
© 2000 by CRC Press LLC

CHAPTER 10

NEURAL ARCHITECTURES
OF FUZZY PETRI NETS

W. Pedrycz

Department of Electrical & Computer Engineering
University of Alberta, Edmonton

Canada T6G 2G7
&

Systems Research Institute
Polish Academy of Sciences

Warsaw, Poland
pedrycz@ee.ualberta.ca

In this chapter, we discuss a novel approach to pattern classification
using a concept of fuzzy Petri nets. In contrast to the commonly
encountered Petri nets with their inherently Boolean character of
processing tokens and firing transitions, the proposed generalization
involves continuous variables. This extension makes the nets to be fully
in rapport with the panoply of the real-world classification problems.
The introduced model of the fuzzy Petri net hinges on the logic nature
of the operations governing its underlying behavior. The logic-driven
effect in these nets becomes especially apparent when we are concerned
with the modeling of its transitions and expressing pertinent
mechanisms of a continuous rather than an on-off firing phenomenon.
An interpretation of fuzzy Petri nets in the setting of pattern
classification is provided. This interpretation helps us gain a better
insight into the mechanisms of the overall classification process. Input
places correspond to the features of the patterns. Transitions build
aggregates of the generic features giving rise to their logical
summarization. The output places map themselves onto the classes of
the patterns while the marking of the places correspond to the class of
membership values. Details of the learning algorithm are also provided
along with an illustrative numeric experiment.

1 Introduction

In recent years, Petri nets [5] have started to gain in importance in the
areas of knowledge representation, robot planning, and expert systems,
see, for instance, [1], [2], [3], and [4]. Surprisingly, little research has
been done on the use of Petri net in pattern classification. On the other
hand, most classification pursuits are easily formalized in the setting of
Petri nets once these architectures become generalized in a way that
they reflect a continuous character omnipresent in most of the
classification tasks. The approach taken here dwells on the existing
fuzzy set-based augmentation of the generic version of Petri nets [6],
[7]. Fuzzy sets contribute not only to a way in which an issue of partial
firing of the transitions can be addressed but they provide a significant
level of parametric flexibility. This flexibility becomes indispensable in
the case of training of such fuzzy Petri nets – the feature not being
available in their standard binary counterparts. The objective of this
study is to investigate fuzzy Petri nets in the framework of pattern
recognition and make them conceptually and computationally viable as
pattern classifiers.

The material of the chapter is arranged into 7 sections. We start off
with a brief introduction to Petri nets along with their fuzzy set-based
generalization. This generalization helps us capture and formalize the
notion of continuous rather than straight on-off firing mechanism. In
Section 3, we analyze the details of the fuzzy Petri net providing all
necessary computational details. Subsequently, Section 4 deals with a
process of learning in the nets. The main objective of such learning is
to carry out some parametric optimization so that the network can
adjust to the required training set of patterns (being composed of pairs
of marking of input and output places). A way of interfacing fuzzy Petri
nets with the modeling environment is discussed in Section 5.
Numerical experiments are reported in Section 6 while conclusions are
covered in Section 7.

© 2000 by CRC Press LLC

2 The Generalization of the Petri Net and
Its Underlying Architecture

Let us briefly recall the basic concept of a Petri net. Formally speaking,
a Petri net [4], [5] is a finite graph with two types of nodes, known as
places (P) and transitions (T). More formally, the net can be viewed as
a triple (P, T, F) where

∅=∩ TP

∅≠∪ TP

)PT()TP(F ×∪×⊆

TP)F(codomain)F(domain ∪=∪

In the above, F is called the flow relation. The elements of F are the
arcs of the Petri net.

Each place comes equipped with some tokens that form a marking of
the Petri net. The flow of tokens in the net occurs through firings of the
transitions; once all input places of a given transition have a nonzero
number of tokens, this transition fires. Subsequently, the tokens are
allocated to the output places of the transition. Simultaneously, the
number of tokens at the input places is reduced. The effect of firing of
the transitions is binary: the transition either fires or does not fire.

An important generalization of the generic model of the Petri net is to
relax the Boolean character of the firing process of the transition.
Instead of subscribing to the firing-no firing dichotomy, we propose to
view the firing mechanism as a gradual process with a continuum of
possible numeric values of the strength (intensity) of firing of a given
transition. Then the flow of tokens can also take this continuity into
consideration meaning that we end up with the marking of the places
that become continuous as well. Evidently, such a model is in rapport
with a broad class of real-world phenomena including pattern
classification. The generalization of the net along this line calls for a
series of pertinent realization details. In what follows, we propose a
construct whose functioning adheres as much as possible to the logic
fabric delivered by fuzzy sets. In this case, a sound solution is to adopt

© 2000 by CRC Press LLC

the ideas of fuzzy logic as the most direct way of implementation of
such networks.

3 The Architecture of the Fuzzy Petri Net

The topology of the fuzzy Petri net as being cast in the framework of
pattern classification is portrayed in Figure 1. As it will be shown
further on, this setting nicely correlates with the classification activities
encountered in any process of pattern recognition.

input places transitions output places

input layer transition layer output layer
Figure 1. A general three layer topology of the fuzzy Petri net.

The network constructed in this manner comprises three layers:

• an input layer composed of “n” input places;

• a transition layer composed of “hidden” transitions;

• an output layer consisting of “m” output places.

© 2000 by CRC Press LLC

The input place is marked by the value of the feature (we assume that
the range of the values of each of the features is in the unit interval).
These marking levels are processed by the transitions of the network
whose levels of firing depend on the parameters associated with each
transition such as their threshold values and the weights (connections)
of the incoming features. Subsequently, each output place corresponds
to a class of patterns distinguished in the problem. The marking of this
output place reflects a level of membership of the pattern in the
corresponding class.

The detailed formulas of the transitions and output places rely on the
logic operations encountered in the theory of fuzzy sets. The i-th
transition (more precisely, its activation level zi) is governed by the
expression

)xr(sw[Tz jijij

n

1j
i →=

=
], j = 1, 2, …, n; i = 1, 2, …, hidden,

where:

- wij is a weight (connection) between the i-th transition and the j-th
input place;

- rij is a threshold level associated with the level of marking of the j-th
input place and the i-th transition; and

- the level of marking of the j-th input place is denoted by xj

Moreover, “t” is a t-norm, “s” denotes an s-norm, while → stands for
an implication operation expressed in the form

}batc|]1,0[csup{ba ≤∈=→ (1)

where a, b are the arguments of the implication operator confined to the
unit interval. Note that the implication is induced by a certain t-norm.
In the case of two-valued logic, (1) returns the same truth values as the
commonly known implication operator, namely



 ==

=


 >

=→
otherwise 1,

0b and 1a if ,0

otherwise 1,

ba if ,b
ba a, b ∈{0,1}

© 2000 by CRC Press LLC

The j-th output place (more precisely, its marking yj) summarizes the
levels of evidence produced by the transition layer and performs a
nonlinear mapping of the weighted sum of the activation levels of these
transitions (zi) and the associated connections vji

yj = f(∑
=

hidden

1i
iji zv), j = 1, 2, …, m (2)

where “f” is a nonlinear monotonically increasing function (mapping)
from R to [0,1].

The role of the connections of the output places is to modulate an
impact the firing of the individual transition exhibits on the
accumulation of the tokens at this output place (viz. the membership
value of the respective class). The negative values of the connections
have an inhibitory effect meaning that the value of the class
membership becomes reduced.

Owing to the type of the aggregation operations being used in the
realization of the transitions, their interpretation sheds light on the way
in which the individual features of the problem are treated. In essence,
the transition produces some higher level, synthetic features out of
these originally encountered in the problem and represented in the form
of the input places. The weight (connection) expresses a global
contribution of the j-th feature to the i-th transition: the lower the value
of wij , the more significant the contribution of the feature to the
formation of the synthetic aggregate feature formed at the transition
level. The connection itself is weighted uniformly regardless of the
numeric values it assumes. The more selective (refined) aggregation
mechanism is used when considering threshold values. Referring to (1),
one easily finds that the thresholding operation returns 1 if xj exceeds
the value of the threshold rij . In other words, depending on this level of
the threshold, the level of marking of the input place becomes
“masked” and the threshold operation returns one. For the lower values
of the marking, such levels are processed by the implication operation
and contribute to the overall level of the firing of the transition.

One should emphasize that the generalization of the Petri net proposed
here is in full agreement with the two-valued generic version of the net
commonly encountered in the literature. Consider, for instance, a single

© 2000 by CRC Press LLC

transition (transition node). Let all its connections and thresholds be
restricted to {0, 1}. Similarly, the marking of the input places is also
quantified in a binary way. Then the following observations are valid:

- only those input places are relevant to the functioning of the i-th
transition for which the corresponding connections are set to zero
and whose thresholds are equal to 1. Denote a family of these
places by 3

- the firing level of the i-th transition is described by the following
formula,

)xr(Tz jij

n

Pj
i →=

∈

It becomes apparent that the firing level is equal to 1 if and only if the
marking of all input places in 3 assume 1; the above expression for the
transition is nothing but an and-combination of the levels of marking of
the places in 3, namely

j

n

Pj
i xTz

∈
=

(let us recall that any t-norm can be used to model the and operation;
moreover all t-norms are equivalent when operating on the 0-1 truth
values).

4 The Learning Procedure

The learning completed in the fuzzy Petri net is the one of parametric
nature, meaning that it focuses on changes (updates) of the parameters
(connections and thresholds) of the net. The structure of the net is left
unchanged. These updates are carried in such a way so that a certain
predefined performance index becomes minimized. To help concentrate
on the detailed derivation of the learning formulas, it is advantageous to
view a fully annotated portion of the network as illustrated in Figure 2.

© 2000 by CRC Press LLC

input layer

zi

transition layer output layer

rij

wij

vki
yk

Figure 2. Optimization in the fuzzy Petri net; a section of the net outlines all
notation being used in the learning algorithm.

The performance index to be minimized is viewed as a standard sum of
squared errors. The errors are expressed as differences between the
levels of marking of the output places of the network and their target
values. The considered on-line learning assumes that the modifications
to the parameters of the transitions and output places occur after
presenting an individual pair of the training sets, say marking of the
input places (denoted by x) and the target values (namely, the required
marking of the output places) expressed by t. Then the performance
index for the input-output pair reads as

∑
=

−=
m

1k

2
kk)yt(Q (3)

The updates of the connections are governed by the standard gradient-
based method

Q)iter()1iter(paramparamparam ∇−=+ α (4)

where ∇paramQ is a gradient of the performance index Q taken with
respect to the parameters of the fuzzy Petri net. The iterative character
of the learning scheme is underlined by the parameter vector regarded
as a function of successive learning epochs (iterations).

© 2000 by CRC Press LLC

The intensity of learning is controlled by the positive learning rate (α).
In the above scheme, the vector of the parameters, param, is used to
encapsulate all the elements of the structure to be optimized. Further on
they will be made more detailed, as we will proceed with a complete
description of the update mechanism. With the quadratic performance
index (3) in mind, the following holds

∑
=

∇−−=∇
m

1k
kkk y)yt(2Q paramparam

Moving into detailed formulas refer again to Figure 2. Moreover, the
nonlinear function associated with the output place (2) is a standard
sigmoid nonlinearity described as

)zexp(1

1
y

k
k −+

=

For the connections of the output places we obtain

ikk
ki

k z)y1(y
v

y
−=

∂
∂

k=1, 2, …,m, i=1, 2, …, hidden. Observe that the derivative of the
sigmoidal function is equal to yk(1 – yk).

Similarly, the updates of the threshold levels of the transitions of the
net are expressed in the form

ij

i

i

k

ij

k

r

z

z

y

r

y

∂
∂

∂
∂

=
∂
∂

 i=1, 2, …,n.

In the sequel, we obtain

kikk
i

k v)y1(y
z

y
−=

∂
∂

and

)xr(
r

)w1(A))xr(w)xr(w(
r

A
r

z
jij

ij
ijjijijjijij

ijij

i →
∂
∂−=→−→+

∂
∂=

∂
∂

© 2000 by CRC Press LLC

where the new expression, denoted by A, is defined by taking the t-
norm over all the arguments but “j”,

)]xr(sw[TA lilil

n

jl
1l

→=
≠
=

The calculations of the derivative of the implication operation can be
completed once we confine ourselves to some specific realization of the
t-norm that is involved in its development. For the product (being a
particular example of the t-norm), the detailed result reads as





 >−=





 >

∂
∂=→

∂
∂

otherwise ,0

xr if ,
r

x

otherwise ,1

xr if ,r
x

r
)xr(

r
jij

ij
2

j
jij

ij

j

ij
jij

ij

The derivatives of the connections of the transitions (transition nodes)
are obtained in a similar way. We get

ij

i

i

k

ij

k

w

z

z

y

w

y

∂
∂

∂
∂

=
∂
∂

 k=1, 2, …,m, i=1, 2, …,hidden, j=1, 2,…,n

Subsequently, one derives

))xr(1(A))xr(w)xr(w(
w

A
w

z
jijjijijjijij

ijij

i →−=→−→+
∂

∂=
∂
∂

There are two aspects of further optimization of the fuzzy Petri nets
that need to be raised in the context of their learning:

• the number of nodes in the transition layer. The optimization of the
number of the transition nodes of the fuzzy Petri net falls under the
category of structural optimization that cannot be handled by the
gradient-based mechanisms of the parametric learning. By
increasing the number of these nodes, we enhance the mapping
properties of the net as each transition can be fine-tuned to fully
reflect the boundaries between the classes. Too many of these
transitions, however, could easily develop a memorization effect
that is well-known in neural networks.

© 2000 by CRC Press LLC

• the choice of specific t-norm and s-norm. This leads us to an aspect
of a semi-parametric optimization of the fuzzy Petri net. The choice
of these norms does not impact the architecture of the net; yet in
this optimization we cannot resort ourselves to the gradient-based
learning. A prudent way to follow would be to confine to a family
of t-norms and s-norms that can be systematically exploited one by
one.

5 Interfacing Fuzzy Petri Nets with
Granular Information

In addition to the design of the fuzzy Petri net, we are also concerned
with its interfacing of the environment in which it has to perform. It is
accomplished by defining a certain functional module that helps
transform physical entities coming from the environment into more
abstract and logic-inclined entities to be used directly by the fuzzy Petri
net. The essence of such interfaces is in information granulation and the
use of such granules as a bridge between a numeric information
generated by the physical environment and the logical layer of
information granules visible at the level of the Petri net itself. In what
follows, we elaborate on these two phases in more detail:

(i) Construction of information granules. The granulation of
information can be carried out in different ways. The use of Fuzzy C-
Means or other fuzzy clustering technique is a viable way to follow. Let
us briefly recall that the crux of clustering is to form information
granules – fuzzy sets (fuzzy relations) – when starting from a cloud of
numeric data. The result of clustering comes in the form of the
prototypes of the clusters and a fuzzy partition summarizing a way the
entire data set becomes divided (split) into clusters. As the name
stipulates, the partitioning assigns elements to different clusters to some
degree with the membership values between 0 and 1. For “c” clusters
we end up with “c” prototypes, v1, v2, …, vc.

(ii) Determination of the activation levels of information granules. Any
new input x “activates” the i-th cluster according to the formula

© 2000 by CRC Press LLC

∑
= −

=
c

1i
2

j

2
i

i

||||

||-||

1
)(u

vx

vx
x

where ||.|| is a distance function defined between x and the respective
prototype. The calculations shown above form a core of the interface
structure of the fuzzy Petri net, see Figure 3. The activation levels are
directly used as the marking of the input places.

Information granules
Fuzzy Petri net

X

Figure 3. Interfacing the world with the fuzzy Petri net.

An important issue arises when the input (x) is not numeric but comes
as some less specific information granule. In particular, we may
anticipate a granular information represented in the form of a certain
numeric interval, see Figure 4.

X
v1.0

Figure 4. An interval-based information granule and distance calculations.

Taking into consideration the interval-based information granule, the
distance function needs some modification. The calculations are carried
out in the form

||vz||min||vX|| iXzi −=− ∈

© 2000 by CRC Press LLC

where X is the numeric granule. (Note that the above formula deals
with a certain coordinate of x and prototype v, say x and v.) These
computations provide us with an optimistic (that is minimal) value of
the distance function. This, in turn, activates the linguistic granules to a
higher extent in comparison to what it would have been in the pure
numeric case. Subsequently, the activation levels sum up to the value
higher than 1 (recall that this sum of the activation levels is always
equal to one in the case of numeric inputs coming from the modeling
environment). In this sense this sum (or its departure from one) can
serve as a useful indicator of the granularity level of the input
information.

To quantify this observation, we discuss a one-dimensional case and
consider three prototypes located at 1.0, 4.0, and 7.0, respectively. The
nonnumeric information is represented as an interval distributed around
x with the bounds located at x–d and x+d.The distance is computed as
discussed above. The plots of the activation of the first information
granule distributed around 1.0 are illustrated in Figure 5.

Subsequently, Figure 6 visualizes a sum of the activation levels of the
linguistic granules implied by the interval-valued input. Observe that
with the increase of “d”, the sum starts to exceed 1.

6 Experiments

In this section, we discuss some experimental results. For illustrative
purposes we focus on the classification problems that involve only two
features.

Experiment 1. The patterns themselves are generated by two fuzzy
functions

)xt)s(xtxx()x,(xf 2121211 =

)x(s)2.0tx()x,x(f 21212 = (5)

In these two functions, the t- and s-norms are implemented using the
product (atb=ab) and probabilistic sum (asb=a+b–ab), respectively,
a,b∈[0,1]. The overbar denotes a complement of the feature’s value,

© 2000 by CRC Press LLC


x = 1 – x, x∈[0,1]. Note that the first function is a multivalued (fuzzy)
Exclusive-Or function (XOR) whereas the second one assumes its high
truth values at the upper corner of the unit square. The values assumed
by these two functions are treated as continuous class memberships.
The two variables of the functions form the features. The plots
contained in Figures 7 and 8 portray the functions themselves as well as
the classification boundaries occurring between the classes (viz. the
curves along which the membership grades in two classes are equal).

2 3 4 5 6 7 8 9 10 11 12

0.00

0.25

0.50

0.75

1.00

x

d=0.0

d=0.5

d=2.0

d=3.0

Figure 5. Activation level (membership grade) of the first prototype regarded
as a function of x for selected values of information granularity (d).

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5

1.00

1.25

1.50

1.75

2.00 Σ

x

d=0.5

d=2.0d=3.0

Figure 6. Sum of activation levels (Σ) of the linguistic granules for some
selected values of “d”.

© 2000 by CRC Press LLC

(a)

(b)

Figure 7. Plots of the two logic functions used in the experiment (a) f1 and (b) f2.

© 2000 by CRC Press LLC

Figure 8. Classification boundaries between the classes.

Note that the problem itself is nonlinear; furthermore the classification
boundaries give rise to the disjoint classification regions.

Let us now set up a topology of the fuzzy Petri net. The network has
four input places. These correspond to the two original features and
their complements. The output layer consists of two output places
reflecting the number of the classes occurring in the classification
problem. The number of transitions (viz. the size of the transition layer,
denoted by “hidden”) varies from 2 to 8 throughout the topologies of
the Petri nets. The learning was completed in an on-line version
meaning that the updates of the connections (parameters) of the Petri
net are carried out for each input-output pair of the training data. The
experiment involves a standard training-testing scenario: the training
was done based on 100 patterns generated randomly (over [0,1]× [0,1])
from the model (5); the testing set involves another 100 patterns again
governed by (5). The corresponding data sets are illustrated in Figures
9 and 10.

The learning rate (α) was set to 0.02; the intent was to assure a stable
learning process not allowing for any oscillations. Obviously, one can
increase the value of the learning rate and therefore accelerate learning

© 2000 by CRC Press LLC

without sacrificing its stability. Nevertheless, the issue of efficiency of
learning was not a primary concern in this experiment. This is
particularly so, as the learning itself is rather fast and does not require a
significant number of learning epochs.

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

x
1

(a)

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

x
1

(b)

Figure 9. A set of training data (100 patterns): (a) first class, and (b) second
class; the darker the pattern, the lower its class membership grade.

© 2000 by CRC Press LLC

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

x
1

(a)

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

x
1

(b)

Figure 10. A set of testing data (100 patterns): (a) first class, and (b) second
class; the darker the pattern, the lower its class membership grade.

The learning results summarized in the form of the performance index
are provided in Table 1. They show the behavior of the fuzzy Petri net
on the training set vis-à-vis the results obtained for the testing set.
Several conclusions can be drawn from these results:

© 2000 by CRC Press LLC

Table 1. Performance of the fuzzy Petri net (training and testing set) for
various number of the transition nodes.

number of
transition nodes

2 3 4 5 6 7 8

training set 2.367 0.140 0.079 0.069 0.070 0.050 0.062
testing set 2.155 0.121 0.069 0.067 0.053 0.043 0.073

- It becomes apparent that the number of transition nodes equal to 4

gives rise to a useful architecture that is not excessively large and
still produces good classification results. Going toward a higher
number of the transition nodes and eventually accepting an
excessive size of the network does not yield a significant decrease
in the values of the optimized performance index.

- There is an apparent jump in the performance of the network
equipped with two transitions and the other versions of the net
equipped with three or more transitions.

The following series of figures, Figures 11 to 13, illustrate more details
dealing with the learning and performance of the fuzzy Petri net. This
concerns a way in which the learning proceeds, visualizes the resulting
firing levels of the transitions of the net, and illustrates the values of the
classification errors reported for the individual patterns.

0 100 200 300 400

1e-02

1e-01

1e+00

1e+01

1e+02

learning epoch
Figure 11. Performance index Q in successive learning epochs.

© 2000 by CRC Press LLC

(a)

(b)

Figure 12. Characteristics of the transitions (transition nodes) regarded as
functions of input variables x1 and x2 (continued on next page).

© 2000 by CRC Press LLC

(c)

(d)

Figure 12 (continued).

© 2000 by CRC Press LLC

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

data
(a)

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

data
(b)

Figure 13. Results of the network and the data: (a) first output; (b) second output.

The connections of the classifier are provided in the form of the
following matrices (that are the connections and thresholds of the fuzzy
Petri net):

© 2000 by CRC Press LLC

W =



















0.2966 0.6169 0.3866 0.0018

0.9950 0.9031 0.0332 0.0016

0.9986 0.4364 0.7385 0.9956

0.0066 0.0838 0.9968 0.9843

R =



















0.8697 0.2157 0.0000 0.7429

0.9749 0.6158 0.9763 0.9106

0.7987 0.9722 0.0000 0.5869

0.8721 0.2364 0.2674 0.0000

V = 







0.8616- 3.2047 2.1980- 0.6068

3.6591 4.3472- 2.1462 3.8568-

Experiment 2. Here we study two other two-variable fuzzy functions
governed by the expressions

]x)x1[(s)]x1)(sx3.0[()x,x(f 2121211 −−=

))]x1(s4.0)(x1[(s]xx[)x,x(f 1221212 −−=

As a matter of fact, these give rise to the generalization of the
exclusive-OR problem. The functions are also shown in Figure 14. The
class boundaries clearly underline the nonlinear character of the
classification problem, see Figure 15.

The results of learning for different sizes of the hidden layer (that is the
number of transitions) are summarized in Table 2. Apparently the
minimized error becomes significantly reduced at h = 5 and afterwards
remains fairly stable (this effect is visible for both the learning and
testing set).

Table 2. Performance of the fuzzy Petri net (both training and testing set) for
various number of the transition nodes.

number of
transition nodes

2 3 4 5 6 7 8

learning set 4.6357 0.5376 0.3087 0.0415 0.0424 0.0487 0.0463
testing set 6.0824 0.6922 0.4991 0.0986 0.1169 0.1057 0.0976

© 2000 by CRC Press LLC

(a)

(b)

Figure 14. 3-D plots of the two-variable logic functions, f1(a) and f2(b).

© 2000 by CRC Press LLC

Figure 15. Classification boundaries in the two-class classification problem.

7 Conclusions

In this chapter, we have proposed a new approach to pattern
classification, dwelling on the concept of the fuzzy Petri net. Two
features of this architecture are definitely worth underlining. The first
one concerns a transparent form of the classification model where each
component of the fuzzy Petri net (places and transitions) comes as a
clearly defined functional entity. The elements in the transition layer
give rise to the combination of the original features thus producing new
aggregates (synthetic features). The output places are used to aggregate
evidence about class membership. Secondly, the Petri network exhibits
a high level of parametric flexibility by coming equipped with a
significant number of adjustable parameters (such as threshold levels of
the transitions and the connections of the transition nodes as well as the
output places).

The complete learning scheme has been proposed and illustrated with
the aid of numeric examples. While the experiments dealt primarily
with some specific forms of the t- and s-norms, it would be advisable to
experiment with a wide range of such logic operators and view this as

© 2000 by CRC Press LLC

an extra component of flexibility available in the design of such
generalized Petri nets. The neuro-like style of performance of the
proposed Petri net model being applied to classification problems
provides us with a different and definitely interesting insight into the
classification activities that is primarily based on features viewed as
important resources utilized toward pattern classification.

The study has laid down the fundamentals of the new and general
pattern recognition scheme. More specific application areas worth
revisiting in this setting deal with scene analysis and computer vision
where one can easily encounter parallel threads of classification
pursuits.

Acknowledgment

Support from the Natural Sciences and Engineering Research Council
of Canada (NSERC) is gratefully acknowledged.

References

[1] Cao, W.T. and Sanderson, A.C. (1995), “Task sequence planning
using fuzzy Petri nets,” IEEE Trans. on Systems, Man, and
Cybernetics, vol. 25, pp. 755-768.

[2] Garg, M.L., Ahson, S.I., and Gupta, P.V. (1991), “A fuzzy Petri
net for knowledge representation and reasoning,” Information
Processing Letters, vol. 39, pp. 165-171.

[3] Konar, A. and Mandal, A.K. (1996), “Uncertainty management in
expert systems using fuzzy Petri nets,” IEEE Trans. on Knowledge
and Data Engineering, vol. 8, pp. 96-105.

[4] Looney, C.G. (1988), “Fuzzy Petri nets for rule-based decision
making,” IEEE Trans. on Systems, Man, and Cybernetics, vol. 18,
pp. 178-183.

[5] Murata, T. (1989), “Petri nets: properties, analysis, and
applications,” Proc. of the IEEE, vol. 77, pp. 541-580.

© 2000 by CRC Press LLC

[6] Pedrycz, W. and Gomide, F. (1994), “A generalized fuzzy Petri net
model,” IEEE Trans. on Fuzzy Systems, vol. 2, pp. 295-301.

[7] Pedrycz, W. (1997), Fuzzy Sets Engineering, CRC Press, Boca
Raton, Fl.

© 2000 by CRC Press LLC

	Recent Advances in Artificial Neural Networks
	Contents
	NEURAL ARCHITECTURES OF FUZZY PETRI NETS
	1 Introduction
	2 The Generalization of the Petri Net and Its Underlying Architecture
	3 The Architecture of the Fuzzy Petri Net
	4 The Learning Procedure
	5 Interfacing Fuzzy Petri Nets with Granular Information
	6 Experiments
	7 Conclusions
	Acknowledgment
	References

