
© 2000 by CRC Press LLC

CHAPTER 7

NEURAL NETWORK LEARNING IN A
TRAVEL RESERVATION DOMAIN

H.A. Aboulenien and P. De Wilde

Department of Electrical and Electronic Engineering
Imperial College of Science, Technology and Medicine

London, U.K.
{ h.aboulenien , p.dewilde } @ic.ac.uk

This chapter presents an intelligent agent that employs a machine
learning technique in order to provide assistance to users dealing with a
particular computer application. Machine learning is a sub-field of
artificial intelligence (AI) that includes the automated acquisition of
knowledge. The aim is intelligent systems that learn, that is, improve
their performance as a result of experience. The agent learns how to
assist the user by being trained by the user using hypothetical examples
and receiving user feedback when it makes a wrong decision. The main
aim is to reduce work for the end-user by building a software agent that
acts as a personal assistant. The proposed interface agent will
potentially have the features of natural language interface and learning
through interaction. The achievement of these innovations is mainly
based on neural network learning techniques. The chapter presents
preliminary results from a prototype agent built using this technique
and applied on flight reservation domain.

1 Introduction

One of the obvious difficulties for building intelligent machines has
been for many years the passive nature of computers. Computers do
only what they were programmed to do and do not learn to adapt to
changing circumstances. At the same time, it will become more and
more difficult for untrained computer users to cope with the increasing
complexity of computer applications and the growth of the computers’

direct-manipulation interfaces. One of the aims for building intelligent
machines, and also one of the biggest challenges, is to create a simple
user interface so that the human-computer interaction will become as
natural for end-users as picking up a phone or reading a newspaper.

Artificial intelligence researchers and software companies have set high
hopes on so-called Software Agents which learn users' interests and can
act autonomously on their behalf to contribute in solving the learning
problem [1]. The learning approach has several advantages. First, it
requires less work from the end-user and application developers.
Second, the agent can easily adapt to the user over time and become
customised to individual and organisational preferences and habits.
Despite the huge diversity in this rapidly evolving area of agents’
research, the most promising one in solving the human-computer
interaction problems is called Interface Agents. Interface agents can be
characterised as systems, which employ artificial intelligence
techniques to provide assistance to users with a particular computer
application [2].

An important property that any interface agent should have is the
ability to communicate with the human user via some kind of natural
language. This is based on the belief that computers will not be able to
perform many of the tasks people do every day until they, too, share the
ability to use their language. Despite more than twenty years of
research into natural language understanding, the solutions for actual
problems such as a natural language computer interface still suffer from
inadequate performance. This problem is due to the fact that these
systems depend on exact knowledge of how human language works.
However, even now there is no complete and formal description of
human language available. It has been argued that there is some
evidence that the human brain is specially structured for language [3].
However, today's computer architecture is totally different from the
human brain.

In an attempt to model the human mind/brain, it has been necessary to
oversimplify the structure and the function. This has led to the
development of an important area of research, namely neural
computing. This area belongs to a larger research paradigm known as
computational intelligence which aims to model functions associated

© 2000 by CRC Press LLC

with intelligence, at the signal level as a dynamical system. Neural
computing is the study of Artificial Neural Networks (ANNs).

In this chapter, the main aim is to introduce the interface part of the
proposed agent that communicates with the user and learns through this
interaction to be able to assist him/her in the travel reservation domain.
The learning machine of this agent is based on neural network
techniques. In the next section, we introduce a brief definition of
agents. Section 3 presents the main features of neural networks. The
rest of the chapter explains the implementation of the proposed
interface agent and some of the simulation results.

2 Agents

Software agents have evolved from multi-agent systems, which in turn
form one of three broad areas, which fall under distributed artificial
intelligence (the other two being distributed problem solving and
parallel artificial intelligence). Although the term agent is a widely used
term in computing, AI and other related areas, it is poorly defined.
Perhaps the most general way in which the term agent is used is to
denote a hardware or (more usually) software-based computer system
that enjoys the following: [4]

• Autonomy: Agents operate without the direct intervention of
humans or other agents and have some kind of control over their
own actions and internal state.

• Social Ability: Agents interact with other agents (and possibly
humans) via some kind of agent-communication language.

• Reactivity: Agents perceive their environment (which may be the
physical world, a user via a graphical user interface, a collection of
other agents, the INTERNET or perhaps all of these combined) and
respond in a timely fashion to changes that occur in it.

• Pro-activeness: Agents do not simply act in response to their
environment; they are able to exhibit goal-directed behaviour by
taking the initiative.

There are sometimes other agent's attributes, which are considered
secondary attributes to those mentioned above such as mobility,
continuity, robustness and rationality. Our proposed interface agent

© 2000 by CRC Press LLC

aimed to enjoy most of the mentioned attributes except the mobility
feature. Generally, the implementation of interface agents is focused on
autonomy and learning. The interactivity (social ability) attribute will
be gained through the architecture of integrating many agents in a
collaborative scheme.

3 Neural Network Role

Our aim was to benefit from the features of artificial neural networks
(ANNs), which mimic the biological nervous system to perform
information processing and learning. On top of the superficial
resemblance, ANNs exhibit a surprising number of human brain
characteristics such as learning, generalisation and robustness. One of
the most important features of ANNs is the ease with which they can
learn (modify the behaviour in response to the environment). Learning
in ANNs is the process of adjusting the connection weights between the
nodes. Neural networks are often required to learn an input/output
mapping from existing data or learn from input data only when the
output is not known. In the last case, ANNs are capable of abstracting
the essence of a set of input data, i.e., learning to produce something
never seen before. ANNs perform the equivalent of inductive learning
in the symbolic paradigm.

Once trained, a network's response can be, to a degree, insensitive to
minor variations in its inputs. Generalisation in learning enables ANNs
to learn from incomplete data. This ability to see through noise and
distortion to the pattern that lies within is vital to pattern recognition in
a real-world environment. Producing a system that can deal with the
imperfect world in which we live overcomes the literal mindedness of
the conventional computer. This attribute is mainly due to its structure,
not by using human intelligence, embedded in the form of ad hoc
computer programs. Computer programs play no role. Parallelism
allows ANNs to model complex relations and to perform complex tasks
at speeds in excess of other algorithms (this feature can only be fully
exploited if their hardware implementation is used). The above features
are the main contribution of ANNs to intelligent systems [5].

As a matter of fact, ANNs have proved to complement conventional
symbolic artificial intelligent techniques in applications where the

© 2000 by CRC Press LLC

theory is poor and the data are rich, such as pattern recognition, pattern
matching, and adaptive non-linear control. Some researchers claim that
ANNs will replace current AI, but there are many indications that the
two will co-exist and be combined into systems in which each
technique performs the tasks for which it is suited [6].

4 Agent Architecture

In this section, we introduce a brief description of the proposed
interface agent’s building blocks. Figure 1 shows the interface agent
architecture [7].

Unit

Classification

Neural
 Hybrid
Rule-Based
System

Network
Associative
Memory
Bank

Domain

 Interface / Cooperation Unit with the Peers

User’s

Input

 Classified

 task

 Relevant

Keywords

Output

Information

Task

Knowledge

Figure 1. The interface agent architecture.

• Task Classification Unit (TCU): This is the interface part where
the user-system interactions are performed. The TCU accepts the
input request as natural language sentences from the user. The
sentences represent the required task that is required to deal with.
TCU applies approximate string matching and neural network
learning techniques to analyse the input sentences, then classifies
the task according to a search process in its heuristic database
system (concept maps).

• Neural Network Associative Memory (NNAM): This part of the
agent acts as a heteroassociative memory which is responsible for

© 2000 by CRC Press LLC

generating keywords related to the classified task received from the
TCU, though it works as a look-up table implemented using ANN
technique.

• Hybrid Rule-Based System (HRBS): HRBS applies simple rules
on the agent's knowledge domain, using the keywords, which are
generated from NNAM, to infer the actual information required in
executing the user's task.

• Peers Co-operation Unit (PCU): It is a channel to cooperate with
other agents to ask and answer questions.

In the rest of this chapter, the discussion is mainly concentrated on the
implementation issues of the task classification unit, in which the
neural network learning techniques are applied.

4.1 Problem Domain

Travel reservation is considered as a problem domain to apply the ideas
of agent-user interaction through natural language interface and
learning over time in order to be able to assist the user. The aim is to
build a task classification unit that is able to classify the user's input
request to a specific task category.

By natural language interface is meant manipulating a short sentence or
phrase and allowing misspelling and/or ungrammatical cases. We do
not claim that the agent deals with this problem in a satisfactory way
from the semantic or lexical analysis point of view. Since a deep text
analysis cannot be undertaken in an unrestricted semantic environment,
the approach must be to limit the task in order to analyse the user's
input text as well as possible. It has been claimed that most of the
successful natural language understanding systems share two
properties: they are focused on a particular domain rather than allowing
discussion of any arbitrary topic, and they are focused on a particular
task rather than attempting to understand language completely [8].

In order to be able to assist users, an agent must be provided with
knowledge of its domain. The agent is given a minimum of background
knowledge and learns the appropriate behaviour either from the user or
from other agents. By learning is meant learning by example and
accumulating the experience from interacting with and observing its
user.

© 2000 by CRC Press LLC

To tackle the problems of learning and natural language interface, it is
assumed that the agent's vocabulary is restricted to the task domain
language, i.e., the whole language is divided into many sub-languages.
Later, the results will show that the neural network approach is able to
associate the user's input sentence (information as a stream of words)
with the user's concept within this restricted domain. This assumption
enables us to design a simple user-agent interface form to accept
unrestricted simple natural sentences or phrases.

4.2 Data

Twenty-five e-mails written in the English language are collected from
persons with different native languages. Each e-mail contains a few
sentences or phrases representing the three specified categories in the
airline travel reservation area. These three categories are:

1. Asking about travel reservation.
2. Asking about travel confirmation.
3. Asking about travel cancellation.

It has been asked that every respondent write a short sentence or a
phrase representing as much as possible of the meaning without any
concern about the correct grammar. The e-mails contain a mix of
formal and informal English language. The only correction, which has
been made before this set of data has been applied on the neural
network for training, was a spelling check. In this approach, it is
assumed that:

• The user's sentences (most of the input stream of words) are within
the vocabulary domains.

• The sentences are not differentiated according to their grammar.
• The user's input sentences are not compound (simple requests

within the domain language).

The collected e-mails (dataset) consist of a combination of more than
one hundred sentences and phrases. This dataset contains more than
three hundred different words. A few no-meaning phrases are added to
represent the neutral category in the classification process. The neutral
category is supposed to include all the common words that have no
effect on the task identification process (reservation, confirmation or

© 2000 by CRC Press LLC

cancellation) such as a country name. Part of the dataset is chosen as a
training group (approximately 30% of the whole dataset). All the
sentences and phrases are contained in the test group.

Two types of ANN architectures have been trained using this dataset: a
Multi-Layer Feedforward Network (MLF) and a Single-Layer
Perceptron Network (SLP). With certain adjustments to the initial
weights, learning constant and steepness coefficient, both neural
network architectures give the same result. Changing the input
representation from unipolar (where active neurons are represented by
+1 and 0 represents in-active neurons) to bipolar (where active neurons
are represented by +1 and in-active neurons are represented by -1) has a
slight effect on the network performance. The activation of a neuron
depends on the presence of the word that the neuron represents in the
input stream of words. The order of the training data has more
influence on the training process. This is due to the finite size of the
training set. Here is an example to explain what training order effect
means. The word Egypt has the following weights according to the
training set in which the word is encountered four times (one time per
category).

 reservation confirmation cancellation neutral
Egypt -4.414566 -8.017722 -0.757465 6.551010

However, the ideal weights for such a word should be approximately
the same for all categories but the neutral category. In the actual case,
there are differences because of the finite size and the order of the
training set (order means which category was trained first). If the words
appeared many times in a random category order, this problem could be
overcome. On the other hand, this will elongate the training time. It has
been deduced that, in order to obtain a fair word-to-concept map
distribution from any trained neural network, the training dataset must
be carefully selected. In other words, the training sentences and phrases
should be prepared such that the neutral (common) words must be
represented equally for all the defined categories in the training dataset.
This is the main reason for adding the no-meaning phrases: to teach the
neural network how to neutralise the effect of the presence (absence) of
these words in the user’s input sentence/phrase. The neutral category
contains all the words which should have equal weights towards the

© 2000 by CRC Press LLC

three categories mentioned above such as London, to, on, for, …
and/or from.

The other factor which affects the learning time is the training set size.
The two architectures are trained with different size training sets. It is
obvious that the larger the training set the longer the training time. In
the next section, we will explain two learning processes which
complement each other to compensate the above mentioned pitfalls in
the training set.

4.3 Network Training

There are two types of training for either an MLF network or an SLP
network: an off-line training and an on-line training. The off-line
training aim is to construct concept maps from the training examples.
These concept maps relate the each input sentence/phrase to a specific
concept in the problem domain. The off-line training takes place before
all the operations in order to assign connection weights to all the words
in the training set patterns. A pattern consists of a unipolar (bipolar)
representation of the training sentence or phrase. For example, the
sentence could be:

Due to unforeseen circumstances I have to cancel my flight to London

Then the pattern would be:

-1 -1 -1 -1 -1 -1 -1 1 -1 … -1 -1 1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1….

Each input neuron represents a word and each output neuron represents
a category. The learning is according to the generalised Delta learning
rule: [9]

)(

,......,2,1)()(

1

ii

J

j

jiji

jiii

netfo

ywnet

njynetfodc

=

=

=′−

∑
=

where

© 2000 by CRC Press LLC

ijw is the weight that connects the output of the jth neuron with the
input to the ith neuron

o is the output vector
c is the scaling factor
f is the activation function (sigmoid function)
f′ is the activation function first derivative
y is the input vector
d is the target vector

Figure 2 is the graphical representation of the classified words into the
correct category after the off-line training is completed.

Booked

Flight

That

My
TheAble

Sorry

Cancellation Category

Confirmation

Confirm

Check

Confirmation Category

Cancel

Cancellation

Not

Travel

Return

A

Make

Reserve
Book

Reservation Category

Ticket

Reservation

Going

 Neutral Category

Figure 2. Word classification sample based on the collected data.

Table 1 shows a sample of the weights for some words after SLP1
network training that takes place based on the collected dataset. Before
the training all the words were assigned small random weights.

1 SLP results show a clearer relation between words and categories than MLF.

© 2000 by CRC Press LLC

Table 1. SLP training results (sample).

CATEGORIES WORD
RESERVATION CONFIRMATION CANCELLATION NEUTRAL

a* 8.160717 -6.392762 -9.916912 -11.262650
able -3.469685 -1.873571 7.569377 -4.008598
airline 1.778800 -6.574209 -2.470539 -7.258359
belgium -0.636226 -6.133667 -3.362907 3.883109
book 26.382210 -13.742558 -8.563011 -7.614223
booked -2.502439 8.311028 -2.922199 -3.853302
cancel -21.769215 -24.374889 53.473717 -20.940538
cancellation -21.756435 -12.751144 31.506802 -2.847031
check -14.144594 22.119167 -2.908264 -2.108434
confirm -16.029274 34.444370 -20.502920 -8.255243
confirmation -21.811161 13.502781 -17.121601 -5.858447
egypt -4.414566 -8.017722 -0.757465 6.551010
flight 2.957987 3.815885 -7.900447 -8.968528
going 5.197784 -8.156089 -7.538003 5.770500
make 11.682374 -6.972619 -1.942448 -14.292900
my -5.785409 2.654307 1.096750 3.675545
need -3.990644 -0.253858 -8.594911 5.843002
not -3.469685 -1.873571 7.569377 -4.008598
reservation 1.135525 2.715665 1.451366 0.494692
reserve 20.650588 -4.416985 -2.991275 -8.332147
return 6.652804 -1.805905 -2.937553 -0.380169
send* -0.74305 3.753846 -3.041971 3.572052
sorry -6.61513 -5.857497 2.198464 -0.346198
the* -14.7968 2.616945 -0.955008 2.513896
ticket 1.48133 5.895713 2.516594 0.510546
travel 8.168785 -7.046576 1.490917 -8.466378
trip -7.755359 -6.876982 -0.422680 5.903522
want -4.800109 -5.958756 -3.849468 6.855282

Inspection of the above results indicates that there is a strong
connection between some words and a specific category. For example:
words like book, reserve and make are directly related to the
reservation category, while words like check and confirm are
connected to the confirmation category. On the other hand, words like
reservation and ticket are common among more than two categories.
We intentionally added words like send to the training set to illustrate
the effect of the unequal representation of the neutral words. The word
send has appeared only twice in the training dataset: one time in a
confirmation training example and the second time within the no-

© 2000 by CRC Press LLC

meaning phrases. It can be seen from the table that this word is related
to both confirmation and neutral categories; however, it is supposed to
be in the neutral category only. Finally, it can be noticed that some
words like the and a are assigned into a certain category and this is
interpreted as language dependent. In other words, most of the users
use a when they ask about a ticket reservation and they use the when
they ask about the ticket confirmation.

The other learning process is called the on-line training. The on-line
training takes place during the user-agent interaction cycle. The
network adapts some of its weights according to the user's direct
response in order to correct the misclassified sentence/phrase to a
different category. Also, it assigns weights for new words. The on-line
learning rule is:

)(iiij od −εµ

where
µij is a multiplicative factor
ε is an on-line learning coefficient
d, o as defined above in the off-line training.

Each word has been assigned a correctness level value which is
dependent on how many times the word is used before. The
multiplicative factor is inversely related to the word correctness level
value. Any word in the user's input and not belonging to the domain
dictionary is considered new. The newer the word the higher the
multiplicative factor and vice versa. The correctness level value of a
word is increased each time the word is encountered in the input stream
of words and the user's request is classified correctly. Hence, the
change in the weights of the more often used words is much slower
than the change in the weights of the new words during the on-line
learning. The on-line learning coefficient is a small number defined by
the user to control the speed of the on-line training process.

The on-line training is a complementary process to the off-line training.
Also, it introduces a solution to the lack of enough data in the training
set which leads to some sort of incorrect bias in the network weights. In
addition, the whole learning process time is divided between those two
processes.

© 2000 by CRC Press LLC

5 Operation

Figure 3 shows the block diagram of the task classification unit in the
interface agent. Once the off-line training process has been completed,
the system is ready to move to inference and on-line training through
agent-user interaction. The interaction cycle works as follows:

Neural Network

Search Concept

Maps

of words

stream
Spelling Correction

 Dictionary

I/
O

 p
or

t

A
G
E
N
TR

E

S

U

Input

Feedback

Output

Request

Figure 3. Task classification unit block diagram.

• Step1) User-system interaction: The user's information is provided
as a simple sentence or phrase at the I/O port.

• Step2) Approximate string matching: Given the domain dictionary
string set, the user's input stream of words is matched against the
dictionary items to correct any spelling errors in the input words. A
non-matching text item can be computed with a dictionary directly,
using an iterative character-by-character matching scheme that
determines the smallest number of single-character operations
(insertions, deletions, substitutions, and transpositions) required to
transform one of the words into the other. This is a well-known
technique of approximate string matching [10]. It is assumed at this
stage that the dictionary contains the travel domain vocabulary
only. This means some correct English words might be considered
misspelled and corrected according to this vocabulary domain. For
example:

© 2000 by CRC Press LLC

(Not in the dictionary) reverse → reserve (Nearest match)

The output of this step is the correct stream of words (if found) and
the rest will be considered new words, even the wrong ones, until
the system receives a feedback from the user in step5.

• Step3) Pattern generation: Some of the input neurons are activated
according to the words presented in the user's input. The input
neurons in the neural network are chosen large enough to
accommodate the new words. The rest of the neurons that are not
active indicate the absence of the corresponding words from the
input stream of words. A new word can be assigned to any unused
neuron or a neuron that represents the neutral word, which has the
least correctness level value. This is the process of generating the
patterns from the input stream of words. The generating patterns
guide the neural network to an initial state (via a trajectory) in the
concept maps that have been constructed during the off-line training
phase.

• Step4) Search process: The neural network continues the search
process to classify the input pattern to a certain category according
to the off-line training. The output of this step is either directed to
the I/O port to get a feedback from the user or is considered correct
by the agent. This decision is mainly dependent on a factor defined
by the user, called agent's confidence level. This factor should be
increased with time as the neural network weights settle to the right
direction. The outputs are the classified category and/or the words
that were considered new or wrong in step2.

• Step5) User-system interaction: The user response to the output of
the previous step is provided as corrected words, a corrected
category and/or an acceptance of the agent’s decision.

• Step6) On-line learning: According to the user's feedback, the
agent corrects the words, adds new words to the dictionary and
updates the neural network weights according to the on-line
learning rule.

Table 2 presents some examples of the agent-user interaction.

© 2000 by CRC Press LLC

Table 2. Simulation transcription.

Example (1):
 User Input: ,
G OLNH WR ERRN DQ DLUOLQH WLFNHW WR /RQGRQ
 Agent Reply: The input is considered as category 1, travel reservation(C/W?)
 New words: No words to correct.
 User feedback: &RUUHFW

Example (2):

User Input:

&RQWDFW WKH WUDYHO DJHQF\ WR FDQFHO P\

WLFNHW WR /RQGRQ
 Agent Reply: The input is classified into category 3, travel cancellation(C/W?)
 New words: agency, contact
 User feedback: &RUUHFW

Example (3):

 User Input: $UUDQJH PH D WULS WR &DLUR
 Agent Reply: The input can not be identified, unknown(C/W?)
 New words: arrange, Cairo
 User feedback: 1R� &DWHJRU\ �� UHVHUYDWLRQ &DLUR
 Agent Reply: Done

6 Summary

We have introduced the task classification unit in an interface agent
that relies on the neural network learning techniques to acquire the
knowledge it needs to assist its user. It is designed to achieve the
properties of interacting with the user through natural language
interface and learning over time. The ability to build such systems is
based on the assumption of the restricted vocabulary domain. The agent
learns gradually to better assist the user. We argued that such a gradual
learning approach is beneficial as it allows the user to incrementally
become confident with the agent’s decision. The implemented task
classification unit has been tested with real world data in the travel
reservation domain. The results show that the system is able to classify
the user's input correctly and learn over time.

© 2000 by CRC Press LLC

References

[1] Maes, P. (1995), “Intelligent software: programs that can act
independently will ease the burdens that computers put on people,”
Scientific American, vol. 273, no. 3, pp. 66-68.

[2] Maes, P. (1994), “Agents that reduce work and information
overload,” Communications of the ACM, vol. 37, no. 7, pp. 31-40.

[3] Pun, C. and Li, Y. (1998), “Machine translation with corpus-base
support,” Proceedings of Fourth International Conference on
Computer Science and Informatics North Carolina, pp.158-161.

[4] Wooldridge, M. and Jennings, N.R. (1995), “Intelligent agents:
theory and practice,” The Knowledge Engineering Review, vol. 10,
no. 2, pp.115-152.

[5] Tsui, K.C., Azvine, B., and Plumbley, M. (1996), “The roles of
neural and evolutionary computing in intelligent software
systems,” BT Technology Journal, vol. 14, no. 4, pp. 46-54.

[6] Wasserman, P. (1989), Neural Computing Theory and Practice,
Van Nostrand Reinhold, New York.

[7] Aboulenien, H.A. and De Wilde, P. (1998), “A simple interface
agent,” Proceedings of Fourth International Conference on
Computer Science and Informatics North Carolina, pp. 190-192.

[8] Russell, P. and Norvig, P. (1995), Artificial Intelligence: A
Modern Approach, 2nd ed., Prentice-Hall, New Jersey.

[9] Zurada, J. (1992), Introduction to Artificial Neural Systems, West
Publishing Company, St. Paul.

[10] Salton, G. (1989), Automatic Text Processing, Addison-Wesley,
New York.

© 2000 by CRC Press LLC

	Recent Advances in Artificial Neural Networks
	Contents
	NEURAL NETWORK LEARNING IN A TRAVEL RESERVATION DOMAIN
	1 Introduction
	2 Agents
	3 Neural Network Role
	4 Agent Architecture
	4.1 Problem Domain
	4.2 Data
	4.3 Network Training

	5 Operation
	6 Summary
	References

