
Chapter 3

EFFICIENT SECOND-ORDER LEARNING
ALGORITHMS FOR DISCRETE-TIME
RECURRENT NEURAL NETWORKS

Eurípedes P. dos Santos and Fernando J. Von Zuben

School of Electrical and Computer Engineering (FEEC)

State University of Campinas (Unicamp)
Brazil

I. INTRODUCTION

 Artificial neural networks can be described as computational structures built
up from weighted connections among simple and functionally similar nonlinear
processing units or nodes, denoted artificial neurons. A class of neural network
architectures that has been receiving a great deal of attention in the last few
years is that of recurrent neural networks. They can be classified as being
globally or partially recurrent.
 Globally recurrent neural networks have arbitrary feedback connections,
including neurons with self-feedback. On the other hand, partially recurrent
neural networks have their main structure non-recurrent, or recurrent but with
restrictive properties associated with the feedback connections, like fixed
weights or local nature. The presence of feedback allows the generation of
internal representations and memory devices, both essential to process spatio-
temporal information.
 The dynamics presented by a recurrent neural network can be continuous or
discrete in time. The analysis of dynamic behavior using already stated
theoretical results for continuous dynamic systems and the generation of new
results regarding stability of continuos-time recurrent neural networks seem to
be the most important appeals to the use of continuous dynamics [Jin, 1995].
However, the simulation of a continuous-time recurrent neural network in digital
computational devices requires the adoption of a discrete-time equivalent model.
 In this chapter, we will study discrete-time recurrent neural network
architectures, implemented by the use of one-step delay operators in the
feedback paths. In doing so, digital filters of a desired order can be used to
design the network, by a proper definition of connections [Back, 1991]. The
resulting nonlinear models for spatio-temporal representation can be directly
simulated on a digital computer, by means of a system of nonlinear difference
equations. The nature of the equations depends on the kind of recurrent
architecture adopted. As a well-known result from signal processing theory,
recurrent connections may lead to very complex behaviors, even with a reduced
number of parameters and associated equations [Oppenheim, 1999].

 Globally and partially recurrent neural networks were shown to perform well
in a wide range of applications that involve dynamic and sequential processing
[Haykin, 1999]. However, analysis [Kolen, 1994] and synthesis [Cohen, 1992]
of recurrent neural networks of practical importance is a very demanding task.
As a consequence, the process of weight adjustment in supervised learning is
much more demanding in the recurrent case [Williams, 1989], and the
availability of recurrent neural networks of practical importance has to be
associated with the existence of efficient training algorithms, based on
optimization procedures for adjusting the parameters. To improve performance,
second-order information should be considered in the training process
[Campolucci, 1998, Chang, 1999, Von Zuben, 1995].
 So, in what follows, after a brief motivation for using recurrent neural
networks and second-order learning algorithms, a low-cost procedure to obtain
exact second-order information for a wide range of recurrent neural network
architectures will be presented. After that, a very efficient and generic learning
algorithm will be described. We will propose an improved version of a scaled
conjugate gradient algorithm [Narenda, 1990], that can effectively be used to
explore the available second-order information. The original algorithm will be
improved based on the detection of important limitations. Basically, we
introduce a set of adaptive coefficients to replace fixed ones. These new
parameters of the algorithm are automatically adjusted and do not represent
additional items to be arbitrarily determined by the user. Finally, some
simulation results will be obtained and interpreted.

II. SPATIAL ×××× SPATIO-TEMPORAL PROCESSING

 Supervised learning in the context of artificial neural networks can be
associated with the use of optimization-based techniques to adjust the network
parameters [Poggio, 1990]. The objective is to minimize a cost function, i.e., a
function of the input-output data available for learning, that somehow defines
the desired behavior to be achieved.
 At first glance, neural networks can be divided into two classes: static (non-
recurrent) and dynamic (recurrent) networks. Static neural networks are those
whose outputs are linear or nonlinear functions of its inputs, and for a given
input vector, the network always generates the same output vector. These nets
are suitable for processing of spatial patterns. In this case, the relevant
information is distributed throughout the spatial coordinates associated with the
variables that compose the set of input learning patterns. Typical problems with
remarkable spatial dependencies can be found in the areas of pattern recognition
and function approximation [Bishop, 1995].
 In contrast, dynamic neural networks are capable of implementing memories
which gives them the possibility of retaining information to be used later. Now,
the network can generate diverse output vectors in response to the same input
vector, because the response may also depend on the actual state of the existing
memories. By their inherent characteristic of memorizing past information, for
long or short-term periods, dynamic networks are good candidates to process
patterns with spatio-temporal dependencies, for example, signal processing with

emphasis on identification and control of nonlinear dynamic systems [Jin, 1995,
Kim, 1997], and nonlinear prediction of time series [Connor, 1994, Von Zuben,
1997].

III. COMPUTATIONAL CAPABILITY

 Multilayer perceptron [Haykin, 1999] is a widespread example of a static
(non-recurrent) neural network architecture. The main reason it is so effective in
worldwide spatial processing applications is the existence of two
complementary existential results, with immediate practical effects: a proof of
its universal approximation capability [Hornik, 1989] and an effective way to
use first- and second-order information, once available, for adjusting the
parameters (generally based on the backpropagation algorithm) [Battiti, 1992,
van der Smagt, 1994].
 However, in the case of recurrent neural network architectures, there are no
equivalent practical results concerning universal approximation capability with
respect to spatio-temporal patterns. A great number of the recurrent neural
network architectures, particularly the ones convertible to NARX architectures,
share the existential property of being capable of simulating Turing machines
[Siegelmann, 1997, Siegelmann, 1991], where a Turing machine is an
abstraction defined to be functionally as powerful as any computer. However,
this very important existential result does not provide any insight about how to
achieve the desired behavior, which is why we are faced with so many different
architectures to deal with spatio-temporal problems, each one devoted to the
specific nature of the problem at hand [Frasconi, 1992, Haykin, 1999].
 In spite of some attempts to discover unifying aspects in various architectures
[Nerrand, 1993, Tsoi, 1997], the diversity of available architectures that can
potentially be applied to solve a given spatio-temporal problem is still
commonplace.
 In this chapter, we will not try to overcome this troublesome aspect of design.
Instead, we will concentrate efforts on developing a generic procedure to obtain
first- and second-order information for adjusting the parameters, directly
applicable to a wide range of recurrent neural network architectures. Once the
first- and second-order information is available, it is important to point out that
the same optimization algorithm can be applied, without any kind of
modification, to any kind of recurrent (or non-recurrent) neural network
architecture.

IV. RECURRENT NEURAL NETWORKS AS NONLINEAR

DYNAMIC SYSTEMS

 A dynamic system is composed of two parts: the state and the dynamic. The
state is formally defined as a multivariate vector of variables, parameterized
with respect to time, such that the current value of the state vector summarizes
all the information about the past behavior of the system considered necessary to
uniquely describe its future behavior, except for the possibly existing external

effects produced by inputs applied to the system. The set of possible states is
denoted the state space of the system. The dynamic, assumed here to be
deterministic, describes how the state evolves through time, and the sequence of
states is known as the trajectory in the state space. It is possible to define four
classes of dynamic systems [Kolen, 1994], according to the scheme presented in
Figure 1.
 In essence, the class of recurrent neural networks to be discussed in this
chapter is the one characterized by the discrete dynamic and continuous state.
The resulting system of difference equations corresponds to a complex nonlinear
parametric dynamic system that can exhibit a wide range of behaviors, not
produced by static systems.

 State space
 continuous discrete

d
y
n
a

continuous

system of
differential
equations spin glasses

m
i
c

discrete

system of
difference
equations

automata

Figure 1. Classes of dynamic systems

For recurrent neural network with these properties, there are two functional uses
[Haykin, 1999]:

• associative memory and
• input-output mapping network.

For example, when globally recurrent neural networks are constrained to have
symmetric connections (or some equivalent restrictive property), their
asymptotic behaviors are dominated by fixed-point attractors, with guaranteed
convergence to stable states from any initial condition. This property can be
explored to produce associative memories, as is the case in Hopfield-type neural
networks [Li, 1988].
 Without such a constraint, the connective structure may assume a wide range
of configurations, so that the corresponding recurrent neural network is able to
present more complex behaviors than fixed points. The trajectory in the state
space will be influenced by a set of attractors and repellers, with arbitrary
multiplicity and properly distributed across the state space, each one belonging
to one of the following types: fixed point, limit cycle, quasi-periodic, or chaotic
[Ott, 1993].
 The analysis of computational simulations often considers only the attractors,
because the repellers can not be observed. Once the state has reached one
attractor, it will stay there indefinitely, unless an external force pushes the state

away. When the trajectory of an autonomous system reaches an attractor, we say
that the system is in a stationary state. Both continuous and discrete dynamics
are able to present the four types of stationary behavior mentioned above.
 So, the dynamical complexity of a recurrent neural network can be measured
in terms of the number, type, and relative position of attractors and repellers in
the state space. Some preliminary results are already available to synthesize, in a
closed form, recurrent neural networks in terms of specific position and
extension of a reduced number of attractors and repellers in the state space
[Cohen, 1992]. However, in the case of complex configurations of attractors and
repellers, and when the description of the dynamic system to be synthesized can
not be done in terms of attractors and repellers, the only available way of
performing the task is by means of supervised learning.
 The formalism of attractors and repellers plays an important role in the study
of recurrent neural network stability [Haykin, 1999]. In the analysis of dynamic
system theory, in addition to stability, controllability and observability are
fundamental aspects. If we can control the dynamic behavior of the recurrent
neural network, using external inputs if necessary, then we say that the dynamic
is controllable. If we can observe the result of the control applied to the network,
then we say that the dynamic is observable. Levin and Narendra [Levin, 1993]
have presented important results associated with local controllability and local
observability of recurrent neural networks.

V. RECURRENT NEURAL NETWORKS AND SECOND-
ORDER LEARNING ALGORITHMS

 As stated in the previous section, this chapter will treat recurrent neural
networks as input-output mapping networks, giving rise to the necessity of
establishing an association between the desired input-output behavior and a
specific configuration for the neural network parameters (connective
configuration). Unfortunately, this association can not be determined a priori or
in a closed form. Then, a desired dynamic behavior should be produced by
means of an effective learning process (this procedure is also known as dynamic
reconstruction [Haykin, 1999]) responsible for discovering this association,
which may not be unique.
 As supervised learning should be applied to achieve the desired behavior, the
success of the task will depend on two conditions:
• the desired behavior must belong to the range of dynamic behaviors that can

be produced by the recurrent neural network and
• the supervised learning process must be capable of finding a desired set of

parameter values that will give the final connective configuration to the
neural network.

 Certainly, the most widespread supervised learning mechanisms for neural
networks are those using first-order (gradient) information. In this case, the first-
order partial derivatives, or sensitivities, associated with some error measure
(based on the difference between the network outputs and some target
sequences), are computed with respect to the parameters of the network. Later,

this available local information related to the error surface is then used to
minimize the error.
 As widely reported in the literature, despite their widespread use, the
gradient-descent method and its variants are characterized by their slow rate of
convergence and in some cases, require the arbitrary setting of learning
parameters, such as learning rates, before the beginning of the optimization task
[Battiti, 1992]. An inadequate choice may raise difficulties or even prevent the
success of the adjustment.
 Moreover, specifically in the case of recurrent neural networks, there can be
at least one hard additional problem that may trap the gradient-based
optimization process: the existence of feedback along the processing makes the
error surface present highly nonlinear spots [Pearlmutter, 1995]. This
characteristic of the error surface is motivated by the possibility of migrating
between two qualitatively distinct nonlinear behaviors merely by means of
tuning the feedback gain. For example, even small changes in the network
parameters, dictated by the learning algorithm itself, may guide the dynamics of
the network to change from stable fixed points to unstable ones, which causes a
sudden jump in the error measure. Of course, here we are considering an
implicit hypothesis that first-order optimization methods do not work properly
out of smooth areas in continuous error surfaces.
 In general, these undesirable aspects are the main reasons for the poor average
performance of first-order learning algorithms. These problems become even
more evident in the case of very demanding tasks, where the network behavior
must consider simultaneously a great number of correlated specifications (for
example, many attractors and repellers). Examples of these kinds of problems
are becoming more frequent in system identification and time series prediction
tasks.
 To improve performance, second-order information should be considered in
the training process. One of the most elaborated second-order algorithms for
search in multidimensional nonlinear surfaces is the conjugate gradient method,
which was proved to be remarkably effective in dealing with general objective
functions and is considered among the best general purpose optimization
methods presently available.
 Given a procedure to obtain second-order information for any kind of
recurrent neural network architecture, the learning procedure can be directly
applied without any adaptation to the specific context. That is why the first
objective of this work is to describe systematic ways of obtaining exact second-
order information for a range of recurrent neural network architectures.
 In addition to that, the algorithms to be proposed in a coming section present
a computational cost (memory usage and processing time) only two times higher
than the cost to acquire first-order information.

VI. RECURRENT NEURAL NETWORK ARCHITECTURES

 As already stated, the natural way of investigating the dynamic behavior of
recurrent neural networks is to consider them as nonlinear dynamic systems. Let
a nonlinear discrete-time stationary dynamic system be represented by the state
space equations:

() () ()()
() () ()()





=

=+

kkk

kkk

ppp

ppp

uxhy

uxfx

,

,1
 (1)

where k is the discrete instant of time, n
p ℜ∈x , mℜ∈u , and r

p ℜ∈y are the

state, input, and output vectors, respectively; nmn
p ℜ→ℜ×ℜ:f and

rmn
p ℜ→ℜ×ℜ:h are continuous vector-valued functions representing the

state transition mapping and output mapping, respectively. This state space
representation is very general and can describe a large range of important
nonlinear dynamic systems. Notice that the output equation is a static mapping.
 System identification is a fundamental and challenging research area
involving nonlinear dynamic systems, and a common approach to identify
systems represented by equation (1) is to adopt parameterized models for the
unknown maps fp and hp. In this case, there is a growing amount of research
about the use of neural networks to model some important subclasses of
nonlinear dynamic systems, subsumed within the class of models represented by
equation (1). In the literature, attention has been paid to the analysis and
synthesis of neural networks models structured in the form of nonlinear auto-
regressive moving average (NARMA) models. In this context, there are two
main approaches to synthesize NARMA models. The first one assumes that the
dynamic behavior of the system output is governed by a finite set of available
input-output measurements. Then, an obvious route to modeling is to choose the
NARMA model as a feedforward neural network of the form:

 () () () () ()()mkknkkk ppmm −−−= uuyygy ,,,,,1ˆ !! (2)

where mĝ represents the input-output map performed by the static neural

network and my is the output of the model. This is a kind of series-parallel

model and presumes a fairly good knowledge of the actual system structure.
This scheme of adaptation has been denoted as equation-error approach by the
system identification community and is designated as teacher forcing in the
neural network parlance. More recently, in view of its peculiar characteristics,
Williams [Williams, 1990] coined it as the conservative approach, when related
to neural control.
 The second approach to construct neural network NARMA models is argued
to be used in situations where the use of past input-output information together
with a feedforward nonlinear mapping is not able to satisfactorily represent the
actual dynamic system. A typical situation is the use of these static neural

network NARMA models when the map hp in equation (1) has no inverse. In
this case, the representation capability of the model can be improved by the use
of a recurrent neural network. If the recurrent paths include the outputs, we have
a parallel model. As an example, consider the parallel NARMA model given by
the following equation:

 () () () () ()()mkknkkk mmmm −−−= uuyygy ,,,,,1ˆ !! (3)

Again, mĝ represents the feedforward input-output mapping performed by the

neural network, but now the outputs always depend on past values of
themselves. In this case, the adaptation of the neural network parameters should
be realized by a dynamic learning algorithm. When adjusting the model
parameters in this way, we are using the output error approach, raised in the
system identification area. Some results in the literature have pointed out that
parallel models may give improved performance when compared to their series-
parallel counterparts, particularly in the case of noisy systems [Shink, 1989].
This improvement occurs because the parallel model prevents the presence of
noisy outputs in the composition of the input vector.
 In spite of the more powerful representation capabilities associated with
parallel models, few results are available in terms of stability analysis, and more
effective learning algorithms are required. Because of the aforementioned
characteristics, the use of parallel models in tasks related to neural network
identification and control is called liberal approach [Williams, 1990].
 Figures 2 to 4 show the three most popular recurrent neural network
architectures for spatio-temporal processing, where the neural network
parameters are left implicit. In Figure 2 we have the globally recurrent neural
network architecture (GRNN). In this architecture, the output of each hidden
neuron is used to generate the feedback information. If the feedback paths,
indicated by the bold arrows, are removed, then a simpler architecture is
produced, called local recurrent neural network (LRNN). When the network
outputs are the signals used in the feedback loops, as in Figure 3, we have the
output-feedback recurrent neural network (OFRNN) or Jordan network. If all the
outputs of the existing neurons are used for feedback, the resulting architecture
is the most general and is called a fully recurrent neural network (FRNN), as
shown in Figure 4.
 With different degrees of extension, all these recurrent neural network
architectures have attracted the interest of researches [Tsoi, 1994]. A brief look
at Figures 3 and 4 can indicate that OFRNN and FRNN are networks that have
to be trained following the liberal approach. There are few results concerning
the FRNN architecture, because the high flexibility of its dynamic behavior is
not so easy to be accessed [Williams, 1990].
 On the other hand, the generality of the GRNN architecture and its universal
approximation property have been proved [Jin, 1995]. Another important result
obtained is that GRNN and OFRNN are equivalent architectures, if their output
neurons are linear [Tsoi, 1997].

)1(1 −kz

)(1 Lkz −

)1(−kzN

)(LkzN −

)(ku

1z−

1z −

1z −

1z −

)(1 kz

)(ky

" "

…

()kzN

Figure 2. Globally recurrent neural network architecture (GRNN)

)(ky

)1(−ky)(Lky −)(ku

)(1 kz)(kzN

1z − 1z −

…

…

Figure 3. Output-feedback recurrent neural network (OFRNN)

)(LkzN −

)(kzN)(1 kz

1z − 1z−

)(ku

)(1 Lkz −

…

1−z

" "

1−z

…

Figure 4. Fully recurrent neural network (FRNN)

VII. STATE SPACE REPRESENTATION FOR

RECURRENT NEURAL NETWORKS

 The formulations adopted in this work for the learning algorithms are strongly
based on matrix manipulations. Hence, in this section a state space
representation, valid for each of the three architectures described above, is
briefly presented. In the sequel, we take Figures 2 to 4 as guidelines, and we
consider that in each architecture there is one hidden layer containing N neurons,
M external inputs, and O linear output units. Also, the nonlinear activation
function is supposed to be the same for all hidden neurons.
 The state variables for any architecture in Figures 2 to 4 can be immediately
selected as the set of variables responsible for the memory storage in the
recurrent neural network. They are just the past signals available from the
tapped delay lines of length L. To make the exposure clear, we can first write
the following scalar equations at a particular discrete time instant k:

 () () ()∑∑ ∑
= = =

=+−=
D

j

L

l

M

m
mimj

j
ili Nikublkxaks

1 1 0

,,2,1 , ! (4)

 () ()() Niksfkz ii ,,2,1 , !== (5)

 () () Orkzcky
N

p
prpr ,,2,1 ,

0

!== ∑
=

 (6)

where the signals)(ksi ,)(kzi , and)(kyr are hidden neurons weighted sums,

hidden neurons outputs, and network outputs, respectively. The sa j
il ' are the

weights in the feedback loops, the sbim ' are the external inputs gains, and the

scrp ' are the weights between the hidden and the output layer. In these

equations,)(0 kz and)(0 ku are the bias inputs. The actual values for the state

variables sx j ' , and the total number of signals to be used to feed the tapped

delay lines, D, depends on the recurrent network architecture. We have
() ()tztx jj = , with D = N for the GRNN and LRNN architectures. Following the

same idea, we have () ()tytx jj = , with D = O for the OFRNN. For the FRNN,

we also have () ()tztx jj = , with D = N. The FRNN network has all its units in a

unique layer, and the output neurons (visible neurons) correspond to a subset of
these units. Then, the parameters rpc in equation (6) are constants (not

adjustable parameters), taking the value 1 if p=r and the value 0 otherwise. In
this architecture, the bias inputs for all neurons are removed from the set of
output weights and accounted for in the set of input weights.
 A matrix formulation for equations (4) to (6) can be obtained as done in what
follows:

 () () ()kkk BuAxs += (7)

 () ()() ()() ()()[]TN ksfksfkk ,,1 !== sFz (8)

 () ()








=

1

k
k

z
Cy (9)

where

 () () () () ()[]TDD LkxkxLkxkxk −−−−= ,,1,,,,1 11 !!!x (10)

 () () ()[]TM kukuk 1 ,,,1 !=u (11)

 () () ()[]TO kykyk ,,1 !=y (12)

The entries with value 1 in the vectors appearing in equations (9) and (11)
correspond to the bias input. If the network of interest is a FRNN, the bias input

must be removed from equation (9). Matrices A, B, and C are formed from the

weights sa j
il ' , sbim ' , and scrp ' , respectively, that appear in equations (4) and

(6). These matrices have dimensions (N,D.L), (N,M+1), and (O,N+1),
respectively.

VIII. SECOND-ORDER INFORMATION IN

OPTIMIZATION-BASED LEARNING ALGORITHMS

 Supervised learning in an artificial neural network can be formulated as an
unconstrained nonlinear optimization problem, where the network parameters
are the free independent variables to be adjusted, and an error measure is the
dependent variable. The error measure or cost function depends on the network
parameters and on the error between the neural network outputs and the desired
behaviors dictated by the training examples.
 In general, the training examples are in the form of input-output pairs that can
be the samples obtained from trajectories generated from some dynamic system,
possibly with a nonlinear behavior.
 The goal of the supervised learning is to adjust the network parameter so that
the trajectories generated by the neural network match the given desired
trajectories. Additionally, the trained neural network is required to perform
properly when subjected to patterns not seen in the training phase.

 Let NPR∈w be the column vector containing all the neural network weights
or adjustable parameters. Also, consider the vectors y (k) and yd (k), as the neural
network output and desired output, respectively. Formally the optimization
based learning process is defined by the following equations:

 ()wE
w

Tmin (13)

 () ()∑
=

=
P

k

k

1

wEwET (14)

 () () ()() () ()()kkkk d
T

d
k yyyywE −−=

2

1 (15)

where P is the horizon of time to be considered.
 In classical optimization methods, the search for the vector w that solves the
minimization problem (13) is conducted in an iterative set of steps. In each step,
given the actual vector w, the optimization procedure can use only information
extracted from the cost function to generate a new vector that is a better
estimation of the optimal solution.
 To see which information is of practical concern, consider the following
Taylor series expansion for the error measure around a point w in the error
surface:

 () () () () 


 ∆+∆⋅⋅∆+∆⋅∇+=∆+ 2
TTT !2

1
wOwwHwwwEwEwwE TT (16)

where ()wET∇ is the gradient vector with components
iw∂

∂ TE , H(w) is the

Hessian matrix with components
ji ww ∂∂

∂ T
2E , and 


 ∆ 2

wO represent the

terms with order higher than two in w∆ .
 Optimization methods that use only objective function evaluation to solve
problem (13) form the family of direct search methods. In these methods, some
mechanism is used to generate new candidate points and the objective function
is used to select the best one. If, at each step, the method uses function
evaluations and the first-order information contained in the gradient vector to
generate a new point in the search space, it is in the family of steepest descent
methods. These methods are characterized by their relative simplicity but slow
rate of convergence to a local minimum.
 Methods that depend on the information present in the Hessian matrix are
second-order methods. These methods work on the hypotheses that a quadratic
model is a good local approximation to the objective function. The most
representative method in this family is the Newton’s method, where, at each
step, the inverse of the Hessian matrix is used to generate a new point.
 Certainly, the use of higher order information about the error surface can be
an effective way of generating improved solutions at each step of the
optimization process. It is well known that a second-order method has rate of
convergence superior to the one produced by a first-order method [Luenberger,
1989]. But, when dealing with highly nonlinear large-scale optimization
problems, practical aspects related with excessive computational burden,
numerical errors in matrix operations, and the need for large matrix storage can
make such a kind of second-order methods unfeasible to be implemented. In
such a situation, even a first-order method is a better choice.
 In general, these aspects are frequently present in the supervised neural
network learning, where the search space is highly nonlinear and of large
dimension. Maybe these are the main reasons for the widespread use of the
backpropagation algorithm, in spite of its slowness and oscillatory behavior
associated with the use of a fixed learning rate [Jacobs, 1988].

IX. THE CONJUGATE GRADIENT ALGORITHM

 Fortunately, all the disadvantages of second-order methods, discussed in the
previous section, can be adequately eliminated. To do that, we will employ one
of the most effective second-order methods for search in multidimensional
nonlinear surface: the conjugate gradient method (CGM). The CGM can be
regarded as being somewhat intermediate between the method of steepest
descent and Newton’s method. It is motivated by the desire to accelerate the
typically slow convergence associated with steepest descent, while maintaining
simplicity by avoiding the requirements associated with the evaluation, storage,

and inversion of the Hessian matrix (or at least the solution of the corresponding
system of equations), as required by Newton’s method. The storage
requirements for the original CGM are for the actual weights, the actual and the
immediately previous gradient vector, and two successive search direction
vectors.
 Originally, the CGM was designed to minimize a quadratic objective
function. As an example, consider the quadratic function obtained if the term




 ∆ 2
wO in equation (16) is neglected. Adopting the hypothesis of a quadratic

model, the CGM works as follows:
• given two distinct directions 1d and 2d , they are said to be H-orthogonal,

or conjugate with respect to a symmetric matrix H, if 0121 == HddHdd 2
TT .

• the CGM is obtained by selecting the successive directions as conjugate with
respect to the Hessian matrix. The first direction is set to the current negative
gradient vector, and subsequent directions are not specified beforehand but
determined sequentially at each step of the iteration.

• the new gradient vector is computed, and linearly combined with previous
direction vectors, to obtain a new conjugate direction along which to move.

A. THE ALGORITHM
 Initialization: Set random initial values to wo and an arbitrarily small value to ε .

Step 1: Starting at wo, compute)(o
T wEgo ∇= and set oo gd −= .

Step 2: For 1,,0 −Λ= NPk ! :
a) Compute H(wj);

b) Set jjj1j dww α+=+ , with
jjj

jj
j

dwHd

dg

)()(

)(
T

T−=α ; (17)

c) Compute)(T
1j1j wEg ++ ∇= ;

d) Unless k = NP-1, set jj1j1j dgd β+−= ++ , (18)

where
jjj

jj1j
j

dwHd

dwHg

)()(

)()(
T

T+
=β . (19)

Step 3: If ε>)(T
NPwE , replace wo by wNP and go back to step 1.

 For problems where the cost function is exactly quadratic, the Hessian H is a
constant matrix. It can be proved that in this situation, if H is positive definite,
the CGM described above converges to the solution in at most NP iterations. In
the everyday practice, this analytical result may, in some sense, be different due
to inevitable numerical errors that are carried over in successive iterations of the
method.

B. THE CASE OF NON-QUADRATIC FUNCTIONS
 Adopting the already mentioned hypothesis of local quadratic model, the
CGM can be extended to general nonlinear objective functions. A nice
justification for this assumption is that, near any local optimum, a great variety
of nonlinear functions can be well approximated by quadratic functions. This
property can be inferred from the Taylor series expansion in equation (16).
However, in dealing with general nonlinear functions, the computation of the

scalars jα and jβ , in equations (17) and (19), requires the calculation of the

Hessian matrix at each new point generated by the algorithm. Further, a problem
of major concern is that the definiteness property of the Hessian matrix may
change from one point to another. It is important to stress the occurrence of the

Hessian matrix in the denominator of the expression for the step-length jα . If,

at a given point of the search process, the matrix ()jwH is negative definite,

then it is likely that jα will be negative, resulting in a step along a direction that
increases the cost function, instead of decreasing it as expected.
 In general, the need for the evaluation of the full Hessian matrix at each new
point generated by the CGM is a computational demanding process. This
dependence can be suppressed by adopting the following alternatives for the

calculation of jα and jβ .

 The step-length jα can be obtained by solving the following one-dimensional
minimization problem

 ()jj dwE αα
α

+= T
j minarg (20)

Thus, the value of α used at step j is just the one obtained by minimizing the

cost function along the line defined by jj dw α+ .

 Two particular alternative expressions for jβ , that do not use the Hessian

matrix, are of special concern in this work. First, using the definition for jα and
jβ given in equations (17) and (19) and the orthogonality property between the

gradient at step j and all the previous conjugate directions, the following
expression can be obtained:

 () ()
() jj

j1j1j
j
PR

gg

ggg
T

T
−=

++
β (21)

This is known as the Polak-Ribiere expression, and can be further simplified
using the orthogonality property between the gradient at step j and all the
previous gradients, resulting in the Fletcher-Reeves expression:

 ()
() jj

1j1j
j
FR

gg

gg
T

T ++
=β (22)

 If the cost function is exactly quadratic, the two expressions for jβ , in

equations (21) and (22), are equivalent. In the case of more general nonlinear
objective functions, the Polak-Ribiere expression is argued to give better results,
when compared with the Fletcher-Reeves expression [Johansson, 1992]. This is
explained by the fact that, in situations where the algorithm is producing
successive points with very little reduction in the objective function, the
successive gradient vectors gj+1 and gj are approximately equal in module. Thus,
the orthogonality property between gradients is lost, and the Polak-Ribiere

expression gives a nearly zero value to jβ . A small jβ has the effect of ruling

out the previous search direction and forces a major contribution of the new
gradient in the generation of the next search direction, as indicated by the
expression in equation (18).
 The two alternative expressions described above lead to a CGM that uses only
function evaluations and gradient calculations, eliminating the need of the
Hessian matrix. But there are some drawbacks associated with the line-search
phase necessary to solve problem (20): it is known that the performance of the
CGM is sensitive to the accuracy used in the solution of this line-search
problem. If the line-search is carried out with great accuracy, the overall
performance of the main algorithm will depend on the computations spent on
function evaluations used in the line-search phase. On the other hand, a coarse

line-search process will produce wrong values for the step-length jα , affecting
the orthogonality property between gradients and conjugate directions. Some
criteria have been proposed to stop the line-search process when a sufficiently
accurate solution for the step-length has been obtained. But these criteria,
together with a line-search procedure, introduce problem-dependent parameters
that must be specified by the user.
 Regardless of the full calculation of the Hessian matrix or the use of line-
search procedures, as the algorithm takes its course, the search directions are no
longer H-conjugate. To alleviate this problem, it is a common practice to
reinitialize the direction of search to the negative of the current gradient, after
the completion of NP iterations. This restart strategy is the simplest one, but
more sophisticated strategies can be found in the literature [Bazaraa, 1992].

C. SCALED CONJUGATE GRADIENT ALGORITHM
 Moller [Moller, 1993] proposed an effective CGM, called scaled conjugate
gradient method (SCGM). In the SCGM, no line search is required and it is
considered a procedure to handle the occurrence of negative definite Hessian
matrices, at any point in the search space.
 The SCGM uses the fact that the Hessian matrix appears in the expression for

jα multiplied by a vector jd (see equation (17)). The product of the Hessian

()kwH by an arbitrary vector v can be calculated efficiently with the aid of the
following finite difference approximation

 () ()
.10 ,)(<<<∇−+∇≈ k

k

kkk
k wEvwE

vwH σ
σ

σ TT (23)

In the limit, this approximation tends to the true value of the product ()kwH v.

Here, the trick is to avoid the line-search phase, firstly calculating the

approximation to the product ()kwH v by equation (23), and then using equation

(17) to obtain jα .

 If in some point wk, the Hessian matrix is negative definite, the use of a

possibly negative step-length jα is avoided by adding a positive scale parameter

λ to the diagonal of ()kwH . If λ is sufficiently large, the Hessian matrix is

guaranteed to be positive definite, yielding a positive jα . Taking a large value

for λ implies a small step size in the direction of search jd , that is, the first-
order information will predominate over the second-order information. In a
similar way, if the scale parameter λ has a small value, the second-order
information will have a major influence than the first-order one in the final value

of jα . To allow the adaptation of λ during the optimization process, the SCGM
includes steps inherited from trust region methods that decrease λ in regions
where the quadratic model is a good local approximation and increase λ in
regions where the quadratic approximation is poor. Detailed description of all
the steps in the SCGM can be founded in Moller [Moller, 1993].

X. AN IMPROVED SCGM METHOD

 As reported in Moller [Moller, 1993], the SCGM has superior performance
when compared with the conventional CGM. In using the original SCGM on
highly complex nonlinear surfaces, as those associated with recurrent neural
networks, we have observed some problems in the method, regarding the

production of negative values for the parameters jα and jβ . The use of a

negative value of jα , as already stated, indicates that the algorithm is taking a
step in a direction that leads to an increase in the objective function. This is a
contradictory situation, since we want to minimize the cost function. Also it is
known that the convergence of any CGM using the Polak-Ribiere expression for

jβ (see equation (21)) is not guaranteed. To alleviate these problems we

propose the adoption of a hybridization in the choice of the value to be used for
jβ . Another important improvement that can be introduced into the SCGM is

the exact evaluation of the product ()jwH v. At least theoretically, the use of

equation (23) is subject to numerical and roundoff problems. In this equation,
there are conflicting requirements, as for example the need of small values for

jσ in order to obtain a good approximation to the product ()jwH v, confronted

with precision lost when v is multiplied by a small value of jσ and used in the

sum vw jj σ+ . Fortunately, the problem related to the exact computation of the
product involving the Hessian matrix and an arbitrary vector was entirely solved
by Pearlmutter [Pearlmutter, 1994]. Using a differential operator it is possible to
compute the product of ()⋅H with any desired vector without approximations,

and also to avoid the calculation and storage of the Hessian itself.
 In the context of recurrent neural networks of practical importance, the
application of the SCGM [Moller, 1993], together with the result of Pearlmutter
[Pearlmutter, 1994], was firstly considered in Von Zuben and Netto [Von
Zuben, 1995] and posteriorly in Campolucci et al. [Campolucci, 1998].

A. HYBRIDIZATION IN THE CHOICE OF ββββj
 It is known that any conjugate gradient method using the Fletcher-Reeves
expression (see equation (22)) is globally convergent. The same property can not
be guaranteed when using the Polak-Ribiere expression (see equation (21))
[Shewchuk, 1994]. But, as largely reported in the literature, the use of the Polak-
Ribiere expression generally leads to superior results [Touati-Ahmed, 1990]. In
this chapter, we adopt an idea in some sense similar to one proposed in Touati-

Ahmed and Storey [Touati-Ahmed, 1990]. Consider the expressions for j
PRβ

and j
FRβ given in equations (21) and (22), respectively. Our choice for jβ is

computed as follows:

If j = NP-1,

 0;j ; ; =−== ++ 1j1jj gd0β

else

If (j
PRβ >0) and (j

PRβ < j
FRβ),

jβ = j
PRβ ;

jj1j1j dgd β+−= ++ ;

If () 0<− ++ T1j1j dg ,

 0;j ; ; =−== ++ 1j1jj gd0β
else

j = j+1;
end

else if j
PRβ > j

FRβ ,

jβ = j
FRβ ;

jj1j1j dgd β+−= ++ ;

If () 0<− ++ T1j1j dg ,

 0;j ; ; =−== ++ 1j1jj gd0β
else

j = j+1;
end

else
jβ = 0; 1j1j gd ++ −= ; j =0;

end
end

B. EXACT MULTIPLICATION BY THE HESSIAN
 [PEARLMUTTER, 1994]
 Expanding ()⋅∇ TE around a point NPR∈w yields:

 () () () 


 ∆+∆⋅+∇=∆+∇ 2
TT wOwwHwEwwE (24)

where w∆ is a small perturbation. Choosing vw α=∆ , where α is a small real

number and NPR∈v is an arbitrary vector, we can compute H(w)v as follows;

() () () ()[]

() () ().

1

TT

TT

2

2

O
wEvwE

OwEvwEvwH

α
α

α

αα
α

+∇−+∇

=+∇−+∇=
 (25)

Taking the limit as 0→α ,

 () () () () 0T
TT

0
lim =
→

+∇
∂
∂=∇−+∇= α

α
α

αα
α

vwE
wEvwE

vwH (26)

Now, it is necessary to introduce a transformation to convert an algorithm that
computes the gradient of the system into one that computes the expression in
equation (26). Defining the operator

 (){ } () 0=+
∂
∂≡Ψ αα
α

vwwv ff (27)

we have (){ } ()vwHwEv =∇Ψ T and { } vwv =Ψ . Because {}⋅Ψv is a differential

operator, it obeys the usual rules of differentiation.

XI. THE LEARNING ALGORITHM FOR RECURRENT

NEURAL NETWORKS

 To apply the improved SCGM to recurrent neural network learning, we need
to compute ()wET∇ and the product H(w)v for each step j. Consider again the

recurrent neural network architectures presented in section 6. Let a, b, and c be
the column vectors obtained from piling the lines of the matrices A, B, and C,
respectively. The ordering in which the lines are taken to form the piles may be
arbitrary, as long as the favored order is always adopted from then on. Thus,
following the dimensions adopted for the architectures, we can write

)..(LDNRa ∈ ,)).((1MNRb +∈ , and)).((1NORc +∈ . Remember that, if the
architecture is a FRNN, matrix C and its corresponding vector c do not have
adjustable parameters.

 Now, the vector NPRw ∈ , that contains all the weights of a particular

architecture, can be expressed as []TTTT cbaw = and has a total number of
parameters given by NP=(N.D.L) + (N.(M+1)) + O.(N+1).

Given the gradient vector ()wET∇ of the error measure defined in equation

(14), its decomposition to produce the partial gradient vectors with respect to a,

b, and c, are columns vectors denoted by ()wET
a∇ , ()wEb

T∇ , and ()wEc
T∇ ,

respectively. Following the same notation adopted in the formation of w, the
vector ()wET∇ can now be expressed as

() () () () T

T 



 ∇∇∇=∇

Tc
T

Tb
T

Ta
T EEEwE .

The vector v, considered in the calculus of the product H(w)v, has the same
dimension of w. Actually, v will always be taken as the search direction dj, to be
defined at each iteration of the improved SCGM. Thus, v can be used to
generate three matrices, Va, Vb, and Vc, with the same dimensions as the
matrices A, B, and C, respectively. The process used to distribute the elements
of v into the matrices Va, Vb, and Vc must be the inverse of the one adopted to
form w.
 To help in further developments, in what follows we will define generic

vectors and matrices. Considering the column vectors []THφφ ,,1 !=Φ and

() ()[]Tg ΦΦ= Pgg ,,1 ! , we define the following matrices:

() { }


















===Λ

P

i

g

g

g

Pig

!

!

!

!

000

.....

000

000

,,1,diagonalblock 2

1

g

() []{ }


















==ΦΠ

H1

H1

1

1

00

............

0000

00

 ,,diagonalblock

φφ

φφ
φφ

φφ

!!

!!!

!!

!

H

H

()gJΦ = Jacobian matrix of g with respect to Φ :

()



























∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=Φ

H

PPP

H

H

ggg

ggg

ggg

φφφ

φφφ

φφφ

!

!

!

21

2

2

2

1

2

1

2

1

1

1

....

gJ

C , cV : matrices obtained from C, and Vc, respectively, by removing the last

column. In C, this column contains the bias of the output units.
 In the following development the equations for the derivative of the error,
measured with respect to the network parameters, will be presented through
matrix manipulations.

A. COMPUTATION OF ()wET∇
 The operator ∇ is a linear differential operator, and its application to equation
(14) results in the following equation:

 () ()∑
=

∇=∇
P

k

k

1

wEwET (28)

Since we are adopting batch learning, the network parameters are updated only
after the presentation of all the training patterns. In this case, the total gradient is
the sum of the partial gradients calculated at each time step k. In the sequel, we
will present the equations for the calculation of partial gradients. Each partial
gradient can also be broken into its components, corresponding to vectors a, b,
and c. Thus, we can write:

 () () () () T

 



 ∇∇∇=∇

Tk
c

Tk
b

Tk
a

k EEEwE (29)

Using the definition for ()wEk , given in equation (15), and the state space

representation, given in equations (7) to (12), the following equations can be
written:

 ()() ()()() ()()kkk xAJsFzJ cc
#Λ= (30)

 ()() ()() ()














Π+=

1

k
kk

z
zJCyJ cc (31)

 [] () ()[] ()()kkk d yJyyE c
TTk

c −=∇ (32)

 ()() ()()() ()() ()(){ }kkkk xxAJsFzJ aa Π+Λ= # (33)

 ()() ()()kk zJCyJ aa = (34)

 [] () ()[] ()()kkk d yJyyE a
TTk

a −=∇ (35)

 ()() ()()() ()() ()




























Π+Λ=

1

k
kkk

u
xAJsFzJ bb

(36)

 ()() ()()kk zJCyJ bb = (37)

 [] () ()[] ()()kkk d yJyyE b
TTk

b −=∇ (38)

B. COMPUTATION OF H(w)v
 Given a vector v, with the properties already mentioned, the computation of

() (){ }wEvwH Tv ∇Ψ= requires the application of the derivative operator {}⋅Ψv

to every calculation done to obtain ()wET∇ . Applying {}⋅Ψv to equations (7)

to (9), we get

 (){ } (){ } () (){ } ()kkkkk uVuBxVxAs bvavv +Ψ++Ψ=Ψ (39)

 (){ } ()()() (){ }kkk ssFz vv ΨΛ=Ψ # (40)

 (){ } (){ } ()








+







Ψ
=Ψ

10

kk
k

z
V

z
Cy c

v
v (41)

Now, applying the operator {}⋅Ψv to equation (28) results in the following

equation:

 (){ } (){ }∑
=

∇Ψ=∇Ψ
P

k

k

1

wEwE vTv (42)

This equation leads to the conclusion that the total product H(w)v can be
computed by adding the results of applying the operator {}⋅Ψv to each partial

gradient computed at time step k. Following these guidelines, we obtain:

()(){ } ()()[] ()(){ } ()()

()()() ()(){ } ()()[]kkk

kkkk

xJVxJAsF

xAJssFzJ

cacv

cvcv

+ΨΛ+

ΨΛΛ=Ψ
#

##

 (43)

 ()(){ } ()(){ } ()() (){ }













Ψ
Π++Ψ=Ψ

0

k
kkk

z
zJVzJCyJ v

cccvcv (44)

 [] () ()[] ()(){ } (){ } ()()kkkkk d yJyyJyyE cvcv
TTk

cv Ψ+Ψ−=






 ∇Ψ (45)

()(){ } ()()[] ()(){ } ()() ()(){ }
()()() ()(){ } ()() (){ }()[]kkkk

kkkkk

xxJVxJAsF

xxAJssFzJ

vaaav

avav

ΨΠ++ΨΛ+

Π+ΨΛΛ=Ψ
#

##

 (46)

 ()(){ } ()(){ } ()()kkk zJVzJCyJ acavav +Ψ=Ψ (47)

 [] () ()[] ()(){ } (){ } ()()kkkkk d yJyyJyyE avav
TTk

av Ψ+Ψ−=






 ∇Ψ (48)

()(){ } ()()[] ()(){ } ()() ()

()()()
()(){ } ()()
(){ }
































Ψ
Π+

+Ψ

Λ+



























Π+ΨΛΛ=Ψ

0

1

k

kk

k

k
kkkk

u

xJVxJA

sF

u
xAJssFzJ

v

babv

bvbv

#

##

 (49)

 ()(){ } ()(){ } ()()kkk zJVzJCyJ bcbvbv +Ψ=Ψ (50)

 [] () ()[] ()(){ } (){ } ()()kkkkk d yJyyJyyE bvbv
TTk

bv Ψ+Ψ−=






 ∇Ψ (51)

XII. SIMULATION RESULTS

 To show the gain in performance obtained with the proposed hybrid SCGM,
we establish a comparison with the original SCGM with exact second-order
information, considered to be the best second-order algorithm already proposed
in the literature. We take two examples: one concerning nonlinear system
identification, and the other a time series prediction. In simulations involving
recurrent neural networks with the same architectures, the competing algorithms
were initialized with the same set of weights. In all situations, the weights were
generated from a symmetric uniform distribution in the range [-0.2,0.2].
 The error criterion used in all the simulations is that indicated in equation
(14). The network parameters were adapted by presenting the patterns in a batch
(epoch-wise) mode. As the main objective is to access the convergence aspects
of both versions of the SCGM, major attention is given to the error curves in the
learning process.
 Nonlinear System Identification: The nonlinear plant used in the generation
of the training patterns is the same used in Example 3 of Narendra and
Parthasarathy [Narenda, 1990]. The training set consists of 1000 samples of
input-output pairs, generated according to the guidelines adopted there. The
neural network identifiers receive u(k) as input and have yp(k+1) as desired
output. We carried out simulations with the three recurrent architectures. To
exemplify, Figure 5 shows the errors curves obtained in the training of a neural
net with the OFRNN architecture. We adopted 5 (five) hidden neurons and
tapped delay lines of length L = 5. The curve with solid line corresponds to the
hybrid SCGM, and the curve with dotted line corresponds to the conventional
one. This figure shows that the hybrid SCGM reached the local minimum of the
error surface in a reduced number of epochs when compared with the original
SCGM.
 Time Series Prediction: In this task, we take as training patterns 1000 points
of a time series generated from the Lorentz equations, with the same conditions
described in Ergezinger and Thomsen [Ergezinger, 1995]. In Figure 6, we show
the curves of the error measure for the same recurrent network with the FRNN
architecture. The net has 10 (ten) hidden neurons and tapped delay lines of
length L = 1. Again the hybrid SCGM (solid line) takes advantage over the
original SCGM (doted line).

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

Figure 5. Performance in a system identification task

0 100 200 300 400 500 600
0

1

2

3

4

5

6

7

8

9

10

Figure 6. Performance in a time series prediction task

XIII. CONCLUDING REMARKS

 Based on the results presented above, we state that globally and partially
recurrent neural networks can be applied to represent complex dynamic
behaviors. This chapter investigated input-output mapping networks, so that the
desired dynamic behavior has to be produced by means of an effective
supervised learning process.
 The innovative aspects of this work are the proposition of a systematic
procedure to obtain exact second-order information for a range of different
recurrent neural network architectures, at a low computational cost, and an
improved version of a scaled conjugate gradient algorithm to make use of this
high-quality information. An important aspect is that, given the exact second-
order information, the learning algorithm can be directly applied, without any
kind of adaptation to the specific context.

ACKNOWLEDGMENTS

Eurípedes P. dos Santos acknowledges CAPES (DS-44/97-0), and Fernando J.
Von Zuben CNPq (300910/96-7) and FAPESP (98/09939-6), for their support.

REFERENCES

Back, A. D. and Tsoi. A. C., FIR and IIR synapses, a new neural network
architecture for time series modeling, Neural Computation, 3: 375, 1991.

Battiti, R., First- and second-order methods for learning: between steepest
descent and Newton's method, Neural Computation, 4(2), 141, 1992.

Bazaraa, M. S., Sherali, H. D., and Shetty, C. M., Nonlinear Programming:
Theory and Algorithms, John Wiley & Sons, New York, 1992.

Bishop, C. M., Neural Networks for Pattern Recognition. Oxford Univ. Press,
New York, 1995.

Campolucci, P., Simonetti, M., Uncini, A., and Piazza, F., New second-order
algorithms for recurrent neural networks based on conjugate gradient, IEEE
International Joint Conference on Neural Networks, 384, 1998.

Chang, W.-F. and Mak, M.-W., A conjugate gradient learning algorithm for
recurrent neural networks, Neurocomputing, 24, 173, 1999.

Cohen, M. A., The construction of arbitrary stable dynamics in nonlinear neural
networks, Neural Networks, 5(1), 83, 1992.

Connor, J. T., Martin, R. D., and Atlas, L. E., Recurrent neural networks and
robust time series prediction, IEEE Transactions on Neural Networks, 5(2), 240,
1994.

Ergezinger, S. and Thomsen, E., An accelerated learning algorithm for
multilayer perceptrons: optimization layer by layer, IEEE Transactions on
Neural Networks, 6(1), 31, 1995.

Frasconi, P., Gori, M., and Soda, G., Local feedback multilayered networks,
Neural Computation, 4, 121, 1992.

Haykin, S., Neural Networks – A Comprehensive Foundation. Prentice Hall,
Englewood Cliffs, NJ, 1999.

Hornik, K., Stinchcombe, M., and White, H., Multi-layer feedforward networks
are universal approximators, Neural Networks, 2(5), 359, 1989.

Jacobs, R. A., Increased rates of convergence through learning rate adaptation,
Neural Networks, 1, 295, 1988.

Jin, L., Nikiforuk, P. N., and Gupta, M. M., Approximation capability of
feedforward and recurrent neural networks, in Gupta, M. M., and Sinha, N. K.,
Eds., Intelligent Control Systems: Concepts and Applications, IEEE Press, 235,
1995.

Johansson, E. M., Dowla, F. U., and Goodman, D. M., Backpropagation
learning for multilayred feed-foward neural networks using the conjugate
gradient method. International Journal of Neural Systems, 2(4): 291, 1992.

Kim, Y. H., Lewis, F. L., and Abdallah, C. T., A dynamic recurrent neural-
network-based adaptive observer for a class of nonlinear systems, Automatica,
33(8), 1539, 1997.

Kolen, J. F., Exploring the Computational Capabilities of Recurrent Neural
Networks, Ph.D. Thesis, The Ohio State University, Columbus, 1994.

Levin, A. V. and Narendra, K. S., Control of nonlinear dynamical systems using
neural networks – controllability and stabilization, IEEE Transactions on Neural
Networks, 4(2), 192, 1993.

Levin, A. V. and Narendra, K. S., Control of nonlinear dynamical systems using
neural networks – Part II: observability, identification, and control, IEEE
Transactions on Neural Networks, 7(1), 30, 1996.

Li, J. H., Michel, A. N., and Porod, W., Qualitative analysis and synthesis of a
class of neural networks, IEEE Transactions on Circuits and Systems, 35(8),
976, 1988.

Luenberger, D. G., Linear and Nonlinear Programming. Addison-Wesley
Publishing Company, Reading, MA, 1989.

Moller, M. F., A scaled conjugate gradient algorithm for fast supervised
learning, Neural Networks, 6(4), 525, 1993.

Narendra, K. S. and Parthasarathy, K., Identification and control of dynamical
systems using neural networks, IEEE Transactions on Neural Networks, 1(1), 4,
1990.

Nerrand, O., Roussel-Ragot, P., Personnaz, L., and Dreyfus, G., Neural
networks and nonlinear adaptive filtering: unifying concepts and new
algorithms. Neural Computation, 5(2), 165, 1993.

Oppenheim, A. V. and Schafer, R. W., Discrete-Time Signal Processing,
Prentice-Hall, Englewood Cliffs, NJ, 1999.

Ott, E., Chaos in Dynamical Systems. Cambridge University Press, London,
1993.

Pearlmutter, B. A., Fast exact multiplication by the Hessian. Neural
Computation, 6(1), 147, 1994.

Pearlmutter, B. A., Gradient calculations for dynamic recurrent neural networks:
a survey, IEEE Transactions on Neural Networks, 6(5), 1212, 1995.

Poggio, T. and Girosi, F., Networks for approximation and learning,
Proceedings of the IEEE, 78(9), 1481, 1990.

Shewchuk, J. R., An introduction to the conjugate gradient method without the
agonizing pain, School of Computer Science, Carnegie Mellon University,
Pittsburgh, August 4, 1994.

Shink, J. J., Adaptive IIR filtering, IEEE ASSP Magazine, 4, 21, 1989.

Siegelmann, H. T. and Sontag, E. D., Turing computability with neural nets,
Applied Mathematics Letters, 4, 77, 1991.

Siegelmann, H. T., Horne, B. G., and Giles, C. L., Computational capabilities of
recurrent NARX neural networks, IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics, 27, 208, 1997.

Touati-Ahmed, D. and Storey, C., Efficient hybrid conjugate gradient
techniques, Journal of Optimization Theory and Applications 64(2), 379, 1990.

Tsoi, A. C. and Back, A. D., Discrete time recurrent neural network
architectures: a unifying review, Neurocomputing, 15, 183, 1997.

Tsoi, A. C. and Back, A. D., Locally recurrent globally feedforward networks: a
critical review of architectures, IEEE Transactions on Neural Networks, 5(2):
229, 1994.

van der Smagt, P. P., Minimisation methods for training feedforward neural
networks, Neural Networks, 7(1), 1, 1994.

Von Zuben, F. J. and Netto, M. L. A, Second-order training for recurrent neural
networks without teacher-forcing, Proceedings of the IEEE International
Conference on Neural Networks, 2, 801, 1995.

Von Zuben, F. J. and Netto, M. L. A., Recurrent neural networks for chaotic
time series prediction, in Balthazar, J.M., Mook, D.T., and Rosário, J.M., Eds.,
Nonlinear Dynamics, Chaos, Control, and Their Applications to Engineering
Sciences, 1, 347, 1997.

Williams, R. J., Adaptive state representation and estimation using recurrent
connectionist networks, in Miller, W.T., Sutton, R.S., and Werbos, P., Eds.,
Neural Networks for Control, MIT Press, Cambridge, 1990.

Williams, R. J. and Zipser, D., A learning algorithm for continually running
fully recurrent neural networks, Neural Computation, 1, 270, 1989.

	RECURRENT NEURAL NETWORKS
	Table of Contents
	Chapter 3
	EFFICIENT SECOND-ORDER LEARNING ALGORITHMS FOR DISCRETE- TIME RECURRENT NEURAL NETWORKS
	I. INTRODUCTION
	II. SPATIAL SPATIO-TEMPORAL PROCESSING
	III. COMPUTATIONAL CAPABILITY
	IV. RECURRENT NEURAL NETWORKS AS NONLINEAR DYNAMIC SYSTEMS
	V. RECURRENT NEURAL NETWORKS AND SECOND-ORDER LEARNING ALGORITHMS
	VI. RECURRENT NEURAL NETWORK ARCHITECTURES
	VII. STATE SPACE REPRESENTATION FOR RECURRENT NEURAL NETWORKS
	VIII. SECOND-ORDER INFORMATION IN OPTIMIZATION- BASED LEARNING ALGORITHMS
	IX. THE CONJUGATE GRADIENT ALGORITHM
	A. THE ALGORITHM
	B. THE CASE OF NON-QUADRATIC FUNCTIONS
	C. SCALED CONJUGATE GRADIENT ALGORITHM

	X. AN IMPROVED SCGM METHOD
	A. HYBRIDIZATION IN THE CHOICE OF
	B. EXACT MULTIPLICATION BY THE HESSIAN [PEARLMUTTER, 1994]

	XI. THE LEARNING ALGORITHM FOR RECURRENT NEURAL NETWORKS
	A. COMPUTATION OF
	B. COMPUTATION OF H(w)v

	XII. SIMULATION RESULTS
	XIII. CONCLUDING REMARKS
	ACKNOWLEDGMENTS
	REFERENCES

	© 2001 by CRC Press LLC: © 2001 by CRC Press LLC

