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Hybrid Intelligent Architectures synergistically combine the strengths of
diverse computational intelligence paradigms and avail of both domain
knowledge and training data to solve difficult learning tasks. In partic-
ular, several researchers have studied some aspects of combining sym-
bolic and neural/connectionist approaches, such as initializing a network
based on existing rules, or extracting rules from trained neural networks.
In this chapter, we present acomplete systemthat embeds initial domain
knowledge and/or statistical information into a custom neural network,
refines this network using training data, and finally extracts back refined
knowledge in the form of a refined rule base with an associated infer-
ence engine. Two successful applications of this hybrid architecture are
described.  



1 Introduction

The synergistic use of multiple models to difficult problems has
been advocated in a variety of disciplines. Such approaches can
yield systems that not only perform better, but are also more com-
prehensive androbust. A strong motivation for such systems was
voiced by Kanal in his classic 1974 paper [17], prompting work on
combining linguistic and statistical models, and heuristic search with
statistical pattern recognition. In nonlinear control, multiple model
methods, such as gain-schedule control, have a long tradition (see
http://www.itk.ntnu.no/ansatte/JohansenTor.Arne/mmamc/address.html
for a detailed list of researchers).

Sentiments on the importance of multiple approaches have also been
voiced in the AI community, for example, by Minsky [27]:

“ To solve really hard problems, we’ll have to use several differ-
ent representations.... It is time to stop arguing over which type of
pattern-classification technique is best.... Instead we should work at
a higher level of organization and discover how to build manage-
rial systems to exploit the different virtues and evade the different
limitations of each of these ways of comparing things.”

Indeed, there are several examples of successful multi-model approaches
in the “learning” community – from the theory of neural network en-
sembles and modular networks [31] to multistrategy learning [26]. Hy-
bridization in a broader sense is seen in efforts to combine two or more
of neural network, Bayesian, GA, fuzzy logic and knowledge-based sys-
tems [1], [4], [25], [35]. The goal is again to incorporate diverse sources
and forms of information and to exploit the somewhat complementary
nature of different methodologies.

The main form of hybridization of interest in this chapter involves the
integration of symbolic and connectionist approaches [6], [8], [13], [15],
[18], [24], [35], [41]. Such combinations have attracted widespread inter-
est for several reasons that are founded on the complementary strengths
and weaknesses of these two approaches. For example, in many applica-
tion domains, it is hard to acquire the complete domain knowledge and
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represent it in a rule based format. Moreover, the acquired knowledge
may be uncertain or inconsistent [16], [30]. Expert systems can also suf-
fer from the brittleness of rules and lead to problems when the domain
theory is noisy [33]. Data driven connectionist models, on the other hand,
can be trained in a supervised or unsupervised fashion to perform rea-
sonably well even in domains with noisy training data. However, they
cannot as readily incorporate existing domain knowledge or provide a
symbolic explanation of results. Finally we note that in many real life
situations, there is some amount of existing domain knowledge (which a
purely model free neural network cannot exploit) as well as domain data
that may be acquired over time. Being able to use both knowledge and
data is paramount, specially in “non-stationary” scenarios that demand
continuous model tuning or refinement, thus further motivating hybrid
methods.

In this chapter, we present a comprehensiveHybrid Intelligent Archi-
tecture (HIA) that augments a knowledge base system with connection-
ist and statistical models to help the former refine its domain knowl-
edge and improve its performance and robustness. Figure 1 shows the
key modules of HIA.
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Figure 1. Major components of the Hybrid Intelligent Architecture.
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The (optional) rule based system represents the initial domain theory ex-
tracted from domain experts in a rule-based format. The acquired rules
are mapped into an initial connectionist architecture with uniform struc-
ture. The (optional) statistical module analyzes the available data sets
and extracts certain correlations between different input parameters and
also between input parameters and output decisions. The extracted sta-
tistical information is used to provide the mapped initial connectionist
architecture with first and higher order input-input and input-output cor-
relation rules. It is also used to provide supplementary rules to an initial
rule-based system.

Before training the initial connectionist architecture, a fuzzy subsystem
incorporating a coarse coding scheme is used to discretize the input pa-
rameters into multi-interval inputs with initial mean and variance for each
interval. During the training phase of the connectionist architecture, an
Augmented Backpropagation Algorithm (ABA) with momentum term is
used to refine the discretization parameters and thus enhance the domain
parameters. Therefore, the connectionist architecture can improve the ef-
ficiency of the domain theory and incorporate it in its topology.

At the end of the training phase, the final connectionist architecture, with
the updated weights and links, can be viewed as a revised domain the-
ory. It can be used to update the initial expert system with new learned
concepts. Moreover, it can be converted back, if needed, to a rule based
format to achieve the power of explanation [2], [12], [40]. Furthermore,
one can use an integrated decision maker to combine the decisions taken
by the updated expert system and the trained connectionist architecture
and provide the combined decisions to the user.

The rest of this chapter describes in detail the different modules of HIA.
In Sections 2-6, we elaborate upon the concepts of discretizing continu-
ous inputs into multi-interval inputs, mapping available domain knowl-
edge into a connectionist architecture, and enhancing the discretization
parameters during the training phase. Sections 7-9 summarize options
for rule extraction and output integration. Sections 10 and 11 describe
two applications of HIA: (1) controlling water reservoirs of the Colorado
river around Austin, and (2) characterizing and classifying the Wiscon-
sin Breast Cancer Data Set. In the concluding section we comment on the
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relation between HIA and some other hybrid and fuzzy approaches, sum-
marize the significance of the current work and point to future directions.
Further details on HIA can be found in [34].

2 Knowledge Based Module for Represen-
tation of Initial Domain Knowledge

As depicted in thebottom left of Figure 1, availabledomain information
can be divided into two parts: the knowledge that represents the opera-
tional rules of the domain and the data sets that represent the historical
records of the application domain.

The first module in HIA is a knowledge based module that is used to
represent the initial domain knowledge through a well-defined format
namedDomain Operational Rule (DOR)format. The DORs are built
using only the basic domain primitives that can be acquired easily from
the domain without consuming much time or effort. The basic compo-
nents needed to build the DORs are: (i) the domain objects and their
attributes; (ii) the relationship between the domain objects; and (iii) the
valid range of the attributes. These basic components represent the initial
domain theory and may not be sufficient for representing the complete
problem in a rule-based format. However, they can be used to build an
initial rule-based expert system. TheDOR format is a general rule-based
format that can be used to represent rule-based systems with and without
certainty factors. In case of rule-based systems without certainty factors,
the value ofcf is replaced by “1” in each rule. The following rules de-
scribe the syntax of the DOR format using the Backus-Naur Form (BNF):

If Compound-Condition [OR Compound-Condition]�
cf
�!Consequent+

Compound-Condition ::= Simple-Condition j Simple-Condition “AND”
Compound-Condition

Simple-Condition ::= [NOT ] Boolean-Expression

Consequent ::= Output-V ariable

where the symbol ::= means“to be written as”, j a vertical bar to rep-
resent choices,[�] is an optional term that can be repeated one time,[�]�

is an optional term that can be repeated zero or more times, and[�]+ is a
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term that can be repeated one or more times.

In many real applications, rules are not always fully true. Therefore, each
rule represented in the DOR format has an attached certainty factor value,
cf , which indicates the measure of belief, or disbelief if it is negative, in
the rule consequent provided the premises (left hand side) of the rule are
true. It is important to mention that:

� Rule consequents in the DOR format are not permitted to be used
as conditions in any other rule. Such a restriction was introduced
to avoid increasing the number of hidden layers of the connection-
ist architecture and hence reduces its complexity. This restriction
leads to a simpler uniform connectionist network, as seen later.

� In spite of this restriction, the DOR format can be used for rule-
based systems that allow rule consequents to be used as conditions
(premises) in other rules. Such systems can be represented in the
DOR format by replacing the condition, say of ruleRn, that has
appeared as a consequent in another rule, say ruleRm, by the left
hand side of the latter rule (Rm).

� The DOR format does not have any restriction on the number of
conditions per rule or the order of logical operators in any of its
rules.

� The rules represented in the DOR format are mapped directly into
a corresponding initial connectionist architecture without any limi-
tation on the number or the order of the operators in each rule. An-
other approach of mapping domain operational rules into an initial
connectionist architecture is to convert them to another set of rules
with only conjuncted (anded) premises to simplify the mapping op-
eration [8]. The latter approach simplifies the mapping phase but it
increases the complexity of the mapped connectionist architecture.

3 Extraction of Supplementary Rules via
the Statistical Analysis Module

In many application domains, extracting complete domain operational
rules from domain representatives suffers from the knowledge acquisi-
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tion bottleneck [16], [30]. Therefore, we need to seek another source of
information to get more prior knowledge from the application domain,
such as statistical information from available datasets. We have inves-
tigated two simple statistical approaches to extract prior domain knowl-
edgefrom theavailabledatasets. Asshown inFigure2, thefirst approach
is to extract the first and the higher order correlation coefficients of the
available data sets to generate supplementary and constraint rules to the
DORs extracted by the knowledge based module. The second approach is
to project the input features vector into a lower dimensional input space
and only deal with the most intrinsic input features [7], [14]. These two
approaches can be done independently and their results can be combined
with the extracted initial DORs. The following subsection presents how
supplementary correlation rules can be extracted from available data sets
and then used to update the initial rule-based system. Then the next sub-
section presents how input features can be projected into a lower dimen-
sional input space.
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Figure 2. Two statistical approaches to extract additional domain knowledge.

3.1 Extraction of Correlation Rules

The correlation approach of the statistical module analyzes available data
sets by extracting“certain” correlation rules between each pair of inputs
and also between each input-output parameter. In addition, it extracts
the main statistics of each input and output parameter (e.g., the mean
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and the variance). These statistics are used later to initialize the adaptive
parameters of the discretization module.

Assume thatX represents an input feature vector andY represents an
output decision vector; letCCX = CO(X)p

�X
andCCXY = CO(X;Y )p

�X�Y
, where

CO(�) represents the covariance matrix. ThusCCX is the input corre-
lation coefficients matrix andCCXY represents the cross-correlation
coefficients matrix between the input and the output vectorsX andY .
After computingCCX andCCXY , a threshold value,�0, is chosen based
on the application domain (usually�0 � 0:80). Based on the chosen
threshold�0 and the elements of the correlation coefficients matrices
CCX andCCXY , the statistical module starts generating COrrelation
Rules, named CORs. The statistical analysis module extracts input-input
and input-output CORs based on the following algorithm:

1. Let cij be the correlation coefficient between any two pair of pa-
rametersXi andXj.

2. IF cij � �0
THEN create the CORR1:

IF Xi
w1� ! Xj (R1)

where the value ofw1 represents the confidence level of the gener-
ated rule andw1 = cij.

3. IF cij � ��0
THEN create the CORR2:

IF NOT Xi
w2� ! Xj (R2)

where the value ofw2 equals the magnitude ofcij.

4. IF ��0 > cij < �0
THEN no rule is generated and the statistical module at this point
can not conclude any certain correlation between these two pa-
rameters.
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The CORs generated by the statistical module are represented in the
same DOR format to match the initial rule-based module extracted by
the knowledge-based module. Therefore, the CORs and the DORs can
be combined together with no additional overhead.

The CORs generated by the statistical module can be used as a constraint
or as supplementary rules to the DORs and hence help initializing the
connectionist architecture with more prior domain knowledge. The fol-
lowing three cases describe how CORs extracted by the statistical module
can be used to simplify, maintain, and support the DORs.

1. Case1:
Assume that the knowledge-based module extracts ruleR3, from
the domain experts, and the statistical analysis module extracts rule
R4 based on the correlation betweenX1 andX2.

IF X1 AND X2
w3� ! Y1 (R3)

IF X1
w4� ! X2 (R4)

Therefore, ruleR4 can be used to simplify the previous DORR3

and a new ruleR5 is generated to replace bothR3 andR4. Note
thatw4 should be� 0.80.

IF X1
w5� ! Y1, (R5)

wherew5 = w3 � w4. Note that the new ruleR5 does not depend
onX2 which is highly correlated withX1 based on the CORR4.
The logical interpretation of ruleR5 results from combining the
semantics of bothR3 andR4 as follows:

“IF X1 is true THENX2 is true (withw4 confidence measure) AND
IF X1 AND X2 are both true THENY1 is true with a confidence
level = w3” . This interpretation can be simplified to:“IF X1 is
true; which implicitly implies thatX2 is true; THENY1 is true
with a confidence level= w5” which represents the semantics of
ruleR5.

2. Case2:
If the knowledge-based module extracts ruleR3 and the statistical
module extracts ruleR6.
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IF NOT X1
:96
� ! X2 (R6)

In this case ruleR3 cannot be fired any more whatever the value
of X1 (i.e., in either cases ifX1 is true or false) becauseR6 is
considered as a constraint (in this example a strong contradiction)
rule to the DORR3.

3. Case3:
The statistical module can extract CORs which do not exist in the
DORs. As an example, if the statistical module extracts ruleR7

IF X3
:89
� ! Y2 (R7)

and there were no other rules in the DORs to represent the logical
relationship betweenX3 andY2. In this case the generated COR
R7 is added to the extracted DORs.

Based on the previous cases, the statistical module can provide the DORs
with either a constraint or supplementary CORs. Moreover, if there were
no DORs extracted from the application domain, the statistical module
is used to generate correlation rules and represent it in the same DOR
format. See the experimental results presented in Section 11.

After combining the rules extracted by the knowledge-based and the sta-
tistical modules and representing them in the DOR format, the Node-
Links Algorithm (NLA) is used to map these combined rules into an
initial connectionist architecture.

3.2 Reducing the Input Dimensionality

In many application domains the input data are noisy and may have some
redundancy. To obtain better network performance it is important to re-
tain the most intrinsic information in the input data and reduce network
complexity at the same time, if it is possible. We use Principal Compo-
nent Analysis (PCA), a well known technique in multivariate analysis,
for this purpose [7], [14].

As a preprocessing step, the correlation matrices represented byCCX

of Equation 1 are used first to determine highly correlated input pairs.
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Then, PCA is applied after one variable is removed from each highly
correlated pair. This typically enhances the PCA algorithm performance
while reducing the connectionist architecture input dimensionality. The
resulting feature vector from the PCA algorithm is used as an input to the
constructed neural network.

The experimental results presented in Section 11 illustrate how we used
the statistics of a public domain data set to extract additional prior do-
main knowledge.

4 The Mapping Module

The Node-Links Algorithm (NLA) utilizes a set of mapping principles
to map the initial domain theory, represented in the DOR/COR format,
into an initial connectionist architecture that can learn more new domain
concepts during the training phase. It results in a three layer AND-OR
tree, as exemplified by Figure 3. Note that a Negated Simple-Condition
is translated into a negative initial weight (�0:6 or �0:7) for the corre-
sponding link. Also, the NLA creates a hidden node even when there is
only oneSimple-Conditionin the premise. This type of hidden node is
namedself-andedhidden node, because it ANDs one input node with it-
self. Therefore, output nodes are viewed as OR nodes and hidden nodes
are viewed either as AND or asself-andednodes. The NLA creates a
light link between eachself-andednode, as well as each AND node, and
all other input and output nodes that are not linked with it. Introducing
suchself-andedhidden nodes and light links provides the initial connec-
tionist architecture with the power to learn more domain knowledge and
extract new features during the training phase. The overhead due to the
introduction of the self-anded nodes and their related links is much less
than that incurred by interrupting the training phase and adding, heuris-
tically, a random number of hidden nodes [9]. The initial connectionist
architecture generated by the NLA has only three layers, independent of
the hierarchy of the initial rule-based system and regardless of the nature
of the application domain. Moreover, all hidden nodes functionally im-
plement soft conjunctions and use the sigmoid activation function, which
clearly improves the training phase of the initial connectionist architec-
ture. This is in contrast to models that have variable network structure,
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based on the application domain, and hidden units with different func-
tionalities [6], [10], [44].
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Figure 3. From rule-based system to initial connectionist architecture using the
Node-Links Algorithm.

5 The Discretization Module

Measured inputs in control domains are often continuous. Since the op-
erational rules that represent the system use multi-interval ranges to de-
scribe the application domain, a discretization function is needed to map
continuous inputs into multiple interval inputs. Assume that a continuous
measured inputz always lies in the range[a; b]. A discretization function
is used to map it into a corresponding vectorX: (x1; x2; :::; xn), where
xi 2 [0; 1], 8i andn is the number of discretized intervals. In a basic
symbolic system, exactly one of thexis is set to 1 for a givenz value,
and all others are zero. However, we prefer a continuous discretization
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approach to a binary discretization since it allows “coarse coding,” i.e.,
more than one interval can be active at the same time with different cer-
tainty values, based on the value of the measured inputz. Coarse coding
is a more robust representation of noisy data, which is a prime objective
here. This discretization process is a typical fuzzification approach for
determining the degree of membership of the measured inputz in each
interval i. The value of each elementxi is interpreted as the measure of
belief thatz falls in theith interval [43].

A Gaussian function with mean�i and standard deviation�i is selected to
represent the distribution of the measured inputz over each intervali; so
n Gaussian curves are used to fuzzifyz into n intervals.1 The technique
is illustrated in Figure4, whereacontinuousmeasured input z getsfuzzi-
fied into an input vectorX, resulting inx1 = 0:25 and dx2 = 0:75. This
fuzzification is done as a preprocessing phase to the initial connectionist
architecture. The output of the fuzzification process,X, represents the ac-
tivation values of the input nodes of the initial connectionist architecture,
where each interval is represented by an input node. If the application do-
main hask continuous measured inputs the fuzzification approach results
in a total of

Pk
i=0 nk input nodes, wherenk is the number of discretized

intervals of thekth measured input.

1.0

a bµ1 µ2 µ3 µ4 µ5

σ1 σ2 σ4 σ5

A continuous range between [a,b]

Degree of membership

σ3

A Measured input feature z

0.5

0.25

0.75

The discretization result X = [0.25,0.75,0,0,0 ] 

Figure 4. Discretizing a continuous measured input inton intervals usingn
Gaussian functions.

1The choice of the differentiable Gaussian function instead of the typical triangular
membership functions used in fuzzy logic is important as it facilitates membership
adaptation, as described in the next section.
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6 Refining Input Characterization

The initial connectionist architecture is trained by the output vectors (Xs)
of the fuzzification function. Assuming that the measured input values
are normally distributed within each intervali with mean�i and standard
deviation�i, the Gaussian functions:

xi = fi(z) = e
� 1

2
(
z��i
�i

)2 (1)

are used to discretize the measured input valuez. An Augmented ver-
sion of the Backpropagation Algorithm,ABA , with momentum term is
used to train the initial architecture and stochastically search for the opti-
mal weights to and from all hidden nodes (anded and self-anded nodes).
Moreover, the ABA is used to refine the initial discretization parameters
�i and�i for each intervali. The ABA calculates the stochastic gradi-
ent descents of the output error with respect to�i and�i and propagates
them one more step back to the fuzzification function, i.e., to the external
inputs of the connectionist architecture. Refining the discretization pa-
rameters (�i, �i) helps the connectionist architecture to extract features
from the measured inputs that are more discriminating and thus enhances
the decision process. The chain rule was used to derive the derivative of
the output error,E, with respect to�i and�i:

@E

@�i
=

@E

@fi(z)
�
@fi(z)

@�i
=

1

�2i
� (z � �i) �

h�1X

j=0

wij �
@E

@wij

(2)

@E

@�i
=

@E

@fi(z)
�
@fi(z)

@�i
=

(z � �i)
2

�i3
�
h�1X

j=0

wij �
@E

@wij

(3)

where the term
Ph�1

j=0 wij �
@E
@wij

represents the gradient descent of the

output error propagated back to all theh hidden nodes linked toith input
node. Note that the@E

@wij
s do not need to be recomputed as they are already

obtained from updating the weights into the hidden units. The center and
width of theith interval are adjusted as follows:

�inew = �iold � � �
@E

@�i
+MomentumTerm (4)

�inew = �iold � � �
@E

@�i
+MomentumTerm (5)

© 2000 by CRC Press LLC 

 



7 Rule Extraction

Extraction of symbolic rules from trained neural networks is an important
feature of comprehensive hybrid systems, as it helps to:

1. Alleviate the knowledge acquisition problem and refine initial do-
main knowledge.

2. Provide reasoning and explanation capabilities.

3. Support cross-referencing and verification capabilities.

4. Alleviate the “catastrophic interference” problem of certain ANNs
[32]. For models such as MLPs it has been observed that if a
network originally trained on one task (data set) is subsequently
trained on a different task (statistically different data set), then its
performance on the first task degrades rapidly. In situations with
multiple operating regimes, one can extract rules before the task
or environment changes and thus obtain different rule sets for dif-
ferent environmental conditions. Together with a mechanism for
detecting the current environment, this presents one solution to the
“context discovery” and “context drift” problems.

Other uses of rule extraction include improving acceptability of the prod-
uct, transfer of knowledge to a more suitable form, and induction of sci-
entific theories.

The rule extraction module of HIA maps the trained connectionist archi-
tecture back into a rule based format. This mapping is much harder than
the mapping from an initial rule based system to an initial connectionist
architecture because: (i) one should guarantee that the extracted domain
concepts should not contradict with certain concepts that are known to be
true about the domain, (ii) one should refine uncertain domain concepts,
and (iii) new concepts may get extracted. An efficient rule extraction
module should be able to deal with these three issues.

Several issues should be carefully considered while designing a rule ex-
traction technique:
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1. Granularity of the explanation feature: is the level of detailed
hypotheses and evidence that the system can provide with each of
its output decisions.

2. Comprehensiveness of the extracted rules:in terms of the
amount of embedded knowledge captured by them. This directly
determines thefidelityof the extracted rules in faithfully represent-
ing the embedded knowledge.

3. Comprehensibility: indicated by the number of rules and number
of premises in each extracted rule from a trained network.

4. Transparency of the extracted rules:in terms of how well the
decisions or conclusions can be explained.

5. Generalization Capability: on test samples.

6. Portability: is the capability of the rule extraction algorithm to
extract rules from different network architectures.

7. Modifiability: is the ability of extracted rules to be updated when
the corresponding trained network architecture is updated or re-
trained with different data sets.

8. Theory Refinement Capability: that can alleviate the knowledge
acquisition bottleneck due to the incompleteness, inconsistency,
and/or inaccuracy of initially acquired domain knowledge.

9. Stability or Robustness: is a measure of how insensitive the
method is to corruptions in the training data or initial domain
knowledge.

10. Complexity and Scalability: Computational issues that are rele-
vant for large datasets and rule bases.

These issues, in addition to others, should be used to measure the quality
and performance of rules extracted from trained neural networks. Note
that these issues also depend on the rule representation, insertion and
network training methods used. Also, it is difficult to simultaneously
optimize all of the above criteria. For example, a very comprehensive
technique may extract too many rules, with some of them having many
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premises, thus degrading the robustness and comprehensibility of the re-
sulting rule base.

A variety of rule-extraction techniques have been proposed in the re-
cent literature [2], [36], [39]. Also see the rule extraction home page at:
http://www.fit.qut.edu.au/˜robert/rulex.html . The
methodology behind most of the techniques for rule extraction from
MLPs can be summarized in two main steps:

1. For each hidden or output node in the network, search for different
combinations of input links whose weighted sum exceeds the bias
of the current node.

2. For each of these combination generate a rule whose premises are
the input nodes to this combination of links. All premises of a rule
are conjuncted.

Either [28], KT [9] and Subset [40] are three notable rule extraction al-
gorithms in this category, which we describe as Link Rule Extraction
Techniques.

In this section we summarize three recent techniques for extracting rules
from trained feedforward ANNs. The first approach is a binary Black-box
Rule Extraction technique. The second and the third approaches belong
to the Link Rule Extraction category. Details can be found in [36].

7.1 First Technique (BIO-RE)

The first approach is namedBinarized Input-Output Rule Extrac-
tion (BIO-RE) because it extracts binary rules from any neural network
trained with “binary” inputs, based on its input-output mapping. It is sur-
prisingly effective within its domain of applicability. The idea underlying
BIO-RE is to construct a truth table that represents all valid input-output
mappings of the trained network. BIO-RE then applies a logic minimiza-
tion tool, Espresso [29], to this truth table to generate a set of optimal
binary rules that represent the behavior of the trained networks. For ex-
ample, an extracted rule:“ IF Y1 AND NOT Y2 � !O1” , is rewritten as
“ IF X1 > �1 AND X2 � �2 � !O1” , where�i is set to be the threshold
of Xi (seeTable2 for examples). TheBIO-RE approach issuitablewhen
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the input/output variables are naturally binary or when binarization does
not significantly degrade the performance. Also the input size (n) should
be small.

7.2 Second Technique (Partial-RE)

The idea underlying Partial-RE algorithm is that it first sorts both positive
and negative incoming links for each hidden and output node in descend-
ing order into two different sets based on their weight values. Starting
from the highest positive weight (sayi), it searches for individual incom-
ing links that can cause a nodej (hidden/output) to be active regardless
of other input links to this node. If such a link exists, it generates a rule:

“ IF Nodei
cf
� !Nodej”, where cf represents the measure of belief in

the extracted rule and is equal to the activation value ofnodej with this
current combination of inputs. If a nodei was found strong enough to
activate a nodej, then this node is marked and cannot be used in any
further combinations when checking the same nodej. Partial-RE con-
tinues checking subsequent weights in the positive set until it finds one
that cannot activate the current nodej by itself. Partial-RE performs the
same procedure for negative links and small combinations of both posi-
tive and negative links if the required number of premises in a rule is> 1.
Partial-RE algorithm is suitable for large size problems, since extracting
all possible rules is NP-hard and extracting only the most effective rules
is apractical alternative. See Table3 for examples.

7.3 Third Technique (Full-RE)

Full-RE first generates intermediate rules in the format:

IF [ (c1 �X1 + c2 �X2 + � � �+ cn �Xn) >= �j]
cf
� !Consequentj,

where:ci is a constant representing the effect of theith input (Xi) on
Consequentj and�j is a constant determined based on the activation
function of nodej to make it active. If nodej is in the layer above node
i thenci represents the weight valuewji of the link between these two
nodes. In cases where the neural network inputs (Xis) are continuous
valued inputs, then a range ofXi values may satisfy an intermediate rule,
and one would want to determine a suitable extremum value in such a
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range. To make this tractable, each input range has to be discretized into
a small number of values that can be subsequently examined. Thus, each
input featureXi 2 (ai; bi) is discretized intok intervals [21]. When Full-
RE finds more than one discretization value of an inputXi that can satisfy
the intermediate rule (i.e., the rule has more than one feasible solution)
then it chooses the minimum or the maximum of these values based on
the sign of the corresponding effect parameterci. If ci is negative then
Full-RE chooses the minimum discretization value ofXi; otherwise it
chooses the maximum value. However, all selected discretization values
should satisfy the left hand side (the inequality) of the intermediate rule
and the boundary constraints of all input features of this inequality. Final
rules extracted by Full-RE are represented in the same format of Partial-
RE except that each�i is replaced by one of the discretization boundaries
(saydi;l) selected by Full-RE as described earlier. SeeTable 4for exam-
ples.

8 Rule Evaluation and Ordering Proce-
dure for the Refined Expert System

To evaluate the performance of rules extracted from trained networks
by any of the three presented techniques (or by any other rule extrac-
tion approach), a simple rule evaluation procedure which attaches three
performance measures to each extracted rule is developed. The three per-
formance measures used to determine the order of the extracted rules are:

(i) The soundness measure:it measures how many times each rule is
correctly fired.

(ii) The completeness measure:a completeness measure attached
to a rule represents how many unique patterns are correctly identi-
fied/classified by this rule and not by any other extracted rule that is in-
spected by the inference engine before this rule. For each extracted set of
rules with the same consequent, if the sum of the completeness measures
of all rules in this set equals the total number of input patterns having the
corresponding output then this set of extracted rules is 100% complete
with respect to that consequent. An extracted rule with zero complete-
ness measure but having a soundness measure> 0 means that there is a
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preceding rule(s), in the order of rule application, that covers the same
input patterns that this rule covers. Such a rule may be removed.

(iii) The false-alarm measure:it measures how many times a rule is
misfired over the available data set. While the values of both the com-
pleteness and false-alarm measures depend on the order of rule applica-
tion and the inference engine the soundness measure does not.

8.1 The Rule Ordering Procedure

An expert system requires a set of rules as well as an inference engine
to examine the data, determine which rules are applicable, and prioritize
or resolve conflicts among multiple applicable rules. A simple way of
conflict resolution is to order the rules, and execute the first applicable
rule in this ordering. Finding the optimal ordering of extracted rules is
a combinatorial problem. So the following“greedy” algorithm to order
any set of extracted rules, based on the three performance measures, is
developed. The rule ordering algorithm first creates a listL that contains
all extracted rules. Assume that the listL is divided into two lists, a head
list (Lh) and a tail list (Lt), whereLh is the list of all ordered rules and
Lt is the list of all remaining (unordered) rules2. Initially, Lh is empty
andLt includes all the extracted rules. A performance criteria is used to
select one rule fromLt to be moved to the end ofLh, and the process
continues tillLt is null.

The steps of the rule ordering algorithm are as follows:

1. InitializeLh = f g, Lt = fall extracted rulesg.

2. WHILE Lt 6= f g, DO
(a) Fire all rules inLh in order.

(b) Compute the completeness and false-alarm measures for
each rule inLt using the available data set.

(c) IF 9 a rule with zero false-alarm
THEN this rule is moved fromLt to the end ofLh

3.
2i.e., the ordering of rules inLt has no effect.
3If 9 more than one rule with zero false-alarmTHEN select the one with the highest
completeness measure out of these rules to be moved fromLt to the end ofLh.
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ELSE Among all rules inLt select the one with the highest
(Completeness - False-alarm) measure; add this rule
to the end ofLh, delete it fromLt.

(d) IF 9 any rule inLt with a zero completeness measure then
remove this rule fromLt. This means that the rules inLh

cover this rule.

3. END DO.

In this chapter, all rules extracted by our approaches are ordered using
the above rule ordering algorithm. Also, the measures attached to all
extracted rules assume that an inference engine that fires only one rule
per input (namely, the first fireable rule) is used.

9 The Integrated Decision Maker

The main objective of combining or integrating different learning mod-
ules is to increase the overall generalization capability. Since the set of
extracted rules is an “approximated symbolic representation”of the em-
bedded knowledge in the internal structure of the corresponding trained
network, it is expected that when an input is applied to the extracted rules
and the trained network, they will usually both provide the same output
decision (see Table 6 for examples). The integration module should be
able to choose the“better” output decision when the two decisions dif-
fer, and to compute the certainty factor of the final output decision. When
the two output decisions are different, the integration module can use the
following selection criteria to select a suitable decision.

1. Select the sub-system (i.e., the set of extracted rules or the trained
ANN) with the highest overall performance if none of the follow-
ing conditions are satisfied:

2. For any mismatched pair of output decisions, check the value of
the neural network output decision (i.e., the activation value of the
corresponding output node of the neural net before thresholding).
(a) If the extracted rule-base is indicated by Rule 1, but the neural

network output is significantly high, then choose the neural
network instead to provide the final decision. Also, report that
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the extracted rule-base was not able to identify this case, so
that a new rule can be asserted in the current knowledge base
to handle such cases in the future.

(b) If the neural network is indicated by Rule 1, but the network
output is significantly low, then choose the extracted rule-
base instead to provide the final output of this case. Also,
report that the neural network was not able to identify this
case, so that it can be retrained. This case can also be applied
if the difference between the two highest activation values of
the neural network output nodes is not significant.

This simple heuristic criterion of selecting one of the two mismatched
output decisions was applied for all the three architectures and their cor-
responding set of extracted rules using the breast cancer problem. The
implementation results are given inTable 6.

10 Application: Controlling Water
Reservoirs

There are several dams and lakes on the Colorado river near Austin. The
decision of specifying the amount of water that should be released from
any of these dams and lakes is a complicated process. The Lower Col-
orado River Authority (LCRA) determines this decision for each dam or
lake based on the current elevation of the water in the lake, the inflow
rate from upstream dams and lakes, the outflow rate from the current
lake, the predicted weather (rain fall rate), the predicted elevation of the
downstream dams and lakes, and many other factors.

The LCRA uses upstream and downstream gages to monitor and fore-
cast lake levels. There are two main modes of operation for the Highland
Lakes: the first is a daily operation in which downstream demands for
water are met by daily releases from Lake Buchanan and Travis to sup-
plement the flow of the lower river. The second is for flood control, which
primarily concerns Lake Travis since it is the only reservoir with a ded-
icated flood pool. When the Colorado river downstream from Highland
Lake approaches the warning stage at any of the following downstream
gages, the rules of the flood control operating mode are used to determine
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water release.

We acquired the 18 main operational rules for controlling the flood gates
on the Colorado river in the greater Austin area from different documents
issued by the LCRA after the 1991 Christmas flood around Austin [19].
Two of the rules regulating the control of Mansfield Dam on Lake Travis,
expressed in DOR format, are:

If Projected-Level(Lake-Travis,t0)>= 710 AND
Projected-Level(Lake-Travis,t0)<= 714 AND
Projected-Level(Lake-Austin,t1)<= 24.8 AND
Projected-Level(Bastrop,t2)<= 26.7

Then
Open-Up-To 10 Flood-Gates.

If Projected-Level(Lake-Travis,t0)<= 710 AND
Projected-Level(Lake-Travis,t0)>= 691 AND
Projected-Level(Lake-Austin,t1)<= 20.5 AND
Projected-Level(Bastrop,t2)<= 25.5

Then
Open-Up-To 6 Flood-Gates.

Lake Austin and Bastrop are downstream from Mansfield Dam,t0 is the
time when the water level at Lake Travis is measured, andt1 � t0 and
t2� t0 are the approximate times taken for the released water from Lake
Travis to reach Lake Austin and Bastrop respectively (approx. 2 hrs and
24 hrs). All values are measured in feet above mean sea level.

10.1 Implementation Results

The HIA knowledge based module was used to implement the extracted
domain knowledge in the DOR format. A data set representing 600 pat-
terns was gathered from the LCRA historical records of the different
dams and lakes. The acquired data set was divided into two sets. The first
one had 400 patterns and was used as the training set; the second served
as the validation set. Each pattern includes the measured elevation of
three lakes at some given time and the corresponding best decision based
on the extracted domain knowledge represented by the DOR.
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The coarse coding scheme described in Section 5 was used to discretize
each input (measured elevationz) into a multi-interval input vector (X).
Each discretized intervali corresponds to one specific DORSimple-
Condition and has an initial mean�i and standard deviation�i. The
Node-Links Algorithm (NLA) was used to map the DORs into a one
hidden layer initial connectionist architecture. The resulting architecture
has 23 input nodes (representing the different discretized intervals), 18
hidden nodes (representing either AND orself-andedsoft conjunction
concepts), and 8 output nodes representing the possible decisions at any
time (i.e., how many flood gates should be opened).

During the training phase, the Augmented Backpropagation Algorithm
(ABA) with momentum term stochastically searched the weight space
to find the optimal weights and also used the partial derivatives of the
output error, as described by Equations 2 through 5, to refine the initial
discretization parameters (�i and�i) of the 23 input nodes. Note that
each input node in the mapped architecture corresponds to a discretized
interval.

By the end of the learning process, we found that the means (�) of seven
different intervals were shifted and the standard deviations (�) of four
of them were also significantly changed from their initial values. The
change in the values of the discretization parameters readily reflects how
the ABA exploits the training data set to refine the initial domain knowl-
edge represented by the rule based module. Actually, any change in the
discretization parameters directly affects the input of the connectionist
architecture and hence its output decisions. Therefore, any refinement in
these parameters enhances the output performance of the trained connec-
tionist architecture.

After the training phase, the validation set (200 patterns) was used to
observe how the HIA will perform in real flood situations. The deci-
sions taken by the HIA, which uses the ABA for training the mapped
connectionist architecture and also for refining domain parameters, were
compared with the decisions taken by two different connectionist archi-
tectures. The first one is an MLP (with one hidden layer) initialized ran-
domly without any prior domain knowledge and trained by the conven-
tional backpropagation with a momentum term. The second is an MLP
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(also with one hidden layer) initialized by the same initial rules that were
used to initialize the HIA and trained by the conventional backpropaga-
tion with a momentum term (i.e., no refinement of discretization param-
eters was done).

Table 1. Test results of Colorado river problem.

No. HIA MLP MLP
of with refined DOR initialized randomly with initial DOR

epochs MSE % match MSE % match MSE % match
1 0.096 76.176 1.367 64.0 0.344 70.9
10 0.015 93.323 0.889 68.5 0.248 72.6
20 0.014 94.234 0.334 71.7 0.103 74.7
30 0.013 94.234 0.233 72.38 0.094 76.3

The output decisions taken by the three architectures (to specify how
many flood gates should be opened at a given time) were compared
with the desired decisions that should be taken in each situation based
on LCRA operational rules. Table 1 provides a summary of the testing
results. The presented results are the average of 10 runs. They represent
the performance of each architecture when the test data sets were applied.
Two parameters are presented for each architecture, the mean square er-
ror and the percentage of patterns for which the maximum output value
matched with the desired decision based on the LCRA operational rules.
Note that the LCRA selects only one decision per pattern, while the neu-
ral network indicates support for each decision by the value of the cor-
responding output. To compute MSE, we used a target value of “1” for
output node corresponding to the desired decision and “0” for all other
outputs. The implementation results depicted in Table 1 show that:

� The randomly initialized MLP did not perform well compared with
the other two architectures.

� The MLP initialized by the initial domain rules and trained with
the conventional backpropagation performed somewhat better than
the randomly initialized MLP. However, the performance of this
architecture did not improve much on further training.

� The HIA did perform much better than the other two architectures
and its performance improved significantly by increasing the num-
ber of training epochs.
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The improved performance of the HIA is mainly due to the continuous
refinement of the discretization parameters during each training epoch.

10.2 Rule Extraction

After the learning phase, the connectionist module of HIA was examined
by Partial-RE to find out if any new rules were created during the train-
ing. Some of the extracted rules were already there in the initial DORs
and others were subsets of existing rules. However, some new and use-
ful rules were also found. For example, in the initial rule based system
extracted from the LCRA documents, there was a rule specifying that:
if the predicted level of Lake Travis is between 681 and 691 feet msl
(mean sea level) then release up to 5,000 cfs (cubic feet per second) if
the river, with the release, is no higher than 20.5 ft. at Austin and 25.1
ft. at Bastrop. HIA extracted three new and useful fine rules instead of
the previous coarse rule. The first new rule extracted by HIA is: if the
predicted level of Lake Travis is between 681 and 683 feet msl then wa-
ter does not need to be released if the river is no higher than 16.0 ft. at
Austin and 18.0 ft. at Bastrop. The second rule is: if the predicted level
of Lake Travis is between 683 and 685 feet msl then release up to 3,000
cfs if the river, with the release, is no higher than 16.0 ft. at Austin and
18.0 ft. at Bastrop. The third rule is: if the predicted level of Lake Travis
is between 685 and 691 feet msl then release up to 5,000 cfs if the river,
with the release, is no higher than 20.5 ft. at Austin and 25.1 ft. at Bas-
trop. The previous three new extracted rules are useful where they refine
the original coarse rule based on the combination of the upstream (Lake
Travis) and downstream (Lake Austin and Bastrop) conditions which pri-
marily determine the decision on releasing water. More comprehensive
rules can be extracted by applying the Full-RE technique.

11 Application of the Statistical Approach

The statistical approaches introduced in Section 3 were not used in the
water reservoirs control problem because the extracted DORs were rea-
sonably comprehensive. In this section, we report results of applying the
statistical module to the breast cancer classification problem where there
is no pre-existing domain knowledge (i.e., no DORs) but a public domain
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Table 2. Rules extracted from network“Cancer-Bin” by BIO-RE technique.

Cancer Performance Measures
No. Rule Body Class Sound- Complete- False

ness ness Alarm

R1 If X3 � 3:0 andX7 � 3:3

andX8 � 2:7 andX9 � 1:5 Benign 391/444 391/444 2/683
R2 If X1 � 4:1 andX3 � 3:0

andX7 � 3:3 andX9 � 1:5 Benign 317/444 8/444 0/683
R3 If X1 � 4:1 andX3 � 3:0

andX8 � 2:7 andX9 � 1:5 Benign 316/444 7/444 0/683
R4 If X1 � 4:1 andX3 � 3:0

andX7 � 3:3 andX8 � 2:7 Benign 316/444 7/444 0/683
R5 If X1 � 4:1 andX7 � 3:3

andX8 � 2:7 andX9 � 1:5 Benign 314/444 5/444 0/683
R6 If X1 � 4:1 andX3 � 3:0 Malignant 200/239 199/239 15/683
R7 If X3 � 3:0 andX7 � 3:3 Malignant 187/239 27/239 2/683
R8 If X3 � 3:0 andX8 � 2:7 Malignant 187/239 3/239 0/683
R9 If X1 � 4:1 andX7 � 3:3 Malignant 167/239 7/239 1/683
R10 If X1 � 4:1 andX9 � 1:5 Malignant 100/239 1 3
R11 Default Class Benign 5/444 5/444 0/239

Total For Benign Rules 423/444 2/683
Total For Malignant Rules 237/239 21/683

Overall Performance% 96:63% 3:37%

data set is available [3], [23].

The Wisconsin breast cancer data set has nine inputs (X1 � � �X9) and
two output classes (Benign orMalignant). The available 683 instances
were divided randomly into a training set of size 341 and a test set of size
342. In all experiments, an MLP network is trained using the backprop-
agation algorithm with momentum as well as a regularization term [11].
The dimensionality of the breast-cancer input space is reduced from 9 to
6 inputs using PCA. BIO-RE, Partial-RE, and Full-RE are used to extract
rules from Cancer-Bin, Cancer-Norm, and Cancer-Cont networks respec-
tively, where the first network is trained with a binarized version of the
available data, Cancer-Norm is trained with normalized input patterns,
and Cancer-Cont is trained with the original data set after dimensionality
reduction. Tables 2, 3, and 4 present three setsof ordered rules extracted
by the three rule extraction techniques, along with the corresponding per-
formance measures.
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Table 3. Rules extracted from network“Cancer-Norm” by Partial-RE technique.

Cancer Performance Measures
No. Rule Body Class CF Sound- Complete- False

ness ness Alarm

If X2 � 3:0

R1 andX3 � 3:0 Benign 0.99 412/444 412/444 6/683
andX7 � 3:3

If X1 � 4:1

R2 andX3 � 3:0 Benign 0.99 324/444 1/444 0/683
andX7 � 3:3

R3 If X2 � 3:0

andX3 � 3:0 Malignant 0.99 222/239 219/239 15/683
If X1 � 4:1

R4 andX7 � 3:3 Malignant 0.99 137/239 8/239 0/683
andX8 � 2:7

If X1 � 4:1

R5 andX2 � 3:0 Benign 0.84 327/444 4/444 0/683
andX7 � 3:3

R6 If X1 � 4:1

andX2 � 3:0 Malignant 0.99 198/239 2/239 0/683
If X1 � 4:1

R7 andX2 � 3:0 Benign 0.84 333/444 9/444 1/683
andX3 � 3:0

R8 If X1 � 4:1

andX3 � 3:0 Malignant 0.99 200/239 3/239 2/683
If X2 � 3:0

R9 andX3 � 3:0 Benign 0.99 409/444 1/444 0/683
andX8 � 2:7

Total For Benign Rules 427/444 7/683
Total For Malignant Rules 232/239 17/683

Overall Performance% 96:49% 3:51%

Table 5 provides an overall comparison between the performance of the
extracted rules and their corresponding trained networks. It shows that
the three techniques were successfully used with approximately the same
performance regardless of the nature of the training and testing data sets
used for each network. Also, it shows that binarizing and scaling the
breast cancer data set did not degrade the performance of the trained net-
works or of the rules extracted by BIO-RE and Partial-RE from these
networks(“Cancer-Bin” and “Cancer-Norm” respectively). This is due
to the fact that the original input features of the breast cancer problem
have the same range (1,10).Table 6shows the impact of the integration
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Table 4. Rules extracted from network“Cancer-Cont” by Full-RE technique.

Cancer Performance Measures
No. Rule Body Class CF Sound- Complete- False

ness ness Alarm

R1 If X1 < 8 andX3 < 3 Benign 0.96 394/444 394/444 5/683
R2 If X2 � 2 andX7 � 3 Malignant 0.83 227/239 223/239 18/683
R3 If X1 < 8 andX7 < 3 Benign 0.75 300/444 27/444 1/683
R4 If X1 � 8 Malignant 0.89 123/239 9/239 1/683
R5 If X1 < 8 andX2 < 2 Benign 0.79 369/444 4/444 1/683

Total For Benign Rules 425/444 7/683
Total For Malignant Rules 232/239 19/683

Overall Performance% 96:19% 3:80%

Table 5. Performance comparison between the sets of extracted rules and their
corresponding trained networks for the breast-cancer problem.

Neural Network Extracted Rules
ratio % correct ratio % correct

Binarized Training 333/341 97.65 331/341 97.07
Network Testing 317/342 92.69 329/342 96.20

(Cancer-Bin) Overall 650/683 95.17 660/683 96.63
Normalized Training 329/341 96.48 331/341 97.07

Network Testing 325/342 95.03 328/342 95.91
(Cancer-Norm) Overall 654/683 95.75 659/683 96.49

Continuous Training 334/341 97.95 330/341 96.77
Network Testing 331/342 96.78 327/342 95.61

(Cancer-Cont) Overall 665/683 97.36 657/683 96.19

method. It is important to mention that the limited gains due to the in-
tegration is because of the high degree of agreement between the two
modules. Only22, 20, and14 out of683 outcomes were different respec-
tively for the three experiments. The integration mechanism was able to
select correctly20, 17, and14 of these mismatches respectively.

12 Discussion

Symbolic and neural subsystems can be combined in a wide variety
of ways [24]. HIA has the flavor of a transformational hybrid system,
whose prototype is the Knowledge Based Neural Network (KBNN) that
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Table 6. Overall performance of HIA after applying the integration mechanism
using the breast-cancer database.

#both #both #disagreed #correct
correct wrong on decisions on

mismatches

Cancer-Bin 647 14 22 20/22

Cancer-Norm 647 16 20 17/20

Cancer-Cont 653 16 14 14/14

Overall Performance
ratio % correct

Cancer-Bin 667/683 97.77

Cancer-Norm 664/683 97.22

Cancer-Cont 667/683 97.77

achieves theory refinement in four phases [8], [13], [15], [36], [42]:

� The rule base representation phase, where the initial domain
knowledge is extracted and represented in a symbolic format (e.g.,
a rule base system).

� The mapping phase, where domain knowledge represented in sym-
bolic form is mapped into an initial connectionist architecture.

� The learning phase, where this connectionist architecture is trained
by a set of domain examples.

� The rule extraction phase, where the trained (and thus modified)
connectionist architecture is mapped back to a rule based system
to provide explanation power.

The main motivation of such KBNN systems is to incorporate the com-
plementary features of knowledge based and neural network paradigms.
Knowledge-Based Artificial Neural Network (KBANN) [41] is a notable
system that maps domain knowledge, represented in propositional logic
(Horn clauses), into a neural network architecture which is then trained
using the backpropagation algorithm to refine its mapped domain knowl-
edge. The KBANN algorithm has been applied to two problems from
molecular biology and the reported results show that it generalizes better
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than other learning systems. However, KBANN maps binary rules into a
neural network and it is not clear how it can deal with rules with certainty
factors. Also, it adds new hidden nodes before the training phase starts,
but the difficult question ofhow many hidden nodes should be addedis
not answered.

RAPTURE is another hybrid system for revising probabilistic knowledge
bases that combines connectionist and symbolic learning methods [22].
RAPTURE is capable of dealing with rule based systems that use cer-
tainty factors. However, the structure of the mapped network by RAP-
TURE is domain dependent and the number of network layers, being
determined by the hierarchy of the rule base, can become large. Another
notable example is the Knowledge Based Conceptual Neural Network
(KBCNN) model. KBCNN revises and learns knowledge on the basis of
a neural network translated from a rule base which encodes the initial
domain theory [8], [9]. In fact, the KBCNN model has some similarities
with both KBANN and the RAPTURE.

Researchers have also combined connectionist systems with fuzzy logic
to obtain Fuzzy Logic Neural Networks (FLNN). In FLNNs, the neural
network subsystem is typically used to adapt membership functions of
fuzzy variables [5], or to refine and extract fuzzy rules [20], [37], [38]. A
standard fuzzy logic system has four components:

� A fuzzifier, which determines the degree of membership of a crisp
input in a fuzzy set.

� A fuzzy rule base, which represents the fuzzy relationships be-
tween input-output fuzzy variables. The output of the fuzzy rule
base is determined based on the degree of membership specified
by the fuzzifier.

� An inference engine, which controls the rule base.

� A defuzzifier, which converts the output of the fuzzy rule base into
a crisp value.

Such fuzzy logic systems often suffer from two main problems. First,
designing the right membership function that represents each input and
output variable may be nontrivial. A common approach is to design an
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initial membership function, usually triangular or trapezoidal in shape,
and subsequently refine it using some heuristic. The second problem is
the lack of a learning function that can be adapted to reason about the
environment.

These two problems can be alleviated by combining both fuzzy logic and
neural network paradigms. In FLNN hybrid systems, a neural network
architecture is used to replace the fuzzy rule base module of standard
fuzzy logic systems. The Max and Min functions are commonly used
as activation functions in this network. Then, a supervised or unsuper-
vised learning algorithm is used instead of the inference engine to adapt
network parameters and/or architecture. After training the network with
available domain examples, the adapted network is used to refine initial
membership functions and fuzzy rule base. Moreover, it may be used to
extract new fuzzy rules.

The first five modules of HIA are superficially similar to both KBNN and
FLNN hybrid systems. HIA is capable of revising initial domain knowl-
edge and extracting new rules based on training examples. However, it
has the following distinguishing features: (1) it generates a uniform neu-
ral network architecture because of the constrained DOR format; (2) the
neural network architecture generated by HIA has only three layers, inde-
pendent of the initial rule base hierarchy; (3) it revises the input charac-
terization parameters using a coarse coding fuzzification approach dur-
ing the training phase which may enhance system performance; (4) it
combines a statistical module along with its knowledge based and neural
network modules to extract supplementary domain knowledge.

Much of the power of HIA is derived from its completeness. It provides
a mechanism for conflict resolution among the extracted rules, and for
optional integration of the refined expert system and the trained neural
network.

For the problem of controlling the flood gates of the Colorado river in
greater Austin, we observe that refining the input characterization along
with the domain knowledge incorporated in a connectionist model sub-
stantially enhanced the generalization ability of that model. This appli-
cation also showed the capability of HIA to extract new and useful op-
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erational rules from the trained connectionist module. The breast cancer
classification problem shows how the statistical module of HIA can en-
hance the topology of the connectionist module in cases where there is
no available prior domain knowledge or in cases where the input fea-
tures have substantial redundancy. It is remarkable that, using the Full-
RE technique, the data set can be characterized with high accuracy using
only five rules.

It will be worthwhile to apply HIA to a wider range of problems where
both domain knowledge and training data are available, but none is suf-
ficiently comprehensive on its own.
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