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A neural network-based methodology for time and memory efficient 
supervised or unsupervised classification in heavily demanding 
applications is presented in this chapter. Significantly increased speed 
in the design (training) of neural, fuzzy and statistical classifiers as well 
as in the classification phase is achieved by: (a) using a self-organizing 
feature map (SOFM) for vector quantization and indexed representation 
of the input data space; (b) appropriate training set reduction using the 
SOFM prototypes followed by necessary modifications of the training 
algorithms (supervised techniques); (c) clustering of neurons on maps 
instead of clustering the original data (unsupervised techniques); and 
(d) fast indexed classification. Finally, a demonstration of this method-
ology involving the design of multiple classifiers is performed on 
Land-Cover classification of multispectral satellite image data showing 
increased speed with respect to both training and classification times. 

1 Introduction 

Within the last decade, advances in space, sensor and computer 
technology combined with the launch of new sophisticated satellites 
have made it possible to amass huge amounts of data about the earth 
and its environment daily [1]. Applications such as environmental 
monitoring and resource management as well as geological and 
geophysical data analysis involve processing large amounts of spatial 
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data. Often, these data are collected from multiple sources, stored in 
Geographical Information Systems (GIS), and may include 
multispectral satellite images (e.g., Landsat TM, SPOT, NOAA 
AVHRR), grid data (e.g., digital elevation maps, geological/geo-
physical maps) and point or local measurements (e.g., data from local 
stations, drill data). Therefore, it is evident that more powerful 
methodologies are needed for efficient data processing in heavily 
demanding applications such as the one considered in this paper, 
namely, satellite image classification. 

Recently, several techniques have been proposed for multispectral 
satellite image classification. These include traditional statistics, neural 
networks and fuzzy logic and can be divided into two general 
categories: (a) supervised techniques in which labeled training samples 
are used for optimizing the design parameters of the classification 
system [2]-[7], and (b) unsupervised techniques (automatic classifica-
tion) using a data clustering algorithm [8]-[12]. 

Although supervised techniques generally perform better in the 
production of thematic maps (e.g., classification in land-cover 
categories, geological categories, etc.), unsupervised techniques are 
mainly used when no training sets are available and constitute a 
valuable objective alternative as they do not depend on previous 
knowledge or a photointerpreter's experience. These algorithms first 
cluster the data according to a similarity criterion, then assign a label to 
each cluster (usually a grey level or color) that corresponds to a 
(thematic) category and, finally, substitute each pixel of the original 
image with the cluster label to which it belongs. The traditional 
classification scheme using a supervised algorithm or a clustering 
algorithm is shown in Figure 1. 

In a number of recent works [2]-[7], neural network models have 
successfully been applied for the classification of multispectral satellite 
images and, more generally, of multisource remotely sensed data. 
However, for training sets consisting of several thousand patterns 
belonging to many (often more than ten) categories and large volumes 
of data, the neural network training and/or classification times reported 
are quite long, ranging in some cases from a few hours to a few weeks 
on a conventional computer [4]. The inherent computational 
complexity in the training, clustering or classification phase of several 
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other algorithms such as the Pal-Majumder’s fuzzy classifier [13], [14], 
the k-nearest neighbors algorithm [15], the various hierarchical 
clustering procedures [15] and clustering based on scale-space analysis 
[11], to name a few, also prohibit their use in heavily demanding 
applications. Therefore, taking into account that additional training and 
classification trials must usually be performed before selecting a 
particular classification model, its architecture, and, its design 
parameters, the need for a methodology for fast model design and 
classification is evident. 

Supervised ClassificationMulti-spectral

Image

Thematic

MapClustering

 
Figure 1.  Traditional supervised/unsupervised classification. 

In this paper, a methodology based on self-organizing feature maps and 
indexing techniques is proposed and demonstrated for classifying 
multispectral satellite images in land-cover categories. The aim is to 
improve memory requirements for storing the satellite data and at the 
same time increase training and classification speed without a 
significant compromise of final performance. This can be accomplished 
through quantization of the input space, indexed representation of 
image data, reduction of training (and, possibly, validation) sets, 
appropriate modification of the training algorithms and, finally, 
indexed classification. 

Results using neural, fuzzy and statistical classifiers show that it is 
possible to obtain good land-cover maps with the proposed 
methodology in much shorter times than the classical method of pixel-
by-pixel classification. Furthermore, the increased speed achieved 
allows the design of multiple independent classifiers needed by 
multimodular systems that combine the decisions of individual 
classifiers through a voting scheme. One such system that resolves 
“don’t know” cases (i.e., classifiers not in agreement) through local 
spatial voting is shown to further improve the final result. 
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2 Proposed Methodology 

In this section, a methodology for efficient classification of multi-
spectral data is presented with the following advantages: 

• memory savings through data quantization, 

• increased training speed in supervised algorithms, due to training 
set size reduction achieved by redundancy removal, 

• increased clustering speed in automatic classification, due to the 
relatively small number of prototypes (quantized data points), 

• increased classification speed by using fast indexing techniques. 

Although the method can be applied to multisource data without loss of 
generality, we will restrict the presentation to multispectral satellite 
images consisting of n bands with M×N pixels each. The image is 
represented in the n-dimensional euclidean space Rn by a set of M×N 
points, whereby the grey level values (intensities) in each band at a 
particular pixel are interpreted as the coordinates of the corresponding 
point in Rn (see Figure 2). In other words, the grey levels of each pixel 
are stacked into a vector (also called the spectral signature of the pixel) 
that specifies a point in Rn. 
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Figure 2.  Representation of multispectral images of M×N pixels and n bands. 
The spectral signature of a pixel is represented by a point (g1, g2, …, gn) ∈ Rn 
where gi corresponds to the grey level of the i-th spectral band, i = 1, 2, …, n. 
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2.1 Data Quantization Using Self-Organizing Maps 

The first stage of the proposed methodology involves quantization of 
the input data space using Kohonen's self-organizing feature maps 
(SOFM) [16]. Using the euclidean distance metric, the SOFM 
algorithm performs a Voronoi tessellation of the input space and the 
asymptotic weights of the network (usually a 1-D or 2-D lattice of 
neurons) can then be considered as a catalogue of vectors or prototypes, 
with each such prototype representing all data from its corresponding 
Voronoi cell. 

   Index
Table

SOFM
PROTOTYPES

Prototype#1
Prototype#2

…

Prototype#k

…

   Multispectral
Image

 
Figure 3.  Representation of multispectral images by the index table and 
SOFM prototypes. The index table stores pointers from pixels to their nearest 
prototypes. 

Following input data quantization, the next step is to derive an indexing 
scheme that maps each input sample (pixel) to its corresponding 
prototype. This is achieved by storing, in a 2-D array of the same 
dimensions as the original image, a pointer to the pixel’s closest 
prototype. This array will be called the index table and, along with the 
SOFM prototypes, constitutes an indexed (compressed) representation 
that can be used in place of the original image (see Figure 3). Although 
SOFM training as well as index table production are performed with 
off-line computations, it is worth noting that the speed can be 
significantly increased a) by using the branch-and-bound [17] or 
partition [5] variants of the nearest neighbor algorithm for sequential 
implementations, or b) through parallel implementations. Recent works 
on systolic array implementations of Kohonen's algorithm, which 
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exploit synaptic-level parallelism and allow for fast computations 
needed in SOFM training and index table construction, can be found in 
[18], [19]. 

In general, the larger the number of neurons on the map the better the 
approximation of the original data space and the smaller the 
quantization distortion (provided that the map self-organizes). 
However, from experience, map sizes of up to 16×16 neurons (i.e., 256 
prototypes) should suffice in most applications. In the case of large 
volumes of multispectral data from n bands with 256 grey levels/band, 
compression ratios of approximately n:1, when 256 prototypes are 
used, are readily attainable. 

2.2 Training Set Reduction and Classification of 
SOFM Prototypes for Supervised Techniques 

In this section, we demonstrate how fast tuning the parameters of 
supervised algorithms can be performed using the SOFM prototypes. 
The training phase involves the use of appropriately selected training 
and, possibly, validation samples of known classification, with the 
latter being used to avoid overtraining [20]. In satellite image 
classification applications, these data sets are usually composed of 
several thousands of pixels and, along with the complexity of the 
classification task (i.e., the number of categories as well as the optimal 
shapes of class boundaries), are responsible for the long training times 
observed. Therefore, it is plausible to seek a reduction of these sets 
through quantization, preserving at the same time most of the 
information contained in the original sets. There are two main reasons 
for this: a) it removes redundancy from the training set, and b) such a 
reduction speeds up the validation set performance evaluation 
computed at regular intervals during the training phase. 

Using the proposed methodology, a reduction of the training and 
validation sets can be achieved as follows. First, both sets are quantized 
by substitution of each sample (spectral signature) with its closest 
SOFM prototype. In general, the number of prototypes is much smaller 
than the size of either data set, therefore leading to the existence of 
many duplicated quantized samples (they fall in the same Voronoi cell). 
Second, for each class label, we partition the data sets in groups of 
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identical samples and compute the multiplicity of each group. The 
reduced sets will have as many different samples as the number of 
groups under each label with each sample followed by its multiplicity 
in the group. These multiplicity counts are used in order to preserve the 
between- and within-class relative frequencies needed to specify 
optimal boundary placement in overlapping regions (note that identical 
samples belonging to different classes will both exist in the reduced 
set). As will be shown in Section 3, simple algorithmic modifications, 
taking into account sample multiplicities, allow for fast training of 
supervised models with reduced training and validation sets. 

Finally, in the next stage of the proposed methodology the so trained, 
supervised models are used to classify the weight vectors associated 
with the neurons of the map (i.e., the catalogue of SOFM prototypes) 
rather than the original multispectral data. The result obtained is a 
catalogue of labels (e.g., grey levels or colors) following the same order 
as the SOFM prototypes (see Figure 4). 

Catalogue of

SOFM

Prototypes

Catalogue of

LabelsSupervised Classifier

 
Figure 4.  Creation of the catalogue of labels by supervised models based on 
the reduced training and validation sets. 

2.3 Fast Clustering and Labeling of SOFM 
Prototypes for Unsupervised Techniques 

Typically, automatic classification involves clustering of the data space 
followed by label assignment. However, due to the large number of 
data points (up to M×N different spectral signatures), clustering 
performed on the original image data is inefficient in terms of both 
memory and time. 

In the proposed methodology clustering is performed on the neurons of 
the map (i.e., the catalogue of SOFM prototypes), thus achieving an 
increased speed of orders of magnitude, allowing the use of even the 
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most computationally demanding algorithms such as hierarchical 
algorithms [15]. 

Following clustering, the next step is the assignment of arbitrary labels 
to each cluster. These clusters, along with their labels, will represent 
the automatic classification categories (see Figure 5). 

Catalogue of

SOFM

Prototypes

Clustering & Arbitrary

Label Assignment
Catalogue of

Labels

 
Figure 5.  Creation of the catalogue of labels by unsupervised models based on 
fast clustering and arbitrary label assignment. 

2.4 Efficient Indexed Classification 

The traditional pixel by pixel classification using supervised or 
unsupervised techniques requires computational time proportional to 
the original image dimensions (see Figure 1). The classification of 
SOFM prototypes and production of the catalogue of labels allows for 
fast indexed classification by avoiding expensive computations. The 
final result (thematic map) is now obtained by following the pointers of 
the index table and accessing the corresponding labels as shown in 
Figure 6. For large satellit e images, an increase in speed of two or three 
orders of magnitude is possible at this stage. 

3 Modifications of Supervised Algorithms 

Next, we present the neural, fuzzy and statistical supervised classifiers 
used in this work as well as the modifications needed in order to take 
advantage of reduced training and validation sets. In particular, we 
show how to take into account sample multiplicities when updating 
weights of neural networks and how to accommodate these 
multiplicities into fuzzy and statistical classifiers in order to accelerate 
their computational performance. 
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Figure 6.  Fast indexed classification using the index table and catalogue of labels. 

As far as neural networks are concerned, the goal is for the weight 
updates to be equivalent to those that correspond to the unreduced but 
quantized training sets. Hence, under these modifications and assuming 
that the complexity of the classification task is not significantly 
affected by the quantization process, training time is reduced 
approximately in proportion to the ratio between the original 
(redundant) training set size and the number of prototypes (provided 
that most of the prototypes exist in the reduced set with few belonging 
to different classes). 

3.1 Classification Using the BP Algorithm 

The first classifier used is a multi-layered feedforward network trained 
with the back propagation (BP) algorithm [21]. In order to speed up the 
convergence to a local minimum of the error surface, by allowing for 
relatively large adaptation gain (learning rate) parameters, the on-line 
back propagation version [22] is used in the simulations. In on-line BP, 
the weights are updated following each input presentation, whereby 
input patterns are provided in random order. Moreover, by multiplying 
the weight updates that correspond to a training pattern x with its 
multiplicity mult(x), pattern multiplicities are easily incorporated into 
the learning procedure. In fact, such a technique implicitly assumes that 
a group of mult(x) inputs is presented in succession to the network and 
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can be considered a hybrid algorithm, as all patterns within the group 
cause a batch weight update (in the batch BP version, identical patterns 
contribute the same amount of weight change) while different groups 
affect learning in an on-line fashion. 

This technique can also be used to balance classes in the training set 
when they are not equally represented. To speed up learning, one can 
induce larger weight changes for patterns of poorly represented 
categories than those of well represented categories. If Ni signifies the 
number of patterns in class i and Nmax = max{ Ni}, then Nmax/Ni can be 
used as the amplification factor of weight changes induced by patterns 
from class i. For the unbalanced training set of our simulations, an 
increase of speed by approximately 4 times was achieved using the 
above technique. As is the case with the batch and on-line BP versions, 
selection of network parameters (e.g., adaptation gain) is problem 
dependent and must be performed after experimentation. However, 
from experience, the adaptation gain for hybrid algorithms can be 
selected to be the same as that for the on-line BP version without 
destroying stochastic convergence. 

3.2 Classification Using the LVQ Algorithm 

The second neural classifier used in this work is a single-layered 
network trained with the LVQ algorithm [16], [23]. Although the LVQ 
algorithm is reputably fast, further improvement on training time can be 
achieved by following the training set reduction procedure suggested in 
Section 2.2. To incorporate the multiplicities of the input patterns when 
updating the reference vectors, the adaptation gain .(t) at time t must 
be changed to .
(t) = [1 – (1 – .(t))mult(x)]. It can easily be verified that 
this modification: a) is equivalent to assuming a repetitive presentation 
of pattern x mult(x) times, considering a constant adaptation gain 
throughout these repetitions, and b) does not significantly affect the 
convergence properties of the algorithm (groups are randomly 
presented and the adaptation gain follows a staircase decaying function 
with flat portions corresponding to patterns of the same group). 
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3.3 The Pal-Majumder Fuzzy Classifier 

The fuzzy classifier used in this work is similar to the one proposed by 
Pal and Majumder [13], [14] for vowel and speaker recognition and 
will be denoted as the PM classifier. To make it easier for readers who 
are unfamiliar with this, a short presentation of this algorithm follows. 

Let, xp = (x1
p , x2

p,…, xn
p) denote the p-th original pattern (p = 1, …, P) of 

the training set, with xi
p being its i-th feature element (i = 1, …, n). The 

patterns xp are transformed into the fuzzy patterns yp = (y1
p, y2

p,…, yn
p) by 

assigning a membership function �i(· ) to each of the features xi
p (this is 

called the fuzzification process): 

yp,i  = �i(xp,i ) = ( 1 + | (x,
_
 i - xp,i ) / E |F )-1   ∀i = 1, …, n,  ∀p = 1, …, P(1) 

where x
_

i = (1/P) �
P
p=1 xi

p
 is the mean value of the i-th feature in the 

training set and E, F are constants determining the shape of the mem-
bership functions (spread and steepness of the symmetric membership 
function). 

A new test pattern, x = (x1, x2, …, xn) presented to the fuzzy classifier, 
is first transformed to a fuzzy pattern y = (y1, y2, …, yn) using equation 
(1) and in the sequel it is compared to each class through fuzzy 
similarity scores. Let C1, C2, …, CC signify the sets of training pattern 
indices p that correspond to each of the C classes and let N1, N2, …, NC 
be their respective cardinalities. The similarity scores are found by first 
computing the similarity vectors sc(y) = (sc1, sc2, …, scn), c = 1, 2, …, C, 
between pattern y and each of the C classes, where 

sci = (1/Nc) �p  s
 p

,ci       ∀p ∈ Cc   and   c = 1, 2, …, C  (2) 

and 

s p
,ci = ( 1 + Wi | 1 - yi / yp,i  | )

-2z. (3) 

The positive constants indicate the relative sensitivity of the clas-
sification process to the i-th feature (the lower this value, the higher the 
sensitivity), and z is a positive integer. 
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Having computed s1(y), s2(y), …, sC(y) we then classify y to class c if 
|sc(y)| < | sj(y)| ∀j ≠ c (this is the defuzzification process) with |sc(y)| = 
�

n
i=1 sci for c = 1, 2, …, C. 

It is evident that, by classifying the SOFM prototypes instead of the 
original pixels (M×N spectral signatures), this algorithm can efficiently 
be used in multispectral satellite image classification with the proposed 
methodology. The reduced training sets result in a further increase in 
speed of the classification process by P'/P where P' = �

P
p=1 mult(p) and 

P are the sizes of the original and reduced training sets respectively. 
The only modifications needed on the original algorithm, to incorporate 
the group multiplicities, are in the computation of the feature means, 

x,
_
 i = (1/P') �P

,p =1 mult(p) xp,i ,    ∀i = 1, 2, …, n, (4) 

in the cardinalities Nc = �p∈Cc mult(p) and in equation (2): 

sci = (1/Nc) �p mult(p) s p
,ci       ∀p ∈ Cc   and   c = 1, 2, …, C. (5) 

3.4 Classification Using the k-NN Algorithm 

The final supervised classifier used in this work is one of the simplest 
and most popular statistical classification methods, namely, the k-
nearest neighbors (k-NN) algorithm [15]. According to the k-NN 
algorithm, a new input pattern x is assigned to the class voted by the 
majority of its k nearest (in euclidean distance sense) training patterns 
xp, p = 1, 2, …, P. 

As was the case with neural and fuzzy classifiers, instead of classifying 
the original image on a pixel-by-pixel basis, the reduced training set is 
used to classify the catalogue of SOFM prototypes to a corresponding 
catalogue of labels followed by the fast indexed classification of 
Section 2.4. The necessary modifications to incorporate the group 
multiplicities of the reduced training set in the k-NN algorithm are the 
following: if pi signifies the index of the i-th nearest neighbor to x then 
we need only find the k' ≤ k nearest neighbors such that 

�
k'
i =1

 mult(pi) ≥ k (6) 
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and k' has the minimum value that satisfies equation (6). Since k' ≤ k, a 
further increase of the speedup factor is expected. 

4 Multimodular Classification 

The design of several supervised classification models with 
independent decisions allows for further improvement of final 
classification results through the use of multimodular decision making 
architectures. In a sense, the process of combining the power of 
different classifiers to obtain optimal classification results simulates the 
common practice followed by some patients who visit several 
“independent” doctors in order to obtain uncorrelated diagnoses and 
then follow the treatment suggested by the majority of them. By 
analogy, classification results obtained by a single classifier may be 
absolutely dependent on the particular design and properties of the 
classifier. Such dependence may have serious effects on final 
performance, especially when there is significant overlap of the 
categories and the optimum (in the Bayesian sense) boundaries are non-
linear. Taking into consideration the computational complexity of the 
overall multimodular system, the increase in speed achieved by the 
proposed methodology in the design of each individual classifier can 
prove quite beneficial. 

The multimodular architecture considered in this work utilizes the 
simple voting schemes suggested by Battiti and Colla [24]. In their 
experiments on optical character recognition, multiple neural network 
classifiers were used and independence of their individual decisions 
was guaranteed by using different: a) input features, b) number of 
hidden units, c) initial random weights, and/or d) network models. Each 
classifier (module) was then allocated a vote and the final decision was 
made by following a relative or absolute majority rule. Their results 
with different combinations of modules show an overall superiority of 
the multimodular system in terms of classification accuracy, with 
respect to individual classifiers. 

In this work, we extend the above to multimodular classification 
systems that incorporate not only neural but also fuzzy and statistical 
classifiers. Independence of individual decisions is guaranteed by using 
different classification models. Absolute majority rules are then applied 
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for a primal classification. Depending on the majority rule, input 
patterns may be rejected from classification (don’t know cases resulting 
from classifier disagreement) and performances can be plotted in the 
accuracy/ rejection plane, whereby an increase in the rejection rate 
should result in an increase of classification accuracy provided that 
rejected patterns are close to class boundaries. This added flexibility 
offers design options that can be exploited when desired performance 
levels must be obtained even at the expense of an increased rejection 
rate. 

To resolve the problem of don’t know pixels in the primal classification 
result we may exploit the spatial property of the image data. To this 
end, a don’t know pixel may be given the label of the majority of its 
local neighbors found in a window centered around the don’t know 
pixel. Such a technique can be viewed as spatial noise filtering. This 
cleans the final image and homogenizes its classification regions. 

5 Land-Cover Classification 

In this section we apply the proposed methodology for supervised and 
unsupervised classification of a multispectral Landsat TM 512×512 
image over Lesvos island in Greece, with a spatial resolution of 30m, 
into the following four land-cover categories: a) forest, b) sea, c) 
agricultural and d) bare rock-inhabited areas. The satellite data 
consisted of the first 3 bands (256 grey levels each) that correspond to 
the red, green and blue regions of the visible spectrum. The original 
image is shown in Figure 7a. 

After delineation of small polygonal regions from each land-cover 
category by an expert, two sets consisting of 6011 and 3324 samples 
(3-D spectral signatures) were selected for training the supervised 
models and testing their classification performance, respectively. In 
order to assess the generalization capabilities of the supervised 
algorithms during training, the first of these sets was further randomly 
split to generate a training set of 4209 samples and a validation set 
consisting of 1802 samples. The number of patterns in the selected four 
categories of each of the three sets are shown in Table 1. For the 
unsupervised models, the same sets of labeled pixels can be used to 
assess their performance. In Section 5.3, we compare the performance 

© 2000 by CRC Press LLC 

 



of the Fuzzy Isodata automatic classifier with its supervised counter-
parts. 

 
  (a) (b) 

Figure 7.  (a) Original multispectral satellite image used in the simulations, and 
(b) the self-organized map of 16×16 neurons. 

Table 1.  Number of patterns in each of the four categories for the three data sets. 

Set Total Forest Sea Agric. Rock 

Training 4209 1375 1054 1434 346 
Validation 1802 589 451 614 148 
Test 3324 1098 637 944 645 

 

All programs were run on a SUN ULTRA II Enterprise workstation 
(64MB, 167MHz). A map of 16×16 neurons was trained with 105 
random presentations of the 3-D spectral signatures in 23.12 sec. The 
adaptation gain .(t) of Kohonen’s SOFM algorithm was selected to 
tend to zero according to .(t) = .0 /(1 + K.· t) with an initial gain .0 = 
0.3 and a rate of decay K. = 0.002. The popular rectangular 
neighborhood function was considered, with a neighborhood size d(t) 
shrinking with time according to d(t) = dmin + d0/(1 + Kd· t) where dmin = 
1, d0 = 7 and Kd = 0.0025. The self-organized map produced with the 
above settings is depicted in Figure 7b. 

Following SOFM training, the storage of asymptotic weights into the 
catalogue of SOFM prototypes (256 prototypes × 3 floats/prototype × 4 
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bytes/float × 8 bits/byte = 3 × 213 bits) and the index table construction 
(5122 indices × 8 bits/index = 221 bits) required 54.30 sec. 

The SOFM prototypes and index table can also be used for representing 
the original satellite image (3 bands × 5122 greys/band × 8 bits/grey = 3 
× 221 bits) in a compressed form. The compression ratio achieved in 
this case is 3 × 221 / (3 × 213 + 221) = 2.96 while higher ratios can be 
obtained for more data bands and/or smaller maps, although caution 
should be exercised with the latter since small maps may lead to large 
quantization distortions. The quantized image produced by following 
the indices and rounding the elements of the prototype vectors to their 
nearest integers is visually almost indistinguishable from Figure 7a. 

5.1 Supervised Classification 

The next step is to compress the training and validation sets as 
explained in Section 2.2. The new sets have 284 and 252 patterns 
respectively. This is very close to the number of SOFM prototypes. The 
typical strategy followed in the design of supervised classifiers is to 
stop training when performance on the validation set is maximized. 
This approach is used to avoid the well known problem of overtraining 
[20] and may require experimentation that involves several trials with 
different parameter values. In the results shown below, a slightly 
different strategy was used. Instead of maximizing the performance of 
the validation set alone, we maximized a linear combination of the 
training and validation performances with coefficients of the linear 
combination, the 0.3 and 0.7, respectively. The reason for this 
modification was to assure not only overtraining avoidance but also a 
good model performance on the training set. Parameter tuning through 
repetitive experimentation and assessment of training and validation 
performance at regular intervals adds to “real” training time and 
provides an additional reason for the importance of the proposed 
methodology. 

Table 2 shows the results obtained with the BP, LVQ, PM and k-NN 
classifiers in terms of final performance on the training, validation and 
test sets of Table 1, while Table 3 shows the respective increases in 
training speeds achieved by the proposed methodology. A 3-10-4 
feedforward network was trained with the BP algorithm using an 
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adaptation gain of 0.5 (2.0) and momentum parameter of 0.7 (0.8), both 
following a staircase decay by a factor of 0.7 every 500 epochs, for the 
classical (proposed) methodology. Training and validation set per-
formances were assessed every 20 epochs for both methodologies. The 
training times shown in Table 3 do not take into account the parameter 
tuning phase and correspond to 1500 epochs (6313500 presentations) 
for the classical methodology and 220 epochs (62480 presentations) for 
the proposed methodology. The increase in training speed for the BP 
classifier, achieved with the proposed methodology, was more than 500 
with no significant change in classification accuracy. 

Table 2.  Performance of the four supervised classifiers for the classical and 
proposed methodologies (F-forest, S-sea, A-agricultural, R-rock). 

  Classical Method Proposed Method 
Model Category Training Valid. Test Training Valid. Test 
 F 98.25% 98.64% 94.72% 96.51% 97.62% 91.80% 
 S 100.00% 100.00% 100.00% 99.91% 100.00% 98.27% 
BP A 96.44% 94.79% 93.22% 96.58% 95.11% 94.92% 
 R 89.60% 91.22% 95.19% 93.64% 92.57% 97.36% 
 Total 97.36% 97.06% 95.40% 97.15% 96.95% 95.01% 
 F 97.16% 98.47% 93.90% 97.53% 98.64% 94.26% 
 S 100.00% 100.00% 100.00% 99.91% 99.78% 98.12% 
LVQ A 97.07% 95.77% 94.70% 96.37% 95.60% 94.70% 
 R 90.46% 91.22% 96.12% 89.31% 89.86% 94.26% 
 Total 97.29% 97.34% 95.73% 97.05% 97.17% 95.13% 
 F 96.58% 97.45% 93.99% 92.80% 92.02% 86.25% 
 S 97.82% 96.45% 84.77% 99.62% 99.33% 89.48% 
PM A 94.42% 92.83% 92.06% 88.84% 87.95% 85.06% 
 R 95.09% 94.59% 98.45% 94.22% 93.92% 97.52% 
 Total 96.03% 95.39% 92.54% 93.28% 92.62% 88.72% 
 F 97.75% 97.96% 92.35% 97.82% 98.13% 92.53% 
 S 100.00% 100.00% 100.00% 99.91% 99.78% 98.12% 
k-NN A 97.84% 94.79% 92.58% 97.42% 95.60% 93.64% 
 R 91.62% 92.57% 96.12% 87.57% 87.16% 93.49% 
 Total 97.84% 96.95% 94.61% 97.36% 96.78% 94.10% 

 

Training of the LVQ classifier was performed with 24 reference vectors 
(6 reference vectors per category) and a linearly decaying adaptation 
gain (initial gain equal to 0.3, decay slope = −0.3/5000) for both 
methodologies. Performances on the training and validation sets were 
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assessed every 100 iterations. From Tables 2 and 3, we can infer that 
with no significant change in classifier performance, the increase in 
training speed achieved was about 4.5. The entries in these tables show 
that the LVQ algorithm is one of the most appropriate for satellite 
image classification due to its high speed and good generalization 
capabilities as long as the dimensionality of the data is relatively small 
(e.g., 3-D in this application). 

Table 3.  Increase in training speed for the four classifiers. 

 Classical Method Proposed Method  
Classifier Number of 

Presentations 
Time 
(sec) 

Number of 
Presentations 

Time 
(sec) 

Speedup 

BP 6313500 2847.47 62480 5.31 536.25 
LVQ 1000 0.58 2200 0.13 4.51 
PM - 75.25 - 0.55 136.82 
k-NN - 14.57 - 0.26 56.04 

 

Unlike the stochastic training nature of neural classifiers, the fuzzy PM 
and k-NN classifiers use static (non-adaptive) training. However, 
optimum selection of the PM and k-NN design parameters can only be 
achieved through repetitive classification of the training and validation 
sets. As with neural classifiers, optimum model selection corresponded 
to maximization of the combined training and validation performance 
index by assessing it for various sets of design parameters. In this way, 
the parameters selected for the PM model were E = 0.1, F = 9.0, z = 9 
and Wi = 0.8 (i = 1, 2, 3) for the original data sets and E = 0.1, F = 12.0, 
z = 12 and Wi = 0.8 (i = 1, 2, 3) for the reduced data sets. For the k-NN 
classifier, k = 5 was found to be the optimal value of k for both the 
original and reduced data sets. Table 2 shows that the non-adaptive 
nature of these algorithms results in a worse generalization than their 
neural counterparts for either methodology. The increase in speed due 
to reduced training and validation sets was about 136 and 56 times for 
the PM and k-NN classifiers respectively. The training times shown in 
Table 3 correspond to the time needed to assess training and validation 
performance for a given parameter set of the PM algorithm and for k = 
5 for the k-NN algorithm. 

Finally, Table 4 shows the increase in speed achieved in classifying the 
original 512×512 satellite image. The times reported for the classical 
method correspond to pixel-by-pixel classification using those 
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classifiers that have been trained with the original data sets. The times 
reported for the proposed method include the times for classifying the 
SOFM prototypes (20ms, 20ms, 370ms and 160ms for the BP, LVQ, 
PM and k-NN classifiers respectively) and the time for the indexed 
classification (120ms for all classifiers). The increase in speed achieved 
for the BP and LVQ algorithms was about 72 and 24 times 
respectively, while that for the PM and k-NN algorithms was about 
7112 and 2926 respectively, a very impressive result. The final 
classification results using the original data sets are shown in Figure 8 
and those for the reduced data sets are shown in Figure 9. 

Table 4.  Increase in classification speed of the four algorithms. 

 Classical Method Proposed Method  
Classifier Time (sec) Time (sec) Speedup 

BP 10.11 0.14 72.21 
LVQ 3.45 0.14 24.64 
PM 3485.00 0.49 7112.25 
k-NN 819.38 0.28 2926.35 

 

5.2 Multimodular Classification 

The design of multimodular classification systems in such demanding 
applications is often prohibited by the time it takes to train the 
individual classifiers and then classify the data with each one in turn. 
For the four classifiers used in this work, the total training time (not 
counting the necessary repetitive trials) is 2937.87 sec while the total 
classification time is 4317.94 sec. 

Using the proposed methodology, the total training and classification 
times are 6.25 sec and 1.05 sec, respectively, thus encouraging the use 
of such multimodular classification systems. In this work, the combined 
decision is based on an absolute majority voting scheme. In particular, 
we require at least three out of the four classifiers to be in agreement in 
order to accept the decision. Pixels for which there is not enough 
agreement (i.e., no three individual classifiers agree on a common class 
label) are labeled temporarily as “don’t knows”. Don’t know pixels are 
then resolved locally at the next stage by giving them the label of the 
majority of their labeled spatial neighbors found in a 3×3 window 
centered around them. 
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   (a) (b) 

      
   (c) (d) 

 - Sea - Forest - Agricultural - Rock Class labels: 
 

Figure 8.  Classification results using the original data sets for the following 
algorithms: (a) BP, (b) LVQ, (c) PM, and (d) k-NN. 

Figures 10a and 10b show the classification results obtained using a 
multimodular classifier on the original and reduced data sets, 
respectively. Qualitative evaluation and comparison with Figures 8 and 
9 shows superior classification quality due to more homogeneous 
regions. 
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   (c) (d) 

 - Sea - Forest - Agricultural - Rock Class labels: 
 

Figure 9.  Classification results using the reduced data sets for the following 
algorithms: (a) BP, (b) LVQ, (c) PM, and (d) k-NN. 

The time needed to combine the decisions of the four classifiers (only 
for the SOFM prototypes), indexed classification, and resolving 9309 
don’t know pixels through local information was 0.15 sec for the 
proposed methodology. The corresponding time for the classical 
methodology was 0.42 sec (5790 don’t know pixels). 
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 - Sea - Forest - Agricultural - Rock Class labels: 
 

Figure 10.  Multimodular classification results using: (a) the classical 
methodology, and (b) the proposed methodology. 

5.3 Unsupervised Classification 

The experiments performed in this section mainly consider two of the 
most popular clustering algorithms, namely the Isodata [15], [25] and 
Fuzzy Isodata [26] algorithms. However, in order to stress the 
efficiency of the proposed methodology some practical remarks on the 
hierarchical min-max statistical algorithm [15] have also been included. 

Classification results for 8 categories (subclusters) using the proposed 
methodology for the Isodata and Fuzzy Isodata algorithms are shown in 
Figures 11a and 11b, respectively. Convergence of the Isodata 
algorithm was achieved in 34.71 msec (13 iterations) while Fuzzy 
Isodata was terminated in 0.967 sec, at 100 (preselected maximum 
number) iterations. The additional indexed classification time, common 
to all algorithms, was 0.12 sec. 

Figure 11c shows the classification result obtained in 11.90 sec with the 
hierarchical min-max algorithm. The computational complexity 
prohibits direct use of this algorithm on the original data (this is a 
disadvantage when compared with the proposed methodology). On the 
other hand, direct application of the Isodata and Fuzzy Isodata 
algorithms to the original data is possible (see Figures 12a and 12b) at a 
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cost of about 1024 times (5122/256) longer clustering time per iteration. 
In fact, clustering in 8 categories required 172.63 sec for Isodata (63 
iterations) and 542.31 sec for Fuzzy Isodata (50 iterations), while the 
time for classification was 1.02 sec for both algorithms. 

      
   (a) (b) 

      
   (c) (d) 

Figure 11.  Classification results in 8 categories with the proposed method-
ology using: (a) Isodata, (b) Fuzzy Isodata, and (c) hierarchical min-max 
algorithm. The classification result in 4 categories using Fuzzy Isodata with 
the proposed methodology is shown in (d). 
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   (a) (b) 

Figure 12.  Unsupervised classification in 8 categories with the classical 
methodology using: (a) Isodata, and (b) Fuzzy Isodata. 

From the above, the increase in clustering speed per iteration, achieved 
by using the proposed methodology, is about 2.74/(2.67×10-3) = 1026 
for Isodata and 10.84/(9.67×10-3) = 1121 for Fuzzy Isodata (see Table 
5). On the other hand, comparisons in terms of classification speed 
show an increase in speed, due to indexing techniques, of 1.02/0.12 = 
8.5 for both algorithms. At this point, it is important to note that if 
SOM training and index table construction (requiring 77.42 sec) are not 
off-line computations, the increase in speed in the first user trial will be 
smaller. However, for any additional classification trials (with different 
numbers of clusters) performed by the user for optimizing results, the 
increase in speed will be as stated above. 

Table 5.  Computational times and clustering gain (per iteration) for a map of 
16×16 neurons. The symbol ∞ means extremely large clustering time. 

Clustering Algorithm Classical Method Proposed Method Speedup 
Isodata 2.74 sec 2.67 msec 1026 
Fuzzy Isodata 10.84 sec 9.67 msec 1121 
Hierarchical ∞ 11.90 sec ∞ 

 

Finally, as far as classification performance is concerned, qualitative 
evaluation of Figures 11 and 12 through photointerpretation shows very 
satisfactory results. Quantitative evaluation of the results is also 
possible through the labeled sets used in the supervised case. For 
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example, Tables 6-8 show classification performances (in the form of 
confusion matrices) on training, validation and test data sets using the 
proposed methodology with the Fuzzy Isodata algorithm. Such a 
tabular display of the results is useful as it conveys information about 
the percentage of correct or incorrect data classifications per category 
(rows of the confusion matrix) and about class overlapping in each 
cluster (columns of the confusion matrix). Confusion matrices assist the 
user in finding the optimum number of clusters and/or merging clusters 
to larger ones so as to satisfy the needs of a particular application. 

Table 6.  Confusion matrix for the training data set. 

Category Total SC1 SC2 SC3 SC4 SC5 SC6 SC7 SC8 
F 1375 4 0 0 0 1046 0 291 34 
S 1054 1043 0 0 0 0 0 11 0 
A 1434 0 463 255 30 1 460 37 188 
R 346 0 1 13 326 0 6 0 0 

 

Table 7.  Confusion matrix for the validation data set. 

Category Total SC1 SC2 SC3 SC4 SC5 SC6 SC7 SC8 
F 589 0 0 0 0 458 0 124 7 
S 451 445 0 0 0 0 0 6 0 
A 614 0 217 108 16 1 178 21 73 
R 148 0 1 5 139 0 3 0 0 

 

Table 8.  Confusion matrix for the test data set. 

Category Total SC1 SC2 SC3 SC4 SC5 SC6 SC7 SC8 
F 1098 1 7 0 0 728 1 308 53 
S 637 556 0 0 0 1 0 80 0 
A 944 0 296 151 28 1 228 39 201 
R 645 0 0 16 629 0 0 0 0 

 

The first column of Tables 6-8 refers to the category, the second 
contains the number of data samples per category and the last 8 
columns show the classification results for the 8 subclusters. For 
example, 255 out of 1434 training samples of category A and 13 out of 
346 training samples of category R were classified in subcluster SC3 
(see Table 6). 
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Next, the 8 subclusters are merged to form 4 new clusters (C1, C2, C3, 
C4) being in 1-1 correspondence with the 4 categories (F, S, A, R) as 
follows: all initial subclusters with the majority of their data in category 
F (i.e., columns SC5 and SC7 of Tables 6-8) are merged to form cluster 
C1, those with data majority in S (i.e., SC1) form cluster C2, and so on. 
The result of merging and the new confusion matrices are shown in 
Tables 9-11. 

Table 9.  Cluster merging for the training set. 

Category Total C1 = F C2 = S C3 = A C4 = R 
F 1375 1337 4 34 0 
S 1054 11 1043 0 0 
A 1434 38 0 1366 30 
R 346 0 0 20 326 

Total 4209 1386 1047 1420 356 
Performance 96.75% 97.24% 98.96% 95.26% 94.22% 

 

Table 10.  Cluster merging for the validation set. 

Category Total C1 = F C2 = S C3 = A C4 = R 
F 589 582 0 7 0 
S 451 6 445 0 0 
A 614 22 0 576 16 
R 148 0 0 9 139 

Total 1802 610 445 592 155 
Performance 96.67% 98.81% 98.67% 93.81% 93.92% 

 

Table 11.  Cluster merging for the test set. 

Category Total C1 = F C2 = S C3 = A C4 = R 
F 1098 1036 1 61 0 
S 637 81 556 0 0 
A 944 40 0 876 28 
R 645 0 0 16 629 

Total 3324 1157 557 953 657 
Performance 93.17% 94.35% 87.28% 92.80% 97.52% 

 

The last row of Tables 9-11 shows the total classification accuracy as 
well as the individual accuracies in the four categories for the 
respective data sets. The individual accuracies are computed as 100% 
times the ratio of the correctly classified pixels over the total number of 
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pixels in each category. For example, since 1366 out of the 1434 pixels 
of category A are correctly classified, the percentage in the last row 
will be 95.26%. The overall accuracy is found by adding the diagonal 
elements and then dividing by the total pixels in the data set. A direct 
comparison of the results shown in Tables 9-11 with those of Table 2 
shows that unsupervised algorithms may compete in terms of 
performance with their supervised counterparts. However, a direct 
clustering to 4 categories (thus, avoiding the merging steps) would 
result in representing forest and sea pixels in the same category, since 
their spectral signatures differ less (in euclidean distance) than pixels 
within the agricultural category. The result would be a map with two 
agricultural subcategories, one category for the rock and one category 
for sea and forest. 
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Figure 13.  (a) Initial subclusters, and (b) final clusters, for a 16×16 map. 

Figure 13a shows the 8 subclusters on the map that correspond to those 
of Tables 6-8, with dots specifying the position of neurons in the 
lattice. Figure 13b shows the result of merging and Figure 11d the final 
classification into 4 categories. Cluster/sub-cluster connectedness is a 
result of self-organization, while their relative position on the map 
follows the similarity of their spectral signatures. For example, cluster 
C2 that corresponds to the sea category is the exclusive neighbor of 
cluster C1 (forest) and, therefore, most incorrect classifications will be 
in the forest category rather than in the other categories. This is in 
agreement with the entries of Tables 9-11. 
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6 Summary 

The methodology described in this paper offers time and memory 
savings for supervised and unsupervised model design and clas-
sification of large volumes of multi-dimensional spatial data using self-
organizing maps and indexing techniques. The catalogue of SOFM 
prototypes together with the index table can be used as a compressed 
representation of the original data. 

An increase in speed in the neural network training phase as well as in 
selecting the design parameters of fuzzy and statistical supervised 
classifiers is achieved by size reduction and redundancy removal from 
the training (and validation) sets in such a way as to preserve most of 
the information contained in the original data sets. On the other hand, 
an increase in clustering speed for unsupervised algorithms is achieved 
due to the relatively small number of SOFM prototypes that represent 
the original data space, permitting the use of even the most 
computationally complex algorithms. 

Finally, efficient indexed classification, leading to increased speed, is 
possible by first classifying the “few” SOFM prototypes (relative to the 
original image data) followed by fast indirect addressing through the 
index table. Results on land-cover classification of multispectral 
satellite data show significant increases in speed of training, clustering 
and classification for a variety of neural, fuzzy and statistical 
algorithms. 
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