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I. INTRODUCTION

Recurrent Neural Networks (RNNs) are capable of representing arbitrary non-
linear dynamical systems [Seidl, 1991, Siegelmann, 1995, Sontag, 1992]. How-
ever, learning simple behavior can be quite difficult using gradient descent. For
example, even though these systems are Turing equivalent, it has been difficult
to get them to successfully learn small finite state machines from example strings
encoded as temporal sequences. Recently, it has been demonstrated that at least
part of this difficulty can be attributed to long–term dependencies, i.e., when the
desired output of a system at time T depends on inputs presented at times t� T .
This was noted by Mozer who reported that RNNs were able to learn short term
musical structure using gradient based methods [Mozer, 1992], but had difficulty
capturing global behavior. These ideas were recently formalized by Bengio et al.
[Bengio, 1994], who showed that if a system is to latch information robustly, then
the fraction of the gradient due to information n time steps in the past approaches
zero as n becomes large.

Several approaches have been suggested to circumvent the problem of van-
ishing gradients. For example, gradient–based methods can be abandoned com-



pletely in favor of alternative optimization methods [Bengio, 1994, Puskorius,
1994]. However, the algorithms investigated so far either perform just as poorly
on problems involving long–term dependencies, or, when they are better, require
far more computational resources [Bengio, 1994]. Another possibility is to mod-
ify conventional gradient-descent by more heavily weighing the fraction of the
gradient due to information far in the past, but there is no guarantee that such
a modified algorithm would converge to a minimum of the error surface being
searched [Bengio, 1994]. As an alternative to using different learning algorithms,
one suggestion has been to alter the input data so that it represents a reduced
description that makes global features more explicit and more readily detectable
[Mozer, 1992, Schmidhuber, 1992a, Schmidhuber, 1992]. However, this approach
may fail if short term dependencies are equally as important. Hochreiter also pro-
poses a specific architectural approach which utilizes high order units [Hochreiter,
1995]. Finally, it has been suggested that a network architecture that operates on
multiple time scales might be useful for tackling this problem [Gori, 1994, Hihi,
1996].

In this paper, we also propose an architectural approach to deal with long–
term dependencies. We focus on a class of architectures based upon Nonlin-
ear AutoRegressive models with eXogenous inputs (NARX models), which are
therefore called NARX recurrent neural networks[Chen, 1990, Narendra, 1990].
(However, there is no reason that this method cannot be extended to other recur-
rent architectures.) This is a powerful class of models which has recently been
shown to be computationally equivalent to Turing machines [Siegelmann, 1996].
It has been demonstrated that they are well suited for modeling nonlinear systems
such as heat exchangers [Chen, 1990], waste water treatment plants [Su, 1991,
Su, 1992], catalytic reforming systems in a petroleum refinery [Su, 1992], non-
linear oscillations associated with multi–legged locomotion in biological systems
[Venkataraman, 1994], time series [Connor, 1992a], and various artificial non-
linear systems [Chen, 1990, Narendra, 1990, Qin, 1992]. Furthermore, we have
previously reported that gradient-descent learning is more effective in NARX net-
works than in recurrent neural network architectures with “hidden states” when
applied to problems including grammatical inference and nonlinear system iden-
tification [Giles, 1994, Horne, 1995]. Typically, these networks converge much
faster and generalize better than other networks. The results in this paper show
the reason why gradient-descent learning is better in NARX networks.

II. VANISHING GRADIENTS AND LONG-TERM
DEPENDENCIES

Bengio et al.[Bengio, 1994] have analytically explained why learning prob-
lems with long–term dependencies is difficult. They argue that for many practical
applications the goal of the network must be to robustly latch information, i.e.,
the network must be able to store information for a long period of time in the
presence of noise. More specifically, they argue that latching of information is ac-
complished when the states of the network stay within the vicinity of a hyperbolic



attractor, and robustness to noise is accomplished if the states of the network are
contained in the reduced attracting setthat attractor, i.e., if the eigenvalues of the
Jacobian are contained within the unit circle. In the Appendix to this chapter, we
discuss this definition of robustness in more detail and describe how some of the
assumptions associated with it might be loosened.

In this section we briefly describe some of the key aspects of the results in
Bengio [1994]. A recurrent neural network can be described in the form

x(t+ 1) = f(x(t);u(t);w) (1)

y(t) = g(x(t)); (2)

where x, u, y and w are column vectors representing the states, inputs, outputs,
and weights of the network, respectively. Almost any recurrent neural network
architecture can be expressed in this form [Nerrand, 1993], where f and g depend
on the specific architecture. For example, in simple first–order recurrent neural
networks, f would be a sigmoid of a weighted sum of the values x(t) and u(t)
and g would simply select one of the states as output.

We define up(t), t = 1:::T to be an input sequence of length T for the network
(for simplicity, we shall assume that all sequences are of the same length), and
yp(T ) to be the output of the network for that input sequence.

In what follows we derive the gradient-descent learning algorithm in a matrix–
vector format, which is slightly more compact than deriving it expressly in terms
of partial derivatives, and highlight the role of the Jacobian in the derivation.

Gradient-descent learning is typically based on minimizing the sum–of–squared
error cost function

C =
1

2

X
p

(yp(T )� dp)
0

(yp(T )� dp) ; (3)

where dp is the desired (or target) output for the pth pattern 1 and y0 denotes trans-
position of a vector y. Gradient-descent is an algorithm which iteratively updates
the weights in proportion to the gradient

�w = �rwC ; (4)

where � is a learning rate, and rw is the row vector operator
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By using the Chain Rule, the gradient can be expanded

rwC =
X
p

(yp(T )� dp)
0

r
x(T )yp(T )rwx(T ) : (6)

We can expand this further by assuming that the weights at different time indices
are independent and computing the partial gradient with respect to these weights,

1We deal only with problems in which the target output is presented at the endof the sequence.



which is the methodology used to derive algorithms such as Backpropagation
Through Time (BPTT) [Rumelhart, 1986, Williams, 1995]. The total gradient
is then equal to the sum of these partial gradients. Specifically,

rwC =
X
p

(yp(T )� dp)
0

r
x(T )yp(T )
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TX
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r
w(�)x(T )

#
: (7)

Another application of the Chain Rule to Equation 7 gives

rwC =
X
p

(yp(T )� dp)
0

r
x(T )yp(T )

"
TX
�=1

Jx(T; T � �)r
w(�)x(�)

#
; (8)

where Jx(T; T � �) = r
x(�)x(T ) denotes the Jacobian of (1) expanded over

T � � time steps.
Bengio et al. [Bengio, 1994] showed that if the network satisfies their defini-

tion of robustly latching information, i.e., if the Jacobian at each time step has all
of its eigenvalues inside the unit circle, then Jx(T; n) is an exponentially decreas-
ing function of n, so that limn!1 Jx(T; n) = 0 : This implies that the portion
of rwC due to information at times � � T is insignificant compared to the
portion at times near T . This effect is called the problem of vanishing gradient,
or forgetting behavior[Frasconi, 1992]. Bengio m et al. claim that the problem
of vanishing gradients is the essential reason why gradient-descent methods are
not sufficiently powerful to discover a relationship between target outputs and in-
puts that occur at a much earlier time, which they term the problem of long–term
dependencies.

III. NARX NETWORKS

An important class of discrete–time nonlinear systems is the Nonlinear Au-
toRegressive with eXogenous inputs (NARX) model2 [Chen, 1990, Leontaritis,
1985, Ljunkg, 1987, Su, 1991, Su, 1992]:

y(t) = f
�
u(t�Du); : : : ; u(t� 1); u(t); y(t�Dy); : : : ; y(t� 1)

�
; (9)

where u(t) and y(t) represent input and output of the network at time t, D u and
Dy are the input and output order, and the function f is a nonlinear function.
When the function f can be approximated by a Multilayer Perceptron, the result-
ing system is called a NARX recurrent neural network[Chen, 1990, Narendra,
1990].

In this chapter we shall consider NARX networks with zero input order and a
one-dimensional output, i.e., those networks which have feedback from the out-
put only. However there is no reason why our results could not be extended to

2The terminology on how to properly describe this architecture in the literature is conflicting. We
chose the term NARX based on previous references.
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Figure 1. A NARX network with four output delays.

networks with higher input orders. Thus, the operation of NARX networks with
zero input order is defined by

y(t) = 	
�
u(t); y(t� 1); : : : ; y(t�D)

�
; (10)

where the function 	 is the mapping performed by the MLP, as shown in Fig-
ure 1. The weight links in the figure can be adjusted or fixed; it depends on the
application.

From a system perspective, it is preferrable to put equations into a state space
form [Kailath, 1980]. In this form the Jacobian can be examined and derived
[Khalil, 1992]. Since the states of a discrete–time dynamical system can always
be associated with the unit–delay elements in the realization of the system, we can
then describe such a network in the following state space form

xi(t+ 1) =

(
	
�
u(t);x(t)

�
i = 1

xi�1(t) i = 2; : : : ; D
(11)

and

y(t) = x1(t+ 1) : (12)



NARX networks are not immune to the problem of long–term dependencies.
The Jacobian of the state space map (11) is given by

Jx(t+ 1; 1) = r
x(t)x(t + 1) =

2
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(13)

If the Jacobian at each time step has all of its eigenvalues inside the unit circle,
then the states of the network will be in the reduced attracting set of some hyper-
bolic attractor, and thus the system will be robustly latched at that time. As with
any other recurrent neural network, this implies that limn!1 Jx(t; n) = 0. Thus,
NARX networks will also suffer from vanishing gradients and the long–term de-
pendencies problem.

IV. AN INTUITIVE EXPLANATION OF NARX NETWORK
BEHAVIOR

In the previous section we saw that NARX networks also suffer from the prob-
lem of vanishing gradients, and thus are also prone to the problem of long-term
dependencies. However, we find in the simulation results that follow that NARX
networks are often much better at discovering long-term dependencies than con-
ventional recurrent neural networks.

An intuitive reason why output delays can help long-term dependencies can
be found by considering how gradients are calculated using the backpropagation-
through-time (BPTT) algorithm. BPTT involves two phases: unfolding the net-
work in time and backpropagating the error through the unfolded network. When
a NARX network is unfolded in time, the output delays will appear as jump-ahead
connections in the unfolded network. Intuitively, these jump-ahead connections
provide a shorter path for propagating gradient information, thus reducing the
sensitivity of the network to long-term dependencies. However, one must keep in
mind that this intuitive reasoning is only valid if the total gradient through these
jump-ahead pathways is greater than the gradient through the layer-to-layer path-
ways.

Another intuitive explanation is that since the delays are cascaded together,
the propagation of information does not necessarily have to pass through a non-
linearity at each time step, and thus the gradient is not modified by the derivative
of the nonlinearity, which is often less than one in magnitude.

It is possible to derive analytical results for some simple toy problems to show
that NARX networks are indeed less sensitive to long-term dependencies. Here
we give one such example, which is based upon the latching problem described in
[Bengio, 1994].



Consider the simple one node autonomous recurrent network described by,

x(t) = tanh(wx(t � 1)); (14)

where w = 1:25, which has two stable fixed points at �0:710 and one unstable
fixed point at zero. The following one node, autonomous NARX network (no
internal inputs)

x(t) = tanh (w1x(t� 1) + w2x(t� 2) + : : :+ wDx(t�D)) (15)

with D output delays has the same fixed points as long as
P

D

i=1 wi = w.
Assume the state of the network has reached equilibrium at the positive stable

fixed point. In this case we can derive the exact gradient. For simplicity, we
consider only the Jacobian J(t; n) = @x(t)

@x(t�n) , which will be a component of the
gradient rwC . Figure 2 shows plots of J(t; n) with respect to n for D = 1 ,
D = 3, and D = 6 with wi = w=D. These plots show that the effect of output
delays is to flatten out the curves and place more emphasis on the gradient due
to terms farther in the past. Note that the gradient contribution due to short term
dependencies is deemphasized. In Figure 3 we show plots of the ratio

J(t; n)P
n

�=1 J(t; �)
; (16)

which illustrates the percentage of the total gradient that can be attributed to in-
formation n time steps in the past. These plots show that this percentage is larger
for the network with output delays, and thus one would expect that these networks
would be able to more effectively deal with long–term dependencies.

V. EXPERIMENTAL RESULTS

Simulations were performed to compare the performance of learning long–
term dependencies on networks with different number of feedback delays. We
tried two different problems: the latching problem and a grammatical inference
problem.

A. THE LATCHING PROBLEM
We explored a slight modification on the latching problem described in [Ben-

gio, 1994]. This problem is a minimal task designed as a test that must necessarily
be passed in order for a network to latch information robustly. Bengio et al. de-
scribe the task as one in which “the input values are to be learned.” Here we
give an alternative description of the problem, which allows us to reexpress the
problem as one in which only weights are to be learned.

In this task there are three inputs u1(t), u2(t), and a noise input e(t), and a
single output y(t). Both u1(t) and u2(t)are zero for all times t > 1. At time
t = 1, u1(1) = 1 and u2(1) = 0 for samples from class 1, and u1(1) = 0 and
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Figure 2: Plots of J(t; n) (the Jacobian expanded over n time steps) as a function of n
for different number of output delays (D = 1, D = 3, and D = 6). Although all of these
curves can be bounded above by a function that decays exponentially, the values of J(t; n)
decay at a slower rate as D becomes larger.
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becomes larger.
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Figure 4. The network used for the latching problem.

u2(1) = 1 for samples from class 2. The noise input e(t) is given by

e(t) =

(
0 t � L

U(�b; b) L < t � T
(17)

where U(�b; b) are samples drawn uniformly from [�b; b].
This network used to solve this problem is a NARX network consisting of a

single neuron,

s(t) =

tanh
�
wx(t � 1) + h11u1(t) + : : :+ h1

L
u1(t) + h21u2(t) + : : :+ h2

L
u2(t) + e(t)

�
(18)

where the parameters hj
i

are adjustable and the recurrent weight w is fixed. In our
simulations, we used L = 3 . The network is shown in Figure 4.

Note that the problem as stated is identical to the problem stated by Bengio
et al. except that here we are using uniform instead of Gaussian random noise.
In our formulation the values hj

i
are weights which are connected to tapped delay

lines on the input of the network, while Bengio m et al. describe them as learnable
input values.

In our simulation, we fixed the recurrent feedback weight to w = 1:25, which
gives the autonomous network two stable fixed points at�0:710 and one unstable
fixed point at zero, as described in Section 4. It can be shown [Frasconi, 1995]
that the network is robust to perturbations in the range [�0:155; 0:155]. Thus, the
uniform noise in e(t) was restricted to this range. Note that if Gaussian random
noise is used, then there is some non–zero probability that the error would be
outside of this range regardless of the variance, and thus it is possible for the
network to fail to correctly classify all training values due to Gaussian noise. We
felt that such effects should be avoided in order to exclusively test the sensitivity
of the network to long–term dependencies, and so we chose to use uniform noise
instead.
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Figure 5: Plots of percentage of successful simulations as a function of T , the length of
the input strings, for different numbers of output delays (D = 1, D = 3, and D = 6).

For each simulation, we generated 30 strings from each class, each with a
different e(t). The initial values of hj

i
for each simulation were also chosen from

the same distribution that defines e(t). For strings from class one, a target value
of 0:8 was chosen, for class two �0:8 was chosen.

The network was run using a simple BPTT algorithm with a learning rate of
0:1 for a maximum of 100 epochs. (We found that the network converged to some
solution consistently within a few dozen epochs.) If the absolute error between
the output of the network and the target value was less than 0:6 on all strings, the
simulation was terminated and determined successful. If the simulation exceeded
100 epochs and did not correctly classify all strings then the simulation was ruled
a failure.

We varied T from 20 to 200 in increments of 2. For each value of T , we ran 50
simulations. We then modified the architecture to include output delays of order
D = 3 and D = 6, with all of the recurrent weights wi = w=D . Figure 5 shows a
plot of the percentage of those runs that were successful for each case. It is clear
from these plots that the NARX networks become increasingly less sensitive to
long–term dependencies as the output order is increased.

B. AN AUTOMATON PROBLEM
In the previous problem, the inputs to the network consisted of a noise term

whose magnitude was restricted in such a way that the network was guaranteed to
remain within the basin of attraction of the fixed points for a single node. Here we
explore two extensions to that problem. First, we consider larger networks and,
second, we consider inputs which are not as restrictive. In particular, we consider



learning an automata problem in which the inputs are boolean valued. In contrast
to the previous problem, all signals are fed into the same single input channel.

In this example, the class of a string is completely determined by its input
symbol at some prespecified time t. For example, Figure 6 shows a five-state au-
tomaton, in which the class of each string is determined by the third input symbol.
When that symbol is “1,” the string is accepted; otherwise, it is rejected. By in-
creasing the length of the strings to be learned, we will be able to create a problem
with long term dependencies, in which the output will depend on input values far
in the past.

0,1

0,1 0,1
1

0

0,1

Figure 6. A five-state tree automaton.

In this experiment we compared Elman’s Simple Recurrent Network [Elman,
1990a] against NARX networks. Each network had six hidden nodes. Since the
output of each hidden node in an Elman network is fed back, there were six delay
elements (states) in the network. The NARX network had six feedback delays
from the output node. Thus, the two architectures have the exact same number of
weights, hidden nodes, and states. The initial weights were randomly distributed
in the range [�0:5; 0:5].

For each simulation, we randomly generated a training set and an independent
testing set, each consisting of 500 strings of length T such that there were an
equal number of positive and negative strings. We varied T from 10 to 30. For the
accepted strings, a target value of 0:8 was chosen, for the rejected strings �0:8
was chosen.

The network was trained using a simple BPTT algorithm with a learning rate
0:01 for a maximum of 200 epochs. If the simulation exceeded 200 epochs and
did not correctly classify all strings in the training set, then the simulation was
ruled a failure. We found that when the network learned the training set perfectly,
then it consistently performed perfectly on the testing set as well. For each value
of T , we ran 80 simulations.

Figure 7 shows a plot of the percentage of the runs that were successful in each
case. It is clear from this plot that the NARX network performs far better than the
Elman network at learning long-term dependencies.

We also wanted to see how the performance varied due to different numbers of
output delays. We chose three different networks in which the size of the output
tapped delay line was chosen to be either 2, 4, or 6. To make the total number
of trainable weights comparable, the networks had 11, 8, and 6 hidden nodes
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Figure 7: Plots of percentage of successful simulations as a function of T , the length of
input strings, for the Elman networks vs. NARX networks.
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Figure 8: Plots of percentage of successful simulations as a function of T , the length of
the input strings, for NARX networks with different numbers of output delays (D = 2,
D = 4, D = 6).



respectively, giving 56 , 57 , and 55 weights.

Figure 8 shows the result of the experiment. It is clear that the sensitivity to
the long-term dependencies decreases as the number of output delays increases.

VI. CONCLUSION

In this paper we considered an architectural approach to dealing with the prob-
lem of learning long–term dependencies, i.e., when the desired output depends on
inputs presented at times far in the past, which has been shown to be a difficult
problem to learn for gradient-based algorithms. We explored the ability of a class
of architectures called NARX recurrent neural networks to solve such problems.
We found that although NARX networks do not circumvent this problem, it is
easier to discover long–term dependencies with gradient-descent in these archi-
tectures than in architectures without output delays. This has been observed pre-
viously, in the sense that gradient-descent learning appeared to be more effective
in NARX networks than in recurrent neural network architectures that have “hid-
den states” on problems including grammatical inference and nonlinear system
identification [Giles, 1994, Horne, 1995].

The intuitive explanation for this behavior is that the output delays are man-
ifested as jump–ahead connections in the unfolded network that is often used to
describe algorithms like backpropagation through time. Another explanation is
that the states do not necessarily need to propagate through nonlinearities at every
time step, which may avoid a degradation in gradient due to the partial derivative
of the nonlinearity.

We presented an analytical example that showed that the gradients do not van-
ish as quickly in NARX networks as they do in networks without multiple delays
when the network is contained in a fixed point. We also presented two experi-
mental problems which show that NARX networks can outperform networks with
single delays on some simple problems involving long–term dependencies.

We speculate that similar results could be obtained for other networks. In par-
ticular we hypothesize that any network that uses tapped delay feedback [Back,
1991, Leighton, 1991] would demonstrate improved performance on problems in-
volving long–term dependencies. It may also be possible to obtain similar results
for the architectures proposed in de Vries [1992], Frasconi [1992], Poddar [1991],
and Wan [1994].
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APPENDIX: A CLOSER LOOK AT ROBUST
INFORMATION LATCHING

In this section we make a critical examination of the definition of robust latch-
ing given by Bengio et al.[Bengio, 1994]. Specifically, they assume that if a net-
work is to be robust to noise, then the states must always be in the reduced attract-
ing set of the hyperbolic attractor. While such a condition is sufficient to latch
information robustly, it is not necessary. In this section we show how robustness
may be redefined to be both necessary and sufficient.

First, Bengio et al. assume the existence of a “class–determining” subsystem
that computes information about the class of an input sequence v. If, say, only the
first L values in the input sequence (to be classified) are relevant for determining
the class of v, the output of the subsystem is some valuable signal of length L,
coding the class, whereas the outputs at times greater than L are unimportant and
can be considered minor fluctuations. In their experiments, the fluctuations are
modeled as a zero–mean Gaussian noise with a small variance.

The outputs u(t) of the class–determining subsystem feed a latching subsys-
tem,

S : ~x(t) = M(~x(t� 1)) + u(t) : (19)

It will be useful to consider the corresponding autonomous dynamical system

SA : x(t) = M(x(t� 1)) : (20)

The key role in latching the class information of f ~x(t)g in S is played by the
hyperbolic attractors of fx(t)g in SA. It is assumed that the important class in-
formation is coded in the first L time steps of u(t); inputs at times t > L are
unimportant and can be considered as noise. Note that this is the key reason why
Bengio et al. needed to assume the existence of a class–determining subsystem,
which will somehow “highlight” the important information at times t � L, but
suppress the information in the succeeding times steps.

The important inputs at times t � L, cause the states ~x(t) to move to the
“vicinity” of a hyperbolic attractor X of SA. If the values of u(t) for t > L are
sufficiently small, then the states of S will not move away from X , thus latching
the information coded in u(1); : : : ; u(L) for an arbitrary long time.

Having established this scenario for latching information of possibly long in-
put sequences, Bengio et al. discuss what it means for the system to be robust.
Specifically, they allow the input to be noisy but bounded, i.e., ku(t)k < b(t) such
that the latching system S initiated in a state from �(X), receiving additive inputs
bounded by b(t), will stay in a vicinity of X .

They conclude that �(X) is a subset of the basin of attraction �(X) of X
(in SA), such that for all x 2 �(X) and l � 1, the eigenvalues of Jx(t; l) are
contained within the unit circle. Such a set is called “the reduced attracting set of
X .” Specific bounds of b(t) are given so that ~x(t) is asymptotically guaranteed to
stay within a prescribed neighborhood of X .



They point out that if the network is to latch information robustly, then it must
necessarily suffer from the problem of vanishing gradients, i.e., x(t) 2 �(X)
implies kJx(�; 1)k = kr

x(�)x(� + 1)k < 1, for t � � < T and therefore when
t� T , we have kr

x(t)x(T )k ! 0.

While their analysis is valuable for pointing out problems associated with
learning long–term dependencies using gradient-descent methods, their definition
of robustness is too strong. In the remainder of this section we discuss conditions
that are both necessary and sufficient for the network to be robust to noise.

Bengio et al. require that �(X) be the reduced attracting set of X , but it is
sufficient to find a set of possible states in the basin of attraction of X such that
the system S, fed with sufficiently small inputs u(t), does not diverge from X .

A useful formalization of this idea in dynamical systems’ theory is stated
in terms of the shadowing lemma[Coven, 1988, Garzon, 1994]. Given a num-
ber b > 0, a b–pseudo–orbit of the system SA is a sequence f~x(t)g such that
kM(~x(t)) � ~x(t + 1)k < b, for all t � 0. Pseudo–orbits arise as trajecto-
ries of the autonomous system SA contaminated by a noise bounded by b. One
may ask to what extent such “corrupted” state trajectories f~x(t)g are informative
about the “real” trajectories fx(t)g of the autonomous system SA. It turns out
that in systems having the so-called shadowing property, corrupted state trajecto-
ries are “shadowed” by real trajectories within a distance depending on the level
of the input noise. Bigger noise implies looser shadowing of the corrupted tra-
jectory by an uncorrupted one. Formally, system SA has a shadowing property
if for every � > 0, there exists a b > 0, such that any b–pseudo–orbit f ~x(t)g
is �–approximated by an actual orbit of SA initiated in some state x(0), i.e.,
k~x(t) �M t(x(0))k < �, where M t means the composition of M with itself t
times, and M 0 is the identity map.

It is proved in Garzon [1994] that, except possibly for small exceptional sets,
discrete–time analog neural networks do have the shadowing property. In particu-
lar, they show that that the shadowing property holds for networks with sigmoidal
(i.e., strictly increasing, bounded form above and below, and continuously differ-
entiable) activation functions.

As long as SA has the shadowing property, it is sufficient to pick arbitrary
small � > 0 and start in a point ~x(0) 2 �(X) whose distance from the border of
�(X) is at least �. Then there exists a bound b on additive noise u(t) such that a
“corrupted” trajectory f~x(t)g of SA (i.e., a trajectory of S) will be “shadowed” by
a real trajectory fx(t)g of SA originating in some x(0) from the �–neighborhood
of ~x(0). Since x(0) 2 �(X), fx(t)g converges to X and so ~x(t) will not move
away from X . Smaller � results in tighter bounds b.

Hence, to achieve a “robust” latch of an information to an attractor X , it is
not strictly necessary for the states to be in the reduced attracting set of X . In
fact, for every state ~x(0) from the basin of attraction �(X) of X , there exists
a bound on additive inputs u(t) such that f~x(t)g will asymptotically stay in an
�–neighborhood of X .
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