
© 2000 by CRC Press LLC

CHAPTER 4

LEARNING FINE MOTION
IN ROBOTICS:

DESIGN AND EXPERIMENTS

C. Versino andL.M. Gambardella
IDSIA, Corso Elvezia 36
6900 Lugano, Switzerland

cristina@idsia.ch , luca@idsia.ch
http://www.idsia.ch

Robotics research devotes considerable attention topath finding. This is
the problem of moving a robot from a starting position to a goal avoiding
obstacles. Also, the robot path must beshortandsmooth. Traditionally,
path finders are eithermodel-basedor sensor-based. While model-based
systems address the path finding problemgloballyusing a representation
of the workspace, sensor-based systems consider itlocally, and rely only
on robot sensors to decide motion. Both methods have limitations, which
are rather complementary. By integrating the two methods, their respec-
tive drawbacks can be mitigated. Thus, in [15] a model-based system (a
planner working on an artificial potential field) and a sensor-based sys-
tem (a Hierarchical Extended Kohonen Map) which cooperate to solve
the path finding problem have been described. Along related lines, sev-
eral authors [5], [6], [8], [12] have proposed to build automatically the
sensor-based system as the result of a learning process, where a local
planner plays the role of the teacher. In particular, [5], [8] employ a
Self-Organizing Map (SOM) and [6] use a dynamical variant of SOM
(DSOM) based on a Growing Neural Gas network [2]. In these works,
the decision of using a SOM-like network seems to be justified by its
data topology-conservingcharacter which is supposed to favor in some
way the learning of suitable< perception; action > pairs. None of these
works provide experimental evidence for this reasonable, but not obvi-
ous, claim.

In this chapter we describe a SOM-like neural network which learns to
associate actions to perceptions under the supervision of a planning sys-
tem. By reporting this experiment the following contributions are made.
First, the utility of using a hierarchical version of SOM instead of the
basic SOM is investigated.Second, the effect of cooperative learning due
to the interaction of neighboring neurons is explicitly measured.Third,
the beneficial side-effect which can be obtained by transferring motion
knowledge from the planner to the SOM is highlighted.

1 How to Find the Path?

A path finderis an algorithm to guide a robot from a starting location to
a goal avoiding theobstacles in theworkspace (Figure 1).

Figure 1. An instance of the path finding problem (left) and a solution to it
(right). The white rectangle is the robot, the black circle is the goal, the gray
shapes are the obstacles.

A good path finder generates short and smooth paths, and, for this to
be possible, it requires bothhigh leveland low levelmotion skills. At
high level, it should be able to reason on the trajectory performed by
the robot as awhole. This is to recover from dead-ends (Figure 1) and
to optimize the path length. At low level, the path finder should be able
to decide on eachsingle stepof the robot trajectory: this is to propose
actions that approach the robot to the goal while avoiding collisions. Low
level strategies are also referred to asfine motionstrategies.

© 2000 by CRC Press LLC

Traditionally, path finders are eithermodel-basedor sensor-based.
Model-based algorithms use amodelof the workspace (a map, a cam-
era image or other representations) to generate an obstacle-free path to
the goal, while sensor-based algorithms rely only on the robot on-board
sensorsto gather information for motion. Thus, model-based systems
address the path finding problem in aglobal way, while sensor-based
systems consider it in alocal way.

Advantages and drawbacks of each method are as follows.

A model-based system is able to compute short paths and to recover from
dead-ends, because it works on a complete description of the workspace.
However, when such a description is not available, a model-based system
is of no use. Also, a model-based system requires considerable computa-
tional time to generate the actual robot path, because it needs to evaluate
through simulation many alternative paths to select the best one.

A sensor-based system does not need a complete model of the workspace
and this is already an advantage in itself. Also, it is computationally
inexpensive as it just reacts to sensor readings. But a sensor-based sys-
tem generates sub-optimal paths, and it may get trapped into dead-ends.
Moreover, it is difficult to program a sensor-based system, as we have to
predict every possible situation the robot will encounter, and specify a
corresponding correct action.

Our research is about the integration of a model-based system and
a sensor-based system so that they cooperate and solve the path finding
problem in an efficient way [3], [4].The focus of this chapter, though,
is on the automatic construction of the sensor-based system. Instead
of being pre-programmed, this is shaped by a learning process where
the model-based system plays the role of teacher. In this way, the
programming bottleneck typical of sensor-based systems is bypassed.

2 The Model-Based System

Traditional model-based systems solve the path finding problem by
searching in the space of the robotfree configurations, the so-calledC
space [11].C is made of all robot positions and orientations that are at-

© 2000 by CRC Press LLC

tainable given its kinematics and the obstacles in the workspace. A robot
configuration is a multi-dimensional point inC, while the obstacles are
forbidden regions in theC space. The drawback of the search techniques
based onC is that to determine which configurations are reachable is
computationally very expensive.

Figure 2. The artificial potential field (left), the field on a discretized workspace.

To reduce this complexity, more recent model-based approaches have
suggested to search for a collision-free path by using a “direct”
workspace representation of the obstacles and the robot [10]. As an ex-
ample, a camera image which gives a view from above of the robot in
the workspace is a 2-dimensional direct representation (Figure 1, left).
Most of the techniques based on direct representations use then anarti-
ficial potential field V (Figure 2, left) as heuristic to guide the search in
the workspace [7]: the robot just needs to follow the fieldV . At a given
location of the workspace,V is the combination of an attractive force
towards the goal and of repulsive forces exerted by the obstacles. The
computation of the potential field is a one-off step, which needs to be
re-executed when either the goal or the obstacles change.

The idea of following the potential field works well if the robot can be
modelled as a “point”. But when we consider the robot real shape and
size we need to extend the potential field metaphor as described below.

First V is created on a discretized workspace (Figure 2, right) and the
motion of the robot is guided by a number ofcontrol pointsci positioned
on itsshape [10] (Figure3, left). Thesepointscan be thought of as “field

© 2000 by CRC Press LLC

sensors”. LetV (ci) be the field value associated to control pointci, what-
ever the robot position.

c1 c2

c3c4

g

Figure 3. The control points chosen on the robot shape (left). The robot position
and orientation in the workspace is its configuration (right).

At any time during motion, the robotconfigurationg is its position and
orientation in the workspace (Figure 3, right). When at configuration g,
the potential field valueVg of the robot is a combination of the field value
of its control points (Equation 1). Roughly speaking,Vg indicates how
close is the robot in attaining the goal.

Vg =
X
i

aiV (ci) (1)

Solving the path finding problem is then equivalent to searching for a
sequence of collision-free configurations that brings the robot from its
initial configuration to the goal. To reduce the search space, the potential
field V is used as a heuristic evaluation of the different robot configu-
rations. In what follows, a single configuration transition is described to
illustrate how the search process takes place.

Supposeg is the current robot configuration (Figure 3, right). To decide
where to move the robot next, i.e., to decide its next configurationg0, a
set of neighboring configurations is generated by slightly varyingg along
the robot motion degrees of freedom. This gives rise to, say, a set of four
configurationsfg1; g2; g3; g4g (Figure4). Next, for each configuration gi,
its potential field valueVgi is evaluated using Equation 1.

These values are sorted in increasing order:fVg1; Vg2; Vg4; Vg3g. The final
step is to determine which is the configuration with the smallest potential

© 2000 by CRC Press LLC

g4g3g2g1

Figure 4. The neighboring configurations.

g4g2g1

Figure 5. Collision check for robot configurations.

field value that is also collision-free. SinceVg1 is the smallest value, we
start by simulatingg1 to check whether it produces a collision with some
obstacle. Note that this verification is feasible because an image of the
robot environment is available, making it possible to explore “mentally”
the consequences of an action. After inspection,g1 andg2 are discarded
(they both collide). Finally,g4 is accepted as the next configuration for
the robot:g0 = g4.

It may happen that all neighboring configurations ofg produce colli-
sions. This means that the robot is in alocal minimumof Vg. Typically,
a local minimum arises in a dead-end on the robot path (Figure 1). To
recover from a local minimum, alternative configurations to the current
one can be generated according to various rules, ranging from simply
backtracking one step in the robot configuration search-tree to more
sophisticated high-level motion strategies [3], [4].

We are now in a position to understand why the planner is compu-
tationally expensive. First, it calculates a great number of candidate
configurations, because it cannot guess which configurations are accept-
able. Second, the order of evaluation of the candidate configurations
depends only on their potential values; the robot shape is not taken into
account.The planner does not learn from its own experience.

© 2000 by CRC Press LLC

In short, a planner is a very general method to solve path finding
problems: it may be applied to robots ofany size and shape. However,
this generality is paid in terms of efficiency. When it is foreseen to work
with a robot of agiven size and shape, the flexibility provided by a
planning system is less important, and the time needed to plan the robot
motion is the main issue. This is why we propose to construct acustom
sensor-based system, a system which is tailored to a robot of a given size
and shape.

3 The Sensor-Based System

Suppose that a robot of a given size and shape is chosen. While us-
ing the planner to solve instances of the path finding problem, knowl-
edge for fine motion can be collected and expressed as a set of pairs
< perception; action >. Each pair refers to a single step of the robot tra-
jectory, and describes a sensory perception (Figure 6) and the action se-
lected by theplanner for that perception (Figure 7). To be morespecific,
the perception is made of a vectoro of readings of 24 obstacle proxim-
ity sensors, together with the relative goal directiong, a two-dimensional
vector of unitary length. The planner actiona is a triple representing a
x-translation, ay-translation, and a rotation with respect to the robot’s
current position and orientation. Both the xy-translations and the rota-
tion take discrete values, and can be either positive, negative or null.

g

+

Figure 6. The robot perception: distance from the obstacles (left), relative goal
direction (right).

The pairs< perception; action > are the basis to build “automatically’
the custom sensor-based system: for this purpose, asupervised learning

© 2000 by CRC Press LLC

Figure 7. The action selected by the planner.

approach is used. A pair< perception; action > is learnt incrementally
by the following steps:

1. the sensor-based system gets the perception as input;

2. it generates a tentative action according to its current knowledge;

3. this action is compared to the target action selected by the planner,
and the difference between the two is used to change and improve
the behavior of the sensor-based system.

This sequence of steps is repeated for every example available. As a
sensor-based system we use anArtificial Neural Network(ANN).

Before describing the ANN structure, let us observe that, in general,
learning ishard. It cannot be achieved just by forcing through the ANN
thousands of examples. To facilitate learning, we can take advantage of a
good characteristic of the path finding problem, namely thatsimilar per-
ceptions require similar actions. This is not always true, but it is true most
of the time. As an example, consider the two robot perceptions shown in
Figure 8. Theonly difference between the two is a small variation in the
goal position. The action “move to the right” which is suitable for the
first case may also be applied to the second.

This property suggests a modular architecture for the ANN, by which its
operation is logically divided into two steps (Figure 9). Given an input
perception, the ANNfirst determines which is the most similar percep-
tion out of the ones experienced so far (step(A)). Second, it triggers the
action associated to the prototypical perception selected at the first step

© 2000 by CRC Press LLC

⇒

Figure 8. Similar perceptions require similar actions.

ANN

perception

clustering

Α

action

triggering

Β ANN action

planner action

perception

Figure 9. The two step operation of the ANN.

(step(B)). (A) is a clustering operation that aims at grouping together
similar experiences into a single “prototypical perception”. In this way,
similar perceptions all contribute to the learning of the same (or simi-
lar) action, while different perceptions (perceptions which may require
different actions) do not interfere one with the other because they are
mapped to different prototypical perceptions by the clustering step.

Both step(A) and(B) require learning, and can be globally addressed
by the Hierarchical Extended Kohonen Map algorithm. We start by de-
scribing step(A).

4 Perception Clustering

In (A) (Figure 9) the ANN learns the concept of similar perceptions.
The task is to construct a set of prototypical perceptions out of a set of
perceptions experienced by the robot during motion. This clustering task
is solved by the basicKohonen Map(KM) algorithm [9].

© 2000 by CRC Press LLC

Kohonen Map. A KM isatwo-layered network (Figure10) consisting
of an input layer of neurons directly and fully connected to an output
layer. Typically, the output layer is organized as a two-dimensional grid
G. wr is the fan-in weight vector (reference vector) associated to the
neuron placed at positionr onG.

input layer

output layer

r

G

w r

Figure 10. The KM network architecture.

The network is trained byunsupervisedlearning on a set of examples
fx(1); : : : ; x(T)g. For each examplex, the following sequence of steps
is executed.

1. x is presented to the input layer.

2. A competitionbetween the neurons takes place. Each neuron cal-
culates the distance between its reference vectorwr and input pat-
ternx.

d(x; wr) = kx� wrk
2 (2)

The neurons whose weight vector is the closest tox is thewinner
of the competition.

s = argmin
r

d(x; wr) (3)

3. s is awarded the right to learn the input pattern, i.e. to move closer
to it in data space:

wnew
s = wold

s + �(t) �
�
x� wold

s

�
(4)

© 2000 by CRC Press LLC

s
x

ws
new

ws
old

X

Figure 11. The KM learning step.

Figure 11 illustrates the weight change process of neuron s in the
original data space.

In Equation 4,�(t) is the learning rate, a real parameter that de-
creases linearly with the pattern presentation numbert.

�(t) = �(0) �
�
1�

t

T

�
(5)

4. A special trait of the Kohonen algorithm is that the learning step is
extended also to theneighborsof the winners. The neighbors of
s are those output elements whose distance tos, measured on the
grid G, is not greater than a neighborhood parametern(t). Like-
wise to�, n decreases linearly with time.

n(t) =
�
n(0) �

�
1�

t

T

��
(6)

At the beginning of the learning process, the neighborhood param-
eter is large, and many neurons share the learning step. As time
progresses, fewer neurons are allowed to become closer to the
presented input pattern. Figure 12 shows how the neighborhood
shrinks in time.

The KM can be used fordata quantization: an input patternx can be
represented by the reference vectorws that wins whenx is presented
to the KM. Also,similar input patterns are mapped onto neighboring

© 2000 by CRC Press LLC

initial neighborhood

final neighborhood

s

Figure 12. The neighborhood size shrinks as learning proceeds.

locations on the grid (Figure 13). This is because neurons that are close
on G are also close in the original data space, a property induced by
step 4 of the KM algorithm. Thus, the quantization process preserves the
topology informationcontained in the original data. We will show how
this topology preserving representation proactively helps the learning of
fine motion.

X

Figure 13. The KM maps similar input data to neighboring locations on the grid.

Back to perception clustering. If a KM is trained with perceptions as
inputs, then its reference vectors will represent prototypical perceptions.

To be more specific about the KM structure, remember that a percep-
tion is made of a vectoro of readings of 24 obstacle proximity sensors,
together with the relative goal directiong, a two-dimensional vector (Fig-
ure 6). These two vectors could be joined into a single input vector for

© 2000 by CRC Press LLC

the KM. If we do so, each neuron in the network will represent an obsta-
cle perception and a given goal direction. However, this representation is
not “economic”, as it will be made clear by the following example.

Figure 14. The robot perception while moving in the free space: obstacle per-
ception (left), goal perceptions (right).

+

+

+

Figure 15. The reference vectors of the trained1� 3 KM.

Imagine the robot is moving in the free space. The only obstacle percep-
tion it can experience is that shown in Figure 14, left. In this case, the
only varying input parameter is the goal direction. Suppose that the robot
has experienced the goal directions shown in Figure 14, right. If we use,
say, a1� 3 KM to cluster this input information, the training of the KM

© 2000 by CRC Press LLC

would produce theprototypical perceptions depicted in Figure 15. From
this representation it is clear that the information concerning the obstacle
perception is unnecessarily repeated three times.

To avoid repetitions a Hierarchical Kohonen Map (HKM) [13] may be
used instead of the “flat” KM.

Hierarchical Kohonen Map. A HKM is a KM network (super-
network) composed by a hierarchical arrangement of many subordinated
KMs (sub-networks) (Figure16).

super-net
sub-net

sub-net

Figure 16. Architecture of the Hierarchical Kohonen Map.

A HKM is used to process input components insequence.

As an example, suppose we want to process an input vectorx which is
the combination of two component vectorsx1 andx2. To processx1 and
x2 separately, wesplit the input presentation into two steps (Figure17).

1. x1 is presented as input to the super-netG. Let neurons be the
winner of the competition onx1 in G.

2. Then,x2 is presented as input pattern to sub-netGs, i.e. the KM
associated to the winners in G. Now, a neuronv in Gs is selected
as the winner of the competition onx2.

The learning rule for the HKM is the same as the one presented for the
simple KM. The only difference is that now we have two neighborhood
parameters, one for the super-network and one for the sub-nets.

© 2000 by CRC Press LLC

G

x

s

v

x1 x2

Gs

Figure 17. The HKM processes input components in sequence.

In short, in our learning case there are three reasons for preferring a hi-
erarchical architecture to a “flat”. First, it avoids unnecessary repetition
of o weights for differentg directions, which would be costly in terms
of memory requirements. Second, it deals naturally with the economic
input representation ofg as a 2 dimensional vector. A flat network would
need either a more distributed coding forg (as in [12]) or a weighting of
g (as in [5], [6]) so that during the matching stepg does not lose impor-
tance with respect too, whose dimensionality is rather high. Third, by
processing the input information in two stages, we hope to simplify the
adaptation process of the SOM to the perception data distribution.

Experimental results on perception clustering. To experiment with
the HKM, we designed for the rectangle-shaped robot the workspace
shown in Figure18. In thisworkspace, theplanner solvedanumber of in-
stances of the path finding problem. Each new instance was obtained by
changing the robot initial position while keeping fixed the goal position.
In all, the planner generated about 500 pairs< perception; action >.

The HKM super-network is a4�6 grid of neurons, while each sub-net is
an array of 10 neurons(Figure19). For thesub-netsan array arrangement
is preferred, because the data to cluster (the goal directions) are points
distributed on a circle.

© 2000 by CRC Press LLC

Figure 18. The workspace for the experiments.

obstacle perception goal direction

Figure 19. The HKM net structure.

Theresult of the training phase isdepicted graphically in Figures20–21.

Figure 20 shows the reference vectors of the super-network. They rep-
resent prototypical obstacle perceptions experienced by the robot during
motion. For example, neuron1 #0 is the perception of free space, neuron
#5 is the perception of a wall on the right-hand side, neuron #7 is the
perception of a wall behind the robot’s back, and neuron #17 is the per-
ception of a narrow corridor. Observe thetopology preservingcharacter
of the KM: the perception similarity varies in a continuous way on the
map. Therefore, similar perceptions activate neighboring locations on the
grid.
1Neurons are numbered from the upper-left corner to the right.

© 2000 by CRC Press LLC

Figure 21 shows the reference vectors of three sub-nets, namely those
corresponding to neurons #0, #7, #17 in the super-network. They repre-
sent prototypical goal directions experienced by the robot for the corre-
sponding obstacle perception. The goal direction has been represented as
a white vector departing from the center of the robot shape. Again, the
topology preservingcharacter of the network can be appreciated: the goal
direction varies on the array structure in a continuous way.

Figure 20. The obstacle perceptions learned by the super-network. (From [15]. With
permission.)

Figure 21. The goal directions learned by three sub-nets. (From [15]. With permission.)

© 2000 by CRC Press LLC

5 Action Triggering

In step (B) (Figure9) theANN learns to associate theplanner actions to
prototypical perceptions. This learning phase takes advantage of the or-
dered perception representation generated by the HKM at previous step.
We introduce briefly the required extension to the basic KM algorithm
(EKM) [14], which makes it possible to train the KM network by super-
vised learning.

Extended Kohonen Map. From the architecture point of view, the KM
network is augmented by adding to each neuronr on the competitive grid
G a fan-out weight vectorzr to storetheneuron output value(Figure22).

input layer

output layer

r

G

zr

w r

Figure 22. Extended Kohonen Map architecture.

The computation in the EKM network proceeds as follows. When an in-
put patternx is presented to the input layer, the neurons onG compete to
respond to it. The competition involves the neurons fan-in weight vectors
wr, and consists of the computation of the distance betweenx and each
wr. The neurons, whose fan-in vectorws is the closest tox, is the win-
ner of the competition, and its fan-out vectorzs is taken as the network
output answer tox.

During the training phase, both the input patternx and the desired output

© 2000 by CRC Press LLC

valuey proposed by the teacher are learnt by the winning neuron and by
its neighbors on the grid. The learning step consists of moving the fan-
in weight vectors of the selected neurons closer tox, and their fan-out
weight vectors closer to y (Figure23, right).

This learning style has been described as acompetitive-cooperative
training rule [13]. It iscompetitivebecause the neurons compete through
their fan-in weight vectors to respond to the presented input pattern. As
a consequence, only that part of the network which is relevant to deal
with the current input data undergoes the learning process. Moreover,
neighboring locations on the grid will correspond to fan-in weight
vectors that are close to each other in input data space. The rule is also
cooperativein that the output value learnt by the winning neuron is
partially associated to the fan-out weight vectors of its neighbors. If the
input-output function to be learnt is a continuous mapping, then spread-
ing the effect of the learning of an output value to the neighborhood of
the winner represents a form of generalization which accelerates the
course of learning [13].

x
ws

new

ws
old

X

s

y

Y

zs
new

zs
old

Figure 23. The learning step for the Extended Kohonen Map.

Back to action triggering. To apply the EKM to the action learning
problem, we add to every neuron in each sub-network of the HKM a
fan-out weight vector that will specify the action to perform for a given
obstacle perception and a given goal direction. The complete ANN
architecture is a Hierarchical Extended Kohonen Map (HEKM) and is
shown in Figure24.

© 2000 by CRC Press LLC

obstacle perception goal direction

action

Figure 24. The HEKM network architecture.

Experimental results on action triggering. Some results for the per-
ception clustering module have already been presented. Let us show the
corresponding actions learnt by the ANN.

In Figure 25 we have represented the goal directions and the robot ac-
tions learnt by sub-network #0, the network responsible for moving the
robot in the free-space. In each cell, the gray rectangle is the robot initial
configuration, while the black rectangle represents the new robot con-
figuration reached by performing the corresponding action. Similarly,
Figures 26–27 show the actions learnt by the sub-networks which are
responsible, respectively, to deal with the perception of a wall behind the
robot’s back, and that of a narrow corridor.

Again the topology preserving character of the network may be appre-
ciated by observing how the learnt actions vary in a continuous way on
each sub-network.

6 All Together

Some instances of the path finding problem are presented in Figure 28
together with the solutions found by the ANN in cooperation with the
planner. In these trajectories the planner takes control only when the ac-
tion proposed by the ANN would lead to a collision.

© 2000 by CRC Press LLC

Figure 25. Obstacle perception, goal directions and actions learnt by sub-net #0.

Figure 26. Obstacle perception, goal directions and actions learnt by sub-net #7.

These paths illustrate the ANN ability to deal with several motion sit-
uations, namely avoiding a wall to the right-hand side, going around a
column, entering doors, going zig-zag.

It is important to stress that, although the ANN has been trained on fine
motion with respect to afixedgoal, the knowledge it has acquired is “gen-
eral” because the goal position is not specified in absolute coordinates,
but relatively to the robot. The second row of Figure 28 shows the very
same ANN guiding the robot to new goal positions.

Figure 27. Obstacle perception, goal directions and actions learnt by sub-net #17.

© 2000 by CRC Press LLC

Figure 28. The robot solving the path finding problem with the fixed goal used
during the training phase (first row) and with new goal positions (second row).
(From [15]. With permission.)

7 Why Use a SOM-Like Network?

We would like now to discuss the following claim: the data topology-
preserving character of the HEKM favors the learning of fine motion.

This statement can be proved experimentally by performing two separate
training sessions. In the first session, the neighborhood parameters (one
for the super-net, one for the sub-nets) are set to 0, while in the second
session they are set to values other than 0 (4 and 5, respectively). In this
way, the effect of cooperation during learning can be studied.

To evaluate the two methods, an error criterion and a performance cri-
terion are used. The error measure is the mean squared error between
the network output action and the target action proposed by the plan-
ner, while the performance criterion is the percentage of optimal actions
learnt by the network. By definition, the optimal actions are those pro-
posed by the planner.

Let us comment on the plots of error and performance as a function of
thenumber of trainingcycles(Figure29). Asfar astheerror isconcerned
(top plot), one can see that without cooperation (curve with black dots) a

© 2000 by CRC Press LLC

certain error level is reached quite rapidly, but afterwards, no significant
improvement is observed. On the contrary, with cooperation (curve with
white dots) it takes more time to reach the very same error level, but the
final error is lower. This type of behavior seems to be typical for cooper-
ating agents, as it is reported in [1]. In our experiment, a possible expla-
nation for this could be that, when the cooperation between the neurons is
active, it takes more time to find a good “compromise” to satisfy compet-
ing learning needs. However, once the compromise is met, the final result
gets improved. A corresponding behavior is observed in the performance
curves (bottom plot). Without cooperation a certain performance level is
achieved quite rapidly (42%), but after that point no further improvement
occurs. With cooperation, the same performance level is obtained later,
but the final result is more satisfactory (65%).

8 Planner Vs. HEKM

We conclude by highlighting an interesting side effect which is obtained
by transferring motion knowledge from the planner to the HEKM.

Our planner is adiscretesystem. By the term “discrete” we refer to the
fact that, at each step of the robot trajectory, the planner generates a fi-
nite number of neighboring configurations, and chooses among these the
one which approaches the goal closest while avoiding collisions. The
HEKM, on the contrary, tends to produce actions which look like be-
ing continuous. That is because the action learnt by the network for a
given perception is a kind of average action performed by the planner in
similar perceptual states. To illustrate this point, we let the planner and
the HEKM solve the same path finding problem asstand-alonesystems
(Figure 30). One can immediately appreciate qualitative differences in
the two paths. The discrete nature of the planner is evident in the left plot:
the robot motion is optimal in terms of path length, but quite abrupt. On
the contrary, in the HEKM path (right plot) smoothness has been traded
against optimality. This observation also accounts for the “sub-optimal”
performance level reached by theHEKM (Figure29) at theend of train-
ing.

© 2000 by CRC Press LLC

Figure 29. Error (top) and performance (bottom) without cooperation (black
dots) and with cooperation (white dots). (From [15]. With permission.)

9 Conclusions

This chapter has presented a HEKM which learns fine motion under the
control of a planner.

© 2000 by CRC Press LLC

Figure 30. The planner (left plot) and the ANN (right plot) solving the same
instance of path finding as stand-alone systems. (From [15]. With permission.)

When invoked, the planner proposes an action, but to do so it needs to
explore all possible robot configurations and this is expensive. This is
why we capture the planner experience under the form of<perception,
action> pairs and use these as training examples to build automatically
the sensor-based HEKM. The result is that the HEKM learns to avoid
collisions, acquiring an “implicit” model of the real robot through the
perception-action mapping it implements. Of course the HEKM is not
fault-free: when the action computed by the HEKM would lead to a col-
lision, control is taken over by the planner, which proposes its action, and
this can be treated as a new training example for the HEKM. Therefore,
when the HEKM is started as a “tabula rasa”, the planner is in charge
of proposing the robot action most of the times. But, as the HEKM be-
comes more competent, control is gradually shifted to the HEKM, and
the planner is invoked only in faulty cases. Overall, the integration of
the planner and the HEKM improves the performance of the robot in
cluttered environments because it decreases both the number of collision
checks required and the number of times the planner is activated.

It is also worth noting that the integrated planner-HEKM system is able
to take advantage from whatever knowledge is available about the en-
vironment. When a model of the workspace is available, we can let the
planner be in charge of high-level navigation while the HEKM takes care
of fine motion. But if the environment is unknown, we can still use the

© 2000 by CRC Press LLC

trained sensor-based HEKM as a stand-alone system to control the robot
because the HEKM does not rely on a model of the workspace. The only
constraint is to perform the training of the HEKM in a known environ-
ment so that the planner can act as a teacher. Then, as we have shown,
most of the fine motion knowledge acquired in one environment can be
transferred to another one.

This chapter also provides answers to a number of questions concerning
the design and properties of the HEKM.First, we discussed the util-
ity of using a hierarchical KM instead of the usual “flat” version. The
HEKM is more economic in terms of the way memory cells are used.
It avoids unnecessary weight repetitions and allows for compact input
representations. Clearly, one limitation of the current architecture is the
fixed number of neurons. A growing network, able to increase the num-
ber of neurons where a more detailed representation is needed, could
be used instead [2], [6].Second, we measured the effect of cooperative
learning due to the interaction between adjacent neurons. We found that
with cooperation learning is slowed down on the short run. But the ben-
efits appear later on, resulting in a more satisfactory final performance.
Our interpretation is that, at the beginning of learning, neighboring neu-
rons work to meet a compromise to competing needs: this effort becomes
rewarding on the long run.Third, we pointed out the complementary na-
ture of the paths generated by the planner and by the HEKM as stand-
alone systems. The HEKM produces sub-optimal but smooth solutions,
whereas the planner seeks for optimality while sacrificing the continuity
of motion. The integration of these two attitudes leads to good results.

Acknowledgments

Cristina Versino was supported by the project No. 21-36365.92 of the
Fonds National de la Recherche Scientifique, Bern, Suisse.

References

[1] Clearwater, S.H., Hogg, T., and Huberman, B.A. (1992), “Coop-
erative problem solving,”Computation: The Micro and the Macro
View, Huberman, B.A. (Ed.), World Scientific.

© 2000 by CRC Press LLC

[2] Fritzke, B. (1995), “A growing neural gas network learns topolo-
gies,” Advances in Neural Information Processing Systems 7,
Tesauro, G., Touretzky, D.S., and Leen, T.K. (Eds.), MIT Press,
Cambridge, MA, pp. 625-632.

[3] Gambardella, L.M. and Versino, C. (1994), “Robot motion plan-
ning. Integrating planning strategies and learning methods,”Proc.
AIPS94 - The Second International Conference on AI Planning Sys-
tems, Chicago, USA, June.

[4] Gambardella, L.M. and Versino, C. (1994), “Learning high-level
navigation strategies from sensor information and planner experi-
ence,”Proc. PerAc94, From Perception to Action Conference, Lau-
sanne, Switzerland, September 7-9, pp. 428-431.

[5] Heikkonen, J., Koikkalainen, P., and Oja, E. (1993), “Motion be-
havior learning by self-organization,”Proc. ICANN93, Interna-
tional Conference on Artificial Neural Networks, Amsterdam, The
Netherlands, September 13-16, pp. 262-267.

[6] Heikkonen, J., Millán, J. del R., and Cuesta, E. (1995), “ Incremen-
tal learning from basic reflexes in an autonomous mobile robot,”
Proc. EANN95, International Conference on Engineering Applica-
tions of Neural Networks, Otaniemi, Espoo, Finland, August 21-23,
pp. 119-126.

[7] Khatib, O. (1986), “Real-time obstacle avoidance for manipula-
tors and mobile robots,”The International Journal of Robotics Re-
search, vol. 5, no. 1.

[8] Knobbe, A. J., Kok, J. N., and Overmars, M.H. (1995), “Robot
motion planning in unknown environments using neural networks,”
Proc. ICANN95, International Conference on Artificial Neural Net-
works, Paris, France, October 9-13, pp. 375-380.

[9] Kohonen, T. (1984),Self-Organization and Associative Memory,
Springer Series in Information Sciences, 8, Heidelberg.

[10] Latombe, J.-C. (1991),Robot Motion Planning, Kluwer Academic
Publishers.

© 2000 by CRC Press LLC

[11] Lozano-Perez, T. (1982), “Automatic planning of manipulator
transfer movements,”Robot Motion, Brady et al. (Eds.), The MIT
Press.

[12] Mill án, J. del R. (1995), “Reinforcement learning of goal-directed
obstacle-avoiding reaction strategies in an autonomous mobile
robot,” Robotics and Autonomous Systems, vol. 15, no. 3, pp. 275-
299.

[13] Ritter, H., Martinetz, T., and Schulten, K. (1992),Neural Computa-
tion and Self-Organizing Maps. An Introduction, Addison-Wesley
Publishing Comp.

[14] Ritter, H. and Schulten, K. (1987), “Extending Kohonen’s self-
organizing mapping algorithm to learn ballistic movements,”Neu-
ral Computers, Eckmiller, R. and von der Marlsburg, E. (Eds.),
Springer, Heidelberg.

[15] Versino, C. and Gambardella, L.M. (1996), “Learning fine motion
by using the hierarchical extended Kohonen map,” in Von der Mals-
burg, C., Von Seelen, W., Vorbruggen, J.C., and Sendroft, B. (Eds.),
Proc. ICANN96, International Conference on Artificial Neural Net-
works, Bochum, Germany, 17-19 July, vol. 1112 of Lecture Notes
in Computer Science, Springer-Verlag, Berlin, pp. 221-226.

© 2000 by CRC Press LLC

	Recent Advances in Artificial Neural Networks
	Contents
	LEARNING FINE MOTION IN ROBOTICS: DESIGN AND EXPERIMENTS
	1 How to Find the Path?
	2 The Model-Based System
	3 The Sensor-Based System
	4 Perception Clustering
	5 Action Triggering
	6 All Together
	7 Why Use a SOM-Like Network?
	8 Planner Vs. HEKM
	9 Conclusions
	Acknowledgments
	References

