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I. INTRODUCTION

Recurrent networks can be categorized into two classes, those that are pre-
sented with a constant or one-time input signal and are designed to enter an in-
teresting stable state, and those that are presented with time-varying inputs and
are designed to render outputs at various points in time. This chapter concerns
the latter which are called dynamical recurrent networks [Kolen]. In this case,
the operation of the network can be described by a function mapping an input se-
quence to an output value, or a sequence of output values. The input and output
values are continuous and multi-dimensional, resulting in vector representations.
Specifically, we define the behaviour of a network by

f : Xt
! Y t; (1)

where X = <n and Y = <m and n and m represent the dimensionalities of
the input and output vectors, respectively. t represents the length of the sequence
which is usually given a temporal interpretation.

A. LANGUAGE LEARNING
A special case of this type of operation which is often used in many recurrent

networks is the assumption that

� X = f0; 1gn and Y = f0; 1gm for a logistic transfer function

or

� X = f�1; 1gn and Y = f�1; 1gm for a logistic transfer function

In this situation, the input and output values are discrete. This approach is used
in any problem where inputs are selected from a discrete alphabet of valid values
and output values fall into discrete categories.

The problem of dealing with input sequences in which each item is selected
from an input alphabet can also be cast as a formal language problem. A formal
language is defined:

Definition 1 Formal Language: a set of strings of symbols from some alphabet.



Typically � is used to represent the alphabet, and the input language L is the
power-set of �:

L = 2
�: (2)

One of the most simple functions that has a language as its domain is that
of identifying a particular subset of this input language. That is, we consider a
language

L1 � L (3)

and we define fL1
: L! faccept; rejectg as:

fL1
(s) =

�
accept if s 2 L1
reject otherwise

(4)

This is the classical problem solved by a formal computing machine (such as
a finite state automaton, pushdown automaton, or Turing machine) which is said
to accept the language L1.

A recurrent network can be applied to this type of problem as well, and many
have studied these networks in this context (see this Chapter’s references for de-
tailed list). With a recurrent network, one typically would like the system to learn
to make this type of categorization (though there have been numerous papers on
the representational powers of these networks independent of their ability to learn
to identify member strings; e.g., Horne [1994], Siegelmann [1995].

B. CLASSICAL GRAMMAR INDUCTION
Now, when one talks of learning to make this categorization, one could equiv-

alently talk about learning the language L1. Yet, if the language L1 is infinite in
size, then to learn L1 one has to represent it in some finite form. We define this
finite form as a grammar:

Definition 2 Formal Grammar: a finite characterization of a potentially infinite
language.

The classical approach to representing grammars is to use a 4-tuple, G =

(V; T; P; S). Here, V represents a set of symbols, known as variables, which
are used as intermediate results in the derivation of member strings. Similarly,
T represents a set of symbols, called terminals, which defines the alphabet of the
language represented by the grammar (i.e., T = �). P is a finite set of rules, called
productions, defining how strings of variables and terminals can be rewritten as
other strings of variables and terminals in the process of deriving a member string.
Specifically, productions take the form � ! �, where � and � are strings of
symbols from the Kleene closure of the union of variables and terminals: (V [T ) �.
Lastly, S is a special variable called the start symbol.

The process of deriving a legal string for a given grammar can be formalized
as follows: First, the current string is initialized to be the start symbol. Second,
strings of symbols within the current string that match the left-hand side of one of
the productions are replaced by the right-hand side of the production. The second



step is repeated until only terminal symbols remain in the current string, at which
point, the current string represents a legal string. Formally, we define the rewrite
operator,), by asserting that �Æ ) �Æ if and only if the production�! � is a
member of P . This operator represents one application of step two in the process
above. Multiple applications can then be represented by the reflexive-transitive
rewrite operator,

�

), which is defined as the reflexive and transitive closure of ).
Applying the latter operator to the start symbol, S, the language described by the
grammar, G, is defined as

LG = fsjs 2 T �andS
�

) wg (5)

C. GRAMMATICAL INDUCTION
This representation of a language by a grammar has lead the field of language

learning to be known as grammatical induction. This field has been studied exten-
sively in the purely symbolic paradigm for over 30 years. In those 30 years, much
knowledge has been acquired and some of this knowledge can be parlayed into
techniques for improvement of learning in recurrent networks. This is the focus
of this chapter.

D. GRAMMARS IN RECURRENT NETWORKS
Another finite representation of potentially infinite languages is in the form of

a weight matrix W in a recurrent network. In this scenario, string acceptance is
determined by presenting vector encodings of the input symbols to the network,
one at a time. Activations are propagated through the network for multiple cycles,
until all input symbols have been presented. At that time, the output units are ex-
amined and a decision on membership is made. Because recurrent networks can
store information about previous input symbols in the activation values transmit-
ted through their recurrent connections, these networks can render decisions on
strings presented one symbol at a time. The decisions made for the input strings
will be defined by the weight matrix of the network. Thus, the weights define
the set of strings that will be accepted and hence the language. In this sense, the
weight matrix is a grammar according to our definition.

Although the representations in the connectionist paradigm are very different
from those used in the classical symbolic approach, the problem faced by the two
approaches is exactly the same. This means that it may be possible to transfer
some insights on the problem of grammar induction from symbolic techniques to
recurrent networks.

Clearly, the problem of language learning defined above is only one special
case of the kinds of problems that recurrent networks can address. It does not
cover situations in which input sequences consist of continuous real-values, nor
on problems involving more sophisticated outputs beyond simple accept/reject
decisions. Nonetheless, we will discover in what follows that it is an informa-
tive case that offers insights into approaching the problem of training recurrent
networks in general.



E. OUTLINE
The chapter is organized along the lines of four lessons based on results from

the work in symbolic grammar induction. After this introductory section, Les-
son 1 shows that the problem of language learning is a surprisingly difficult one.
This motivates the remaining sections which focus on how one can simplify the
problem of language learning and also other types of recurrent network problems.
Lesson 2 focuses on restricting the kinds of languages and other problems which
can be learned. Lesson 3 describes techniques for ordering the search for prob-
lem solutions to speed the learning time. Lesson 4 explains how ordering training
data during the training process helps narrow down the solution possibilities. A
conclusions section at the end of the chapter summarizes our results.

II. LESSON 1: LANGUAGE LEARNING IS HARD

We begin by considering two variations on grammar learning. Gold [Gold,
1967] has identified two basic methods of presenting strings to a language learner:
“text” and “informant.” A text is a sequence of legal strings containing every
string of the language at least once. Typically, texts are presented one symbol
after another, one string after another. Since most interesting languages have an
infinite number of strings, the process of string presentation never terminates.

An informant is a device which can tell the learner whether any particular
string is in the language. Typically the informant presents one symbol at a time,
and upon a string’s termination supplies a grammaticality judgment.

Gold [Gold, 1967] investigated the problem of language identification in the
limit. He asked the question: Which classes of languages are learnable with re-
spect to a particular method of information presentation? A class of languages
is learnable if there exists an algorithm which repeatedly guesses languages from
the class in response to example strings, and “Given any language of the class,
there is some finite time after which the guesses will all be the same and will all
be correct” [Gold, 1967]. The algorithm does not keep guessing forever or, more
precisely, it settles on a particular language and that language is correct.

Gold showed that this is a surprisingly difficult task. For example, if the
method of information presentation is a text, then only finite cardinality languages
can be learned. Finite cardinality languages consist of a finite number of legal
strings, and are a small subset of the regular sets (the smallest set in the Chom-
sky hierarchy). In other words, none of the language classes typically studied in
language theory are text learnable.

The situation is only slightly more promising if both positive and negative
examples from the language are available. Under informant learning, only two
kinds of language are identifiable in the limit. These are regular sets (which are
those languages having only transition rules of the form A ! wB, where A and
B are variables and w is a (possibly empty) string of terminals), and context-free
languages (which are those languages having only transition rules of the form
A ! �, where A is a single variable). Other languages, however, like the recur-
sively enumerable languages (those having transition rules, � ! �, where � and



� are arbitrary strings of terminals and non-terminals) remain unlearnable.
The fact that regular sets and context-free languages are learnable under the

informant learning paradigm by no means implies that such learning is practi-
cal. Pinker points out that “in considering all the finite state grammars that use
seven terminal symbols and seven auxiliary symbols (states), which the learner
must do before going on to more complex grammars, he must test over a googol
(10100) candidates” [Pinker, 1979]. This reveals that even for tiny computational
machines (seven states) the language learning problem is often intractable if no a
priori knowledge is available to remove some of the machines from consideration.

The conclusion which must be drawn from Gold’s and Pinker’s observations is
that grammatical induction is an exceptionally complex task. So complex, in fact,
that it cannot be solved as originally posed by Gold. In the following sections, we
shall present a number of modifications to the original problem which overcome
the inherent difficulties implied by Gold’s and Pinker’s conclusions and thus allow
the problem to be solved.

Even though Gold and Pinker worked in a symbolic paradigm for language
learning, they made no assumptions particular to this approach. The same con-
clusions can be applied to the problem of learning languages by connectionist
networks. This means that if recurrent networks are to solve language learning
problems or even more complicated problems, we must modify our approach to
learning in order to overcome the intractability and extreme slowness inherent in
language learning tasks.

III. LESSON 2: WHEN POSSIBLE, SEARCH A SMALLER
SPACE

The difficulty of any search depends on the number of candidate solutions that
must be considered, called the hypothesis space.

A. AN EXAMPLE: WHERE DID I LEAVE MY KEYS?
We begin by considering a simple example: Suppose you are unable to find

your car keys. We shall assume that the keys are somewhere in the house. A
simple search algorithm might involve searching the house from top to bottom
starting on the upper floor and moving down to the basement. This represents
an exhaustive brute-force search like the scenario suggested by Pinker when he
described considering all grammars with seven terminal and seven non-terminal
symbols.

Now suppose you know for a fact that you have not been upstairs or downstairs
since you last used the keys. In this case, it would be sensible to reduce the search
space from the entire house to just the ground floor. This would no doubt lead
to a more efficient search and you would expect to find your keys sooner. Thus,
reducing the search space increases search efficiency.

Of course, there is a drawback to a reduced search space. Suppose you had
forgotten that you had in fact traveled upstairs and left the keys there. Now your
search of only the ground floor would be guaranteed to fail. A reduced hypothesis
space is useful only if it does not exclude the goal.



B. REDUCING AND ORDERING IN GRAMMATICAL IN-
DUCTION

Naturally, the techniques of hypothesis space reduction and ordering described
in the previous example are applicable to search in general-not just car key searches.
As such, they can be used to make the task of grammatical induction solvable or
tractable. The notion of hypothesis space reduction in the context of grammatical
induction refers to searching for a grammar consistent with the training data in a
class which is smaller than the class of unrestricted (Chomsky type-0) grammars.

Symbolic grammar induction systems have used the class of context-free gram-
mars (Chomsky type-2) and the class of regular grammars (Chomsky type-3) as
reduced hypothesis spaces. However, the fact that Gold showed that even the
smallest of these classes is not learnable based solely on text training data, com-
bined with the fact that most interesting grammars belong to the larger classes,
have made these restrictions unpopular techniques for hypothesis space reduction.

A more useful technique is to devise a class of grammars which lies tangential
to Chomsky’s hierarchy. Such a tangential class contains some grammars which
are not regular and some grammars which are not context-free but contains only
a subset of the unrestricted grammars. By using a class tangential to the Chom-
sky hierarchy as one’s hypothesis space it will be possible to represent some of
the grammars which only fall into the unrestricted class, while at the same time
reducing the size of the hypothesis space so as to identify members of the space
based on input data more rapidly. Of course, as with the car key example, it is
critical to choose a hypothesis space that contains those grammars which are to be
learnable.

This type of hypothesis restriction was first suggested by Chomsky [Chomsky,
1965]. While working on the problem of human language acquisition, he proposed
that only those grammars possessing the basic properties of natural languages
should be considered as candidates for grammatical induction. By weighting the
naturalness of languages based on a specific set of properties, he proposed an
induction algorithm which considered only those languages which were consistent
with the training sample and had a sufficiently high weight.

Another popular technique for restricting the space is to employ the univer-
sal base hypothesis. Under this hypothesis, different grammars are defined by
means of a two-step process. First, a universal base grammar which all different
grammars use is defined. Then, a restricted class of rewrite rules are employed to
translate from the symbols of the universal base grammar to a variety of derived
grammars. The grammars derived in this fashion form a reduced hypothesis space
which can then be used to define a grammatical induction algorithm. This ap-
proach is fundamental to Wexler and Culicover’s [Wexler, 1980] model of human
language learning.

C. RESTRICTED HYPOTHESIS SPACES IN
CONNECTIONIST NETWORKS

Restricted hypothesis spaces in symbolic grammatical induction systems are
typically described in terms of restrictions on the type of grammar rules they em-



ploy. In recurrent networks, the languages that the network recognizes are deter-
mined by three factors: (1) the network topology (sometimes called architecture),
(2) the number of hidden units, and (3) the connection weights in the network.
Thus, we can restrict the kinds of languages (or equivalently grammars) that can be
learned by adjusting network topologies, number of hidden units and/or weights.

D. LESSON 2.1: CHOOSE AN APPROPRIATE NETWORK
TOPOLOGY

The computational power of a number of topologies, given appropriate weights,
has been studied. While some topologies are potentially as powerful as Turing
machines, others are much more restricted in their computational power. Initially,
one might be tempted to select the most powerful network for all applications, but
the arguments above reveal that it may be wiser to select a more restricted archi-
tecture in order to make the learning algorithm tractable, especially if one knows
that a solution to the current problem can be found by the computationally weaker
architecture.

One of the first architectures suggested for processing time-sequence data was
the window in time network used in the classic NETtalk [Sejnowski, 1986]. It has
also been used by a variety of other authors including Lang et al. [Lang, 1990], La-
pedes and Farber [Lapedes, 1987], and Waibel et al. [Waibel, 1989]. The topology
of this network consists of a feedforward network which is presented with a finite
history of input patterns called an input window (Figure 1). Since this window is
of finite length, there will always be inputs which fall outside of this window (i.e.,
are too old). This means that there will always be certain kinds of strings that this
network cannot correctly classify, namely strings who’s categorization depends
on symbols that fall outside the window. More specifically, Giles, Horne, and Lin
[Giles, 1995] were first to recognize that Kohavi [Kohavi, 1978] had previously
called this subclass of finite state automata ”definite machines.” Kremer [Kremer,
1995a] also developed a grammatical formulation in the form of a 4-tuple for this
language.

The preceding architecture is not a recurrent network though it can be used in
applications where recurrent networks are used (which explains why we discussed
it here). A variation on the Window-in-Time topology is to use two temporal win-
dows: One window on the input symbols (as in WIT memories) and a second on
the output symbols produced by the network (Figure 2). In this network, output
values are fed back into the network as inputs. Because of its similarity to infi-
nite impulse response filters (IIRs), this type of topology has been called neural
network IIR. Narendra and Parthasarathy [Narendra, 1990] have used this type of
short-term memory.

Locally recurrent [Frasconi, 1995] networks use a different kind of recurrence.
In these networks the activation values of hidden nodes are computed according
to the formula

aj(t) = f(netj(t)); (6)



C U R R E

RECURREN T NE TWORK S

Input Window

‘‘... ...’’Input Text:

Output Units

Hidden Units

Figure 1. Window-in-time Network.

where

netj(t) =
X
i

wji � ai(t) + wjjaj(t� 1): (7)

Here, wjj represents a recurrent, time-delay connection from the unit to itself
(Figure 3). A potential advantage of this type of network over the previous net-
works discussed is that it can adapt its internal representation. Whereas the previ-
ous networks had their memory fixed by the network’s inputs or target outputs, this
type of network can adapt their internal representations to the given task and it is
these internal representations that are fed through the recurrent connections. De-
spite this, these networks are still limited in their representational capacity [Fras-
coni, 96]. In Kremer [1999], some specific problems that these networks cannot
represent are identified.

Another approach, which has been widely used, is based on computing the net-
work’s internal state using a single-layer first-order feedforward network [Rumel-
hart, 1986] which uses the previous state (also called context) and the current in-
put symbol as input (Figure 4). This approach is used in Elman’s [Elman, 1991a,
Elman, 1990] Simple Recurrent Networks (SRN), Pollack’s [Pollack, 1989, Pol-
lack, 1990] Recurrent Auto-Associative Memory (RAAM), Maskara and Noet-
zel’s [Maskara, 1992] Auto-Associative Recurrent Network (AARN), and Williams
and Zipser’s [Williams, 1989] Real Time Recurrent Learning (RTRL) networks.
Unlike locally recurrent networks, where the only time-delayed connection that a
unit receives is from itself, in these networks time-delayed connections can come
from any of the network’s internal units. This gives this topology the computa-
tional power of finite state automata [Kremer, 1995], or if infinite precision units
are used, the computational power of Turing machines [Siegelmann, 1991, Siegel-
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Figure 3. Example of a Locally Recurrent Network.

mann, 1992]. A variation on this approach has also been developed that uses sec-
ond order connections between input and previous hidden and current hidden unit
activations [Giles, 1990].

These four different network topologies have different representational capac-
ities. It is important when selecting a topology to choose one which has the rep-
resentational power to solve the task at hand, but not more representational power
than necessary, because this will extend the search space of potential solutions
which can make learning take much longer or make it intractable altogether.

E. LESSON 2.2: CHOOSE A LIMITED NUMBER OF HID-
DEN UNITS

Another way, to limit the power of recurrent networks, is to limit the number
of hidden units, which obviously constrains the kinds of computations the net-
work can perform. It is fairly obvious that the types of constraints imposed by
limiting hidden units in recurrent networks will not fall along the lines of the clas-
sical Chomsky hierarchy of languages. Instead, in recurrent networks, a hierarchy
based on decision regions in the geometry of the input and internal representation
spaces will form. These types of network-based hierarchies may even fall along
lines which more closely resemble the distinctions between natural and artificial
languages since the network-hierarchies are a consequence of a parallel process-
ing architecture which may be considered more brain-like than the grammatical
rules which distinguish symbolic language hierarchies.
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F. LESSON 2.3: FIX SOME WEIGHTS
Choosing a limited number of hidden units also effectively reduces the number

of weights in the network. Since it is the weights which determine the computa-
tion performed, this will naturally constrain these computations. An alternative to
limiting the number of weights is to fix the values of some of the weights in the
network. This effectively reduces the degrees of freedom in the system, reducing
the search space for the learning algorithm and thus offering a potential speed-
up to learning. Of course, in order to be of use in solving a given problem, the
fixed weights in the network should incorporate some a priori knowledge about
the problem to be solved.

Fixing weights, however, cannot guarantee that the supplied a priori knowl-
edge will actually be incorporated in the grammar induced by a recurrent network,
because the trained weights in the network can overpower or nullify the contribu-
tions of the fixed weights. Suppose that the trained weights of the connections
leading into node i in some recurrent network are much larger than the fixed
weights leading into the same node. Since the signals transmitted through each
connection are multiplied by the connection’s weight and then summed together
by node i, the effect of the fixed weights will be negligible compared to the effects
of the larger trained weights. In this situation, the trained weights overpower the
fixed weights.

Now suppose that all the connections leading out of node j are trained and
have a very small weight after the training process. In this case any fixed weights
leading into node j will affect the activation value of the node, but this activation



value will be ignored by the rest of the network due to the small outgoing weights.
In this sense, the trained weights nullify the effect of the fixed weights.

Of course, a network which ignores a priori knowledge in either of these two
ways will further limit its representational capacity. That is, a recurrent network
with n nodes will be able to represent a large class of languages. A recurrent net-
work of the same size which has some fixed weights and uses those fixed weights
to compute its behaviour will be able to represent a smaller class of languages.
Finally, a recurrent network with n nodes which has some fixed weights but does
not use these weights in its computation (either because they are overpowered or
because they are nullified) will be able to represent the smallest class of languages.

Frasconi, Gori, Maggini, and Soda [Frasconi, 1995] have explored fixing net-
work weights based on a priori knowledge about an isolated word recognition
task to be solved. Specifically, they develop a network consisting of two sep-
arate networks with a common 1-Layer output function. One of the networks
(called “K”) consists entirely of fixed weights whose values are assigned based
on the available knowledge. The other network (called “L”) has adaptive weights
whose values are learned based on training data. By using this modular approach,
these authors are able to prevent the trained weights from overpowering the fixed
weights. However, the output layer can still ignore the values of the state nodes in
K by setting all weights originating from the K-memory to small values. We defer
the discussion of the type of a priori knowledge used by the authors and how this
knowledge is encoded into connection weights to the original papers [Frasconi,
1991, Frasconi, 1995].

Frasconi et. al.’s networks are able to achieve a recognition rate as high as
92.3% in empirical performance tests. The authors indicate that this is a signif-
icant achievement due to the fact that the task of isolated word recognition is
complicated by the fact that the words used are composed only of vowel and nasal
sounds. They further argue that their approach is more efficient than ones which
do not use a priori knowledge. Unfortunately, the authors do not provide any em-
pirical data comparing networks with a priori data to networks without a priori
data.

From these considerations and empirical results, we can conclude that it is
advisable to consider incorporation any knowledge of the kinds of solutions that
we want our network to find into the connection weights of the network. A number
of such encoding techniques have been developed for different kinds of networks,
and the reader is referred to [Frasconi, 1991, Frasconi, 1995, Giles, 1992b, Giles,
1993] for detailed discussions of encoding.

G. LESSON 2.4: SET INITIAL WEIGHTS
While it is obvious that fixing weights in a recurrent network restricts the

hypothesis space, it is less apparent that initial weights can also restrict the space.
To recognize the latter fact, we must realize that the search of the hypothesis space
in recurrent networks is usually governed by a gradient-descent algorithm. This
implies that each candidate grammar considered during the search must have a
smaller error value than the previous. But, since the initial weights of a network



define a grammar and since that grammar is assigned an error value, it must be
the case that all grammars with higher error values than the initial grammar are
omitted from the search. Thus, the initialization of weights can serve to restrict the
hypothesis space by causing all grammars with higher error values to be rejected
outright. Figure 5 illustrates an initial set of weights (i.e., a point in weight space),
a fictional error function, and those grammars which are not explored during the
search algorithm (shaded grey).

Error

Initial Weights

Weights

Figure 5. Initializing Weights to Limit Space.

It is interesting to note that “good” a priori knowledge will tend to signif-
icantly reduce the hypothesis space, while “bad” knowledge tends not to reduce
the hypothesis space as much, because good a priori knowledge will tend to result
in a network having a small error value. Since only those networks and grammars
with even smaller error values are explored, the hypothesis space will tend to be
greatly reduced. Conversely, bad a priori knowledge will tend to result in a net-
work with a large error value. In this case there will be many recurrent networks
and grammars having smaller error values and hence the hypothesis space will
tend to remain large. This is an extremely useful property since it implies that
good information will tend to have a large (positive) effect while bad information
will tend to have very little effect.

There is, however, one serious drawback in choosing initial weights to restrict
the hypothesis space: local minima in the error function. If the function map-
ping weight values to network error is non-monotonic, then it may be the case
that to get to a smaller error value one must first travel though a region (in weight
space) of larger error. Since the gradient descent algorithm travels only down the



error gradient, such smaller error values can never be achieved. That is, the ini-
tial weights do not limit the hypothesis space to all networks with smaller error
values, but rather only to those recurrent networks lying within the current basin
of attraction. If the attractor at the bottom of this basin represents a local mini-
mum (as opposed to a global minimum), then the hypothesis space will be unduly
restricted to exclude the best solutions. This is illustrated in Figure 6.

Error

Weights

Initial Weights

Minimum

MinimumLocal
Global

Figure 6. How initial weights can reduce the hypothesis space to exclude optimal solutions.

We can conclude that setting initial weights to an approximation of the so-
lution is almost always desirable and one approach to overcoming the learning
difficulties suggested by Gold and Pinker.

IV. LESSON 3: SEARCH THE MOST LIKELY PLACES
FIRST

Another way to speed search (in general) is to order or bias the hypothesis
space based on some heuristic. Suppose you are a habitual car key loser and
that you keep track of where your keys turn up after each search. The results of
such record keeping might be something like: coat pocket: 53%, hallway shelf:
27%, kitchen table: 16%, beside telephone: 3%, in refrigerator: 1%. If you know
that most of the time the missing key has been located in your coat pocket, then
it makes sense to begin your search there. That is, it is logical to order your
hypothesis space and bias it in favour of the coat pocket. But just like a bad
hypothesis space reduction can hinder search, a bad ordering can also impede an



effective search. For example, using the hypothesis ordering designed for your car
keys to find a pitcher of orange juice would clearly be very inefficient.

Just as hypothesis space restriction can be used to simplify the search for a
grammar, hypothesis space ordering has also been applied to grammatical induc-
tion within the symbolic paradigm. In this case, a working hypothesis about the
grammar (from the hypothesis space) is used as a starting point. Then, as new
evidence about the grammar is presented in the form of training data, a change to
the hypothesis is made. The nature of this change is defined by some heuristic.
That is, certain types of hypothesis changes will be favored over other changes
even if both are consistent with the training data. The chosen hypothesis change
results in a new working hypothesis, and the process is repeated. Typically all
of the possible hypothesis changes are evaluated and the resulting hypotheses are
evaluated according to some weighting scheme. Then only the highest valued
new hypothesis is selected as the new working hypothesis. This is analogous to a
best-first search algorithm.

A weighting scheme could be based on complexity, for example, by assigning
a weight inversely proportional to the number of auxiliary symbols (states) used by
each grammar. This weighted selection process effectively orders the grammars
of the hypothesis space. While searching for a grammar which is consistent with
the training data, this ordering favors certain solutions over others. Ideally, good
solutions to the problem to which the grammatical induction system is applied
would be considered first and, thus, learning would be speeded.

While we have seen in the previous section that setting initial weights can re-
strict a hypothesis space, it is perhaps even more natural to think of setting initial
weights as a technique for ordering the exploration of that remaining space. Ob-
viously the initial weights define the first potential grammar which is explored by
the induction algorithm. The exploration of subsequent grammars is governed by
the learning algorithm. When the learning rate used by the gradient-descent algo-
rithm is small, each grammar considered will lie close to the previous candidate
grammar in the recurrent networks weight space. Since the output and state of a
recurrent network are governed by functions continuous in the connection weights
of the network, a small change in a connection weight will tend to result in a small
change in output and state. This means that the exploration of the hypothesis space
will proceed via similar grammars.

One advantage of using an ordering technique as opposed to a hypothesis
space restriction technique is that there is often some uncertainty associated with a
priori knowledge about a task. This implies that an irreversible decision, like elim-
inating certain grammars from consideration, is less desirable than an approach
which can eventually ignore incorrect information. Setting the initial weights of
a network can operate in this fashion, since even if the first weights are wrong
and the network updates weights in small steps, the network will still be able to
eventually explore other regions of the hypothesis space. This conclusion has
been empirically verified by Giles and Omlin [Giles, 1993]. They initialized the
weights of recurrent networks to implement one automaton, A, and then trained
the recurrent networks to represent another (different) automaton, B. Despite the



fact that this imposed an ordering on the hypothesis space which caused the net-
work to explore automaton A first, the network was still able to eventually find
and learn automaton B.

Specifically, Giles and Omlin [Giles, 1993] trained a recurrent network to im-
plement a randomly generated 10-state finite-state automaton. Then, they ini-
tialized the weights of the automaton to encode a different randomly generated
10-state automaton. The authors discovered that, so long as the assigned weight
values assigned were not too large (> 2), the networks were able to learn the
correct automaton in spite of the “malicious” information provided by weight ini-
tialization. Of course, the authors also found that learning times were signifi-
cantly longer for “malicious” information than for correct information. Giles and
Omlin’s results indicate that even if a priori knowledge is incorrect, an ordering
scheme such as initializing weights can sometimes still find the correct solution.

V. LESSON 4: ORDER YOUR TRAINING DATA

The previous two sections discussed methods that could be used to speed the
learning process before network training begins. This section describes a tech-
nique to provide information to the network during training. In the traditional
grammar induction paradigm, the learner is required to identify a grammar based
on a set of positive (and optionally a set of negative) example strings. Under input
ordering, the data available to the learner consists not of a set of strings, but of
a sequence of strings. That is, there is an order associated with the input data.
If input strings are presented in a non-random order, then the position of a string
within the sequence can represent an additional source of information about the
grammar to be induced.

For an input ordering to be advantageous, two criteria must be met: (1) The
presentation of a string s at time t must encode some information other than the
mere fact that the string is a member (or not a member) of the language. (2) The
learning system must be informed of the import of this encoded information and
use it to limit or order the exploration of the remaining search space. Only when
both of these criteria are met can a computational advantage be realized.

A. CLASSICAL RESULTS
We begin our discussion of input ordering by examining how input ordering

works and what it can achieve. Gold [Gold, 1967] proposed a type of input string
orderings which can improve the classes of grammars that can be induced using
only positive input strings (text learning). This ordering scheme uses indirect
negative information to learn languages which cannot be learned from positive
information alone. This is done by using the absence of a string at a particular
point in a sequence to infer that the string is illegal.

Suppose an order on all possible strings (grammatical and ungrammatical) is
known to the learning system and this order defines how the environment provides
the input data (e.g., alphabetical order). Note that there is an important distinction
between knowing the order in which a sequence of strings is presented and the
actual sequence of strings. An ordering defines a relation between all possible



strings for a given alphabet, i.e., ��, and thus defines where each string should
belong (if it were legal), whereas the input sequence generally consists of only a
subset of �� and defines the actual set of legal strings.

Now assume that the induction environment presents all the grammatical strings
to the learner according to the given order. Then, by omitting a string at the appro-
priate time, the environment essentially informs the learning mechanism that the
given string is ungrammatical. Since this implies that the training set effectively
contains both grammatical and ungrammatical strings, it is equivalent to informant
learning as defined by Gold. Since Gold has already shown that primitive recur-
sive languages are identifiable in the limit under informant learning, this class of
languages must also be learnable under ordered text learning. While this strict
sense of ordering is obviously an unrealistic idealization for practical grammar
induction systems, Gold’s work does point out the power that an ordering scheme
can provide.

A less stringent ordering scheme has been proposed by Feldman [Feldman,
1972]. He showed that even an effective approximate ordering of the input strings
could be used to convey indirect negative information. If there exists a point in
time by which every grammatical sentence of a given length or less has appeared
in the sample, then a learner capable of computing this point in time can also
compute which sentences are not in the language (this could be the case in human
language learning if children were spoken to in short sentences). Once again
this is equivalent to a learner’s being provided with both grammatical and non-
grammatical strings, appropriately labeled.

The common thread to both of these techniques is the fact that the learner
reacts differently to the same set of strings presented in differing orders. More
specifically, strings which are presented early cause the learner to make certain
assumptions about remaining strings which affects the order in which potential
grammars are considered, or the size of the hypothesis space which is explored.
More efficient and tractable learning can be accomplished by tailoring the learning
algorithm and the input sequence to each other.

B. INPUT ORDERING USED IN RECURRENT
NETWORKS

A simple ordering scheme which can be placed on strings is to sort them in
order of increasing length. Das et al. [Das, 1993] have used a recurrent network
training scheme whereby short simple strings are presented first, and progressively
longer strings are presented as learning proceeds. They contend that “incremental
learning is very useful when (a) the data presented contains structure, and (b)
the strings learned earlier embody simpler versions of the task being learned”
[Das, 1993], a well-known concept in machine learning theory. In this situation,
the fact that short strings are presented early, together with the fact that these
strings embody simple versions of later strings, implies that it is possible to use
the strings which have already been presented to make certain implicit logical
inferences about strings which have not yet been presented. A grammar induction
system can be designed to use these inferences to dynamically reduce or re-order



the space grammars it can induce.
For example, when a string of length n is presented as input to Das et al.’s

system, it is possible to conclude that all strings which are shorter than n and have
not yet been presented must be ungrammatical. This implies that these shorter
strings will not be presented at a later point in time. In this sense, additional in-
formation about future strings (i.e., that they will not contain certain short strings)
is transmitted by the ordered data. We will see shortly how a network learning
system could function in this fashion.

Giles et al. [Giles, 1991, Giles, 1992, Giles, 1992a] and Miller and Giles
[Miller, 1993] have used another simple ordering scheme: alphabetical ordering.
If input strings are presented in strict lexicographic order, then the presentation
of a string, s, implies that all lexicographically preceding strings which have not
been presented must be ungrammatical, in the case of text learning, and must be
of irrelevant (don’t care) grammaticality, in the case of information learning. In
this sense, an alphabetical presentation order can convey additional information
(regarding the grammaticality of unpresented strings). Once again, a learning
system which is tuned to this type of ordering in the sense that it restricts or orders
the space of inducible grammars dynamically could perform better than a system
in which input is not ordered. (Empirical data describing Giles et al.’s and Miller
and Giles’ results is described in the papers listed above.)

Both lengthening and alphabetical input orderings are very restrictive in the
sense that they precisely prescribe the order of presented strings. For practical
applications, it is often more desirable to use a less stringent ordering. Consider
a case where input strings are presented in phases. In the first phase, all short
strings, and only short strings, are presented. In later phases other strings are
presented. We shall refer to this type of partial ordering as multi-phase uniform
complete since the strings presented in the first phase are uniformly short and
completely represented. A multi-phase uniform complete input ordering can pro-
vide additional information in the same sense that a lengthening input ordering
does, with the exception that assumptions about strings which have not been pre-
sented can only be made at the end of a phase, as opposed to after each string.
Giles et al. [Giles, 1990] have used a multi-phase uniform complete ordering to
train recurrent networks. A similar ordering technique has been used by Elman
[Elman, 1991a, Elman, 1991] who used a form of ordering to train his networks.

C. HOW RECURRENT NETWORKS PAY ATTENTION TO
ORDER

We have now seen that the training environments used for recurrent networks
sometimes contain additional implicit information (beyond the grammaticality of
individual strings) in the form of string ordering. This represents one of the two
components required for a more efficient learning system. The second component
is a learner that uses the additional information. In this section we examine how
input ordering affects the solutions explored and found by recurrent networks,
thereby addressing this second component. Specifically, we examine two types of
order sensitivity: engineered sensitivity and natural sensitivity.



One way of ensuring that a learning system makes use of input ordering is
to specifically design an induction algorithm around an ordering scheme. Since
every symbolic algorithm “is equivalent to and can be ‘simulated’ by some neural
net” [Minsky, 1967], it is not at all surprising that it is possible to realize such a
hand-crafted algorithm in the form of a connectionist network. As an example,
Porat and Feldman [Porat, 1991] have designed a connectionist network which
implements an algorithm which induces FSA based on alphabetically-presented
input strings. In order to implement the algorithm, however, the connectionist
network requires an extremely complex control structure (compared to typical
connectionist networks) and has both hardwired and mutable connections. Thus,
the resulting learning system seems more like a connectionist-iterative learning
hybrid than a purely connectionist architecture.

An alternative to designing the learning system to accommodate a particular
input order is to design the input order to accommodate the learning system. This
is typically done in recurrent networks, where network design is based on princi-
ples such as simplicity, homogeneity, and local processing. Having designed the
network according to these principles, the researcher can only ensure cooperation
between input order and learner by adjusting the input order to suit the network’s
own natural sensitivities to this order. In a sense, the researcher has assumed part
of the burden of learning the language. It turns out that the order of pattern pre-
sentation affects recurrent network (and other network) learning greatly, because
initial weight changes in a network can draw solutions toward a certain local min-
imum from which the recurrent cannot later escape. This occurs because recurrent
networks do not perform true gradient descent.

Recall that, in order to efficiently approximate the gradient, weight adjust-
ments, �wji(t), are made piecewise over time. This implies that the component
of the gradient caused by a pattern presented at time t is computed after the weight
adjustment caused by the pattern at time t�1 has been made. This, in turn, means
that successive weight adjustments are not commutative. To better understand the
implications of this fact, we consider a simple example. Suppose we have a lan-
guage consisting of only two training strings. Suppose also that the network error,
for each of these two strings is given in Figure 7a and b, and the total error for both
strings is given in Figure 7c). Now suppose that the network’s initial weights and
corresponding errors are represented by the point labeled “B” in all three graphs.
Clearly if the network is first trained only on the string whose error function is
depicted in (a), then the network’s weights will move to the point labeled “C.”
Subsequent training with the second string will keep the network’s weights at “C”
since it represents a local minimum in the second string’s error space. By contrast,
if the network is first trained using only the second string, (b), then the network
will converge to point “A.” Again, subsequent training will not change the weights
in the network. Thus, it is clear that the order of string presentation during training
limits the hypothesis space (range of weights) which is considered in searching for
an error minimizing solution during later string presentations.

While it is easy to see that input ordering affects hypothesis space search dur-
ing learning, it is much more difficult to identify the ideal ordering scheme for a
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recurrent network. In the example above, presenting the string (a) before string
(b) will restrict the range of weights to include the global minimum of the error
space. By contrast, presenting string (b) prior to string (a) also restricts the range
of weights, but the restricted range does not include the global minimum of the
error space. Thus, in this simple example, it is important to present string (a) first.

In more general terms, it is always best to present strings whose error func-
tions have local minima at the same points in weights space as the total error
function has global minima. Since the presentation of a string adjusts the weights
of the network so that the string’s error is reduced, the network’s weights will
approach a local minimum in the presented string’s error function. Ideally, this
local minimum in the string’s error function will correspond (or lie close to) a
global minimum in the total error. Since the specific strings satisfying this condi-
tion depend entirely on the language to be learned by the recurrent network, we
cannot identify a general ideal ordering scheme. Instead we turn to the empirical
evidence to show that the ordering schemes described above do in fact correspond
to the natural sensitivities to input order in recurrent networks.

Das et al. [Das, 1993] compared training recurrent networks with a lengthen-
ing input ordering to training the same recurrent networks with a random ordering
of strings. They observed a 50% reduction in training time for the lengthening
ordering scheme. Giles et al. [Giles, 1992a] also observed an improvement in
training times when they presented strings in alphabetical order and concluded
that “the sequence of strings presented during training is very important and cer-
tainly gives a bias in learning” [Giles, 1992a] and that “training with alphabetical
order . . . is much faster and converges more often than random order presenta-
tion” [Giles, 1992a].

While the performance improvements realized by the ordering schemes of Das
et al. [Das, 1993] and Giles et al. [Giles, 1992a] took the form of accelerated
learning, Elman [Elman, 1991a, Elman, 1991] used ordering to learn an other-
wise unlearnable grammar. In two learning experiments, Elman’s multi-phase
consistent complete ordering approach was used after previous attempts to train
the network on the entire data set (complex and simple sentences) failed. In both
cases, Elman found that, “when the network was permitted to focus on the simpler
data first, it was able to learn the task quickly and then move on successfully to
more complex patterns” [Elman, 1991a]. This evidence clearly shows that input
ordering can be used in the connectionist domain (just as it has in the symbolic
paradigm) to improve learning efficiency and tractability.

VI. SUMMARY

In this chapter, we have examined the problem of language learning as a spe-
cial case of training recurrent networks. By examining results from the field of
grammatical induction from the past 30 years, we have discovered 4 useful lessons
that can be applied to training recurrent networks. The first lesson is that learning
languages is hard regardless of paradigm used. Since language learning is one of
the simplest cases of the kinds of learning that recurrent networks are tasked with,



we must infer that learning in recurrent networks is difficult in general. From this
first lesson, we turn our attention to making learning easier.

The second lesson revealed that, while it is tempting to select the most rep-
resentationally powerful computational tool possible for language learning tasks,
this is a dangerous choice since the representational power is inversely related to
the effectiveness of learning. Thus, we will often want to select a smaller search
space. There are 4 ways of accomplishing this in recurrent networks: (1) selecting
an appropriate network topology, (2) selecting an appropriate number of internal
units, (3) fixing some weights with appropriate values, and (4) setting the initial
weights to restrict the search space.

The third lesson showed that ordering the exploration of the hypothesis space
can also be very advantageous. This can be accomplished by setting initial weights.
Empirical evidence revealed that this is a very effective technique to speed learn-
ing which does not doom the training process even if malicious incorrect data is
used.

The fourth lesson focussed on the effect of ordering training data. This tech-
nique represents a method for indirectly providing information about which strings
are not in the language. A simple example revealed that recurrent network based
language learners are capable of using string ordering to effect the learning pro-
cess.

While language learning is only one potential application of recurrent net-
works, it is an informative one. These examinations have revealed effective tech-
niques for language learning derived from previous research. In most cases, these
techniques have already been implemented as heuristics for improving the train-
ing of recurrent networks with significant success. This chapter serves to ground
these techniques in a formal theory, thereby giving insights into why they work
and why, how, and when they should be applied. An extended version of this work
can be found in Kremer [1996a].
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