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In this chapter, we discuss a novel approach to pattern classification 
using a concept of fuzzy Petri nets. In contrast to the commonly 
encountered Petri nets with their inherently Boolean character of 
processing tokens and firing transitions, the proposed generalization 
involves continuous variables. This extension makes the nets to be fully 
in rapport with the panoply of the real-world classification problems. 
The introduced model of the fuzzy Petri net hinges on the logic nature 
of the operations governing its underlying behavior. The logic-driven 
effect in these nets becomes especially apparent when we are concerned 
with the modeling of its transitions and expressing pertinent 
mechanisms of a continuous rather than an on-off firing phenomenon. 
An interpretation of fuzzy Petri nets in the setting of pattern 
classification is provided. This interpretation helps us gain a better 
insight into the mechanisms of the overall classification process. Input 
places correspond to the features of the patterns. Transitions build 
aggregates of the generic features giving rise to their logical 
summarization. The output places map themselves onto the classes of 
the patterns while the marking of the places correspond to the class of 
membership values. Details of the learning algorithm are also provided 
along with an illustrative numeric experiment. 

 



 

1 Introduction 

In recent years, Petri nets [5] have started to gain in importance in the 
areas of knowledge representation, robot planning, and expert systems, 
see, for instance, [1], [2], [3], and [4]. Surprisingly, little research has 
been done on the use of Petri net in pattern classification. On the other 
hand, most classification pursuits are easily formalized in the setting of 
Petri nets once these architectures become generalized in a way that 
they reflect a continuous character omnipresent in most of the 
classification tasks. The approach taken here dwells on the existing 
fuzzy set-based augmentation of the generic version of Petri nets [6], 
[7]. Fuzzy sets contribute not only to a way in which an issue of partial 
firing of the transitions can be addressed but they provide a significant 
level of parametric flexibility. This flexibility becomes indispensable in 
the case of training of such fuzzy Petri nets – the feature not being 
available in their standard binary counterparts. The objective of this 
study is to investigate fuzzy Petri nets in the framework of pattern 
recognition and make them conceptually and computationally viable as 
pattern classifiers. 

The material of the chapter is arranged into 7 sections. We start off 
with a brief introduction to Petri nets along with their fuzzy set-based 
generalization. This generalization helps us capture and formalize the 
notion of continuous rather than straight on-off firing mechanism. In 
Section 3, we analyze the details of the fuzzy Petri net providing all 
necessary computational details. Subsequently, Section 4 deals with a 
process of learning in the nets. The main objective of such learning is 
to carry out some parametric optimization so that the network can 
adjust to the required training set of patterns (being composed of pairs 
of marking of input and output places). A way of interfacing fuzzy Petri 
nets with the modeling environment is discussed in Section 5. 
Numerical experiments are reported in Section 6 while conclusions are 
covered in Section 7. 
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2 The Generalization of the Petri Net and 
Its Underlying Architecture 

Let us briefly recall the basic concept of a Petri net. Formally speaking, 
a Petri net [4], [5] is a finite graph with two types of nodes, known as 
places (P) and transitions (T). More formally, the net can be viewed as 
a triple (P, T, F) where  

∅=∩ TP  

∅≠∪ TP  

)PT()TP(F ×∪×⊆  

TP)F(codomain)F(domain ∪=∪  

In the above, F is called the flow relation. The elements of F are the 
arcs of the Petri net. 

Each place comes equipped with some tokens that form a marking of 
the Petri net. The flow of tokens in the net occurs through firings of the 
transitions; once all input places of a given transition have a nonzero 
number of tokens, this transition fires. Subsequently, the tokens are 
allocated to the output places of the transition. Simultaneously, the 
number of tokens at the input places is reduced. The effect of firing of 
the transitions is binary: the transition either fires or does not fire. 

An important generalization of the generic model of the Petri net is to 
relax the Boolean character of the firing process of the transition. 
Instead of subscribing to the firing-no firing dichotomy, we propose to 
view the firing mechanism as a gradual process with a continuum of 
possible numeric values of the strength (intensity) of firing of a given 
transition. Then the flow of tokens can also take this continuity into 
consideration meaning that we end up with the marking of the places 
that become continuous as well. Evidently, such a model is in rapport 
with a broad class of real-world phenomena including pattern 
classification. The generalization of the net along this line calls for a 
series of pertinent realization details. In what follows, we propose a 
construct whose functioning adheres as much as possible to the logic 
fabric delivered by fuzzy sets. In this case, a sound solution is to adopt 
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the ideas of fuzzy logic as the most direct way of implementation of 
such networks.  

3 The Architecture of the Fuzzy Petri Net 

The topology of the fuzzy Petri net as being cast in the framework of 
pattern classification is portrayed in Figure 1. As it will be shown 
further on, this setting nicely correlates with the classification activities 
encountered in any process of pattern recognition. 

input places transitions output places

input layer transition layer output layer  
Figure 1.  A general three layer topology of the fuzzy Petri net. 

The network constructed in this manner comprises three layers: 

• an input layer composed of “n” input places; 

• a transition layer composed of “hidden” transitions; 

• an output layer consisting of “m” output places. 
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The input place is marked by the value of the feature (we assume that 
the range of the values of each of the features is in the unit interval). 
These marking levels are processed by the transitions of the network 
whose levels of firing depend on the parameters associated with each 
transition such as their threshold values and the weights (connections) 
of the incoming features. Subsequently, each output place corresponds 
to a class of patterns distinguished in the problem. The marking of this 
output place reflects a level of membership of the pattern in the 
corresponding class. 

The detailed formulas of the transitions and output places rely on the 
logic operations encountered in the theory of fuzzy sets. The i-th 
transition (more precisely, its activation level zi) is governed by the 
expression 

)xr(sw[Tz jijij

n

1j
i →=

=
], j = 1, 2, …, n; i = 1, 2, …, hidden, 

where:  

- wij  is a weight (connection) between the i-th transition and the j-th 
input place; 

- rij  is a threshold level associated with the level of marking of the j-th 
input place and the i-th transition; and 

- the level of marking of the j-th input place is denoted by xj  

Moreover, “t” is a t-norm, “s” denotes an s-norm, while → stands for 
an implication operation expressed in the form 

}batc|]1,0[csup{ba ≤∈=→  (1) 

where a, b are the arguments of the implication operator confined to the 
unit interval. Note that the implication is induced by a certain t-norm. 
In the case of two-valued logic, (1) returns the same truth values as the 
commonly known implication operator, namely 



 ==

=


 >

=→
otherwise 1,

0b and 1a if ,0

otherwise 1,

ba if ,b
ba  a, b ∈{0,1} 
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The j-th output place (more precisely, its marking yj) summarizes the 
levels of evidence produced by the transition layer and performs a 
nonlinear mapping of the weighted sum of the activation levels of these 
transitions (zi) and the associated connections vji  

yj = f( ∑
=

hidden

1i
iji zv ),       j = 1, 2, …, m (2) 

where “f” is a nonlinear monotonically increasing function (mapping) 
from R to [0,1]. 

The role of the connections of the output places is to modulate an 
impact the firing of the individual transition exhibits on the 
accumulation of the tokens at this output place (viz. the membership 
value of the respective class). The negative values of the connections 
have an inhibitory effect meaning that the value of the class 
membership becomes reduced. 

Owing to the type of the aggregation operations being used in the 
realization of the transitions, their interpretation sheds light on the way 
in which the individual features of the problem are treated. In essence, 
the transition produces some higher level, synthetic features out of 
these originally encountered in the problem and represented in the form 
of the input places. The weight (connection) expresses a global 
contribution of the j-th feature to the i-th transition: the lower the value 
of wij , the more significant the contribution of the feature to the 
formation of the synthetic aggregate feature formed at the transition 
level. The connection itself is weighted uniformly regardless of the 
numeric values it assumes. The more selective (refined) aggregation 
mechanism is used when considering threshold values. Referring to (1), 
one easily finds that the thresholding operation returns 1 if xj exceeds 
the value of the threshold rij . In other words, depending on this level of 
the threshold, the level of marking of the input place becomes 
“masked” and the threshold operation returns one. For the lower values 
of the marking, such levels are processed by the implication operation 
and contribute to the overall level of the firing of the transition. 

One should emphasize that the generalization of the Petri net proposed 
here is in full agreement with the two-valued generic version of the net 
commonly encountered in the literature. Consider, for instance, a single 
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transition (transition node). Let all its connections and thresholds be 
restricted to {0, 1}. Similarly, the marking of the input places is also 
quantified in a binary way. Then the following observations are valid: 

- only those input places are relevant to the functioning of the i-th 
transition for which the corresponding connections are set to zero 
and whose thresholds are equal to 1. Denote a family of these 
places by 3 

- the firing level of the i-th transition is described by the following 
formula, 

)xr(Tz jij

n

Pj
i →=

∈
 

It becomes apparent that the firing level is equal to 1 if and only if the 
marking of all input places in 3 assume 1; the above expression for the 
transition is nothing but an and-combination of the levels of marking of 
the places in 3, namely 

j

n

Pj
i xTz

∈
=  

(let us recall that any t-norm can be used to model the and operation; 
moreover all t-norms are equivalent when operating on the 0-1 truth 
values). 

4 The Learning Procedure 

The learning completed in the fuzzy Petri net is the one of parametric 
nature, meaning that it focuses on changes (updates) of the parameters 
(connections and thresholds) of the net. The structure of the net is left 
unchanged. These updates are carried in such a way so that a certain 
predefined performance index becomes minimized. To help concentrate 
on the detailed derivation of the learning formulas, it is advantageous to 
view a fully annotated portion of the network as illustrated in Figure 2. 
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input layer

zi

transition layer output layer

rij

wij

vki
yk

 
Figure 2.  Optimization in the fuzzy Petri net; a section of the net outlines all 
notation being used in the learning algorithm. 

The performance index to be minimized is viewed as a standard sum of 
squared errors. The errors are expressed as differences between the 
levels of marking of the output places of the network and their target 
values. The considered on-line learning assumes that the modifications 
to the parameters of the transitions and output places occur after 
presenting an individual pair of the training sets, say marking of the 
input places (denoted by x) and the target values (namely, the required 
marking of the output places) expressed by t. Then the performance 
index for the input-output pair reads as 

∑
=

−=
m

1k

2
kk )yt(Q  (3) 

The updates of the connections are governed by the standard gradient-
based method 

Q)iter()1iter( paramparamparam ∇−=+ α  (4) 

where ∇paramQ is a gradient of the performance index Q taken with 
respect to the parameters of the fuzzy Petri net. The iterative character 
of the learning scheme is underlined by the parameter vector regarded 
as a function of successive learning epochs (iterations). 
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The intensity of learning is controlled by the positive learning rate (α). 
In the above scheme, the vector of the parameters, param, is used to 
encapsulate all the elements of the structure to be optimized. Further on 
they will be made more detailed, as we will proceed with a complete 
description of the update mechanism. With the quadratic performance 
index (3) in mind, the following holds 

∑
=

∇−−=∇
m

1k
kkk y)yt(2Q paramparam  

Moving into detailed formulas refer again to Figure 2. Moreover, the 
nonlinear function associated with the output place (2) is a standard 
sigmoid nonlinearity described as 

)zexp(1

1
y

k
k −+

=  

For the connections of the output places we obtain 

ikk
ki

k z)y1(y
v

y
−=

∂
∂

 

k=1, 2, …,m, i=1, 2, …, hidden. Observe that the derivative of the 
sigmoidal function is equal to yk(1 – yk). 

Similarly, the updates of the threshold levels of the transitions of the 
net are expressed in the form 

ij

i

i

k

ij

k

r

z
 

z

y

r

y

∂
∂

∂
∂

=
∂
∂

 i=1, 2, …,n. 

In the sequel, we obtain 

kikk
i

k v)y1(y
z

y
−=

∂
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and 

)xr(
r

)w1(A))xr(w)xr(w(
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A
r
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∂
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where the new expression, denoted by A, is defined by taking the t-
norm over all the arguments but “j”, 

)]xr(sw[TA lilil

n

jl
1l

→=
≠
=

 

The calculations of the derivative of the implication operation can be 
completed once we confine ourselves to some specific realization of the 
t-norm that is involved in its development. For the product (being a 
particular example of the t-norm), the detailed result reads as 





 >−=





 >

∂
∂=→

∂
∂

otherwise  ,0

xr if ,
r

x

otherwise ,1

xr if ,r
x

r
)xr(

r
jij

ij
2

j
jij

ij

j

ij
jij

ij

 

The derivatives of the connections of the transitions (transition nodes) 
are obtained in a similar way. We get 

ij

i

i

k

ij

k

w

z
 

z

y

w

y

∂
∂

∂
∂

=
∂
∂

 k=1, 2, …,m, i=1, 2, …,hidden, j=1, 2,…,n 

Subsequently, one derives 

))xr(1(A))xr(w)xr(w(
w

A
w

z
jijjijijjijij

ijij

i →−=→−→+
∂

∂=
∂
∂

 

There are two aspects of further optimization of the fuzzy Petri nets 
that need to be raised in the context of their learning: 

• the number of nodes in the transition layer. The optimization of the 
number of the transition nodes of the fuzzy Petri net falls under the 
category of structural optimization that cannot be handled by the 
gradient-based mechanisms of the parametric learning. By 
increasing the number of these nodes, we enhance the mapping 
properties of the net as each transition can be fine-tuned to fully 
reflect the boundaries between the classes. Too many of these 
transitions, however, could easily develop a memorization effect 
that is well-known in neural networks. 
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• the choice of specific t-norm and s-norm. This leads us to an aspect 
of a semi-parametric optimization of the fuzzy Petri net. The choice 
of these norms does not impact the architecture of the net; yet in 
this optimization we cannot resort ourselves to the gradient-based 
learning. A prudent way to follow would be to confine to a family 
of t-norms and s-norms that can be systematically exploited one by 
one. 

5 Interfacing Fuzzy Petri Nets with 
Granular Information 

In addition to the design of the fuzzy Petri net, we are also concerned 
with its interfacing of the environment in which it has to perform. It is 
accomplished by defining a certain functional module that helps 
transform physical entities coming from the environment into more 
abstract and logic-inclined entities to be used directly by the fuzzy Petri 
net. The essence of such interfaces is in information granulation and the 
use of such granules as a bridge between a numeric information 
generated by the physical environment and the logical layer of 
information granules visible at the level of the Petri net itself. In what 
follows, we elaborate on these two phases in more detail: 

(i) Construction of information granules. The granulation of 
information can be carried out in different ways. The use of Fuzzy C-
Means or other fuzzy clustering technique is a viable way to follow. Let 
us briefly recall that the crux of clustering is to form information 
granules – fuzzy sets (fuzzy relations) – when starting from a cloud of 
numeric data. The result of clustering comes in the form of the 
prototypes of the clusters and a fuzzy partition summarizing a way the 
entire data set becomes divided (split) into clusters. As the name 
stipulates, the partitioning assigns elements to different clusters to some 
degree with the membership values between 0 and 1. For “c” clusters 
we end up with “c” prototypes, v1, v2, …, vc. 

(ii) Determination of the activation levels of information granules. Any 
new input x “activates” the i-th cluster according to the formula 
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where ||.|| is a distance function defined between x and the respective 
prototype. The calculations shown above form a core of the interface 
structure of the fuzzy Petri net, see Figure 3. The activation levels are 
directly used as the marking of the input places. 

Information  granules
Fuzzy Petri net

X

 
Figure 3.  Interfacing the world with the fuzzy Petri net. 

An important issue arises when the input (x) is not numeric but comes 
as some less specific information granule. In particular, we may 
anticipate a granular information represented in the form of a certain 
numeric interval, see Figure 4. 

X
v1.0

 
Figure 4.  An interval-based information granule and distance calculations. 

Taking into consideration the interval-based information granule, the 
distance function needs some modification. The calculations are carried 
out in the form 

||vz||min||vX|| iXzi −=− ∈  
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where X is the numeric granule. (Note that the above formula deals 
with a certain coordinate of x and prototype v, say x and v.) These 
computations provide us with an optimistic (that is minimal) value of 
the distance function. This, in turn, activates the linguistic granules to a 
higher extent in comparison to what it would have been in the pure 
numeric case. Subsequently, the activation levels sum up to the value 
higher than 1 (recall that this sum of the activation levels is always 
equal to one in the case of numeric inputs coming from the modeling 
environment). In this sense this sum (or its departure from one) can 
serve as a useful indicator of the granularity level of the input 
information. 

To quantify this observation, we discuss a one-dimensional case and 
consider three prototypes located at 1.0, 4.0, and 7.0, respectively. The 
nonnumeric information is represented as an interval distributed around 
x with the bounds located at x–d and x+d.The distance is computed as 
discussed above. The plots of the activation of the first information 
granule distributed around 1.0 are illustrated in Figure 5. 

Subsequently, Figure 6 visualizes a sum of the activation levels of the 
linguistic granules implied by the interval-valued input. Observe that 
with the increase of “d”, the sum starts to exceed 1. 

6 Experiments 

In this section, we discuss some experimental results. For illustrative 
purposes we focus on the classification problems that involve only two 
features. 

Experiment 1.  The patterns themselves are generated by two fuzzy 
functions 

)xt)s(xtxx()x,(xf 2121211 =  

)x(s)2.0tx()x,x(f 21212 =  (5) 

In these two functions, the t- and s-norms are implemented using the 
product (atb=ab) and probabilistic sum (asb=a+b–ab), respectively, 
a,b∈[0,1]. The overbar denotes a complement of the feature’s value, 
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 
x = 1 – x, x∈[0,1]. Note that the first function is a multivalued (fuzzy) 
Exclusive-Or function (XOR) whereas the second one assumes its high 
truth values at the upper corner of the unit square. The values assumed 
by these two functions are treated as continuous class memberships. 
The two variables of the functions form the features. The plots 
contained in Figures 7 and 8 portray the functions themselves as well as 
the classification boundaries occurring between the classes (viz. the 
curves along which the membership grades in two classes are equal). 

2 3 4 5 6 7 8 9 10 11 12

0.00

0.25

0.50

0.75

1.00

x

d=0.0

d=0.5

d=2.0

d=3.0

 
Figure 5.  Activation level (membership grade) of the first prototype regarded 
as a function of x for selected values of information granularity (d). 

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5

1.00

1.25

1.50

1.75

2.00 Σ

x

d=0.5

d=2.0d=3.0

 
Figure 6.  Sum of activation levels (Σ) of the linguistic granules for some 
selected values of “d”. 
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(a) 

 
(b) 

Figure 7.  Plots of the two logic functions used in the experiment (a) f1 and (b) f2. 
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Figure 8.  Classification boundaries between the classes. 

Note that the problem itself is nonlinear; furthermore the classification 
boundaries give rise to the disjoint classification regions. 

Let us now set up a topology of the fuzzy Petri net. The network has 
four input places. These correspond to the two original features and 
their complements. The output layer consists of two output places 
reflecting the number of the classes occurring in the classification 
problem. The number of transitions (viz. the size of the transition layer, 
denoted by “hidden”) varies from 2 to 8 throughout the topologies of 
the Petri nets. The learning was completed in an on-line version 
meaning that the updates of the connections (parameters) of the Petri 
net are carried out for each input-output pair of the training data. The 
experiment involves a standard training-testing scenario: the training 
was done based on 100 patterns generated randomly (over [0,1]×  [0,1]) 
from the model (5); the testing set involves another 100 patterns again 
governed by (5). The corresponding data sets are illustrated in Figures 
9 and 10. 

The learning rate (α) was set to 0.02; the intent was to assure a stable 
learning process not allowing for any oscillations. Obviously, one can 
increase the value of the learning rate and therefore accelerate learning 
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without sacrificing its stability. Nevertheless, the issue of efficiency of 
learning was not a primary concern in this experiment. This is 
particularly so, as the learning itself is rather fast and does not require a 
significant number of learning epochs. 

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

x
1  

(a) 

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

x
1  

(b) 

Figure 9.  A set of training data (100 patterns): (a) first class, and (b) second 
class; the darker the pattern, the lower its class membership grade. 
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(a) 

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

x
1  

(b) 

Figure 10.  A set of testing data (100 patterns): (a) first class, and (b) second 
class; the darker the pattern, the lower its class membership grade. 

The learning results summarized in the form of the performance index 
are provided in Table 1. They show the behavior of the fuzzy Petri net 
on the training set vis-à-vis the results obtained for the testing set. 
Several conclusions can be drawn from these results: 
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Table 1.  Performance of the fuzzy Petri net (training and testing set) for 
various number of the transition nodes. 

number of 
transition nodes  

2 3 4 5 6 7 8 

training set 2.367 0.140 0.079 0.069 0.070 0.050 0.062 
testing set 2.155 0.121 0.069 0.067 0.053 0.043 0.073 

 
- It becomes apparent that the number of transition nodes equal to 4 

gives rise to a useful architecture that is not excessively large and 
still produces good classification results. Going toward a higher 
number of the transition nodes and eventually accepting an 
excessive size of the network does not yield a significant decrease 
in the values of the optimized performance index. 

- There is an apparent jump in the performance of the network 
equipped with two transitions and the other versions of the net 
equipped with three or more transitions. 

The following series of figures, Figures 11 to 13, illustrate more details 
dealing with the learning and performance of the fuzzy Petri net. This 
concerns a way in which the learning proceeds, visualizes the resulting 
firing levels of the transitions of the net, and illustrates the values of the 
classification errors reported for the individual patterns. 

0 100 200 300 400

1e-02

1e-01

1e+00

1e+01

1e+02

learning epoch 
Figure 11.  Performance index Q in successive learning epochs. 
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(a) 

 
(b) 

Figure 12.  Characteristics of the transitions (transition nodes) regarded as 
functions of input variables x1 and x2 (continued on next page). 
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(c) 

 
(d) 

Figure 12 (continued). 
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data  
(b) 

Figure 13.  Results of the network and the data: (a) first output; (b) second output. 

The connections of the classifier are provided in the form of the 
following matrices (that are the connections and thresholds of the fuzzy 
Petri net): 
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W = 



















0.2966  0.6169  0.3866  0.0018  

0.9950  0.9031  0.0332  0.0016  

0.9986  0.4364  0.7385  0.9956  

0.0066  0.0838  0.9968  0.9843 

 

R = 



















0.8697  0.2157  0.0000  0.7429  

0.9749  0.6158  0.9763  0.9106  

0.7987  0.9722  0.0000  0.5869  

0.8721  0.2364  0.2674  0.0000  

 

V = 







0.8616- 3.2047  2.1980- 0.6068  

3.6591  4.3472- 2.1462  3.8568-
 

Experiment 2.  Here we study two other two-variable fuzzy functions 
governed by the expressions 

]x)x1[(s)]x1)(sx3.0[()x,x(f 2121211 −−=  

))]x1(s4.0)(x1[(s]xx[)x,x(f 1221212 −−=  

As a matter of fact, these give rise to the generalization of the 
exclusive-OR problem. The functions are also shown in Figure 14. The 
class boundaries clearly underline the nonlinear character of the 
classification problem, see Figure 15. 

The results of learning for different sizes of the hidden layer (that is the 
number of transitions) are summarized in Table 2. Apparently the 
minimized error becomes significantly reduced at h = 5 and afterwards 
remains fairly stable (this effect is visible for both the learning and 
testing set). 

Table 2.  Performance of the fuzzy Petri net (both training and testing set) for 
various number of the transition nodes. 

number of 
transition nodes 

2 3 4 5 6 7 8 

learning set 4.6357 0.5376 0.3087 0.0415 0.0424 0.0487 0.0463 
testing set 6.0824 0.6922 0.4991 0.0986 0.1169 0.1057 0.0976 
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Figure 14.  3-D plots of the two-variable logic functions, f1(a) and f2(b). 
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Figure 15.  Classification boundaries in the two-class classification problem. 

7 Conclusions 

In this chapter, we have proposed a new approach to pattern 
classification, dwelling on the concept of the fuzzy Petri net. Two 
features of this architecture are definitely worth underlining. The first 
one concerns a transparent form of the classification model where each 
component of the fuzzy Petri net (places and transitions) comes as a 
clearly defined functional entity. The elements in the transition layer 
give rise to the combination of the original features thus producing new 
aggregates (synthetic features). The output places are used to aggregate 
evidence about class membership. Secondly, the Petri network exhibits 
a high level of parametric flexibility by coming equipped with a 
significant number of adjustable parameters (such as threshold levels of 
the transitions and the connections of the transition nodes as well as the 
output places). 

The complete learning scheme has been proposed and illustrated with 
the aid of numeric examples. While the experiments dealt primarily 
with some specific forms of the t- and s-norms, it would be advisable to 
experiment with a wide range of such logic operators and view this as 
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an extra component of flexibility available in the design of such 
generalized Petri nets. The neuro-like style of performance of the 
proposed Petri net model being applied to classification problems 
provides us with a different and definitely interesting insight into the 
classification activities that is primarily based on features viewed as 
important resources utilized toward pattern classification. 

The study has laid down the fundamentals of the new and general 
pattern recognition scheme. More specific application areas worth 
revisiting in this setting deal with scene analysis and computer vision 
where one can easily encounter parallel threads of classification 
pursuits. 
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