
Chapter 1

INTRODUCTION

Samir B. Unadkat, Mãlina M. Ciocoiu and Larry R. Medsker

Department of Computer Science and Information Systems
American University

I. OVERVIEW

 Recurrent neural networks have been an important focus of research and
development during the 1990's. They are designed to learn sequential or time-
varying patterns. A recurrent net is a neural network with feedback (closed
loop) connections [Fausett, 1994]. Examples include BAM, Hopfield,
Boltzmann machine, and recurrent backpropagation nets [Hecht-Nielsen, 1990].
 Recurrent neural network techniques have been applied to a wide variety of
problems. Simple partially recurrent neural networks were introduced in the late
1980's by several researchers including Rumelhart, Hinton, and Williams
[Rummelhart, 1986] to learn strings of characters. Many other applications have
addressed problems involving dynamical systems with time sequences of events.
 Table 1 gives some other interesting examples to give the idea of the breadth
of recent applications of recurrent neural networks. For example, the dynamics
of tracking the human head for virtual reality systems is being investigated. The

Table 1. Examples of recurrent neural network applications.

Topic Authors Reference
Predictive head tracking
for virtual reality systems

Saad, Caudell, and
Wunsch, II

[Saad, 1999]

Wind turbine power
estimation

Li, Wunsch, O'Hair, and
Giesselmann

[Li, 1999]

Financial prediction using
recurrent neural networks

Giles, Lawrence, Tsoi [Giles, 1997]

Music synthesis method
for Chinese plucked-
string instruments

Liang, Su, and Lin [Liang, 1999]

Electric load forecasting Costa, Pasero, Piglione,
and Radasanu

[Costa, 1999]

Natural water inflows
forecasting

Coulibaly, Anctil, and
Rousselle

[Coulibaly, 1999]

forecasting of financial data and of electric power demand are the objects of
other studies. Recurrent neural networks are being used to track water quality

and minimize the additives needed for filtering water. And, the time sequences
of musical notes have been studied with recurrent neural networks.
 Some chapters in this book focus on systems for language processing. Others
look at real-time systems, trajectory problems, and robotic behavior.
Optimization and neuro-fuzzy systems are presented, and recurrent neural
network implementations of filtering and control are described. Finally, the
application of recurrent neural networks to chaotic systems is explored.

A. RECURRENT NEURAL NET ARCHITECTURES
 The architectures range from fully interconnected (Figure 1) to partially
connected nets (Figure 2), including multilayer feedforward networks with
distinct input and output layers. Fully connected networks do not have distinct
input layers of nodes, and each node has input from all other nodes. Feedback
to the node itself is possible.

Figure 1. An example of a fully connected recurrent neural network.

 Simple partially recurrent neural networks (Figure 2) have been used to learn
strings of characters. Athough some nodes are part of a feedforward structure,

 C1 C2

Figure 2. An example of a simple recurrent network.

other nodes provide the sequential context and receive feedback from other
nodes. Weights from the context units (C1 and C2) are processed like those for
the input units, for example, using backpropagation. The context units receive
time-delayed feedback from, in the case of Figure 2, the second layer units.
Training data consists of inputs and their desired successor outputs. The net can
be trained to predict the next letter in a string of characters and to validate a
string of characters.
 Two fundamental ways can be used to add feedback into feedforward
multilayer neural networks. Elman [Elman, 1990] introduced feedback from the
hidden layer to the context portion of the input layer. This approach pays more
attention to the sequence of input values. Jordan recurrent neural networks
[Jordan, 1989] use feedback from the output layer to the context nodes of the
input layer and give more emphasis to the sequence of output values. This book
covers a range of variations on these fundamental concepts, presenting ideas for
more efficient and effective recurrent neural networks designs and examples of
interesting applications.

B. LEARNING IN RECURRENT NEURAL NETS
 Learning is a fundamental aspect of neural networks and a major feature that
makes the neural approach so attractive for applications that have from the
beginning been an elusive goal for artificial intelligence. Learning algorithms
have long been a focus of research (e.g., Nilsson [1965] and Mendel [1970]).
 Hebbian learning and gradient descent learning are key concepts upon which
neural network techniques have been based. A popular manifestation of gradient
descent is back-error propagation introduced by Rumelhart [1986] and Werbos
[1993]. While backpropagation is relatively simple to implement, several
problems can occur in its use in practical applications, including the difficulty
of avoiding entrapment in local minima. The added complexity of the
dynamical processing in recurrent neural networks from the time-delayed
updating of the input data requires more complex algorithms for representing the
learning.
 To realize the advantage of the dynamical processing of recurrent neural
networks, one approach is to build on the effectiveness of feedforward networks
that process stationary patterns. Researchers have developed a variety of
schemes by which gradient methods, and in particular backpropagation learning,
can be extended to recurrent neural networks. Werbos introduced the
backpropagation through time approach [Werbos, 1990], approximating the time
evolution of a recurrent neural network as a sequence of static networks using
gradient methods. Another approach deploys a second, master, neural network
to perform the required computations in programming the attractors of the
original dynamical slave network [Lapedes and Farber, 1986]. Other techniques
that have been investigated can be found in Pineda [1987], Almeida [1987],
Williams and Zipser [1989], Sato [1990], and Pearlmutter [1989]. The various
attempts to extend backpropagation learning to recurrent networks is
summarized in Pearlmutter [1995].

II. DESIGN ISSUES AND THEORY

 The first section of the book concentrates on ideas for alternate designs and
advances in theoretical aspects of recurrent neural networks. The authors
discuss aspects of improving recurrent neural network performance and
connections with Bayesian analysis and knowledge representation.

A. OPTIMIZATION
 Real-time solutions of optimization problems are often needed in scientific
and engineering problems, including signal processing, system identification,
filter design, function approximation, and regression analysis, and neural
networks have been widely investigated for this purpose. The numbers of
decision variables and constraints are usually very large, and large-scale
optimization procedures are even more challenging when they have to be done
in real time to optimize the performance of a dynamical system. For such
applications, classical optimization techniques may not be adequate due to the
problem dimensionality and stringent requirements on computational time. The
neural network approach can solve optimization problems in running times
orders of magnitude faster than the most popular optimization algorithms
executed on general-purpose digital computers.
 The chapter by Xia and Wang describes the use of neural networks for these
problems and introduces a unified method for designing optimization neural
network models with global convergence. They discuss continuous-time
recurrent neural networks for solving linear and quadratic programming and for
solving linear complementary problems and then focus on discrete-time neural
networks. Assignment neural networks are discussed in detail, and some
simulation examples are presented to demonstrate the operating characteristics
of the neural networks.
 The chapter first presents primal-dual neural networks for solving linear and
quadratic programming problems (LP and QP) and develops the neural network
for solving linear complementary problems (LCP). Following a unified method
for designing neural network models, the first part of the chapter describes in
detail primal-dual recurrent neural networks, with continuous time, for solving
LP and QP. The second part of the chapter focuses on primal-dual discrete time
neural networks for QP and LCP.
 Although great progress has been made in using neural networks for
optimization, many theoretical and practical problems remain unsolved. This
chapter identifies areas for future research on the dynamics of recurrent neural
networks for optimization problems, further application of recurrent neural
networks to practical problems, and the hardware prototyping of recurrent neural
networks for optimization.

B. DISCRETE-TIME SYSTEMS
 Santos and Von Zuben discuss the practical requirement for efficient
supervised learning algorithms, based on optimization procedures for adjusting
the parameters. To improve performance, second order information is

considered to minimize the error in the training. The first objective of their work
is to describe systematic ways of obtaining exact second-order information for a
range of recurrent neural network configurations, with a computational cost only
two times higher than the cost to acquire first-order information. The second
objective is to present an improved version of the conjugate gradient algorithm
that can be used to effectively explore the available second-order information.
 The dynamics of a recurrent neural network can be continuous or discrete in
time. However, the simulation of a continuous-time recurrent neural network in
digital computational devices requires the adoption of a discrete-time equivalent
model. In their chapter, they discuss discrete-time recurrent neural network
architectures, implemented by the use of one-step delay operators in the
feedback paths. In doing so, digital filters of a desired order can be used to
design the network by the appropriate definition of connections. The resulting
nonlinear models for spatio-temporal representation can be directly simulated on
a digital computer by means of a system of nonlinear difference equations. The
nature of the equations depends on the kind of recurrent architecture adopted but
may lead to very complex behaviors, even with a reduced number of parameters
and associated equations.
 Analysis and synthesis of recurrent neural networks of practical importance is
a very demanding task, and second-order information should be considered in
the training process. They present a low-cost procedure to obtain exact second-
order information for a wide range of recurrent neural network architectures.
They also present a very efficient and generic learning algorithm, an improved
version of a scaled conjugate gradient algorithm, that can effectively be used to
explore the available second-order information. They introduce a set of adaptive
coefficients in replacement to fixed ones, and the new parameters of the
algorithm are automatically adjusted. They show and interpret some simulation
results.
 The innovative aspects of this work are the proposition of a systematic
procedure to obtain exact second-order information for a range of different
recurrent neural network architectures, at a low computational cost, and an
improved version of a scaled conjugate gradient algorithm to make use of this
high-quality information. An important aspect is that, given the exact second-
order information, the learning algorithm can be directly applied, without any
kind of adaptation to the specific context.

C. BAYESIAN BELIEF REVISION
 The Hopfield neural network has been used for a large number of
optimization problems, ranging from object recognition to graph planarization to
concentrator assignment. However, the fact that the Hopfield energy function is
of quadratic order limits the problems to which it can be applied. Sometimes,
objective functions that cannot be reduced to Hopfield’s quadratic energy
function can still be reasonably approximated by a quadratic energy function.
For other problems, the objective function must be modeled by a higher-order
energy function. Examples of such problems include the angular-metric TSP and
belief revision, which is Abdelbar’s subject in Chapter 4.

 In his chapter, Abdelbar describes high-order recurrent neural networks and
provides an efficient implementation data structure for sparse high-order
networks. He also describes how such networks can be used for Bayesian belief
revision and in important problems in diagnostic reasoning and commonsense
reasoning under uncertainty.

D. KNOWLEDGE REPRESENTATION
 Giles, Omlin, and Thornber discuss in their chapter neuro-fuzzy systems --
the combination of artificial neural networks with fuzzy logic -- which have
become useful in many application domains. They explain, however, that
conventional neuro-fuzzy models usually need enhanced representational power
for applications that require context and state (e.g., speech, time series
prediction, and control). Some of these applications can be readily modeled as
finite state automata. Previously, it was proved that deterministic finite state
automata (DFA) can be synthesized by or mapped into recurrent neural
networks by directly programming the DFA structure into the weights of the
neural network. Based on those results, they propose a synthesis method for
mapping fuzzy finite state automata (FFA) into recurrent neural networks. This
mapping is suitable for direct implementation in VLSI, i.e., the encoding of
FFA as a generalization of the encoding of DFA in VLSI systems.
 The synthesis method requires FFA to undergo a transformation prior to being
mapped into recurrent networks. The neurons are provided with an enriched
functionality in order to accommodate a fuzzy representation of FFA states. This
enriched neuron functionality also permits fuzzy parameters of FFA to be
directly represented as parameters of the neural network.
 They also prove the stability of fuzzy finite state dynamics of the constructed
neural networks for finite values of network weight and, through simulations,
give empirical validation of the proofs. This proves the various knowledge
equivalence representations between neural and fuzzy systems and models of
automata.

E. LONG-TERM DEPENDENCIES
 Gradient-descent learning algorithms for recurrent neural networks are known
to perform poorly on tasks that involve long-term dependencies, i.e., those
problems for which the desired output depends on inputs presented at times far
in the past. Lin, Horne, Tino, and Giles discuss this in their chapter and show
that the long-term dependencies problem is lessened for a class of architectures
called NARX recurrent neural networks, which have powerful representational
capabilities.
 They have previously reported that gradient-descent learning can be more
effective in NARX networks than in recurrent neural networks that have "hidden
states" on problems including grammatical inference and nonlinear system
identification. Typically the network converges much faster and generalizes
better than other networks, and this chapter shows the same kinds of results.
 They also present in this chapter some experimental results that show that
NARX networks can often retain information for two to three times as long as

conventional recurrent neural networks. They show that although NARX
networks do not circumvent the problem of long-term dependenices, they can
greatly improve performance on long-term dependency problems. They
describe in detail some of the assumptions regarding what it means to latch
information robustly and suggest possible ways to loosen these assumptions.

III. APPLICATIONS

 This section looks at interesting modifications and applications of recurrent
neural networks. Problems dealing with trajectories, control systems, robotics,
and language learning are included, along with an interesting use of recurrent
neural networks in chaotic systems.

A. CHAOTIC RECURRENT NETWORKS
 Dayhoff, Palmadesso, and Richards present in their chapter work on the use
of recurrent neural networks for chaotic systems. Dynamic neural networks are
capable of a tremendous variety of oscillations, such as finite state oscillations,
limit cycles, and chaotic behavior. The differing oscillations that are possible
create an enormous repertoire of self-sustained activity patterns. This repertoire
is very interesting because oscillations and changing activity patterns can
potentially be exploited for computational purposes and for modeling physical
phenomena.
 In this chapter, they explore trends observed in a chaotic network when an
external pattern is used as a stimulus. The pattern stimulus is a constant external
input to all neurons in a single-layer recurrent network. The strength of the
stimulus is varied to produce changes and trends in the complexity of the evoked
oscillations. Stronger stimuli can evoke simpler and less varied oscillations.
Resilience to noise occurs when noisy stimuli evoke the same or similar
oscillations. Stronger stimuli can be more resilient to noise. They show
examples of each of these observations. A pattern-to-oscillation map may
eventually be exploited for pattern recognition and other computational
purposes. In such a paradigm, the external pattern stimulus evokes an
oscillation that is read off the network as the answer to a pattern association
problem. They present evidence that this type of computational paradigm has
higher potential for pattern capacity and boundary flexibility than a multilayer
static feedforward network.

B. LANGUAGE LEARNING
 The Kremer chapter examines the relationship between grammar induction or
language learning and recurrent neural networks, asking how understanding
formal language learning can help in designing and applying recurrent neural
networks. The answer to this question comes in the form of four lessons: (1)
training RNNs is difficult, (2) reducing the search space can accelerate or make
learning possible, (3) ordering the search space can speed learning, and (4)
ordering your training data helps. The chapter concerns dynamical recurrent
neural networks, those that are presented with time-varying inputs and are

designed to render outputs at various points in time. In this case, the operation of
the network can be described by a function mapping an input sequence to an
output value or sequence of values and is applied to the problem where inputs
are selected from a discrete alphabet of valid values and output values fall into
discrete categories. The problem of dealing with input sequences in which each
item is selected from an input alphabet can also be cast as a formal language
problem. This work uses recurrent neural networks to categorize subsets of an
input language and reveals effective techniques for language learning.

C. SEQUENTIAL AUTOASSOCIATION
 In spite of the growing research on connectionist Natural Language
Processing (NLP), a number of problems need to be solved such as the
development of proper linguistic representations. Natural language is a dynamic
system with underlying hierarchical structure and sequential external appearance
and needs an adequate hierarchical systematic way of linguistic representation.
The development of global-memory recurrent neural networks, such as the
Jordan Recurrent Networks [Jordan, 1986] and the Simple Recurrent Networks
(SRN) by Elman [1990] stimulated the development of models that gradually
build representations of their sequential input in this global memory
 Stoianov in his chapter presents a novel connectionist architecture designed to
build and process a hierarchical system of static distributed representations of
complex sequential data. It follows upon the idea of building complex static
representations of the input sequence but has been extended to reproduce these
static representations in their original form by building unique representations
for every input sequence. The model consists of sequential autoassociative
modules called Recurrent Autoassociative Networks (RANs). Each of these
modules learns to reproduce input sequences and as a side effect, develops static
distributed representations of the sequences. If requested, these modules unpack
static representations into their original sequential form. The complete
architecture for processing sequentially represented hierarchical input data
consists of a cascade of RANs. The input tokens of a RAN module from any but
the lowest level in this cascade scheme are the static representations that the
RAN module from the lower level has produced. The input data of the lowest
level RAN module are percepts from the external world. The output of a module
from the lowest level can be associated with an effector. Then, given a static
representation set to the RAN hidden layer, this effector would receive
commands sequentially during the unpacking process.
 RAN is a recurrent neural network that conforms to the dynamics of natural
languages, and RANs produce representations of sequences and interpret them
by unpacking back to their sequential form. The more extended architecture, a
cascade of RANs, resembles the hierarchy in natural languages. Furthermore,
given a representative training environment, this architecture has the capacity to
develop the distributed representations in a systematic way. He argues that
RANs provide an account of systematicity, and therefore that the RAN and the
RAN cascade can participate in a more global cognitive model, where the
distributed representations they produce are extensively transformed and
associated.

 This chapter includes a discussion of hierarchy in dynamic data, and a small
RAN example is presented for developing representations of syllables. Although
the model solves the problem of developing representations of hierarchically
structured sequences, some questions remain open, especially for developing an
autonomous cognitive model. Nevertheless, the suggested model may be an
important step in connectionist modeling.

D. TRAJECTORY PROBLEMS
 An important application of recurrent neural networks is the modeling of
dynamic systems involving trajectories, which are good examples of events with
specific required time relationships. Typical test cases are the famous nonlinear
and autonomous dynamic systems of the circle and the figure-eight.
 The difficulty in training recurrent networks often results in the use of
approximations that may result in inefficient training. Sundareshan, Wong, and
Condarcure in their chapter describe two alternate learning procedures that do
not require gradient evaluations. They demonstrate the performance of the two
algorithms by use of a complex spatiotemporal learning task to produce
continuous trajectories. They show significant advantages in implementation.
 They describe two distinct approaches. One uses concepts from the theory of
learning automata and the other is based on the classical simplex optimization
approach. They demonstrate the training efficiency of these approaches with the
task of spatiotemporal signal production by a trained neural network. The
complexity of this task reveals the unique capability of recurrent neural
networks for approximating temporal dynamics.
 In their chapter, Hagner, Hassoun, and Watta compare different network
architectures and learning rules, including single-layer fully recurrent networks
and multilayer networks with external recurrence: incremental gradient descent,
conjugate gradient descent, and three versions of the extended Kalman filter.
The circle trajectory is shown to be relatively easily learned while the figure-
eight trajectory is difficult. They give a qualitative and quantitative analysis of
the neural net approximations of these internally and externally recurrent
autonomous systems.

E. FILTERING AND CONTROL
 Recurrent networks are more powerful than nonrecurrent networks,
particularly for uses in control and signal processing applications. The chapter
by Hagan, De Jesús, and Schultz introduces Layered Digital Recurrent Networks
(LDRN), develops a general training algorithm for this network, and
demonstrates the application of the LDRN to problems in controls and signal
processing. They present a notation necessary to represent the LDRN and
discuss the dynamic backpropagaion algorithms that are required to compute
training gradients for recurrent networks. The concepts underlying the
backpropagation-through-time and forward perturbation algorithms are
presented in a unified framework, and are demonstrated for a simple, single-loop
recurrent network. They also describe a general forward perturbation algorithm
for computing training gradients for the LDRN.

 Two application sections discuss dynamic backpropogation: implementation
of the general dynamic backpropogation algorithm and the application of a
neurocontrol architecture to the automatic equalization of an acoustic
transmitter. A section on nonlinear filtering demonstrates the application of a
recurrent filtering network to a noise-cancellation application.

F. ADAPTIVE ROBOT BEHAVIOR
 The chapter by Ziemke discusses the use of recurrent neural networks for
robot control and learning and investigates its relevance to different fields of
research, including cognitive science, AI, and the engineering of robot control
systems. Second-order RNNs, which so far only rarely have been used in robots,
are discussed in particular detail, and their capacities for the realization of
adaptive robot behavior are demonstrated and analyzed experimentally.

IV. FUTURE DIRECTIONS

 This book represents the breadth and depth of interest in recurrent neural
networks and points to several directions for ongoing research. The chapters
address both new and improved algorithms and design techniques and also new
applications. The topics are relevant to language processing, chaotic and real-
time systems, optimization, trajectory problems, filtering and control, and
robotic behavior.
 Research in recurrent neural networks has occurred primarily in the 1990's,
building on important fundamental work in the late 1980's. The next decade
should produce significant improvements in theory and design as well as many
more applications for the creative solution of important practical problems. The
widespread application of recurrent neural networks should foster more interest
in research and development and raise further theoretical and design questions.
The ongoing interest in hybrid systems should also result in new and more
powerful uses of recurrent neural networks.

REFERENCES

Almeida, L. B., A learning rule for asynchronous perceptrons with feedback in a
combinatorial environment, Proceedings of the IEEE 1st Annual International
Conference on Neural Networks, San Diego, 609, 1987.

Costa, M., Pasero, E., Piglione, F, and Radasanu, D., Short term load forecasting
using a synchronously operated recurrent neural network, Proceedings of the
International Joint Conference on Neural Networks, 1999.

Coulibay, P., Anctil, F., and Rousselle, J., Real-time short-term water inflows
forecasting using recurrent neural networks, Proceedings of the International
Joint Conference on Neural Networks, 1999.

Elman, J. L., Finding structure in time, Cognitive Science, 14, 179, 1990.

Fausett, L., Fundamentals of Neural Networks, Prentice Hall, Englewood Cliffs,
NJ, 1994.

Giles, C. L., Lawrence, S., Tsoi, A.-C., Rule inference for financial prediction
using recurrent neural networks, IEEE Conference on Computational
Intelligence for Financial Engineering, IEEE Press, 253, 1997.

Hecht-Nielsen, R., Neurocomputing, Addison-Wesley, Reading, PA, 1990.

Jordan, M., Generic constraints on underspecified target trajectories,
Proceedings of the International Joint Conference on Neural Networks, I, 217,
1989.

Lapedes, A. and Farber, R., Programming a massively parallel computation
universal system: static behavior, in Neural Networks for Computing, Denker, J.
S., Ed., AIP Conference Proceedings, 151, 283, 1986.

Li, S., Wunsch II, D. C., O'Hair, E., and Giesselmann, M. G., Wind turbine
power estimation by neural networks with Kalman filter training on a SIMD
parallel machine, Proceedings of the International Joint Conference on Neural
Networks, 1999.

Liang, S.-F., Su, A. W. Y., and Lin, C.-T., A new recurrent-network-based
music synthesis method for Chinese plucked-string instruments - pipa and qiu,
Proceedings of the International Joint Conference on Neural Networks, 1999.

Mendel, J. M. and Fu, K. S., Eds., Adaptive, Learning and Pattern Recognition
Systems, Academic, New York, 1970.

Nilsson, N. J., Learning Machines: Foundations of Trainable Pattern
Classifying Systems, McGraw-Hill, New York, 1965.

Pearlmutter, B., Learning state space trajectories in recurrent neural networks,
Neural Computation, 1, 263, 1989.

Pearlmutter, B., Gradient calculations for dynamic recurrent neural networks: A
survey, IEEE Transactions on Neural Networks, 6, 1212, 1995.

Pineda, F. J., Generalization of backpropagation in recurrent neural networks,
Physical Review Letters, 59 (19), 2229, 1987.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J., Learning internal
representations by error propagation, in Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, Rumelhart, D. E. and
McClelland, J. L., Eds., MIT Press, Cambridge, 45, 1986.

Saad, E. W., Caudell, T. P., and Wunsch II, D. C., Predictive head tracking for
virtual reality, Proceedings of the International Joint Conference on Neural
Networks, 1999.

Sato, M., A real time running algorithm for recurrent neural networks,
Biological Cybernetics, 62, 237, 1990.

Werbos, P., Backpropagation through time: what it does and how to do it,
Proceedings of the IEEE, 78, 1550, 1990.

Werbos, P., The Roots of Backpropagation: From Ordered Derivatives to
Neural Networks and Political Forecasting, Wiley, New York, 1993.

Williams, R. and Zipser, D., A learning algorithm for continually running fully
recurrent neural networks, Neural Computation, 1, 270, 1989.

	RECURRENT NEURAL NETWORKS
	Table of Contents
	Chapter 1
	INTRODUCTION
	I. OVERVIEW
	A. RECURRENT NEURAL NET ARCHITECTURES
	B. LEARNING IN RECURRENT NEURAL NETS

	II. DESIGN ISSUES AND THEORY
	A. OPTIMIZATION
	B. DISCRETE-TIME SYSTEMS
	C. BAYESIAN BELIEF REVISION
	D. KNOWLEDGE REPRESENTATION
	E. LONG-TERM DEPENDENCIES

	III. APPLICATIONS
	A. CHAOTIC RECURRENT NETWORKS
	B. LANGUAGE LEARNING
	C. SEQUENTIAL AUTOASSOCIATION
	D. TRAJECTORY PROBLEMS
	E. FILTERING AND CONTROL
	F. ADAPTIVE ROBOT BEHAVIOR

	IV. FUTURE DIRECTIONS
	REFERENCES

	© 2001 by CRC Press LLC: © 2001 by CRC Press LLC

