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I. INTRODUCTION

The Hopfield neural network has been used for a large number of optimization
problems, ranging from object recognition [Lin et al., 1991] to graph planarization
[Takefuji and Lee, 1989] to concentrator assignment [Tagliarini and Page, 1987].
However, the fact that the Hopfield energy function is of quadratic order limits the
problems to which it can be applied. Sometimes, objective functions which cannot
be reduced to Hopfield’s quadratic energy function can still be reasonably approx-
imated by a quadratic energy function. For other problems, the objective function
must be modeled by a higher-order energy function. Examples of such problems
include the angular-metric TSP [Aggarwal et al., 1997] and belief revision, which
is our subject here.

In this chapter, we describe high-order recurrent neural networks and provide an
efficient implementation data structure for sparse high-order networks. We then
describe how such networks can be used for Bayesian belief revision, an important
problem in diagnostic reasoning and in commonsense reasoning. We begin by
introducing belief revision and reasoning under uncertainty.

II. BELIEF REVISION AND REASONING UNDER 
UNCERTAINTY

A. REASONING UNDER UNCERTAINTY
Humans exhibit the ability to assimilate and reason with information that is

incomplete, contradictory, or subject to change. For example, most men have no
trouble comprehending that, when their wives ask their opinion on a new hairstyle,
they are expected to both “be honest” and “say that they love it.” Similarly, if a
man is driving his car, believing the car to be in fourth gear, and finds the car
unable to accelerate, he is able to consider the possibility that the car is in fact



                                                                                                            
in second gear. Reasoning with uncertainty is the branch of artificial intelligence
that is concerned with modeling this facet of human cognition.

Conventional first-order logic is inadequate for this task. Statements are either
known to be true, known to be false, or not known to be one way or the other. Fur-
ther, once a statement is known to be true (or false), it stays true (or false) forever.
One approach to reasoning with uncertainty is to use higher-order nonmonotonic
logic [Ginsberg, 1987; Marek and Truszczynski, 1993; Reiter, 1987; Shoham,
1987]. For example, modal logic [Konyndyk, 1986; Popkorn, 1994] augments
predicate logic with modal operators which take whole sentences as arguments.
With modal logic, it is possible, for example, to distinguish between a statement
which is false but has the potential of being true (such as Johnny is a straight-A
student) and a statement which is by necessity false (such as Johnny has three eyes
and six legs).

Another approach is to use numerical representations of uncertainty which may
or may not be based on the probability calculus. Methods in this school can fre-
quently be formalized in terms of belief functions. A belief function, BEL (A),
measures the degree to which all the evidence we have supports the hypothesis A.
For this reason, numerical approaches to uncertainty are sometimes also referred
to as the theory of evidence [Yager et al., 1994]. Belief functions are usually
defined to have a value within the interval [0, 1]. In addition, a plausibility function
is defined as

PLAU S(A) = 1 − BEL , (1)

and measures the degree to which our belief in  leaves room for belief in A.
Note that unlike probability functions,

BEL(A) + PLAU S(A) � 1. (2)

The only requirement is that

BEL(A) + PLAU S(A) ≤ 1. (3)

If for a particular hypothesis A, BEL(A) = 0 and PLAUS(A) = 1, this indicates
complete ignorance. While if BEL(A) = 1 and PLAUS(A) = 1, or BEL(A) = 0 and
PLAU S(A) = 0, this indicates with absolute certainty that A is true, or that A is
false, respectively. The most popular non-probabilistic approach to belief func-
tions is the Dempster-Shafer theory [Dempster, 1967; Kofler and Leondes, 1994;
Shafer, 1976; Shafer, 1986; Shafer and Logan, 1987]. It is also possible to define
belief functions in terms of fuzzy sets [Zadeh, 1979; Zadeh, 1994, Zadeh and
Kacprzyk, 1992; Zimmerman, 1991] or in terms of rough sets [Pawlak, 1991;
Pawlak, 1992; Pawlak et al., 1995].

Belief functions which are defined probabilistically are called Bayesian belief
functions. A Bayesian belief function BEL(A) is defined as

BEL(A) = P(A|E), (4)

A¬( )

A¬



                                                                                  
where E denotes the available evidence. Pearl [1988] gives examples of how
Dempster-Shafer belief functions can lead to counterintuitive reasoning. He
argues convincingly that probability can be considered a “faithful guardian of
common sense.” Lindley [1987] contends that the probability calculus is “the only
satisfactory description of uncertainty. ” However, there have been two primary
criticisms of probabilistic approaches to representing uncertainty. The first is that
there is no way to distinguish between complete ignorance and complete uncer-
tainty. With Dempster-Shafer belief functions,

BEL(A) = 0
PLAUS(A) = 1 (5)

indicate total ignorance; the evidence we have gives us no reason to believe A nor
to disbelieve A. However,

BEL(A) = PLAUS(A) = 0.5 (6)

indicate total uncertainty; the evidence we have provides equal support to A and
. However, in the Bayesian formalism,

(7)

indicates that A and  are equally likely given E; this could be because E sup-
ports both hypotheses equally or because it provides support to neither. The other
criticism of the Bayesian formalism has historically been that the need to consider
probabilistic dependencies makes probability calculations unfeasible. However,
this has largely changed with the advent of Bayesian belief networks, which pro-
vide a natural and concise graphical representation of probabilistic dependencies.

B. BAYESIAN BELIEF NETWORKS
Incarnations of Bayesian belief networks seem to have been around for some

time. They have been called influence diagrams, knowledge maps, and causal dia-
grams. However, Judea Pearl had been largely credited with standardizing and
popularizing Bayesian belief networks with his 1988 book [Pearl, 1988]. Given
a set of random variables representing events or hypotheses in a given problem
domain, a Bayesian belief network is a triple (V, E, P), where V is a set of nodes
such that each node is identified with a domain variable, (V, E) specify a directed
acyclic graph (DAG), and P is a set of probability distributions which specify
for each node υ ∈V the probability of each possible instantiation of υ given each
possible instantiation of υ′s parents π(υ), and such that (V, E) is a minimal inde-
pendency map of the domain variables. This requirement that a Bayesian belief
network’s underlying DAG be a minimal independency map of the problem
domain is what allows computations on belief networks to be greatly simplified.

The definition of an independency map, or I-map, is based on the notion of
conditional independence. If X, Y, and Z are disjoint sets of random variables,

A¬
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X and Y are conditionally independent given Z, written I(X, Z, Y) if for any possible
instantiations of x, y, and z, of X, Y, and Z, respectively,

(8)

whenever

(9)

Furthermore, if D is a DAG and X, Y, and Z are three disjoint sets of nodes of
D, Z is said to d-separate X and Y, denoted < X, Z, Y >, if every path from a
member of X to a member of Y is blocked by a member of Z. If D is a DAG
where each node of D represents a random variable, then D is an independency
map if I(X, Z, Y) is implied by <X|Z|Y>. Finally, a DAG is a minimal 1-map if
the removal of any edge from the DAG renders the DAG no longer an I-map.

Based on the requirement that a Bayesian belief network be an I-map, the joint
probability of any instantiation A of the nodes of a belief network (V, E, P) can be
computed according to

(10)

The correctness of this equation relies on the network being an I-map; while the
minimality requirement enforces conciseness.

For a belief network (V, Ε, P), the set of probability distributions P specifies
for each node υ the probability of every possible instantiation of υ given every
possible instantiation of π (υ). Thus, if υ is a binary-valued node and has two par-
ents, x and y, which are also binary-valued, then υ’s probability distribution would

Figure 1. Example of a local probability distribution with redundancies.

P x y z∧( ) P x z( ),=

P y z∧( ) 0.>
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be similar to Figure 1. However, Figure 1 contains some redundant information
since for any given fixed instantiation I of π (υ),

(11)

Therefore, it is sufficient for binary-valued nodes to specify the probability of one
truth assignment for each possible instantiation of the parents, as shown in Figure 2.
In general, for a discrete node with k possible instantiations, it is necessary and suf-
ficient to specify k − 1 probabilities for each possible instantiation of the parents.

C. BELIEF REVISION
Suppose a grocery store clerk sees a man come into his store carrying a gun.

Based on the observed evidence (“man in store with gun”), the clerk may develop
the belief that he is about to be the victim of a robbery. If the evidence set is aug-
mented with the observation that the “gunman” is carrying a policeman’s badge,
the clerk may then revise his belief.

Formally, belief revision is the problem of finding the most plausible explana-
tion for the current evidence at hand. This has applications in many areas of AI.
For example, in natural language understanding, the evidence would be the natural
language text and the possible explanations would be the possible meanings of
the text [Charniak and Shimony, 1994; Hobbs et al., 1993]; in medical diagnosis, the
evidence would be the symptoms and lab results and the explanations would be
the possible diagnoses [Shachter, 1986]. For Bayesian belief networks, belief revi-
sion is the problem of finding the most probable explanation for a given set of evi-
dence. In other words, given a set of observances, represented as a partial
assignment E to a subset of the network variables, the objective is to find the net-
work assignment A which maximizes the conditional probability P(A|E). Because
it maximizes the posterior probability, A is called the maximum a posteriori
assignment and the belief revision problem on Bayesian belief networks is often
called the MAP assignment problem, or simply the MAP problem.

From Bayes’ theorem we know that

(12)

Figure 2. Example of a local probability distribution without redundancies.
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and since P(E) is constant, maximizing P(A|E) is equivalent to maximizing P(A)
subject to the constraint that . If E is empty, then we are simply interested
in finding the network assignment with highest unconditional probability P(A).

D. APPROACHES TO FINDING MAP ASSIGNMENTS
An important indicator of complexity for a belief network is whether it is singly-

connected or multiply-connected. A singly-connected network is a network in
which, for any pair of nodes, there is only one directed path connecting them. An
alternative definition is that it is a network in which the underlying undirected graph
is also acyclic. A multiply-connected network is a network in which there is more
than one directed path connecting at least one pair of nodes.

For singly-connected networks, Pearl [Pearl, 1986; Pearl, 1988] has developed
an algorithm, based on message passing, for finding the optimal MAP in linear
time. The problem of finding MAPs on multiply-connected networks is NP-hard
[Shimony, 1994] and even approximating the optimal MAP within a constant fac-
tor is NP-hard [Abdelbar and Hedetniemi, 1998]. Existing methods for finding
exact MAPs on multiply-connected networks all have exponential complexity in
the worst case. Simulated annealing [Abdelbar and Hedetniemi, 1997; Abdelbar
and Attia, 1999; Geman and Geman, 1984], genetic algorithm [Abdelbar and
Hedetniemi, 1997; Abdelbar and Attia, 1999; Rojas-Guzman and Kramer, 1993;
Rojas-Guzman and Kramer, 1994], and integer programming approaches [Abdelbar,
1998; Abdelbar, 1999; Santos, 1994; Santos and Santos, 1996] for the problem are
currently being investigated.

III. HOPFIELD NETWORKS AND MEAN FIELD 
ANNEALING

A. OPTIMIZATION AND THE HOPFIELD NETWORK
A recurrent neural network is one whose underlying topology of inter-neuronal

connections contains at least one cycle. The Hopfield network [Hopfield, 1982;
Hopfield, 1984] is perhaps the best known network of this class. The underlying
topology of a Hopfield network is a graph: each weighted connection is either a
binary connection Tij between two neurons i and j or a unary connection Ιι involv-
ing a single neuron i. A neuron in the Hopfield network is governed by

(13)

and

Vi = g(ui), (14)

where g is a (typically sigmoidal) activation function. The Hopfield network is a
member of the Cohen-Grossberg [Cohen and Grossberg, 1983] family of dynam-
ical systems. Under the requirements that the Tij matrix be symmetric and with a

E A⊆

dui

dt
------- T ijV j I i,+

j�i
∑=



zero-diagonal, and that the activation function g be monotonically non-decreasing
and with a sufficiently high slope, the neurons of a Hopfield network will tend
towards a collective state which minimizes the energy function

(15)

The Hopfield network is used for optimization by constructing the Tij and Ii con-
nections such that the minimum points of the energy function correspond to the
optimal solutions of the problem at hand. Many optimization problems can be
described by an objective function that is to be minimized or maximized and a set
of constraints that must be satisfied. These two components of the energy function
can be constructed separately and then superimposed to form the overall energy
function:

(16)

where  and  represent the energy functions corresponding to the con-
straints and objectives, respectively, and β is a manually-tuned scaling constant.

Certain types of constraints are encountered so frequently in the context of dif-
ferent problems that special design rules have been developed for their handling.
Tagliarini et al.’s [Tagliarini et al., 1991] k-out-of-n rule deals with the case where
it is desired to select exactly k out of an ensemble of n neurons.

In the energy function

(17)

the first term is minimized when the sum of the Vi’s is k and the second term when
all the Vi’s have digital values. With some algebraic manipulation, it is easy to see
that equation (17) has the same minimum points as

(18)

Correspondingly, the k-out-of-n rule prescribes that we assign Tij to (−2) for every
pair of neurons and assign Ii to (2k − 1) for every neuron in the ensemble. This
design rule can be applied to simultaneous constraints and the energy functions
produced by each application of the rule can be superimposed to produce the over-
all  [Page and Tagharini, 1988].
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 B. BOLTZMANN MACHINE
Like the Hopfield network, the Boltzmann machine [Hinton and Sejnowski,

1986] can be used for optimization. The energy function of the Boltzmann
machine is the same as that of the Hopfield network but, unlike the deterministic
Hopfield network, the Boltzmann machine employs stochastic neurons. The acti-
vation level ui of a neuron i in the Boltzmann machine is computed according to
equation (13) as in the Hopfield network, but the output Vi of a neuron i is a binary-
valued random variable with distribution:

(19)

where T is a parameter known as the temperature. Initially, the temperature is set
to a relatively high value and then, over time, it is gradually decreased according
to some annealing schedule.

Note that when T is close to infinity, the probability is close to 0.5 regardless of
the value of ui; this corresponds to a random walk through weight space. On the
other hand, when T is very low, network behavior becomes very similar to the dis-
crete version of the Hopfield network.

The choice of annealing schedule for a Boltzmann machine is central to network
performance. A well-known theoretical result by Geman and Geman [ 1984] holds
that if the rate of decay of the temperature is no faster than logarithmic, the net-
work is guaranteed to eventually converge to a global optimum. However, this
schedule is very slow in practice and is rarely used. A commonly used schedule,
first proposed by Kirkpatrick et al. [ 1983], is to reduce the temperature by a fixed
fraction f after every iteration,

(20)

C. MEAN FIELD ANNEALING
Mean field theory [Peterson and Hartman, 1989] can be used to obtain a deter-

ministic approximation to the Boltzmann machine. In this variation, the output Vi

of a neuron i is deterministically approximated to be

(21)

where T is the annealing temperature. This mean field approximation, often called
the deterministic Boltzmann machine, has been observed to produce faster conver-
gence than the stochastic Boltzmann machine [Peterson and Anderson, 1987].

IV. HIGH ORDER RECURRENT NETWORKS

A High Order Recurrent Network (HORN) is a recurrent network whose un-
derlying topology is a hypergraph, i.e., it allows weighted hyperedges which con-
nect more than two neurons. The degree of a hyperedge is the number of neurons
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it connects; the order of a HORN is the largest hyperedge degree in the topology.
We will use the notation  to denote the weight of the dth-degree edge connect-
ing neurons i1 … id. A HORN is symmetric if

(22)

for any permutation h of the integers 1 … d. By default, a HORN is assumed to be
symmetric unless otherwise specified.

A kth-order HORN minimizes a kth-order energy function [Pinkas, 1995]:

(23)

where n is the number of neurons. For example, the energy function of a
fourthorder HORN has the form:

(24)

If Sd denotes the set of all sequences j1, …, jd, such that 1 ≤ ja ≤ n, for a = 1, …,
d, and ja � jb if a � b, then, each neuron is governed by

(25)

In the new notation of this section, equation (13) would be expressed as:

(26)

The relationship between the output Vi and the activation level ui of a neuron i
can follow the form either of the Hopfield network, of the stochastic Boltzmann
machine, or of the mean field theory Boltzmann machine.

In a 1995 paper, Gadi Pinkas [Pinkas, 1995] shows that it is possible to trans-
form a kth-order network to a strongly equivalent quadratic-order network with an
increase in the number of neurons. Although it is often more efficient in practice
to simulate the high-order networks directly, Pinkas’ transformation provides an
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important theoretical foundation for HORNs because of the Hopfield network’s
relationship to the Cohen-Grossberg family.

We will now briefly review the Pinkas transformation. Given a kth-order net-
work, each kth-order connection  is replaced by a number of lower-order con-
nections in a manner that depends on the sign of the weight of .

If the weight of  is positive, then it is replaced by (k + 1) second- and first-
order connections and a new hidden neuron is added. If we let h denote the new
hidden neuron, then the (k + 1) connections are created as follows:

1. For every j = 1, …, k, a connection  is added and its weight is set
according to

(27)

2. A connection  is added and its weight is set according to

(28)

If, on the other hand, the weight of  is negative, then (k − 2) new hidden
neurons are needed. If we let h3 … hk denote the (k − 2) new hidden neurons, then
the low-order connections are created as follows:

1. For every j = k, …, 3, perform the following steps:

(a) For � = 1, …, j − 1, a new connection  is added and its
weight is set according to

(29)

(b) A new connection  is created and its weight is set according to

(30)

(c) A connection  is created and its weight is set according to

(31)

2. A connection  is created and its weight is set according to

(32)

In this manner, an arbitrary kth-order network can always be converted to a
strongly equivalent second-order network.
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 V. EFFICIENT DATA STRUCTURES FOR IMPLEMENTING 
HORNS

The most common implementation of a Hopfield network stores the Tij and 1i

connections in two-dimensional and one-dimensional arrays, respectively. To fire
a neuron, say neuron i, we can use

1. delta_u = I [i];
2. for j = 1 to n do
3. if j � i then
4. delta_u += T [i,j] * V [j];
5. od ;

For a HORN with dense connections, a similar approach can be adopted, using
a d-dimensional array for each T(d). To fire a neuron, we would then have k − 1
nested loops, which means a computational complexity of O(nk) to fire all n neu-
rons once.

However, for some applications such as belief revision, the HORN’s of interest
are sparsely-connected, that is, the majority or even the vast majority of possible
connections have a connection weight of 0. For such HORNs, we propose the fol-
lowing data structure, which is meant to be very fast at the expense of redundance
in storage.

We use an array of records, where each record holds three fields:

degree : integer ;
neurons: array [1..k] of integer; 
weight : real ;

The size of the array of records is set to the maximum number of non-zero con-
nections in the entire network, which we will denote as m. We then duplicate
this array n times. This gives us the following declaration, which is illustrated in
Figure 3:

Conn : array [1..n,1..m] ;

For each neuron i, the one-dimensional array Conn [i] holds the connections
in which i participates. Each record Conn [i,j] stores the specifications of one
connection in which i participates. The array Conn [i,j]. neurons holds
the neurons which participate in the connection not including neuron i itself.
Since the entire Conn [i] deals with connections which involve i, there is no
need to include i in the neurons array of each record; in addition the exclusion
of i makes it possible to avoid including an if-statement between lines 4 and 5 in
the pseudo-code below.

To fire neuron i, we can use

1. delta_u = 0 ;



2. for j = 1 to m [i] do

3. factor = Conn [i,j].weight ;

4. for a = 1 to Conn [i,j].degree - 1 do

5. factor *= V [Conn [i,j].neurons[a]];

6. od ;

7. delta_u += factor ;

8. od ;

We can now fire a neuron in O(mr), where r is the average connection degree of
the HORN, and all neurons can be fired in O(nmr).

VI. DESIGNING HORNS FOR BELIEF REVISION

Bayesian belief networks are themselves essentially connectionist structures
(and interestingly they meet most generic definitions of a neural network). Let
us go back for a moment to the example probability distribution table shown in
Figure 1. Consider for example the sixth line of this table. This line associates a
probability of 0.77 with the combination of four hypotheses: that x is true, that y

Figure 3. Each record Conn [i][j] describes the jth connection in which neuron i
participates.



is false, that z is true, and that v is false. Each line in the probability table of a
belief network node with in-degree d connects d + 1 hypotheses. For this reason,
a Bayesian belief network with a maximum in-degree of k will require a HORN
of order (k + 1).

Here, we present an algorithm for constructing a HORN for a given Bayesian
belief network with discrete-valued (not necessarily binary) variables and a given
evidence set.

Let B = (U, E, P) and E be a Bayesian belief network and associated evidence
set, respectively. For U = υ1, …, υn, let D(υi) be the finite domain from which vari-
able υ can be instantiated. We will assume that, for each υ ∈ U, each distribution
Pυ is in the form of a table, where each line � in the table is in the form of a set of
assignments {(x → r)|x ∈ {υ} � π (υ), r ∈ D(x)}, and we will let P(�) denote the
probability associated with line �.

We construct a neural network with Συ∈U|D(υ)|) neurons: a neuron υr is associ-
ated with every r ∈ D(υ) for every υ ∈ U. For each υ ∈ U and for each � ∈ Pυ,
we create a connection

(33)

where d = |�|, and ia = xr where (x → r) ∈ �, for a = 1, …, d.
Let the evidence be represented as a set of assignments. For each assignment

(x → r) ∈ E where r ∈D(x):

1. Let xr be the neuron corresponding to the instantiation r of x. Since the
evidence requires x to take the value r, we can consider  to be clamped
to 1. Therefore, we can replace every connection  such that ia = xr

for some a ∈ 1,…, d, with the connection  letting the
new connection retain the weight of the removed connection.

2. We can now remove neuron xr (which now corresponds to a fact
rather than a hypothesis) from the network and permanently
assign  to 1.

3. For each S ∈(D(x) − {r}), let xs, be the neuron corresponding to
the instantiation s of x. Since the evidence requires x to take on a
value different from s, we can consider  to be clamped to 0.
Therefore, we can prune every connection  such that ib = xs

for some b ∈ 1, …, d.
4. We can now remove neuron xs, and permanently assign  to 0.

In this manner, we construct a connection corresponding to every line in every
probability table in the belief network. Let these connections constitute Eobj.We
illustrate the Eobj connections with a small numerical example. Consider the
binary-valued belief network shown in Figure 4. Figure 5 shows the Conn [i]
arrays that would be constructed for the evidence {(x → T)} assuming the neuron
associations (V1 : wT, V2 : wF, V3 : xT, V4 : xF, V5 : yT, V6 : yF, V7 : zT, V8 : zF).
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An assignment V to the HORNs V vector will induce a belief network assign-
ment A,

A = {(υ → r)|υ ∈ U,  = 1}, (34)

under the two constraints that all Vi’s have digital values and that exactly one of
{ | r ∈ D(υ)} is equal to 1 for every υ ∈ U. An assignment V is said to be fea-
sible if it induces a belief network assignment A.

Theorem: Let V1 and V2 be two feasible neural network assignments such that
V1 yields a lower value for Eobj than V2. Then, if A1 and A2 are the two belief net-
work assignments induced by V1 and V2, respectively, then P(Al |E) > P (A2|E).

Proof: Maximizing P(A|E) is equivalent to maximizing P(A) under the con-
straint ; the containment of E in A is guaranteed by the clamping of  to
1 for every (x → r) ∈ E. Every connection in the HORN corresponds to a line in
the probability table of some node. Let Pυ be the probability distribution for an
arbitrary υ ∈ U. For any assignment A, there is exactly one � ∈ Pυ such that � ∈
A. Therefore, Eobj consists of exactly U non-zero terms. Each non-zero connection
has a weight

(35)

for some � ∈ Pυ for some υ ∈ U and such that � ∈ A. This means

Figure 4. A small belief network

V υs

V υr

E A⊆ V xr

T i1i2…id

d( ) logP �( ),=

Eobj logP A υ( )|A π υ( )( )( ),
υ∈U
∑–=



Figure 5. The Conn arrays that result from applying the algorithm to the belief network
shown in Figure 4 with E = {(x → T)}



(36)

Therefore, minimizing Eobj is equivalent to maximizing P(A).
What remains is to construct connections, which we will call Econs, to enforce

the feasibility constraints. This can be achieved using the standard k-out-of-n
design rule. The two components, Econs and Eobj, are then combined according to
equation (16) with an appropriate choice of weighting constant β.

Using mean field annealing, with the schedule of (20), this technique has found
the optimal assignments for a collection of twenty belief networks and evidence
sets with the characteristics shown in Figure 6. For each belief network and evi-
dence set, extensive experimentation, however, is required to obtain good values
for the three parameters: β, initial temperature T0, and temperature cooling factor
f. Performance is especially sensitive to β and f. It is hoped that heuristics can be
developed for automatically setting β according to the probability values of the
network. Alternatively, techniques such as genetic optimization could be used to
automate the parameter selection problem.

VII. CONCLUSION

Belief revision is the problem of finding the most plausible explanation for a
given set of observances. In the context of Bayesian belief networks, belief revi-
sion becomes the problem of finding the network assignment A with maximum
posterior probability P(A|E), where E is a partial network assignment correspond-
ing to the observed evidence. Exact techniques for multiply-connected belief net-
works run in time exponential in the size of the network graph’s minimum loop-
cutset: the smallest set of vertices whose removal renders the network graph acyclic.
For multiply-connected networks in which the loop-cutset is small, traditional
methods can be used. However, for large heavily-connected networks, other meth-
ods are needed.

Figure 6. Summary of experimentation

P A υ( )|A π υ( )( )( )
υ ∈U
∏– logP A( ).–= =



In this chapter, we began by describing High Order Recurrent Networks
(HORNs) and reviewing a transformation which allows HORNs to be transformed
to quadratic-order networks with equivalent energy functions. This was followed
by the description of an efficient data structure for the software implementation of
HORNs. We then showed how HORNs could be used for belief revision on belief
networks.

Using the Pinkas transformation described in Section 4, the high order networks
produced by our method can be converted to equivalent Hopfield networks and
Boltzmann machines; this is of significance because of the potential for the hard-
ware implementation of these networks [Schneider and Card, 1993; Schneider and
Card, 1998].
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