
Chapter 3 
 

EFFICIENT SECOND-ORDER LEARNING 
ALGORITHMS FOR DISCRETE-TIME 
RECURRENT NEURAL NETWORKS 

 
Eurípedes P. dos Santos and Fernando J. Von Zuben 

 
School of Electrical and Computer Engineering (FEEC) 

State University of Campinas (Unicamp) 
Brazil 

 
I. INTRODUCTION 

 
    Artificial neural networks can be described as computational structures built 
up from weighted connections among simple and functionally similar nonlinear 
processing units or nodes, denoted artificial neurons. A class of neural network 
architectures that has been receiving a great deal of attention in the last few 
years is that of recurrent neural networks. They can be classified as being 
globally or partially recurrent. 
    Globally recurrent neural networks have arbitrary feedback connections, 
including neurons with self-feedback. On the other hand, partially recurrent 
neural networks have their main structure non-recurrent, or recurrent but with 
restrictive properties associated with the feedback connections, like fixed 
weights or local nature. The presence of feedback allows the generation of 
internal representations and memory devices, both essential to process spatio-
temporal information. 
    The dynamics presented by a recurrent neural network can be continuous or 
discrete in time. The analysis of dynamic behavior using already stated 
theoretical results for continuous dynamic systems and the generation of new 
results regarding stability of continuos-time recurrent neural networks seem to 
be the most important appeals to the use of continuous dynamics [Jin, 1995]. 
However, the simulation of a continuous-time recurrent neural network in digital 
computational devices requires the adoption of a discrete-time equivalent model. 
    In this chapter, we will study discrete-time recurrent neural network 
architectures, implemented by the use of one-step delay operators in the 
feedback paths. In doing so, digital filters of a desired order can be used to 
design the network, by a proper definition of connections [Back, 1991]. The 
resulting nonlinear models for spatio-temporal representation can be directly 
simulated on a digital computer, by means of a system of nonlinear difference 
equations. The nature of the equations depends on the kind of recurrent 
architecture adopted. As a well-known result from signal processing theory, 
recurrent connections may lead to very complex behaviors, even with a reduced 
number of parameters and associated equations [Oppenheim, 1999]. 



 

    Globally and partially recurrent neural networks were shown to perform well 
in a wide range of applications that involve dynamic and sequential processing 
[Haykin, 1999]. However, analysis [Kolen, 1994] and synthesis [Cohen, 1992] 
of recurrent neural networks of practical importance is a very demanding task. 
As a consequence, the process of weight adjustment in supervised learning is 
much more demanding in the recurrent case [Williams, 1989], and the 
availability of recurrent neural networks of practical importance has to be 
associated with the existence of efficient training algorithms, based on 
optimization procedures for adjusting the parameters. To improve performance, 
second-order information should be considered in the training process 
[Campolucci, 1998, Chang, 1999, Von Zuben, 1995]. 
    So, in what follows, after a brief motivation for using recurrent neural 
networks and second-order learning algorithms, a low-cost procedure to obtain 
exact second-order information for a wide range of recurrent neural network 
architectures will be presented. After that, a very efficient and generic learning 
algorithm will be described. We will propose an improved version of a scaled 
conjugate gradient algorithm [Narenda, 1990], that can effectively be used to 
explore the available second-order information. The original algorithm will be 
improved based on the detection of important limitations. Basically, we 
introduce a set of adaptive coefficients to replace fixed ones. These new 
parameters of the algorithm are automatically adjusted and do not represent 
additional items to be arbitrarily determined by the user. Finally, some 
simulation results will be obtained and interpreted. 
 

II. SPATIAL ××××  SPATIO-TEMPORAL PROCESSING 
 
    Supervised learning in the context of artificial neural networks can be 
associated with the use of optimization-based techniques to adjust the network 
parameters [Poggio, 1990]. The objective is to minimize a cost function, i.e., a 
function of the input-output data available for learning, that somehow defines 
the desired behavior to be achieved. 
    At first glance, neural networks can be divided into two classes: static (non-
recurrent) and dynamic (recurrent) networks. Static neural networks are those 
whose outputs are linear or nonlinear functions of its inputs, and for a given 
input vector, the network always generates the same output vector. These nets 
are suitable for processing of spatial patterns. In this case, the relevant 
information is distributed throughout the spatial coordinates associated with the 
variables that compose the set of input learning patterns. Typical problems with 
remarkable spatial dependencies can be found in the areas of pattern recognition 
and function approximation [Bishop, 1995]. 
    In contrast, dynamic neural networks are capable of implementing memories 
which gives them the possibility of retaining information to be used later. Now, 
the network can generate diverse output vectors in response to the same input 
vector, because the response may also depend on the actual state of the existing 
memories. By their inherent characteristic of memorizing past information, for 
long or short-term periods, dynamic networks are good candidates to process 
patterns with spatio-temporal dependencies, for example, signal processing with 



emphasis on identification and control of nonlinear dynamic systems [Jin, 1995, 
Kim,  1997], and nonlinear prediction of time series [Connor, 1994, Von Zuben, 
1997]. 
 

III. COMPUTATIONAL CAPABILITY 
 
    Multilayer perceptron [Haykin, 1999] is a widespread example of a static 
(non-recurrent) neural network architecture. The main reason it is so effective in 
worldwide spatial processing applications is the existence of two 
complementary existential results, with immediate practical effects: a proof of 
its universal approximation capability [Hornik, 1989] and an effective way to 
use first- and second-order information, once available, for adjusting the 
parameters (generally based on the backpropagation algorithm) [Battiti, 1992, 
van der Smagt, 1994]. 
    However, in the case of recurrent neural network architectures, there are no 
equivalent practical results concerning universal approximation capability with 
respect to spatio-temporal patterns. A great number of the recurrent neural 
network architectures, particularly the ones convertible to NARX architectures, 
share the existential property of being capable of simulating Turing machines 
[Siegelmann, 1997, Siegelmann, 1991], where a Turing machine is an 
abstraction defined to be functionally as powerful as any computer. However, 
this very important existential result does not provide any insight about how to 
achieve the desired behavior, which is why we are faced with so many different 
architectures to deal with spatio-temporal problems, each one devoted to the 
specific nature of the problem at hand [Frasconi, 1992, Haykin, 1999]. 
    In spite of some attempts to discover unifying aspects in various architectures 
[Nerrand, 1993, Tsoi, 1997], the diversity of available architectures that can 
potentially be applied to solve a given spatio-temporal problem is still 
commonplace. 
    In this chapter, we will not try to overcome this troublesome aspect of design. 
Instead, we will concentrate efforts on developing a generic procedure to obtain 
first- and second-order information for adjusting the parameters, directly 
applicable to a wide range of recurrent neural network architectures. Once the 
first- and second-order information is available, it is important to point out that 
the same optimization algorithm can be applied, without any kind of 
modification, to any kind of recurrent (or non-recurrent) neural network 
architecture. 
 
IV. RECURRENT NEURAL NETWORKS AS NONLINEAR 

DYNAMIC SYSTEMS 
 
    A dynamic system is composed of two parts: the state and the dynamic. The 
state is formally defined as a multivariate vector of variables, parameterized 
with respect to time, such that the current value of the state vector summarizes 
all the information about the past behavior of the system considered necessary to 
uniquely describe its future behavior, except for the possibly existing external 



 

effects produced by inputs applied to the system. The set of possible states is 
denoted the state space of the system. The dynamic, assumed here to be 
deterministic, describes how the state evolves through time, and the sequence of 
states is known as the trajectory in the state space. It is possible to define four 
classes of dynamic systems [Kolen, 1994], according to the scheme presented in 
Figure 1. 
    In essence, the class of recurrent neural networks to be discussed in this 
chapter is the one characterized by the discrete dynamic and continuous state. 
The resulting system of difference equations corresponds to a complex nonlinear 
parametric dynamic system that can exhibit a wide range of behaviors, not 
produced by static systems. 
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Figure 1. Classes of dynamic systems 

For recurrent neural network with these properties, there are two functional uses 
[Haykin, 1999]: 

• associative memory and 
• input-output mapping network. 

For example, when globally recurrent neural networks are constrained to have 
symmetric connections (or some equivalent restrictive property), their 
asymptotic behaviors are dominated by fixed-point attractors, with guaranteed 
convergence to stable states from any initial condition. This property can be 
explored to produce associative memories, as is the case in Hopfield-type neural 
networks [Li, 1988]. 
    Without such a constraint, the connective structure may assume a wide range 
of configurations, so that the corresponding recurrent neural network is able to 
present more complex behaviors than fixed points. The trajectory in the state 
space will be influenced by a set of attractors and repellers, with arbitrary 
multiplicity and properly distributed across the state space, each one belonging 
to one of the following types: fixed point, limit cycle, quasi-periodic, or chaotic 
[Ott, 1993]. 
    The analysis of computational simulations often considers only the attractors, 
because the repellers can not be observed. Once the state has reached one 
attractor, it will stay there indefinitely, unless an external force pushes the state 



away. When the trajectory of an autonomous system reaches an attractor, we say 
that the system is in a stationary state. Both continuous and discrete dynamics 
are able to present the four types of stationary behavior mentioned above. 
    So, the dynamical complexity of a recurrent neural network can be measured 
in terms of the number, type, and relative position of attractors and repellers in 
the state space. Some preliminary results are already available to synthesize, in a 
closed form, recurrent neural networks in terms of specific position and 
extension of a reduced number of attractors and repellers in the state space 
[Cohen, 1992]. However, in the case of complex configurations of attractors and 
repellers, and when the description of the dynamic system to be synthesized can 
not be done in terms of attractors and repellers, the only available way of 
performing the task is by means of supervised learning. 
    The formalism of attractors and repellers plays an important role in the study 
of recurrent neural network stability [Haykin, 1999]. In the analysis of dynamic 
system theory, in addition to stability, controllability and observability are 
fundamental aspects. If we can control the dynamic behavior of the recurrent 
neural network, using external inputs if necessary, then we say that the dynamic 
is controllable. If we can observe the result of the control applied to the network, 
then we say that the dynamic is observable. Levin and Narendra [Levin, 1993] 
have presented important results associated with local controllability and local 
observability of recurrent neural networks. 
 

V. RECURRENT NEURAL NETWORKS AND SECOND-
ORDER LEARNING ALGORITHMS 

 
    As stated in the previous section, this chapter will treat recurrent neural 
networks as input-output mapping networks, giving rise to the necessity of 
establishing an association between the desired input-output behavior and a 
specific configuration for the neural network parameters (connective 
configuration). Unfortunately, this association can not be determined a priori or 
in a closed form. Then, a desired dynamic behavior should be produced by 
means of an effective learning process (this procedure is also known as dynamic 
reconstruction [Haykin, 1999]) responsible for discovering this association, 
which may not be unique. 
    As supervised learning should be applied to achieve the desired behavior, the 
success of the task will depend on two conditions: 
• the desired behavior must belong to the range of dynamic behaviors that can 

be produced by the recurrent neural network and 
• the supervised learning process must be capable of finding a desired set of 

parameter values that will give the final connective configuration to the 
neural network. 

    Certainly, the most widespread supervised learning mechanisms for neural 
networks are those using first-order (gradient) information. In this case, the first-
order partial derivatives, or sensitivities, associated with some error measure 
(based on the difference between the network outputs and some target 
sequences), are computed with respect to the parameters of the network. Later, 



 

this available local information related to the error surface is then used to 
minimize the error. 
    As widely reported in the literature, despite their widespread use, the 
gradient-descent method and its variants are characterized by their slow rate of 
convergence and in some cases, require the arbitrary setting of learning 
parameters, such as learning rates, before the beginning of the optimization task 
[Battiti, 1992]. An inadequate choice may raise difficulties or even prevent the 
success of the adjustment. 
    Moreover, specifically in the case of recurrent neural networks, there can be 
at least one hard additional problem that may trap the gradient-based 
optimization process: the existence of feedback along the processing makes the 
error surface present highly nonlinear spots [Pearlmutter, 1995]. This 
characteristic of the error surface is motivated by the possibility of migrating 
between two qualitatively distinct nonlinear behaviors merely by means of 
tuning the feedback gain. For example, even small changes in the network 
parameters, dictated by the learning algorithm itself, may guide the dynamics of 
the network to change from stable fixed points to unstable ones, which causes a 
sudden jump in the error measure. Of course, here we are considering an 
implicit hypothesis that first-order optimization methods do not work properly 
out of smooth areas in continuous error surfaces. 
    In general, these undesirable aspects are the main reasons for the poor average 
performance of first-order learning algorithms. These problems become even 
more evident in the case of very demanding tasks, where the network behavior 
must consider simultaneously a great number of correlated specifications (for 
example, many attractors and repellers). Examples of these kinds of problems 
are becoming more frequent in system identification and time series prediction 
tasks. 
    To improve performance, second-order information should be considered in 
the training process. One of the most elaborated second-order algorithms for 
search in multidimensional nonlinear surfaces is the conjugate gradient method, 
which was proved to be remarkably effective in dealing with general objective 
functions and is considered among the best general purpose optimization 
methods presently available. 
    Given a procedure to obtain second-order information for any kind of 
recurrent neural network architecture, the learning procedure can be directly 
applied without any adaptation to the specific context. That is why the first 
objective of this work is to describe systematic ways of obtaining exact second-
order information for a range of recurrent neural network architectures. 
    In addition to that, the algorithms to be proposed in a coming section present 
a computational cost (memory usage and processing time) only two times higher 
than the cost to acquire first-order information. 
 
 
 
 
 
 



VI. RECURRENT NEURAL NETWORK ARCHITECTURES 
 
    As already stated, the natural way of investigating the dynamic behavior of 
recurrent neural networks is to consider them as nonlinear dynamic systems. Let 
a nonlinear discrete-time stationary dynamic system be represented by the state 
space equations: 
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where k is the discrete instant of time, n
p ℜ∈x , mℜ∈u , and r

p ℜ∈y are the 

state, input, and output vectors, respectively; nmn
p ℜ→ℜ×ℜ:f  and 

rmn
p ℜ→ℜ×ℜ:h  are continuous vector-valued functions representing the 

state transition mapping and output mapping, respectively. This state space 
representation is very general and can describe a large range of important 
nonlinear dynamic systems. Notice that the output equation is a static mapping. 
    System identification is a fundamental and challenging research area 
involving nonlinear dynamic systems, and a common approach to identify 
systems represented by equation (1) is to adopt parameterized models for the 
unknown maps fp and hp. In this case, there is a growing amount of research 
about the use of neural networks to model some important subclasses of 
nonlinear dynamic systems, subsumed within the class of models represented by 
equation (1). In the literature, attention has been paid to the analysis and 
synthesis of neural networks models structured in the form of nonlinear auto-
regressive moving average (NARMA) models. In this context, there are two 
main approaches to synthesize NARMA models. The first one assumes that the 
dynamic behavior of the system output is governed by a finite set of available 
input-output measurements. Then, an obvious route to modeling is to choose the 
NARMA model as a feedforward neural network of the form: 

 ( ) ( ) ( ) ( ) ( )( )mkknkkk ppmm −−−= uuyygy ,,,,,1ˆ !!    (2) 

where mĝ  represents the input-output map performed by the static neural 

network and my  is the output of the model. This is a kind of series-parallel 

model and presumes a fairly good knowledge of the actual system structure. 
This scheme of adaptation has been denoted as equation-error approach by the 
system identification community and is designated as teacher forcing in the 
neural network parlance. More recently, in view of its peculiar characteristics, 
Williams [Williams, 1990] coined it as the conservative approach, when related 
to neural control.  
    The second approach to construct neural network NARMA models is argued 
to be used in situations where the use of past input-output information together 
with a feedforward nonlinear mapping is not able to satisfactorily represent the 
actual dynamic system. A typical situation is the use of these static neural 



 

network NARMA models when the map hp in equation (1) has no inverse. In 
this case, the representation capability of the model can be improved by the use 
of a recurrent neural network. If the recurrent paths include the outputs, we have 
a parallel model. As an example, consider the parallel NARMA model given by 
the following equation: 

 ( ) ( ) ( ) ( ) ( )( )mkknkkk mmmm −−−= uuyygy ,,,,,1ˆ !!  (3) 

Again, mĝ  represents the feedforward input-output mapping performed by the 

neural network, but now the outputs always depend on past values of 
themselves. In this case, the adaptation of the neural network parameters should 
be realized by a dynamic learning algorithm. When adjusting the model 
parameters in this way, we are using the output error approach, raised in the 
system identification area. Some results in the literature have pointed out that 
parallel models may give improved performance when compared to their series-
parallel counterparts, particularly in the case of noisy systems [Shink, 1989]. 
This improvement occurs because the parallel model prevents the presence of 
noisy outputs in the composition of the input vector. 
    In spite of the more powerful representation capabilities associated with 
parallel models, few results are available in terms of stability analysis, and more 
effective learning algorithms are required. Because of the aforementioned 
characteristics, the use of parallel models in tasks related to neural network 
identification and control is called liberal approach [Williams, 1990]. 
    Figures 2 to 4 show the three most popular recurrent neural network 
architectures for spatio-temporal processing, where the neural network 
parameters are left implicit. In Figure 2 we have the globally recurrent neural 
network architecture (GRNN). In this architecture, the output of each hidden 
neuron is used to generate the feedback information. If the feedback paths, 
indicated by the bold arrows, are removed, then a simpler architecture is 
produced, called local recurrent neural network (LRNN). When the network 
outputs are the signals used in the feedback loops, as in Figure 3, we have the 
output-feedback recurrent neural network (OFRNN) or Jordan network. If all the 
outputs of the existing neurons are used for feedback, the resulting architecture 
is the most general and is called a fully recurrent neural network (FRNN), as 
shown in Figure 4. 
    With different degrees of extension, all these recurrent neural network 
architectures have attracted the interest of researches [Tsoi, 1994]. A brief look 
at Figures 3 and 4 can indicate that OFRNN and FRNN are networks that have 
to be trained following the liberal approach. There are few results concerning 
the FRNN architecture, because the high flexibility of its dynamic behavior is 
not so easy to be accessed [Williams, 1990]. 
    On the other hand, the generality of the GRNN architecture and its universal 
approximation property have been proved [Jin, 1995]. Another important result 
obtained is that GRNN and OFRNN are equivalent architectures, if their output 
neurons are linear [Tsoi, 1997]. 
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Figure 2. Globally recurrent neural network architecture (GRNN) 
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Figure 3. Output-feedback recurrent neural network (OFRNN) 
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Figure 4. Fully recurrent neural network (FRNN) 

 
VII. STATE SPACE REPRESENTATION FOR 

RECURRENT NEURAL NETWORKS 
 
    The formulations adopted in this work for the learning algorithms are strongly 
based on matrix manipulations. Hence, in this section a state space 
representation, valid for each of the three architectures described above, is 
briefly presented. In the sequel, we take Figures 2 to 4 as guidelines, and we 
consider that in each architecture there is one hidden layer containing N neurons, 
M external inputs, and O linear output units. Also, the nonlinear activation 
function is supposed to be the same for all hidden neurons. 
    The state variables for any architecture in Figures 2 to 4 can be immediately 
selected as the set of variables responsible for the memory storage in the 
recurrent neural network. They are just the past signals available from the 
tapped delay lines of length L. To make the exposure clear, we can first write 
the following scalar equations at a particular discrete time instant k: 
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where the signals )(ksi , )(kzi , and )(kyr  are hidden neurons weighted sums, 

hidden neurons outputs, and network outputs, respectively. The sa j
il '  are the 

weights in the feedback loops, the sbim '  are the external inputs gains, and  the 

scrp '  are the weights between the hidden and the output layer. In these 

equations, )(0 kz  and )(0 ku  are the bias inputs. The actual values for the state 

variables sx j ' , and the total number of signals to be used to feed the tapped 

delay lines, D, depends on the recurrent network architecture. We have 
( ) ( )tztx jj = , with D = N for the GRNN and LRNN architectures. Following the 

same idea, we have ( ) ( )tytx jj = , with D = O for the OFRNN. For the FRNN, 

we also have ( ) ( )tztx jj = , with D = N. The FRNN network has all its units in a 

unique layer, and the output neurons (visible neurons) correspond to a subset of 
these units. Then, the parameters rpc  in equation (6) are constants (not 

adjustable parameters), taking the value 1 if p=r and the value 0 otherwise. In 
this architecture, the bias inputs for all neurons are removed from the set of 
output weights and accounted for in the set of input weights. 
    A matrix formulation for equations (4) to (6) can be obtained as done in what 
follows: 
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The entries with value 1 in the vectors appearing in equations (9) and (11) 
correspond to the bias input. If the network of interest is a FRNN, the bias input 



 

must be removed from equation (9). Matrices A, B, and C are formed from the 

weights sa j
il ' , sbim ' , and scrp ' , respectively, that appear in equations (4) and 

(6). These matrices have dimensions (N,D.L), (N,M+1), and (O,N+1), 
respectively. 

 
VIII. SECOND-ORDER INFORMATION IN 

OPTIMIZATION-BASED LEARNING ALGORITHMS 
 
    Supervised learning in an artificial neural network can be formulated as an 
unconstrained nonlinear optimization problem, where the network parameters 
are the free independent variables to be adjusted, and an error measure is the 
dependent variable. The error measure or cost function depends on the network 
parameters and on the error between the neural network outputs and the desired 
behaviors dictated by the training examples. 
    In general, the training examples are in the form of input-output pairs that can 
be the samples obtained from trajectories generated from some dynamic system, 
possibly with a nonlinear behavior. 
    The goal of the supervised learning is to adjust the network parameter so that 
the trajectories generated by the neural network match the given desired 
trajectories. Additionally, the trained neural network is required to perform 
properly when subjected to patterns not seen in the training phase. 

    Let NPR∈w  be the column vector containing all the neural network weights 
or adjustable parameters. Also, consider the vectors y (k) and yd (k), as the neural 
network output and desired output, respectively. Formally the optimization 
based learning process is defined by the following equations: 
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where P is the horizon of time to be considered.      
     In classical optimization methods, the search for the vector w that solves the 
minimization problem (13) is conducted in an iterative set of steps. In each step, 
given the actual vector w, the optimization procedure can use only information 
extracted from the cost function to generate a new vector that is a better 
estimation of the optimal solution.                        
    To see which information is of practical concern, consider the following 
Taylor series expansion for the error measure around a point w in the error 
surface: 
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where ( )wET∇  is the gradient vector with components 
iw∂

∂ TE , H(w) is the 

Hessian matrix with components 
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terms with order higher than two in w∆ . 
    Optimization methods that use only objective function evaluation to solve 
problem (13) form the family of direct search methods. In these methods, some 
mechanism is used to generate new candidate points and the objective function 
is used to select the best one. If, at each step, the method uses function 
evaluations and the first-order information contained in the gradient vector to 
generate a new point in the search space, it is in the family of steepest descent 
methods. These methods are characterized by their relative simplicity but slow 
rate of convergence to a local minimum. 
    Methods that depend on the information present in the Hessian matrix are 
second-order methods. These methods work on the hypotheses that a quadratic 
model is a good local approximation to the objective function. The most 
representative method in this family is the Newton’s method, where, at each 
step, the inverse of the Hessian matrix is used to generate a new point. 
    Certainly, the use of higher order information about the error surface can be 
an effective way of generating improved solutions at each step of the 
optimization process. It is well known that a second-order method has rate of 
convergence superior to the one produced by a first-order method [Luenberger, 
1989]. But, when dealing with highly nonlinear large-scale optimization 
problems, practical aspects related with excessive computational burden, 
numerical errors in matrix operations, and the need for large matrix storage can 
make such a kind of second-order methods unfeasible to be implemented. In 
such a situation, even a first-order method is a better choice. 
    In general, these aspects are frequently present in the supervised neural 
network learning, where the search space is highly nonlinear and of large 
dimension. Maybe these are the main reasons for the widespread use of the 
backpropagation algorithm, in spite of its slowness and oscillatory behavior 
associated with the use of a fixed learning rate [Jacobs, 1988]. 
 

IX. THE CONJUGATE GRADIENT ALGORITHM 
 
    Fortunately, all the disadvantages of second-order methods, discussed in the 
previous section, can be adequately eliminated. To do that, we will employ one 
of the most effective second-order methods for search in multidimensional 
nonlinear surface: the conjugate gradient method (CGM). The CGM can be 
regarded as being somewhat intermediate between the method of steepest 
descent and Newton’s method. It is motivated by the desire to accelerate the 
typically slow convergence associated with steepest descent, while maintaining 
simplicity by avoiding the requirements associated with the evaluation, storage, 



 

and inversion of the Hessian matrix (or at least the solution of the corresponding 
system of equations), as required by Newton’s method. The storage 
requirements for the original CGM are for the actual weights, the actual and the 
immediately previous gradient vector, and two successive search direction 
vectors. 
    Originally, the CGM was designed to minimize a quadratic objective 
function. As an example, consider the quadratic function obtained if the term 




 ∆ 2
wO  in equation (16) is neglected. Adopting the hypothesis of a quadratic 

model, the CGM works as follows: 
• given two distinct directions 1d  and 2d , they are said to be H-orthogonal, 

or conjugate with respect to a symmetric matrix H, if 0121 == HddHdd 2
TT . 

• the CGM is obtained by selecting the successive directions as conjugate with 
respect to the Hessian matrix. The first direction is set to the current negative 
gradient vector, and subsequent directions are not specified beforehand but 
determined sequentially at each step of the iteration. 

• the new gradient vector is computed, and linearly combined with previous 
direction vectors, to obtain a new conjugate direction along which to move. 

 
A. THE ALGORITHM 
    Initialization: Set random initial values to wo and an arbitrarily small value to ε . 

Step 1: Starting at wo, compute )( o
T wEgo ∇=  and set oo gd −= . 

Step 2:   For 1,,0 −Λ= NPk ! : 
a) Compute H(wj); 

b) Set jjj1j dww α+=+ , with  
jjj

jj
j

dwHd

dg

)()(

)(
T

T−=α ;           (17) 

c) Compute )(T
1j1j wEg ++ ∇= ; 

d) Unless k = NP-1, set jj1j1j dgd β+−= ++ ,            (18) 

where 
jjj

jj1j
j

dwHd

dwHg

)()(

)()(
T

T+
=β .  (19) 

Step 3: If ε>)(T
NPwE , replace wo by wNP and go back to step 1. 

 
    For problems where the cost function is exactly quadratic, the Hessian H is a 
constant matrix. It can be proved that in this situation, if H is positive definite, 
the CGM described above converges to the solution in at most NP iterations. In 
the everyday practice, this analytical result may, in some sense, be different due 
to inevitable numerical errors that are carried over in successive iterations of the 
method. 
 
 



 
B. THE CASE OF NON-QUADRATIC FUNCTIONS 
    Adopting the already mentioned hypothesis of local quadratic model, the 
CGM can be extended to general nonlinear objective functions. A nice 
justification for this assumption is that, near any local optimum, a great variety 
of nonlinear functions can be well approximated by quadratic functions. This 
property can be inferred from the Taylor series expansion in equation (16). 
However, in dealing with general nonlinear functions, the computation of the 

scalars jα  and jβ , in equations (17) and (19), requires the calculation of the 

Hessian matrix at each new point generated by the algorithm. Further, a problem 
of major concern is that the definiteness property of the Hessian matrix may 
change from one point to another. It is important to stress the occurrence of the 

Hessian matrix in the denominator of the expression for the step-length jα . If, 

at a given point of the search process, the matrix ( )jwH  is negative definite, 

then it is likely that jα  will be negative, resulting in a step along a direction that 
increases the cost function, instead of decreasing it as expected. 
    In general, the need for the evaluation of the full Hessian matrix at each new 
point generated by the CGM is a computational demanding process. This 
dependence can be suppressed by adopting the following alternatives for the 

calculation of jα  and jβ . 

    The step-length jα  can be obtained by solving the following one-dimensional 
minimization problem 

 ( )jj dwE αα
α

+= T
j minarg  (20) 

Thus, the value of α used at step j is just the one obtained by minimizing the 

cost function along the line defined by jj dw α+ . 

    Two particular alternative expressions for jβ , that do not use the Hessian 

matrix, are of special concern in this work. First, using the definition for jα  and 
jβ  given in equations (17) and (19) and the orthogonality property between the 

gradient at step j and all the previous conjugate directions, the following 
expression can be obtained: 

 ( ) ( )
( ) jj

j1j1j
j
PR

gg

ggg
T

T
−=

++
β  (21) 

This is known as the Polak-Ribiere expression, and can be further simplified 
using the orthogonality property between the gradient at step j and all the 
previous gradients, resulting in the Fletcher-Reeves expression: 



 

 ( )
( ) jj

1j1j
j
FR

gg

gg
T

T ++
=β  (22) 

    If the cost function is exactly quadratic, the two expressions for jβ , in 

equations (21) and (22), are equivalent. In the case of more general nonlinear 
objective functions, the Polak-Ribiere expression is argued to give better results, 
when compared with the Fletcher-Reeves expression [Johansson, 1992]. This is 
explained by the fact that, in situations where the algorithm is producing 
successive points with very little reduction in the objective function, the 
successive gradient vectors gj+1 and gj are approximately equal in module. Thus, 
the orthogonality property between gradients is lost, and the Polak-Ribiere 

expression gives a nearly zero value to jβ . A small jβ  has the effect of ruling 

out the previous search direction and forces a major contribution of the new 
gradient in the generation of the next search direction, as indicated by the 
expression in equation (18). 
    The two alternative expressions described above lead to a CGM that uses only 
function evaluations and gradient calculations, eliminating the need of the 
Hessian matrix. But there are some drawbacks associated with the line-search 
phase necessary to solve problem (20): it is known that the performance of the 
CGM is sensitive to the accuracy used in the solution of this line-search 
problem. If the line-search is carried out with great accuracy, the overall 
performance of the main algorithm will depend on the computations spent on 
function evaluations used in the line-search phase. On the other hand, a coarse 

line-search process will produce wrong values for the step-length jα , affecting 
the orthogonality property between gradients and conjugate directions. Some 
criteria have been proposed to stop the line-search process when a sufficiently 
accurate solution for the step-length has been obtained. But these criteria, 
together with a line-search procedure, introduce problem-dependent parameters 
that must be specified by the user. 
    Regardless of the full calculation of the Hessian matrix or the use of line-
search procedures, as the algorithm takes its course, the search directions are no 
longer H-conjugate. To alleviate this problem, it is a common practice to 
reinitialize the direction of search to the negative of the current gradient, after 
the completion of NP iterations. This restart strategy is the simplest one, but 
more sophisticated strategies can be found in the literature [Bazaraa, 1992]. 
 
C. SCALED CONJUGATE GRADIENT ALGORITHM 
    Moller [Moller, 1993] proposed an effective CGM, called scaled conjugate 
gradient method (SCGM). In the SCGM, no line search is required and it is 
considered a procedure to handle the occurrence of negative definite Hessian 
matrices, at any point in the search space. 
    The SCGM uses the fact that the Hessian matrix appears in the expression for 

jα  multiplied by a vector jd  (see equation (17)). The product of the Hessian 



( )kwH  by an arbitrary vector v can be calculated efficiently with the aid of the 
following finite difference approximation 
 

 ( ) ( )
.10   ,)( <<<∇−+∇≈ k

k

kkk
k wEvwE

vwH σ
σ

σ TT  (23) 

In the limit, this approximation tends to the true value of the product ( )kwH v. 

Here, the trick is to avoid the line-search phase, firstly calculating the 

approximation to the product ( )kwH v by equation (23), and then using equation 

(17) to obtain jα . 

    If in some point wk, the Hessian matrix is negative definite, the use of a 

possibly negative step-length jα is avoided by adding a positive scale parameter 

λ to the diagonal of ( )kwH . If λ is sufficiently large, the Hessian matrix is 

guaranteed to be positive definite, yielding a positive jα . Taking a large value 

for λ implies a small step size in the direction of search jd , that is, the first-
order information will predominate over the second-order information. In a 
similar way, if the scale parameter λ has a small value, the second-order 
information will have a major influence than the first-order one in the final value 

of jα . To allow the adaptation of λ during the optimization process, the SCGM 
includes steps inherited from trust region methods that decrease λ in regions 
where the quadratic model is a good local approximation and increase λ in 
regions where the quadratic approximation is poor. Detailed description of all 
the steps in the SCGM can be founded in Moller [Moller, 1993]. 
 

X. AN IMPROVED SCGM METHOD 
 
    As reported in Moller [Moller, 1993], the SCGM has superior performance 
when compared with the conventional CGM. In using the original SCGM on 
highly complex nonlinear surfaces, as those associated with recurrent neural 
networks, we have observed some problems in the method, regarding the 

production of negative values for the parameters jα  and jβ . The use of a 

negative value of jα , as already stated, indicates that the algorithm is taking a 
step in a direction that leads to an increase in the objective function. This is a 
contradictory situation, since we want to minimize the cost function. Also it is 
known that the convergence of any CGM using the Polak-Ribiere expression for  

jβ  (see equation (21)) is not guaranteed. To alleviate these problems we 

propose the adoption of a hybridization in the choice of the value to be used for 
jβ . Another important improvement that can be introduced into the SCGM is 



 

the exact evaluation of the product ( )jwH v. At least theoretically, the use of 

equation (23) is subject to numerical and roundoff problems. In this equation, 
there are conflicting requirements, as for example the need of small values for 

jσ  in order to obtain a good approximation to the product ( )jwH v, confronted 

with precision lost when v is multiplied by a small value of jσ  and used in the 

sum vw jj σ+ . Fortunately, the problem related to the exact computation of the 
product involving the Hessian matrix and an arbitrary vector was entirely solved 
by Pearlmutter [Pearlmutter, 1994]. Using a differential operator it is possible to 
compute the product of ( )⋅H  with any desired vector without approximations, 

and also to avoid the calculation and storage of the Hessian itself. 
    In the context of recurrent neural networks of practical importance, the 
application of the SCGM [Moller, 1993], together with the result of Pearlmutter 
[Pearlmutter, 1994], was firstly considered in Von Zuben and Netto [Von 
Zuben, 1995] and posteriorly in Campolucci et al. [Campolucci, 1998]. 
 

A. HYBRIDIZATION IN THE CHOICE OF ββββj  
    It is known that any conjugate gradient method using the Fletcher-Reeves 
expression (see equation (22)) is globally convergent. The same property can not 
be guaranteed when using the Polak-Ribiere expression (see equation (21)) 
[Shewchuk, 1994]. But, as largely reported in the literature, the use of the Polak-
Ribiere expression generally leads to superior results [Touati-Ahmed, 1990]. In 
this chapter, we adopt an idea in some sense similar to one proposed in Touati-

Ahmed and Storey [Touati-Ahmed, 1990]. Consider the expressions for j
PRβ  

and j
FRβ  given in equations (21) and (22), respectively. Our choice for jβ  is 

computed as follows: 
 
If j = NP-1, 

  0;j  ;  ; =−== ++ 1j1jj gd0β  

else 

If ( j
PRβ >0) and ( j

PRβ < j
FRβ ), 

jβ = j
PRβ ; 

jj1j1j dgd β+−= ++ ; 

If ( ) 0<− ++ T1j1j dg , 

  0;j  ;  ; =−== ++ 1j1jj gd0β  
else 

j = j+1; 
end 

else if j
PRβ > j

FRβ , 



jβ = j
FRβ ; 

jj1j1j dgd β+−= ++ ; 

If ( ) 0<− ++ T1j1j dg , 

  0;j  ;  ; =−== ++ 1j1jj gd0β  
else 

j = j+1; 
end 

else 
jβ = 0; 1j1j gd ++ −= ; j =0; 

end 
end 
 
B. EXACT MULTIPLICATION BY THE HESSIAN   
    [PEARLMUTTER, 1994] 
    Expanding ( )⋅∇ TE  around a point NPR∈w yields: 

 ( ) ( ) ( ) 


 ∆+∆⋅+∇=∆+∇ 2
TT wOwwHwEwwE  (24) 

where w∆ is a small perturbation. Choosing vw α=∆ , where α is a small real 

number and NPR∈v  is an arbitrary vector, we can compute H(w)v as follows; 

 
( ) ( ) ( ) ( )[ ]

( ) ( ) ( ).

1

TT

TT

2

2

O
wEvwE

OwEvwEvwH

α
α

α

αα
α

+∇−+∇

=+∇−+∇=
 (25) 

Taking the limit as 0→α , 

 ( ) ( ) ( ) ( ) 0T
TT

0
lim =
→

+∇
∂
∂=∇−+∇= α

α
α

αα
α

vwE
wEvwE

vwH  (26) 

Now, it is necessary to introduce a transformation to convert an algorithm that 
computes the gradient of the system into one that computes the expression in 
equation (26). Defining the operator 

 ( ){ } ( ) 0=+
∂
∂≡Ψ αα
α

vwwv ff  (27) 



 

we have ( ){ } ( )vwHwEv =∇Ψ T  and { } vwv =Ψ . Because {}⋅Ψv  is a differential 

operator, it obeys the usual rules of differentiation. 

 
XI. THE LEARNING ALGORITHM FOR RECURRENT 

NEURAL NETWORKS 
 
    To apply the improved SCGM to recurrent neural network learning, we need 
to compute ( )wET∇  and the product H(w)v for each step j.  Consider again the 

recurrent neural network architectures presented in section 6. Let a, b, and c be 
the column vectors obtained from piling the lines of the matrices A, B, and C, 
respectively. The ordering in which the lines are taken to form the piles may be 
arbitrary, as long as the favored order is always adopted from then on. Thus, 
following the dimensions adopted for the architectures, we can write 

)..( LDNRa ∈ , )).(( 1MNRb +∈ , and )).(( 1NORc +∈ . Remember that, if the 
architecture is a FRNN, matrix C and its corresponding vector c do not have 
adjustable parameters. 

    Now, the vector NPRw ∈ , that contains all the weights of a particular 

architecture, can be expressed as [ ]TTTT cbaw   = and has a total number of 
parameters given by NP=(N.D.L) + (N.(M+1)) + O.(N+1). 
 
Given the gradient vector ( )wET∇  of the error measure defined in equation 

(14), its decomposition to produce the partial gradient vectors with respect to a, 

b, and c, are columns vectors denoted by ( )wET
a∇ , ( )wEb

T∇ , and ( )wEc
T∇ , 

respectively. Following the same notation adopted in the formation of w, the 
vector ( )wET∇  can now be expressed as 

( ) ( ) ( ) ( ) T

T     



 ∇∇∇=∇

Tc
T

Tb
T

Ta
T EEEwE . 

 
The vector v, considered in the calculus of the product H(w)v, has the same 
dimension of w. Actually, v will always be taken as the search direction dj, to be 
defined at each iteration of the improved SCGM. Thus, v can be used to 
generate three matrices, Va, Vb, and Vc, with the same dimensions as the 
matrices A, B, and C, respectively. The process used to distribute the elements 
of v into the matrices Va, Vb, and Vc must be the inverse of the one adopted to 
form w. 
    To help in further developments, in what follows we will define generic 

vectors and matrices. Considering the column vectors [ ]THφφ ,,1 !=Φ  and 

( ) ( )[ ]Tg ΦΦ= Pgg ,,1 ! , we define the following matrices: 

 



( ) { }
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













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P

i

g

g

g
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!

!

!

!
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,,1,diagonalblock 2

1

g  
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
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


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







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!

H
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( )gJΦ  = Jacobian matrix of g with respect to Φ : 
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C , cV : matrices obtained from C, and Vc, respectively, by removing the last 

column. In C, this column contains the bias of the output units. 
    In the following development the equations for the derivative of the error, 
measured with respect to the network parameters, will be presented through 
matrix manipulations. 
 

A. COMPUTATION OF ( )wET∇  
    The operator ∇ is a linear differential operator, and its application to equation 
(14) results in the following equation: 

 ( ) ( )∑
=

∇=∇
P

k

k

1

wEwET  (28) 

Since we are adopting batch learning, the network parameters are updated only 
after the presentation of all the training patterns. In this case, the total gradient is 
the sum of the partial gradients calculated at each time step k. In the sequel, we 
will present the equations for the calculation of partial gradients. Each partial 
gradient can also be broken into its components, corresponding to vectors a, b, 
and c. Thus, we can write: 



 

 ( ) ( ) ( ) ( ) T

    



 ∇∇∇=∇

Tk
c

Tk
b

Tk
a

k EEEwE  (29) 

Using the definition for ( )wEk , given in equation (15), and the state space 

representation, given in equations (7) to (12), the following equations can be 
written: 

 ( )( ) ( )( )( ) ( )( )kkk xAJsFzJ cc
#Λ=  (30) 

 ( )( ) ( )( ) ( )














Π+=

1

k
kk

z
zJCyJ cc  (31) 

 [ ] ( ) ( )[ ] ( )( )kkk d yJyyE c
TTk

c −=∇  (32) 

 ( )( ) ( )( )( ) ( )( ) ( )( ){ }kkkk xxAJsFzJ aa Π+Λ= #  (33) 

 ( )( ) ( )( )kk zJCyJ aa =  (34) 

 [ ] ( ) ( )[ ] ( )( )kkk d yJyyE a
TTk

a −=∇  (35) 

 ( )( ) ( )( )( ) ( )( ) ( )




























Π+Λ=

1

k
kkk

u
xAJsFzJ bb

#  (36) 

 ( )( ) ( )( )kk zJCyJ bb =  (37) 

 [ ] ( ) ( )[ ] ( )( )kkk d yJyyE b
TTk

b −=∇  (38) 

 
B. COMPUTATION OF H(w)v 
    Given a vector v, with the properties already mentioned, the computation of 

( ) ( ){ }wEvwH Tv ∇Ψ=  requires the application of the derivative operator {}⋅Ψv  

to every calculation done to obtain ( )wET∇ . Applying {}⋅Ψv  to equations (7) 

to (9), we get 

 ( ){ } ( ){ } ( ) ( ){ } ( )kkkkk uVuBxVxAs bvavv +Ψ++Ψ=Ψ  (39) 

 ( ){ } ( )( )( ) ( ){ }kkk ssFz vv ΨΛ=Ψ #  (40) 
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
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



Ψ
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10

kk
k

z
V

z
Cy c

v
v  (41) 

Now, applying the operator {}⋅Ψv  to equation (28) results in the following 

equation: 

 ( ){ } ( ){ }∑
=

∇Ψ=∇Ψ
P

k

k

1

wEwE vTv  (42) 

This equation leads to the conclusion that the total product H(w)v can be 
computed by adding the results of applying the operator {}⋅Ψv  to each partial 

gradient computed at time step k. Following these guidelines, we obtain: 
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TTk
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( )( ){ } ( )( )[ ] ( )( ){ } ( )( ) ( )( ){ }
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 ( )( ){ } ( )( ){ } ( )( )kkk zJVzJCyJ acavav +Ψ=Ψ  (47) 
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TTk
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 ( )( ){ } ( )( ){ } ( )( )kkk zJVzJCyJ bcbvbv +Ψ=Ψ  (50) 



 

 

 [ ] ( ) ( )[ ] ( )( ){ } ( ){ } ( )( )kkkkk d yJyyJyyE bvbv
TTk

bv Ψ+Ψ−=






 ∇Ψ  (51) 

 
XII. SIMULATION RESULTS 

 
    To show the gain in performance obtained with the proposed hybrid SCGM, 
we establish a comparison with the original SCGM with exact second-order 
information, considered to be the best second-order algorithm already proposed 
in the literature. We take two examples: one concerning nonlinear system 
identification, and the other a time series prediction. In simulations involving 
recurrent neural networks with the same architectures, the competing algorithms 
were initialized with the same set of weights. In all situations, the weights were 
generated from a symmetric uniform distribution in the range [-0.2,0.2]. 
    The error criterion used in all the simulations is that indicated in equation 
(14). The network parameters were adapted by presenting the patterns in a batch 
(epoch-wise) mode. As the main objective is to access the convergence aspects 
of both versions of the SCGM, major attention is given to the error curves in the 
learning process. 
    Nonlinear System Identification: The nonlinear plant used in the generation 
of the training patterns is the same used in Example 3 of Narendra and 
Parthasarathy [Narenda, 1990]. The training set consists of 1000 samples of 
input-output pairs, generated according to the guidelines adopted there. The 
neural network identifiers receive u(k) as input and have yp(k+1) as desired 
output. We carried out simulations with the three recurrent architectures. To 
exemplify, Figure 5 shows the errors curves obtained in the training of a neural 
net with the OFRNN architecture. We adopted 5 (five) hidden neurons and 
tapped delay lines of length L = 5. The curve with solid line corresponds to the 
hybrid SCGM, and the curve with dotted line corresponds to the conventional 
one. This figure shows that the hybrid SCGM reached the local minimum of the 
error surface in a reduced number of epochs when compared with the original 
SCGM. 
    Time Series Prediction: In this task, we take as training patterns 1000 points 
of a time series generated from the Lorentz equations, with the same conditions 
described in Ergezinger and Thomsen [Ergezinger, 1995]. In Figure 6, we show 
the curves of the error measure for the same recurrent network with the FRNN 
architecture. The net has 10 (ten) hidden neurons and tapped delay lines of 
length L = 1. Again the hybrid SCGM (solid line) takes advantage over the 
original SCGM (doted line). 
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Figure 5. Performance in a system identification task 
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Figure 6. Performance in a time series prediction task 

 
XIII. CONCLUDING REMARKS 

 
    Based on the results presented above, we state that globally and partially 
recurrent neural networks can be applied to represent complex dynamic 
behaviors. This chapter investigated input-output mapping networks, so that the 
desired dynamic behavior has to be produced by means of an effective 
supervised learning process. 
    The innovative aspects of this work are the proposition of a systematic 
procedure to obtain exact second-order information for a range of different 
recurrent neural network architectures, at a low computational cost, and an 
improved version of a scaled conjugate gradient algorithm to make use of this 
high-quality information. An important aspect is that, given the exact second-
order information, the learning algorithm can be directly applied, without any 
kind of adaptation to the specific context. 
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