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This chapter presents an intelligent agent that employs a machine 
learning technique in order to provide assistance to users dealing with a 
particular computer application. Machine learning is a sub-field of 
artificial intelligence (AI) that includes the automated acquisition of 
knowledge. The aim is intelligent systems that learn, that is, improve 
their performance as a result of experience. The agent learns how to 
assist the user by being trained by the user using hypothetical examples 
and receiving user feedback when it makes a wrong decision. The main 
aim is to reduce work for the end-user by building a software agent that 
acts as a personal assistant. The proposed interface agent will 
potentially have the features of natural language interface and learning 
through interaction. The achievement of these innovations is mainly 
based on neural network learning techniques. The chapter presents 
preliminary results from a prototype agent built using this technique 
and applied on flight reservation domain. 

1 Introduction 

One of the obvious difficulties for building intelligent machines has 
been for many years the passive nature of computers. Computers do 
only what they were programmed to do and do not learn to adapt to 
changing circumstances. At the same time, it will become more and 
more difficult for untrained computer users to cope with the increasing 
complexity of computer applications and the growth of the computers’ 

  



direct-manipulation interfaces. One of the aims for building intelligent 
machines, and also one of the biggest challenges, is to create a simple 
user interface so that the human-computer interaction will become as 
natural for end-users as picking up a phone or reading a newspaper. 

Artificial intelligence researchers and software companies have set high 
hopes on so-called Software Agents which learn users' interests and can 
act autonomously on their behalf to contribute in solving the learning 
problem [1]. The learning approach has several advantages. First, it 
requires less work from the end-user and application developers. 
Second, the agent can easily adapt to the user over time and become 
customised to individual and organisational preferences and habits. 
Despite the huge diversity in this rapidly evolving area of agents’ 
research, the most promising one in solving the human-computer 
interaction problems is called Interface Agents. Interface agents can be 
characterised as systems, which employ artificial intelligence 
techniques to provide assistance to users with a particular computer 
application [2]. 

An important property that any interface agent should have is the 
ability to communicate with the human user via some kind of natural 
language. This is based on the belief that computers will not be able to 
perform many of the tasks people do every day until they, too, share the 
ability to use their language. Despite more than twenty years of 
research into natural language understanding, the solutions for actual 
problems such as a natural language computer interface still suffer from 
inadequate performance. This problem is due to the fact that these 
systems depend on exact knowledge of how human language works. 
However, even now there is no complete and formal description of 
human language available. It has been argued that there is some 
evidence that the human brain is specially structured for language [3]. 
However, today's computer architecture is totally different from the 
human brain.  

In an attempt to model the human mind/brain, it has been necessary to 
oversimplify the structure and the function. This has led to the 
development of an important area of research, namely neural 
computing. This area belongs to a larger research paradigm known as 
computational intelligence which aims to model functions associated 
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with intelligence, at the signal level as a dynamical system. Neural 
computing is the study of Artificial Neural Networks (ANNs). 

In this chapter, the main aim is to introduce the interface part of the 
proposed agent that communicates with the user and learns through this 
interaction to be able to assist him/her in the travel reservation domain. 
The learning machine of this agent is based on neural network 
techniques. In the next section, we introduce a brief definition of 
agents. Section 3 presents the main features of neural networks. The 
rest of the chapter explains the implementation of the proposed 
interface agent and some of the simulation results.  

2 Agents 

Software agents have evolved from multi-agent systems, which in turn 
form one of three broad areas, which fall under distributed artificial 
intelligence (the other two being distributed problem solving and 
parallel artificial intelligence). Although the term agent is a widely used 
term in computing, AI and other related areas, it is poorly defined. 
Perhaps the most general way in which the term agent is used is to 
denote a hardware or (more usually) software-based computer system 
that enjoys the following: [4] 

• Autonomy: Agents operate without the direct intervention of 
humans or other agents and have some kind of control over their 
own actions and internal state. 

• Social Ability: Agents interact with other agents (and possibly 
humans) via some kind of agent-communication language. 

• Reactivity: Agents perceive their environment (which may be the 
physical world, a user via a graphical user interface, a collection of 
other agents, the INTERNET or perhaps all of these combined) and 
respond in a timely fashion to changes that occur in it. 

• Pro-activeness: Agents do not simply act in response to their 
environment; they are able to exhibit goal-directed behaviour by 
taking the initiative. 

There are sometimes other agent's attributes, which are considered 
secondary attributes to those mentioned above such as mobility, 
continuity, robustness and rationality. Our proposed interface agent 
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aimed to enjoy most of the mentioned attributes except the mobility 
feature. Generally, the implementation of interface agents is focused on 
autonomy and learning. The interactivity (social ability) attribute will 
be gained through the architecture of integrating many agents in a 
collaborative scheme. 

3 Neural Network Role 

Our aim was to benefit from the features of artificial neural networks 
(ANNs), which mimic the biological nervous system to perform 
information processing and learning. On top of the superficial 
resemblance, ANNs exhibit a surprising number of human brain 
characteristics such as learning, generalisation and robustness. One of 
the most important features of ANNs is the ease with which they can 
learn (modify the behaviour in response to the environment). Learning 
in ANNs is the process of adjusting the connection weights between the 
nodes. Neural networks are often required to learn an input/output 
mapping from existing data or learn from input data only when the 
output is not known. In the last case, ANNs are capable of abstracting 
the essence of a set of input data, i.e., learning to produce something 
never seen before. ANNs perform the equivalent of inductive learning 
in the symbolic paradigm. 

Once trained, a network's response can be, to a degree, insensitive to 
minor variations in its inputs. Generalisation in learning enables ANNs 
to learn from incomplete data. This ability to see through noise and 
distortion to the pattern that lies within is vital to pattern recognition in 
a real-world environment. Producing a system that can deal with the 
imperfect world in which we live overcomes the literal mindedness of 
the conventional computer. This attribute is mainly due to its structure, 
not by using human intelligence, embedded in the form of ad hoc 
computer programs. Computer programs play no role. Parallelism 
allows ANNs to model complex relations and to perform complex tasks 
at speeds in excess of other algorithms (this feature can only be fully 
exploited if their hardware implementation is used). The above features 
are the main contribution of ANNs to intelligent systems [5]. 

As a matter of fact, ANNs have proved to complement conventional 
symbolic artificial intelligent techniques in applications where the 
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theory is poor and the data are rich, such as pattern recognition, pattern 
matching, and adaptive non-linear control. Some researchers claim that 
ANNs will replace current AI, but there are many indications that the 
two will co-exist and be combined into systems in which each 
technique performs the tasks for which it is suited [6].  

4 Agent Architecture 

In this section, we introduce a brief description of the proposed 
interface agent’s building blocks. Figure 1 shows the interface agent 
architecture [7]. 
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Figure 1.  The interface agent architecture. 

• Task Classification Unit (TCU): This is the interface part where 
the user-system interactions are performed. The TCU accepts the 
input request as natural language sentences from the user. The 
sentences represent the required task that is required to deal with. 
TCU applies approximate string matching and neural network 
learning techniques to analyse the input sentences, then classifies 
the task according to a search process in its heuristic database 
system (concept maps). 

• Neural Network Associative Memory (NNAM): This part of the 
agent acts as a heteroassociative memory which is responsible for 
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generating keywords related to the classified task received from the 
TCU, though it works as a look-up table implemented using ANN 
technique. 

• Hybrid Rule-Based System (HRBS): HRBS applies simple rules 
on the agent's knowledge domain, using the keywords, which are 
generated from NNAM, to infer the actual information required in 
executing the user's task.  

• Peers Co-operation Unit (PCU): It is a channel to cooperate with 
other agents to ask and answer questions. 

In the rest of this chapter, the discussion is mainly concentrated on the 
implementation issues of the task classification unit, in which the 
neural network learning techniques are applied. 

4.1 Problem Domain 

Travel reservation is considered as a problem domain to apply the ideas 
of agent-user interaction through natural language interface and 
learning over time in order to be able to assist the user. The aim is to 
build a task classification unit that is able to classify the user's input 
request to a specific task category. 

By natural language interface is meant manipulating a short sentence or 
phrase and allowing misspelling and/or ungrammatical cases. We do 
not claim that the agent deals with this problem in a satisfactory way 
from the semantic or lexical analysis point of view. Since a deep text 
analysis cannot be undertaken in an unrestricted semantic environment, 
the approach must be to limit the task in order to analyse the user's 
input text as well as possible. It has been claimed that most of the 
successful natural language understanding systems share two 
properties: they are focused on a particular domain rather than allowing 
discussion of any arbitrary topic, and they are focused on a particular 
task rather than attempting to understand language completely [8]. 

In order to be able to assist users, an agent must be provided with 
knowledge of its domain. The agent is given a minimum of background 
knowledge and learns the appropriate behaviour either from the user or 
from other agents. By learning is meant learning by example and 
accumulating the experience from interacting with and observing its 
user. 
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To tackle the problems of learning and natural language interface, it is 
assumed that the agent's vocabulary is restricted to the task domain 
language, i.e., the whole language is divided into many sub-languages. 
Later, the results will show that the neural network approach is able to 
associate the user's input sentence (information as a stream of words) 
with the user's concept within this restricted domain. This assumption 
enables us to design a simple user-agent interface form to accept 
unrestricted simple natural sentences or phrases. 

4.2 Data 

Twenty-five e-mails written in the English language are collected from 
persons with different native languages. Each e-mail contains a few 
sentences or phrases representing the three specified categories in the 
airline travel reservation area. These three categories are: 

1. Asking about travel reservation. 
2. Asking about travel confirmation. 
3. Asking about travel cancellation. 

It has been asked that every respondent write a short sentence or a 
phrase representing as much as possible of the meaning without any 
concern about the correct grammar. The e-mails contain a mix of 
formal and informal English language. The only correction, which has 
been made before this set of data has been applied on the neural 
network for training, was a spelling check. In this approach, it is 
assumed that: 

• The user's sentences (most of the input stream of words) are within 
the vocabulary domains.  

• The sentences are not differentiated according to their grammar.  
• The user's input sentences are not compound (simple requests 

within the domain language). 

The collected e-mails (dataset) consist of a combination of more than 
one hundred sentences and phrases. This dataset contains more than 
three hundred different words. A few no-meaning phrases are added to 
represent the neutral category in the classification process. The neutral 
category is supposed to include all the common words that have no 
effect on the task identification process (reservation, confirmation or 
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cancellation) such as a country name. Part of the dataset is chosen as a 
training group (approximately 30% of the whole dataset). All the 
sentences and phrases are contained in the test group. 

Two types of ANN architectures have been trained using this dataset: a 
Multi-Layer Feedforward Network (MLF) and a Single-Layer 
Perceptron Network (SLP). With certain adjustments to the initial 
weights, learning constant and steepness coefficient, both neural 
network architectures give the same result. Changing the input 
representation from unipolar (where active neurons are represented by 
+1 and 0 represents in-active neurons) to bipolar (where active neurons 
are represented by +1 and in-active neurons are represented by -1) has a 
slight effect on the network performance. The activation of a neuron 
depends on the presence of the word that the neuron represents in the 
input stream of words. The order of the training data has more 
influence on the training process. This is due to the finite size of the 
training set. Here is an example to explain what training order effect 
means. The word Egypt has the following weights according to the 
training set in which the word is encountered four times (one time per 
category). 

 reservation confirmation cancellation neutral 
Egypt -4.414566 -8.017722 -0.757465 6.551010 

However, the ideal weights for such a word should be approximately 
the same for all categories but the neutral category. In the actual case, 
there are differences because of the finite size and the order of the 
training set (order means which category was trained first). If the words 
appeared many times in a random category order, this problem could be 
overcome. On the other hand, this will elongate the training time. It has 
been deduced that, in order to obtain a fair word-to-concept map 
distribution from any trained neural network, the training dataset must 
be carefully selected. In other words, the training sentences and phrases 
should be prepared such that the neutral (common) words must be 
represented equally for all the defined categories in the training dataset. 
This is the main reason for adding the no-meaning phrases: to teach the 
neural network how to neutralise the effect of the presence (absence) of 
these words in the user’s input sentence/phrase. The neutral category 
contains all the words which should have equal weights towards the 
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three categories mentioned above such as London, to, on, for, … 
and/or from.  

The other factor which affects the learning time is the training set size. 
The two architectures are trained with different size training sets. It is 
obvious that the larger the training set the longer the training time. In 
the next section, we will explain two learning processes which 
complement each other to compensate the above mentioned pitfalls in 
the training set.  

4.3 Network Training 

There are two types of training for either an MLF network or an SLP 
network: an off-line training and an on-line training. The off-line 
training aim is to construct concept maps from the training examples. 
These concept maps relate the each input sentence/phrase to a specific 
concept in the problem domain. The off-line training takes place before 
all the operations in order to assign connection weights to all the words 
in the training set patterns. A pattern consists of a unipolar (bipolar) 
representation of the training sentence or phrase. For example, the 
sentence could be:  

Due to unforeseen circumstances I have to cancel my flight to London 

Then the pattern would be: 

-1 -1 -1 -1 -1 -1 -1 1 -1 … -1 -1 1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1….  

Each input neuron represents a word and each output neuron represents 
a category. The learning is according to the generalised Delta learning 
rule: [9] 
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ijw  is the weight that connects the output of the jth neuron with the 
input to the ith neuron 

o is the output vector 
c is the scaling factor 
f is the activation function (sigmoid function) 
f′ is the activation function first derivative 
y is the input vector 
d is the target vector  

Figure 2 is the graphical representation of the classified words into the 
correct category after the off-line training is completed.  
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Figure 2.  Word classification sample based on the collected data. 

Table 1 shows a sample of the weights for some words after SLP1 
network training that takes place based on the collected dataset. Before 
the training all the words were assigned small random weights.  

                                                
1 SLP results show a clearer relation between words and categories than MLF. 
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Table 1.  SLP training results (sample). 

CATEGORIES WORD 
RESERVATION CONFIRMATION CANCELLATION NEUTRAL 

a* 8.160717 -6.392762 -9.916912 -11.262650  
able -3.469685  -1.873571 7.569377 -4.008598  
airline  1.778800 -6.574209  -2.470539  -7.258359 
belgium -0.636226  -6.133667  -3.362907  3.883109 
book 26.382210  -13.742558 -8.563011  -7.614223 
booked -2.502439 8.311028  -2.922199 -3.853302 
cancel -21.769215 -24.374889  53.473717 -20.940538  
cancellation   -21.756435 -12.751144  31.506802 -2.847031 
check -14.144594  22.119167  -2.908264  -2.108434 
confirm -16.029274 34.444370 -20.502920 -8.255243 
confirmation  -21.811161 13.502781  -17.121601 -5.858447 
egypt  -4.414566 -8.017722 -0.757465  6.551010  
flight  2.957987 3.815885 -7.900447  -8.968528 
going 5.197784 -8.156089  -7.538003 5.770500 
make  11.682374  -6.972619 -1.942448 -14.292900  
my -5.785409  2.654307 1.096750  3.675545 
need  -3.990644 -0.253858 -8.594911 5.843002  
not -3.469685 -1.873571  7.569377  -4.008598 
reservation 1.135525  2.715665  1.451366  0.494692  
reserve 20.650588 -4.416985  -2.991275 -8.332147 
return 6.652804 -1.805905  -2.937553 -0.380169 
send* -0.74305  3.753846 -3.041971 3.572052 
sorry -6.61513  -5.857497 2.198464 -0.346198 
the* -14.7968  2.616945 -0.955008  2.513896  
ticket 1.48133 5.895713 2.516594  0.510546 
travel  8.168785 -7.046576 1.490917 -8.466378 
trip -7.755359 -6.876982 -0.422680 5.903522 
want  -4.800109 -5.958756  -3.849468 6.855282  

 

Inspection of the above results indicates that there is a strong 
connection between some words and a specific category. For example: 
words like book, reserve and make are directly related to the 
reservation category, while words like check and confirm  are 
connected to the confirmation category. On the other hand, words like 
reservation and ticket are common among more than two categories. 
We intentionally added words like send to the training set to illustrate 
the effect of the unequal representation of the neutral words. The word 
send has appeared only twice in the training dataset: one time in a 
confirmation training example and the second time within the no-
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meaning phrases. It can be seen from the table that this word is related 
to both confirmation and neutral categories; however, it is supposed to 
be in the neutral category only. Finally, it can be noticed that some 
words like the and a are assigned into a certain category and this is 
interpreted as language dependent. In other words, most of the users 
use a when they ask about a ticket reservation and they use the when 
they ask about the ticket confirmation. 

The other learning process is called the on-line training. The on-line 
training takes place during the user-agent interaction cycle. The 
network adapts some of its weights according to the user's direct 
response in order to correct the misclassified sentence/phrase to a 
different category. Also, it assigns weights for new words. The on-line 
learning rule is: 

)( iiij od −εµ  

where 
µij is a multiplicative factor 
ε is an on-line learning coefficient 
d, o as defined above in the off-line training. 

Each word has been assigned a correctness level value which is 
dependent on how many times the word is used before. The 
multiplicative factor is inversely related to the word correctness level 
value. Any word in the user's input and not belonging to the domain 
dictionary is considered new. The newer the word the higher the 
multiplicative factor and vice versa. The correctness level value of a 
word is increased each time the word is encountered in the input stream 
of words and the user's request is classified correctly. Hence, the 
change in the weights of the more often used words is much slower 
than the change in the weights of the new words during the on-line 
learning. The on-line learning coefficient is a small number defined by 
the user to control the speed of the on-line training process. 

The on-line training is a complementary process to the off-line training. 
Also, it introduces a solution to the lack of enough data in the training 
set which leads to some sort of incorrect bias in the network weights. In 
addition, the whole learning process time is divided between those two 
processes. 
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5 Operation 

Figure 3 shows the block diagram of the task classification unit in the 
interface agent. Once the off-line training process has been completed, 
the system is ready to move to inference and on-line training through 
agent-user interaction. The interaction cycle works as follows: 
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Input
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Figure 3.  Task classification unit block diagram. 

• Step1) User-system interaction: The user's information is provided 
as a simple sentence or phrase at the I/O port. 

• Step2) Approximate string matching: Given the domain dictionary 
string set, the user's input stream of words is matched against the 
dictionary items to correct any spelling errors in the input words. A 
non-matching text item can be computed with a dictionary directly, 
using an iterative character-by-character matching scheme that 
determines the smallest number of single-character operations 
(insertions, deletions, substitutions, and transpositions) required to 
transform one of the words into the other. This is a well-known 
technique of approximate string matching [10]. It is assumed at this 
stage that the dictionary contains the travel domain vocabulary 
only. This means some correct English words might be considered 
misspelled and corrected according to this vocabulary domain. For 
example: 
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(Not in the dictionary) reverse → reserve (Nearest match) 

The output of this step is the correct stream of words (if found) and 
the rest will be considered new words, even the wrong ones, until 
the system receives a feedback from the user in step5. 

• Step3) Pattern generation: Some of the input neurons are activated 
according to the words presented in the user's input. The input 
neurons in the neural network are chosen large enough to 
accommodate the new words. The rest of the neurons that are not 
active indicate the absence of the corresponding words from the 
input stream of words. A new word can be assigned to any unused 
neuron or a neuron that represents the neutral word, which has the 
least correctness level value. This is the process of generating the 
patterns from the input stream of words. The generating patterns 
guide the neural network to an initial state (via a trajectory) in the 
concept maps that have been constructed during the off-line training 
phase. 

• Step4) Search process: The neural network continues the search 
process to classify the input pattern to a certain category according 
to the off-line training. The output of this step is either directed to 
the I/O port to get a feedback from the user or is considered correct 
by the agent. This decision is mainly dependent on a factor defined 
by the user, called agent's confidence level. This factor should be 
increased with time as the neural network weights settle to the right 
direction. The outputs are the classified category and/or the words 
that were considered new or wrong in step2. 

• Step5) User-system interaction: The user response to the output of 
the previous step is provided as corrected words, a corrected 
category and/or an acceptance of the agent’s decision. 

• Step6) On-line learning: According to the user's feedback, the 
agent corrects the words, adds new words to the dictionary and 
updates the neural network weights according to the on-line 
learning rule. 

Table 2 presents some examples of the agent-user interaction. 
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Table 2.  Simulation transcription. 

Example (1): 
 User Input: ,
G OLNH WR ERRN DQ DLUOLQH WLFNHW WR /RQGRQ 
 Agent Reply: The input is considered as category 1, travel reservation(C/W?) 
  New words: No words to correct. 
 User feedback: &RUUHFW 

 
Example (2): 

 
User Input: 

&RQWDFW WKH WUDYHO DJHQF\ WR FDQFHO P\

WLFNHW WR /RQGRQ 
 Agent Reply: The input is classified into category 3, travel cancellation(C/W?) 
  New words: agency, contact 
 User feedback: &RUUHFW 

 
Example (3): 

 User Input: $UUDQJH PH D WULS WR &DLUR  
 Agent Reply: The input can not be identified, unknown(C/W?) 
  New words: arrange, Cairo 
 User feedback: 1R� &DWHJRU\ �� UHVHUYDWLRQ &DLUR 
 Agent Reply: Done
   

6 Summary 

We have introduced the task classification unit in an interface agent 
that relies on the neural network learning techniques to acquire the 
knowledge it needs to assist its user. It is designed to achieve the 
properties of interacting with the user through natural language 
interface and learning over time. The ability to build such systems is 
based on the assumption of the restricted vocabulary domain. The agent 
learns gradually to better assist the user. We argued that such a gradual 
learning approach is beneficial as it allows the user to incrementally 
become confident with the agent’s decision. The implemented task 
classification unit has been tested with real world data in the travel 
reservation domain. The results show that the system is able to classify 
the user's input correctly and learn over time. 
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