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In this chapter, we present the results of a study of a new version of the 
LAPART adaptive inferencing neural network [1], [2]. We will review 
the theoretical properties of this architecture, called LAPART-2, 
showing it to converge in at most two passes through a fixed training 
set of inputs during learning, and showing that it does not suffer from 
template proliferation. Next, we will show how real-valued inputs to 
ART and LAPART class architectures are coded into special binary 
structures using a preprocessing architecture called Stacknet. Finally, 
we will present the results of a numerical study that gives insight into 
the generalization properties of the combined Stacknet/LAPART-2 
system. This study shows that this architecture not only learns quickly, 
but maintains excellent generalization even for difficult problems. 

 



1 Introduction 

A Holy Grail of neural networks is fast learning with good 
generalization. In many neural architectures, these two trade off against 
each other, making it difficult to achieve them simultaneously. In this 
chapter, we present a version of the LAPART adaptive inferencing 
neural network architecture [1]-[3] that has excellent learning and 
generalization properties. LAPART architectures are constituted from 
two or more ART architectures bilaterally connected with adaptive 
connections. The centerpiece of the chapter is the theorem that under 
certain broad conditions, LAPART-2 converges in at most two passes 
or epochs through a fixed set of binary training inputs, where an epoch 
is the single-time application of a complete list of input patterns to a 
neural network for learning. In [4], Georgiopoulos, Heileman and 
Huang proved the upper bound n-1 on the number of epochs required 
for convergence for the similar ARTMAP architecture, where n is the 
size of the binary pattern input space; they also proved that the bound 
can decrease with increasing vigilance parameter values, ρ. ARTMAP 
performs a function similar to LAPART; both require binary-valued 
input patterns although, as we will show, they can process real-valued 
input patterns in a manner equivalent to that of Fuzzy ARTMAP 
through the use of stack interval pre-processing networks [6]. The 
ARTMAP result can be thought of as an n pass, or finite-pass, 
convergence result. In these terms, LAPART-2 is then a 2-pass, or 
fixed-pass, convergence result. To our knowledge this is the first fixed-
pass convergence result of its kind.  

LAPART-2 is a byproduct of theoretical and empirical investigations 
into the learning properties of the previous version, LAPART-1. Based 
upon formal modeling of the semantics of neural networks [7], 
LAPART-1 was developed specifically to learn logical inference 
relationships, or rules, between classes of objects from an application. 
Both the classes and the rules are formed in the synaptic memory of the 
network according to neural design principles embodied in ART-1 [8], 
but with a logical design principle from the formal semantic analysis: 
adaptive neural network connections implement logical implication [7], 
[9]. The logic, however, changes to adapt to the data. The underlying 
reason for this is that many inferences made by a neural network prove 
to be unsound when tested on new data, so the logic must be corrected. 
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We regard this principle as a point of departure not only for theories of 
learning with neural networks, but for learning in general.  

The overarching question facing us is the following: Can a neural 
network – ART-1 or LAPART, for example – adapt its logic so that, 
from some point in time forward, its inferences are valid provided that 
it is presented with data sufficiently similar to that which it has 
previously experienced? A positive answer has been provided for ART-
1 with a learning parameter set within a range of values commonly 
used [10]: ART-1 converges on a fixed training set of binary input 
patterns in a number of presentation epochs that can be calculated from 
information about the data. The required information is the number N 
of different sizes of input patterns, where the size of a binary-valued 
pattern is the number of 1-valued components it possesses. If all input 
patterns have the same size, then only a single epoch is required. This is 
an N -pass convergence result for unsupervised learning in terms of the 
stratification of the input space into size classes. This result is 
especially interesting in that it specializes to one-pass convergence for 
fixed input pattern size. 

The inferences made by an ART-1 network are simply its self-
organized classification decisions: The nodes in the F2 (classification) 
layer of the network compete in a winner-take-all fashion, and a binary 
template pattern comprising adaptive connections from the winner to 
the F1 (comparison) layer is compared with the input pattern to 
determine if the input belongs in the corresponding class of patterns. 
Thus, the classes have two representations: F2 nodes and templates. An 
ART-1 network has converged on a fixed training set of patterns when 
all inputs have a direct access template in the system – one that causes 
immediate classification. The point here is that the logic of a trained 
ART-1 system is valid not only for the training patterns, but for any 
future input patterns that have direct access templates in the ART-1 
memory. However, conditions for other ART-type architectures, in 
particular LAPART-1, are difficult to derive because of the phenomena 
that can occur in the more complex situations of inference learning. 
Assumptions must be made, either upon the architecture in the form of 
added design constraints or upon the data in the form of “domain 
constraints.” The former is the basis for the design change to create 
LAPART-2, and the latter is the basis for the hypothesis that makes our 
two-pass convergence theorem possible. 

© 2000 by CRC Press LLC 

 



The LAPART-1 architecture has been described in [1], [2], [3]. It 
couples two ART-1 networks, designated subnetworks A and B, in such 
a way that if subnetwork A attempts to assign a class Ai to a binary 
input pattern IA the result is an inference that subnetwork B will assign 
its simultaneously-occurring input IB to a class Bj. The inference is the 
result of a strong connection between the F2 nodes for classes Ai and Bj 
in the two subnetworks, and this is denoted Ai → Bj. In LAPART, each 
inference is tested in subnetwork B through its own vigilance pattern 
matching operation; if the subnetwork B vigilance system is not 
aroused (hence, the match of IB to the Bj template pattern is accepted), 
the inference and, therefore, the subnetwork A classification decision 
were valid. Otherwise, the subnetwork A decision is assumed invalid. 
This is where the LAPART logic must adapt: The subnetwork A class 
templates must be modified appropriately if a mistaken inference is to 
result in a lasting correction. On the other hand, the inferencing 
connections between A and B classes, once formed, are assumed always 
correct. Further, they are assumed exclusive: Each subnetwork A class 
can infer only a single subnetwork B class. The phenomena that 
characterize the complexity of learning with LAPART-1 stem from 
these assumptions. 

In Section 2, we briefly review the architecture and operation of ART-
1, Stacknet, which converts real-valued input patterns to a binary 
structure, and LAPART-1. In Section 3 we present the LAPART-2 [11] 
algorithm as a means of addressing a phenomenon that can impede 
learning significantly in LAPART-1. Section 4 presents the learning 
theorems stating that a LAPART-2 network converges in two passes 
through a fixed training set. Along with this, we state a theorem 
showing that the architecture does not generate more templates than 
there are input examples. Section 5 describes the generalization study 
and its numerical results. Section 6 is the Discussion. 

2 ART-1, Stacknet, and LAPART-1 

In this section we briefly review the architecture and operation of ART-
1, Stacknet, which converts real-valued input patterns to a binary 
structure, and LAPART-1. 
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2.1 Binary Patterns 

First, we briefly review some notation and terminology. We shall 
regard a binary pattern X as a string of numerical 1s and 0s. Certain 
operations are defined upon binary patterns. First, if n is the number of 
0-1 components, each denoted Xk, we write length(X) = n. For any two 
binary patterns X and Y having the same length, we refer to their com-
ponent-wise minimum X ∧ Y, where the minimum operation on com-
ponents has the properties, 0 ∧ 0 = 0, 1 ∧ 1 = 1, 0 ∧ 1 = 0, 1 ∧ 0 = 0. 
For a set, S, of binary patterns all having the same length, with S = {X1, 
X2,…,XN}, let ∧ S denote the pattern minimum over the set, ∧S = X1 
∧ X2 ∧… ∧ XN. We define the size, |X|, of a binary pattern to be the 
number of 1s it contains. Finally we denote a “subset” relationship as 
X ⊆ Y, indicating that for every component in binary pattern X that has 
a 1 value, the same component in Y also has a 1 value. 

2.2 ART-1 Architecture 

To support our discussion of the LAPART architecture, we briefly 
summarize the function of an ART-1 network [8]. ART-1 is called an 
unsupervised learning architecture because it autonomously classifies 
its input patterns and “remembers” the classes in the form of binary 
connection-weight template patterns. An ART-1 network has three 
main layers of nodes. These layers consist of m1 input (I) nodes, m1 
matching (F1) nodes, and m2 classification (F2) nodes. The I layer 
serves as the network input interface, with each input node, Ik, 
supplying excitatory input to its corresponding F1 node, F1k. Each 
binary input pattern I, where length(I) = m1, specifies the activation 
values of the input nodes for the duration of the presentation of I as the 
current input. Thus, if input pattern component Ik has the binary value 
1, then input node Ik has an activation value of 1 for that pattern, and 0 
otherwise. Since the activation value Ik of each input node is directly 
transmitted to the corresponding node F1k through the Ik → F1k 
connection, which has a fixed weight of unity, the initial pattern of 
activation values over F1 is identical with the input pattern. The F1 and 
F2 layers interact through adaptive connections, under the control of 
the gain control (GC) and vigilance (VIG) nodes. The template pattern 
for each class comprises the connection weights in the unique set of 
adaptive connections associated with an F2 node. At any time, each 
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template, Ti for class i, corresponding to node F2i for (1 ≤ i ≤ m2), has 
the form  

Ti = ∧ S,    (1) 

where S is the set of binary input patterns that has previously been 
assigned to the class corresponding to Ti and, consequently, may have 
contributed to the adaptive recoding of the template pattern. An input 
pattern may contribute to a template at one time and yet may become 
associated with a different template at a later time, as templates 
continue to undergo recoding. This effect will occur until the ART-1 
network has perfectly learned its input space. The authors of the ART-1 
architecture characterize the behavior of its unsupervised classification 
algorithm through stability results in [8]. Further results in [10] include 
a key learning theorem that states that if a fixed set of patterns is 
repeatedly presented to an ART-1 network, the algorithm will converge 
(i.e., perfect learning of the input set will occur) in a finite number of 
epochs, with the input patterns arbitrarily re-ordered on each epoch. 
Perfect learning means that each training pattern I in the set will have a 
maximal subset template Ti with Ti ⊆ I, where Ti is the largest such 
template |Ti| �� _7i' | for all Ti ⊆ I. As a consequence, I will resonate 
directly with Ti; that is, I will be classified as a member of class i (this 
is called the direct access property [8]). Finally, no recoding of Ti will 
occur, since Ti ⊆ I. 

Since the vigilance nodes of its ART-1 subnetworks play a fundamental 
role in the operation of a LAPART network, we review the role of a 
vigilance node. During the F2 competition following input of a binary 
pattern I, some F2 node, F2j say, wins the competition and tentatively 
becomes the exclusive class representative for I. However, if its 
associated template pattern Tj is such that  

| I ∧ Tj | / | I | < ρ,    (2) 

where ρ is the ART-1 vigilance parameter, then the vigilance node, 
VIG, becomes activated. When this happens, a reset occurs over the F2 
layer, and F2j becomes suppressed for the duration of the presentation 
of I. This eliminates F2j from the competition for representing I during 
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the current input presentation. When no more resets occur, resonance is 
said to have occurred, and the input has finally been assigned a class. 
The ART-1 classification algorithm can be summarized as one that 
solves the combinatorial optimization problem stated as follows: 

        maximize | I ∧ Tµ | / (β + | Tµ | ) 
             w.r.t. µ 

       subject to | I ∧ Tµ | / | I | ≥ ρ   (3) 

A solution value i for µ is the index of the F2 node F2i that represents 
the class assigned to I with associated template Ti. 

For each ART-1 input pattern, unsupervised learning occurs in two 
phases: (1) recognition of the input pattern as a member of some class, 
and (2) updating of the class template through synaptic learning. 
During a resonance, the commonality of the input pattern and template 
is synaptically learned by the network by adapting the template weight 
values. This is expressed in the following binary pattern equation:  

Ti-new = I ∧ Ti-old    (4) 

which leads to the template property expressed in equation (1). When a 
class is first established, all connection-weight values in its template are 
1s. Many of these are changed to 0s via the learning process as the 
network assigns input patterns to the class. 

The next subsection presents a preprocessing network that converts a 
single real-valued input into a multicomponent pattern containing 
binary-valued components. The resulting coded pattern is well suited 
for the processing of an ART-1 network. 

2.3 Stacknet 

The neural network described in this sub-section, called Stacknet [6], 
transforms (codes) real-valued components into binary patterns that 
possess an important property vis-à-vis the processing that occurs 
within ART-1 networks: binary patterns that are “similar” in an ART-1 
sense correspond to real values that are similar in magnitude. This is 
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not true of the usual binary-coded-decimal format used in digital 
computers, in which 0 and 1 are coefficients of powers of 2. The 
codings used here are referred to as stack numerals and are similar to 
“thermometer codes” where a real number is mapped into an interval 
defined by real-valued minimum and maximum values. This interval is 
quantized into m subintervals, one of which contains the real input 
value. Associated with each subinterval is a logical variable. The stack 
numeral is constructed by setting all of the logical variables for 
subintervals less than or equal to the one containing the real-valued 
input to TRUE (or 1) and those above to FALSE or UNCERTAIN (0). 
If the interval is thought of as being a vertical structure, the set of 
logical variables forms a stack of 1s topped by 0s, totaling m 
components high. The precision of representation is set by the choice of 
the max, min, and m stack parameters and can be easily matched to the 
accuracy of a measured input value. 
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Figure 1.  (a) A simple example of a neural implementation of a stack numeral. 
The complement stack has a different connectivity. (b) The activation function 
for the stack units with threshold δ. 

A simple Stacknet is depicted in Figure 1. The connection strengths of 
stack inputs are all unity. Each stack node si (1 ≤ i ≤ m) has an 
activation threshold of magnitude δ > 0. Thus, stack node s1 can be 
activated by a signal from the analog source node of magnitude δ. 
When activated, it emits a signal of strength unity through the 
connection to its corresponding ART-1 F1 node. Simultaneously, it 
emits a signal of strength unity through a system of (m-1) inhibitory 
connections to higher stack nodes s2., s3.,… sm.. These connections each 
have weight δ, so that the connection-weighted inhibitory signal 
arriving at each target node above s1 has strength 1· δ = δ. The 
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consequence of this is that an input signal of strength x ≥ δ to the stack 
network from the analog source node is required to activate s1. 
However, if δ≤ x<2· δ, only s1 will be activated, for the inhibitory 
weighted signal δ from s1 arriving at each higher of the m–1 target 
nodes s2., s3.,… sm causes the total connection-weighted input ti into 
target node si ( i >1) to be below threshold, that is 

ti = x – (1 • δ)  <  2δ − δ  =  δ   

or ti < δ  

which is below threshold, implying that all higher nodes will remain in 
their off state. Similarly, stack node s2 sends out a set of m-2 inhibitory 
connections of strength δ to stack nodes s3., s4.,… sm.. In general, stack 
node si inhibits the m – i higher nodes. As a consequence, stack node si 

will be activated if and only if the input analog signal has strength 
x ≥ i · δ. Thus, an analog number δ ≤ x ≤ (m+1)· δ in magnitude can be 
represented to within an absolute precision of magnitude δ by the 
Stacknet network. Thus, if n· δ ��[����Q�����Â δ stack nodes 1, 2,...,n will 
be activated, producing the binary pattern  

I = [ 1111…1000…0] 

where there are n 1s and m-n 0s. Stacknet takes a single real-valued 
input and produces a binary-valued output pattern of fixed length m.  

Two stack numeral binary patterns are similar in the ART1 sense if and 
only if they fall into a class which is represented by the same template 
pattern. If the real-valued inputs were coded as powers of two, the 
usual representation on digital computers, this equivalence would not 
hold. For example, the numbers 127 and 128 represented in powers of 
two require 8 bits, with low-order binary digits to the right, yielding the 
patterns 01111111 and 10000000, respectively, with a difference in bits 
equaling 8 out of 8 total, or 100%. By contrast, if δ = 1 a stack 
representation requires a minimum of 128 stack nodes (bits) to exactly 
code the numbers 1, 2, ..., 127, 128, yielding a difference in bits 
equaling 1 out of 128 total, or less than 1%. Stack numerals require 
more binary components but are more appropriate for coding numbers 
for ART-1 networks. 

© 2000 by CRC Press LLC 

 



Now suppose that several Stacknets, each reading from a different 
analog source node, are arranged in an input array for an ART-1 
system. Here, the total number of binary-valued components that will 
be generated will be m = m3 . m4, where m3 is the number of real-valued 
inputs to be represented and m4 is the length of each output stack 
(assuming uniform stack size). Let X = ( x1, x2, …, xm1) be an array of 
real-valued variables that are input to the array of Stacknets, and then 
I = ( I 1, I2,…Im2) denotes the concatenation of binary stack outputs that 
represent the components of X to a precision δ, each of length m4, so 
m1 = m3 . m4. The ART-1 network receives this composite pattern at its 
F1 layer. 

Finally, as pointed out in the Introduction, ART-1 converges on a fixed 
training set of binary-valued input patterns in a number of presentation 
epochs equal to the number N of different sizes of input patterns, where 
the size of a binary-valued pattern is the number of 1-valued 
components it possesses. If all input patterns have the same size, then 
only a single epoch is required. Stacknet has a variant that 
accomplishes this through the use of complement coding. If I is the 
normal “positive” binary-valued ART-1 input pattern of length m, then 
we can define the complement “negative” of this pattern to be a pattern 
I c of length m, as I c = 1 – I, where 1 is a pattern of all 1 components. 
By concatenating the positive and negative patterns together, we form a 
pattern C = ( I c, I ) of length 2m. If | I | = n, then | I c | = m – n. 
Therefore, | C | = | I | + | I c | = m, independently of n. Using 
complement coding of stacks representing real-valued inputs will allow 
ART-1 learning to converge in a single epoch for any set of input data. 

2.4 LAPART-1 

The basic LAPART-1 network architecture [1] is based upon the lateral 
coupling of two ART-1 subnetworks, referred to as A and B. The 
interconnects between these two subnetworks force an interaction of 
the respective classifications performed by the ART-1 subnetworks on 
their inputs. This modifies their unsupervised learning properties to 
allow the learning of inferencing relationships between their respective 
input domains. This can be thought of as supervised learning, or 
supervised classification. In actuality, however, it is much more 
general. The usual sense of classification is that of creating a partition 
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of the inputs, that is, separating them into disjoint sets, with a label (the 
desired output specified by the “teacher”) attached to each element of 
the partition. With the LAPART architecture, we may actually label 
sets with sets – in other words, the network extracts rules with 
antecedent and consequent predicates. In this discussion, the sets in 
question will be referred to as classes, because they are sets labeled by 
ART-1 F2 nodes and coded in templates. Also, the inputs, ART layers, 
and templates will be labeled with an A or B referring to the A and B 
ART-1 subnetworks.  

In a typical LAPART application, two ART-1 subnetworks are 
presented with a sequence of pairs of simultaneously-occurring input 
patterns IAk and IBk for subnetworks A and B, respectively. As A and B 
form class templates for their inputs, the LAPART-1 network learns 
inference relations between their classes by forming strong F2A → F2B 
interconnections between pairs of simultaneously-activated F2A and 
F2B nodes. Convergence of a LAPART network in a finite number of 
passes through a training set requires that it reach the following 
operational state: Presentation of any input pair (IA, IB) from the set 
shall result in pattern IA being immediately assigned a class in ART-1 
subnetwork A through direct access to the class template. Through a 
strong, learned inferencing connection, the class F2A node shall signal 
a unique F2B node to which it is connected, forcing it to become 
activated. This results in the inferred B class template being read out 
over the F1B layer just as pattern IB reaches the F1B layer. The 
ensuing vigilance test in subnetwork B shall then confirm that the 
inferred class is an acceptable match for IB. That is, the network B 
vigilance node shall remain inactive. Further, the B class template shall 
be a subset template for IB. In summary, a final pass through the data 
shall result in no resets and no synaptic strength changes (i.e., no 
learning). 

To show how a LAPART-1 network learns class-to-class inferences, or 
rules, from example input pairs, we give a brief summary of its 
algorithm. Initially, subnetworks A and B are untrained ART-1 
networks. Their F2 nodes are fully interconnected by F2A → F2B 
connections which are too weak to carry a signal of significant strength; 
that is, there are no learned inferences. As it processes each input 
pattern pair (IA, IB), the LAPART network does one of two things: It 
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either forms a new rule or tests a previously learned one. It forms a new 
rule exactly when subnetwork A forms a new class for its input IA. That 
is, if A has no acceptable template pattern for IA it selects a previously 
uncommitted F2A node, F2Ai according to the ART-1 algorithm. Then, 
it modifies the adaptive F1A→  F2Ai and F2Ai → F1A connections so 
that the newly committed template pattern TAi equals the input IA. We 
denote the newly initialized class by Ai. Following the selection of 
F2Ai, meanwhile, subnetwork B has been allowed to read its input IB. It 
selects a node F2Bj and either initializes a new template TBj or recodes 
(modifies) a previously committed one. A subnetwork B class, Bj, has 
now been selected simultaneously with the newly initialized subnet-
work A class Ai. Finally, the F2Ai → F2Bj connection strength increases 
to a maximum, implementing an inference relationship, or rule, Ai→ Bj. 
We write the rule in the form of an implication formula because the 
future presentation of an input pair for which Ai is the resonating class 
for the A input will result in the inference through the strong F2Ai → 
F2Bj connection that class Bj is appropriate for the B input. This strong 
connection will remain the sole one from Ai to a subnetwork B class 
node.  

If subnetwork A already contains a class template TAi that resonates 
with IA on the other hand, then it also has a previously learned class-to-
class inference relationship Ai → Bj. Thus, F2Ai primes F2Bj through 
the strong F2Ai → F2Bj connection, forcing F2Bj to become active and 
read out the class Bj template over the F1B layer. Thus, when it is 
allowed to read its input, IB, subnetwork B performs its vigilance 
pattern-matching test using the template pattern TBj instead of one that 
would have been selected through the ART-1 winner-take-all 
competition in layer F2B. This is where the LAPART network tests an 
existing rule: If the pattern match between the inferred class template 
TBj and the input pattern IB is not acceptable, that is if 

 | IB ∧ TBj | / | IB | < ρB,  

where ρB is the vigilance threshold for subnetwork B, then a reset 
occurs in subnetwork B – the inference has been disconfirmed. Through 
the fixed, strong connection VIGB →  VIGA between the two vigilance 
nodes, subnetwork A is subsequently forced to also undergo a reset, 
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which we call a lateral reset. A lateral reset overrides subnetwork A’s 
autonomous, or unsupervised, classification decision and forces it to 
find an alternative class for its input. The entire process must then be 
repeated using the reduced set of nodes obtained by inactivating F2Ai 
and therefore F2Bj. Finally, the network either forms a new rule or 
modifies the templates that are linked through a pre-existing one.  

It is interesting to ask whether the LAPART-1 algorithm always 
converges to the state in which no more resets or template 
modifications occur – all inferences are correct and learning has ceased. 
If it does not, are there conditions that can be specified under which it 
can be guaranteed to converge? Is there, at least, a set of well-defined 
necessary conditions for convergence? Unfortunately, it cannot be 
guaranteed that a LAPART-1 network will reach an operational state of 
convergence on the training set. Our attempts at addressing this issue 
resulted in the design of the LAPART-2 network and proofs of 
theorems stating that a LAPART-2 network converges in two passes 
through a training set. 

3 The LAPART-2 Algorithm 

In this section, we describe the LAPART-2 architecture [11], which 
implements neural network design constraints that we derived in order 
to resolve issues with LAPART-1. The LAPART-2 architecture is 
identical with the LAPART-1 architecture except in the procedure for a 
lateral reset. The modified lateral reset procedure results in a rule 
extraction neural network that converges in two passes through a set of 
training data, given that certain sufficient conditions hold for the data. 
Two-pass supervised learning is a special case of this, since, as 
mentioned before, rule consequents in supervised learning are simply 
class labels assigned by the teacher. 

3.1 Forcing Learning to Occur 

In LAPART-1, a lateral reset merely disqualifies the active F2A node, 
forcing ART-1 subnetwork A to select an alternative resonant node 
from the set of all F2A nodes that have not yet undergone a reset for the 
current input pair. As in the example let this pair be (IA, IB). It can 
happen that IA has a direct access template TAi whose choice results in 
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a lateral reset, while a subsequently chosen template TAi' results instead 
in a valid inference; yet the latter template is also a subset template for 
IA (necessarily, it is smaller, having fewer binary 1 components). That 
no learning can occur in subnetwork A as a consequence of this 
(because only subset templates were chosen) means that the originally 
chosen template can remain the direct access template for IA 
afterwards. This allows the same sequence of events in subsequent 
passes to be repeated for the pair (IA, IB), ensuring that the lateral reset 
(signaling an incorrect inference) will be repeated. 

The LAPART-2 learning algorithm overcomes this learning deficit by 
allowing the choice of only an uncommitted F2A node to represent IA 
following a lateral reset. As a consequence, learning will occur, and in 
two forms. First, the uncommitted template will be re-coded as IA. This 
recoding represents the network’s current state of knowledge about the 
new class, which consists of a single example. Since there is no A→  B 
inference generated, the procedure for adding a new A class, Ai', comes 
into play; subnetwork B produces a class template TBj' that resonates 
with IB in the usual ART-1 fashion. Unless this is a subset template for 
IB or else corresponds to an uncommitted F2B node, an existing B-
class template will be modified. The second form of learning that 
occurs is the learning of a strong connection F2Ai'→  F2Bj', which 
implements a newly learned inference relationship, Ai'→  Bj'. 

3.2 Constraints on the Input Data 

We shall state two learning theorems in Section 4, the most important 
result being the convergence of LAPART-2 in two passes through a 
fixed set of input pattern pairs. See [11] for an additional theorem. 
Unfortunately, the algorithmic modifications leading to the LAPART-2 
architecture are insufficient, by themselves, for a proof of convergence. 
For this reason, the hypotheses of the learning theorems state 
assumptions that apply to the input data pattern pairs. Let mA1 and mB1 
be the number of input pattern components IAk and IBl in the inputs to 
subnetworks A and B, respectively, and let KA and KB be integers such 
that 0 < KA < mA1 and 0 < KB < mB1. Hypothesis (i) is the statement 
that the input patterns for each ART-1 subnetwork have a fixed size, 
KA for subnetwork A and KB for subnetwork B. This may appear to be 
a strong constraint. However, it is less strong an assumption than is 
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routinely applied with ARTMAP and Fuzzy ARTMAP [4], [5]: In 
applications of these architectures, it is normally assumed that each 
input pattern is complement coded, with the effect of making all input 
patterns the same size.  

Hypothesis (ii) in the Two-pass Learning theorem is more complex: It 
is meant to ensure that LAPART-2 is a consistent learner (see [13]). A 
consistent learner is a machine which, given consistent training data, 
can successfully learn some specified target concept from that data. In 
the learning of class-to-class inferences (rule extraction), we apply the 
assumption that the input pattern pairs are consistent and, as a result, 
are able to prove that LAPART-2 converges. In the context of 
LAPART, consistency means that the pattern minimum (∧) of the 
subnetwork B input patterns with which each subnetwork A input 
pattern is paired can form a template with which each one of them 
would pass the vigilance test. Without this hypothesis, there could be a 
subnetwork A input pattern IA for which the LAPART network was 
incapable of learning correct B inferences; there would always be some 
B input pattern IB associated with IA that would cause a lateral reset.  

4 The Learning Theorems 

We can now state the learning theorems for the LAPART-2 neural 
network architecture. See [11] for the details of the proofs. Only the 
hypotheses pertaining to the data are stated explicitly. The neural 
network behavioral hypotheses are implicit in the statement in the 
theorems. In the following, let L be a LAPART-2 network with mA and 
mB input nodes for subnetworks A and B and with vigilance values ρA 
and ρB. Let MA and MB be sets of input patterns for subnetworks A and 
B, respectively, and let M be a set of input pattern pairs (IAk, IBk,h ), 
with IAk ∈ MA, IBk,h ∈ MB (k = 1,…,N; h= 1,…, nk). Finally, let MBk = 
{ IBk,h | h = 1, …, nk }. The first theorem follows: 

Theorem (Two-pass Learning) Let L be a LAPART-2 
network whose inputs have the following two properties: 

(i) | IAk | = KA, | IBk,h | = KB (0 < KA < mA; 0 < KB < mB). 
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(ii) For an arbitrary subset S ⊆ MB and for any IAk ∈ MA, if 
an associated pattern IBk,h is in S ( i.e., if IBk,h ∈ S ∩ MBk ) 

and  ∧ S  ��ρB • KB 

then  ( ∧ S ) ∧ ( ∧ MBk )  ��ρB • KB. 

Then, if each of the elements of M is input to L in each of 
several passes, with the elements arbitrarily ordered in each 
pass, there will be no resets and no new templates in 
subnetworks A and B, and no changes in class assignments 
in subnetwork A, following the second pass. Recoding can 
occur only in subnetwork B templates following the second 
pass. Any such recoding will occur only on the third pass 
and will have no effect upon the class assignments and 
inference relationships that L has learned in the first two 
passes. 

Although hypothesis (i) is essential, it is also one that is commonly 
applied in studies of ARTMAP and LAPART type architectures, and is 
even considered essential for the correct performance of ARTMAP [4], 
[5]. It is hypothesis (ii), together with the LAPART-2 modification 
itself, that is uniquely responsible for the two-step convergence result. 
This hypothesis, however, is difficult to verify for a given application. 
It specifies that any template that could conceivably be associated with 
the subnetwork B input patterns that are paired with a single 
subnetwork A input pattern must admit all of them. For the intended 
rule extraction applications of LAPART, in which sets of A inputs (rule 
antecedents) are to be associated with sets of B inputs (rule 
consequents), it would be impractical to check this. Also, the condition 
is rather strong – probably stronger than necessary – and is not likely to 
hold in some cases. See [11] for a further modification of the LAPART 
architecture that addresses this issue. In the csae of pure clasification 
problems, like those presented in Section 5, hypothesis (ii) may easily 
be shown to hold true. 

Theorem (LAPART Data Compression) Let L be a 
LAPART network which is processing input pattern pairs 
(IAk, IBk,h) from a set M. Suppose that the B inputs all have 
the same size | IBk,h | = KB for all applicable values k, h. 
Then, the number of laterally connected template pairs 
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(TAi, TBj ) generated by L does not exceed the number of 
input pairs ( IAk, IBk,h ) in M. 

Notice that the LAPART Data Compression theorem requires no 
constraint on the architecture – it can be any of LAPART-1 or 2 
variants. The only restriction on the input data is that the B component 
of all input pattern pairs be the same size. This is much weaker than the 
hypotheses in the Two-pass Learning theorem. A consequence of the 
LAPART Data Compression theorem is that the number of Ai → Bj 
rules extracted can be no greater than the number of input data pairs. 
Neither template proliferation nor rule proliferation is a problem with a 
LAPART network. The following section further explores the 
properties of LAPART-2 architectures through numerical simulations. 

5 Numerical Experiments 

With most learning systems, it is frequently possible to achieve near 
perfect learning on a fixed training set of data at the expense of either 
using a large enough set of synaptic weights in the network or reduced 
performance on an independent testing set of data. The former effect is 
addressed by the template proliferation result mentioned above. The 
latter effect is referred to as poor generalization or over-training. Since 
a theoretical understanding of generalization in LAPART class 
architectures is still under development, this section addresses the topic 
through a series of numerical experiments on challenging problems in 
classification. Note that this class of problem has been used in these 
studies because of the simplicity of their correctness analysis and the 
availability of independent theoretical bounds on performance. Note 
also that issues in generalization exist equally in non-classification type 
problems, such as inference and rule learning [2], [3].  

5.1 Method 

Three classification problems were selected to study generalization in 
LAPART-2 learning [12]. Each problem has the properties of being a 
two-class problem, with two real-valued feature-space dimensions (x0, 
x1) for input into the A subnetwork, with statistical overlap between 
the two class boundaries, and the ability to generate the data ordered 

© 2000 by CRC Press LLC 

 



pairs algorithmically. The input variables are confined to the [0,1] 
interval. The three study problems are: 

1) two equal sized rectangular uniformly distributed classes with 
50% overlap in the x0 dimension,  

2) two overlapping normally distributed classes each with different 
means of (0.333, 0.5) and (0.666, 0.5) respectively, and the same 
sigmas (0.166, 0.166),  

3) two overlapping normally distributed classes each with the same 
means of (0.5, 0.5) and differing sigmas (0.166, 0.166) and (0.333, 
0.333) respectively.  

A computer simulation of LAPART-2 was used to experiment with the 
three study problems. For each problem, training and testing data sets 
were independently created using a numerical random number 
generator that modeled the appropriate statistical distribution. A total of 
1000 ordered pairs were produced for a data set (training and testing), 
500 for Class 1 and 500 for Class2.  

LAPART-2 was configured using complement coded stack (CCS) 
representations for inputs to both the A and B subnetworks [6]. The 
input to subnetwork A consisted of two concatenated CCS 
representations, one for each input dimension, using 1024 bits in the 
positive stack. The input to unit B was a single CCS representation 
using 2 bits in the positive stack. The two classes were labeled 10 and 
01 respectively.  

An experiment consisted of training a LAPART-2 network on the 
training set until convergence, then computing a performance measure 
using the testing data set with learning disabled. Since the details of 
learning in this class of network depends on presentation order of the 
training data, the performance measures from training with twenty 
different random orderings were averaged and standard deviations were 
computed. In addition, statistics for the number of learned templates in 
the A subnetwork was collected. This gives an indication of the degree 
of data compression realized by the network. Convergence was 
declared for a training session when at the end of a presentation epoch, 
each training pattern had a direct access template [8] in both the A and 
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B subnetworks. Notice that this requirement is more demanding than is 
required for the conclusion of the Two-pass Learning theorem. 

(a) Overlapping Rectangular Distributions  
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(b) Overlapping Rectangular Distributions  
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Figure 2.  Overlapping Rectangular Distributions: (a) the average and standard 
deviation for the number of correctly classified testing samples out of 1000 as 
a function of rho for the A subnetwork; (b) the average and standard deviation 
for the number of A unit templates as a function of rho. 

Since learning in ART-class architectures is also dependent upon the 
vigilance parameter [8], ρ, the average performance was computed on a 
grid of ten vigilance settings (0.1, 0.2,…,0.9, 0.95) for the A 
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subnetwork. The vigilance setting for the B subnetwork was fixed at 
1.0. This is standard for classification problems, since binary coded 
class labels are used as inputs to the B subnetwork. Finally, a Bayesian 
classifier was applied to the testing data and performance was 
calculated, giving a basis for comparison. 

(a) Offset Normal Distributions  
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(b) Offset Normal Distributions  
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Figure 3.  Offset Normal Distributions: (a) the average and standard deviation 
for the number of correctly classified testing samples out of 1000 as a function 
of rho for the A subnetwork; (b) the average and standard deviation for the 
number of A unit templates as a function of rho. 
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(a) Overlapping Normal Distributions  
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(b) Overlapping Normal Distributions  
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Figure 4.  Aligned Normal Distributions: (a) the average and standard 
deviation for the number of correctly classified testing samples out of 1000 as 
a function of rho for the A subnetwork; (b) the average and standard deviation 
for the number of A unit templates as a function of rho. 

5.2 Results 

The averages and standard deviations for the number of correctly 
classified testing data set members are given for the three problems as a 
function of A subnetwork ρ value in Figures 2a, 3a, and 4a. The 
averages and standard deviations for the number of A subnetwork 
templates are give in Figures 2b, 3b, and 4b. Table 1 gives a summary 
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of the LAPART-2 performance results, including Bayesian 
performance for comparison.  

Table 1. Summary of Performance Results for A subnetwork Rho=0.1. The 
numbers in parentheses are the standard deviations resulting from the 
averaging of 20 different orderings of the training data set. “Performance” 
measures the average percentage correct classification on the independent 
testing data sets.  

A Rho = 0.1 Problem 1 
(Rect) 

Problem 2 
(Norm) 

Problem 3 
(Norm) 

Training Epochs 1.4 (0.5) 1.3 (0.45) 1.8 (0.40) 
# A Templates 260 (10) 200 (40) 335 (50) 
Bayesian Perf ~75% ~84% ~73% 
LAPART Perf 75% (1%) 81% (4%) 65% (5%) 

 

6 Discussion 

The testing data set performance of LAPART-2 closely matches that of 
a Bayesian classifier for each of the three problems. A lower average 
accuracy is to be expected, given that we are applying a nonstatistical 
method to a problem defined in terms of statistical information. Note 
that the performance varies very little with respect to the A subnetwork 
vigilance (ρ) over wide ranges of the parameter, and that performance 
is generally better at lower values. This is partially due to the larger 
maximum hyperbox size allowed by smaller ρ values, resulting in 
greater loss of binary 1s in the template patterns formed using 
complement-coded stack input patterns [2]. 

Note also that convergence occurs on the average in less than two 
epochs, as predicted by the Two-Pass Learning theorem stated in a 
previous section. In many cases, only a single epoch was required to 
perfectly learn the training data. 

One important question deals with the ratio of the number of learned A 
subnetwork templates to the total number of training samples. If this 
ratio is near 1, it would indicate a high degree of pattern memorization. 
This is usually a predictor of poor generalization performance. 
However, LAPART-2 demonstrated a ratio of around 0.25. This 
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indicates that very little memorization is occurring, consistent with the 
good testing performance data. Some memorization is to be expected 
given the propensity of LAPART-2 to create templates accessed by 
only one training pattern [11]. Note that because of the use of stack 
input representations, a “point hyperbox” is not really a point – it codes 
a small region of feature space within a stack interval.  

7 Conclusion 

LAPART-2 has a distinct advantage over LAPART-1 that stems from 
the modification that forces learning to occur in response to each lateral 
reset. We have stated that a LAPART-2 network, given the 
assumptions upon the input data that we described, converges in two 
passes through a set of training data, with the pattern pairs arbitrarily 
ordered on each pass. The convergence bound for ARTMAP is greater, 
varying with the size mA1 of the binary input space for subnetwork A 
and with its vigilance value ρB [4]. Finally, in [11], we proved that 
template proliferation does not occur despite the requirement that a new 
subnetwork A class be initialized with each lateral reset. 

Our results are especially significant in that they apply to rule 
extraction with a network that partitions its input and output spaces (A 
and B) into classes, as opposed to simple class labeling. Thus, each 
subnetwork A input can be associated with many subnetwork B inputs. 
This allows for the learning of rules as class-to-class inference 
relationships as well as inferencing under uncertainty.  

The numerical studies presented in this chapter demonstrate that 
LAPART-2 has one of the tightest bounds known on learning 
convergence. Additionally, they provide empirical evidence that this 
need not compromise generalization performance. These results have 
many implications for the utility of this architecture in future 
application domains. 
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