cognitive scientists suggest “tensor products” [Smolensky, 
1990], which expand with the increase of the data complexity. Others suggest 
syntactic structures to be represented both in time and space (Temporal 
Synchrony Variable Binding [Henderson, 1998], but these solutions do not 
produce fixed-sized static representations for input objects of variable 
complexity. Therefore, others support the more plausible idea of static, fixed-
size, emergently developed connectionist “symbols.” But how can such 
representations be developed? 
    A significant attempt toward a more systematic way of representing structures 
and sequences was the development of the Recursive Auto-Associative Memory 
(RAAM) by Jordan Pollack [Pollack, 1990]. This architecture is another simple 
extension of MLP. The RAAMs auto-associate the input data, which is a 
concatenation of two patterns, and use the activations of the hidden layer 
neurons to represent this concatenation (Fig. 2a). This is equivalent to the 
learning of a simple symbolic rule. When applied recursively, that is, when 
using the developed representations as an input for another compression, RAAM 
can learn a grammar and develop representations for the non-terminal symbols 
in this grammar. This makes RAAM a connectionist implementation of a 
symbolic processor. However, theoretical problems arise from connectionist 
point of view, due to the need for an external symbolic mechanism to store 
representations. Also, the training process is immensely difficult due to the 
recursive reuse of the ever changing representations in the course of the training 
[Kwasny, 1995]. 
    RAAMs were theoretically extended to model a stack, which made the model 
capable of learning and representing sequences – Sequential RAAM (SRAAM). 
However, this model needs an external stack during  the training, which is a step 
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back from connectionism, as commented earlier. It is difficult for SRAAM to 
learn even trivial structures and sequences, which makes it an impractical 
model. Also, RAAM produces representations at every time step, to be reused as 
inputs, while dynamic objects with uniform structure need single static 
representations. In that respect, producing single representations of a whole 
object is more economical – representations at certain level should be produced 
only if there is a necessity of using them. In natural language, producing static 
representations of items such as syllables, words and sentences is more useful 
than producing representations of arbitrary combinations of letters, words, etc. 
Syllables are involved in morphological transformations. Words are associated 
with visual patterns and actions; sentences have more concrete semantic 
meanings. We know that those linguistic objects are distinguished because they 
have certain functions, and we make use of them. On the contrary, producing 
representations of arbitrary combination of mixed items is not so useful. 
 
 

 
 
 
 
 
 
 
 

 
 
  (a) (b) 

 
Figure 2.  (a) RAAM: left and right input tokens are autoassociated, which results in a single 
compact representation of the input tokens at the hidden layer. (b) SRAAM: based on RAAM and 
SRN. (I) Compression: tokens apply one at a time to the input and they are autoassociated, together 
with the previous state of the context. This results in ever more compact representation of the input 
sequence at the hidden layer. (II) Decompression: a compact representation applies to the hidden 
layer and produces the last token from the encoded sequence and the previous state of the stack, 
which in turn is applied again to the hidden layer. 
 
    Another implementation of the sequential RAAM was presented by Kwasny 
and Kalman [Kwasny, 1995]. Their SRAAM combines the architecture of the 
Simple Recurrent Networks and the RAAM idea for autoassociation (Fig. 2b). 
The stack that the RAAM requires during the learning is encoded in the 
contextual memory of the SRN. This makes the training faster and easier. 
Further, Kwasny and Kalman suggested a variation of the mean square error 
function that boosts small differences between the targeted and resulted neuron 
activations. When combined with a modified conjugate gradient training 
algorithm, this reportedly improved the learning. And still another important 
contribution in this work was a method for representing recursive structures – by 
means of symbolic transformation of any tree structure into a binary tree, which 
can easily be transformed to a sequence. Those two operations are reversible, 
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which allows reconstructing the original structures from their sequential 
representations. 
    Exploring holistic computations, Hammerton [Hammerton, 1998] attempted 
to recreate the Chalmers [Chalmers, 1990] experiments using the Kwasny and 
Kalman SRAAMs, which was promised to learn faster and more reliably. For 
this purpose, he used the corpus from Chalmers, [1990] –  a small corpus 
containing 250 sequences built out of 13 distinct items. Standard 
backpropagation  learning algorithm and two variations of the Kwasny and 
Kalman training algorithm were utilized. Hammerton reported that, with the best 
learning algorithm (the noted earlier modified error function and the conjugate 
gradient training), the network encoded and decoded up to 85% of the 130 
training and 87.5% of the remaining 120 unseen testing sequences (Hammerton, 
p. 43), which departs from the reported perfect learning by Kwasny and Kalman 
(with SRAAM on a more complex task) and Chalmers (with RAAM on the 
same task). Therefore, Hammerton concluded that “the SRAAM is not as 
effective a vehicle for holistic symbol processing as it initially appeared.” 
    Also, there are two other problems when those models are used to develop 
sequential representations. First, as I said earlier, they produce static 
representations at every time step, which is more useful for representing 
recursive structures than sequential data. Next, due to the stack-based memory 
organization, the input sequences are reproduced inversely. Therefore, one 
would need another external mechanism to reverse those sequences. The 
solution I propose in the next section is based on an autoassociation and SRN, 
too, but it implements a queue rather than a stack mechanism, which leads to 
reproducing the sequences in the right order. 
    The first attempt to employ recurrent architectures for producing a 'gestalt' or 
a single static representation of a sequence of words (statically represented) was 
made by St. John and McClelland [St. John, 1990] – the Story Gestalt Model. 
This model comprises two networks – a Jordan Recurrent Network which 
gradually processes the input sentence and uses the activations of the output 
layer to represent the sequence presented as input thus far. This compact 
representation was called gestalt. The second NN is a static MLP, trained to 
extract some information of interest for a sequence represented with its gestalt as 
input to the MLP (Fig. 3). Another similar model, the Movie Description 
Network by Cottrell, Bartell, and Haupt [Cottrell, 1990] uses the Simple 
Recurrent Networks to develop representations of simple movies presented as 
input to the SRN. A second SRN produces a verbal description of the input 
movie. These are specific, rather than universal, models; they produce 
representations which are not necessarily unique and can not be involved in a 
hierarchical system of representations of composite data. 
    The capacity of SRN to process sequential data was exploited in another 
approach, aimed at obtaining static representations of syllables [Gasser, 1992]. 
In this model, one recurrent network was trained on a sequential mapping – an 
input train of phones to an output train of patterns, which are concatenations of  
 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.   Story Gestalt Model by St. John. In this architecture, a Jordan recurrent network (1) 
gradually produces representations of the input sequence. Next, a MLP (2) extracts from these 
representations some of the constituents of the sentence. 
 
the same phones and a static lexical representation of the word the phones 
belong to. The recurrent layer activations at the end of each syllable were 
recorded and used by a second  network that was trained to unpack these 
representations to their original sequential form. Having originally the task of 
word recognition, this scheme requires that both phones and lexical 
representations be offered during training. Static syllable representations are 
resulted as a side effect. This approach takes a direction which is opposite to the 
gradual building of language representations. Instead of building word 
representation, it does the opposite – it produces syllable representations in the 
course of word recognition.  
    The approach presented here takes another direction, consistent with the 
principle of gradual language evolution and learning, by processing and 
evolving language items of increasing complexity. Another problem with the 
solution presented by Gasser is that because the packing and unpacking 
processes are split, this method requires the training sequences during both 
learning tasks, which is less plausible and increases the learning time. The 
sequential autoassociative task in my approach requires only a short-term 
memory to keep the sequence to be presented for a second time at the output 
layer and the system only has to perceive the input the environment provides 
throughout the learning (which may last indefinitely: we can keep the learning 
going non-stop). 
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IV. RECURRENT AUTOASSOCIATIVE NETWORKS 
 
    In this section I will present an architecture designed to develop and make use 
of static, implicitly structured, interpretable representations of sequences. The 
proposed model is an extension of the Simple Recurrent Networks [Elman, 
1990]. Recall that SRN is a recurrent neural network architecture based on the 
feedforward Multi Layered Perceptron with a global context memory storing the 
recent activation of the SRN hidden layer,2 which is fed back as an additional 
input to the hidden layer itself (Fig. 1). The context layer has the capacity to 
encode all the information for the input provided to the network, since the 
beginning of the sequence. Hence, if we reset the context layer and apply a 
sequence, at every moment the hidden layer and the context layer (after a short 
delay) will contain static distributed information for this sequence, which as we 
will see later is not necessarily a representation of the input sequence, but rather 
depends on the learning task.  
    There are different possibilities to obtain static representations of the input 
sequence. One of them is just to use the context layer activation after the whole 
sequence has been processed in an item prediction task – similarly to the gestalt 
models by St. John and McClelland [St. John, 1990] and Cottrell, Bartell, and 
Haupt [Cottrell, 1990]. The networks there were trained to predict the next input 
token, which forces the networks to learn information specific to this particular 
task, but is insufficient for developing complete representations of the input 
sequences. We need an organization or a learning task that guarantees that the 
distributed representations developed by the network (1) contain all information 
about the sequence, (2) are unique for each sequence, and (3) contain enough 
information to reproduce the sequence, which is a consequence of (1) and (2). 
    Representations satisfying the above requirements evolve naturally, if we 
train the network on an autoassociation task, that is, to reproduce the input 
sequence. But then, there is another problem – the timing, when to present the 
input and the output patterns. One can try to reproduce the current input pattern 
immediately, but this will not produce any useful hidden layer representations – 
there will be no need of a context for this task. A delay of one step, or two, or 
some other fixed number of steps would train the network to develop 
information specific for the prediction task, but the representations would still 
not necessarily satisfy the conditions 1 – 3. In order to produce such 
representations, the network has to be trained on an autoassociative task in 
which the input sequence starts to be reproduced after the whole input sequence 
has been represented to the input, followed by a unique pattern, a trigger, 
indicating the end of the sequence. This way, if the training set contains 
sequences, which in turn contain another sequence in the training corpus as an 
initial sub-sequence, then the network will still produce distinct representations 
for both sequences. The static representation of the sequence will be just the 

                                                           
2 The term “layer activation” denotes a numerical vector with the activations of 
all neurons in that layer. 



 

hidden layer activations at the moment when the trigger has been applied and 
processed by the network (Fig. 4). 
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Figure 4. Recurrent Autoassociative Network: (a) architecture and (b) functional temporal unfolding.  
Operations: (I) input sequence packing (time steps 0–3), (II) obtaining or setting a static 
representation (time step 3), and (III) unpacking the static representation to its sequential form (time 
steps 3-6). 
 
    There are some other details to be specified, namely the input pattern after the 
trigger has been applied to the input layer, the target output pattern before that 
and the target output pattern after the sequence has been reproduced. The target 
output pattern after the reproduction of the whole input sequence is another 
special pattern, labeled end-of-sequence, which will signal that the whole 
sequence has been produced. The input patterns after the trigger might be either 
the same trigger, repeatedly provided until the network produces the end-of-
sequence pattern, or, what I found more helpful to the network in learning this 
difficult task, the last ouput pattern provided to the inner larger. The latter 
approach provides guiding information about how far the network has 
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progressed in reproducing the sequences, and experiments have demonstrated 
that, indeed, it is easier for the network to learn the task with this approach. 
    With regard to the output target patterns at the time when the sequence is still 
being provided to the input, the learning algorithm used – backpropagation 
through time [Haykin, 1994] – does not necessarily need target patterns at the 
earlier moments, provided that an error signal is being propagated back through 
time. Indeed, the sequential autoassociative task provides such an error, which 
originates in the second phase of the autoassociation (Fig. 4, step III).  
    Another possibility is to train the network at the same time on a prediction 
task. First the network produces its anticipations about the coming patterns. 
Next, it reproduces the whole sequence using no external input, but only what 
the network has encoded at the context layer, perhaps reusing the produced 
output pattern as input. The latter approach is more plausible considering what 
each of us has observed when listening to a speech in a noisy environment, that 
we use anticipations in interpreting that speech. In such a noisy environment, 
having received some initial context, the network can produce the most probable 
sequence for this left context and next to produce the static representation for 
this sequence by presenting the triggering pattern. Both approaches were tested, 
but in the latter case the performance was worse, which I attribute to the higher 
computational complexity of this joint task. The network in the second approach 
has to learn two tasks, which makes the learning harder. When using the first 
approach, the network learns the autoassociative task faster and with fewer 
errors. The first approach satisfies the above outlined requirements, concerning 
the representations produced, and therefore it was used in the experiments 
reported on here. 
    In summary, by training a recurrent neural network on an autoassociation task 
as described above with a training corpus containing a set of sequences, the 
network learns to produce static distributed representations of these sequences. 
The hidden layer activations, at the moment the triggering pattern is applied to 
the input and processed by the network, are used for this purpose. The static 
representations for each input sequence are unique due to the specific setting of 
the autoassociative task. After successful training, a RAN network has two 
functions: firstly, to generate the static representation of a given input sequence 
(Fig. 4: steps I and II) and  secondly, to reproduce the original sequential form 
of a static representation, when the hidden layer is set to the static 
representations (Fig. 4: steps II, III). 
 
A. TRAINING RAN WITH THE BACKPROPOGATION 
     THROUGH TIME LEARNING ALGORITHM 
    The RAN (Fig. 4) and the SRN (Fig. 1) models have the same architecture 
and share similar feedforward processing steps and learning algorithms. 
However, when SRNs are trained on prediction task they can also be trained 
with the standard error backpropagation algorithm, while RANs can only be 
trained with backpropagation through time learning algorithm (Haykin 1994), 
because in the first feedforward processing phase (Fig. 4, phase I), there is no 
error signal originating at the output layer and backpropagated through the 



 

network, but only error signal computed in the second phase (Fig.4, phase III) 
and backpropagated through time. With regard to this, any other learning 
algorithm that backpropagates error signal through time can be used, too. What 
is important, when using BPTT to train RANs, is to set properly the sequence of 
input-output training data, according to the scheme outlined earlier in this 
section. The BPTT learning algorithm is generally known to the potential 
readership, but for completeness, it will be described in this subsection. 
    SRNs have two working regimens – a utilization of a trained network and 
network training. The first one is simply applying a forward pass, where the 
current input signal is propagated forward throughout the network and the 
current context layer activation is used. After each forward step, the hidden layer 
activation is copied to the context layer, to be used later. The network utilization 
is the same as the forward step in the BPTT, which in turn is described in the 
next section. The BPTT learning algorithm itself is more complicated. It 
includes: firstly, a forward pass (2-5) for all input tokens, keeping the network 
activations in a stack; secondly, a backward through time pass (6-9), where the 
errors are computed at the output layer and backpropagated through the network 
layers and through time, and thirdly, updating the weights with the accumulated 
weight-updating values (10). During the second step, at each time moment but 
the last one, a future error is used, processed and backpropagated further 
through time. 
 
1. Forward Pass 
    In the following description, |IL|, |HL|, |CL|, |OL| stand for the size of the 
input, hidden, context and output layers, correspondingly. The input signals 
provided to the hidden layer neurons and output layer neurons are noted as 
netH

i(t) and netO
l(t). Next, inj(t), cnk(t), hni(t) and onl(t) stand for the activations 

of the j-th input, k-th context, i-th hidden and l-th output  neurons at time t. And 
finally, wH

ij , w
H

ik , and wO
li are the weights of the connections between j-th input 

neuron and i-th hidden neuron, k-th context neuron and i-th hidden neuron, and 
i-th hidden neuron and l-th output neuron, respectively. For convenience, the 
bias for all layers is encoded as an extra input neuron (j=0; i=0) with constant 
activation 1. The activation function f(.) is of sigmoidal type – the logistic 
function or the hyperbolic tangent function.  
    The items of the training/testing sequence S=[c1c2…c|S|] are referenced with 
an index t, set to zero in the beginning of the sequence processing. Also, before 
applying a new sequence, the context layer is reset by setting all context neurons 
cnk(t=0) to zero (k=1…|CL|). The sequences are presented to the network one 
token ct at a time. For each token, a forward pass is processed. Firstly, the 
hidden layer is activated in accordance with (2) and (3): 
 

netH
i (t) = Σ j= 0…|IL| w

H
ij inj(t)  + Σ k= 1…|CL|  w

H
ik cnk(t)                    (2) 

                      hni (t) = f (netH
i(t))                                                                         (3) 

 



After the activation of the hidden neurons, their activation values are copied to 
the context neurons. Next, the signal is propagated further to the output layer, by 
activating all neurons at the output layer: (4,5). 
 
 netO

l (t) = Σ i= 0…|HL| w
O

li hni (t)                                                              (4) 
 onl (t) = f (netO

l (t))                                                                               (5) 
 
    Specifically for the RANs, if the forward pass is a part of the BPTT learning 
algorithm, a training sequence S of input/output patterns according the scheme 
in Fig. 4b is built. On another hand, if the network is used for packing only, the 
static distributed representation of a sequence being applied to the input layer is 
the activation of the hidden layer at the moment when the delimiter pattern has 
been processed. In turn, in order to unpack (decode) the static representation of a 
sequence, it is applied to the hidden layer and propagated forward; the resulted 
output pattern is the first element of the sequence. Next, this output pattern is 
provided as an input to the network and propagated forward, by using the last 
hidden layer activation as a context. This process is repeated until a pattern 
recognized as a delimiter pattern is produced at the output layer. 
 
2. Backward Through Time Pass 
    The second step of the BPTT learning algorithm for a given training sequence 
is propagating the error signal back through the network and time. We suppose 
that the forward steps for each token in the sequence are already done, keeping 
the activations and the target patterns in a stack. Next, error and weight updating 
values are computed in an earlier time cycle, that is, starting from the last token. 
Firstly, error deltas at the output layer and the updates of the weights connecting 
the hidden layer to output layer are computed with (6) and (7). Note, that S 
stands for the whole training sequence (the original sequence presented at the 
input layer and targeted later at the output layer). Also, τ denotes a global time 
index and ∆w(τ) stands for the accumulated ∆w(t) for all items from the current 
sequence. 
 
 δO

l (t)  = f ′ (netO
l (t)) ( Cl (t) – onl (t)  )                                                 (6) 

 ∆wO
li(τ) = η. Σt=1 … |S| δO

l (t) hni(t)                                                         (7) 
 
In (6), Cl(t) denotes the desired activation of the l-th output neuron (l=1…|OL|) 
at time t. Provided that the activation function f(x) is the logistic function f(x) = 
(1+e(-x))-1, the derivative of f(x) is f ′(x) = x(1-x). Next, deltas and updating 
values of the weights connecting the hidden layer to the input and the context 
layers are computed in accordance to (8) and (9): 
 
 δH

i(t) = f ′(netH
i(t)) [ Σl=1…|OL|w

O
liδO

l (t) + Σk=1…|CL|w
H

ikδH
k (t+1) ]        (8) 

 ∆wH
ij(τ) = η  Σt=1…|S| δH

i (t) nj(t-1)                                                        (9) 
 
where i = 1 … |HL|,  j = 0 … (|IL| + |CL|) and n(t) is a joined vector containing 
both in(t) and cn(t). The second sum in (8) represents the  context layer delta-



 

term δk
C(t), computed by backpropagating the delta δH

i(t+1) through the weights 
connecting the context neurons to the hidden neurons. And finally, all weights 
are updated according to (10) with the accumulated weight-updating values, 
computed with (7) and (9). 
 
 w(τ) = w(τ-1) + ∆w(τ)                                                                        (10) 
 
Error Back propagation learning algorithms are known for the possibility of 
getting stocked in a local minima on the error surface. There are number of 
techniques designed to overcome this problem. The most useful technique is to 
apply a momentum term α to (10), as is done in (11). The momentum term 
keeps the movement over the weight error space for some time, even if the 
network has fallen into a local minimum. Usually, α = 0.7.  
 
 ∆w'(τ) =  α ∆w(τ-1) + (1- α) ∆w(τ)                                                    (11) 
 
Another technique that has similar effect is to apply initially a higher learning 
coefficient η and, next, to decrease it gradually. This implements a quicker 
rough search for the region where the global minimum is located. Later, the 
exact location of the error minimum is searched with smaller steps. Usually, the 
initial η = 0.2 and the decrease might be exponential with a very small step (e.g., 
0.9995). For further reading about SRN, BP, and BPTT and other recurrent 
learning algorithms, one can refer to Haykin [1994]. 
 
B. EXPERIMENTING WITH RANs: LEARNING  
     SYLLABLES 
    The idea of using RAN to develop static representations of sequences was 
tested on natural language data. A set of 140 distinct syllables was collected 
from a list of 100 polysyllabic Dutch words. The syllables were represented as 
sequences of Latin characters. The mean length of the syllables was 4.1 ± 1.12 
σσσσ. The characters were represented orthogonally, in a vector of length 27, that is, 
for every symbol there was a correspondent neuron which was set active any 
time this symbol was encoded. The 27th position was activated when the special 
triggering pattern for the input layer and the end-of-sequence pattern for the 
output layer were presented or targeted. In order to speed up the training, the 
non-active and active neuron states were set to 0.1 and 0.9 respectively, which 
set the working regimen of the neuron activation functions within an almost 
linear range rather than around the extremes zero and one, where the sigmoid 
derivatives approach zero. The size of the hidden layer was set to 30. The 
learning algorithm was backpropagation through time. The training was 
organized in epochs, in which all patterns were presented randomly, according 
to their frequency of occurrence in the corpus. The words were taken from the 



CELEX3 lexical data base. The network error was measured after each training 
epoch as percent character and syllable misprediction. During the training 
process, the network error followed the standard pattern of quick initial error 
drop and subsequent slow rate of decrease. After approximately 50 epochs, the 
network error was reduced to 1%. Further training would reduce the error even 
more, but it would take much more time. 
    From an implemental point of view, it was interesting to test different 
strategies for representing the trigger and end-of-sequence patterns, for instance, 
whether it is possible to use only the neurons used for encoding the standard 
input and output patterns, or whether an extra neuron is necessary. Tests were 
conducted with patterns such as all neurons active, non-active, or taking a value 
of 0.5. In all three cases, the performance was worse than the approach with an 
extra, switching neuron. Therefore, the later approach was used in the following 
experiments. It has the additional advantage of always allowing the encoding of 
a distinct switching pattern, even if the above patterns are used to represent data. 
    This first experiment suggests that SRNs can learn such a task. Now, it is 
interesting to see what kind of static representations the network has developed 
after the training. A simple observation of those vectors does not say much (Fig. 
5, top), because the network has organized those representations just to 
accomplish its task, not to make them readable by humans, which is the case in 
the high-level symbolic systems. It is more important that the network itself can 
‘read’ those representations, that is, it can reproduce the original sequential 
form. Yet, some analysis might be useful in order to persuade the reader that 
those representations are worth something. For this purpose, a Kohonen Map 
neural network was trained to organize those representations. The Kohonen Map 
is known as very useful for clustering such a data. The resultant map and a 
minimal spanning tree are given in Figure 5, at the bottom. 
    As expected, syllables with same front parts are located at similar positions 
(e.g., ant, ann, aus, am, aan, a), but also, syllables with similar ends are placed 
at close positions (e.g., pol - rol; tra - dra). The RAN very clearly has captured 
the common external features among the training sequences: similar sequences 
are mapped into close positions; that is, their distributed representations are 
close. This raised expectations that the network would generalize, that is, 
reproduce unseen input sequences (and produce their static representations). 
This hypothesis was tested and the results demonstrated that RAN did 
generalize, although very modestly. Among the tested sequences, unseen during 
the training, only 15 syllables were successfully reproduced at the output, that is, 
about 10% generalization. But the network was trained on a very small number 
of sequences, therefore, I predicted that if the network were trained on a larger 
data set, the percent of the generalization would be even larger. The second 
experiment in section five confirmed this hypothesis. 

                                                           
3 The CELEX  lexical database contains lexical data for Dutch, German, and 
English languages. Address: Center for Lexical Information, POBox 310, 6500 
AH Hijmegen, The Netherlands, http://www.kun.nl/celex/ Email: celex@mpi.nl 



 

 
 
Figure 5. (top): Representations developed by the RAN. Each line stands for one vector. Each circle 
represents one value in the representation. The larger the circles, the greater the correspondent 
values. (bottom): A Kohonen Map neural network trained to cluster those representations (see text). 
The network maps similar syllables into close positions, meaning that those representations are close 
to each other. The lines connecting cells represent a minimal spanning tree. 



V. A CASCADE OF RANs 
 
    The main goal of this work, as stated earlier in the chapter, is to build a 
connectionist model that develops static  distributed representations of a set of 
hierarchically structured sequences. Single Recurrent Autoassociative Networks 
produce single-level static representations only. A natural development of RANs 
to cope with hierarchically structured sequential data is to build a cascade of 
RANs, in which each RAN deals with subsequences of the external patterns at 
certain level. That is, the RANs from each level are fed with sequences of 
patterns developed at lower-level RAN, produce static representations of those 
sequences, and provide them as input patterns to the following-level RANs. 
Also, whenever they are requested, those RAN modules will decode (unpack) 
representations, for example, if the following-level RAN module needs to 
decode some object into its sequential representation (Fig. 6). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.  RANs and the mechanism of multi-level sequence processing. Stream of  chars is 
presented to the input of the syllable-RAN (1a), which builds syllable-representations and provides 
them to the word-RAN (1b), which, in turn, builds word-representations and exports them further 
(1c). Similarly, if word-RAN is presented with a word-representation (2c), it will unpack it to train 
of syllable-representations and will provide them to the syllable-RAN (2b), which in turn will 
unpack them to train of chars (2a). 
 
    Following the representations developed from the lowest to the higher level 
RAN, note that this cascade model gradually transforms the temporal-dimension 
complexity into a spatial-dimension complexity, that is, long sequences of 
patterns of simple elements will be transformed into shorter sequences of 
complex static representations, distributed among an increasing number of 
neurons. This way, trains of percepts that implicitly contain high-level, 
sequentially represented concepts will be transformed into static representations 

RAN: 
Word 

Output Layer: (Syll) 

Hidden Layer (Word) 

Input Layer: (Syll) Context 

RAN: 
Syllable 

Output Layer: (Chars) 

Hidden Layer (Syll) 

Input Layer: (Chars) Context 

RAN-cascade: Output  
 ...  N | E | T | –  | W | O | R | K | #  ... 

  ...  N | E | T | –  | W | O | R | K | #  ... 
RAN-cascade: Input 

...  [NET] –  [WORK] – [#]  ... 
Word-RAN: Input 

...  [NET] –  [WORK] – [#]  ... 
Word-RAN: Output 

1a 
1b 

1c 

2c 

2b 

2a 



 

of those concepts and these representations will also be reconstructed back to 
their external sequential form. This is important, as we will see in the next 
section, for solving the symbol grounding problem. RANs also provide an 
account of another important property – systematicity among the representations 
built. The more sequences learned at a certain level, the larger the network 
generalization will be; that is, after exploring many combinatorial possibilities 
among the input data, the RAN modules will build static representations in a 
systematic manner. 
    Still, there are some questions to be answered. For instance, why do we need 
such hierarchical structure, when a single RAN can be trained to produce the 
same highest-level static distributed representations and to output sequential 
associations? There are two points which speak in favor of the cascade structure. 
First, it is difficult for one homogeneous network to learn long-distance 
relationships [Miikkulainen, 1991] for discussion [Christiansen, 1999]. BPTT 
learning algorithm propagates back error, but the more steps it propagates back, 
the smaller the influence of those errors is to the earlier steps. Studying different 
patterns of recursion, Christiansen and Chater found that the depth of embedding 
(or recursion) SRNs can handle well is in the range 3 – 5 steps. Hence, learning 
sequences longer than 5 tokens would be more difficult. Even if one uses some 
techniques to improve the learning, the general tendency to perform worse on 
longer sequences remains.  
    Another advantage of the hierarchical system of representations is the 
possibility to access intermediate representations of the input train of simple 
elements (e.g., words), if we need to apply holistic operations or to interpret 
them. In natural languages, when we hear a sentence, we have an access to its 
constituents, each of which has some relations with other objects. Only a 
hierarchical system can handle such intermediate representations and a RAN 
cascade automatically develops such static representations. 
    This cascade structure has one important limitation – that the cascade should 
be designed in advance and remain fixed throughout its life. This raises two 
design questions – how to determine the data structure and how to determine the 
size of the RAN hidden layers, that is, the size of the representations at each 
level. Also, there should be a segmentation mechanism that signals the end of 
the sub-sequences for every cascade level. 
    Different levels may be selected according to the natural hierarchy in the 
input data. For example, when learning natural language, one might favor 
learning representations of syllables, words, sentences and so on. The input 
sequence might be split into sub-sequences either by use of some external 
markers – syllabic delimiter, space between words, full-stop (or even larger 
pause) – or by learning phonotactics and word order and segmenting at proper 
points, where low-frequency combinations are about to be formed. Cairns, 
Shillcock, Chater, and Levy [Cairns, 1997] have connectionist experiments on 
this matter. Likewise, if we use the approach in which RAN both predicts the 
following pattern and reproduces the sequence (see the previous section), then 
RAN itself could be used to segment the input sequences. 
 



    With regard to the structures that such a cascade architecture can represent, 
this model imposes a few restrictions. First, one cascade may develop 
representations of fixed-depth trees, where RANs at each cascade-level process 
one tree-level. As a consequence, true recursive structures can not be fully 
represented. Still, recursive structures can be approximated up to a certain depth. 
Next, leaves (terminal patterns) may occur only at the bottom level of these 
trees. For example, sequence (12a) with internal structure (12b) is illegal in a 
two-level cascade because the token ‘d’ is at the second level rather than at the 
bottom level. The allowed structures of this sequence are given in (12c). This 
limitation corresponds to the gradual way of information entrance and 
processing in the cognitive systems, starting from the bottom, perceptual level.  
 
   a b c d                                                                                             (12a) 
 ( (abc) d )                                                                                          (12b) 
 ( (a) (bcd) )  ( (ab) (cd) )   ( (abc) (d) ) (abcd)         (12c) 
 
In case we need to develop representations of any tree structures, such as (12b), 
those tree structures can be transformed into plain sequences as in Kwasny, 
[1995]. However, this method needs an external symbolic device that transforms 
structures in both directions. Another solution might involve marking the 
distributed representations with level-labels and providing them to the 
correspondent RANs. This solution needs a supervisor that distributes the 
patterns, and it is biologically more plausible than the first solution.  
    Sequences with complex structure, such as sentences in natural language, may 
be processed with one RAN-level, too. The sentence structure that is known as 
syntax may simply evolve among the distributed representations, instead of 
being taught explicitly. Similarly, Elman [Elman, 1990] trained the SRNs on a 
prediction task and later found that the developed context layer representations 
correspond at each time step to the syntactic category of the sequence processed 
thus far. 
    The size h of the hidden layers at each level should be based on the 
informational content of the sequences the correspondent RAN is going to pack. 
Parameters in this measure are the number of distinct tokens |C|, the number of 
possible sequences |S|, the maximal length of the sequences to be represented k, 
and the number of neuron states b.  
    First, let us enumerate the maximal number of distinct patterns Pmax that the 
RAN should encode in the hidden layer. The maximal number of strings 
composed of up to k tokens is [(|C|k+1 – 1) / (|C| – 1) – 1], which is the total 
number of permutations with repetition of 1, 2, 3, … k items selected from |C| 
items. In the same way, the actual number of training strings is |S|. We should 
count the maximal number of strings, because the network is expected to 
generalize after the training, that is, to reproduce combinations of items, unseen 
during training. Next, the number of distinct patterns that RANs need to 
reproduce a sequence of k items is 2k+1, which is the number of context states 
when autoassociating the input sequence (see section 4). Therefore, the maximal 
number Pmax of distinct patterns necessary to produce unique representations of 



 

strings composed of up to k tokens is [(|C| k+1 – 1) / (|C| – 1) – 1](2k + 1). The 
actual number of necessary distinct patterns P satisfies condition (13). 
 
 |S| (2k+1) ≤ P ≤ [ (|C| k+1 – 1) /(|C| – 1) – 1 ] (2k+1)                           (13) 
 
Next, the number N of patterns that h neurons can represent, each of which 
having b distinct states is N=bh. That is, the number of neurons necessary to 
represent N patterns is h=logb(N). Therefore, the number of hidden neurons 
necessary to encode P distinct patterns is  
 
 logb(|S| (2k+1)) ≤ h ≤ logb([ (|C| k+1 – 1) /(|C| – 1) – 1 ] (2k+1) )         (14) 
 
from which we derive : 
 
    logb(|S|)+logb (2k+1) ≤ h < (k+1)logb(|C|) – logb(|C|–1)+logb (2k+1)           (15) 
 
Formula (15) estimates the minimal number of neurons that is necessary to 
represent a certain number of sequences with RAN. As mentioned earlier, the 
right-hand side number should be used in order to achieve better generalization. 
However, formula (15) does not guarantee that this number of hidden neurons is 
enough for the network to perform the autoassociation task for all strings and 
develop their distributed representations. In a recurrent neural network, hidden 
layer neurons also have other functions, related to the network processing. In 
addition, given the enormous complexity of the learning problem, it is very 
difficult for the learning algorithm to find proper weights producing these 
particular representations. Usually more neurons are necessary to learn a 
particular task than the theoretical estimations. Therefore, a scaling coefficient   
γ >1 will be applied to (15) that will account for these and other factors related 
to the network processing mechanisms. This will give to the learning algorithm 
more freedom to find a proper weight set solving the training problem. 
    Now, let us find an estimation of the necessary RAN hidden layer size in the 
previous example by using (15). The base b will be set to 2 states and the 
coefficient γ  to 5.0. The experiment was learning 140 syllables (|S|=140) built 
out of 26 distinct letters (|C|=26). The maximal string length was 4 (k=4). Then 
according to (15), 50 < hsyll_RAN < 110. In the reported experiments, 30 hidden 
neurons were enough to encode almost all training sequences. 
    Finally, let me discuss the strategy of the order in which the networks should 
be trained at the different levels, and what training regime to select. This 
includes the question of whether to train the different RAN levels gradually and 
then keep them fixed, or to keep training them, while training the higher-level 
networks simultaneously. We can also refine them in a later stage of the training 
of the higher-level network, because initially the current network will generate 
too large an error, which might destroy the developed representations. Another 
completely different strategy for training the whole cascade is to train all RANs 
simultaneously. However, this is a very complicated learning task and it is 
doubtful whether the network cascade would get to the solution in reasonable 



time. Instead, building the lower levels first and leaving a small amount of 
freedom for later change is preferred. A behavior close to this strategy appears 
to work with humans –  initially people learn to produce simple syllables, next 
more complex syllables, then words, small phrases, and so on. Which strategy is 
better is a question of a lot of experiments. In the rest of the experiments, the 
gradual development strategy was chosen – training the networks gradually, 
starting from the lowest level and keeping them fixed later. 
 
A. SIMULATION WITH A CASCADE OF RANs:  
    REPRESENTING POLYSYLLABIC WORDS. 
    A step toward building a hierarchical model of natural language according to 
the hierarchical design presented earlier is a cascade model producing 
representations of natural language polysyllabic words. This model involves two 
RAN modules: a syllable-RAN, which builds static representations of syllables, 
and a word-RAN, which builds static representations of words. In this 
subsection I will present an experiment which is a natural extension of the 
experiment described in the previous section. The syllable-RAN is be the same 
as before –  with 27 input and output neurons and 30 hidden neurons. This 
means that the word-RAN input and output layers have to have 31 neurons, the 
last one standing for representing the trigger and end-of-word patterns. The size 
of the hidden layer is again 30, which is determined by the complexity of the 
concrete learning task – there are only 100 sequences to be learned, consisting of 
some 140 possible syllables, with average length of the input sequence 4 
syllables. In a more complicated case, we would need many more hidden 
neurons (see the previous subsection). 
    The network training (BPTT) is organized as follows: First, a training word is 
selected from the training corpus, containing pre-syllabified words. Next, for 
each syllable in the selected word, the syllable-RAN produces the correspondent 
static representation, which in turn is provided to the word-RAN input layer. 
The static representations of the syllables belonging to the current word are kept 
in a buffer until the learning procedure for  the current word is finished. When 
all the syllabic patterns are presented to the input of the second RAN, a 
triggering pattern is provided to the word-RAN and the processed syllabic 
patterns are presented as target patterns to the output layer, one at a time, and 
error is calculated. The same targeting patterns, with one step delay, are 
presented to the input layer again (see the previous section and Fig. 4 for 
details). Next, during the second phase of BPTT learning algorithm, the 
accumulated error is propagated back through time, till the beginning of the 
sequence. Finally, the weights are updated with the accumulated weight-
updating values. 
    The cascade is tested by encoding the training or testing words and decoding 
(unfolding) the developed static representations of those words back to 
sequential forms (string of letters), and comparing the resulting strings with the 
expected strings. The RAN error is measured as the percent of erroneous 
predictions of letters, syllables, and words. Syllables are considered to be 
predicted correctly if all the correspondent letters are reproduced correctly. 



 

Similarly, words are learned if all corresponded syllables are reproduced 
correctly. The performance of the word-RAN after 100 training epochs was as 
follows: 1.8% character error, 4% syllable error, and 6% word error. 
 
B. A MORE REALISTIC EXPERIMENT: LOOKING FOR  
     SYSTEMATICITY 
    In this subsection a more realistic experiment will be presented – building the 
representations of some 850 polysyllabic Dutch words, consisting of about 600 
distinct syllables. The reason less complex examples were presented in the 
earlier sections was, firstly for the reader to get an idea of the developed static 
representations (Fig. 5) and, more importantly, to show that generalization 
increases by increasing the number of combinations learned by the networks. 
    We will use again (15) to estimate the necessary hidden layer size. For the 
syllable-RAN, |C|=26, |S|=600, k=5. Then 70 < hsyll_RAN < 150. Similarly, for the 
word-RAN, |C|=600, |S|=850, k=5. Then, 100 < hword_RAN < 300. 
    The cascade consists again of two RANs – a syllable RAN and a word RAN. 
The syllable-RAN has 100 hidden neurons. The word-RAN is set to 350 hidden 
neurons. All other conditions are the same as in the first experiment. The 
training of the syllable-RAN resulted in 0.6% erroneous letter prediction and 
2.5% erroneous syllable prediction, that is, some 15 syllables were not entirely 
learned. Further error analysis showed that there was one mispredicted letter 
among those syllables, which means that those syllables were produced almost 
correctly (3/4). The word-RAN did not reach the success of the syllable-RAN, 
with 2.7% letter misprediction, 5.0% syllable misprediction and 14.1% word 
misprediction.  
    In order to examine the influence of the hidden layer size to the performance, 
similar experiments were conducted with smaller hidden layers. The syllable-
RAN was tested with 50 and 30 hidden neurons. Word-RANs were tested with 
300 and 250 hidden neurons, using the earlier reported syllable-RAN with 100 
hidden neurons as syllabic pattern builder.  With decreasing the hidden layer 
size, the performance of both networks gradually dropped. The syllable-RANs 
learned 70% and 28% training syllables, correspondingly (Table 1). The word-
RAN performance decreased too: 80.8% and 76.9% of the words were entirely 
learned (Table 2). The performance measured at item-level decreased more 
gradually. For the word-RAN, fewer syllables were erroneously reproduced and 
even less letters were mistaken. 
 
Table 1. The performance of the Syllable-RAN trained on 600 distinct syllables, when varying the 
hidden layer size. 
 

Hidden layer size Syllable 
RAN 

Error 
 (%) 30 50 100 

Syllables 72 30 2.9 

M
is

pr
e-

di
ct

ed
 

Chars 18 7.2 1.1 

 



    Those experiments support to some extent formula (15) that is based on the 
information content of the hidden layer and number of data to be encoded. With 
decreasing the number of hidden neurons below the suggested size, the 
performance deteriorates. Nevertheless, there is another reason for this. The 
error backpropagation learning algorithm more easily finds escape routes from 
local minima when there are more weights – if some set of the weights are 
trapped into a valley on the multi-dimensional error surface, other weights 
would let the network drive out of this point. Therefore, the more complex the 
task, the more neurons are necessary. If the number of the neurons seems very 
large, consider the brain, where billions of neurons participate in different 
cognitive tasks. Practically, with the ever increasing computational power, this 
will not be a question in a few more years. 
 
Table 2.  Performance of the word-RAN trained on 850 polysyllabic words with input vector size 
100, when varying the hidden layer size. 
 

Hidden layer size Word 
RAN 

Error 
 (%) 250 300 350 

Words 23.1 19.2 14.1 
Syllables 7.8 6.8 5.0 

M
is

pr
e-

di
ct

ed
 

Chars 4.2 3.6 2.7 

 
    The more interesting question now concerns the generalization of the syllable-
RAN and the word-RANs. Tested on a larger corpus with 9,000 words and 
2,320 distinct syllables, the syllable-RAN successfully reproduced, that is, 
generated unique representations of another 1150 syllables, which is more than 
190% generalization as opposed to the first example with only 10% 
generalization. This result shows that a network trained with more combinatorial 
possibilities generalizes better. In turn, this shows the RAN capacity to produce 
static distributed representations systematically (see section 7 for discussion). 
    The word-RAN generalized well too, with successful reproduction of 1,500 
words unseen during the training, which is about 180% generalization. It is 
interesting to note that the word-RAN generalized as well as the syllable-RAN 
after learning fewer combinatorial possibilities than the syllable-RAN did (850 
words made out of 600 distinct syllables, while the 600 syllables are made out of 
26 distinct letters). I attribute this to the nature of the input data of those two 
RANs. On one hand, the syllable-RAN is provided with localistically encoded 
letters, which gives no prior information about the similarity among the classes 
they represent. On the other hand, the word-RAN is supplied with much more 
“meaningful” distributed representations, systematically produced by the 
syllable-RAN. This also suggests that if the letters were represented with 
features (consonant/vowel, voiced, place, manner, etc.), perhaps the syllable-
RAN would learn the task even more easily, with fewer hidden neurons, and 
would generalize better. 
 



 

VI. GOING FURTHER TO A COGNITIVE MODEL 
 
    Once we have a method to represent the complex structured data that we 
experience externally in some dynamic (sequential) form, we can go further and 
learn some relations between representations coming from different modalities. 
For example, the auditory modality would produce representations of linguistic 
objects, just as we discussed earlier in the chapter; visual modality is a source 
for even more complex objects. In addition to those sensory modalities, there are 
effector modalities – muscles, glands, and so on. Having representations of 
objects of those modalities, we can make associations between them. And those 
associations are the sources for representation grounding – multi-modal 
associations. 
    Complex multi-modal mappings can be effected with any static connectionist 
model – self-organizing or trained by a teacher. And both would be biologically 
motivated, because those associations can be made whenever two 
representations occur in the same time and there is a will or attention to learn 
those coincidences. Neural Network models that might be used for this purpose 
are the supervised Multilayered Perceptron, the ART-Map network by Carpenter 
and Grossberg [Carpenter, 1992] or the autoassociative memory by John 
Hopfield [Hopfield, 1982], among other connectionist models. 
    In the framework of RAN cascades, sequential patterns from each modality 
have to be divided into different conceptual levels and correspondent RANs 
have to be trained to produce static representations. Next, static associations 
(mappings) between patterns from different modalities have to be learned with 
static neural networks (Fig. 7). Then, when a sequence is applied as input to a 
learned modality, that is, to its corresponding lowest-level RANs, higher level 
representations will be produced. This in turn will activate corresponding 
patterns in other modalities, which might be expanded to lower level sequences. 
Activation of a high-level representation might also cause expansion to the 
corresponding lowest-level sequence, as well as producing sequences of other 
modalities. 
    Yet another possible extension toward a more global cognitive model would 
be a composite input pattern for certain RANs in the cascade. This composite 
pattern might be the concatenation of representations from different modalities 
(Fig. 8). The reason for such a concatenation will be presented with an example 
from natural language. Word representations developed on the basis of the 
external form of the words which would capture systematic dependencies related 
to combinations of letters (phonemes) into words, but not categorical or 
semantic information, which might be necessary when processing sentences. 
Therefore, the input to a sentence-RAN might consist of the developed lexical 
static representations and the associated patterns from visual modalities. This 
would let the sentence-RAN develop sentence representations that properly 
reflect the meanings of the words, not only their external auditory or visual 
form. This makes the picture more difficult to implement, but the brain we are 
trying to model is not less complex. 



Figure 7.  Cognitive model based on a network of RAN cascades. Each RAN-cascade (a column) 
stands for different modality. The RANs in each cascade represent different conceptual levels. The 
horizontal and diagonal bi-directional arrows represent static associations between different 
modalities. In addition to this picture, there should be a central attentive system that directs the flow 
of activations. 
 
 
 
 
 
 
 
 
 
 
Figure 8.  RAN developing static representations of multi-modal sequential data (auditory and 

visual). The distributed representations developed would feature multi-modal systematicity. 
 
    Using these complex schema, we can model complex associations we 
encounter in our life. Still, there are a lot of other questions to be answered – 
synchronization, more optimal learning, etc. This huge net of associations needs 
some central supervisor directing the spread of activations. Modeling cognitive 
processes such as attention, awareness, etc. maybe would resolve some of those 
questions. 
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VII.  DISCUSSION 
 
    The basic question addressed in this chapter is how to build static 
representations of complex sequential data with connectionist models, 
concerning primarily natural language. Dynamic data exist in any cognitive 
modality, and it is important to have a mechanism that compresses (and 
uncompresses) dynamic objects into the more convenient static representations. 
Also, it would be useful if those representations were produced in a systematic 
way. This would allow further complex processing (holistic computations), e.g., 
asking questions, change of tense, or even mathematical operations. 
    Association is one of the basic forms of learning. Repetition, or auto-
association, provides a powerful mechanism for cognitive development, too. We 
can observe this mechanism throughout the animal species. Baby animals 
develop initial behavior without being taught, but just by attempting to imitate 
their parents. Humans develop language in a similar way: infants initially start to 
repeat sounds (babbling), next they repeat simple words, small phrases and so 
on, until they develop full-scale language capacity [Jusczyk,  1997]. Infants left 
out of language environment simply can not develop language or have great 
difficulties developing language later. Similar motivations drove me to use 
autoassociation in a connectionist model for developing representations of the 
external world. 
    Regarding the connectionist models that can process dynamic data, recurrent 
neural networks are such connectionist models that allow us to process 
sequential data. The more specific simple recurrent network is a powerful 
universal model which I have exploited for this purpose, by setting an 
autoassociation task and arranging the data to develop the desired static 
representations. The suggested architecture is called recurrent autoassociative 
network. The model was extended further to a cascade of RANs, aiming at 
developing static representations of hierarchically structured sequential data. In 
this cascade, RAN modules at each level are designated to develop static 
representations of different level of complexity (or different conceptual levels) – 
words, sentences, and so on. 
    What is the importance of this model? To what extent does it increase the 
capacity of connectionist modeling? The discussion in section two on the 
representations of sequences that one needs when modeling natural languages 
and the capacities of the connectionist models presented in section three clearly 
demonstrate that the question of how to develop distributed representations of 
composite dynamic data is still open. Local encoding is restricted, random 
representations lack systematicity, and the feature-based representations are 
limited and rather artificial. All those representations keep NNs away from real 
data. In order to get closer to our cognitive capacity, we need a mechanism that 
builds representations, starting from the bottom and gradually building ever 
more complex representations. 
    The idea of building a gestalt representing input data was promising, but it 
was not elaborated further. The RAN model has something in common with the 
earlier works on gestalt: they all develop representations of the sequential input 



data in the network global memory. They differ in the learning task they set to 
the SRN and in the way they use this context. The gestalt models use the context 
developed for information retrieval at every moment, which causes 
uncertainties, while the RANs develop unique static representations of the input 
sequences by a special attack on the learning task, which makes the same RANs 
able to reproduce the input sequence and which is not the case with the gestalt 
models. The gestalt model needs a second network trained to extract information 
from the context of the first network. 
    The other similar and important architectures: RAAM and SRAAM were 
initially reported to work well on sequential and recursive data, but other 
experiments did not confirms the expected performance (Hammerton 1998). 
Also, the RAAMs need an external stack and boot RAAM and SRAAM 
reproduce the sequences in inverse order. This might cause interpretational 
problem when processing longer sequences – it would require an external stack 
to invert them back to the normal order.  Still, the idea of RAN clearly owes the 
idea of autoassociation as a source of developing compact representations to the 
RAAM models. 
    The experiments in section five on modeling sequences with a cascade of 
RAN modules demonstrate that RANs handle reasonably well both locally 
encoded low-level data (we can assume that this is a kind of perceptual data) and 
continuous distributed data. The network learned to autoassociate in both cases, 
although there were more difficulties in learning the latter types of patterns. I 
attribute this to insufficient computational resources, because the larger the 
hidden layer is, the better the performance is (see Table 2). On the other hand, 
word-RAN generalized very well given the small number of training syllabic 
combinations, which is due to the truly distributed syllabic patterns, as opposed 
to the localistically encoding input for the syllable-RAN.  
    With regard to the hidden layer size that is required for a RAN to learn a 
particular task, it is difficult to find a theoretical measure because the 
representations are continuous and, theoretically speaking, even one real value 
number can encode any sequence. However, limitations from the limited 
effective working range of the sigmoidal activation functions apply and by 
enumerating the maximal number of distinct patterns to be encoded in the 
hidden layer, an estimation of the required hidden layer size was derived (15). 
Still, more theoretical and systematic experimental research is necessary in order 
to determine other factors related to the hidden layer size, such as factors related 
to the way the data is processed and encoded in the neural networks, especially 
in recurrent models. 
    Neural Networks were reproached by Fodor and Pylyshyn [1988] for not 
being able to produce systematic representations. The ongoing debate on this 
challenge inspired the development of a number of architectures that more or 
less meet the requirements characterizing systematicity [Smolensky, 1990, 
Smolensky, 1991, Aydede, 1997]. In this subsection I will explain how the 
distributed representations developed by RAN account for systematicity. The 
debate on this human cognitive property is important because it explains our 
capacity to think. A classical example for systematicity is that if we can think of 



 

"Mary loves John," then we can think of "John loves Mary" too. With this 
simple example, one can distinguish a few descriptive characteristics of 
systematicity: compositionality (atoms constitute thoughts), generalization (the 
atoms "John" and "Mary" are semantically similar and therefore 
interchangeable) and exploration of combinatorial possibilities (similar atoms 
might apply at same position). 
    The Fodor's classical "Language of Thoughts" respects fully the first and the 
third characteristics and partially the second. The hard logic rules, which 
underlie symbolism – the background of the classical cognitive explanation – 
can not account for similarities across all items because they do not make use of 
continuous metrics to compute such similarities. Therefore, in the symbolic 
systems, similarities across items do not give rise to generalization unless a 
system of artificially developed features characterizing the items is applied. 
    On the contrary, an important property of connectionism is generalization, but 
some connectionist representations do not feature the other characteristics, with 
the localistic representations being such a very strong example. Feature-based 
encoding comprises compositionality and allows combinatorial possibilities, but 
it is rather artificial and symbolic in spirit. Other distributed representations, 
such as those produced by the RAAM and the SRAAM models, show that 
neural networks can produce distributed representations that have compositional 
structure, although in an implicit manner [Chalmers, 1990, Blank,1992, 
Hammerton, 1998]. 
    Similarly to the RAAM and symbolic models, RAN models produce 
composite representations too. Of course, RANs are not aimed at producing 
distributed representations understandable by humans. This is reserved for 
symbolism. The representations that RANs produce are designed to be 
understandable, firstly, by the RANs themselves and, secondly, by other 
computational models able numerically to analyze data and eventually extract 
useful features from this data. RANs can unpack representations to the original 
row of tokens – this is part of the autoassociative task. With regard to the other 
models, the Kohonen Map that was trained in section 4.2 to cluster the 
distributed representations of syllables clearly demonstrates that other models 
can "understand" those representations, too (Fig. 5). In this case, the Kohonen 
Map was just an instrument to persuade the reader that those representations are 
organized in a systematic way. In addition, similarly to the ability of RAN to 
decode the distributed representations, other connectionist models should also be 
able to extract information for the encoded items, that is, to do holistic 
computations. Experiments with distributed representations produced by RAAM 
and SRAAM show that this is possible [Chalmers, 1990, Hammerton, 1998] and 
RANs produce distributed representations following the same principles as 
SRAAM; only the order of reproducing the sequences is different. The 
(S)RAAM models implement a stack, while the RANs implement a queue. 
Therefore, I expect holistic computations will be able to apply on the distributed 
representations developed by the RAN, too. 
    With regard to the explorations of combinatorial possibilities, the models 
should not only have the capacity to explore different combinations, but the 



training environment should provide them to the networks, too. Similarly, 
symbolic learning algorithms can extract rules only if the learning data provide 
different examples. This is the same with humans, too. We start to combine 
words properly after having had enough experience in a language environment. 
Another example is related to algebra. Students learn to add and subtract first by 
example, and then they realize the nature of the operators "add" and "subtract." 
With regard to the capacity to explore such combinations, RANs have this 
capacity, by allowing tokens to take any position in the input sequence. 
Similarly to Deacon, [1997] I hypothesize that a systematic organization 
emerges in RANs after exploring a great number of possible combinations of 
patterns and starting to use and rely on some common features among the 
representations rather than on particular patterns, which Deacon characterizes 
also as example "forgetting." 
 

VIII. CONCLUSIONS 
 
    Sequential processing is recognized as a difficult problem, especially when 
sequential complexity, in terms of length and internal structure, increases. In the 
present chapter I proposed a framework for processing structured sequential 
data, as found in natural languages, movies, actions, and so on. The approach is 
based on the idea that by sequential autoassociation, a single recurrent NN – 
recurrent autoassociative network – can develop static representations of 
sequences composed of uniform items. A hierarchical set, or cascade of such 
networks, develops static distributed representations of ever more complex 
sequences, where each structural level in the data is processed by one RAN 
module, and the input sequences for the upper levels are developed by the lower 
level RAN. For this purpose, recurrent networks are trained on autoassociative 
tasks (RAN modules), and they develop unique static representations of the 
input sequences at their hidden layers (Fig. 4). Those static representations are 
used as interface patterns for the next level RAN (Fig. 6). The static 
representations at the highest level RAN are the distributed representations of 
the most complex data or whole input sequence, e.g., sentences or stories. In 
section five, an example was given of how this model might work for 
developing representations of Dutch polysyllabic words. Further, in section six, 
it was suggested how the cascade model might be extended to a more global 
cognitive model, where the static representations at each level were suggested to 
be associated with other static representations (of sequence of other modalities) 
via static mappings. Such a net of multi-modal associations, I believe, would be 
an implementation of natural language grounding and a base for semantics. 
    Although I claim that this model will be able to solve the problem of 
developing representations of hierarchically structured sequences, there are still 
some questions that remain open, especially if we want to develop an 
autonomous cognitive model. For instance, the learning processes and flow of 
activations should be driven by a supervisor, similar to the attentive system. 
Also, the learning algorithm can be replaced with a more effective one. Next, 
instead of using SRN-based autoassociators, one might use other, more effective 



 

or more neurobiologically motivated learning algorithms and neural network 
models, for example, recurrent self-organization networks and the other models 
presented in this book. Nevertheless, I believe the suggested model is an 
important step in connectionist modeling, and I strongly encourage the reader to 
experiment with the RAN cascade on different problems, especially to 
investigate holistic computations with the distributed representations developed 
by RANs. 
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