
Chapter 5

EQUIVALENCE IN KNOWLEDGE
REPRESENTATION: AUTOMATA,

RECURRENT NEURAL NETWORKS, AND
DYNAMICAL FUZZY SYSTEMS

C. Lee Giles

NEC Research Institure and
UMIACS, University of Maryland

Christian W. Omlin

Department of Computer Science,
University of Stellenbosch, South Africa

K. K. Thornber

UMIACS, University of Maryland

I. INTRODUCTION

A. MOTIVATION
As our applications for intelligent systems become more ambitious, our pro-

cessing models become more powerful. One approach to increasing this power
is through hybrid systems - systems that include several different models’ intelli-
gent processing [Giles, 1998a]. There has also been an increased interest in hybrid
systems as more applications with hybrid models emerge [Bookman, 1993]. How-
ever, there are many definitions of hybrid systems [Hendler, 1991, Honavar, 1994,
Sun, 1997].

One example of hybrid systems is in combining artificial neural networks
and fuzzy systems (see Bezdek [1992], Herrmann [1995], Palaniswami [1995],
Kasabov [1996]). Fuzzy logic [Zadeh, 1965] provides a mathematical foundation
for approximate reasoning; fuzzy logic has proven very successful in a variety
of applications [Berenji, 1992, Bonissone, 1995, Chiu 1991, Corbin, 1994, Fran-
quelo, 1996, Hardy, 1994, Kickert, 1976, Lee, 1990, Pappis, 1977, Yang, 1995].
The parameters of adaptive fuzzy systems have clear physical meanings that fa-
cilitate the choice of their initial values. Furthermore, rule-based information can
be incorporated into fuzzy systems in a systematic way.

Artificial neural networks propose to simulate on a small scale the information
processing mechanisms found in biological systems that are based on the coop-
eration and computation of artificial neurons that perform simple operations, and
on their ability to learn from examples. Artificial neural networks have become

valuable computational tools in their own right for tasks such as pattern recogni-
tion, control, and forecasting (for more information on neural networks, please see
various textbooks [Bishop, 1995, Cichocki, 1993, Haykin, 1998]). Recurrent neu-
ral networks (RNNs) are dynamical systems with temporal state representations;
they are computationally quite powerful [Siegelmann, 1995, Siegelmann, 1999]
and can be used in many different temporal processing models and applications
[Giles, 1998].

Fuzzy finite state automata (FFA), fuzzy generalizations of deterministic finite
state automata,1 have a long history [Santos, 1968, Zadeh, 1971]. The fundamen-
tals of FFA have been discussed in Gaines [1976] without presenting a systematic
machine synthesis method. Their potential as design tools for modeling a variety
of systems is beginning to be exploited in various applications [Kosmatopoulso,
1996, Mensch, 1990]. Such systems have two major characteristics: (1) the cur-
rent state of the system depends on past states and current inputs, and (2) the
knowledge about the system’s current state is vague or uncertain.

Finally, the proofs of representational properties of artificial intelligence, ma-
chine learning, and computational intelligence models are important for a number
of reasons. Many users of a model want guarantees about what it can do theo-
retically, i.e., its performance and capabilities; others need this for justification of
use and acceptance of the approach. The capability ofrepresenting a model, say
a fuzzy finite automata (FFA), in an intelligent system can be viewed as a foun-
dation for the problem oflearning that model from examples (if a system cannot
represent a FFA, then it certainly will have difficulty learning a FFA).

Since recurrent neural networks are nonlinear dynamical systems, the proof of
their capability to represent FFA amounts to proving that a neural network rep-
resentation of fuzzy states and transitions remains stable for input sequences of
arbitrary length and is robust to noise. Neural networks that have beentrained
to behave like FFA do not necessarily share this property, i.e., their internal rep-
resentation of states and transitions may become unstable for sufficiently long
input sequences Omlin [1996a]. Finally, with the extraction of knowledge from
trained neural networks, the methods discussed here could potentially be applied
to incorporating and refining [Maclin, 1993] fuzzy knowledge previously encoded
into recurrent neural networks.

B. BACKGROUND
A variety of implementations of FFA have been proposed, some in digital sys-

tems [Grantner, 1994, Khan, 1995]. However, here we give a proof that such im-
plementations in sigmoid activation RNNs are stable, i.e. guaranteed to converge
to the correct prespecified membership. This proof is based on previous work of
stably mapping deterministic finite state automata (DFA) in recurrent neural net-
works reported in Omlin [1996]. In contrast to DFA, aset of FFA states can be
occupied tovarying degrees at any point in time; this fuzzification of states gener-

1Finite state automata also have a long history as theoretical [Hopcroft, 1979] and practical [Ashar,
1992] models of computation and were some of the earliest implementations of neural networks
[Klenne, 1956, Minsky, 1967]. Besides automata, other symbolic computational structures can be
used with neural networks [Fu, 1994, Giles 1998].

ally reduces the size of the model, and the dynamics of the system being modeled
is often more accessible to a direct interpretation.

From a control perspective, fuzzy finite state automata have been shown to be
useful for modeling fuzzy dynamical systems, often in conjunction with recurrent
neural networks [Cellier, 1995, Kosmatopoulso, 1995, Kosmatopoulso, 1995a,
Kosmatopoulso, 1996, Kosmatopoulso, 1996a]. There has been much work on
the learning, synthesis, and extraction of finite state automata in recurrent neural
networks, see for example Casey [1996], Cleeremans [1989], Elman [1990], Fras-
coni [1996], Giles [1992], Pollack [1991], Watrous [1992], and Zeng [1993]. A
variety of neural network implementations of FFA have been proposed [Grantner,
1994, Grantner, 1993, Khan, 1995, Unal, 1994]. We have previously shown how
fuzzy finite state automata can be mapped into recurrent neural networks with
second-order weights using acrisp representation2 of FFA states [Omlin, 1998].
That encoding required a transformation of a FFA into a deterministic finite state
automaton that computes the membership functions for strings; it is only appli-
cable to a restricted class of FFA that havefinal states. The transformation of a
fuzzy automaton into an equivalent deterministic acceptor generally increases the
size of the automaton and thus the network size. Furthermore, the fuzzy transition
memberships of the original FFA undergo modifications in the transformation of
the original FFA into an equivalent DFA that is suitable for implementation in a
second-order recurrent neural network. Thus, the direct correspondence between
system and network parameters is lost which may obscure the natural fuzzy de-
scription of systems being modeled.

The existence of a crisp recurrent network encoding for all FFA raises the
question of whether recurrent networks can also betrained to compute the fuzzy
membership function, and how they represent FFA states internally. Based on
our theoretical analysis, we know that they have the ability to represent FFA in
the form of equivalent deterministic acceptors. Recent work reported in [Blanco,
1997] addresses these issues. Instead of augmenting a second-order network with
a linear output layer for computing the fuzzy string membership as suggested in
Omlin [1998], they chose to assign a distinct output neuron to each fuzzy string
memberships�i occurring in the training set. Thus, the number of output neurons
became equal to the number of distinct membership values� i. The fuzzy mem-
bership of an input string was then determined by identifying the output neuron
whose activation was highest after the entire string had been processed by a net-
work. Thus, they transformed the fuzzy inference problem into a classification
problem with multiple classes or classifications. This approach lessens the burden
on the training and improves the accuracy and robustness of string membership
computation.

Apart from the use of multiple classes, training networks to compute the fuzzy
string membership is identical to training networks to behave like DFA. This was
verified empirically through information extraction methods [Casey, 1996, Omlin,
1996a] where recurrent networks trained on fuzzy strings develop a crisp internal

2A crisp mapping is one from a fuzzy to a nonfuzzy variable.

representation of FFA, i.e., they represent FFA in the form of equivalent determin-
istic acceptors.3 Thus, our theoretical analysiscorrectly predicted the knowledge
representation for such trained networks.

C. OVERVIEW
In this chapter, we present a method for encoding FFA using afuzzy repre-

sentation of states.4 The objectives of the FFA encoding algorithm are (1) ease of
encoding FFA into recurrent networks, (2) the direct representation of “fuzziness,”
i.e., the fuzzy memberships of individual transitions in FFA are also parameters in
the recurrent networks, and (3) achieving a fuzzy representation by making only
minimal changes to the underlying architecture used for encoding DFA (and crisp
FFA representations).

Representation of FFA in recurrent networks requires that the internal repre-
sentation of FFA states and state transitions be stable for indefinite periods of time.
We will demonstrate how the stability analysis for neural DFA encodings carries
over to and generalizes the analysis of stable neural FFA representations.

In high-level VLSI design a DFA (actually finite state machines) is often used
as the first implementation of a design and is mapped into sequential machines and
logic [Ashar, 1992]. Previous work has shown how a DFA can be readily imple-
mented in recurrent neural networks and how neural networks have been directly
implemented in VLSI chips [Akers, 1990, Sheu, 1995, Mead, 1989]. Thus, with
this approach FFA could be readily mapped into electronics and could be use-
ful for applications, such as real-time control (see, e.g., Chiu [1991])5 and could
potentially be applied to incorporate a priori knowledge into recurrent neural net-
works for knowledge refinement [Giles, 1993].

The remainder of this chapter is organized as follows: Fuzzy finite state au-
tomata are introduced in Section 2. The fuzzy representation of FFA states and
transitions in recurrent networks are discussed in Section 3. The mapping “fuzzy
automata! recurrent network” proposed in this paper requires that FFA be trans-
formed into a special form before they can be encoded in a recurrent network. The
transformation algorithm can be applied to arbitrary FFA; it is described in Section
4. The recurrent network architecture for representing FFA is described in Section
5. The stability of the encoding is derived in Section 6. A discussion of simulation
results in Section 7 and a summary of the results and possible directions for future
research in Section 8 conclude this chapter.

3The equivalence of FFA and deterministic acceptors was first discussed in Thomason [1974] and
first used for encoding FFA in Omlin [1998].

4For reasons of completeness, we have included the main results from Omlin [1996] which laid the
foundations for this and other papers [Omlin, 1996c, Omlin, 1998] Thus, by necessity, there is some
overlap.

5Alternative implementations of FFA have been proposed (see, e.g., Grantner [1993]). The method
proposed uses recurrent neurons with sigmoidal discriminant functions and a fuzzy internal represen-
tation of FFA states.

1 2

3 4

0/0.5

0/0.7

1/0.3

1/0.2

0/0.6

0/0.91/0.7

0/0.1

0/0.3
1/0.4

Figure 1.Example of a Fuzzy Finite State Automaton: A fuzzy finite state automaton is
shown with weighted state transitions. State 1 is the automaton’s start state. A transition
from stateqj to qi on input symbolak with weight� is represented as a directed arc from
qj to qi labeledak=�. Note that transitions from states 1 and 4 on input symbols ‘0’ are
fuzzy (Æ(1; 0; :) = f2; 3g andÆ(4; 0; :) = f2; 3g).

II. FUZZY FINITE STATE AUTOMATA

In this section, we give a formal definition of FFA [Dubois, 1980] and illustrate
the definition with an example.

Definition 2.1 A fuzzy finite state automaton (FFA) M is a 6-tuple M = < �, Q,
R, Z, Æ, ! > where � = fa1; : : : ; amg is the alphabet, Q = fq1; : : : ; qng is a set
of states, R 2 Q is the automaton’s fuzzy start state,6 Z is a finite output alphabet,
Æ : ��Q� [0; 1]! Q is the fuzzy transition map, and ! : Q! Z is the output
map.7

Weights�ijk 2 [0; 1] define the ‘fuzziness’ of state transitions, i.e., a FFA
can simultaneously be in different states with a different degree of certainty. The
particular output mapping depends on the nature of the application. Since our
goal is to construct a fuzzy representation of FFA states and their stability over
time, we will ignore the output mapping! for the remainder of this discussion,
and not concern ourselveswith the languageL(M) defined by M . For a possible
definition, see Dubois [1980]. An example of a FFA over the input alphabetf0; 1g

is shown in Figure1.

6In general, the start state of a FFA is fuzzy, i.e., it consists of a set of states that are occupied
with varying memberships. It has been shown that a restricted class of FFA whose initial state is a
single crisp state is equivalent with the class of FFA described in Definition 2.1 [Dubois, 1980]. The
distinction between the two classes of FFA is irrelevant in the context of this paper.

7This is in contrast to stochastic finite state automata where there exists no ambiguity about which
is an automaton’s current state. The automaton can only be in exactly one state at any given time and
the choice of a successor state is determined by some probability distribution. For a discussion of the
relationship between probability and fuzziness, see for instance Thomas [1995].

III. REPRESENTATION OF FUZZY STATES

A. PRELIMINARIES
The current fuzzy state of a FFAM is a collection of statesfqig of M that

are occupied with different degrees of fuzzy membership. A fuzzy representation
of the states in a FFA thus requires knowledge about the membership of each
stateqi. This requirement then dictates the representation of the current fuzzy
state in a recurrent neural network. Because the method for encoding FFA in
recurrent neural networks is a generalization of the method for encoding DFA, we
will briefly discuss the DFA encoding algorithm.

B. DFA ENCODING ALGORITHM
We make use of an algorithm used for encoding deterministic finite state au-

tomata (DFA) [Omlin, 1996, Omlin, 1996c]. For encoding DFA, we use discrete-
time, second-order recurrent neural networks with sigmoidal discriminant func-
tions that update their current state according to the following equations:

S
(t+1)

i = g(�i(t)) =
1

1 + e��i(t)
; �i(t) = bi +

X
j;k

WijkS
(t)
j I

(t)

k ; (1)

wherebi is the bias associated with hidden recurrent state neuronsS i, Wijk is a
second-order weight, andIk denotes the input neuron for symbolak. The indices
i; j, andk run over all state and input neurons, respectively. The productS

(t)
j I

(t)

k

corresponds directly to the state transitionÆ(qj ; ak) = qi. The architecture is
illustrated in Figure2.

DFA can be encoded in discrete-time, second-order recurrent neural networks
with sigmoidal discriminant functions such that the DFA and constructed network
accept the same regular language [Omlin, 1996]. The desired finite state dynam-
ics are encoded into a network by programming a small subset of all available
weights to values+H and�H ; this leads to a nearly orthonormal internal DFA
state representation for sufficiently large values ofH , i.e., a one-to-one correspon-
dence between current DFA states and recurrent neurons with a high output. Since
the magnitude of all weights in a constructed network is equal toH , the equation
governing the dynamics of a constructed network is of the special form

S
(t+1)
i = g(x;H) =

1

1 + eH(1�2x)=2
(2)

wherex is the input to neuronSi.
The objective of mapping DFA into recurrent networks is to assign DFA states

to neurons and to program the weights such that the assignment remains stable
for input sequence of arbitrary length, i.e., exactly one neuron corresponding to
the current DFA state has a high output at any given time. Such stability is trivial
for recurrent networks whose neurons have hard-limiting (or “step function”) dis-
criminant functions. However, this is not obvious for networks with continuous,
sigmoidal discriminant functions. The nonlinear dynamical nature of recurrent
networks makes it possible for intended internal DFA state representations to be-
come unstable, i.e., the requirement of a one-to-one correspondence between DFA

z
−1

Input neurons

W
ijk

Second−order weights

Recurrent state/output neurons

I
k

(t)

S
(t+1)

i

Figure 2. Recurrent Network Architecture for Deterministic Finite State Automata:
The recurrent state neurons are connected and implement the stable finite state dynamics.
One of the recurrent neurons also is the dedicated network output neuron (i.e., the neuron
which by its output value classifies whether or not a given string is a member of a regular
language).

states and recurrent neurons may be violated for sufficiently long input sequences.
We have previously demonstrated that it is possible to achieve a stable internal
DFA state representation that isindependent of the string length: In constructed
networks, the recurrent state neurons always operate near their saturation regions
for sufficiently large values ofH ; as a consequence, the internal DFA state rep-
resentation remains stable indefinitely. The internal representation of fuzzy states
proposed in this paper is a generalization of the method used to encode DFA states
since FFA may be in several states at the same time. We will apply the same tools
and techniques to prove stability of the internal representation of fuzzy states in
recurrent neural networks.

C. RECURRENT STATE NEURONS WITH VARIABLE OUT-
PUT RANGE

We extend the functionality of recurrent state neurons in order to represent
fuzzy states as illustrated in Figure 3. The main difference between the neuron
discriminant function for DFA and FFA is that the neuron now receives as inputs
the weight strengthH , the signalx that represents the collective input from all
other neurons, and the transition weight� ijk , whereÆ(qj ; ak; �ijk) = qi; we will
denote this triple with(x;H; �ijk). The value of�ijk is different for each of the
states that collectively make up the current fuzzy network state. This is consistent
with the definition of FFA.

The following generalized form of the sigmoidal discriminant functiong(:)

will be useful for representing FFA states:

~g(x)

y=x

θ

θ x

1

H

x

/ 2θ

θ / 2

Figure 3. Neuron Discriminant Function for Fuzzy States: A neuron is represented
figuratively by the box and receives as input the collective signalx from all other neurons,
the weight strengthH, and the fuzzy transition membership� to compute the function
~g(x;H; �) = �

1+eH(��2x)=2� : Thus, the sigmoidal discriminant function used to represent
FFA states has a variable output range.

S
(t+1)
i = ~g(x;H; �ijk) =

�ijk

1 + eH(�ijk�2x)=2�ijk
(3)

Compared to the discriminant functiong(:) for the encoding of DFA, the weight
H that programs the network state transitions is strengthened by a factor 1/� ijk

(0 < �ijk � 1); the range of the function~g(:) is squashed to the interval[0; � ijk],
and it has been shifted towards the origin. Setting� ijk = 1 reduces the function
(3) to the sigmoidal discriminant function (2) used for DFA encoding.

More formally, the function~g(x;H; �) has the following important invariant
property that will later simplify the analysis:

Lemma 3.1~g(�x;H; �) = � ~g(x;H; 1) = � g(x;H).

Proof. ~g(�x;H; �) =
�

1 + eH(��2�x)=2�
=

�

1 + eH(1�2x)=2
= � ~g(x;H; 1) =

� g(x;H):

Thus, g(x;H) can be obtained by scaling~g(x;H; 1) uniformly in thex� and
y�directions by a factor�.

The above property of~g allows a stability analysis of the internal FFA state
representation similar to the analysis of the stability of the internal DFA state
representation.

D. PROGRAMMING FUZZY STATE TRANSITIONS
Consider stateqj of FFA M and the fuzzy state transitionÆ(qj ; ak; f�ijkg =

fqi1 : : : qirg). We assign recurrent state neuronSj to FFA stateqj and neurons
Si1 : : : Sir to FFA statesqi1 : : : qir . The basic idea is as follows: The activation
of recurrent state neuronSi represents the certainty�ijk with which some state
transitionÆ(qj ; ak; �ijk) = qi is carried out, i.e.,S t+1

i ' �ijk . If qi is not reached
at timet+ 1, then we haveS t+1

i ' 0.
We program the second-order weightsW ijk as follows:

Wijk =

�
+H if qi 2 Æ(qj ; ak; �ijk)

0 otherwise
(4)

Wjjk =

�
+H if qj 2 Æ(qj ; ak; �jjk)

�H otherwise
(5)

bi = �H=2 if qi 2M: (6)

SettingWijk to a large positive value will ensure thatS t+1
i will be arbitrarily

close to�ijk and settingWjjk to a large negative value will guarantee that the
outputSt+1

j will be arbitrarily close to 0. This is the same technique used for
programming DFA state transitions in recurrent networks [Omlin, 1996] and for
encoding partial prior knowledge of a DFA for rule refinement [Omlin, 1996b].

IV. AUTOMATA TRANSFORMATION

A. PRELIMINARIES
The above encoding algorithm leaves open the possibility for ambiguities

when a FFA is encoded in a recurrent network as follows: Consider two FFA
statesqj andql with transitionsÆ(qj ; ak; �ijk) = Æ(ql; ak; �ilk) = qi whereqi is
one of all successor states reached fromqj andql, respectively, on input symbol
ak. Further assume thatqj andql are members of the set of current FFA states (i.e.,
these states are occupied with some fuzzy membership). Then, the state transition
Æ(qj ; ak; �ijk) = qi requires that recurrent state neuronSi have dynamic range
[0; �ijk] while state transitionÆ(ql; ak; �ilk) = qi requires that state neuronSi
asymptotically approach�ilk. For�ijk 6= �ilk , we have ambiguity for the output
range of neuronSi.

Definition 4.1 We say an ambiguity occurs at state qi if there exist two states qj
and ql with Æ(qj ; ak; �ijk) = Æ(ql; ak; �ilk) = qi and �ijk 6= �ilk . A FFA M is
called ambiguous if an ambiguity occurs for any state q i 2M .

B. TRANSFORMATION ALGORITHM
That ambiguity could be resolved by testing all possible paths through the FFA

and identifying those states for which the above described ambiguity can occur.
However, such an endeavor is computationally expensive. Instead, we propose to
resolve that ambiguity by transforming any FFAM .

Input: FFAM =< �; Q;R;Z; Æ; ! > with � = fa1; : : : ; aMg andQ = fq1; : : : ; qNg.
Output: FFAM 0 =< �; Q0

; R
0
; Z; Æ

0
; ! > with � = fa1; : : : ; aMg andQ0 = fq1; : : : ;

qN ; qN+1; : : : ; qXg with the properties
(1)M �M

0 and
(2) there exist no two statesqj andql in M

0 with Æ(qj ; ak; �ijk) = Æ(ql; ak,
�ilk) = qi with �ijk 6= �ilk.

Algorithm:
1. X N ; list Q;

while list 6= ; do
2. list list n fqig;

for k = 1 : : :M do
3. visit ;;

for j = 1 : : : N do
4. if Æ(qj ; ak; �) = qi then visit visit [fqjg;

end
5. class fql 2 visit j Æ(ql; ak; �ilk) = qi with �ilk = �ikg;
6. visit visit n fclassg;

while class6= ; do
7. class fql 2 visit j Æ(ql; ak; �ilk) = qi with �ilk = �ikg;
8. visit visit n fclassg;
9. X X + 1;
10. Q Q [fqXg; /* create new FFA stateqX */

for each qj in classdo
11. Æ(qj ; ak; �ijk) qX ; /* change transition */

for l = 1 : : : N do
for k = 1 : : :M do

12. Æ(qX ; ak; �lXk) Æ(qi; ak; �lik);
/* implies �lXk �lik) */

end
end

end
end

end
end

Figure 4.Algorithm for FFA Transformation.

Before we state the transformation theorem, and give the algorithm, it will be
useful to define the concept of equivalent FFA.

Definition 4.2 Consider a FFA M that is processing some string s = �1�2 : : : �L

with �i 2 �. As M reads each symbol �i, it makes simultaneous weighted state
transitions��Q�[0; 1]according to the fuzzy transition map Æ(qj ; ak; �ijk) = qi.
The set of distinct weights f�ijkg of the fuzzy transition map at time t is called the
active weight set.

Note that the active weight set can change with each symbol� i processed byM .
We will define what it means for two FFA to be equivalent:

Definition 4.3 Two FFA M and M 0 with alphabet � are called equivalent if their
active weight sets are at all times identical for any string s 2 ��.

We will prove the following theorem:

Theorem 4.1Any FFA M can be transformed into an equivalent, unambiguous
FFA M

0.

The trade-off for making the resolution of ambiguities computationally feasi-
ble is an increase in the number of FFA states. The algorithm that transforms a
FFA M into a FFAM 0 such thatL(M) = L(M 0) is shown in Figure 4. Before
we prove the above theorem, we will discuss an example of FFA transformation.

C. EXAMPLE
Consider the FFA shown in Figure 5a with four states and input alphabet

� = f0; 1g; stateq1 is the start state.8 The algorithm initializes the variable
‘list’ with all FFA states, i.e., list=fq1; q2; q3; q4g. First, we notice that no am-
biguity exists for input symbol ‘0’ at stateq1 since there are no state transitions
Æ(:; 0; :) = q1. There exist two state transitions that have stateq1 as their target,
i.e. Æ(q2; 1; 0:2) = Æ(q3; 1; 0:7) = q1. Thus, we set the variablevisit = fq2; q3g.
According to Definition 4.1, an ambiguity exists since�121 6= �131. We resolve
that ambiguity by introducing a new stateq5 and settingÆ(q3; 1; 0:7) = q5. Since
Æ(q3; 1; 0:7) no longer leads to stateq1, we need to introduce new state transi-
tions leading from stateq5 to the target statesfqg of all possible state transitions:
Æ(q1; :; :) = fq2; q3g. Thus, we setÆ(q5; 0; �250) = q2 andÆ(q5; 1; �351) = q3

with �250 = �210 and�351 = �311. One iteration through the outer loop thus
results in the FFA shown in Figure 5b. Consider Figure 5d which shows the
FFA after 3 iterations. Stateq4 is the only state left that has incoming transitions
Æ(:; ak; �4:k) = q4 where not all values�4:k are identical. We haveÆ(q2; 0; 0:9) =
Æ(q6; 0; 0:9) = q4; since these two state transition do not cause an ambiguity

8The FFA shown in Figure 5a is a special case in that it does not contain any fuzzy transi-
tions. Since the objective of the transformation algorithm is to resolve ambiguities for statesqi with
Æ(fqj1 ; : : : ; qjrg; ak; f; �ij1k; : : : ; �ijrkg) = qi, fuzziness is of no relevance; therefore, we omitted
it for reasons of simplicity.

for input symbol ‘0’, we leave these state transitions as they are. However, we
also haveÆ(q2; 0; �420) = Æ(q3; 0; �430) = Æ(q7; 0; �470) = q4 with �430 =

�470 6= �420 = 0:9. Instead of creating new states for both state transitions
Æ(q3; 0; �430) andÆ(q7; 0; �470), it suffices to create one new stateq8 and to set
Æ(q3; 0; 0:1) = Æ(q7; 0; 0:1) = q8. Statesq6 andq7 are the only possible successor
states on input symbols ‘0’ and ‘1’, respectively. Thus, we setÆ(q 8; 0; 0:6) = q6

andÆ(q8; 1; 0:4) = q7. There exist no more ambiguities and the algorithm termi-
nates (Figure5e).

D. PROPERTIES OF THE TRANSFORMATION
ALGORITHM

We have shown with an example how the algorithm transforms any FFAM

into a FFAM
0 without ambiguities. We now need to show that the algorithm

correctly transformsM intoM 0, i.e., we need to show thatM andM 0 are equiv-
alent. In addition, we also need to demonstrate that the algorithm terminates for
any inputM .

First, we prove the following property of the transformation algorithm:

Lemma 4.1Resolution of an ambiguity does not result in a new ambiguity.

Proof. Consider the situation illustrated in Figure 6a. Let q i; qj ; ql; qm be four
FFA states and let there be an ambiguity at stateqi on input symbolak, i.e.
Æ(qj ; ak; �ijk) = Æ(ql; ak; �ilk) = qi with �ijk 6= �ilk . Furthermore, letÆ(qi; ak0 ;
�mik0) = qm. The ambiguity is resolved by creating a new stateqX . We arbitrarily
choose the state transitionÆ(ql; ak; �ilk) = qi and setÆ(ql; ak; �Xlk) = qX with
�Xlk = �ilk. This removes the ambiguity at stateqi. We now need to introduce
a new state transitionÆ(qX ; a0k; �mXk0) = qm. By observing that�mXk0 = �mik

we conclude that no new ambiguity has been created at stateqm following the
resolution of the ambiguity at stateqi.

We observe thatM 0 is not unique, i.e. the order in which states are visited
and the order in which state transition ambiguities are resolved determine the final
FFA M

0. Consider the FFA in Figure 5a. In our example, if we had chosen
to change transitionÆ(q2; 1; 0:2) = q1 instead of state transitionÆ(q3; 1; 0:7) =

q1, then the resulting FFAM 0 would have been different. However, all possible
transformationsM 0 share a common invariant property.

Lemma 4.2 The number of states in M
0 is constant regardless of the order in

which states are visited and state transition ambiguities are resolved.

Proof. To see that the lemma’s claim holds true, we observe that resolving an
ambiguity consists of creating a new state for each set of statesfqjg with Æ(qj ,
ak, �ijk) = qi with 8j 6= j

0 : �ijk 6= �ij0k. Since resolving the ambiguity for
any stateqi does not introduce new ambiguities (see Lemma 4.1), the number of
newly created states depends only on the number FFA states with ambiguities.

1 2

3 4

0/0.5

1/0.3
1/0.2

0/0.6

0/0.91/0.7

0/0.1

1/0.4

1 2

3 4

5

0/0.5

1/0.3 1/0.2

0/0.6

0/0.9

0/0.1

1/0.4

0/0.5

1/0.7

1/0.3

(a) (b)

1 2

3 4

5

6

0/0.5

1/0.3 1/0.2

0/0.6

0/0.9

0/0.1

1/0.4

0/0.5

1/0.7

1/0.3

0/0.91/0.2

1 2

3
4

5

6

7

0/0.5

1/0.3 1/0.2

0/0.6

0/0.9

0/0.1

1/0.4

0/0.5

1/0.7

1/0.3

0/0.91/0.2

1/0.7

0/0.1

(c) (d)

1 2

3 4

5

6

7

8

0/0.5

1/0.3 1/0.2

0/0.6

0/0.9

0/0.1

1/0.4

0/0.5

1/0.7

1/0.3

0/0.91/0.2

1/0.7

0/0.1

0/0.6
1/0.4

(e)

Figure 5.Example of FFA Transformation: Transition weight ambiguities are resolved
in a sequence of steps: (a) the original FFA; there exist ambiguities for all four states; (b)
the ambiguity of transition from state 3 to state 1 on input symbol 1 is removed by adding
a new state 5; (c) the ambiguity of transition from state 4 to state 2 on input symbol 0 is
removed by adding a new state 6; (d) the ambiguity of transition from state 4 to state 3 on
input symbol 1 is removed by adding a new state 7; (e) the ambiguity of transition from
states 3 and 7 - both transition have the same fuzzy membership - to state 4 is removed by
adding a new state 8.

1

2

3 4

ak’ / θmik’

ak / θ ilk

ak / θ ijk

ql

qj

qi qm

1

2

3

4

5

ak’ / θmXk’

ak / θXlk

ak / θ ijk

ql

qj qi

qX

qm

ak’ / θmik’

(a) (b)

Figure 6. Resolution of Ambiguities: The transition ambiguity from statesql andqj to
stateqi on input symbolak is resolved by adding a new stateqX and adjusting the transition
as shown.

The following definitions will be convenient:

Definition 4.4 The outdegree dout(qi) of a state qi in FFA M is the maximum
number of states qj for which we have Æ(qi; ak; �ijk) = fqjg for fixed ak with
�jik > 0 where the maximum is taken over all symbols ak. The maximum
outdegree Dout(M) of some FFA M is the maximum over all dout(qi) with qi 2

M .

Definition 4.5 The indegree din(qi) of a state qi in FFA M is the maximum num-
ber of states qj for which we have Æ(fqjg; ak; �ijk) = qi for fixed ak with �ijk > 0

where the maximum is taken over all symbols ak. The maximum indegreeDin(M)

of some FFA M is the maximum over all din(qi) with qi 2M .

We can give a very loose upper bound for the number of states inM
0 as follows:

Lemma 4.3For a FFA M with N states and K input symbols, the transformed
FFA has at most DinKN(N � 1) states.

Proof. Consider some arbitrary stateqi ofM . It can have at mostDinN incoming
transitions for input symbolak. The resolution of ambiguity for stateq i requires
that all but one transitionÆ(:; ak; �i:k) lead to a new state. In the case where the
fuzzy transition memberships�i:k are all different,N � 1 new states are created
per ambiguous state. Thus, forK input symbols, at the most,D inKN(N � 1)

new states are created.

Theresults in Table1 show thesizeof randomly generated FFAM with input
alphabetf0; 1g, the maximum outdegreeDout(M), the upper bound on the size
of transformed FFAM 0, and average and standard deviation of actual sizes for
transformed FFAM 0 taken over 100 experiments. The random FFAM were
generated by connecting each state ofM to at mostDout other states for given
input symbol. We observe that the average actual size of transformed FFA depends
on the maximum outdegreeDout(M) and appears to be linear inN andDout.
Lemma 4.3 has the following corollary:

Corollary 4.1 The FFA transformation algorithm terminates for all possible FFA.

Proof. The size of the setlist in the algorithm decreases monotonically with each
iteration. Thus, the outer while loop terminates when list= ;. Likewise, the inner
while loop terminates since there is only a finite number of statesq l in the set
‘class’ and the size of that set monotonically decreases with each iteration. Thus,
the algorithm terminates.

We now return to the proof of Theorem 4.1. We have already proven that
applying the FFA transformation algorithm results in a FFA where no ambiguities
exist. It is easy to see that the transformed FFAM

0 is equivalent with the original
FFA M , since no new fuzzy transition memberships have been added, and the
algorithm leaves unchanged the order in which FFA transitions are executed. This
completes the proof of Theorem 4.1.

The above transformation algorithm removes all ambiguities for incoming
transitions. However, a minor adjustment for the neural FFA encoding is needed.
Given a FFA stateqi with Æ(qj ; ak; �ijk) = qi andÆ(qj ; ak; :) 6= qi, the corre-
sponding weightWiik is set to�H . We also need to specify an implicit value
�iik > 0 for the neural FFA encoding even though we have� iik = 0 in the FFA.
In order to be consistent with regard to neurons with variable output range, we set
�iik = �ijk .

V. NETWORK ARCHITECTURE

Thearchitecturefor representingFFA isshown inFigure7. A layer of sparsely
connected recurrent neurons implements the finite state dynamics. Each neuron
Si of the state transition module has a dynamical output range[0; � ijk] where�ijk
is the rule weight in the FFA state transitionÆ(qj ; ak; �ijk) = qi. Notice that
each neuronSi is only connected to pairs(Si; Ik) for which �ijk = �ij0k since
we assume thatM is transformed into an equivalent, unambiguous FFAM

0 prior
to the network construction. The weightsW ijk are programmed as described in
Section 3.D. Each recurrent state neuron receives as inputs the valueS

t
j and an

output range value�ijk ; it computes its output according to Equation (3).

size of Dout(M) upper limit on average size standard deviation
M size ofM 0 of M 0

10 1 180 12 2
2 360 16 5
3 540 19 15
4 720 25 29
5 900 28 84

20 1 760 25 6
2 1520 32 19
3 2280 40 40
4 3040 50 191
5 3800 68 278

30 1 1740 38 7
2 3480 49 27
3 5220 61 64
4 6960 84 266
5 8700 111 578

40 1 2400 51 6
2 4800 65 29
3 7200 85 104
4 9600 117 342
5 12000 154 1057

50 1 4900 65 14
2 9800 84 41
3 14700 107 217
4 19600 154 704
5 24500 198 1478

100 1 19800 129 26
2 39600 161 64
3 59400 215 285
4 78800 309 1845
5 98600 401 3916

Table 1.Scaling of Transformed FFA: The results show the increase of the size of FFA
M due to its transformation into a FFAM 0 without ambiguities as a function of the size
of M and the maximum outdegreeDout(M). The FFA were randomly generated and the
average was computed over 100 transformations. The average size of transformed FFA
appears to be linear inN andDout.

z−1

Input neurons

I
k

(t)

S
(t+1)

i

Recurrent state neurons

H

Figure 7. Network Architecture for FFA Representation: The architecture for repre-
senting FFA differs from that for DFA in that (1) the recurrent state neurons have variable
output range, (2) the resolution of ambiguities causes a sparser interconnection topology,
and (3) there is no dedicated output neuron.

VI. NETWORK STABILITY ANALYSIS

A. PRELIMINARIES
In order to demonstrate how the FFA encoding algorithm achieves stability

of the internal FFA state representation for indefinite periods of time, we need to
understand the dynamics of signals in a constructed recurrent neural network.

We define stability of an internal FFA state representation as follows:

Definition 6.1 A fuzzy encoding of FFA states with transition weights f�ijkg in a
second-order recurrent neural network is called stable if only state neurons corre-
sponding to the set of current FFA states have an output greater than � ijk=2 where
�ijk is the dynamic range of recurrent state neurons, and all remaining recurrent
neurons have low output signals less than �ijk=2 for all possible input sequences.

It follows from this definition that there exists an upper bound0 < �
�

< �ijk=2

for low signals and a lower bound�ijk=2 < �
+
< �ijk for high signals in net-

works that represent stable FFA encodings. The ideal values for low and high
signals are 0 and�ijk , respectively.

A detailed analysis of all possible network state changes in Omlin [1996] re-
vealed that, for the purpose of demonstrating stability of internal finite state repre-
sentations, it is sufficient to consider the following two worst cases: (1) A neuron

that does not correspond to a current fuzzy automaton state receives the same
residual low input from all other neurons that it is connected to, and that value is
identical for all neurons. (2) A neuron that changes its output from low to high
at the next time step receives input only from one other neuron (i.e., the neuron
which corresponds to the current fuzzy automaton state), and it may inhibit it-
self. In the case of FFA, a neuronSi undergoing a state change fromS t

i � 0 to
S
t+1
I � �ijk may receive principal inputs from more than one other neuron. How-

ever, any additional input only serves to strengthen high signals. Thus, the case
of a neuron receiving principal input from exactly one other neuron represents a
worst case.

B. FIXED POINT ANALYSIS FOR SIGMOIDAL DISCRIM-
INANT FUNCTION

Here, we summarize without proofs some of the results that we used to demon-
strate stability of neural DFA encodings; details of the proofs can be found in
[Omlin, 1996].

In order to guarantee low signals to remain low, we have to give a tight upper
bound for low signals that remains valid for an arbitrary number of time steps:

Lemma 6.1 The low signals are bounded from above by the fixed point [��f]� of
the function f

�
f
0 = 0

f
t+1 = ~g(r � f t)

(7)

where[��f]� represents the fixed point of the discriminant function~g() with
variable output range�, andr denotes the maximum number of neurons that con-
tribute to a neuron’s input. For reasons of simplicity, we will write��f for [��f]�
with the implicit understanding that the location of fixed points depends on the
particular choice of�. This lemma can easily be proven by induction ont.

It is easy to see that the function to be iterated in Equation (7) isf(x;H; �; r) =
�

1 + eH(��2rx)=2�
. The graphs of the function for � = 1:0 are shown in Figure

9 for different values of the parameterr. It is obvious that the location of fixed
points depends on the particular values of�. We will show later in this section
that the conditions that guarantee the existence of one or three fixed points are
independent of the parameter�.

The functionf(x;H; �; r) has some desirable properties:

Lemma 6.2 For any H > 0, the function f(x;H; �; r) has at least one fixed point
�
0
f .

Lemma 6.3 There exists a value H�

0 (r) such that for any H > H
�

0 (r), f(x, H ,
�, r) has three fixed points 0 < �

�

f < �
0
f < �

+
f < �.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

y

x

r=1

r=2

r=4

r=10

u=0.0

u=0.1
u=0.4

u=0.9

Figure 8. Fixed Points of the Sigmoidal Discriminant Function: Shown are the
graphs of the functionf(x;H; 1; r) = 1

1+eH(1�2rx)=2 (dashed graphs) forH = 8 and

r = f1; 2; 4; 10g and the functionp(x; u) = 1

1+eH(1�2(x�u))=2 (dotted graphs) forH = 8

andu = f0:0; 0:1; 0:4; 0:9g. Their intersection with the functiony = x shows the ex-
istence and location of fixed points. In this example,f(x; r) has three fixed points for
r = f1; 2g, but only one fixed point forr = f4; 10g andp(x; u) has three fixed points for
u = f0:0; 0:1g, but only one fixed point foru = f0:4; 0:9g.

Lemma 6.4 If f(x;H; �; r) has three fixed points ��f ; �
0
f , and �+f , then

lim
t!1

f
t =

8<
:

�
�

f x0 < �
0
f

�
0
f x0 = �

0
f

�
+
f x0 > �

0
f

(8)

where x0 is an initial value for the iteration of f(:).

The above lemma can be proven by defining an appropriate Lyapunov function
P and showing thatP has minima at��f and�+f .9

The basic idea behind the network stability analysis is to show that neuron
outputs never exceed or fall below some fixed points�

� and�+, respectively.
The fixed points��f and�+f are only valid upper and lower bounds on low and
high signals, respectively, if convergence toward these fixed points is monotone.
The following corollary establishes monotone convergence off

t towards fixed
points:

9Lyapunov functions can be used to prove the stability of dynamical systems [Khalil, 1992]. For a
given dynamical systemS, if there exists a functionP - we can think ofP as an energy function - such
thatP has at least one minimum, thenS has a stable state. Here, we can chooseP (xi) = (xi��)f)

2

wherexi is the value off(:) after i iterations and� is one of the fixed points. It can be shown
algebraically that, forx0 6= �

0
f

, P (xi) decreases with every step of the iteration off(:) until a stable
fixed point is reached.

Corollary 6.1 Let f 0
; f

1
; f

2
; : : : denote the finite sequence computed by succes-

sive iteration of the function f . Then we have f 0
< f

1
< : : : < �f where �f is

one of the stable fixed points of f(x;H; �; r).

With these properties, we can quantify the valueH
�

0 (r) such that for anyH >

H
�

0 (r), f(x;H; �; r) has three fixed points. The low and high fixed points�
�

f

and�+f are the bounds for low and high signals, respectively. The largerr, the
largerH must be chosen in order to guarantee the existence of three fixed points.
If H is not chosen sufficiently large, thenf t converges to a unique fixed point
�=2 < �f < �. The following lemma expresses a quantitative condition that
guarantees the existence of three fixed points:

Lemma 6.5 The function f(x;H; �; r) = �
1+eH(��2rx)=2� has three fixed points

0 < �
�

f < �
0
f < �

+
f < � if H is chosen such that

H > H
�

0 (r) =
2(� + (� � x) log(��x

x
))

� � x
where x satisfies the equation

r =
�
2

2x(� + (� � x) log(��x
x

))
.

Proof. We only present a sketch of the proof; for a complete proof, see Omlin
[1996]. Fixed points of the functionf(x;H; �; r) satisfy the equation

�
1+eH(��2rx)=2� = x. Given the parameterr, we must find a minimum value

H
�

0 (r) such thatf(x;H; �; r) has three fixed points. We can think ofx; r, andH
as coordinates in a three-dimensional Euclidean space. Then the locus of points
(x; r;H) satisfying relation the above equation is a curved surface. What we are
interested in is the number of points where a line parallel to thex-axis intersects
this surface.

Unfortunately, the fixed point equation cannot be solved explicitly forx as a
function ofr andH . However, it can be solved for either of the other parameters,
giving the intersections with lines parallel to ther-axis or theH-axis:

r = r(x; �;H) =
�

2x
�
� log(��x

x
)

Hx
(9)

H = H(r; �; x) =
2� log(��x

x
)

� � 2rx
(10)

The contours of these functions show the relationship betweenH andx when
r is fixed (Figure9). We need to find thepoint on each contour wherethe tangent
is parallel to the x-axis, which will indicate where the transition occurs between
one and three solutions forf(x;H; �; r) = x. Solving @r(x;�;H)

@x
= 0, we obtain

the conditions of the lemma.
Even though the location of fixed points of the functionf depends onH , r,

and�, we will use[�f]� as a generic name for any fixed point of a functionf .
Similarly, we can quantify high signals in a constructed network:

0

2

4

6

8

10

12

14

16

18

20

0 0.2 0.4 0.6 0.8 1

H

x

r=1

r=1

r=1.05

r=1.05

r=1.5

r=1.5

r=0.95

r=0.95

r=0.9

r=0.9

r=0.8

r=0.8

r=0.7

r=0.7

r=2

r=2

r=3

r=3

r=5

r=5

r=10

r=10

H (n)0

Figure 9. Contour Plot of f(x;H; �; r) = x: The contour plots (dotted graphs) show
therelationship betweenH andx for various values ofr and fixed value� = 1. If H is
chosen such thatH > max(H�

0 (r);H
+

0 (r)) (solid graphs), then a line parallel to the x-
axis intersects the surface satisfyingf(x;H; �; r) = x in three points which are the fixed
points off(x; �; r).

Lemma 6.6 The high signals are bounded from below by the fixed point [�+
h]� of

the function

�
h
0 = 1

h
t+1 = ~g(ht � f

t)
(11)

Notice that the above recurrence relation couplesf
t andht which makes it dif-

ficult, if not impossible, to find a functionh(x; �; r) which when iterated gives
the same values asht. However, we can bound the sequenceh

0
; h

1
; h

2
; : : : from

below by a recursively defined functionp t - i.e. 8t : pt � h
t - which decouples

h
t from f

t.
Lemma 6.7 Let [�f]� denote the fixed point of the recursive function f , i.e.,
lim
t!1

f
t = [�f]�. Then the recursively defined function p

�
p
0 = 1

p
t+1 = ~g(gt � [�f]�)

(12)

has the property that 8t : pt � h
t.

Then, we have the following sufficient condition for the existence of two stable
fixed points of the function defined in Equation (11):

Lemma 6.8 Let the iterative function pt have two stable fixed points and 8t : pt �
h
t. Then the function ht also has two stable fixed points.

The above lemma has the following corollary:

Corollary 6.2 A constructed network’s high signals remain stable if the sequence
p
0
; p

1
; p

2
; : : : converges towards the fixed point �=2 < [�+

p]� < �.

Since we have decoupled the iterated functionh
t from the iterated functionf t by

introducing the iterated functionpt, we can apply the same technique topt for
finding conditions for the existence of fixed points as in the case off

t. In fact, the
function that when iterated generates the sequencep

0
; p

1
; p

2
; : : : is defined by

p(r; �; x) =
�

1 + e
H(��2(x�[�

�

f
]�))=2�

=
�

1 + eH
0(��2r0x))=2�

(13)

with

H
0 = H(1 + 2[��f]�); r

0 =
1

1 + 2[��f]�
: (14)

We can iteratively compute the value of[�p]� for given parametersH andr. Thus,
we can repeat the original argument withH 0 andr0 in place ofH andr to find the
conditions under whichp(r; x) and thusg(r; x) have three fixed points.

Lemma 6.9 The function p(x; [��f]�) =
1

1 + e
H(��2(x�[��

f
]�))=2�

has three fixed

points 0 < [��p]� < [�0p]� < [�+p]� < 1 if H is chosen such that

H > H
+
0 (r) =

2(� + (� � x) log(��x
x

))

(1 + 2[��f]�)(� � x)

where x satisfies the equation
1

1 + 2[��f]�
=

�
2

2x(� + (� � x) log(��x
x

))
.

Since there is a collection of fuzzy transition memberships� ijk involved in
the algorithm for constructing fuzzy representations of FFA, we need to deter-
mine whether the conditions of Lemmas 6.5 and 6.9 hold true for all rule weights
�ijk . The following corollary establishes a useful invariant property of the func-
tionH0(x; r; �):

Corollary 6.3 The value of the minima H(x; r; �) depends only on the value of r
and is independent of the particular values of �:

infH(x; r; �) = inf
2 � log(��x

x
)

� � 2rx
= H0(r) (15)

x

H

(a)

0

2

4

6

8

10

12

14

16

18

20

0 0.2 0.4 0.6 0.8 1
x

H

(b)

0

2

4

6

8

10

12

14

16

18

20

0 0.2 0.4 0.6 0.8 1

x

H

(c)

0

2

4

6

8

10

12

14

16

18

20

0 0.2 0.4 0.6 0.8 1
x

H

(d)

0

2

4

6

8

10

12

14

16

18

20

0 0.2 0.4 0.6 0.8 1

Figure 10. Invariant Fixed Points: The contour plots illustrating the existence and lo-
cation of fixed points of the function~g(x;H; �; r) = �

1+eH(��2rx)=2� are shown for (a)
� = 1:0, (b) � = 0:7, (c) � = 0:5, and (d)� = 0:3. The location of fixed points depends
on the value of�, but the condition onH andr for the existence of one vs. two stable fixed
points is independent of�. The scaling of the graphs illustrates that invariant property.

Proof. The termlog(��x
x

) scales the functionH(x; r; �) along the x-axis. We
introduce a scaling factor� and set� 0 = � � andx0 = � x. Then, Equation (10)
becomes

H�(x
0

; r; �
0) =

2 � � log(� ��� x
� x

)

� � � 2r � x
=

2 � � log(��x
x

)

�(� � 2rx)
=

2 � log(��x
x

)

� � 2rx
= H(x; r; �)

(16)
for fixed r. Thus the values ofH(x; r; �) are identical for fixed values ofr, and
their local minima have the same values independent of�.

The relevance of the above corollary is that there is no need to test conditions
for all possible values of� in order to guarantee the existence of fixed points. The
graphsin Figure10 illustrate that invariant property of thesigmoidal discriminant
function.

We can now proceed to prove stability of low and high signals, and thus sta-
bility of the fuzzy representation of FFA states, in a constructed recurrent neural
network.

C. NETWORK STABILITY
The existence of two stable fixed points of the discriminant function is

only a necessary condition for network stability. We also need to establish condi-
tions under which these fixed points are upper and lower bounds of stable low and
high signals, respectively.

Before we define and derive the conditions for network stability, it is con-
venient to apply the result of Lemma 3.1 to the fixed points of the sigmoidal
discriminant function (Section 3.C):

Corollary 6.4 For any value � with 0 < � � 1, the fixed points [�]� of the dis-
criminant function

�

1 + eH(��2rx)=2�

have the following invariant relationship:
[�]� = � [�]1

Proof. By definition, fixed points� of ~g(:) have the property that[�] � = ~g[(�)]�.
According to Lemma 3.1, we also have

[�]� = ~g([�]�) = ~g([�]�; H; �) = � ~g(�[�]1; H; 1) = � ~g([�]1) = � [�]1
because the invariant scaling property applies to all points of the function~g, in-
cluding its fixed points. Thus, we do not have to consider the conditions separately
for all values of� that occur in a given FFA.

We now redefine stability of recurrent networks constructed from DFA in
terms of fixed points:

Definition 6.2 An encoding of DFA states in a second-order recurrent neural net-
work is called stable if all the low signals are less than [�0

f]�i , and all the high
signals are greater than [�0

h]�i for all �i of all state neurons Si.

We have simplified�i:: to �i because the output of each neuronS i has a fixed
upper limit � for a given input symbol, regardless which neuronsS j contribute
residual inputs. We note that this new definition is stricter than what we gave in
Definition 6.1. In order for the low signal to remain stable, the following condition
has to be satisfied:

�
H

2
+Hr[��f]�j < [�0f]�j (17)

Similarly, the following inequality must be satisfied for stable high signals:

�
H

2
+H [�+h]�j �H [��f]�i > [�0h]�i (18)

The above two inequalities must be satisfied for all neurons at all times. Instead
of testing for all values�ijk separately, we can simplify the set of inequalities as
follows:

Lemma 6.10 Let �min and �max denote the minimum and maximum, respectively,
of all fuzzy transition memberships �ijk of a given FFAM . Then, inequalities (17)
and (18) are satisfied for all transition weights �ijk if the inequalities

�
H

2
+Hr[��f]�max

< [�0f]�min
(19)

�
H

2
+H [�+h]�min

�H [��f]�max
> [�0h]�max

(20)

are satisfied.

Proof. Consider the two fixed points[��f]�min
and[��h]�max

. According to Corol-
lary 6.4, we have

[��f]�min
= �min[�

�

f]1 < �ijk [�
�

f]1 < �max[�
�

f]1 = [��f]�max

Thus, if inequalities (19) and (20) are not violated for[��f]�min
and [��f]�max

,
then they will not be violated for�min � �ijk � �max either. We can rewrite
inequalities (19) and (20) as

�
H

2
+Hr �max[�

�

f]1 < �min[�
0
f]1 (21)

and

�
H

2
+H�min[�

+
h]1 �H�max[�

�

f]1 > �max[�
0
h]1 (22)

Solving inequalities (21) and (22) for[��f]1 and [�+h]1, respectively, we obtain
conditions under which a constructed recurrent network implements a given FFA.
These conditions are expressed in the following theorem:

Theorem 6.1 For some given unambiguous FFA M with n states and m input
symbols, let r denote the maximum number of transitions to any state over all
input symbols of M . Furthermore, let �min and �max denote the minimum and
maximum, respectively, of all transitions weights �ijk in M . Then, a sparse recur-
rent neural network with n state and m input neurons can be constructed from M

such that the internal state representation remains stable if

(1) [��f]1 <
1

r �max

(
1

2
+ �min

[�0f]1

H
),

(2) [�+h]1 >
1

�min

(
1

2
+ �max[�

�

f]1 +
[�0h]1

H
),

(3) H > max(H�

0 (r); H+
0 (r)) .

Furthermore, the constructed network has at most 3mn second-order weights
with alphabet �w = f�H; 0;+Hg, n + 1 biases with alphabet �b = f�H=2g,
and maximum fan-out 3m.

For �min = �max = 1, conditions (1)-(3) of the above theorem reduce to those
found for stable DFA encodings [Omlin, 1996]. This is consistent with a crisp
representation of DFA states.

VII. SIMULATIONS

In order to test our theory, we constructed a fuzzy encoding of a randomly
generated FFA with 100 states (after the execution of the FFA transformation al-
gorithm) over the input alphabetf0; 1g. We randomly assigned weights in the
range[0; 1] to all transitions in increments of 0.1. The maximum indegree was
Din(M) = r = 5. We then tested the stability of the fuzzy internal state repre-
sentation on 100 randomly generated strings of length 100 by comparing, at each
time step, the output signal of each recurrent state neuron with its ideal output sig-
nal (since each recurrent state neuronSi corresponds to a FFA stateqi, we know
the degree to whichqi is occupied after input symbolak has been read: either0 or
�ijk). A histogram of the differences between the ideal and the observed signal of
state neurons for selected values of the weight strengthH over all state neurons
and all tested strings is shown in Figure 11. As expected, the error decreases for
increasing values ofH . We observe that the number of discrepancies between the
desired and the actual neuron output decreases ‘smoothly’ for the shown values
of H (almost no change can be observed for values up toH = 6). The most
significant change can be observed by comparing the histograms forH = 9:7

andH = 9:75: The existence of significant neuron output errors forH = 9:7

suggests that the internal FFA representation is highly unstable. ForH � 9:75,
the internal FFA state representation becomes stable. This discontinuous change
can be explained by observing that there exists a critical valueH 0(r) such that the
number of stable fixed points also changes discontinuously from one to two for
H < H0(r)) andH > H0(r)), respectively (seeFigure11). The ‘smooth’ transi-
tion from large output errors to very small errors for most recurrent state neurons
(Figure 11a-e) can be explained by observing that not all recurrent state neurons
receive the same number of residual inputs; some neurons may not receive any
residual input for some given input symbolak at time stept; in that case, the low
signals of those neurons are strengthened to~g(0; H; � i:k) ' 0 (note that strong
low signals imply strong high signals by Lemma 6.7).

VIII. CONCLUSIONS

Theoretical work that proves representational relationships between differ-
ent computational paradigms is important because it establishes the equivalences
of those models. Previously it has been shown that it is possible to determin-
istically encode fuzzy finite state automata (FFA) in recurrent neural networks
by transforming any given FFA into a deterministic acceptor which assign string
membership [Omlin, 1998]. In such a deterministic encoding, only the network’s
classification of strings is fuzzy, whereas the representation of states iscrisp. The
correspondence between FFA and network parameters - i.e., fuzzy transition mem-
berships and network weights, respectively - is lost in the transformation.

(a) (b)

(c) (d)

(e) (f)

0.2e+5

0.4e+5

0.6e+5

0.8e+5

1.0e+5

1.2e+5

1.4e+5

1.6e+5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
re

qu
en

cy

Absolute Neuron Output Error

0

0.2e+5

0.4e+5

0.6e+5

0.8e+5

1.0e+5

1.2e+5

1.4e+5

1.6e+5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
re

qu
en

cy

Absolute Neuron Output Error

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
re

qu
en

cy

Absolute Neuron Output Error

0

0.5e+5

1.0e+5

1.5e+5

2.e+5

2.5e+5

3.0e+5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
re

qu
en

cy

Absolute Neuron Output Error

0

0.5e+5

1.0e+5

1.5e+5

2.0e+5

2.5e+5

3.0e+5

3.5e+5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
re

qu
en

cy

Absolute Neuron Output Error

0

0.5e+5

1.0e+5

1.5e+5

2.0e+5

2.5e+5

3.0e+5

3.5e+5

4.0e+5

4.5e+5

5.0e+5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
re

qu
en

cy

Absolute Neuron Output Error

0

2.0e+5

4.0e+5

6.0e+5

8.0e+5

10.0e+5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
re

qu
en

cy

Absolute Neuron Output Error

Figure 11.Stability of FFA State Encoding: The histograms shows the absolute neuron
output error of a network with 100 neurons that implements a randomly generated FFA
and reads 100 randomly generated strings of length 100 for different values of the weight
strengthH. The error was computed by comparing, at each time step, the actual with the
desired output of each state neuron. The distribution of neuron output signal errors are
for weight strengths (a)H = 6:0, (b) H = 9:0, (c) H = 9:60, (d) H = 9:65, and (e)
H = 9:70, and (f)H = 9:75.

Here, we have demonstrated analytically and empirically that it is possible to
encode FFA in recurrent networkswithout transforming them into deterministic
acceptors. The constructed network directly represents FFA states with the de-
sired fuzziness. That representation requires (1) a slightly increased functionality
of sigmoidal discriminant functions (it only requires the discriminants to accom-
modate variable output range), and (2) a transformation of a given FFA into an
equivalent FFA with a larger number of states. (We have found empirically that
the increase in automaton size is roughly proportional toN �K whereN andK
are the automaton and alphabet size, respectively.) In the proposed mapping FFA
! recurrent network, the correspondence between FFA and network parameters
remains intact; this can be significant if the physical properties of some unknown
dynamic, nonlinear system are to be derived from a trained network modeling that
system. Furthermore, the analysis tools and methods used to demonstrate the sta-
bility of the crisp internal representation of DFA carried over and generalized to
show stability of the internal FFA representation.

We speculate that other encoding methods are possible and that it is an open
question as to which encoding methods are better. One could argue that, from a
engineering point of view, it may seem more natural to use radial basis functions
to represent fuzzy state membership (they are often used along with triangular
and trapezoidal membership functions in the design of fuzzy systems) instead
of sigmoidal discriminant functions (DFA can be mapped into recurrent neural
networks with radialbasis functions [Frasconi, 1996]). It is an open question how
mappings of FFA into recurrent neural networks with radial basis discriminant
functions would be implemented and how such mappings would compare to the
encoding algorithm described in this work.

The usefulness of training recurrent neural networks with fuzzy state repre-
sentation from examples to behave like a FFA - the variable output range� can
be treated as a variable parameter and an update rule similar to that for network
weights can be derived - and whether useful information can be extracted from
trained networks has yet to be determined. In particular, it would be interesting to
compare training and knowledge representation of networks whose discriminant
functions have fixed and variable output ranges, respectively. Discriminant func-
tions with variable neuron output range may open the door to novel methods for
the extraction of symbolic knowledge from recurrent neural networks.

IX. ACKNOWLEDGMENTS

We would like to acknowledge useful discussions with K. Bollacker, D. Hand-
scomb and B.G. Horne and suggestions from the referees.

REFERENCES

Akers, L., Ferry, D., Grondin, R., Synthetic neural systems in VLSI. InAn Intro-
duction to Neural and Electronic Systems. Academic Press, 317, 1990.

Ashar, P., Devadas, S., Newton, A.,Sequential Logic Synthesis. Kluwer Aca-
demic Publishers, Norwell, 1992.

Berenji, H., Khedkar, P., Learning and fine tuning fuzzy logic controllers through
reinforcement.IEEE Transactions on Neural Networks, (3)5, 724, 1992.

Bezdek, J., Fuzzy logic and neural networks.IEEE Transactions on Neural Net-
works, 3, 1992. Special Issue.

Bishop, C., Neural Networks for Pattern Recognition. Oxford University Press,
1995.

Blanco, A., Delgado, M., Pegalajar, M., Fuzzy grammar inference using neural
networks. Tech. Rep., Department of Computer Science and Artificial Intelli-
gence, University of Granada, Spain, 1997.

Bonissone, P., Badami, V., Chiang, K., Khedkar, P., Marcelle, K., Schutten, M.,
Industrial applications of fuzzy logic at General Electric.Proceedings of the
IEEE, (83)3, 450, 1995.

Bookman, L., Sun, R., Architectures for integrating symbolic and neural pro-
cesses.Connection Science, 5(3,4), 1993. Special Issue.

Casey, M., The dynamics of discrete-time computation, with application to re-
current neural networks and finite state machine extraction.Neural Computation,
8(6), 1135, 1996.

Cellier, F., Pan, Y., Fuzzy adaptive recurrent counterpropagation neural networks:
A tool for efficient implementation of qualitative models of dynamic processes.J.
Systems Engineering, 5(4), 207, 1995.

Chiu, S., Chand, S., Moore, D., Chaudhary, A., Fuzzy logic for control of roll
and moment for a flexible wing aircraft.IEEE Control Systems Magazine, 11(4),
42, 1991.

Cichocki, A., Unbehauen, R., Eds.Neural Networks for Optimization and Signal
Processing. John Wiley, New York, 1993.

Cleeremans, A., Servan-Schreiber, D., McClelland, J., Finite state automata and
simple recurrent neural networks.Neural Computation, 1(3), 372, 1989.

Corbin, J., A fuzzy logic-based financial transaction system.Embedded Sys-
tems Programming, 7(12), 24, 1994.

Dubois, D., Prade, H.,Fuzzy Sets and Systems: Theory and Applications, Vol. 144
of Mathematics in Science and Engineering. Academic Press, 220, 1980.

Elman, J., Finding structure in time.Cognitive Science, 14, 179, 1990.

Franquelo, L., Chavez, J., Fasy: A fuzzy-logic based tool for analog synthe-
sis. IEEE Transactions on Computer-Aided Design of Integrated Circuits, 15(7),
705, 1996.

Frasconi, P., Gori, M., Maggini, M., Soda, G., Representation of finite state au-
tomata in recurrent radial basis function networks.Machine Learning, 23, 5,
1996.

Fu, L.-M., Neural Networks in Computer Intelligence. McGraw-Hill, Inc., New
York, 1994.

Gaines, B., Kohout, L., The logic of automata.International Journal of Gen-
eral Systems, 2, 191, 1976.

Giles, C., Gori, M., Eds. Adaptive Processing of Sequences and Data Struc-
tures. Lecture Notes in Artificial Intelligence. Springer-Verlag, 1998.

Giles, C., Miller, C., Chen, D., Chen, H., Sun, G., Lee, Y., Learning and ex-
tracting finite state automata with second-order recurrent neural networks.Neural
Computation, 4(3), 393, 1992.

Giles, C., Omlin, C., Extraction, insertion and refinement of symbolic rules in
dynamically driven recurrent neural networks.Connection Science, 5(3,4), 307,
1993.

Giles, C., Sun, R., Zurada, J., Neural networks and hybrid intelligent models:
Foundations, theory, and applications.IEEE Transactions on Neural Networks,
9(5), 721, 1998. Special Issue.

Grantner, J., Patyra, M., VLSI implementations of fuzzy logic finite state ma-
chines. InProceedings of the Fifth IFSA Congress, 781, 1993.

Grantner, J., Patyra, M., Synthesis and analysis of fuzzy logic finite state ma-
chine models. InProc. of the Third IEEE Conf. on Fuzzy Systems, I, 205, 1994.

Hardy, T. L., Multi-objective decision-making under uncertainty fuzzy logic
methods. Tech. Rep. TM 106796, NASA, Washington, D.C., 1994.

Haykin, S., Neural Networks, A Comprehensive Foundation. Prentice Hall, En-
glewood Cliffs, NJ, 1998.

Hendler, J., Developing hybrid symbolic/connectionist models. InAdvances
in Connectionist and Neural Computation Theory, Barnden, J., Pollack, J., Eds.
Ablex Publishing, 1991.

Herrmann, C., A hybrid fuzzy-neural expert system for diagnosis. InProc.
of the Fourteenth International Joint Conf. on Artificial Intelligence, I, 494, 1995.

Honavar, V., Uhr, L., Eds.,Artificial Intelligence and Neural Networks: Steps
toward Principled Integration. Academic Press, 1994.

Hopcroft, J., Ullman, J.,Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley Publishing Company, Inc., Reading, PA, 1979.

Kasabov, N., Foundations of Neural Networks, Fuzzy Systems, and Knowledge
Engineering. MIT Press, Cambridge, 1996.

Khalil, H., Nonlinear Systems. Macmillan Publishing Company, New York, 1992.

Khan, E., Unal, F., Recurrent fuzzy logic using neural networks. InAdvances
in fuzzy logic, neural networks, and genetic algorithms, Furuhashi, T., Ed., Lec-
ture Notes in AI. Springer-Verlag, 1995.

Kickert, W. J. M., van Nauta Lemke, H., Application of a fuzzy controller in
a warm water plant.Automatica, 12(4), 301, 1976.

Kleene, S., Representation of events in nerve nets and finite automata. In
Automata Studies, Shannon, C., McCarthy, J., Eds. Princeton University Press,
Princeton, NJ, 3, 1956.

Kosmatopoulos, E., Christodoulou, M., Structural properties of gradient recur-
rent high-order neural networks.IEEE Transactions on Circuits and Systems,
42(9), 592, 1995.

Kosmatopoulos, E., Christodoulou, M., Neural networks for identification of
fuzzy dynamical systems: An application to identification of vehicle highway
systems. InProceedings of the 4th IEEE Mediterranean Symposium on New
Directions in Control and Automation, 23, 1996.

Kosmatopoulos, E., Christodoulou, M., Recurrent neural networks for approx-
imation of fuzzy dynamical systems.International Journal of Intelligent Control
and Systems, 1(2), 223, 1996a.

Kosmatopoulos, E., Polycarpou, M., Christodoulou, M., Ioannou, P., High-order
neural networks for identification of dynamical systems.IEEE Transactions on
Neural Networks, 6(2), 422, 1995a.

Lee, C., Fuzzy logic in control systems: fuzzy logic controller.IEEE Trans-
actions on Man, Systems, and Cybernetics, 20(2), 404, 1990.

Maclin, R., Shavlik, J., Using knowledge-based neural networks to improve al-
gorithms: Refining the Chou-Fasman algorithm for protein folding.Machine
Learning, 11, 195, 1993.

Mead, C., Analog VLSI and Neural Systems. Addison-Wesley, Reading, PA,
1989.

Mensch, S., Lipp, H., Fuzzy specification of finite state machines. InProceedings
of the European Design Automation Conference, 622, 1990.

Minsky, M., Computation: Finite and Infinite Machines. Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1967.

Omlin, C., Giles, C., Constructing deterministic finite-state automata in recur-
rent neural networks.Journal of the ACM, 43(6), 937, 1996.

Omlin, C., Giles, C., Extraction of rules from discrete-time recurrent neural net-
works. Neural Networks, 9(1), 41, 1996a.

Omlin, C., Giles, C., Rule revision with recurrent neural networks.IEEE Trans-
actions on Knowledge and Data Engineering, 8(1), 183, 1996b.

Omlin, C., Giles, C., Stable encoding of large finite-state automata in recurrent
neural networks with sigmoid discriminants.Neural Computation, 8(7), 675,
1996c.

Omlin, C., Thornber, K., Giles, C., Fuzzy finite-state automata can be deter-
ministically encoded into recurrent neural networks.IEEE Transactions on Fuzzy
Systems, 6(1), 76, 1998.

Palaniswami, M., Attikiouzel, Y., Marks, R., Fogel, D., Eds.Computational
Intelligence: A Dynamic System Perspective. IEEE Press, Piscataway, NJ, 1995.

Pappis, C., Mamdani, E., A fuzzy logic controller for a traffic junction.IEEE
Transactions on Systems, Man, and Cybernetics, 7(10), 707, 1977.

Pollack, J., The induction of dynamical recognizers.Machine Learning, 7(2/3),
227, 1991.

Santos, E., Maximin automata.Information and Control, 13, 363, 1968.

Sheu, B. J.,Neural Information Processing and VLSI. Kluwer Academic Publish-
ers, Boston, 1995.

Siegelmann, H., Sontag, E., On the computational power of neural nets.Journal
of Computer and System Sciences, 50(1), 132, 1995.

Siegelmann, H. T.,Neural Networks and Analog Computation: Beyond the Turing
Limit. Birkhauser, Boston, 1999.

Sun, R., Learning, action, and consciousness: A hybrid approach towards model-
ing consciousness.Neural Networks, 10(7), 1317, 1997.

Thomas, S. F.,Fuzziness and Probability. ACG Press, Wichita, KS, 1995.

Thomason, M., Marinos, P., Deterministic acceptors of regular fuzzy languages.
IEEE Transactions on Systems, Man, and Cybernetics, 3, 228, 1974.

Unal, F., Khan, E., A fuzzy finite state machine implementation based on a neural
fuzzy system. InProceedings of the Third International Conference on Fuzzy
Systems, 3, 1749, 1994.

Watrous, R., Kuhn, G., Induction of finite-state languages using second-order
recurrent networks.Neural Computation, 4(3), 406, 1992.

Yang, X., Kalambur, G., Design for machining using expert system and fuzzy
logic approach. Journal of Materials Engineering and Performance, 4(5), 599,
1995.

Zadeh, L., Fuzzy sets.Information and Control, 8, 338, 1965.

Zadeh, L., Fuzzy languages and their relation to human and machine intelligence.
Tech. Rep. ERL-M302, Electronics Research Laboratory, University of Califor-
nia, Berkeley, 1971.

Zeng, Z., Goodman, R., Smyth, P., Learning finite state machines with self-
clustering recurrent networks.Neural Computation, 5(6), 976, 1993.

	RECURRENT NEURAL NETWORKS
	Table of Contents
	Chapter 5
	EQUIVALENCE IN KNOWLEDGE REPRESENTATION: AUTOMATA, RECURRENT NEURAL NETWORKS, AND DYNAMICAL FUZZY SYSTEMS
	I. INTRODUCTION
	A. MOTIVATION
	B. BACKGROUND
	C. OVERVIEW

	II. FUZZY FINITE STATE AUTOMATA
	III. REPRESENTATION OF FUZZY STATES
	A. PRELIMINARIES
	B. DFA ENCODING ALGORITHM
	C. RECURRENT STATE NEURONS WITH VARIABLE OUT-PUT RANGE
	D. PROGRAMMING FUZZY STATE TRANSITIONS

	IV. AUTOMATA TRANSFORMATION
	A. PRELIMINARIES
	B. TRANSFORMATION ALGORITHM
	C. EXAMPLE
	D. PROPERTIES OF THE TRANSFORMATION ALGORITHM

	V. NETWORK ARCHITECTURE
	VI. NETWORK STABILITY ANALYSIS
	A. PRELIMINARIES
	B. FIXED POINT ANALYSIS FOR SIGMOIDAL DISCRIMINANT FUNCTION
	C. NETWORK STABILITY

	VII. SIMULATIONS
	VIII. CONCLUSIONS
	IX. ACKNOWLEDGMENTS
	REFERENCES

	© 2001 by CRC Press LLC: © 2001 by CRC Press LLC

