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MART (Multichannel ART) is a neural computational architecture 
which is based on ART architecture and aimed at pattern recognition on 
multiple simultaneous information input paths. This chapter describes 
the characteristic aspects of MART architecture, how it operates in 
pattern recognition and its flexibility in adapting itself to the temporal 
evolution of input information fed into the network. Finally, a real 
application is presented demonstrating its potential for solving complex 
problems, above all in the field of multichannel signal processing. 

1 Introduction 

The neural computational model ART was introduced by Carpenter and 
Grossberg in the 1980s, and developed through various versions, such 
as ART1 [5], ART2 [4], ART-2A [8] and ART3 [6]. These networks 
have contributed a number of valuable properties with respect to other 
neural architectures, amongst which could be mentioned its on-line and 
self-organizing learning. On the other hand, these networks make it 
possible to resolve the dilemma between plasticity and stability, allowing 
both the updating of the classes learned and the immediate learning of 

 



new classes without distorting the already existing ones. This property 
enables it to be used in problems in which the number of classes is not 
limited a priori, or in which there is an evolution in the classes over time. 
These characteristics are shared by a great number of variants of the 
ART architecture, which are acquiring more operational and application 
possibilities. Thus, mentioning only a small number of the most 
representative examples, many networks have been proposed such as 
ARTMAP [9], which enables supervised learning, Fuzzy ART [7] and 
Fuzzy ARTMAP [10], which adapt themselves to the processing of 
fuzzy patterns, or HART (Hierarchical ART) [3], integrated by a series 
of ART1 networks which carry out cascade clustering tasks on input 
patterns. Nevertheless, this wide range of options lacks certain 
characteristics which, to our way of thinking, are especially interesting 
in order to tackle certain problems typical to pattern recognition such 
as: 
 
• In many pattern recognition applications there are various paths or 

channels of information about the same event or system under 
analysis. This is the case, for example, with monitoring of systems 
by means of multiple sensors that supply complementary or 
alternative views of the system behavior. In these cases, the joint 
consideration of the information given by all of the sensors enables 
us to increase the reliability of the final result, making it easier to 
detect noise and eliminate ambiguities. 

 
• Supervised learning does not permit the reconfiguration of a neural 

network during its routine application. In the case of ART networks, 
however, the representations of the classes to which belong the 
input patterns are constructed on-line, starting from a total absence 
of a priori information on these patterns and their associated classes. 
Nevertheless, this type of network does not adapt the capability of 
discrimination between classes of patterns during its operation, since 
they operate with a fixed vigilance parameter. Thus they cannot 
adapt their behavior to the typical characteristics of each class to be 
recognized nor to their possible temporal evolution. 

 
• ART networks carry out a partitioning or clustering operation on 

the input space, on the basis of a vector of features that describe the 
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input patterns, a measure of the distance between these patterns and 
the classes to be discerned, and a (vigilance) threshold to be applied 
to the distance obtained between the input pattern to be classified 
and previously recognized classes. Each one of these classes 
(associated to a cluster in the input space) includes a series of 
patterns. Thus, it is possible for classes to exist whose patterns are 
much more similar amongst themselves than with those associated to 
other classes. ART networks presume that the patterns of all classes 
have the same variability, as they use a single vigilance for all of 
them. 

 
• In many pattern recognition problems the different classes have a 

different representativeness about the input patterns. The relevance 
of a class usually depends on the specific criteria of the problem 
tackled (appearance frequency of input patterns associated to this 
class, level of danger associated to this class, etc.). ART networks 
do not supply any mechanisms for selectively evaluating the different 
classes learned. 

 
The relevance, which to our understanding these properties have, leads 
us to propose a new model of neural computational architecture, which 
we have called MART [14]-[16]. Maintaining those aspects of ART 
architecture that are especially relevant, we have incorporated the 
capability for the adaptation of those parameters that determine the 
operation of the network, adapting its values to the application and to 
the set of patterns to be processed. At the same time, MART deals 
jointly, although in a selective and adaptive manner, with multiple 
channels of information and internal representations of the classes learnt 
from the input data submitted to the network during its operation. In the 
following section we will describe the structure and operation of 
MART, in order to later deal with its properties for the learning of 
information. We will then present an illustrative example of the 
operation on artificially generated patterns, in order to later deal with its 
application in a real problem such as the recognition of morphological 
patterns of heart beats on multiple derivations of electrocardiographic 
signals. Finally we will summarize the main contributions of MART to 
neural computation, along with the future lines of study on which our 
work is focused. 
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2 Architecture and Functionality of 
MART 

As we said before, MART is a neural computation architecture for the 
pattern recognition, which operates simultaneously over multiple 
channels or inputs of information. Figure 1 shows its structure, made up 
of I blocks, each one of which is associated to the processing of the 
input pattern in a different signal channel. Each one of these blocks 
determines the local similarity (relative to channel i) between the input 
pattern and the expected values of the learnt classes, through processing 
of the patterns showed previously to the network in that channel. The 
F4 block, located on the top of the figure, is governed by a competitive 
“winner-takes-all” mechanism, in which the only active output, uk=1, is 
associated to the class with maximum global (over the set of channels) 
similarity (we will call this class “winning class”). This class propagates 
its expected value downwards through the single channel blocks, with 
the aim of determining the local differences, relative to each channel, 
with the input pattern. The Orientation System evaluates these 
differences, determining whether they are or are not sufficiently low in 
order to assign the input pattern to the winning class (resonance or reset 
respectively). Finally, the Class Manager controls the dynamic creation 
and suppression of classes as it becomes necessary in the classification 
process. 

2.1 Bottom-Up Propagation in a Single-Channel 
Block 

Figure 2 shows the structure of a single-channel block of MART. The 
input pattern in channel i, Ei=(Ei1,...,EiJ), Eij∈ [0,1], ∀j, is presented in 
the units of layer F1i, where it is propagated towards F2i. The 
connection weight vector zik=(zi1k,...,ziJk) between the units of F1i and 
unit F2ik stores the expected value of class k in channel i. The output of 
unit F2ik is determined by the expression: 
 

kfL ikiik ∀=   , ),( zE  (1) 
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where the function f(x,y) evaluates the dissimilarity between the vectors 
x and y, 0≤f(x, y)≤1, being 0 the value associated to a total coincidence 
between them. The vector L i=(L i1,...,LiK) is propagated towards layer 
F3i, whose output is: 
 

kLT ikkik ∀−=   ),1(η  (2) 

 

In this expression, ηk is an output item of the Class Manager (see Figure 
4) which verifies ηk=1 when the unit k in F4 is committed (i.e., 
associated to a learnt class), otherwise ηk=0. 

2.2 Class Selection 

The input items for block F4 (local similarities) are integrated for the 
different channels generating the global similarities Pk: 
 

Figure 1.  Block diagram of MART. 
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The input items rek come from the Orientation System and, as will be 
seen, their value is 1 for those classes which have been temporarily reset 
for having shown an excessively high difference with the input pattern, 
for which Pk = 0. During the first comparison between the input pattern 

and the learnt classes no unit is reset, in such a manner that Pk=Σi=1
ITik, 

∀ k. The binary output items uk of F4 are governed by the expression: 
 

( ) ( ) kPPPPclassnewinitu lk
kl

lk
kl

k ∀












 −Γ∧



 −∧∧= ∧∧

><
  ,_ τ  

 

 
where the symbols ∨ and ∧ designate the OR and AND binary 
operators, respectively, and the functions τ(x) and Γ(x) are governed by 
the following expressions: 
 

(3) 

(4) 

Figure 2.  Diagram of the single-channel block i. 
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The new_class and init=(init 1,...,initK) input items are binary, and come 
from the Class Manager: new_class=1 is associated to the creation of a 
new class, because the input pattern does not resonate with any of the 
learnt ones. The init  vector is only non-zero when new_class=1, in 
which case its only non-zero component is the one associated to the unit 
k’ selected by the Class Manager to be initialized. Thus, if new_class=1, 
then uk=init k (from expression (4)) and the unit k’ is the only active unit 
in F4. Otherwise, new_class=0=initk, ∀ k, and the value of uk will be 
determined by the functions τ and Γ, from expression (4), being zero 
except for the minimum index unit with the maximum Pk (a class which 
shows the greatest global similarity with the input pattern). We will 
denote this unit by means of the index k1, due to it being the winner in 
this first cycle of comparison between the input pattern and the classes 
learnt: in this way, uk1=1, uk=0, ∀ k≠k1. 

2.3 Top-Down Propagation in a Single-Channel 
Block 

The vector u=(u1,...,uK) is propagated towards the F5i layers of the I 
single-channel blocks, whose output takes the form of: 
 

kLuM ikkik ∀=   ,  (5) 

 
These output items are zero, except for the unit k1, for which it is 
Mik1=Lik1=f(Ei,zik1) (difference between the input pattern and the 
expected value of the active class k1 in channel i). Finally, the output di 
of the single-channel block i is determined according to the expression: 
 

   ),(
1

11∑
=
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k
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which represents the difference between the input pattern and the 
expected value of class k1 in that channel. This output is propagated 

(6) 
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towards the Orientation System, whose structure and functioning will be 
dealt with in the following section. 

2.4 The Orientation System 

The basic objective of this module, as shown in Figure 3, is to determine 
the global result of the pattern-class comparison. For this reason, the 
block “Channel Credits” determines the global difference d between the 
input pattern and a given class from the local differences di and the 
channel credits xi, which constitute an indirect measure of the signal 
quality in the different channels. The global difference is calculated 
through the following expression: 
 

∑
=

=
I

i
ii dxd

1

 
 

 
The value obtained for the global difference d is compared with the 
global vigilance ρk1

g associated to the class k1 (one of the K outputs of 
the block “Global Vigilances”, in Figure 3). This parameter establishes 
the discrimination capability of the system in the comparisons with the k1 
class, having an adaptive value which is limited to the range ρmin≤ρk1

g≤ 
1. This comparison takes place in the block “Reset Evaluation”, which 
determines the output items rek of the Orientation System based on the 
expression: 
 

[ ] [ ] kdutretpatternnewtretre g
kkkkk ∀−Γ∧∧∨∧=+      ,   )()()(_)()1( ρ     (8) 

 
in such a manner that if d<ρk1

g and rek1(t)=0 then rek1(t + 1)=0 and the 
state of the system, with the unit k1 active in F4, is maintained stable, 
reaching resonance with the input pattern. In this case, as shall be seen 
in the following section, the information associated with the resonant 
class k1 is updated and the resonance is maintained until the presentation 
of a new input pattern. On the other hand, if d≥ρk1

g and rek1(t)=0, then 
rek1(t+1)=1 and, from the expression (3), Pk1=0, class k1 being inhibited 
for the competition in F4 (rek1 remains active until the presentation of a 
new input pattern, the instant in which the new_pattern(t) output of 
block “Detection of New Pattern” is activated, taking again rek1 to 

(7) 
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zero). When this occurs, a new winner k2 is determined in F4 and the 
comparison cycle is repeated, rek2 being evaluated according to ρk2

g and 
the new value of d. If the result is a new reset, the process is repeated 
until either a resonance with one of the learnt classes is reached, or until 
all are reset, in which case the Class Manager determines the creation of 
a new class. This class will be, if in F4 there exist uncommitted nodes 
(not associated to learnt classes), the one with the minimum k’ index. If 
there is no uncommitted node, it will select the class with minimum 
relevance (determined through its class credit), as we will see in the next 
section. 

 
 

2.5 Class Manager 

Figure 4 shows the structure of the Class Manager block, which 
controls the creation and dynamic suppression of classes throughout the 
processing, being activated when the input pattern belongs to an as of 

Figure 3.  Structure of the Orientation System. For clarity the figure does not 
show the neural organization of the different blocks. 
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yet unlearned class. In this case, all the classes learned beforehand (for 
which ηk=1) have been reset (rek=1) and the “Creation of a New Class” 
block activates its new_class output, based on the following expression: 
 

kk

K

k

reclassnew ∨= ∧
=

η
1

_   

 
When new_class=1, the “Class Selection” block determines the class k’ 
which is going to be created, establishing initk’=1, inick=0, ∀ k≠k’. 
Other input data to this block are the credits of class µk (k=1,...,K), 
which evaluate the associated relevance of the different classes. As 
previously mentioned, these parameters allow us to perform a selective 
evaluation of the classes learned according to their relevance. In a later 
section we will describe the rule which governs the evolution of the  

 
 
class credits; for the present suffice it to know that µk∈[0,1] , µk=1 
being the credit associated with the maximum relevance. Finally, the 
input data ηk also take part in the creation of a new class (we should 
remember that ηk=1 for those units k of F4 associated to learned 

(9) 

Figure 4.  Structure of the Class Manager. 
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classes). The output of the “Class Selection” block is determined by the 
following expression: 
 

kclassnewinic lk
kl

lk
kl

k ∀



 −Γ∧



 −∧= ∧∧

><
  ,)()(_ ςςςςτ  

 

 
where ςk is defined in the following manner: 
 

kkkk ∀+−=   ,)1( ηξµς  
l

K

l

ηξ ∧
=
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and the functions τ(x) and Γ(x) are the ones previously defined. In this 
manner if new_class=0, initk=0, ∀ k; i.e., a new class is created only 
when new_class=1. In this case, if there exists some unit in F4 that is 
not associated to learned classes (for which ηk=0), then ςk=ηk and 
initk=1 for this unit (if there are various, the unit selected is the one with 
the minimum index k). On the contrary, if all the units in F4 are 
associated to learned classes (ηk=1, ∀ k), ςk=(1-µk) and the class 
selected is the one with the minimum class credit µk, i.e., the one that 
has the least relevance at that time. 
 
At this point we end the description of the structure and working of 
MART in order to tackle aspects associated with its plasticity and 
adaptation according to the information extracted for the input patterns 
over time. This description is included in the following section. 

3 Learning in MART 

The MART network uses an unsupervised, “on-line” learning, typical of 
ART networks, for the determination and updating of the expected 
values of the different classes which are being identified during the 
processing. Nevertheless, it also provides other learning mechanisms, 
including channel credits and credits, radii and global vigilances 
associated to the classes learnt, as will be seen in this section. 

(10) 
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3.1 Expected Values 

The expected value zik of class k in channel i is updated with each input 
pattern which matches this class. Nevertheless, in order to avoid 
possible classification errors provoking strong distortions in this 
expected value, it is desirable to use a threshold ρk

u (updating vigilance), 
more restrictive than global vigilance ρk

g, and to update only in those 
channels i in which the local difference di is lower than the global 
vigilance. The following rule governs class expected value learning: 
 

[ ] kjiEupdoldzupdinicEinicnewz ijikzijkikzkijkijk ,,  , )()1()( ∀+−+= αα  

(11) 
 
When a new unit k is created, initk=1 and zijk(new)=Eij. In the case of 
resonance with class k, zik only evolves if updik=1, which occurs when 
d<ρk

u in those channels i where di<ρk
g. We can see that, if updik=1, then 

we have, from the expression (11): 
 

kjiEoldznewz ijzijkzijk ,,   )()1()( ∀+−= αα  (12) 

 
where the parameter 0≤αz≤1 determines the speed of change in the 
expected value of the resonant class. 

3.2 Channel Credits 

Channel credits, associated to the weights inside the block “Channel 
Credits”, in the Orientation System (see Figure 3), have an initial value 
of xi=1/I , ∀i. The credit of a channel represents its weight in the global 
classification developed by MART over every input pattern. Channel 
credits update according to the result of the comparison between the 
pattern presented to the network and the class which has results the 
most similar to it. This measure of similarity does not take into account 
the own channel credits, and the most similar class, k1, will be that with 

greatest Σi=1
ITik1, during the first comparison (in this stage the output Ω 

of the block “Detection of First Comparison”, in the Orientation 
System, is activated). In effect, except for specific cases associated with 
the appearance of patterns which belong to classes not learnt by the 
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network yet, the local difference in each channel with the most similar 
class should be reduced. In order to do this, a channel with repeatedly 
high local differences di can be considered to be associated with a higher 
noise content and lower signal quality, and as such, its credit should be 
lowered. On the contrary, if the local differences in this first comparison 
are reduced, this can be considered as a reliable channel with regard to 
the classification process, and as such, its credit should be increased. In 
this way, an indirect estimation of the noise-to-signal ratio is used to 
determine the credit or weight factor of each channel in the integration 
and evaluation of multi-channel information. 
 
Obviously, the full functionality of the channel credits is reached when 
there is a temporal continuity in the input signals, which allows to use 
the information associated to previous times in order to make a 
prediction, in this case, about the signal quality in every signal channel. 
Learning is carried out on the basis of the following expression: 
 

[ ] idxoldxnewx iiii ∀∆+Θ=   ,)()()(     (13) 

 
The function ∆xi(x) determines the value of the increase in xi on the 
basis of the following expression: 
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where ∆x is a fixed amount, independent of the signal channel. In this 
way, the increase ∆xi(x) is positive for reduced values of x (0≤x≤δi1) and 
negative for high values of x (δi1≤x≤1), reproducing in this manner the 
behavior outlined previously. The parameters ∆x, δi1 and δi2, ∀ i, must 
be determined for each application, if we have a set of input patterns 
which are representative of those which will be presented to the network 
during its normal operation. Lastly, the function Θi(x) limits the values 
of x in the range 0 ≤ x ≤ 2/I. 

(14) 
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3.3 Class Radii 

For each class learnt, MART establishes an adaptive average of the 
global differences which have been obtained with those patterns 
assigned to that class over the time. This average is an approximate 
measurement of the radius of the cluster associated to the class in the 
input space and, as will be seen, constitutes the basis for the updating of 
the global vigilance for this class. Class radii correspond to the weights 
inside the block “Class Radii”, in the Orientation System (see Figure 3). 
The learning of the radius associated to a class takes place with each 
resonance between a new input pattern and that class or, for the first 
time, when this class is created, and it is governed by the following 
expression: 
 

[ ]{ } kddoldroldrclassnewuoldrunewr rkkrkkkk ∀++−+=    ,)))(()()(1(_)()( αδα  

(15) 
where the function δ(x) is 1 if x=0 and 0 in the opposite case. The radius 
remains constant for non-winning classes (uk=0). If new_class=1, 
rk(new)=0 for the class k’ created, since in this case uk’=1. On the other 
hand, in the case of resonance, radius is equal to the global difference, if 
rk(old)=0, otherwise being updated as a weighted sum of its previous 
value and the global difference d (expression (16)), weighted by a 
variation factor αr. In this manner, the radius of a class is adapted to the 
variability existent between the patterns belonging to it. 
 

kdoldrnewr rkrk ∀+−=   ,)()1()( αα     (16) 

3.4 Global Vigilances 

The learning of global vigilances for each class allows the adaptation of 
the system's discrimination capacity to the level of variability of the input 
patterns. For this, for each resonance MART compares the global 
difference d with the radius rk of the resonant class. The increments in 
the variability are translated into increases in d with respect to rk, and it 
is then advisable to increase ρk

g in order to avoid false negatives when 
the input pattern is not assigned to class k and creates a redundant class. 
On the contrary, reductions in variability reduce d against rk, which 
allows the reduction of the global vigilance in order to adapt the 

© 2000 by CRC Press LLC 

 



discrimination capability to the new situation. Figure 5 shows an 
example of the time evolution in the variability of the input patterns. 
Initially (t=0) the variability is small, and the vigilance is low for that 
class, from the radius associated to it. Later (t=N), this variability grows 
up, and it is advisable to increase the vigilance in order to avoid that 
input patterns belonging to that class lead to the creation of redundant 
classes. Finally (t=M), the variability of the input patterns reduces again, 
which decreases the radius associated to that class and its vigilance. 
 
Global vigilances are associated to the weights of the block “Global 
Vigilances”, in the Orientation System (see Figure 3). The expression 
that controls the learning of global vigilances is the following: 
 

( ) ( ) { ++= classnewuoldunew refk
g
kk

g
k _ ρρρ  

( ) ( )[ ] } kclassnewrdold k
g
k ∀∆−++   ,_ sgn ρρθ                 (17) 

 
where the functions sgn(x) and θ(x) are defined by the following 
equations: 
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Figure 5.  Illustration of the temporal evolution of the variability of the input 
patterns associated to a class and updating of its representative. 
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Parameter ρk
g remains constant, except in the creation of a new class k’, 

in which case ρk
g has the initial value ρref, and when resonance is 

achieved with class k’’ . In this case, ρk’’
g increases its value in ∆ρ if 

d>rk’’  and decreases in the same amount if d<rk’’ , maintaining a lower 
limit ρmin which is associated to the maximum discrimination capability 
that a class may possess. In this way, MART is able to selectively 
evaluate the different classes learnt by means of an individualized and 
adaptive consideration in its discrimination capability. 

3.5 Other Characteristics 

As commented in Section 1, another path for the selective evaluation of 
the classes learnt is associated with “class credits”, which corresponds 
with the connection weights inside the block “Class Credits”, in the 
Class Manager (see Figure 4). These credits allow the evaluation of the 
relevance of each class throughout the operation of the network. The 
credit µk associated to class k has an initial value µk=1 at the moment of 
its creation, increasing in a constant factor ∆p with each input pattern 
assigned to it, and decreasing in a constant factor ∆n in the opposite 
case, always within the range 0≤µk≤1. 

 
 
 
On the other hand, MART dynamically manages the classes learnt, 
creating a class when faced with the appearance of a pattern not 
belonging to any of them, or deleting a class when its credit is set to 
zero. For this reason, the output items ηk from the block “Initialized 
Classes”, in the Class Manager (see Figure 4), allow discrimination 
between those committed units in F4 (ηk=1) and those which are not 

channel 1 

channel 2 

channel 3 

channel 4 

class 1 class 2 class 3 class 4 class 5 

Figure 6.  Classes used in the generation of patterns. 
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assigned to a class yet. For each unit k, ηk=1 when it is committed, 
maintaining this value while its credit µk is not zero. When µk=0, this 
class is “forgotten” and unit k remains uncommitted until it is re-
committed to a new class, thus enabling the dynamic creation/ 
elimination of classes as and when necessary. 

4 Analysis of the Behavior of Certain 
Adaptive Parameters 

In order to illustrate the operation of MART we now give an application 
example on a set of 2,000 artificially generated patterns with I=4  signal 
channels, a pattern length of J=125 values in each channel, and input 
data in the range 0≤Eij≤1. These patterns were generated from 5 basic 
morphologies, each one of these being labeled as belonging to a class 
identified with the morphology from which each pattern derived. The 
distance function f(x, y) used is the city-block distance between the 
input pattern x and the representative of class y. Figures 6 and 7 show 
the original classes and some of the patterns generated from them, 
respectively. 

 
 
Figure 8 shows an example operation, although in this case, for reasons 
of clarity, it is represented on 2 signal channels, the credit x2 being 
notably lower than x1. The lower left-hand section shows the input 
pattern in F11 and F12. This pattern propagates to F21 and F22: the 
competitive process in F4 selects class 1 as the one that is most similar 
to the input pattern, its representative (expected value) being shown in 
both channels with the upper left-hand section. At the same time, the 

Figure 7.  Examples of  patterns. 
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right-hand section shows the area resulting from subtracting the input 
pattern and the expected value of the winning class in both channels, 
together with the channel credits and global difference and vigilance. 
The area of difference (local difference) is lower in channel 1 and 
somewhat higher in channel 2. Nevertheless, the reduced credit value x2 
attenuates the contribution of channel 2 to the global difference d, the 
value of which is lower than the global vigilance associated to class 1, 
and brings about a situation of resonance with the input pattern. 

 
 
 
Figure 9 shows a second example in which the input pattern undergoes a 
reset with its most similar class (class 2). The latter wins the competitive 
process in F4, but the descending propagation generates a greater 
difference in channel 2, the credit of which is higher than the one 
associated with channel 1, leading to a situation of reset (first 
comparison). In the second comparison class 3 is the winning class in 
F4. The descending propagation provokes a higher difference in channel 
1, but lower in channel 2, reaching resonance on the basis of the 
weighting relative to the respective channel credits. 
 
 

Figure 8. Example of resonance between an input pattern and its most similar class. 
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With the aim of illustrating the working of the channel credits xi in the 
MART operation we distorted the input pattern, although only in 
channel 1, by means of the substitution of a part of the original input 
pattern Eij for randomly generated values. Figure 10 demonstrates how 
the appearance of noise leads to significant rises in the local differences 
in channel 1 in the first comparison, differences which are thus useful in 
order to estimate the high noise/signal ratio associated to this channel. 
The figure also demonstrates the reduction in the channel credit x1, 
which is produced in those intervals where noise is added to the signal 
(elevations in d1) suitably reflecting the drop in reliability in channel 1 
with regard to the final classification process of the input patterns. We 
should also emphasize the high level of stability in those credits 

d ρg> 2

RESET

F1F1

F2 F21

1

2

2

Channel 1 Channel 2
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1F1
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Difference Difference
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Difference Difference

x1 x 2

x1 2x

Figure 9.  Example of reset between an input pattern and its most similar 
class, and the subsequent resonance after the comparison of the pattern with 
another class. 
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associated with the remaining channels, in which the signal quality does 
not undergo any noticeable difference throughout the process. 

noise intervals

0.25

0.25

0.25

0.25

channel 1

channel 3

channel 2

channel 4

x1 d1

 
Figure 10.  Evolution of the channel credits xi in response to the addition of 
noise in channel 1. 

Another interesting aspect of the operation of MART is associated with 
the evolution of the global vigilances associated to the different classes. 
In order to illustrate this point we added noise to the patterns belonging 
to class 1 at certain instances of the processing. Figure 11 shows the 
evolution of the vigilances ρ1

g and ρ2
g; it can be seen how addition of 

noise leads to a noticeable increase in the global difference associated 
with those patterns that resonate with class 1; the one associated with 
class 2 remains approximately constant. These increases lead to a rise in 
the radius associated with class 1 (r1) and, thus, in the vigilance ρ1

g of 
this class, whilst ρ2

g undergoes no significant alterations. In turn, the 
disappearance of the added noise brings about an immediate decrease in 
r1 and ρ1

g. Consequently, this figure shows the capability of MART’s 
vigilance to adapt itself to the properties of the input data, more 
specifically to the variability that these patterns demonstrate over time. 

5 A Real Application Example 

In the previous section we analyzed the operation of MART on a set of 
artificial patterns, with the aim of highlighting some of the most 
interesting characteristics of learning in MART. We now show, albeit 
briefly, the application of MART in a real problem. 
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ART networks have indeed been employed in a wide variety of 
problems. Amongst these we could mention the extraction of rules from 
massive data for weather forecasting [21], recognition of aerial images 
[20] or written characters [23], identification of patterns in turbulent 
fluids [17], creation of semantic associations between terms on a text 
database [24], detection of patterns in satellite images [28], recognition 
and retrieval of aircraft parts in databases [12], etc. There also exist 
applications aimed at the automatic monitoring of signals in chemical 
plants [29] and nuclear power stations [22]. 

Channel 1

Channel 2

Normal morphology Abnormal morphology Abnormal morphology

N N N N N N NA A A N AA ANN N

Presence of noise

 
Figure 12.  ECG interval on 2 derivations in which beats with normal (N) and 
aberrant (A) morphologies are indicated. A signal  interval with noise present 
is also indicated. 

Figure 11.  Evolution of the global differences, radii and global vigilances 
associated to classes 1 and 2. 
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Finally, one of the principal application environments of these networks 
is biomedicine, especially cardiovascular medicine, where we find 
examples aimed at the extraction of information from ECG signals 
([26],[27],[18]) or the prediction of the risk of myocardial infarct on the 
basis of clinical and electrocardiographic data [13]. It is in this setting 
that the problem we deal with in this section is taken, the recognition of 
morphological patterns in heart beats, more specifically from ventricular 
activation complexes or QRS complexes, on multiple ECG derivations 
([1],[15]). Figure 12 shows a signal interval over 2 derivations, in which 
different beats can be seen. Those beats associated to normal cardiac 
activity (N) have similar morphologies (normal morphology). On the 
other hand, cardiac complication generally become apparent at the 
electrocardiographic level, associated to beats with aberrant 
morphologies, such as the ones labeled “A” in the figure. The presence 
of different points of origin of the heart beats generally means an 
unfavorable prognosis for the patient, due to which it is of great 
importance to recognize this situation in real time. Different origins 
normally give rise to different morphologies in the electrical 
manifestation of the beat associated to them, due to which it is essential 
to detect all the beat morphologies that are produced over time and 
classify each new beat detected in accordance with them. In Figure 12, a 
signal interval with significant noise can also be seen; this distorts the 
morphology of beats and makes its correct morphological 
characterization difficult.  
 
Although this problem belongs to the already classic field of pattern 
recognition, it has a series of typical properties which make it especially 
complex and, on the other hand, suitable for the use of MART in its 
resolution: 
 
• The morphological characterization of beats on various ECG 

derivations is very important, given that it significantly increases the 
information available in the single-channel case. This, then, is a 
problem for which the use of a multichannel pattern recognition 
system such as MART is suitable. 

 
• Heartbeat morphologies vary substantially between different patients 

and according to the derivation of the ECG under consideration, and 
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even for the same patient over time. Thus it is impossible to 
construct a sufficiently representative training set, which renders 
supervised approaches inadequate for this problem. 

 
• Any new morphology is important and should be learned 

immediately, since it may reflect the appearance of complications in 
the mechanism of generation and propagation of beats. Furthermore, 
any morphology may change substantially throughout processing. 
All this requires the learning of new classes as well as the adaptation 
of the ones that have already been learned, i.e., to resolve the 
dilemma between stability and plasticity. This need precludes 
solutions involving off-line learning, making ART architecture-based 
networks prime candidates for this problem. 

 
• The determination of a reduced set of representative characteristics 

of the heart-beat morphology may turn out to be extremely complex, 
which would make operation directly onto the ECG signal itself 
prudent. 

 
• The signal may be contaminated by noise from different origins, 

which may significantly alter the morphology of the beats. Thus the 
pattern recognition system must be able to adapt its discrimination 
capability according to the noise level or, alternatively, to the 
morphological variability shown by the input patterns at each instant. 
As they use a fixed vigilance during the processing, ART networks 
do not allow such an adaptation, as opposed to MART, which does 
so by means of its capability to adapt its vigilance parameters. 

 
• Classes formed by morphological patterns that are very similar 

amongst themselves may co-exist with others made up of patterns 
with a high level of variability in their morphology. As a 
consequence, it is advisable to adapt the discrimination capability of 
the system to the typical characteristics of each class. MART 
demonstrates this property, as it uses a different vigilance for each 
class, with an evolution that depends on the patterns assigned to it. 
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• The appearance of artifacts that imitate true beats leads to the 
creation of spurious morphological classes, which should be 
rejected. With this aim, MART’s ability to dynamically suppress 
classes is interesting, because it favors the elimination of those 
classes with the lowest degree of representativeness (class credit) 
amongst the input patterns. 
 

We now go on to describe how this problem has been resolved using 
MART. Our data set consists of a group of 20 electrocardiographic 
registers from the MIT-BIH Arrhythmia Database [19]. This database 
was chosen due to it being widely known, and due to the high number of 
beat morphologies that it contains. Furthermore, a morphological 
labeling of its beats is supplied, which allows a rigorous validation of the 
solution applied to the problem. The input to MART in each channel 
(the MIT-BIH database has I=2  signal channels) is J=128 ECG samples 
corresponding to an interval of 256 msec., which included the whole of 
the QRS complex associated with each of the beats analyzed. The 
maximum number of classes to be learned was set at K=15. Amplitude 
scaling was performed on the input patterns so that its maximum value 
was 1 and its minimum value 0. The distance measure used f(x,y) is the 
city-block distance between the input pattern in each channel and the 
expected value of each class, as is shown in the following expression: 
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This distance, traditionally used in electrocardiographic pattern 
recognition [11], was chosen due to its intuitive character (area between 
the vectors to be compared), its relative ease of calculation and the 
existence of works that prove its superiority with regard to other 
distance measurements on the ECG signal [25]. It should be borne in 
mind that the expected value of the class k in the channel i, 
zik=(zi1k,...,ziJk), is not scaled to [0,1] , as occurs with the input, given the 
learning rule associated to it (expression (12)), which is the reason why 
it is necessary to include this scaling into the distance calculation. Figure 
13 shows how the morphologies of the expected values of the different 
morphological classes are codified in the weights zijk associated to each 

(18) 
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one of them, being used in order to determine the distance with the 
input data. 

 
 
 
 
 
It is important to point out that, given that MART dynamically creates 
and suppresses classes, the classes created by MART do not generally 
coincide with those determined by the database. In this sense, the 
appearance of noise usually leads to the creation of redundant classes 
(which occurs when beats belonging to the same morphological class in 
the database divide into two or more classes in the MART network) 
although the use of adaptive channel vigilances and credits help to 
reduce this phenomenon. 
 
Figure 14 shows the evolution of the channel credits and local 
differences, together with the number of classes created since the 
beginning of the processing of the register 105 of the MIT-BIH 
database. It can be seen that the principal increment in the number of 
classes is produced in instants (1) and (2), where noise appears in both 
channels. Nevertheless, the first of the increments, which occurs when x1 
is high, is notably greater than the second one, where x1 has already 
been reduced in response to the reduction in quality in channel 1. 
 

Figure 13.  Values of the connection weights zijk, where the expected value of 
class k in channel i is stored. The shaded unit in F2i is the one that is 
associated to the class whose expected value has the greatest morphological 
similarity with the input pattern in channel i. 

F2i

F1i

. . .
K)

. . .
J)

. . . . . .

. . . . . .

Expected value of class 1 Expected value of class K

in channel i

Input pattern

© 2000 by CRC Press LLC 

 



 
 
 
 
Figure 15 shows the number of classes created by MART, with and 
without channel credits, throughout the processing of register 200 of the 
MIT-BIH database. Both figures make it evident that the use of channel 
credits to a great degree prevents the proliferation of classes by 
lowering the contribution to the final result of less reliable or noisy 
channels. In this case, the low and high ranges for the local differences 
are determined by the parameters δ11=δ21=0.05 and δ12=δ22=0.20, 
where ∆x=0.0025. 

 
 
 

Figure 14.  Temporal evolution of channel credits, local differences and the 
number of classes created by MART on register 105 of MIT-BIH Arrhythmia 
Database. 
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Figure 15.  Temporal evolution of the number of classes created by MART on 
register 200, with and without channel credits. 
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With regard to the evolution of the class vigilances, the values used 
were ρmin=ρref=0.15, with ∆ρ=0.002. More specifically, the adaptation 
capability of the vigilances was another reducing factor in the number of 
classes created by MART, as can be seen in Figure 16, by relaxing the 
discrimination capability in the presence of noise, thus preventing the 
creation of redundant classes. 

 
 
 
Finally we will briefly comment on the results obtained in the application 
of MART to this problem ([1],[15]). The most revealing piece of data is 
the lower percentage of characterization errors (1.1%), which illustrates 
MART’s high capacity for morphological discrimination. This parameter 
only measures errors due to the assignation of beats to classes to which 
in reality they do not belong, considering any beat assigned to a 
redundant, but morphologically similar class to be correct. Another 
illustrative parameter is the redundant class creation ratio: the number of 
classes created by MART is on average 5.7 times higher than the real 
number. Although this ratio may appear to be high, it is in fact 
reasonable, bearing in mind, on one hand, the discrimination capability 
that is necessary in order to distinguish between classes, and, on the 
other hand, the noise level, and the high level of variability associated to 
some of them. However, the percentage of error due to the assignation 
of beats to redundant classes is 23%, in spite of the number of classes 
created by MART being almost six times higher than the original one. 
This means that the majority of the beats (over 76%) are assigned to the 
class to which they belong, it becoming evident that there is a noticeable 
capacity for limiting the population of redundant classes. Lastly, we 

Figure 16.  Temporal evolution of the number of classes created by MART 
during the processing of register 200, using constant and adaptive vigilances. 
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would point out that the use of MART for the morphological pattern 
recognition on multichannel ECG is operative at the present inside a 
monitoring system of patients in a ICCU developed by our research 
group ([2],[15]). 

6 Discussion 

We do not wish to finish off this chapter without having emphasized 
some of the principal characteristics that MART contributes in context 
of neural networks and, more specifically, in that of networks based on 
the ART model. Amongst these, there are its express orientation 
towards the recognition of multichannel patterns and its ability for the 
continuous adaptation to the characteristics of the input pattern. In this 
sense, besides the obvious capacity for learning and updating of the 
classes to be discerned, MART offers greater operational flexibility than 
other neural networks aimed at pattern recognition, allowing the 
dynamic suppression of classes, selective evaluation of the different 
signal channels according to the signal quality at each moment in time 
and adaptation to the variability of the patterns associated to the 
different classes. 
 
MART’s adaptation possibilities reach the height of their functionality in 
the operation on patterns associated to signals that evolve continually 
over time. It is here where, for example, the channel credits are 
associated with an indirect measurement of the signal/noise ratio. These 
characteristics of MART, which make it unique in the field of neural 
computation, endow this architecture with an important practical scope. 
This has become evident when tackling a real and complex problem, 
such as that of the real time morphological characterization of beats on 
multichannel ECG. 
 
Lastly, our current objectives include developing new MART-based 
applications, principally in the field of processing signals of a 
physiological origin, an area in which our group has wide experience, 
and to continue improving the performance of MART with regard to its 
capabilities for the recognition of multichannel patterns and on-line 
learning guided by network input patterns. 
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