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I. OVERVIEW 

 
    Recurrent neural networks have been an important focus of research and 
development during the 1990's.  They are designed to learn sequential or time-
varying patterns.  A recurrent net is a neural network with feedback (closed 
loop) connections [Fausett, 1994].  Examples include BAM, Hopfield, 
Boltzmann machine, and recurrent backpropagation nets [Hecht-Nielsen, 1990]. 
    Recurrent neural network techniques have been applied to a wide variety of 
problems. Simple partially recurrent neural networks were introduced in the late 
1980's by several researchers including Rumelhart, Hinton, and Williams 
[Rummelhart, 1986] to learn strings of characters.  Many other applications have 
addressed problems involving dynamical systems with time sequences of events.  
    Table 1 gives some other interesting examples to give the idea of the breadth 
of recent applications of recurrent neural networks.  For example, the dynamics 
of tracking the human head for virtual reality systems is being investigated. The  
     

Table 1.  Examples of recurrent neural network applications. 
 

Topic Authors Reference 
Predictive head tracking 
for virtual reality systems 

Saad, Caudell, and 
Wunsch, II 

[Saad, 1999] 

Wind turbine power 
estimation 

Li, Wunsch, O'Hair, and 
Giesselmann 

[Li, 1999] 

Financial prediction using 
recurrent neural networks 

Giles, Lawrence, Tsoi [Giles, 1997] 

Music synthesis method 
for Chinese plucked-
string instruments 

Liang, Su, and Lin [Liang, 1999] 

Electric load forecasting Costa, Pasero, Piglione, 
and Radasanu 

[Costa, 1999] 

Natural water inflows 
forecasting 

Coulibaly, Anctil, and 
Rousselle 

[Coulibaly, 1999] 

 
forecasting of financial data and of electric power demand are the objects of 
other studies.  Recurrent neural networks are being used to track water quality 



and minimize the additives needed for filtering water.  And, the time sequences 
of musical notes have been studied with recurrent neural networks. 
    Some chapters in this book focus on systems for language processing. Others 
look at real-time systems, trajectory problems, and robotic behavior.  
Optimization and neuro-fuzzy systems are presented, and recurrent neural 
network implementations of filtering and control are described. Finally, the 
application of recurrent neural networks to chaotic systems is explored. 
 
A. RECURRENT NEURAL NET ARCHITECTURES 
     The architectures range from fully interconnected (Figure 1) to partially 
connected nets (Figure 2), including multilayer feedforward networks with 
distinct input and output layers.  Fully connected networks do not have distinct 
input layers of nodes, and each node has input from all other nodes.  Feedback 
to the node itself is possible. 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1. An example of a fully connected recurrent neural network. 

 
    Simple partially recurrent neural networks (Figure 2) have been used to learn 
strings of characters. Athough some nodes are part of a feedforward structure, 
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Figure 2.  An example of a simple recurrent network. 
 
 

 



 

 
other nodes provide the sequential context and receive feedback from other 
nodes.  Weights from the context units (C1 and C2) are processed like those for 
the input units, for example, using backpropagation.  The context units receive 
time-delayed feedback from, in the case of Figure 2, the second layer units.  
Training data consists of inputs and their desired successor outputs.  The net can 
be trained to predict the next letter in a string of characters and to validate a 
string of characters. 
    Two fundamental ways can be used to add feedback into feedforward 
multilayer neural networks. Elman [Elman, 1990] introduced feedback from the 
hidden layer to the context portion of the input layer.  This approach pays more 
attention to the sequence of input values. Jordan recurrent neural networks 
[Jordan, 1989] use feedback from the output layer to the context nodes of the 
input layer and give more emphasis to the sequence of output values.  This book 
covers a range of variations on these fundamental concepts, presenting ideas for 
more efficient and effective recurrent neural networks designs and examples of 
interesting applications. 
 
B. LEARNING IN RECURRENT NEURAL NETS 
    Learning is a fundamental aspect of neural networks and a major feature that 
makes the neural approach so attractive for applications that have from the 
beginning been an elusive goal for artificial intelligence.  Learning algorithms 
have long been a focus of research (e.g., Nilsson [1965] and Mendel [1970]). 
    Hebbian learning and gradient descent learning are key concepts upon which 
neural network techniques have been based. A popular manifestation of gradient 
descent is back-error propagation  introduced by Rumelhart [1986] and Werbos 
[1993]. While backpropagation is relatively simple to implement, several 
problems can occur in its use in practical applications, including  the difficulty 
of avoiding entrapment in local minima. The added  complexity of the 
dynamical processing in recurrent neural networks from the time-delayed 
updating of the input data requires more complex algorithms for representing the 
learning. 
    To realize the advantage of the dynamical processing of recurrent neural 
networks, one approach is to build on the effectiveness of feedforward networks 
that process stationary patterns. Researchers have developed a variety of  
schemes by which gradient methods, and in particular backpropagation learning, 
can be extended to recurrent neural networks. Werbos introduced the 
backpropagation through time approach [Werbos, 1990], approximating the time 
evolution of a recurrent neural network as a sequence of static networks using 
gradient methods. Another approach deploys a second, master, neural network 
to perform the required computations in programming the attractors of the 
original dynamical slave network [Lapedes and Farber, 1986]. Other techniques 
that have been investigated can be found in Pineda [1987], Almeida [1987], 
Williams and Zipser [1989], Sato [1990], and Pearlmutter [1989]. The  various 
attempts to extend backpropagation learning to recurrent networks is 
summarized in Pearlmutter [1995]. 
     



II. DESIGN  ISSUES AND THEORY 
 
    The first section of the book concentrates on ideas for alternate designs and 
advances in theoretical aspects of recurrent neural networks.  The authors 
discuss aspects of improving recurrent neural network performance and 
connections with Bayesian analysis and knowledge representation. 
 
A. OPTIMIZATION  
    Real-time solutions of optimization problems are often needed in scientific 
and engineering problems, including signal processing, system identification, 
filter design, function approximation, and regression analysis, and neural 
networks have been widely investigated for this purpose. The numbers of 
decision variables and constraints are usually very large, and large-scale 
optimization procedures are even more challenging when they have to be done 
in real time to optimize  the performance  of a dynamical system. For such 
applications, classical optimization techniques may not be adequate due to the 
problem dimensionality and  stringent requirements on computational time. The 
neural network approach  can solve optimization problems in running times 
orders of magnitude faster than the most popular optimization algorithms 
executed on general-purpose digital computers. 
    The chapter by Xia and Wang describes the use of neural networks for these 
problems and introduces a unified method for designing optimization neural 
network models with global convergence.  They discuss continuous-time 
recurrent neural networks for solving linear and quadratic programming and for 
solving linear complementary problems and then focus on discrete-time neural  
networks. Assignment neural networks are discussed in detail, and some 
simulation examples are presented to demonstrate the operating characteristics 
of the neural networks. 
    The chapter first presents primal-dual neural networks for solving linear and 
quadratic programming problems (LP and QP) and develops the neural network 
for solving linear complementary problems (LCP). Following  a unified method 
for designing neural network models, the first part of the chapter describes in 
detail primal-dual  recurrent neural networks, with continuous time, for solving 
LP and QP. The second part of the chapter focuses on primal-dual discrete time 
neural  networks for QP and LCP. 
    Although great progress has been made in using neural networks for 
optimization, many theoretical and practical problems remain unsolved. This 
chapter identifies areas for future research on the dynamics of recurrent neural 
networks for optimization problems, further application of recurrent neural 
networks to practical problems, and the hardware prototyping of recurrent neural 
networks for optimization. 
 
B. DISCRETE-TIME SYSTEMS 
    Santos and Von Zuben discuss the practical requirement for efficient 
supervised learning algorithms, based on optimization procedures for adjusting 
the parameters. To improve performance, second order information is 



 

considered to minimize the error in the training. The first objective of their work 
is to describe systematic ways of obtaining exact second-order information for a 
range of recurrent neural network configurations, with a computational cost only 
two times higher than the cost to acquire first-order information. The second 
objective is to present an improved version of the conjugate gradient algorithm 
that can be used to effectively explore the available second-order information. 
    The dynamics of a recurrent neural network can be continuous or discrete in 
time. However, the simulation of a continuous-time recurrent neural network in 
digital computational devices requires the adoption of a discrete-time equivalent 
model.  In their chapter, they discuss discrete-time recurrent neural network 
architectures, implemented by the use of one-step delay operators in the 
feedback paths. In doing so, digital filters of a desired order can be used to 
design the network by the appropriate definition of connections. The resulting 
nonlinear models for spatio-temporal representation can be directly simulated on 
a digital computer by means of a system of nonlinear difference equations. The 
nature of the equations depends on the kind of recurrent architecture adopted but 
may lead to very complex behaviors, even with a reduced number of parameters 
and associated equations. 
    Analysis and synthesis of recurrent neural networks of practical importance is 
a very demanding task, and second-order information should be considered in 
the training process.  They present a low-cost procedure to obtain exact second-
order information for a wide range of recurrent neural network architectures. 
They also present a very efficient and generic learning algorithm, an improved 
version of a scaled conjugate gradient algorithm, that can effectively be used to 
explore the available second-order information. They introduce a set of adaptive 
coefficients in replacement to fixed ones, and the new parameters of the 
algorithm are automatically adjusted. They show and interpret some simulation 
results. 
    The innovative aspects of this work are the proposition of a systematic 
procedure to obtain exact second-order information for a range of different 
recurrent neural network architectures, at a low computational cost, and an 
improved version of a scaled conjugate gradient algorithm to make use of this 
high-quality information. An important aspect is that, given the exact second-
order information, the learning algorithm can be directly applied, without any 
kind of adaptation to the specific context. 
 
C. BAYESIAN BELIEF REVISION 
    The Hopfield neural network has been used for a large number of 
optimization problems, ranging from object recognition to graph planarization to 
concentrator assignment. However, the fact that the Hopfield energy function is 
of quadratic order limits the problems to which it can be applied. Sometimes, 
objective functions that cannot be reduced to Hopfield’s  quadratic energy 
function can still be reasonably approximated by a quadratic energy function. 
For other problems, the objective function must be modeled by a higher-order 
energy function. Examples of such problems include the angular-metric TSP and 
belief revision, which is Abdelbar’s subject in Chapter 4. 



    In his chapter, Abdelbar describes high-order recurrent neural networks and 
provides an efficient implementation data structure for sparse high-order 
networks. He also describes how such networks can be used for Bayesian belief 
revision and in important problems in diagnostic reasoning and commonsense 
reasoning under uncertainty. 
 
D. KNOWLEDGE REPRESENTATION 
    Giles, Omlin, and Thornber discuss in their chapter neuro-fuzzy systems -- 
the combination of artificial neural networks with fuzzy logic -- which have 
become useful in many application domains. They explain, however, that 
conventional neuro-fuzzy models usually need enhanced representational power 
for applications that require context and state (e.g., speech, time series 
prediction, and control). Some of these applications can be readily modeled as 
finite state automata. Previously, it was proved that deterministic finite state 
automata (DFA) can be synthesized by or mapped into recurrent neural 
networks by directly programming the DFA structure into the weights of the 
neural network.  Based on those results, they propose a synthesis method for 
mapping fuzzy finite state automata (FFA) into recurrent neural networks.  This  
mapping is suitable for direct implementation in VLSI, i.e.,  the encoding of 
FFA as a generalization of the encoding of DFA in VLSI systems.   
    The synthesis method requires FFA to undergo a transformation prior to being 
mapped into recurrent networks. The neurons are provided with an enriched 
functionality in order to accommodate a fuzzy representation of FFA states. This 
enriched neuron functionality also permits fuzzy parameters of FFA to be 
directly represented as parameters of the neural network. 
    They also prove the stability of fuzzy finite state dynamics of the constructed 
neural networks for finite values of network weight and, through simulations, 
give empirical validation of the proofs. This proves the various knowledge 
equivalence representations between neural and fuzzy systems and models of 
automata. 
 
E. LONG-TERM DEPENDENCIES 
    Gradient-descent learning algorithms for recurrent neural networks are known 
to perform poorly on tasks that involve long-term dependencies, i.e., those 
problems for which the desired output depends on inputs presented at times far 
in the past. Lin, Horne, Tino, and Giles discuss this  in their chapter and show 
that the long-term dependencies problem is lessened for a class of architectures 
called NARX recurrent neural networks, which have powerful representational 
capabilities.   
    They have previously reported that gradient-descent learning can be more 
effective in NARX networks than in recurrent neural networks that have "hidden 
states" on problems including grammatical inference and nonlinear system 
identification.  Typically the network converges much faster and generalizes 
better than other networks, and this chapter shows the same kinds of results. 
     They also present in this chapter some experimental results that show that 
NARX networks can often retain information for two to three times as long as 



 

conventional recurrent neural networks.  They show that although NARX 
networks do not circumvent the problem of long-term dependenices, they can 
greatly improve performance on long-term dependency problems.  They 
describe in detail some of the assumptions regarding what it means to latch 
information robustly and suggest possible ways to loosen these assumptions. 
 

III. APPLICATIONS 
 

    This section looks at interesting modifications and applications of recurrent 
neural networks.  Problems dealing with trajectories, control systems, robotics, 
and language learning are included, along with an interesting use of recurrent 
neural networks in chaotic systems. 
 
A. CHAOTIC RECURRENT NETWORKS 
    Dayhoff, Palmadesso, and Richards present in their chapter work on the use 
of recurrent neural networks for chaotic systems.  Dynamic neural networks are 
capable of a tremendous variety of oscillations, such as finite state oscillations, 
limit cycles, and chaotic behavior. The differing oscillations that are possible 
create an enormous repertoire of self-sustained activity patterns.  This repertoire 
is very interesting because oscillations and changing activity patterns can 
potentially be exploited for computational purposes and for modeling physical 
phenomena. 
    In this chapter, they explore trends observed in a chaotic network when an 
external pattern is used as a stimulus.  The pattern stimulus is a constant external 
input to all neurons in a single-layer recurrent network.  The strength of the 
stimulus is varied to produce changes and trends in the complexity of the evoked 
oscillations.  Stronger stimuli can evoke simpler and less varied oscillations.  
Resilience to noise occurs when noisy stimuli evoke the same or similar 
oscillations.  Stronger stimuli can be more resilient to noise.  They show 
examples of each of these observations. A pattern-to-oscillation map may 
eventually be exploited for pattern recognition and other computational 
purposes.  In such a paradigm, the external pattern stimulus evokes an 
oscillation that is read off the network as the answer to a pattern association 
problem. They present evidence that this type of computational paradigm has 
higher potential for pattern capacity and boundary flexibility than a multilayer 
static feedforward network. 
 
B. LANGUAGE LEARNING 
    The Kremer chapter examines the relationship between grammar induction or 
language learning and recurrent neural networks, asking how understanding 
formal language learning can help in designing and applying recurrent neural 
networks.  The answer to this question comes in the form of four lessons:  (1) 
training RNNs is difficult, (2) reducing the search space can accelerate or make 
learning possible, (3) ordering the search space can speed learning, and (4) 
ordering your training data helps. The chapter concerns dynamical recurrent 
neural networks, those that are presented with time-varying inputs and are 



designed to render outputs at various points in time. In this case, the operation of 
the network can be described by a function mapping an input sequence to an 
output value or sequence of values and is applied to the problem where inputs 
are selected from a discrete alphabet of valid values and output values fall into 
discrete categories. The problem of dealing with input sequences in which each 
item is selected from an input alphabet can also be cast as a formal language 
problem.  This work uses recurrent neural networks to categorize subsets of an 
input language and reveals effective techniques for language learning. 
 
C. SEQUENTIAL AUTOASSOCIATION 
    In spite of the growing research on connectionist Natural Language 
Processing (NLP), a number of problems need to be solved such as the 
development of proper linguistic representations. Natural language is a dynamic 
system with underlying hierarchical structure and sequential external appearance 
and needs an adequate hierarchical systematic way of linguistic representation. 
The development of global-memory recurrent neural networks, such as the 
Jordan Recurrent Networks [Jordan, 1986] and the Simple Recurrent Networks 
(SRN) by Elman [1990] stimulated the development of models that gradually 
build representations of their sequential input in this global memory 
    Stoianov in his chapter presents a novel connectionist architecture designed to 
build and process a hierarchical system of static distributed representations of 
complex sequential data. It follows upon the idea of building complex static 
representations of the input sequence but has been extended to reproduce these 
static representations in their original form by building unique representations 
for every input sequence. The model consists of sequential autoassociative 
modules called Recurrent Autoassociative Networks (RANs). Each of these 
modules learns to reproduce input sequences and as a side effect, develops static 
distributed representations of the sequences. If requested, these modules unpack 
static representations into their original sequential form. The complete 
architecture for processing sequentially represented hierarchical input data 
consists of a cascade of RANs. The input tokens of a RAN module from any but 
the lowest level in this cascade scheme are the static representations that the 
RAN module from the lower level has produced. The input data of the lowest 
level RAN module are percepts from the external world. The output of a module 
from the lowest level can be associated with an effector. Then, given a static 
representation set to the RAN hidden layer, this effector would receive 
commands sequentially during the unpacking process. 
    RAN is a recurrent neural network that conforms to the dynamics of natural 
languages, and RANs produce representations of sequences and interpret them 
by unpacking back to their sequential form. The more extended architecture, a 
cascade of RANs, resembles the hierarchy in natural languages. Furthermore, 
given a representative training environment, this architecture has the capacity to 
develop the distributed representations in a systematic way. He argues that 
RANs provide an account of systematicity, and therefore that the RAN and the 
RAN cascade can participate in a more global cognitive model, where the 
distributed representations they produce are extensively transformed and 
associated. 



 

    This chapter includes a discussion of hierarchy in dynamic data, and a small 
RAN example is presented for developing representations of syllables. Although 
the model solves the problem of developing representations of hierarchically 
structured sequences, some questions remain open, especially for developing an 
autonomous cognitive model. Nevertheless, the suggested model may be an 
important step in connectionist modeling. 
 
D. TRAJECTORY PROBLEMS 
    An important application of recurrent neural networks is the modeling of 
dynamic systems involving trajectories, which are good examples of events with 
specific required time relationships. Typical test cases are the famous nonlinear 
and autonomous dynamic systems of the circle and the figure-eight.  
    The difficulty in training recurrent networks often results in the use of 
approximations that may result in inefficient training.  Sundareshan, Wong, and 
Condarcure in their chapter describe two alternate learning procedures that do 
not require gradient evaluations. They demonstrate the performance of the two 
algorithms by use of a complex spatiotemporal learning task to produce 
continuous trajectories. They show significant advantages in implementation. 
    They describe two distinct approaches. One uses concepts from the theory of 
learning automata and the other is based on the classical simplex optimization 
approach. They demonstrate the training efficiency of these approaches with the 
task of spatiotemporal signal production by a trained neural network. The 
complexity of this task reveals the unique capability of recurrent neural 
networks for approximating temporal dynamics.  
    In their chapter, Hagner, Hassoun, and Watta compare different network 
architectures and learning rules, including single-layer fully recurrent networks 
and multilayer networks with external recurrence: incremental gradient descent, 
conjugate gradient descent, and three versions of the extended Kalman filter.  
The circle trajectory is shown to be relatively easily learned while the figure-
eight trajectory is difficult.  They give a qualitative and quantitative analysis of 
the neural net approximations of these internally and externally recurrent 
autonomous systems. 
 
E. FILTERING AND CONTROL 
    Recurrent networks are more powerful than nonrecurrent networks, 
particularly for uses in control and signal processing applications. The chapter 
by Hagan, De Jesús, and Schultz introduces Layered Digital Recurrent Networks 
(LDRN), develops a general training algorithm for this network, and 
demonstrates the application of the LDRN to problems in controls and signal 
processing. They present a notation necessary to represent the LDRN and 
discuss the dynamic backpropagaion algorithms that are required to compute 
training gradients for recurrent networks. The concepts underlying the 
backpropagation-through-time and forward perturbation algorithms are 
presented in a unified framework, and are demonstrated for a simple, single-loop 
recurrent network.  They also describe a general forward perturbation algorithm 
for computing training gradients for the LDRN.  



    Two application sections discuss dynamic backpropogation: implementation 
of the general dynamic backpropogation algorithm and the application of a 
neurocontrol architecture to the automatic equalization of an acoustic 
transmitter. A section on nonlinear filtering demonstrates the application of a 
recurrent filtering network to a noise-cancellation application. 
 
F. ADAPTIVE ROBOT BEHAVIOR 
    The chapter by Ziemke discusses the use of recurrent neural networks for 
robot control and learning and investigates its relevance to different fields of 
research, including cognitive science, AI, and the engineering of robot control 
systems. Second-order RNNs, which so far only rarely have been used in robots, 
are discussed in particular detail, and their capacities for the realization of 
adaptive robot behavior are demonstrated and analyzed experimentally. 

 
IV. FUTURE DIRECTIONS 

 
    This book represents the breadth and depth of interest in recurrent neural 
networks and points to several directions for ongoing research.  The chapters 
address both new and improved algorithms and design techniques and also new 
applications.  The topics are relevant to language processing, chaotic and real-
time systems, optimization, trajectory problems, filtering and control, and 
robotic behavior. 
    Research in recurrent neural networks has occurred primarily in the 1990's, 
building on important fundamental work in the late 1980's.  The next decade 
should produce significant improvements in theory and design as well as many 
more applications for the creative solution of important practical problems. The 
widespread application of recurrent neural networks should foster more interest 
in research and development and raise further theoretical and design questions.  
The ongoing interest in hybrid systems should also result in new and more 
powerful uses of recurrent neural networks. 
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