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I. INTRODUCTION

Optimization problems arise in a wide variety of scientific and engineering
applications including signal processing, system identification, filter design, func-
tion approximation, regression analysis, and so on. In many practical optimization
problems such as the planning of power systems and routing of telecommunica-
tion systems, the numbers of decision variables and constraints are usually very
large. It is even more challenging when a large-scale optimization procedure has
to be performed in real time to optimize the performance of a dynamical system.
For such applications, classical optimization techniques may not be competent due
to the problem dimensionality and stringent requirement on computational time.
One possible and very promising approach to real-time optimization is to apply
artificial neural networks. Neural networks are composed of many massively con-
nected neurons. Resembling more or less their biological counterparts in struc-
tures, artificial neural networks are representational and computational models
composed of interconnected simple processing elements called artificial neurons.
In processing information, the processing elements in an artificial neural network
operate concurrently and collectively in a parallel and distributed fashion. Be-
cause of the inherent nature of parallel and distributed information processing in
neural networks, the convergence rate of the solution process is not decreasing as
the size of the problem increases. Furthermore, unlike other parallel algorithms,
neural networks can be implemented physically in designated hardware such as
application-specific integrated circuits where optimization is carried out in a truly
parallel and distributed manner. This feature is particularly desirable for real-
time optimization in decentralized decision-making situations. Neural networks
are promising computational models for solving large-scale optimization prob-
lems in real time. Therefore, the neural network approach can solve optimization
problems in running times at the orders of magnitude much faster than the most
popular optimization algorithms executed on general-purpose digital computers.

Neural network research stemmed back from McCulloch and Pitts’ pioneering
work a half century ago. Since then, numerous neural network models have been
developed. One of the well-known classic neural network models is the Percep-
tron developed by Rosenblatt. The Perceptron is a single-layer adaptive feedfor-
ward network of threshold logic units, which possess some learning capability.



Another important early neural network model is the Adaline which is a one-layer
linear network using the delta learning rule for learning. The Perceptron and Ada-
line were designed primarily for the purpose of pattern classification. Given a set
of input-output training patterns, the Perceptron and Adaline could learn from the
exemplar patterns and adapt their parametric representations accordingly to match
the patterns. The limitation of the Perceptron and Adaline is that they could only
classify linearly separable patterns because, among others, they lacked an internal
representation of stimuli.

The first attempt to develop analog circuits for solving linear programming
problems was perhaps Pyne in 1956 [Pyne, 1956]. Soon after, some other circuits
were proposed for solving various optimization problems. In 1986, Tank and Hop-
field [Hopfield and Tank, 1985; Tank and Hopfield, 1986] introduced a linear pro-
gramming neural network implemented by using an analog circuit which is well
suited for applications that require on-line optimization. Their seminal work has
inspired many researchers to investigate alternative neural networks for solving
linear and nonlinear programming problems. Many optimization neural networks
have been developed. For example, Kennedy and Chua [Kennedy and Chua, 1988]
proposed a neural network for solving nonlinear programming problems. This
network inculde the Tank and Hopfield network as a special case. The disadvan-
tages of this network is that it contains penalty parameters and thus its equilibrium
points correspond to approximate optimal solutions only. To overcome the short-
coming, Rodríguez-Vázquez et al. [1990] proposed a switched-capacitor neural
network for solving a class of optimization problems. This network is suitable
when the optimal solution lies in the feasible region only. Otherwise, the network
may have no equilibrium point. Wang [Wang, 1994] proposed a deterministic
annealing neural network for solving convex programming. This network guaran-
tees an optimal solution can be obtained. Yet, the given sufficient condition is not
easy to be verfied sometimes. From the optimization point of view, most of the
methods employed by these existing neural networks belong to either the penalty
function method or Lagrangian method. For more discussion on the advantages
and disadvantages of these models and their modification, see Cichocki and Unbe-
hauen [1993]. More recently, using the gradient and projection methods Bouzer-
doum and Pattison [Bouzerdoum and Pattison, 1993] presented a neural network
for solving quadratic optimization problems with bounded variables only. The
network has the good performence in computation and implementation but can
not solve general linear and quadratic programming problems. By the dual and
projection methods Xia and Wang developed some neural networks for solving
general linear and quadratic programming problems. These new neural networks
have shown to be of good performence in computation and implementation.

Organized in two parts, this chapter is going to discuss the primal-dual neural
networks for solving linear and quadratic programming problems (LP and QP) and
develop the neural network for solving linear complementary problems (LCP).
Following a unified method for designing neural network models, the first part of
this chapter describes in detail primal-dual recurrent neural networks, with con-
tinuous time, for solving LP and QP. The second part of this chapter focuses on



primal -dual discrete time neural networks for QP and LCP. The discrete assign-
ment neural networks are described in detail.

II. CONTINUOUS-TIME NEURAL NETWORKS FOR QP
AND LCP

A. PROBLEMS AND DESIGN OF NEURAL NETWORKS

1. Problem Statement
We consider convex quadratic programming with bound contraints:

Minimize
1

2
x
T
Ax + c

T
x

subject to Dx = b; (1)

0 � x � d

where x 2 <n is the vector of decision variables, A 2 <n�n is a positive semidef-
inite matrix, b 2 <m

; c 2 <n; d 2 <n are constant column vectors, D 2 <m�n

is a coefficient matrix, m � n. When d = 1, (1) become a standard quadratic
programming:

Minimize
1

2
x
T
Ax + c

T
x

subject to Dx = b; x � 0 (2)

When A = 0, (1) becomes linear programming with bound contraints:

Minimize c
T
x

subject to Dx = b; (3)

0 � x � d

We consider also linear complementary problems below: Find a vector z 2 R
l

such that
z
T (Mz + q) = 0; (Mz + q) � 0; z � 0 (4)

where q 2 R
l
; and M 2 R

l�l is a positive semidefinite matrix but not necessarily
symmetric. LCP has been recognized as a unifying description of a wide class
of problems including LP and QP, fixed point problems and bimatrix equilibrium
points [Bazaraa, 1990]. In electrical engineering applications, it is used for the
analysis and modeling of piecewise linear resistive circuits [Vandenberghe, 1989].
2. Design of Neural Networks

A neural network can operate in either continuous-time or discrete-time form.
A continuous- time neural network described by a set of ordinary differential equa-
tions enables us to solve optimization problems in real time due to the massively
parallel operations of the computing units and due to its real-time convergence
rate. In comparison, discrete-time models can be considered as special cases
of discretization of continuous-time models. Thus, in this part, we first discuss
continuous-time neural networks.



The procedure of a continuous-time neural network design to optimization
usually begins with the formulation of an energy function based on the objec-
tive function and constraints of the optimization problem under study. Ideally,
the minimum of a formulated energy function corresponds to the optimal solution
(minimum or maximum, whatever applicable) of the original optimization prob-
lem. Clearly, a convex energy function should be used to eliminate local minima.
In nontrivial constrained optimization problems, the minimum of the energy func-
tion has to satisfy a set of prespecified constraints. The majority, if not all, of the
existing neural network approaches to optimization formulates an energy function
by incorporating objective function and constraints through functional transfor-
mation and numerical weighting. Functional transformation is usually used to
convert constraints to a penalty function to penalize the violation of constraints.
Numerical weighting is often used to balance constraint satisfaction and objective
minimization (or maximization). The way the energy function is formulated plays
an important role in the optimization problem-solving procedure based on neural
networks.

The second step in designing a neural network for optimization usually in-
volves the derivation of a dynamical equation (also known as state equation or
motion equation) of the neural network based on a formulated energy function.
The dynamical equation of a neural network prescribes the motion of the activa-
tion states of the neural network. The derivation of a dynamical equation is crucial
for success of the neural network approach to optimization. A properly derived
dynamical equation can ensure that the state of neural network reaches an equi-
librium and the equilibrium state of the neural network satisfies the constraints
and optimizes the objective function of the optimization problems under study.
Presently, the dynamical equations of most neural networks for optimization are
derived by letting the time derivative of a state vector to be directly proportional
to the negative gradient of an energy function.

The next step is to determine the architecture of the neural network in terms
of the neurons and connections based on the derived dynamical equation. An
activation function models important characteristics of a neuron. The range of
an activation function usually prescribes the domain of state variables (the state
space of the neural network). In the use of neural networks for optimization, the
activation function depends on the feasible region of decision variables delimited
by the constraints of the optimization problem under study. Specifically, it is nec-
essary for the state space to include the feasible region. Any explicit bound on
decision variables can be realized by properly selecting the range of activation
functions. The activation function is also related to the energy function. If the
gradient-based method is adopted in deriving the dynamical equation, then the
convex energy function requires an increasing activation function. Precisely, if
the steepest descent method is used, the activation function should be equal to
the derivative of the energy function. Figure 1 illustrates four examples of en-
ergy functions and corresponding activation functions, where the linear activation
function can be used for unbounded variables.

The last step in developing neural networks for optimization is usually devoted
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Figure 1. A block diagram of the neural network model in (5) (Xia, Y. and Wang, J.,
A general method for designing optimization neural networks with global converge nce,
IEEE Transactions on Neural Networks, c
1998 IEEE)



to simulation to test the performance of the neural network. Simulations can be
performed numerically using commercial software packages or self-programmed
simulators. Simulation can also be implemented physically in hardware (e.g.,
using off-the-shelf electronic components).

In summary, to formulate a optimization problem in terms of a neural net-
work, there are two types of methods. One approach commonly used in develop-
ing an optimization neural network is to first convert the constrained optimization
problem into an associated unconstrained optimization problem, and then design
a neural network that solves the unconstrained problem with gradient methods.
Another approach is to construct a set of differential equations such that their
equilibrium points correspond to the desired solutions and then find an appropri-
ate Lyapunov function such that all trajectory of the systems converges to some
equilibrium points. Combining the above two types of methods, we give a de-
terministic procedure to be used directly to construct neural network models [Xia
and Wang, 1998].

Step 1. Find a continuous function � : 
 � R
n+l ! R such that its min-

ima correspond to the exact or approximate solutions to P, where 
 = fu =

(u1; :::; un+l)
T j ui satisfies some interval constraints and P denotes one of (1)-

(4).g
Step 2. Construct a continuous vector valued functionF : 
 � R

n+l ! R
n+l

such that the functions F (u) and �(u) satisfy
(I) if u� is a minimizer of �, then F (u�) = 0,
(II) (u� u

�)TF (u) � ��(�(u)� �(u�));8u 2 


where F (u) satisfies local Lipschitz conditions, � > 0 and fixed.
Step 3. Let the neural network model for solving P be represented by the

following dynamic systems

du

dt
= �F (u); u 2 
 (5)

where � = diag(�1; :::; �n+l); and �i > 0 which is to scale the convergence rate
of (5).

Step 4. Based on the systems in (5), design the neural network architecture for
solving P.

A block diagram of the neural network is shown in Fig. 1, where the
projection operator P
(u) enforces state vector u in 
, which is defined by
P
(u) = [P
(u1); :::; P
(un+l)]

T and for i 2 L� I , P
(ui) = ui; for i 2 I ,

P
(ui) =

8<
:

di ui < di

ui di � ui � hi

hi ui > hi

where L = f1; :::; n+ lg and I � L.

3. Theoretical Result of the Method
About the proposed method, we have the theoretical results below [Xia and

Wang, 1998].



Theorem 1. Any neural network derived from the proposed method is stable
in the sense of Lyapunov and globally convergent to an exact or approximate
solution to P.

Proof. Without loss of generality we assume that the set of minimizers of P is
unbounded, and thus the set of global minimizers of � is unbounded.

First, we know from the first step of the method that an exact or approxi-
mate solution to P corresponds to a minmizer of �, and from the second step that
F (u) = 0 if and only if u is a minimizer of �. Thus it follows that F (u) = 0 if
and only if u is an exact or an approximate solution to P. That is, the equilibrium
points of the system in (5) correspond to exact or approximate solutions to P.

Next, by the existence theory of ordinary differential equations [Miller and
Michel, 1982], we see that for any an initial point taken in 
 there exists a unique
and continuous solution u(t) � 
 for the systems in (5) over [t 0; T ) since the
function F (u) satisfies local Lipschitz conditions.

Now, we consider the positive definite function

V (u) =
1

2
k�1(u� u

�)k22; u 2 


where �1 = diag(�
� 1

2

1 ; :::; �
� 1

2

n+l) and u� is a fixed minimizer of �. From condi-
tion (II) we have

d

dt
V (u) =

dV

du

du

dt
= (u� u

�)T�2
1�F (u)

= (u� u
�)TF (u) � ��(�(u)� �(u�)) � 0: (6)

Thus
ku(t)� u

�k2 � �ku(t0)� u
�k2 8t 2 [t0; T )

where � is a positive constant. Then the solution u(t) is bounded on [t 0; T ), and
thus T = 1. Moreover, the system in (5) is Lyapunov stable at each equilibrium
point.

On the other hand, since limk!1 V (uk) = +1 whenever the sequence uk �

̂ and limk!1 kukk = +1, by Lemma 2 we see that all level sets of V are
bounded though all level sets of � are unbounded, thus 
̂ = fu 2 
jV (u) �

V (u0)g is bounded. Because V (u) is continuously differentiable on the compact
set 
̂ and fu(t)jt � t0g � 
̂ , it follows from the LaSalle’s invariance principle
that trajectories u(t) converge to �, the largest invariant subset of the following
set

E = fu 2 
̂ j
dV

dt
= 0g:

Note that if dV=dt = 0; then (u�u
�)TF (u) = 0. So��(�(u)��(u�)) � 0 by

condition (II). Thus �(u) = �(u�) and u is an equilibrium point of the system in
(7); i.e.,

du

dt
= �F (u) = 0:



Conversely, if du=dt = 0, then F (u) = 0, and dV=dt = (u� u
�)TF (u) = 0: So

du=dt = 0 if and only if dV=dt = 0: Hence

E = fu 2 
̂j
du

dt
= 0g

Finally, let limk!1 u(tk) = û, then û 2 
�. Therefore, for 8� > 0 there
exists q > 0 such that

k�1(u(tk)� û)k < � k � q

Note that (6) holds for each u� 2 
�, then k�1(u(t)�û)k is decreasing as t!1.
It follows that

k�1(u(t)� û)k2 � k�1(u(tkq )� û)k2 < � t � kq ;

then
lim
t!1

k�1(u(t)� û)k2 = 0:

So
lim
t!1

u(t) = û :

Remark: From Theorem 1 we see that any neural network designed by using
the proposed method is globally stable and convergent. Following the proposed
method we will derive two neural network models for QP and LCP, in which
equilibrium points give exact solutions and there is no need for penalty or variable
parameter in the models.

B. PRIMAL-DUAL NEURAL NETWORKS FOR LP AND
QP

1. Neural Network Models
From the dual theory we see that the dual problem of (1) is as follows

Maximize b
T
y �

1

2
x
T
Ax� d

T
v

subject to Ax�D
T
y + c+ v � 0; (7)

v � 0

where y 2 <m
; v 2 <n are the vectors of dual decision variables. By the com-

plementary slackness theorem [Bertsekas, 1982], x� and (y�; v�) are optimal so-
lutions respectively to the primal problem (1) and the dual problem (7) if and only
if x� and (y�; v�) satisfy Dx

� = b; 0 � x
� � d; v

� � 0, and the following
complementary conditions�

(v�)T (d� x
�) = 0

(x�)T (Ax� �D
T
y
� + c+ v

�) = 0
(8)



It is easy to see that (8) is equivalent to the equation of projection

x
� = P
(x

� �Ax
� +D

T
y
� � c)

where 
 = fx 2 <nj0 � x � dg; P
(x) = [P
(x1); P
(x2); : : : ; P
(xn)]
T
;

and for i = 1; 2; : : : ; n;

P
(xi) =

(
0; if xi < 0

xi; if 0 � xi � di

di; if xi > di

:

In Xia [1995], through improving the structure of the modifying extragradient
algorithm [Marcotte, 1991], we proposed the following primal-dual neural net-
work model for solving (2)

d

dt

�
x

y

�
= �

8<
:

D
T (Dx � b) + �0[2Ax�D

T
y + c

�A(x�Ax+D
T
y � c)+]

�0[D(x�Ax+D
T
y � c)+ � b]

9=
; (9)

and the following model for solving (3)

d

dt

�
x

y

�
= �

�
D
T (Dx� b)� �1(D

T
y + c)

�1[DP
(x+D
T
y � c)� b]

�
; (10)

respectively, where x 2 
; y 2 R
m, �1 = kx�P
(x+D

T
y� c)k22 , �0 = kx�

(x�Ax+D
T
y � c)+k22, (x)+ = f[x1]

+
; :::; [xl]

+gT , and [xi]
+ = maxf0; xig.

Here, directly extending the structure of the above two models we can obtain the
following neural network model for solving (1)

d

dt

�
x

y

�
= �

8<
:

D
T (Dx� b) + �[2Ax �D

T
y + c

�AP
(x �Ax+D
T
y � c)]

�[DP
(x�Ax +D
T
y � c)� b]

9=
; (11)

where x 2 
; y 2 R
m, and � = kx� P
(x�Ax+D

T
y� c)k22. For simplicity,

eqn. (11) can be written as follows:

d

dt

�
x

y

�
= �

�
Bx� q + �v(x; y)

�[Dg(x; y)� b]

�
(12)

whereB = D
T
D; q = D

T
b; v(x; y) = 2Ax�DT

y+c�Ag(x; y); and g(x; y) =
P
(x�Ax+D

T
y�c). The primal-dual neural network consists of a multivariable

system with an excitation function v(x; y) and a multivariable decaying system
g(x; y ) with a time-varying parameter � . Figure 2 illustrates the architecture of
the primal-dual network.
2. Global Convergence and Stability

First, we introduce two lemmas.
Lemma 1. Let u� 2 
; u 2 <n, then

[P
(u)� u
�]T [u� u

�] � ku� � P
(u)k
2
2:



Proof. See [Gafni and Bertsekas, 1984].
Lemma 2. Let �0(x; ; y) = kDx�bk22+kP
(x�Ax+D

T
y�c)�xk42. Then

�0(x; ; y) � 0 and �0(x; ; y) = 0 if and only if (x; y) is an optimal solution to
the original and dual problems, and if �0(x; ; y) = 0, then (x; y) is an equilibrium
point of the system (11).

Proof. From (4) and the structure of the system (11) it is easy to know the
conclusion of Lemma 2.

Theorem 2. Assume that the original problem has an optimal solution. Then
the primal-dual network (11) is stable in the sense of Lyapunov and globally con-
vergent to a point corresponding to the optimal solution of both (1) and (7).
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Figure 2. A block diagram of the neural network model in (12 )

Proof. Let (x0; y0) 2 
�<m be an any given initial point. Since the projec-
tion function P
(x�Ax +D

T
y � c) is Lipschitz continuous in <n+m,

F (x; y) =

8<
:

D
T (Dx� b) + �[A(x� P
(x�Ax +D

T
y � c))

+Ax�D
T
y � c]

�[DP
(x�Ax+D
T
y � c)� b]

9=
;

is also Lipschitz continuous. From the existence theory of ordinary differen-
tial equation we see that there exists a unique and continuous solution w(t) =

(x(t); y(t)) with w(0) = (x0; y0) for (11) on some interval [0;1). Let w� =



(x�; y�), where x� and y� is an optimal solution to (1) and (7), respectively. Then

� (w(t) � w
�)TF (x; y)

=

�
x� x

�

y � y
�

�T 0@D
T (Dx � b) + �[2Ax�D

T
y + c

�AP
(x�Ax +D
T
y � c)]

�[DP
(x�Ax+D
T
y � c)� b]

1
A

= kDx� bk22 + �(x � x
�)T fA[x� P
(x�Ax+D

T
y � c)]

+ (Ax �D
T
y + c)g+ �(y � y

�)TD[P
(x �Ax+D
T
y � c)� x]

+ �(y � y
�)T (Dx � b)

= kDx� bk22 + �[x � P
(x�Ax+D
T
y � c)]T [Ax�D

T
y + c]

+ �(x � x
�)TDT (y � y

�)

+ �[x� P
(x�Ax +D
T
y � c)]T [DT

y
� �Ax

� � c]

+ �(x � x
�)T (Ax�D

T
y + c)

On one hand, using the same optimal value of both (1) and (7) we obtain that

� (w(t) � w
�)TF (x; y)

� kDx� bk22 + �[x� P
(x�Ax+D
T
y � c)]T [Ax �D

T
y + c]

+ �(x � x
�)TAT (x� x

�)

On the other hand, from Lemma 1 we let u = x�Ax+D
T
y � c; u

� = x, then

[P
(x�Ax+D
T
y�c)�x]T [x�Ax+DT

y�c�x] � kx�P
(x�Ax+D
T
y�c)k22:

Therefore,

� (w(t) � w
�)TF (x; y)

� kDx� bk22 + �kx� P
(x�Ax +D
T
y � c)k22 + (x� x

�)TA(x� x
�)

� �0(x; y)

since � = kx�P
(x�Ax+D
T
y� c)k22 and A is a positive semidefinite matrix.

So

(w(t) � w
�)TF (x; y) � �(�0(x; y)��0(x

�
; y
�)): (13)

So �0(x; y) and F (x; y) satisfy the conditions (I) and (II). By Theorem 1 we can
obtain the proof of Theorem 2.

C. NEURAL NETWORKS FOR LCP

1. Neural Network Model
According to Kinderlehrer [1980], z � is a solution to (4) if and only if z�

satisfies the following equation

P
(z �Mz � q) = z (14)



where 
 = fz 2 R
ljz � 0g and P
(�) denotes the projection onto the set 
. In

Wang [1998] we proposed the following neural network model

dz

dt
= F (z) = (I +M

T )((z �Mz � q)+ � z) (15)

The system described by (15) can be easily realized by a recurrent neural net-
work with a two-layer structure shown in Fig. 3 where the vector z is the net-
work output, �q = (qi) is the network input vector, and (I + M

T ) = (mij)

and M = (wij) are weighted connections. We see from Fig. 3 that the pro-
posed neural network can be implemented only by using simple hardware without
analog multipliers for variables or penalty parameter. The circuit realizing the
recurrent neural network consists of 2l2 + 3l simple summers, l integrators, and
2l2 weighted connections. The projection operator (�)+ may be implemented by
using a piecewise activation function [Bouzerdoum and Pattison, 1993].

2. Global Convergence and Stability

Using Theorem 1 we can obtain the following result.

Theorem 3. Assume that 
� = fz 2 R
ljz satisfies (4)g is a nonempty set.

Then the neural network of (15) is stable in the sense of Lyapunov and globally
convergent to a solution to (4).

Proof. We see first that z� 2 
� if and only if �(z�) = 0 where �(z) =

z�(z�Mz�q)+. Therefore,�(u) andF (u) satisfy the first step and condition (I)
in the second step. By the fact that (u�Mu�q)+ is the projection of (x�Mx�q)

onto 
 and x� is in 
, using Lemma 2 we have

[z� � (u�Mu� q)+]T [Mz + q � z + (u�Mu� q)+] � 0;8z 2 R
l
:

Since z� is a solution to (4), then

f(u�Mu� q)+ � z
�gT fMz

� + qg � 0; 8z 2 R
l
:

Adding the two resulting inequalities yields

fz� � (u�Mu� q)+gT fMz �Mx
� + (u�Mu� q)+ � zg � 0;

then

(z� � z)TM(z� � z) � (z � z
�)T (I +M

T )(z � (u�Mu� q)+)

� kz � (u�Mu� q)+k22:

Noting that (z � z
�)TM(z � z

�) � 0, it follows that



(z � z
�)T (I +M

T )(z � (u�Mu� q)+g � �kz � (u�Mu� q)+k22;

thus
(z � z

�)TF (z) � �(�(z)��(z�)):

So �(z) and F (z) satisfy conditions (I) and (II). By Theorem 1 we can obtain the
proof of Theorem 3.

III. DISCRETE-TIME NEURAL NETWORKS FOR QP
AND LCP

In many operations, discrete-time neural networks are preferable to their
continuous-time counterparts because of the availability of design tools and the
compatibility with computers and other digital devices. In this section, we discuss
discrete-time neural networks. Generally speaking, a discrete-time neural net-
work model can be obtained from a continuous-time one by converting differential
equations into appropriate difference equations though discretization. However,
the resulting discrete-time model is usually not guaranteed to be globally conver-
gent to optimal solutions. In addition, difficulties may arise in selecting design
parameters since the parameters may not be bounded in a small range. Moreover,
it is not straightforward to realize variable parameters in hardware implementation
of neural networks.

In this section, we present discrete-time recurrent neural networks with fixed
design parameters. These networks are readily realized in digital circuits, and
the proposed recurrent neural networks are guaranteed to globally converge to an
optimal solution.

A. NEURAL NETWORKS FOR QP AND LCP

We first consider the relation between LCP and the following QP

minimize
1

2
x
T
Ax+ c

T
x

subject to Dx � b; x � 0: (16)

It is easy to see that its dual problem is

maximize b
T
y �

1

2
x
T
Ax

subject to D
T
y �Ax � c; y � 0 (17)

where y 2 R
m. From Lagrangian duality [Bertsekas, 1982], one can see that

x
�
; y
� is an optimal solution to (16),(17), respectively, if and only if (x �; y�) sat-

isfies

c+A
T
x�D

T
y � 0; x � 0; x

T (c+A
T
x�D

T
y) = 0;

Dx� b � 0; y � 0; y
T (Dx� b) = 0: (18)
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Figure 3. A block diagram of the neural network model in (15)
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Let

M =

�
A �DT

D 0

�
; q =

�
c

�b

�
:

Then the problem (16) and (17) may become an LCP problem. Therefore, we
discuss only discrete-time neural network for LCP.

Applying the Euler formula to the proposed neural network model

dz

dt
= (I +M

T )((z �Mz � q)+ � z);

we can get the following discrete-time neural network

z(k + 1) = z(k)� hF (z(k)) k = 1; 2; ::: (19)

where F (z) = (I + M
T )((z � Mz � q)+ � z) and h > 0 is a fixed design

parameter. Figure 4 shows its digital implementation.
For (19) we have the following theoretical result.
Theorem 4. If h <

2
kI+MT k2

, then sequence fz(k)g generated by the
discrete-time network of (19) is globally convergent to an optimal solution of the
problem (16) and (17).

Proof. From the proof of the paper [Solodov and Tseng, 1996] we see that
when h = 2kF (z(k))k�2kr(z(k))k2, where r(z) = ((z � Mz � q)+ � z),
the sequence fz(k)g generated by the discrete-time network of (19) is globally
convergent to an optimal solution of the problem (16) and (17). Since

k(I +M
T )rk2 � kI +M

T k2krk2;

2

kI +MT k2
� 2kF (z(k))k�2kr(z(k))k2:

Thus the conclusion of Theorem 4 holds.

B. PRIMAL-DUAL NEURAL NETWORK FOR LINEAR
ASSIGNMENT

1. Problem Formulation
The assignment problem can be formulated as the following zero-one integer

linear program:

minimize

nX
i=1

nX
j=1

cijxij ; (20)

subject to

nX
i=1

xij = 1; j = 1; 2; : : : ; n; (21)

nX
j=1

xij = 1; i = 1; 2; : : : ; n; (22)

xij 2 f0; 1g; i; j = 1; 2; : : : ; n: (23)



where cij and xij are respectively the cost coefficient and decision variable asso-
ciated with assigning entity i to position j. In general, a cost coefficient can be
positive representing a loss or negative representing a gain. The decision variable
is defined such that xij = 1 if and only if entity i is assigned to position j. The
objective function (20) to be minimized is the total cost for the assignment. Con-
straint (21) ensures that exactly one entity is assigned to each position; i.e., each
column of xij has only one decision variable being 1. Constraint (22) ensures that
each entity is assigned to exactly one position; i.e., each row of x ij has only one
decision variable being 1. Constraint (23) is the zero-one integrality constraint on
decision variables. The assignment problem has a unique solution for almost all
the cost coefficient matrix [cij ], and thus the uniqueness of the solution of (20)-
(23) is assumed throughout this paper. It is well known, from the optimal solution
point of view, that if the optimal solution is unique, then the assignment problem
is equivalent to a linear programming problem by replacing the zero-one integral-
ity constraints (23) with nonnegativity constraints, due to the total unimodularity
property [Bazaraa et al., 1990]:

xij � 0; i; j = 1; 2; : : : ; n: (24)

We can therefore obtain the solution of (20)-(23) by solving its equivalent lin-
ear program which has also a unique solution. Based on the primal assignment
problem, the dual assignment problem can be formulated as follows:

maximize

nX
i=1

(ui + vi) (25)

subject to ui + vj � cij ; i; j = 1; 2; : : : ; n; (26)

where ui and vi denote the dual decision variables. The number of decision vari-
ables and inequality constraints in the dual assignment problem is 2n and n

2,
respectively. According to the duality theorem in optimization theory [Bazaraa et
al., 1990], the value of the objective function at its maximum is equal to the total
cost of the primal assignment problem at its minimum; i.e., no duality gap.
2. Neural Network Models

In this section, we discuss the existing primal-dual assignment networks
[Wang and Xia, 1998] for solving the primal and dual assignment problems.

Consider the following energy function:

E(x; u; v) =
1

2

8<
:

nX
i=1

2
4 nX
j=1

cijxij � (ui + vi)

3
5
9=
;

2

+
1

2

nX
i=1

2
4 nX
j=1

xij � 1

3
5
2

+
1

2

nX
j=1

"
nX
i=1

xij � 1

#2
+

1

4

nX
i=1

nX
j=1

(x2ij � jxij jxij)

+
1

4

nX
i=1

nX
j=1

[cij � (ui + vj)] [cij � (ui + vj)� jcij � (ui + vj)j]

(27)



where x = (x11; � � � ; xij ; � � � ; xnn)
T 2 R

n2
; v = (v1; � � � ; vi; � � � ; vn)

T 2 R
n
;

and u = (u1; � � � ; ui; � � � ; un)
T 2 R

n
: The first term in eqn. (27) is the squared

duality gap, the second and third terms are respectively for the equality constraints
(21) and (22) and the fourth term is for the nonnegativity constraint (24) in the
primal assignment problem, the last term is for the inequality constraint (26) in
the dual assignment problem. Clearly, the function E(x; u; v) is continuously
differentiable, convex, and nonnegative on R

n2+2n
: By the duality theorem, x�

and (u�; v�) are optimal solutions respectively to the primal problem and the dual
problem if and only if E(x�; u�; v�) = 0:

The continuous-time version of the primal-dual assignment network is tailored
from the ones for general linear programming [Xia, 1996]. If we let the time
derivative of a state variable equal the partial derivative of the energy function
defined in eqn. (27) with respect to the state variable, the dynamic equation of
the continuous-time primal-dual assignment network is defined in the following
differential equations: for i; j = 1; 2; : : : ; n;

dxij

dt
= ��fcij

nX
p=1

(

nX
q=1

cpqxpq � up � vp) +
1

2
(xij � jxij j)

+

nX
l=1

(xil + xlj)� 2g (28)

dui

dt
= ��f�

nX
p=1

(

nX
q=1

cpqxpq � up � vp)�
1

2

nX
l=1

(cil � ui � vl

� jcil � ui � vlj)g (29)

dvi

dt
= ��f�

nX
p=1

(

nX
q=1

cpqxpq � up � vp)�
1

2

nX
l=1

(cli � ul � vi

� jcli � ul � vij)g (30)

where � > 0 is a design parameter which scales the convergence rate of the
continuous-time assignment network.

Since s � jsj = 2minf0; sg and maxf0; sg = �minf0;�sg, the above
equations can be rewritten as follows:

dxij

dt
= ��fcij

nX
p=1

(

nX
q=1

cpqxpq � up � vp) + (xij)
�

+

nX
l=1

(xil + xlj)� 2g (31)

dui

dt
= ��f�

nX
p=1

(

nX
q=1

cpqxpq � up � vp) +

nX
l=1

(ui + vl � cil)
+g (32)

dvi

dt
= ��f�

nX
p=1

(

nX
q=1

cpqxpq � up � vp) +

nX
l=1

(ul + vi � cli)
+g; (33)



where (s)+ = maxf0; sg and (s)� = minf0; sg.
Based also on the energy function (27), the discrete-time version of the primal-

dual assignment network is defined in the following difference equations: for
i; j = 1; 2; � � � ; n;

x
(k+1)

ij = x
(k)

ij � hfcij

nX
p=1

(

nX
q=1

cpqx
(k)
pq � u

(k)
p � v

(k)
p ) + (x

(k)

ij )�

+

nX
l=1

(x
(k)

il + x
(k)

lj )� 2g (34)

u
(k+1)

i = u
(k)

i + hf

nX
p=1

(

nX
q=1

cpqx
(k)
pq � u

(k)
p � v

(k)
p )

� h

nX
l=1

(u
(k)

i + v
(k)

l � cil)
+g (35)

v
(k+1)

i = v
(k)

i + hf

nX
p=1

(

nX
q=1

cpqx
(k)
pq � u

(k)
p � v

(k)
p )

� h

nX
l=1

(u
(k)

l + v
(k)

i � cli)
+g; (36)

where h > 0 is a design parameter to be given. For convenience, let

�
(k) =

nX
p=1

(

nX
q=1

cpqx
(k)
pq � u

(k)
p � v

(k)
p ); (37)

y
(k)

ij =

nX
l=1

(x
(k)

il + x
(k)

lj ); (38)



(k)

i =

nX
l=1

(u
(k)

i + v
(k)

l � cil)
+
; (39)

Æ
(k)

i =

nX
l=1

(u
(k)

l + v
(k)

i � cli)
+
: (40)

Then eqns. (34)-(36) can be rewritten as: for i; j = 1; 2; � � � ; n;

x
(k+1)

ij = x
(k)

ij � h

h
�
(k)
cij + (x

(k)

ij )� + y
(k)

ij � 2
i

(41)

u
(k+1)

i = u
(k)

i + h

h
�
(k) � 


(k)

i

i
(42)

v
(k+1)

i = v
(k)

i + h

h
�
(k) � Æ

(k)

i

i
(43)

Figure 5 illustrates the architectures of the primal-dual assignment networks
defined in auxiliary equations (37)-(40) (Figure 5(a)), differential equations (31-
(33) (Figure 5(b)), and difference equations (22)-(24) (Figure 5(c)). It shows that
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Figure 5. Architectures of the primal-dual assignment networks (Wang, J. and Xia, Y.,
Analysis and Design of Primal-Dual Assignment Networks, IEEE Transactions on Neural
Networks, c
1998 IEEE)

the primal-dual assignment networks are composed of a number of adders, lim-
iters, and time delays or integrators only.
3. Global Convergence

The global convergence property of the continuous-time counterpart is proven
in Xia [1996]. In this section, we shall show that the discrete-time assignment
network with a constant design parameter is globally convergent to an exact solu-
tion to the primal-dual assignment problem. First, some lemmas are needed to be
introduced.

Lemma 3. Let '(x) = 1
2
(x2 � jxjx); x 2 R: Then '0(x) = x � jxj. For any

x; y 2 R;

'(x) � '(y) + '
0(y)(x � y) + (x� y)2: (44)

Proof. Consider two cases as follows.
(i) For any y � 0; '(y) = 0 and '0(y) = 0: Thus,

a) if x � 0; '(x) � (x� y)2; so (44) holds;
b) if x < 0; '(x) = x

2 � (x� y)2; so (44) also holds.
(ii) For y < 0; y2 + 2y(x� y) + (x� y)2 = x

2
; so (44) holds.

Lemma 4. Let '(x) = 1
2
[(a0x + b0)

2 � ja0x + b0j(a0x + b0)]; x 2 R: For



any x; y 2 R;

'(x) � '(y) + '
0(y)(x� y) + a

2
0(x� y)2: (45)

Proof. Let z1 = a0x + b0; z2 = a0y + b0; then '(x) = '1(z1) = 1
2
(z21 �

jz1jz1) and '(y) = '1(z2) =
1
2
(z22 � jz2jz2): Thus, by Lemma 3 we have

'(x) = '1(z1) � '1(z2) + '
0
1(z2)(z1 � z2) + (z1 � z2)

2
:

Hence
'(x) � '(y) + '

0(y)(x� y) + a
2
0(x� y)2:

Lemma 5. Let �(x) = 1
2
x
T (x� jxj); x 2 R

n
: For any x; y 2 R

n
;

�(x) � �(y) +r�(y)T (x� y) + kx� yk22: (46)

where r�(y) is the gradient of �(y):
Proof. Note that

�(x) =
1

2

nX
i=1

xi(xi � jxij):

Then 8x; y 2 R
n
; by Lemma 1 we have

�(x) �

nX
i=1

�
1

2
yi(yi � jyij) + (yi � jyij)(xi � yi) + (xi � yi)

2

�
:

Thus we have (46).

Lemma 6. Let �(y) = 1
2
(c � A

T
y)T f(c � A

T
y) � jc � A

T
yj)g; where

A 2 R
n�m and y 2 R

m
: For any y; z 2 R

m
;

�(z) � �(y) +r�(y)T (z � y) + (z � y)TAAT (z � y): (47)

Proof. By Lemma 4 and Lemma 5, we have (47).

Lemma 7. Let w = (x; u; v)T ; w0 = (x0; u0; v0)T 2 R
n2+2n

; and E(x; u; v)

be defined in Section III. For any w;w 0

E(w) � E(w0) +rE(w0)T (w � w
0) + (w � w

0)TH(w � w
0); (48)

where

H =

�
A
T
A+ cc

T + I �cbT

�bcT AA
T + bb

T

�
;

c = [c11; c12; : : : ; c1n; c21; c22; : : : ; c2n; : : : ; cn1; cn2; : : : ; cnn)
T
; b =

(1; � � � ; 1)T 2 R
2n
; and A is the 2n � n

2 constraint matrix in the assignment
problem whose (i; j) column is ei + en+j , ep is a vector in R

2n with the p-th
element being 1 and others being 0, for i; j; p = 1; � � � ; n:



Proof. Let

E1(w) =
1

2

8<
:

nX
i=1

2
4 nX
j=1

cijxij � (ui + vi)

3
5
9=
;

2

+

1

2

8><
>:

nX
i=1

2
4 nX
j=1

xij � 1

3
5
2

+

nX
j=1

"
nX
i=1

xij � 1

#29>=
>;

and

E2(w) =
1

2

nX
i=1

nX
j=1

(x2ij � jxij jxij) +

1

2

nX
i=1

nX
j=1

[cij � (ui + vj)] [cij � (ui + vj)� jcij � (ui + vj)j] :

By using the second-order Taylor formula, we have

E1(w) = E1(w
0) +rE1(w

0)T (w � w
0) + (w � w

0)Tr2
E1(w

0)(w � w
0);

where

r2
E1(w

0) =

�
cc
T +A

T
A �cbT

�bcT bb
T

�
:

In addition, we see from Lemma 3 and Lemma 4 that

E2(w) � E2(w
0) +rE2(w

0)T (w � w
0) + (w � w

0)TH1(w � w
0):

where

H1 =

�
I 0

0 AA
T

�
;

Since E(w) = E1(w) +E2(w); we obtain (48).

Lemma 8. E(w) defined in Lemma 4 is continuously differentiable and con-
vex on Rn2+2n

; and for 8w;w0 2 R
n2+2n

(w � w
0)TrE(w0) � E(w) �E(w0):

Proof. See Ortega [1970].

Lemma 9. Let A be defined in Lemma 7. The maximum eigenvalue of AA T

is 2n.
Proof. Since A is a 2n � n

2 matrix whose (i; j) column is ei + ej+n for
i; j = 1; 2; : : : ; n, then

AA
T =

nX
i=1

nX
j=1

(ei + ej+n)(ei + ej+n)
T



=

nX
i=1

nX
j=1

(eie
T
i + ej+ne

T
j+n + eie

T
j+n + ej+ne

T
i )

=

nX
i=1

nX
j=1

(eie
T
i + ej+ne

T
j+n) +

nX
i=1

nX
j=1

(eie
T
j+n + ej+ne

T
i )

=

nX
i=1

nX
j=1

(eie
T
i + ej+ne

T
j+n) +

nX
i=1

nX
j=1

(eie
T
j+n + ej+ne

T
i ):

It is easy to see that

nX
i=1

nX
j=1

(eie
T
i + ej+ne

T
j+n) = n

nX
i=1

eie
T
i + n

2nX
i=n+1

ei+ne
T
i+n

= 2n

2nX
i=1

eie
T
i = 2nI2n�2n;

where I2n�2n is a 2n� 2n identity matrix. In addition, we have

nX
i=1

nX
j=1

(eie
T
j+n + ej+ne

T
i ) =

nX
i=1

ei

nX
j=1

e
T
j+n +

nX
j=1

ej+n

nX
i=1

e
T
i :

Let �1 =
Pn

i=1 ei and �2 =
Pn

j=1 ej+n, then �
T
1 �2 = �

T
2 �1 = 0 and �

T
1 �1 =

�
T
2 �2 = n. Thus (�1�T2 +�2�

T
1 )(�1+�2) = n(�1+�2): Hence n is an eigenvalue

of �1�T2 + �2�
T
1 .

Assuming that n is not the maximum eigenvalue of �1�T2 + �2�
T
1 , then there

exists � > 0 such that �
0 U

U 0

��
v1

v2

�
= (n+ �)

�
v1

v2

�

where v1; v2 2 R
n and

U =

0
BB@

1 1 : : : ; 1

1 1 : : : ; 1
...

...
. . . ;

...
1 1 : : : ; 1

1
CCA
n�n

:

Thus

Uv1 = (n+ �)v2

Uv2 = (n+ �)v1;

and U 2
v2 = (n + �)Uv1 = (n + �)2v2: Since the maximum eigenvalue of U 2 is

n
2,

n
2
< (n+ �)2 � n

2
;



which is contradictory. Therefore, the maximum eigenvalue of � 1�T2 + �2�
T
1 is n

and thus the maximum eigenvalue of AAT is 2n. The proof is complete.
Using the above lemmas, we shall establish the result of global convergence

for the discrete-time assignment network.

Theorem 5. If h <
1

2�H
where �H is a maximum eigenvalue of the ma-

trix H defined in Lemma 7, then sequence fx(k); u(k); v(k)g generated by the
discrete-time assignment network is globally convergent to an optimal solution of
the primal-dual assignment problem.

Proof. Let fw(k)g = fx(k); u(k); v(k)g. First, by Lemma 7 we
have E(w(k+1)) � E(w(k)) + rE(w(k))T (w(k+1) � w

(k)) + (w(k+1) �

w
(k))TH(w(k+1) � w

(k)): Since w(k+1) � w
(k) = �hrE(w(k)),

0 � E(w(k)) +rE(w(k))T (�hrE(w(k))) + h
2rE(w(k))THrE(w(k));

hence
�E(w(k)) � �hkrE(w(k))k22 + h

2
�HkrE(w(k))k22:

Therefore, from Lemma 8 we obtain

kw(k+1) � w
�k22 = kw(k) � w

�k22 � 2h(w(k) � w
�)TrE(w(k))

+ h
2krE(w(k))k22

� kw(k) � w
�k22 � 2h2E(w(k)) + h

2krE(w(k))k22
� kw(k) � w

�k22 � 2h2krE(w(k))k22
+ 2h3�HkrE(w(k))k22 + h

2kE(w(k))k22
� kw(k) � w

�k22 � h
2krE(w(k))k22(1� 2h�H)

where w� = (x�; u�; v�)T is an optimal solution to the primal and dual assign-
ment problem. Since

H =

�
A
T
A+ I 0

0 AA
T

�
+

�
c

�b

�
[cT ;�bT ];

and H is a symmetric positive semi-definite matrix, thus �H > 0: So, when
rE(w(k)) 6= 0 (i.e., w(k) is not an optimal solution), it follows that

kw(k+1) � w
�k2 < kw(k) � w

�k2: (49)

Thus, fw(k)g is bounded. On the other hand, using the above second inequality
we have

h
2krE(w(k))k22(1� 2h�H) � kw(k) � w

�k22 � kw
(k+1) � w

�k22;

so
1X
k=1

krE(w(k))k22 < +1:



Thus lim
k�!1

krE(w(k))k2 = 0: Since fw(k)g is bounded, there is a sequence

fkig such that
lim

i�!1
w
(ki) = ŵ:

Then
lim

i�!1
krE(w(ki))k2 = krE(ŵ)k2 = 0;

and thus E(ŵ) = 0: So ŵ = (x̂; û ;v̂)T is an optimal solution to the primal and
dual assignment problem. In view of (30), the sequence fw (k)g has only one limit
point, so

lim
k�!1

w
(k) = ŵ:

The above analytical result shows that the constant design parameter of the
discrete-time assignment network is bounded in a small range. The following
theorem will illustrate that for any fixed initial step h0 there is a number l > 0

such that 1
2l
h0 <

1
�H

; and hence the assignment network is definitely convergent
to optimal solution to the primal-dual assignment problem in finite steps.

Theorem 6. If h < 1=[2(4n+ kck22+1)], then sequence fw(k)g generated by
the discrete-time assignment network is globally convergent to an optimal solution
of the primal-dual assignment problem.

Proof. Since

H =

�
A
T
A+ I 0

0 AA
T

�
+

�
c

�b

�
[cT ;�bT ];

and H is the sum of two symmetric matrices, according to Courant Fischer Min-
max Theorem [Wang, 1995],

�H � �+ kck22 + 2n

where � is the maximum eigenvalue of�
A
T
A+ I 0

0 AA
T

�
:

In view that AT
A and AA

T have the same nonzero eigenvalues, according to
Lemma 9, we have � = 2n+ 1. Hence

�H � 4n+ kck22 + 1:

Then from Theorem 5, we can complete the proof.

IV. SIMULATION RESULTS

In order to demonstrate the effectiveness and efficiency of the proposed neural
networks, in this section, we discuss the simulation results through four examples.



The simulation is conducted on matlab, the ordinary differential equation solver
engaged is ode45s.

Example 1. Consider the following quadratic program (the equivalent to the
one in Kennedy and Chua [1988]) with the only optimal solution x � = (5:0; 5:0):

Minimize x
2
1 + x

2
2 + x1x2 � 30x1 � 30x2

subject to
5

12
x1 � x2 �

35

12
;

5

2
x1 + x2 �

35

2
;

�x1 � 5;

x2 � 5:

This problem is equivalent to

Minimize x
2
1 + x

2
2 + x1x2 � 30x1 � 30x2

subject to
5

12
x1 � x2 + x3 =

35

12
;

5

2
x1 + x2 + x4 =

35

2
;

�5 � x1 � 7;�5 � x2 � 5; 0 � x3 � 10; 0 � x4 � 35:

We use the system (11) to solve the above problem. Figure 6 shows the transient
behavior of the primal-dual network which globally converges to the optimal so-
lution.

Example 2. Consider the convex quadratic program (16) where

D =

2
664
�5=12 1

�5=2 �1

1 0

0 �1

3
775 ; A =

�
2 1

1 2

�
; b =

2
664
�35=12

�35=2

�5

�5

3
775 ; c =

�
�30

�30

�

Its exact solution is (5; 5)T . We use the systems (15) and (19) to solve the above
problem. All simulation results show that the solution trajectory always converges
to unique point z� = (5:000; 5:000; 0; 6:000; 0; 9:000 )T which corresponds to
the optimal solution (5; 5)T . For example, let B = 5I , and starting point is
(�10; 10; 0; 0; 0; 0)T . Figure 7 shows the transient behavior of the continuous-
time neural network for this starting point. In the discrete-time case, taking step
size h = 0:08, respective trajectories of the initial point (�10; 10; 0; 0; 0; 0)T are
shown in Figure 8.

Example 3. Consider the classical linear complementary problem which was
taken from Hertog [1994]. M is an 10� 10 upper triangular matrix

M =

2
666664

1 2 2 : : : 2

0 1 2 : : : 2

0 0 1 : : : 2
...

...
...

. . .
...

0 0 0 : : : 1

3
777775
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Figure 6. Transient behaviors of the primal-dual network of (14) in Example 1
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Figure 7. Transient behaviors of the primal-
dual network of (15) in Example 2
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dual network of (19) in Example 2
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rent neural network of (15) in Example 3
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Figure 10. Transient behaviors of the recur-
rent neural network of (19) in Example 3

and q = (�1; :::;�1)T 2 R
10. The solution of the problem is u

� =

(0; :::; 0; 1)T 2 R
10. We use the systems (15) and (19) to solve the above prob-

lem. The simulation results show that the trajectory of the system always glob-
ally converges to the solution (0; :::; 1)T . For example, let B = 5I , and the
initial point is (1;�1; :::; 1;�1)T 2 R

10, respectively. Figure 9 shows the tran-
sient behaviors of the continuous-time neural network for this initial point. In
the discrete-time case, taking n = 80 and step size h = 0:016, then the error
r(u) = kP
(u� �(Mu+ q))�uk along the trajectory of the zero initial point is
shown in Figure 10.

Example 4: Consider the sorting problem used in Wang [1995, 1997] (Ex-
ample 1): rank 10 items f-1.3, 1.7, 0.5, 2.2, -2.6, 1.5, -0.6, 0.9, -1.2, 1.1g in
ascending order. Let sj = 11 � j for j = 1; 2; : : : ; 10: Accordingly, the cost
coefficient matrix can be defined as follows.

[cij ] =

0
BBB@
�13:0 �11:7 �10:4 �9:1 �7:8 �6:5 �5:2 �3:9 �2:6 �1:3

17:0 15:3 13:6 11:9 10:2 8:5 6:8 5:1 3:4 1:7

5:0 4:5 4:0 3:5 3:0 2:5 2:0 1:5 1:0 0:5

22:0 19:8 17:6 15:4 13:2 11:0 8:8 6:6 4:4 2:2

�26:0 �23:4 �20:8 �18:2 �15:6 �13:0 �10:4 �7:8 �5:2 �2:6

15:0 13:5 12:0 10:5 9:0 7:5 6:0 4:5 3:0 1:5

�6:0 �5:4 �4:8 �4:2 �3:6 �3:0 �2:4 �1:8 �1:2 �0:6

9:0 8:1 7:2 6:3 5:4 4:5 3:6 2:7 1:8 0:9

�12:0 �10:8 �9:6 �8:4 �7:2 �6:0 �4:8 �3:6 �2:4 �1:2

11:0 9:9 8:8 7:7 6:6 5:5 4:4 3:3 2:2 1:1

1
CCCA :

The sorting problem can be formulated as the assignment problem [Wang, 1995].
The decision variable is defined as that xij = 1 if item i with numerical key ri is in
the j-th position of the sorted list. The cost coefficients of the assignment problem
for sorting are defined as cij = risj where ri and sj denote respectively the
numerical key of the i-th item to be sorted and the nonzero weighting parameter
for the j-th position in the desired list.

Simulations have been conducted with the initial values of all variables to be
zero for both continuous-time and discrete-time assignment networks. Figure 11
illustrates the transient behavior of the energy function of the continuous-time
assignment network with � = 108 and variable time-steps. Figure 12 depicts the
transient behaviors of the discrete-time assignment network with three different
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Figure 11. Transient behaviors of the
continuous-time network of (14) in Ex-
ample 4 (Wang, J. and Xia, Y., Analy-
sis and design of primal-dual assignment
networks, IEEE Transactions on Neural
Networks, c
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the discrete-time network of (14) in Ex-
ample 4 (Wang, J. and Xia, Y., Analy-
sis and design of primal-dual assignment
networks, IEEE Transactions on Neural
Networks, c
1998 IEEE)

step lengths h. Specifically, the line decreasing at the fastest rate corresponds to
h = 0:25, the slowest line h = 0:15, in-between h = 0:20. Note that every step
size h > 1=(2�H). All the values of the energy function converge to zero.

V. CONCLUDING REMARKS

Neural networks have been proposed for optimization in a variety of applica-
tion areas such as design and layout of very large scale integrated (VLSI) circuits.
The nature of parallel and distributed information processing makes recurrent neu-
ral networks viable for solving complex optimization problems in real time. One
of the salient features of neural networks is their suitability for hardware imple-
mentation, in which the convergence rate is not increasing statistically as the size
of the problem increases.

Although great progress has been made in using neural networks for optimiza-
tion, many theoretical and practical problems remain unsolved. Many avenues are
open for future work. For example, the existing neural networks have not yet
been shown to be capable of solving nonconvex optimization problems. Neither
could the existing neural networks be guaranteed to obtain the optimial solutions
to NP-hard combinatorial optimization problems. Further investigations should
aim at the indepth analysis of the dynamics of recurrent neural networks for solv-
ing nonconvex and discrete optimization problems, the wide applications of re-
current neural networks to practical problems for real-time design and planning,
and the hardware prototyping of recurrent neural networks for optimization.
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