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Preface

Adjusting to the power of the Supermarkets and the Electronic Herd requires
a whole different mind-set for leaders ...

Thomas Friedman, The Lexus and the Olive Tree, p. 138

Questions of finance and market success or failure are first and foremost
quantitative. Applied researchers and practitioners are interested not only
in predicting the direction of change but also how much prices, rates of
return, spreads, or likelihood of defaults will change in response to changes
in economic conditions, policy uncertainty, or waves of bullish and bearish
behavior in domestic or foreign markets. For this reason, the premium is on
both the precision of the estimates of expected rates of return, spreads, and
default rates, as well as the computational ease and speed with which these
estimates may be obtained. Finance and market research is both empirical
and computational.

Peter Bernstein (1998) reminds us in his best-selling book Against the
Gods, that the driving force behind the development of probability theory
was the precise calculation of odds in games of chance. Financial markets
represent the foremost “games of chance” today, and there is no reason to
doubt that the precise calculation of the odds and the risks in this global
game is the driving force in quantitative financial analysis, decision making,
and policy evaluation.

Besides precision, speed of computation is of paramount importance in
quantitative financial analysis. Decision makers in business organizations
or in financial institutions do not have long periods of time to wait before
having to commit to buy or sell, set prices, or make investment decisions.



xii Preface

While the development of faster and faster computer hardware has helped
to minimize this problem, the specific way of conceptualizing problems
continues to play an important role in how quickly reliable results may be
obtained. Speed relates both to computational hardware and software.

Forecasting, classification of risk, and dimensionality reduction or distil-
lation of information from dispersed signals in the market, are three tools
for effective portfolio management and broader decision making in volatile
markets yielding “noisy” data. These are not simply academic exercises.
We want to forecast more accurately to make better decisions, such as to
buy or sell particular assets. We are interested in how to measure risk,
such as classifying investment opportunities as high or low risk, not only to
rebalance a portfolio from more risky to less risky assets, but also to price
or compensate for risk more accurately.

Even in a policy context, decisions have to be made in the context of
many disparate signals coming from volatile or evolving financial markets.
As Othmar Issing of the European Central Bank noted, “disturbances have
to be evaluated as they come about, according to their potential for propa-
gation, for infecting expectations, for degenerating into price spirals” [Issing
(2002), p. 21].

How can we efficiently distill information from these market signals for
better diversification and effective hedging, or even better stabilization
policy? All of these issues may be addressed very effectively with neural
network methods. Neural networks help us to approximate or “engineer”
data, which, in the words of Wolkenhauer, is both the “art of turn-
ing data into information” and “reasoning about data in the presence of
uncertainty” [Wolkenhauer (2001), p. xii]. This book is about predictive
accuracy with neural networks, encompassing forecasting, classification,
and dimensionality reduction, and thus involves data engineering.!

The benchmark against which we compare neural network performance
is the time-honored linear regression model. This model is the starting
point of any econometric modeling course, and is the standard workhorse in
econometric forecasting. While there are doubtless other nonlinear methods
against which we can compare the performance of neural network methods,
we choose the linear model simply because it is the most widely used and
most familiar method of applied researchers for forecasting. The neural
network is the nonlinear alternative.

Most of modern finance theory comes from microeconomic optimization
and decision theory under uncertainty. Economics was originally called the
“dismal science” in the wake of John Malthus’s predictions about the rel-
ative rates of growth of population and food supply. But economics can
be dismal in another sense. If we assume that our real-world observations

1Financial engineering more properly focuses on the design and arbitrage-free pricing
of financial products such as derivatives, options, and swaps.
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come from a linear data generating process, that most shocks are from
an underlying normal distribution and represent small deviations around
a steady state, then the standard tools of classical regression are perfectly
appropriate. However, making use of the linear model with normally gen-
erated disturbances may lead to serious misspecification and mispricing of
risk if the real world deviates significantly from these assumptions of lin-
earity and normality. This is the dismal aspect of the benchmark linear
approach widely used in empirical economics and finance.

Neural network methods, coming from the brain science of cognitive
theory and neurophysiology, offer a powerful alternative to linear models for
forecasting, classification, and risk assessment in finance and economics. We
can learn once more that economics and finance need not remain “dismal
sciences” after meeting brain science.

However, switching from linear models to nonlinear neural network alter-
natives (or any nonlinear alternative) entails a cost. As we discuss in
succeeding chapters, for many nonlinear models there are no “closed form”
solutions. There is the ever-present danger of finding locally optimal rather
than globally optimal solutions for key problems. Fortunately, we now
have at our disposal evolutionary computation, involving the use of genetic
algorithms. Using evolutionary computation with neural network models
greatly enhances the likelihood of finding globally optimal solutions, and
thus predictive accuracy.

This book attempts to give a balanced critical review of these methods,
accessible to students with a strong undergraduate exposure to statistics,
econometrics, and intermediate economic theory courses based on calculus.
It is intended for upper-level undergraduate students, beginning gradu-
ate students in economics or finance, and professionals working in business
and financial research settings. The explanation attempts to be straightfor-
ward: what these methods are, how they work, and what they can deliver
for forecasting and decision making in financial markets. The book is not
intended for ordinary M.B.A. students, but tries to be a technical exposé
of a state-of-the-art theme for those students and professionals wishing to
upgrade their technical tools.

Of course, readers will have to stretch, as they would in any good chal-
lenging course in statistics or econometrics. Readers who feel a bit lost
at the beginning should hold on. Often, the concepts become much clearer
when the applications come into play and when they are implemented com-
putationally. Readers may have to go back and do some further review of
their statistics, econometrics, or even calculus to make sense of and see the
usefulness of the material. This is not a bad thing. Often, these subjects
are best learned when there are concrete goals in mind. Like learning a lan-
guage, different parts of this book can be mastered on a need-to-know basis.

There are several excellent books on financial time series and finan-
cial econometrics, involving both linear and nonlinear estimation and
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forecasting methods, such as Campbell, Lo, and MacKinlay (1997); Frances
and van Dijk (2000); and Tsay (2002). In additional to very careful and
user-friendly expositions of time series econometrics, all of these books have
introductory treatments of neural network estimation and forecasting. This
work follows up these works with expanded treatment, and relates neural
network methods to the concepts and examples raised by these authors.

The use of the neural network and the genetic algorithm is by its nature
very computer intensive. The numerical illustrations in this book are based
on the MATLAB programming code. These programs are available on the
website at Georgetown University, www.georgetown.edu/menelis. For those
who do not wish to use MATLAB but want to do computation, Excel add-in
macros for the MATLAB programs are an option for further development.
Making use of either the MATLAB programs or the Excel add-in pro-
grams will greatly facilitate intuition and comprehension of the methods
presented in the following chapters, and will of course enable the reader
to go on and start applying these methods to more immediate problems.
However, this book is written with the general reader in mind — there
is no assumption of programming knowledge, although a few illustrative
MATLAB programs appear in the text. The goal is to help the reader
understand the logic behind the alternative approaches for forecasting, risk
analysis, and decision-making support in volatile financial markets.

Following Wolkenhauer (2001), T struggled to impose a linear ordering
on what is essentially a web-like structure. I know my success in this can
be only partial. I encourage readers to skip ahead to find more illustrative
examples of the concepts raised in earlier parts of the book in succeeding
chapters.

I show throughout this book that the application of neural network
approximation coupled with evolutionary computational methods for esti-
mation have a predictive edge in out-of-sample forecasting. This predictive
edge is relative to standard econometric methods. I do not claim that
this predictive edge from neural networks will always lead to opportuni-
ties for profitable trading [see Qi (1999)], but any predictive edge certainly
enhances the chance of finding such opportunities.

This book grew out of a large and continuing series of lectures given in
Latin America, Asia, and Europe, as well as from advanced undergraduate
seminars and graduate-level courses at Georgetown University and Boston
College. In Latin America, the lectures were first given in Sao Paulo, Brazil,
under the sponsorship of the Brazilian Association of Commercial Bankers
(ABBC), in March 1996. These lectures were offered again in March 1997
in Sdo Paulo, in August 1998 at Banco do Brasil in Brasilia, and later that
year in Santiago, Chile, at the Universidad Alberto Hurtado.

In Asia and Europe, similar lectures took place at the Monetary Policy
and Economic Research Department of Bank Indonesia, under the spon-
sorship of the United States Agency for International Development, in
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January 1996. In May 1997 a further series of lectures on this subject
took place under the sponsorship of the Programme for Monetary and
Financial Studies of the Department of Economics of the University of
Melbourne, and in March of 1998 a similar course was offered at the
Facultat d’Economia of the Universitat Ramon Llull sponsored by the
Callegi d’Economistes de Calalunya in Barcelona.

The Center for Latin American Economics of the Research Department
of the Federal Reserve Bank of Dallas provided the opportunity in the
autumn of 1997 to do some of the initial formal research for the financial
examples illustrated in this book. In 2003 and early 2004, the Hong Kong
Institute of Monetary Research was the center for a summer of research on
applications of neural network methods for forecasting deflationary cycles
in Hong Kong, and in 2004 the School of Economics and Social Sciences
at Singapore Management University and the Institute of Mathematical
Sciences at the National University of Singapore were hosts for a seminar
and for research on nonlinear principal components

Some of the most useful inputs for the material for this book came
from discussions with participants at the International Joint Conference
on Neural Networks (IJCNN) meetings in Washington, DC, in 2001, and
in Honolulu and Singapore in 2002. These meetings were eye-openers for
anyone trained in classical statistics and econometrics and illustrated the
breadth of applications of neural network research.

I wish to thank my fellow Jesuits at Georgetown University and in
Washington, DC, who have been my “company” since my arrival at George-
town in 1977, for their encouragement and support in my research under-
takings. I also acknowledge my colleagues and students at Georgetown
University, as well as economists at the universities, research institutions,
and central banks I have visited, for their questions and criticism over the
years. We economists are not shy about criticizing one another’s work,
but for me such criticism has been more gain than pain. I am particularly
grateful to the reviewers of earlier versions of this manuscript for Elsevier
Academic Press. Their constructive comments gave me new material to
pursue and enhanced my own understanding of neural networks.

I dedicate this book to the first member of the latest generation of my
clan, Reese Anthony Snyder, born June 18, 2002.






1

Introduction

1.1 Forecasting, Classification, and
Dimensionality Reduction

This book shows how neural networks may be put to work for more accurate
forecasting, classification, and dimensionality reduction for better decision
making in financial markets — particularly in the volatile emerging markets
of Asia and Latin America, but also in domestic industrialized-country asset
markets and business environments.

The importance of better forecasting, classification methods, and dimen-
sionality reduction methods for better decision making, in the light of
increasing financial market volatility and internationalized capital flows,
cannot be overexaggerated. The past two decades have witnessed extreme
macroeconomic instability, first in Latin America and then in Asia. Thus,
both financial analysts and decision makers cannot help but be interested
in predicting the underlying rates of return and spreads, as well as the
default rates, in domestic and international credit markets.

With the growth of the market in financial derivatives such as call and
put options (which give the right but not the obligation to buy or sell assets
at given prices at preset future periods), the pricing of instruments for hedg-
ing positions on underlying risky assets and optimal portfolio diversification
have become major activities in international investment institutions. One
of the key questions facing practitioners in financial markets is the correct
pricing of new derivative products as demand for these instruments grows.
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To put it bluntly, if practitioners in these markets do not wish to be “taken
to the cleaners” by international arbitrageurs and risk management spe-
cialists, then they had better learn how to price their derivative offerings
in ways that render them arbitrage-free. Correct pricing of risk, of course,
crucially depends on the correct understanding of the process driving the
underlying rates of return. So correct pricing requires the use of models
that give relatively accurate out-of-sample forecasts.

Forecasting simply means understanding which variables lead or help to
predict other variables, when many variables interact in volatile markets.
This means looking at the past to see what variables are significant lead-
ing indicators of the behavior of other variables. It also means a better
understanding of the timing of lead—lag relations among many variables,
understanding the statistical significance of these lead—lag relationships,
and learning which variables are the more important ones to watch as
signals for further developments in other returns.

Obviously, if we know the true underlying model generating the data we
observe in markets, we will know how to obtain the best forecasts, even
though we observe the data with measurement error. More likely, how-
ever, the true underlying model may be too complex, or we are not sure
which model among many competing ones is the true one. So we have to
approximate the true underlying model by approximating models. Once
we acknowledge model uncertainty, and that our models are approxima-
tions, neural network approaches will emerge as a strong competitor to the
standard benchmark linear model.

Classification of different investment or lending opportunities as accept-
able or unacceptable risks is a familiar task in any financial or business
organization. Organizations would like to be able to discriminate good from
bad risks by identifying key characteristics of investment candidates. In a
lending environment, a bank would like to identify the likelihood of default
on a car loan by readily identifiable characteristics such as salary, years in
employment, years in residence, years of education, number of dependents,
and existing debt. Similarly, organizations may desire a finer grid for dis-
criminating, from very low, to medium, to very high unacceptable risk, to
manage exposure to different types of risk. Neural nets have proven to be
very effective classifiers— better than the state-of-the-art methods based
on classical statistical methods.!

Dimensionality reduction is also a very important component in financial
environments. All too often we summarize information about large amounts
of data with averages, means, medians, or trimmed means, in which a given

LOf course, classification has wider applications, especially in the health sciences. For
example, neural networks have proven very useful for detection of high or low risks of
various forms of cancer, based on information from blood samples and imaging.



1.1 Forecasting, Classification, and Dimensionality Reduction 3

percentage of high and low extreme values are eliminated from the sam-
ple. The Dow-Jones Industrial Average is simply that: an average price of
industrial share prices. Similarly the Standard and Poor 500 is simply the
average price of the largest 500 share prices. But averages can be mislead-
ing. For example, one student receiving a B grade in all her courses has a
B average. Another student may receive A grades in half of his courses and
a C grade in the rest. The second student also has a B average, but the
performances of the two students are very different. While the grades of
the first student cluster around a B grade, the grades of the second student
cluster around two grades: an A and a C. It is very important to know
if the average reported in the news truly represents where the market is
through dimensionality reduction if it is to convey meaningful information.

Forecasting into the future, or out-of-sample predictions, as well as clas-
sification and dimensionality reduction models, must go beyond diagnostic
examination of past data. We use the coefficients obtained from past data
to fit new data and make predictions, classification, and dimensionality
reduction decisions for the future. As the saying goes, life must be under-
stood looking backwards, but must be lived looking forward. The past
is certainly helpful for predicting the future, but we have to know which
approximating models to use, in combination with past data, to predict
future events. The medium-term strategy of any enterprise depends on the
outlook in the coming quarters for both price and quantity developments
in its own industry. The success of any strategy depends on how well the
forecasts guiding the decision makers work.

Diagnostic and forecasting methods feed back in very direct ways to
decision-making environments. Knowing what determines the past, as well
as what gives good predictions for the future, gives decision makers better
information for making optimal decisions over time. In engineering terms,
knowing the underlying “laws of motion” of key variables in a dynamic
environment leads to the development of optimal feedback rules. Applying
this concept to finance, if the Fed raises the short-term interest rate, how
should portfolio managers shift their assets? Knowing how the short-term
rates affect a variety of rates of return and how they will affect the future
inflation rate can lead to the formulation of a reaction function, in which
financial officers shift from risky assets to higher-yield, risk-free assets. We
call such a policy function, based on the “laws of motion” of the system,
control. Business organizations by their nature are interested in diagnostics
and prediction so that they may formulate policy functions for effective
control of their own future welfare.

Diagnostic examination of past data, forecasting, and control are differ-
ent activities but are closely related. The policy rule for control, of course,
need not be a hard and fast mechanical rule, but simply an operational
guide for better decision making. With good diagnostics and forecasting,
for example, businesses can better assess the effects of changes in their
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prices on demand, as well as the likely response of demand to external
shocks, and thus how to reset their prices. So it should not be so surprising
that good predictive methods are at a premium in research departments
for many industries.

Accurate forecasting methods are crucial for portfolio management by
commercial and investment banks. Assessing expected returns relative
to risk presumes that portfolio strategists understand the distribution of
returns. Until recently, most of the control or decision-making analysis has
been based on linear dynamic models with normal or log-normal distri-
butions of asset returns. However, finding such a distribution in volatile
environments means going beyond simple assumptions of normality or log
normality used in conventional models of portfolio strategies. Of course,
when we let go of normality, we must get our hands dirty in numeri-
cal approximation, and can no longer plug numbers into quick formulae
based on normal distributions. But there are clear returns from this extra
effort.

The message of this book is that business and financial decision makers
now have available the computational power and methods for more accu-
rate diagnostics, forecasting, and control in volatile, increasingly complex,
multidimensional environments. Researchers need no longer confine them-
selves to linear or log-linear models, or assume that underlying stochastic
processes are Gaussian or normal in order to obtain forecasts and pinpoint
risk-return trade-offs. In short, we can go beyond linearity and normality
in our assumptions with the use of neural networks.

1.2 Synergies

The activities of formal diagnostics and forecasting and practical decision
making or control in business and finance complement one another, even
though mastering each of them requires different types of skills and the
exercise or use of different but related algorithms. Applying diagnostic
and predictive methods requires knowledge of particular ways to filter or
preprocess data for optimum convergence, as well as for estimation, to
achieve good diagnostics and out-of-sample accuracy. Decision making in
finance, such as buying or selling or setting the pricing of different types of
instruments, requires the use of specific assumptions about how to classify
risk and about the preferences of investors regarding risk-return trade-offs.
Thus, the outcomes crucially depend on the choice of the preference or
welfare index about acceptable risk and returns over time.

From one perspective, the influence is unidirectional, proceeding from
diagnostic and forecasting methods to business and financial decision mak-
ing. Diagnostics and forecasting simply provide the inputs or stylized facts
about expected rates of return and their volatility. These forecasts are the
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crucial ingredients for pricing decisions, both for firm products and for
financial instruments such as call or put options and other more exotic
types of derivatives.

From another perspective, however, there may be feedback or bidirec-
tional influence. Knowledge of the objective functions of managers, or their
welfare indices, from survey expectations of managers, may be useful lead-
ing indicators in forecasting models, particularly in volatile environments.
Similarly, the estimated risk, or volatility, derived from forecasting models
and the implied risk, given by the pricing decisions of call or put options or
swaps in financial markets, may sharply diverge when there is a great deal of
uncertainty about the future course of the economy. In both of these cases,
the information calculated from survey expectations or from the implied
volatilities given by prices of financial derivatives may be used as additional
instruments for improving the performance of forecasting models for the
underlying rates of return. We may even be interested in predicting the
implied volatilities coming from options prices.

Similarly, deciding what price index to use for measuring and forecast-
ing inflation may depend on what the end user of this information intends
to do. If the purpose is to help the monetary authority monitor inflation-
ary pressures for setting policy, then price indices that have a great deal
of short-term volatility may not be appropriate. In this case, the overly
volatile measure of the price level may induce overreactions in the setting
of short-term interest rates. By the same token, a price measure that is too
smooth may lead to a very passive monetary policy that fails to dampen
rising inflationary pressures. Thus, it is useful to distill information from
a variety of price indices, or rates of return, to find the movement of the
market or the fundamental driving force. This can be done very effectively
with neural network approaches.

Unlike hard sciences such as physics or engineering, the measurement
and statistical procedures of diagnostics and forecasting are not so cleanly
separable from the objectives of the researchers, decision makers, and
players in the market. This is a subtle but important point that needs
to be emphasized. When we formulate approximating models for the rates
of return in financial markets, we are in effect attempting to forecast the
forecasts of others. Rates of return rise or fall in reaction to changes in
public or private news, because traders are reacting to news and buying
or selling assets. Approximating the true underlying model means taking
into account, as we formulate our models, how traders — human beings like
us — actually learn, process information, and make decisions.

Recent research in macroeconomics by Sargent (1997, 1999), to be dis-
cussed in greater detail in the following section, has drawn attention to
the fact that the decision makers we wish to approximate with our mod-
els are not fully rational, and thus “all-knowing,” about their financial
environment. Like us, they have to learn what is going on. For this very
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reason, neural network methods are a natural starting point for approx-
imation in financial markets. Neural networks grew out of the cognitive
and brain science disciplines for approximating how information is pro-
cessed and becomes insight. We illustrate this point in greater detail
when we examine the structure of typical neural network frameworks.
Suffice it to say, neural network analysis is becoming a key compo-
nent of the epistemology (philosophy of knowledge) implicit in empirical
finance.

1.3 The Interface Problems

The goal of this study is to “break open” the growing literature on neural
networks to make the methods accessible, user friendly, and operational for
the broader population of economists, analysts, and financial professionals
seeking to become more efficient in forecasting. A related goal is to focus
the attention of researchers in the fields of neural networks and related
disciplines, such as genetic algorithms, to areas in which their tools may
have particular advantages over state-of-the-art methods in economics and
finance, and thus may make significant contributions to unresolved issues
and controversies.

Much of the early development of neural network analysis has been
within the disciplines of psychology, neurosciences, and engineering, often
related to problems of pattern recognition. Genetic algorithms, which we
use for empirically implementing neural networks, have followed a similar
pattern of development within applied mathematics, with respect to opti-
mization of dynamic nonlinear and/or discrete systems, moving into the
data engineering field.

Thus there is an understandable interface problem for students and pro-
fessionals whose early formation in economics has been in classical statistics
and econometrics. Many of the terms are simply not familiar, or sound odd.
For example, a model is known as an architecture, and we train rather than
estimate a network architecture. A researcher makes use of a training set
and a test set of data, rather than using in-sample and out-of-sample data.
Coefficients are called weights and constant terms are biases.

Besides these semantic or vocabulary differences, however, many of the
applications in the neural network (and broader artificial intelligence) lit-
erature simply are not relevant for financial professionals, or if relevant, do
not resonate well with the matters at hand. For example, pattern recog-
nition is usually applied to problems of identifying letters of the alphabet
for computational translation in linguistics research. A much more inter-
esting example would be to examine recurring patterns such as “bubbles”
in high-frequency asset returns data, or the pattern observed in the term
structure of interest rates.
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Similarly, many of the publications on financial markets by neural net-
work researchers have an ad hoc flavor and do not relate to the broader
theoretical infrastructure and fundamental behavioral assumptions used in
economics and finance. For this reason, unfortunately, much of this research
is not taken seriously by the broader academic community in economics and
finance.

The appeal of the neural network approach lies in its assumption of
bounded rationality: when we forecast in financial markets, we are forecast-
ing the forecasts of others, or approximating the expectations of others.
Financial market participants are thus engaged in a learning process,
continually adapting prior subjective beliefs from past mistakes.

What makes the neural network approach so appealing in this respect is
that it permits threshold responses by economic decision makers to changes
in policy or exogenous variables. For example, if the interest rate rises
from 3 percent to 3.1 or 3.2 percent, there may be little if any reaction by
investors. However, if the interest rate continues to increase, investors will
take notice, more and more. If the interest rate crosses a critical threshold,
for example, of 5 percent, there may be a massive reaction or “meltdown,”
with a sell-off of stocks and a rush into government securities.

The basic idea is that reactions of economic decision makers are not
linear and proportionate, but asymmetric and nonlinear, to changes in
external variables. Neural networks approrimate this behavior of economic
and financial decision making in a very intuitive way.

In this important sense neural networks are different from classical
econometric models. In the neural network model, one is not making
any specific hypothesis about the values of the coefficients to be esti-
mated in the model, nor, for that matter, any hypothesis about the
functional form relating the observed regressor x to an observed out-
put y. Most of the time, we cannot even interpret the meaning of the
coefficients estimated in the network, at least in the same way we can
interpret estimated coefficients in ordinary econometric models, with a
well-defined functional form. In that sense, the neural network differs from
the usual econometrics, where considerable effort is made to obtain accu-
rate and consistent, if not unbiased, estimates of particular parameters or
coefficients.

Similarly, when nonlinear models are used, too often economists make use
of numerical algorithms based on assumptions of continuous or “smooth”
data. All too often, these methods break down, or one must make use of
repeated estimation, to make sure that the estimates do not represent one
of several possible sets of local optimum positions. The use of the genetic
algorithm and other evolutionary search algorithms enable researchers to
work with discontinuities and to locate with greater probability the global
optimum. This is the good news. The bad news is that we have to wait a
bit longer to get these results.
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The financial sectors of emerging markets, in particular, but also in
markets with a great deal of innovation and change, represent a fertile
ground for the use of these methods for two reasons, which are interrelated.
One is that the data are often very noisy, due either to the thinness of the
markets or to the speed with which news becomes dispersed, so that there
are obvious asymmetries and nonlinearities that cannot be assumed away.
Second, in many instances, the players in these markets are themselves in
a process of learning, by trial and error, about policy news or about legal
and other changes taking place in the organization of their markets. The
parameter estimates of a neural network, by which market participants
forecast and make decisions, are themselves the outcome of a learning and
search process.

1.4 Plan of the Book

The next chapter takes up the question: What is a neural network? It also
takes up the relevance of the “black box criticism” directed against neural
network and nonlinear estimation methods. The succeeding chapters ask
how we estimate such networks, and then how we evaluate and interpret
the results of network estimation.

Chapters 2 through 4 cover the basic theory of neural networks. These
chapters, by far, are the most technical chapters of the book. They
are oriented to people familiar with classical statistics and linear regres-
sion. The goal is to relate recent developments in the neural network
and related genetic search literature to the way econometricians routinely
do business, particularly with respect to the linear autoregressive model.
It is intended as a refresher course for those who wish to review their
econometrics. However, in succeeding chapters we flesh out with specific
data sets the more technical points developed here. The less technically
oriented reader may skim through these chapters at the first reading
and then return to them as a cross-reference periodically, to clarify def-
initions of alternative procedures reported with the examples of later
chapters.

These chapters contrast the setup of the neural network with the stan-
dard linear model. While we do not elaborate on the different methods for
estimating linear autoregressive models, since these topics are extensively
covered in many textbooks on econometrics, there is a detailed treatment
of the nonlinear estimation process for neural networks. We also lay out
the basics of genetic algorithms as well as with more familiar gradient or
quasi-Newtonian methods based on the calculation of first- and second-
order derivatives for estimating the neural network models. Evolutionary
computation involves coupling the global genetic search methods with local
gradient methods.
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Chapters 3 and 4, on estimation and evaluation, also review the basic met-
rics or statistical tests we use to evaluate the success of a model, whether
the model is the standard linear one or a nonlinear neural network. We also
treat the ways we need to filter, adjust, or preprocess data prior to statisti-
cal estimation and evaluation. It should be clear from this chapter that the
straw man or benchmark of this book is the standard linear or linear autore-
gressive model. Throughout the chapters, the criteria for success of neural
network forecasting is measured relative to the standard linear model.

The fifth chapter presents several applications for evaluating the perfor-
mance of alternative networks with artificial data to illustrate the points
made in the previous three chapters. The reason for using artificial data
is that we can easily verify the accuracy of the network model, relative
to other approaches, if we know the true model generating the data.
This chapter shows, in one example, how artificial data generated with
the Black-Scholes option pricing model, as well as with more advanced
option pricing formulae, may be closely matched, out of sample, by a neu-
ral network. Thus, the neural network may be used to complement more
complicated options or derivative pricing models for setting the initial mar-
ket price of such instruments. This section shows very clearly the relative
accuracy or predictive power of the neural network or genetic algorithm.

Following an application to artificial data, we apply, in Chapter 6, neural
network methods to actual forecasting problems: at the industrial level, in
the quantity of automobiles as a function of the price index as well as aggre-
gate interest rates and disposable income; at the financial level, predicting
spreads in corporate bonds (relative to 10-year U.S. Treasury bonds) as a
function of default rates, the real exchange rate, industrial production, the
share-market index, and indices of market expectations. The seventh chap-
ter examines inflation and deflation forecasting at the macroeconomic level,
with sample data from Hong Kong and Japan. Chapter 8 takes up classifi-
cation problems, specifically credit card default and banking intervention,
as functions of observed characteristics, using both categorical and more
familiar continuous variables as the inputs. Chapter 9 shows the usefulness
of neural networks for distilling information from market volatilities, for
obtaining an overall sense of market volatility and with nonlinear princi-
pal components, and evaluates the performance of this method relative to
linear principal component analysis.

While time-series analysis, classification, and dimensionality reduction
are taken up as separate tasks, frequently they can be synergistic. For
example, dimensionality reduction can be used to reduce the number of
regressors in a model for forecasting. Similarly, the forecasts of a time-
series model, representing expectations of inflation or future growth, may
be inputs at any given time in a classification model. Time-series fore-
casting, classification, and dimensionality reduction are very useful for
understanding a wide variety of financial market issues.
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Each of the chapters concludes not only with a short summary, but also
with discussion questions, references to MATLAB programs available on
the website, and suggestions for further exercises. The programs are written
especially for this book. Certainly they are not meant to be examples of
efficient programming code. There is the ever-present trade-off between
transparency and efficiency in writing programming code. My first goal in
writing these programs was to make the programs “transparent” to myself!
Readers are invited to change, amend, and mutate these programs to make
them even more efficient and transparent for themselves. These MATLAB
programs require the optimization and statistics toolbox. We also make use
of the symbolic toolbox for a few exercises.

There is much more that could be part of this book. There is no dis-
cussion, in particular, of estimation and forecasting with intra-daily or
real-time data. This is a major focus of recent financial market research,
particularly the new micro-structure exchange-rate economics. One reason
for bypassing the use of real-time data is that it is usually proprietary.
While estimation results can be reported in scholarly research, the data
sets, without special arrangements, cannot be made available to other
researchers for replication and further study. In this study, we want to
encourage the readers to use both the data sets and MATLAB programs
of this book to enhance their own learning. For this reason, we stay with
familiar examples as the best way to illustrate the predictive power that
comes from harnessing neural networks with evolutionary computation.

Similarly, there is no discussion of forecasting stock-market returns or
the rates of change of other asset prices or exchange rates. While many
researchers have tried to show the profitable use of trading strategies based
on neural network out-of-sample forecasting relative to other strategies [Qi
(1999)], a greater payoff of neural networks in financial markets may come
from volatility forecasting.
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2
What Are Neural Networks?

2.1 Linear Regression Model

The rationale for the use of the neural network is forecasting or predicting
a given target or output variable y from information on a set of observed
input variables z. In time series, the set of input variables x may include
lagged variables, the current variables of z, and lagged values of y. In
forecasting, we usually start with the linear regression model, given by the
following equation:

Yi = Z Bkt + € (2.1a)

e ~ N(0,0?) (2.1b)

where the variable ¢; is a random disturbance term, usually assumed to be
normally distributed with mean zero and constant variance o2, and {f}
represents the parameters to be estimated. The set of estimated parameters
is denoted {3}, while the set of forecasts of y generated by the model with
the coeflicient set {Bk} is denoted by {g:}. The goal is to select {Ek} to
minimize the sum of squared differences between the actual observations y
and the observations predicted by the linear model, .

In time series, the input and output variables, [y ], have subscript
t, denoting the particular observation date, with the earliest observation
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starting at ¢ = 1.! In the standard econometrics courses, there are a vari-
ety of methods for estimating the parameter set {0}, under a variety of
alternative assumptions about the distribution of the disturbance term, e,
about the constancy of its variance, o2, as well as about the independence
of the distribution of the input variables x; with respect to the disturbance
term, €;.

The goal of the estimation process is to find a set of parameters for the
regression model, given by {8}, to minimize ¥, defined as the sum of
squared differences, or residuals, between the observed or target or output
variable y and the model-generated variable 7, over all the observations.
The estimation problem is posed in the following way:

T T
Min¥ = ng = Z(yt — ) (2.2)
B t=1 t=1
st. Yy = Zﬁkxk,t + € (2.3)
?t = Z/@kxm (2-4)
er ~ N(0,07) (2.5)

A commonly used linear model for forecasting is the autoregressive
model:

kx k
Y = Z Biye—i + Z'ijj,t + et (2.6)
i=1 j=1

in which there are k independent z variables, with coefficient ~; for each x;,
and k* lags for the dependent variable y, with, of course k+ k* parameters,
{B} and {v}, to estimate. Thus, the longer the lag structure, the larger the
number of parameters to estimate and the smaller the degrees of freedom
of the overall regression estimates.?

The number of output variables, of course, may be more than one. But
in the benchmark linear model, one may estimate and forecast each output
variable y;,5 = 1,...,j* with a series of J* independent linear models. For
j* output or dependent variables, we estimate (J* - K) parameters.

'In cross-section analysis, the subscript for [y z] can be denoted by an identifier i,
which refers to the particular individuals, households, or other economic entities being
examined. In cross-section analysis, the ordering of the observations with respect to
particular observations does not matter.

2In the time-series model this model is known as the linear ARX model, since there
are autoregressive components, given by the lagged y variables, as well as exogenous x
variables.
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The linear model has the useful property of having a closed-form solution
for solving the estimation problem, which minimizes the sum of squared
differences between y and 7. The solution method is known as linear regres-
sion. It has the advantage of being very quick. For short-run forecasting,
the linear model is a reasonable starting point, or benchmark, since in many
markets one observes only small symmetric changes in the variable to be
predicted around a long-term trend. However, this method may not be
especially accurate for volatile financial markets. There may be nonlinear
processes in the data. Slow upward movements in asset prices followed by
sudden collapses, known as bubbles, are rather common. Thus, the linear
model may fail to capture or forecast well sharp turning points in data. For
this reason, we turn to nonlinear forecasting techniques.

2.2 GARCH Nonlinear Models

Obviously, there are many types of nonlinear functional forms to use as an
alternative to the linear model. Many nonlinear models attempt to capture
the true or underlying nonlinear processes through parametric assump-
tions with specific nonlinear functional forms. One popular example of this
approach is the GARCH-In-Mean or GARCH-M model.? In this approach,
the variance of the disturbance term directly affects the mean of the depen-
dent variable and evolves through time as a function of its own past value
and the past squared prediction error. For this reason, the time-varying
variance is called the conditional variance. The following equations describe
a typical parametric GARCH-M model:

02 =80+ 810721 + daer (2.7)
et = 6(0,07) (2.8)
yr=a+ fo+ e (2.9)

where y is the rate of return on an asset, « is the expected rate of appreci-
ation, and €; is the normally distributed disturbance term, with mean zero
and conditional variance o2, given by ¢(0,0?). The parameter 3 represents
the risk premium effect on the asset return, while the parameters dg, d1,
and J9 define the evolution of the conditional variance. The risk premium
reflects the fact that investors require higher returns to take on higher risks
in a market. We thus expect 3 > 0.

3GARCH stands for generalized autoregresssive conditional heteroskedasticity, and
was introduced by Bollerslev (1986, 1987) and Engle (1982). Engle received the Nobel
Prize in 2003 for his work on this model.
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The GARCH-M model is a stochastic recursive system, given the initial
conditions o and €2, as well as the estimates for a, 3, &g, 61, and J2. Once
the conditional variance is given, the random shock is drawn from the
normal distribution, and the asset return is fully determined as a function
of its own mean, the random shock, and the risk premium effect, determined
by Boy.

Since the distribution of the shock is normal, we can use maximum
likelihood estimation to come up with estimates for «, (3, dg,d1, and Js.
The likelihood function L is the joint probability function for gy, = ¥, for
t=1,...,T. For the GARCH-M models, the likelihood function has the
following form:

d 1 (Yt ﬂt)z
L= t:Hl Trg? O [%?} (2.10)
9 = a + Bo (2.11)
=y -0 (2.12)
52 =00+ 0107, + 0262, (2.13)

where the symbols a, B, 3\0, 31, and 32 are the estimates of the underlying
parameters, and II is the multiplication operator, 1% ; z; = x1 - z2. The
usual method for obtaining the parameter estimates maximizes the sum
of the logarithm of the likelihood function, or log-likelihood function, over
the entire sample 7', from ¢t = 1 to t = T, with respect to the choice of
coefficient estimates, subject to the restriction that the variance is greater
than zero, given the initial condition 53 and €7_;:

Mag Zln Ly) Z( 5In(27) — 51n(6;) — .5 [W])

:ﬁ 60 61’52} t=1 t=1

st. : 6:>0,t=1,2,...,T (2.15)

The appeal of the GARCH-M approach is that it pins down the source
of the nonlinearity in the process. The conditional variance is a nonlinear
transformation of past values, in the same way that the variance measure

4Taking the sum of the logarithm of the likelihood function produces the same
estimates as taking the product of the likelihood function, over the sample, from
t=1,2,...,T.
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is a nonlinear transformation of past prediction errors. The justification
of using conditional variance as a variable affecting the dependent vari-
able is that conditional variance represents a well-understood risk factor
that raises the required rate of return when we are forecasting asset price
dynamics.

One of the major drawbacks of the GARCH-M method is that mini-
mization of the log-likelihood functions is often very difficult to achieve.
Specifically, if we are interested in evaluating the statistical significance
of the coefficient estimates, & ﬁ 60, (51, and 62, we may find it difficult to
obtain estimates of the confidence intervals. All of these difficulties are
common to maximum likelihood approaches to parameter estimation.

The parametric GARCH-M approach to the specification of nonlinear
processes is thus restrictive: we have a specific set of parameters we want
to estimate, which have a well-defined meaning, interpretation, and ratio-
nale. We even know how to estimate the parameters, even if there is some
difficulty. The good news of GARCH-M models is that they capture a well-
observed phenomenon in financial time series, that periods of high volatility
are followed by high volatility and periods of low volatility are followed by
similar periods.

However, the restrictiveness of the GARCH-M approach is also its draw-
back: we are limited to a well-defined set of parameters, a well-defined
distribution, a specific nonlinear functional form, and an estimation method
that does not always converge to parameter estimates that make sense.
With specific nonlinear models, we thus lack the flexibility to capture
alternative nonlinear processes.

2.2.1 Polynomial Approzimation

With neural network and other approximation methods, we approximate
an unknown nonlinear process with less-restrictive semi-parametric mod-
els. With a polynomial or neural network model, the functional forms are
given, but the degree of the polynomial or the number of neurons are
not. Thus, the parameters are neither limited in number, nor do they
have a straightforward interpretation, as the parameters do in linear or
GARCH-M models. For this reason, we refer to these models as semi-
parametric. While GARCH and GARCH-M models are popular models for
nonlinear financial econometrics, we show in Chapter 3 how well a rather
simple neural network approximates a time series that is generated by a
calibrated GARCH-M model.

The most commonly used approximation method is the polynomial
expansion. From the Weierstrass Theorem, a polynomial expansion around
a set of inputs = with a progressively larger power P is capable of approxi-
mating to a given degree of precision any unknown but continuous function
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y = g(x).°> Consider, for example, a second-degree polynomial approxima-
tion of three variables, [z1, Zat, 23¢], where g is unknown but assumed to be
a continuous function of arguments x1, s, r3. The approximation formula
becomes:

Y = Bo + Brx1s + Boar + Baxse + Baxty + Bsas, + Bew3y + Brriiwa
+ Bsworwar + Pox1exse (2.16)

Note that the second-degree polynomial approximation with three argu-
ments or dimensions has three cross-terms, with coefficients given by
{B7, Bs, PBo }, and requires ten parameters. For a model of several arguments,
the number of parameters rises exponentially with the degree of the polyno-
mial expansion. This phenomenon is known as the curse of dimensionality
in nonlinear approximation. The price we have to pay for an increasing
degree of accuracy is an increasing number of parameters to estimate, and
thus a decreasing number of degrees of freedom for the underlying statistical
estimates.

2.2.2  Orthogonal Polynomials

Judd (1999) discusses a wider class of polynomial approximators, called
orthogonal polynomials. Unlike the typical polynomial based on raising the
variable z to powers of higher order, these classes of polynomials are based
on sine, cosine, or alternative exponential transformations of the variable
x. They have proven to be more efficient approximators than the power
polynomial.

Before making use of these orthogonal polynomials, we must transform
all of the variables [y, x] into the interval [—1,1]. For any variable z, the
transformation to a variable x* is given by the following formula:

o 2x _ min(z) + max(z) (2.17)

max(z) — min(z) max(z) — min(z)

The exact formulae for these orthogonal polynomials are complicated [see
Judd (1998), p. 204, Table 6.3]. However, these polynomial approximators
can be represented rather easily in a recursive manner. The Tchebeycheff

5See Miller, Sutton, and Werbos (1990), p. 118.



2.2 GARCH Nonlinear Models 19

polynomial expansion T'(x*) for a variable x* is given by the following

recursive system:%
To(z") =1
T (z") = z*
Tip1(x®) = 22" T (%) — T—1 (") (2.18)

The Hermite expansion H(z*) is given by the following recursive equations:

Ho(l‘*) =1
Hy(z%) = 22"
Hi—i—l(m*) = QI*HZ(.’E*) — QiHi_l(I*) (219)

The Legendre expansion L(z*) has the following form:

L) = (20) 1ute) - o) (2.20)

] —z* i
> LG;(z*) — Fa 1LGi_1(x*) (2.21)
Once these polynomial expansions are obtained for a given variable x*,
we simply approximate y* with a linear regression. For two variables,
[€1, 2] with expansion P1 and P2 respectively, the approximation is given
by the following expression:

P1 P2

vi = > BiTilai)Ty(w2) (2:22)

i=1 j=1

6There is a long-standing controversy about the proper spelling of the first polyno-
mial. Judd refers to the Tchebeycheff polynomial, whereas Heer and Maussner (2004)
write about the Chebeyshev polynomal.
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To retransform a variable y* back into the interval [min(y), max(y)], we
use the following expression:

Y= (y* + 1)[maX2(y) —min(y)] min(y)

The network is an alternative to the parametric linear, GARCH-M
models, and semi-parametric polynomial approaches for approximating a
nonlinear system. The reason we turn to the neural network is simple and
straightforward. The goal is to find an approach or method that forecasts
well data generated by often unknown and highly nonlinear processes, with
as few parameters as possible, and which is easier to estimate than para-
metric nonlinear models. Succeeding chapters show that the neural network
approach does this better —in terms of accuracy and parsimony — than the
linear approach. The network is as accurate as the polynomial approxima-
tions with fewer parameters, or more accurate with the same number of
parameters. It is also much less restrictive than the GARCH-M models.

2.3 Model Typology

To locate the neural network model among different types of models, we can
differentiate between parametric and semi-parametric models, and models
that have and do not have closed-form solutions. The typology appears in
Table 2.1.

Both linear and polynomial models have closed-form solutions for esti-
mation of the regression coefficients. For example, in the linear model
y = xf, written in matrix form, the typical ordinary least squares (OLS)
estimator is given by 3 = (2'z)"'a'y. The coefficient vector E is a simple
linear function of the variables [y z]. There is no problem of convergence
or multiple solutions: once we know the variable set [y z], we know the
estimator of the coefficient vector, B For a polynomial model, in which
the dependent variable y is a function of higher powers of the regressors
x, the coefficient vector is calculated in the same way as OLS. We sim-
ply redefine the regressors in terms of a matrix z, representing polynomial

TABLE 2.1. Model Typology

Closed-Form Solution Parametric Semi-Parametric

Yes Linear Polynomial
No GARCH-M Neural Network
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expansions of the regressors z, and calculate the polynomial coefficient
vector as 3 = (2'2)712y.

Both the GARCH-M and the neural network models are examples of
models that do not have closed-form solutions for the coefficient vector
of the respective model. We discuss many of the methods for obtaining
solutions for the coefficient vector for these models in the following sections.
What is clear from Table 2.1, moreover, is that we have a clear-cut choice
between linear and neural network models. The linear model may be a very
imprecise approximation to the real world, but it gives very easy, quick,
exact solutions. The neural network may be a more precise approximation,
capturing nonlinear behavior, but it does not have exact, easy-to-obtain
solutions. Without a closed-form solution, we have to use approximate
solutions. In fact, as Michalewicz and Fogel (2002) point out, this polarity
reflects the difficulties in problem solving in general. It is difficult to obtain
good solutions to important problems, either because we have to use an
imprecise model approximation (such as a linear model) which has an exact
solution, or we have to use an approximate solution for a more precise,
complex model approximation [Michalewicz and Fogel (2002), p. 19].

2.4 What Is A Neural Network?

Like the linear and polynomial approximation methods, a neural network
relates a set of input variables {z;},i = 1,...,k, to a set of one or more
output variables, {y;},7 = 1,...,k * . The difference between a neural
network and the other approximation methods is that the neural network
makes use of one or more hidden layers, in which the input variables are
squashed or transformed by a special function, known as a logistic or logsig-
moid transformation. While this hidden layer approach may seem esoteric,
it represents a very efficient way to model nonlinear statistical processes.

2.4.1 Feedforward Networks

Figure 2.1 illustrates the architecture on a neural network with one hidden
layer containing two neurons, three input variables {z;.},7 = 1,2, 3, and
one output y.

We see parallel processing. In addition to the sequential processing of typ-
ical linear systems, in which only observed inputs are used to predict an
observed output by weighting the input neurons, the two neurons in the hid-
den layer process the inputs in a parallel fashion to improve the predictions.
The connectors between the input variables, often called input neurons,
and the neurons in the hidden layer, as well as the connectors between
the hidden-layer neurons and the output variable, or output neuron, are
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FIGURE 2.1. Feedforward neural network

called synapses.” Most problems we work with, fortunately, do not involve
a large number of neurons engaging in parallel processing, thus the parallel
processing advantage, which applies to the way the brain works with its
massive number of neurons, is not a major issue.

This single-layer feedforward or multiperceptron network with one hid-
den layer is the most basic and commonly used neural network in economic
and financial applications. More generally, the network represents the way
the human brain processes input sensory data, received as input neurons,
into recognition as an output neuron. As the brain develops, more and
more neurons are interconnected by more synapses, and the signals of the
different neurons, working in parallel fashion, in more and more hidden
layers, are combined by the synapses to produce more nuanced insight and
reaction.

Of course, very simple input sensory data, such as the experience of
heat or cold, need not lead to processing by very many neurons in multiple
hidden layers to produce the recognition or insight that it is time to turn
up the heat or turn on the air conditioner. But as experiences of input
sensory data become more complex or diverse, more hidden neurons are
activated, and insight as well as decision is a result of proper weighting or
combining signals from many neurons, perhaps in many hidden layers.

A commonly used application of this type of network is in pattern recog-
nition in neural linguistics, in which handwritten letters of the alphabet are
decoded or interpreted by networks for machine translation. However, in

"The linear model, of course, is a special case of the feedforward network. In this
case, the one neuron in the hidden layer is a linear activation function which connects
to the one output layer with a weight on unity.
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economic and financial applications, the combining of the input variables
into various neurons in the hidden layer has another interpretation. Quite
often we refer to latent variables, such as expectations, as important driv-
ing forces in markets and the economy as a whole. Keynes referred quite
often to “animal spirits” of investors in times of boom and bust, and we
often refer to bullish (optimistic) or bearish (pessimistic) markets. While it
is often possible to obtain survey data of expectations at regular frequen-
cies, such survey data come with a time delay. There is also the problem
that how respondents reply in surveys may not always reflect their true
expectations.

In this context, the meaning of the hidden layer of different inter-
connected processing of sensory or observed input data is simple and
straightforward. Current and lagged values of interest rates, exchange rates,
changes in GDP, and other types of economic and financial news affect fur-
ther developments in the economy by the way they affect the underlying
subjective expectations of participants in economic and financial markets.
These subjective expectations are formed by human beings, using their
brains, which store memories coming from experiences, education, culture,
and other models. All of these interconnected neurons generate expecta-
tions or forecasts which lead to reactions and decisions in markets, in which
people raise or lower prices, buy or sell, and act bullishly or bearishly.
Basically, actions come from forecasts based on the parallel processing of
interconnected neurons.

The use of the neural network to model the process of decision mak-
ing is based on the principle of functional segregation, which Rustichini,
Dickhaut, Ghirardato, Smith, and Pardo (2002) define as stating that “not
all functions of the brain are performed by the brain as a whole” [Rustichini
et al. (2002), p. 3]. A second principle, called the principle of functional
integration, states that “different networks of regions (of the brain) are acti-
vated for different functions, with overlaps over the regions used in different
networks” [Rustichini et al. (2002), p. 3].

Making use of experimental data and brain imaging, Rustichini,
Dickhaut, Ghirardato, Smith, and Pardo (2002) offer evidence that sub-
jects make decisions based on approximations, particularly when subjects
act with a short response time. They argue for the existence of a “special-
ization for processing approximate numerical quantities” [Rustichini et al.
(2002), p. 16].

In a more general statistical framework, neural network approximation
is a sieve estimator. In the univariate case, with one input x, an approx-
imating function of order m, ¥,,, is based on a non-nested sequence of
approximating spaces:

v, = [¢m,0(x)7 ¢m,1(5€), ce ¢m,m($)] (223)
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FIGURE 2.2. Logsigmoid function

Beresteanu (2003) points out that each finite expansion, ¥, o(), ¥m 1(x),
<o Ym.m(x), can potentially be based on a different set of functions
[Beresteanu (2003), p. 9]. We now discuss the most commonly used
functional forms in the neural network literature.

2.4.2  Squasher Functions

The neurons process the input data in two ways: first by forming lin-
ear combinations of the input data and then by “squashing” these linear
combinations through the logsigmoid function. Figure 2.2 illustrates the
operation of the typical logistic or logsigmoid activation function, also
known as a squasher function, on a series ranging from —5 to +5. The
inputs are thus transformed by the squashers before transmitting their
effects on the output.

The appeal of the logsigmoid transform function comes from its threshold
behavior, which characterizes many types of economic responses to changes
in fundamental variables. For example, if interest rates are already very low
or very high, small changes in this rate will have very little effect on the deci-
sion to purchase an automobile or other consumer durable. However, within
critical ranges between these two extremes, small changes may signal signif-
icant upward or downward movements and therefore create a pronounced
impact on automobile demand.

Furthermore, the shape of the logsigmoid function reflects a form of
learning behavior. Often used to characterize learning by doing, the func-
tion becomes increasingly steep until some inflection point. Thereafter the
function becomes increasingly flat and its slope moves exponentially to zero.
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Following the same example, as interest rates begin to increase from low
levels, consumers will judge the probability of a sharp uptick or downtick
in the interest rate based on the currently advertised financing packages.
The more experience they have, up to some level, the more apt they are to
interpret this signal as the time to take advantage of the current interest
rate, or the time to postpone a purchase. The results are markedly dif-
ferent from those experienced at other points on the temporal history of
interest rates. Thus, the nonlinear logsigmoid function captures a thresh-
old response characterizing bounded rationality or a learning process in the
formation of expectations.

Kuan and White (1994) describe this threshold feature as the fundamen-
tal characteristic of nonlinear response in the neural network paradigm.
They describe it as the “tendency of certain types of neurons to be qui-
escent of modest levels of input activity, and to become active only after
the input activity passes a certain threshold, while beyond this, increases
in input activity have little further effect” [Kuan and White (1994), p. 2].

The following equations describe this network:

-

Nkt = Wk,0 1 Zwk,ifﬂi,t (2.24)
i=1
Nk,t = L(nk,t) (2-25)
1
e 2.26
14+ e ke ( )
o
Yt =" + Z’Yka,t (2.27)
k=1

where L(ny,,) represents the logsigmoid activation function with the form
L In this system there are ¢* input variables {z}, and k* neu-

rons. A linear combination of these input variables observed at time ¢,
{zit}, i=1,...,7*, with the coefficient vector or set of input weights wy, ;,
i =1,...,7%, as well as the constant term, wy o, form the variable ny ;.

This variable is squashed by the logistic function, and becomes a neuron
Ni,+ at time or observation ¢. The set of £* neurons at time or observa-
tion index ¢ are combined in a linear way with the coefficient vector {4},
k=1,...,k* and taken with a constant term -, to form the forecast 7;
at time t. The feedforward network coupled with the logsigmoid activation
functions is also known as the multi-layer perception or MLP network. It is
the basic workhorse of the neural network forecasting approach, in the sense
that researchers usually start with this network as the first representative
network alternative to the linear forecasting model.
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FIGURE 2.3. Tansig function

An alternative activation function for the neurons in a neural network is
the hyperbolic tangent function. It is also known as the tansig or tanh func-
tion. It squashes the linear combinations of the inputs within the interval
[—1,1], rather than [0,1] in the logsigmoid function. Figure 2.3 shows the
behavior of this alternative function.

The mathematical representation of the feedforward network with the
tansig activation function is given by the following system:

*

Nkt = Wk,0 + Zwk,ixi,t (2.28)
=1
Nt =T (ng,) (2.29)
Nkt _ p— Nkt
_em e (2:30)
enk,t + e Nk, t
§
Y=+ Y VN (2.31)
k=1

where T'(ng,) is the tansig activation function for the input neuron ny ;.
Another commonly used activation function for the network is the famil-
iar cumulative Gaussian function, commonly known to statisticians as the
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FIGURE 2.4. Gaussian function

normal function. Figure 2.4 pictures this function as well as the logsigmoid
function.

The Gaussian function does not have as wide a distribution as the logsig-
moid function, in that it shows little or no response when the inputs
take extreme values (below —2 or above +2 in this case), whereas the
logsigmod does show some response. Moreover, within critical changes,
such as [—2, 0] and [0, 2], the slope of the cumulative Gaussian func-
tion is much steeper. The mathematical representation of the feedforward
network with the Gaussian activation functions is given by the following
system:

Mkt = Who + > Wk iis (2.32)
i=1
Nit = ®(ngt) (2.33)

Nkt 1
= / \ e (2.34)
oo 2m
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L*

Ye =7+ Y TN (2.35)
k=1

where ®(ny ;) is the standard cumulative Gaussian function.®

2.4.3 Radial Basis Functions

The radial basis network function (RBF) network makes use of the radial
basis or Gaussian density function as the activation function, but the struc-
ture of the network is different from the feedforward or MLP networks we
have discussed so far. The input neuron may be a linear combination of
regressors, as in the other networks, but there is only one input signal, only
one set of coefficients of the input variables . The signal from this input
layer is the same to all the neurons, which in turn are Gaussian transfor-
mations, around k* different means, of the input signals. Thus the input
signals have different centers for the radial bases or normal distributions.
The differing Gaussian transformations are combined in a linear fashion for
forecasting the output.
The following system describes a radial basis network:

T
. ~\2
<U]J\{-LZ2> ; (Yt — Ut) (2.36)
ng = wo + Z Wil ¢ (2.37)
i=1
Ry = @(ne; ) (2.38)
2
1 I, —
- exp [ M=l (2.39)
A /27T0n,uk Tn—p,
o+
Ye =0 + Z Vi Nkt (2.40)
k=1

where = again represents the set of input variables and n represents the
linear transformation of the input variables, based on weights w. We choose
k* different centers for the radial basis transformation, p,, k = 1,..., k%,
calculate the k* standard error implied by the different centers, p;, and

8The Gaussian function, used as an activation function in a multilayer perceptron
or feedforward network, is not a radial basis function network. We discuss that func-
tion next.
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obtain the £* different radial basis functions, Ry These functions in turn
are combined linearly to forecast y with weights v (which include a constant
term). Optimizing the radial basis network involves choosing the coefficient
sets {w} and {7} as well as the k* centers of radial basis functions {p}.

Haykin (1994) points out a number of important differences between
the RBF and the typical multilayer perceptron network; we note two.
First, the RBF network has at most one hidden layer, whereas an MLP
network may have many (though in practice we usually stay with one hid-
den layer). Second, the activation function of the RBF network computes
the Euclidean norm or distance (based on the Gaussian transformation)
between the signal from the input vector and the center of that unit,
whereas the MLP or feedforward network computes the inner products
of the inputs and the weights for that unit.

Mandic and Chambers (2001) point out that both the feedforward
or multilayer perceptron networks and radial basis networks have good
approximation properties, but they note that “an MLP network can always
simulate a Gaussian RBF network, whereas the converse is true only for
certain values of the bias parameter” [Mandic and Chambers (2001), p. 60].

2.4.4 Ridgelet Networks

Chen, Racine, and Swanson (2001) have shown the ridgelet function to be
a useful and less-restrictive alternative to the Gaussian activation functions
used in the “radial basis” type sieve network. Such a function, denoted by
R(+), can be chosen for a suitable value of m as V" ~1¢, where V represents
the gradient operator and ¢ is the standard Gaussian density function.
Setting m = 6, the ridgelet function is defined in the following way:

R(z)=V™ ¢

m=6=> R(z) = (—15z+ 102" — 2°) exp (—.52%)

The curvature of this function, for the same range of input values,
appears in Figure 2.5.

The ridgelet function, like the Gaussian density function, has very low
values for the extreme values of the input variable. However, there is more
variation in the derivative values in the ranges [—3, —1], and [1, 3] than
in a pure Gaussian density function. The mathematical representation of
the ridgelet sieve network is given by the following system, with ¢* input
variables and k* ridgelet sieves:

i = witiy (2.41)
i=1
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nge =o' (Br -y — Bok) (2.42)
Nk,t = R(’I’L]“t) (243)
&
(2.44)

where aj, represents the scale while 8y, and (5 stand for the location and

direction of the network, with |3;| = 1.

2.4.5 Jump Connections

One alternative to the pure feedforward network or sieve network is a
feedforward network with jump connections, in which the inputs x have
direct linear links to output y, as well as to the output through the hid-
den layer of squashed functions. Figure 2.6 pictures a feedforward jump
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FIGURE 2.6. Feedforward neural network with jump connections

connection network with three inputs, one hidden layer, and two neurons
(i* =3,k*=2):

The mathematical representation of the feedforward network pictured in
Figure 2.1, for logsigmoid activation functions, is given by the following
system:

*

Nkt = Wk,0 + Zwk,iﬂﬂi,t (2.45)
i=1
Ny = —— (2.46)
A P ,
k* i*
Yo =0 + Z Vi Nkt + Z Bixi (2.47)
k=1 =1

Note that the feedforward network with the jump connections increases
the number of parameters in the network by j*, the number of inputs. An
appealing advantage of the feedforward network with jump connections
is that it nests the pure linear model as well as the feedforward neural
network. It allows the possibility that a nonlinear function may have a linear
component as well as a nonlinear component. If the underlying relationship
between the inputs and the output is a pure linear one, then only the direct
jump connectors, given by the coefficient set {3;}, ¢ = 1,...,7*, should
be significant. However, if the true relationship is a complex nonlinear
one, then one would expect the coefficient sets {w} and {7} to be highly
significant, and the coefficient set {3} to be relatively insignificant. Finally,
the relationship between the input variables {z} and the output variable
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{y} can be decomposed into linear and nonlinear components, and then
we would expect all three sets of coefficients, {8}, {w}, and {~}, to be
significant.

A practical use of the jump connection network is as a useful test for
neglected nonlinearities in a relationship between the input variables x
and the output variable y. We take up this issue in the discussion of the
Lee-White-Granger test. In this vein, we can also estimate a partitioned
network. We first do linear least squares regression of the dependent vari-
able y on the regressors, x, and obtain the residuals, e. We then set up
a feedforward network in which the residuals from the linear regression
become the dependent variable, while we use the same regressors as the
input variables for the network. If there are indeed neglected nonlinearities
in the linear regression, then the second-stage, partitioned network should
have significant explanatory power.

Of course, the jump connection network and the partitioned linear and
feedforward network should give equivalent results, at least in theory.
However, as we discuss in the next section, due to problems of conver-
gence to local rather than global optima, we may find that the results may
be different, especially for networks with a large number of regressors and
neurons in one or more hidden layers.

2.4.6  Multilayered Feedforward Networks

Increasing complexity may be approximated by making use of two or more
hidden layers in a network architecture. Figure 2.7 pictures a feedforward
network with two hidden layers, each having two neurons.

The representation of the network appearing in Figure 2.6 is given by
the following system, with ¢* input variables, £* neurons in the first hidden

Inputs - x Hidden Layer - 1 Hidden Layer - 2 Output
neurons - n1,n2 neurons - p1,p2
x1
p1 B y
x2 /
p2
x3

FIGURE 2.7. Feedforward network with two hidden layers
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layer, and [* neurons in the second hidden layer:

-

(2
Mkt = Wko + D Wk illie (2.48)
=1
Npy= — (2.49)
’ 1+ e ke
-
pLt = Pr,o + Z PNk (2.50)
k=1
Py=—t (2.51)
o 1+ePut
"
v ="+ Y NP (2.52)

=1

It should be clear that adding a second hidden layer increases the number
of parameters to be estimated by the factor (k* + 1)(I* — 1) + (I* + 1),
since the feedforward network with one hidden layer, with * inputs and
k* neurons, has (i* + 1)k* + (k* 4+ 1) parameters, while a similar network
with two hidden layers, with [* neurons in the second hidden layer, has
(* + 1)k* + (K* + 1)I* + (I* + 1) hidden layers.

Feedforward networks with multiple hidden layers add complexity. They
do so at the cost of more parameters to estimate, which use up valuable
degrees of freedom if the sample size is limited, and at the cost of greater
training time. With more parameters, there is also the likelihood that the
parameter estimates may converge to a local, rather than global, optimum
(we discuss this problem in greater detail in the next chapter). There has
been a wide discussion about the usefulness of networks with more than
one hidden layer. Dayhoff and DeLeo (2001), referring to earlier work by
Hornik, Stinchcomb, and White (1989), make the following point on this
issue:

A general function approximation theorem has been proven for three-layer
neural networks. This result shows that artificial neural networks with two layers
of trainable weights are capable of approximating any nonlinear function. This is
a powerful computational property that is robust and has ramifications for many
different applications of neural networks. Neural networks can approximate a
multifactorial function in such a way that creating the functional form and
fitting the function are performed at the same time, unlike nonlinear regression
in which a fit is forced to a prechosen function. This capability gives neural
networks a decided advantage over traditional statistical multivariate regression
techniques.

[Dayhoff and DeLeo (2001), p. 1624].
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In most situations, we can work with multilayer perceptron or jump-
connection neural networks with one hidden layer and two or three neurons.
We illustrate the advantage of a very simple neural network against a set
of orthogonal polynomials in the next chapter.

2.4.7 Recurrent Networks

Another commonly used neural architecture is the Elman recurrent net-
work. This network allows the neurons to depend not only on the input
variables x, but also on their own lagged values. Thus the Elman network
builds “memory” in the evolution of the neurons. This type of network is
similar to the commonly used moving average (MA) process in time-series
analysis. In the MA process, the dependent variable y is a function of
observed inputs = as well as current and lagged values of an unobserved
disturbance term or random shock, €. Thus, a ¢g-th order MA process has
the following form:

i* q
ye = Po + Zﬁﬂi,t +e+ Z Vj€—j (2.53)
i=1 j=1
€ =Yi—j — Yi—j (2.54)
The ¢-dimensional coefficient set {v;},j = 1,...,¢, is estimated recur-

sively. Estimation starts with ordinary least squares, eliminating the set of
lagged disturbance terms, {€_;},j = 1,...,q. Then we take the set of resid-

uals for the initial regression, {€}, as proxies for lagged {€;—;},7 =1,...,q,
and estimate the parameters {3;},4 =0, ...,i*, as well as the set of coeffi-
cients of the lagged disturbances, {v;},j =1,...,q. The process continues

over several steps until convergence is achieved and when further iterations
produce little or no change in the estimated coefficients.

In a similar fashion, the Elman network makes use of lagged as well as
current values of unobserved unsquashed neurons in the hidden layer. One
such Elman recurrent network appears in Figure 2.8, with three inputs,
two neurons in one hidden layer, and one output. In the estimation of
both Elman networks and MA processes, it is necessary to use a multi-
step estimation procedure. We start with initializing the vector of lagged
neurons with lagged neuron proxies from a simple feedforward network.
Then we estimate their coefficients and recalculate the vector of lagged
neurons. Parameter values are re-estimated in a recursive fashion. The
process continues until convergence takes place.

Note that the inputs, neurons, and output boxes have time labels for the
current period, ¢, or the lagged period, t — 1. The Elman network is thus
a network specific to data that have a time dimension. The feedforward
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FIGURE 2.8. Elman recurrent network
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network, on the other hand, may be used for cross-section data, which are
not dimensioned by time, as well as time-series data.

The following system represents the recurrent Elman network illustrated
in Figure 2.8:

- -
Nkt = Wro+ = Wro + Zwk,iﬂci,t + Z PrNkt—1 (2.55)
i=1 =1
1
Neo =1 (2.56)
.
ye ="+ Y Wi
k=1

Note that the recurrent Elman network is one in which the lagged hidden-
layer neurons feed back into the current hidden layer of neurons. However,
the lagged neurons do so before the logsigmoid activation function is applied
to them —they enter as lags in their unsquashed state. The recurrent
network thus has an indirect feedback effect from the lagged unsquashed
neurons to the current neurons, not a direct feedback from lagged neu-
rons to the level of output. The moving-average time-series model, on the
other hand, has a direct feedback effect, from lagged disturbance terms to
the level of output y;. Despite the recursive estimation process for obtain-
ing proxies of nonobserved data, the recurrent network differs in this one
important respect from the moving-average time-series model.
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The Elman network is a way of capturing memory in financial markets,
particularly for forecasting high-frequency data such as daily, intra-daily,
or even real-time returns in foreign exchange or share markets. While the
use of lags certainly is one way to capture memory, memory may also show
up in the way the nonlinear structure changes through time. The use of
the Elman network, in which the lagged neurons feed back into the current
neurons, is a very handy way to model this type of memory structure, in
which the hidden layer itself changes through time, due to feedback from
past neurons.

The Elman network is an explicit dynamic network. The feedforward
network is usually regarded as a static network, in which a given set of input
variables at time ¢ are used to forecast a target output variable at time ¢. Of
course, the input variables used in the feedforward network may be lagged
values of the output variable, so that the feedforward network becomes
dynamic by redefinition of the input variables. The Elman network, by
contrast, allows another dynamic structure beyond incorporating lagged
dependent or output variables, y;_1,...,¥y:—k, as current input variables.
Moreover, as Mandic and Chambers (2001) point out, restricting memory
or dynamic structure in the feedforward network only to the input structure
may lead to an unnecessarily large number of parameters. While recurrent
networks may be functionally equivalent to feedforward networks with only
lagged input variables, they generally have far fewer parameters, which, of
course, speeds up the estimation or training process.

2.4.8 Networks with Multiple Outputs

Of course, a feedforward network (or Elman network) can have multiple
outputs. Figure 2.9 shows one such feedforward network architecture, with
three inputs, two neurons, and two outputs. The representation of the
feedforward network architecture is given by the following system:

-

Mkt = Who + D Wk iie (2.57)
iz

Ny = —1 (2.58)

bt =T oo :

.

yre =m0+ Y vNes (2.59)
k=1
-

Yo,6 = V2,0 + Z Yo,k Nk ¢ (2.60)

k=1
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FIGURE 2.9. Feedforward network multiple outputs

We see in this system that the addition of one additional output in
the feedforward network requires additional (k* 4+ 1) parameters, equal to
the number of neurons on the hidden layer plus an additional constant
term. Thus, adding more output variables to be predicted by the network
requires additional parameters which depend on the number of neurons in
the hidden layer, not on the number of input variables.

By contrast, a linear model depending on k regressors or arguments
plus a constant would require additional k 4+ 1 parameters —essentially a
new separate regression — for each additional output variable. Similarly,
a polynomial approximation would require a doubling of the number of
parameters for each additional output.

The use of a single feedforward network with multiple outputs makes
sense, of course, when the outputs of the network are closely related or
dependent on the same set of input variables. This type of network is
especially useful, as well as economical or parsimonious in terms of param-
eters, when we are forecasting a specific variable, such as inflation, at
different horizons. The set of input variables would be the usual determi-
nants of inflation, such as lags of inflation, and demand and cost variables.
The output variables could be inflation forecasts at one-month, quarterly,
six-month, and one-year horizons.

Another application would be a forecast of the term structure of interest
rates. The output variables would be forecasts of interest rates for matu-
rities of three months, six months, one year, and perhaps two years, while
the input variables would be the usual determinants of interest rates, such
as monetary growth rates, lagged inflation rates, and foreign interest rates.

Finally, classification networks, discussed below, are a very practical
application of multiple-output networks. In this type of model, for example,
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we may wish to classify outcomes as a probability of low, medium, or high
risk. We would have two outputs for the probability of low and medium risk,
and the high-risk case would simply be one minus the two probabilities.

2.5 Neural Network Smooth-Transition Regime
Switching Models

While the networks discussed above are commonly used approximators,
an important question remains: How can we adapt these networks for
addressing important and recurring issues in empirical macroeconomics and
finance? In particular, researchers have long been concerned with structural
breaks in the underlying data-generating process for key macroeconomic
variables such as GDP growth or inflation. Does one regime or structure
hold when inflation is high and another when inflation is low or even below
zero? Similarly, do changes in GDP have one process in recession and
another in recovery? These are very important questions for forecasting
and policy analysis, since they also involve determining the likelihood of
breaking out of a deflation or recession regime.

There have been many macroeconomic time-series studies based on
regime switching models. In these models, one set of parameters governs
the evolution of the dependent variable, for example, when the economy is
in recovery or positive growth, and another set of parameters governs the
dependent variable when the economy is in recession or negative growth.
The initial models incorporated two different linear regimes, switching
between periods of recession and recovery, with a discrete Markov pro-
cess as the transition function from one regime to another [see Hamilton
(1989, 1990)]. Similarly, there have been many studies examining non-
linearities in business cycles, which focus on the well-observed asymmetric
adjustments in times of recession and recovery [see Terasvirta and Anderson
(1992)]. More recently, we have seen the development of smooth-transition
regime switching models, discussed in Frances and van Dijk (2000), origi-
nally developed by Terésvirta (1994), and more generally discussed in van
Dijk, Terésvirta, and Franses (2000).

2.5.1 Smooth-Transition Regime Switching Models

The smooth-transition regime switching framework for two regimes has the
following form:

ye = a1xy - U(ye—1;0,¢) + aoxy - [1 — U(yi—130, ¢)] (2.61)

where x; is the set of regressors at time ¢, oy represents the parameters in
state 1, and as is the parameter vector in state 2. The transition function ¥,
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which determines the influence of each regime or state, depends on the
value of y;_1 as well as a smoothness parameter vector # and a threshold
parameter c. Franses and van Dijk (2000, p. 72) use a logistic or logsigmoid
specification for ¥ (y;_1; 6, c):

1
1+ exp[—0(yi—1 — ¢)]

U(yi-136,c) = (2.62)

Of course, we can also use a cumulative Gaussian function instead of
the logistic function. Measures of ¥ are highly useful, since they indicate
the likelihood of continuing in a given state. This model, of course, can be
extended to multiple states or regimes [see Franses and van Dijk (2000),
p. 81].

2.5.2 Neural Network Extensions

One way to model a smooth-transition regime switching framework with
neural networks is to adapt the feedforward network with jump connections.
In addition to the direct linear links from the inputs or regressors = to
the dependent variable y, holding in all states, we can model the regime
switching as a jump-connection neural network with one hidden layer and
two neurons, one for each regime. These two regimes are weighted by a
logistic connector which determines the relative influence of each regime or
neuron in the hidden layer. This system appears in the following equations:

yr = axy + B{[Y(yi—1;0, )]G (x¢; 5)+
(1= W(ys—1;0,¢)|H(xt; M)} +ne (2.63)

where x; is the vector of independent variables at time ¢, and « rep-
resents the set of coefficients for the direct link. The functions G(xi; &)
and H(x¢; A), which capture the two regimes, are logsigmoid and have the
following representations:

G(xi; k) = m (2.64)
H(xyA) = m (2.65)

where the coefficient vectors k and A are the coefficients for the vector x;
in the two regimes, G(xy; k) and H (x¢; A).

Transition function W, which determines the influence of each regime,
depends on the value of y;_1 as well as the parameter vector 6 and a
threshold parameter c¢. As Franses and van Dyck (2000) point out, the
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parameter 6 determines the smoothness of the change in the value of this
function, and thus the transition from one regime to another regime.

This neural network regime switching system encompasses the linear
smooth-transition regime switching system. If nonlinearities are not signif-
icant, then the parameter 3 will be close to zero. The linear component may
represent a core process which is supplemented by nonlinear regime switch-
ing processes. Of course there may be more regimes than two, and this
system, like its counterpart above, may be extended to incorporate three
or more regimes. However, for most macroeconomic and financial studies,
we usually consider two regimes, such as recession and recovery in business
cycle models or inflation and deflation in models of price adjustment.

As in the case of linear regime switching models, the most important
payoff of this type of modeling is that we can forecast more accurately
not only the dependent variable, but also the probability of continuing in
the same regime. If the economy is in deflation or recession, given by the
H(x;; \) neuron, we can determine if the likelihood of continuing in this
state, 1 — U(y;_1;0,¢), is close to zero or one, and whether this likelihood
is increasing or decreasing over time.’

Figure 2.10 displays the architecture of this network for three input
variables.

Input Variables Nonlinear System
— Output
= Variable
\
Y
—1 X2 /
—| X3

Linear System

FIGURE 2.10. NNRS model

91In succeeding chapters, we compare the performance of the neural network smooth-
transition regime switching system with that of the linear smooth-transition regime
switching model and the pure linear model.
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2.6 Nonlinear Principal Components: Intrinsic
Dimensionality

Besides forecasting specific target or output variables, which are deter-
mined or predicted by specific input variables or regressors, we may wish
to use a neural network for dimensionality reduction or for distilling a large
number of potential input variables into a smaller subset of variables that
explain most of the variation in the larger data set. Estimation of such net-
works is called unsupervised training, in the sense that the network is not
evaluated or supervised by how well it predicts a specific readily observed
target variable.

Why is this useful? Many times, investors make decisions on the basis
of a signal from the market. In point of fact, there are many markets
and many prices in financial markets. Well-known indicators such as the
Dow-Jones Industrial Average, the Standard and Poor 500, or the National
Association of Security Dealers’” Automatic Quotations (NASDAQ) are just
that, indices or averages of prices of specific shares or all the shares listed
on the exchanges. The problem with using an index based on an average
or weighted average is that the market may not be clustered around the
average.

Let’s take a simple example: grades in two classes. In one class, half of
the students score 80 and the other half score 100. In another class, all of
the students score 90. Using only averages as measures of student perfor-
mances, both classes are identical. Yet in the first class, half of the students
are outstanding (with a grade of 100) and the other half are average (with
a grade of 80). In the second class, all are above average, with a grade of
90. We thus see the problem of measuring the intrinsic dimensionality of
a given sample. The first class clearly needs two measures to explain sat-
isfactorily the performance of the students, while one measure is sufficient
for the second class.

When we look at the performance of financial markets as a whole, just
as in the example of the two classes, we note that single indices can be very
misleading about what is going on. In particular, the market average may
appear to be stagnant, but there may be some very good performers which
the overall average fails to signal.

In statistical estimation and forecasting, we often need to reduce the
number of regressors to a more manageable subset if we wish to have a
sufficient number of degrees of freedom for any meaningful inference. We
often have many candidate variables for indicators of real economic activity,
for example, in studies of inflation [see Stock and Watson (1999)]. If we use
all of the possible candidate variables as regressors in one model, we bump
up against the “curse of dimensionality,” first noted by Bellman (1961).
This “curse” simply means that the sample size needed to estimate a model



42 2. What Are Neural Networks?

with a given degree of accuracy grows exponentially with the number of
variables in the model.

Another reason for turning to dimensionality reduction schemes, espe-
cially when we work with high-frequency data sets, is the empty space
phenomenon. For many periods, if we use very small time intervals, many
of the observations for the variables will be at zero values. Such a set
of variables is called a sparse data set. With such a data set estimation
becomes much more difficult, and dimensionality reduction methods are
needed.

2.6.1 Linear Principal Components

The linear approach to reducing a larger set of variables into a smaller
subset of signals from a large set of variables is called principal components
analysis (PCA). PCA identifies linear projections or combinations of data
that explain most of the variation of the original data, or extract most
of the information from the larger set of variables, in decreasing order of
importance. Obviously, and trivially, for a data set of K vectors, K linear
combinations will explain the total variation of the data. But it may be the
case that only two or three linear combinations or principal components
may explain a very large proportion of the variation of the total data set,
and thus extract most of the useful information for making decisions based
on information from markets with large numbers of prices.

As Fotheringhame and Baddeley (1997) point out, if the underlying true
structure interrelating the data is linear, then a few principal components or
linear combinations of the data can capture the data “in the most succinct
way,” and the resulting components are both uncorrelated and independent
[Fotheringhame and Baddeley (1997), p. 1].

Figure 2.11 illustrates the structure of principal components mapping. In
this figure, four input variables, 1 through x4, are mapped into identical
output variables z1 through x4, by H units in a single hidden layer. The
H units in the hidden layer are linear combinations of the input variables.
The output variables are themselves linear combinations of the H units.
We can call the mapping from the inputs to the H-units a “dimensionality
reduction mapping,” while the mapping from the H-units to the output
variables is a “reconstruction mapping.”©

The method by which the coefficients linking the input variables to the
H units are estimated is known as orthogonal regression. Letting X =
[1,...,2%] be a dimension T by k matrix of variables we obtain the fol-
lowing eigenvalues A\, and eigenvectors v, through the process of orthogonal

10See Carreira-Perpinan (2001) for further discussion of dimensionality reduction in
the context of linear and nonlinear methods.
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Inputs Outputs

FIGURE 2.11. Linear principal components

regression through calculation of eigenvalues and eigenvectors:
[(X'X =M 1ve =0 (2.66)

For a set of k regressors, there are, of course, at most k eigenvalues
and k eigenvectors. The eigenvalues are ranked from the largest to the
smallest. We use the eigenvector v, associated with the largest eigenvalue
to obtain the first principal component of the matrix X. This first principle
component is simply a vector of length T', computed as a weighted average
of the k-columns of X, with the weighting coefficients being the elements of
V. In a similar manner, we may find second and third principal components
of the input matrix by finding the eigenvector associated with the second
and third largest eigenvalues of the matrix X, and multiplying the matrix
by the coefficients from the associated eigenvectors.

The following system of equations shows how we calculate the princi-
ple components from the ordered eigenvalues and eigenvectors of a T-by-k
dimension matrix X:

AL o
X'X—-|10 X\ Lo | [vrv2. v =0
0 0 Ak

The total explanatory power of the first two or three sets of principal
components for the entire data set is simply the sum of the two or three
largest eigenvalues divided by the sum of all of eigenvalues.
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FIGURE 2.12. Neural principal components

2.6.2 Nonlinear Principal Components

The neural network structure for nonlinear principal components anal-
ysis (NLPCA) appears in Figure 2.12, based on the representation in
Fotheringhame and Baddeley (1997).

The four input variables in this network are encoded by two intermediate
logsigmoid units, C11 and C12, in a dimensionality reduction mapping.
These two encoding units are combined linearly to form H neural principal
components. The H-units in turn are decoded by two decoding logsigmoid
units C21 and C22, in a reconstruction mapping, which are combined
linearly to regenerate the inputs as the output layers.!' Such a neural
network is known as an auto-associative mapping, because it maps the
input variables x1, ..., x4 into themselves.

Note that there are two logsigmoidal unities, one for the dimensionality
reduction mapping and one for the reconstruction mapping.

Such a system has the following representation, with EN as an encod-
ing neuron and DN as a decoding neuron. Letting X be a matrix with
K columns, we have J encoding and decoding neurons, and P nonlinear
principal components:

K
EN; = Z o kX
k=1

1
EN,=
7 1+ exp(—EN;)

HFotheringhame and Baddeley (1997) point out that although it is not strictly
required, networks usually have equal numbers in the encoding and decoding layers.
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J
Hy, = Z Bp,; EN;

Jj=1

DN; =Y vjpH,

1

DN, = ————
7 1+exp(—DNj)

J
Xy =) 6r;DN;

The coefficients of the network link the input variables x to the encoding
neurons C11 and C12, and to the nonlinear principal components. The
parameters also link the nonlinear principal components to the decoding
neurons C21 and C22, and the decoding neurons to the same input vari-
ables z. The natural way to start is to take the sum of squared errors for
each of the predicted values of z, denoted by Z and the actual values. The
sum of the total squared errors for all of the different x’s is the object of
minimization, as shown in Equation 2.67:

kT
Min Z Z Tjp — xjt (2.67)

j=1t=1

where k is the number of input variables and T is the number of obser-
vations. This procedure in effect gives an equal weight to all of the input
categories of . However, some of the inputs may be more volatile than
others, and thus harder to accurately predict as than others. In this case,
it may not be efficient to give equal weight to all of the variables, since
the computer will be working equally hard to predict inherently less pre-
dictable variables as it is for more predictable variables. We would like the
computer to spend more time where there is a greater chance of success. In
robust regression, we can weight the different squared errors of the input
variables differently, giving less weight to those inputs that are inherently
more volatile or less predictable and more weight to those that are less
volatile and thus easier to predict:

Min[vS~"0'] (2.68)

where «; is the weight given to each of the input variables. This weight
is determined during the estimation process itself. As each of the errors is



46 2. What Are Neural Networks?

computed for the different input variables, we form the matrix ) during
the estimation process:

€11€21 ...€k1

E= o (2.69)

ei\rear ... LT

S=FEE (2.70)

where ¥ is the variance—covariance matrix of the residuals and v is the row
vector of the sum of squared errors:

Ve = [é\lté\gt . gkt] (271)

This type of robust estimation, of course, is applicable to any model
having multiple target or output variables, but it is particularly useful for
nonlinear principal components or auto-associative maps, since valuable
estimation time will very likely be wasted if equal weighting is given to
all of the variables. Of course, each ey, will change during the course of
the estimation process or training iterations. Thus ¥ will also change and
initially not reflect the true or final covariance weighting matrix. Thus, for
the initial stages of the training, we set % equal to the identity matrix of
dimension k, ;. Once the nonlinear network is trained, the output is the
space spanned by the first H nonlinear principal components.

Estimation of a nonlinear dimensionality reduction method is much
slower than that of linear principal components. We show, however, that
this approach is much more accurate than the linear method when we
have to make decisions in real time. In this case, we do not have time
to update the parameters of the network for reducing the dimension of a
sample. When we have to rely on the parameters of the network from the
last period, we show that the nonlinear approach outperforms the linear
principal components.

2.6.3 Application to Asset Pricing

The H principal component units from linear orthogonal regression or neu-
ral network estimation are particularly useful for evaluating expected or
required returns for new investment opportunities, based on the capital
asset pricing model, better known as the CAPM. In its simplest form, this
theory requires that the minimum required return for any asset or portfolio
k, 7k, net of the risk-free rate r¢, is proportional, by a factor S, to the
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difference between the observed market return, r,, less the risk-free rate:

TE = ry+ ﬂk[Tm — Tf] (2.72)
_ Cov(rg,Tm)

Br = W (2.73)

Tkt = Fk,t + € (274)

The coefficient §y is widely known as the CAPM beta for an asset or
portfolio return k, and is computed as the ratio of the covariance of the
returns on asset k with the market return, divided by the variance of the
return on the market. This beta, of course, is simply a regression coeflicient,
in which the return on asset k, ry, less the risk-free rate, ry, is regressed
on the market rate, r,,, less the same risk-free rate. The observed market
return at time ¢, ry ¢, is assumed to be the sum of two components: the
required return, 7y ;, and an unexpected noise or random shock, €. In this
CAPM literature, the actual return on any asset ry; is a compensation
for risk. The required return rj;: represents diversifiable risk in financial
markets, while the noise term represents nondiversifiable idiosyncratic risk
at time t.

The appeal of the CAPM is its simplicity in deriving the minimum
expected or required return for an asset or investment opportunity. In
theory, all we need is information about the return of a particular asset k,
the market return, the risk-free rate, and the variance and covariance of
the two return series. As a decision rule, it is simple and straightforward:
if the current observed return on asset k at time ¢, ¢, is greater than the
required return, r, then we should invest in this asset.

However, the limitation of the CAPM is that it identifies the market
return with only one particular market return. Usually the market return
is an index, such as the Standard and Poor or the Dow-Jones, but for many
potential investment opportunities, these indices do not reflect the relevant
or benchmark market return. The market average is not a useful signal
representing the news and risks coming from the market. Not surprisingly,
the CAPM model does not do very well in explaining or predicting the
movement of most asset returns.

The arbitrage pricing theory (APT) was introduced by Ross (1976) as an
alternative to the CAPM. As Campbell, Lo, and MacKinlay (1997) point
out, the APT provides an approximate relation for expected or required
asset returns by replacing the single benchmark market return with a num-
ber of unidentified factors, or principal components, distilled from a wide
set of asset returns observed in the market.

The intertemporal capital asset pricing model (ICAPM) developed by
Merton (1973) differs from the APT in that it specifies the benchmark
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market return index as one argument determining the required return, but
allows additional arguments or state variables, such as the principal com-
ponents distilled from a wider set of returns. These arise, as Campbell,
Lo, and MacKinlay (1997) point out, from investors’ demand to hedge
uncertainty about further investment opportunities.

In practical terms, as Campbell, Lo, and MacKinlay also note, it is
not necessary to differentiate the APT from the ICAPM. We may use one
observed market return as one variable for determining the required return.
But one may include other arguments as well, such as macroeconomic indi-
cators that capture the systematic risk of the economy. The final remaining
arguments can be the principal components, either from the linear or neural
estimation, distilled from a wide set of observed asset returns.

Thus, the required return on asset k, 7y, can come from a regression of
these returns, on one overall market index rate of return, on a set of macro-
economic variables (such as the yield spread between long- and short-term
rates for government bonds, the expected and unexpected inflation rates,
industrial production growth, and the yield between corporate high and
low-grade bonds) and on a reasonably small set of principal components
obtained from a wide set of returns observed in the market. Campbell, Lo,
and MacKinlay cite research that suggests that five would be an adequate
number of principal components to compute from the overall set of returns
observed in the market.

We can of course combine the forecasts of the CAPM, the APT, and
the nonlinear autoassociative maps associated with the nonlinear principal
component forecasts with a thick model. Granger and Jeon (2001) describe
thick modeling as “using many alternative specifications of similar quality,
using each to produce the output required for the purpose of the modeling
exercise,” and then combining or synthesizing the results [Granger and
Jeon (2001), 3].

Finally, as we discuss later, a very useful application —likely the most
useful application —of nonlinear principal components is to distill infor-
mation about the underlying volatility dynamics from observed data on
implied volatilities in markets for financial derivatives. In particular, we
can obtain the implied volatility measures on all sorts of options, and swap-
options or “swaptions” of maturities of different lengths, on a daily basis.
What is important for market participants to gauge is the behavior of the
market as a whole: From these diverse signals, volatilities of different matu-
rities, is the riskiness of the market going up or down? We show that for
a variety of implied volatility data, one nonlinear principal component can
explain a good deal of the overall market riskiness, where it takes two or
more linear principal components to achieve the same degree of explanatory
power. Needless to say, one measure for summing up market developments
is much better than two or more.

While the CAPM, APT, and ICAPM are used for making decisions about
required returns, nonlinear principal components may also be used in a
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dynamic context, in which lagged variables may include lagged linear or
nonlinear principal components for predicting future rates of return for any
asset. Similarly, the linear or nonlinear principal component may be used
to reduce a larger number of regressors to a smaller, more manageable
number of regressors for any type of model. A pertinent example would
be to distill a set of principal components from a wide set of candidate
variables that serve as leading indicators for economic activity. Similarly,
linear or nonlinear principal components distilled from the wider set of
leading indicators may serve as the proxy variables for overall aggregate
demand in models of inflation.

2.7 Neural Networks and Discrete Choice

The analysis so far assumes that the dependent variable, y, to be predicted
by the neural network, is a continuous random variable rather than a dis-
crete variable. However, there are many cases in financial decision making
when the dependent variable is discrete. Examples are easy to find, such as
classifying potential loans as low and acceptable risk or high and unaccept-
able. Another is the likelihood that a particular credit card transaction is
a true or a fraudulent charge.

The goal of this type of analysis is to classify data, as accurately as
possible, into membership in two groups, coded as 0 or 1, based on observed
characteristics. Thus, information on current income, years in current job,
years of ownership of a house, and years of education, may help classify a
particular customer as an acceptable or high-risk case for a new car loan.
Similarly, information about the time of day, location, and amount of a
credit card charge, as well as the normal charges of a particular card user,
may help a bank security officer determine if incoming charges are more
likely to be true and classified as 0, or fraudulent and classified as 1.

2.7.1 Discriminant Analysis

The classical linear approach for classification based on observed char-
acteristics is linear discriminant analysis. This approach takes a set of
k-dimensional characteristics from observed data falling into two groups, for
example, a group that paid its loans on schedule and another that became
arrears in loan payments. We first define the matrices X7, X5, where the
rows of each X; represent a series of k-different characteristics of the mem-
bers of each group, such as a low-risk or a high-risk group. The relevant
characteristics may be age, income, marital status, and years in current
employment. Discriminant analysis proceeds in three steps:

1. Calculate the means of the two groups, Xi,Xs, as well as the
variance—covariance matrices, X1, Y.
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2. Compute the pooled variance, S = (”17_1) il + ("27_1> ig,

ni+nz—2 ni+nz—2
where n1,no represent the population sizes in groups 1 and 2.

3. Estimate the coefficient vector, B =51 [Yl — Yg].

4. With the vector B, examine the characteristics of a new set of charac-
teristics for classification in either the low-risk or high-risk sets, X or
Xo. Defining the net set of characteristics, z;, we calculate the value:
Bx;. If this value is closer to X than to X5, then we classify z;
as belonging to the low-risk group Xj. Otherwise, it is classified as
being a member of X5.

Discriminant analysis has the advantage of being quick, and has been
widely used for an array of interesting financial applications.'? However, it
is a simple linear method, and does not take into account any assumptions
about the distribution of the dependent variable used in the classification.
It classifies a set of characteristics X as belonging to group 1 or 2 simply
by a distance measure. For this reason it has been replaced by the more
commonly used logistic regression.

2.7.2  Logit Regression

Logit analysis assumes the following relation between probability p; of the
binary dependent variable y;, taking values zero or one, and the set of k
explanatory variables x:

1

e (2.75)

Di

To estimate the parameters 8 and [y, we simply maximize the following
log-likelihood function A with respect to the parameter vector (3:

MazA = ()" 1 —p)' (2.76)

1 i [ o—lmiB+Be] 1TV
- H (1 + e—[ziB+Bo] > (1 + e—[iviﬁ-‘rﬁo]) (2.77)

where y; represents the observed discrete outcomes.

12For example, see Altman (1981).
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For optimization, it is sometimes easier to optimize the log-likelihood
function In(A) :

MazIn(A) = y; In(pi) + (1 —ys) In (1 —py) (2.78)

The k dimensional coefficient vector 3 does not represent a set of partial
derivatives with respect to characteristics ;. The partial derivative comes
from the following expression:

Op; eTiB+0Bo
P =B (2.79)
8$i,k (1+ eﬂiiﬁJrBo)

The partial derivatives are of particular interest if we wish to identify
critical characteristics that increase or decrease the likelihood of being in
a particular state or category, such as representing a risk of default on a
loan.13:14

The usual way to evaluate this logistic model is to examine the percentage
of correct predictions, both true and false, set at 1 and 0, on the basis of
the expected value. Setting the estimated p; at 0 or 1 depends on the choice
of an appropriate threshold value. If the estimated probability or expected
value p; is greater than .5, then p; is rounded to 1, and expected to take
place. Otherwise, it is not expected to occur.'®

2.7.3 Probit Regression

Probit models are also used: these models simply use the cumulative
Gaussian normal distribution rather than the logistic function for calcu-
lating the probability of being in one category or not:

pi = (26 + Bo)

z; B+Po
_ / o()dt

— 00

where the symbol ® is simply the cumulative standard distribution, while
the lower case symbol, ¢, as before, represents the standard normal den-
sity function. We maximize the same log-likelihood function. The partial

13In many cases, a risk-averse decision maker may take a more conservative approach.
For example, if the risk of having serious cancer exceeds .3, the physician may wish to
diagnose the patient as a “high risk,” warranting further diagnosis.

M More discussion appears in Section 2.7.4 about the computation of partial deriva-
tives in nonlinear neural network regression.

L5Further discussion appears in Section 2.8 about evaluating the success of a nonlinear
regression.
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derivatives, however, come from the following expression:

Opi _
8:51-,;6

@ (i + Bo) Br (2.80)

Greene (2000) points out that the logistic distribution is similar to the
normal one, except in the tails. However, he points out that it is difficult to
justify the choice of one distribution or another on “theoretical grounds,”
and for most cases, “it seems not to make much difference” [Greene (2000),
p. 815].

2.7.4 Weibull Regression

The Weibull distribution is an asymmetric distribution, strongly negatively
skewed, approaching zero only slowly, and 1 more rapidly than the probit
and logit models:

pi = 1 — exp(—exp(z: + fo)) (2.81)

This distribution is used for classification in survival analysis and comes
from “extreme value theory.” The partial derivative is given by the following
equation:

Opi
8331' k

)

= exp(x; [ + Bo) exp(—(x:8 + Bo)) B (2.82)

This distribution is also called the Gompertz distribution and the regression
model is called the Gompit model.

2.7.5 Neural Network Models for Discrete Choice

Logistic regression is a special case of neural network regression for binary
choice, since the logistic regression represents a neural network with one
hidden neuron. The following adapted form of the feedforward network
may be used for a discrete binary choice model, predicting probability p;
for a network with k* input characteristics and j* neurons:

-

Nji = Wj,0 + Z Wy kTh,i (2.83)
k=1

Nji = ! 2.84

PP pe (2.84)

i
pi = Z”Yij,z‘ (2.85)
=1
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J
Z’yj = 17’7]' > 0
j=1

Note that the probability p; is a weighted average of the logsigmoid neu-
rons N;;, which are bounded between 0 and 1. Since the final probability
is also bounded in this way, the final probability is a weighted average of
these neurons. As in logistic regression, the coefficients are obtained by
maximizing the product of likelihood function, given the preceding (or the
sum of the log-likelihood function).

The partial derivatives of the neural network discrete choice models are
given by the following expression:

Ip;
axi,k

e
=Y N1 = Nji)wj
j=1

2.7.6 Models with Multinomial Ordered Choice

It is straightforward to extend the logit and neural network models to
the case of multiple discrete choices or classification into three or more
outcomes. In this case, logit regression is known as logistic estimation. For
example, a credit officer may wish to classify potential customers into safe,
low-risk, and high-risk categories based on a net of characteristics, .

One direct approach for such a classification is a nested classification.
One can use the logistic or neural network model to separate the normal
categories from the absolute default or high-risk categories, with a first-
stage estimation. Then, with the remaining normal data, one can separate
the categories into low-risk and higher-risk categories.

However, there are many cases in financial decision making where there
are multiple categories. Bond ratings, for example, are often in three or
four categories. Thus, one might wish to use logistic or neural network
classification to predict which type of category a particular firm’s bond may
fall into, given the characteristics of the particular firm, from observable
market data and current market classifications or bond ratings.

In this case, using the example of three outcomes, we use the softmax
function to compute pi, ps, p3 for each observation i:

1
Pri= 1 + e—[®iB1+p0] (2.86)
P = SR 2.87
28 = 1 + e~ [®iB2+S20] ( -87)
1
Pyy=——F— (2.88)

1 + e~ [®iBs+Bs0]
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The probabilities of falling in category 1, 2, or 3 come from the
cumulative probabilities:

Py
Pii=—=3 (2.89)
>io1 Py
P
D2i = —3 - (2.90)
Z]‘:1 P
Py
DP3,i 3 (291)
Zj:l P] T

Neural network models yield the cumulative probabilities in a similar
manner. In this case there are m* neurons in the hidden layer, k* inputs,
and j probability outputs at each observation i, for ¢* observations:

&+
Nm,i = Wm0 + ij,kl‘k,i (2.92)
k=1
Nops = —— (2.93)
m,i 1 F enm .
Pii=Y YmilNji, forj=123 (2.94)
m=1
m=1
Pji = =5 — (2.96)
Zj:l P

The parameters of both the logistic and neural network models are
estimated by maximizing a similar likelihood function:

A= H (p1.0)"" (p2,0)"" (p3.0)¥ (2.97)

The success of these alternative models is readily tabulated by the
percentage of correct predictions for particular categories.
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2.8 The Black Box Criticism and Data Mining

Like polynomial approximation, neural network estimation is often criti-
cized as a black box. How do we justify the number of parameters, neurons,
or hidden layers we use in a network? How does the design of the net-
work relate to “priors” based on underlying economic or financial theory?
Thomas Sargent (1997), quoting Lucas’s advice to researchers, reminds us
to beware of economists bearing “free parameters.” By “free,” we mean
parameters that cannot be justified or restricted on theoretical grounds.

Clearly, models with a large number of parameters are more flexible than
models with fewer parameters and can explain more variation in the data.
But again, we should be wary. A criticism closely related to the black box
issue is even more direct: a model that can explain everything, or nearly
everything, in reality explains nothing. In short, models that are too good
to be true usually are.

Of course, the same criticism can be made, mutatis mutandis, of linear
models. All too often, the lag length of autoregressive models is adjusted to
maximize the in-sample explanatory power or minimize the out-of-sample
forecasting errors. It is often hard to relate the lag structure used in many
linear empirical models to any theoretical priors based on the underlying
optimizing behavior of economic agents.

Even more to the point, however, is the criticism of Wolkenhauer (2001):
“formal models, if applicable to a larger class of processes are not specific
(precise) enough for a particular problem, and if accurate for a particular
problem they are usually not generally applicable” [Wolkenhauer (2001),
p. xx].

The black box criticism comes from a desire to tie down empirical
estimation with the underlying economic theory. Given the assumption
that households, firms, and policy makers are rational, these agents or
actors make decisions in the form of optimal feedback rules, derived from
constrained dynamic optimization and/or strategic interaction with other
players. The agents fully know their economic environment, and always act
optimally or strategically in a fully rational manner.

The case for the use of neural networks comes from relaxing the assump-
tion that agents fully know their environment. What if decision makers
have to learn about their environment, about the nature of the shocks and
underlying production, the policy objectives and feedback rules of the gov-
ernment, or the ways other players formulate their plans? It is not too hard
to imagine that economic agents have to use approximations to capture and
learn the way key variables interact in this type of environment.

From this perspective, the black box attack could be turned around.
Should not fundamental theory take seriously the fact that economic
decision makers are in the process of learning, of approximating their envi-
ronment? Rather than being characterized as rational and all knowing,
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economic decision makers are boundedly rational and have to learn by
working with several approximating models in volatile environments. This
is what Granger and Jeon (2001) mean by “thick modeling.”

Sargent (1999) himself has shown us how this can be done. In his book
The Congquest of American Inflation, Sargent argues that inflation policy
“emerges gradually from an adaptive process.” He acknowledges that his
“vindication” story “backs away slightly from rational expectations,” in
that policy makers used a 1960 Phillips curve model, but they “recurrently
re-estimated a distributed lag Phillips curve and used it to reset a target
inflation—unemployment rate pair” [Sargent (1999), pp. 4-5].

The point of Sargent’s argument is that economists should model the
actors or agents in their environments not as all-knowing rational angels
who know the true model but rather in their own image and likeness, as
econometricians who have to approximate, in a recursive or ongoing pro-
cess, the complex interactions of variables affecting them. This book shows
how one form of approximation of the complex interactions of variables
affecting economic and financial decision makers takes place.

More broadly, however, there is the need to acknowledge model uncer-
tainty in economic theory. As Hansen and Sargent (2000) point out, to say
that a model is an approximation is to say that it approximates another
model. Good theory need not work under the “communism of models,”
that the people being modeled “know the model” [Hansen and Sargent
(2000), p. 1]. Instead, the agents must learn from a variety of models, even
misspecified models.

Hansen and Sargent invoke the Ellsberg paradox to make this point.
In this setup, originally put forward by Daniel Ellsberg (1961), there is
a choice between two urns, one that contains 50 red balls and 50 black
balls, and the second urn, in which the mix is unknown. The players can
choose which urn to use and place bets on drawing red or black balls,
with replacement. After a series of experiments, Ellsberg found that the
first urn was more frequently chosen. He concluded that people behave in
this way to avoid ambiguity or uncertainty. They prefer risk in which the
probabilities are known to situations of uncertainty, when they are not.

However, Hansen and Sargent ask, when would we expect the second urn
to be chosen? If the agents can learn from their experience over time, and
readjust their erroneous prior subjective probabilities about the likelihood
of drawing red or black from the second urn, there would be every reason
to choose the second urn. Only if the subjective probabilities quickly con-
verged to 50-50 would the players become indifferent. This simple example
illustrates the need, as Hansen and Sargent contend, to model decision
making in dynamic environments, with model approximation error and
learning [Hansen and Sargent (2000), p. 6].

However, there is still the temptation to engage in data mining, to
overfit a model by using increasingly complex approximation methods.
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The discipline of Occam’s razor still applies: simpler more transparent
models should always be preferred over more complex less transparent
approaches. In this research, we present simple neural network alterna-
tives to the linear model and assess the performance of these alternatives
by time-honored statistical criteria as well as the overall usefulness of these
models for economic insight and decision making. In some cases, the sim-
ple linear model may be preferable to more complex alternatives; in others,
neural network approaches or combinations of neural network and linear
approaches clearly dominate. The point we wish to make in this research is
that neural networks serve as a useful and readily available complement to
linear methods for forecasting and empirical research relating to financial
engineering.

2.9 Conclusion

This chapter has presented a variety of networks for forecasting, for dimen-
sionality reduction, and for discrete choice or classification. All of these
networks offer many options to the user, such as the selection of the num-
ber of hidden layers, the number of neurons or nodes in each hidden layer,
and the choice of activation function with each neuron. While networks can
easily get out of hand in terms of complexity, we show that the most useful
network alternatives to the linear model, in terms of delivering improved
performance, are the relatively simple networks, usually with only one hid-
den layer and at most two or three neurons in the hidden layer. The network
alternatives never do worse, and sometimes do better, in the examples with
artificial data (Chapter 5), with automobile production, corporate bond
spreads, and inflation/deflation forecasting (Chapters 6 and 7).

Of course, for classification, the benchmark models are discriminant anal-
ysis, as well as nonlinear logit, probit, and Weibull methods. The neural
network performs at least as well as or better than all of these more famil-
iar methods for predicting default in credit cards and in banking-sector
fragility (Chapter 8).

For dimensionality reduction, the race is between linear principal compo-
nents and the neural net auto-associate mapping. We show, in the example
with swap-option cap-floor volatility measures, that both methods are
equally useful for in-sample power but that the network outperforms the
linear methods for out-of-sample performance (Chapter 9).

The network architectures can mutate, of course. With a multilayer per-
ceptron or feedforward network with several neurons in a hidden layer,
it is always possible to specify alternative activation functions for the
different neurons, with a logsigmoid function for one neuron, a tansig func-
tion for another, a cumulative Gaussian density for a third. But most
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researchers have found the “plain vanilla” multilayer perceptron network
with logsigmoid activation functions fairly reliable and as accurate as more
complex alternatives.

2.9.1 MATLAB Program Notes

The MATLAB program for estimating a multilayer perceptron or feedfor-
ward network on my webpage is the program ffnet9.m and uses the sub-
function ffnet9fun.m. There are similar programs for recurrent Elman net-
works and jump connection networks: ffnet9_elman.m, ffnet9fun_elman.m,
ffnet9_jump.m, and ffnet9fun_jump.m. The programs have instructions for
the appropriate input arguments as well as descriptions of the outputs of
the program.

For implementing a GARCH model, there is a program mygarch.m,
which invokes functions supplied by the MATLAB Garch Toolbox.

For linear estimation, there is the ols.m program. This program has
several subfunctions for diagnostics.

The classification models use the following programs: classnet.m, class-
netfun.m, logit.m, probit.m, gompit.m.

For principal components, the programs to use are nonlinpc.m and
nonlinpcfun.m. These functions in turn invoke the MATLAB program,
princomp.m, which is part of the MATLAB Statistics Toolbox.

2.9.2 Suggested FExercises

For deriving the ridgelet network function, described in Section 2.4.4, you
can use the MATLAB Symbolic Toolbox. It is easy to use and saves a lot
of time and trouble. At the very least, in writing code, you can simply cut
and paste the derivative formulae from this Toolbox to your own programs.

Simply type in the command funtool.m, and in the box beside “f="
type in the standard normal Gaussian formula, “inv(2 *pi) * exp(—x "2)”
(no need for parentheses). Then click on the derivative button, “df/dx,”
five times until you arrive at the formula given for the ridgelet network.

Repeat the above exercise for the logsigmoid function, setting in the for-
mula next of “f=" “inv(14+exp(—x))’. After taking the derivatives a number
of times, compare the graph of the function, in the interval [—2 pi, 2 pi]
with that of the corresponding (n—1) derivative of the Gaussian function.
Why do they start to look alike?
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FEistimation of a Network with
Evolutionary Computation

If the specification of the neural network for approximation appears to
be inspired by biology, the reader will no doubt suspect that the best
way to estimate or train a network is inspired by genetics and evolution.
Estimating a nonlinear model is always tricky business. The programs may
fail to converge, or they may converge to locally, rather than globally,
optimal estimates. We show that the best way to estimate a network, to
implement the network, is to harness the power of evolutionary genetic
search algorithms.

3.1 Data Preprocessing

Before moving to the actual estimation, however, the first order of business
is to adjust or scale the data and to remove nonstationarity. In other words,
the first task is data preprocessing. While linear models also require that
data be stationary and seasonally adjusted, scaling is critically important
for nonlinear estimation, since such scaling reduces the search space for
finding the optimal coefficient estimates.

3.1.1 Stationarity: Dickey-Fuller Test

Before starting work with any time series as a dependent variable, we
must ensure that the data represent covariance stationary time series.
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This means that the first and second moments — means, variances, and
covariances — are constant through time. Since statistical inference is based
on the assumption of fixed means, variances, and covariances, it is essential
to ensure that the variables in question are indeed stationary.

The most commonly used test is the one proposed by Dickey and Fuller
(1979), for a given series {y;}:

Ay = pyr—1 + 1 Aye—1 + a2Aye—o + -+ Ay + €4 (3.1)

where Ay = y¢ — y¢+—1, p,Q1, ..., q are coefficients to be estimated, and
¢t i1s a random disturbance term with mean zero and constant variance.
Thus, E(g;) = 0, and E(¢7) = o2

The null hypothesis under this test is p = 0. In this case, the regression
model reduces to the following expression:

Ye = Ye—1 1Ay 1+ Ay + -+ apAyp_p + gy (3.2)

Under this null hypothesis, y; at any moment will be equal to y;—1 plus
or minus the effect of the terms given by the sum of o;Ay;—;, i =1,..., k.
In this case, the long-run expected value of the series, when y; = y;_1,
becomes indeterminate. Or perhaps more succinctly, the mean at any given
time is conditional on past values of y;. With p = 0, the series is called
nonstationary, or a unit root process.

The relevant alternative hypothesis is p < 0. With p = —1, the model
reduces to the following expression:

Yo = 1Ay + aaAy_o + -+ pAy—p + &4 (3.3)

In the long run, with y; = y;_1, by definition, Ay, _; =0, for i =4,...,k,
so that the expected value of y;, Ey; = E(e;) = 0.

If there is some persistence in the model, with p falling in the interval
between [—1, 0], the relevant regression becomes:

ye = L4+ p)ys—1 + a1 Ays—1 + o Ayp_o + - + pAyi_p + €4 (3.4)

In this case, in the long run, with y; = y;—1, it is still true that Ay,_; =0,
for i = i,..., k. The only difference is that the expression for the long-run
mean reduces to the following expression, with p* = (1 4 p):

y(1—p") =& (3.5)

In this case, the expected value of y;, Eyy, is equal to E(g;)/(1 — p*).

It is thus crucial to ensure that the coefficient p is significantly less than
zero for stationarity. The tests of Dickey and Fuller are essentially modi-
fied, one-sided t-tests of the hypothesis of p < 0 in a linear regression.
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Augmented Dickey-Fuller tests allow the presence of constant and trend
terms in the preceding regressions.

The stationarity tests of Dickey and Fuller led to the development of
the Phillips and Perron (1988) test. This test goes beyond Dickey and
Fuller in that it permits a joint test of significance of the coefficients of
the autoregressive term as well as the trend and constant terms.! Further
work on stationarity has involved tests for structural breaks in univariate
nonstationarity time series [see, for example, Benerjee, Lumsdaine, and
Stock (1992); Lumsdaine and Papell (1997); Perron (1989); and Zivot and
Andrews (1992)].

Fortunately, for most financial time-series data such as share prices,
nominal money supply, and gross domestic product, logarithmic first differ-
encing usually transforms these nonstationarity time series into stationarity
series. Logarithmic first differencing simply involves taking the logarithmic
value of a series Z, and then taking its first difference.

Az =In(Z) — In(Z;—1) (3.6)
2z = In(Zy) (3.7)

3.1.2  Seasonal Adjustment: Correction for Calendar Effects

A further problem with time-series data arises from seasonal or calendar
effects. With quarterly or monthly data, there are obvious end-of-year
December spikes in consumer spending. With daily data, there are effects
associated with particular months, days of the week, and holidays. The
danger of not adjusting the data for these seasonal factors in nonlinear
neural network estimation is overfitting the data. The nonlinear estima-
tion process will continue to fine tune the fitting of the model or look for
needlessly complex representations to account for purely seasonal factors.

Of course, the danger of any form of seasonal adjustment is that one may
extract useful information from the data. It is thus advisable to work with
the raw, seasonally unadjusted series as a benchmark.

Fortunately, for quarterly or monthly data, one may use a simple dummy
variable regression method. For quarterly data, for example, one estimates
the following regression:

Az=Q'B+u (3.8)

1See Hamilton (1994), Chapter 17, for a detailed discussion of unit roots and tests
for stationarity in time series.
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where Az; is the stationarity raw series, the matrix Q = [Q2, @3, Q4] rep-
resents dummy variables for the second, third, and fourth quarters of the
year, and u is the residual, or everything in the raw series that cannot be
explained by the quarterly dummy variables. These dummy variables take
on values of 1 when the observation falls in the respective quarter, and zero
otherwise.

A similar procedure is performed for monthly data, with eleven monthly
dummy variables.?

For daily data, the seasonal filtering regression is more complicated.
Gallant, Rossi, and Tauchen (1992) propose the following sets of regressors:

1. Day-of-week dummies for Tuesday through Friday

2. Dummy variables for each of the number of nontrading days preceding
the current trading day?®

3. Dummy variables for the months of March, April, May, June, July,
August, September, October, and November

4. Dummy variables for each week of December and January

In the Gallant-Rossi-Tauchen procedure, one first regresses the sta-
tionarity variable Az; on the set of adjustment variables A;, where A is
the matrix of dummy variables, for days of the week, months, weeks in
December and January, and the number of nontrading days preceding the
current trading day:

Az=AB+u (3.9)

Gallant, Rossi, and Tauchen also allow the variance, as well as the mean,
of the data, to be adjusted for the calendar effects. One simply does a
regression of the logarithm of %2 on the set of dummy calendar variables,
A, and the trend terms [t t?], where t = 1,2,...,T, with T representing
the number of observations. The regression equation becomes:

In(u?) = Ay + ¢ (3.10)

A=[Att? (3.11)

2In both cases, omit one dummy variable to avoid collinearity with the constant term
in the regressions.

3Fortunately, most financial websites have information on holidays in most countries,
so that one may obtain the relevant data for the number of nontrading days preceding
each date.



3.1 Data Preprocessing 63

TABLE 3.1. Gallant-Rossi-Tauchen Procedure for Calendar Adjustment

Step Operation
Define and quantify calendar dummy matrix, A [A]

Regress dependent variables on dummy matrix Az=AB+u
Form expanded dummy matrix A=[At+
Regress squared residuals on expanded matrix In(@?) = Ay +¢
Transform residuals u to Az* Az =a+b

_u
exp (A;* )

They also propose a final linear transformation so that the adjusted
series Az* has the same sample mean and variances as the original raw
series:

Az =a+b|—0t (3.12)

exp (A;Y )

with the variables a and b chosen to ensure that the sample means and
variances of the two series are identical.

Table 3.1 summarizes the Gallant-Rossi-Tauchen procedure for calendar
adjustment.

Of course, seasonal adjustment is also done through smoothing of the
original data series, usually through moving average filters. Many series
available in national income accounts in fact are already seasonally adjusted
by such smoothing methods.

The advantages of different seasonal adjustment procedures depends on
the goal of the research. If the focus is on reliable parameter estimates
of an econometric model, the dummy variable approach is superior.* In
all of this calendar adjustment, we are replacing the original series with
artificially adjusted data. There may be resistance by decision makers to
this approach, for example, in options pricing, if the underlying adjusted
return series does not match closely the actual observed return series. For
this reason, it is a good strategy to examine the results of the models
with the actual and the calendar-adjusted series. We would expect greater
precision with the adjusted series, and quicker convergence, but the overall
results should not be drastically different.

4See Beck (1981) for a discussion of different types of seasonal adjustment for
econometric model estimation.
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3.1.8 Data Scaling

When input variables {z;} and stationary output variables {y;} are used
in a neural network, preprocessing or scaling facilitates the nonlinear
estimation process. The reason scaling is helpful, even crucial, is that the
use of very high or low numbers, or series with a few very high or very
low outliers, can cause underflow or overflow problems, with the computer
stopping, or as Judd [(1998), p. 99] points out, the computer continuing
by assigning a value of zero to the values being minimized.

When logsigmoid or tansigmoid neurons are used, to be sure, scaling is
a necessary step. If the data are not scaled to a reasonable interval, such
as [0,1] or [—1, 1], then the neurons will set reasonably large values simply
at 1, and reasonably low values at 0 (for logsigmoid neurons) or —1 (for
tansig neurons). Without scaling, a great deal of information from the data
is likely to be lost, since the neurons will simply transmit values of minus
one, zero, or plus one for many values of the input data.

There are two main numeric ranges the network specialists use in linear
scaling functions: zero to one, denoted [0,1], and minus one to plus one
denoted by [—1,1].

Linear scaling functions make use of the maximum and minimum values
of the series [y z]. The linear scaling function for zero to one transforms a
variable x, into x} in the following way:

T, — min(zy)

(3.13)

* p—
Trit = max(x) — min(xg)

The linear scaling function for [—1,1], transforming a variable xj into
x;", has the following form:

Tt — min(zy)

kk
Ty = 2

. max(z;) — min(zy) 1 (3.14)

A nonlinear scaling method proposed by Dr. Helge Petersohn of the
University of Leipzig, transforming a variable z, to 2, allows one to specify
the range 0 < z,; < 1, or (0,1). The Petersohn scaling function works in
the following way:

1

Infz; " —1] ~In[z;" 1] —min(z nfz; ' —1]-1
e [( max () —min(zy) ) [k, (zr)]+1n[zy 1](3 L

2kt =

Finally, James DeLeo of the National Institutes of Health suggests scaling
the data in a two-step procedure: first, standardizing a series x, to obtain z,
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and then taking the logsigmoid transformation of the standardized
series z:

(3.16)

(3.17)

Which type of scaling function works best depends on the quality of
the results. There is no way to decide which scaling function works best,
on a priori grounds, given the features of the data. The best strategy is
to estimate the model with different types of scaling functions to find out
which one gives the best performance, based on in-sample criteria discussed
in the following section.

3.2 The Nonlinear Estimation Problem

Finding the coefficient values for a neural network, or any nonlinear model,
is not an easy job—certainly not as easy as parameter estimation with
a linear approximation. A neural network is a highly complex nonlinear
system. There may be a multiplicity of locally optimal solutions, none
of which deliver the best solution in terms of minimizing the differences
between the model predictions 7 and the actual values of y. Thus, neural
network estimation takes time and involves the use of alternative methods.

Briefly, in any nonlinear system, we need to start the estimation pro-
cess with initial conditions, or guesses of the parameter values we wish to
estimate. Unfortunately, some guesses may be better than others for mov-
ing the estimation process to the best coefficients for the optimal forecast.
Some guesses may lead us to a local optimum, that is, the best forecast in
the neighborhood of the initial guess, but not the coefficients for giving the
best forecast if we look a bit further afield from the initial guesses for the
coefficients.

Figure 3.1 illustrates the problem of finding globally optimal or globally
minimal points on a highly nonlinear surface.

As Figure 3.1 shows, an initial set of weight values anywhere on the x
axis may lie near to a local or global maximum rather than a minimum,
or near to a saddle point. A minimum or maximum point has a slope or
derivative equal to zero. At a maximum point, the second derivative, or
change in the slope, is negative, while at a minimum point, the change in
the slope is positive. At a saddle point, both the slope and the change in
the slope are zero.
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FIGURE 3.1. Weight values and error function

As the weights are adjusted, one can get stuck at any of the many posi-
tions where the derivative is zero, or the curve has a flat slope. Too large an
adjustment in the learning parameter may bring one’s weight values from
a near-global minimum point to a maximum or to a saddle point. However,
too small an adjustment may keep one trapped near a saddle point for
quite some time during the training period.

Unfortunately, there is no silver bullet for avoiding the problems of local
minima in nonlinear estimation. There are only strategies involving re-
estimation or stochastic evolutionary search.

For finding the set of coefficients or weights Q = {wg,;, 7%} in a network
with a single hidden layer, or Q@ = {wk s, prk, v} In a network with two
hidden layers, we minimize the loss function ¥, defined again as the sum of
squared differences between the actual observed output y and 7, the output
predicted by the network:

T
mén'l’(Q) = ;(Qt —0)° (3.18)
Y = f(z; Q) (3.19)

where T is the number of observations of the output vector y, and f(z; Q)
is a representation of the neural network.

Clearly, ¥(Q2) is a nonlinear function of 2. All nonlinear optimization
starts with an initial guess of the solution, €}y, and searches for better solu-
tions, until finding the best possible solution within a reasonable amount
of searching.



3.2 The Nonlinear Estimation Problem 67
We discuss three ways to minimize the function ¥(Q):

1. A local gradient-based search, in which we compute first- and second-
order derivatives of ¥ with respect to elements of the parameter vector
Q, and continue with updating of the initial guess of 2, by derivatives,
until stopping criteria are reached

2. A stochastic search, called simulated annealing, which does not rely
on the use of first- and second-order derivatives, but starts with
an initial guess )y, and proceeds with random updating of the ini-
tial coefficients until a “cooling temperature” or stopping criterion is
reached

3. An evolutionary stochastic search, called the genetic algorithm, which
starts with a population of p initial guesses, [Qo1, Q02 ... Qop), and
updates the population of guesses by genetic selection, breeding, and
mutation, for many generations, until the best coefficient vector is
found among the last-generation population

All of this discussion is rather straightforward for students of computer
science or engineering. Those not interested in the precise details of non-
linear optimization may skip the next three subsections without fear of
losing their way in succeeding sections.

3.2.1 Local Gradient-Based Search: The Quasi-Newton
Method and Backpropagation

To minimize any nonlinear function, we usually begin by initializing the
parameter vector {2 at any initial value, €y, perhaps at randomly chosen
values. We then iterate on the coefficient set 2 until ¥ is minimized, by
making use of first- and second-order derivatives of the error metric ¥ with
respect to the parameters. This type of search, called a gradient-based
search, is for the optimum in the neighborhood of the initial parameter
vector, 2y. For this reason, this type of search is a local search.

The usual way to do this iteration is through the quasi-Newton algorithm.
Starting with the initial set of the sum of squared errors, ¥({2), based on
the initial coefficient vector )y, a second-order Taylor expansion is used to
find U(Q) :

() = U(Q) + Vo1 — Qo) + .5(Q — Q) Ho( — Q) (3.20)

where V| is the gradient of the error function with respect to the parameter
set Q0o and Hj is the Hessian of the error function.
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Letting Qo = [Qo,1,...,Q0,], be the initial set of k parameters used in
the network, the gradient vector Vy is defined as follows:

W(Q0,1+h1,..,Q0,6) =¥ (R0,1,.--,20.%)
h1
W(Q0,1,--,20,ithi,-,20,5) =¥ (Q0,1,---,0,%)
h;

Vo

(3.21)

W (Q0,1,-20,4520,k +he) =¥ (Q0,1,---,Q0,%)
hk

The denominator h; is usually set at max(e, €2 ;), with e = 1076.

The Hessian Hj is the matrix of second-order partial derivatives of ¥
with respect to the elements of {0y, and is computed in a similar manner as
the Jacobian or gradient vector. The cross-partials or off-diagonal elements
of the matrix Hy are given by the formula:

o?vw 1
900,:0Q,;  hjh;

X

{¥(Q0,1,---,Q0,i+hi, Q0,5+ g, .., Q0,k) —¥(Q0,15-.-,Q0,i5- -, 0, +hj7---7QO,k)}:|
—{¥(Q0,1,---,0,i +hi;Q0,5,.--,Q0,k) —¥(Q0,1,.--,20,%) }

(3.22)
while the direct second-order partials or diagonal elements are given by:

0*v _ 1 (Y0, Q0, + Ry, Qog) = 29(Q0,15 -, Qo)
oG,  hi Q0,15+, Q0 — hiy oo, Qok)
(3.23)

To find the direction of a change of the parameter set from iteration 0
to iteration 1, one simply minimizes the error function ¥(2;) with respect
to (21 — Q). The following formula gives the evolution of the parameter
set 2 from the initial specification at iteration 0 to its value at iteration 1.

(Q1 — Q) = —H, 'V, (3.24)

The algorithm continues in this way, from iteration 1 to 2, 2 to 3, n — 1
to n, until the error function is minimized. One can set a tolerance criterion,
stopping when there are no further changes in the error function below a
given tolerance value. Alternatively, one may simply stop when a specified
maximum number of iterations is reached.

The major problem with this method, as in any nonlinear optimization
method, is that one may find local rather than global solutions, or a saddle-
point solution for the vector 0*, which minimizes the error function.
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Where the algorithm ends in the optimization process crucially depends
on the choice of the initial parameter vector £25. The most commonly used
approach is to start with one random vector, iterate until convergence is
achieved, and begin again with another random parameter vector, iterate
until converge, and compare the final results with the initial iteration.
Another strategy is to repeat this minimization many times until it reaches
a potential global minimum value over the set of minimum values.

Another problem is that as iterations progress, the Hessian matrix H
at iteration n* may also become nonsingular, so that it is impossible
to obtain H,! at iteration n*. Commonly used numerical optimization
methods approximate the Hessian matrix at various iteration periods.

The BFGS (Boyden-Fletcher-Goldfarb-Shanno) algorithm approximates
H; ! at step n on the basis of the size of the change in the gradient
Vn-V.._1 relative to the change in the parameters ,, — ,,_1. Other algo-
rithms available are the Davidon-Fletcher-Powell (D-F-P) and Berndt,
Hall, Hall, and Hausman (BHHH). [See Hamilton (1994), p. 139.]

All of these approximation methods frequently blow up when there are
large numbers of parameters or if the functional form of the neural net-
work is sufficiently complex. Paul John Werbos (1994) first developed
the backpropagation method in the 1970s as an alternative for estimat-
ing neural network coefficients under gradient-search. Backpropagation is
a very manageable way to estimate a network without having to iterate and
invert the Hessian matrices under the BFGS, DFP, and BHHH routines. It
remains the most widely used method for estimating neural networks. In
this method, the inverse Hessian matrix, —H; ! is replaced by an identity
matrix, with its dimension equal to the number of coefficients, k, multiplied
by a learning parameter, p:

(@1~ Qo) = —Hy Vo (3.25)

|

!
®
5

(3.26)

Usually, the learning parameter p is specified at the start of the estima-
tion, usually at small values, in the interval [.05, .5], to avoid oscillations.
The learning parameters can be endogenous, taking on different values as
the estimation process appears to converge, when the gradients become
smaller. Extensions of the backpropagation method allow different learn-
ing rates for different parameters. However, efficient as backpropagation
may be, it still suffers from the trap of local rather than global minima,
or saddle point convergence. Moreover, while low values of the learning
parameters avoid oscillations, they may needlessly prolong the convergence
process.

One solution for speeding up the process of backpropagation toward con-
vergence is to add a momentum term to the above process, after a period
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of n training periods:
(Qn - Qn—l) =—pP: V-1 + ,U(Qn—l - Qn—Q) (327)

The effect of adding the moment effect, with p usually set to .9, is to
enable the adjustment of the coefficients to roll or move more quickly over
a plateau in the “error surface” [Essenreiter (1996)].

3.2.2  Stochastic Search: Simulated Annealing

In neural network estimation, where there are a relatively large number
of parameters, Newton-based algorithms are less likely to be useful. It is
difficult to invert the Hessian matrices in this case. Similarly, the initial
parameter vector may not be in the neighborhood of the best solution, so
a local search may not be very efficient.

An alternative search method for optimization is simulated annealing.
It does not require taking first- or second-order derivatives. Rather, it is a
stochastic search method. Originally due to Metropolis et al. (1953), later
developed by Kirkpatrick, Gelatt, and Vecchi (1983), it originates from
the theory of statistical mechanics. According to Sundermann (1996), this
method is based on the analogy between the annealing of solids and solving
optimization.

The simulated annealing process is described in Table 3.2. The basic
message of this approach is well summarized by Haykin (1994): “when opti-
mizing a very large and complex system (i.e. a system with many degrees
of freedom), instead of always going downhill, try to go downhill most of
the time” [Haykin (1994), p. 315].

As Table 3.2 shows, we again start with a candidate solution vector,
Qg, and the associated error criterion, V4. A shock to the solution vector is
then randomly generated, €21, and we calculate the associated error metric,
W, . We always accept the new solution vector if the error metric decreases.
However, since the initial guess 2o may not be very good, there is a small
chance that the new vector, even if it does not reduce the error metric,
may be moving in the right direction to a more global solution. So with
a probability P(j), conditioned by the Metropolis ratio M(j), the new
vector may be accepted, even though the error metric actually increases.
The rationale for accepting a new vector €2; even if the error U, is greater
than ¥,_4, is to avoid the pitfall of being trapped in a local minimum point.
This allows us to search over a wider set of possibilities.

As Robinson (1995) points out, simulated annealing consists of run-
ning the accept/reject algorithm between the temperature extremes. Many
changes are proposed, starting at the high temperatures, which explore
the parameter space. With gradually decreasing temperature, however, the
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TABLE 3.2. Simulated Annealing for Local Optimization

Definition Operation
. . . T
Specify temperature and cooling schedule TG) = ———
s 1+ In(5)
parameter T’
Start random process at j = 0, continue till
j = (1727"'7T)
Initialize solution vector and error metric Qo, ¥,
Randomly perturbate solution vector, obtain Q;,0;
error metric
Generate P(j) from uniform distribution 0< P(j) <1
-5 - Wj—l)
Compute metropolis ratio M(j) M(j) = exp %)
J
Accept new vector Q; = ﬁj unconditionally Q; = ﬁj & (\f/] — \I/jfl) <0
Accept new vector Q; = Qj conditionally P(j) < M(35)

Continue process till j =T

algorithm becomes “greedy.” As the temperature T'(j) cools, changes are
more and more likely to be accepted only if the error metric decreases.

To be sure, simulated annealing is not strictly a global search. Rather it
is a random search for helping to escape a likely local minimum and move
to a better minimum point. So it is best used after we have converged to a
given point, to see if there are better minimum points in the neighborhood
of the initial minimum.

As we see in Table 3.2, the current state of the system, or coefficient
vector €);, depends only on the previous state €2;_;, and a transition prob-
ability P(j — 1) and is thus independent of all previous outcomes. We say
that such a system has the Markov chain property. As Haykin (1994) notes,
an important property of this system is asymptotic convergence, for which
Geman and Geman (1984) gave us a mathematical proof. Their theorem,
summarized from Haykin (1994, p. 317), states the following:

Theorem 1 If the temperature T(k) employed in executing the k-th step
satisfies the bound T (k) > T/log(1+k) for every k, where T is a sufficiently
large constant independent of k, then with probability 1 the system will
converge to the minimum configuration.

A similar theorem has been derived by Aarts and Korst (1989).
Unfortunately, the annealing schedule given in the preceding theorem would
be extremely slow—much too slow for practical use. When we resort
to finite-time approximation of the asymptotic convergence properties,
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we are no longer guaranteed that we will find the global optimum with
probability one.

For implementing the algorithm in finite-time approximation, we have
to decide on the key parameters in the annealing schedule. Van Laarhoven
and Aarts (1988) have developed more detailed annealing schedules than
the one presented in Table 3.2. Kirkpatrick, Gelatt, and Vecchi (1983)
offered suggestions for the starting temperature T (it should be high
enough to ensure that all proposed transitions are accepted by algo-
rithm), a linear alternative for the temperature decrement function, with
T(k) = aT(k—1),.8 < a < .99, as well as a stopping rule (the system
is “frozen” if the desired number of acceptances is not achieved at three
successive temperatures). Adaptive simulated annealing is a further devel-
opment which has proven to be faster and has become more widely used
[Ingber (1989)].

3.2.8  FEwvolutionary Stochastic Search: The Genetic
Algorithm

Both the Newton-based optimization (including backpropagation) and sim-
ulated annealing (SA) start with one random initialization vector Q. It
should be clear that the usefulness of both of these approaches to opti-
mization crucially depends on how good this initial parameter guess really
is. The genetic algorithm or GA helps us come up with a better guess for
using either of these search processes.

The GA reduces the likelihood of landing in a local minimum. We no
longer have to approximate the Hessians. Like simulated annealing, it is a
statistical search process, but it goes beyond SA, since it is an evolutionary
search process.

The GA proceeds in the following steps.

Population Creation

This method starts not with one random coefficient vector 2, but with
a population N* (an even number) of random vectors. Letting p be the
size of each column vector, representing the total number of coefficients to
be estimated in the neural network, we create a population N* of p by 1
random vector.

Ql Ql Ql Ql

QQ QQ QQ QQ

23 2 23 L s (3.28)
QP 1 QP 2 QP i QP Nx
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Selection

The next step is to select two pairs of coeflicients from the population at
random, with replacement. Evaluate the fitness of these four coefficient
vectors, in two pair-wise combinations, according to the sum of squared
error function. Coeflicient vectors that come closer to minimizing the sum
of squared errors receive better fitness values.

This is a simple fitness tournament between the two pairs of vectors:
the winner of each tournament is the vector with the best fitness. These
two winning vectors (i, j) are retained for “breeding” purposes. While not
always used, it has proven to be extremely useful for speeding up the
convergence of the genetic search process.

o o
Q, Q,
Q3 Q3
Q ).\ 2% ),

Crossover

The next step is crossover, in which the two parents “breed” two children.
The algorithm allows crossover to be performed on each pair of coefficient
vectors ¢ and j, with a fixed probability p > 0. If crossover is to be per-
formed, the algorithm uses one of three difference crossover operations,
with each method having an equal (1/3) probability of being chosen:

1. Shuffle crossover. For each pair of vectors, k random draws are made
from a binomial distribution. If the kth draw is equal to 1, the
coefficients €; ,, and 2, are swapped; otherwise, no change is made.

2. Arithmetic crossover. For each pair of vectors, a random number is
chosen, w € (0,1). This number is used to create two new parameter
vectors that are linear combinations of the two parent factors, w(; ,+
(1 — W)Qj’p,(]. — inyp + W)Qj’p.

3. Single-point crossover. For each pair of vectors, an integer [ is ran-
domly chosen from the set [1,k — 1]. The two vectors are then
cut at integer I and the coefficients to the right of this cut point,
Q4 141, 1+1 are swapped.

In binary-encoded genetic algorithms, single-point crossover is the stan-
dard method. There is no consensus in the genetic algorithm literature on
which method is best for real-valued encoding.
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Following the crossover operation, each pair of parent vectors is asso-
ciated with two children coefficient vectors, which are denoted C1(4) and
C2(j). If crossover has been applied to the pair of parents, the children
vectors will generally differ from the parent vectors.

Mutation

The fifth step is mutation of the children. With some small probability pr,
which decreases over time, each element or coefficient of the two children’s
vectors is subjected to a mutation. The probability of each element is sub-
ject to mutation in generation G = 1,2,...,G*, given by the probability
pr=.15+.33/G.

If mutation is to be performed on a vector element, we use the following
nonuniform mutation operation, due to Michalewicz (1996).

Begin by randomly drawing two real numbers r; and 75 from the [0, 1]
interval and one random number s from a standard normal distribution.
The mutated coefficient §2 ; ,, is given by the following formula:

*\b
_ Qi+ sl =" iy > 5
iy =g wtellon JiEm (3.29)

Q,—s[1— rél_G/G*)b] ifr; <.5

where G is the generation number, G* is the maximum number of genera-
tions, and b is a parameter that governs the degree to which the mutation
operation is nonuniform. Usually we set b = 2. Note that the probability of
creating via mutation a new coefficient that is far from the current coeffi-
cient value diminishes as G — G*, where G* is the number of generations.
Thus, the mutation probability itself evolves through time.

The mutation operation is nonuniform since, over time, the algorithm is
sampling increasingly more intensively in a neighborhood of the existing
coefficient values. This more localized search allows for some fine tuning
of the coefficient vector in the later stages of the search, when the vectors
should be approaching close to a global optimum.

Election Tournament

The last step is the election tournament. Following the mutation opera-
tion, the four members of the “family” (P1, P2,C1,C2) engage in a fitness
tournament. The children are evaluated by the same fitness criterion used
to evaluate the parents. The two vectors with the best fitness, whether
parents or children, survive and pass to the next generation, while the two
with the worst fitness value are extinguished. This election operator is due
to Arifovic (1996). She notes that this election operator “endogenously con-
trols the realized rate of mutation” in the genetic search process [Arifovic
(1996), p. 525].
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We repeat the above process, with parents ¢ and j returning to the
population pool for possible selection again, until the next generation is
populated by N* vectors.

Elitism

Once the next generation is populated, we can introduce elitism (or not).
Evaluate all the members of the new generation and the past generation
according to the fitness criterion. If the best member of the older genera-
tion dominated the best member of the new generation, then this member
displaces the worst member of the new generation and is thus eligible for
selection in the coming generation.

Convergence

One continues this process for G* generations. Unfortunately, the literature
gives us little guidance about selecting a value for G*. Since we evaluate
convergence by the fitness value of the best member of each generation, G*
should be large enough so that we see no changes in the fitness values of
the best for several generations.

3.2.4  FEwvolutionary Genetic Algorithms

Just as the genetic algorithm is an evolutionary search process for finding
the best coefficient set €2 of p elements, the parameters of the genetic algo-
rithm, such as population size, probability of crossover, initial mutation
probability, use of elitism or not, can evolve themselves. As Michalewicz
and Fogel (2002) observe, “let’s admit that finding good parameter values
for an evolutionary algorithm is a poorly structured, ill-defined, complex
problem. But these are the kinds of problems for which evolutionary algo-
rithms are themselves quite adept” [Michalewicz and Fogel (2002), p. 281].
They suggest two ways to make a genetic algorithm evolutionary. One,
as we suggested with the mutation probability, is to use a feedback rule
from the state of the system which modifies a parameter during the search
process. Alternatively, we can incorporate the training parameters into the
solution by modifying 2 to include additional elements such as population
size, use of elitism, or crossover probability. These parameters thus become
subject to evolutionary search along with the solution set Q itself.

3.2.5 Hybridization: Coupling Gradient-Descent,
Stochastic, and Genetic Search Methods

The gradient-descent methods are the most commonly used optimization
methods in nonlinear estimation. However, as previously noted, there is a
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strong danger of getting stuck in a local rather than a global minimum for
a vector w, or in a saddlepoint. Furthermore, if using a Newton algorithm,
the Hessian matrix may fail to invert, or become “near-singular,” leading
to imprecise or even absurd results for the coefficient vector of the neural
network. When there are a large number of parameters, the statistically
based simulated annealing search is a good alternative.

The genetic algorithm does not involve taking gradients or second deriva-
tives and is a global and evolutionary search process. One scores the
variously randomly generated coefficient vectors by the objective function,
which does not have to be smooth and continuous with respect to the
coefficient weights . De Falco (1998) applied the genetic algorithm to
nonlinear neural network estimation and found that his results “proved the
effectiveness” of such algorithms for neural network estimation.

The main drawback of the genetic algorithm is that it is slow. For even
a reasonable size or dimension of the coefficient vector €2, the various com-
binations and permutations of elements of 2 that the genetic search may
find optimal or close to optimal at various generations may become very
large. This is another example of the well-known curse of dimensionality in
nonlinear optimization. Thus, one needs to let the genetic algorithm run
over a large number of generations — perhaps several hundred —to arrive
at results that resemble unique and global minimum points.

Since the gradient-descent and simulated annealing methods rely on an
arbitrary initialization of 2, the best procedure for estimation may be
a hybrid approach. One may run the genetic algorithm for a reasonable
number of generations, say 100, and then use the final weight vector Q2
as the initialization vector for the gradient-descent or simulated annealing
minimization. One may repeat this process once more, with the final coeffi-
cient vector from the gradient-descent estimation entering a new population
pool for selection, breeding, and mutation. Even this hybrid procedure is
no sure thing, however.

Quagliarella and Vicini (1998) point out that hybridization may lead to
better solutions than those obtainable using the two methods individually.
These authors suggest the following alternative approaches:

1. The gradient-descent method is applied only to the best fit individual
after many generations.

2. The gradient descent method is applied to several individuals,
assigned by a selection operator.

3. The gradient descent method is applied to a number of individu-
als after the genetic algorithm has run many generations, but the
selection is purely random.
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Quagliarella and Vicini argue that it is not necessary to carry out the
gradient-descent optimization until convergence, if one is going to repeat
the process several times. The utility of the gradient-descent algorithm is
its ability to improve the “individuals it treats” so “its beneficial effects
can be obtained just performing a few iterations each time” [Quagliarella
and Vicini (1998), p. 307].

The genetic algorithm and the hybridization method fit into a broader
research agenda of evolutionary algorithms used not only for optimization
but also for classification, or explaining the pattern or markets or organi-
zations through time [see Béck (1996)]. This is the estimation method used
throughout this book. To level the playing field, we use this method not
only for the neural network models but also for the competing models that
require nonlinear estimation.

3.3 Repeated Estimation and Thick Models

The world of nonlinear estimation is a world full of traps, where we can
get caught in local minimal or saddle points very easily. Thus, repeated
estimation through hybrid genetic algorithm and gradient descent methods
may be the safest check for the robustness of results after one estimation
exercise with the hybrid approach.

For obtaining forecasts of particular variables, we must remember that
neural network estimation, coupled with the genetic algorithm, even with
the same network structure, never produces identical results, so that we
should not put too much faith in particular point forecasts. Granger and
Jeon (2002) have suggested “thick modeling” as a strategy for neural net-
works, particularly for forecasting. The idea is simple and straightforward.
We should repeatedly estimate a given data set with a neural network.
Since any neural network structure never gives identical results, we can use
the same network specification, or we can change the specification of the
network, or the scaling function, or even the estimation method, for differ-
ent iterations on the network. What Granger and Jeon suggest is that we
take a mean or trimmed mean of the forecasts of these alternative networks
for our overall network forecast. They call this forecast a thick model fore-
cast. We can also use this method for obtaining intervals for our forecasts
of the network.

Granger and Jeon have pointed out an intriguing result from their studies
of neural network performance, relative to linear models, for macroeco-
nomic time series. They found that individual neural network models did
not outperform simple linear models for most macro data, but thick mod-
els based on different neural networks uniformly outperformed the linear
models for forecasting accuracy.
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This approach is similar to bagging predictors in the broader artificial
intelligence and machine learning literature [see Breiman (1996)]. With
bagging, we can take a simple mean of various point forecasts coming
from an ensemble of models. For classification, we take a plurality vote
of the forecasts of multiple models. However, bagging is more extensive.
The alternative forecasts may come not from different models per se, but
from bootstrapping the initial training set. As we discuss in Section 4.2.8,
bootstrapping involves resampling the original training set with replace-
ment, and then taking repeated forecasts. Bagging is particularly useful if
the data set exhibits instability or structural change. Combining the fore-
casts based on different randomly sampled subsets of the training set may
give greater precision to the forecasting.

3.4 MATLAB Examples: Numerical
Optimization and Network Performance

3.4.1 Numerical Optimization

To make these concepts about optimization more concrete and clear, we can
take a simple problem, for which we can calculate an analytical solution.
Assume we wish to optimize the following function with respect to inputs
z and y:

z = 52"+ 5y* — 4o — 4y — 1 (3.30)

The solution can readily be obtained analytically, with z* = y* = 4, for
the local minimum. A three-dimensional graph appears in Figure 3.2, with
the solution for z* = y* = 4, illustrated by the arrow on the (z,y) grid.

A simple MATLAB program for calculating the global genetic algorithm
search solution, the local simulated annealing solution, and the local quasi-
Newton based on the BFGS algorithm appear, is given by the following
sets of commands:

% Define simple function

z = inline(’.5 * x(1) "2+ .5 * x(2) "2-4 * x(1) -4 * x(2)-1’);
% Use random initialization

x0 = randn(1,2);

% Genetic algorithm parameters and execution-popsize, no. of
generations

maxgen = 100; popsize = 40;

xy_genetic = gen7f(z, x0, popsize,maxgen);

% Simulated annealing procedure (define temperature)
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FIGURE 3.2. Sample optimization

TEMP = 500;

xy_simanneal = simanneal(z, xy_genetic, TEMP);
% BFGS Quasi-Newton Optimization Method
xy_-bfgs = fminunc(z, xy_simanneal);

The solution for all three solution methods, the global genetic algorithm,
the local search (using the initial conditions based on the genetic algorithm)
and the quasi-Newton BFGS algorithm all yield results almost exactly equal
to 4 for both = and y. While this should not be surprising, it is a useful
exercise to check the accuracy of numerical methods by verifying how well
they produce the true results obtained by analytical solution.

Of course, we use numerical methods precisely because we cannot obtain
results analytically. Consider the following optimization problem, only
slightly different from the previous function:

z=5]z " 4+5|z]?5+---

Sly*P+.5]y[*° 4 —4y—1 (3.31)
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Taking the partial derivatives with respect to x and y, we find the following
first-order conditions:

S5-15]a|?+5 |z " —4=0 (3.32)
515 |y|%+5 |y "5 —4=0
It should be clear that the optimal values z and y do not have closed-

form or exact analytical solutions. The following MATLAB code solves
this problem by the three algorithms:

% MATLAB Program for Minimization for Inline function z

z = inline(’.5 * abs(x(1)) ~1.5 + .5 *abs(x(1)) "2.5 + ...
.5*abs(x(2)) ~“1.5 + .5xabs(x(2))"2.5 - 4xx(1) - 4*x(2) - 17);
% Initial guess of solution based on random numbers

x0 = randn(1,2);

% Initialization for Genetic Algorithm

maxgen = 100; popsize(50);

% Solution for genetic algorithm

xy_genetic = gen7f(z,x0, popsize, maxgen);

% Temperature for simulated annealing

TEMP = 500;

% Solution for simulated annealing

xy_simanneal = simanneal(z, xy_genetic, TEMP);

% BFGS Solution

xy_bfgs = fminunc(z, xy_simanneal);

Theoretically the solution values should be identical to each other. The
results we obtain by the MATLAB process for the hybrid method of using
the genetic algorithm, simulated annealing, and the quasi-Newton method,
give values of x = 1.7910746,y = 1.7910746.

3.4.2  Approzimation with Polynomials and
Neural Networks

We can see how efficient neural networks are relative to linear and poly-
nomial approximations with a very simple example. We first generate a
standard normal random variable x of sample size 1000, and then generate
a variable y = [sin(z)]? + e~*. We can then do a series of regressions with
polynomial approximators and a simple neural network with two neurons,
and compare the multiple correlation coefficients. We do this with the fol-
lowing set of MATLAB commands, which access the following functions for
the orthogonal polynomials: chedjudd.m, hermiejudd.m, legendrejudd.m,
and laguerrejudd.m, as well as the feedforward neural network program,
ffnet9.m.
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for j = 1:1000,
% Matlab Program For Assessing Approximation
randn(’state’,j);
x1 = randn(1000,1);
y 1= sin(x1) .72 + exp(-x1);
x = ((2 * x1) ./ (max(x1)-min(x1)))
- ((max(x1)+min(x1))/(max(x1)-min(x1)));
y = ((2 * y1) ./ (max(y1)-min(y1)))
- ((max(y1)+min(y1))/(max(y1)-min(y1)));
% Compute linear approximation
xols = [ones(1000,1) x];
bols = inv(xols’*xols)*xols’* y;
rsqols(j) = var(xols*bols)/var(y);
% Polynomial approximation
xp = [ones(1000,1) x x.72];
bp = inv(xp’*xp)*xp’*y;
rsqp(j) = var(xpxbp)/var(y);
% Tchebeycheff approximation
xt = [ones(1000,1) chebjudd(x,3)];
bt = inv(xt’*xt)*xt’*y;
rsqt(j) = var(xt * bt)/var(y);
% Hermite approximation
xh [ones(1000,1) hermitejudd(x,3)];
bh = inv(xh’#*xh)*xh’*y;
rsqgh(j)= var(xh * bh)/var(y);
% Legendre approximation
x1 = [ones(1000,1) legendrejudd(x,3)];
bl = inv(xl’*x1)*x1’*y;
rsql(j)= var(xl * bl)/var(y);
% Leguerre approximation
xlg = [ones(1000,1) laguerrejudd(x,3)];
blg = inv(xlg’*x1g)*xlg’*y;
rsqlg(j)= var(xlg * blg)/var(y);
% Neural Network Approximation
data = [y x];
position = 1; % column number of dependent variable
architecture = [1 2 0 0]; % feedforward network with one hidden
layer, with two neurons
geneticdummy = 1; % use genetic algorithm
maxgen =20; % number of generations for the genetic algorithm
percent = 1; 7 use 100 percent of data for all in-sample estimation
nlags = 0; % no lags for the variables
ndelay = 0; % no leads for the variables
niter = 20000; % number of iterations for quasi-Newton method
[sse, rsqnet01] = ffnet9(data, position, percent, nlags, ndelay,
architecture,
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x1=randn(1000,1) : : : : :
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y1=sin(x1)2 +exp(-x1):
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FIGURE 3.3. Sample nonlinear realization

geneticdummy, maxgen, niter) ;

rsqnet0(j) = rsqnet01(2);

RSQ(j,:) = [rsqols(j) rsqp(j) rsqt(j) rsqh(j) rsql(j) rsqlg(j)
rsqnet0(j)]

end

One realization of the variables [y z] appears in Figure 3.3. While the

process for the variable x is a standard random realization, we see that the
process for y contains periodic jumps as well as periods of high volatility
followed by low volatility. Such properties are common in financial markets,
particularly in emerging market countries.

Table 3.3 gives the results for the goodness of fit or R? statistics for

this base set of realizations, as well as the mean and standard deviations

of

this measure for 1000 additional draws of the same sample length. We

compare second-order polynomials with a simple network with two neurons.
This table brings home several important results. First, there are definite
improvements in abandoning pure linear approximation. Second, the power
polynomial and the orthogonal polynomials give the same results. There is
no basis for preferring one over the other. Third, the neural network, a
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TABLE 3.3. Goodness of Fit Tests of Approximation Methods

Approximation R?: Base Run Mean R? — 1000 Draws
(std. deviation)

Linear .49 .55 (.04)
Polynomial-Order 2 .85 .91 (.03)

Tchebeycheff Polynomial-Order 2 .85 .91 (.03)
Hermite-Order 2 .85 .91 (.03)
Legendre-Order 2 .85 .91 (.03)
Laguerre-Order 2 .85 .91 (.03)

Neural Network: FF, 2 neurons, 1 layer .99 .99 (.005)

very simple neural network, is superior to the polynomial expansions, and
delivers a virtually perfect fit. Finally, the neural network is much more
precise, relative to the other methods, across a wide set of realizations.

3.5  Conclusion

This chapter shows how the introduction of nonlinearity makes the estima-
tion problem much more challenging and time-consuming than the case of
the standard linear model. But it also makes the estimation process much
more interesting. Given that we can converge to many different results or
parameter values, we have to find ways to differentiate the good from the
bad, or the better from a relatively worse set of estimates. Engineers have
been working with nonlinear optimization for many decades, and this chap-
ter shows how we can apply many of the existing evolutionary global or
hybrid search methods for neural network estimation. We need not resign
ourselves to the high risk of falling into locally optimal results.

3.5.1 MATLAB Program Notes

Optimization software is quite common. The MATLAB function
fminunc.m, for unconstrained minimization, part of the Optimization Tool-
box, is the one used for the quasi-Newton gradient-based methods. It
has lots of options, such as the specification of tolerance criteria and the
maximum number of iterations. This function, like most software, is a min-
imization function. For maximizing a likelihood function, we minimize the
negative of the likelihood function.

The genetic algorithm used above is gen7f.m. The function requires four
inputs, including the name of the function being minimized. The function
being optimized, in turn, must have as its first output the criterion to be
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minimized, such as a sum of squared errors, or the negative of the likelihood
function.

The function simanneal.m requires the specification of the function, coef-
ficient matrix, and initial temperature. Finally, the orthogonal polynomial
operators, chedjudd.m, hermiejudd.m, legendrejudd.m, and laguerrejudd.m
are also available.

The scaling functions for transforming variables to ranges between [0,1]
or [—1,1] are in the MATLAB Neural Net Toolbox, premnmaz.m.

The scaling function for the transformation suggested by Helge Petersohn
is given by hsquasher.m. The reverse transformation is given by helgeyz.m.

3.5.2  Suggested Ezercises

As a follow-up to the exercises on minimization, we can do more com-
parisons of the accuracy of the simulated annealing and genetic algorithm
with benchmark true analytical solutions for a variety of functions. Simply
use the MATLAB Symbolic Toolbox funtool.m to find the true minimum
for a host of functions by setting the first derivative to zero. Then use
simanneal.m and gen7f.m to find the numerical approximate solutions.
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Evaluation of Network Estimation

So far we have discussed the structure or architecture of a network, as
well as the ways of training or estimating the coefficients or weights of a
network. How do we interpret the results obtained from these networks,
relative to what we can obtain from a linear approximation?

There are three sets of criteria: in-sample criteria, out-of-sample criteria,
and common sense based on tests of significance and the plausibility of the
results.

4.1 In-Sample Criteria

When evaluating the regression, we first want to know how well a model
fits the actual data used to obtain the estimates of the coefficients. In
the neural network literature, this is known as supervised training. We
supervise the network, insofar as we evaluate it by how well it fits
actual data.

The first overall statistic is a measure of goodness of fit. The Hannan-
Quinn information is a method for handicapping this measure for compet-
ing models that have different numbers of parameters.

The other statistics relate to properties of the regression residuals. If
the model is indeed a good fit, and thus well specified, then there should
be nothing further to learn from the residuals. The residuals should sim-
ply represent “white noise,” or uncorrelated meaningless information — like
listening to a fan or air conditioner, which we readily and easily ignore.
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4.1.1  Goodness of Fit Measure

The most commonly used measure of overall goodness of fit of a model is
the multiple correlation coefficient, also known as the R-squared coefficient.
It is simply the ratio of the variance of the output predicted by the model
relative to the true or observed output:

T ~

2 _ Zt:l(yt - Z/t)2
- 7 —

Zt=1(yt —7;)?

This value falls in the interval [0, 1] if there is a constant term in the model.

R (4.1)

4.1.2  Hannan-Quinn Information Criterion

Of course, we can generate progressively higher values of the R? statistic
by using a model with an increasingly larger number of parameters. One
way to modify the R? statistic is to make use of the Hannan-Quinn (1979)
information criterion, which handicaps or “punishes” the performance of a
model for the number of parameters, k, it uses:

T ~
haif [m (Z b y)ﬂ - Halia(T)) (4.2)

t=1

The criterion is simply to choose the model with the lowest value. Note
that the hqif statistic punishes a given model by a factor of k{In[ln(T)]}/T,
the logarithm of the logarithm of the number of observations, 7', multi-
plied by the number of parameters, k, divided by T. The Akaike criterion
replaces the second term on the right-hand side of equation (4.2) with the
variable 2k /T, whereas the Schwartz criterion replaces the same term with
the value k[ln(T")]/T. We work with the Hannan-Quinn statistic rather
than the Akaike or Schwartz criteria, on the grounds that wvirtu stat in
media. The Hannan-Quinn statistic usually punishes a model with more
parameters more than the Akaike (1974) statistic, but not as severely as
the Schwartz (1978) statistic.

4.1.3  Serial Independence: Ljung-Box and McLeod-Li Tests

If a model is well specified, the residuals should have no systematic pattern
in their first or second moments. Tests for serial independence and con-
stancy of variance, or homoskedasticity, are the first steps for evaluating
whether or not there is any meaningful information content in the residuals.

IThe penalty factor attached to the number of parameters in a model is known as
the regularization term and represents a control or check over the effective complexity
of a model.
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The most commonly used statistic tests for serial independence against
the alternative hypothesis of first-order autocorrelation is the well-known,
but elementary, Durbin-Watson (DW) test.

T [~ _ =~ 12
pw = 2=l =l (4.3)
D=1
~2—2p1(€) (4.4)

where p(€) represents the first order autocorrelation coefficient.

In the absence of autocorrelation, each residual represents a surprise
which is unpredictable from the past data. The autocorrelation function is
given by the following formula, for different lag lengths m:

T ~~
_ D temt1 EtEt—m

T
Y B

Ljung and Box (1978) put forward the following test statistic, known as
the Ljung-Box Q-statistic, for examining the joint significance of the first
M residual autocorrelations, with an asymptotic Chi-squared distribution
having M degrees of freedom:

Pm(€) (4.5)

_ SACGE
QM) = (T)(T +2) Z T —m) (4.6)

m=1

~x*(M) (4.7)

If a model does not pass the Ljung-Box Q test, there is usually a need
for correction. We can proceed in two ways. One is simply to add more lags
of the dependent variable as regressors or input variables. In many cases,
this takes care of serial dependence. An alternative is to respecify the error
structure itself as a moving average (MA process). In dynamic models,
in which we forecast the inflation rate over several quarters, we build in
by design a moving average process into the disturbance or innovation
terms. In this case, the inflation we forecast in January is the inflation
rate from next January to this January. In the next quarter, we forecast
the inflation rate from next April to this April. However, the forecast from
next April to this April will depend a great deal on the forecast error from
next January to this past January. Yet in forecasting exercises, often we
are most interested in forecasting over several periods rather than for one
period into the future, so purging the estimates of serial dependence is
extremely important before we do any assessment of the results. This is
especially true when we compare a linear model with the neural network
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alternative. The linear model first should be purged of serial dependence
either by the use of a liberal lag structure or by an MA specification for the
error term, before we can make any meaningful comparison with alternative
functional forms.

Adding more lags of the dependent variable is easy enough. The use
of the MA specification requires the following transformation of the error
term for a linear model with an MA component of order p:

K

Yt = Zﬂkxk,t + € (4.8a)
k=0

€ =T — P1Ms—1 — -+ PpMlt—p (4.8b)
1" N(0,0?) (4.8¢)

Joint estimation of the coeflicient set {8x} and {p;} is done by maximum
likelihood estimation. Tsay (2002, p. 46) distinguishes between conditional
and exact likelihood estimation of the MA terms {p;}. With conditional
estimation, for the first periods, {t = 1,...,¢x), with tx < p, we simply
assume that the error terms are zero. Exact estimation takes a more careful
approach. For period ¢ = 1, the shocks n;_;,¢ = 1,...,p, are set at zero.
However, for t = 2, n;_1 is known, so the realized error is used, while the
other shocks n;_;,7 = 2,...,p, are set at zero. We follow a similar process
for the observations for ¢ < p. For t > p, of course, we can use the realized
values of the errors. In many cases, as Tsay points out, the differences in
the coefficient values and resulting Q statistics from conditional and exact
likelihood estimation is very small.

Since the squared residuals of the model are used to compute standard
errors of estimates of the model, one can apply an extension of the Ljung-
Box Q statistic to test for homoskedasticity, or constancy of the variance, of
the residuals against an unspecified alternative. In a well-specified model,
the variance should be constant. This test is the McLeod and Li (1983), and
tests for autocorrelation of the squared residuals, with the same distribution
and degrees of freedom as the @ statistic.

M 2 -2
MeL(M) = (T)(T+2) Y M (4.9)

m=1

~x*(M) (4.10)

In many cases, we will find that correcting for the serial dependence in
the levels of the residuals is also a correction for serial dependence in the
squared residuals. Alternatively, a linear model may show a significant Q
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TABLE 4.1. Engle-Ng Test of Symmetry of Residuals

Definition Operation

Standardized errors €& =€ /oe,

Squared standardized errors &y

Positive indicators Tr=1ife > 0,0 otherwise
Negative indicators €. =1if € < 0,0 otherwise
Positive valued errors Nt =€ €

Negative valued errors Ny =€r €,

Regression yr=¢2,x, = [L &5 nf n7]
Engle-Ng LM statistic LM = (T —1)- R?
Distribution LM ~ x*(3)

statistic for the McLeod-Li test whereas a neural network alternative may
not. The point is that for making a fair comparison between a linear and
network model, the most important issue is to correct the linear model
for serial dependence in the raw, rather than the squared, value of the
residuals.

4.1.4  Symmetry

In addition to serial independence and constancy of variance, symmetry
of the residuals is also a desired property if they indeed represent purely
random shocks. Symmetry is an important issue, of course, if the model is
going to be used for simulation with symmetric random shocks. However,
violation of the symmetry assumption is not as serious as violation of serial
independence or constancy of variance.

The test for symmetry of residuals proposed by Engle and Ng (1993) is
shown in Table 4.1.

4.1.5  Normality

Besides having properties of serial independence, constancy of variance,
and symmetry, residuals are usually assumed to come from a Gaussian or
normal distribution. One well-known test, the Jarque-Bera statistic, starts
from the assumption that a normal distribution has zero skewness and a
kurtosis of 3.

Given the residual vector €, the Jarque-Bera (1980) statistic is given by
the following formula and distribution:

T-—k

JB(€) — {SK(€)*>+ .25(KR() — 3)*} (4.11)

~X*(2)
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where SK(€) and K R(€), for skewness and kurtosis, are defined as follows:

SK() = %Z (g; g) (4.12)

T N = 4
KR(@) = %Z (6’; 6) (4.13)

while € and o¢ represent the estimated mean and standard deviation of the
residual vector €.

How important is the normality assumption, or how serious is a violation
of the normality assumption? The answer depends on the purpose of the
estimation. If the estimated model is going to be used for simulating models
subject to random normal disturbances, then it would be good to have
normal randomly distributed residuals in the estimated model.

4.1.6 Neural Network Test for Neglected Nonlinearity:
Lee-White-Granger Test

Lee, White, and Granger (1992) proposed the use of artificially generated
neural networks for testing for the presence of neglected nonlinearity in
the regression residuals of any estimated model. The test works with the
regressions residuals and the inputs of the model, and seeks to find out if
any of the residuals can be explained by nonlinear transformations of the
input variables. If they can be explained, there is neglected nonlinearity.

Since the precise form of the nonlinearity is unspecified, Lee, White,
and Granger propose a neural network approach, but they leave aside
the time-consuming estimation process for the neural network. Instead,
the coefficients or weights linking the inputs to the neurons are generated
randomly.

The Lee, White, Granger (L-W-G) test is rather straightforward, and
proceeds in six steps:

1. From the initial model, obtain the residuals and the input variables.

2. Generate a set of neuron regressors from the inputs, with randomly
generated weights for the input variables.

3. Regress the residuals on the neurons, and obtain the multiple
correlation coefficients.

4. Repeat this process 1000 times.
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TABLE 4.2. Lee-White-Granger Test of Neglected Nonlinearity

Definition Operation

Obtain residuals and inputs e,

Randomly generate P sets of coefficients for z Bi

Generate P neurons ni,na,...,Np np = He%ﬂﬂ
Regress e on the P neurons e="bini+,...,bpny
Obtain multiple correlation coefficient R?

Repeat process 1000 times R? RZ%,..., R0
Assess significance of coefficients F(RY),...,F(R300)
Count significant F' statistics I, =1 F(R}) > F*

Decision: Reject if more than 5% significant

5. Assess the significance of the multiple correlation coefficients by F'
statistics.

6. If these coefficients are significant more than 5% of the time, there is
a case for neglected nonlinearity.

For convenience, these steps are summarized in Table 4.2.

This test is similar to the White (1980) test for heteroskedasticity. This
test is a regression of the squared residuals on a polynomial expansion of
the regressors or input variables. In the White test, we specify the power
of the polynomial, with the option to include or exclude the cross terms in
the polynomial expansion of the input variables.

The intuition behind the L-W-G test is that if there is any neglected
nonlinearity in the residuals, some combination of neural network trans-
formations of the inputs should be able to explain or detect it by
approximating it well, since neural networks are adept at approximating
unknown nonlinear functions. Since linear regressions of the residuals are
done on the randomly generated neurons, the test proceeds very rapidly. If,
after a large number of repeated trials with randomly generated neurons,
no significant relations between the neurons and the residuals emerge, one
can be confident that there are no neglected nonlinearities.

4.1.7  Brock-Deckert-Scheinkman Test for Nonlinear

Patterns
Brock, Deckert, and Scheinkman (1987), further elaborated in Brock,
Deckert, Scheinkman, and LeBaron (1996), propose a test for detecting

nonlinear patterns in time series. Following Kocenda (2001), the null
hypothesis is that the data are independently and identically distributed
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TABLE 4.3. BDS Test of IID Process

Definition Operation
Form m-dimensional ' =Xty Tepm,t =1, ... Tpe1, Tne1 =T —m
vector, xy"
Form m-dimensional Ty =Tsy.o oy Togm,S=t+1,... . T T =T —m+1
vector, z"
Form indicator function I (zi*,z7') =  max | 41 — Togi |< €
i=0,1,...,m—
. _ T —1 T I (2" 2 ")
Calculate correlation Cm,r(e) =231 sl T (T
integral
. _ T—1 T Ie(zf,2})
Calculate correlation Cir(e) =230 D e TGS
integral
Form Numerator VT [Conyr(e) — Crr(e)™]

Sample Standard Dev. Om,T(€)

of Numerator

Form BDS Statistic BDS,, r(e) =
Distribution BDSp,r(e) ~ N(0,1)

VT [Crn,1(2)=C1,1(2)™]
gﬂl,T(s)

(iid) processes. This test, known as the BDS test, is unique in its ability to
detect nonlinearities independently of linear dependencies in the data.

The test rests on the correlation integral, developed to distinguish
between chaotic deterministic systems and stochastic systems. The pro-
cedure consists of taking a series of m-dimensional vectors from a time
series, at time t = 1,2,...,T —m, where T is the length of the time series.
Beginning at time ¢ = 1 and s = ¢t + 1, the pairs (z}", ") are evaluated by
an indicator function to see if their maximum distance, over the horizon
m, is less than a specified value €. The correlation integral measures the
fraction of pairs that lie within the tolerance distance for the embedding
dimension m.

The BDS statistic tests the difference between the correlation integral
for embedding dimension m, and the integral for embedding dimension 1,
raised to the power m. Under the null hypothesis of an iid process, the
BDS statistic is distributed as a standard normal variate.

Table 4.3 summarizes the steps for the BDS test.

Kocenda (2002) points out that the BDS statistic suffers from one major
drawback: the embedding parameter m and the proximity parameter e
must be chosen arbitrarily. However, Hsieh and LeBaron (1988a, b, c)
recommend choosing ¢ to be between .5 and 1.5 standard deviations of the
data. The choice of m depends on the lag we wish to examine for serial
dependence. With monthly data, for example, a likely candidate for m
would be 12.
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4.1.8  Summary of In-Sample Criteria

The quest for a high measure of goodness of fit with a small number of
parameters with regression residuals that represent random white noise is
a difficult challenge. All of these statistics represent tests of specification
error, in the sense that the presence of meaningful information in the resid-
uals indicates that key variables are omitted, or that the underlying true
functional form is not well approximated by the functional form of the
model.

4.1.9 MATLAB Ezample

To give the preceding regression diagnostics clearer focus, the following
MATLAB code randomly generates a time series y = sin(z)? + exp(—z) as
a nonlinear function of a random variable z, then uses a linear regression
model to approximate the model, and computes the in-sample diagnostic
statistics. This program makes use of functions olsl.m, wnnestl.m, and
bds.m, available on the webpage of the author.

% Create random regressors, constant term,
% and dependent variable

for i = 1:1000,

randn(’state’,i);

xxx = randn(1000,1);

x1 = ones(1000,1);

x = [x1 xxx];

y = sin(xxx)."2 + exp(-xxx);

% Compute ols coefficients and diagnostics
[beta, tstat, rsq, dw, jbstat, engle,
lbox, mcli] = olsi(x,y);

% Obtain residuals

residuals = y - x * beta;

sse = sum(residuals ."2);

nn = length(residuals);

kk = length(beta);

% Hannan-Quinn Information Criterion

k = 2;

hqif = log(sse/nn) + k * log(log(nn))/nn;
% Set up Lee-White-Granger test

neurons = 5;

nruns = 1000;

% Nonlinearity Test

[nntest, nnsum] = wnntestl(residuals, x, neurons, nruns);
% BDS Nonlinearity Test

[W, SIG] = bdsi(residuals);

RSQ(i) = rsq;

DW(i) = dw;
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TABLE 4.4. Specification Tests

Test Statistic Mean % of Significant Tests
JB-Marginal significance 0 100

EN-Marginal significance .56 3.7

LB-Marginal significance .01 4.5

McL-Marginal Significance 7 2.1

LWG-No. of Significant Regressions 999 99

BDS-Marginal Significance A7 6.6

JBSIG(i) = jbstat(2);
ENGLE(i) = engle(2);
LBOX(i) = 1box(2);
MCLI(i) = mcli(2);
NNSUM(i) = nnsum;
BDSSIG(i) = SIG;
HQIF(i) = hqif;
SSE(i) = sse;

end

The model is nonlinear, and estimation with linear least squares clearly
is a misspecification. Since the diagnostic tests are essentially various types
of tests for specification error, we examine in Table 4.4 which tests pick up
the specification error in this example. We generate data series of sample
length 1000 for 1000 different realizations or experiments, estimate the
model, and conduct the specification tests.

Table 4.4 shows that the JB and the LWG are the most reliable for
detecting misspecification for this example. The others do not do nearly as
well: the BDS tests for nonlinearity are significant 6.6% of the time, and
the LB, McL, and EN tests are not even significant for 5% of the total
experiments. In fairness, the LB and McL tests are aimed at serial cor-
relation, which is not a problem for these simulations, so we would not
expect these tests to be significant. Table 4.4 does show, very starkly, that
the Lee-White-Granger test, making use of neural network regressions to
detect the presence of neglected nonlinearity in the regression residuals, is
highly accurate. The Lee-White-Granger test picks up neglected nonlinear-
ity in 99% of the realizations or experiments, while the BDS test does so
in 6.6% of the experiments.

4.2 Out-of-Sample Criteria

The real acid test for the performance of alternative models is its out-
of-sample forecasting performance. Out-of-sample tests evaluate how well
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competing models generalize outside of the data set used for estimation.
Good in-sample performance, judged by the R? or the Hannan-Quinn
statistics, may simply mean that a model is picking up peculiar or idiosyn-
cratic aspects of a particular sample or over-fitting the sample, but the
model may not fit the wider population very well.

To evaluate the out-of-sample performance of a model, we begin by divid-
ing the data into an in-sample estimation or training set for obtaining the
coefficients, and an out-of-sample or test set. With the latter set of data,
we plug in the coefficients obtained from the training set to see how well
they perform with the new data set, which had no role in calculating of
the coefficient estimates.

In most studies with neural networks, a relatively high percentage of the
data, 25% or more, is set aside or withheld from the estimation for use in
the test set. For cross-section studies with large numbers of observations,
withholding 25% of the data is reasonable. In time-series forecasting, how-
ever, the main interest is in forecasting horizons of several quarters or one
to two years at the maximum. It is not usually necessary to withhold such
a large proportion of the data from the estimation set.

For time-series forecasting, the out-of-sample performance can be cal-
culated in two ways. One is simply to withhold a given percentage of
the data for the test, usually the last two years of observations. We esti-
mate the parameters with the training set, use the estimated coefficients
with the withheld data, and calculate the set of prediction errors coming
from the withheld data. The errors come from one set of coefficients, based
on the fixed training set and one fixed test set of several observations.

4.2.1  Recursive Methodology

An alternative to a once-and-for-all division of the data into training and
test sets is the recursive methodology, which Stock (2000) describes as a
series of “simulated real time forecasting experiments.” It is also known as
estimation with a “moving” or “sliding” window. In this case, period-by-
period forecasts of variable y at horizon h, 4iyp, are conditional only on
data up to time t. Thus, with a given data set, we may use the first half of
the data, based on observations {1,...,t*} for the initial estimation, and
obtain an initial forecast 7;+1p. Then we re-estimate the model based on
observations {1,...,t* + 1}, and obtain a second forecast error, i=1144.
The process continues until the sample is covered. Needless to say, as Stock
(2000) points out, the many re-estimations of the model required by this
approach can be computationally demanding for nonlinear models. We call
this type of recursive estimation an expanding window. The sample size, of
course, becomes larger as we move forward in time.

An alternative to the expanding window is the moving window. In this
case, for the first forecast we estimate with data observations {1,...,t*},
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and obtain the forecast gyyp, at horizon h. We then incorporate the obser-
vation at t* + 1, and re-estimate the coefficients with data observations
{2,...,t* + 1}, and not {1,...,t* + 1}. The advantage of the moving win-
dow is that as data become more distant in the past, we assume that they
have little or no predictive relevance, so they are removed from the sample.

The recursive methodology, as opposed to the once-and-for-all split of
the sample, is clearly biased toward a linear model, since there is only one
forecast error for each training set. The linear regression coefficients adjust
to and approximate, step-by-step in a recursive manner, the underlying
changes in the slope of the model, as they forecast only one step ahead.
A nonlinear neural network model, in this case, is challenged to perform
much better. The appeal of the recursive linear estimation approach is
that it reflects how econometricians do in fact operate. The coefficients
of linear models are always being updated as new information becomes
available, if for no other reason, than that linear estimates are very easy
to obtain. It is hard to conceive of any organization using information a
few years old to estimate coefficients for making decisions in the present.
For this reason, evaluating the relative performance of neural nets against
recursively estimated linear models is perhaps the more realistic match-up.

4.2.2  Root Mean Squared Error Statistic

The most commonly used statistic for evaluating out-of-sample fit is the
root mean squared error (rmsq) statistic:

rmsq = \/Z::*l(%_@r)2 (4.14)

where 7* is the number of observations in the test set and {,} are the
predicted values of {y,}. The out-of-sample predictions are calculated by
using the input variables in the test set {z,} with the parameters estimated
with the in-sample data.

4.2.8  Diebold-Mariano Test for Out-of-Sample Errors

We should select the model with the lowest root mean squared error statis-
tic. However, how can we determine if the out-of-sample fit of one model is
significantly better or worse than the out-of-sample fit of another model?
One simple approach is to keep track of the out-of-sample points in which
model A beats model B.

A more detailed solution to this problem comes from the work of Diebold
and Mariano (1995). The procedure appears in Table 4.5.
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TABLE 4.5. Diebold-Mariano Procedure

Definition Operation

Errors {3 {n-}

Absolute differences zr = |12 — |€]

Mean z = ==L s

Covariogram ¢ = [Cov(zr, 2r—p, ),Cov(2r, 2r, ),Cov(27, Zr4p, )]

ol

=>c/(p+1)
M =2~ N(0,1),Hy: E(z) =0

Mean
DM statistic

-l

As shown above, we first obtain the out-of-sample prediction errors of
the benchmark model, given by {e,}, as well as those of the competing
model, {n;}.

Next, we compute the absolute values of these prediction errors, as well
as the mean of the differences of these absolute values, z,. We then compute
the covariogram for lag/lead length p, for the vector of the differences of
the absolute values of the predictive errors. The parameter p < 7% is the
length of the out-of-sample prediction errors.

In the final step, we form a ratio of the means of the differences over
the covariogram. The DM statistic is distributed as a standard normal
distribution under the null hypothesis of no significant differences in the
predictive accuracy of the two models. Thus, if the competing model’s
predictive errors are significantly lower than those of the benchmark model,
the DM statistic should be below the critical value of —1.69 at the 5%
critical level.

4.2.4  Harvey, Leybourne, and Newbold Size Correction of
Diebold-Mariano Test

Harvey, Leybourne, and Newbold (1997) suggest a size correction to the
DM statistic, which also allows “fat tails” in the distribution of the forecast
errors. We call this modified Diebold-Mariano statistic the MDM statistic.
It is obtained by multiplying the DM statistic by the correction factor CF,
and it is asymptotically distributed as a Student’s t with 7% — 1 degrees of
freedom. The following equation system summarizes the calculation of the
MDM test, with the parameter p representing the lag/lead length of the
covariogram, and 7* the length of the out-of-sample forecast set:

T 4+1-2p+p(l—p)/7*

T*

MDM = CF - DM ~ t,«_1(0,1) (4.16)

CF =

(4.15)
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4.2.5  QOut-of-Sample Comparison with Nested Models

Clark and McCracken (2001), Corradi and Swanson (2002), and Clark
and West (2004) have proposed tests for comparing out-of-sample accuracy
for two models, when the competing models are nested. Such a test is
especially relevant if we wish to compare a feedforward network with jump
connections (containing linear as well as logsigmoid neurons) with a simple
restricted linear alternative, given by the following equations:

K
Restricted Model: y, = Z QRTit + € (4.17)
k=1
K J
Alternative Model: y; = Z Bzt + Z’yij’t + (4.18)
k=1 j=1
1
Njt = (4.19)

1+ exp[f(Zle 0 kTh )]

where the first restricted equation is simply a linear function of K param-
eters, while the second unrestricted network is a nonlinear function with
K+ JK parameters. Under the null hypothesis of equal predictive ability of
the two models, the difference between the squared prediction errors should
be zero. However, Todd and West point out that under the null hypothesis,
the mean squared prediction error of the null model will often or likely be
smaller than that of the alternative model [Clark and West (2004), p. 6].
The reason is that the mean squared error of the alternative model will be
pushed up by noise terms reflecting “spurious small sample fit” [Clark and
West (2004), p. 8]. The larger the number of parameters in the alternative
model, the larger the difference will be.

Clark and West suggest a procedure for correcting the bias in out-of-
sample tests. Their paper does not have estimated parameters for the
restricted or null model —they compare a more extensive model against
a simple random walk model for the exchange rate. However, their proce-
dure can be used for comparing a pure linear restricted model against a
combined linear and nonlinear alternative model as above. The procedure
is a correction to the mean squared prediction error of the unrestricted
model by an adjustment factor ¥ 4p s, defined in the following way, for the
case of the neural network model.

The mean squared prediction errors of the two models are given by the
following equations, for forecasts 7 =1,...,T™:

T K 2
ohps=(T) 'Y [yT—mek,T} (4.20)
T=1 k=1
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T 2

K J
1
2 =1 ~ ~
=03 o Saun 35 )
r=1 k=1 j=1 1+exp[—(3 25—y 6,k Th,r)]
(4.21)

The null hypothesis of equal predictive performance is obtained by
comparing o3 pp with the following adjusted mean squared error statistic:

o4ps = OnpT — YADJ (4.22)

The test statistic under the null hypothesis of equal predictive perfor-
mance is given by the following expression:

= U?%ES - 0124DJ (4.23)

The approximate distribution of this statistic, multiplied by the square

root of the size of the out-of-sample set, is given by normal distribution
with mean 0 and variance V:

(T%)° F~ ¢(0, V) (4.24)

The variance is computed in the following way:

T K N J 2
V=4.(T)> (y.r -y 5kxk,T> > AN, (4.25)
=1 k=1 j=1

Clark and West point out that this test is one-sided: if the restrictions
of the linear model were not true, the forecasts from the network model
would be superior to those of the linear model.

4.2.6  Success Ratio for Sign Predictions: Directional
Accuracy

Out-of-sample forecasts can also be evaluated by comparing the signs of
the out-of-sample predictions with the true sample. In financial time series,
this is particularly important if one is more concerned about the sign of
stock return predictions rather than the exact value of the returns. After
all, if the out-of-sample forecasts are correct and positive, this would be a
signal to buy, and if they are negative, a signal to sell. Thus, the correct
sign forecast reflects the market timing ability of the forecasting model.
Pesaran and Timmermann (1992) developed the following test of direc-
tional accuracy (DA) for out-of-sample predictions, given in Table 4.6.
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TABLE 4.6. Pesaran-Timmerman Directional Accuracy (DA) Test
Definition Operation
Calculate out of sample predictions, m  Yn4;j =1,...,m

periods

Compute indicator for correct sign
Compute success ratio (SR)

Compute indicator for true values
Compute indicator for predicted values
Compute means P, P

Compute success ratio under

Ij =1if Ynyj - Ynts > 0,0 otherwise
SR= L5 T,
I;T”e = 11if yn4; > 0,0 otherwise

I]’.’md = 1if Yn4; > 0,0 otherwise
1 m true p _ 1 m pred
P_R j:/}Ij vP—Eijr’j

SRI=P-P—(1-P)-(1-P)

independence (SRI)

Compute variance for SRI var(SRI) = (2P —1)*P(1 — P)
+(2P —1)*P(1 - P)
+4P.P(1—P)(1-P)|

var(SR) = LSRI(1 — SRI)

_ SR—SRI o
DA= \/uar(SR)—var(SRI) N(O7 1)

Compute variance for SR

Compute DA statistic

The DA statistic is approximately distributed as standard normal, under
the null hypothesis that the signs of the forecasts and the signs of the actual
variables are independent.

4.2.7  Predictive Stochastic Complexity

In choosing the best neural network specification, one has to make decisions
regarding lag length for each of the regressors, as well as the type of network
to be used, the number of hidden layers, and the number of networks in each
hidden layer. One can, of course, make a quick decision on the lag length
by using the linear model as the benchmark. However, if the underlying
true model is a nonlinear one being approximated by the neural network,
then the linear model should not serve this function.

Kuan and Liu (1995) introduced the concept of predictive stochastic com-
plexity (PSC), originally put forward by Rissanen (1986a, b), for selecting
both the lag and neural network architecture or specification. The basic
approach is to compute the average squared honest or out-of-sample pre-
diction errors and choose the network that gives the smallest PSC within a
class of models. If two models have the same PSC, the simpler one should
be selected.

Kuan and Liu applied this approach to exchange rate forecasting. They
specified families of different feedforward and recurrent networks, with
differing lags and numbers of hidden units. They make use of random
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specification for the starting parameters for each of the networks and choose
the one with the lowest out-of-sample error as the starting value. Then
they use a Newton algorithm and compute the resulting PSC values. They
conclude that nonlinearity in exchange rates may be exploited by neural
networks to “improve both point and sign forecasts” [Kuan and Liu (1995),
p. 361].

4.2.8 Cross-Validation and the .632 Bootstrapping Method

Unfortunately, many times economists have to work with time series lacking
a sufficient number of observations for both a good in-sample estima-
tion and an out-of-sample forecast test based on a reasonable number of
observations.

The reason for doing out-of-sample tests, of course, is to see how well a
model generalizes beyond the original training or estimation set or historical
sample for a reasonable number of observations. As mentioned above, the
recursive methodology allows only one out-of-sample error for each training
set. The point of any out-of-sample test is to estimate the in-sample bias
of the estimates, with a sufficiently ample set of data. By in-sample bias
we mean the extent to which a model overfits the in-sample data and lacks
ability to forecast well out-of-sample.

One simple approach is to divide the initial data set into k& subsets of
approximately equal size. We then estimate the model k times, each time
leaving out one of the subsets. We can compute a series of mean squared
error measures on the basis of forecasting with the omitted subset. For &
equal to the size of the initial data set, this method is called leave out one.
This method is discussed in Stone (1977), Djkstra (1988), and Shao (1995).

LeBaron (1998) proposes a more extensive bootstrap test called the
0.632 bootstrap, originally due to Efron (1979) and described in Efron and
Tibshirani (1993). The basic idea, according to LeBaron, is to estimate the
original in-sample bias by repeatedly drawing new samples from the orig-
inal sample, with replacement, and using the new samples as estimation
sets, with the remaining data from the original sample not appearing in
the new estimation sets, as clean test or out-of-sample data sets. In each of
the repeated draws, of course, we keep track of which data points are in the
estimation set and which are in the out-of-sample data set. Depending on
the draws in each repetition, the size of the out-of-sample data set will vary.
In contrast to cross-validation, then, the 0.632 bootstrap test allows a ran-
domized selection of the subsamples for testing the forecasting performance
of the model.

The 0.632 bootstrap procedure appears in Table 4.7.2

2LeBaron (1998) notes that the weighting 0.632 comes from the probability that a

given point is actually in a given bootstrap draw, 1 — [1 — (%)]” ~1—e 1 =0.632.
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TABLE 4.7. 0.632 Bootstrap Test for In-Sample Bias

Obtain mean squared error from full
data set

Draw a sample of length n with
replacement

Estimate coefficients of model
Obtain omitted data from full

data set

Forecast out-of-sample with
coefficients Q*

Calculate mean squared error for
out-of-sample data

Repeat experiment B times
Calculate average mean squared error
for B boostraps

Calculate bias adjustment

Calculate adjusted error estimate

MSSE® =157

n 2ui=1 [y: — /y\z]2

zZ1

MssE = Ly [5 -5

1 i=

MSSE = 5> MSSE®

@!*632) = 0.632 [MSSE® — MSSE|
MSSE©632) — .368 - MSSE°

+0.632- MSSE

In Table 4.7, MSSE is a measure of the average mean out-of-sample
squared forecast errors. The point of doing this exercise, of course, is to
compare the forecasting performance of two or more competing models,
to compare MSSE,EO'632) for models ¢ = 1,...,m. Unfortunately, there
is no well-defined distribution of the M SSE(©632) 5o we cannot test if
MSSEZ.(O'632) from model ¢ is significantly different from MSSEJ(-O'G?’Q) of
model j. Like the Hannan-Quinn information criterion, we can use this for
ranking different models or forecasting procedures.

4.2.9 Data Requirements: How Large for Predictive
Accuracy?

Many researchers shy away from neural network approaches because they
are under the impression that large amounts of data are required to obtain
accurate predictions. Yes, it is true that there are more parameters to
estimate in a neural network than in a linear model. The more com-
plex the network, the more neurons there are. With more neurons, there
are more parameters, and without a relatively large data set, degrees
of freedom diminish rapidly in progressively more complex networks.
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In general, statisticians and econometricians work under the assump-
tion that the more observations the better, since we obtain more precise
and accurate estimates and predictions. Thus, combining complex esti-
mation methods such as the genetic algorithm with very large data
sets makes neural network approaches very costly, if not extravagant,
endeavors. By costly, we mean that we have to wait a long time to get
results, relative to linear models, even if we work with very fast hard-
ware and optimized or fast software codes. One econometrician recently
confided to me that she stays with linear methods because “life is too
short.”

Yes, we do want a relatively large data set for sufficient degrees of free-
dom. However, in financial markets, working with time series, too much
data can actually be a problem. If we go back too far, we risk using data
that does not represent very well the current structure of the market. Data
from the 1970s, for example, may not be very relevant for assessing foreign
exchange or equity markets, since the market conditions of the last decade
have changed drastically with the advent of online trading and information
technology. Despite the fact that financial markets operate with long mem-
ory, financial market participants are quick to discount information from
the irrelevant past. We thus face the issue of data quality when quantity
is abundant.

Walczak (2001) has examined the issue of length of the training set or
in-sample data size for producing accurate forecasts in financial markets.
He found that for most exchange-rate predictions (on a daily basis), a
maximum of two years produces the “best neural network forecasting model
performance” [Walczak (2001), p. 205]. Walczak calls the use of data closer
in time to the data that are to be forecast the times-series recency effect.
Use of more recent data can improve forecast accuracy by 5% or more while
reducing the training and development time for neural network models
[Walczak (2001), p. 205].

Walczak measures the accuracy of his forecasts not by the root mean
squared error criterion but by percentage of correct out-of-sample direc-
tion of change forecasts, or directional accuracy, taken up by Pesaran and
Timmerman (1992). As in most studies, he found that single-hidden-layer
neural networks consistently outperformed two-layer neural networks, and
that they are capable of reaching the 60% accuracy threshold [Walczak
(2001), p. 211].

Of course, in macro time series, when we are forecasting inflation or pro-
ductivity growth, we do not have daily data available. With monthly data,
ample degrees of freedom, approaching in sample length the equivalent of
two years of daily data, would require at least several decades. But the
message of Walczak is a good warning that too much data may be too
much of a good thing.
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4.3 Interpretive Criteria and Significance of
Results

In the final analysis, the most important criteria rest on the questions posed
by the investigators. Do the results of a neural network lend themselves to
interpretations that make sense in terms of economic theory and give us
insights into policy or better information for decision making? The goal
of computational and empirical work is insight as much as precision and
accuracy. Of course, how we interpret a model depends on why we are
estimating the model. If the only goal is to obtain better, more accurate
forecasts, and nothing else, then there is no hermeneutics issue.

We can interpret a model in a number of ways. One way is simply to sim-
ulate a model with the given initial conditions, add in some small changes
to one of the variables, and see how differently the model behaves. This is
akin to impulse-response analysis in linear models. In this approach, we set
all the exogenous shocks at zero, set one of them at a value equal to one
standard deviation for one period, and let the model run for a number of
periods. If the model gives sensible and stable results, we can have greater
confidence in the model’s credibility.

We may also be interested in knowing if some or any of the variables used
in the model are really important or statistically significant. For example,
does unemployment help explain future inflation? We can simply estimate a
network with unemployment and then prune the network, taking unemploy-
ment out, estimate the network again, and see if the overall explanatory
power or predictive performance of the network deteriorates after elimi-
nating unemployment. We thus test the significance of unemployment as
an explanatory variable in the network with a likelihood ratio statistic.
However, this method is often cumbersome, since the network may con-
verge at different local optima before and after pruning. We often get the
perverse result that a network actually improves after a key variable has
been omitted.

Another way to interpret an estimated model is to examine a few of
the partial derivatives or the effects of certain exogenous variables on the
dependent variable. For example, is unemployment more important for
explaining future inflation than the interest rate? Does government spend-
ing have a positive effect on inflation? With these partial derivatives, we
can assess, qualitatively and quantitatively, the relative strength of how
exogenous variables affect the dependent variable.

Again, it is important to proceed cautiously and critically. An estimated
model, usually an overfitted neural network, for example, may produce
partial derivatives showing that an increase in firm profits actually increases
the risk of bankruptcy! In complex nonlinear estimation such an absurd
possibility happens when the model is overfitted with too many parameters.
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The estimation process should be redone, by pruning the model to a simpler
network, to find out if such a result is simply a result of too few or too
many parameters in the approximation, and thus due to misspecification.

Absurd results can also come from the lack of convergence, or conver-
gence to a local optimum or saddle point, when quasi-Newton gradient-
descent methods are used for estimation.

In assessing the common sense of a neural network model it is important
to remember that the estimated coefficients or the weights of the network,
which encompass the coefficients linking the inputs to the neurons and
the coefficients linking the neurons to the output, do not represent partial
derivatives of the output y with respect to each of the input variables. As
was mentioned, the neural network estimation is nonparametric, in the
sense that the coefficients do not have a ready interpretation as behavioral
parameters. In the case of the pure linear model, of course, the coefficients
and the partial derivatives are identical.

Thus, to find out if an estimated network makes sense, we can read-
ily compute the derivatives relating changes in the output variable with
respect to changes in several input variables. Fortunately, computing such
derivatives is a relatively easy task. There are two approaches: analytical
and finite-difference methods.

Once we obtain the derivatives of the network, we can evaluate their
statistical significance by bootstrapping. We next take up the topics of ana-
lytical and finite differencing for obtaining derivatives, and bootstrapping
for obtaining significance, in turn.

4.3.1 Analytic Derivatives

One may compute the analytic derivatives of the output y with respect to
the input variables in a feedforward network in the following way. Given
the network:

-

Mkt = Who + > Wk ilie (4.26)
i=1
Ny = — (4.27)
Rt = T oo -
.
Yt =" + Z’Yka,t (4.28)
k=1

the partial derivative of y; with respect to x;- ; is given by:

Oyy
Oz ¢

L
= Z’Yka,t(l — Nit)wk,i* (4.29)
k=1
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The above derivative comes from an application of the chain rule:

Yy _ kz* Oy aNk,t ank,t
8I1*7t b1 8Nk7t 8nk,t 81:1-*7,5

(4.30)

and from the fact that the derivative of a logsigmoid function N has the
following property:

ONp¢

8nk7t = Nk’t[l - N}c,t] (431)

Note that the partial derivatives in the neural network estimation are
indexed by t. Each partial derivative is state-dependent, since its value at
any time or observation index ¢ depends on the index ¢ values of the input
variables, x;. The pure linear model implies partial derivatives that are
independent of the values of x. Unfortunately, with nonlinear models one
cannot make general statements about how the inputs affect the output
without knowledge about the values of x;.

4.83.2  Finite Differences

A more common way to compute derivatives are finite-difference methods.
Given a neural network function, y = f(z),z = [r1,...,2i,...,Z;«], one
way to approximate f; ; is through the one-sided finite-difference formula:

Oy flar, ... @i+ hiy oo @) — f(@1,000 24,000, T0)
81@7 hi

(4.32)

where the denominator h; is set at max(e, e.z;), with e = 1076.
Second-order partial derivatives are computed in a similar manner.
Cross-partials are given by the formula:

82y - 1 {f(.”l?17,SCZ-"-h“I]"Fh],7xl*)—f(131,71‘“,$]+h],,CC,,*)}
81‘1833] h]hl 7{f(x177x7,+h17xj7711*)7f(x17717,’737]77331*)}
(4.33)

while the direct second-order partials are given by:

@—i f(1'1;~~'axi+hi,$ja"'axi*)_2f("'xi7"'7l.j""’xi*)
Oz h? (@1, — hyy g, @)

(4.34)

where {h;,h;} are the step sizes for calculating the partial derivatives.
Following Judd (1998), the step size h; = max(ex;, €), where the scalar ¢
is set equal to the value 1075,
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4.8.8 Does It Matter?

In practice, it does not matter very much. Knowing the exact functional
form of the analytical derivatives certainly provides accuracy. However, for
more complex functional forms, differentiation becomes more difficult, and
as Judd (1998, p. 38) points out, finite-difference methods avoid errors that
may arise from this source.

Another reason to use finite-difference methods for computing the partial
derivatives of a network is that one can change the functional form, or
the number of hidden layers in the network, without having to derive a
new expression. Judd (1998) points out that analytic derivatives are better
considered only when needed for accuracy reasons, or as a final stage for
speeding up an otherwise complete program.

4.8.4 MATLAB Example: Analytic and Finite Differences

To show how closely the exact analytical derivatives and the finite differ-
ences match numerically, consider the logsigmoid function of a variable z,
1/[14exp(—=x)]. Letting « take on values from —1 to 41 at grid points of .1,
we can compute the analytical and finite differences for this interval with
the following MATLAB program, which calls the program myjacobian.m:

x = -1:.1:1; % Define the range of the input variable
X = x’;
y = inv(l+exp(-x)); % Calculate the output variable

yprime_exact = y .* (1-y); % Calculate the analytical derivative
fun = ’logsig’; % Define function

h = 10 * exp(-6); % Define h

rr = length(x);

for i = 1:rr, % Calculate the finite derivative

yprime _finite(i,:) = myjacobian(fun, x(i,:), h);

end

% Obtain the mean of the squared error

meanerrorsquared = mean((yprime_finite - yprime_exact).” 2);

The results show that the mean sum of squared differences between the
exact and finite difference solutions is indeed a very small value; to be
exact, 5.8562e-007.

The function myjacobian is given by the following code:

function jac = myjacobian(fun, beta, lambda);

% computes the jacobian matrix from the function;
% inputs: function, beta, lambda

% output: jacobian

[rr k] = size(beta);
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value0 = feval (fun,beta);
vecl = zeros(1,k);
for i = 1:k,

vec2 = vecl;

vec2(i) = max(lambda, lambda *beta(i));
betax = beta + vec2;

valuel = feval(fun,betax);

jac(i) = (valuel - valueO) ./ lambda;
end

4.8.5  Bootstrapping for Assessing Significance

Assessing the statistical significance of an input variable in the neural net-
work processes is straightforward. Suppose we have a model with several
input variables. We are interested, for example, in whether or not govern-
ment spending growth affects inflation. In a linear model, we can examine
the t statistic. With nonlinear neural network estimation, however, the
number of network parameters is much larger. As was mentioned, likelihood
ratio statistics are often unreliable.

A more reliable but time-consuming method is to use the boostrapping
method originally due to Efron (1979, 1983) and Efron and Tibshirani
(1993). This bootstrapping method is different from the .632 bootstrap
method for in-sample bias. In this method, we work with the original date,
with the full sample, [y, z], obtain the best predicted value with a neural
network, 7, and obtain the set of residuals, € = y — 3. We then randomly
sample this vector, €, with replacement and obtain the first set of shocks for
the first bootstrap experiment, €'. With this set of first randomly sampled
shocks from the base of residuals, €', we generate a new dependent variable
for the first bootstrap experiment, y°! = 7+ €°!, and use the new data set
[y*! 2] to re-estimate a neural network and obtain the partial derivatives
and other statistics of interest from the nonlinear estimation. We then
repeat this procedure 500 or 1000 times, obtaining € and 3" for each
experiment, and redo the estimation. We then order the set of estimated
partial derivatives (as well as other statistics) from lowest to highest values,
and obtain a probability distribution of these derivatives. From this we can
calculate bootstrap p-values for each of the derivatives, giving the proba-
bility of the null hypothesis that each of these derivatives is equal to zero.

The disadvantage of the bootstrap method, as should be readily appar-
ent, is that it is more time-consuming than likelihood ratio statistics, since
we have to resample from the original set of residuals and re-estimate the
network 500 or 1000 times. However, it is generally more reliable. If we can
reject the null hypothesis that a partial derivative is equal to zero, based on
resampling the original residuals and re-estimating the model 500 or 1000
times, we can be reasonably sure that we have found a significant result.
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4.4 Implementation Strategy

When we face the task of estimating a model, the preceding material indi-
cates that we have a large number of choices to make at all stages of the
process, depending on the weights we put on in-sample or out-of-sample
performance and the questions we bring to the research. For example, do
we take logarithms and first-difference the data? Do we deseasonalize the
data? What type of data scaling function should we use: the linear func-
tion, compressing the data between zero or one, or another one? What type
of neural network specification should we use, and how should we go about
estimating the model? When we evaluate the results, which diagnostics
should we take more seriously and which ones less seriously? Do we have
to do out-of-sample forecasting with a split-sample or a real-time method?
Should we use the bootstrap method? Finally, do we have to look at the
partial derivatives?

Fortunately, most of these questions generally take care of themselves
when we turn to particular problems. In general, the goal of neural network
research is to evaluate its performance relative to the standard linear model,
or in the case of classification, to logit or probit models. If logarithmic
first-differencing is the norm for linear forecasting, for example, then neu-
ral networks should use the same data transformation. For deciding the lag
structure of the variables in a time-series context, the linear model should
be the norm. Usually, lag section is based on repeated linear estimation
of the in-sample or training data set for different lag lengths of the vari-
ables, and the lag structure giving the lowest value of the Hannan-Quinn
information criterion is the one to use.

The simplest type of scaling should be used first, namely, the linear [0,1]
interval scaling function. After that, we can check the robustness of the
overall results with respect to the scaling function. Generally, the simplest
neural network alternative should be used, with a few neurons to start. A
good start would be the simple feedforward model or the jump-connection
network which uses a combination of the linear and logsigmoid connections.

For estimation, there is no simple solution; the genetic algorithm gen-
erally has to be used. It may make sense to use the quasi-Newton
gradient-descent methods for a limited number of iterations and not wait
for full converge, particularly if there are a large number of parameters.

For evaluating the in-sample criteria, the first goal is to see how well the
linear model performs. We would like a linear model that looks good, or
at least not too bad, on the basis of the in-sample criteria, particularly in
terms of autocorrelation and tests of nonlinearity. Very poor performance
on the basis of these tests indicates that the model is not well specified. So
beating a poorly specified model with a neural network is not a big deal.
We would like to see how well a neural network performs relative to the
best specified linear model.
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Generally a network model should do better in terms of overall explana-
tory power than a linear model. However, the acid test of performance is
out-of-sample performance. For macro data, real-time forecasting is the
sensible way to proceed, while split-sample tests are the obvious way to
proceed for cross-section data.

For obtaining the out-of-sample forecasts with the network models, we
recommend the thick model approach advocated by Granger and Jeon
(2002). Since no one neural network gives the same results if the start-
ing solution parameters or the scaling functions are different, it is best to
obtain an ensemble of predictions each period and to use a trimmed mean
of the multiple network forecasts for a thick model network forecast.

For comparing the linear and thick model network forecasts, the root
mean squared error criteria and Diebold-Mariano tests are the most widely
used for assessing predictive accuracy. While there is no harm in using
the bootstrap method for assessing overall performance of the linear and
neural net models, there is no guarantee of consistency between out-of-
sample accuracy through Diebold-Mariano tests and bootstrap dominance
for one method or the other. However, if the real world is indeed captured
by the linear model, then we would expect that linear models would domi-
nate the nonlinear network alternatives under the real-time forecasting and
bootstrap criteria.

In succeeding chapters we will illustrate the implementation of network
estimation for various types of data and relate the results to the theory of
this chapter.

4.5 Conclusion

Evaluation of the network performance relative to the linear approaches
should be with some combination of in-sample and out-of-sample criteria,
as well as by common sense criteria. We should never be afraid to ask
how much these models add to our insight and understanding. Of course,
we may use a neural network simply to forecast or simply to evaluate
particular properties of the data, such as the significance of one or more
input variables for explaining the behavior of the output variable. In this
case, we need not evaluate the network with the same weighting applied
to all three criteria. But in general we would like to see a model that has
good in-sample diagnostics also forecast out-of-sample well and make sense
and add to our understanding of economic and financial markets.

4.5.1 MATLAB Program Notes

Many of the programs are available for web searches and are also embedded
in popular software programs such as EViews, but several are not.
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For in-sample diagnostics, for the Ljung-Box and McLeod-Li tests, the
program gstatlb.m should be used. For symmetry, I have written engleng.m,
and for normality, jarque.m. The Lee-White-Granger test is implemented
with wnntestl.m, and the Brock-Deckert-Scheinkman test is given by
bds1.m

For out-of-sample performance, the Diebold-Mariano test is given by
dieboldmar.m, and the Pesaran-Timerman directional accuracy test is given
by datest.m.

For evaluating first and second derivatives by finite differences, I have
written myjacobian.m and myhessian.m.

4.5.2  Suggested Fzxercises

For comparing derivatives obtained by finite differences with exact ana-
lytical derivatives, I suggest again using the MATLAB Symbolic Toolbox.
Write in a function that has an exact derivative and calculate the expres-
sion symbolically using funtool.m. Then create a function and find the
finite-difference derivative with myjacobian.m.
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5

Estimating and Forecasting with
Artificial Data

5.1 Introduction

This chapter applies the models and methods presented in the previous
chapters to artificially generated data. This is done to show the power of
the neural network approach, relative to autoregressive linear models, for
forecasting relatively complex, though artificial, statistical processes.

The primary motive for using artificial data is that there are no limits
to the size of the sample! We can estimate the parameters from a training
set with sufficiently large degrees of freedom, and then forecast with a rela-
tively ample test set. Similarly, we can see how well the fit and forecasting
performance of a given training and test set from an initial sample or real-
ization of the true stochastic process matches another realization coming
from the same underlying statistical generating process.

The first model we examine is the stochastic chaos (SC) model, the sec-
ond is the stochastic volatility /jump diffusion (SVJD) model, the third
is the Markov regime switching (MRS) model, the fourth is a volatil-
ity regime switching (VRS) model, the fifth is a distorted long-memory
(DLM) model, and the last is the Black-Scholes options pricing (BSOP)
model. The SC model is widely used for testing predictive accuracy of var-
ious forecasting models, the SVJD and VRS models are commonly used
models for representing volatile financial time series, and the MRS model
is used for analyzing GDP growth rates. The DLM model may be used to
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represent an economy subject to recurring bubbles. Finally, the BSOP
model is the benchmark model for calculating the arbitrage-free prices
for options, under the assumption of the log normal distribution of asset
returns. This chapter shows how well neural networks, estimated with the
hybrid global-search genetic algorithm and local gradient approach, approx-
imate the data generated by these models relative to the linear benchmark
model.

In some cases, the structure is almost linear, so that the network should
not perform much better than the linear model —but it also should not
perform too much worse. In one case, the model is simply a martingale, in
which case the best predictor of y;y1 is y¢. Again, the linear and network
models should not diverge too much in this case. We assume in each of
these cases that the forecasting agent does not know the true structure.
Instead, the agent attempts to learn the true data generating process from
linear and nonlinear neural network estimation, and forecast on the basis
of these two methods.

In each case, we work with stationary data. Thus, the variables are
first-differenced if there is a unit root. While the Dickey-Fuller unit root
tests, discussed in the previous chapter, are based on linear autoregressive
processes, we use these tests since they are standard and routinely used in
the literature.

When we work with neural networks and wish to compare them with
linear autoregressive models, we normally want to choose the best network
model relative to the best linear model. The best network model may well
have a different lag structure than the best linear model. We should choose
the best specifications for each model on the basis of in-sample criteria,
such as the Hannan-Quinn information criterion, and then see which one
does better in terms of out-of-sample forecasting performance, either in
real-time or in bootstrap approaches, or both. In this chapter, however, we
either work with univariate series generated with simple one-period lags
or with a cross-section series. We simply compare the benchmark linear
model against a simple network alternative, with the same lag structure
and three neurons in one hidden layer, in the standard “plain vanilla”
multilayer perceptron or feedforward network.

For choosing the best linear specification, we use an ample lag structure
that removes traces of serial dependence and minimizes the Hannan-Quinn
information criterion. To evaluate the linear model fairly against the net-
work alternative, the lag length should be sufficient to remove any obvious
traces of specification error such as serial dependence. Since the artificial
data in this chapter are intended to replicate properties of higher-frequency
daily data, we select a lag length of four, on the supposition that forecasters
would initially use such a lag structure (representing a year for quarterly
data, or almost a full business week for daily data) for estimation and
forecasting.
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5.2 Stochastic Chaos Model

The stochastic chaos (SC) model has the following representation:

ye=4-G y—1- (1 —yi—1)
§t~U(071)

Yo =D (5.1)

The stochastic term ¢; is a draw from a random uniform distribution. The
variable y; depends on its own lag, y;—1, as well as on (y:—1), multiplied
by a factor of 4. One realization appears in Figure 5.1. An easy code for
generating this series is given by the following list of MATLAB commands:

T = 500;
z = rand(T,1);
y(1,:) = .5;

for i = 2:T, y(i,:) =4 * z(i,:) * y(i-1,:) * (1-y(i-1,:)); end

Notice that there are periods of consistent high volatility followed by flat
stable intervals, indicating a series of nonlinear events. We also see that
the stochastic model generates only positive values, since the shock comes
from a uniform distribution. Such a stochastic chaos process may be useful
for modeling either implied volatility or observed volatility processes rather
than rate-of-return processes in financial markets, since volatility processes
have, by definition, positive values. Figure 5.1 pictures one such realization
of a stochastic chaos process.

Chaos theory has been widely studied in applications to finance to see
if there are hidden chaotic properties within financial market data. One of
the properties of the stochastic process is that, for a given set of shocks
{st}, the set of outcomes {y;} does not vary much, after a suitable interval,
for any initial condition yy, provided that 0 < yg < 1. However, before
that suitable interval has passed, the system dynamics vary quite a bit
for the given set of shocks {¢;}. Figure 5.2 pictures three stochastic chaos
processes for the same shocks, for yo = [.001,.5,.99]. We see that the
dashed and dotted curves, processes generated by the initial conditions
yo = [.5,.99], converge after five periods, whereas the process generated
by yo = [.001] takes about 15 periods to converge to the same values as
generated by yo = [.5,.99]. Thus, effects of the initial conditions wear off
with different speeds and show different volatilities for the same sets of
shocks and same laws of motion.

For values yo = 0 or yp = 1, of course, the process remains at zero, and
for yg < 0 and yy > 1, the process diverges very quickly. Thus, the process
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FIGURE 5.1. Stochastic chaos process

has an extreme sensitivity to very small changes in the initial condition,
when the initial condition is in the neighborhood of zero or one.

5.2.1 In-Sample Performance

To fit the neural network and a linear model to this data set, we used both
the genetic algorithm global search and the quasi-Newton local gradient
methods. We withheld the last 20% (100 observations) as the out-of-sample
test set, for real-time forecasting. We also used the bootstrap forecasting
test.!

The in-sample performance of the linear model for the stochastic chaos
model is summarized in Table 5.1.

Table 5.1 tells us that the linear model explains 29% of the varia-
tion of the in-sample data set, while the corresponding statistic of the

1The data generated by this model are estimated by neural network methods with
the program nnetjump.m, available on the webpage of the author.
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FIGURE 5.2. Stochastic chaos process for different initial conditions

TABLE 5.1. In-Sample Diagnostics: Stochastic
Chaos Model (Structure: 4 Lags, 3 Neurons)

Diagnostic Linear Model (Network Model)

Estimate
R? .29 (.53)
HQIF 1534 (1349)
L-B* 251
M-L* .0001
E-N* .0000
J-B* 55
L-W-G 1000
B-D-Sx .0000

* marginal significance levels

network model, appearing in parentheses, explains 53%. The Hannan-
Quinn information criterion favors, not surprisingly, the network model.
The significance test of the Q statistic shows that we cannot reject serial
independence of the regression residuals. By all other criteria, the linear
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FIGURE 5.3. In-sample errors: stochastic chaos model

specification suffers from serious specification error. There is evidence of
serial correlation in squared errors, as well as non-normality, asymmetry,
and neglected nonlinearity in the residuals. Such indicators would suggest
the use of nonlinear models as alternatives to the linear autoregressive
structure.

Figure 5.3 pictures the error paths predicted by the linear and network
models. The linear model errors are given by the solid curve and the net-
work errors by dotted paths. As expected, we see that the dotted curves
generally are closer to zero.

5.2.2  Qut-of-Sample Performance

The path of the out-of-sample prediction errors appears in Figure 5.4. The
solid path represents the forecast error of the linear model while the dotted
curves are for the network forecast errors. This shows the improved per-
formance of the network relative to the linear model, in the sense that its
errors are usually closer to zero.

Table 5.2 summarizes the out-of-sample statistics. These are the root
mean squared error statistics (RMSQ), the Diebold-Mariano statistics for
lags zero through four (DM-0 to DM-4), the success ratio for percentage
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FIGURE 5.4. Out-of-sample prediction errors: stochastic chaos model

TABLE 5.2. Forecast Tests: Stochastic Chaos Model
(Structure: 5 Lags, 4 Neurons)

Diagnostic Linear Neural Net
RMSQ 147 A17
DM-0* — .000
DM-1* — .004e-5
DM-2* — .032e-5
DM-3* — .115e-5
DM-4* — .209e-5

SR 1 1

B-Ratio — .872

* marginal significance levels

of correct sign predictions (SR), and the bootstrap ratio (B-Ratio), which
is the ratio of the network bootstrap error statistic to the linear boot-
strap error measure. A value less than one, of course, represents a gain for
network estimation.
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The results show that the root mean squared error statistic of the network
model is almost 20% lower than that of the linear model. Not surprisingly,
the Diebold-Mariano tests with lags zero through four are all significant.
The success ratio for both models is perfect, since all of the returns in
the stochastic chaos model are positive. The final statistic is the boot-
strap ratio, the ratio of the network bootstrap error relative to the linear
bootstrap error. We see that the network reduces the bootstrap error by
almost 13%.

Clearly, if underlying data were generated by a stochastic process,
networks are to be preferred over linear models.

5.3 Stochastic Volatility /Jump Diffusion Model

The SVJD model is widely used for representing highly volatile asset
returns in emerging markets such as Russia or Brazil during periods
of extreme macroeconomic instability. The model combines a stochastic
volatility component, which is a time-varying variance of the error term,
as well as a jump diffusion component, which is a Poisson jump process.
Both the stochastic volatility component and the Poisson jump components
directly affect the mean of the asset return process. They are realistic para-
melric representations of the way many asset returns behave, particularly
in volatile emerging-market economies.

Following Bates (1996) and Craine, Lochester, and Syrtveit (1999), we
present this process in continuous time by the following equations:

%:(M_AE).dHﬁ-dzw-dq (5:2)

dV = (o — V) - dt + o, VV - dZ,
Corr(dZ,dZ,) = p
prob(dg=1)=X-dt

In(1+ k) ~ ¢(In[l + k] — .5k, &%)

where dS/S is the rate of return on an asset, p is the expected rate of
appreciation, A the annual frequency of jumps, and k is the random per-
centage jump conditional on the jump occurring. The variable In(1 + k) is
distributed normally with mean In[1+k]—.5x and variance 2. The symbol
¢ represents the normal distribution. The advantage of the continuous time
representation is that the time interval can become arbitrarily smaller and
approximate real time changes.
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TABLE 5.3. Parameters for SVJD Process

Mean return n 21
Mean volatility o .0003
Mean reversion of volatility I¢] 7024
Time interval (daily) dt 1/250
Expected jump k 3
Standard deviation of percentage jump K .0281
Annual frequency of jumps A 2
Correlation of Weiner processes p .6

The instantaneous conditional variance V follows a mean-reverting
square root process. The parameter « is the mean of the conditional vari-
ance, while 3 is the mean-reversion coefficient. The coefficient o, is the
variance of the volatility process, while the noise terms dZ and dZ, are the
standard continuous-time white noise Weiner processes, with correlation
coefficient p.

Bates (1996) points out that this process has two major advantages.
First, it allows systematic volatility risk, and second, it generates an “ana-
lytically tractable method” for pricing options without sacrificing accuracy
or unnecessary restrictions. This model is especially useful for option
pricing in emerging markets.

The parameters used to generate the SVJD process appear in Table 5.3.

In this model, Sy, is equal to Sy +[S;- (11— \k)] -dt, and for a small value
of dt will be unit-root nonstationary. After first-differencing, the model will
be driven by the components of dV" and k- dg, which are random terms. We
should not expect the linear or neural network model to do particularly well.
Put another way, we should be suspicious if the network model significantly
outperforms a rather poor linear model.

One realization of the SVJD process, after first-differencing, appears in
Figure 5.5. As in the case of the stochastic chaos model, there are periods
of high volatility followed by more tranquil periods. Unlike the stochastic
chaos model, however, the periods of tranquility are not perfectly flat.
We also notice that the returns in the SVJD model are both positive and
negative.

5.3.1 In-Sample Performance

Table 5.4 gives the in-sample regression diagnostics of the linear model.
Clearly, the linear approach suffers serious specification error in the error
structure. Although the network multiple correlation coefficient is higher
than that of the linear model, the Hannan-Quinn information criterion
only slightly favors the network model. The slight improvement of the R?
statistic does not outweigh by too much the increase in complexity due to
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FIGURE 5.5. Stochastic volatility/jump diffusion process

TABLE 5.4. In-Sample Diagnostics: First-Differenced
SVJID Model (Structure: 4 Lags, 3 Neurons)

Diagnostic Linear Model (Network Model)
Estimate

R? 42 (.45)

HQIF 935 (920)

L-B* .783

M-L* .025

E-N* .0008

J-B* 0

L-W-G 11

B-D-Sx .0000

marginal significance levels

the larger number of parameters to be estimated. While the Lee-White-
Granger test does not turn up evidence of neglected nonlinearity, the BDS
test does. Figure 5.6 gives in-sample errors for the SVJD realizations. We
do not see much difference.
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FIGURE 5.6. In-sample errors: SVJD model

5.3.2  Out-of-Sample Performance

Figure 5.7 pictures the out-of-sample errors of the two models. As expected,
we do not see much difference in the two paths.

The out-of-sample statistics appearing in Table 5.5 indicate that the
network model does slightly worse, but not significantly worse, than the lin-
ear model, based on the Diebold-Mariano statistic. Both models do equally
well in terms of the success ratio for correct sign predictions, with slightly
better performance by the network model. The bootstrap ratio favors the
network model, reducing the error percentage of the linear model by slightly
more than 3%.

5.4 The Markov Regime Switching Model

The Markov regime switching model is widely used in time-series analysis
of aggregate macro data such as GDP growth rates. The basic idea of the
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FIGURE 5.7. Out-of-sample prediction errors: SVJD model

TABLE 5.5. Forecast Tests: SVJD Model (Structure:
4 Lags, 3 Neurons)

Diagnostic Linear Neural Net
RMSQ 157 167
DM-0* — .81

DM-1* — .74

DM-2* — .73

DM-3* — .71

DM-4* — 71

SR .646 .656
B-Ratio — .968

* marginal significance levels

regime switching model is that the underlying process is linear. However,
the process follows different regimes when the economy is growing and
when the economy is shrinking. Originally due to Hamilton (1990), it was
applied to GDP growth rates in the United States.
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Following Tsay (2002, p. 135-137), we simulate the following model rep-
resenting the rate of growth of GDP for the U.S. economy for two states in
the economy, S and S?:

p
Ty = Cc+ Z 1,iTt—; + €14, €1~¢(0,J%), if S =5t
i—1

P
=co+ Z¢2,i$t—i + &2, €27¢(0,03) if S =52 (5.7)

i—1

where ¢ represents the Gaussian density function. These states have the
following transition matrix, P, describing the probability of moving from
one state to the next, from time (¢ — 1) to time ¢:

P | e el [ = [naar ] e

The MRS model is essentially a combination of two linear models with
different coefficients, with a jump or switch pushing the data-generating
mechanism from one model to the other. So there is only a small degree
of nonlinearity in this system. The parameters used for generating 500
realizations of the MRS model appear in Table 5.6.

Notice that in the specification of the transition probabilities, as Tsay
(2002) points out, “it is more likely for the U.S. GDP to get out of a
contraction period than to jump into one” [Tsay (2002), p. 137]. In our
simulation of the model, the transition probability matrix is called from
a uniform random number generator. If, for example, in state S = S*, a
random value of .1 is drawn, the regime will switch to the second state,
S = S2. If a value greater than .118 is drawn, then the regime will remain
in the first state, S = S*.

TABLE 5.6. Parameters for MRS Process

Parameter State 1 State 2
¢ .909 —.420
i .265 .216
2 .029 .628
di3 —.126 —.073
ia —.110 —.097
i .816 1.01

w; 118 .286
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FIGURE 5.8. Markov switching process

The process {x;} exhibits periodic regime changes, with different dynam-
ics in each regime or state. Since the representative forecasting agent does
not know that the true data-generating mechanism for {x;} is a Markov
regime switching model, a unit root test for this variable cannot reject an
I(1) or nonstationary process. However, work by Lumsdaine and Papell
(1997) and Cook (2001) has drawn attention to the bias of unit root tests
when structural breaks take place. We thus approximate the process {z;}
as a stationary process.

The underlying data-generating mechanism is, of course, near linear,
so we should not expect great improvement from neural network approxi-
mation. One realization, for 500 observations, appears in Figure 5.8.

5.4.1 In-Sample Performance

Table 5.7 gives the in-sample regression diagnostics of the linear model.
The linear regression model does not do a bad job, up to a point: there is
no significant evidence of serial correlation in the residuals, and we cannot
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TABLE 5.7. In-Sample Diagnostics: MRS
Model (Structure: 4 Lags, 3 Neurons)

Diagnostic  Linear Model (Network Model)

Estimate
R? .35 (.38)
HQIF 3291 (3268)
L-B* 91
M-L* .0009
E-N* .0176
J-B* .36
L-W-G 13
B-D-Sx .0002

* marginal significance levels

reject normality in the distribution of the residuals. The BDS test shows

some evidence of neglected nonlinearity, but the LWG test does not.
Figure 5.9 pictures the error paths generated by the linear and neural net

models. While the overall explanatory power or R? statistic of the neural
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FIGURE 5.9. In-sample errors: MRS model
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TABLE 5.8. Forecast Tests: MRS Model (Structure:
1 Lag, 3 Neurons)

Diagnostic Linear Neural Net
RMSQ 1.122 1.224
DM-0* — .27

DM-1* — .25

DM-2* — .15

DM-3* — .22

DM-4* — .24

SR Ny .72
B-Ratio — .982

* marginal significance levels

net is slightly higher and the Hannan-Quinn information criterion indicates
that the network model should be selected, there is not much noticeable
difference in the two paths relative to the actual series.

5.4.2  Out-of-Sample Performance

The forecast statistics appear in Table 5.8. We see that the root mean
squared error is slightly higher for the network, but the Diebold-Mariano
statistics indicate that the difference in the prediction errors is not statis-
tically significant. The bootstrap error ratio shows that the network model
gives a marginal improvement relative to the linear benchmark.

The paths of the linear and network out-of-sample errors appear in
Figure 5.10.

We see, not surprisingly, that both the linear and network models deliver
about the same accuracy in out-of-sample forecasting. Since the MRS is
basically a linear model with a small probability of a switch in the coeffi-
cients of the linear data-generating process, the network simply does about
as well as the linear model.

What will be more interesting is the forecasting of the switches in volatil-
ity, rather than the return itself, in this series. We return to this subject in
the following section.

5.5 Volatility Regime Switching Model

Building on the stochastic volatility and Markov regime switching models
and following Tsay [(2002), p. 133], we use a simple autoregressive model
with a regime switching mechanism for its volatility, rather than the return
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FIGURE 5.10. Out-of-sample prediction errors: MRS model

process itself. Specifically, we simulate the following model, similar to the

one Tsay estimated as a process representing the daily log returns, including
dividend payments, of IBM stock:?2

ry = .043 — .022r;_1 + ot + uy (5.9)
us = over, €0 ¢(0,1) (5.10)
o2 = .098u? | + 95407 | ifus_ 1 <0

060 + .046u;_; + .885407 ; if ug_1 >0 (5.11)

where ¢(0,1) is the standard normal or Gaussian density. Notice that this
VRS model will have drift in its volatility when the shocks are positive,
but not when the shocks are negative. However, as Tsay points out, the

2Tsay (2002) omits the GARCH-in-Mean term .50¢ in his specification of the
returns r¢.
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FIGURE 5.11. First-differenced returns and volatility of the VRS model

model essentially follows an IGARCH (integrated GARCH) when shocks
are negative, since the coefficients sum to a value greater than unity.

Figure 5.11 pictures the first-differenced series of {r;}, since we could
not reject a unit-root process, as well as the volatility process {o?}.

5.5.1 In-Sample Performance

Table 5.9 gives the linear regression results for the returns. We see that
the in-sample explanatory power of both models is about the same. While
the tests for serial dependence in the residuals and squared residuals, as
well as for symmetry and normality in the residuals, are not significant,
the BDS test for neglected nonlinearity is significant. Figure 5.12 pictures
the in-sample error paths of the two models.

5.5.2  Qut-of-Sample Performance

Figure 5.13 and Table 5.10 show the out-of-sample performance of the
two models. Again, there is not much to recommend the network model
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TABLE 5.9. In-Sample Diagnostics: VRS
Model (Structure: 4 Lags, 3 Neurons)
Diagnostic Linear Model (Network Model)
Estimate
R? 422 (.438)
HQIF 3484 (3488)
L-B* .85
M-L* 13
E-N* .45
J-B* .22
L-W-G 6
B-D-Sx .07
* marginal significance levels
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FIGURE 5.12. In-sample errors: VRS model

for return forecasting, but in its favor, it does not perform worse in any

noticeable way than the linear model.

While these results do not show overwhelming support for the superiority
of network forecasting for the volatility regime switching model, they do
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FIGURE 5.13. Out-of-sample prediction errors: VRS model

TABLE 5.10. Forecast Tests: VRS Model
(Structure: 4 Lags, 3 Neurons)

Diagnostic Linear Neural Net
RMSQ 1.37 1.38

DM-0* — .58

DM-1* — .58

DM-2* — .57

DM-3* — .56

DM-4* — .55

SR .76 .76
B-Ratio — .99

* marginal significance levels

show improved out-of-sample performance both by the root mean squared
error and the bootstrap criteria. It should be noted once more that the
return process is highly linear by design. While the network does not do
significantly better by the Diebold-Mariano test, it does buy a forecasting
improvement at little cost.
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5.6 Distorted Long-Memory Model

Originally put forward by Kantz and Schreiber (1997), the distorted long-
memory (DLM) model was recently analyzed for stochastic neural network
approximation by Lai and Wong (2001). The model has the following form:

Y =T} (5.12)
T = .9974_1 + € (5.13)
€~ N(0,0%) (5.14)

Following Lai and Wong, we specify ¢ = .5 and x¢ = .5. One realization
appears in Figure 5.14. It pictures a market or economy subject to bubbles.
Since we can reject a unit root in this series, we analyze it in levels rather
than in first differences.?

160 T T T T T T T T T

140k NP SR RN e, S R s SN SN 4

1 1 1 1
50 100 150 200 250 300 350 400 450 500

FIGURE 5.14. Returns of DLM model

3We note, however, the unit root tests are designed for variables emanating from a
linear data-generating process.
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TABLE 5.11. In-Sample Diagnostics: DLM
Model (Structure: 4 Lags, 3 Neurons)

Diagnostic Linear Model
R? .955 (.957)
HQIF 4900(4892)
L-B* 77

M-L* .0000

E-N* .0000

J-B* .0000

L-W-G 1

B-D-Sx .000001

* marginal significance levels

30 T T T T T T T
_ - ; ! g |
- I 1B N : .‘ u ‘ FHE
o 4 L ANl 1 A1 Y8 ;
3 ; _ ! -1 | i
i | e
z : =v‘ i
10 koo o ............ A ‘‘‘‘‘ =; ...... T E
: : Tl : it 1
: — Linear = =
S s Network - z
20 b U TR TR SRR SR SO TR T |
30 i i i i i i i
0 50 100 150 200 250 300 350 400

FIGURE 5.15. Actual and in-sample predictions: DLM model

5.6.1 In-Sample Performance

The in-sample statistics and time paths appear in Table 5.11 and
Figure 5.15, respectively. We see that the in-sample power of the linear
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TABLE 5.12. Forecast Tests: DLM Model
(Structure: 4 Lags, 3 Neurons)

Diagnostic Linear Neural Net
RMSQ 6.81 6.58
DM-0* — .09

DM-1* — .09

DM-2* — .05

DM-3* — .01

DM-4* — .02

SR 1 1

B-Ratio — .99

* marginal significance levels

model is quite high. The network model is slightly higher, and it is favored
by the Hannan-Quinn criterion. Except for insignificant tests for serial inde-
pendence, however, the diagnostics all indicate lack of serial independence,
in terms of serial correlation of the squared errors, as well as non-normality,
asymmetry, and neglected nonlinearity (given by the BDS test result). Since
the in-sample predictions of the linear and neural network models so closely
track the actual path of the dependent variable, we cannot differentiate the
movements of these variables in Figure 5.15.

5.6.2  Qut-of-Sample Performance

The relevant out-of-sample statistics appear in Table 5.12 and the predic-
tion error paths are in Figure 5.16. We see that the root mean squared errors
are significantly lower, while the success ratio for the sign predictions are
perfect for both models. The network bootstrap error is also practically
identical. Thus, the network gives a significantly improved performance
over the linear alternative, on the basis of the Diebold-Mariano statistics,
even when the linear alternative gives a very high in-sample fit.

5.7 Black-Sholes Option Pricing Model: Implied
Volatility Forecasting

The Black-Sholes (1973) option pricing model is a well-known method
for calculating arbitrage-free prices for options. As Peter Bernstein (1998)
points out, this formula was widely in use by practitioners before it was
recognized through publication in academic journals.
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FIGURE 5.16. Out-of-sample prediction errors: DLM model

A call option is an agreement in which the buyer has the right, but not
the obligation, to buy an asset at a particular strike price, X, at a preset
future date. A put option is a similar agreement, with the right to sell an
asset at a preset strike price. The options-pricing problem comes down to
the calculation of an arbitrage-free price for the seller of the option. What
price should the seller charge so that the seller will not systematically lose?

The calculation of the arbitrage-free price of the option in the Black-
Sholes framework rests on the assumption of log-normal distribution of
stock returns. Under this assumption, Black and Sholes obtained a closed-
form solution for the calculation of the arbitrage-free price of an option.
The solution depends on five variables: the market price of the underlying
asset, S; the agreed-upon strike price, X; the risk-free interest rate, ry;
the maturity of the option, 7; and the annualized volatility or standard
deviation of the underlying returns, . The maturity parameter 7 is set
at unity for annual, .25 for quarterly, .125 for monthly, and .004 for daily
horizons.

The basic Black-Sholes formula yields the price of a European option.
This type of option can be executed or exercised only at the time of
maturity of the option. This formula has been extended to cover American
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options, in which the holder of the option may execute it at any time up
to the expiration date of the option, as well as for options with ceilings or
floors, which limit the maximum payout of the option.?

Options, of course, are widely traded on the market, so their price will
vary from moment-to-moment. The Black-Sholes formula is particularly
useful for calculating the issue price of new options. A newly issued option
that is mispriced will be quickly arbitraged by market traders. In addition,
the formula is often used for calculating the shadow price of different types
of risk exposure. For example, a company expecting to receive revenue in
British sterling over the next year, but that has costs in U.S. dollars, may
wish to “price” their risk exposure. One price, of course, would be the cost
of an option to cover their exposure to loss through a collapse of British
sterling.®

Following Campbell, Lo, and MacKinlay (1997), the formula for pricing
a call option is given by the following three equations:

C(S,X,7,0) =8 -®(dy) — X -exp(—r-7) - D(d2) (5.15)

oo R o1

dy = (%) J;E/;_ 7) (5.17)

>

where ®(d;) and ®(dy) are the standard normal cumulative distribution
functions of the variables di and dy. C(S, X, 7, 0) is the call option price of
an underlying asset with a current market price S, with exercise price X,
maturity 7, and annualized volatility o.

Figure 5.17 pictures randomly generated values of S, X,r, 7, and o as
well as the calculated call option price from the Black-Scholes formula.

The call option data represent a random cross section for different types
of assets, with different current market rates, exercise prices, risk-free rates,
maturity horizons, and underlying volatility. We are not working with time-
series observations in this approximation exercise. The goal of this exercise
is to see how well a neural network, relative to a linear model, can approxi-
mate the underlying true Black-Sholes option pricing formula for predicting
the not-call option price, given the observations on S, X,r, 7, and o, but

4See Neftci (2000) for a concise treatment of the theory and derivation of option-
pricing models.

5The firm may also enter into a forward contract on foreign exchange markets. While
preventing loss due to a collapse of sterling, the forward contract also prevents any gain
due to an appreciation of sterling.
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FIGURE 5.17.

rather the implied volatility from market data on option prices, as well as
on S, X,r, T.

Hutchinson, Lo, and Poggio (1994) have extensively explored how well
neural network methods (including both radial basis and feedforward net-
works) approximate call option prices.% As these authors point out, were we
working with time-series observations, it would be necessary to transform
the independent variables S, X,and C into ratios, S;/X; and C;/X;.

5.7.1 In-Sample Performance

Table 5.13 gives the in-sample statistics. The R? statistic is relatively high,
while all of the diagnostics are acceptable, except the Lee-White-Granger
test for neglected nonlinearity.

SHutchinson, Lo, and Poggio (1994) approximate the ratio of the call option price to
the strike price, as a function of the ratio of the stock price to the strike price, and the
time to maturity. They take the volatility and the risk-free rate of interest as given.
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TABLE 5.13. In-Sample Diagnostics: BSOP
Model Structure:

Diagnostic  Linear Model (Network Model)

Estimate
R? .91(.99)
HQIF 246(—435)
L-B* —
M-L* —
E-N* .22
J-B* .33
L-W-G 997
B-D-S* AT

* marginal significance levels
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The in-sample error paths appear in Figure 5.18. The paths of both the
network and linear models closely track the actual volatility path. While
the R? for the network is slightly higher, there is not much appreciable

difference.
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FIGURE 5.18. In-sample errors: BSOP model

400
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TABLE 5.14. Forecast Tests: BSOP Model

Diagnostic Linear Neural Net
RMSQ .0602 0173
DM-0* — 0

DM-1* — 0

DM-2* — 0

DM-3* — 0

DM-4* — 0

SR 1 1

B-Ratio — .28

* marginal significance levels

5.7.2  Out-of-Sample Performance

The superior out-of-sample performance of the network model over the
linear model is clearly shown in Table 5.14 and in Figure 5.18. We see that
the root mean squared error is reduced by more than 80% and the bootstrap
error is reduced by more than 70%. In Figure 5.19, the network errors are
closely distributed around zero, whereas there are large deviations with the
linear approach.

5.8 Conclusion

This chapter evaluated the performance of alternative neural network mod-
els relative to the standard linear model for forecasting relatively complex
artificially generated time series. We see that relatively simple feedforward
neural nets outperform the linear models in some cases, or do not do worse
than the linear models. In many cases we would be surprised if the neural
networks did much better than the linear model, since the underlying data
generating processes were almost linear.

The results of our investigation of these diverse stochastic experiments
suggest that the real payoff from neural networks will come from volatility
forecasting rather than pure return forecasting in financial markets, as we
see in the high payoff from the implied volatility forecasting exercise with
the Black-Sholes option pricing model. Since the neural networks never do
appreciably worse than linear models, the only cost for using these methods
is the higher computational time.

5.8.1 MATLAB Program Notes

The main script functions, as well as subprograms, are available on the web-
site. The programs are forecast_onevar_scmodel_newl.m (for the stochastic
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FIGURE 5.19. Out-of-sample prediction errors: BSOP model

chaos model), forecast_onevar_svjdmodel_newl.m (for the stochastic volatil-
ity jump diffusion model), forecast_onevar-markovmodel_-newl.m (for the
Markov regime switching model), and forecast_onevar_dim_newl.m (for the
distorted long-memory model).

5.8.2  Suggested Fxercises

The programs in the previous section can be modified to generate alterna-
tive series of artificial data, extend the length of the sample, and modify the
network models used for estimation and forecasting performance against
the linear model. I invite the reader to continue these experiments with
artificial data.






6

Times Series: Examples from Industry
and Finance

This chapter moves the analysis away from artificially generated data to
real-world data, to see how well the neural network model performs rela-
tive to the linear model. We focus on three examples: one from industry,
the quantity of automobiles manufactured in the United States; one from
finance, the spreads and the default rate on high-yield corporate bonds; and
one from macroeconomics, forecasting inflation rates. In all three cases we
use monthly observations.

Neural networks, of course, are routinely applied to forecasting very
high-frequency data, such as daily exchange rates or even real-time share-
market prices. However, in this chapter we show how the neural network
performs when applied to more commonly used, and more widely accessible,
data sets. All of the data sets are raw data sets, requiring adjustment for
stationarity.

6.1 Forecasting Production in the Automotive
Industry

The market for automobiles is a well-developed one, and there is a wealth
of research on the theoretical foundations and the empirical behavior of this
market. Since Chow (1960) demonstrated that this is one of the more stable
consumer durable markets, empirical analysis has focused on improving the
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aggregate and disaggregated market forecasting with traditional time series
as well as with pooled time-series cross-sectional methodologies, such as the
study by McCarthy (1996).

The structure of the automobile market (for new vehicles) is recursive.
Manufacturers evaluate and forecast the demand for the stock of automo-
biles, the number of retirements, and their market share. Adding a dose of
strategic planning, they decide how much to produce. These decisions occur
well before production and distribution take place. Manufacturers are pro-
viding a flow of capital goods to augment an existing stock. For their part,
consumers decide at the time of purchase, based on their income, price, and
utility requirements, what stock is optimal. To the extent that consumer
decisions to expand the stock of the asset coincide with or exceed the
amount of production by manufacturers, prices will adjust to revise the
optimal stock and clear the market. To the extent they fall short, the num-
ber of retirements of automobiles will increase and the price of new vehicles
will fall to clear the market. Chow (1960), Hess (1977), and McCarthy
(1996) show how forecasting the demand in the markets is a sufficient
proxy to modeling the optimal stock decision.

Both the general stability in the underlying market structure and the
recursive nature of producer versus consumer decision making have made
this market amenable to less complex estimation methods. Since research
suggests this is precisely the kind of market in which linear time-series
forecasting will perform rather well, it is a good place to test the usefulness
of the alternative of neural networks for forecasting.!

6.1.1 The Data

We make use of quantity and price data for automobiles, as well as an
interest rate and a disposable income as aggregate variables. The quantity
variable represents the aggregate production of new vehicles, excluding
heavy trucks and machinery, obtained from the Bureau of Economic Anal-
ysis of the Department of Commerce. The price variable is an index
appearing in the Bureau of Labor Statistics. The interest rate argument
is the home mortgage rate available from the Board of Governors of the
U.S. Federal Reserve System, while the income argument is personal dis-
posable income, also obtained from the Bureau of Economic Analysis of
the Department of Commerce. Home mortgage rates were chosen as the
relevant interest rate following Hess (1977), who shows that consumers con-
sider housing and automobile decisions jointly. Personal disposable income
was generated from consumption and savings data. The consumption series

IThese points were made in a joint work with Gerald Nickelsburg. See McNelis and
Nickelsburg (2002).
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FIGURE 6.1. Automotive industry data

was the average over the quarter to reflect more accurately the permanent
income concept.

Figure 6.1 pictures the evolution of the four variables we use in this exam-
ple: annualized rates of change of the quantity and price indices obtained
from the U.S. automotive industry, as well as the corresponding annual
changes in the U.S. mortgage rates and the annualized rate of growth of
U.S. disposable income.

We note some interesting features of the data: there has been no sharp
rise in the rate of growth of prices since the mid-90s, while the peak year
for automobile production growth took place between 1999 and 2000; and
disposable income growth has been generally positive, with the exception
of the recession at the end of the first Gulf War between 1992 and 1993.

Table 6.1 presents a statistical summary of these data.

We see that for the decade as a whole, there has been about a 4.5%
annual growth in automobile production, whereas the price growth has
been slightly less than 1% and disposable income growth has been about
0.5%. We also do not see a strong contemporaneous correlation between the
variables. In fact, there are two “wrong” signs: a negative contemporaneous
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TABLE 6.1. Summary of Automotive Industry Data

Annualized Growth Rates: 1992-2001

Quantity Price Mortgage Rates Disposable Income

Mean 0.0450 0.0077 —0.0012 0.0050
Std. Dev. 0.1032 0.0188 0.0092 0.0335

Correlation Matrix

Quantity Price Mortgage Rates  Disposable Income

Quantity 1.0000

Price 0.2847 1.0000

Mortgage Rates 0.1248 0.1646 1.0000 0.2142
Disp. Income —0.1703 —0.3304 0.2142 1.0000

correlation between disposable income growth and quantity growth, and a
positive contemporaneous correlation between changes in mortgage rates
and quantity growth.

6.1.2  Models of Quantity Adjustment

We use three models: a linear model, a smooth-transition regime switching
model, and a neural network smooth-transition regime switching model
(discussed in Section 2.5). We are working with monthly data. We are
interested in the year-to-year changes in these data. When forecasting,
we are interested in the annual or twelve-month forecast of the quantity
of automobiles produced because investors are typically interested in the
behavior of a sector over a longer horizon than one month or one quarter.
Given the nature of lags in investment and time-to-build considerations,
production over the next few months will have little to do with decisions
made at time ¢.

Letting Q; represent the quantity of automobiles produced at time ¢, we
forecast the following variable:

—
(=)
—

~—

ArGivh = Giyh — Gt

g = In(Q4) (6.2)

where h = 12, for an annualized forecast with monthly data.
The dependent variable Ag:1p depends on the following set of current
variables x;

Xt = [A12qt, Av2pr, A1are, A1ayi] (6.3)
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Algpt = ln(Pt) - ln(Pt_lg) (64)
Alg’/‘t = ln(Rt) — ln(Rt_lg) (65)
Algyt = ln(Yt) - hl(Y;g_lQ) (66)

where P;, R;, and Y; signify the price index, the gross mortgage rate, and
disposable income at time t. Although we can add further lags for Agy,
we keep the set of regressions limited to the 12-month backward-looking
horizon. The current value of Ag; looks back over 12 months while the
dependent variable looks forward over 12 months. We consider this a suffi-
ciently ample lag structure. We also wish to avoid the problem of searching
for different optimal lag structures for the three different models.
The linear model has the following specification:

Aqirn = axg + 14 (6.7)
ne = e +y(L)er—1 (6.8)
e ~ N(0,07) (6.9)

The disturbance term 7); consists of a current period white-noise shock
€; in addition to eleven lagged values of this shock, weighted by the vector
~v. We explicitly model serial dependence as a moving average process since
it is well known that whenever the forecast horizon exceeds the sampling
interval, temporal dependence is induced in the disturbance term.

We compare this model with the smooth-transition regime switch-
ing (STRS) model and then with the neural network smooth-transition
regime switching (NNSTRS) model. The STRS model has the following
specification:

Agirn = Vrarxy + (1 — Uy)aoxy + 1 (6.10)
Uy =W(0- Ay — ¢) (6.11)

= 1/[1 +exp(6 - Ay — ¢)] (6.12)

ne = e +y(L)er—1 (6.13)

e ~ N(0,07) (6.14)

where W; is a logistic or logsigmoid function of the rate of growth of dis-
posable income, Ay, as well as the threshold parameter ¢ and smoothness
parameter 6. For simplicity, we set ¢ = 0, thus specifying two regimes, one
when disposable income is growing and the other when it is shrinking.
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The NNSTRS model has the following form:

Aqirn = oxy + BV G(xp; 1) + (1 — V) H(x4; 00)] + 1
\I’t = \I/(G . Ayt — C)
=1/[1+exp(f - Ay, — )]

H(xy;a0) = 1/[1 + exp(—aaxy)]

(6.15)

(6.16)

(6.17)

G(x¢; 1) = 1/[1 + exp(—a1x¢)] (6.18)
(6.19)

ne =€ +v(L)er—1 (6.20)
(6.21)

e ~ N(0,0?)

In the NNSTRS model, ¥; appears again as the transition function.
The functions G(x;; 1) and H(xy; o) are logsigmoid transformations of
the exogenous variables x;, weighted by parameter vector a; in regime
G and by vector o in regime H. We note that the NNSTRS model has
a direct linear component in which the exogenous variables are weighted
by parameter vector «, and a nonlinear component, given by time-varying
combinations of the two neurons, weighted by the parameter (.

The linear model is the simplest model, and the NNSTRS model is the
most complex. We see that the NNSTRS nests the linear model. If the
nonlinear regime switching effects are not significant, the parameter g = 0,
so that it reduces to the linear model. The STRS model is almost linear,
in the sense that the only nonlinear component is the logistic smooth-
transition component ¥;. However, the STRS model nests the linear model
only in a very special sense. With § = ¢ = 0, U, = .5 for all ¢, so that the
dependent variable is a linear combination of two linear models and thus a
linear model. However, the NNSTRS does not nest the STRS model.

We estimate these three models by maximum likelihood methods. The
linear model and the STRS models are rather straightforward to estimate.
However, for the NNSTRS model the parameter set is larger. For this
reason we make use of the hybrid evolutionary search (genetic algorithm)
method and quasi-Newton gradient-descent methods. We then evaluate the
relative performance of the three models by in-sample diagnostic checks,
out-of-sample forecast accuracy, and the broader meaning and significance
of the results.

6.1.3 In-Sample Performance

We first estimate the model for the whole sample period and assess the per-
formance of the three models. Figure 6.2 pictures the errors of the models.
The smooth lines represent the linear model, the dashed are for the STRS
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FIGURE 6.2. In-sample performance: rate of growth of automobile production

model, and the dotted curves are for the NNSTRS model. We see that the
errors of the linear model are the largest, but they all are highly correlated
with each other.

Table 6.2 summarizes the overall in-sample performance of the three
models. We see that the NNSTRS model does not dominate the other
STRS on the basis of the Hannan-Quinn selection criterion. For all three
models we cannot reject serial independence, both in the residuals and
in the squared residuals. Furthermore, the diagnostics on neglected non-
linearity are weakest on the linear model, but not by much, relative to
the nonlinear models. All three models reject normality in the regression
residuals.

6.1.4 Out-of-Sample Performance

We divided the sample in half and re-estimated the model in a recursive
fashion for the last 53 observations. The real-time forecast errors appear
in Figure 6.3. Again, the solid curves are for the linear errors, the dashed
curves for the STRS model and the dotted curves are for the NNSTRS
model. We see, for the most part, the error paths are highly correlated.
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TABLE 6.2. In-sample Diagnostics of Alternative Models (Sample: 1992-2002,
Monthly Data)

Diagnostics Models
Linear STRS NNRS

SSE 0.615 0.553 0.502
RSQ 0.528 0.612 0.645
HQIF —25.342 —22.714 —32.989
LB* 0.922 0.958 0.917
ML* 0.532 0.553 0.715
JB* 0.088 0.008 0.000
EN* 0.099 0.256 0.431
BDS* 0.045 0.052 0.051
LWG 0 0 0

*: prob value

NOTE:

SSE: Sum of squared errors

RSQ: R-squared

HIQF: Hannan-Quinn information criterion

LB: Ljung-Box Q statistic on residuals

ML: McLeod-Li Q statistic on squared residuals
JB: Jarque-Bera statistic on normality of residuals
EN: Engle-Ng test of symmetry of residuals
BDS:Brock-Deckert-Scheinkman test of nonlinearity
LWG: Lee-White-Granger test of nonlinearity

Table 6.3 summarizes the out-of-sample forecasting statistics of the three
models. The root mean squared error statistics show the STRS model is
the best, while the success ratio for correct sign prediction shows that the
NNSTRS model is the winner. However, the differences between the two
alternatives to the linear model are not very significant.

Table 6.3 has three sets of Diebold-Mariano statistics which compare,
pair-wise, the three models against one another. Not surprisingly, given the
previous information, the STRS and the NNSTRS errors are significantly
better than the linear model, but they are not significantly different from
each other.

6.1.5 Interpretation of Results

What do the models tell us in terms of economic understanding of the deter-
minants of automotive production? To better understand the message of
the models, we calculated the partial derivatives based on three states: the
beginning of the sample, the mid-point, and the final observation. We also
used the bootstrapping method to determine the statistical significance of
these estimates.
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TABLE 6.3. Out-of-Sample Forecasting Accuracy

Diagnostics Models

Linear STRS NNSTRS
RMSQ 0.180 0.122 0.130
SR 0.491 0.679 0.698
Diebold- Linear vs. Linear vs. STRS vs.
Mariano Test STRS NNSTRS NNSTRS
DM-1* 0.000 0.000 0.941
DM-2* 0.000 0.002 0.899
DM-3* 0.000 0.005 0.874
DM-4* 0.000 0.009 0.857
DM-5%* 0.000 0.013 0.853

*: prob value

RMSQ: Root mean squared error

SR: Success ratio on sign correct sign predictions
DM: Diebold-Mariano Test

(correction for autocorrelation, lags 1-5)
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TABLE 6.4. Partial Derivatives of NNSTRS Model

Period Arguments

Production Price Interest Income
Mean 0.143 0.089 —0.450 0.249
1992 0.140 0.090 —0.458 0.249
1996 0.137 0.091 —0.455 0.248
2001 0.144 0.089 —0.481 0.250
Period Statistical Significance of Estimates Arguments

Production Price Interest Income
Mean 0.981 0.571 0.000 0.015
1992 0.968 0.558 0.000 0.001
1996 0.956 0.573 0.000 0.008
2001 0.958 0.581 0.000 0.008

The results appear in Table 6.4 for the NNSTRS model. We see that
the partial derivatives of the mortgage rate and disposable income have
the expected correct sign values and are statistically significant (based
on bootstrapping) at the beginning, mid-point, and end-points of the
sample, as well as for the mean values of the regressors. However, the
partial derivatives of both the lagged production and the price are statis-
tically significant. The message of the NNSTRS model is that aggregate
macroeconomic variables are more important for predicting developments
in automobile production than are price or lagged production developments
within the industry itself.

The results from the STRS models are very similar, both in magnitude
and tests of significance. These results appear in Table 6.5.

Finally, what information can we glean from the behavior of the smooth
transition neurons in the two regime switching models? How do they behave
relative to changes in disposable income? Figure 6.4 pictures the behav-
ior of these three variables. We see that disposable income only becomes
negative at the mid-point of the sample but at several points it is close
to zero. The NNSTRS and STRS neurons give about equal weight to
the growth/recession states, but the NNSTRS neuron shows slightly more
volatility throughout the sample.

Given the superior performance of the STRS and NNSTRS models rela-
tive to the linear model, the information in Figure 6.4 indicates that most
of the nonlinearity in the automotive industry has not experienced major
switches in regimes. However, the neurons in both the STRS and NNSTRS
model appear to detect nonlinearities which aid in forecasting performance.
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TABLE 6.5. Partial Derivatives of STRS Model

Period Arguments
Production Price Interest Income
Mean 0.187 0.094 —0.448 0.296
1992 0.186 0.096 —0.449 0.291
1996 0.185 0.098 —0.450 0.286
2001 0.188 0.092 —0.448 0.299
Period Statistical Significance of Estimates Arguments
Production Price Interest Income
Mean 0.903 0.587 0.000 0.000
1992 0.905 0.575 0.000 0.000
1996 0.891 0.581 0.000 0.000
2001 0.893 0.589 0.000 0.000
Rate of Growth of Disposable Income
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FIGURE 6.4. Regime transitions in STRS and NNSTRS models
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6.2 Corporate Bonds: Which Factors Determine
the Spreads?

The default rates of high-risk corporate bonds and the evolution of the
spreads on the returns on these bonds, over ten-year government bond
yields, appear in Figure 6.5.

What is most interesting about the evolution of both of these variables is
the large upswing that took place at the time of the Gulf War recession in
1991, with the default rate appearing to lead the return spread. However,
after 1992, both of these variables appear to move in tandem, without any
clear lead or lag relation, with the spread variable showing slightly greater
volatility after 1998. One fact emerges: the spreads declined rapidly in the
early 90s, after the Gulf War recession, and started to increase in the late
1990s, after the onset of the Asian crisis in late 1997. The same is true of
the default rates.

What is the cause of the decline in the spreads and the subsequent
upswing of this variable? The process of financial market development may
lead to increased willingness to take risk, as lenders attempt to achieve
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FIGURE 6.5. Corporate bond spreads and default rates
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gains by broader portfolio diversification, which could explain a gradual
decline, as lenders become less risk averse. Another factor may be the
spillover effects from increases or decreases in the share market, as well
as increased optimism or pessimism from the rate of growth of industrial
production or from changes in confidence in the economy. These latter two
variables represent business climate effects.

Collin-Dufresne, Goldstein, and Martin (2000) argue against macroeco-
nomic determinants of credit spread changes in the U.S. corporate bond
market. Their results suggest that the “corporate bond market is a seg-
mented market driven by corporate bond specific supply/demand shocks”
[Collin-Dufresne, Goldstein, and Martin (2000), p. 2]. In their view, the
corporate default rates, representing “bond specific shocks,” should be the
major determinant of changes in spreads. They do find, however, that share
market returns are negative and statistically significant determinants of
the spreads. Like many previous studies, their analysis is based on linear
regression methods.

6.2.1 The Data

We are interested in determining how these spreads respond to their own
and each other’s lagged values, to bond specific shocks such as default rates,
as well as to key macroeconomic variables often taken as leading indicators
of aggregate economic activity or the business climate: the real exchange
rate, the index of industrial production (IIP), the National Association of
Product Manufacturers’ Index (NAPM), and the Morgan Stanley Capital
International Index of the U.S. Share Market (MSCTI). All of these variables,
presented as annualized rates of change, appear in Figure 6.6.

Table 6.6 contains a statistical summary of these data. As in the previous
example, we transform the spreads and default rates as annualized changes.
We see in this table that over the 15-year period, 1987-2002, the average
annualized change in the spread and the default rate is not very much.
However, the volatility of the default rate is about three times higher. Of
the macroeconomic and business climate indicators, we see that the largest
growth, by far, took place in the MSCI index during this period of time. It
also has the highest volatility.

The correlation matrix in Table 6.6 shows that the spreads are most
highly negatively correlated with the NAPM index and most highly posi-
tively correlated with the default rate. In turn, the default rate is negatively
correlated with changes in the index of industrial production (IIP).

6.2.2 A Model for the Adjustment of Spreads

We again use three models: a linear model, a smooth-transition regime
switching model, and a neural network smooth-transition regime switching
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FIGURE 6.6. Annualized rates of change of macroeconomic indicators

TABLE 6.6. Annualized Changes of Financial Sector Indicators, 1987-2002

Spread Default Rate Real. Ex. Rate NAPM Index MSCI Index IIP

Mean 0.0021 0.0007 0.0129 —0.0181 0.1012  0.0288
Std. Dev. 0.0175 0.0363 0.0506 0.1334 0.1466  0.0317

Correlation Matrix
Spread Default Rates Real. Ex. Rate NAPM Index MSCI Index IIP

Spread 1

Default Rate 0.3721 1

Real. Ex. Rate 0.1221 0.0286 1

NAPM Index —0.6502 —0.2335 —0.0277 1

MSCI Index —0.0838 0.0067 0.2427 0.1334 1

1P —0.1444  —0.4521 —0.1181 0.3287 0.4258 1

model (discussed in Section 2.5). Again we are working with monthly data,
and we are interested in the year-on-year changes in these data. When
forecasting the spread, financial market participants are usually interested
in one-month or even shorter horizons.
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Letting s; represent the spread between corporate and U.S. government
bonds at time t, we forecast the following variable:

AStJ,_h = St4+1 — S¢ (622)
where h = 1 for a one-period forecast with monthly data.
The dependent variable Asyyp depends on the following set of current

variables x;

X = [Ajadry, Asy, Ajarexys, Ayoiip, Ajamsciy, Ajgnapmy] (6.23)

Adry = dry — dri—y (6.24)
Ajorexy = In(REX;) — In(REX;_12) (6.25)
Awsiip, = In(IIP,) — In(IIP;_ 1) (6.26)
Ajgmsciy = In(MSCI) — In(MSCI;_12) (6.27)
Aysiip, = In(NAPM,) — In(NPAM,_ ) (6.28)

where Ajodry, Asy, Ajsrexy, Aioiip,, Ajamsciy, and Ajsnapm, signify the
currently observed changes in the default rate, the spreads, the index of
industrial production, the MSCI stock index, and the NAPM index at time
t. Since we work with monthly data, we use 12-month changes for the main
macroeconomic indicators to smooth out seasonal factors.

The linear model has the following specification:

Agirn = axy + 1 (6.29)
M = € + ’Y(L)thl (630)
e ~ N(0,07) (6.31)

The disturbance term 7; consists of a current period white-noise shock
€; in addition to eleven lagged values of this shock, weighted by the vector
v. We explicitly model serial dependence as a moving average process as in
the previous case.

We compare this model with the smooth-transition regime switch-
ing (STRS) model and then with the neural network smooth-transition
regime switching (NNSTRS) model. The STRS model has the following
specification:

Aqin = Yarx, + (1 - \Ilt)ozgxt + (632)
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\I/t = \I/(e ' Ayt - C)
=1/[1 +exp(f - Ay, — )]

6.33
6.34

ne =€ +y(L)es—1 6.35

(
(
(
e ~ N(0,0%) (

)
)
)
6.36)

where U, is a logistic or logsigmoid function of the rate of growth of dis-

posable income, Ay, as well as the threshold parameter ¢ and smoothness

parameter 6. For simplicity, we set ¢ = 0, thus specifying two regimes, one

when disposable income is growing and the other when it is shrinking.
The NNSTRS model has the following form:

Agrin = axi + BIV:G(xs0n) + (1= W) H(xgso2)] +0 - (6.37)

U, = U0 Ay, —c) (6.38)

= 1/[1 + exp(6 - Ay, — )] (6.39)

G(x¢ 1) = 1/[1 + exp(—a1x¢)] (6.40)
H(x¢; 00) = 1/[1 4 exp(—aaxy)] (6.41)
ne =€+ v(L)e—1 (6.42)

e ~ N(0,0%) (6.43)

6.2.3 In-Sample Performance

Figure 6.7 pictures the in-sample performance of the three models. We
see that the linear predictions are clear outliers with respect to the two
alternative models, especially at the time of the first Gulf War in late 1991.

The diagnostics appear in Table 6.7. We see a drastic improvement in
performance as we abandon the linear model in favor of either the STRS or
NNSTRS models. The Ljung-Box statistics indicate the presence of serial
correlation in the linear model while we cannot reject independence in the
alternatives. Both the Brock-Deckert-Scheinkman and Lee-White-Granger
tests indicate the presence of neglected nonlinearities in the residuals of the
linear model, but not in the residuals of the alternative models.

6.2.4 Out-of-Sample Performance

We again divided the sample in half and re-estimated the model in a
recursive fashion for the last 86 observations. The real-time forecast errors
appear in Figure 6.8. Again, the solid curves are for the linear errors, the
dashed curves for the STRS model, and the dotted curves for the NNSTRS
model. We see, for the most part, the error paths are highly correlated
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FIGURE 6.7. In-sample performance, change in bond spreads

with the two alternative models. However, large prediction error differences
emerge in the mid-1990s, late 1990s, and late 2001.

Table 6.8 summarizes the out-of-sample forecasting statistics of the three
models. The root mean squared error statistics show the STRS models as
the best, while the success ratio for correct sign predictions (for the pre-
dicted change in the corporate bond spreads) shows that the STRS model
is also the winner. However, the differences between the two alternatives
to the linear model are not very significant.

Table 6.8 has three sets of Diebold-Mariano statistics which compare,
pair-wise, the three models against one another. Again, the STRS and the
NNSTRS errors are significantly better than the linear model, but they are
not significantly different from each other.

6.2.5 Interpretation of Results

What do the models tell us in terms of economic understanding of the deter-
minants of automotive production? To better understand the message of
the models, we calculated the partial derivatives based on three states: the
beginning of the sample, the mid-point, and the final observation. We also
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TABLE 6.7. In-Sample Diagnostics of Alternative Models
(Sample: 1988-2002, Monthly Data)

Diagnostics Models
Linear STRS NNRS

SSE 0.009 0.003 0.003
RSQ 0.826 0.940 0.943
HQIF —763.655 —932.234 —937.395
LB* 0.000 0.980 0.948
ML* 0.276 0.792 0.875
JB* 0.138 0.000 0.000
EN* 0.005 0.712 0.769
BDS* 0.000 0.338 0.297
LWG 798 0 0

*: prob value

NOTE:

SSE: Sum of squared errors

RSQ: R-squared

HIQF: Hannan-Quinn Information Criterion

LB: Ljung-Box Q statistic on residuals

ML: McLeod-Li Q statistic on squared residuals
JB: Jarque-Bera statistic on normality of residuals
EN: Engle-Ng test of symmetry of residuals
BDS:Brock-Deckert-Scheinkman test of nonlinearity
LWG: Lee-White-Granger test of nonlinearity

used the bootstrapping method to determine the statistical significance of
these estimates.

The results appear in Table 6.9 for the NNSTRS model. We see signifi-
cant and relatively strong persistence in the spread, in that current spreads
have strong positive effects on the next period’s spreads. We see that the
effect of defaults is small and insignificant. The real exchange rate and
industrial production effects are both positive and significant, while the
effects of changes in the MSCI and NAPM indices are negative. In the
NNSTRS model, however, the MSCI effect is not significant.

The message of the NNSTRS model is that aggregate macroeconomic
variables are as important for predicting developments in spreads as
are market-specific developments, since both the real exchange rate and
changes in the NAPM, IIP, and lagged spreads play a significant role.

The results from the STRS models are very similar, both in magnitude
and tests of significance. The only difference appears in the significance of
the MSCI effect, which is significant in this model. This result is consistent
with the findings of Collin-Dufresne, Goldstein, and Martin (2000). These
results appear in Table 6.10.
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TABLE 6.8. Out-of-Sample Forecasting Accuracy

1998

1999

2000

2001

Diagnostics Models
Linear STRS NNSTRS
RMSQ 0.015 0.006 0.007
SR 0.733 0.917 0.905
Diebold-Mariano Linear vs. Linear vs. STRS vs.
Test STRS NNSTRS NNSTRS
DM-1* 0.000 0.000 0.942
DM-2* 0.000 0.000 0.943
DM-3* 0.000 0.000 0.939
DM-4* 0.001 0.001 0.936
DM-5* 0.002 0.002 0.897

*: prob value

RMSQ: Root mean squared error
SR: Success ratio on correct sign predictions

DM: Diebold-Mariano Test

(correction for autocorrelation, lags 1-5)

2002
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TABLE 6.9. Partial Derivatives of NNSTRS Model

Period Arguments

Default Spread REXR 1P MSCI NAPM
Mean 0.033 0.771 0.063 0.134 —0.068 —0.066
1989 0.033 0.769 0.060 0.137 —0.065 —0.068
1996 0.030 0.777 0.071 0.128 —0.073 —0.061
2001 0.036 0.756 0.043 0.151 —0.053 —0.080

Statistical Significance of Estimates

Period Arguments

Default Spread REXR 1P MSCI NAPM
Mean 0.853 0.000 0.000 0.000 0.678 0.059
1989 0.844 0.000 0.000 0.000 0.688 0.055
1996 0.846 0.000 0.000 0.000 0.680 0.063
2001 0.848 0.000 0.000 0.000 0.684 0.055

TABLE 6.10. Partial Derivatives of STRS Model

Period Arguments

Default Spread REXR 1P MSCI NAPM
Mean 0.017 0.749 0.068 0.125 —0.139 —0.096
1989 0.010 0.752 0.070 0.128 —0.139 —0.098
1996 0.027 0.746 0.065 0.121 —0.138 —0.090
2001 —0.005 0.757 0.074 0.135 —0.140 —0.106

Statistical Significance of Estimates

Period Arguments

Default Spread REXR 1P MSCI NAPM
Mean 0.678 0.000 0.000 0.000 0.080 0.000
1989 0.699 0.000 0.000 0.000 0.040 0.000
1996 0.636 0.000 0.011 0.000 0.168 0.000
2001 0.693 0.000 0.000 0.000 0.057 0.000

Finally, we can ask what information we can glean from the behav-
ior of the smooth transition neurons in the two regime switching models.
How do they behave relative to changes in the IIP as the economy
switches from growth to recession? Figure 6.9 pictures the behavior of these
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FIGURE 6.9. Regime transitions in STRS and NNSTRS models

three variables. We see sharper changes in the IIP index than in dispos-
able income. The NNSTRS and STRS neurons give about equal weight to
the growth/recession states, but the NNSTRS neuron shows slightly more
volatility, and thus more information, throughout the sample about the
likelihood of switching from one regime to another.

6.3 Conclusion

The examples we studied in this chapter are not meant, by any means, to
be conclusive. The models are very simple and certainly capable of more
elaborate extension, both in terms of the specification of the variables and
in the specification of the nonlinear neural network alternatives to the linear
model. However both of the examples illustrate the gains from using the
nonlinear neural network specification, even in a simple alternative model.
We get greater accuracy in forecasting and results with respectable in-
sample diagnostics, which can lead to meaningful economic interpretation.
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6.3.1 MATLAB Program Notes

The complete estimation program for the automobile industry and
the spread forecasting exercises is called carlos-may2004.m. Subfunc-
tions are linearmodfun.m, nnstrsfun.m, and strsfun.m, with the spec-
ification of a moving average process, for the linear, neural network
smooth-transition regime switching, and smooth-transition regime switch-
ing models. The data for the corporate bond spreads are given in
carlos_spread-may2004_runl.mat, while the automobile industry data are
given in jerryauto_may2004_runl.mat.

6.3.2 Suggested Ezercises

The reader is invited to modify the MATLAB programs and to forecast
price adjustment, rather than quantity adjustment, in the automotive
industry, and to forecast default rates, rather than corporate bond spreads,
with the financial times-series data.
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Inflation and Deflation: Hong Kong
and Japan

This chapter applies neural network methods to the Hong Kong and
Japanese experiences of inflation and deflation. Understanding the dynam-
ics of inflation and how to forecast inflation more accurately is not simply of
interest to policymakers at a central bank. Proper pricing of rates of return
over the medium-term horizon requires accurate estimates of inflation in
the coming quarters. Similarly, many decisions about lending or borrow-
ing at short- or long-term interest rates requires a reasonable forecast of
what succeeding short-term interest rates will be. These short-term interest
rates, of course, will likely follow future inflationary developments, if the
central bank is doing its job as a guardian of price stability. Forecasting
inflation accurately means a better forecast of future interest rates and
actions of the monetary authority.

Deflation poses a special problem. While at first glance the idea of falling
prices appears to be good news, the zero lower bound on nominal inter-
est rates means that real interest rates will start to rise sharply after the
nominal interest rate hits its zero lower bound, if the deflation process con-
tinues. Rising real interest rates mean, of course, less investment and a
fall in demand in the economy. Furthermore, a deflation process can gen-
erate self-fulfilling expectations. Once prices start to fall, people refrain
from buying in the expectation that prices will continue to fall. The lack
of buying, of course, causes prices to fall even more.
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The dynamics of deflation raise many questions about the overall sta-
tistical process of inflation. When inflation is positive, we expect rising
interest rates to reduce the inflationary pressures in the economy. However,
in deflation, interest rates cannot fall below zero to reverse the deflationary
pressure. There is an inherent asymmetry in the price adjustment process
as we move from an inflationary regime to a deflationary regime. This is
where we can expect nonlinear approximation methods to be of help.

While most studies of deflation have looked back to the Great Depression
era, we have the more recent experiences of Hong Kong and Japan as new
sources of information about how deflationary processes come about. While
there has been great debate about the experiences of these countries, and
no shortage of proposed policy remedies, there has been little examination
of the inflationary/deflationary dynamics with nonlinear neural network
approximation methods.

7.1 Hong Kong

Although much has been written (amid much controversy and debate)
about deflation in Japan, which we discuss in Section 7.2, Hong Kong is of
special interest. First, the usual response of expansionary monetary policy
is not an option for Hong Kong, since its currency board arrangement pre-
cludes active policy directed at inflation or deflation. Second, Hong Kong is
a smaller but much more open economy than Japan, and is thus more sus-
ceptible to external factors. Finally, Hong Kong, as a special administrative
region, is in the process of increasing market integration with mainland
China. However, there are some important similarities. Both Japan and
Hong Kong have experienced significant asset-price deflation, especially in
property prices, and more recently, negative output-gap measures.

Ha and Fan (2002) examined panel data for assessing price conver-
gence between Hong Kong and mainland China. While convergence is far
from complete, they showed that the pace has accelerated in recent years.
However, comparing price dynamics between Hong Kong and Shenzhen,
Schellekens (2003) argued that the role of price equalization as a source of
deflation is minor, and contended that deflation is best explained by wealth
effects.

Genberg and Pauwels (2003) found that both wages and import prices
have significant causal roles, in addition to property rental prices. These
three outperform measures of excess capacity as forcing variables for defla-
tion. Razzak (2003) also called attention to the role of unit labor costs and
productivity dynamics for understanding deflation. However, making use
of a vector autoregressive model (VAR), Genberg (2003) also reported that
external factors account for more than 50% of unexpected fluctuations in
the real GDP deflator at horizons of one to two years.
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FIGURE 7.1. CPI inflation: Hong Kong

Most of these studies have relied on linear extensions and economet-
ric implementation of the Phillips curve or New Keynesian Phillips curve.
While such linear applications are commonly used and have been successful
for many economies, we show in this chapter that a nonlinear smooth-
transition neural network regime switching method outperforms the linear
model on the basis of in-sample diagnostics and out-of-sample forecasting
accuracy.

7.1.1 The Data

Figure 7.1 pictures the rate of inflation in Hong Kong. We see that the
deflation process set in around 1998, reaching a rate of negative 6% by
1999. The country has not yet moved out of this pattern.

In this chapter, we examine the output gap, the rates of growth of import
prices and unit labor costs, two financial sector indicators— the rates of
growth of the Hang Seng index and residential property prices—and the
price gap between Hong Kong and mainland China.

The output gap, which measures either excess demand or slack in
the economy, comes from the World Economic Outlook of the IMF.
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FIGURE 7.2. Output gap: Hong Kong

This variable was interpolated from annual to quarterly frequency.
Figure 7.2 pictures the evolution of this variable. We see that measures
of the output gap show that the economy has been well below potential for
most of the time since late 1998.

The behavior of import prices and unit labor costs, both important for
understanding the supply-side or costs factors of inflationary movements,
shows considerably different patterns of volatility. Figure 7.3 pictures the
rate of growth of import prices and Figure 7.4 shows the corresponding
movement in labor costs. The collapse of import prices in the year 2001
is mainly due to the world economic downturn following the burst of the
bubble in the high-technology sectors.

Figure 7.5 pictures the financial sector variables, the rates of growth of
the share price index (the Hang Seng index), and the residential property
price index. Not surprisingly, the growth rate of the share price index shows
much more volatility than the corresponding growth rate of the property
price index.

Finally, as a measure of structural market integration and price con-
vergence with mainland China, we picture the evolution of a price gap.
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FIGURE 7.5. Financial market indicators: Hong Kong

The gap is defined as the logarithmic difference between the Hong Kong
CPI and mainland China CPI. The latter is converted to the Hong Kong
dollar basis using the market exchange rate. If there is significant conver-
gence taking place, we expect a negative relationship between the price gap
and inflation. If there is an unexpected and large price differential between
Hong Kong and China, ceteris paribus, the inflation rate in Hong Kong
should fall over time to close the gap. This variable appears in Figure 7.6.

Figure 7.6 shows that the price gap after 1998 is slowly but steadily
falling. The jump in 1994 is due to the devaluation of the Chinese Renminbi
against the U.S. dollar.

Table 7.1 contains a statistical summary of the data we use in our analy-
sis. We use quarterly observations from 1985 until 2002. Table 7.1 lists the
means, standard deviations, and contemporaneous correlations of annual-
ized rates of inflation, the price and output gap measures, and the rates of
growth of import prices, the property price index, the share price index,
and unit labor costs.

The highest volatility rates (measured by the standard deviations of the
annualized quarterly data) are for the rates of growth of the share market
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and residential property price indices, as well as the price gap. However,
the price gap volatility is due in large part to the once-over Renminbi
devaluation in 1994.

Table 7.1 also shows that highest correlations of inflation are with rates of
growth of unit labor costs and property prices, followed closely by the out-
put gap. Finally, Table 7.1 shows a strong correlation between the growth
rates of the share price and the residential property price indices.

In many studies relating to monetary policy and overall economic activ-
ity, bank lending appears as an important credit channel for assessing
inflationary or deflationary impulses. Gerlach and Peng (2003) examined
the interaction between banking credit and property prices in Hong Kong.
They found that property prices are weakly exogenous and determine bank
lending, while bank lending does not appear to influence property prices
[Gerlach and Peng (2003), p. 11]. They argued that changes in bank lending
cannot be regarded as the source of the boom and bust cycle in Hong Kong.
They hypothesized that “changing beliefs about future economic prospects
led to shifts in the demand for property and investments.” With a higher
inelastic supply schedule, this caused price swings, and with rising demand
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TABLE 7.1. Statistical Summary of Data

Hong Kong Quarterly Data, 1985-2002

Property
Price Output Imp Price Price HSI ULC
Inflation Gap  Gap Growth  Growth Growth Growth

Mean 0.055 0.511 0.004 0.023 0.088 0.127  0.102
Std. Dev. 0.049 0.258 0.024 0.051 0.215 0.272  0.062

Correlation Matrix

Property
Price Output Imp Price Price HSI ULC
Inflation Gap  Gap Growth  Growth Growth Growth

Inflation 1.00

Price Gap —0.39 1.00

Output Gap 0.56 —0.29 1.00

Imp Price Growth 0.15 —-0.37 0.05 1.00

Property Price Growth  0.57 —0.42 0.36 0.23 1.00

HSI Growth 0.06 —0.04 —0.15 0.43 0.56 1.00

ULC Growth 0.59 —0.84 0.48 0.29 0.38 —0.09 1.00

for loans, “bank lending naturally responded” [Gerlach and Peng (2003),
p. 11]. For this reason, we leave out the growth rate of bank lending as a
possible determinant of inflation or deflation in Hong Kong.!:?

7.1.2  Model Specification

We draw upon the standard Phillips curve framework used by Stock and
Watson (1999) for forecasting inflation in the United States. They define
the inflation as an h-period ahead forecast. For our quarterly data set, we
set h = 4 for an annual inflation forecast:

Tin = In(pryn) — In(pe) (7.1)

n Japan, the story is different: banking credit and land prices show bidirectional
causality or feedback. The collapse of land prices reduces bank lending, but the collapse
of bank lending also leads to a fall in land prices. Hofmann (2003) also points out, with a
sample of 20 industrialized countries, that “long run causality runs from property prices
to bank lending” but short-run bidirectional causality cannot be ruled out.

2Goodhard and Hofmann (2003) support the finding of Gerlach and Peng with results
from a wider sample of 12 countries.
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We thus forecast inflation as an annual forecast (over the next four quar-
ters), rather than as a one-quarter ahead forecast. We do so because
policymakers are typically interested in the inflation prospects over a longer
horizon than one quarter. For the most part, inflation over the next quarter
is already in process, and changes in current variables will not have much
effect at so short a horizon.

In this model, inflation depends on a set of current variables x;, includ-
ing current inflation m;, lags of inflation, and a disturbance term 7. This
term incorporates a moving average process with innovations €;, normally
distributed with mean zero and variance o2 :

Torn = f(Xe) + 1 (7.2)

T =In(py) — In(p—n) (7.3)

ne =€ +y(L)e—1 (7.4)

e ~ N(0,0%) (7.5)

where (L) are lag operators. Besides current and lagged values of inflation,
¢, ..., T4k, the variables contained in x; include measures of the output
gap, yJ?, defined as the difference between actual output y; and potential

pot

output y¥”", the (logarithmic) price gap with mainland China pJ®”, the
rate of growth of unit labor costs (ulc), and the rate of growth of import
prices (imp). The vector x; also includes two financial-sector variables:
changes in the share price index (spi) and the residential property price
index (rpi):

Xt = [Wta Tt—1,Tt—25+ -, Tt—k, yigapvptgapv sy
Apuler, Apimpy, Apspiy, Aprpiy] (7.6)
p{™" = p" — p A (7.7)

The operator Ay for a variable z; represents simply the difference over h
periods. Hence Ap, z; = z; — z;_p. The rates of growth of unit labor costs,
the import price index, the share price index, and the residential property
price index thus represent annualized rates of growth for A = 4 in our
analysis. We do this for consistency with our inflation forecast, which is
a forecast over four quarters. In addition, taking log differences over four
quarters helps to reduce the influence of seasonal factors in the inflation
process.

The disturbance term 7; consists of a current period shock ¢; in addition
to lagged values of this shock. We explicitly model serial dependence, since
it is well known that when the forecasting interval h exceeds the sampling
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interval (in this case we are forecasting for one year but we sample with
quarterly observations), temporal dependence is induced in the disturbance
term. For forecasting four quarters ahead with quarterly data, the error
process is a third-order moving average process.

We specify four lags for the dependent variable. For quarterly data, this
is equivalent to a 12-month lag for monthly data, used by Stock and Watson
(1999) for forecasting inflation.

To make the model operational for estimation, we specify the following
linear and neural network regime switching (NNRS) alternatives.

The linear model has the following specification:

Ti+h — Xy + Mt (78)
M = € + ")/(L)Et_l (79)
e ~ N(0,0?) (7.10)

We compare this model with the smooth-transition regime switch-
ing (STRS) model and then with the neural network smooth-transition
regime switching (NNSTRS) model. The STRS model has the following
specification:

Tevn = Vranxy + (1 — Wy)aox; +ny (7.11)
Uy =W(0-m—1 —c) (7.12)
=1/[1+exp(-m_1 — )] (7.13)

ne =€ +y(L)er—1 (7.14)

e ~ N(0,0%) (7.15)

The transition function depends on the value of lagged inflation m;_; as well

as the parameter vector # and threshold ¢, with ¢ = 0. We use a logistic or
logsigmoid specification for ¥(m;_1;0, c).

We also compare the linear specification within a more general NNRS

model:
T = axg + B{[¥(m-1;0, 0)|G(x4; )
+[1—U(m—1;0,0)|H (%3 M)} + me (7.16)
e = e +y(L)er—1 (7.17)

e ~ N(0,0?) (7.18)
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The NNRS model is similar to the smooth-transition autoregressive
model discussed in Franses and van Dijk (2000), originally developed by
Terésvirta (1994), and more generally discussed in van Dijk, Terdsvirta,
and Franses (2000). The function ¥(m;_1; 6, ¢) is the transition function for
two alternative nonlinear approximating functions G(x; k) and H (x¢; ).

The transition function is the same as the one used on the STRS model.
Again, for simplicity we set the threshold parameter ¢ = 0, so that the
regimes divide into periods of inflation and deflation. As Franses and van
Dyck (2000) point out, the parameter § determines the smoothness of
the change in the value of this function, and thus the transition from the
inflation to deflation regime.

The functions G(xy; k) and H(x¢; A) are also logsigmoid and have the
following representations:

G(x; k) = m (7.19)
H(xyA) = m (7.20)

The inflation model in the NNRS model has a core linear component,
including autoregressive terms, a moving average component, and a non-
linear component incorporating switching regime effects, which is weighted
by the parameter f3.

7.1.3 In-Sample Performance

Figure 7.7 pictures the in-sample paths of the regression errors. We see that
there is little difference, as before, in the error paths of the two alternative
models to the linear model.

Table 7.2 contains the in-sample regression diagnostics for the three
models. We see that the Hannan-Quinn criteria only very slightly favors
the STRS model over the NNRS model. We also see that the Ljung-Box,
McLeod-Li, Brock-Deckert-Scheinkman, and Lee-White-Granger tests all
call into question the specification of the linear model relative to the STRS
and NNRS alternatives.

7.1.4  Out-of-Sample Performance

Figure 7.8 pictures the out-of-sample forecast errors of the three models.
We see that the greatest prediction errors took place in 1997 (at the time of
the change in the status of Hong Kong to a Special Administrative Region
of the People’s Republic of China).

The out-of-sample statistics appear in Table 7.3. We see that the root
mean squared error statistic of the NNRS model is the lowest. Both the
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FIGURE 7.7. In-sample paths of estimation errors

STRS and NNRS models have much higher success ratios in terms of correct
sign predictions for the dependent variable, inflation. Finally, the Diebold-
Mariano statistics show that the NNRS prediction error path is significantly
different from that of the linear model and from the STRS model.

7.1.5 Interpretation of Results

The partial derivatives and their statistical significant values (based on
bootstrapping) appear in Table 7.4. We see that the statistically significant
determinates of inflation are lagged inflation, the output gap, the price
gap, changes in imported prices, the residential property price index, and
the Hang Seng index. Only unit labor costs are not significant. We also
see that the import price and price gap effects both have become more
important, with the import price derivative increasing from a value of .05
to a value of .13, from 1985 until 2002. This, of course, may reflect the
growing integration of Hong Kong both with China and with the rest of
the world. Residential property price effects have remained about the same.
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TABLE 7.2. In-Sample Diagnostics of Alternative Models (Sample: 1985-2002,
Quarterly Data)

Diagnostics Models
Linear STRS NNRS

SSE 0.016 0.002 0.002
RSQ 0.965 0.983 0.963
HQIF —230.683 —324.786 —327.604
LB* 0.105 0.540 0.316
ML* 0.010 0.204 0.282
JB* 0.282 0.856 0.526
EN* 0.441 0.792 0.755
BDS* 0.099 0.929 0.613
LWG 738 7 17

*: prob value

Note:

SSE: Sum of squared errors

RSQ: R-squared

HIQF: Hannan-Quinn information criterion

LB: Ljung-Box Q statistic on residuals

ML: McLeod-Li Q statistic on squared residuals
JB: Jarque-Bera statistic on normality of residuals
EN: Engle-Ng test of symmetry of residuals
BDS:Brock-Deckert-Scheinkman test of nonlinearity
LWG: Lee-White-Granger test of nonlinearity

For the sake of comparison, Table 7.5 pictures the corresponding infor-
mation from the STRS model. The tests of significance are the same as in
the NNRS model. The main differences are that the residential property
price, import price, and output gap effects are stronger. But there is no
discernible trend in the values of the significant partial derivatives as we
move from the beginning of the sample period toward the end.

Figure 7.9 pictures the evolution of the smooth-transition neurons for the
two models as well as the rate itself. We see that the neuron for the STRS
model is more variable, showing a low probability of deflation in 1991, .4,
but a much higher probability of deflation, .55, in 1999. The NNRS model
has the probability remaining practically the same. This result indicates
that the NNRS model is using the two neurons with equal weight to pick
up nonlinearities in the overall inflation process independent of any regime
change. If there is any slight good news for Hong Kong, the STRS model
shows a very slight decline in the probability of deflation after 2000.
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TABLE 7.3. Out-of-Sample Forcasting Accuracy
Diagnostics Models
Linear STRS NNRS
RMSQ 0.030 0.027 0.023
SR 0.767 0.900 0.867

Diebold-Mariano
Test

Linear vs. STRS

Linear vs. NNRS

STRS vs. NNRS

DM-1*
DM-2*
DM-3*
DM-4*
DM-5*

0.295
0.312
0.309
0.296
0.242

0.065
0.063
0.031
0.009
0.000

0.142
0.161
0.127
0.051
0.002

*: prob value

RMSQ: Root mean squared error
SR: Success ratio on sign correct sign predictions
DM: Diebold-Mariano test

(correction for autocorrelation. lags 1-5)
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TABLE 7.4. Partial Derivatives of NNSTRS Model

Period Arguments

Inflation Price Output Import Res Prop Hang Seng Unit Labor

Gap Gap Price Price Index Costs
Mean 0.300 —0.060 0.027 0.086 0.234 0.016 0.082
1985 0.294 —0.056 0.024  0.050 0.226 —0.015 0.072
1996 0.300 —0.060 0.027  0.091 0.235 0.020 0.084
2002 0.309 —0.067 0.032  0.130 0.244 0.053 0.093

Statistical Significance of Estimates

Period Arguments

Inflation Price Output Import Res Prop Hang Seng Unit Labor

Gap Gap Price Price Index Costs
Mean 0.000 0.000 0.015  0.059 0.000 0.032 0.811
1985 0.000 0.000 0.015  0.053 0.000 0.032 0.806
1996 0.000 0.000 0.013 0.034 0.000 0.029 0.819
2002 0.000 0.000 0.015  0.053 0.000 0.032 0.808

TABLE 7.5. Partial Derivatives of STRS Model

Period Arguments

Inflation Price Output Import Res Prop Hang Seng Unit Labor

Gap Gap Price Price Index Costs
Mean 0.312 —0.037 0.093 0.168 0.306 0.055 0.141
1985 0.295 —0.018 0.071  0.182 0.292 0.051 0.123
1996 0.320 —0.046 0.103 0.161 0.312 0.056 0.149
2002 0.289 —0.012 0.063 0.187 0.287 0.050 0.116

Statistical Significance of Estimates

Period Arguments

Inflation Price Output Import Res Prop Hang Seng Unit Labor

Gap Gap Price Price Index Costs
Mean 0.000 0.000 0.000  0.000 0.000 0.000 0.975
1985 0.000 0.000 0.000 0.000 0.000 0.000 0.964
1996 0.000 0.000 0.000  0.000 0.000 0.000 0.975

2002 0.000 0.000 0.000  0.000 0.000 0.000 0.966
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FIGURE 7.9. Regime transitions in STRS and NNRS models

7.2 Japan

Japan has been in a state of deflation for more than a decade. There is
no shortage of advice for Japanese policymakers from the international
community of scholars.

Krugman (1998) comments on this experience of Japan:

Sixty years after Keynes, a great nation —a country with a stable and
effective government, a massive net creditor, subject to none of the constraints
that lesser economies face —is operating far below its productive capacity,
simply because its consumers and investors do not spend enough. That should
not happen; in allowing it to happen, and to continue year after year, Japan’s
economic officials have subtracted value from their nation and the world as a
whole on a truly heroic scale [Krugman (1998), Introduction)].

Krugman recommends expansionary monetary and fiscal policy to cre-
ate inflation. However, Yoshino and Sakakibara have taken issue with
Krugman’s remedies. They counter Krugman in the following way:

Japan has reached the limits of conventional macroeconomic policies.
Lowering interest rates will not stimulate the economy, because widespread
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excess capacity has made private investment insensitive to interest rate changes.
Increasing government expenditure in the usual way will have small effects
because it will take the form of unproductive investment in the rural areas.
Cutting taxes will not increase consumption because workers are concerned
about job security and future pension and medical benefits [Yoshino and
Sakakibara (2002), p. 110].

Besides telling us what will not work, Yoshino and Sakakibara offer
alternative longer-term policy prescriptions, involving financial reform,
competition policy, and the reallocation of public investment:

In order for sustained economic recovery to occur in Japan, the government
must change the makeup and regional allocation of public investment, resolve the
problem of nonperforming loans in the banking system, improve the corporate
governance and operations of the banks, and strengthen the international
competitiveness of domestically oriented companies in the agriculture,
construction and service industries [Yoshino and Sakakibara (2002), p. 110].

Both Krugman and Yoshino and Sakakibara base their analyses and pol-
icy recommendations on analytically simple models, with reference to key
stylized facts observed in macroeconomic data.

Svensson (2003) reviewed many of the proposed remedies for Japan, and
put forward his own way. His “foolproof” remedy has three key ingredients:
first, an upward-sloping price level target path set by the central bank;
second, an initial depreciation followed by a “crawling peg;” and third, an
exit strategy with abandonment of the peg in favor of inflation or price-
level targeting when the price-level target path has been reached [Svensson
(2003), p. 15]. Other remedies include a tax on money holding proposed
by Goodfriend (2000) and Buiter and Panigirtzoglou (1999), as well as
targeting the interest rate on long-term government bonds, proposed by
Clouse et al. (2003) and Meltzer (2001).

The growth of low-priced imports from China has also been proposed
as a possible cause of deflation in Japan (as in Hong Kong). McKibbin
(2002) argued that monetary policy would be effective in Japan through
yen depreciation. He argued for a combination of a fiscal contraction with
a monetary expansion based on depreciation:

Combining a credible fiscal contraction that is phased in over three years with
an inflation target would be likely to provide a powerful macroeconomic
stimulus to the Japanese economy, through a weaker exchange rate and lower
long term real interest rates, and would sustain higher growth in Japan for a
decade [McKibbin (2002), p. 133].

In contrast to Krugman and Yoshino and Sakakibara, McKibbin based
his analysis and policy recommendations on simulation of the calibrated
G-cubed (Asia Pacific) dynamic general equilibrium model, outlined in
McKibbin and Wilcoxen (1998).
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FIGURE 7.10. CPI inflation: Japan

Sorting out the relative importance of monetary policy, stimulus packages
that affect overall demand (measured by the output gap), and the contribu-
tions of unit labor costs, falling imported goods prices, and financial-sector
factors coming from the collapse of bank lending and asset-price defla-
tion (measured by the negative growth rates of share price and land price
indices) is no easy task. These variables display considerable volatility, and
the response of inflation to these variables is likely to be asymmetric.

7.2.1 The Data

Figure 7.10 pictures the CPI inflation rate for Japan. We see that deflation
set in after 1995, with a slight recovery from deflation in 1998.

Figure 7.11 pictures the output gap, while Figures 7.12 and 7.13 contain
the rate of growth of the import price index and unit labor costs. We see
that the collapse of excess demand, measured as a positive output gap, goes
hand-in-hand with the onset of deflation. Unit labor costs also switched
from positive to negative growth rate at the same time. However there is
no noticeable collapse in the import price index at the time of the deflation.
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Figure 7.14 pictures the rate of growth of two financial market indicators:
the Nikkei index and the land price index. We see that the volatility of the
rate of growth of the Nikkei index is much greater than that of the land
price index.

Figure 7.15 pictures the evolution of two indicators of monetary policy:
the Gensaki interest rate and the rate of growth of bank lending. The
Gensaki interest rate is considered the main interest for interpreting the
stance of monetary policy in Japan. The rate of growth of bank lending is,
of course, an indicator of how banks may thwart expansionary monetary
policy by reducing their lending. We see the sharp collapse of the rate
of growth of bank lending at about the same time the Bank of Japan
raised the interest rates at the beginning of the 1990s. The well-documented
action was an attempt by the Bank of Japan to burst the bubble in the
stock market. Figure 7.14, of course, shows that the Bank of Japan did
indeed succeed in bursting this bubble. After that, however, overall demand
showed a steady decline.

Table 7.6 gives a statistical summary of the data we have examined.
The highest volatility rates (measured by the standard deviations of the



0.6 ! ! ! ! !
7 S — e ...fateof Growth of e 1

o2 p N Mg SR I - T 1

~————

Rate of-Growth/’i'
of Nikkei Index :

1975 1980 1985 1990 1995 2000 2005

FIGURE 7.14. Financial market indicators: Japan

0.12 ! ! ! ! !

TR B IR T T P 4
0.1 : A [ | : :
o : :

1
1

0.08 _\‘ """"" 1 Rate of Growth of

.~ BankLending 7

0.06 oo ................... ................. SRR | SRR ................... ................. .

0.04 Fovroieeii R N WY 4 o\ TR U i
Gensaki : :

: Interest
0.02 F oo e Rate

002 L SRR U e, ' TP ‘ ................ N

~0.04 ; ; ; ; ;
1975 1980 1985 1990 1995 2000 2005

FIGURE 7.15. Monetary policy indicators: Japan



188 7. Inflation and Deflation: Hong Kong and Japan

TABLE 7.6. Statistical Summary of Data

Inflation Gensaki Y-gap Imp Ulo Lpi Spi Loan
Growth Growth Growth Growth Growth

Mean 0.034 0.052  0.000 0.016 0.004  0.035 0.068 0.077
Std. Dev. 0.043 0.036  0.017 0.193 0.014 0.074 0.202 0.054

Correlation Matrix
Inflation Gensaki Y-gap Imp Ulo Lpi Spi Loan
Growth Growth Growth Growth Growth

Inflation 1.000
Gensaki 0.607 1.000
Y-gap —0.211 0.309  1.000

Imp Growth 0.339 0.550  0.225 1.000

Ulo Growth 0.492 0.198 —0.052  0.328 1.000

Lpi Growth 0.185 0.777 0.591 0.345 —0.057 1.000

Spi Growth ~ —0.069 —0.011 —0.286 —0.349 —0.176 0.081 1.000

Loan Growth  0.489 0.823 0.310 0.279 —0.016 0.848 0.245 1.000

annualized quarterly data) are for the rates of growth of the share market
and import price indices.

Table 7.6 shows that the highest correlation of inflation is with the
Gensaki rate, but that it is positive rather than negative. This is another
example of the well-known price puzzle, recently analyzed by Giordani
(2001). This puzzle is also a common finding of linear vector autoregressive
(VAR) models, which show that an increase in the interest rate has positive,
rather than negative, effects on the price level in impulse-response analysis.
Sims (1992) proposed that the cause of the prize puzzle may be unobserv-
able contemporaneous supply shocks. The policymakers observe the shock
and think it will have positive effects on inflation, so they raise the interest
rates in anticipation of countering higher future inflation. Sims found that
this puzzle disappears in U.S. data when we include a commodity price
index in a more extensive VAR model.

Table 7.6 also shows that the second and third highest correlations of
inflation are with unit labor costs and bank lending, followed by import
price growth. The correlations of inflation with the share-price growth rate
and the output gap are negative but insignificant.

Finally, what is most interesting from the information given in Table 7.6
is the very high correlation between the growth rate of bank lending and
the growth rate of the land price index, not the growth rate of the share
price index. It is not clear which way the causality runs: does the collapse
of land prices lead to a fall in bank lending, or does the collapse of bank
lending lead to a fall in land prices?
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TABLE 7.7. Granger Test of Causality: LPI and Loan Growth

Loan Growth Does Not LPI Growth Does Not
Cause LPI Growth Cause Loan Growth
F-Statistic 2.429 3.061
P-Value 0.053 0.020

In Japan, the story is different: banking credit and land prices show
bidirectional causality or feedback. The collapse of land prices reduces bank
lending, but the collapse of bank lending also leads to a fall in land prices.
Table 7.7 gives the joint-F statistics and the corresponding P-values for a
Granger test of causality. We see that the results are somewhat stronger for
a causal effect from land prices to loan growth. However, the P-value for
causality from loan growth to land price growth is only very slightly above
5%. These results indicate that both variables have independent influences
and should be included as financial factors for assessing the behavior of
inflation.

7.2.2  Model Specification

We use the same model specification for the Hong Kong deflation as in
7.1.2 with two exceptions: we do not use a price gap variable measur-
ing convergence with mainland China, and we include both the domestic
Gensaki interest rate and the rate of growth of bank lending as further
explanatory variables for the evolution of inflation. As before, we forecast
over a one-year horizon, and all rates of growth are measured as annual
rates of growth, with Apx; = ; — x4, and with h = 4.

7.2.3 In-Sample Performance

Figure 7.16 pictures the in-sample performance of the three models. The
solid curve is for the error path of the linear model while similar dashed
and dotted paths are the errors for alternative STRS and NNRS models.
Both alternatives improve upon the performance of the linear model.
Adding a bit of complexity greatly improves the statistical in-sample fit.
Table 7.8 gives the in-sample diagnostic statistics of the three models.
We see that the STRS and NNRS models outperform the linear model,
not only on the basis if goodness-of-fit measures, but also on specification
tests. We can reject neither serial independence in the residuals nor the
squared residuals for both alternative models. Similarly, we cannot reject
normality in the residuals of both alternatives to the linear model. Finally,
the Brock-Deckert-Scheinkman and Lee-White-Granger tests show there is
very little or no evidence of neglected nonlinearity in the NNRS model.
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FIGURE 7.16. In-sample paths of estimation errors

The information from Table 7.8 gives strong support for abandoning a
linear approach for understanding inflation/deflation dynamics in Japan.

7.2.4  Out-of-Sample Performance

Figure 7.17 gives the out-of-sample error paths of the three models. The
solid curve is for the linear prediction errors, the dashed path is for the
STRS prediction errors, and the dotted path is for the NNRS errors. We
see that the NNRS models outperforms both the STRS and linear models.
What is of interest, however, is that all three models generate negative
prediction errors in 1997, the time of the onset of the Asian crisis. The
models’ negative errors, in which the errors represent differences between
the actual and predicted outcomes, are indicators that the models do not
incorporate the true depth of the deflationary process taking place in Japan.

Table 7.9 gives the out-of-sample test statistics of the three models. We
see that the NNRS model has a much higher success ratio (in terms of
percentage correct sign predictions of the dependent variable), and outper-
forms the linear model as well as the STRS model in terms of the root
mean squared error statistic. The Diebold-Mariano statistics indicate that



7.2 Japan 191

TABLE 7.8. In-Sample Diagnostics of Alternative Models (Sample 1978-2002,
Quarterly Data)

Diagnostics Models
Linear STRS NNRS

SSE 0.023 0.003 0.003
RSQ 0.240 0.900 0.910
HQIF —315.552 —466.018 —467.288
LB* 0.067 0.458 0.681
ML* 0.864 0.254 0.200
JB* 0.002 0.172 0.204
EN* 0.531 0.092 0.084
BDS* 0.012 0.210 0.119
LWG 484 56 3

*: prob value

Note:

SSE: Sum of squared errors

RSQ: R-squared

HIQF: Hannan-Quinn information criterion

LB: Ljung-Box Q statistic on residuals

ML: McLeod-Li Q statistic on squared residuals
JB: Jarque-Bera statistic on normality of residuals
EN: Engle-Ng test of symmetry of residuals

BDS: Brock-Deckert-Scheinkman test of nonlinearity
LWG: Lee-White-Granger test of nonlinearity

the NNRS prediction errors are statistically different from the linear model.
However, the STRS prediction errors are not statistically different from
either the linear or the NNRS model.

7.2.5 Interpretation of Results

The partial derivatives of the model for Japan, as well as the tests of
significance based on bootstrapping methods, appear in Table 7.10. We see
that the only significant variables determining future inflation are current
inflation, the interest rate, and the rate of growth of the land price index.
The output gap is almost, but not quite, significant. Unit labor costs and
the Nikkei index are both insignificant and have the wrong sign.

The significant but wrong sign of the interest rate may be explained by
the fact that the Bank of Japan is constrained by the zero lower bound
of interest rates. They were lowering interest rates, but not enough during
the period of deflation, so that real interest rates were in fact increasing.
We see this in Figure 7.18.
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FIGURE 7.17. Out-of-sample prediction errors
TABLE 7.9. Out-of-Sample Forecasting Accuracy
Diagnostics Models
Linear STRS NNRS
RMSQ 0.018 0.017 0.013
SR 0.511 0.489 0.644

Diebold-Mariano Linear vs. STRS
Test

Linear vs. NNRS

STRS vs. NNRS

DM-1* 0.276
DM-2* 0.304
DM-3* 0.310
DM-4* 0.306
DM-5%* 0.301

0.011
0.016
0.007
0.001
0.001

0.233
0.271
0.285
0.289
0.288

*: prob value
RMSQ: Root mean squared error

SR: Success ratio on sign correct sign predictions

DM: Diebold-Mariano test
(correct for autocorrelation, lags 1-5)
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TABLE 7.10. Partial Derivatives of NNRS Model

Period

Arguments

Inflation Interest Import Lending Nikkei Land Price Output Unit Labor

Rate Price  Growth Index Index Gap Costs
Mean 0.182 0.212  0.113 0.025 —0.088 0.122 0.015 —0.075
1978 0.190 0.217  0.123 0.039 —0.089 0.112 0.019 —0.092
1995 0.183 0.212 0.114 0.026 —0.088 0.121 0.015 —0.077
2002 0.181 0.211 0.112 0.023 —0.087 0.124 0.015 —0.074
Statistical Significance of Estimates
Period Arguments
Inflation Interest Import Lending Nikkei Land Price Output Unit Labor
Rate Price Growth Index Index Gap Costs
Mean 0.000 0.000  0.859 0.935  0.356 0.000 0.149 1.000
1978 0.000 0.000  0.819 0.933  0.288 0.000 0.164 1.000
1995 0.000 0.000  0.840 0.931  0.299 0.000 0.164 1.000
2002 0.000 0.000 0.838 0.935 0.293 0.000 0.149 1.000
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FIGURE 7.18. Real interest rates and inflation in Japan
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The fact that the land price index is significant while the Nikkei index is
not can be better understood by looking at Figure 7.14. The rate of growth
has shown a smooth steady decline, more in tandem with the inflation
process than with the much more volatile Nikkei index.

Table 7.11 gives the corresponding sets of partial derivatives and tests
of significance from the STRS model. The only difference we see from the
NNRS model is that the output gap variable is also significant.

Figure 7.19 pictures the evolution of inflation and the transition neurons
of the two models. As in the case of Hong Kong, the STRS transition neu-
ron gives more information, showing that the likelihood of remaining in
the inflation state is steadily decreasing as inflation switches to deflation
after 1995. The NNRS model’s transition neuron shows little or no action,
remaining close to 0.5. The result indicates that the NNRS model outper-
forms the linear and STRS model not by picking up a regime change per
se but rather by approximating nonlinear processes in the overall inflation
process.

The fact that bank lending does not appear as a significant determi-
nant of inflation (while output gap does—at least in the STRS model)
does not mean that bank lending is not important. Table 7.12 pictures the
results of a Granger causality test between the output gap and the rate of
growth of bank lending in Japan. We see strong evidence, at the 5% level

TABLE 7.11. Partial Derivatives of STRS Model

Period Arguments

Inflation Interest Import Lending Nikkei Land Price Output Unit Labor

Rate Price  Growth Index Index Gap Costs
Mean 0.149 0.182  0.054 —0.094 —0.032 0.208 0.028 —0.079
1978 0.138 0.163  0.055 —0.096 —0.032 0.232 0.030 —0.080
1995 0.138 0.163 0.055 —0.096 —0.032 0.232 0.030 —0.080
2002 0.133 0.156  0.056 —0.096 —0.032 0.242 0.030 —0.080

Statistical Significance of Estimates

Period Arguments

Inflation Interest Import Lending Nikkei Land Price Output Unit Labor

Rate Price Growth Index Index Gap Costs
Mean 0.006 0.000  0.695 1.000  0.398 0.000 0.095 1.000
1978 0.006 0.000 0.695 1.000 0.398 0.000 0.095 1.000
1995 0.006 0.000 0.615 1.000  0.394 0.000 0.088 0.863

2002 0.002 0.000  0.947 1.000  0.739 0.000 0.114 1.000
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FIGURE 7.19. Regime transitions in STRS and NNRS models

TABLE 7.12. Ganger Test of Causality: Loan Growth and the Output Gap

Hypothesis
Loan Growth Does Not Output Gap Does Not
Cause the Output Gap Cause Loan Growth
F-Statistic 2.5 2.4
P-Value 0.049 0.053

of significance, that the rate of growth of bank loans is a causal factor for
changes in the output gap. There is also evidence of reverse causality, from
the output gap to the rate of growth of bank lending, to be sure. These
results indicate that a reversal in bank lending will improve the output
gap, and such an improvement will call forth more bank lending, leading,
in turn, in a virtuous cycle, to further output-gap improvement and an
escape from the deflationary trap in Japan.
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7.3 Conclusion

The chapter illustrates how neural network regime switching models help
explain the evolution of inflation and deflation in Japan and Hong Kong.
The results for Hong Kong indicate that external prices and residential
property prices are the most important factors underlying inflationary
dynamics, whereas for Japan, interest rates and excess demand (prox-
ied by the output gap) appear to be more important. These results are
consistent with well-known stylized facts about both economies. Hong
Kong is a much smaller and more highly open economy than Japan, so
that the evolution of international prices and nontraded prices (prox-
ied by residential property prices) would be the driving forces behind
inflation. For Japan, a larger and less open economy, we would expect
policy variables and excess demand to be more important factors for
inflation.

Clearly, there are a large number of alternative nonlinear as well as neural
network specifications for approximating the inflation processes of different
countries. We used a regime switching approach since both Hong Kong and
Japan have indeed moved from inflationary to deflationary regimes. But for
most countries, the change in regime may be much different, such as an
implicit or explicit switch to inflation-targets for monetary policy. These
types of regime switches cannot be captured as easily as the switch from
inflation to deflation.

Since inflation is of such central importance for both policymakers and
decision makers in business, finance, and households, it is surprising that
more work using neural networks has not been forthcoming. Chen, Racine,
and Swanson (2001) have used a ridgelet neural network for forecasting
inflation in the United States. McNelis and McAdam (2004) used a thick
model approach (combining forecasts of different types of neural nets) for
both the Euro Zone and the United States. Both of these papers show the
improved forecasting performance from neural network methods. Hopefully,
more work will follow.

7.8.1 MATLAB Program Notes

The same programs used in the previous chapter were used for
the inflation/deflation studies. The data are given in honkonginfla-
tion_may2004_run8.mat and japdata_may2004_rund.mat for Hong Kong
and Japan.

7.3.2  Suggested Ezercises

The reader is invited to use data from other countries to see how well
the results from Japan or Hong Kong carry over to countries that did not
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experience deflation as well as inflation. However, the threshold would have
to be changed from zero to a very low positive inflation level. What would
be of interest is the role of residential property prices as a key variable
driving inflation.






8

Classification: Credit Card Default
and Bank Failures

This chapter examines how well neural network methods compare with
more traditional methods based on discriminant analysis, as well as nonlin-
ear logit, probit, and Weibull methods, spelled out in Chapter 2, Section 7.
We examine two cases, one for classification of credit card default using
German data, and the other for banking intervention or closure, using
data from Texas in the 1980s. Both of these data sets and the results we
show are solely meant to be examples of neural network performance rel-
ative to more traditional econometric methods. There is no claim to give
new insight into credit card risk assessment or early warning signals for a
banking problem.

We see in both of the examples that classification problems involve the
use of numerical indicators for qualitative characteristics such as gender,
marital status, home ownership, or membership in the Federal Reserve
System. In this case, we are using crisp logic or crisp sets: a person is
either in one group or another. However, a related method for classification
involves fuzzy sets or fuzzy logic, in which a person may be partially in one
category or another (as in health studies, for example, one may be partially
overweight: partly in one set of “overweight” and partly in the other set of
“normal” weight). Much of the related artificial intelligence “neuro-fuzzy”
literature related to neural nets and fuzzy logic has focused on deriving rules
for making decisions, based on the outcome of classification schemes. In this
chapter, however, we will simply focus on the neural network approach with
respect to the traditional linear discriminant analysis and the nonlinear
logit, probit, and Weibull methods.
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When working with any nonlinear function, however, we should never
underestimate the difficulties of obtaining optima, even with simple probit
or Weibull models used for classification. The logit model, of course, is a
special case of the neural network, since a neural network with one logsig-
moid neuron reduces to the logit model. But the same tools we examined
in previous chapters— particularly hybridization or coupling the genetic
algorithm with quasi-Newton gradient methods—come in very handy.
Classification problems involving nonlinear functions have all of the same
problems as other models, especially when we work with a large number of
variables.

8.1 Credit Card Risk

For examining credit card risk, we make use of a data set used by Baesens,
Setiono, Mues, and Vanthienen (2003), on German credit card default rates.
The data set we use for classification of default/no default for German
credit cards consists of 1000 observations.

8.1.1 The Data

Table 8.1 lists the twenty arguments, a mix of categorical and continuous
variables. Table 8.1 also gives the maximum, minimum, and median values
of each of the variables. The dependent variable y takes on a value of 0 if
there is no default and a value of 1 if there is a default. There are 300 cases
of defaults in this sample, with y = 1. As we can see in the mix of variables,
there is considerable discretion about how to categorize the information.

8.1.2 In-Sample Performance

The in-sample performance of the five methods appears in Table 8.2. This
table pictures both the likelihood functions for the four nonlinear alter-
natives to the discriminant analysis and the error percentages of all five
methods. There are two types of errors, as taught from statistical decision
theory. False positives take place when we incorrectly label the dependent
variables as 1, with 7 = 1 when y = 0. Similarly, false negatives occur when
we have §j = 0 when y = 1. The overall error ratio in Table 8.2 is simply a
weighted average of the two error percentages, with the weight set at .5.

In the real world, of course, decision makers attach differing weights to
the two types of errors. A false positive means that a credit agency or bank
incorrectly denies a credit card to a potentially good customer and thus
loses revenue from a reliable transaction. A false negative is more serious:
it means extending credit to a potentially unreliable customer, and thus
the bank assumes much higher default risk.



TABLE 8.1. Attributes for German Credit Data Set

Variable Definition Type/Explanation Max Min Median
1 Checking account Categorical, 0 to 3 3 0 1
2 Term Continuous 72 4 18
3 Credit history Categorical, 0 to 4, from no history to delays 4 0 2
4 Purpose Categorical, 0 to 9, based on type of purchase 10 0 2
5 Credit amount Continuous 18424 250 2319.5
6 Savings account Categorical, 0 to 4, lower to higher to unknown 4 0 1
7 Yrs in present employment Categorical, 0 to 4, 1 unemployment, to longer years 4 0 2
8 Installment rate Continuous 4 1 3
9 Personal status and gender Categorical, 0 to 5, 1 male, divorced, 5 female, single 3 0 2

10 Other parties Categorical, 0 to 2, none, 2 co-applicant, 3 guarantor 2 0 0

11 Yrs in present residence Continuous 4 1 3

12 Property type Categorical, 0 to 3, 0 real estate, 3 no property or unknown 3 0 2

13 Age Continuous 75 19 33

14 Other installment plans Categorical, 0 to 2, 0 bank, 1 stores, 2 none 2 0 0

15 Housing status Categorical, 0 to 2, 0 rent, 1 own, 2 for free 2 0 2

16 Number of existing credits Continuous 4 1 1

17 Job status Categorical, 0 to 3, unemployed, 3 management 3 0 2

18 Number of dependents Continuous 2 1 1

19 Telephone Categorical, 0 to 1, 0 none, 1 yes, under customer name 1 0 0

20 Foreign worker Categorical, 0 to 1, 0 yes, 1 no 1 0 0

ST pIe) 3paI) 1°8
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TABLE 8.2. Error Percentages

Method Likelihood Fn. False False Weighted
Positives Negatives Average
Discriminant analysis na 0.207 0.091 0.149
Neural network 519.8657 0.062 0.197 0.1295
Logit 519.8657 0.062 0.197 0.1295
Probit 519.1029 0.062 0.199 0.1305
Weibull 516.507 0.072 0.189 0.1305

The neural network alternative to the logit, probit, and Weibull meth-
ods is a network with three neurons. In this case, it is quite similar to a
logit model, and in fact the error percentages and likelihood functions are
identical. We see in Table 8.2 a familiar trade-off. Discriminant analysis
has fewer false negatives, but a much higher percentage (by more than a
factor of three) of false positives.

8.1.8  Qut-of-Sample Performance

To evaluate the out-of-sample forecasting accuracy of the alternative mod-
els, we used the 0.632 bootstrap method described in Section 4.2.8. To
summarize this method, we simply took 1000 random draws of data from
the original sample, with replacement, to do an estimation, and thus used
the excluded data from the original sample to evaluate the out-of-sample
forecast performance. We measured the out-of-sample forecast performance
by the error percentages of false positives or false negatives. We repeated
this process 100 times and examined the mean and distribution of the
error-percentages of the alternative models.

Table 8.3 gives the mean error percentages for each method, based on the
bootstrap experiments. We see that the neural network and logit models
give identical performance, in terms of out-of-sample accuracy. We also see
that discriminant analysis and the probit and Weibull methods are almost
mirror images of each other. Whereas discriminant analysis is perfectly
accurate in terms of false positives, it is extremely imprecise (with an error
rate of more than 75%) in terms of false negatives, while probit and Weibull
are quite accurate in terms of false negatives, but highly imprecise in terms
of false positives. The better choice would be to use logit or the neural
network method.

The fact that the network model does not outperform the logit model
should not be a major cause for concern. The logit model is a neural net
model with one neuron. The network we use is a model with three neu-
rons. Comparing logit and neural network models is really a comparison
of two alternative neural network specifications, one with one neuron and
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TABLE 8.3. Out-of-Sample Forecasting: 100 Draws Mean Error Percentages
(0.632 Bootstarp)

Method False False Weighted
Positives Negatives Average
Discriminant analysis 0.000 0.763 0.382
Neural network 0.095 0.196 0.146
Logit 0.095 0.196 0.146
Probit 0.702 0.003 0.352
Weibull 0.708 0.000 0.354

another with three. What is surprising is that the introduction of the addi-
tional two neurons in the network does not cause a deterioration of the
out-of-sample performance of the model. By adding the two additional
neurons we are not overfitting the data or introducing nuisance param-
eters which cause a decline in the predictive performance of the model.
What the results indicate is that the class of parsimoniously specified neu-
ral network models greatly outperforms discriminant analysis, probit, and
Weibull specifications.

Figure 8.1 pictures the distribution of the weighted average (of false posi-
tives and negatives) for the two models over the 100 bootstrap experiments.
We see that they are identical.

8.1.4 Interpretation of Results

Table 8.4 gives information on the partial derivatives of the models as well
as the corresponding marginal significance or P-values of these estimates,
based on the bootstrap distributions. We see that the estimates of the
network and logit models are for all practical purposes identical. The probit
model results do not differ by much, whereas the Weibull estimates differ
by a bit more, but not by a large factor.

Many studies using classification methods are not interested in the par-
tial derivatives, since interpretation of specific categorical variables is not
as straightforward as continuous variables. However, the bootstrapped
P-values show that credit amount, property type, job status, and number
of dependents are not significant. Some results are consistent with expec-
tations: the greater the number of years in present employment, the lower
the risk of a default. Similarly for age, telephone, other parties, or status
as a foreign worker: older persons, who have telephones in their own name,
have partners in their account, and are not foreign are less likely to default,
We also see that having a higher installment rate or multiple installment
plans is more likely to lead to default.
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FIGURE 8.1. Distribution of 0.632 bootstrap out-of-sample error percentages

While all three models give broadly consistent interpretations, this
should be reassuring rather than a cause of concern. These results indi-
cate that using two methods, logit and neural net, one as a check on the
other, may be sufficient for both accuracy and understanding.

8.2 Banking Intervention

Banking intervention, the need to close or to put a private bank under
state management, more extensive supervision, or to impose a change of
management, is, unfortunately, common enough both in developing and in
mature industrialized countries. We use the same binary or classification
methods to examine how well key characteristics of banks may serve as
early warning signals for a crisis or intervention of a particular bank.

8.2.1 The Data

Table 8.5 gives information about the dependent variables as well as
explanatory variables we use for our banking study. The data were obtained
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TABLE 8.4.

Variable Definition Partial Derivatives* Prob Values**

Network Logit Probit Weibull Network Logit Probit Weibull

1 Checking account 0.074 0.074 0.076 0.083 0.000 0.000 0.000 0.000

2 Term 0.004 0.004 0.004 0.004 0.000 0.000 0.000 0.000

3 Credit history —0.078 —0.078 —0.077 —0.076 0.000 0.000 0.000 0.000

4 Propose —0.007 —0.007 —0.007 —0.007 0.000 0.000 0.000 0.000

5 Credit amount 0.000 0.000 0.000 0.000 0.150 0.150 0.152 0.000

6 Savings account —0.008 —0.008 —0.009 —0.010 0.020 0.020 0.020 0.050

7 Yrs in present —0.032 —0.032 —0.031 —0.030 0.000 0.000 0.000 0.000
employment

8 Installment rate 0.053 0.053 0.053 0.049 0.000 0.000 0.000 0.000

9 Personal status —0.052 —0.052 —0.051 —0.047 0.000 0.000 0.000 0.000
and gender

10 Other parties —0.029 —0.029 —0.026 —0.020 0.010 0.010 0.020 0.040

11 Yrs in present 0.008 0.008 0.008 0.004 0.050 0.050 0.040 0.060
residence

12 Property type —0.002 —0.002 —0.000 0.003 0.260 0.260 0.263 0.300

13 Age —0.003 —0.003 —0.003 —0.002 0.000 0.000 0.000 0.010

14 Other installment 0.057 0.057 0.062 0.073 0.000 0.000 0.000 0.000
plans

15 Housing status —0.047 —0.047 —0.050 —0.051 0.000 0.000 0.000 0.000

16 Number of 0.057 0.057 0.055 0.053 0.000 0.000 0.000 0.000
existing credits

17 Job status 0.003 0.003 0.006 0.012 0.920 0.920 0.232 0.210

18 Number of 0.032 0.032 0.030 0.022 0.710 0.710 0.717 0.030
dependents

19 Telephone —0.064 —0.064 —0.065 —0.067 0.000 0.000 0.000 0.000

20 Foreign worker —0.165 —0.165 —0.153 —0.135 0.000 0.000 0.000 0.000

*: Derivatives calculated as finite differences
**: Prob values calculated from bootstrap distributions

from the Federal Reserve Bank of Dallas using banking records from the
last two decades. The total percentage of banks that required interven-
tion, either by state or federal authorities, was 16.7. We use 12 variables
as arguments. The capital-asset ratio, of course, is the key component of
the well-known Basel accord for international banking standards.

While the negative number for the minimum of the capital-asset ratio
may seem surprising, the data set includes both sound and unsound banks.
When we remove the observations having negative capital-asset ratios, the
distribution of this variable shows that the ratio is between 5 and 10% for
most of the banks in the sample. The distribution appears in Figure 8.2.

8.2.2  In-Sample Performance

Table 8.6 gives information about the in-sample performance of the
alternative models.
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TABLE 8.5. Texas Banking Data
Max Min Median
1 Charter 1 0 0
2 Federal Reserve 1 0 1
3 Capital/asset % 30.9 —77.71 7.89
4 Agricultural loan/total loan ratio 0.822371 0 0.013794
5 Consumer loan/total loan ratio 0.982775 0 0.173709
6 Credit card loan/total loan ratio 0.322974 0 0
7 Installment loan/total loan ratio 0.903586 0 0.123526
8 Nonperforming loan/total loan - % 35.99 0 1.91
9 Return on assets - % 10.06 —36.05 0.97
10 Interest margin - % 10.53 —2.27 3.73
11 Liquid assets/total assets - % 96.54 3.55 52.35
12 U.S. total loans/U.S. gdp ratio 2.21 0.99 1.27

Dependent Variables: Bank closing or intervention
No observations: 12,605
% of Interventions/closings: 16.7
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FIGURE 8.2. Distribution of capital-asset ratio (%)
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TABLE 8.6. Error Percentages

Method Likelihood Fn. False False Weighted
Positives Negatives Average
Discriminant analysis na 0.205 0.038 0.122
Neural network 65535 0.032 0.117 0.075
Logit 65535 0.092 0.092 0.092
Probit 4041.349 0.026 0.122 0.074
Weibull 65535 0.040 0.111 0.075

TABLE 8.7. Out-of-Sample Forecasting: 40 Draws Mean Error Percentages
(0.632 Bootstarp)

Method False False Weighted
Positives Negatives Average
Discriminant analysis 0.000 0.802 0.401
Neural network 0.035 0.111 0.073
Logit 0.035 0.089 0.107
Probit 0.829 0.000 0.415
Weibull 0.638 0.041 0.340

Similar to the example with the credit card data, we see that discriminant
analysis gives more false positives than the competing nonlinear methods.
In turn, the nonlinear methods give more false negatives than the linear
discriminant method. For overall performance, the network, probit, and
Weibull methods are about the same, in terms of the weighted average
error score. We can conclude that the network model, specified with three
neurons, performs about as well as the most accurate method, for in-sample
estimation.

8.2.8  Qut-of-Sample Performance

Table 8.7 gives the mean error percentages, based on the 0.632 bootstrap
method. The ratios are the averages over 40 draws, by the bootstrap
method. We see that discriminant analysis has a perfect score, zero per-
cent, on false positives, but has a score of over 80% on false negatives. The
overall best performance in this experiment is by the neural network, with
a 7.3% weighted average error score. The logit model is next, with a 10%
weighted average score. As in the previous example the neural network
family outperforms the other methods in terms of out-of-sample accuracy.
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Figure 8.3 pictures the distribution of the out-of-sample weighted average
error scores of the network and logit models. While the average of the logit
model is about 10%, we see in this figure that the center of the distribution,
for most of the data, is between 11 and 12%, whereas the corresponding
center for the network model is between 7.2 and 7.3%. The network model’s
performance clearly indicates that it should be the preferred method for
predicting individual banking crises.

8.2.4 Interpretation of Results

Table 8.8 gives the partial derivatives as well as the corresponding P-values
(based on bootstrapped distributions). Unlike the previous example, we do
not have the same broad consistency about the signs or significance of
the key variables. However, what does emerge is the central importance
of the capital asset ratio as an indicator of banking vulnerability. The
higher this ratio, the lower the likelihood of banking fragility. Three of
the four models (network, logit, and probit) indicate that this variable
is significant, and the magnitude of the derivatives (calculated by finite
differences) is the same.
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TABLE 8.8.

No. Definition Partial Derivatives® Prob Values**

Network Logit Probit Weibull Network Logit Probit Weibull

1 Charter 0.000 0.000 —0.109 —0.109 0.767 0.833 0.267 0.533

2 Federal Reserve 0.082 0.064 0.031 0.031 0.100 0.167 0.000 0.400

3 Capital/asset % —0.051 —0.036 —0.053 —0.053 0.000 0.000 0.000 0.367

4 Agricultural loan/ 0.257  0.065 —0.020 —0.020 0.133 0.200 0.000 0.600
total loan ratio

5 Consumer loan/ 0.397  0.088 0.094 0.094 0.300 0.767 0.000 0.433
total loan ratio

6 Credit card loan/ 1.049 —1.163 —0.012 —0.012 0.700 0.233 0.000 0.567

total loan ratio
7 Installment loan/ —0.137 0.187 —-0.115 —0.115 0.967 0.233 0.000 0.600
total loan ratio

8 Nonperforming 0.004 0.001 0.010 0.010 0.167 0.167 0.067 0.533
loan/total loan - %
9 Return on —0.042 —0.025 —0.032 —0.032 0.067 0.133 0.000 0.367
assets - %
10 Interest margin - % 0.013 —0.029 0.018 0.018 0.967 0.933 1.000 0.567
11 Liquid assets/ 0.001 0.002 0.001 0.001 0.067 0.667 0.000 0.533
total assets - %
12 U.S. total loans/ 0.149 0.196 0.118 0.118 0.000 0.033 0.000 0.333

U.S. gdp ratio

*: Derivatives calculated as finite differences
**: Prob values calculated from bootstrap distributions

The same three models also indicate that the aggregate U.S. total loan
to total GDP ratio is also a significant determinant of an individual bank’s
fragility. Thus, both aggregate macro conditions and individual bank char-
acteristics matter, as informative signals for banking problems. Finally, the
network model (as well as the probit) show that return on assets is also
significant as an indicator, with a higher return, as expected, lowering the
likelihood of banking fragility.

8.3 Conclusion

In this chapter we examined two data sets, one on credit card default rates,
and the other on banking failures or fragilities requiring government inter-
vention. We found that neural nets either perform as well as or better than
the best nonlinear alternative, from the set of logit, probit, or Weibull
models, for classification. The hybrid evolutionary genetic algorithm and
classical gradient-descent methods were used to obtain the parameter esti-
mates for all of the nonlinear models. So we were not handicapping one
or another model with a less efficient estimation process. On the contrary,
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we did the best to find, as closely as possible, the global optima when
maximizing the likelihood functions.

There are clearly many interesting examples to study with this method-
ology. The work on early warning signals for currency crises would be
amenable to this methodology. Similarly, further work comparing neural
networks to standard models can be done on classification problems involv-
ing more than two categories, or on discrete ordered multinomial problems,
such as student evaluation rankings of professors on a scale of one through
five [see Evans and McNelis (2000)].

The methods in this chapter could be extended into more elaborate net-
works in which the predictions of different models, such as discriminant,
logit, probit, and Weibull, are fed in as inputs to a complex neural net-
work. Similarly, forecasting can be done in a thick modeling or bagging
approach: all of the models can be used, and a mean or trimmed mean can
be the forecast from a wide set of models, including a variety of neural nets
specified with different numbers of neurons in the hidden layer. But in this
chapter we wanted to keep the “race” simple, so we leave the development
of more elaborate networks for further exploration.

8.3.1 MATLAB Program Notes

The programs for these two country experiences are germandefault_prog.m
for German credit card default rates, and texasfinance_prog.m for the
Texas bank failures. The data are given in germandefault_runj.mat and
texasfinance_run9.mat.

8.3.2  Suggested FExercises

An interesting sensitivity analysis would be to reduce the number of
explanatory variables used in this chapter’s examples to smaller sets of
regressors to see if the same variables remain significant in the modified
models.
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Dimensionality Reduction and Implied
Volatility Forecasting

In this chapter we apply the methodologies of linear and nonlinear principal
component dimensionality reduction to observed volatilities on Hong Kong
and United States swap options of differing maturities, of one to ten years,
to see if these methods help us to find the underlying volatility signal from
the market. The methods are presented in Section 2.6.

Obtaining an accurate measure of the market volatility, when in fact
there are many different market volatility measures or alternative nonmar-
ket measures of volatility to choose from, is a major task for effective option
pricing and related hedging activities. A major focus in financial market
research today is volatility, rather than return, forecasting. Volatilities, as
proxies of risk, are asymmetric and perhaps nonlinear processes, at the very
least, to the extent that they are bounded by zero from below. So nonlinear
approximation methods such as neural networks may have a payoff when
we examine such processes.

We compare and contrast the implied volatility measures for Hong Kong
and the United States, since we expect both of these to have similar fea-
tures, due to the currency peg of the Hong Kong dollar to the U.S. dollar.
But there may also be some differences, since Hong Kong was more vul-
nerable to the Asian financial crisis which began in 1997, and also had
the SARS crisis in 2003. We discuss both of these experiences in turn,
and apply the linear and nonlinear dimensionality reduction methods for
in-sample as well as for out-of-sample performance.
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FIGURE 9.1. Hong Kong implied volatility measures, maturity 2, 3, 4, 5, 7,
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9.1 Hong Kong

9.1.1 The Data

The implied volatility measures, for daily data from January 1997 till July
2003, obtained from Reuters, appear in Figure 9.1. We see the sharp
upturn in the measures with the onset of the Asian crisis in late 1997.
There are two other spikes: one around the third quarter of 2001, and
another after the start of 2002. Both of these jumps, no doubt, reflect
uncertainty in the world economy in the wake of the September 11 terrorist
attacks and the start of the war in Afghanistan. The continuing volatility
in 2003 may also be explained by the SARS epidemic in Hong Kong and
East Asia.

Table 9.1 gives a statistical summary of the data appearing in Figure 9.1.
There are a number of interesting features coming from this summary. One
is that both the mean of the implied volatilities, as well as the standard
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TABLE 9.1. Hong Kong Implied Volatility Estimates; Daily Data: Jan. 1997—
July 2003

Statistic Maturity in Years
2 3 4 5 7 10

Mean 28.581 26.192 24.286 22.951 21.295 19.936
Median 27.500 25.000 23.500 22.300 21.000 20.000
Std. Dev. 12.906 10.183 8.123 6.719 5.238 4.303
Coeff. Var 0.4516 0.3888 0.33448  0.2927 0.246 0.216
Skewness 0.487 0.590 0.582 0.536 0.404 0.584
Kurtosis 2.064 2.235 2.302 2.242 2.338 3.553
Max 60.500 53.300 47.250 47.500 47.500 47.500
Min 11.000 12.000 12.250 12.750 12.000 11.000

deviation of the implied volatility measures, or volatility of the volatilities,
decline as the maturity increases. Related to this feature is that the range,
or difference between maximum and minimum values, is greatest for the
short maturity of two years. The extent of the variability decline in the
data can best be captured by the coefficient of variation, defined as the
ratio of the standard deviation to the mean. We see that this measure
declines by more than 50% as we move from two-year to ten-year maturities.
Finally, there is no excess kurtosis in these measures, whereas rates of
return typically have this property.

9.1.2 In-Sample Performance

Figure 9.2 pictures the evolution of the two principal component measures.
The solid curve comes from the linear method. The broken curve comes
from an auto-associative map or neural network. We estimate the network
with five encoding neurons and five decoding neurons. For ease of compar-
ison, we scaled each series between zero and one. What is most interesting
about Figure 9.2 is how similar both curves are. The linear principal com-
ponent shows a big spike in mid-1999, but the overall volatility of the
nonlinear principal component is slightly greater. The standard deviations
of the linear and nonlinear components are, respectively, .233 and .272,
where their respective coefficients of variation are .674 and .724.

How well do these components explain the variation of the data, for the
full sample? Table 9.2 gives simple goodness-of-fit R? measures for each of
the maturities. We see that the nonlinear principal component better fits
the more volatile 2-year maturity, whereas the linear component fits much,
much better at 5, 7, and 10-year maturities.
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FIGURE 9.2. Hong Kong linear and nonlinear principal component measures

TABLE 9.2. Hong Kong Implied Volatility Estimates Goodness of Fit: Linear
and Nonlinear Components, Multiple Correlation Coefficient

Maturity in Years

2 3 4 5 7 10
Linear 0.965 0.986 0.990 0.981 0.923 0.751
Nonlinear 0.988 0.978 0.947 0.913 0.829 0.698

9.1.3 Out-of-Sample Performance

To evaluate the out-of-sample performance of each of the models, we did
a recursive estimation of the principal components. First, we took the
first 80% of the data, estimated the principal component coefficients and
nonlinear functions for extracting one component, brought in the next
observation, and applied these coefficients and functions for estimating the
new principal component. We used this new forecast principal component
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FIGURE 9.3. Hong Kong recursive out-of-sample principal component prediction
errors

to explain the six observed volatilities at that observation. We then con-
tinued this process, adding in one observation each period, updating the
sample, and re-estimating the coefficients and nonlinear functions, until
the end of the data set.

The forecast errors of the recursively updated principal components
appear in Figure 9.3. It is clear that the errors of the nonlinear princi-
pal component forecasting model are generally smaller than those of the
linear principal component model. The most noticeable jump in the non-
linear forecast errors takes place in early 2003, at the time of the SARS
epidemic in Hong Kong.

Are the forecast errors significantly different from each other? Table 9.3
gives the root mean squared error statistics as well as Diebold-Mariano tests
of significance for these forecast errors, for each of the volatility measures.
The results show that the nonlinear principal components do significantly
better than the linear principal components at maturities of 2, 3, 7, and
10 years.
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TABLE 9.3. Hong Kong Implied Volatility Estimates: Out-of-Sample Prediction
Performance, Root Mean Squared Error

Maturity in Years

2 3 4 5 7 10
Linear 4.195 2.384 1.270 2.111 4.860 7.309
Nonlinear 1.873 1.986 2.598 2.479 1.718 1.636

Diebold-Mariano Tests™
Maturity in Years

2 3 4 5 7 10
DM-0 0.000 0.000 1.000 0.762 0.000 0.000
DM-1 0.000 0.000 1.000 0.717 0.000 0.000
DM-2 0.000 0.000 1.000 0.694 0.000 0.000
DM-3 0.000 0.000 1.000 0.678 0.000 0.000
DM-4 0.000 0.000 1.000 0.666 0.000 0.000

Note: *P-values
DM-0 to DM-4: tests at autocorrelations 0 to 4.

9.2 United States

9.2.1 The Data

Figure 9.4 pictures the implied volatility measures for the same time period
as the Hong Kong data, for the same maturities. While the general pattern
is similar, we see that there is less volatility in the volatility measures in
1997 and 1998. There is a spike in the data in late 1998. The jump in
volatility in later 2001 is of course related to the September 11 terrorist
attacks, and the further increased volatility beginning in 2002 is related to
the start of hostilities in the Gulf region and Afghanistan.

The statistical summary of these data appear in Table 9.4. The overall
volatility indices of the volatilities, measured by the standard deviations
and the coeflicients of variation, are actually somewhat higher for the
United States than for Hong Kong. But otherwise, we observe the same
general properties that we see in the Hong Kong data set.

9.2.2 In-Sample Performance

Figure 9.5 pictures the linear and nonlinear principal components for the
U.S. data. As in the case of Hong Kong, the volatility of the nonlinear
principal component is greater than that of the linear principal component.
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FIGURE 9.4. U.S. implied volatility measures, maturities 2, 3, 4, 5, 7, 10 years

TABLE 9.4. U.S. Implied Volatility Estimates, Daily Data: Jan. 1997—July 2003

Statistic Maturity in Years
2 3 4 5 7 10

Mean 24.746 23.864 22.799 21.866 20.360 18.891
Median 17.870 18.500 18.900 19.000 18.500 17.600
Std. Dev. 14.621 11.925 9.758 8.137 6.106 4.506
Coeff. Var 0.591 0.500 0.428 0.372 0.300 0.239
Skewness 1.122 1.214 1.223 1.191 1.092 0.952
Kurtosis 2.867 3.114 3.186 3.156 3.023 2.831
Max 66.000 59.000 50.000 44.300 37.200 31.700
Min 10.600 12.000 12.500 12.875 12.750 12.600
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FIGURE 9.5. U.S. linear and nonlinear principal component measures

TABLE 9.5. U.S. Implied Volatility Estimates Goodness of Fit: Linear and
Nonlinear Components Multiple Correlation Coefficient

Maturity in Years

2 3 4 5 7 10
Linear 0.983 0.995 0.997 0.998 0.994 0.978
Nonlinear 0.995 0.989 0.984 0.982 0.977 0.969

The goodness-of-fit B2 measures appear in Table 9.5. We see that there
is not as great a drop-off in the explanatory power of the two components,
as in the case of Hong Kong, as we move up the maturity scale.

9.2.3  QOut-of-Sample Performance

The recursively estimated out-of-sample prediction errors of the two com-
ponents appear in Figure 9.6. As in the case of Hong Kong, the prediction
errors of the nonlinear component appear to be more tightly clustered.
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FIGURE 9.6. U.S. recursive out-of-sample principal component prediction errors

There are noticeable jumps in the nonlinear prediction errors in mid-2002
and in 2003 at the end of the sample.

The root mean squared error statistics as well as the Diebold-Mariano
tests of significance appear in Table 9.5. For the United States, the nonlin-
ear component outperforms the linear component for all maturities except
for four years.!

9.3 Conclusion

In this chapter we examined the practical uses of linear and nonlinear com-
ponents for analyzing volatility measures in financial markets, particularly
the swap option market. We see that the principal component extracts by

1For the three-year maturity the linear root mean squared error is slightly lower than
the error of the nonlinear component. However, the slightly higher linear statistic is due
to a few jumps in the nonlinear error. Otherwise, the nonlinear error remains much closer
to zero. This explains the divergent results of the squared error and Diebold-Mariano
statistics.
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TABLE 9.5. U.S. Implied Volatility Estimates: Out-of-Sample Prediction Per-
formance Root Mean Squared Error

Maturity in Years

2 3 4 5 7 10
Linear 5.761 2.247 1.585 3.365 5.843 7.699
Nonlinear 1.575 2.249 2.423 2.103 1.504 1.207

Diebold-Mariano Tests™
Maturity in Years

2 3 4 5 7 10
DM-0 0.000 0.000 0.997 0.000 0.000 0.000
DM-1 0.000 0.002 0.986 0.000 0.000 0.000
DM-2 0.000 0.006 0.971 0.000 0.000 0.000
DM-3 0.000 0.011 0.956 0.000 0.000 0.000
DM-4 0.000 0.017 0.941 0.001 0.000 0.000

Note: *P-values
DM-0 to DM-4: tests at autocorrelations 0 to 4.

the nonlinear auto-associative mapping are much more effective for out-of-
sample predictions than the linear component. However, both components,
for both countries, follow broadly similar patterns. Doing a simple test of
causality, we find that both the U.S. components, whether linear or non-
linear, can help predict the linear or nonlinear Hong Kong components,
but not vice-versa. This should not be surprising, since the U.S. market is
much larger and many of the pricing decisions would be expected to follow
U.S. market developments.

9.3.1 MATLAB Program Notes

The main MATLAB program for this chapter is neftci_capfloor_prog.m. The
final output and data are in USHKCAPFLOOR_ALL_run77.mat.

9.3.2  Suggested Ezxercises

An interesting extension would be to find one principal component for the
combined set of U.S. and Hong Kong cap-floor volatilities. Following this,
the reader could compare the one principal component for the combined
set with the corresponding principal component for each country. Are there
any differences?
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SVJD model for, 123
ordinary least squares (OLS)
estimators, 20
orthogonal polynomials, 18-20,
8082
orthogonal regression, 42-43
out-of-sample evaluation
criteria, 94-103
data requirements, 102-103
Diebold-Mariano test, 96-97
in nested models, 98-99
predictive stochastic
complexity, 100-101
recursive methodology,
95-96
root mean squared error
statistic, 96, 219n, 220
sign prediction success
ratios, 99-100
out-of-sample evaluations
in automotive production
example, 151-153
in banking intervention
example, 207-208
in Black-Sholes option
pricing models,
142-143
in corporate bond example,
160-161, 163



in credit card risk example,
202-205
in distorted long-memory
models, 137-138
in Hong Kong inflation
example, 177-178, 180
in Hong Kong volatility
forecasting example,
214-215
in Japan inflation example,
190-192
in Markov regime switching
methods, 130-131
in stochastic chaos models,
120-122
in stochastic volatility /jump
diffusion models,
125-126
in United States volatility
forecasting example,
218-219
in volatility regime
switching models,
132-134
out-of-sample predictions, 3
output gap, 169-170, 184-185
output neurons, 21-22

P

parallel processing, 21-22
parallel processing advantage, 22
parametric models, 20
Pesaran-Timmerman directional
accuracy test, 99-100
Petersohn scaling function,
64, 84
Phillips and Perron test, 61
Phillips curve model, 56, 169,
174
Poisson jump process, 122
polynomial approximation,
17-18
polynomial expansions, 18-20
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portfolio management,
forecasting in, 4
predictive stochastic complexity
(PSC), 100-101
price equalization, 168
price gap, Hong Kong, 170,
172-173
price puzzle, 188
pricing of risk, 1-2, 5
pricing options
Black-Scholes model, 116,
137-143
seasonal adjustment in, 63
SVJD model for, 123
principal components
in asset pricing, 46-49
intrinsic dimensionality in,
41-42
linear, 42-43
nonlinear, 44-46
program notes for, 58
principal components analysis
(PCA), 4243, 211220
principle of functional
integration, 23
principle of functional
segregation, 23
probit regression, 51-52
in banking intervention
example, 207-209
in credit card risk example,
200-205
put options, 1, 138-140

Q

quasi-Newton algorithm, 67-69,
78-80, 83

R

radial basis function (RBF)
network, 28-29

random shocks, 34, 47, 70, 117,
149
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reconstruction mapping, 42, 44
recurrent networks, 34-36
recursive methodology, 95-96
regime switching models
Markov, 115, 125-130
smooth-transition, 38-40
volatility, 115, 130-134
regularization term, 86n
residuals, use of, 32, 34, 85, 89
ridgelet networks, 29-30
robust regression, 45-46
root mean squared error
statistic, 96, 219n, 220
R-squared coefficient, 86

S

saddle points, 65-66, 69
Sargent, Thomas J., The
Conquest of American
Inflation, 56
Schwartz statistic, 86
seasonal adjustments, 61-63
semi-parametric models,
17-18, 20
serial independence tests, 86-89
shuffle crossover, 73
sieve estimator, 23—-24
significance of results, 108
sign prediction success ratios,
99-100
simulated annealing, 67, 70-72,
78-80
single-point crossover, 73
skewness, 90
smooth-transition regime
switching models,
38-40
in automotive production
example, 149-155
in corporate bond example,
159-165
in Hong Kong inflation
example, 176-182

in Japan inflation example,
189-196
softmax function, 53-54
sparse data sets, 42
squasher functions, 24-28, 31
stationarity, 5961
stochastic chaos (SC) model,
115, 117-122
stochastic search methods
evolutionary, 72-75
simulated annealing, 67,
70-72, 78-80
stochastic volatility /jump
diffusion (SVIJD)
model, 115, 122-125
strike price, 140, 140n
swap-options (swaptions), 48
symmetry of residuals, 89
synapses, 22

T

tanh function, 26
tansig function, 26
Tchebeycheff polynomial
expansion, 18-19, 19n
terminology, 6
thick model forecasts, 77-78, 110
thick modeling, 48, 7778
threshold responses, 24-25
time-series recency effect, 103
times-series examples, 145-166
automotive production
forecasts, 145-155
corporate bonds, 156165
times-series models, 14, 14n
transition function, 38-40
t statistic, 108

U

uncertainty, model, 55-56

United States, volatility
forecasting example,
216-220
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unit labor costs, 170-171, volatility regime switching
184, 186 (VRS), 115, 130-134
unit root processes, 60, 135,
135n W
unsupervised training, 41 Weibull regression, 52

in banking intervention
example, 207-209

Vv in credit card risk example,
vector autoregressive models 200-205
(VAR), 168, 188 Weierstrass Theorem, 17-18

vocabulary of neural networks, 6 welfare index, 4-5






