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You must understand the process before you 
can control it and the simplest control system 
that will do the job is the best. 

William L. Luyben (1990) 

This chapter presents some novel applications of neural networks in 
process control. Four different approaches utilizing neural networks are 
presented as case studies of nonlinear chemical processes. It is 
concluded that the hybrid methods utilizing neural networks are very 
promising for the control of nonlinear and/or Multi-Input Multi-Output 
systems which can not be controlled successfully by conventional 
techniques. 

1 Introduction 

Classical control techniques such as Proportional Integral (PI) control 
or Proportional Integral Derivative (PID) control are successfully 
applied to the control of linear processes. Recently, linear Model 
Predictive Control (MPC) has also successfully been accomplished in 
the control of linear systems. However, about 90% of the chemical and 
biological processes are highly nonlinear and most of them are Multi-
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Input Multi-Output (MIMO). When the system is nonlinear and/or 
MIMO the above conventional techniques usually fail to control such 
systems. Nowadays, the systems used in industry require a high degree 
of autonomy and these techniques are not capable of achieving this [9]. 

The need to meet demanding control requirements in increasingly 
complex dynamical control systems under significant uncertainty 
makes the use of Neural Networks (NNs) in control systems very 
attractive. The main reasons behind this are their ability to learn to 
approximate functions and classify patterns and their potential for 
massively parallel hardware implementation. In other words, they are 
able to implement (both in software and hardware) many functions 
essential to controlling systems with a higher degree of autonomy. 

Due to their ability to learn complex nonlinear functional relationships, 
neural networks (NNs) are utilized in control of nonlinear and/or 
MIMO processes. During the last decade, application of NNs in 
identification and control has been increased exponentially [24], [64]. 

The wide spread of application has been due to the following attractive 
features: 

1. NNs have the ability to approximate arbitrary nonlinear functions; 
2. They can be trained easily by using past data records from the 

system under study; 
3. They are readily applicable to multivariable systems; 
4. They do not require specification of structural relationship between 

input and output data. 

This chapter contains four different approaches utilizing NNs for the 
control of nonlinear processes. Each of them is examined as a case 
study and tested on nonlinear chemical processes. While the first case 
study is utilizing NN in the usual way, the other three case studies are 
novel hybrid approaches. 

In case study I, a simple NN control system having a neuro-estimator 
and a neuro-controller is developed to control a neutralization system, 
which shows a highly nonlinear characteristic. The system is tested for 
both set point tracking and disturbance rejection. The performance is 
compared with a conventional PID controller. 
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In case study II, a new structure, which incorporates NNs with the 
linear MPC to extend its capacity for adaptive control of nonlinear 
systems, is proposed. The developed controller is utilized in the control 
of a high-purity distillation column using an unsteady-state simulator. 
Its set point tracking and disturbance rejection capabilities are tested 
and compared with a linear MPC controller. 

In case study III, an approach, which incorporates NNs with PI 
controllers, is presented. The main problem with the PI type controllers 
is the determination of proportional and integral constants for each 
operating (bias) point. The neural network is used to make an 
interpolation among the operating points of the process to be controlled 
and produce the related integral and proportional constants. The 
controller is tested in control of a binary batch distillation column. 

In case study IV, a new method is proposed to control multi-input 
multi-output (MIMO) nonlinear systems optimally. An “optimal” rule-
base is constructed, which is then learned and interpolated by a NN. 
This rule-based neuro-optimal controller is tested in the control of a 
steam-jacketed kettle. 

The organization of the rest of this chapter is as follows: in the next two 
sections the concept of process control and use of NNs in process 
control are presented. The other next four sections are dedicated to case 
studies. The last section contains the remarks and future studies. 

2 Process Control 

In the development, design, and operation of process plants, the process 
engineers are involved with five basic concepts: state, equilibrium, 
conservation, rate, and control. 

The identification of a system necessitates the definition thermo-
dynamic state according to which all the properties of a system are 
fixed. Chemical, physical and biological systems can not be carried 
beyond the limits of thermodynamic equilibrium , which limits the 
possible ranges of chemical and physical conditions for the processes 
taking place in the system. 
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Conservation of mass, momentum and energy require that certain 
quantities be conserved in the process because of the mass, energy and 
momentum balances. The type and size specifications of process 
equipment of a system depend on the amounts of throughput and also 
on the rates at which physical, chemical and biological processes take 
place in the equipment. This concept is covered in the field of chemical 
and biological kinetics. 

A process can be feasible both thermodynamically and kinetically but 
can still be inoperable because of poor operating performance. This can 
be a result of uncontrollability of the process or because of uneconomic 
conditions. Therefore, control of a system for a satisfactory operating 
performance, physically and economically, is as important for the 
design and operation of a process system as the concept of equilibrium 
and rate of processes [25]. 

Process control is the regulation of chemical, physical and biological 
processes to suppress the influence of external disturbances, to ensure 
the stability of the process and to optimize the performance of the 
process. 

Some important features of process control can be listed as [25]: 

• The study of process control necessitates first the study of time-
dependent changes. The problems can not be formulated without a 
dynamic structure. The control of any process can only be studied 
by a detailed analysis of the unsteady-state behavior which can be 
obtained from the dynamic model of the process. 

• Also, process control systems are information-processing systems. 
They receive information, digest it, act on it and generate 
information as signals. 

• All process control systems are integrated systems of components, 
in which each component affects the overall performance of the 
system. Therefore, a global approach which considers the whole 
system and its environment as an entity is important. 

• Most process control systems are feedback systems in which 
information generated by the system are processed again to regulate 
the behavior of the system. 
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• Finally, the economical concerns should be among the performance 
objectives of the process control system. 

Process control systems in chemical, biological and physical process 
industries are characterized by constantly changing performance 
criteria, primarily because of the changes of the market demand. Also, 
these processes are highly nonlinear and can not be well modeled. 
Thus, the control has to be done to update the manipulated variables 
on-line to satisfy the changing performance criteria on the face of 
changing plant characteristics. Various control techniques based on 
different performance criteria and process representations are used to 
solve these problems. 

During the operation of a plant, several requirements must be satisfied 
and can be considered as performance criteria. Some of them are listed 
below [58]: 

1. Safety and environmental regulations, 
2. Product specifications, 
3. Operational constraints, 
4. Economics. 

These criteria must be translated to mathematical expressions in order 
to write a control law. They can further be classified as objectives 
(functions of variables to be optimized dynamically) and constraints 
(functions of variables to be kept within bounds). 

Translation of performance criteria to mathematical expressions may 
require some assumptions. These assumptions are made not only to 
simplify the solution of the problem, but also to make the problem 
manageable for implementation in the existing hardware. 

All controllers use a representation or a model of the process. 
Generally, in chemical and biological processes, models are nonlinear 
and also the model parameters are not well known. Thus there is always 
a mismatch between the model prediction and the actual process output. 
Additional reasons for the differences are due to changes in operating 
points and equipment. 
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Mismatches between a plant and its model result in unsatisfactory 
trading of the performance criteria. The tuning parameters can help the 
trade-off between the fast set point tracking and smooth manipulated 
variable response. It is always desirable to minimize the amount of on-
line tuning by using a model of the process at the design stage that 
includes a description of the uncertainties. 

Even if an uncertainty description is used, there is always a need for 
updating the model parameters on-line in an adaptive way. Model 
Predictive Controllers, MPC, are those controllers in which the 
control law is based on a process model [17]. MPC is a control scheme 
in which the controller determines a manipulated variable profile that 
optimizes some open-loop performance objective on a time interval 
extending from the current time to the current time plus a prediction 
horizon [15]. MPC is suitable for problems with a large number of 
manipulated and controlled variables, constraints imposed on both the 
manipulated and controlled variables, changing control objectives 
and/or equipment failure, and time delays. A model of the process is 
employed directly in the algorithm to predict the future process outputs. 

Usually, in many process control problems, system models are not well 
defined; either they are missing or system parameters may vary with 
respect to time. NNs are convenient for obtaining input-output models 
of systems since they are able to mimic the behavior of the system after 
training them. Even if the NN model or identification may have 
mismatches with the plant at the beginning, it becomes better and better 
as the on-line training progresses. Furthermore, on-line training makes 
the NN model handle the time varying parameter changes in the plant, 
directly. 

By training the NN to learn the “inverse model” of a plant it can be 
used as a “controller” for the plant. Also, NN controllers can be used in 
MPC structures both as estimator and/or controller parts. 

Since chemical and biological processes are usually very complex, 
instead of using NN alone in control of these processes, using them 
together with conventional approaches such as PI or PID control 
techniques or recent techniques such as rule based expert systems or 
fuzzy logic, in a hybrid manner, improves the performance of the 
overall controller. 
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3 Use of Neural Networks in Control 

In control systems applications, feedforward multi-layer NNs with 
supervised training are the most commonly used. A major property of 
these networks is that they are able to generate input-output maps that 
can approximate any function with a desired accuracy. NNs have been 
used in control systems mainly for system identification and control. 

In system identification, to model the input-output behavior of a 
dynamical system, the network is trained using input-output data and 
network weights are adjusted usually using the backpropagation 
algorithm. The only assumption is that the nonlinear static map 
generated by the network can adequately represent the system's 
dynamical behavior in the ranges of interest for a particular application. 
NN should be provided information about the history of the system: 
previous inputs and outputs. How much information is required 
depends on the desired accuracy and the particular application. 

When a multi-layer network is trained as a controller , either as an 
open-loop or closed loop, most of the issues are similar to the 
identification case. The basic difference is that the desired output of 
network, that is the appropriate control input to be fed to the plant, is 
not available but has to be induced from the known desired plant 
output. In order to achieve this, one uses either approximations based 
on a mathematical model of the plant (if available), or a NN model of 
the dynamics of the plant, or, even, of the dynamics of the inverse of 
the plant. NNs can be combined to both identify and control the plant, 
thus forming an adaptive control structure. 

We will now introduce some basic ways in which NN training data can 
be obtained in tasks relevant to control [37]: 

• Copying from an existing controller: If there is a controller 
capable of controlling a plant, then the information required to train 
a neural network can be obtained from it. The NN learns to copy 
the existing controller. One reason for copying an existing 
controller is that it may be a device that is impractical to use, such 
as a human expert. In some cases, only some finite input-output 
command pairs of a desired controller are known. Then an NN can 
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be trained to emulate the desired controller by interpolating these 
input-output command pairs. 

• System Identification: In the identification case, training data can 
be obtained by observing the input-output behavior of a plant. In 
more complex cases, the input to the model may consist of various 
delayed values of plant inputs and the network model may be a 
recursive one. 

• Identification of System Inverse: In this scheme, input to the 
network is the output of the plant and the target output of the 
network is the plant input. Once the plant inverse NN is obtained, it 
is fed by the desired plant output and its output is then the desired 
control input to the plant. The major problem with inverse 
identification is that the plant's inverse is not always well defined. 

• Model Predictive Controller:  First a multi-layer network is 
trained to identify the plant's forward model, then another NN, i.e., 
the controller, uses the identifier as the plant's estimator in an MPC 
structure. This scheme has an advantage of being an adaptive 
controller, but it necessitates the computation of the Jacobian of the 
identifier NN. 

There are many advanced networks for more complex system 
identification of control problems. The reader is referred to [3], [4], 
[37] for a list of references. 

The system identification part is the backbone of almost all 
neurocontroller architectures so we will discuss this concept in more 
detail for SISO plants suggested in [38]. These models have been 
chosen for their generality as well as for their analytical tractability. 
The models of the four classes of plants can be described by the 
following nonlinear difference equations: 

Model I: 
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Model II: 

∑
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Model III: 

�����������J�����������I��� +−++−=+ PNXNXQN\N\N\ SSS  
(3) 

Model IV: 

))1(),..,();1(),..,((f)1( +−+−=+ mkukunkykyky ppp  (4) 

where (u(k), yp(k)) represents the input-output pair of the plant at time k 
and f:Rn→R, g:Rm→R are assumed to be differentiable functions of 
their arguments. It is further assumed that f and g can be approximated 
to any desired degree of accuracy on compact sets by multilayer NNs. 
Due to this assumption, any plant can be represented by a generalized 
NN model. 

To identify a plant, an identification model is chosen based on prior 
information concerning the class to which it belongs. For example 
assuming that the plant has a structure described by model III, we have 
two types of identifiers: 

1. Parallel model: In this case, the structure of the identifier is 
identical to that of the plant with f and g replaced by the corresponding 
NNs, N1 and N2 respectively. This model is described by the equation 

���������������Ö������Ö����Ö
�� +−++−=+ PNXNX1QN\N\1N\ SSS  

(5)
 

2. Serial-parallel model: The model is described by the equation: 

���������������Ö������Ö����Ö
�� +−++−=+ PNXNX1QN\N\1N\ SSS  

(6)
 

When a plant is identified, a proper controller can be designed based on 
the identification model. When external disturbances and/or noise are 
not present in the system, it is reasonable to adjust the control and 
identification parameters simultaneously. However, when noise and/or 
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disturbances are present, controller parameter updating should be 
carried out over a slower time scale to ensure robustness. 

A number of applications of NNs to process control problems have 
been reported. A widely studied application involves a nonlinear-model 
predictive controller [5], [22], [23], [48], [49], [51], [65]. Piovoso et al. 
have compared NN to other modeling approaches for IMC, global 
linearization and generic model control and they have found that NNs 
give excellent performance in the case of severe process/model 
mismatch [46]. Seborg and co-workers have used radial basis function 
NN for nonlinear control and they have applied their approaches to 
simulated systems as well as an actual pH process [39], [47], [48], [49], 
[53]. They have found the NN based controllers to be superior to other 
methods in terms of their ease of design and their robustness. NNs are 
often viewed as black box estimators, where there is no attempt to 
interpret the model structure [61]. NNs have been used in nonlinear 
process identification [11], in IMC [13], [39], in adaptive control [7], 
[16], in tuning conventional PID controllers [63], and in both modeling 
and control of nonlinear systems [16]. The model adaptation of NN 
based nonlinear MPC has been studied in [29] and [30]. 

Narendra et al. explained how neural networks can be effectively used 
for identification and control of nonlinear dynamic systems, where an 
NN is trained by a backpropagation algorithm for adjustment of 
parameters [38]. They studied multilayer and recurrent NN in a unified 
configuration for modeling. Simulation studies on low order nonlinear 
dynamic systems showed that such modeling and control schemes are 
practically feasible and they proposed that the same methods can also 
be used successfully for the identification and control of multivariable 
systems of higher dimensions. 

Bhat et al. discussed the use of multilayer NN trained by back-
propagation algorithm for dynamic modeling and control of chemical 
processes [6]. They proposed two approaches for modeling and control 
of nonlinear systems. The first approach utilizes a trained NN model of 
the system in a model based control work frame and the second 
approach utilizes an inverse model of the plant extracted using NN in 
the internal model control structure. They implemented the first 
approach on a CSTR where pH is the controlled variable. Their results 
showed that NN is better in representing the nonlinear characteristics of 
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the CSTR than classical convolution model and, also, the controller 
performance is superior to convolution model-based control. 

Willis et al. discussed NN models from the process engineering point 
of view and explained some approaches for use of NN in modeling and 
control applications [65]. They considered some industrial applications 
whereby an NN is trained to characterize the behavior of the systems, 
namely industrial, continuous and fed-batch fermenters, and a 
commercial scale, industrial, high purity distillation column. They 
pointed out that NNs exhibit potential as soft sensors. They also 
explained a methodology for use of NN models in MPC structure to 
control nonlinear systems. The results of their simulation studies on a 
highly nonlinear exothermic reactor have indicated that although there 
are many questions to be answered about NN for optimum utilization 
(e.g., topology, training strategy, modeling strategy, etc.), NN are a 
promising and valuable tool for alleviating many current process 
engineering problems. 

Nguyen et al. have presented a scheme for use of NNs to solve highly 
nonlinear control problems. In their scheme, an emulator, which is a 
multilayered NN, learns to identify the dynamic characteristics of the 
system [41]. The controller, which is another multi-layered NN, learns 
the control of the emulator. Then this controller is used in order to 
control the actual dynamic system. The learning process of the 
emulator and the controller continues during the control operation so as 
to improve the controller performance and to make an adaptive control. 

Tan described a hybrid control scheme for set point change problems 
for nonlinear systems [59]. The essence of the scheme is to divide the 
control into two stages, namely, a coarse control stage and a fine 
control stage, and use different controllers to accomplish a specific 
control action at each stage. For the coarse stage, a modified multilayer 
NN with backpropagation training algorithm is used, which drives the 
system output into a predefined neighborhood of the set point. The 
controller then switches to the fine control stage at which a 
linearization of the system model is identified around the current set 
point, and is controlled with an appropriated PID controller. Simulation 
results have shown that there are some difficulties that can be faced in 
the development of such a hybrid control scheme, such as the criteria 
for the controller switching stages, and the possibility of abrupt changes 
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in control input in the controller switching phase. The applicability of 
this control scheme to nonlinear control problems is discussed. 

Dreager et al. have proposed a new nonlinear MPC algorithm for 
control of nonlinear systems [13]. For the prediction step, their 
algorithm utilizes a NN model for a nonlinear plant. They have applied 
this algorithm to a pH system control and also a level control system. 
They have compared the performance of their nonlinear MPC 
algorithm with that of a conventional PI controller on these two 
systems. Results have indicated that the proposed controller 
outperforms with respect to the PI controller. 

Hamburg et al. examined various methods, especially NN, with respect 
to their use to detect nuclear material diversions, considering speed and 
accuracy [19]. The NN technique is enhanced with the use of a 
computer simulation program for creating the training data set. This 
simulation approach provided the opportunity of including outliers of 
various types in a data set for training the NN because an actual process 
data set used for training possibly might not have outliers. They 
compared the methods on their ability to identify outliers and reduce 
false alarms. These methods were tested on data sets of nuclear 
material balances with known removals. The results obtained by the 
NNs were quite encouraging. 

Sablani et al. used NNs to predict the overall heat transfer coefficient 
and the fluid to particle heat transfer coefficient, associated with liquid 
particle mixtures, in cans subjected to end-over-end rotation [50]. 
These heat transfer coefficients were also predicted by means of a 
dimensionless correlation method on the same data set. The results 
showed that the predictive performance of the NN was far superior to 
that of dimensionless correlations. 

Noriega and Wang presented a direct adaptive NN control strategy for 
unknown nonlinear systems [43]. They described the system under 
consideration as an unknown NARMA model, and a feedforward NN 
was used to learn the system. Taking NN as a neuro model of the 
system, control signals were directly obtained by minimizing either the 
instant difference or the cumulative differences between a set point and 
the output of the neuro model. They applied the method in flow rate 
control and successful results were obtained. 
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Since 1990, there are too many academic papers on NN controllers and 
applications in process control, though there are a few real applications. 
Nowadays advantages and disadvantages of NNs have been well 
understood. New studies, such as hybrid structures, are constructed in 
which NNs can appear in several stages emphasizing their advantages. 

In the following sections four case studies are presented to show the 
applications of NNs in conjunction with other techniques for control of 
complex processes. 

4 Case Study I: pH Control in 
Neutralization System 

pH control problem is very important in many chemical and biological 
systems and especially in waste treatment plants. The neutralization 
process is very fast and occurs as a result of a simple reaction. 
However, from the control point of view it is a very difficult problem to 
handle because of its high nonlinearity due to the varying gain (in the 
range of 1 up to 106) and varying dynamics with respect to the 
operating point (see Figure 1). Introduction of NNs in modeling of 
processes for control purposes is very useful due to their flexibility in 
applications. 

 
Figure 1.  Titration curve of strong acid – strong base system. 
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In the literature, dynamic mathematical models of pH systems are 
available [18], [36]. Many control algorithms have been applied to pH 
control including adaptive, linear model-based, nonlinear internal 
model, and nonlinear generic model [10], [21], [45], [54], [55]. 

In this section, a control system having a neuro estimator and a neuro 
controller is presented and it is used in the control of a pH neutral-
ization system [40]. 

4.1 Neutralization System 

The neutralization system is a highly nonlinear one, whose nonlinearity 
is reflected in the S shape of the titration curve given in Figure 1. The 
stirred tank neutralization system that we considered is shown in Figure 
2. It has a feed which is composed of one component (acid) and a 
titrating stream (base). For simplicity, perfect mixing is assumed and 
the level is kept constant. 

∞

Acid
F1, C1

Base
F2, C2

pH

FT

 
Figure 2.  Scheme for the pH process for nonlinear neutralization system. 

The material balance can easily be written as [35] 

   211122   ) C F   - (F C F  C F 
dt

dC
V H

H ++=  (7) 

Assuming the neutralization reaction is very fast, the equilibrium 
equation can be written as follows [66]: 

21 CCC
C

K
H

H

w +=+  (8) 
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Using Equations (7) and (8) the change of hydrogen ion concentration 
can be written as 
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and 

)log(pH HC−=  (10) 

where 

 C1 = concentration of acid (M) 
 C2 = concentration of base (M) 
 F1 = flow rate of acid (lt/min) 
 F2 = flow rate of base (lt/min) 
 CH = concentration of hydrogen ion (M) 
 V = volume of tank (lt) 
 Kw = water dissociation constant = 1×10–14 

Nominal values are 
 C1s = 0.01 M; 
 C2s = 0.01 M; 
 F1s = 0.3 lt/min; 
 V = 3 lt 

CH is the process state variable while F2 is selected as the manipulated 
variable. 

4.2 Neural Network Control of the Neutralization 
System  

The structure of the NN controller system is shown in Figure 3. The 
controller system has a NN controller and a NN estimator. 

The estimator is trained by taking the error between the desired plant 
output and the estimator output. On the other hand the controller is 
trained by taking the error between the estimator output and a reference 
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point. So the controller assumes that the estimator output matches the 
plant output. 

 y re
+ 

  – 

PLANT 
NN 

CONTROLLER 

NN 
ESTIMATOR 

u(k) y(k) 

 + 

– 

y(k+1) 

Performance 
measure 

adapt 
∝ 

 
Figure 3.  NN controller system used for the neutralization system. 

The neural estimator is a multilayer feedforward NN with 10 neurons in 
the input layer, 20 in the hidden layer and one in the output layer. The 
values of the initial weights are chosen randomly between –0.1 and 0.1. 
The backpropagation algorithm is used to train the network. The value 
of learning rate α is decided by using 1-dimensional search. The input 
vector for the neuro estimator is chosen as: 

[ ]������������������� PNXNXNXPN\N\N\N −−−−=[  (11) 

and the output is yestimated(k+1). 

After training the neural estimator the controller starts and the window 
data for the estimator are updated. The neural controller is also a 
multilayer feedforward NN with 10 neurons in the input layer, 10 in the 
hidden layer and one in the output layer. The values of the initial 
weights are chosen randomly between –0.1 and 0.1. The input of the 
neuro controller is  

[ ]������������������ PNXNXNXPN\N\N\N −−−=[  (12) 
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and the output is u(k+1). 

Again the backpropagation algorithm is used for training the neuro 
controller; however, learning rate α is chosen as a function of the 
square of the error, Pk. At sampling time, k, α is calculated as a 
function of the Pk, according to the set of linguistic rules: 

 If  Pk is LARGE then α  is 0.1. 
 If  Pk is MEDIUM then α  is 0.01. 
 If  Pk is SMALL then α  is 0.001. 

The linguistic variables for Pk can be chosen as fuzzy sets, but here 
they are divided arbitrarily into regions as 

 LARGE = [25 – 16] 
 MEDIUM = [16 – 09] 
 SMALL = [09 – 00] 

4.3 Results 

The NN control system described in Section 4.2 is used for control of 
the neutralization system. Also a PID controller is designed for 
comparison. These controllers are compared for set point tracking and 
disturbance rejection cases. 

In set point tracking the initial steady state point in pH is taken as 2.0 
and a change of 5.0 is considered to reach a neutral point of pH = 7.0. 

In disturbance rejection the system is considered to be at the neutral 
point at the start as pH of 7.0 and then a –20% load change is given to 
the flow rate of acid at t = 25 min and a +20% change is given to the 
concentration of the base solution at t = 100 min to test the performance 
of the controllers. 

4.3.1 Conventional PID Controller Performance 

Tuning of the PID controller is done with Ziegler-Nichols rules [36], 
[52]. The responses of the system for set point tracking and disturbance 
rejection are given in Figures 4 and 5. It is seen that the conventional 
PID controller has failed to control the neutralization system. 
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4.3.2 NN Controller Performance 

The output of the neural estimator in comparison with the actual plant 
output is shown in Figure 6 for different inputs. The responses of the 
NN controller for set point tracking and disturbance rejection are given 
in Figures 7 and 8. 

As can be seen in Figure 7 despite the oscill ations seen in the first 40 
minutes the NNC brings the system to set point and is better than a 
conventional PID. It is seen from Figure 8 that NNC works better for 
disturbance rejection compared to set point tracking. 

 
Figure 4.  Set point tracking by PID Controller. 

 
Figure 5.  Disturbance rejection by PID Controller. 
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Figure 6.  Neural estimator output and actual output for different inputs. 

 
Figure 7.  Set point tracking by NN Controller. 
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Figure 8.  Disturbance rejection by NN Controller. 

5 Case Study II: Adaptive Nonlinear-
Model Predictive Control Using Neural 
Networks for Control of High Purity 
Industrial Distillation Column 

In recent years, considerable interest has been devoted to a special class 
of model based control techniques referred to as Model Predictive 
Control (MPC) [15], [17]. The basic idea behind MPC algorithm is to 
use a process model to decide how to adjust the available manipulated 
variables, in response to disturbances and changing production goals. 
Control design methods based on the MPC concept have gained high 
popularity due to their ability to yield high performance control 
systems. The distinctive feature of the MPC technique is to predict the 
future behavior of the process outputs based on a non-parametric 
model, namely, impulse response or discrete convolution model. These 
can be directly and easily obtained from samples of input-output data 
without assuming a model structure. Therefore, the MPC technique is 
especially useful for processes exhibiting unusual dynamic behavior 
[13]. 

MPC technique is based on a linear model and, therefore, it is not very 
well suited for the control of nonlinear systems. Because of this, there 
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have been numerous efforts to extend the linear MPC technique for the 
control of nonlinear systems [8], [33]. 

In this work, a new Adaptive Nonlinear-Model Predictive Controller 
(AN-MPC) utilizing a NN in the MPC work frame is proposed for the 
adaptive control of nonlinear SISO systems. This technique is used in 
the control of top-product composition of a distillation column as an 
application [26], [27]. 

5.1 Multicomponent High Purity Distillation 
Column 

The performance of the proposed controller is tested on an industrial 
multi-component high-purity distillation column using an unsteady-
state simulation program. The simulation used represents the 
distillation column in the catalytic alkylation section of the styrene 
monomer plant of YarÕmca Petroleum Refinery, in Izmit, Turkey. In 
this case study, instead of obtaining the off-line training data from the 
actual system, the simulator is used because of practical reasons. Since 
it is a high purity distillation column, it exhibits highly nonlinear 
characteristics. The unsteady-state simulation package, which is named 
as DAL, is developed by Alkaya, in 1991 [2]. 

The distillation column, which has 52 valve trays, was designed to 
separate Ethyl-Benzene (EB) from a mixture of Ethyl-Benzene, 
Methyl-Ethyl-Benzene and Di-Ethyl-Benzene having a mole fraction 
0.951, 0.012 and 0.037 respectively with a desired top product 
composition of 0.998. In the process, the top product composition of 
Ethyl-Benzene is controlled by manipulating the reflux rate as shown in 
Figure 9. 

5.2 Adaptive Nonlinear-Model Predictive 
Controller Using Neural Networks 

5.2.1 Linear Model Predictive Controller 

Linear MPC technique may utilize an impulse response model as 
shown in equation (13) to predict the future behavior of the controlled 
output as a function of the respective manipulated variable. 
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Figure 9.  Distillation column. 
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where 

C
^

 n+1 represents the predicted value of the output for the n+1th 
sampling, 

Cn represents the actual value of the output at nth sampling, 
hi’s represent the impulse response coefficients relating the 

controlled output to step changes in manipulated variable, 
T represents the MPC model horizon, which determines the 

number of impulse response coefficients, 
∆mi’s represent the implemented step changes in manipulated 

variable along model horizon prior to n+1th sampling. 

Defining rn+1 as the set point of the output for the n+1th sampling, the 
linear MPC law based on equation (13) is formulated as follows: 
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In equation (14), ∆mn, which is the value of the step change in 
manipulated variable at nth sampling, is computed to bring the predicted 
response to set point at n+1th sampling. 

5.2.2 Nonlinear-Model Predictive Controller 

While the impulse response coefficients, hi, obtained for a linear system 
at an operating point can be successfully used for other points, they can 
only be used for a nonlinear system by local linearization. Thus, there 
will always be a deviation between the predicted values of the output 
and the actual system output in nonlinear systems. Therefore, in such 
systems, this deviation may result in poor control performance when 
equation (14) is used directly. 

However, if the modeling error that comes out at n+1th sampling is 
estimated somehow, then the linear MPC law can be re-formulated to 
obtain nonlinear MPC law as given below: 

i

T

i
ininnnn hmhCPrm /)(

2

*
111

* ∑
=

−+++ ∆−−−=∆   (15) 

where ∆m* 's are the step changes in manipulated variable, and Pn+1 is 
the deviation at n+1th sampling as defined below: 

111
ˆ

+++ −= nnn CCP  (16) 

5.2.3 Adaptive Nonlinear-Model Predictive Controller via Neural 
Networks 

A Nonlinear-Model Predictive Controller (NMPC) based on equation 
(15) can be used to control a nonlinear process, unless there is a change 
in the process conditions. However, if the system parameters change 
during control operation, then the process model must be adapted to 
reflect the changes through the use of the estimator for Pn+1. 
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In the NMPC structure, the process is represented by a combination of 
a linear model and a NN model. The NN used in the NMPC provides 
an estimate for the deviation between the predicted value of the output 
computed via linear model and actual nonlinear system output, at a 
given sampling time. The adaptation of the process model is achieved 
by updating the NN model via on-line training using the real-time data 
obtained from the process. Therefore, by continuously training the NN 
for changes in process dynamics, the NMPC can be used as an 
Adaptive Nonlinear-Model Predictive Controller (AN-MPC) without 
any further modification. The resulting AN-MPC structure is shown in 
Figure 10. 

m
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Linear MPC Nonlinear
Process

C

ANMPC

 
Figure 10.  AN-MPC Structure using NN. 

In this control structure, the NN is trained at each sampling time, with 
the present and T previous values of system input-output data with 
respect to the deviation. Trained NN is used to estimate deviation 
between the predicted and the actual value of the output. Consequently, 
AN-MPC computes the value of the manipulated variable, which 
should be implemented at the present sampling time using equation 
(15). The NN used in this study is a multi-layer feed-forward NN as 
shown in Figure 11. 

Input vector to NN, Uk∈R2T+1, is composed of two sub-input vectors: 
present and T past values of output and input of the nonlinear system. 

[ ]T**
1

*
1 ,..,,,,..,, TnnnTnnn

k mmmCCC −−−−=U  (17) 
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As explained before, the NN is trained such that its output vector, 
which has a single element Pn+1, is the deviation of the nonlinear model 
from its linear MPC model for next sampling. 

Since the deviation Pn+1 is a function of present and past values of the 
process input and output, these two components of the input vector are 
shifted in a forward direction at each sampling. 

The training of NN is done using backpropagation algorithm. Two 
types of training strategies, off-line training and on-line training, are 
used in this particular application. In off-line training the NN is trained 
to obtain the deviation around an initial operating point prior to control 
operation. The data required for this are obtained by utilizing a step 
response experiment where K consecutive step inputs are applied to the 
system, in the open-loop. That is, the system output resulting from K 
consecutive step inputs (one step change at each sampling) is observed 
and compared with the MPC prediction, at each sampling. The 
difference among them constitutes the deviation for each sampling. 

In on-line training NN is continuously trained to obtain the deviation 
using on-line data for adaptive control purposes using AN-MPC. Thus 
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at each sampling, actual output is observed and compared with its 
predicted value to compute the deviation. Then, this input-output and 
deviation data obtained from the system are used to train the NN, at 
each sampling. 

5.3 Identification 

The first step in the development phase of the AN-MPC for the 
distillation column is identification, where impulse response 
coefficients representing the relationship between reflux rate and EB 
composition at the top at a sampling period ∆t are determined. 
Consequently, when a unit step input is given to the reflux rate, the top 
product EB mole fraction changes from 0.9988 to 0.9995 within 7.06 
hours which is the response time of the process (Figure 12). 

Therefore, settling time of the process is found to be 6.5 hours. Since, 
the settling time is too large, the model horizon, T, is chosen as 50. 
From this, sampling period is calculated as 0.13 hours (7.8 minutes) 
and impulse response coefficients are determined as given in Table 1. 

Having determined the impulse response coefficients and MPC model 
horizon, T, the discrete convolution model (Equation 13) relating top 
product EB mole fraction to reflux rate is found, where C and ∆m stand 
for top product EB mole fraction and step change in reflux rate, 
respectively. 
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Figure 12.  Unit Step Response. 
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Table 1.  Impulse Response Coefficients. 

i hI ×105 i hI ×105 i hI ×105 i hI ×105 i hI ×105 

1 2.7 11 2.8 21 1.2 31 0.6 41 –0.2 
2 3.3 12 1.8 22 1.9 32 1.6 42 0.8 
3 2.4 13 2.4 23 1.4 33 0.6 43 0.8 
4 2.4 14 2.0 24 0.4 34 0.5 44 –0.2 
5 3.4 15 1.0 25 1.4 35 0.6 45 0.8 
6 2.6 16 2.0 26 1.4 36 0.6 46 0.8 
7 2.6 17 1.6 27 0.4 37 0.6 47 –0.2 
8 2.6 18 2.2 28 1.4 38 0.5 48 0.8 
9 2.3 19 1.2 29 0.8 39 0.8 49 –0.2 
10 1.8 20 1.2 30 0.6 40 0.8 50 0.8 

 

5.4 Development of the Neural Network Model 

The second step in the development of AN-MPC is the development of 
a NN model representing the deviation of the linear MPC model from 
the actual (nonlinear) system through off-line training. This is 
accomplished in three steps: 1. Obtaining the training data for the NN 
by utilizing an open-loop step response experiment; 2. Determination 
of a suitable NN architecture by following a trial and error procedure; 
3. Off-line training of NN by using the data obtained in the first step. 
This enables the NN model to operate satisfactorily at the start. 
Otherwise, the initial modeling uncertainty for the NN can be too large 
and the system may become unstable at the beginning of the control 
operation. 

The off-line training data for NN model are obtained through a step 
response experiment where 50 arbitrary consecutive step changes are 
introduced to manipulated variables as shown in Table 2, and the 
response is observed as shown in Figure 13. At each sampling time, by 
using the linear model of equation (13), the system response, and 
equation (16), deviation of linear model predictions from the actual 
output is calculated. Then, using these data the training vectors for the 
NN are created. 

A 10–8 order of magnitude error in Pn+1 results in a 10–3 order of 
magnitude change in the control input, which is acceptable for this 
application. Therefore training of the NN is terminated when the error 
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in training is less than or equals to 1×10–8. Since the model horizon, T, 
is chosen as 50, the number of nodes in the input layer is 102. By 
following a trial-error procedure a suitable NN architecture satisfying 
the training-stop criteria is determined as a three-layered feed-forward 
NN, having 104 and 50 nodes in the first and second hidden layers with 
sigmoid type activation functions, and an output node with an identity 
type activation function. 

Table 2.  Step Changes in Reflux Rate. 

t 

(h) 

∆m 

(lbmol/h) 

t 

(h) 

∆m 

(lbmol/h) 

t 

(h) 

∆m 

(lbmol/h) 
0.00 2.10 2.21 0.21 4.42 2.10 
0.13 2.20 2.34 0.19 4.55 2.20 
0.26 –0.20 2.47 0.78 4.68 4.40 
0.39 –0.14 2.6 1.78 4.81 –1.10 
0.52 –6.00 2.73 1.90 4.94 –2.20 
0.65 –4.50 2.86 1.30 5.07 –3.20 
0.78 2.10 2.99 1.40 5.20 –0.19 
0.91 2.20 3.12 –0.17 5.33 –0.21 
1.04 4.40 3.25 –0.19 5.46 –3.45 
1.17 –1.10 3.38 –0.70 5.59 –2.78 
1.30 –2.20 3.51 –0.50 5.72 –0.19 
1.43 –3.20 3.64 2.10 5.85 0.21 
1.56 –0.19 3.77 2.20 5.98 0.19 
1.69 –0.21 3.90 –0.20 6.11 0.78 
1.82 –3.45 4.03 –0.14 6.24 1.80 
1.95 –2.78 4.16 –6.00 6.37 1.90 
2.08 –0.19 4.29 –4.50   
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Figure 13.  Response of the Distillation Column to changes given in Table 2. 
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5.5 Control Application 

After obtaining the linear MPC model, model horizon and NN model, 
which represents the deviation of linear MPC model from the actual 
system, these two models are combined in an MPC workframe. AN-
MPC is obtained, in which on-line training of NN is maintained 
continuously to adapt the controller for changes in process operating 
conditions. The AN-MPC is tested for its set point tracking and 
disturbance rejection capabilities. In order to test the performance of 
the AN-MPC and compare it with that of linear MPC for disturbance 
rejection capability, the Ethyl-Benzene (EB) mole fraction in feed 
composition was decreased by 3% (from the steady-state value of 
0.9513 to 0.9228), keeping relative mole fractions of Di-Ethyl-Benzene 
and Methly-Ethyl-Benzene constant. The open-loop response of the 
process, for this –3% disturbance in the feed composition, is given in 
Figure 14. 
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Figure 14.  Open-loop Response. 

The closed-loop response of the process with the linear MPC and the 
corresponding control inputs are given in Figures 15 and 16, 
respectively. The closed-loop response of the process with AN-MPC 
and corresponding control inputs are given in Figures 17 and 18, 
respectively. 

As it can be seen from Figure 14, when –3% disturbance is introduced 
to EB mole fraction in feed, the EB mole fraction in top product 
changes from 0.9988 to 0.9797 within 7 hours. When the linear MPC is 
used to control the system, the controlled response shows some 
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deviation from set point (Figure 15) and control input is very 
oscillatory (on-off type) changing between zero reflux and total reflux. 
Obviously, such behavior of the reflux rate for a distillation column is 
not practically acceptable. Whereas, when the AN-MPC is used to 
control the system, the controlled response, as shown in Figure 17, 
shows little deviation from the set point and, in this case, it matches the 
set point after 5 hours. Furthermore, the control input (Figure 18) 
exhibit much smoother behavior than that of linear MPC and they 
change within reasonable limits. 
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Figure 15.  Closed-loop response of the distillation column, which is under 
control of linear MPC, to a –3% step change in EB Feed Composition. 
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Figure 16.  Control actions (reflux rate changes) of linear MPC for a –3% step 
change in EB feed composition. 

In order to test performance of the AN-MPC and to compare it to that 
of linear MPC for set point tracking capability, the set point is changed 
in the EB mole fraction from 0.9988 to 0.9900. For this change, the 
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closed-loop response and respective control actions of linear MPC are 
as shown in Figures 19 and 20, and the closed-loop response and 
respective control actions with AN-MPC are shown in Figures 21 and 
22 respectively. 
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Figure 17.  Closed-loop response of the distillation column, which is under 
control of AN-MPC, to a –3% step change in EB feed composition. 
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Figure 18.  Control actions (reflux rate changes) of AN-MPC for a –3% step 
change in EB feed composition mole fraction. 

As can be seen from the Figures 19 and 20, the controlled output using 
linear MPC is oscillatory and does not match with the new set point and 
the respective control input shows high oscillations. However, control 
input of AN-MPC is quite smooth and exhibits very small oscillations 
compared to that of linear MPC. Furthermore, the output controlled 
with the AN-MPC matches the set point within 6 hours with a very 
small oscillation compared to that of linear MPC as it can be observed 
in Figures 21 and 22. 
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Figure 19.  Closed-loop response of the distillation column, with linear MPC, 
to a set point change of –0.0088 in EB. 
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Figure 20.  Control actions (reflux rate changes) of linear MPC for a set point 
change of –0.0088 in EB mole fraction. 
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Figure 21.  Closed-loop response of the distillation column, with AN-MPC, to 
a set point change of –0.0088 in EB mole fraction. 
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Figure 22.  Control actions (reflux rate changes) of AN-MPC for a set point 
change of –0.0088 in EB mole fraction. 

6 Case Study III: PI Controller for a 
Batch Distillation Column with Neural 
Network Coefficient Estimator 

The main problem with the conventional PI type controllers is the 
determination of proportional and integral coefficients for each 
operating (bias) point. In this section, a control method in which a NN 
is incorporated as an online parameter estimator for the PI-type 
controller is proposed and used in the control of a binary batch 
distillation column [60]. 

6.1 Binary Batch Distillation Column 

Batch distillation is an important unit operation where small quantities 
of high technology/high value added chemicals and bio-chemicals are 
to be separated. The other separation unit, which is widely used in the 
chemical industry, is the continuous distillation column. Unlike batch 
distillation, the mixture, which is separated, is continuously supplied to 
the column in the continuous distillation case. The most outstanding 
feature of batch distillation is its flexibility. This flexibility allows one 
to deal with uncertainties in feed stock or product specification. The 
operation of a batch distillation column can be described as three 
periods: start up, production and shutdown periods. The column usually 
runs under total reflux in the start up period until it reaches the steady 
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state where the distillate composition reaches the desired product purity 
[12], [35]. 

We will  consider a basic separation system as depicted in Figure 23. 
This column is used to separate two components in the liquid mixture 
by taking advantage of the boiling points; that is, the component with 
the lower boiling point will tend to vaporize more readily and therefore 
can be selectively collected in the vapor boiled off from the liquid [35]. 

The basic requirement of the simulation to be developed is to compute 
the overhead or distillate composition (condenser product) as a function 
of time. If we consider a binary mixture, the lighter component will 
have a higher composition in the distillate than in the kettle (bottoms). 
However as the total amount of binary is reduced due to continued 
withdrawal of the distillate, the concentration in the light component in 
the distillate will decrease and get to an eventually low level. This 
decrease in the more volatile component concentration while inevitable 
can be delayed by increasing the reflux ratio during the distillation at 
the expense of the distillate (product) flow rate. 

 

Condenser 

Controller 

M b 
x b 

M D 

R 

Output 

 
Figure 23.  Binary batch distillation column with composition controller. 

Dynamic simulation of the batch distillation column and investigation 
of an automatic control system for distillate composition have been 
done in the study by using the assumptions [35]: 

1. Reflux drum and tray holdups are constant; 
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2. Binary system with constant volatility; 
3. Equimolar overflow; 
4. Vapor-liquid equilibrium is attained in each tray; 
5. Vapor holdup is negligible when compared with liquid holdup. 

The variables for the column model are: 
 
 H =  Liquid holdup (mole) 
 G =  Vapor holdup (mole) 
 L =  Liquid flow rate (mole/sec) 
 R =  Reflux rate (mole/sec) 
 Mb  =  Kettle holdup (mole) 
 C =  Condenser holdup (mole) 
 t =  Time (sec) 

At liquid phase, total molar balance for the plate i is given by 

LL

L
//

GW

G+
−= +�  (18) 

Since Hi is assumed to be constant, thus dHi/dt = 0, we conclude that 
Li+1 = Li = Li–1 = L1 = R. In nth tray the vapor phase total molar balance 
gives 

LL 99
GW

G*L −= +�  (19) 

Since the vapor holdup is assumed to be constant, Vi+1 = Vi = Vi-1 = ... = 
V1 = V. Total molar balance for the kettle gives 

VR
dt

dMb −=  

Mb(0)=Mb
0 (20) 

Since dMb/dt ≠ 0 the total amount of liquid in the kettle changes 
significantly with time. The component balance for the kettle, trays, 
and condenser gives: 
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Kettle: 

( )
b

bb VyRx
dt

xMd
−= 1

 (21) 

Mb(0) xb(0) = Mb
0 xb

0 

Plate 1: 

112
1 VyRxVyRx

dt

dx
H b −−+=  (22) 

x1(0) = xb
0 

where H is the constant liquid holdup on each of the trays. The initial 
liquid composition on each of the trays is taken as the initial kettle 
composition xb

0, which would occur if the column is initially charged 
with a single liquid. 

Plate 2: 

2213
2 VyRxVyRx

dt

dx
H −−+=  (23) 

x2(0) = xb
0 

Plate i: 

iiii
i VyRxVyRx

dt

dx
H −−+= −+ 11

 (24) 

xi(0) = xb
0 

Plate N: 

111G
1 9\5[9\5[

GW

G[
+ −−+= −�  (25) 

xN(0) = xb
0 

Condenser: 

GQ
G 5[9\

GW

G[
& −=  (26) 

xd(0) = xb
0 
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The vapor phase concentrations are calculated from the simple vapor 
liquid equilibrium relation based on the relative volatility α (Raoult’s 
Law). 

L

L

L
[

[
\

���� −+
=

α
α

 (27) 

All the equations given above are used to compute the bottoms holdup 
Mb(t), and still composition xb(t), the plate compositions x1(t), x2(t), ... , 
xi(t), ... , xN(t) and the distillate composition xd(t) [35]. In this study, 
there are 13 trays in the batch distillation column. 

There are two basic operation methods for the batch distillation 
column. The first one is constant reflux rate and variable product 
composition. The second one is variable reflux and constant product 
composition of the key component (top product in this case). In this 
study the aim is to achieve desired constant product composition. 
Therefore, reflux ratio, R, should be changed during the batch 
distillation operation. In literature, different methods have been applied 
to the distillate control problem. The majority of these efforts tried to 
solve the problem by using optimal control techniques. In these studies, 
Pontryagin’s maximum principle was used in order to maximize the 
distillate composition [57]. 

If the column at a bias point is uncontrolled, then the distillate 
composition xd(t) would drop off substantially after some time, where it 
should remain at the relatively high value to give a product of the 
required purity. In order to remedy this situation we will add to the 
model the equations for an automatic control system. 

Basically a feedback configuration is considered for the control 
purpose. The term ‘feedback’ comes from the way in which such a 
controller works. The variable to be controlled, in this case the distillate 
composition xd(t), is sensed (measured) and then compared with the 
desired value, the set point xdset, to form an error e(t). 

e(t) = xdset – xd(t) (28) 

An ideal controller would keep the error at zero e(t) = 0, for which the 
distillate composition would equal the set point xdset = xd(t). However, a 
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real controller can not achieve this ideal performance, and it is 
attempted to design a controller that comes as close as possible to this 
ideal. 

Once the controller generates the error, it is used to modify the 
manipulated variable within the system to be controlled. In this case the 
manipulated variable is the reflux rate, R. The manipulation of R will 
be done according to the controller equation, 

∫++=
t

I
css edt

T
eKRR

0

)
1

(  (29) 

where 
 Rss = steady state reflux 
 Kc = controller gain 
 TI = controller integral time 

This equation describes the action of a proportional integral controller; 
the first term, Kce, is the proportional part and the second term, 

( )∫
t

Ic edtTK
0

/  (30) 

is the integral part. We will now consider briefly how each of these 
sections contribute to the controller of the reflux rate, R. If we had an 
ideal situation in which the error is always zero, the controller equation 
simply reduces to R = Rss and the reflux rate would be equal to the 
steady state value; that is, the batch distillation column would be 
operating in such a way that the distillate composition is always equal 
to set point (from error equation). 

This situation could never be achieved in practice since the batch 
distillation column operates in an unsteady state so that xd(t) is always 
changing with time and, therefore, does not remain at the set point xdset. 
If the distillation column has some error e(t) ≠0, the proportional term 
will change the reflux rate, R, according to the equation R = Rss + Kce. 
If the error is positive xdset > xd (t), so that the distillate composition is 
too low, the proportional control term will increase R, which is the 
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correct action in order to increase xd(t). On the other hand if the error is 
negative corresponding to xdset < xd(t), the reflux rate, R, is reduced by 
the proportional control term, which again is the correct action to 
reduce xd(t). Thus the proportional control action always moves the 
reflux rate, R, in the right direction to bring xd(t) closer to the set point 
xdset. The integral control action removes the offset or steady state error. 
However, it may lead to an oscillatory response of slowly decreasing 
amplitude or even increasing amplitude, both of which are undesirable 
[44]. In the rest of the discussion proportional constant Kc is denoted as 
Kp and the integral term Kc/T is denoted as KI. In the following section, 
the role of the NN in the control method of the batch distillation 
column is explained. Furthermore, several simulation results are also 
given. 

6.2 PI Controller with Neural Network as a 
Parameter Estimator 

The main problem with the PI type controller is the determination of 
proportional and integral constants (Kp, KI) for each operating (bias) 
point. In order to solve this problem, a NN parameter estimator is 
incorporated into PI control method as shown in Figure 24. 

 

y ref 

+ 

   – 

PLANT 

PI 
CONTROLLER 

u ( k ) y ( k ) 

NN 
parameter estimator 

K p , K I 

e ( k ) 

y init 
    off-line 
training 

 
Figure 24.  The structure of the PI controller with NN parameter estimator. 
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The NN shown in Figure 25 is trained for parameter estimation. 
Actually, the aim of the neural network is to make an interpolation 
among the operating points of the distillation column and produce the 
related integral and proportional constants. Hence, a training pair for 
the neural network is in the form of ([yinitial, yref], [KI, KP]). The initial 
and desired bias points actually refer to the initial material 
concentration and the desired material concentration at the top tray. 
After training, the neural network can be used as an online parameter 
estimator for the PI-type controller. As an alternative point of view, the 
bias points can be seen as the antecedent and the corresponding integral 
and proportional constants can be seen as the consequent part of an If-
Then rule. In this case NN performs an interpolation in the rule space 
of the system. 

Hidden
Layer

Input
Layer

Output
Layer

Kp

KI

Bias
Point

Desired
Point

 
Figure 25.  Neural network for parameter estimation. 

6.3 Results 

In this study, the number of the training pairs is 20 and the training 
algorithm is the standard backpropagation algorithm. After 50 epochs 
the mean-square error was reduced to 0.0001. Figure 26 shows a 
simulation result produced by NN and PI control. The initial 
concentration for the distillate is 0.5 and the desired concentration is 
0.9. NN produced the proportional and integral constants as 8 and 12. It 
can be seen from the graph that the produced constants yield a 
satisfactory result. The steady state error is approximately 0.5%. 
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Figure 26.  Distillate composition, xd vs time. 

 
Figure 27.  Reflux ratio versus time. 

In Figure 27, the corresponding reflux change is given. At the 
beginning of the operation, reflux ratio decreases in order to increase 
the distillate composition. After distillate composition reaches its 
steady state, reflux ratio increases in order to fix the distillate ratio to 
set point value. It should be noted that, since batch distillation column 
is used in this study, the material in the still decreases with time. 
However, the simulation duration is not sufficiently long to observe the 
fall in the composition in our cases. 
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Since the amount of maximum overshoot is small, the relative stability 
of the system is quite good. Figure 28 shows the other two simulations. 
In the upper part of the Figure 28a, initial distillate composition is 0.5 
and the desired (final) composition is 0.8. NN produced the 
proportional and integral constants as 30 and 20 respectively. In this 
case, the steady state error is zero; so the PI controller with estimated 
parameters worked better than the case as shown in Figure 26. The 
lower part of the Figure 28b shows the simulation results with the 
initial composition 0.5 and final composition 0.85. It can be seen that 
desired composition is achieved by the PI control with the help of the 
NN. 

 
Figure 28.  Distillate composition versus time. 

In this study, controller parameters are tuned experimentally to achieve 
fast rise time and small steady-state error and they are used in training 
the NN. However, some conventional techniques such as the Ziegler-
Nichols method can be used for tuning. 
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7 Case Study IV: A Rule-based Neuro-
Optimal Controller for Steam-Jacketed 
Kettle 

In this section, a new method is proposed for the optimal control of 
multi-input multi-output (MIMO) systems. The method is based on a 
rule-base derived optimally, which is then interpolated by neural 
networks. 

The design of controllers for MIMO systems has always been a hard 
problem even for the linear ones [56]. The only prevailing idea used in 
the control of linear MIMO system is decoupling, if possible at all. 
During the last decade there have been serious attacks on this problem 
by methods that are especially constructed to control nonlinear plants, 
such as neuro-control and sliding mode control techniques [1], [34], 
[42], [56], [62]. Most of these techniques are quite complicated and 
possibly work for a particular case only. 

The fuzzy control techniques had limited application in MIMO systems 
control mainly because of the facts that the derivation of rules is not 
easy (usually not available) and the number of rules is usually large, 
depending on the number of outputs and states. 

Ours is a new attempt to this unsettled problem using a rule-base 
combined with neural networks. On the other hand there are interesting 
details and generalizations which will be discussed in the following 
sections. 

7.1 Analysis of the Kettle 

The steam-jacketed kettle system has a wide application area in 
industry. It is especially used in chemical processes. The dynamic 
response and control of the steam-jacketed kettle shown in Figure 29 
are to be considered in this study. The system consists of a kettle 
through which water flows at a variable rate, wi kg/min. The inlet 
water, whose flow rate may vary with time, is at temperature Ti = 5°C. 
The kettle water, which is well agitated, is heated by steam condensing 
in the jacket at temperature TV. This is a three-input two-output system. 
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Flow rate of inlet water, flow rate of outlet water and flow rate of steam 
are the control inputs of our system. Temperature and the mass of the 
water inside the kettle are the outputs [12]. 

 
Figure 29.  The kettle. 

The following assumptions are made for the kettle [12]: 

1. The heat loss to the atmosphere is negligible; 
2. The thermal capacity of the kettle wall, which separates steam from 

water, is negligible compared with that of water in the kettle; 
3. The thermal capacity of the outer jacket wall, adjacent to the 

surroundings, is finite, and the temperature of this jacket wall is 
uniform and equal to the steam temperature at any instant; 

4. The kettle water is sufficiently agitated to result in a uniform 
temperature; 

5. Specific internal energy of steam in the jacket, Uv, is assumed to be 
constant; 

6. The flow of heat from the steam to the water in the kettle is 
described by the expression 

q = U(Tv–To) 

where 
 q = flow rate of heat, J/(min)(m2) 
 U = overall heat transfer coefficient, J/(min)(m2)(°C) 
 Tv = steam temperature, °C 
 To = water temperature, °C. 

, Tv 
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The mathematical model of the system can be obtained by making an 
energy balance on the water side and on the steam side. The symbols 
used throughout this analysis are defined as follows: 

TI = temperature of inlet water, °C 
To = temperature of outlet water, °C 
wI = flow rate of inlet water, kg/min 
wo = flow rate of outlet water, kg/min 
wv  = flow rate of steam, kg/min 
wc = flow rate of condensate from kettle, kg/min 
m  = mass of water inside the kettle, kg 
m1 = mass of jacket wall, kg  
V  = volume of the jacket steam space, m3 
C = heat capacity of water, J/(kg)(°C) 
C1 = heat capacity of metal in jacket wall, J/(kg)(°C) 
A = cross sectional area for heat exchange, m2 

t = time, min 
Hv = specific enthalpy of steam entering, J/kg 
Hc = specific enthalpy of steam leaving, J/kg 
Uv = specific internal energy of steam in jacket, J/kg 
ρv = density of steam in jacket, kg/m3 

Energy balance and mass balance equations for the water and steam 
side can be written as [12]: 
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As can be seen from the equations, the system is a nonlinear one. The 
state, input and output vectors are: 
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7.2 A Rule-Based Neuro-Optimal Controller for 
Nonlinear MIMO Systems  

7.2.1 MIMO Systems 

It is assumed that a MIMO plant is given with a known mathematical 
model as shown below  

))(()(
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=
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where x(t), f(x(t), u(t))∈Rn, u(t)∈Rm and y(t), g(x(t))∈Rp. The system 
output y(t) is supposed to track a reference signal yd(t) ∈Rp. 

7.2.2 Rule Derivation 

The controller is developed using a rule-base in which the rules are 
developed by making use of the mathematical model of the plant in an 
optimal sense. That is, since a model is available, by partitioning the 
state-space and the output-space and defining a representative for each 
partition, one can determine the control signals (i.e., rules) optimally, 
using a suitably chosen cost function. 

Suppose that each component of the state vector has Ni, i = 1, 2, … , n 
regions and the output vector has Ok, k = 1, 2, …, p components. Then 
there is a total of (�

n
i=1Ni)(�

p
k=1Ok) rules to be derived. If the system 

state is initially at the ith partition (the representative of which is xi) and 
the system's initial and desired states are at partitions Ov and Ok (their 
representatives are yv and yk, respectively), the associated rule can be 
found optimally by solving the optimal control problem of minimizing 
the cost function in time interval [0, tf] 
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subject to the state equation 
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Usually H, Q and R are diagonal matrices with suitably chosen 
diagonal entries. The vector function yd(t) can be taken as any smooth 
function with 

vd yy =)0(  , kfd t yy =)(  

0)()0( == fdd tyy ��  (39) 

Furthermore, the constraints on u(t), that is, |ui (t)| ≤ Bi, i = 1, 2, …, m, 
can easily be incorporated in our steepest descent like optimal control 
problem solver [20]. What is supposed to be done is implicitly an 
interpolation in the function space of optimal controls. Here, it is 
assumed that the mapping between the given initial-final partitions and 
the associated optimal control functions is continuous. Therefore, if the 
number of the partitions is sufficiently high, the approximation error in 
constructing the optimal control function by a semi-infinite neural 
network, to be explained in the next section, will be quite small. 

7.2.3 Neural Network 

In order to be able to generate the control inputs so that the system 
output trajectory follows an optimal path between arbitrarily specified 
initial and final output states, one has to train a multilayer perceptron-
like neural network [20]. This neural network should accept present 
output y(to) and desired output y(tf) as its inputs and should generate the 
optimal control signal u(t) to accomplish the task. The structure of the 
controller utilizing NN is shown in Figure 30. 
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Figure 30.  The structure of the rule-based neuro-optimal controller. 

For training, input signals produced by optimal control and initial and 
final points of outputs should be used. It is interesting to note that, at 
least theoretically, the neural network is a semi-infinite dimensional 
one [31], [32] in the sense that it is a mapping between the finite 
dimensional input space and the infinite dimensional output space (i.e., 
control functions). 

The output neurons produce discrete values of input function in [to, tf] 
interval. Therefore, the neural network can produce the samples of the 
control signal. 

For example, if the number of outputs is n for a single input system, 
then y(to), y(tf) are n-dimensional vectors as 

y(to)=[ y1(to)  y2(to) ... yn(to)] 

y(tf)=[ y1(tf)  y2(tf) ... yn(tf)] 

Furthermore, if [to, tf] interval is divided into m parts with sampling 
period T, a typical training pair is in the form of 

( [ y1(to) y2(to) ... yn(to) ... y1(tf) y2(tf) … yn(tf) ], [ u(0) u(T) ... u(mT)]) 

where the [u(0) u(T) … u(mT)] is the discrete input vector, which 
moves the system from y(to) to y(tf) and is produced by the optimal 
control. After a training operation, the neural network responds 
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immediately and acts as a real-time controller. In fact, the neural 
network produces the optimal control vector for the control horizon 
[tpresent, tfuture] at tpresent. The control horizon tfuture-tpresent is much larger 
than the sampling duration. As mentioned already, the mapping 
between the input-output space and optimal control functions is 
assumed to be continuous. The data (i.e., the optimal control functions 
obtained by solving the optimal control problem) represent evaluations 
of this mapping at particular instants. So, the problem of conflicting 
rules does not exist. 

7.3 Results 

In our simulation, the output temperature range is chosen as [5°C, 
75°C] and the mass range in the tank is chosen as [10kg, 20kg]. There 
is no need to partition the rest of the states because these are related 
with the temperature of the steam entering the jacket. Since the 
temperature of the steam entering is constant, single partition is enough 
for these states. We divide temperature range into seven regions and 
mass range into two regions. Therefore, we get 7×7×2×2 = 196 rules 
from optimal control and we use these 196 rules in order to train our 
neural networks. Since we have three inputs, three neural networks are 
constructed, each of them has four inputs, two hidden layers having 100 
and 50 neurons and an output layer consisting of 25 neurons. The 
training algorithm is the backpropagation algorithm having a 
momentum term. After training, neural networks work as a real time 
controller. For example, with the initial values for outlet water 
temperature and mass of the water as [10kg, 5°C] and reference inputs 
as [15kg, 42°C], our results obtained by on-line NN controllers are 
given in Figures 31-35. For comparison, the results obtained by the 
optimal control are also shown in these figures. In Figure 36, water 
temperature in the kettle, which is controlled by a neural network in 
real time, is given together with the desired trajectory. 

According to Figure 36, neuro-controller performance is satisfactory 
when compared with the optimal controller performance. After the 
training stage, the neural network can be used as an online controller. 
In addition, the output of the neural network can be considered as a 
function, because it estimates the control functions between two 
sampling (measurement) intervals. Secondly, the control functions are 
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the optimal ones because the training pairs of the neural network 
consist of control functions produced by solving the associated optimal 
control problems. 

 
Figure 31.  Trajectories for output 1: mass of the water inside the kettle. 

* Desired trajectory, - Trajectory from neuro-controller. 

 
Figure 32.  Trajectories for output 2: temperature of the water inside the kettle. 

* Desired trajectory, - Trajectory from neuro-controller. 
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Figure 33.  Controlled input 1: flow rate of inlet water. 

* Output from optimal control, - Output from neural network. 

 
Figure 34.  Controlled input 2: flow rate of steam. 

* Output from optimal control, - Output from neural network. 
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Figure 35.  Controlled input 3: flow rate of outlet water. 

* Output from optimal control, - Output from neural network. 

 
Figure 36.  Trajectory for the temperature of water. 

* Desired trajectory, - Trajectory produced by on-line NN controller. 
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8 Remarks and Future Studies  

Today's chemical and biological processes in industry are very 
complex. They are usually nonlinear and/or MIMO. System models of 
these processes are usually not well defined; either they are missing or 
system parameters may be time varying. Due to their learning and 
generalization capabilities, NNs are good candidates for obtaining 
input-output models of systems. Furthermore, model plant mismatches 
and the time varying parameter changes in the plant can be overcome 
by the online training of NNs. 

Furthermore, NNs by the “inverse model” of a plant can be used as a 
“controller” for the plant. Also, NN controllers can be used in MPC 
structure both as estimator and/or controller parts. 

Instead of using NNs alone in control of these processes, they can be 
combined with conventional approaches such as PI or PID control, 
optimal control techniques or techniques such as rule based expert 
systems or fuzzy logic, in a hybrid manner. Such an approach improves 
the performance of the overall controller. 

In this chapter different approaches utilizing neural networks for 
control of nonlinear processes are presented. Each of them is examined 
as a case study and tested on nonlinear chemical processes. 

In case study I, an NN controller is developed to control a 
neutralization system which exhibits highly nonlinear dynamics. The 
controller's performance is tested for both set point tracking and 
disturbance rejection problems. The NN controller's results are 
compared with that of the conventional PID controller tuned with 
Ziegler-Nichols technique. The PID controller failed to control the 
system by showing oscillatory behavior. However, the NN controller 
has been able to bring the system to set point, by reducing the 
oscillations observed at the beginning. Moreover, this NN controller 
has been able to reject disturbances introduced to the system 
successfully. 

In case study II, linear MPC is used together with NNs to control 
nonlinear systems. A multilayer NN is used to represent the deviation 
between the nonlinear system and its linear MPC model. The NN is 

© 2000 by CRC Press LLC 

 



 

trained off-line so that the controller operates satisfactorily at the start-
up phase. Furthermore, the training of NN is continued on-line using 
the real-time data obtained from the process. Thus the resultant 
structure is an adaptive nonlinear MPC controller, AN-MPC. 

The performance of the AN-MPC is tested on a simulation of a multi-
component high-purity distillation column. Performance tests for 
disturbance rejection and set point tracking abilities showed that the 
AN-MPC drives this process quite efficiently, especially in case of set 
point changes. In contrast, the linear MPC has not been able to control 
the system for load and set point changes. The success of the hybrid 
structure, AN-MPC, is because of the fact that the linear MPC 
determines the coarse control action and NN does the fine tuning. The 
AN-MPC controller can be generalized further by considering not only 
the next future sampling instance but next K of them to improve the 
performance. This generalization is planned as a future work. Current-
ly, we are working to extend the structure to control a MIMO plant. 

A hybrid control method which is the combination of PI control and 
NN is introduced in case study III. The method eliminates the 
controller (PI) tuning problem with the help of the NN. Therefore, it 
reduces the parameter estimation time at each operating point. The 
proposed method was tested in the binary batch distillation column and 
encouraging results were obtained. The hybrid structure of the method 
uses advantages of each individual method that constructs the hybrid 
structure. In order to increase the operating range of the proposed 
controller, the NN must be trained by a large training set which covers 
the desired wide operating range. However, the major problem is the 
training pair derivation for NN. In this study training pairs are 
determined by heuristic methods. For each bias point in the training set, 
the proportional and integral constants are determined by a trial and 
error procedure. Therefore, the training pair extraction process can be a 
time consuming task for engineers who are not experts in batch 
distillation. Furthermore, the disturbance rejection and robustness 
issues of the method were not investigated in this study. Hence, they 
can be studied as a future work. 

In case study IV, an optimal neurocontroller has been suggested for 
controlling MIMO systems. The proposed controller structure was 
tested by simulation studies on a simple steam-jacketed kettle system. 
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The preliminary results obtained so far have shown that this method is 
worth pursuing further. The only disadvantage of the method is that the 
number of rules to be derived in a complex plant control can be 
prohibitively large which also makes the derivation time too long. On 
the other hand, the method is very simple and can be made adaptive 
with some effort. Studies are continuing to generalize the method to 
cover the disturbance rejection and robustness problems as well. 

All these case studies showed that the hybrid methods utilizing NNs are 
very promising for the control of nonlinear and/or MIMO systems that 
can not be controlled by conventional techniques. 

Acknowledgments 

This work is partially supported under the grant AFP-03-04-DPT-
98K12250, Intelligent Control of Chemical Processes. 

References 

[1] Ahmed, M.S. and Tasaddug, I.A. (1998), “Neural servocontroller 
for nonlinear MIMO plant,” IEEE Proceedings Control Theory 
Applications, vol. 145, pp. 277-291. 

[2] Alkaya, D. and Özgen, C. (1991), “Determination of a suitable 
measurement in an industrial high purity distillation column,” 
Proc. of AIChE Annual Meeting on Distillation Column Design 
and Operation, Los Angeles, CA, pp. 118-124. 

[3] Antsaklis, P.J. (1990), “Special issue on neural networks for 
control systems,” IEEE Control Sys. Mag., vol. 10, pp. 3-87. 

[4] Antsaklis, P.J. (1992), “Special issue on neural networks for 
control systems,” IEEE Control Sys. Mag., vol. 12, pp. 8-57. 

[5] Bhat, N. and McAvoy, T.J. (1989), “Use of neural networks for 
dynamic modeling and control of chemical process systems,” 
Proc. Amer. Contr. Conf., pp. 1336-1341. 

© 2000 by CRC Press LLC 

 



 

[6] Bhat, N. and McAvoy, T.J. (1990), “Use of neural networks for 
dynamic modeling and control of chemical process systems,” 
Comput. and Chem. Eng., vol. 14, pp. 573-583. 

[7] Boskovic, J.D. and Narendra, K.S. (1995), “Comparison of linear, 
nonlinear and neural network based adaptive controllers for a class 
of fed-batch fermentation processes,” Automatica, vol. 31, pp. 
817-840. 

[8] Brengel, D.D, and Seider, W.D. (1988), “Multistep nonlinear 
predictive controller,” Ind. Eng. Chem. Res., vol. 28, p. 1812. 

[9] Cai, Z.X. (1997), Intelligent Control: Principles, Techniques and 
Applications, World Scientific Publishing. 

[10] Chan, H.C. and Yu, C.C. (1995), “Autotuning of gain-scheduled 
pH control: an experimental study,” Ind. Eng. Chem. Res., vol. 34, 
pp. 1718-1729. 

[11] Chen, S., Billings, S.A. and Grant, P.M. (1990), “Nonlinear system 
identification using neural networks,” Int. J. of Control, vol. 51, 
pp. 1191-1199. 

[12] Coughanowr, D.R. and Koppel, L.W. (1965), Process Systems 
Analysis and Control, McGraw-Hill. 

[13] Cutler, C.R. and Ramaker, B.L. (1979), “Dynamic matrix control – 
a computer control algorithm,” AIChE National Meeting, Houston, 
Texas. 

[14] Dreager, A. and Engell, S. (1994), “Nonlinear model predictive 
control using neural plant models,” NATO-ASI on Model Based 
Process Control, Turkey. 

[15] Eaton, J.W. and Rawlings, J.B. (1992), “Model predictive control 
of chemical processes,” Chemical Engineering Science, vol. 47, 
pp. 705-720. 

[16] Etxebarria, V. (1994), “Adaptive control of discrete systems using 
neural networks,” IEE Proc. Control Theory Appl., vol. 141, pp. 
209-215. 

© 2000 by CRC Press LLC 

 



 

[17] Garcia, C.E., Prett, D.M., and Morari, M. (1989) “Model 
predictive control: theory and practice - a survey,” Automatica, 
vol. 25, pp. 335-348. 

[18] Gustafsson, T.K., Skrifvars, B.O., Sandstrom, K.V., and Waller 
K.V. (1995), “Modeling of pH for  control,” Ind. Eng. Chem. Res., 
vol. 34, pp. 820-827. 

[19] Hamburg, J.H., Booth, D.E., and Weinroth, G.J. (1996), “A neural 
network approach to the detection of nuclear material losses,” 
Journal of Chemical Information and Computer Sciences, vol. 36, 
pp. 544-553. 

[20] Haykin, S. (1996), A comprehensive Foundation of Neural 
Networks, Prentice-Hall, NJ. 

[21] Henson, M.A. and Seborg, D.E. (1994), “Adaptive nonlinear 
control of a pH neutralization process,” IEEE Trans. on Control 
Systems Technology, vol. 2, pp. 169-182. 

[22] Hernandez, E. and Arkun, Y. (1990), “Neural networks modeling 
and an extended DMC algorithm to control nonlinear processes,” 
Proc. Amer. Contr. Conf., pp. 2454-2459. 

[23] Hernandez, E. and Arkun, Y. (1992), “A study of the control 
relevant properties of backpropagation neural net models of 
nonlinear dynamical systems,” Comp. and Chem. Eng., vol. 16, pp. 
227-240. 

[24] Hunt, K.J., Sbarbaro, D., Zbikowski, R., and Gawthrop, P.J. 
(1992), “Neural networks for control systems – a survey,” 
Automatica, vol. 28, pp. 1083-1099. 

[25] Johnson, E.F. (1967), Automatic Process Control, McGraw-Hill, 
New York. 

[26] Karahan, O., Ozgen, C., Halici, U., and Leblebicioglu, K. (1997), 
“A nonlinear model predictive controller using neural networks,” 
Proc. of IEEE International Conference on Neural Networks, 
Houston, USA, pp. 690-693. 

© 2000 by CRC Press LLC 

 



 

[27] Karahan, O. (1997), An Adaptive Nonlinear Model Predictive 
Controller Using A Neural Network, M.Sc. Thesis, Chem. Eng. 
Dept., METU, Ankara, Turkey. 

[28] Kirk, D.E. (1970), Optimal Control, Prentice-Hall, NJ. 

[29] Koulouris, A. (1995), Multiresolution Learning in Nonlinear 
Dynamic Process Modeling and Control, Ph.D. Thesis, MIT. 

[30] Koulouris, A. and Stephanopoulos, G. (1997), “Stability of NN-
Based MPC in the presence of unbounded model uncertainty,” 
AIChE Symp. Series, vol. 93, pp. 339-343. 

[31] Kuzuoglu, M. and Leblebicioglu, K. (1996), “Infinite dimensional 
multilayer perceptions,” IEEE Trans. Neural Networks, vol. 7, pp. 
889-896. 

[32] Leblebicioglu, K. and Halici, U. (1997), “Infinite dimensional 
radial basis function neural networks for nonlinear transformations 
on function spaces,” Nonlinear Analysis, vol. 30, pp. 1649-1654. 

[33] Li, S., Lim, K.Y., and Fisher, D.G. (1989), “A state-space 
formulation for model predictive control,” AIChE Journal, vol. 35, 
pp. 241-249. 

[34] Linkens, D.A. and Nyogesu, H.O. (1996), “A hierarchical 
multivariable fuzzy controller for learning with genetic 
algorithms,” Int. Journal of Control, vol. 63, pp. 865-883. 

[35] Luyben, W.L. (1990), Process Modeling, Simulation and Control 
for Chemical Engineers, McGraw-Hill. 

[36] McAvoy, T.J. (1972), “Time optimal and Z-N control,” Ind. Eng. 
Chem. Process Res., vol. 11, pp. 71-78. 

[37] Miller, W.T., Sutton, R.S., and Werbos, P.J. (1990), Neural 
Network for Control, MIT Press. 

[38] Narendra, K.S. and Parthasarathy, K. (1990), “Identification and 
control of dynamical systems using neural networks,” IEEE Trans. 
on Neural Networks, vol. 1, pp. 1-16. 

© 2000 by CRC Press LLC 

 



 

[39] Nehas, E.P., Henson, M.A., and Seborg, D.E. (1992), “Nonlinear 
internal model control strategy for neural network models,” 
Comput. and Chem. Eng., vol. 16, pp. 1039-1057. 

[40] Nesrallah, K. (1998), Simulation Study of an Adaptive Fuzzy 
Knowledge Based Controller and Neural Network Controller on a 
pH System, M.Sc. Thesis, Chem. Eng. Dept., METU, Ankara, 
Turkey. 

[41] Nguyen, D.H. and Widrow, B. (1991), “Neural networks for self-
training control system,” Int. J. Control, vol. 54, pp. 1439-1451. 

[42] Nie, J. (1997), “Fuzzy control of multivariable nonlinear servo-
mechanisms with explicit decoupling scheme,” IEEE Trans. on 
Fuzzy Systems, vol. 5, pp. 304-311. 

[43] Noriega, J.R. and Wang, H. (1998), “A direct adaptive neural 
network control for unknown nonlinear systems and its 
application,” IEEE Trans. on Neural Networks, vol. 9, pp. 27-34.  

[44] Ogata, K. (1990), Modern Control Engineering, Prentice-Hall Inc. 

[45] Palancar, M.G., Aragon, J.M., Miguens, J.A., and Torrecilla, J.S. 
(1996), “Application of a model reference adaptive control system 
to pH control: effects of lag and delay time,” Ind. Eng. Chem. Res., 
vol. 35, pp. 4100-4110. 

[46] Piovoso, M., Kosanovich, K., Rohhlenko, V., and Guez, A. (1992), 
“A comparison of three nonlinear controller designs applied to a 
nonadiabatic first-order exothermic reaction in a CSTR,” Proc. 
Amer. Cont. Conf., pp. 490-494. 

[47] Pottman, M. and Seborg, D. (1993), “A radial basis function 
control strategy and its application to a pH neutralization process,” 
Proc. 2nd European Cont. Conf., pp. 206-212. 

[48] Pottman, M. and Seborg, D. (1992), “Identification of nonlinear 
processes using reciprocal multiquadratic functions,” J. Process 
Control, vol. 2, pp. 189-203. 

© 2000 by CRC Press LLC 

 



 

[49] Pottmann, M. and Seborg, D. (1992), “A nonlinear predictive 
control strategy based on radial basis function networks,” Proc. 
IFAC DYCORD Symposium, pp. 536-544. 

[50] Sablani, S.S., Ramaswamy, H.S., Sreekanth, S., and Prasher, S.O. 
(1997), “Neural network modeling of heat transfer to liquid 
particle mixtures in cans subjected to end-over-end processing,” 
Food Research International, vol. 30, pp. 105-116.  

[51] Saint-Donat, J., Bhat, N., and McAvoy, T.J. (1991), “Neural net 
based model predictive control,” Int. J. Control, vol. 54, pp. 1453-
1468. 

[52] Seborg, D.E., Edgar, T.F., and Mellichamp, D.A. (1989), Process 
Dynamics and Control, Wiley Series, NY. 

[53] Seborg, D. (1994), “Experience with nonlinear control and 
identification strategies,” Proc. Control’94, pp. 217-225. 

[54] Sing, C.H. and Postlethwaite, B. (1997), “pH control: handling 
nonlinearity and deadtime with fuzzy relational model-based 
control,” IEE Proc. Control Theory Appl., vol. 144, pp. 263-268. 

[55] Skogestad, S. (1996), “A procedure for SISO controllability 
analysis – with application to design of pH neutralization 
processes,” Computers Chem. Eng., vol. 20, pp. 373-386. 

[56] Skogestad, S. and Postlethwaite, I. (1997), Multivariable Feedback 
Control, John Wiley & Sons. 

[57] Sorensen, E. and Skogestad, S. (1996) “Optimal startup procedures 
for batch distillation,” Computers and Chem. Eng., vol. 20, pp. 
1257-1262. 

[58] Stephanopoulos, G. (1984), Chemical Process Control: An 
Introduction to Theory and Practice, Prentice-Hall Int., NJ. 

[59] Tan, S. (1992), “A combined PID and neural control scheme for 
nonlinear dynamical systems,” Proc. SICICI 92, pp. 137-143. 

© 2000 by CRC Press LLC 

 



 

[60] Tuncay, S. (1999), Hybrid Methods in Intelligent Control, M.Sc. 
Thesis, EE Eng. Dept., METU, Ankara, Turkey. 

[61] Ungar, L.H., Hartman, J.E., Keeler, J.D., and Martin, G.D. (1996), 
“Process modeling and control using neural networks,” Int. Conf. 
on Intelligent Systems in Process Engineering, AIChE Symp. 
Series, pp. 312-318. 

[62] Utkin, V.I. (1992), Sliding Modes in Control Optimization, 
Springer-Verlag, Berlin. 

[63] Wang, M. and Li, B.H. (1992), “Design of a neural network based 
controller for control system,” Proc. of SICICI’92, pp. 1333-1339. 

[64] Widrow, B. and Lehr, M.A. (1990), “30 years of adaptive neural 
networks: perception, madaline and backpropagation,” 
Proceedings of the IEEE, vol. 78, pp. 1441-1457. 

[65] Willis, M.J., DiMassimo, C., Montague, G.A., Tham, M.T., and 
Morris, A.J. (1991), “Artificial neural networks in process 
engineering,” IEE Proc-D, vol. 138, pp. 3-11. 

[66] Wright, A.W. and Kravaris, C. (1991), “Nonlinear control of pH 
processes using the strong acid equivalent,” Ind. Eng. Chem. Res., 
vol. 30, pp.1561-1572. 

© 2000 by CRC Press LLC 

 


	Recent Advances in Artificial Neural Networks
	Contents
	RECENT ADVANCES IN NEURAL NETWORK APPLICATIONS IN PROCESS CONTROL
	1 Introduction
	2 Process Control
	3 Use of Neural Networks in Control
	4 Case Study I: pH Control in Neutralization System
	4.1 Neutralization System
	4.2 Neural Network Control of the Neutralization System
	4.3 Results
	4.3.1 Conventional PID Controller Performance
	4.3.2 NN Controller Performance


	5 Case Study II: Adaptive Nonlinear-Model Predictive Control Using Neural Networks for Control of High Purity Industrial Distillation Column
	5.1 Multicomponent High Purity Distillation Column
	5.2 Adaptive Nonlinear-Model Predictive Controller Using Neural Networks
	5.2.1 Linear Model Predictive Controller
	5.2.2 Nonlinear-Model Predictive Controller
	5.2.3 Adaptive Nonlinear-Model Predictive Controller via Neural Networks

	5.3 Identification
	5.4 Development of the Neural Network Model
	5.5 Control Application

	6 Case Study III: PI Controller for a Batch Distillation Column with Neural Network Coefficient Estimator
	6.1 Binary Batch Distillation Column
	6.2 PI Controller with Neural Network as a Parameter Estimator
	6.3 Results

	7 Case Study IV: A Rule-based Neuro-Optimal Controller for Steam- Jacketed Kettle
	7.1 Analysis of the Kettle
	7.2 A Rule-Based Neuro-Optimal Controller for Nonlinear MIMO Systems
	7.2.1 MIMO Systems
	7.2.2 Rule Derivation
	7.2.3 Neural Network

	7.3 Results

	8 Remarks and Future Studies
	Acknowledgments
	References



