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I. INTRODUCTION 

 
    Dynamic neural networks are capable of prolonged self-sustained activity 
patterns, in which each neuron has an activation level that can change over time, 
and different neurons can be at different levels, with different changes over time. 
An enormous repertoire of self-sustained activity patterns is possible, due to the 
wide variety of oscillations that networks can engage in.  Oscillations include n-
state oscillations (repeating finite sequences of states), limit cycles 
(quasiperiodic), and chaos.   An infinitude of different oscillations is possible for 
each type.  The resulting set of possible oscillations and activity patterns has 
potential for increasing the capacity and capability of neural networks for 
computational purposes.  Whereas feedforward neural networks have extensive 
applications in recognition and control, with many highly successful 
performances in applications, their output is a fixed vector.  Single-layer 
networks, such as those studied by Hopfield, have fixed vectors (stable states) as 
output. In contrast, dynamic networks can produce a wide variety of oscillations 
as output, and enhanced computational properties are expected to be realized by 
dynamic neural networks that oscillate. 
 
 



    Recently, neurobiological investigators have suggested that the brain may use 
chaotic behavior and oscillatory states to store and recognize patterns, and that 
chaotic states are "waiting" states, whereas simpler oscillators are recognition 
and response states [Yao and Freeman, 1990, Yao et al, 1991, Freeman et al., 
1988]. Theoretical investigations have shown a tremendous variety of oscillatory 
states possible, and systematic ways to produce chaos in a network, along with a 
progression of oscillatory states moving a network from a fixed point to chaos 
[Sompolinsky et al., 1988, Doyon et al., 1993, Palmadesso and Dayhoff, 1994]. 
Some investigators have researched computations that use limit cycles, strange 
attractors, chaos, or transient behaviors in associative memory or information 
processing models [Kumagai et al. , 1996, Yao, 1991, Chapeau-Blondeau, 1993, 
Moreira and Auto, 1993, Dmitriev et al., 1993, Dmitriev and Kuminov, 1994, 
Hjelmfelt and Ross, 1994, Wang, 1996, Lin et al., 1995, Dayhoff et al., 1998]. 
These studies make it natural to suggest that new paradigms using oscillations as 
final states are likely to enhance the development of powerful methods for 
information processing with artificial neural networks. This prospect has 
received increasing research interest recently and requires more characterization 
of dynamic network activities. 
    Here we study chaotic neural networks that can be used to produce pattern-to-
oscillation maps.  First, chaotic behavior is developed in a sparsely connected 
neural network with random weights, as described by Doyon [Doyon et al., 
1993], [Doyon et al., 1994].  To the chaotic network, an external pattern is 
applied and the network usually locks into a simpler dynamic attractor, 
consisting of a limit cycle or simple n-state oscillator.  A range of intensity for 
the applied pattern has been considered, and the resulting attractor changes as 
the intensity is increased.  An increase in intensity eventually results in a stable 
fixed-point attractor. When different patterns are applied with the same 
intensity, they evoke different oscillations and differing dynamic activities.  
Adjusting the pattern intensity helps to produce a pattern-to-oscillation map.  
This approach has promise for developing paradigms in which the evoked 
attractor represents a memory, pattern class, or optimization result.  The neural 
network model used in this chapter differs from that of other investigators cited 
above, except for previous work by Samuelides and coworkers [Cessac, 1994, 
Cessac et al., 1994, Cessac, 1995, Cessac and Quoy, 1995, Doyon et al., 1993, 
Quoy et al., 1995], who have presented a variety of theoretical results for the 
network's dynamics without an applied external pattern, and have found positive 
results on Hebbian weight adjustment in the presence of applied external 
patterns.  Here we present results on the effects of variations in pattern strengths, 
the adaptation of the pattern strength variable, and the responses of the network 
to noisy patterns. 
    In Section 2, we illustrate a progression to chaos in a network with no 
stimulus patterns [Doyon et al., 1993].  A series of different attractors is 
obtained. Different initial states usually do not evoke different attractors.  The 
application of external patterns to the network is addressed in Section 3. Effects 
of increasing pattern strengths are shown, and capacity and uniqueness of 
evoked oscillations is illustrated. Some resilience to pattern noise is attained.  
Dynamic adjustment of pattern strength is described in Section 4, which results 



 

in a pattern-to-oscillation map that is unique and results in a low complexity 
oscillator in response to each pattern.  Further characteristics of the pattern-to-
oscillation map, including resilience to pattern noise, are discussed in Section 5. 
The impact of this type of approach is discussed in Section 6. 
 

 
II. PROGRESSION TO CHAOS 

 
    Dynamic attractors can be developed in a random neural network, and a 
progression from a single fixed-point stable state to a chaotic oscillation can be 
obtained.  The construction of the network is as follows.  A random network 
with full or sparse interconnections is configured as a single layer of neurons, 
where closed-loop connections are allowed and weights are set at random.  A 
multiplier g can be applied to all of the weights at the same time, and, when g is 
increased sufficiently, chaotic behavior occurs [Sompolinsky et al., 1988, 
Doyon et al., 1993].  Thus the network can be modulated into a chaotic state. 
The neural units are simple biologically inspired units, performing a weighted 
sum. 
 
 
 
where aj(t) = activation of unit j at time t, wji = weight to unit j from unit i, N = 
the number of processing units, g a multiplier, and f a nonlinear squashing 
function.  The squashing function used in our experiments was   
 
 
 
    Reciprocal connections did not have to be the same (e.g., wij ≠wji), and self-
loops were suppressed in our experiments as a simplification. The activation 
values could vary from -1.0 to 1.0, and the parameter g is a multiplier for all 
weights and can be set at any value greater than zero.  The interconnections and 
weights were chosen at random.  Networks were denoted as (N, K), where N 
was the total number of processing units, and K the number of incoming 
interconnections for each unit.  The K units that sent interconnections to each 
unit were selected at random, and the values of the weights were selected from a 
uniform random distribution [-1,1], with the random variable divided by K, as 
specified in Doyon et al., [1993].  With this model, we have examined a variety 
of paths from single fixed-point attractors to chaos. 
    The parameter g is a multiplier for all weights.  Thus, the original set of 
weights becomes amplified or de-amplified depending on whether g>1 or g<1. 
A stronger set of driving forces is then presented to each neuron as g increases 
above 1.The incoming sum for neuron j is  
 
 
 
and the modulated weight is gwji.  The neuron then performs the squashing 
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function to determine its next activation value: 
 
 
 
    The parameter g can also be considered as a scaling of the x-axis in the 
squashing function.  Organizing equation (1) differently, we get 
 
 
 
 
where Rj is now the incoming sum for unit j, and  
 
 
 
where fg = f (gx), a sigmoid squashing function with a re-scaled horizontal axis. 
Here the weight is not modulated by g, but the horizontal scale of the sigmoid is 
modulated by g. In both contexts, g is key to producing chaos. 
    Figure 1 shows the symmetric sigmoid function, with the x=y line.  Figure 2 
shows the function f10, which compresses the horizontal direction of the 
squashing function so that two pockets form, bounded in part by the x=y line.  
This curvature in turn causes there to be two absorbing states, at the upper and 
lower intersections, for the single neuron case [Dayhoff, 1998].  It is thus not 
surprising that dynamic attractors - oscillations and chaos - develop at increased 
values of g. 
 

 
 

Figure 1. Symetric sigmoid function, with the 
x=y line 

Figure 2. Modified sigmoid function with g=10 

 
    A network with 64 units, each with 16 incoming connections, was constructed 
with random initial weights.  Transitions from fixed-point attractors to chaotic 
attractors were observed as g was increased starting from numbers below 1.0.  
Figure 3 illustrates such a progression, from a fixed point attractor to a chaotic 
attractor, with average activation a(t+1) graphed as a function of a(t), to form a 
map of the dynamics.  Use of the average activation in the plot was chosen to 
project the many dimensions (64 activation levels) to a single measured 
observation over time.  
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    For low values of g (e.g., g=0.9), a single fixed-point attractor was observed, 
shown in Figure 3(a), which has a single point at (0,0).  When g was increased 
to 1.0, a limit cycle appeared (Figure 3(b)),  consisting of a dense set of points 
along a closed loop.  When g was increased to 1.1, the four corners of the closed 
loop became pointed, and the span of the graph increased from +/- 0.025 to +/- 
0.04 (Figure 3(c)).  When g was increased to 1.2, the limit cycle took on a new 
shape along the x=y diagonal, with an expansion in range to within +/- 0.08 
(Figure 3(d)).  In Figure 3(e), g was increased to 1.3, and the limit cycle 
developed several wiggles, and expanded in range to +/- 0.1.   When g=1.4 
(Figure3 (f)), the wiggles appear deeper, and the span increases to within +/- 
0.15.  When g was increased to 1.5, the previously observed closed loop appears 
to have changed to a figure that roughly outlines the previous loop several times, 
with different variations each time, and gives the appearance of scribbling 
(Figure 3(g)).  When g=1.6, a locking occurs into a finite-state oscillator (Figure 
3(h)).  When g=1.7 (Figure 3(i)), chaotic or irregular behavior occurs.  This type 
of progression shows the tremendous range and complexity of dynamic 
attractors and the ability to exert some control over their appearance, through 
varying the single parameter g. Figure 3 illustrates a progression for one 
network of 64 neurons; Doyon and colleagues [Doyon et al., 1993] have 
characterized four types of paths to chaos in networks of 128 neurons. In some 
cases, increasing the number of iterations calculated allowed activity that 
appeared chaotic to resolve into a limit cycle. Sometimes the number of 
transients in these cases would be too large to be practical to implement in a 
computational application. Thus, for practical use to be made of dynamic neural 
networks, a "chaotic" response would be considered to be behavior that 
appeared to be chaotic in a limited predefined time frame 
 
A. ACTIVITY MEASUREMENTS 
    We have experimented with measurements that reflect the type of activity 
observed in the maps drawn in Figure 3. An activity measurement was 
computed by an algorithm that uses the average activation over the entire 
network over a period of time, usually 1000 iterations of Equation (1). The 
range of the graph of a(t) versus a(t+1), as in Figure 3, is defined to cover the 
points generated by the n iterations used.  The graph is then divided into a 10 by 
10 grid, with evenly spaced lines.  The percentage of non-empty grid squares is 
the grid coverage.  Grid coverage tends to reflect the types of activity shown in 
Figure 3, and thus can be used as an appropriate measurement or reflection of 
the network’s activity. 
    Chaotic behavior such as in Figure 3(i) tends to have coverage values in the 
range >73.  Limit cycles tend to be in the range 43-57, and n-state oscillations, 
such as Figure 3(h) are in a range >2, usually small.  The coverage measurement 
can be used in the method shown next for adjusting the pattern strengths in the 
pattern-to-oscillation map.  Other measurements of activity could be substituted 
for grid coverage.  Ideally, the best activity measurement would be always high 
when chaotic, irregular behavior occurs and progressively lower as the network 
dynamics progresses to a fixed point. Although the grid coverage usually 
adheres to this pattern, there are exceptions. 



 
  

   
(a) (b) (c) 

   

   
(d) (e) (f) 

   

   
(g) (h) (i) 

 
Figure 3. Progession from fixed point to chaos in a random (64, 16) network. The horizontal axis is 
average activation at time t+1, a(t-1) and the vertical axis is average activation at time t, a(t). (a) 
g=0.9,  (b) g= 1.0, (c) g=1.1, (d) g=1.2, (e) g=1.3, (f) g=1.4, (g) g =1.5, (h) g=1.6, (i) g=1.7 
 
   Figure 4 shows the coverage measurement graphed versus the value of the 
multiplier g, for two different networks.  The coverage measurement is 1 for 
small values of g, and then increases until the coverage value is consistently at a 
high level, generally above about 70.  Usually, once a high level of coverage is 
attained, reflecting irregular activity or chaos, higher values of g continue to 
evoke high coverage levels.  The lowest value of g for which a high coverage 
level is attained is an indicator that the network is at the "edge of chaos". 
 
B. DIFFERENT INITIAL STATES 
    It is computationally interesting to find a paradigm whereby a pattern-to-
oscillation map can be produced, because then the initial state of the network 
could be set from a pattern vector, and the evoked oscillation could represent a 
pattern class or other computational answer evoked by the initial pattern.   We 
first explored whether different initial states of the network would produce 
different attractors in the random networks described above, but were not 
satisfied with the potential of this approach, as described next. 
      We generated a series of random networks with a (64,16) configuration, as 



 

described in Section 2.  A series of random pattern vectors were used as initial 
states to the network.  The resulting attractor was then observed.  In most cases, 
only one attractor was observed, which was reached from a wide variety of 
initial states.  The initial states in this experiment were generated at random 
from a [-1,1] uniform distribution.  Sometimes there were two attractors (limit 
cycles or n-state oscillations), reached from different initial states, but they were 
symmetric with one another, having a 180 degree rotational symmetry about the 
origin.  Figure 5 illustrates such an example. About half of the initial states 
(taken at random) evoked each attractor.  Although different initial conditions 
could evoke different (but symmetric) limit cycles in this case, this scenario 
does not offer enough flexibility to discriminate patterns by the limit cycles they 
evoke.  
    Occasionally, different attractors were observed from different initial states 
during our simulations of networks with random weights. This circumstance was 
very rare among our observations, and in these cases the parameter g was first 
tuned to be very near a bifurcation point.  Figure 6 shows such an example.  
Figure 6(a) shows an 8-state oscillator.  This occurs at g=1.72 in a (64,16) 
random network.  Figure 6(b) shows the same network except that a different 
initial state was selected at random.  The 8 points appear to have bifurcated into 
8 rings, which are asymmetric about the origin.  A third random initial state 
evoked the limit cycle in 6 (c), which is symmetric to that in 6 (b).  It was also 
possible to evoke an oscillator symmetric to that of 6(a) with other initial states.  
Although different initial conditions evoke different attractors in this case, this 
scenario also does not offer enough flexibility to discriminate many patterns by 
the limit cycles they evoke.   However, this does not rule out the possibility of 
creating intricate and desired distinctions between different types of initial states 
according to which attractor is evoked if suitable weight adjustments are made. 
 
 

  
(a) (b) 

 
Figure 4. Activity level – in this case, coverage level – as a function of g, for two different networks. 
(a) For this network, a bifurcation was exhibited when g = 0.9, to generate an oscillation instead of a 
fixed point. The map appeared chaotic when g reached 1.7, and for higher values of g. (b) For this 
network, a rapid set of bifurcations occurred to generate oscillations at g = 1.26 and the coverage of 
the map was above 60 until g = 1.6, where chaotic behavior occurred. Both networks were (64,16) 
with randomly assigned weights as described in Section A. 
 
 



  
(a) (b) 

 
Figure 5. Symmetric attractors evoked by different initial states in the same network. The initial state 
of the network was set so that neuron activation levels matched a random pattern vector  
E (ai(0)← ei). 
 
 
 

   
(a) (b) (c) 

 
Figure 6. A case where different initial states lead to different attractors, from a random (64,16) 
network. (a) An 8-state oscillator (b) A limit cycle with 8 closed loops (c) A limit cycle symmetric to 
part (a). 
 

III. EXTERNAL PATTERNS 
 
    Next, we treat a pattern vector as an external stimulus, to overcome the 
limitations in flexibility encountered when patterns are applied as initial states.  
To include an external stimulus, the updating equation for the neurons (1) can be 
modified as follows: 
 
 
 
 
where E=(e1,e2,...,en) is the external input pattern.  The input E is then applied at 
every time step, and its strength is modulated by the multiplier α. The vector E 
can then be assigned as a pattern to be classified, and a pattern-to-oscillation 
map can be generated. 
    The network is initially put in a chaotic oscillation.  The chaotic net does not 
have an external stimulus, and updates by (1).  To produce the chaotic network, 
the parameter g is increased until the network reaches chaotic behavior.  
Typically, we do not increase g more than is necessary to produce chaotic 
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behavior, so the network can be said to be at the "edge of chaos".  An external 
input E is then applied to the chaotic net, and the network uses (7) to update.  
The externally applied input usually  "locks" the chaotic network into a simpler 
attractor, often a limit cycle.  This scenario can thus be called "attractor 
locking".  
    The attractor that results depends on the characteristics of the externally 
applied pattern (for the same network) and the weights and configuration of the 
network.  A chaotic network was updated for varying amounts of time without 
an external input, and regardless of when E was applied, the same dynamic 
attractor was observed. Figure 7 shows the results when a chaotic behaving 
network receives an external stimulus pattern.  The graph of Figure 7(a) shows 
activity of the chaotic network, without any applied pattern. The other graphs 
show the results of applying different external patterns. The patterns were 
generated at random from a uniform distribution [-1,1].   
 
A. PROGRESSION FROM CHAOS TO A FIXED POINT  
    Each pattern has a strength, α, as shown in equation (7).  As the pattern 
strength α is increased, the dynamics of the network's activity moves through a 
progression to a fixed point.  In all cases examined, a sufficiently high α 
produced a fixed point. Figure 8 shows the progression of a network's dynamics 
as a function of α ((a)-(i)), from chaos (a) to a fixed point (i).  One external 
pattern, at increasing strengths, was applied to the same chaotic network. 
    Figure 9(a) shows activity measurements as a function of α for the same 
network.  Figure 9(b) is based on another random network, with a different 
random pattern.  The activity measurement always starts high (generally >73), 
which is indicative of chaotic oscillation.  When α is increased, there is a point 
at which the activity measurement enters a mode that has limit cycles or finite 
state oscillations (usually activity values of about 2-57).  At sufficiently high α, 
the activity becomes a fixed point.  These transitions happen at different values 
for α for the two examples shown in Figure 9. 
 
B. QUICK RESPONSE 
    Figure 10 shows the results of applying an external pattern to a network, 
including transients before a limit cycle is obtained.  All points were plotted 
after application of the external pattern.  The transients were included in the 
figure to illustrate that sometimes very few transients occur after the external 
pattern is applied and before the limit cycle is attained.  The possibility for fast 
classification to occur when a network is initially in a chaotic state has been 
suggested by Freeman  [Yao and Freeman, 1990], in reference to olfactory 
neural models that wait for stimuli in a chaotic state and lock into a simpler 
oscillation after a stimulus is received.  Because such fast classification of 
patterns with chaotic networks is of interest, we explored the relationship 
between the number of transients and the value of the pattern strength, using the 
(64,16) networks described in Section 2. 
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Figure 7. A chaotic network has 18 different patterns applied, with different results on the dynamics. 
(a) Activity of the chaotic network, before an external pattern is applied. Multiple g is set just above 
the value where chaotic activity occurs. (b-s) Activity of the network after 18 different patterns were 
applied. Evoked dynamics is highly unique. Most graphs show recognizable low-order dynamics – 
limit cycles and n-state oscillations – but some show chaotic (irregular) behavior and others show 
fixed points only. Graphs have the horizontal axis as average activation at time t + 1, a(t – 1), and 
the vertical axis as average activation at time t, a(t). The patterns were generated from a uniform 
random distribution [-1, 1]. 
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Figure 8. Progression of maps for the same pattern applied to the same chaotic network, at increasing 
pattern strengths. 
 
 
 

  
(a) (b) 

 
Figure 9. Activity measurement (grid coverage) as a function of pattern strength for two different 
patterns, applied to two different chaotic networks. 

 
    Figure 11 shows results on a random (64,16) network, where the number of 
observed transients is graphed as a function of pattern strength.  The decrease in 
the number of transients above α=1.4 correlates with a limit cycle (ring) that 



shrinks into a fixed point as the pattern strength increases further.  In the region 
where α < 1.4, there is a path from the first limit cycle, obtained at high 
strength, to chaos, which undergoes several transitions.  Figure 11 shows a 
graph of number of transients as a function of α.  In Figure 11, there is a peak at 
α=1.4 and a decrease to α=1.2.  This observation leads to the hypothesis that 
there are specific conditions under which the number of transients before an 
attractor is reached is low, leading to fast responses and/or fast recognition. 

 
 

  
Figure 10. Results of applying an external 
pattern to the network 

Figure 11. Observed transients as function of 
pattern strengths 

 
 
IV. DYNAMIC ADJUSTMENT OF PATTERN STRENGTH 
 
    Our goal was to produce a pattern-to-oscillation map in which the evoked 
oscillation satisfies a criterion that indicated it is a relatively simple oscillation.  
We define a Criterion A as follows. 
 
Criterion A: 
    -- A repeating sequence of states, e.g., a finite n-state oscillation (n>1). 
OR 
   -- A limit cycle (quasi-periodic).  
 
    In Figure 7, most of the evoked attractors satisfied this criterion.  Several did 
not, and remained chaotic in appearance (Figures 7(l)(m)(o)(p)(q)(r)).  It is also 
possible to evoke a fixed point (Figure 7(n)). Here there is no a priori 
knowledge of the best choice for α. To produce the map, a chaotic network is 
used.  Thus, the initial parameters are (1) the network weights, randomly 
assigned, and (2) the connection configuration.  A value of gc for the multiplier 
in (1) was set just above the transition to chaotic behavior. A set of external 
patterns is then applied to the network, one at a time.  Initially, a value for the 
pattern strength αb is chosen. External patterns are then applied, each with 
strength αb, as in Equation (3), with results similar to Figure 7. 
    The value of αb can be chosen so that a set of random test patterns usually 
evokes oscillations that meet Criterion A above.  Any evoked oscillation that fits 



 

criterion A is considered to be the result of the pattern-to-oscillation map. 
    For patterns that evoke oscillations that do not fit Criterion A, we do not yet 
have a suitable oscillation for the pattern-to-oscillation map.  So, a procedure is 
used to adjust the pattern strength until an oscillation that fits Criterion A is 
evoked.  In the end, each pattern has its own strength parameter, and each 
oscillation evoked fits criterion A.  
    The adjustment procedure is constructed based on the following observations 
about an activity value as a function of α. 
    Values a, b, c, d can be set so that 
 
1. If activity ≤ d then α is too high. 
2. If activity ≥ c (chaotic), then α is too low. 
3. If activity is between a and b, then a limit cycle or n-state oscillation is 

assumed present. 
 
    If the activity of the network is represented by the coverage value, then good 
cutoff values are at d=1, and approximately c=73, a=42, and b=53.  If coverage 
value is used for the activity measurement, then Observation 3 is usually correct, 
and the limit cycle or n=state oscillation is assumed present.  
 

1. Choose αinit. Try to choose a value so that most typical patterns evoke limit 
cycles or n-state oscillations. 

2. Set δ to a small value > 0 and << αinit 
3. Set a and b so that [a,b] is the desired window for activity measurements. 
 
For each pattern i, do the following 
 
4. Set αi(1) ← αinit 
5. Set ihi = ilow = 0 
6. Set k=0, iteration number 
7. Increment k:= k+1 
8. Measure the activity m(k) when the pattern i is applied at strength αi(k). If a 

≤ m(k) ≤ b, then done with pattern i 
9. If m(k) < a then ilow = k 
10. If m(k) > b then ihi = k 
11. If ilow > 0 and ihi > 0 then 

 
12. If m(k) > b and ilow = 0 then 

        αi(k+1) ←  αi(k) + δ 
13. If m(k) < a and Ihi = 0 then 

         αi(k+1) ← αi(k) - δ 
14. Go to 7 for next iteration 
 

Figure 12. Strength Adjustment Algorithm 
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    An algorithm for pattern strength adjustment is given in Figure 12.  This 
algorithm only uses parameters a and b, and targets [a,b] as the window for 
desired activity.  If the activity measurement is initially too large or too small, 
the pattern strength is changed and a new activity measurement is taken.  If this 
does not fall into the desired range [a,b], then the amount of change is adjusted 
appropriately to eventually reach the desired range. 

 
V. CHARACTERISTICS OF THE PATTERN-TO-

OSCILLATION MAP 
 
    Resilience to pattern noise has been observed in oscillations evoked by 
external patterns. A set of specific patterns was simulated and used as base 
patterns.  To each base pattern, ten noisy patterns were generated by adding 
small random numbers to each entry. The resulting oscillation was then 
observed, to see how the evoked oscillations compared among the noisy 
versions of the same base pattern.   
    Figure 13 shows the result for one base pattern. The base pattern was 
simulated at random and applied with a strength of 1.6. The same α was used for 
the noisy versions of the base pattern. Figure 14 shows the same results but with 
a different form of display, in which successive points generated by the network 
are connected.  Figure 14 thus reflects more of the dynamic action of the 
network over a progression of times.  These plots were generated to see whether 
the building of each figure was with the same type of sequence of points, and in 
all cases show that the figure, roughly triangular, was constructed by sampling 
three points over each 360 degree traversed.  Figure 14(f) in which a triangular-
shaped limit cycle has split into two triangles, has the same sampling pattern of 
three points per 360 degrees. 
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Figure 13. A chaotic network has different external patterns applied, each at strength α = 1.6. (a) The 
base pattern, with 64 entries, each from a uniform random distribution (-1:1). (b-k) The base pattern 
with 5% noise added, to make 10 different variations of the pattern. 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 

   
(a) (b) (c) 

   

   
(d) (e) (f) 

   

   
(g) (h) (i) 

   

  
(j) (k) 

  

 
Figure 14. A chaotic network has different external patterns applied. The map is drawn with 
successively generated points interconnected. (a) The base pattern, with 64 entries, each from a 
uniform random distribution (-1:1). (b-k) The base pattern with 5% noise added, ten times to 
generate ten variations of the base pattern. The pattern strength α = 1.6, and the attractors are the 
same as in Figure 13. 



 

    Figure 15 shows the base pattern and its ten variations, plotted together.  
Successive entries of the pattern vector are marked on the horizontal axis, with 
values in the vertical axis.  The pattern entries were generated at random from a 
[-1,1] distribution, and the added noise was generated from a uniform random 
distribution [-0.05,0.05], adding  5% noise.  
 

 
 

Figure 15. The base pattern and its ten variations, plotted together. 
 
     Figures 16, 17, and 18 show applications of the same base pattern as in 
Figures 13 and 14, with the same ten variations, to the same network, with 
varied pattern strengths. In Figure 16, a pattern strength of 1.4 was used, which 
is weaker than that in Figure 13. There is an increase in the variation among the 
evoked attractors in Figure 16 compared with Figure 13. 
    In Figure 17, a pattern strength of 1.8 was used, which is stronger than that in 
Figure 13.  The variation in the evoked attractors was less.  In Figure 18, a 
considerably weaker strength (1.2) was used, resulting in large amounts of 
variation.  These preliminary results suggest that different values for the pattern 
strength change the map's resilience to noise, and that the oscillations show less 
variation at a stronger pattern strength than at weaker pattern strengths.  For 
these figures (Figures 13-14, 16-18), the pattern strength evoked a limit cycle 
which was the result of the last bifurcation from the final fixed point, as in 
Figure 8(h).   
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Figure 16. The base pattern (a) and its ten variations (b-k). Here the pattern strength α was 1.4, a 
decrease compared with Figure 13. 
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Figure 17. The base pattern (a) and its ten variations (b-k). Here the patterns strength α was 1.8, an 
increase compared with Figure 14. The variations between the evoked attractors is less compared 
with Figure 14, where α was 1.6. 
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Figure 18. The base pattern (a) and its ten variations (b-k). Here the pattern strength α was 1.2, a 
large decrease compared with Figure 14. The variations between the evoked attractors is 
considerably higher compared with Figure 14, where α was 1.6. 
 

 



 

VI. DISCUSSION 
 
    The use of an evoked oscillation when an external pattern is applied to a 
chaotic network forms the groundwork for a potentially powerful approach to 
associative memory, recognition, and other potential computational applications.  
A wide range of different pattern inputs can evoke unique dynamic attractors, 
and the entry into the attractor often occurs quite rapidly. Thus there is the 
potential for performing useful computations, such as pattern classification, 
where the attractor that is evoked would represent the pattern class, associated 
memory, or other computational result. 
    Capacity is high with the model shown here, in the sense that many different 
patterns can each evoke a different attractor. Whereas the Hopfield network 
showed a capacity of about 0.15n attractors (memories) for n neurons, the 
number of oscillation attractors that could be used in our approach far exceeds n. 
    A previous study has applied a Hebbian-like learning approach to reduce the 
dynamics from chaos to quasi-periodic attractors in the presence of an external 
pattern.  The network's chaos is reduced during the learning of a pattern to gain a 
specific response of a limit cycle to the pattern [Quoy et al., 1995]. Capacity, 
however, was found to be seriously limited in this study, although changes in 
neural architecture are hoped to increase capacity.  We propose here that the 
adjustment of α, along with Hebbian-like training, could possibly increase the 
capacity of such a training paradigm.  Higher pattern strength α tends to evoke 
simpler periodic or quasi-periodic attractors.  Noise resilience is demonstrated 
through Figures 13-18. The same pattern, with added noise, evokes similar 
attractors.  Higher values of pattern strength α can cause the attractors to be 
even more similar, whereas lower values of pattern strength tend to disperse the 
similarities.  Quantitative analysis of attractor similarity has been introduced, but 
the graphical presentation shown here (Figures 13-14, 16-18) was chosen to 
show a more complete comparison of the attractors that are evoked. 
     Recognition of attractors is a problem for which feedforward time-delay 
networks would be naturally appropriate. Previous study has shown that 
different closed trajectories can be learned, recognized and generated by TDNNs 
and ATNNs [Lin et al., 1995]. Generalization capabilities would reflect the 
ability of the network to recognize the boundary between one class of applied 
pattern and another, when new external patterns are applied.  This could be 
tested in a combined system with a TDNN or ATNN recognizer as a post-
processor. 
    Previous investigations have addressed the activity of the chaotic networks 
with a mean theory approach  [Sompolinsky et al., 1988].  The result of using a 
fixed external pattern (a "bias") with a fixed strength, and varying the multiplier 
g, has been analyzed [Cessac, 1994a,b].  It is found that the distance from the 
highest g that evokes a fixed point to the lowest g that evokes chaos is 
surprisingly small, and diminishes as the number of neurons n grows, with fully 
connected random networks. The evolution of the neurons is a white noise in the 
thermodynamic limit [Cessac, 1995]. 
    Cessac [Cessac, 1994a] shows an absolute stability criterion for discrete time 
neural networks. In the thermodynamic limit, critical lines were found to divide 



planar graphs of the average bias of the external pattern versus g into areas with 
one fixed point, two stable points, one fixed and one strange attractor, and one 
strange attractor.  In finite size systems, the line of destabilization and the 
appearance of chaos are not identical: there is an intermediate periodic and 
quasi-periodic regime corresponding to the quasi-periodic route to chaos 
observed in finite neural networks.  Doyon and colleagues [Doyon et al., 1993] 
show a quasi-periodic route to chaos in a class of finite random networks.  We 
have illustrated one route for a 64-neuron network in this chapter (Figure 3). 
    Research on dynamic neural networks is highly motivated because there is 
potential for gaining superior generalization and pattern classification. 
Dynamical systems can have complex basin boundaries, including fractal 
boundaries [Ott, 1993], and the dynamic neural networks presented here are 
examples of such dynamic systems.  Fractal basin boundaries and other 
complicated boundaries could enable a recognition scheme to place arbitrarily 
complex boundaries between different pattern classes, with a tremendous 
amount of fine structure.  The tailoring of basin boundaries to fit the solution of 
a recognition problem has so far been considered only for limited cases with a 
different neural network paradigm [Hao et al., 1994, Venkatesh et al., 1990, 
Dayhoff and Palmadesso, 1998] and fractal boundaries were not taken into 
account.  
    Dynamic neural networks have an extensive armamentarium of behaviors, 
including dynamic attractors - finite-state oscillations, limit cycles, and chaos - 
as well as fixed-point attractors (stable states) and the transients that arise 
between attractor states. In our experiments, this tremendous spectrum of 
differing activities develops naturally as a result of the network's processing 
units, asymmetric weights, and closed-loop interconnections. Components that 
could oscillate or individually produce chaos did not have to be built into the 
network to insure the presence of dynamics. The resulting networks are 
enormously flexible, capable of prolonged self-sustained activity, and able to 
undergo progressions of oscillations that are controlled by modulating 
parameters and applied patterns. 
    Although the neural architectures studied here are artificial, they are inspired 
by biological structures. Furthermore, the ability for self-sustained activity is 
clear in biology, as neurons in the brain have recorded "spontaneous” activity, 
and animals can maintain ongoing awareness, consciousness, and mental 
activity.  The extent to which a capability for self-sustained activity and 
changing oscillations contributes to these biological and behavioral abilities is as 
yet unknown. We propose that underlying oscillations, changes in oscillation 
complexity, and modulated progressions of oscillations may contribute to 
biological activities such as awareness, mental transitions, mental 
representations, consciousness, and high-level tasks.  If so, this chapter shows a 
simplified and abstracted model that represents such neural oscillations, their 
modulation by externally applied patterns, and progressions between simple 
fixed states, more complex oscillations, and chaos. 
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