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Abstract

Artificial neural networks used to be considered only as a machine that learns using small
modifications of internal parameters. Now this is changing. Such learning method do not allow
to generate big neural networks for solving real world problems. This thesis defends the following
three points:

e The key word to go out of that dead-end is "modularity”.
e The tool that can generate modular neural networks is cellular encoding.

e The optimization algorithm adapted to the search of cellular codes is the genetic algorithm.

The first point is now a common idea. A modular neural network means a neural network
that is made of several sub-networks, arranged in a hierarchical way. For example, the same sub-
network can be repeated. This thesis encompasses two parts. The first part demonstrates the
second point. Cellular encoding is presented as a machine language for neural networks, with a
theoretical basis (it is a parallel graph grammar that checks a number of properties) and a compiler
of high level language. The second part of the thesis shows the third point. Application of genetic
algorithm to the synthesis of neural networks using cellular encoding is a new technology. This
technology can solve problems that were still unsolved with neural networks. It can automatically
and dynamically decompose a problem into a hierarchy of sub-problems, and generate a neural
network solution to the problem. The structure of this network is a hierarchy of sub-networks that
reflects the structure of the problem. The technology allows to experience new scientific domains
like the interaction between learning and evolution, or the set up of learning algorithms that suit

the GA.
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Chapter 1

Introduction to Genetic Neural
Networks

1.1 Genetic Algorithms

Genetic Algorithms (GA) aim at finding the minimum of a mapping f, defined on fixed length
bit strings. GA use a population of bit strings, that evolve over many generations, until a suffi-
ciently good solution has been found, or the allocated time has elapsed. The bit strings are called
chromosomes. The evolution of the population is determined by three steps.

e During the selection step, individuals are reproduced, with a higher probability if their image
by f is small, with respect to the other individuals.

e During the cross over step, individuals are mated, and exchange pieces of their bit string.
e During the mutation step, each individual changes its bit string with a small probability.

A theorem called ”shema theorem” ensures a global improvement of the population, from one
generation to the other, provided that an hypothesis called ”building block hypothesis” is verified.
Genetic algorithms are robust, they can be applied to any optimization problem. The only require-
ment is to be able to encode the solutions on bit strings. They are easy to parallelize. A parallel
GA often has a super linear speed up. We have presented the basic GA, that dates back to 1975,
when John Holland, the father of GA, edited a book called “Adaptation in natural and artificial
environment”. Since 1975, a great amount of work has been done on this subject, in USA and
in Germany (Evolutionnary Strategies). These research does mathematical analysis, experiments
various kind of cross-over, mutation and selection, explores other operators inspired from biology,
and other coding methods than the bit string. Next section presents a case where labeled trees are
used, instead of bit strings.

1.2 Genetic Programming

John Koza [16] used Genetic Algorithms to evolve LISP programs. LISP is a language for pro-
gramming with functions. A LISP program is an S expression that is a rooted, labeled, tree with
ordered branches. Labels are symbol of LISP functions. Leaves are labeled with constants, or
program inputs. The output of the program is the value computed from the S expression. During
the recombination between two mother and father tree, a sub tree is cut from the father tree, and



replaces a sub tree from the mother tree. Koza does not use mutation. He thinks that mutation is
already implemented by the recombination, when the two sub trees that are exchanged are leaves.
John Koza uses the above GA, without the mutation step. He applies the GA to labeled trees
instead of bit strings. The search space is the space of all possible labeled trees. Koza wrote a first
book in which he shows that genetic programming allows to automatically generate programs that
solve a great number of problems in various domains. He wrote a second book [17] where he used
LISP S-expressions that allow automatic definition of function, and reusability. He showed that
the use of functions allows to solve more complex problems. We used the same technic of coding
into labeled trees. We will see in the conclusion that the method for generating neural networks,
proposed in this thesis, can be named genetic programming of neural networks, not only because
the GA handles the same data structure of labeled trees.

1.3 Neural networks

Genetic Algorithms can be understood has a model for learning. In this model, the information
is distributed on all the individuals. Neural networks represent another model of learning with a
different flavor. A neural network is an oriented graph of cells. Each cell computes an activity
from the activities of the neighbors connected to its input. Each cell propagates its activity to the
neighbors connected to its output. The computation done by a cell is to apply a function called
sigmoid to a weighted sum of its inputs. The weights represent the information that is contained in
the neural network. We define a mapping that is computed by the neural network. This definition
differs, following the particular model of neural network. The aim of learning is to make the neural
net compute a particular function. Most often, this is done using a progressive refinment of the
weights. During one iteration, the weights are slightly modified by adding a small quantity, so as to
minimize the gradient of an error. Recently, some research aim at also optimizing the topology of
the neural network. This research still use a progressive refinment. During one iteration, a neuron
or a connection is added or suppressed. Chang [18] wrote a book on this type of methods, so
called ”constructivist method”. Although constructivist algorithm optimize the architecture, they
still use a progressive refinment, starting from an initial solution. Constructivist algorithm cannot
generate neural networks with a modular structure, that reflects the structure of the problem to
be solved. They cannot generate a neural network composed of different functional units.

1.4 Genetic Neural Networks

There is now a relatively large number of papers that deal with various combinations of genetic
algorithms (GA) and neural networks. A survey of this work is given by Schaffer, Whitley and
Eshelman [28] in an introduction to the proceeding of a workshop on Combinations of Genetic
algorithms and Neural Networks. Genetic Algorithms have been used to do weight training for
supervised learning and for reinforcement learning applications. Genetic algorithms have also been
used to select training data and to interpret the output behavior of neural networks. Finally, GAs
have also been applied to the problem of finding neural network architectures. This is the problem
we are interested in. An architecture specification indicates how many hidden units a network
should have and how these units should be connected.

In order to apply a GA to the problem of finding good neural network architectures, there is
nothing but one problem to solve: how to code an architecture on the structures called chromosomes,
that can be manipulated by the GA. Three classes of methods exist:
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direct encoding A graph data structure is encoded. In [32] the connectivity matrix of the network
is directly encoded. This gives very long chromosomes of size n? for a network including n
neurons. Because of this scalability problem, only small networks (four hidden units) have
been found. Moreover, making cross-over directly on the hardware of the connections can
produce non-functional offsprings. It is known as the structural/functional problem [32].
The solution is to encode on the chromosome a collection of abstract features more likely to
provide building blocks. There must be some abstraction in the representation.

parametrized encoding A list of parameters is encoded. In [9] the parameters describe the
number of layers, the size of the layers, and how layers are interconnected. This method
is more abstract. It could provide big nets with small chromosomes, but only within a
restrictive range of architectures: layered architectures. It cannot find modular architectures,
where modularity is defined in section 3.4.

grammatical encoding A rewriting grammar is encoded. The grammar is interpreted in a re-
cursive manner, and allows to generate a family of related neural networks. In [14] Kitano
begins to implement scalability, abstraction and modularity. In his method, the chromosome
encodes a matrix grammar. A rule of this grammar rewrites a 1 x 1 matrix into a 2 X 2 matrix.
The application of the rules is as follows: One starts with the 1 x 1 matrix denoted My whose
single character is the axiom of the grammar. During the first step, using a rule that rewrites
the axiom, this matrix is transformed into a 2 X 2 matrix of characters denoted M;. During
the second step each character of My is rewritten into a 2 X 2 matrix. This yields a 4 x 4
matrix M,. The process goes on, until the 2¢ x 2% matrix Mj where 2% is greater than n.
The symbol n refers to the desired number of units of the target neural network. Extracting
from M} a n X n matrix, and mapping each character to either 1 or 0, one get a n X n matrix
whose elements are 0 or 1. This matrix is the connectivity matrix of the encoded neural net.
This grammar encoding can code big nets with short chromosomes, without imposing the
architecture to have a particular shape.

The last method clearly improves upon the two previous. By optimizing grammars that generate
network architectures instead of directly optimizing architectures this method hopes to achieve
better scalability, and in some sense, reusability of network architectures. In other words, the goal
of this method is to find rules for generating networks which will be useful for defining architectures
for some general class of problems. In particular, this would allow developers to define grammars on
smaller problems and then use theses grammars as building blocks when attacking larger problems.

Nevertheless, there are certain problems with Kitano’s representation scheme. Kitano uses a
matrix grammar. An m X m matrix must be developed for a network of n neurons, where m is
the smallest power of 2 bigger than n. In order to get an acyclic graph for a feed forward neural
network, one must consider only the upper right triangle, which also decreases the efficiency of the
encoding.

Mjolness [22] defines a recursive equation for a matrix from which he computes a family of
integer matrices and then a family of weighted neural nets; Mjolness also uses a matrix grammar
in this sense. The approach is similar to that used by Kitano. Unlike Kitano, Mjolness is not
restricted to only using matrices of size 2*; it is not clear, however, what is the range of possible
sizes. Also, the size of the neural network has to be determined in advance.



1.5 Overview

Kitano and Mjolness schemes are both based on a matrix grammar, their grammar replace an
element of a matrix by a 2 x 2 matrix. In this thesis, we propose an encoding based on a graph
grammar. It is called cellular encoding. A cellular encoding directly develops a family of neural
nets and avoids the need to go through the matrix representation. Instead of a matrix, the object
on which the grammatical rules are applied is the cell of a network. Each cell has a copy of the
code. Each cell reads the code at a different position. Depending on what it reads, a cell can divide,
change some internal parameters, and finally become a neuron. It is both more natural and more
efficient to act development at the level of cells rather than on elements of a connection matrix.
The resulting language can describe networks in a clear and compact way, and the representation
can be readily recombined by the GA.

In the first part of this thesis, we will demonstrate the interest of cellular encoding in itself,
as a coding scheme. We will present cellular encoding, show that it is a parallel graph grammar,
and demonstrates a list of properties. With the use of GA, despite the fundamental importance of
the encoding, there has not yet been any attempts to establish a description of which theoretical
properties this encoding should have in the particular case of neural network optimization. We
will show that it is possible to define verifiable properties of good neural network encodings. The
representation on the chromosome is abstract and compact. Any chromosome develop a valid phe-
notype. The developmental process gives modular and interpretable architectures, with a powerful
scalability property. These theoretical properties show that cellular encoding suits the GA. We will
then describe a Pascal compiler that produces the cellular code of a neural network that computes
what is specified in the Pascal Program. This will show that cellular encoding is truly a neural
network machine language. The compiler in itsell presents some interests. It can be considered
as a tool for the design of huge neural networks. It can be used as an automatic parallelizer, for
programs written with a divide and conquer strategy. It can also compile naive hybrid systems.

In the second part of this thesis, we will demonstrate the efficiency of cellular encoding with
respect to the GA. Simulation on hard problem that had not been solved before, will be reported.
The GA is used to find both the Boolean weights and the architecture for neural networks that
learn Boolean functions. The GA alone can find a solution neural networks, so there is no need to
do a backpropagation to optimize the weights and time is saved. Nevertheless, we still propose to
use learning to enhance the method, but the goal of the learning and the way it is combined are
differents. The GA is not used to find architectures adapted to a particular learning algorithm.
Instead, learning is used to speed up the GA. We compare the speed up obtained with different
possible ways of combining learning and the GA. The Genetic Algorithm allows a global search
of the search space, and find a set of sub-neural networks that the neural-networks solution to
the problem should include. The learning tunes the draft neural networks produced by the GA,
and thus can speed-up the process. We show that a new combination between GA and learning
that uses the Baldwin effect is more efficient than the Lamarckian way of using a learning. This
combination mode is called developmental learning. We will then propose a learning method called
switch learning that is adapted to the GA. It is a fast learning that changes a few boolean weights
for deep neural networks, which are almost correct. The parallel GA that we have programmed
will be reported. An example of modular search that could be done using all the findings of the
preceding chapters (developmental learning, switch learning, parallel GA) will be given.

Genetic programming uses the GA to evolve LISP computer programs. In the conclusion we
compare Genetic synthesis of neural networks using cellular encoding and genetic programming.



Part I: Cellular Encoding

In the first part of this thesis, we present cellular encoding and study its properties.






Chapter 2

Presentation of Cellular Encoding

2.1 Basic Cellular Encoding

Cellular encoding is a method for encoding families of similarly structured neural networks. In
this chapter we present the basic cellular encoding. Along the next chapters, we will extend the
alphabet of the code, when it is needed. The basic cellular encoding will be used by the genetic
algorithm to synthesize neural networks, in the second part of this thesis. Along the next chapters,
we will consider extensions of cellular encoding for other purpose than the GA.

The cellular code is represented as a grammar tree with ordered branches whose nodes are labeled
with name of program symbols. The reader must not make the confusion between grammar tree
and tree grammar. Grammar tree means a grammar encoded as a tree, whereas tree grammar
means a grammar that rewrites trees. A cell is a node of an oriented network graph with ordered
connections. Each cell carries a duplicate copy of the cellular code (i.e., the grammar tree) and
has an internal reading head that reads from the grammar tree. Typically, each cell reads from
the grammar tree at a different position. The character symbols represent instructions for cell
development that act on the cell or on connections of the cell. During a step of the development
process, a cell executes the instruction referenced by the symbol it reads, and moves its reading
head down in the tree. One can draw an analogy between a cell and a Turing machine. The cell
reads from a tree instead of a tape and the cell is capable of duplicating itself; but both execute
instructions by moving the reading head in a manner dictated by the symbol that is read. In this
section we shall refer to the grammar tree as a program and each character as a program-symbol.

A cell also manages a set of internal registers, some of which are used during development,
while others determine the weights and thresholds of the final neural net. The link register is used
to refer to one of possibly several fan-in connections (i.e., links) into a cell.

Consider the problem of finding the neural net for the exclusive OR (XOR) function. Neurons
can have thresholds of 0 or 1. Connections can be weighted —1 or +1. If the weighted sum of its
input is strictly greater than its threshold, the neuron outputs 1, else it outputs 0. The inputs of
the neural net are 0 or 1.

The development of a neural net starts with a single cell called the ancestor cell connected to
an input pointer cell and an output pointer cell. Consider the starting network on the right half
of figure 2.1 and the Cellular Encoding depicted on the left half of figure 2.1. At the starting step
0 the reading head of the ancestor cell is positioned on the root of the tree as shown by the arrow
connecting the two. Its registers are initialized with default values. For example, its threshold is
set to 0. As this cell repeatedly divides it gives birth to all the other cells that will eventually
become a neuron and make up the neural network. A cell is said to become a neuron when it looses



its reading-head. The input and output pointer cells to which the ancestor is linked (indicated by
boxes in the figure) do not execute any program-symbol. Rather, at the end of the development
process, the upper pointer cell is connected to the set of input units, while the lower pointer cell
is connected to the set of output units. These input and output units are created during the
development, they are not added independently at the end. After development is complete, the
pointer cells can be deleted. For example, in figure 2.5, the final decoded neural net has two input

”
C

units labeled ”a” and , and one output unit labeled ”d”.

e A division-program symbol creates two cells from one. In a sequential division (denoted by
SEQ) the first child cell inherits the input links, the second child cell inherits the output links of
the parent cell. The first child connects to the second with weight 1. The link is oriented from
the first child to the second child. Since there are two child cells, a division program-symbol
must label nodes of arity two. The first child moves its reading head to the left subtree and
the second child moves its reading head to the right subtree. This is illustrated in steps 1
and 3.

e Parallel division (denoted by PAR) is a second kind of division program symbol. Both child
cells inherit the input and output links from the parent cell (in step 2 and step 6). Finally,
when a cell divides, the values of the internal registers of the parent cell are copied in the

child cells.

o The ending-program symbol denoted END causes a cell to lose its reading head and become
a finished neuron. Since the cell does not read any subtree of the current node, there is no
subtree to the node labeled by END. Therefore END labels the leaves of the grammar tree (i.e.,
nodes of arity 0).

o A value-program symbol modifies the value of an internal register of the cell. The program-
symbol INCBIAS increments (and DECBIAS decrements) the threshold of a cell. The value-
program symbol INCLR increments (and DECLR decrements) the value of the link register,
which points to a specific fan-in link or connection. Changing the value of the link register
causes it to point to a different fan-in connection. The link register has a default initial
value of 1, thus pointing to the leftmost fan-in link. Operations on other connections can be
accomplished by first resetting the value of the link register. The program-symbol denoted
VAL+ sets the weight of the input link pointed by the link register to 1, while VAL- sets the
weight to —1 (see step 7). The program-symbols VAL+ or VAL- do not explicitly indicate to
which fan-in connection the corresponding instructions are applied. When VAL+ or VAL- is
executed it is applied to the link pointed to by the link register.

e An unary program-symbol CUT cuts the link pointed by the link register. This operator
modifies the topology by removing a link, whereas the reseting of the link register does not
modify the topology.

Operators INCLR, DECLR, CUT are not illustrated, they are not required for the development
of a neural net for the XOR problem. The sequence in which cells execute program-symbols is
determined as follows: once a cell has executed its program-symbol, it enters a First In First Out
(FIFO) queue. The next cell to execute is the head of the FIFO queue. If the cell divides, the child
which reads the left subtree enters the FIFO queue first. This order of execution tries to model
what would happen if cells were active in parallel. It ensures that a cell cannot be active twice
while another cell has not been active at all. In some cases, the final configuration of the network
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depends on the order in which cells execute their corresponding instructions. For example, in the
development of the XOR, performing step 7 before step 6 would produce a neural net with an
output unit having two negative weights instead of one, as desired. The waiting program-symbol
denoted WAIT makes the cell wait for its next rewriting step. WAIT is necessary for those cases where
the development process must be controlled by generating appropriate delays.

Figure 2.1: Step 0: Development of the neural net for the exclusive-OR (XOR) function in the
right half of this figure. The development starts with a single ancestor cell labeled ”a” and shown
as a circle. The 0 inside the circle indicates the threshold of the ancestor cell is 0. The ancestor
cell is connected to the neural net’s input pointer cell (box labeled ”input”) and the neural net’s
output pointer cell (Box labeled "output”) The Cellular Encoding of the neural net for XOR is
shown on the left half of this figure. The arrow between the ancestor cell and the symbol SEQ of
the graph grammar represents the position of the reading head of the ancestor cell. A continuous
line indicates a weight 1, and a heavy line a weight —1. By default all the weights are 1.

2.2 Coding of recursivity

Up to this point in our description the grammar tree does not use recursion. (Note that
recurrence in the grammar does not imply that there is recurrence in the resulting neural network.)
One is able to develop only a single neural network from a grammar tree. But one would like to
develop a family of neural networks, which share the same structure, for computing a family of
similarly structured problem. This would allow to get a property of scalability. For this purpose,
we introduce a recurrent program-symbol denoted R which allows a fixed number of loops L. The
cell which reads R executes the following algorithm:

life := life - 1
If (life > 0) reading-head := root of the tree
Else reading-head := subtree of the current node

where [ife is a register of the cell initialized with L in the ancestor cell.

Thus a grammar develops a family of neural networks parametrized by L. The use of a recurrent-
program symbol is illustrated figure 2.6 and 2.7. The cellular code in this figure is almost the same
as the cellular code of a XOR network. The only difference is that an end-program symbol END
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Figure 2.2: On the left: the execution at step 1 of the sequential division SEQ pointed to by the
ancestor cell 7a” of preceding figure causes the ancestor cell ”a” to divide into two cells 7a” and
7b”. Cell ”a” feeds into cell ”b” with weight +1. The reading head of cell 7a” now points to the
left sub-tree of the Cellular Encoding on the left (the box with PAR) and the reading head of new
cell ”b” points to the right subtree (the box at the second level down with SEQ). On the right: The
execution of the parallel division PAR at step 2 causes the creation of cell ”c”. Both cell 7a” and ”¢”
inherit the input formerly feeding into ”a”. Both cells ”a” and ”¢” output to cell "b” (The place
where 7a” formerly sent its output.) The readmg head of cell "a” now points to the left sub-tree
(END) and the reading head of the new cell ”¢” now points to the right sub-tree (which also has an
END).

Figure 2.3: On the left: the execution at step 3 of the sequential division SEQ pointed to by the cell
”b” of preceding figure causes the cell ”b” to divide into two cells ”b” and ”d”. Cell ”b” feeds into
cell 7d” with weight +1. The reading head of cell ”b” now points to the left sub-tree (the box at
the third level with PAR) and the reading head of new cell ”d” points to the right subtree (the box
at the third level down with VAL-). On the right: The execution of the two end-program symbols.
The END’s causes the cells ”a” and ”c¢” to lose their reading head and become finished neurons.
Since there are two END’s, it takes two time steps, one time step for each END
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Figure 2.4: On the left: the execution of the parallel division "P” at step 6 causes the creation of
cell ”e”. Both cell ”b” and ”e” inherit the input from cell ”a” and ”c¢” formerly feeding into ”b”.
Both cells ”b” and ”e” send the output to cell 7d” (The place where ”a” formerly sent its output.)
The reading head of cell "b” now points to the left sub-tree (INCBIAS) and the reading head of
the new cell ”e” now points to the right sub-tree (which has an "E”). On the right: The cell "¢”
executes the value-program symbol SET-. The link register is one (the default value) it points the
left-most link. The action of SET- is to set the weight of the first link to -1. The dashed line is
used to indicate a -1 weight. After the execution of SET- the cell ”¢” goes to read the next program
symbol which is an END located on the fourth level of the tree.

has been replaced by a recurrent-program symbol REC. The resulting cellular code is now able to
develop a neural net for the parity function with an arbitrary large number of inputs, by assembling
copies of a XOR sub-network. In figure 2.7 the network for parity of three inputs is shown. This
implementation of the recurrence allows precise control of the growth process. The development
is not stopped when the network size reaches a predetermined limit, but when the code has been
read exactly L times through. The number L parametrizes the structure of the neural networks.

2.3 Comparison with Kitano ’s scheme

Both Kitano’s scheme and CE encodes a grammar. Kitano has encoded a matrix grammar. CE
encodes a graph grammar. Instead of rewriting matrix, the grammar of CE rewrites neuronal cells.
In fact, rewriting on cells is like defining a “neural network machine language”. This language can
describe network architectures as well as weight patterns in a natural and clear way. During the
developmental process, instead of a global rewriting of the connectivity matrix, each node of the
graph is processed separately, one after the other. The final product of the rewriting is exactly the
encoded neural network and there is no need for an additional process. On the contrary, Kitano’s
developmental process produces a raw matrix of characters, which needs further processing with
some artificial conventions before yielding a neural network. We would like here to stress the
advantage of CE upon Kitano’s scheme.

e In Kitano’s scheme, the same piece of code that represents a subset of rules can be used
repeatedly during the decoding phase to produce the same pattern of connections at different
places in the neural net. Still, although there can be repeated patterns in the connectivity
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Figure 2.5: On the left: Neuron ”b” executes the value-program symbol INCBIAS. The action of
INCBIAS is to increase the threshold of cell ”b” by 1. After execution, the threshold of cell ”b” is
1, and the reading head of cell ”b” points to an END at the fifth level of the tree. On the right: The
last tree steps consist in executing three end-program symbols. The three END’s cause the neural
cells 7b”, 7e” and 7d” to lose their reading head and become finished neurons. Since there are now
only finished neurons, the development is finished. The final neural net has two input units 7a”
and ”c”, and one output unit 7d”. The neuron ”a” is the first input unit, because the link from
the input pointer cell to ”a” is the first output link of the input pointer cell. The neuron ”¢” is the
second input unit, because the link from the input pointer cell to ”a” is the second output link of

the input pointer cell

matrix, repeated subnetworks do not appear in Kitano’s experimental results. A theoretical
property of modularity will be proved for CE. And the network generated by the GA will
have a clear modular structure.

o Kitano characterizes scalability as the ability of the GA to find big neural networks for a
parametrized problem of big size. However, its goodness is tested on an atypical case: a
degenerated version of the encoder/decoder problem where the number of neurons in the
hidden layer is bigger than the number of input or output neurons. In the original problem,
the number of hidden neurons must be the logarithm of the number of input neurons and
that is the point that makes the problem challenging. With CE, a theoretical property of
scalability is proved. Simulation with CE show that a fixed size code can develop an arbitrary
large neural network to solve a boolean problem of arbitrary large size.

e Kitano’s encoding scheme requires artificial conventions that very likely decrease the com-
pactness of the code. An m X m matrix must be developed for a network of n neurons, where
m is the smallest power of 2 bigger than n. In the worst case, n = m/2+ 1, and extracting an
n X n matrix, one uses a fraction that is (0.5 — 1/m)? of the bits, which is approximately 25%
of the bits if m is large. We do not say that the neuron numbers are limited to power of 2.
Only the range of matrix size is limited to power of 2. Nevertheless, the above computation
shows that a large matrix will be developed and only a small part of it will be used. In order
to get an acyclic graph for a feed-forward network, one must consider only the upper right
triangle.
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Figure 2.6: A recurrent developmental program for a neural network that computes the even parity
for three binary inputs. The life of the ancestor cell is 2. The first three steps are the same as
those shown in the preceding figures. During the fourth step, cell 7a” executes a recurrent-program
symbol, its reading head points now to the label (SEQ) on the root of the grammar-tree, as if we
were back in the beginning of the development at step 0. The life of ”a” has been decremented and
is now equal to 1. Cell ”a” will give birth to a second XOR network, whose outputs will be sent to
the child cells generated by cell ”b”.

Step 22

)

Figure 2.7: The final decoded neural network that computes the even parity for three binary inputs.
The life of the ancestor cell is 2. The total number of steps is 22 since the tree is executed 2 times.
One can clearly see the two copies of the XOR network. With an initial life of I we would have
developed a neural network for the L 4+ 1 input parity problem, with L copies of the XOR network.

o With Kitano’s scheme the grammar is encoded as a set of rules. Grammar produced by the
GA are not clean. They may have many rules that rewrite the same character, and rules
that are not used. Only a small percentage of the coded rules are used and the efficiency
is rather poor. In CE, the grammar is encoded as a rooted, point labeled tree with ordered
branches, where the labels refer to program-symbol. It ensures that the GA always produces
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deterministic grammars where all the rewriting rules are used. Moreover Fig. B.2 shows that
trees can be more compact than rules.

With Cellular Encoding, special attributes allow to encode recursive grammars that produce
infinite networks. Instead of stopping the development of the network when the size of the
connectivity matrix reaches a given bound, a simple mechanism allows to apply the grammar
rules for a fixed number of loops L. Thus, a grammar can develop a family of neural networks
parametrized by L.



Chapter 3

Properties of Cellular Encoding

3.1 Introduction

It is now recognized that the key point in successful application of Genetic Algorithms (GA) to an
optimization problem, is the scheme used to encode solutions on the structures manipulated by the
GA. Despite the fundamental importance of the encoding, there has not yet been any attempt to
establish a description of which theoretical properties this encoding should have in the particular
case of neural network optimization. We will show that it is possible to define verifiable properties
of good neural network encodings. Each previous approach focussed on a particular aspect. Several
encoding have been tried, and simulation was reported with an intuitive explanation of the results.
One yet has to find a complete set of theoretical properties. In this chapter, seven theoretical
and verifiable properties that rate an encoding of neural networks are defined. The properties are:
completeness, compactness, closure, modularity, scalability, power of expression, abstraction. The
Cellular Encoding (CE) is shown to check the seven properties. Last, it will be shown that cellular
encoding is a graph grammar.

There does not exist a single CE but plenty of them. There are two features needed to define
a CE: an initial graph of cells, and a set of program-symbols. The figure 2.1 describes the initial
graph of cell, before the development starts. It contains a single ancestor cell, and two pointer
cells. In this chapter we will use two kinds of initial graphs of cells The ancestor cell of the initial
graph can have a recurrent link from its output to its input. This recurrent link is used to develop
recurrent networks. The initial network graph without the recurrent link is noted ACYC, and the
one with a recurrent link, CYC.

A particular CE with r program-symbols is determined by a r + 1—tuple of symbols. The first
symbol refers to the initial network graph and the last r symbols refer to the program-symbols.
In the notation, the first symbol will be slanted. Along the next sections, it will be shown that
increasing the number of program-symbol allows to achieve a growing set of properties. We will
reintroduce the same program-symbols defined in chapter 2, and will give them a more precise
definition. Appendix 7?7 gives a list of all the program-symbols used in this thesis.

3.2 Architecture encoding

In this section, program-symbols that develop the architecture are studied. An architecture is
a directed graph. FEach vertex stands for a neuron. The architecture includes also two ordered
set of neurons. These lists specify the input and output neurons. First a minimal set of three
program-symbols encoding any architecture is presented.

15
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Figure 3.1: The parallel division. (a) Before the execution, (b) After the execution, (c¢) The case
of a recurrent link. Weight +1 is represented by — and weight -1 by - - - .

The first program-symbol is the parallel division noted PAR. It is a 2-ary program-symbol. In
the parallel division both child cells inherit the input and output links from their father cell. If the
parent cell has a recurrent link, the two children connect to each other and to themselves. Fig. 3.1
shows how the links have to be reordered once the new cell has been added. The second program-
symbol noted CUT cuts an input link. It has an integer argument which specifies the number of the
input link to cut. The third program-symbol noted END makes the cell lose its reading head and
become a terminal neuron.

Figure 3.2: Encoding of an arbitrary recurrent network. (a) The target connectivity matrix, (b)
Code that uses two program-symbols PAR CUT, (c¢) Code that uses three program-symbols PAR CUT
WAIT.

Fig. 3.2 shows how to encode an arbitrary graph. Since all the leaves and only the leaves
are labeled with END, the program-symbol END will not be represented in the next figures. The
development of a given graph having n nodes is done in two stages. During the first stage, a fully
connected graph of m nodes is developed, where m = 2M°8(")1 and [z] is the ceiling function.
This is done with a binary tree of depth [log,(n)] labeled with PAR. During the second stage, each
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cell cuts its supernumerary input links. All the links to the supernumerary n — m cells are cut.
The final graph has n nodes, connected as desired. The following property is convenient for the
formalization:

Property 1 (completeness) An encoding scheme is complete with respect to a set of architectures
(resp. neural networks) if any element of the set can be encoded.

The preceding construction yields:
Proposition 1 { CYC, END, PAR, CUT } is complete with respect to the set of all architectures.

Because of the program-symbol CUT , the topology of the final network depends on which cell
is rewritten first. In the preceding construction, the cells start to cut their input links only when
the growth of the net is finished. This is why a net which size is an exact power of two must be
developed. This development can be avoided by means of an unary waiting program-symbol WAIT,
which makes the cell wait for the next rewriting step. The program-symbol WAIT is necessary for
a rewriting order to be encoded by generating appropriate delays. Fig. 3.2 shows how WAIT can
be used to encode a neural network with a shorter chromosome. There is no need to create more
cells than the final number of cells. Every cell starts to cut at the same time. The cells that
have finished their division earlier are just delayed with the program-symbol WAIT. Clearly, this
construction makes the code shorter. Let us define the property of compactness as follows:

Property 2 (compactness) An archilecture encoding scheme & is said to be topologically more
compact than another encoding F if every architeclure encoded by F with a code of size s, can
also be encoded by & with a code of size O(s). If the schemes also encodes weights, £ is said to be
Sunctlionally more compact than F if for every neural network N encoded by F with a code of size
s, there exists a neural network encoded by £ with a code of size O(s) that implements the function
associated to N.

() (b) (PAR) (¢c) C(OFF 1)

0 (WAID (PAR) (PAR)
CUP) L, ON L) oNT
cLp) ON 3 ON D

Figure 3.3: Compact encoding of an arbitrary recurrent network. (a) The target connectivity
matrix, (b) Compactness with respect to C1 , (¢) Compactness with respect to C2.

The size of a code is the number of bits necessary to storeit. Since less than 31 program-symbols
will be used, 5 bits suffice to encode each program-symbol plus a NULL character. Hence, the size
of the code needed to store a tree of a nodes is a4+ 1. We want to show compactness with respect
to the classical representations of graphs. First consider the direct encoding C1 of the connectivity
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matrix. Recall that it produces a code of size n? for a network of n neurons. Provide the reading
cell with an internal register called link register that contains a link number. Define the unary
program-symbol INCLR incrementing the link register and the unary program-symbol CLIP cutting
the link pointed by the link register. As shown if fig. 3.3, each cell of the fully connected graph can
select its subset of connections with the execution of less than n CLIP alternated with n INCLR.
Since the fully connected graph has n cells, the size of the total code is O(n?). The following holds:

Proposition 2 { CYC, END, CLIP, INCLR, PAR, WAIT } is topologically more compact than C1.

Since the program-symbol CUT can be implemented using CLIP, it will not be used any more,
except for the sake of clarity, in the figures. CLIP will be denoted as a CUT with no arguments.

Second, consider the representation C2 where the list of connections is encoded. The neuron
numbering can be encoded in log(n) bits. For each connection, the numbers of the two connected
neurons are specified. Therefore C2 produces an encoding of size O(llog(n)) for a network with
l connections. This encoding is interesting when there are few connections. Assume a link has
two states: on/off. Like cells, links also have registers. This state is stored in a register of the
link called state. When a link is duplicated during a cell division, the register of the link are
also duplicated. At the end of the rewriting, the links with states off are removed. Define the
program-symbol ON that turns on the state of the link specified by an integer argument, and its
counterpart OFF. Fig. 3.3 (c) shows how to encode an arbitrary network with the program-symbols
ON and OFF. Let the default value for the recurrent link in the initial graph be on. The program-
symbol OFF 1 labeling the root of the grammar tree sets the state of the recurrent link to off. The
program-symbols PAR develop a fully connected graph where all the links are off. Last, each cell
¢ builds its set of I. connections by applying [. program-symbols ON on the numbers of the desired
neighbors. Since each of these numbers are coded with log(n) bits, the size of the total code is

O(llog(n)). The following holds:

Proposition 3 { CYC, END, ON, OFF, PAR, WAIT } is topologically more compact than C2.

Figure 3.4: How to encode efficiently a layered neural network. (a) Before the sequential division,
(b) After the sequential division, (c) The code of a layer of 7 cells using the clone program-symbol.
Weight +1 is represented by — and weight -1 by - - - .

Last, consider the scheme C3 that encodes layered neural networks, with complete interconnec-
tions between layers. C3 specifies the number of neurons in each layer. Define two other division
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program-symbols. The sequential division noted SEQ makes the first child cell inherit the input
links of the father cell, the second child inherits the output links, and the first child connect to the
second with a link whose weight is +1 and state is on. An example is shown in fig. 3.4 (a) (b). The
clone division denoted CLONE is like PAR except that the two child cells place their reading head
on the same node of the grammar tree. Since there is only one subtree to the nodes labeled with
CLONE , this program-symbol is unary. It is called clone because the two child cells will execute
exactly the same code, and therefore give birth to the same subnetwork of neurons. A given neural
network with c¢ layers is developed as follows: Apply ¢ — 1 times SEQ to produce a string of ¢ cells.
At this stage, each cell stands for a layer. The rank of the cell in the string corresponds to the
layer number. Now each cell standing for layer ¢ must execute n; times PAR, where n; is the number
of cells of the i** layer. As shown in fig. 3.4 (c), a layer of n; neurons can be developed with a
combination of less than 3log,(n;) PAR and CLONE program-symbols. The total size of the code is:
c+ 3% i_;logy(n;). It is less than three times the size of the code produced by C3. Thus:

Proposition 4 { CYC, END, PAR, SEQ, CLONE, WAIT } is topologically more compact than C3.
Let us now define another property.

Property 3 (closure) An architecture encoding scheme is closed with respect to a set of architec-
tures, if every possible code develops an architecture in this set.

Whatever the program-symbols are, a given CE is always closed with respect to the set of all
architecture. This means that any code generated by the GA can actually develop an architecture.
It ensures that whenever the GA generates a chromosome, the GA will be able to develop and
evaluate a network, and receive a feed-back.

MRG 2

Figure 3.5: The merge program-symbol. (a) Before the application of the program-symbol, (b)
After the application, (c¢) The code of an arbitrary acyclic graph.

Suppose that the architecture one is looking for is known to belong to a particular set. It is
possible to make the GA use this a priori knowledge. One must design an encoding scheme that
is closed with respect to the set and the GA will automatically place its individuals in the set.
For example one can require acyclic architectures in order to be able to do backpropagation. If
one starts to rewrite from an acyclic network graph, it will remains acyclic, thus { ACYC, END,
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PAR, SEQ, CUT, INCLR, WAIT } is closed with respect to the set of acyclic architectures, but it is
not complete with respect to this same set. In order to obtain completeness, the program-symbol
merge, denoted MRG, is introduced. The program-symbol MRG has an integer argument ¢ and rewrites
a cell in the following manner: let ! be the input link which number is ¢ and ¢ the neighbor cell
which is connected through [. The program-symbol replaces [ by the list of the input links of ¢,
as shown in fig. 3.5 (a) (b). If after this operation, ¢ has no more output links, ¢ is suppressed.
Fig. 3.5 (c¢) shows how to build the code of an arbitrary acyclic graph. In an acyclic graph, it is
possible to number the nodes so that each node is connected only to other nodes having a greater
number than itself. The proposed code is made of a trunk and n leaves, where n is the number of
nodes. At an intermediate step, all the cells of the current network graph are connected to the cell
that reads the trunk. Periodically, the cell that reads the trunk divides, and creates a child ¢ that
reads leaves ¢ and represents the node of number . At this stage, all the cells that represent nodes
with a number less than i are connected to ¢. The cell ¢ will read on the i** leave how to prune
the supernumerary input links. The corresponding cutting program-symbols are located inside the

dashed line in fig. 3.5 (¢). Thus:

Proposition 5 { ACYC, END, PAR, SEQ, CUT, INCLR, MRG, WAIT } is closed and complete with
respect to the set of acyclic architectures. Adding ON, OFF and CLONE yields the property of com-
pactness with respect to C1, C2 and C3.

For each neuron, we want a path from one input unit to this neuron (the output of a neuron
not having such a path would constant). One can also require that there exists a path from each
neuron to a given output unit (otherwise the neuron would not be used in the computation of the
neural net). An architecture that meets these two requirements is a meaningful architecture. Put
in another way, an architecture is meaningful if it remains connected, after having suppressed either
the input pointer cell, or the output pointer cell.

Let us first show the closure property with respect to the set of meaningful architectures that
are also acyclic. The semantic of the program-symbols that prune links must be slightly modified
in the following manner: a reading cell can apply one of the program-symbols CUT, OFF, MRG on a
link whose state is on only if the number of input links which state is on is strictly greater than
one. Take ACYC as the initial network graph. Try to suppress either the input pointer cell, or
the output pointer cell. The pruned graph is a connected graph that has more than one node. A
case analysis shows that the application of any of the program-symbols already defined keeps the
network graph connected. Hence the final network graph is connected. And it is the final graph
that would have been obtained starting with ACYC minus the input pointer or the output pointer
cell. From the characterization of meaningful, one deduce that the final architecture is meaningful
and:

Proposition 6 { ACYC, END, PAR, SEQ, CUT, INCLR, MRG, WAIT } is closed with respect to the set
of meaningful acyclic architectures.

Now, consider the case of meaningful recurrent architectures. The construction uses the fact
that a meaningful recurrent architecture contains a meaningful acyclic architecture. Take the initial
network graph CYC. Define an order in the cells of the network graph with two rules:

e During a cell division, the child that reads the left subtree is less than the one that reads the
right subtree.

o If a cell ¢l is less than a cell ¢2, any descendant of ¢l including ¢1 is less than any descendant
of ¢2 including ¢2.
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Provide each cell ¢ with two input sites, one for the link connected to cells less than ¢, and one for
the link connected to cells greater than or equal to ¢. When a cell division takes place, the two
input sites have to be managed so as to respect their definition. In order to develop a meaningful
recurrent architecture, one must respect the preceding restriction in the application of pruning
program-symbols with the input site connected to inferior cells.

With ON, OFF and CLONE, one can again derive the property of compactness with respect to C1,
C2 and C3. The construction with { ON, OFF } is difficult because the new semantics does not allow
to set all the links to off. At each step, for each cell, at least one input link must be on. Hopefully,
this can be ensured without increasing the size of the code more than the desired complexity.

Figure 3.6: Imposing 2 input units and 4 output units. The cell labeled 1 is the ancestor cell.

Last, one wishes to impose the number of input units and output units, one can take the kind
of initial network graph shown in fig. 3.6.

3.3 Neural Network Encoding

In this section we describe how to encode a neural network. The architecture, the weights, and the
kind of sigmoids used by each neuron must be encoded. A simple way of encoding weights is to
provide an unary program-symbol VAL which weights the link pointed by the link register of the
cell to the value specified by an argument. This argument can be £1, integer or real, depending
on the desired neural network. Consider the encoding scheme C1 and C2 defined in the preceding
section. The encoding scheme D1 is like C1 except that a list of weight values is provided together
with the connectivity matrix. The same holds with D2 and C2. We have the following result:

Proposition 7 { CYC, END, PAR, SEQ, CUT, INCLR, ON, OFF, MRG, WAIT, VAL, } is complele wilh
respect to the set of all neural networks, where the units have the same sigmoid. It is functionally
more compacl than D1 and D2.

To show these properties, a two stage development is used. First, the architecture is developed,
then the weights are set. From a GA point of view, an encoding using the VAL program-symbol
presents some drawbacks. The GA forms its initial population with random individuals. As de-
scribed by Koza in [16], when an program-symbol like VAL needs an argument, a random value is
generated in a specified range. If there is no mutation, which is the case in Koza’s scheme, the
possible value of the argument in the future generations are limited to the set of values represented
in the initial population. In the case of the program-symbol VAL, it means that the possible values
of the weights are restricted to this finite set. If a particular weight is needed, and is not available in
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the current population, the GA will not be able to provide it. Moreover, with the program-symbol
VAL, there is no possibility to find values with a progressive refinement, through the formation of
building blocks of increasing size. A solution to the problem is to use two other program-symbols:
MULT which multiplies the weight by its argument, and ADD which adds its argument to the weight.
It is possible to go further in this direction by using a set of four program-symbols: INC, DEC,
MULT2 and DIV2, which respectively increments, decrements, multiplies by two and divides by two
the weight of the input link pointed by the link register. These program-symbols are interesting
because they have no arguments. If we use only this set without VAL, then the formation of weight
values will be done by a subtle combination of these four program-symbols. The precision to which
weights are coded is not fixed a priori. If the encoding of a number takes b bits with a fixed point
format, an encoding of this number can be built with O(b) program-symbols chosen in { INC, DEC,
MULT2, DIV2 }. This allows to have the same property of compactness with respect to D1 and D2
if the weights are coded in a fixed point format.

A similar technique can be used to remove the argument of other program-symbols. For example,
if this argument is a link number, the program-symbol can use the value of the link register. In order
to keep the property of compactness, one needs the program-symbol MULT2LR which multiplies by
2 the value of the link register, and set the value to 0 if it is greater than the number of input links.
For a purpose of clarity, in the next figures, program-symbols will still use an integer argument.

Figure 3.7: Two sigmoids. (a) the sign function, (b) the bounded linear function. The constant
mazx is a parameter of the model.

A neural network is not entirely determined by a weighted architecture. Each neuron may have
features on his own, such as a different sigmoid, or a different learning procedure to adjust its
weights. To encode this, an internal register of the cell is attributed to each of these features, and
program-symbols that modify the value of these registers are introduced. For example, assume that
there is a choice between the two sigmoids plotted in fig. 3.7. Let a sigmo register stores the type
of sigmoid. An program-symbol SSIGMO sets the value of the sigmo register to its argument. When
the cell becomes a terminal neuron, its sigmo register contains the number of its sigmoid.

3.4 Simulation of a Turing machine

In this section, we build the encoding of a neural network that simulates a Turing machine. The
transition function of the neurons is the sign function. This, in turns, will enable to obtain inter-
esting other properties. As a first step, we want to achieve the following property.

Property 4 (modularity) Consider a network Ny that includes at many different places, a copy
of the same subnetwork Ny. The code of N1 is modular if it includes the code of No, a single time.
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This property tries to formalize the intuitive idea of modularity. Modularity should help to
reduce the apparent complexity of an initial network by decomposing it into a set of less com-
plex subnetworks connected by a simple structure. The process is repetitive: subnetworks may
themselves be decomposed. Modularity is connected with the reusability problem: the aim is to
transform the neural network design into a construction box activity, whereby networks would be
built by combination of existing standard elements. Since each module can be separately under-
stood by a human reader, the architectures produced are easily understandable.

In order to include a subnetwork Nj, one must provide a program-symbol that makes the reading
head of the cell jump on the subtree defining N;. One can use a method advocated by Ray in [27]
called “Addressing by Template”, inspired by molecular biology. Ray writes:

“In most machine codes, when the IP jumps to another piece of code, the exact nu-
meric address of the target code is specified in the machine code. Consider that in the
biological system, by contrast, in order for protein molecule A to interact with pro-
tein molecule B, it does not specify the exact coordinate where B is located. Instead
molecule A presents a template on its surface which is complementary to some surface
on B. Diffusion brings the two together, and the complementary conformations allow
them to interact”.

Addressing by template is illustrated by the unary program-symbol JMP. Each JMP program-
symbol is followed by a sequence of NOP (no operation) program-symbols, of which there are two
kinds: NOP_O and NOP_1. Suppose we have a piece of code with four instructions in this order:
JMP (NOP_O(NOP_O(NOP_1(..)))). The cell reading the JMP will search in the tree the nearest oc-
currence of the complementary pattern : NOP_1(NOP_1(NOP_O(..). The nearest is defined from the
natural topology on a graph where the distance between two vertex is the length of the shortest
path that connects them. If the pattern is not found, the JMP program-symbol is ignored. If the
pattern is found, the cell positions its reading head to the end of the complementary pattern.

The branching can loop. In order to avoid the infinite growth of the network the cell is provided
with a life register. The life register of the reading cell in the initial graph is initialized with a value
L. If the complementary pattern is found, the JUP program-symbol decrements the life register and
removes the reading head only if the life register is positive. With this algorithm, the number of
loops is bounded by L. A code develops a family of neural networks parametrized by L. The size
of the network increases with L.

In order to fulfill the property of modularity, one must provide the possibility to encode sepa-
rately a subnetwork Nj from the main network Ny. For this purpose, a 2-ary program-symbol DEF
is defined. When a cell executes DEF it places its reading head on the right subtree. In order to be
used, the left subtree must contains some labels of NOP program-symbols. The left subtree encodes
a subnetwork whereas the right subtree corresponds to the main network.

Proposition 8 Any cellular encoding scheme that includes the program symbols JMP, NOP_0, NOP_1
and DEF is modular.

In order to be able to connect an included subnetwork to the rest of the network in a functional
way, another program-symbol of division called splitting division, and denoted SPLIT is required.
A cell executes the SPLIT division as follows:

First, assume that the number of input links is equal to the number of output links. The cell
splits into m children, where n is the number of links. The inheritance of the links is shown in
fig. 3.8. The child cell with index 7 inherits the input link and the output link numbered . Each
child cell places its reading head on the same node of the grammar tree.
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Figure 3.8: The splitting division. (a) before the division, (b) duplication of links in the input site,
in order to make the total number of links equal to four, (c) creation of four neurons.

If now there are less input links than output links, some of the input links are duplicated in an
homogeneous manner to make equal the number of input and output links, and apply the splitting.
If the cell has less output links than input links, the output links are likewise duplicated.

The CE can be used to design a neural network that does a particular mapping. For example,
in fig. 3.9 shows a neural network that simulates a Turing machine. The design method is to
build networks of higher complexity by specifying how to connect together subnetworks of smaller
complexity. The representation scheme uses this decomposition. Each subnetwork of neurons is
named and represented separately. To represent a subnetwork h , instead of using the subtree ¢
that encodes h, one represents a graph of cells which is obtained in the following manner. Take as
an initial network graph, a reading cell whose reading head is placed on the root of ¢, and whose
neighbors are a set of labeled cells. The labeled cells represents the neighbors of the cells that will
include A, during the development of the complete neural network. Make this initial network graph
develop, with two conventions.

o Whenever a cell reads a JMP program-symbol, freeze the development of the cell, introduce a
new subnetwork g whose code is the subtree of the node labeled by JMP, and write the name
of the included subnetwork, followed by the name of g in the circle representing the frozen

cell.

o Whenever a cell reads a SPLIT program-symbol, freeze the development, introduce a new
subnetwork g which code is the subtree of the node labeled by SPLIT, write SPLIT followed
by the name of g in the circle representing the frozen cell.

If the subtree of the node labeled by JMP or SPLIT is only one node END, it is not necessary to
introduce a new “virtual” subnetwork.

In the final network graph, the labeled cells indicate how the subnetwork A is to be connected
to the rest of the network. Recall that the final network depends on the order of execution. In
order to finish the representation, the order of execution of the frozen cells must be specified if
needed. In the case of the Turing machine, it must be specified that the cells frozen on a SPLIT
program-symbol have to execute this program-symbol only when all the neighbors are neurons.
Thus, in the final encoding they must be preceded by a certain number of WAIT program-symbols
so as to be correctly delayed. Note that this number is always a linear function of L, the initial
value of the life register. These WAIT program-symbols can be encoded by means of a subnetwork
which includes itself and does nothing but wait.

Fig. 3.9 (a) shows that the neural net is recurrent and has two layers: a processing layer and
a mixing layer. The layers connect to each other in a one to one manner, thanks to two SPLIT
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Figure 3.9: Encoding of a Turing machine.
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inserted between the layers. Each time the data flows through the neural net, a transition of the
Turing machine is simulated. Fig. 3.9 (b) and (c) shows that the processing layer applies in parallel
L subnetworks of neurons called rule to a tape of L registers. Because of a slight difference, the
leftmost rule is called rulel, and the rightmost, ruler. The subnetwork rule encodes all the
transition rules of the Turing machine. Each group rule corresponds to a register of the Turing
machine’s tape. For each register, a character and a state are encoded. If the reading head is
positioned on the register, the state encoded is the state of the Turing machine, otherwise the state
is 0. On the input of the i** rule is applied the binary code of the state and the character of
the corresponding register. In the example, two bits are used for the state, and also two bits for
the character. Hence if there are ¢ states and an alphabet of ¢ characters, the number of input
units of rule is ¢ = [logy(¢)| + [logy(c)]. The number of output units of rule is 3 * ¢, three rows
of ¢ cells. One row represents each of the possible three moves of the reading head of the Turing
machine. The subnetworks ruler and rulel have only 2 % ¢ units. Since they handle a register on
the extremity of the tape, only two moves are possible. If the reading head of the Turing machine
is not on a register, the state is 0, its code is the concatenation of [log,(¢)] 0, and the output of
rule is 0 everywhere except for the [log,(c)| units of the middle row whose activities are the same
as the [logy(¢)] input units. This accounts for the fact that the character on the tape remains
unchanged. If the reading head is on the register, it moves in one direction: left, stand by or right.
The corresponding row of output neurons will indicate the next state, and the character to write.
The 2 other rows will output zero values. Each hidden unit of rule implements one rule.

OO O

1 12 3 4 |5 6 7 18 9

a b c
Figure 3.10: The action of the mixing layer.

The mixing layer must compute the next state and character of the tape registers, from the
total output of the process layer. Therefore, 37* L activities must be recombined into i * L activities.
Fig. 3.10 (a) shows how this must be done. Fig. 3.9 (e), (f), (g), (h) and (i) show how this is done.
Each of the il activities can be computed with the logical OR applied to three of the 3il activities.

Now, let us define precisely what is meant by simulating a program on a machine that can have
an arbitrary big memory with a parametrized neural net of finite size. First, define the possible
functions implemented by a neural net as follows:

Definition 1 A neural net N implements a function f :{0,1}" — {0,1}" if it has more than n
input and p oulput unils, and, if a given vector v of p bils is clamped to the first input units of N,
all the other activilies are inilialized with 0, and N is relazed with a synchronous dynamic, after
stabilization, the activities of the first output units of N will be f(v)

Now, consider a machine M (L) with a memory of L bits and a program P that makes compu-
tations on bit strings. Run on some particular input bit strings, the program P will have enough
memory, and will stop after some time, yielding a binary vector. By definition, these particular
input bit strings form the input set of the function computed by P on M(L), and the output of
this function is given by P.



Properties of Cellular Encoding 27

Definition 2 A neural network N(L) parametrized by the integer L, simulates a program P on a
given type of machine M(L) with a memory of L bits, if N(L) implements the function computed
by P on M(L).

Property 5 (power of expression) A parametrized neural network encoding has a power of ex-
pression greater than a programming language if for every program P written with this language,
there exists a code of a parametrized neural net that simulates the program P. Moreover, the size
of the code is O(s(P)), where s(P) is the number of bils needed to store the source code of P .

In the case of the Turing machine, a program is just a list of transition rules. The preceding
construction can produce a code of a parametrized neural network that simulates an arbitrary
Turing machine program if the following adjustment is made: The input units of the processing
layer that encode the state must not be connected to the input pointer cell. Their initial activity
must be zero, except for the register of the tape which will initially contain the reading head of the
Turing machine. Initially the state encoded in this register must be the initial state of the Turing
machine ¢p. Let us now evaluate the size of the codes. The number of bits needed to encode r
transition rules is s = (logy(q) +logy(c))r. The size of the code of par2 is O(log,(q) + log,(c)).
The size of the code of respectively rule, ruler, rulel is O(s). The size of the codes of the other
subnetworks are constant. Hence the total size is O(s).

Proposition 9 { CYC, END, PAR, SEQ, SPLIT, CUT, INCLR , MRG, WAIT, VAL, NOP_O, NOP_1, JMP,
DEF } has a power of expression greater than the “Turing machine language”.

Figure 3.11: A neural network that simulates a Turing machine that simulates a neural network.(a)
outline of the neural network, (b) Modification of the process layer, (c¢) the subnetwork start.

From the fact that CE has a power of expression greater than the Turing machine results in a
sort of maximal property of compactness:

Proposition 10 { C'YC, END, PAR, SEQ, SPLIT, CUT, INCLR , MRG, WAIT, VAL, NOP_O, NOP_1, JMP,
DEF } is functionally more compact than any other neural network encoding.

In order to prove this, consider an arbitrary neural network encoding scheme F. Let e be the
code of a particular neural network, encoded with this scheme. Call s(e) the size of e. There exists
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a program with input e and ¢ that builds the neural network encoded by e, runs the network on
the input ¢, and returns the output of the network. This program can be executed by a Turing
machine T'. If the initial tape of T is the concatenation of e and 7, the output of 7" will be the
output of the neural network. Let N be the neural network that simulates 7. Let s(e) be the size
of e. A string of s(e) neurons must be added to N so that a string of s(e) registers of the tape is
automatically initialized with e. Fig. 3.11 (a) shows what the final neural network looks like. It
depicts a neural network that simulates a Turing machine that develops a neural network encoded
by e = 10, and simulates it. The simulated neural net has two input units. For simplification only
the neurons corresponding to the characters of the tape are represented. The encoding of the final
neural network must specify the string of s(e) neurons, therefore, it is a bit more complex than
the encoding in fig. 3.9. Fig. 3.11 (b) shows the first part of the code of the process layer. The
subnetwork code will develop s(e) subnetwork of the type rule. The i** subnetwork is not connected
to the input pointer cell. It is connected to the subnetwork start through an intermediate neuron
with a weight 0 or 1, depending on the value of the " bit of e. The role of the subnetwork start
is to send a one and then only zero values. The subnetwork tape develops a tape of L registers.
The mixing layer must be slightly modified in order to mix L + s(e) registers instead of only L.
The size of the total encoding is a linear function of s(e). The total size is therefore O(s(e)). A
close analysis shows that the slope of the linear function does not depend on 7" ,and therefore, not
on F either.

Another interesting property is scalability. Consider a problem of variable size, and a parametrized
neural network encoding scheme. Suppose that the same code can be used to solve a problem of
size one and problems of big sizes, using a different parameter. If the GA can find a code for a
network that solves the problem of small size, it will not be harder for the GA to find a network for
the problem of size 1.000.000, because the corresponding code is the same. The ability to address
problems of big size is called scalability. The preceding remark allows us to define scalability as a
theoretical property of the encoding scheme:

Property 6 (scalability) Let (f1) be a family of functions on a finite domain, where L is an
integer index. An paramelterized encoding is scalable with respect to ( f1,) if there exists a code such
that for any L the neural net encoded with a parameter L computes the function fr.

Consider the following definition:

Definition 3 A family of functions f, on a finite domain is said to be recursive if there exists a
Turing machine T' that computes f,(x) if n and & are initially written on its input tape. If f, is
recursive, T Mgpace(fr) is the minimal number of registers needed by T' to compute every value of

-
The following holds:

Proposition 11 { CYC, END, PAR, SEQ, SPLIT, CUT, INCLR , MRG, WAIT, VAL, NOP_O, NOP_1, JMP,
DEF } is scalable with respect to the set of recursive family of functions with T Mgpace( fr) smaller
than k™ for a certain k.

In order to prove this proposition, we have to provide an encoding of an arbitrary Turing
machine, such that the network developed with a size parameter L simulates the Turing machine
with a finite tape of k' registers, instead of only L registers as it has already been done. The
encoding is similar to the one already proposed. As it is only a technical matter, it is not presented
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here. The family of languages that can be recognized by a Turing machine using less than k"
registers for a certain k is called PSPACE. PSPACE is so big that it includes almost all known
languages [12]. Therefore, CE is scalable to all “every day” families of functions.

A cellular automaton can also be simulated with a construction similar to the case of the Turing
machine. This time, the mixing layer must precede the processing layer, and its task is to reproduce
at a location 4, the concatenation of the states of the cell neighbors to the it cell.

Proposition 12 { CYC, END, PAR, SEQ, SPLIT, CUT, INCLR , MRG, WAIT, VAL, NOP_O, NOP_1, JMP,
DEF } has a power of expression greater than cellular automata.

Turing machine and cellular automata are universal computing devices. Cellular automata are
particularly powerful. In general, a given algorithm can be efficiently programmed on a cellular
automaton. It is possible to transform a set of transition rules of a cellular automaton into the CE
code of a neural net in an efficient way. We can consider even more efficient computing device than
cellular automata. The following property makes a step forward.

Property 7 (abstraction) An encoding is abstract if it has a power of expression greater than a
high level programming language.

A high level programming language uses procedure and array data structure. Using an abstract
encoding scheme allows us to reduce the problem of genetically finding a neural network to the
problem of genetically finding a program that computes the target mapping. When there exists a
small program that computes the target mapping, the space of program to search is smaller than
the space of neural networks of bounded size, that contains some solution network. So an encoding
that is abstract is likely to work better with the GA, if the mapping to learn can be computed
with a short program. Since property of abstraction is hard to demonstrate, we will take the next
chapter for that purpose. In fact, the proof is a compiler that transform a Pascal program into a
CE which length is proportional to the length of the Pascal Program.

The last property is the following:

Property 8 A coding scheme is grammatical if the object that is encoded can be translated into a
grammar, a rewriting system.

Proposition 13 Cellular encoding is grammatical, it encodes a graph grammar

The proof is in the appendix B. With a grammatical property, the genetic search of neural
networks via cellular encoding appears as a grammatical inference process where the language is
implicitly specified, not explicitly by positive and negative examples. This results in three new
perspectives: First, ee will use a particular method to to search cellular encoding grammar (second
part of this thesis). We will encode a grammar into a set of trees and evolve sets of trees with the
genetic algorithm. This method can be used to infer other types of grammars. Conversely, results
from the research in the grammatical inference field can be used to improve cellular encoding.
Third, the study of cellular encoding as a grammar can be helpful to classify cellular encoding
into the complexity classes that already exist among rewriting grammars. It seems that cellular
encoding is a context sensitive, parallel graph grammar.
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3.5 Conclusion

When applying Genetic Algorithm (GA) to neural network synthesis, it is now recognized that
the key point is the scheme used to encode neural networks on the structure manipulated by the
GA. Eight theoretic properties that rate the efliciency of a neural network encoding are proposed.
A neural network encoding which has all the desired properties has been studied. This encoding,
called Cellular Encoding (CE) uses an alphabet of 20 alleles. Each allele corresponds to a program-
symbol that slightly modifies the topology and labels of a graph describing a network. A given
combination of such program-symbols develops an initial graph of three cells (one ancestor cell plus
two pointer neurons), into a neural network. The program-symbols are: END, PAR, CLONE, SEQ,
SPLIT, MRG, CUT, ON, OFF, INC, DEC, MULT2, DIV2, INCLR , MULT2LR, WAIT, NOP_O, NOP_1, JMP, DEF.
These program-symbols do not have integer arguments. This CE generates neurons with a single
type of sigmoid which is the sign function. It is easy to add other program- symbols if other types
of sigmoid are needed.
The properties of CE can be summerized as follows:

completeness Any neural network can be encoded, thus the GA can reach the solution neural
network if it exists at all.

compactness The CE is topologically more compact than classical representations of neural net-
works, and functionally more compact than any other representation. This ensures that the
codes manipulated by the GA are minimal in size. The shorter the codes are, the shorter the
search space is, and the less effort the GA has to do.

closure The CE always develops meaningful architectures. It produces acyclic or recurrent ar-
chitectures, depending on the initial graph. Both of these closure properties ensure that the
chromosomes produced by the GA always give interesting neural networks. The GA does not
throw away any codes. This increases efficiency.

modularity If a network can be decomposed into copies of subnetworks, the code of network is
the concatenation of the of the subnetworks code, and a code that describes how to connect
the subnetworks. This facilitates the formation of building blocks. The resulting regularities
in the final architecture make it clear and interpretable. The code is more compact.

scalability A fixed size code encodes a family of neural networks. For any reasonable family of
problems, there exists a code such that the i*" neural network solves the #** problem. A
parametrized problem of arbitrary size, say 1.000.000, can be as easy to solve as the same
problem of size 2 or 3 because the code of the corresponding neural net is the same, only the

size parameter changes.

power of expression The CE can be seen as a “neural network machine language”. Its power of
expression is greater than Turing machines and cellular automata. It is another proof of the
extreme compactness of the coding.

abstraction It is possible to compile a Pascal program into the code of a neural network that
simulates the computation of the program. The wide search space of neural network is
transformed into a smaller search space of programs. It helps the GA to find neural networks
for problems that can be solved with a short program.

grammars Cellular encoding encodes a graph grammar, this property is in fact the root of all the
other properties.



Chapter 4

A neural Compiler

4.1 Introduction

An encoding scheme called ”cellular encoding” has been described in the preceding chapter. Cellular
encoding can be seen as a machine language for neural networks, able to describe a Turing machine,
or a cellular automaton. One can use cellular encoding as a tool for designing neural networks that
simulate a Turing machine or a cellular automaton. It is already known that a neural network can
simulate a Turing machine using an infinite number of neurons. See [7]for variations on this theme,
and the relation with cellular automata. In [29], Turing machine are simulated by neural networks
having a finite number of neurons. In order to store an infinite amount of data, one uses the
decimals of the neuron’s activities. The activities must have an unbounded precision. These results
have a theoretical interest rather than practical. It is indeed not usual and uneasy to program a
Turing machine or a cellular automaton. In this chapter, we propose a method for compiling a
program written in a high level language, towards a neural net. More than a proof that a program
can be simulated by a neural net, the compilation is a practical method for building a neural
network that solves a given problem. We will see that the compilation has other interests, like the
design of huge neural networks, the automatic parallel compilation, the compilation of naive hybrid
systems. Since the compiled networks have a finite number of neurons, and their activities have
a finite precision, they have a finite memory. Hence, it is not possible to compile instruction for
dynamic memory allocation. Nevertheless, recursive procedures can be compiled. During the run
of the program, the depth of recursion must be smaller than a given constant. The performance of
the compiler will be measured in term of the size of the code that is generated. The result confirms
the efliciency of the compiler, and allows to demonstrate property of abstraction number 7, defined
in the preceding chapter.

4.2 The stage of the compilation

The neural compiler has been programmed. The software is called JaNNeT (Just an Automatic
Neural Network Translator). The aim of the software is solely to prove the validity of the compila-
tion and to measure the performance of the product, like the number of neurons that are generated.
JaNNeT encompasses three stages that are shown in figure 4.1. The input of the compiler is a pro-
gram written in an enhanced Pascal. The output is a neural net that computes what is specified
by the Pascal program. The Pascal is said to be "enhanced” because it proposes supplementary
instructions compared to standard Pascal.
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Simulation
Pascal Parse Cellular Neural on a neural
program Tree Code Net computer

(a) (b) () (d)

Figure 4.1: Stages of the neural compilation. (a) Parsing of the Pascal Program. (b) rewriting of
the parse tree into a cellular code, using a tree grammar. (c) decoding of the cellular code into a
neural network. (d) scheduling and mapping of the neural network on a physical machine. This
stage is not yet done.

The first stage is the parsing of the program and the building of the parse tree. It is a standard
technic that is used for the compilation of any language. Nevertheless, this parse tree has a
somewhat unusual form. In appendix C.6, a tree grammar describes the kind of parse tree that
we use. The third stage uses cellular encoding. It is simply the decoding of the cellular code that
has been generated at the second step. This decoding uses the development of a network graph,
seen in the preceding chapters.

The second stage is the heart of the compiler. This stage is a rewriting of trees. Rewriting
means replacing a symbol by a group of symbols. In the simple case of word rewriting, we replace
a letter by a sequence of letters. Starting from an initial word, one rewrites it into a new word, and
then into another new word, and so on, until the final word. The rewriting of a tree ( in a simple
case) consists in replacing one node of the tree by a sub tree. The added subtree must specify
where to glue the sub trees of the node that is being rewritten. Hence, the second stage consists in
replacing each node of the parse tree into a sub tree labeled with program-symbols of the cellular
encoding. When the program symbols of each sub tree will be executed by a cell ¢, they will make
a local graph transformation, by replacing cell ¢ into many other cells, connected to the neighbors
of cell ¢. Each node of the parse tree can therefore be associated to a local transformation of a
network graph of cells. Each node of the parse tree is corresponds to a macro program symbol, that
does the local graph transformation. A macro program symbol makes a transformation bigger that
the one done by a program symbol of the cellular encoding scheme. In most of the cases, a program
symbol creates no more that one cell, or modifies no more than one register. It uses no more than
a single integer parameter. A macro program symbol can create a lot of cells, and often needs more
than one parameter. One needs many program symbols to encode a macro program symbol, this
is why we use the name "macro program symbol”. The presentation of the compilation method
can be done without reference to the cellular encoding. One will consider the process at the level
of macro program symbols. The macro program symbols can be implemented using sub trees of
program symbols described in the appendix C.7.3. So this chapter can be read independently from
the preceding ones.

In its present release, JaNNeT does not go until the end. It does not produce instructions that
can be executed by a particular neural computer. It produces a neural network, which is a format
that suits a neural computer with many processors dedicated to neuron simulation. Presently,
the neural network generated by JaNNeT are simulated on a sequential machine. The fourth
stage shown in figure 4.1 (d) consists in mapping the neural net on a physical architecture of a
neural computer. This step must take into account things like the memory size of one neuron, the
communications between processors, and the arithmetic precision of the computation.
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4.3 The kind of neurons which are used

4.3.1 Sigmoid

A neuron is determined by the computation it does on its inputs. An ordinary neuron makes a
sum of its inputs, weighted by the weights of the connections, and then, applies a function called
sigmoid. We use different kind of sigmoid. Fach one has a number associated to it. A cell has a
register called sigmo in which is stored the number of the sigmoid of the future neuron. The four
sigmoids that are used are listed in figure 4.2.

(a) (b) (c) (d)

Figure 4.2: Different kind of sigmoids used. (a) is used to add two numbers. (b) and (c) are used
to compare two numbers, (d) is used to test the equality of two numbers.

Moreover, we use non classical neurons that make the product of their inputs, and that divide
the first input by the second input. This is used to multiply and to divide two numbers. It still is
possible to simulate multiplication and division with classical neurons, but it would cost a lot of
neurons.

4.3.2 Dynamic

A neuron computing an arithmetic operation with two operands, must wait for the two operands
to come before starting to compute its activity. We use a particular dynamic. The neurons decide
to start their computation using three rules:

e A neuron computes its activity as soon as it has received all the activities from its input
neighbors.

e The input units are initialized with the input vector.

e A neuron sends its activity to the output neighbors, when it is initialized, of if it has just
computed its activity.

We will not use any special threshold units to encode the threshold. At a given moment, all the
neurons that can compute their activity, do it. This dynamic (denoted Dy) is half way between the
sequential dynamic and the parallel dynamic. There is no need for a global entity to control the
flow of activity. Two other dynamics are used by the compiler. The dynamic Dy concerns neurons
having exactly two inputs. As was the case for Dy, the neuron waits until it has received an activity
from both its neighbors. If the first input is strictly positive, the neuron send the activity of the
second neighbor. Otherwise, the neuron do not propagate any activity. Dynamic D; allows to
block a flow of activities. The "EAND” neuron that we are going to see use this dynamic. There
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is a third dynamic called Dy. Neurons with such a dynamic compute their activity whenever an
activity is received from one of its input neighbors. Its activity is the activity of that particular
neighbor. In order to work correctly, such a neuron must not received two activities at the same
time. Dynamic D; is used by the ”AOR” Neuron. It allows to gather on the same neuron activities
coming from different parts.

4.4 Microcoding

YD N |
() ™o (@) (@)

Figure 4.3: Microcoding of the program-symbol ADL 2. (Add on Link), 2 is an argument. This
program symbol adds a cell on the link number 2. The microcode is DIVm<sm> 2 (a) before the
division ADL, (b) division in two children. (c) the segment "m>" is analysed,. (d) the segment

”s” is analysed (e) the segment "m<” is analysed.

AN

Figure 4.4: The difference between microcode with ”d” and microcode with "r”. (a) before the cell
division; the cell which divides is labeled ”b”, it has an input neighbor labeled ”a”. (b) the input
link is duplicated using a ”d” microcoding. (c) the input link is duplicated using a ”r” microcoding,
the only change is the ordering of the links made by cell ”a”, between the first child labeled 717
and the second child labeled 727.

The preceding chapter was concerned with theoretical properties, we are interested here in
a practical implementation. In order to make the compiler produce a more compact Cellular
Code, we had to introduce many other division program-symbols, as well as program-symbols that
modify cell registers, or that make local topological transformations, or that influence the order of
execution. Each new program-symbol may have an integer argument that specifies a particular link
or a particular register, this favors a compact representation. For implementation purpose, we have
microcoded them. A microcode is composed of two parts. The first part specifies the category of
the program symbol. It uses three capital letters. DIV indicates a division, TOP a modification of
the topology, CEL, SIT, LNK a modification of respectively a cell register, a site register or a link
register. A cell possesses an ordered set of input sub-sites for the links that fan in, and an ordered
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set of output sub-sites for the links that fan out. EXE, BRA indicates a program-symbol used to
manage the order of execution, HOM refers to a division in more than 2 children, AFF denotes
program symbols used only for the graph display.

The program-symbols are listed in appendix C.5. The second part of the microcode is an
operand. For CEL, SIT, LNK the operand is the name of the register which value will be modified
using the argument. If there is an arithmetic sign, the operator applies the arithmetic operation
to the actual content of the register and the argument and places the result in the register. Else
it simply sets the register with the argument. For EXE, the operand is the name of the particular
order of execution. For BRA, the program symbol tests a condition on the registers of the cells
or on the topology, if it is true, the reading head is placed on the left sub-tree, else it is placed
on the right sub-tree. The operand is the name of the condition. For DIV, the operand is as
list of segments. Each segment is composed of one letter and a possibly empty list of arithmetic
signs. At the beginning, the cell divides, the first child cell inherits the input links, the second
child cell inherits the output links. The segments are then analysed in the reversed order, they
specify movements or duplications of links between the two child cells. Figure 4.3 gives an example
of a DIV microcode analysis. If the letter is a capital, the links are duplicated or moved from the
output site of the second child cell to the output site of the first child cell. If the letter is a small
letter, the links are duplicated or moved from the input site of the first child cell to the input site

of the second child cell.
e The letter 'm’ or "M’ means: move a set of links,
e the letter ’d’ or "D’ means: duplicate a set of links.

o the letter '’ or 'R’ is the same as ’d’ or ’'D’ except that the added links are not ordered in the
same way, by the neighboring cell. Figure 4.4 explains the difference between ”d” and ”r”.

e The letter ’s’ means: connect the output site of the first child to the input site of the second
child, it needs no arithmetic sign.

Arithmetic signs specify the set of links to be moved or duplicated. '<’, 7>, =", specifies the links
lower than, equal, or greater than the argument, '+’ specifies all the links. '#’ and ’$’ refer to the
first and the last link, * <’ refers to links from the site of the neighboring cell, ’—’ is used when it

is necessary to count the links in decreasing order, rather than in increasing order as usual, -’
placed before the three capital letter exchanges the role of the input site and the output site, ’
used to replace the argument by the value of the link register. ’|” is used to replace the argument
by the number of input links divided by two.

s

A similar micro-coding is used for the operands of TOP, that locally modifies the topology, by
cutting or reordering links. In this case, the single child cell inherits the output links of the mother
cell, and the analysis of the segments indicates movements of links from the input site of the mother
cell to the input site of the child cell.

In appendix C.10 there are also a number of program symbols which are used only for labeling
cells. During the development of the network graph, the software that we have programmed can
indicate the program symbols read by the cell. Neuron keep their reading head on the cellular code,
on the last program symbol read. Therefore we use dummy program symbols to label leaves of the
code. This enables us to see on the computer screen what function a given neuron performs.
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4.5 New program symbols

In this section, we describe some program symbols used for the compilation of Pascal Programs.
These program symbols are not described by their microcode, we explain them separately.

The program symbol BLOC allows to block the development of a cell. A cell that reads BLOC
waits that all its input neighbors cells become finished neurons. This program symbol is often used
in the compiler to avoid that a particular piece of cellular code is developed to early.

The compiler generates many trees of cellular code: one tree for the main program and one tree
for each function. These trees are also called grammar trees, and have a number. The number is
used by the JUMP program symbol. The program symbol JUMP without arguments has already been
defined at section 3.4. Nevertheless, for the compiler, we find it more efficient to use a program
symbol with an integer argument. The argument specifies the number of a grammar tree. A reading
cell that executes the program symbol JMP x places its reading head on the root of the grammar
tree which number is z.

O O O K
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Figure 4.5: Propagation of the begin-sub-site flag. A sub-site is indicated by a small black disk.
(a) Before the parallel division of the cell labeled PAR (b) After the parallel division, one see that
a sub-site has been created by the neighbor, because the register divisable of the input site of
that neighbor contains value 1. (c) Before the execution of program symbol SPLIT. (d) Result of
the splitting division. (e) An intermediate stage.

We need to handle separately groups of link. We distribute the links into groups of links.
Each group is contained in a sub-site. The sub-sites are created in a rather complicated way. The
technical details that follow may be skipped without problems with the understanding of the rest
of the chapter. The sub-sites are coded using a boolean flag begin-sub-site for each link. When
the flag of a link is on, it indicates that a new sub-site begins at that particular link. The flag of
the first link is always off. A link is encoded using two elements, one for the input site, and one
for the output site. Fach element is inserted into a linked list, as in figure B.3. The position of the
element in the linked list determines the number of the link, in the input site and in the output site.
Each element contains a different flag begin-sub-site. This is necessary, because a connection
may start a new sub-site on its input site without starting any sub-site on the output site. Both
the input and output site have a register called divisable.

When a cell division takes place, a link can be duplicated. The following rules determines the
setting of the flag begin-sub-site of each elements of the connection which is duplicated.

Consider first the element that belong to the cell neighbor to the cell that divides. If the register
divisable of the site corresponding to this element of the connection is 1, the value of the flag is
duplicated. Otherwise, the value of the flag is copied in the element of smaller number, the other
element has its flag initialized with the value 0. This rules means that if divisable is 0, there is
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no creation of sub-site. The old sub-sites are kept. If on the contrary, divisable is 1, a sub-site
divides into two sub-sites. The figure 4.5 (a) and (b) gives an example of sub-site creation.

Second, we have to update the flag for the element of the connection that belongs to the cells
created by the division (microcode beginning with DIV) or to a cell whose links have been modified
(microcode beginning with TOP). First, we consider the case of a division. The value of the register
divisable of the mother cell is duplicated. We have seen in the preceding chapter, that for DIV,
the list of connections is created through the chaining of segments of connections. If the value of
register divisableis 1, begin-sub-site marks are inserted so that one sub-site is created for each
segment. Otherwise, no new mark are inserted, and the number of sub-sites is kept constant.

The distribution of links into group of links is intersting only with respect to the SPLIT program
symbol. This program symbol has a particular behavior when the cell has many sub-sites. Some
particular links are duplicated, so that the number of links on each sub-site is the same, whether it
is an input or an output sub-site. Call n the number of links on each sub-site. The cell splits into
n child cells. Each child cell has as much input links as there are input sub-sites in the mother cell.
Similarly, each child cell has has much output links as there are output sub-sites in the mother
cell. The value of all the registers are duplicated into the register of the child cell. If the register
divisable is 1, each child cell has as many sub-sites as links, one sub-site for each link. If the
register divisable is 0, no child cell has has any sub-sites.

4.6 Principles of the neural compiler

4.6.1 Structure of the compiled neural network

How can we do in order to simulate a Pascal program on a neural network? Figure 4.6 shows
a simple example of compilation. Each variable V of the Pascal program contains a value. The
variable is initialized at the beginning of the program. Then it changes following the assignments
that are made. For each variable V', there corresponds as many neurons as there are changes in V'’s
value. All these neurons represent the values taken by V during a run of the program. At a given
step of the run, V has a given value v. The value v is contained in one of the neuron that represents
V. This neuron is connected to the input neighbors that contain values of other variables, which
have been used to compute v. The same neuron is connected with output neighbor that contain
values of other variables. The input neighbors use the value of V' to compute the new value of the
variable that they represent.

The environment in compilation means the set of variables that can be accessed from a given
point of the program. Before the execution of each instruction, the environment is represented by a
row r of neurons. This row contains as many neurons as there are variables. Each of these neurons
contains the value of the variable that it represents, at this particular moment.

An instruction is going to modify the environment, by modifying the value of some given
variables. An instruction is compiled into a neural layer that computes the modified values, from
the old values stored in the row r of neurons. The new values are stored in a row r; of neurons.
Hence the whole Pascal program is compiled into a sequence of rows r, ry, ra, ... alternated with
neural layers that compute the new values. There are as many such neural layers as there are
Pascal instructions.

4.6.2 Compilation of a Pascal Instruction

The idea of the compilation method is to translate each word of the Pascal language into a mod-
ification of a network graph of neurons. At a coarse granularity, the compilation of a program is
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a b C

Figure 4.6: Result of the compilation of the Pascal program: wvar a,b,c: integer; begin a=a+b;
c=c+b; b=a+c; end. Fach dotted line corresponds to the compilation of one instruction. The
neurons make a simple addition of their inputs (the weights are 1, the sigmoid is the identity). The
ligne 0 represents the initial environment. It encompasses three values ”a”, ”b” and ”¢” stored
in three neurons a1, by and ¢;. At line 1, the value of ”7a” has changed, it is now contained in a
new neuron as, that computes the sum of 7a” and ”b”. In order to make this sum, neuron as is
connected to neuron ay and by. The value of ”¢” changes at the next line, finally, the value of ”b”
also changes. Omne can see that the two first instructions: a:= a+b; c:=c+b can be executed in
parallel by neurons ay and ¢3. On this example, each variable is represented by two neurons during
the run of the program.

decomposed in the compilation of each instruction. Each instruction is translated into a neural
layer that is laid down, and a row of neurons that contains the environment modified by the in-
struction. So the compilation is a construction process. The compiler builds the row of neurons
that contains the initial environment, by translating the part of the parse tree where the variables
are declared. Then the compiler lays down consecutively neural layers, by compiling the program
instruction by instruction.

This idea of progressive building of the compiled neural network can be applied with a gran-
ularity smaller than a Pascal instruction. A Pascal instruction can be decomposed into words of
the Pascal language, these words are organized according to a tree data structure called parse tree
(see figure 4.7). we can associate each word of the Pascal language with a local modification of a
network graph of cells, so that the combined effect of these small modifications transforms a single
cell into a neural layer that computes what is specified by the Pascal instruction. This is done using
a system similar to the cellular encoding. The neural network will be developed during many steps.
Certain neurons will have a copy of the parse tree, and a reading head that reads a particular node
of the parse tree. They will be called reading cell rather than neuron, because their role is not
to do the computation corresponding to a neuron, but to divide, so as to create the neural layer
associated to the Pascal instruction. Each cell reads the parse tree at a different position. The
labels of the parse tree represent instructions for cell development that locally act on the cell, or on
connections of the cell. We will see that these instructions can be decomposed into a sequence of
program symbols of the cellular encoding scheme. Therefore, they will be called “macro program
symbols”. During a step of development, a cell executes the macro program symbol read by its
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reading head, and moves its reading head towards the leaves of the parse tree.

= ASSIGN
/\ IDF-AFF  BIN-OP
a + a _I/\
/\ IDF-LECT IDF-LECT
a b a b

Figure 4.7: Parse tree of instruction ”a:=a+b". On the link side: the parse tree is labeled with
words of the Pascal program. On the right, the labels are made of two parts: the first part
specifies the kind of the node, the second part is an attribute that stores the function of the node.
For example,IDF-AFF indicates that the node contains the name of a variable that is modified,
IDF-LEC: the name of a variable which is read, BIN-0P the name of a binary operator like the
addition, ASSIGN indicates that we are doing an assignment, the left sub tree must contain the
name of a variable to modify, the right sub tree contains the expression of the new value. For nodes
IDF-AFF and IDF-LEC, the attribute contains the name of the variable to modify or to read. For
BIN-0P, the attribute contains the name of the particular binary operator. The ASSIGN node does
not have particular attributes.

A cell also manages a set of internal registers. Some of them are used during the development,
while others determine the weights and the thresholds of the final neurons. Consider the problem
of the development of a neural net for compiling the Pascal instruction ”"a:=a+b". Although the
development of this instruction causes the creation of four cells, at the end of the development,
only one cell is left.

The development begins with a single cell called the ancestor cell, connected to neurons that
contain the initial values of the environment. Consider the network described on the right of
figure 4.8. At the beginning, the reading head of the ancestor cell is placed on the root of the
parse tree of the Pascal instruction, as indicated by the arrow connecting the two. Its registers are
initialized with default values. This cell will divide many times, by executing the macro-program
symbols associated to the parse tree. It will give birth to the neural network associated to the parse
tree. At the end, all the cells loose their reading head, and become finished neurons. When there
are only finished neurons, we have obtained the desired neural network. The following example
describes the compilation of a Pascal instruction. It is important to keep in mind that in the figures,
the input and output connections are ordered. The position of the connection on the circle that
represents the cell, codes the connection number.

4.6.3 Compilation of the Pascal program

At the preceding sub-section, we have shown how the parse tree of a Pascal instruction can
be interpreted as a tree labeled with macro program symbols. When these program symbols
are executed by cells, they develop a neural layer that computes what is specified by the Pascal
instruction. This method can be generalized to the whole Pascal program. The total program can be
represented by its parse tree. Figure 4.13 represents the parse tree of the Pascal program ”"program
p; var a : integer; begin read(a); write (a); end.”. The first nodes of the parse tree
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ASSIGN

IDF-AFF BIN-OP
a +

IDF-LECT IDF-LECT
a b

Figure 4.8: Development of the neural network corresponding to the Pascal instruction "a:=a+b”,
on the right side of this figure. The development begins with an ancestor cell labeled ”1” connected
to three neurons labeled ”a”, ”b” and ”c¢”. On the left side, we represent the parse tree of the
Pascal instruction. The arrow between the ancestor cell and the symbol ASSIGN of the parse tree
represents the reading head of the ancestor cell. The input and output connections are ordered.
It is the position of the arrow on the circle of the cell that codes the the connection number. For
example, the link to ”b” has number 2.

ASSIGN

IDF-AFF

d

IDF-LECT IDF-LECT
a b

Figure 4.9: Step 1, execution of the macro program symbol ASSIGN, read by the ancestor cell 717
of the preceding figure. Cell 71”7 divides into two child cells ”1” and ”2”. Both child cells inherit
the input links of the mother cell. Child 72" is connected to child ”1”. The reading head of cell
”1” now points to the node IDF-AFF and the one of cell ”2” points to the node BIN-0P

ASSIGN a () O

IDF—iJECT ID}:b—LECT ) 1

Figure 4.10: Step 2, execution of the macro program symbol IDF-AFF, read by the cell ”17. Cell
?1” deletes its first link, and moves its fourth link back in the first position. It looses its reading
head and becomes a neuron.
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ASSIGN

IDF-AFF EIN—OP

a

| IDF-LECT | | IDF-LECT]
a b

Figure 4.11: Step 3, execution of the macro program symbol BINOP read by cell ”2”. Cell 72”
divides into three cells ”2”, 73” and ”4”. Cells ”3” and ”4” inherit the input links of their mother
cell, and are connected on the output to cell 72”. Whereas cell ”2” inherits the output links of the
mother cell, looses its reading head and becomes a neuron. The sign + inside the circle indicates
that neuron ”2” makes the addition of its inputs.

ANISIEN

IDF-AFF EIN—OP

a

IDF-LECT |IDF-LECT

a D

(a)

Figure 4.12: (a) Step 4: Execution of the macro program symbol IDF-LEC, read by cell ”4”. The
cell 74” disappears, after having connected its first input neighbor to its output neighbor. (b) Step
5: Execution of the macro program symbol IDF-LEC, read by cell ”3”. The cell ”3” disappears, after
having connected its second input neighbor to its output neighbor. There are no more reading cells,
The compilation of the Pascal instruction “a:=a+b” is finished. The ancestor cell 717 is connected
to the three neurons that contain the values of the modified environment. It can start to develop
the next instruction.

are used to declare variables. They will create the first layer of neurons that contain the default
values of the variables. The following nodes of the parse tree correspond to the instructions. They
will create many layers of neurons that make the computations associated to these instructions.

Consider the starting neural network, on the right half of figure 4.14. The input pointer cell
and the output pointer cell to which the ancestor cell is linked, do not execute any macro program
symbols. At the end of the development, the input pointer cell points to the input units of the
network, and the output pointer cell points to the output units. The development of the network is
reported in appendix C.1. The graph of cells reaches a size of 6 cells, at the end only two neurons
are left.
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PRO‘GRAM
DECIa

TYPE-SIMPLE SEMI-COL

/\
READ WRITE

IDF—‘AFFa IDF-LEC a

Figure 4.13: The parse tree of the Pascal Program: ”program p; var a : integer; begin
read(a); write (a); end.” This parse tree does not have the usual form. It contains nodes for
the declaration of variables, and the labels are not organized in a standard way. This particular
form helps the implementation of the neural compiler. The appendix contains a BNF grammar
that describes the form of these parse trees.

DECIa

TYPE-SIMPLE SEMI-COL

/\
READ WRITE

IDF—‘AFFa IDF-LEC a

Figure 4.14: Development of the neural network that simulates the Pascal program: "program p;
var a : integer; begin write (a); end.”, on the left half of this figure. The development
begins with an ancestor cell labeled ”1” and represented as a circle. The ancestor cell is connected
to an input pointer cell (box labeled ”input”) and an output pointer cell (box labeled "output”).
On the left, we represent the parse tree of the Pascal program. The arrow between the ancestor
cell and the parse tree represents the reading head of the ancestor cell.

4.7 The macro program symbols

We have seen at the preceding section, the method of neural compilation and, as an illustrative
example, the compilation of a small Pascal program. The method is based on the association of
each label of the parse tree with a macro program symbol. We call each macro program symbol
with the name of the associated label. A macro program symbol m replaces the cell ¢ that executes
it, by a graph d of reading cells and neurons. This graph is connected to the the neighbors of c.
The term ”neighbor” refers to two cells connected either with a direct connection or, indirectly,
through special neurons called pointer neurons. The graph d must specify where the reading cells
are going to read in the parse tree. In fact the reading cell will read most of the time a child node
of the node labeled by m. Since each node is read by exactly one cell, the number of reading cells
of d is equal to the number of child nodes. Nevertheless, it can happen that certain reading cells
are blocked, and finish their development later. In this case, the graph d contains more reading
cells as there are child nodes.

The parse tree that we use are described by a tree grammar in appendix C.6. This tree grammar
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details the list of macro program symbols and how they are combined. In the following of this
chapter, we will refer to the non terminal of this grammar. We classify two kinds of macro program
symbols, the macro program symbols of the type "expression”, they correspond to labels generated
using the non terminal <expr>, and produce neurons that are used to compute values. And the
macro program symbols of the type "modification of environment” that are used to manage the
environment.

In this section, we are going to present the macro program symbols that have not been illustrated
in the exemple shown in the preceding section. We will put forward an invariant pattern which is
the rewriting context. When a cell is being rewritten by a macro program symbol, its neighbor cells
are always of the same type, in the same number. If the environment contains n variables, the cell
will have n 4+ 2 input links, and two output links. The first input (resp. output) link points to the
input (resp. output) pointer cell. The second input link is connected to a cell called ”start cell”,
the last n input links point to neurons that contain the values of the variables. The second output
links points to a cell labeled ”"next”. The "next” cell’s role is to connect the graph generated by
the macro program symbol, with the rest of the network graph. If the macro program symbol is of
the type "expression”, the "next” cell is a neuron, else it is a reading cell.

The first macro program symbol executed during the compilation of a program is the macro
program symbol PROGRAM (figure C.1). This macro program symbol creates the invariant pattern.
By recurrence, this invariant is kept afterwards because the reading cells generated by each macro
program symbol have their neighbors that verify the invariant pattern.

How can we associate a macro program symbol to each label of the parse tree? 1) We check
the invariant pattern, 2) we try to minimize the number of neurons that are created and 3) we
make sure that the macro program symbol does the desired job. In the case of a macro program
symbol of the type expression, the generated sub-network must compute the right value, in the
case of a macro program symbol of the type "modification of the environment”, we check that the
modification is correct.

From time to time we use cellular encoding in our description. In the practical implementation,
the macro program symbols are decomposed in program symbols. For each macro program symbol,
these decompositions are reported in the appendix. The program symbols of cellular encoding
implement small modifications of graph. For example, they never create more than two cells
(except the SPLIT) and they have a single parameter. In the contrary, the macro program symbols
create a lot of cells, connected in a complex manner. The decomposition of macro program symbols
into program symbols is an efficient way of implementing macro program symbols. It is a simple,
and quick way. It allows to summerize all the macro program symbols in two pages of expression
with parenthesis, in the appendix C.7 and C.8. During the compilation, it often happens that some
cells, after the execution of a macro program symbol, block their development until all their input
neighbors are neurons. When they unblock, they go to execute a piece of cellular encoding in order
to do a certain graph transformation.

4.7.1 Kernel of the Pascal

We consider in this sub-section, programs that are written with a reduced instruction set: the kernel
of the Pascal, that allows to write only very simple programs. We consider for the moment only
scalar variables, we will see arrays later. The macro program symbols DECL are in a string. The
effect of each DECL macro program symbols is to add an input link to the ancestor cell. This link is
connected to a cell that is itself connected to the "start” cell with a weight 0 (figure C.2 and C.3).
This last connection ensures that the neurons corresponding to the variable will be activated, and
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will start the network. We suppose that each variable is initialized with the value 0.

The sequential execution is implemented using a string of reading cells, associated to a list of
instructions. The cell of the string at position ¢ reads the sub parse tree of instruction number ¢
of the list. On figure C.4, the input neighbors of cell ”1” are neurons that contain the values of
the environment. The cell at position ¢z + 1 has a single input neighbor which is the cell number .
The cell number 2 must delay its development until cell number 1 has finished to develop the sub-
network that modifies the environment according to instruction 1. The cell 2 blocks its development
until all the input neighbors cell have became neurons.

The assignment is the most simple example of instruction. In order to understand figure 4.9,
recall that each variable corresponds to an input connection number. The storage of a value in
a variable is done by connecting the neuron that contains the value to the ancestor cell. The
connection must have the right number, in order to store the value in the right variable. The
management of the connection number is done by the macro program symbol IDF-AFF, figure 4.10.
Similarly, in order to read the content of a variable, it is enough to know its link number and to
connect the neuron that contains the value of the variable to the neuron that needs this value.

The input units of the neural net correspond to the values read during the execution of the
Pascal program. If in the Pascal program the instruction read a appears, there will be one input
unit created. By setting the initial activity of this input unit to v, the variable a will be initialized
with ». The output units correspond to the values written during the execution of the Pascal
program. If the instruction write a appears, there will be one output unit created. Each time the
instruction write a is executed, the value of this output unit will be the value of a. A neuron is an
input unit if it is connected to the input pointer cell. It is an output unit if it is connected to the
output pointer cell. The macro program symbol READ adds a connection from the input pointer cell
to the neuron that represents the variable, and the macro program symbol WRITE adds a connection
between the neuron that represents the variable and the output pointer cell (figure C.5 and C.8).

The binary arithmetic operator (figure 4.11) are translated in a tree of neurons, each neuron
implements a particular arithmetic operation using a particular sigmoid. Unary operators are
implemented in the same way, only two cells are created instead of three. The first cell will develop
the sub network corresponding to the sub expression to which the unary operator is applied. The
second one will place its reading head on the cellular code that corresponds to the unary operator.
This cellular code describes how to develop a sub-network that computes the unary operator.

Until now, the macro program symbols were rewriting one cell into less than 3 cells. We are
going to present a new kind of macro program symbols. The IF rewrites a cell into a graph of cells
whose size is proportional to the size of the environment. This represents a step in the complexity
of the rewriting. This new class of macro program symbols can be implemented using sub-sites
and the SPLIT program symbol. The Pascal line if a then b else c can be translated by the
boolean formula: (a AND b) OR ( (NOT a) AND c) or by the neuronal formula: (a EAND b) AOR
( (NOT a) EAND c). The TRUE value is coded on 1, and the FALSE is coded on -1. A logical NOT
can be realised with a single neuron that has a —1 weight. On figure C.12, we can see a layer of 6
neurons EAND, divided into two sub layers of three neurons. These sub layers allow to direct the flow
of data in the environment towards either the sub-network that computes the body of the THEN or
the sub-network that computes the body of the ELSE. Recall that the neuron EAND (extended AND)
has a special dynamic. It is an AND for integers, whose two inputs are a boolean and an integer.
If the boolean is FALSE, the neuron EAND outputs nothing. If the boolean is TRUE, it outputs the
integer. After that, a neuron AOR arithmetic OR, retrieves either the output environment of the
THEN sub-network, or the output environment from the ELSE subnetwork, and transmits it to the
instruction that follows the “if then else”. The AOR also have a special dynamic. They update their
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activity as soon as one of their input neighbor has changed its activity. The dynamics of AOR and
EAND are described at section 4.3.2.

When a constant is needed in a computation, this constant is stored in the bias of a neuron n
whose sigmoid is the identity. This neuron is linked to the ”start” cell that will control its activity,
that is to say, at what time, and how many times, the neuron n sends the constant to other neurons
that need it.

The instruction while <condition> do <body> corresponds to a recurrent neural network in
which an infinite loop of computation can take place using a finite memory. No memory allocation
is done inside the body of a loop. The flow of activity enters the loop through a layer of AOR
neurons. This layer is a buffer. Then the flow of activity goes through a network that compute
the condition of the while. Following the value of the condition, the flow of activities goes out
of the loop or is sent back in the body of the loop. In the last case, it goes again through the
buffer of neuron AOR, after having passed through a layer of neurons which act as a synchronizer.
(figure C.16). The synchronization is done to avoid that a given neuron in the body of the loop
updates its activity two times, whereas in the mean time, another neuron has not updated it at
all. In the case of two encapsulated loops, the neurons corresponding to the inner loop come back
to their initial state when the computations of the inner loop are finished. They are ready to start
another loop if the outer loop commands it. The neuron ”start” is useful especially in the body
of a loop. It is considered as as local variable, and therefore, there is a copy of it in the buffer
of neurons AOR. It is connected to all the neurons that contain constants used in the body of the
loop, and activate these neurons at each loop iteration. This is essential for the neural network
computations.

The compilation of the REPEAT is similar to the WHILE. The computation of the condition is
done at the end, instead of at the beginning.

4.7.2 Procedures and functions

We are going to explain here how to compile procedures and functions. We will use an example of
Pascal Program in order to illustrate how to pass parameters, how to call, and how to return from
a procedure or a function. Here is the program:

program proc_func

Var glob: integer (* global variablex)

Procedure proc2(paf2: integer) (*formal parameter *)

var loc2: integer; (*variable local to procedure proc2#)
begin

end;

Procedure proci(pafl: integer) (*formal parameter *)

var locl: integer; (*variable local to procedure procil#)
begin
proc2(pef2); (*parameter *)
end; (*passed by value to proc2*)

BEGIN (*body of the main program*)
proci(pefl) (*parameter *)

END. (*passed by value to procix)
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We will use a slightly modified invariant pattern, where the environment contains three variables.
The first variable is global, the second is a parameter passed to a procedure, the third is one is a
local variable of a procedure.

In all the figures, the first output link of cell 71”7 points to the output pointer cell and the
second link points to "next” cell. If, sometimes, the inverse is represented, it is only for a purpose
of clarity in the representation. It allows to have a planar graph.

Let us imagine that the context in which we are, at a certain point of the parse tree, is the
moment where procl is calling proc2. The environment on the neuronal side encompasses the
global variable, that is, the input pointer cell, the “start” cell, plus the Pascal variable glob. The
environment also contains the variables that are local to procl, pefi and locl. We want to
translate the calling of procedure proc2. The first thing we do is to suppress the local variables
of procl, from the environment. This is done by the macro program symbol CALL-P described
figure C.17.

Then we develop the parameters passed by value from proc1 to proc2 (macro program symbol
COMMA figure C.19). Finally, the ancestor cell will develop the body of proc2. The body of proc2
begins with the macro program symbol PROCEDURE that inserts a cell. When the body of the
procedure proc2 will be translated, this cell will pop the local variables of proc2 (cellular code POP
figure C.22). After that, a cell (inserted by a CALL-P) executes a cellular code RESTORE that allows
to recover the local variables of proci. It is not obligatory to put aside (using cut and restore) the
local variables of procl. The interest of it, is that each variable can be assigned a fixed connection
number.

The macro program symbols CALL-P, CALL-F and POP use two parameters: The parameter
GLOBAL is the number of global variables in the environment. The parameter LOCAL is the number
of local variables. The macro program symbol CALL-F is simpler than CALL-P. It does not need to
create a cell that will restore the environment of the calling procedure, because a function does not
return an environment, but simply a value. The macro program symbol FUNCTION has no effect. It
is not necessary to create a cell that will pop the environment of the function. The macro-program
symbol RETURN also has a null effect.

4.7.3 The arrays

The arrays are a very important data structure in a programming language like Pascal. We had
to use a special kind of neurons in order to be able to handle arrays. These neurons are called
pointer neurons. They are used only to record the array data structure in a neural tree. The
pointer neurons are nodes of the neural tree. The data are the leaves of the neural tree. The use
of pointer neurons ensures that the ancestor cell possesses exactly one input link per variable. It
allows to handle the variables separately, when one want to read or to modify them. Using pointer
neurons, one can represent array with many dimensions. The invariant must be extended. It now
contains pointer neurons. The figure C.25 uses an example of extended invariant, that represents
an array 1D with two elements. Figure C.26 uses a neural tree of depth 2 to represent an array
with 2 dimensions. A tree of depth d can represent an array with d dimensions. The use of many
layers of pointer neurons for storing an array with many dimensions is necessary if one want to be
able to handle each column separately, in each dimension.

When an array variable is declared, the structure of neural tree is created for the first time.
For this purpose, the type of a variable is coded in the parse tree as a string of macro program
symbols TYPE-ARRAY (see figure C.27). Fach of these macro program symbol is associated to one
dimension of the array, and creates one layer of pointer neurons, in the neural tree. Each macro
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program symbol TYPE-ARRAY has a single parameter which is the number of columns along the
dimension corresponding to that macro program symbol. The string of TYPE-ARRAY is ended by a
macro program symbol TYPE-SIMPLE which was already described in figure C.3.

Many macro program symbols must handle neural trees. The must make a recurrent exploration
of the neural trees. For example, the IF, WHILE, X-AOR, X-SYNC are macro program symbol that
must re-build the neurons containing the current environment.

Since we do not know the depth of the tree, the only way is to process the tree recursively. It is
not a problem, since the cellular encoding allows recursive development. We use a program symbol
BPN x that tests whether the neighbor which number is z id a pointer neuron, or not. Depending
on the result of the test, a different cellular code will be executed. In one case a recursive call is
done, in the other case, a terminal processing is done.

The reading of an array, like a:=t[i1, i2] is translated by an unusual parse tree. The parse
tree used for t[i1, i2] is indicated figure C.29. The reading of an array is interpreted as the
result of a function 1lect-index written in cellular code that has d + 1 inputs for an array of d
dimensions. The inputs are the d indices plus the name of the array. The function 1lect-index
returns the value read in the array.

The writing of an array like for example t[i1, i12]:=v is translated in a parse tree of the
same kind as in the case of the reading. It is indicated figure C.30. The writing of an array of d
dimensions is interpreted as the result of a function 1affect-index written in cellular code, with
d 4+ 2 inputs and one output that is an array. The inputs are the d indices, the value to assign,
the name of the array. The functionlaffect-index returns the modified array after the writing.
One can see on the figures that the neural networks developed, either for reading or writing, are
big. The number of neurons is proportional to the number of elements in the array. But, if the
indices used to read or to write the array can be known at compilation time, the complexity of the
developed neural net can be reduced. The added neural net has a fixed size that does not depend
on the number of elements in the array.

4.7.4 The enhanced Pascal

In this sub-section, we describe the compilation of new instruction that have been added to the
standard Pascal. These instructions exploit the interest of a neural compiler. One has added the
instruction CALLGEN, that allows to call a function defined by its cellular code. At the beginning of
the Pascal program, there must be an instruction #include <file-name> that indicates the name
of a file where the cellular codes of the functions to be called are stored. The syntax of the CALLGEN
is the following: <idf0> := CALLGEN("code-name", <idf1>, .., <idfk>). the result of the call
will be a value assigned to the variable idf0. The code name indicates the particular cellular code
of the called function. idf1, .. idfk are the parameter passed to the function. The macro
program symbol CALLGEN has the same effect as CALL-F except that the body of the called function
is not specified by a parse tree, but by a cellular code that has been defined before the compilation
takes place. The CALLGEN includes a neural layer that computes the called function. The neurons
that contain the values of idf1, ..., idf0 are connected to the input of the included neural
network. The output of the included neural network is connected to the neurons representing the
variable idf0. Before executing the body of the CALLGEN, all the neurons that contain the value of
the environment are suppressed. The philosophy of the CALLGEN is to define a number of functions
that can be used in various context, or to include some neural building blocks, that have been
trained. The neural networks developed using a CALLGEN never need global variables. Hence it is
simpler to suppress them before the calling, in a systematic way. Exemple of predefined functions
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in the appendix C.9 are:
o function gauche returns the left part of an array

e function droite returns the right part of an array

function concat allows to merge two arrays.

function int-to-array adds a dimension to an array

function array-to-int suppresses a dimension to an array
e function random initialize an array with random values in {—1,0,1}

One of the main goal of the compiler is automatic parallelization of a program written with a
divide and conquer strategy. In this strategy, a problem of size n is divided into two sub problems
of size n/2 and then into 4 sub-problems of size n/4 and so on until problem of size 1. One uses
the array function gauche and droite in order to divide the data of an array into two equal part.
One share the columns in the first dimension into two sets of columns of equal size. If the number
of columns is odd, one of the sub array has one column more than the other.

We need to stop the division process when the size of the problem is 1. One must test during
the development of the neural net, when the number of columns of an array is 1. Depending on
the result of the test, a different part of the parse tree must be developed. In one case, the part
of the parse tree corresponding to the decomposition must be developed. In the other case, the
part of the parse tree corresponding to the problem of size one must be developed. We use a static
IF. The syntax is the same as the normal IF, IF THEN, ELSE are replaced by #IF #THEN, #ELSE.
Nevertheless the condition of the #IF is always the same expression. This expression is written
t=1, where { is an array. The macro program symbols #IF and #THEN test whether the array ¢ has
one or more than one column, in the first dimension. If it is the case, the ancestor cell goes to read
the left sub-tree of the #ELSE, if not, it goes to read the right sub tree.

4.8 Results of the compilation

In this section, we propose a few examples of compilation that illustrate the principles of the
compiler and its interest. In order to run a compiled network, on must initialize the input unit with
the value read during the execution of the Pascal program. The neural net makes its computation
with a dynamic which is halfway between parallel and sequential. When the network is stable,
the computation is finished. The output units contain the values that are written by the Pascal
program.

4.8.1 Compilation of a standard Pascal program

Figure 4.8.1 shows a network compiled with the following program:

program p;
type tab = array [0..7] of integer;
var t : tab; i, j, max, aux : integer;
begin

read (t);

while 1 < 7 do

begin
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Figure 4.16: A neural net for computing Fibonacci number, developed until depth 6.

j := 1+ 1;max := 1i;
while j <= 7 do
begin
if t[max] < t[j] then max := j £i;
ji= o+
end;
aux := t[il;t[i]
t[max] := aux; i :
end;
write (t);
end.

t [max] ;
i+ 1;

There are 9 input units, the ”start” cell plus the 8 values to be sorted. There are 8 output
unit that correspond to the instruction write(t). Recurrent connections are drawn using three
segments. Clearly one can see the two encapsulated loops that are mapped on two recursive sets of
connections. Figure 4.16 shows a neural net that has been compiled with the following program:

program Fibonacci;
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Figure 4.17: An hybrid neural network that simulates the behavior of an animal

var resul: integer; a : integer;
function fib(n: integer):integer;
begin
if (n<=1) then resul := 1
else resul := fib(n-1)+fib(n-2) fi;
return (resul);
end;
begin
read (a); write (fib (a));
end.

This example illustrates the fact that if the program to be compiled uses recursive calls, the
depth of recursion must be bounded, before the compilation begins. Here the depth of recursion
has been bounded by 6. Hence this net can compute £ib(i) i<6. In fact the number 6 is the value
used to initialize the life register of the ancestor cell.

4.8.2 How to use the CALLGEN instruction.

We have added to the Pascal language two instructions: CALLGEN and #include that allow to
include in the final network, smaller networks whose weights have been found using a learning
algorithm. The code of these nets are stored in a file which name is indicated by the instruction
#include. We now show an example of Pascal program that uses the CALLGEN instruction. The
compiled net is shown in figure 4.17.

#include "animal.a"
program animal;
type tab=ARRAY[0..19] of integer; tab2=ARRAY[0..9] of integer;

var pixel: tab; feature: tab2; position, is-bad, move: integer;

function opposite(position: integer):integer;
begin return(l-position); end;

begin
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Figure 4.18: A neural net for the parallel sorting of 8 integers.

read(pixel); feature:=CALLGEN("retine",pixel);
position:=CALLGEN("position_object",feature);
is-bad:=CALLGEN("predator",feature);
if(is-bad=1) then move:=opposite(position)
else move:=0 fi;
write (CALLGEN("motor" ,move));

end.

In the file animal.a are stored the cellular codes of different layered neural networks. The net-
work retine inputs some pixels, and outputs alist of relevant features. The network position-object
determines from these features, the position of an object, if an object lies in the visual field. The
neural net predator determines whether the object is a predator animal. The neural net motor
commands the muscles of the legs. The whole compiled neural net simulates the behavior of an
animal in front of a predator. The input units are the pixels, and the output units are the neurons
of the leg muscles. This neural net can be stored in a library, in order to be included in a bigger
neural network. This example illustrates how easy it is to interface the Pascal language with pre-
defined neural nets. The compiled neural net encompasses many neural layers, plus one part that
is purely symbolic. This is the part that corresponds to the instruction If. So the compiler not
only links together various neural networks, but it allows to make symbolic computation from the
outputs of the neural building blocks, and it can manage the input/output.

4.8.3 How to use the #IF instruction

We have added to the Pascal language an instruction #IF #THEN #ELSE that allows to test a
condition at compile time. The tested condition always has the same form. One test whether the
first column of an array has more than one column. This instruction allows automatic parallelization
of a program written with a ”divide and conquer” strategy. In this strategy, a problem of size n
is decomposed into two sub problems of size n/2 and then four problems of size n/4. We use the
instruction #IF with some other predefined functions, that enrich the array data structure. for
exemple gauche and droite extract the left part and the right part of an array, int-to-array and
array-to-int add or suppress a dimension. We now report an example of Pascal program that
uses the instruction #IF The compiled net is shown figure 4.18
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#include "array.a"
program merge sort;
const infini=10000; type tab = ARRAY [0..7] of integer; var w : tab;

function merge(t: tab; n: integer; u: tab; m: integer): tab;
var v: tab; i, j, a, b: integer;
begin
v:=CALLGEN("concat", t, u); a:=t[0]; b:=ul0];
while(i+j<n+m) do
begin
if(a<b) then
begin v[i+jl:=a;i:=i+1; if (i<n) then a:=t[i] else a:=infini £i; end
else
begin v[i+jl:=b;j:=j+1; if (j<m) then b:=ul[j] else b:=infini fi; end
fi;
end;
return(v);
end;

function sort(t: tab; n: integer) : tab;
begin #IF t=1
#THEN return(t)
#ELSE return(merge(sort(CALLGEN("gauche",t),n DIV 2), n DIV 2,
sort (CALLGEN("droite",t),n-(n DIV 2)), n-(n DIV 2)))
#FI;
end;

begin read(w); write(sort(w,8)); end.

Function fusion is written in standard Pascal. Function sort uses the enhanced Pascal in order
to implement the ”divide and conquer” strategy. The file array.a contains the library of the
cellular codes that allow to compute the function manipulating arrays. The compiled neural net
has 9 inputs: the start cells plus 8 integers to sort. It has 8 outputs that show the sorted list of
the 8 integers. The structure of the net can be understood. The first layer of recursive neural nets
outputs 4 sorted lists of two integers each. The second layer outputs two sorted lists of four integers.
Although recursive, the function sort can be compiled on a finite graph, because it is applied to
a finite array of integers. Since we have used the divide and conquer strategy, the network sorts
n integers in a time which is O(n) (if the neuron can do their computations in parallel). We have
also compiled many other programs using the divide and conquer strategy. The convolution, the
matrix product, the maximum of an integer list, are programs that are compiled on a neural net
able to do the job in a time O(In(n)).

4.9 Application of the compiler

JaNNeT is a process based on a new paradigm: Automatic building of neural network using an
algorithmic description of the problem to be solved. This paradigm is at the exact opposite of the
existing trend which present neural networks as machine that learns by themselves.

We are now going to show that JaNNeT can reproduce and even improve three kinds of com-
pilation. JaNNeT is therefore a process able to cumulate the interest of these three compilations.
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4.9.1 Neural network design

The interest of a language for describing neural networks like SESAME([19]) is to facilitate the
design of large and complex neural networks. These languages propose to define some ”building
block” neural networks. and then to put them together in order to build more complex neural
networks. The latter can again be composed, and so on... This hierarchical design is very practical.
The instruction CALLGEN allows to achieve the same effect with JaNNeT. When it compiles a neural
net, JaNNeT produces its cellular code. This cellular code can be stored in a file, and called using
CALLGEN, so as to be included in a bigger neural network.

This technic allows a modular compilation, from the compilation point of view. It permit a
hierarchical design, from the neural network design point of view. But JaNNeT goes further than
the language of description like SESAME. JaNNel gives the possibility to combine neural building
blocks without mentioning the physical connections between the network. The specification is made
on a logical, soft level. A human being understand much better a soft description where it is enough
to describe the logical step of a computation, rather than an intricated set of connections. JaNNeT
allows the design of huge neural networks. In the near future, machines with millions of neurons
will be available, and the advantages of a logical description will become obvious. Moreover, the
JaNNeT compiler produces a graphical representation of the neural net that takes into account the
regularities of the graph. To our knowledge, this is the very first software that can do that.

4.9.2 Tool for the design of hybrid systems

JaNNeT is a process that can compile a Pascal program towards a neural network. If we would
like to compile a base of rules used in expert systems (artificial intelligence), towards a neural
network, we just need to write the base of rules in Pascal, as well as the inference motor. Hence
JaNNeT includes the compiler of base of rules, used in the so called hybrid systems, which goal is to
combine artificial intelligence and neural networks. Nevertheless, JaNNeT can be used for the design
of hybrid system in a different way. The compiler can put in the same model of neural networks,
algorithmic knowledge, (that knowledge is compiled) and "fuzzy knowledge”, (that one is learned
in a fixed size neural networks). The compiler can build naive hybrid systems that encompass two
layers. The first layer is learned and it is sub symbolic. It computes symbols by grounding them on
fuzzy and distributed data. The second layer is compiled, it makes a computation on these symbols.
The resulting hybrid system is said to be naive because the symbols are not linked together.

4.9.3 Automatic parallelization

The numerical examples shows that JaNNeT can automatically parallelize problems like sorting
or matrix-vector product, matrix-matrix product, vector-vector product. JaNNeT can parallelize
algorithms written with a ”divide and conquer” strategy. These kind of algorithms divide a problem
into two sub-problems of half size. Each of these sub-problems is again divided into two sub-sub-
problems. etc... until a problem of size one is reached, that can be solved in a constant time. Since
all the problems of size one are independent, they can be solved at the same time. There lies the
potential for parallelism.

In its actual version, JaNNeT cannot be considered as an automatic parallelizer, because it does
not produce instructions for a particular parallel machine. It produces a neural network, which is
a representation adapted to a parallel computer, because a neural network is an intrinsic parallel
model. The final step consists in mapping this network on the architecture of a parallel machine.
This step must take into account the size of the memory of each processor, the communications
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between processors, and the arithmetic precision of the computation.

One cannot yet claim that JaNNeT is a full automatic parallelizer. Nevertheless, the neural
networks produced by JaNNeT have a 3D shape. One of the dimension of this structure represents
the time. It is possible to project the network along this dimension on a 2D array of processors, so
as to map the neural net on a 2D array of processors.

JaNNeT is also not a 7full” parallelizer, because the program must be written using a divide and
conquer strategy. But most of the algorithm can be programmed in that way, and the advantage
compared to the traditional approach described in [26] is that the user does not need to add in his
program indications about where (on which processor) to store the data.



Part II: Use of Cellular Encoding
with the Genetic Algorithm

In the second part of this thesis, we will study neural network synthesis using the genetic algorithm
(GA) and cellular encoding (CE). We suppose that the reader knows cellular encoding. The first
chapter of this second part describes simulation done with the GA alone, the use of a learning will
be introduced in the next chapters.
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Chapter 5

Genetic synthesis of Neural
Networks without learning

5.1 Genetic Programming

In the introduction of this thesis, we have presented the GA as an optimization procedure that
manipulates codes called chromosomes. We presented the basic case where the chromosomes used
are fixed length bit strings. It is possible to use any kind of structures for the chromosomes, provided
that two operators of mutation and recombination are defined on the structures. Recombination
creates a new offspring chromosome by mixing information coming from two parent chromosomes.
Mutation slightly modifies a chromosome. Recombination allows an exchange of information be-
tween chromosomes, mutation performs a kind of random hill-climbing. The actual trend in the
GA community is to put as much as possible information in the structure of the chromosome and
in the operators, to ensures that the chromosomes generated by the GA are always valid, i.e. their
syntax is correct and they can be evaluated, The structure of the chromosome should contain the
syntactical information, so that the GA does not have to bother about syntax. Koza has shown
that the tree data structure is an eflicient encoding which can be effectively recombined by genetic
operators. Genelic Programming has been defined by Koza as a way of evolving LISP computer
programs with a genetic algorithm [16]. In Koza’s Genetic Programming paradigm the individuals
in the population are LISP S-expressions which can be depicted graphically as rooted, point-labeled
trees with ordered branches. Since our chromosomes (grammar-trees) have exactly the same struc-
ture, the same approach is used for generating and recombing grammar trees. The set of alleles is
the set of cell program-symbols that label the tree, the search space is the hyperspace of all possible
labeled trees. During crossover, a sub-tree is cut from one parent tree and replaces a subtree from
the other parent tree; the result is an offspring tree. The subtrees which are exchanged during
recombination are randomly selected. Figure 5.1 gives an example of cross-over.

We used a Genetic Programming algorithm but with some differences from Koza. We do not
stop the GA after a given number of generations. Instead we stop when elapsed time is greater than
a variable T. We use a mutation rate ¢,, = 0.005, each allele has a probability ¢,, to be mutated
into another allele of the same arity. We found that mutation consistently improves the Genetic
search. Koza considers the depth of the individuals in the initial population. We take into account
only the number of nodes and generate an initial population of chromosomes having exactly the
same number of nodes ly. When the exchange of sub-tree is done during cross-over, the size of
the tree is not allowed to increase above l,,,. We have designed a sequential genetic algorithm
that uses local selection and mating based on a geographical lay out of individuals. Individuals
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Figure 5.1: An illustration of recombination between two trees. The second order neural network
is developed from the resulting offspring, where the life parameter of the ancestor cell is initialized
to 2. The father tree encode an OR neural net. The selected subtree to be cut is encircled. The
mother tree encodes a XOR neural net. The dotted line indicates the subtree which is to be pruned
and replaced. The resulting offspring encodes a general solution for the parity problem.

reside on a 2-D grid and mate with the best chromosome found during a random walk in the
neighborhood. This implements isolation by distance [4], such that different local regions on the
grid may display local trends in terms of evolutionary development. Individuals are deleted by using
an approximation of the scheme of GENITOR [31]. We select randomly 50 individuals among the
population, and delete the worse individual in this sample, instead of deleting the worse individual
in the whole population. The population size p and the number of generations g are not fixed.
Rather, the GA deduces p and g using a function that yields the expected number of generations
given a population size (¢ = p/10 in our simulation) and the total allocated cPU time. The GA is
a steady state model which uses the following strategy to decide when to create a new individual
and when to delete an individual from the current population. The GA evaluates the average time
taken for the evaluation of one chromosome. It then computes the number of generations that could
still be processed, keeping the current population size p. If it is higher than p/10 then it creates an
individual, else it deletes an individual. Using this strategy, when the allotted computation time
has elapsed the final population size p and number of generation g will be such that ¢ = p/10.
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Each time a new individual is created and evaluated with a time ¢ the average evaluation time
is updated using {4y = (p* lawg +1)/(p + 1). Since the average evaluation time increases along
the generations, the number of individuals in the population decreases. Thus, the population size
can dynamically adapt to the change in the amount of time required for fitness evaluation. In the
early generations, the chromosomes are quickly evaluated and a large number of solutions can be
explored. In the last generations, the evaluation can become, as we will see, very expensive, and
only a few chromosomes stay in competition.

5.2 The fitness

A very important task in genetic neural networks is the fitness used to evaluate a neural network.
This section describes the fitness used to evaluate a neural network.

Let us define f;,, as the boolean function to be computed by the neural network, and f,, the
boolean function which is actually computed by the neural network. The GA produces tree-shaped
grammars which always develop a valid phenotype, that is, a connected graph of neurons. Now,
the input and output units must be specified. Fig. 2.1 shows the initial graph. The input and
output pointer cells are pointers that define the set of input and output cells. At the end of the
rewriting steps, the ordered output links of the input pointer cell define an order in the input units.
Similarly, the ordered input links of the output pointer cell define an order in the output units. So
the number of input and output units is also encoded in the chromosome. The advantage is that
the code is self consistent, it can be decoded without knowing what is the dimension of the input
and the output space of the target mapping. Because of self-consistency, the code can be use as
a building-block, and concatenated in another code to include the corresponding neural net, for a
purpose of modularity. If the number of input or output units is not that which is expected, the
boolean function f,, which is computed by the neural network can still be defined as follows: if
there are too many visible units, be they input or output units, the supernumerary neurons are
deleted in decreasing order; if there are too few, the lower part of the input vector is entered and
the upper undefined components of the output vector are set to 0.

The following task is to define a measure of how close f,, is from the target function fi,,.
Instead of the usual mean squared error, a metric based on information theory is used. The reason
why the fitness is based on information is the following. An information based measure is smoother
in relation with the natural topology on labeled trees defined as follow: the neighbors of a given
tree are found by removing adding, or changing a node. Let us give a concrete short example of
the kind of smoothness induced by information theory. Consider a tree ¢ that develops a neural
net which computes the complement of f;,,.. Suppose that the output space is {0,1}. In order to
get the right mapping, one has to add a single neuron that does a logical NOT. Adding a branch
to the tree ¢, it is possible to build a tree ¢’ that adds this neuron. With respect to the preceding
topology ¢ and ¢’ are near. A fitness based on mean squared error would give the lowest mark to ¢
and the highest to ¢. Although there is a lot of useful information in ¢, ¢ would have no hope to
reproduce, and all this information would be lost. A fitness based on information gives the same
mark to ¢ and ¢'.

Here is a short definition of the information and the mutual information. Consider a finite set
FE with a probability density d and two random variables X, Y in F, with probability density pd
and ¢gd, The information of X is:

1(X) = [ elp(@)d(@)ie(u) = urlog(u)
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The mutual information between X and Y is:
Y
HX,Y:/ ————)p(z)d(z)q(y)d(y
x)= [ e Bt aaaas)ata)
The following holds:
0<HX,Y)SI(Y)HX,)Y)=1(Y)+=3g: F — E;pRq(z,y) # 0=y = g(z)

We now show how to use information theory in order to define a fitness. First, let us assume
that the output space is {0,1}. Consider a random vector V in the input space, with a uniform
probability density. The fitness measure is defined by:

H(fnn(‘[)7 ftar("[))
I(ftar(v))

H(fun(V), fitar(V)) can be seen as the information brought by f.. on fi.,. We divide it by
I( ftar(V)) in order to get a fitness between 0 and 1. A mathematical analysis shows that when
the fitness reaches the value of 1 the neural net produces the right output (if not it produces the
complement).

If now the output space is {0, 1}” we apply the preceding approach to each of of the p components
and make the average of the p resulting fitnesses.

Finally let us consider a family of functions which are assumed to share the same type of
algorithm. We call fZ a member of this family, where L indexes the size of the problem and is
stored as the initial value of the life register. For each L, L. = 1,..., L4, a neural net Ny, develops

7(f'rm7 fta'r) =

and computes an approximation fZ of the target fZ . The total ﬁtness is:

Lma.r

max E 7 nnvftar (51)

Experiments show that individuals are very bad during the first generations. The neural network
N7 has a poor fitness and the neural networks Ny for L > 1 have a fitness 0. Hence, it is not
necessary to develop the neural networks Ny, for L > 1 in the early generations. The following rule
decides exactly when it is necessary to develop the neural network Nj, and then N3 and so on,
until Np, .

Developing Rule: If Ny, Ny, ..., Np have already been developed, then, continue
to develop Np4q if Np’s fitness is greater than a given threshold r. If L > L4, stop
the development.

The threshold r is a parameter to fix, according to the particular application. With this rule,
in the early generations, only one or two networks are developed. Whereas in the last generations,
up to L4, neural networks are developed, thus time is saved. Since the size of Ny is also more
than L times bigger than the size of Ny, for L = 1,2,..., L4z, the evaluation of the fitness can
last Ligz * (Lpaz +1)/2 times longer. We used L4, = 50 for the parity, thus, the ratio can be up
to 2500. The developing rule has another interest: Since each term in the sum lies between 0 and
1, the total sum lies between 0 and L,,,,. With the developing rule, only the first terms from the
Lyar terms are summed. If the threshold r is near 1, The developing rule says that the algorithm
continue to develop the following network only if the current one does the right mapping. Finally,
if the fitness lies between Lg and Lg 4 1, it means that the Lg first networks do the right mapping,
and the Lo + 1** one is not yet correct. So the fitness can be clearly interpreted to tell how far the
problem as been solved.
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5.3 Simulation with the parity

Objective:

Terminal set:
Function set:
Fitness cases:

Raw fitness

of one Neural Net
Standardized fitness
of one Neural net
Standardized fitness
Parameters:

Success Predicate:

Find the CE of a neural network family that computes the parity of an arbitrary large size
SETBIAS 0 SETBIAS 1

PAR SEQ WAIT VAL- REC

Random patterns of L + 1 bit to input in the neural net Nz. the number of fitness cases is
determined by the GA

The mutual information between the function computed by the neural net

and the target function

raw fitness divided by the information of the target function

It ranges between 0 and 1

The sum of standardized fitness of the developed neural net. It ranges between 0 and 50
T = 1800s, t, = 0.005, o = 20, bnas = 30

The standardized fitness equals 50. That is the 50 first networks are developed and their

fitness is maximum

Table 5.1: Tableau for genetic search of a neural network family for the parity problem up to 51
inputs

Table 5.1 summarizes the key features of the problem for evolving a Celllar Encoding that generates
a family of Neural network for computing the parity function of arbitrary large size. The GA tries
to find a chromosome that develops a family of neural networks (Nr.), such that Nz computes the
parity function of L + 1 inputs. The parity of L binary inputs is the sum of all the inputs, modulo
2. The threshold defined in the developing rule: r = 0.7. We develop the L,,,, = 50 first neural
networks. So the solutions are tested for the parity problem with up to 51 inputs. Nevertheless, the
GA generates solutions to the parity of arbitrary large size, because the recurrence is learned. The
program-symbol PAR SEQ WAIT VAL- REC have been described in chapter 2. Since no program-
symbols INCLR or DECLR are used, the link register is not modified and its value remains the default
value which is 1. Therefore the program-symbol VAL- sets the weight of the first input link to the
value ”-17. The program-symbol SETBIAS O and SETBIAS 1 set the threshold of the neuron to
respectively 0 and 1. We used a highly reduced set of program-symbols in this first experiment.
We wanted to make the GA search as easy as possible.

The population size p and the number of generations g are not specified. Instead, a variable
T specifies the time we allocate to the GA. The GA deduces p and g out of a function that yields
the expected number of generations given a population size (¢ = p/10 in our simulation) and the
total allocated cpu time T. The GA computes p and g by evaluating the average time taken for
the evaluation of a chromosome. This average changes along the generations, and therefore the
GA must update its deductions permanently. Since the evaluation time increases, the number
of individuals decreases (from 1100 to 550 in fig. 5.2). Thus the population size can dynamically
adapt to the change in the time of fitness evaluation. In the early generations, the chromosomes are
quickly evaluated, and a large number of solutions can be explored, so as to select many different
peaks in the fitness landscape. In the last generations, the evaluation is very heavy (up to 2500
times longer, as already noticed), and only a few people on each selected peak stay in competition.

The number of patterns that is necessary to evaluate the fitness with a good enough precision
is not specified either. Instead, the GA determines this number by comparing the accuracy of the
actual fitness with the variance of the population. Fig. 5.3 shows that the better the individuals,
the more patterns are allocated.

Since the GA turns out to produce huge networks, we introduce another parameter to save
time: If the ratio of the number of cells of the network graph with respect to the number of visible
units exceeded a threshold of 15, the development was stopped, and the fitness of the neural net
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Figure 5.2: Plot of the average evaluation time (milli-seconds), the population size, the CPU time
still available (seconds) versus the generations.

was set to zero. Over 20 experiments of 1800 seconds on a sun4 workstation, the GA always finds a
solution for the parity function of size 50 (51 inputs). On fig. 5.3, the vertical axis that corresponds
to the fitness space can be interpreted as a graduation of the information learned about the parity.
At generation 15 the GA solves the parity of size 1 (XOR), at generation 37, it reaches size 5. An
analysis of the solution found at this stage shows that the best chromosome generates a family
of neural nets Ny that solves the parity problem i.e, such that Ny computes the parity of L + 1
inputs. But the number of units of the neural nets Ny, is proportional to 2%, whereas the number
of visible units is proportional to L. The ratio of these two number goes to infinite, it overcomes
the threshold for L = 6, so that the neural net Ny, L > 5 have a null fitness. This is why the
fitness does not go to 50. At generation 47, the GA produces a family (Ny,) of neural nets having
only O(L) units, that solves the parity problem. The GA has learned the recurrence. The fitness
is in fact infinite, but remains 50 only because the computer has finite memory.

Fig. 5.4 shows the chromosome found by the GA. The corresponding L neural network solves
the parity of L+ 1 inputs with 5L — 1 hidden units and 10L connections. It is clearly a combination
of L neuronal groups each performing a XOR. Despite the low weight complexity —usually it is
quadratic in the number of input units— L hidden units can be removed without any damages. So
the solution can still be fault tolerant. We designed a software that allows to see the development of
the network graph as well as the final encoded neural network. Figure 5.9 shows a picture generated
by this software. It represents a neural net for L = 20 that solves the parity with 21 inputs. Dashed
lines denote a weight -1, straight lines, a weight 1, a black disk represents a threshold 1, a circle
represents a threshold 0. The raw solution has 41 input units, it produces the right neural network
modulo the elimination of the 20 last input units with the process described in section 5.2.
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Figure 5.3: Plot of the average number of patterns used to evaluate the fitnesses, the average and
best fitness in the current population.

5.4 Simulation with the symmetry

A close analysis of the solutions found by the GA for the parity problem shows that this problem
is particularly easy to solve compared to other boolean problems. There are two reasons for this.
First, it is possible to encode a family of neural networks that solves the parity with only 11 nodes.
The corresponding code is shown in fig. 5.5 (¢). The second reason is not obvious. In fig. 5.5 (a) we
show a chromosome that develops the network (b). This network computes the Xor. The XOR is
also the 2-inputs parity which is the problem of size one that the GA tries to solve in the preceding
set of experiments. So the chromosome (a) develops the right neural network Ny of all the family
(Ng). It has therefore a fitness greater than 1. In fig. 5.5 (d) we develop the network-graph encoded
by the code (c), with the following convention: when a reading cell reads the recurrent operator
REC, it "freezes” its development. It means that it keeps its reading head on the node labeled by
REC and does not rewrite itself any more. The network-graph (d) is almost the same as (b) except
that one of its input unit is a reading cell that will give birth to a subnetwork computing the parity
of lower order. The network-graph (d) makes clear the recursive process. It expresses the following
recursive rule: in order to compute the parity of L + 1 bits, compute the XOR of the first bit with
the result of the parity of the last L bits. Chromosomes (a) and (c) differ only at one position
which is WAIT in (a) and REC in (c). Since the chromosome for the problem of size one and the
chromosome for the problem of arbitrary size are almost the same, this makes easy the GA search.
The GA first found a neural net that look like (b) in order to solve the problem of size 1, and then,
with a well placed mutation, the GA introduces a single recurrent operator REC that allows to go
from (a) to (c¢) and to achieve the recurrence. We can express this in another way: Clearly, a CE
develop a neural network by using a recurrence. It involves solving the problem of size one and the
problem of the recurrence which is to find a way of building a network for the problem of size n+1
by combining network for the problem of size n with some supplementary neurons. In the case of
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the parity, the problem of size 1 and the problem of recurrence are almost the same, because both
of them use a XOR neural network.

In order to tackle other boolean problems that do not have this particular feature, we had to
extend the basic CE. We introduce A 2-ary branching operator denoted BLIFE. A cell that reads
BLIFE executes the following algorithm:

1- If (life > 1) reading-head := left subtree of the current node
2- Else reading-head := right subtree of the current node

This operator gives account for the fact that the computation of the problem of size one can have
nothing to do with the computation of the recurrence.

Whe now describe an experiment where the problem of size 1 and the problem of recurrence are
not the same, it is the symmetry problem. Table 5.2 summarizes the key features of the problem
for evolving a CE that generates a family of Neural network for computing the symmetry function
of arbitrary large size. The GA tries to find the code for a family of neural network (Ny,) where
Ny, computes the symmetry of 2 x L inputs. if the input is symmetric, the neural net must output
0, and 1 otherwise. The solutions are tested for the symmetry problem with up to 40 inputs. The
program-symbol { END PAR SEQ WAIT VAL+ VAL- INCLR DECLR INCBIAS DECBIAS CUT } have
been described in chapter 2. After many unsuccessful trials, we noticed that most of the time, the
raw neural nets produced by the GA had not the right number of input or output units. They
were evaluated modulo the convention described in section 5.2. We added a term in the fitness
that rewards neural nets having the correct number of visible units. Doing so, we hoped that two
kinds of individuals would coexist: Individuals developing neural nets with good mapping but not
the right number of visible units, individuals developing architectures having the right number
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Figure 5.5: (a) The chromosome for the xor (b) the corresponding neural net (c¢) a chromosome
for the parity function (d) The corresponding neural net, with the developement of the recursion
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frozen. weight -1 o threshold 0

Objective: Find the CE of a neural network family that computes the symmetry of an arbitrary large size

Terminal set: END

Function set: PAR SEQ WAIT VAL+ VAL- INCLR DECLR INCBIAS DECBIAS CUT REC BLIFE

Fitness cases: the number of fitness cases is determined by the GA For each developed neural net:
If the neural net have less than 6 inputs the whole input space is tested otherwise an
equal number of symmetric and non symmetric random patterns of bits are tested.

Raw fitness: The mutual information between the function computed

of one neural net by the neural net and the target function

Standardized fitness raw fitness divided by the information of the target function

of one neural net It ranges between 0 and 1

Standardized fitness The sum of standardized fitness of the developed neural net. It ranges between 0 and 20

Parameters: T = 10800s, t,, = 0.005, 1y = 30, Lz = 50

Success Predicate: The standardized fitness equals 20. That is the 20 first networks are developed

and their fitness is maximum

Table 5.2: Tableau for genetic search of a neural network family for the symmetry problem up to
21 inputs, using CE

of visible units, but badly weighted, with bad mapping. The recombination between both kind
of individuals should produce interesting offsprings. What happens is that this apparently minor
modification in the fitness actually brought the GA to success, where it was previously constantly
failing. More precisely, the new fitness is a weighted sum of the old one plus a term {. If the number
of input (resp. output) unit is right, one adds 0.5 to ¢. In the simulation we used: new fitness =
old fitness*0.85 4+ ¢ + 0.15. The new fitness still lies between 0 and 1.

The symmetry problem is much more difficult than the parity, because the recurrence requires
a different computation than the problem of size one. The problem of size one is a XOR with two
inputs. To make a recurrence, as an example, one can use the network shown in fig. 5.6 (b), where
the development of cell reading a REC operator is frozen. The network in fig. 5.6 (b) expresses the
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Figure 5.6: The symmetry boolean function, (a) a neural network for the problem of size 1, (b) A
network-graph for the recurrence problem, (c) Sketch of the grammar tree,

following recurrence: A vector of n bits is not symmetric if either the middle n — 2 neurons are not
symmetric, or the first and last neuron are in a XOR configuration. In fig. 5.6, the network-graph
(b) is clearly different from the network-graph (a), because the problem of size 1 is different from
the recurrence problem. Therefore the GA must learn two distinct tasks instead of one. Recall
that during the first generation, only the neural net N is developed. Thus, the GA only faces the
problem of size one. A few generations later, when the chromosomes are good enough, the networks
Ny, for L > 1 are developed, and GA faces the recurrence problem. Hence, the GA faces a changing
environment. It is a difficult problem, since the population can converge prematurely toward a
solution fitting the first environment. For this reason, we left the sun4 workstation for Four nodes
of an IPSC860. Each node of this machine has approximately the power of one and a half sun4.
The same previous GA run on each node. For one hundred births, the GA exchanges one individual
with the neighbors. This individual is the best over a random subset of all the population. Since
asynchronous communication was simulated, the communication time is negligible. The parallel
GA is studied in chapter 8.

Recall that the GA deduces the population size p and and the number of generations g out of a
function that yields the expected number of generations given a population size. We take g = p/50
in this simulation. Over 9 experiments of 3 hours each the GA finds a solution in 6 of the trials
for the symmetry function of size 20 (40 inputs). We now report a successful trial. The population
size decreases from 6000 to 1400. The average number of patterns allocated increases from 4 to
1800. On fig. 5.7, the vertical axis that corresponds to the fitness space is a graduation of the
information learned about the symmetry. At generation 5 the GA solves the symmetry of size 1
(XOR), at generation 17, it solves the symmetry of size 2, with an approximation of the recurrence.
At generation 20, the GA produces a family (Ny,) of neural nets having only O(L) units, that solves
the symmetry problem. The GA has learned the recurrence.

The chromosome found by the GA is: VAL—(SEQ (SEQ (PAR(END ) (WAIT(BLIFE(PAR(REC(END

)) ( VAL+ (VAL+4 (WAIT(VAL+(END)))))) (DECLR(BLIFE(INCLR (VAL+( WAIT(VAL—(END ))))) (DECLR(INCLR(E!
)))))))) (PAR(INCLR(DECLR(END ))) (INCBIAS(INCLR(BLIFE(VAL—(END )) (REC(BLIFE(END )(VAL+(WAIT(BI

YCEND ))))))))))) (DECLR(VAL+(INCLR(—(END )))))) In this chromosome a lot of informa-
tion is not useful. Keeping only the genes that modify the network—graph, it is possible to simplify
it. Fig. 5.8 shows the simplified chromosome, along with the resulting neural network for L = 3,
we use the same convention to draw the network, as in fig. 5.4. The simplified chromosome has
24 genes, it is shorter than the solution we found by hand. To design a solution by hand, the
natural way is to put an operator BLIFE at the root of the tree, to encode a XOR subnetwork in
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Figure 5.7: Plot of the average and best fitness in the current population versus the generations

Figure 5.8: Solving the symmetry: (a) The chromosome found by the GA (b) the neural net for
L = 3. The box in doted lines indicates the repeated neuronal group

the right branch, and a subnetwork doing the mapping in fig. 5.6 (b) (for the recurrence) in the
left branch. This gives the 29 genes chromosome: BLIFE(SEQ (PAR(PAR(END ) (REC(END ))) (END
)) (SEQ (PAR(INCLR(INCBIAS(VAL—(END )))) (END ))(WAIT(VAL—(END )))))(SEQ (PAR(END ) (END
))(SEQ (PAR(INCBIAS) (END )) (WAIT(VAL—(END )))) The GA was able to concentrate informa-
tion using the following trick: It produced a 13 genes piece of code (encircled in fig. 5.8 (a)) common
to both the XOR subnetwork and the subnetwork for recurrence and uses the operator BLIFE twice
at positions where the XORrR subnetwork and the subnetwork for recurrence differ. The correspond-
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ing L' neural network solves the symmetry of 2L inputs with 3L — 1 hidden units and SL — 2
connections. We believe it is an optimal solution. It is clearly a combination of I subnetworks.
It is similar to the network-graph found by hand, depicted in fig. 5.6. Figure 5.10 represents the
neural net for L = 20 that solves the symmetry with 40 inputs.

5.5 Conclusion

This chapter shows that the Genetic Algorithm using Cellular Encoding is able to automatically and
dynamically decompose a problem into sub-problems, using a kind of divide and conquer strategy,
generate a sub-neural network that solves the sub-problem, and rebuild a neural network for the
whole problem, using copies of that sub-network. Clearly, it is not possible to solve a problem like
the 50 input parity with a gradient learning such as backpropagation, because this kind of learning
does not scale well with the size of the problem, as Mulhlenbein points out in [23]. So this chapter
clearly show the superiority of the GA4+CE technology in the particular case of boolean functions
that exhibits a certain amount of regularity.

Figure 5.9: A neural network for the parity of 21 input units.
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Figure 5.10: A neural network for the symmetry of 40 input units.
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Chapter 6

Interaction between learning and
evolution

6.1 Introduction

The difficulty with combining the search of neural network lead by the GA with a gradient learning
is the high cost of each evaluation. If we must run a back-propagation algorithm (or some faster,
improved form of gradient descent) for the evaluation of each neural network, the number of evalu-
ations needed to find improved networks architectures quickly become computationally prohibitive.
The computation cost is typically so high as to make genetic algorithms impractical except for op-
timizing small topologies. For example, if an evaluation function for a modest-sized neural network
architecture on a complex problem involves one hour of computation time (which maybe unrealis-
tically low for a hard problem), then it requires one year to do only 9,000 architecture evaluations
in a genetic search. If the architecture is indeed complex (e.g. 500 connections or more) 9,000
evaluations is likely to be inadequate for genetic search.

The research presented in this chapter focuses on the addition of learning to the development
process and the evolution of grammar trees. We explore alternative directions to the approach de-
scribed before. We propose directions which need lighter computation cost. The genetic algorithm
is not used to find architectures adapted to a particular learning algorithm. Instead, learning is
used to speed up the genetic algorithm. We compare the speed up obtained with different possible
ways of combining learning and the genetic algorithm. In particular, the following four modes of
learning are explored: 1) using a basic genetic algorithm without learning, 2) using simple learning
that merely changes the fitness function by making weight changes on simple networks, where the
fitness function measures the raw network performance (called Baldwin Learning). 3) using a more
complex form of learning that changes weights on simple networks, then “reuses” these weight
changes in the development of larger nets (called Developmental Learning), and 4) using a form of
Lamarkian evolution where learned behavior is coded back onto the chromosome of an individual
so as to be passed along to its offspring during genetic recombination (called Lamarkian Learning).

We can make a feasible test of Lamarkian Learning, Baldwin Learning and Developmental
Learning only because we use Cellular Encoding to encode our neural nets. Three features of
cellular encoding are necessary: CE encodes both the architecture and the weights, With CE it is
possible to code back a weight change on the grammar tree. CE is recursive. The first point allows
to study Baldwin Learning, the second point: Lamarkian Learning and the third point makes it
possible to study Developmental Learning.

Section 2 discusses the role of learning in evolution and the various forms of learning and
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combined learning-evolutionary search strategies to be used in these experiments.

6.2 Adding learning to cellular development

One way to speed up the search for functional networks is to add some form of learning to the
developmental process. In general, to be effective the learning process must be less costly than
reproducing and testing a new individual or, if the cost of learning approaches or exceeds that of
reproducing and testing a new individual, learning must provide a greater chance of resulting in
improved behavior.

There are numerous ways in which learning could be added to the developmental process and
several problems that must be considered. First, we are working with Boolean networks. There are
several reasons why the learning algorithm would ideally result in Boolean weights. One reason to
learn only Boolean weights is that the learned information could be coded back into the grammar.
Coding the learned weights back into the grammar is useful if some form of Lamarkian evolution
is employed. By Lamarkian evolution, we mean that chromosomes (grammar trees) produced
by recombination are improved via learning and these improvements are encoded back onto the
chromosome. The improved chromosomes are then placed in the genetic population and allowed
to compete for reproductive opportunities.

An obvious criticism of Lamarkian evolution is that it is not Darwinian evolution: it is not
the way that most scientists believe evolution actually works. Another criticism is that if we wish
to preserve the schema processing capabilities of the genetic algorithm, then Lamarkian learning
should not be used. Consider the simple case in which chromosomes are bit strings instead of
grammar trees. Changing the coding of offspring’s bit string alters the statistical information about
hyperplane subpartitions that is implicitly contained in the population. Theoretically, applying
local optimization to improve each offspring undermines the genetic algorithm’s ability to search
via hyperplane sampling. The objection to local optimization is that changing information in the
offspring inherited from the parents results in a loss of inherited schemata, and a loss of hyperplane
information. Selection changes the sampling rate of schemata representing hyperplanes.

Thus, hybrid algorithms that incorporate local optimizations typically result in greater reliance
on hill-climbing and less emphasis on hyperplane sampling. This should result in a less global
exploration of the search space, since it is hyperplane sampling that gives the genetic algorithm
its global search ability. Despite this theoretical objection, hybrid genetic algorithms typically do
well at optimization tasks for several reasons. First, the hybrid genetic algorithm is hill-climbing
from multiple points in the search space. Unless the objective function is severely multimodal
it may be likely that some strings (offsprings) will be in the basin of attraction of the global
solution. Second, a hybrid strategy impairs hyperplane sampling, but does not disrupt it entirely.
For example, using learning or local optimization to improve the initial population of strings only
biases the initial hyperplane samples, but does not interfere with subsequent hyperplane sampling.
Third, in general hill-climbing may find a small number of significant improvements, but may not
dramatically change the offspring. In this case, the effects on schemata and hyperplane sampling
may be minimal.

6.2.1 The Baldwin Effect

There are other ways that evolution and learning can interact that is not Lamarkian in nature.
One method which has recently received new attention is the Baldwin effect [10] [1]. From an
implementational point of view, exploitation of the Baldwin effect requires that individuals employ
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some form of learning, but the acquired behavior is not coded back to the genetic encoding as in
Lamarkian learning. Instead, the learned behavior affects the objective function; in other words,
fitness is a function of both inherited behavior plus learned behavior. The inherited behavior
refers to the features directly encoded in the genes. From this point of view, learning changes
the fitness landscape. In particular, if the genetic encoding (or, more precisely, the phenotypic
behavior associated with a particular genetic encoding) could be significantly improved by a few
minor changes, then any form of learning that “corrects” the inherited behavior also changes the
fitness landscape associated with the objective function so as to reward solutions that are close
to a more highly fit behavioral solution that can be reached via learning. The idea that learned
behavior could influence evolution by creating selective pressure toward genetically encoding or
genetic predisposing learned behavior was first proposed by J.M. Baldwin [13] almost a hundred
years ago.

Hinton and Nolan [10] offer the following simple example toillustrate the Baldwin effect. Assume
that the fitness landscape is flat, with a single spike representing a target solution. Also assume
that individuals can recognize when they are close to a solution and can alter their behavior to
exploit the target solution. As pointed out by Hinton and Nowlan, it is important that individuals
be able to recognize “improved” behavior. The closer an individual is to the target solution, the
more likely that individual is to learn the target solution. Learning, in this situation builds a
basin of attraction around the spike, so the fitness landscape is transformed into a less difficult
optimization problem.

Hinton and Nolan acknowledge that this example is extreme and unrealistic, but it does serve
to illustrate the principles behind the Baldwin effect. They also illustrate the Baldwin effect using a
genetic algorithm and a simple random learning process that develops a simple neural network. The
genetic encoding specifies a neural network topology by indicating which of 20 potential connections
should be used to connect a given set of artificial neurons. The objective function (without learning)
is such that the “correct” network results in increased fitness, and all other networks have the same,
inferior fitness. This creates a spike at the “correct” solution in an otherwise flat fitness landscape.
The genetic encoding uses a 3 character alphabet (0, 1, ?) which specifies the existence of a
connection (i.e., 1), the absence of a connection (i.e., 0) or the connection can be unspecified (i.e.,
7); if the connection is unspecified it can be set randomly or set via learning. Learning in this case
is merely a random search of possible assignments to unspecified connections.

Two interesting results are reported by Hinton and Nolan. First, genetic search without learning
fails to find the solution; this is not surprising, since the “solution” is a needle in a haystack. Second,
the final solutions that are found by genetic search with learning are left somewhat underspecified.
In other words, a small number of unspecified (?) characters will remain in the genetic encoding
after the solution is close enough to the target solution so that it is reliably found via learning. (In
theory, this second phenomenon should not happen; selective pressure coupled with recombination
should continue to drive out underspecified alleles. The underspecification found by Hinton and
Nolan might have occurred because the search was prematurely terminated.)

Hinton and Nolan’s work illustrates the Baldwin effect, but provides little insight about whether
the Baldwin effect can be intentionally exploited to accelerate evolutionary learning. Belew [3]
also offers a good critique of some of the assumptions underlying the Hinton and Nolan model. In
particular, the number of learning trials allocated to the individual must be sufficient to occasionally
locate the spike; otherwise, it remains a needle in a haystack.

In the current context we would like to exploit some form of learning that can correct the
specification of a network made by the grammar tree corresponding to a particular cellular encoding.
We then wish to test the hypothesis that learning (which is used to change the value returned by
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the fitness function, but which does not alter the genetic code) will result in a genetic search that
more quickly finds networks to solve the parity and symmetry problems.

6.2.2 Developmental Learning

Finally, there is still yet another way learning can be used in the current context that is intermediate
between Lamarkian learning and directly learning weights. We will refer to this intermediate form
of learning as developmental learning. This form of learning exploits a unique characteristic of the
recursive encoding used by the cellular encoding method. Since the encoding allows for recursive
moves in the grammar tree, learning on Network Ny which occurs for L = 1 can be exploited for
the development of networks Ny, for values of L greater than 1 (L = 1 results in one iteration
of development with no recursion). In other words, learning can actively take place for iteration
L = 1. This can be accomplished with relatively minimal cost, because network Ny is very small
due to a short development. Learning should only modifies a few weights, one or two weight in our
experiments. The learned information can be coded back into the grammar, so that the modified
grammar generates the modified weights. The modified grammar can then be used to develop larger
nets Ny where L > 1. This may help under an "hypothesis of regularity” that states:

(a)

Figure 6.1: Algorithm for the developmental learning: (a) Chromosome produced by the GA, (b)
Development of neural net Ny, for a life L = 1, (c¢) After the training of Ny, a weight feeeding
the output unit has been modified to -1 (dashed line). (d) Back coding on the chromosome, (e)
Development of neural network Nj using the modified chromosome.

If a grammar develops Ny right, it is more likely to develop Ny, right, for L > 1.

This hypothesis is valid only is the function that Nz must compute is itself regular, like parity
or symmetry. Figure 6.1 illustrates how the grammar can successfully register a weight modification
for L = 1, and replicate it 2 times for L = 2. The network N; represented in figure 6.1(e) has two
weights set to -1. In this example, the network Nj would have L weights set to -1. The method
used for back-coding is explain in section 3.5.

The way in which less-developed nets require less computational effort to evaluate may be
important from a biologist point of vue. We did not collect statistics on this, the reason of this
lower cost is clear: the size of Nr, grows with L. If there is k recurrent program symbol REC the
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size will grow as k¥, and in the case & = 1, the size will grow linearly. And the evaluation time
grows with the neural network size.

Developmental learning as defined above is not Lamarkian in the sense that the learning is
coded back onto the chromosome for developmental purposes, but any subsequent offsprings that
are produced by that individual do not carry the acquired information in their encodings. What is
actually happening is that the genetic code is used to store learned information during the “lifetime
of the individual” as development of different networks occurs, but this learned information is not
directly passed on during reproduction. We refer to this as developmental learning.

We are not claiming biological plausibility for this method, since we assume there is no biological
evidence for using recursive cellular encodings in the exact way they are used here. However, there
are species that do code learned information onto their DNA as a way of storing learned information;
this storage is local and does not impact reproduction.

It should also be pointed out that developmental learning works, if it works, because it is also
exploiting the Baldwin effect. In other words, developmental learning is just a more effective way of
learning, a more effective way of exploiting behaviors acquired during the lifetime and development
of the individual. The resulting behavior is not passed on to offspring.

6.2.3 Comparative Goals

Our goals, then, are to examine Lamarkian learning, the impact of the Baldwin effect on learning,
and the use of the developmental learning method. For Lamarkian learning and developmental
learning it is necessary to recoding the learned behavior back onto the chromosome. Since cellular
encoding specifies a Boolean network, the learning algorithm we use should also result in a Boolean
network. In addition, we would like the learning process to be very inexpensive. In the case of
exploiting the Baldwin effect, the analogy suggested by Hinton and Nolan also suggests a fast,
relatively minimal form of learning: learning should provide information that tells you that you
are close to a solution. More specifically, an ideal learning algorithm for the set of experiments we
have outlined would be a one-pass learning algorithm that returns one or two minor changes in the
network that could potentially lead to improve performance. These changes can then be tested.

Given the requirements we have outlined, we chose to use Hebbian learning. This also means
that we will use learning in a somewhat restricted way.

6.2.4 Implementation of the Hebbian Learning

Assume that we have a Boolean neural network with one hidden layer where it is known that
the first layer has a correct set of weights and hidden units have correct thresholds. Clearly, this
implies that the problem has been reduced to learning a linearly separable function with respect
to the hidden units. Perceptron learning might be used at this point, except this algorithm does
not result in a Boolean net and it is not a one-pass learning algorithm. If we limit learning to a
single pass, however, we can look at the activations of both hidden nodes and output nodes and
collect information about whether the connection should be inhibitory or excitatory between any
particular hidden unit and output unit. That is, for each training pattern and each pair of hidden-
output units, indicate the weight should be positive (i.e., +1) if both the hidden unit and output
unit is “on” and indicate the weight should be negative (i.e., -1) if the hidden unit is on and the
output unit is off. (We do not consider cases where the hidden unit is off, since these cases do not
effect the activation of the output unit in a feed-forward network.)

Recall that the weights of our neural nets are Boolean (£1). For the parity and symmetry
applications the neural nets have a single output unit. We used the following algorithm to learn
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new weights for the links that feed into the output units of the neural net. Each training pattern
in presented to the input units. The activation level of each hidden neuron is computed, until all
hidden units are processed. The desired output value is then clamped to the output unit. For each
link ! feeding the output unit, the following Hebbian information is computed. Each link [ has a
variable d;. If the activities of the units linked through [ are the same, d; is incremented; otherwise
d; is decremented. The variable d; is a correlational measure of the activities of the neurons linked

through [.

Before the learning, the variables for each d; are initialized to zero. Note that this is somewhat
different from perceptron learning in as much as we collect statistical information over all of the
training patterns, not just those that result in errors. This learning also is similar to the local
learning used in Boltzman machines [5], however, in these experiments we are not concerned with
escaping local minima and have no need for the simulated annealing component that is used in the
Boltzman machine to achieve a global search of weight space.

After processing all the patterns, the variable d; is used to determine whether to flip the weight
w; or not. We consider the subset of links ! for which d; and w; have an opposite sign (Recall
that w; = £1). We will modify only the weights of the links in this subset. These are the links
for which the weight is different from the correlation, and the aim of hebbian learning is precisely
to set the weights equal to the correlation. It is the reason why we claim to do an Hebbian-like
learning. For these links, |d;| can be considered as a measure of the badness of the weight, because
it is the amount of change to make in order to bring back d; to the right sign. Hence, we sort the
links of the subset according to the quantity |d;|. The first link, that is, the one with the biggest
|d;| is flipped with a probability 1. The second link is flipped with a probability 0.05. In general,
the i link is flipped with a probability (0.05)(i — 1). This learning algorithm ensures that at least
one link will be flipped most of the time. The only requirement is that at least one link [ has d;
and w; of opposite sign. Under this condition, the average number of flipped link lies between 1
and 1/(1—0.05) = 1.05. After the weight changes are made we process all the training data again.
We accept a set of weight changes only if the fitness has improved. Only one epoch of training is
used.

Less than two links are flipped on average. This should be sufficient to create a Baldwin effect
in as much as learning should “build shoulders” around minima in the fitness landscape associated
with the raw evaluation function (i.e., without learning). In our experiments, bias terms (i.e.,
threshold values) are not learned and must be found by genetic search.

Experiments show that this learning, although very simple, is suflicient to flip the correct weight
in a exclusive-or (XOR) network where all the weights are 1, with two hidden units, where one hidden
unit computes the logical AND and the other one computes the oRr. In order to get a XOR one must
set the weight between the AND unit and the output unit to —1, so that the output units outputs
the results of the OR unit, unless the AND unit is activated in which case it outputs 0. Thus in the
case of XOR, and in fact all parity problems (of which the XOR function is an example), the limited
form of Hebbian learning which we use can exploit a fortuitous feature of the problem. We will
show, however, that such fortuitous features need not be present for this learning strategy to be
effective.

A famous work done by Hinton Ackley and Sejnowsky, about the Boltzmann machine has shown
that hebbian learning tries to optimize the mutual information between the function computed by
the neural net and the target function. Since the fitness we used is also based on mutual information,
the GA and the learning tries to optimize the same thing.
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6.2.5 Operationalizing Developmental learning

One of the advantages of the recursive encoding scheme is that evaluation can be done in an
incremental fashion. For parity or symmetry, a network can be evaluated with respect to its ability
to solve a 2 input case. If a solution to the 2 input case is found, the next recursive iteration of
development can be carried out and the 3 input case can be evaluated. In this way, evaluation
is fast early in the evolutionary process and becomes more expensive as networks become more
proficient at handling the lower order input cases.

Analogously, we use learning only on the neural network during the first iteration of the recursive
development process. This neural net is the smallest of a whole family of networks that can be
generated by a chromosome; it is smallest both in term of the number of units and the number
of weights, so little time is expended on learning. But we would also like the other neural nets
to benefit from the learning process. To do this, we must encode the weight changes that have
occurred during the learning of the first neural net back to the chromosome using a combination of
appropriate program-symbols; we can then develop the entire family of associated networks so as to
exploit learning via the modified chromosome. During the development of another network, when
a cell of the intermediate network graph executes the new program-symbols added by learning it
will set its weights accordingly, thereby reproducing the same subnetwork as the one contained in
the first neural network after learning.

One requirement of back-coding learning onto the chromosome is that the new code should
allow us to correctly develop the first iteration neural network, including the modifications made
by the learning. This is not always simple. Normally, when a cell becomes a neuron it executes the
program-symbol END, and looses the reading head so that it can no longer rewrite itself. But in order
to do the back-coding, we must keep the reading head. This reading head points to the precised
node where the particular subtree of program-symbols should be inserted in order to accomplish a
change of weight. A concrete example shown in figure 6.2 helps to illustrate this problem.

Consider the value of the link register, at the time the cell became a neuron. If this value
was 1 and the learning changes the weight of the second input link into —1, then we generate the
following subtree: INCLR(VAL-(END)). The program-symbol INCLR sets the link register to 2, the
program-symbol VAL- sets the second input link to —1. Let N be the node pointed by the reading
head of the neuron. This node has an arity of 0, and has previously transformed the cell into a
neuron. In order to insert the new subtree, we must transform the leaf-node into an interface node
of arity one. We replace the program-symbol END by the unary program-symbol WAIT for Wait, and
then insert the subtree that adds in the learned weight. When a cell executes this program-symbol,
it positions its head on the next subtree, and waits for the next rewriting step.

We cannot be sure that this type of simple change in the grammar-tree will exactly recode
the learned behavior. The new encoding will produce the learned behavior if two conditions are
satisfied:

o Learning is done only on the first neural net of the family.

e During the development with the modified code, for any cell C. of the intermediate neural
network that starts to read the inserted subtree, those cells that have fan-out connections
that feed into cell €, must have lost their reading heads. This ensures that the new changes
affecting C, do not interact with the development of those cells whose fan-out connections
feed into C,.

The first neural net of the family has the feature that no more than one neuron reads a given
leaf of the grammar tree. This is not the case for higher order neural nets. If the first condition was
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Figure 6.2: Back-coding on a grammar-tree, that builds the code of a XOR network. Illustration
(a) is the net before back-coding. In illustration (b) the grammar tree has been modified and the
corresponding weight change is shown. The modified network computes the XOR.

not met, two distinct neuron could read the same leaf, and both could try to concatenate a distinct
subtree corresponding to their own weight modification at this leaf. It is not possible to insert
two distinct subtrees at a single leaf. Moreover, these two subtrees could encode contradictory
modifications of the weights.

If the second condition is satisfied then the change introduced by the added subtree will remain
local. Otherwise it may produce unexpected side effects. For example, in Figure 6.2 assume the
program symbol INCBIAS in the grammar tree were replaced by a PAR The corresponding node
(which is black in Figure 6.2) will now split instead of changing its threshold and there will be
three fan-in connections to the output node. Also assume we still wish to change the second fan-
in connection to a negative weight, but not the third connection. If the inserted weight change
executes before the parallel division, , then both the second and third fan-in connection will be
negative. If the weight change executes after the parallel division, then only the second weight will
be negative.

In order to ensure the proper sequence of development, we could add several waiting program-
symbols WAIT to key positions so that the new inserted section of the tree executes in the proper
sequence. However, this could result in an increase in the amount of time needed to develop the
higher order neural nets; more critical, however, is the likelihood that it would make it more difficult
to do Lamarkian learning because the chromosome could quickly become very big. This means that
the encoding would no longer be quite as compact and recombination might have to process deeper
and deeper grammar trees. Note that this strategy of adding long wait delays does not impact
developmental learning, since the “expanded” chromosomes never enters the genetic population.
Thus, there is no problem adding enough “wait” delays to ensure that all other development
processes have terminated before effecting learned weight changes.

However, in the current experiments we have settled on the following compromise. By replacing
the 0—ary program-symbol END by the unary program-symbol WAIT and then attaching the subtree
which produces the weight change, we add at least one wait delay program-symbol, and hope that
in this way, we sufficiently increase the probability that the second condition is verified. For reasons
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of consistency, we used this approach for both Lamarkian and developmental learning strategies.
This does not guarantee that our encoding of learned behavior does not unexpectedly interact with
the developmental process, but empirically we find that in most cases it should not.

6.3 Simulation of different possible combinations

We now describe the result of some experiments which compare the different ways of adding learn-
ing. The basic GA refers to the genetic algorithm without any learning. We have described the
encoding in chapter 2. We remind the reader that this encoding encodes not only the architecture
but also the weights. Thus, it is possible to run the GA without any learning. Once the neural
net has been developed we perform Hebbian learning. If we use only the improved fitness of the
trained network N; obtained with a life L = 1, (in this case L = 1, there is no recursion) we call
it Baldwin learning. If we code the learned information back to the chromosome, and use it to
develop higher order networks, that is developmental learning. If the improved chromosomes are
placed back in the genetic population and allowed to compete for reproductive opportunities, the
result is Lamarkian learning. The following experiments will compare these four learning modes
on two different tasks of increasing complexity.

6.3.1 Strategic Mutation

Over the course of the experiments, we noticed that one of the most difficult problems faced by
the genetic algorithm was to correctly place the recurrent program-symbol REC. In the case of the
parity problem, a correct estimation of where to put a program-symbol REC is enough to solve the
recurrence, as indicated by figure 5.5. On the other hand, an incorrect placement prevents the
genetic algorithm from correctly developing any of the other networks in the family of networks
except the very first one. This “all or nothing” feature causes a lack of smoothness in the fitness
landscape which makes placing the REC program-symbol difficult. In order to overcome this problem
we used a strategic form of mutation for the REC program-symbol. By mutating REC 10 times more
often than other program-symbols, most REC program-symbols are quickly removed and, in general,
allele REC is 10 times less represented than other program-symbol of arity 1. In order to offset this
bias against REC, each program-symbol of arity 1 has a probability of 4 % {,,,; to mutate into a REC
program-symbol, where {,,,; is the mutation rate of the other alleles. The combined effect of these
mutations strategies is to explore a large number of different placements for REC

6.3.2 Parity

In this set of experiments, the GA was run for 900 seconds on one node of the parallel machine
Ipsc860. To solve this problem, the genetic algorithm must find a grammar encoding that develops
a family of neural networks (Np), such that Nz computes the parity function of L + 1 inputs. The
parity function returns the sum of all the inputs, modulo 2. We refer to table 5.1 for a description
of the experiments parameters. The only parameter which changes is T" which is now 900 seconds.

In order to produce a valid comparison, we ran 50 trials and computed the mean and standard
deviation of two variables: the time required to find a solution, and the total number of neural nets
evaluations. In order to obtain an estimation of the standard deviation of the result, divide by v/50
the standard deviation of the variable. We report the standard deviation of the variable, to show
that it is high, because we think that this information gives insight into the genetic search.

The parity problem is a little special with respect to developmental learning. The network Ny
developed with a life L. = 1 implements the XOR. This XOR network has all weights equal to 1,
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| LEARNING MODE [ TIME | time SD | EVALUATIONS | evaluation SD | SUCCESS |

basic GA 240 197 23865 20317 36
Baldwin 234 205 14307 10699 28
Developmental 131 195 8404 8829 47
Lamarkian 66 85 5700 5220 49

Table 6.1: Initial Experiments for the parity problem which ran for 900 seconds on one node of
the parallel machine Ipsc860 that is to say, with a single population. Success is a measure of how
many times a solution was found for the parity problem. The number of trial is 50. The time is
measured in seconds, throughout the chapter

except one weight that links the AND to the output unit, as shown in figure 5.5. Since we train only
network Ny, and the weights are set to one by default, the learning need to change only weights
that feed the output unit.

The first line of table 6.1 reports experiments with no learning, the next three use learning.
The runs fall in two classes: some runs quickly find a solution, while others take a long time.
This explains the high standard deviation observed in these experiments. The GA frequently get
trapped at a suboptimal solution.

Although Baldwin learning does not improve the computation time, it needs 17000 neural
network evaluations on average to reach success, whereas the basic GA needs 24000. This means
that the average evaluation time is higher for the Baldwin learning. The average extra time needed
to compute the Hebbian algorithm stays around 0.5 millisecond, whereas the average time required
to develop and evaluate a neural network starts at 7 milliseconds and significantly increases through
subsequent generations to finally reach 14 milliseconds. Therefore, the Hebbian learning algorithm
takes less than 8 percent of the time taken to develop the neural net and evaluate it.

The average time required for the Baldwin learning is higher, because of the scheme used to
evaluate the fitness of the code of a family (Ny) of networks. The basic GA does not typically
develop the neural networks Ny, for L > 1 in the early generations. For all of the experiments, the
developing rule reported in the preceding chapter decides exactly when it is necessary to develop the
neural network Ny, and then N3z and so on, until N;, .. When Hebbian learning is used, the neural
net Ny is quickly found. For example with the Baldwin learning on the output unit, the average
time taken to find the first neural net is 19 seconds. The basic GA takes 176 seconds. Therefore with
the Baldwin learning, the GA starts to develop network N; from the second generation; this has
the side-effect of making each evaluation more expensive. Lamarkian and developmental learning
do much better than both Baldwin and basic GA. Lamarkian is also better than developmental.

In order to solve the problem that some runs do not successfully find solutions, we used a bigger
population and a parallel GA. The parallel GA that we used is described chapter 8. The number
of experiments is still 50. For each experiment, the GA ran 3 hours on four nodes of the parallel
machine Ipsc860. The population size ranges from 3500 to 2000 on each node. We therefore use a
total of 12 hours of computation before deciding success or failure.

These results are reported in terms of computations per processor in table 6.2. Since 4 processors
were used in these experiments, computation times and evaluations should be multiplied by a factor
or 4. This GA is successful on all runs. The standard deviation is smaller, because the population
is large enough to reliably sample critical subprograms of grammar trees. Baldwin learning now
produces a speed up of 1.3 over the basic GA. Developmental and Lamarkian learning still produces
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| LEARNING MODE [ TIME | time SD | EVALUATIONS | evaluation SD | SUCCESS |

basic GA 173 64 17808 5818 50
Baldwin 135 86 12511 4799 50
Developmental 59 19 7160 1805 50
Lamarkian 59 18 6800 1763 50

Table 6.2: Second set of experiments for the parity problem which ran for 3 hours on four nodes of
the parallel machine Ipsc860.

| LEARNING MODE || TIME | time SD | EVALUATIONS | evaluation SD |

basic GA 91 55 7332 3869
Baldwin 74 36 5811 2292
Developmental 48 20 4352 1840
Lamarkian 53 29 4381 2229

Table 6.3: Experiments for the symmetry problem which ran for 300 seconds on 32 nodes of the
parallel machine Ipsc860.

better results. The effectiveness of developmental and Lamarkian learning are very similar.

6.3.3 Symmetry

The problem is to find an encoding that develops a family of neural networks (Ny,), such that Ny,
computes the symmetry function of 2L + 1 inputs. The symmetry of 2L + 1 binary inputs returns
1 if and only if the input is symmetric and the middle bit is 1. This function has a fairly compact
cellular encoding and is therefore not too difficult to learn with the genetic algorithm. The genetic
algorithm runs 300 seconds on 32 nodes of an Ipsc860. The population size ranged from 300 to 200
individuals on each node, and between 9200 and 6400 on the combined set of processors. Table 6.3
reports an experiment with no learning, and the use of Hebbian learning on the output unit. The
results are based on 30 experiments; every run finds a solution.

We indicate the computation time taken by each processor. Multiply by 32 to find the total
computation effort. Developmental learning is slightly better than Lamarckian.

6.4 Conclusion

The addition of learning to the search process produced two interesting results. First, the notion
of developmental learning was introduced. By allowing learning to affect subsequent development,
early learning can be more effectively exploited and the high cost of learning on larger networks
developed later in the “life” of the grammar tree can be avoided. In the current experiments,
developmental learning also provides a fairer comparison between Lamarkian evolution and Dar-
winian evolution, that still exploits the Baldwin effect. Developmental learning allows the entire
family of networks which can be developed from a cellular encoding to exploit learning. The same
is true of the Lamarkian strategy, since offsprings that inherit learned behavior use it to develop
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all subsequent networks, not just those that correspond to networks developed by a single iteration
through the grammar tree.

The second main finding of this chapter is that developmental learning appears to be competitive
with Lamarkian learning, for the problem of finding a family of boolean neural networks. This is
especially true on the symmetry problem. The results for the parity problem are more mixed,
but the parity problem is unusual in as much as learning on only those connections that fan-in
to the output unit is sufficient to find a correct set of weights. The use of learning (or local
optimization) to change the fitness landscape without using Lamarkian learning strategies could be
of general interest to that part of the genetic algorithm community concerned with general function
optimization. Finally, the work reported here show that cellular encoding is a good and may be
unique testbed for Lamarckian and developmental learning. The hebbian learning that we have
used is very simple. Other forms of learning need to be considered. The next chapter will describe
a learning that has been tailored for neural networks generated by the GA using cellular encoding.



Chapter 7

The Switch Learning

This chapter proposes a learning that especially fits networks generated by the genetic algorithm
using cellular encoding. We first describe the features that such a learning should have. We
then propose a learning algorithm that learns £1 weights. An extension of it learns weights in
{0, —1,1}, but is not very efficient. Finally, we report two kinds of experiments which demonstrate
that the proposed learning fits the requirements. The first kind uses the learning on a fixed neural
architecture, and study the convergence, and the speed of convergence, the second kind uses the
learning in combination with the GA.

7.1 Specification of the learning algorithm

The proposed learning algorithm is designed to train networks generated by the GA using the
Cellular Encoding. Therefore it has some specific requirements. The GA produces networks with
integer biases and boolean weights. The learning should also find boolean weight, in order to be
able to do backcoding of the learned information on the cellular encoding. Backcoding is required
for Developmental learning and Lamarkian learning seen in chapter 6. We do not learn the bias
because the cellular encoding of a bias is compact. Using a program-symbol like INCBIAS, there is
no need to specify a link number, which is the case if we want to encode a weight-change. Hence
the GA needs less effort to encode the right biases than the right weights. The neuron’s sigmoid is
the step function. A neuron n computes its net input which is the weighted sum of the neighbor’s
activities. If the net input is lower or equal to zero, the neuron’s activity is set to 0, else it is set
to 1. The GA generates thousands of networks, so learning needs not be 100% successful on each
network. On the other hand, learning must be fast, because the time of a GA run will be the
learning time taken for one neural net multiplied by thousands. The purpose of the learning is to
refine a neural net produced by the GA. It should change correctly a few weights in order to increase
the performance of the network. It may find the global optimum, if the neural net before training
is close to it. The networks generated by the GA using cellular encoding have some particularities.
The neurons are sparsely connected, usually the fan-in is 2 or 3. The number of layers is high, so a
standard back-propagation would fail. Most of the weights are 1, only a few weights are -1. This
is because weights are set to 1 by default, and only negative weight values must be encoded, using
program-symbol VAL-. The learning algorithm should take advantage of these particularities.

7.2 The Switch learning algorithm

83
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Let c be the currently processed neuron
For each neuron n that fans into ¢ through link 1
Try to modify n’s activity; Compute the new net input;
switch(Comp(new net input, old net input))
case 0 : if(Small(old net input)) r_n := r_n + r_c;

w_n : w_n + w_c;

case + ! r_n : rn + w_c;

w.n +q * w_c / 2;

case - ! wW._n :
if the n’s activity is not null
Try to flip 1’s weight; Compute the new net input
switch(Comp(new net input, old net input))
case 0 : if (Small(old net input)) r_1l := r_1 + r_c;
w_l w_l + w_c;
case + : r_1 r_1l + w_c;
w_l + g * w_c ;

case - : w_l
else
try to both flip 1’s weight and modify the n’s activity
Compute the new net input
switch(Comp(new net input, old net input))
case 0 : if(Small(old net input)) r_n :=r_n + q * r_c;

r.l :=r_1+ q * r_c;
W_n :=w.n+q*w.c; w.l :=w_l+q* w_c;
case + : rn :=rmn+q*w.c; r.l:=r_1+q*w_c;
case - : w.n :=w.n+q*q*mw_.c; w.l:=w.l+q*gq*w_c;

Figure 7.1: The learning algorithm. The subscript ¢ refers to the currently processed unit, the
subscript n refers to a neighbor of that unit and the subscript [ refers to a link. Function Comp
returns 0 if the net input change of sign, else it returns the sign of the difference between the
absolute value of its first and second argument. Function Small returns 1 if its argument is 0 or 1,
else it returns 0.

We now describe the learning algorithm: At each epoch, all the patterns to be learn are for-
warded through the network. After each pattern is passed through, the value of two variables are
computed for each neuron and for each link: r and w. The letter r stands for right and w stands
for wrong. Let o be an output unit, if the activity of o is the desired output, r, is set to 1 and w, is
set to 0, otherwise, r, is set to 0 and w, is set to 1. For a hidden unit & the variables r;, and wy are
computed so as to hint about the correctness of h’s computed activity. If rp is high, a modification
of h’s activity is likely to decrease the performance of the net on the currently processed pattern.
If wy, is high, a modification of hA’s activity is likely to increase the performance of the net on the
currently processed pattern. Similarly, for each link [ the variables r; and w; are computed in order
to hint about the correctness of I’s current weight.

Computation of all these variables are performed by processing the neurons one by one, back-
wards, starting from the output units as in backpropagation. The algorithm sketched in figure 7.1
shows how to process one neuron. Let ¢ be the currently processed neuron. There is three possible
trials to modify ¢’s activity:

e {1 Flip an incoming weight on a link .
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o {5 Modify the activity of an incoming neighbor n.
e {3 Both at the same time.

The learning algorithm successively tries {1, {3 and t3. For each trial ¢; it analyses the effect of the
modification on the neuron ¢. Suppose that the effect is desirable. It increases w, if {; has modified
n’s activity and w; if ¢; has flipped I’s weight. Now, suppose that the effect is bad. It increases r,
if t; has modified n’s activity and r; if ¢; has flipped I’s weight. There are three possible effects:

e The net input of ¢ has changed its sign (0 has the sign -). Thus ¢’s activity changes. If w. > 0
we wanted ¢’s activity change with a strength w.. We register the fact that the trial ¢; is
worth with a strength w.. If {; has modified n’s activity we add w. to w,, if {; has flipped {’s
weight we add w. to wy.

If r. > 0 we did not wanted ¢’s activity to change with a strength r.. We want to register
the fact that the trial ¢; is bad with a strength r.. We add r. to r, or to r; depending on {;,
but this time only if ¢ had the poorest stability, i.e, its net input, before the trial ¢; was 0 or
1. If the net input was -1 or 2, the other possible cases, then the effect of ¢; can be always
counter-balanced by setting n’s activity to 0.

e The net input increases in absolute value. If we wanted ¢’s activity to change this effect is
bad because the change will be harder. Thus we add w,. to r, or r;, depending on ;.

e The net input decreases in absolute value. If we wanted ¢’s activity change, the effect is
desirable since the change will be easier to do. But we are less satisfied than in the first case
where the change was completely done, so instead of adding w., we add w. x ¢ * §/2 to w,
or w;, where ¢ is a parameter lying between 0 and 1, strictly smaller than 1, and § is the
decrease in the absolute value of the net input. ¢ depends on t;, it is 2 if one has made a
weight flip, and 1 otherwise. We involve ¢ to register the fact that the progress of the net
input of ¢ toward the correct value by 2 is better than if it is only by 1.

The trial t3 allows to register an information that is relevant only if we make two weight flips,
one flip to change the weight of the incoming link I, another flip upstream the incoming neuron
n to change the activity of n. On the other hand, the information computed during ¢; and 5 is
relevant for one weight change. Since the information computed during trial ¢35 is less precise, we
multiply the backpropagated quantities by gq.

Once all the patterns have been processed, the w; and r; corresponding to each pattern are
summed. We compute a fitness f; for each link equal to

fi=r*xr —wx*log(l+ w)+dxd (7.1)

The positive coeflicients r, w, d parametrize the learning. In all the experiments, we get some good
results using the same set of coeflicients. The variable d; refers to the depth of the link [ which
is the length of the minimum path from this link to an output unit. The two links in the whole
network that have the lower fitness are selected. One of these two links is chosen for flipping.
The link with the poorest fitness is flipped with a probability p higher than 0.5. The performance
of the neural net with the flipped weight is computed. This performance is the total number of
correct outputs divided by the number of patterns divided by the number of output units. If the
performance increases, the weight change is accepted, if not, it is still accepted with a probability
exp(—A/T). T is a temperature, A is the decay in the performance. From one epoch to the other
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Figure 7.2: Trained neural net for (a) the symmetry, (b) the parity, (c) the decoder. Circles
represent neurons. If the threshold is 0, the circle is empty, if it is one the circle is filled with black.
A continuous line indicates a weight 1 and a dashed line a weight —1

T is decreased, in order to do simulated annealing. If the change is accepted, then the link that
had been selected for change is frozen for e epochs where e = e1 + €5 *x d;. €1 and ey are positive
parameters. Due to the term e; x dj, the link near the output units will be frozen a longer time.
This counter balanced the fact that they are more likely to be flipped due to the term d * d; in
the expression of the fitness. Thus the algorithm starts by modifying weights of units near the
output units, which is better because the information is more relevant there. It then carries on by
modifying weights of deep units.

7.3 Simulation with the basic Switch learning algorithm

We now describe three sets of experiments during which we try to learn respectively the sym-
metry, the parity and the decoder. For each target function we consider a Cellular Encoding (CE)
found by hand that produces a family of neural networks with correct architectures and thresholds.
We tested the switch learning on the first four networks of the family. These networks are a relevant
benchmark, since the switch learning algorithm is designed to be combined with CE. We represent
the fourth neural network with the correct weight in figure 7.3. We use two modes for the weight
initialization. In the first mode we set all the weights to 1, in the other mode we set the weights
with a random value %1.

We want to show the influence of the parameter ¢. If ¢ is set to 0 the algorithm uses only trials
t; and {5. It computes the information relevant to a single weight flip. If ¢ is strictly positive,
the algorithm computes an information relevant to two weight flips or more. The fitness of a link
indicates whether or not the neural net will increase its performance after the flip of this link,
and the flip of another particular link. For each set of experiments, we tried the value ¢ = 0 and
g = 0.2. The other parameters were: r = 5, w = 5,d = 1l,e; = 2,e5 = 1,p = 0.8. The initial
temperature is set to 1 and we divide it by 0.01 after each epoch. This parameter set works for
the three experiments considered. We run 32 trials for each experiments, and compute the average
and the standard deviation 5D of the number of epoch needed to reach the solution. The standard
deviation of the average can be obtained by dividing 5D by v/32. We want the learning to be fast,
and we do not require 100% of success. We therefore allow the learning to run for only 40 epochs.
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In table 7.1, we report in this order, the value of ¢, the mode of weight initialization, the network
number which is L, the number of successful trials, the average number of epochs of the successful
trials and the standard deviation of the number of epochs.

q 0.00 0.02
weights one random one random
LT[ 23 a1 2 3 a1 23 [a1[2]3 1
target symmetry

success | 32 | 27 | 30 | 22 || 31 | 18 | 6 2 32 | 32 | 31 | 28 || 32 | 30 14 12
epoch | 2.8 |44 | 74| 13 || 11 | 20 | 21 8 43|58 11 |12 || 94| 18 | 30 30
SD | 22|16 |42 |55 | 71| 10 |96 | 12 |||55 |42 |71 |72 86|86]| 6.3 | 6.9
target parity
success | 32 | 32 | 32 | 32 || 30 | 18 | 8 2 32 1 32 | 32 | 32 || 32 | 32 | 23 18
epoch | 2 |29 44|65 (62| 16 | 17 | 2 17124324768 13 | 25 21
SD | 35| 3 3 6 56 | 11 192 (552923073584 |7.7] 99 | 9.0

target decoder
success | 32 | 32 | 32 | 32 || 32 | 32 | 13 0 32 | 32 | 32 | 32 || 32 | 28 15 3
epoch | 1 3 7T | 15|39]|55|44]| - 1.6 3 7 | 15|36 |72]14.2 ] 115
SD| 0 0 0 0 ||51]24|83] - 211 0 | 0303 ]| 54|44]| 6.8 |12.3

Table 7.1: Experimental results with the basic switch algorithm

In the first set of experiments, we try to learn the symmetry function. The network Ny, that
computes the symmetry of 2 + 1 inputs has 8*L connections, 2*L layers, 2*L weights must be
flipped by the learning, if all the initial weights are 1. The symmetry of 2 L + 1 bits input returns
1 if and only if the input is symmetric and the middle bit is 1. The next function studied is the
parity. The network Ny has L 4+ 1 input units, 2 x L layers, 6 x L connections, and only L weight
to flip if all the weights are initialized with 1. The parity returns the sum of the inputs modulo 2.
With the decoder function, N7, has L+ 1 input unit, 2% output units, L layer, 212 — 4 connections,
2 — 1 weights have to be flipped. If the first input is 0, the decoder returns 0, else the output unit
which number is encoded on the last L input units must be set to 1, and all the others to 0. The
result of the fourth decoder neural network with random weight initialization are very poor, This is
probably because the network has 60 weights. The learning must flip on average 30 weights which
is much more than in the other case.

The experiments show that starting with initial weights of 1 help the learning. When there are
a lot of —1 weights, the neuron’s activities have a greater probability of being 0. When too many
activities are 0, the learning do not have useful information. The experiment also show that setting
¢ to 0.02 enhance the performance, in the case of random weight initialization. In this case, the
extra information brought by setting ¢ = 0.02 is more precious since little information is available.

We have presented a learning algorithm which aim is to refine neural networks produced by
the GA using CE. This learning suits the particular class of neural nets generated by CE. These
neural nets have a small number of connections. During one epoch, the learning guesses the best
weight to flip, and flips it. It produces +1 weights therefore backcoding is possible. The guessing is
more difficult to make if there are redundant connections, also if there are more connections, there
will be more weights to flip, and therefore more epochs. The neural nets generated with CE have
a great number of weights 1, and the learning works better on such networks. They have a lot of
layers (up to 8 in our experiment ) and the learning can cope with that. Moreover the learning fulfils
some special requirements imposed by the GA: It must be quick and need not be 100% successful.
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Experiments show that a success rate above 50% is achieved with an average number of epoch
around 20, on networks having up to 12 hidden units.

7.4 Extension of the Switch learning Algorithm

In the previous sections, we describe a learning that fits networks generated by the genetic algorithm
using cellular encoding. This learning algorithm looks for boolean weights (£1). Choosing weights
within {—1,1} is very restrictive. In this section, we extend this learning so as to choose weights
in {—1,0,1}. Setting a weight to 0 amounts to prune the link. So backcoding is still possible.

The extended switch learning algorithm is similar to the basic one. At each epoch, all the
patterns to be learned are forwarded through the network. After each pattern is passed through,
we update two positive variables for each neuron n: r, and w, and six positive variables for each
link I: 7fv] and w[v], v € {—1,0,1} In fact, we do not consider r[vg] and w;[vg], where vy is the
value of the current weight. The letter r stands for right and w stands for wrong. Let o be an
output unit, if the activity of o is the desired output, r, is set to 1 and w, is set to 0, otherwise,
T, is set to 0 and w, is set to 1. For a hidden unit A the variables r, and wy are computed so as
to give an hint about the correctness of h’s computed activity. If r; is high, the activity of A is
right, a modification of h’s activity is likely to decrease the performance of the net on the currently
processed pattern. If wy is high, the activity of A could be wrong, a modification of h’s activity
is likely to increase the performance of the net. Similarly, for each link I, if r[v] (resp. wi[v]) is
high, setting {’s weight to v is likely to decrease (resp. increase) the performance of the net on the
currently processed pattern.

In order to compute the value of all these variables we process the neurons one by one, back-
wards, starting from the output-units, as in back-propagation. The algorithm is similar to the
algorithm used in the +1 basic switch algorithm. It is sketched in Appendix C.11 and it shows how
to process one neuron. Let ¢ be the currently processed neuron. There are three possible trials to
modify ¢’s activity: We can either change a weight on a link [/ that fans into ¢ (trial ;) or modify
the activity of a neighbor n that fans into ¢ (trial {3 ) or else do trial ¢; and ¢; at the same time
(trial ¢3). For each neighbor n that fans into ¢ through link [, the learning algorithm successively
tries {1, and one among ¢y or t3 depending on the activity of n. For each trial ¢; it analyses the
effect of the modification on the neuron c. If the effect is desirable, it increases w,, if ¢; has modified
n’activity and w[v] if ¢; has set I’s weight to v. If the effect is bad, it increases r,, if {; has modified
n’s activity and 7[v] if ¢; has set I’s weight to v. There are three kind of effects, following the
change of the net input of ¢ which is the weighted sum of the neuron’s activity that fans into ¢,
minus ¢’s threshold.

e ¢1: The net input of ¢ changes its sign (0 has the sign -). Thus ¢’s activity changes. If w. > 0
we wanted ¢’s activity change with a strength w.. We register the fact that the trial ¢; is
worth with a strength w.. We add w, to w, or w;[v] depending on ¢;. If r. > 0 we did not
want ¢’s activity to change with a strength r.. We register the fact that ¢; is bad with a
strength .. We add r. to r,, or to r[v] depending on ;.

o ¢e5: The net input increases in absolute value. If we wanted ¢’s activity to change, this effect
is bad because the change will be harder. Thus we add w, to r, or r;[v], depending on ;.

o e3: The net input decreases in absolute value. If we wanted ¢’s activity change, the effect is
desirable since the change will be easier. We add w. to w, or w;[v] depending on ¢;. If we
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did not want ¢’s activity to change the effect is bad because ¢’s activity is less stable and will
be more easily changed. We add r. to r, or to r[v] depending on ;.

Until now, the Switch Algorithm looks like a standard back-propagation. However there is a
difference. The quantities r. and w, that are back propagated, are multiplied by a coeflicient which
is used to rank the relative importance of the corresponding change in a weight value or an activity
value. The basic switch learning algorithm also uses coefficients, but not as many. Moreover the
extended switch learning consider more cases. The coeflicients are produced using 6 parameters p;,
1=1,...,6;0 < p; < 1. Each of these parameter, corresponds to a particular heuristic. Parameter
p1 promotes the change of the activity of a neuron having a small stability. This kind of strategy
has already been used in [8]. It has theoretical and experimental foundations. Parameters pq, p3
and p4 rank the importance of the effect ey, ey, and the two cases of e3. We prefer to try to learn
new patterns rather than consolidate old patterns. This heuristic can be implemented by choosing
p3 >> pg. An input unit’s activity is fixed. Therefore we can better evaluate the effect of a weight
change on a link that fans out an input unit. Parameter ps is used to register this fact. The trial {3
allows to register an information that is relevant only if we make at least two weight changes, one
to change the weight of the link [ that fans in ¢, another changes a weight upstream the neuron n
connected by [ in order to modify n’s activity. On the other hand, the information computed using
t; or {y is relevant for one weight change. Since the information computed during trial ¢z is less
precise, we multiply the back propagated quantities by pe in {3. The effect e3 is more important
if the change in the net input is 2, than if it is 1. Therefore, we multiply the backpropagated
quantities by /2 where § is the absolute value of the difference between the net input before the
trial and the net input after the trial. The algorithm in Appendix C.11 can be implemented with 8
multiplications, 7 additions and 4 conditional branching for processing one link, by computing the
coeflicients in advance, for each possible ¢’s net input, I’s weight and n’s activity.

Once all the patterns have been processed, the w;[v] and r;[v] corresponding to each pattern
are summed. A fitness fi[v] is computed for each link I,v € {—1,0,1}\ {vg}, where vy refers to the
current weight. We use the formula: fi[v] = w * w;[v] — 7 * 7[v] — d x d;. The positive coefficients
r, w and d parametrize the learning. The fitness fj[v] measures how interesting would be to set I’s
weight to the value v. The variable d; refers to the depth of the link [ which is the length of the
maximum path from this link to an output unit. The fitness of a link f; is the maximum of fj[v],
The two links in the whole network that have the higher fitness are selected. One of these two links
is chosen for a weight change. The one with the highest fitness is chosen with a probability p higher
than 0.5. The weight of the selected link is set to v where fj[v] is the maximum fitness. After the
weight change, the performance of the neural net with the modified weight is computed. If the
performance increases, we accept the weight change, if not, we still accept it with a probability
exp(—A/T). T is a temperature, A is the decrease in the performance. From one epoch to the
other T is decreased, in order to do simulated annealing. If the weight change is accepted, then the
weight of the link that has been selected for change is frozen for e epochs where e = e1 + €5 * egl,
€1, ey e3 are positive parameters. Due to the term ey * egl in this expression, the links near the
output units will be frozen a longer time. This counter balanced the fact that these links are more
likely to be selected, due to the term —d * d; that appears in the computation of the fitness fj.

7.5 Simulation with the extended Switch learning algorithm

We now describe two sets of experiments during which we try to learn 2 boolean functions: the
parity and the symmetry. For each target function, we consider a genetic code found by hand that
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Figure 7.3: The third learned network for the parity (a) and the symmetry (b). Circles represent
neurons. If the threshold is 0, the circle is empty, if it is one the circle is filled with black. A
continuous line indicates a weight 1, a dashed line a weight —1 and a dotted line a null weight.

produces a family of neural networks such that some links must be pruned by learning in order to
find a solution. We tested the Switch algorithm on the first three neural networks of the family.
Networks developed with cellular encoding are a relevant benchmark, since the learning algorithm
is designed to be combined with cellular encoding. We represent the third network of the family,
with a set of correct weights found by the learning in fig 7.3. We use two modes for the weight
initialization: In the first mode we set all the initial weights to 1, in the other mode, we set the
weights with a random value £1. For the symmetry we set the parameters to p; = 0.3, p; = 0.5,
ps = 0.04, py = 0.006, p5 = 0.17, ps == 002, r =5, w =7, p=08,d=05,e; =2, e3 =1,
es3 = 0.7. We keep the same parameters for the parity except for w = 6, d = 2, p; = 0.7. The
initial temperature is set to 1 and we divide it by 1.01 after each epoch. We run 32 trials for each
experiment, and compute the average and standard deviation. Since the problem is more difficult
than the one studied with the basic switch learning (there are more weights, and three possible
values per weights), we allow up to 100 epochs before stating success or failure. In the following
table the rows report in this order, the target application, the mode of weight initialization, the
network number which is L, the number of successful trials, the average number of epochs of the
successful trials and the standard deviation of the number of epochs.

target parity symmetry

weights one random one random
Li1]2]|3 11213 11213 1123
success | 32 |32 32|32 (21| 7 ||32(32|31) 32|15 8
epoch | 3 | 6 | 17| 8 |22 24| 3 | 7 |16 16|41 | 34
SD| 1 | 1| 7| 624|220 |4 |12] 14|22 26

In the first set of experiments, the target is the parity function. The parity of /41 binary inputs
returns the sum of its inputs modulo 2. We used a code found by hand that develops a network
family (N;) such that (N;) has [ + 1 input units, 3 %[ hidden units, 8 * [ connections, 2 x [ layers,
3+ L weights must be modified by the learning, if all the weights are initialized with 1. In the next
set of experiments we try to learn the symmetry function. The symmetry of 2/ + 1 binary inputs
returns 1 if and only if the input is symmetric and the middle bit is 1. We choose a code that
develops a network family (N;) with the following features: Network (N;) has 2/ + 1 input units,
3 % [ hidden units, 11 %[ connections, 2 * [ layers. 4 ¥ L weights must be modified by the learning,
if all the weights are initialized with 1.
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LEARNING MODE [ TIME | EVALUATIONS | SUCCESS-RATE | NUMBER OF TRIALS |

basic GA | 110 | 11500 0.14 100
Hebbian Learning only on the output unit
Baldwin 260 17700 0.07 100
Developmental 21 1800 0.64 76
Lamarkian 13 1300 0.79 63
Switch Learning on all hidden layers
Baldwin 180 6500 0.08 100
Developmental 11 520 0.84 59
Lamarkian 10 610 0.86 58

Table 7.2: The parity experiment

Experiment shows that a success rate above 20% is achieved with an average number of epochs
under 40, on networks having up to 8 hidden units. This is not as good as the basic switch learning.
But the complexity of the problem studied is also more important. Supose we start with all the
weights initialized with one. There were three times as much weights to modify in the case of the
parity, and twice as much in the case of the symmetry. Moreover, there are two choices instead
of one for the new value of the weights. As was the case with the basic Switch learning, the
experiments also show that starting with initial weights of 1 helps the Switch Algorithm.

7.6 Simulation with the Genetic Algorithm

In this set of experiments, we combine the Genetic Algorithm with the basic Switch learning We
use the basic Switch learning algorithm that searches +1 weights, because the experiments of the
preceding sections indicate that the extended version where the weights are chosen in{0,1,—1} is
less efficient on the particular target problems that we want to solve. We used the parallel GA
described in chapter 8 and made it run on four nodes of an IPSC860, a MIMD parallel Machine. We
compared results obtained using Hebbian Learning on the output unit and Basic Switch Learning
on all units. We consider two problems to solve: the parity and symmetry problem of arbitrary
large size. The 3 possible combinations of learning and evolution described in the preceding chapter
are investigated. they are: Baldwin Learning, Developmental Learning, and Lamarkian Learning.
The first table reports the parity experiments. The population size is now fixed, it is 256, the GA
runs 20 seconds before stating success of failure. The time for the failures is considered in the
average time we give. The second table reports the symmetry experiments. Here the population is
1024, the GA runs 300 seconds before stating success or failure.

These experiments clearly show that Switch learning allows to get a better speed-up than
hebbian learning, especially for the symmetry problem. This is not surprising, since learning only
on the output unit exploits a special property of the parity problem; recall that for the network
for the parity problem of 2 inputs, the only weights that need to be negative are weights feeding
the output unit. In the cellular encoding weights are positive by default; therefore, encodings with
all positive weights are more compact than encodings for equivalent networks that have negative
weights. On the other hand, Symmetry is a problem for which the learning should modify weights
of hidden units. Switch learning allows to learn weights on links feeding hidden units, and the
hebbian learning used does not. This is why the interest of switch learning shows up on the
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LEARNING MODE [ TIME | EVALUATIONS | SUCCESS-RATE | NUMBER OF TRIALS |

basic GA 790 | 44000 0.27 71
Hebbian Learning only on the output unit
Baldwin 960 48000 0.15 84
Developmental 360 20000 e 14
Lamarkian 420 24000 0.5 40
Switch Learning on all hidden layers
Baldwin 2280 45000 12 170
Developmental 62 1400 1 23
Lamarkian 98 2850 0.74 27

Table 7.3: The symmetry experiment

symmetry problem. On this problem, Developmental learning does better that Lamarkian learning

7.7 Conclusion

The “Switch Algorithm” has been designed to refine neural networks produced by the Genetic
Algorithm, with Cellular Encoding. During one epoch, the Switch algorithm guesses the best
weight to change, and also the best value into which to change it. This value can be 1 in the basic
switch algorithm —1,0 or 1 in the extended case. This learning suits the particular class of neural
nets that are generated by the GA. These neural nets are made of units having a small fan in, and
therefore, the number of connections is also small. They have a great number of weights 1, and
many layers. Moreover, the Switch Algorithm is quick and the computer time spent into learning
is comparable to the time spent by the GA alone, for the genetic search and the development of
neural networks. We did two kinds of experiments to measure the efficiency of switch learning.
First we measure the speed of convergence on a fixed neural net with correct architecture and
biases. Second, we measure the speed-up brought to the GA. The first kind of experiments with
the basic switch learning shows that a success rate above 50% is achieved with an average number
of epochs around 20, on networks having up to 12 hidden units. When combined with the GA,
with the symmetry problem, the basic Switch learning allows to get a speed-up of 13, whereas the
Hebbian learning on the output unit brings a speed-up of only 1.5.



Chapter 8

The mixed parallel GA

8.1 State of the art of Parallel Genetic Algorithms

The Genetic Algorithm is a search technique based on the principles of population genetics. It has
been shortly describes, section 1.2, in the introduction. A GA handles a population of solutions to
a given problem. In order to build a new solution, the GA selects two solutions in its population
(mating) recombines them to build an offspring, and finally mutates the offspring. This iterative
process of selection, recombination and mutation makes the population of solutions evolve towards
better solutions. The process is stopped when a sufficiently good solution is found. We refer to [11]
for a book on GAs.

The basis of a parallel implementation of a GA on a multiprocessor system is to divide the whole
population into subpopulations and to allocate one subpopulation per processor. The processors
send each other their best solutions. These communications take place with respect to a spatial
structure of the population. Different models of parallel GAs have been investigated. There are
based on different spatial structures. Miiehlenbein classifies 3 models in [24]. In the island model,
the population is subdivided into a set of randomly distributed islands among which migration is
random. In the stepping-stone model, migration takes place between neighboring islands only. The
isolating-by-distance model treats the case of continuous distributions. Typically, in this model,
individuals are placed on a 2-D grid, and mate in their neighborhood.

8.2 The mixed parallel GA

In this chapter we introduce a new model called “the mixed model”, which combines the stepping-
stone model and the isolating-by-distance model. Thus the advantages of both models are combined.

e Local mating allows to achieve a high degree of inbreeding between mates ([4]). The degree of
inbreeding is a measure of how similar the mates are on average. If the mates are very different,
their combination is likely to produce unfit offsprings. Thus a high degree of inbreeding favors
the creation of interesting individuals.

e Isolated islands help to maintain genetic diversity ([25]). Individuals on an island are relatively
isolated from individuals on another island. Therefore the sub-population of each island is
exploring a different part of the input-space. It avoids premature convergence and allows a
more thorough search of the input space.

93
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Figure 8.1: Spatial structure of the population, for the mixed parallel GA: A 2-D torus of 2-D grid.
each small square represents a site, a dot in a square represents an individual occupying the site,
a cercle around the dot indicates that this individual is the best of a random walk. Grey squares
represent a site that has been randomly chosen to initiate a random walk, thick squares are site
where an individual is to be inserted

In the mixed parallel GA, individuals are distributed on islands. The islands form a 2-D torus.
Each island is mapped on one processor of a MIMD machine. A processor can send individuals
only to the four processors that store the four neighbor islands. Inside one island the individuals
are arranged on a 2-D grid. The whole spatial structure is a 2D torus of 2-D grids represented

fig 8.1.

Not all the sites of a 2-D grid are occupied. The density of population is kept around 0.5. It
means: a given site is occupied with a probability 0.5. The mating is done as follows: A site s is
randomly chosen on the grid. From this site, two successive random walks are performed. The two
best individuals found during these 2 random walks are mated. A verification is done to ensure
that the two mates are different. The offspring is placed on site s. If the site was already occupied
by individual 4, 7 is placed on a randomly chosen neighboring site s’. If then s’ is occupied by #', i’
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is placed on a randomly chosen neighboring site s”, and so on until an empty site is found. This
scheme simulates the isolating-by-distance model sequentially on one processor.

Tanese [30] introduces two migration parameters: the migration interval (the number of gener-
ations between consecutive migrations) and the migration rate (the number of individuals selected
for migration). This approach is usually followed. We take an original approach that requires only
one parameter. Qur GA is steady state. Fach time a new individual is to be created, it can be
built either through the recombination of two other individuals, or by mean of an exchange. The
exchange is chosen with a probability called the exchange rate.

When a processor exchanges an individual, a site s is selected on a border of the 2-D grid, a
random walk starts from this site, the best individual found is sent to the processor next to the
border. It is sent with the coordinate of s. When it is received, these coordinates are read, and the
individual is placed exactly on the site opposite to s. Thus, the exchange preserves the overall 2-D
topological structure.

8.3 A super-linear speed-up

We apply the GA to find a boolean neural net (with weight +1 ) that computes the parity of
51 inputs. We encode neural nets with the Cellular Encoding. This encoding allows to develop a
family of neural networks, where the L;, network computes a regular boolean function of size L like
the parity with L + 1 inputs. Miiehlenbein [25] promotes the use of individual hill-climbing. Each
individual generated by the GA should try to enhance itself with hill-climbing. In the case of neural
network optimization, a learning procedure can be used as a hill-climber. The basic switch learning
was used. This learning is applied for each chromosome (solution) produced by the GA, on the
first neural network of the family. The learned information is then coded back on the chromosome
and can be used to develop the other networks of the family. This method called developmental
learning has been studied in chapter 6.

The MIMD parallel machine used is an iPSC860, with up to 64 processors. One node of
this machine makes 40 MIPS which is roughly 1.5 SPARC-2. The communications between the
processors are asynchronous, and are overlapped by the computations. So the communication cost
is null! This theoretical prediction is confirmed by experimental measures. If the GA failed to find
a solution after 20 seconds, it was restarted. The time to find a solution includes the time spent
for the failure. The optimal size of the population changes with the number of processors used.
Therefore, in the study of the speed-up, we have considered different population size. Figure 8.2
shows that the optimal population size depends on the number of processors. Some authors claim
a super-linear speed-up for their parallel GA, but their results are biased because they choose a
population size that favors a great number of processors. It is well known that the performance of
the GA and the parallel GA depends critically on the population size. Therefore we believe that a
computation of the speed-up which do not try to optimize the population size for a given number
of processors is of little interest.

Figure 8.3 shows a super-linear speed-up until 16 processors. This is possible since the parallel
GA is not the same algorithm as the basic GA. The speed-up drops after 16 processors not because
of the communication cost which remains null, but because roughly, 128 individuals are enough
to solve the target problem; and the Mixed PGA works well for sub-populations of at least 8
individuals, With a more difficult problem, a greater population size would be needed to correctly
sample the search space, and a super-linear speed-up for an even greater number of processors could
be achieved.
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Figure 8.2: The horizontal axis indicates the total population size (summed on all the processors)
which is always a power of 2. The vertical axis indicates the time in seconds, taken by the Mixed
Parallel GA, to find a network for the parity of 51 inputs. It is an average over 10 experiments,
depending on the initial population. Tics on the vertical axis indicate the best time for each number
of processors
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Figure 8.3: The horizontal axis indicates the number of nodes, the vertical axix shows the speed-up



Chapter 9

Modularity

This chapter describes how to incorporate modularity into Cellular Encoding. We show how to add
modularity to the basic Cellular Encoding, A Genetic Algorithm that encompasses all the enhance-
ments brought in the previous chapters, is used to find part of a modular code that yields both
architecture and +1 weights specifying a particular neural network for solving the decoder boolean
function of 10 inputs, 1024 outputs. This result suggests that the GA can exploit modularity in
order to find architectures within a more complex range.

9.1 Adding modularity to Cellular Encoding

In section 3.4 we have shown that using the program symbol JMP, we could obtain a cellular
encoding that checks property of modularity. We have tested this operator without much success.
We therefore choose another way to implement modularity.

A cellular code is now extended to an ordered list of labeled trees, instead of a single tree. Since
each tree encodes a grammar it is called a grammar-tree. Each grammar tree encodes a sub neural
network that will be included in the final neural network. The GA must automatically define these
sub neural networks, and include some copies of them in the final network. Koza in [17], describes
how the GA can automatically define functions, and insert one or many calls to these functions.
Koza calls that Automatic Function Definition. We shall call that ADSN: Automatic Definition
of Sub Networks. Each grammar-tree has its own name which for convenience will be a single
lower-case letter, except for the aziom grammar tree, whose name is #£. At the beginning of the
rewriting, the ancestor cell is positioned on the root of the axiom grammar tree. For each grammar-
tree x, there exists a program-symbol denoted by x which includes the sub network encoded by that
grammar tree. This operator is similar to the program-symbol JMP x defined in section 4.6. The
only difference is that we encode the program-symbol on a single letter, and it has no arguments.
There are as many macro-operators as there are grammar-trees. This notation is coherent with
the use of Genetic Algorithm. When a cell reads the program-symbol x, it positions its reading
head on the root of the tree which name is x. If a grammar tree includes itself, the development
enters an infinite loop. It amounts to use a program symbol of recursion R defined in section 2.2
In this particular case, the cell executes the following algorithm before moving its reading head,
that counts the number of loops:

1- life := life - 1
2- If (life > 0)
reading-head := root of current tree
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Figure 9.1: The 2-input decoder network. (a) Development of sub-network u, starting from an
initial network graph already containing subnetwork 1. (b) Development of sub-network i. (c) First
11 steps of the development of the whole 2-input decoder network, at step 11, the network-graph
is similar to the initial network-graph of (a), the last steps can therefore be deduced from (a).
The graphic representation is as usual, except that a circle filled with gray represents a threshold
of -1. We use an abbreviated notation for program symbols. PAR, SEQ, WAIT, END, INCBIAS,
DECBIAS, VAL-,VAL+, INCLR, DECLR, CUT, XSPL, SEP, ADSN1, ADSNO are replaced by: P, S,
W, E, A, 0, -, #, I, D, C, G, Y, u, i,
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3- Else loose reading-head
become a neuron.

The variable life is a register of the cell. It is initialized with L in the ancestor cell. Thus a
grammar develops a family of neural networks parametrized by L. The number L parametrizes the
structure of the neural network. We also introduce a branching program-symbol denoted BLIF2
which labels nodes of arity 2. A cell that reads BLIF2 executes the following algorithm:

1- If (life = L)
reading-head :

right subtree

of current node

2- Else
reading-head :

left subtree
of current node

Figure 9.1 shows a modular cellular code and its development into a network for the decoder.
This figure is complex, we refer the reader to chapter 2 for a more simple example of development
and an explanation of cellular encoding. We present here a more complex encoding for three
purposes. It shows the power of cellular encoding. It presents a complex boolean function, the
decoder, for which a modular decomposition is needed to encode the corresponding network family.
It allows to better understand how the GA can find a solution to the decoder problem.

Figure 9.1 (c) shows that the decoder-network consists of 2 sub-networks sequentially connected.
The first one is encoded by ADSN1 and develops the input units, as well as a unit which constantly
outputs 1. It includes itself once, therefore its size is O(L). The second one is encoded by ADSNO. It
uses one by one the neurons generated by sub-network ADSN1. It includes itself twice, therefore its
size is O(2%). The decoder network is developed for L = 2 in figure 9.1. The development can be
done for an arbitrary large integer L. Moreover, the code is modular according to the definition given
in section 3.4. In general, a cellular encoding will always be modular, by using one grammar-tree
per sub-network.

We use two new division program-symbols. In a gradual division (denoted by XSPL) the first
child cell inherits the first » input links, where r is the value of the link register, the second child
cell inherits the other input links and all the output links; the first child connects to the second
with weight 1 (in step 2, 14 and 15 fig. 9.1 (a)). In a separation division (denoted by SEP), both
childs inherit all the input links, the first child inherits the first half of the output links, the second
child inherits the second half (step 5 fig. 9.1 (a)). These program symbol XSPL and SEP and their
microcode are listed in appendix C.5.

9.2 Experiments with modularity

We try to find a network family Ny, such that Ny computes the decoder of size L. Ny must have
L input units and 2% output units. If the binary code of an integer i < 2 is clamped on the
input units, the #** output must be set to 1, all the others to 0. This problem is more complex
than the parity or the symmetry, with respect to Cellular Encoding. In the preceding section, we
have presented an encoding for a decoder network that needs 3 grammar trees, whereas parity or
symmetry networks can be encoded with a single grammar-tree.

We will use all the enhancement brought in the previous chapters to solve this complex problem:
Developmental learning, basic Switch learning, parallel GA on 64 processors of an IPSC860 parallel

machine. In the parallel GA, we start to develop neural networks from Np, instead of from N1,

min ?
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Objective: Find the Cellular Encoding of a neural network family that computes the decoder
of an arbitrary large size

Terminal set: END, ADSNO, ADSN1, CONST1

Function set: PAR, SEQ, WAIT, VAL+, VAL-, INCLR, DECLR, INCBIAS, DECBIAS,
CUT BLIFE2, XSPL, SEP

Fitness cases: Random patterns of L bit to input in the neural net Nz, the number of fitness cases
is determined by the GA

Hits: Fitness cases for which the neural net produces the right output

Raw fitness: The number of hits

of one neural net of the neural net

Standardized fitness raw fitness divided by the total number of fitness cases.

of one neural net It ranges between 0 and 1

Standardized fitness The sum of standardized fitness of the developed neural net. It ranges between 0 and 10

Parameters: M = 8092t,, = 0.005,ly = 30l,4z = 50

Success Predicate: The standardized fitness equals 10. That is the 10 first networks are developed and

score the maximum number of hits

Table 9.1: Tableau for genetic search of a neural network family for the decoder boolean problem.
Instead of the time T', we report M, the size of the population which is fixed in this experiments

using the developing rule of section 5.2. L,,;, varies regularly among the 64 processors between
1 and 3. The processors for which L,,;, = 3 directly start to develop N3 whereas those for
which L,,;, = 1 start by Ny. There are three different fitness functions, each one represents a
different feature of the problem. So each processor develops a population with a view to find the
building block corresponding to a particular feature, and the final solution can be found through
the recombination of exchanged genomes between processors. Genetic diversity is maintained until
a code that develops Ny, Ny, N3 right is found. But such a code is likely to develop Nj right
for L > 3, because the recurrence is learned. Hence genetic diversity can be kept until a general
solution is found.

The grammar-tree are ordered. Mutation and the generation of random genomes are imple-
mented so as to respect a hierarchy between the grammar-tree of the genome. A grammar-tree x
cannot include a grammar-tree y if x<y. This prevents looping between grammar-trees.

The fitness of a neural networks is no longer based on information theory, but simply on the
number of hits. This is consistent with respect to the Switch learning that tries to maximize the
number of hits.

The genome recombined by the GA encompassed two grammar-trees named ADSNO and ADSN1.
The axiom grammar-tree was predefined as SEQ (ADSN1 ) ( WAIT ( WAIT( ADSNO))). This tree
indicates the general structure of the network. It is made of two sub-networks ADSN1 and ASDNO,
sequentially connected. The development of ASDNO is delayed 2 times, because ASDNO needs neurons
produced by ASDN1. We predefined another grammar-tree named CONST1 which is BLIFE2(END
) (DECBIAS (VAL- (CUT ( END)))) . It encodes a sub-network that consists of a single unit, which
outputs a constant 1, or performs the identity, depending on the value of the life register. Table 9.1
describes the features for the problem of generating a neural network for the decoder. Figures 9.2
shows the genome found by the GA. The corresponding L** neural network solves the decoder of
L inputs with 4 « 2 — 2 hidden units and 15 % 2¢~1 — 6 links. It is clearly a combination of 2& — 1
sub-networks. We tested Ny, until L=10. Although there is no formal proof, it seems obvious that
Ny, solves the decoder of L inputs for an arbitrary large L, because the GA learns the recurrence.
The GA used was quite powerful. The sub-population size on each processors was fixed, it was
128, the total population size on the 64 processors was 8192. The number of generations averaged
over the processors was about 130. So the total number of genomes processed was around 1 000



Modularity 101

d

) f?

O

Figure 9.2: (a) The genome found by the GA. (b) the neural net for L=3.

000. The total cpu time taken was one hour, it amounts roughly to four days of sun4, sparc2
workstation.

9.3 Conclusion

In this chapter we make precise how to add modularity to cellular encoding so that the GA can
use it. The improvement allows to encode neural networks in a modular fashion. We show how
to develop a boolean neural network for the decoder boolean function, using two sub-networks.
Experiments report that the GA could simultaneously evolve the two sub-networks and generate a
neural network that computes the decoder boolean function of 10 inputs, 1024 outputs. However,
the GA had to be helped with two pieces of code provided by hand. The first one describes how
to include the sub-networks searched by the GA, the other one encodes a sub-network which can
be then used by the GA as a building block. This way of adding information is a general technic,
interesting in itself. The decoder is a boolean function which belongs to a more complex class
compared to the already studied parity and the symmetry, with respect to Cellular Encoding.
The corresponding architecture although regular, is more elaborate. For parity and symmetry, the
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architecture described in figure 5.9 5.10 are layered, the fan-out is bounded by 2, the complexity is
linear. For the decoder network in figure 9.3, links are arranged in a structure of trees, the fan-out
is unbounded, the complexity is exponential. Because the decoder was so hard, we had to design
an improved GA that efliciently preserves genetic diversity, and includes all the enhancements
described in the 3 preceding chapter.

Figure 9.3: The neural network found by the GA for the decoder of 7 input units, 128 output units.



Chapter 10

Conclusion: GA + CE = Genetic
Programming of neural networks

Throughout this thesis, we have studied Cellular Encoding which is a method for encoding families
of similarly structured boolean neural networks, that can compute scalable boolean functions. The
object that is encoded is a parallel graph grammar. The grammar is encoded as a set of trees
(called grammar trees) instead of a set of rules. Cellular Encoding can describe networks in an
elegant and compact way. Moreover, the representation can be readily recombined by the Genetic
Algorithm. Various properties of Cellular Encoding have been formalized and proved. A GA has
been used to search the space of grammar-trees. The GA can find a Cellular Encoding that yields
both architecture and +1 weights specifying a particular neural network for solving the parity,
symmetry and decoder boolean function . Furthermore, the grammar trees are recursive encodings
that generate whole families of networks that compute parity, symmetry or decoder. In this way,
once small parity, symmetry or decoder problems are solved, the grammars typically can generate
solutions to parity, symmetry and decoder problems of arbitrary large size.

Koza has shown that the tree data structure is an efficient encoding which can be effectively
recombined by genetic operators. Genelic Programming has been defined by Koza as a way of
evolving computer programs with a GA [16]. In Koza’s Genetic Programming paradigm the in-
dividuals in the population are LISP s-expressions which can be depicted graphically as rooted,
point-labeled trees with ordered branches. Since the cellular code has exactly the same structure,
the same approach is used for generating and recombing cellular codes with the GA. As a conclusion
of our thesis, we would like to show that the genetic search of the space of Cellular Encodings is
really a Genetic Programming approach, not only because the genetic representation uses the same
tree data structure.

We now introduce this last contribution. First Cellular Encoding can be considered as a low
level programming language of neural networks since there exists a compiler JaNNeT (Just an
Automatic Neural NEtwork Translator). that inputs a Pascal program and outputs the cellular
code of a neural net that computes what the Pascal program

We make another step that allows to put Cellular Encoding and LISP on the same level, and
to compare them. The concept of genetic programming language is defined. LISP and Cellular
Encoding are two distinct genetic programming languages. A criterion to classify genetic languages
with increasing complexities is introduced. Using this criterion, LISP turns out to be more complex
than Cellular Encoding. We propose a hierarchy of genetic languages that starts from a very simple
micro programming language and increases continuously in complexity to reach a high level language
LISP equipped with libraries. We then address the question of which genetic language is better. We
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show that the combination of Genetic Programming with neural networks using Cellular Encoding
is totally different from the one using the encapsulation operator previously proposed by Koza and
Rice using LISP [15]. The advantages of Cellular Encoding are put forward. With all the results
of Koza, LISP is better when the task involves manipulation of symbols. On the other hand, this
is not the case when the task is to synthesize neural networks. A scheme for the evolution of the
genetic language itself is also briefly sketched. In this scheme an ideal genetic language appears as
a hierarchy of building blocks. The last section summerizes the new paradigm underlying genetic
programming of neural networks.

10.1 A hierarchy of Genetic Language

In this section is given a definition of genetic language, a criterion to classify genetic languages,
and a list of genetic languages of increasing complexity.

Definition 4 A genetic programming language Ls is a set S of symbols of different arities. A
genetic program in such a language is an ordered set of trees labeled by symbols, where at each
node, the number of child nodes is the arity of the labeling symbol. Syntactic constraints can limit
the range of possible genetic programs.

Koza distinguished between symbols of arity 0 which he calls terminals, and symbols of arity
greater than 0 which he calls functions. Here this distinction would be misleading, because a
function symbol does not correspond to a real function. The definition of a genetic program gives
a theoretical skeleton. Its goal is to capture the most useful property of programming which is
modularity. Each tree ¢ represents a piece of code for a particular function f. This code can be
called from other trees, using the number associated to ¢{. With Cellular Encoding, the calling
of function f amounts to the inclusion of the neural network that computes f. The calling is
implemented using a program-symbol called JUP defined in section 4.6. This program-symbol has
an argument. When a cell reads this program-symbol, it places its reading head on the root of the
grammar tree which number is the argument.

Instead of using the tree number to refer to the trees, it is possible to use a pattern matching
process like the one used by Koza (chapter on spontaneous self replication). Section 3.4 describes
how this can be done. Although this referring system can be interesting from a genetic point of
view, the general structure of a genetic program is the same, it can always be decomposed into a
set of trees. It is only a different implementation. We consider a special kind of grammar defined
as follows:

Definition 5 A GEN-grammar is a tree-grammar used to rewrilte a genetic program written in a
language Ls inlo a genelic program wrillen in a language Lgi. A rule r of the grammar must check
the following condition: The left member is a symbol s of S of arity r. The right member is a tree
labeled with symbols of 5" and special symbols T;,i = 1,...,r. The right member contains one and
exactly one occurrence of each special symbol. When s is rewritten by r, these symbols specify were
to insert the subtrees of the node labeled by s.

A GEN-grammar is very simple. In fact it describes a morphism of trees. In rewriting of a
genetic program, each node is just replaced by a subtree of symbol from S’. Thus the size of the
new program (number of nodes) is bounded by a constant K times the size of the old program,
where K can be taken as the maximum size of right members of the grammatical rules.
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In chapter 4 we present a compiler called JaNNeT that inputs a Pascal program and outputs
a neural net that computes what the pascal program specifies. The compiler starts by computing
the parse tree of the Pascal program. The parse tree is more complex than an usual parse tree used
by a compiler, because it includes nodes for definition of variables. As a result, there is no major
differences between this parse tree and a LISP program, modulo a reduction of the LISP instruction
set. The second step of the compiler is to rewrite this parse tree into a Cellular Encoding using a
GEN-grammar. The third step of the compiler is to develop the Cellular Encoding having chosen
an initial value of the life L, this will produce a neural net that computes what the Pascal program
specifies, provided that no more than L encapsulated recursive calls are done during the execution.
Apart from the development module which is a separate program, the software of the compiler
is merely the 27 rewriting rules of the GEN-grammar that rewrites a parse tree into a Cellular
Encoding.

We propose a classification of Genetic Language based on this ordering relation.

Definition 6 Given two genetic language L1 and Lo, Ly is higher level than Lo (L1 > L3) if there
exists a GEN-grammar able to rewrile any genetlic program P writlen in L1 inlo a genelic program
P! written in Lo, that does the same computation.

The existence of the neural compiler JaNNeT proves that Pascal-Parse-Tree > Cellular-Encoding.
Using a LISP with a reduced instruction set, We have also LISP > Cellular Encoding, because our
Pascal Parse Trees are similar to LISP S-Expressions, since they include the definition of variables.
We now propose other genetic languages, and classify them using >.

In section 4.4 we show that program-symbols can be micro-coded. The micro coding of program-
symbols can be done using a Gen-Grammar. The left member of a rule is the program-symbol name,
the right member is the microcode encoded as a tree.

During the software development of JaNNeT, we defined grammar trees of neural building blocks
that are called by the compiled code. These grammar trees form a library and can be considered
as macros written in Cellular Encoding. Subsection C.7.3 lists the cellular codes of these macros.
The genetic language that includes Cellular Encoding plus this library can be called Cellular Macro
Encoding. It is possible to derive a Cellular Encoding from a Macro Cellular Encoding using a
Gen-Grammar. The left member is the name of the macro, the right member is the code of the
macro. Finally, if one uses a Lisp Library, the resulting language can be called a Macro LISP. And
is is possible to derive a LISP program from a macro Lisp program, using a Gen grammar. The
left symbol is the name of the Lisp function, in the Library. The right member is the LISP code of
that function. We can summerize the results with the formula:

Macro LISP > LISP > Macro CE = CE > Micro CE.

We now present a concrete example illustrating this hierarchy. Consider the Pascal Program :
program p; var a: integer; begin write (a) end. Since variables are set to zero by default, this program
will be compiled into a single output neuron with bias 0, that outputs 0. The program has a parse
tree which is:

PROGRAM(DECL(”a” )(TYPE-SIMPLE)(WRITE(IDF-LEC(”a”))))

The translation into Macro Cellular Encoding done by the compiler follows. The name of the
variables must be replaced with a number encoding the rank of their appearance. Therefore the
parse tree should contain variable number instead of variable names. But this is an implementation
technical detail of JaNNeT, it does not put into question our hierarchy. It is possible to modify
Cellular Encoding in order to keep variable names:
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IPAR(1) (START-) (SEQ(CPFO(1(SWITCH(1) (IPAR(2) (VAR(LR(1) (VAL(0) (EVER(2)))) (PUTL
(2) (BLOC(PAR(CHOPO(1) (SEQ(CPFO(1) (CUTO(1) (CHOP(3) (BPN(1) (END) (MRG(PN-(2))))))
) (BLOC(WRITE-MACROD)))))))) (CUT(1) (CUTO(1)))))))))(BLOC(MRG(1) (CUTO(1)))))

The translation into Cellular Encoding involves replacing each call to a Macro (here WRITE-
MACRO) by the cellular code of the macro, it produces:

IPAR(1) (START-) (SEQ(CPFO(1(SWITCH(1) (IPAR(2) (VAR(LR(1) (VAL(0) (EVER(2)))) (PUTL
(2) (BLOC(PAR(CHOPO(1) (SEQ(CPFO(1) (CUTO(1) (CHOP(3) (BPN(1) (END) (MRG(PN-(2)))))))
(BLOC ( (LABEL(-29) (BPN (1) (END) (MRG(1) (SPLIT(JMP(-29)))))))))(CUT(1)(CUTO(1)))))
)))) (BLOC(MRG (1) (CUTO(1)))))

Because we took a simple program, the tree does not increase a lot between Macro Cellular
Encoding and Cellular Encoding. The translation into Micro Cellular Encoding is done by replacing
each program-symbol by its microcode, it produces:

DIV(m(<) (s(d(=)(m(>))))) (1) (EXE(e) (0)) (DIV(s) (0) (-=(TOP(m(<)(a(~(#)) (m(>=)))) (1))
(TOP (m(<) (m($) (m((>$) (m(=)))))) (1) (DIV(m(<) (s (d(=) (m(>))))) (2) (AFF(var) (0) (CEL1
(1) (LNK(v) (0) (CEL(e) (2))))) (TOP (m(<) (m(>) (m(=))) ) (2) (EXE(q) (0) (DIV(d(*) (R(*))) (0

) (=(TOP(m(=)) (1)) (DIV(s) (0) (=(TOP(m(<) (A(~(#)) (m(>=)))))) (1) (-(TOP (m(<) (m(>))) (1))
(TOP(m(=)) (3) (EXE(p) (1) (EXE(e) (0)) (TOP(m(<) (d (" (%)) (m(>)))) (1) (CEL(e) (2)))))) (EXE(
q) (0) (EXE(y) (-29) (EXE(p) (1) (EXE(e) (0)) (TOP (m(<) (d(~(*)) (m(>)))) (1) (HOM(0) (0) (EXE(
37(=29)))))))) (TOP (m(<) (m(>))) (1) (TOP (m(<) (m(>)))(1))))))))) (EXE(q) (0) (TOP (m(<) (
d(" (%)) (m(>)))) (1) (=(TOP (m(<) (m(>))) (1)))))

We can observe that the size the final tree is much bigger, but the necessary number of labels
has diminished. It is possible to code the above tree using only 8 different labels.

10.2 Cellular Encoding Versus LISP

Koza has successfully used LISP-like language as a genetic language in a broad range of prob-
lems [16]. However, he got impressive results mainly on problems that involve manipulation of
symbols. We do not mean mathematical symbols, but entities with a high level meaning. This
success may be due to the fact that LISP is a language adapted to symbolic manipulation. On the
other hand, when Koza and Rice [15] attempt to search the space of neural nets using LISP, the
results are not impressive. They found a neural net for the XOR and for the one-bit adder.

The combination of Genetic Programming with neural network using Cellular Encoding is to-
tally different from the one proposed by Koza and Rice. Here, it is not a program that simulates
the neural network, but the neural networks that behave in a program-like manner, since we have
shown that a program can be compiled towards a neural net. Modulo this new kind of combi-
nation, Genetic Programming of neural networks allows to combine a symbolic search led by the
GA, with a connectionist search obtained through learning. We have indeed already combined the
genetic search with a learning called Switch learning using a particular kind of combination mode
called developmental learning. It is a natural solution to the fundamental problem of building
neural networks that can process symbols, without an EXPLICIT MAPPING from symbols to
neurons or neuron-states. Here, the method exploits all the magic of Genetic Programming that
builds a different sort of program without using an EXPLICIT MAPPING of a target problem
to an algorithm. Another interest of the method is to incorporate modularity into neural networks.
Modularity is the property of programming. When considered with neural network encoding, it has
been defined in section 3.4. The preceding chapter shows that Cellular Encoding has the property
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of modularity, and conducts an experiment where modularity is used to solve a difficult problem.
Another advantage of Cellular Encoding over LISP is that Cellular Encoding can infer a recurrence
where the number of inputs grows. For example, the GA could find a genetic code for a neural
network family that computes the parity of n inputs, n arbitrarily large. It seems uneasy to do
that with LISP in a natural way, because the inputs must be specified as terminals, which are in
finite number.

From the GPII book of John Koza [17] it seems that the most interesting point in GP is to to
provide a method for automatic problem decomposition. Like we use a set of grammar-trees, where
each grammar-tree encodes a subnetwork, and subnetworks includes themselves in a hierarchical
manner, Koza uses a list of LISP S-expression were each S-expression encodes a function and
function call each other in a hierarchical way. Koza writes:

For a variety of different problem, from a variety of different fields, automatic function
definition enables genetic programming to automatically and dynamically decompose a
problem into subproblems, to automatically and dynamically discover a solution to the
sub-problems, to automatically and dynamically discover a way to assemble the solution
to the subproblems into a solution to the overall problem.

We write: For a variety of different boolean problems, cellular encoding enables genetic program-
ming to automatically and dynamically decompose a problem into subproblems, to automatically
and dynamically discover sub-neural networks that solve the sub-problems, to automatically and
dynamically discover a way to assemble the sub-neural networks into a neural networks that solves
the overall problem.

In order to use automatic function definition, Koza must define before the run of the GA: the
number of functions that will be used, the number of arguments of each of these functions, the
allele set for each functions. Cellular encoding does not need any of these. In chapter 9, we used
two grammar trees for the two automatically defined subnetworks. In GP, the parameters are
explicitly passed to a function so the number of arguments must be known in advance. whereas
with CE, the parameters are passed implicitly, by the neurons connecting the cell that will start to
develop the sub-neural network to be included. We do not need to define a number of arguments
for a subnetwork. We do not need either to define a particular set of alleles for the grammar-trees,
although we can do it to help the GA.

The general conclusion of this section is that LISP is a better genetic language to do symbol
manipulations, and Cellular Encoding is more adapted for neural network synthesis. We believe
that neural network synthesis is a more fundamental problem than symbol manipulation. The root
problem of Artificial Intelligence is the symbol grounding problem. It is hard to bridge a symbol to
the real world. There is a gap between symbols and the real world which is noisy, fuzzy and very
large. If the genetic search is made at the level of symbol, it cannot solve the symbol grounding
problem. Genetic search with Cellular Encoding allows to search at lower level of complexities, as
we have shown in the previous section, and eventually to define structures like retina or cortical
column using macro of Cellular Encoding. Such structures are more in touch with the real world
and not directly connected with symbols. A concrete example is the neural network found by Beer
and Gallagher that solves a six leg locomotion problem in [2]. They encoded a large network with
a few bits, using symmetries. Here the structure is represented by the symmetries, and symmetries
can be captured by a Cellular Encoding, using a modular code. If our final aim is to breed complex
cognitive structures like a brain, rather than problem solving based on symbol, we believe that it
is better to start with a lower level language than LISP.
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10.3 Evolving the genetic language itself

Cellular Encoding is a method for encoding families of similarly structured boolean neural net-
works, that can compute scalable boolean functions. We demonstrate that genetic search of neural
networks using Cellular Encoding is equivalent to Genetic Micro Programming and that Cellular
Encoding is a micro-programming language of neural-networks. In order to build a theoretical
frame that allows generalization, we propose a definition of a Genetic Programming language, to-
gether with a criterion to classify their range of complexity. This criterion uses a special kind of
very simple tree-grammars called GEN grammars. Five genetic languages have been classified:
Macro Lisp > LISP > Macro Cellular Encoding > Cellular Encoding > Micro Cellular Encoding.
This classification shows that a decomposition is possible from a high level and abstract description
based on an efficient programming language down to very simple microcode that specifies simple
and local topological modifications of a graph. These modification are duplication or movement of a
set of contiguous links. There is no proof as to which of these five languages is the most appropriate
for genetic search. We argue that high level genetic languages (LISP) are more adapted to symbolic
processing and low level genetic language (Cellular Encoding) to neural network synthesis. In fact
the right genetic language itself can be found by genetic search. The initial genetic programs must
be built using the most simple genetic language which is Micro Cellular Encoding. A building block
is a piece of code that on average increases the fitness of a structure. The symbol of a language at
level [ is a piece of code at level [ — 1 that has an intrinsic meaning, and therefore, may increase
the fitness on average. With this in mind, we can view each symbol of a given language at level
[ as a building block with respect to the language at level [ — 1. In this scheme, evolution is a
process whereby efficient genetic languages of higher complexity are acquired, and stored using a
GEN-grammar. The rules of the GEN grammar are the building blocks; they are coded in trees
within the chromosome which is an ordered set of trees. The scheme needs an addressing mecha-
nism, a mechanism to decide when to increase the set of trees from n to n + 1, and a mechanism
for initializing the n + 1 component. The first mechanism can be an addressing by template where
the complementary template is searched only on trees of lower order than the calling tree. The
second mechanism can increase the number of trees whenever a change in the environment occurs,
reflected by a change in the average fitness of the population. The initialization of the n 4+ 1 com-
ponent can be simply random. A genetic language found with this method would be a hierarchy of
building blocks. If the initial structures are built with a higher level languages than micro-Cellular
Encoding, the scheme is a model for the evolution of modular neural networks, where each neural
building block of level [ — 1 is a symbol at level [.

10.4 A successful marriage

One constantly oppose artificial neural networks and classical computer based on Turing machine.
They are considered as two model of computation, that are very different. A classical computer is
programmed with a deterministic algorithm. One knows how much time and memory the computer
needs. A neural network is not programmed, it learns by itself. One does not know in advance
whether it will succeed to learn, and the number of neurons that are necessary. In this thesis,
we marry these two approaches together, using the GA. This marriage is based on the following
principles:

Modularity It is not possible to generate automatically big neural net that can solve complex
problems, without giving them a modular and hierarchical structure that reflect the regular-
ities of the problem to be solved.
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Encoding “Modular” and “hierarchical” can be defined only with respect to an encoding scheme.
Code Optimization The optimization must be done indirectly in the space of codes.

Programming of neural nets An encoding of modular and hierarchical structures is like a pro-
gramming language for neural network description. A neural network is a labeled graph, from
a data structure point of view.

Graph rewriting The encoding must be based on a graph grammar which is the only powerful
tool able to describe a graph structure, to our knowledge.

Different possible granularities The encoding may have different possible scaling in its granu-
larities, depending on the underlying graph grammar. Possible granularities are the following;:

e One node of the graph is rewritten in many nodes
e One node of the graph is rewritten in 0,1 or 2 nodes

e list of links are duplicated or moved

Specification of the learning Classical learning in neural networks operates on a fixed size ar-
chitecture and is based on a gradient descent. Classical learning must converge to a global
optimum. Now, it must be considered as a tool for accelerating the research which is done in
the space of code.

In this thesis, these new paradigms where illustrated as follows:

Modularity Experiments shows that it is possible to automatically generate huge neural networks,
that are modular, for solving arbitrary large boolean problems.

Encoding A formal and precise definition of modularity has been given. It was shown that cellular
encoding is modular.

Code Optimization FExperimental results show that the Genetic Algorithm is an efficient opti-
mization procedure. Moreover, the building block hypothesis that ensures the success of the
GA can be interpreted: A sub neural network is encoded in a sub tree of the cellular code.
The sub tree will be a building block, if the sub neural network has some interesting features.
When this sub neural net is included into a bigger neural net, the fitness of the whole neural
net will be good on average.

Programming of neural networks Properties of the coding as well as the existence of the neural
compiler JaNNeT show that the cellular encoding is a kind of programming language for
neural network description.

Graph rewriting Cellular encoding encodes a parallel graph rewriting system.

Different granularities The macro program symbols that have been introduced for the neural
compiler, the program symbols of cellular encoding and the micro coding, illustrate the dif-
ferent possible granularities.

Learning We have defined a new learning, called switch learning, as well as a new way to combine
learning and the research led by the Genetic Algorithm called developmental. Switch learning
combined with the developmental mode allows to achieve a speed up of 13.
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The marriage between programming and neural network, present both schemes under a new
light. For examples: we are no longer obliged to use neurons with a traditional sigmoid, we can
use neurons that make the product of their inputs. The genetic algorithm can generate any type of
neurons. Instead of learning all the weights, one can design neural net where only part of the neural
net is learned, and the other part is compiled, or directly generated with cellular encoding. The
specification of the learning has changed, instead of to converge to the global optimum, the aim
of the learning is now to accelerate the genetic search. It is not so much important to parallelize
learning of the neural net. The parallelism is more natural, and more powerful at the level of the
genetic search. The genetic algorithm has a super linear speed up. It is the fitness of a code that
costs a lot of time to be evaluated. and the fitnesses can be evaluated in parallel.

The idea to optimize neural networks indirectly, using a code, is a deep change of paradigm.
We are certain that sooner or later, this new principle will change the way people are now looking
at neural networks. The real problem in artificial intelligence, or in the connectionism, is a scaling
problem. Methods are successful on a small scale, but they have an exponential complexity, and take
too much computations, when the size of the problem become big. The only way to solve the scaling
problem, is to provide an algorithm that can automatically decompose a problem into subproblems,
solve each subproblem, and assemble the solutions of the sub problems into a general solution of
the whole problem. The solution of a problem solved with such an algorithm had automatically a
modular and hierarchical structure that reflects this decomposition. John Koza [17] demonstrate
on a number of examples, that genetic programming can achieve such an automatic decomposition
and recomposition. Koza uses what he calls Automatic Function Definition. (ADF) The GA
automatically decomposes a problem into sub problems, generate functions (ADF') that solve these
sub problems, and use many times function calls to recompose a solution to the whole problem.
The book GPII from John Koza is a real breakthrough. Nevertheless, Koza did not think that
his concept of automatic decomposition and recomposition could be applied to neural nets. Koza
writes:

?Conceivably the subtask performed by the neuron might be useful elsewhere in the
neural network. However, existing paradigms for neural networks do not provide a way
to re-use the set of weights discovered in one part of the network in other part of the
network where a similar subtask must be performed on a different set of inputs”

It is precisely what the GA combined with cellular encoding can do. It can reuse not only
a single neuron, but a sub network, likewise genetic programming can reuse a procedure. For a
variety of different problems, cellular encoding allowed the GA to automatically and dynamically
decompose a problem into sub problems, build a sub network for solving the sub problem, and
discover a way to assemble multiple copies of that subnetwork in order to build a network for the
global problem. In the three experimental results: parity symmetry, and decoder, the neural net
structure exactly reflects the problem structure.

A huge work is still to be done, in order to apply the method proposed in this thesis to other
problems than boolean functions. Koza has shown that automatic function definition becomes
interesting when the problem to be solved has an amount of regularities above a break even point.
Any neural network application where the neural net have a certain amount of regularities can be
an interesting application for cellular encoding. We have two particular propositions: In [2], Beer
and Gallagher have generated with the GA, a neural network for the locomotion of a 6 leg robot.
They used the symmetries of the problem in order to obtain a compact representation. The neural
net is composed of six copies of the same sub neural network: N;,¢ = 1,..,6, each one corresponds
to one leg. Connections between these sub networks are shaped like an 8, They are also identical.
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Beer and Gallagher have encoded on a chromosome a single sub network Ny, and the connections
between Ny and N,. Thanks to this highly compact representation, the problem could be solved.
Cellular encoding can automatically exploit the symmetries of the problem to provide a compact
encoding. Part of the code represents Ny, and another part specifies how to assemble 6 copies of Ny
in order to build the whole network. With cellular encoding, the GA can automatically decompose
the problem into 6 identical sub problems, generate a solution adapted to each of this 6 sub problem
and assemble 6 copies of this solution. The problem for the locomotion of the 6 legs robot can be
solved automatically, without using the knowledge we have about the symmetries of the problem.
The other application concerns neural nets that are translation invariant, used for low level visual
processing. Here, the same sub network is repeated as many times as there are pixels. It represents
a building block encoded separately, like a procedure.

This thesis presents novel ideas that need many parameters in order to be implemented in a
computer. I admit that sometimes, I do not remember how to set all these parameters, which can
be more than one hundred. The usual question in computer science: ”How shall we do to go faster”
must be studied in a systematic way. Going faster is the constant motivation of all the simulation
that we have done. We always wanted to improve the performance of the genetic algorithm in
order to solve problems of increasing complexities. We looked for an optimal learning with this
goal in mind. In the first chapter of the second part, chapter 6, the GA takes around 800 seconds
to solve the parity problem. This time was mentioned in the first publication on cellular encoding,
in COGANN92. This time is reduced to 1.2 seconds in chapter 9, using switch learning, combined
with a developmental mode, and the mixed parallel GA on a 64 nodes IPSC860 computer. The
speed up is 660. We are convinced that with further research, and using modern parallel computers
it is possible to go 1000 times faster than we are now doing. This race is not a game but a need.
During one hour, one must generate, train and test over one million of neural nets, having tens of
neurons, as in the decoder experiments. Going faster is the only way to obtain a robust method
for automatic generation of huge and modular neural networks.
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Appendix B

Cellular Encoding is a graph
grammar

B.1 Introduction

In this chapter, Cellular encoding is discussed in relation to graph grammars. Cellular Encoding
is specified as a system of rewriting rules. The objects that are rewritten are cells, where a cell
is a node of a directed graph, with ordered connections. If the rewriting rules are interpreted
recursively ¢ times, they develop the i;, neural-net of the family, that should compute the parity
of ¢ inputs, if parity is the target problem. In order to unify cellular encoding with the concept of
usual graph grammar, it is shown that a cellular encoding can be translated into a graph grammar
of the kind used in the Berlin algebraic approach [6]. The process of encoding a grammar into a set
of trees is described. Trees are an interesting data structure, because the genetic algorithm can be
efficiently used to recombine and mutate them. Experimental results obtained on the symmetry,
the parity and the decoder boolean function, in the second part of this thesis, support this claim.

Searching a cellular encoding with the GA is a grammatical inference process. It differs from
usual grammatical inference approach because the searched grammar does not have to generate
a language specified by positive and negative examples. Here the language is specified indirectly.
The language of neural networks must be such that the i** neural net computes the mapping for
the target problem of size ¢, and must be of reasonable size.

Our approach is different from the “syntactic neural network” of Lucas [21], where the language
is itself the learning task, and therefore, it is known from positive and negative examples. In
Lucas’s approach, there seems to be an “isomorphism” between the grammar and the syntactic
neural network, i.e, a grammar is mapped on a neural network. Syntactic neural networks have
always the same type of architectures, whereas cellular encoding does not impose a prior constraint
on the architecture, neither structural constraint nor complexity constraint.

B.2 Cellular Encoding presented as a graph grammar

Cellular encoding can be seen as a system of rewriting rules. These rules operate on cells. A cell
is a node of a directed network graph with ordered connections. Each cell is labeled with a symbol
of the grammar alphabet, either terminal or non-terminal. There is a single terminal celll which is
labeled by n. Terminal cells are finished neurons.

Cells and connections have attributes, some of which are the thresholds and weights of the final
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neural net, while others are used by the rewriting rules. For example, the link-register is used to
refer to one of possibly several fan-in connections into a cell. The life attribute is used to bound
the number of recursive interpretations of the grammar.

A rtule 7 is denoted A = o rewrites one cell into & cells, where k is the lenght of the string a.
A is a non terminal symbol that must label the parent cell on which r is applied, « is a string of
k symbols, terminal or non terminal that label the & child cells created by the rule, and F refers
to a program-symbol for computing the links and attributes for each of the k child cells. Here we
consider only the case k < 2. If k = 2, the number of cells of the network-graph augments by one.
The parent cell is said to divide into two child cells. In this case, the attributes of the two child
cells are inherited from the parent cell. If & = 1, the rewriting rule modifies the attributes of the
parent cell. If & = 0, the cell is deleted.

The axiom of the grammar is a network graph that consists of a single cell called the ancestor
cell connected to an input pointer cell and an output pointer cell. Consider the starting network
and the encoding depicted in figure B.1. At the starting step, the attributes of the ancestor cell
are initialized with default values. The threshold is 0, the link-register is 1, the life is L, if we want
to develop the L' network. As this cell repeatedly divides, it gives birth to all the other cells that
will eventually make up the neural network. The input pointer cell and the output pointer cell are
not rewritten. They are used to point to the input and output unit of the network. For example, in
figure B.1 (a), the XOR neural net has two input units labeled 1 and 2, and one output unit labeled
1. There are many kinds of cell division and cell modification, depending on the particular program-

symbol used to compute the attributes and links of the child cells. We illustrate an example in

figure B.1. The grammar used is {$ Sk AB, A PAR $n, B SEQ CcD, C PAR En, E INCBIAS n,

D VAL- n}. The program-symbol SEQ, PAR, INCBIAS, VAL- have been defined in the preceding
chapter.

The sequence in which cells are rewritten is determined as follows: once a cell is rewritten, it
enters a First In First Out (FIFO) queue. The next cell to be rewritten is the head of the FIFO
queue. If the cell divides, the child which reads the first letter of the right member enters the FIFO
queue first. This order of execution tries to model what would happen if cells were rewritten in

parallel. It ensures the following invariant:

Invariant 1: A cell cannot be rewritten twice while another cell has not been rewritten
at all.

By imposing a rewriting order we ensure that a grammar produces a single network for a given
initial life value L. The handling of L is done as follows: each cell manages a stack of characters,
used to record the history of its rewriting. Each time a rewriting rule like $ “E2 4B is applied
on a cell, the cell executes a 3-steps algorithm. Call s the symbol in the left member, here s = §.
First the cell checks whether s appears on its stack. If it does, the cell decrements its life number
and empties its stack. Second, the cell pushes s on its stack. Third, the cell checks whether its life

. . i SE . .
is strictly positive. If L > 0 the rule $ P9 4B is used, else the rule $ WAIT i used, and the cell
becomes a finished neuron.

B.3 Encoding a Grammar into a set of trees

In this section is described how to encode a “clean” grammar into a set of trees. A clean grammar
means a deterministic grammar where all the symbols are reached by the productions. First,
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| input | | input |
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(a B)
L=1

output output output output output

Step 1 Step 2 Step 3,4 Step 5 Step 6 Step 7

Step 1,2 Step 3,4

Figure B.1: The derivation of a parity network. The box labeled input represents the input pointer
cell, The box labeled output represents the output pointer cell; Circles represent other cells. If
the threshold is 0, the circle is empty, while if the threshold is 1 the circle is filled with black.
A continuous line indicates a weight 1, and a dashed line a weight —1. The first seven network
graphs (a) show the derivation for L=1, the network computes the XOR. In the second sequence
of derivation (b), starting with L=2, the network for the three inputs parity is derived.

a directed graph G that represents the grammar is built in a constructive manner. Initially G
contains one node for each non-terminal, labeled by the name of the corresponding non-terminal.

For each rule A £ o where a includes the non terminal B, an edge is drawn from the node A to the
node B. If a includes the terminal n, a new node labeled n is created and an edge is drawn from
the node A to this node. The final graph has therefore as many nodes labeled with n as there are
occurrences of n in right members of the rules. Since the grammar is clean, it is possible to embed
a tree 7 in G such that the root of the tree is labeled by the axiom, and 7 contains all the nodes
of G. We now want to decompose the graph G into a set of trees. Branches of 7 are pruned. They
become a tree once they are pruned, and are given a name which is a lower case. The initial tree
7 is a particular branch named with the symbol $. The pruning of branches is done by processing
7 in a bread first manner. Each time a node N of 7 has some k input links in G\ 7, these k
links are redirected towards k newly created node of arity 0. There are two possible cases for the
labeling of these created nodes. If N is the root of 7, the k£ nodes are labeled with the name of 7.
Else, the branch of 7 beginning at N is pruned, and given a name z, and the k£ added nodes are
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labeled by z. In the last case, node N in 7 is replaced by a 0-arity node also labeled by z. Once
7T is fully processed, the pruning procedure is recursively applied to the pruned branches. The
recursive provess will end, because each time it is applied, the number of nodes of the branches to
be processed, strictly diminishes. When the process is ended we obtain a set of branches or trees.
In this resulting set of trees, each non zero-arity node is labeled with a non terminal. We replace
this non terminal by the name of the program-symbol of the rule that rewrites it. In this way, the
final set of trees can be interpreted without any references to the initial grammar.

Each lower case z is to be interpreted as a JMP x program symbol, that we have seen in
chapter 4. A cell that executes the program-symbol z just places its reading-head on the root of
the grammar-tree which name is 2. The program-symbol REC used in section 2.2 is equivalent to a
program-symbol z where z is the name of the tree that is curently read by the cell. The register
life of the cell L, must be decremented, not only in case of a REC program-symbol, but also to
prevent an infinte looping between two sub-tree that call each other. This is the reason why each
cell manages a stack of characters, used to record the history of its rewriting. The letter "n” must
be interpreted as an END program symbol.

Figure B.2 shows how to transform the grammar for the parity network into a set of 1 tree.

The grammar {$ SEQ AB,A PAR An, B FAR BB} is also translated into a set of 3 trees. This

last grammar derives a 2 layers network with L input units and 2¥ output units. Each input unit
is connected to all the output units. Since there is no need to code names of non-terminal, the
encoding of a grammar as a set of trees is more compact if there are few trees. In the case of the
parity grammar, the encoding as a set of rules needs [In(6%312*2 x 45)] = 55 bits, whereas the
encoding as a tree need only [In(6'')] = 29 bits, that is about the half. Encoding a grammar in
a single tree ensures that the grammar that are generated are always clean. It is a good closure
property for the application of the GA. More and more people in the GA-community tends to
put information into the structures manipulated by the GA, to ensure that these structures are
similarly kept “clean”.

B.4 Equivalence with the algebraic approach to graph grammar

In this section, we show that a cellular encoding grammar can be translated into a graph grammar
of the kind proposed by Ehrig, Korff and Léwe so-called “Berlin algebraic approach”. In [6] they
write:

The rewriting of a graph G, via some rule p is done by first deleting some part DFEL
and then adding a new part AD D finally resulting into a new derived graph H. A rule p
shall only be applicable if G additionally contains some context Kjwhich is essentially
to be kept. Rewriting means to replace some part L = DEL U Kj by another one
R=KrUADD

A simplified model is enough for our purpose. The graph DFEL will always be a single node n,
Kpr = Ky, will be all the neighbor nodes of n. Therefore, the representation of a production by the
pair (L, R) will be easy to understand. Moreover, ADD will most of the time include only one or
two nodes.

In the network-graph used in cellular encoding the links are ordered. A network graph can be
represented as an ordinary directed-graph where the links are not ordered, as indicated in figure B.3.
Each cell corresponds to a node represented by a circle, each link ! connecting a cell ¢; to a cell
¢,, corresponds to two squares s; and s, and one oval. Cell ¢; (resp. ¢,) uses the square s; (resp.
S,) to encode the link [ considered as an output link of ¢; (resp. an input link of ¢,). The oval
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Figure B.2: Transforming a grammar into a set of trees. (a) A grammar for the parity (b) A
grammar for a 2 layers network with I input units and 2¥ output units. (1) Shows the graph G
and the embeded tree 7. (2) Shows the results of the pruning. (3) Presents the final set of trees,
labeled with the names of the program-symbols.

Figure B.3: How to represent a network-graph as a directed graph. The link-register of the cell
labeled A points to the 4** input link.

connects s; to s,. The squares representing the list of input-links, (or output links) of a given cell
are organized in a 1-D torus. The circle representing the cell is connected to a particular square
of the input list. This square corresponds to the link pointed by the link-register. The fan-in and
fan-out of this directed graph is bounded by 2. The edges that fan-in or fan-out from a node need
not be ordered, as was the case with the network-graph representation. The circles are labeled
with non-terminal of the grammar. Ovals and squares need not be labeled. The edges may be
labeled with arrows that indicate the next node to be rewritten, as will be later explained. Each
production of the grammar will be translated into a corresponding production on the associated

directed graph, called G.
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The sequential division in figure B.4(a) can be easily translated, because its effect remains local
on (G. However, the parallel division is not obvious. We write the rule assuming that the cells
have more than three inputs and outputs. The case where the linked list of squares has one or two
squares are special cases. We do not write the rules for these special cases because they are similar
to the rules in figure B.4.

The first rule of (b) duplicates the circle-node representing the cell. The next three rules 2-4 of
figure B.4(b) are used to duplicate the squares corresponding to the the links of the parent cell, The
5" rule describes how to duplicate the ovals. The following two rules 6-7 show how to duplicate
the squares corresponding to the 1-D torus of squares of the neighbors. The neighbor cell might
also have done a parallel division in this case the oval will be replicated in four, as specified by
the 8" rule. The oval must not be rewritten before knowing whether the cells linked through this
oval duplicate or not. Edges are labeled with arrows used for this purpose. The arrows circulate
through the 1-D torus of squares, two round tours for the simulation of one rewriting step. Rule
9,10,11 account for the beginning, the middle, the end of the first tour. After the first tour, the
edges connecting the ovals are labeled with arrows oriented towards the ovals. Rules 9,10,11 need
not be used in the case of parallel division, where the arrow on edge connecting the oval are set
during the square duplications. Rules 9,10,11 are used for the sequential division (with rules 0).
As shown by rule 5 or rule 8, an oval can be rewritten only when all its connections are labeled
with incoming arrows. This ensures that the effect of all neighbor division has been taken into
account. Rules 11,12,13 specify the beginning, middle and the end of the second tour. After the
second circulation of arrows, the 1-D ring of squares is updated, and ready to start simulation of a
new rewriting. The cell can apply the next rewriting rule only when both the list of squares that
fans-in and fans-out have been updated. When it is the case, there are two arrows oriented towards
the circle representing the cell. The circulation of arrows has another interest. It ensures that the
rewriting order will be the same in the original grammar and in the graph grammar by allowing to
check Invariant 2. This invariant is not exactly the same as invariant 1, but it ensures at least that
both grammars derive the same network.

Invariant 2: A cell cannot be rewritten twice while one of its neighbor cell has not
been rewritten at all.

We now translate the rules that modify cell attributes. It is not difficult to increment or
decrement the link-register. We just need to rotate the ring of squares, one square forward or one
square backward. Rule 1 of figure B.5 describes how to increment the link register. Rule 2 specifies
how to set the weight of the link pointed by the link register to -1. Rule 3 shows how to cut the link
pointed by the link register. Rule 4.5 make the oval disappear. Rule 6,7 simplify the neighbor’s
linked list of squares.

Rules 4,5,6,7 figure B.5 (b) handle the flow of arrows. They do not perfectly model the previous
order of execution used to develop a cellular encoding. In order to match the new rules, this order
of execution must be changed for the sequential division. The new definition must be the following:
If the cell divides in a sequential way, the child which reads the first letter of the right member
enters the FIFO queue last (instead of first). It comes from the fact that a cell can modify its
input links, but not its output links. Consider two cells ¢; and ¢; linked through a link [ from ¢; to
cy. Assume ¢y makes a parallel division which makes the link [ duplicate into two links numbered
land I 4+ 1. Let ¢3 cut (or modify the weight of) [. Then translate the cellular encoding into a
graph grammar. How will the network-graph be rewritten by the graph grammar? The links [ and
[+ 1 of ¢; will be cut (or have their weight modified). With the modification brought to sequential
division, the order of rewriting of the cell will be the closure of an order induced by the directed
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acyclic graph of cells, where a cell is rewriten after another one if it is linked to it.

Until now we have translated everything except the managing of the life attribute. It is possible
fit a more classical frame of rewriting system, by copying the approach proposed by Lindenmeyer’s
L-system [20]. In L-systems, the rewriting rules are applied in parallel. Let us also apply the
rewriting rule of a grammar resulting from the translation of a cellular encoding, in parallel. Write
the cellular encoding as an ordered set of trees. Assume that a tree numbered ¢ can only refer to
other trees numbered j, where ¢ < j. Add a number of waiting operator so that the same number
of rewriting steps C' is needed to go through the different trees. The derivation for a given L value
can be reproduced by the parallel application of the rules. The rewriting must be stopped at time
C (L + 1) for the tree 7, and it is no more needed to handle a life attribute.

B.5 Conclusion

Cellular Encoding is a method for encoding neural network families into a set of named trees. This
chapter shows that cellular encoding encodes a graph grammar. More precisely, we make precise
how to translate a cellular encoding into a set of graph grammar rewriting rules of the kind used
in the “Berlin algebraic approach to graph rewriting”. This translation is done for a restricted
alphabet of the cellular encoding code, and still need to be done for the whole alphabet listed in
appendix C.5. We believe that this should not involve conceptual difficulties. The equivalence
between cellular encoding and graph grammar brings a new light on genetic neural network. The
genetic search of neural networks via cellular encoding appears as a grammatical inference process
where the language is implicitly specified, not explicitly by positive and negative examples. This
results in three new perspectives: We will use a method to search cellular encoding (second part
of this thesis) that is, to encode a grammar into a set of trees and evolve sets of trees with the
genetic algorithm. This chapter shows that this method can be used to infer any kind of grammars.
Conversely, result from the research in the grammatical inference field can be used to improve
cellular encoding. Last, the study of cellular encoding as a grammar can be helpful to classify
cellular encoding into the complexity classes that already exist among rewriting grammars. It
seems that cellular encoding is a context sensitive, parallel graph grammar.
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Figure B.4: Translation of the rule for cell division. (a) The sequential division (b) The parallel
division (c) Managing of the edge labels (arrows).
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INCLR
(a)I A——=B
[ L] [

Figure B.5: Translation of the rules for cell modification
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Appendix C

Technical Complements

C.1 Small example of compilation

PROGRAM

TYPE-SIMPLE SEMI-COL

/\
READ WRITE

IDF—‘AFF& IDF-LEC a

Figure C.1: Execution at step one of the macro program symbol PROGRAM. The ancestor cell gives
birth to two other cells. A cell labeled ”start” and another one labeled "next”. The ”start” cell
is used to start the neural net, and to manage the propagation of the activities. The "next” cell
has not finished its development. It waits that all its neighbors become finished neurons. (i.e. that
they have lost their reading head.) The ancestor cell now reads the DECL node.
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PROGRAM

|
DECIa
SEMLCOL
READ WRTITE /

[ TYPE-SIMPLE|
|

IDF-AFFa IDF-LEC a output (next

Figure C.2: Execution at step 2 of the macro program symbol DECL. The ancestor cell gives birth to
another cell labeled ”var”. This cell represents the variable ”a”. The input and output connections
of the ancestor cell are now complete and represent a topological invariant. This invariant will be
checked by a cell, whenever a cell executes a macro program symbol. The first input link points to
the input pointer cell. The second input link points the start cell, the rest of the input links point
to neurons that contains the value of the variables in the environment. The first output link points
the output pointer cell. The second output link points the "next” cell which is used to establish
connections to the rest of the neural net.

PR(‘)GRAM
DECIa

TYPE-SIMPLE |SEMI-COL

READ WRITE

\
IDF-AFFa  IDF-LEC a (next

Figure C.3: Execution at step 3 of the macro program symbol TYPE-SIMPLE. The effect is to set to
the value 0, the weight of the connection to the neuron that represents variable 7a”.

PRO‘GRAM

DECIa

TYPE-SIMPLE SEMI-C
READ WRITE

IDF-AFFa IDF-LEC a

Figure C.4: Execution at step 4 of the macro program symbol SEMI-COL. This macro program
symbol is used to compose two instructions. Cell 1 gives birth to another cell labeled 2. Cell 1 goes
to read the macro program symbol that corresponds to the instruction read a. Cell 2 is blocked

on the instruction write a
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PR?GRAM
DECIla

TYPE-SIMPLE SEMI-CO]

READ

Figure C.5: Execution at step 5 of the macro program symbol READ a A neuron labeled var is
created. It contains the new value of variable ”a”. This neuron is connected to the input pointer
cell. it means that the value of ”a” will be taken from the outside.

PR?GRAM
DECIa

TYPESSIMPLE SEMLCO

e

Figure C.6: Execution at step 6 of the macro program symbol IDF-AFF. The neuron ”var” that
contains the old value of 7a” is deleted, because it has no more output links. The cell 72” is
unblocked, it carries on its development.

PR?GRAM

DECIa
TYPE-SIMPLE SEMI-COL

READ

IDF-AFFa IDF-LEC a

Figure C.7: Unblocking at step 7 of the cell ”2”. Before to start the compilation of the WRITE,
cell ”2” executes a small piece of cellular code. Tt merges the input links of cell ”1”. The cell ”1”
disappears. Now, the invariant is restored. Cell 2 can start the compilation of the next instruction.
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PR?GRAM

DECIa

TYPE-SIMPLE SEMI-COL

/\
READ WRIT

AFFa [IDFLEC o

IDF-AFFa

Figure C.8: Execution at step 8 of the macro program symbol WRITE. Cell 2 gives birth to another
cell 3, connected to the output pointer cell. This cell 3 possesses all the input connections of cell

2. Cell 2 becomes a neuron.

PR?GRAM

DECIa

TYPE-SIMPLE SEMI-COL

/\
READ WRITE
IDF-‘AFFa IDF-LEC a

Figure C.9: Execution at step 9 of the macro program symbol IDF-LECT. Cell 3 select the input
that corresponds to variable ”a”, and connect that input to the output pointer cell. Then, cell 3

disappears.

PROGRAM
DECIa
TYPESIMPLE SEMLCOL
READ  WRITE

IDF-‘AFFa IDF-LEC a

Figure C.10: The "next” cell unblocks, and disappears. Its deletion leads to the suppression of
neuron 2. The final neural net encompass two input neurons: the start cell and the input variable
”a”; and one output neuron: the variable ”"a”. This neural net reads "a” and write ”a”. It translates

what is specified by the Pascal program.
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C.2 The other macro program symbols

In this section we describe the macro program symbols that have not been illustrated in the pre-
ceding section, on the simple example of compilation.

‘ inst, expr

Figure C.11: Invariant pattern. We show here the network graph of cells after the declaration
of two scalar variables. We can see clearly the two corresponding neurons labeled ”var”. These
neurons ”var” with the neuron ”start” will constitute the first layer of the final neural network.
The graph of this figure is an invariant pattern that will be taken for the initial configuration, for
all the next macro program symbols. This avoids repetition and stresses the importance of the
invariant pattern in the design of the macro program symbol. Cell 1 will be called the ancestor

cell.
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Figure C.12: Execution of the macro program symbols IF and THEN by the ancestor cell of the
invariant pattern. For the sake of clarity, we have represented the combined action of IF and THEN.
Four reading cells, and a layer of 6 neurons EAND are created. Cell 1 will develop a sub-neural net
that allows to compute the value of the condition. TRUE is coded on value 1, and FALSE is coded
on value -1. The logical operation NOT is realised using a weight -1 (dashed line). Depending on
the value of the condition, the flow of values contained in the environment is sent to the left or
to the right. The neurons EAND do that switching of the flow. The reading cell 2 and 3 develop
respectively the body of the THEN and the body of the ELSE. Cell 4 possess two input sub-sites
which are represented as small black disks. It is blocked on a piece of cellular code called X-AOR. It
will gather the output lines coming out of the ELSE sub network and the THEN subnetwork.
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1) THEN ELSE

() AOR

Figure C.13: Execution of the cellular code X-AOR by cell 4 of the preceding figure. Cell 4 has two
input sub-sites that allows to distribute its input links into two lists. The cellular code allows to
handle these two lists separately. It produces a layer of AOR neurons. This layer retrieves either the
output environment from the body of the THEN or the output environment from the body of the
ELSE; and transmits it to the next instruction.

INT-CST (1)
3

output | (i)

Figure C.14: Execution of the macro program symbol INT-CST by the ancestor cell of the invariant
pattern. This macro program symbol has one parameter which is the value of the constant. Macro
program symbol INT-CST 3 has the following effect: It sets the bias of the ancestor cell to the
value 3, and deletes all the links, except the link to the ”start” neuron and the link to the "next”
neuron. The sigmoid of the ancestor cell is set to the identity, and the ancestor cell becomes a
neuron labeled 1. When the constant is needed, the neuron ”start” is used to activate the neuron
1, that delivers the constant coded in its bias.
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/
WHILE ‘
cond inst “

3
XSYNG " [output | Ciiext)

Figure C.15: Execution of the macro program symbol WHILE by the ancestor cell of the invariant
pattern. Many cells are created: three reading cells, 3 AOR neurons, 6 EAND neurons, one neuron
labeled 4, used to forward the environment. The layer of AOR neurons is used as a buffer that
stores the environment between two iterations of the loop. The AOR dynamic is used because the
flow of values either comes from the top of the network (first iteration) or from the bottom (other
iterations), but it never comes from both the top and the bottom at the same time. The reading
cell 1 develops a neural net that computes the condition of the while. Cell 2 develops the body
of the WHILE. As in the case of the IF, the EAND neurons are used as a switching for the flow of
activities. If the condition is true, the flow of values is forwarded in the body of the loop, else the
flow of values turns to the right and exits the loop. Cell 3 develops an intermediate layer in the
loop, which will synchronize the flow of activities, and will avoid collisions between activities.

% ENV

AOR

ENV

AOR

Figure C.16: Execution of the cellular code X-SYNC by cell 3 of the preceding figure. Cell 3 gives
birth to a layer [ of three neurons plus one neuron ”5” whose dynamic is the normal dynamic. This
layer is inserted between the layer of neuron that stores the output environment of the body of the
WHILE, and the buffer layer of AOR at the beginning of the loop. The neuron ”5” is connected from
its input site, to all the neurons that contains the values of the environment. The neuron ”S” is
active only when all the environment is available. The neuron ”S” is linked to the three neurons of
layer [ from its output site, with 0 weights. These connections are used to block the neurons while
?S” is not active. So the three neurons of layer [ are unblocked at the same time, and the flow of
values is synchronized.
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CALL-P
attrb

‘ param-list

Figure C.17: Execution of the macro program symbol CALL-P by the ancestor cell of the invariant
pattern. The environment has three variables. The CALL-P has one parameter (attrb) which is
the name of the called procedure. Three cells are created. Cell 1 develops different sub-networks:
one sub-network for each parameter to pass to the called procedure. Cell 2 develops the body of
the called procedure. Its reading head is placed on the root of the parse tree that defines the called
procedure. We stress that cell 2 is not connected to the neurons that contain the local variables
of the calling procedure: pefl and locl. These variables cannot be accessed from proc2. Cell
3 is blocked on a cellular code RESTORE. It will restore the environment of the calling procedure,
when the translation of the called procedure is finished. Cell 3 keeps the connections to the local
variables pef1l and locl.

glob pefl locl glob  pefl locl

[fnput_] Gart > Gar) Gar) Gan)

Figure C.18: Execution of the cellular code RESTORE by cell 3 of the preceding figure. When cell 3
is unblocked, the body of proc2 is developed. Cell 3 is linked to cell 2 which is linked to the global
variables, that may have been modified by the called procedure. The execution of RESTORE brings
together the modified global variables, and the unchanged local variables of proci.
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‘ list-param

‘expr

Figure C.19: Execution of the macro program symbol COMMA by the ancestor cell of the invariant
pattern. This macro program symbol creates two cells. Cell 2 develops a sub-network for computing
the value of a parameter, cell 1 continues to read the parameter list.

Figure C.20: Execution of the macro program symbol NO-PARAM by the ancestor cell of the invariant
pattern. Assume that cell 1 of the preceding figure is ready to develop yet another parameter,
although the end of the parameter list is reached. The end of the list is marked by a NO-PARAM
that simply eliminates cell 1.

glob  pef2

Figure C.21: Execution of the macro program symbol PROCEDURE by the ancestor cell of the invariant
pattern. This macro program symbol adds an intermediate cell 2, blocked on a POP cellular code.
This cell will be unblocked, when the body of the loop will be developed. Its role is to cut the
connections to the local variables of the called procedure. Similarly, when a sub routine returns,
the local variables are poped out from the stack. Cell 2 does not yet have the neuron loc2 in its
environment. This neuron is generated by the macro program symbols associated to the declaration
of proc2.
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glob pef2 loc2 glob  pef2 loc2

Figure C.22: Execution of the cellular code POP by cell 2 of the preceding figure. This macro
program symbol allows to retrieve only that part of the environment which is global. The local
variables are no longer connected to neuron 2 after the execution of POP. This macro program symbol
is equivalent to the pop instruction of a machine language, used for the return of sub-routines.

CALL-F
attrb

‘ param-list

Figure C.23: Execution of the macro program symbol CALL-F by the ancestor cell of the invariant
pattern. This macro program symbol has the same effect as CALL-P except that it does not create
the cell 3, because it is not necessary to restore the environment.

glob  pef2  loc2

RETURN

expr

Figure C.24: Execution of the macro program symbol RETURN by the ancestor cell of the invariant
pattern. This macro program symbol has a null effect.
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Figure C.25: Extended invariant pattern, the environment contains a scalar variable and a 1D array
with two elements.

LYY RGP

PN
PN

Figure C.26: Representation of a 2D array, using a neural tree of pointer neurons, of depth 2.
Layers of pointer neurons are marked by "PN”. The layer of neurons marked ”D” contains the
values of the array.

TYPE-ARRAY \ $ TYPE-ARRAY (L)
attrb 3 ? attrb=3

Figure C.27: Execution of the macro program symbol TYPE ARRAY. This macro program symbol
allows to develop the neural tree of pointer neurons that is required to encode an array. We
need d macro program symbols in order to represent an array of d dimensions. TYPE-ARRAY has
one parameter which is the number of columns along the dimension corresponding to that macro
program symbol. TYPE-ARRAY is the only macro program symbol where different cells go to read
the same macro program symbol.
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Figure C.28: Execution of the cellular code X-AOR by cell 4 of the figure that describes the IF macro
program symbol. The result is the production of a layer of AOR neurons, and the duplication of the
neural tree that gives a structure to the data. The layer of AOR neuron retrieves either the output
environment from the body of the THEN or from the body of the ELSE, and transmits it to the next

instruction.

CALLGEN
1lect-index

1 COMMA
-
T COMMA

COMMA

NO-PARAM

Figure C.29: Reading of a 2D array. The index il is 2, the index i2 is 1. The two first layers of
EQ@Bs have a sigmoid that test the equality to zero. They output 1 if the net input is 0, otherwise
they output -1. These EQB neurons have different thresholds that are indicated. The third layer of
neurons computes the logical ANDs. In this layer, a single neuron outputs 1, the one that corresponds
to the element that must be read. All the other neurons of this layer output -1. The fourth layer of
neurons is a layer of EAND neurons. only one of these neuron is activated. It propagates the element
of the array that is read. Last, a neuron AOR gathers all the output lines and retrieves the element
that is read. The instruction CALLGEN is almost like CALL-F, except that all the links to the global
variables are deleted. CALLGEN will be described at the end of this section
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CALLGEN
laffect-index

COMMA

1

COMMA

Figure C.30: Writing in a 2D array. The index i1 is 2, the index i2 is 1. The first three layers
are the same as in the preceding figure. The fourth layer contains twice as much EAND neurons.
These neurons EAND are distributed in pairs. Each pair corresponds to an element of the array. In
each pair, one neuron is activated, and the other one is not activated. The left neuron is never
activated except in a single case, when the element corresponds to the place where we want to
write. The following layer is a layer of AOR neurons. Each AOR neuron corresponds to an element
of the modified array. It retrieves the element of the old array, or the value v that is written if
the element corresponds to the place where we are writing. Last, a neural tree of pointer neurons
preserves the structure of 2D array.
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CALL-GEN
attrb

‘ param-list

Figure C.31: Execution of the macro program symbol CALLGEN by the ancestor cell of the invariant
pattern. CALLGEN has the same effect as CALL-F except that the cell number 2 which will execute
the body of the function written in cellular code, does not have connections to the global variables
of the Pascal program.

Figure C.32: Execution of the macro program symbol #IF by the ancestor cell of the invariant
pattern. Three cells are created. Cell 2 goes to read a macro program symbol IDF-LEC that will
select the array variable which is concerned by the test. Cell 3 is a neuron that will be used later
by cell 1 to restore the environment, once the test is finished. Cell 1 will execute the next part of
the condition encoded by the macro program symbol #THEN
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C.3 Registers of the cell

Name Role

Reading Head | Reads at a particular position on the cellular code
Life Counts the number of recursive iterations

Bias Stores the bias of the future neuron

Sigme Stores the sigmoid

Dyn Stores the dynamic

nu-lien Points to a particular link

simplif Specifies the level of simplifiability

x,y,dx,dy Specifies wether the cell is a neuron or a reading cell

Table C.1: The registers of a cell

Moreover links have 3 registers, one for the weight weight, one for the state state, and one for the
mark of beginning of a sub site begin-sub-site. Sites have a single register called divisable.
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attrb
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Figure C.33: Execution of the macro operator #THEN by cell number 1 of the preceding figure. After
the execution of the macro program symbol IDF-LEC, cell 1 is unblocked and merges the links of its
first input neighbor. The situation is described on top of the figure. The macro program symbol
tests the number of input links of its first neighbor. Here this number is 2 because the array has
two elements. If this number is greater than one, cell 1 places its reading head on the right subtree,
as it is the case here. Otherwise it goes to read the left subtree. The left sub-tree contains the

body of the #THEN, the right sub-tree contains the body of the #ELSE.



144

C.4 Syntax of the micro coding of cellular operators

The following grammar generates the microcode of operators

<microcode> ::= <top> | <div> | <reg> | <exe> | <aff>
<top> ::= -TOP<segments> | TOP<segments>
<div> ::= <divi> | <div2>
<divi> ::= -DIV<segments> | DIV<segments>
<segments> ::=<segment><segments> | <segment>
<segment> ::=<operator><operand> |<operator>~<operand> | s
<operator> ::= m | M| r | R| d | D
<operand> ::=x | > | >= | < | <= | = | § | #
<div2> :: =HOM<number>
<reg> ::= CELL<character> | SIT<character> | LNK<character>
<exe> = EXE<character> | BRA<character>
<aff> ::= AFF<character>

The non terminal <number> is rewritten into a number, The non terminal <character> is
rewritten into a character. The characer is: For the non terminal CEL, SIT, LNK, the abbreviated
name of a cell register, of a site or of a link; for EXE, it reminds what kind of movements the
reading head does. For BRA, it specifies the kind of condition that is tested, for AFF is indicated
the kind of the neuron that we got.

C.5 List of program symbols and their microcode

The letter z indicates that the program symbol uses an integer argument. ¢ is the number of input
links, o is the number of output links, r is the value of the link register.

sk ok ok ok ok ok ok sk ok sk skk sk kkkkk[Local Topologica]_ Transformat 1ok %k k k¥ kkkkk % k% %k *k kk kkk kk ¥ kk
CUTL x  TOPm-<m-> Cuts the input links i-x

CUTRI x TOPm< Cuts the right input links starting from link x
CUT x TOPm<m> Cuts input link x
CLIP TOPm_<m_> Cuts input link r
CUTO x  -TOPm<m> Cuts output link x
MRG x TOPm<d~"*m> Merges the input link of input neighbour x
MG x TOPm_<d_"#m_>Merges the input link of input neigbour r
CPFO x -TOPm<d"#m>= Copies first output of output cell x
CHOPI x TOPm= Cuts all the input links except link x
CHOPO x -TOPm= Cuts all the output links except link x
CHHL TOPm| > Cuts the first input links from 1 until i/2
CHHR TOPm|<= Cuts the last input links from i/2+1 until i.
PUTF x  TOPm=m<m> Puts link x in first position
PUTL x  TOPm<m>m= Puts link x in last position
SWITCH x TOPm<m$m>$m= Makes a link permutation between last link and link x
KILL TOP Deletes the neurone
CYC TOPs Creates a recurrent link
********Cell division into two childs which will execute a separate  code¥¥¥*¥*
PAR DIVd*R* Parallel division
SEQ DIVs Sequential division
XSPL x DIVm<=s Gradual division
SEP DIVd*M|> Separation division

ADL x DIVm<sm> Adds a cell on link x



Technical Complements

Adds a cell on link r

Duplicates link x, Add a cell on link x
Duplicates first x inputs

Duplicates first i-x inputs

Duplicates last input starting at link x
Duplicates last input starting at link i-x

into more than two childs which will execute the same codex**

Clones into x childs, x is the argument

Splits into y childs, y is computed from the topology
Same has split, but child i has its bias set to i
Same as split, but the sub-sites are merged

kxkRkRRkRkkRkkkkkkkkkkxkModification of a registerskkkkkkkkkkkskkkkkkkkhkkkkkkkkkk

AD x DIVm_<sm_>
IPAR x DIVm<sd=m>
SPLFI x DIVd<=s
SPLFIL x DIVd-<=s
SPLLI x DIVsd->=
SPLLIL x DIVsd>=
***k*x*k*xCell division
CLONE x OLC
SPLIT HOMO
TAB HOM1
SPLITN  HOM2
SBIAS x CELb
SBIASO CELb O
SBIAS1 CELb 1

INCBIAS CEL+b 1
DECBIAS CEL+b -1

1
-1

1
1
-1
2
2

Sets the bias to the argument

Sets the bias to 0

Sets the bias to 1

Increments the bias

Decrements the bias

Sets the type of sigmoid

Sets the dymamic

Sets the level of simplifiability

Sets the link register

Increments the link register

Decrements the link register

Sets the divisability of the sub sites to the argument
Sets the divisability of the input sub-sites to the argument
Sets the divisability of the output sub-sites to the argument
Merges all the input sites and all the output sites
Merges all the input sites

Merges all the output sites

Creates one input site for each input link

Sets the value of the input weight r to x

Sets the value of the output weight r to x

Sets the value of the input weight r to 1

Sets the value of the input weight r to -1

Increments the value of the weight on the input link r
Decrements the value of the weight on the input link r
Doubles the value of the weight on the input link r
Halves the value of the weight on the input link r
Sets weight x to a random value in {-1, 0, 1}

Sets the state of the link to on

Sets the state of the link to off

®kkkRkRRkRkkRkkkkkkkkkkkManaging of the execution orderskskkskskkskkkkkkkkkskkkkkkkkk

SSIGMO x CELs
SDYN x  CELd
EVER x  CELe
LR x CEL1
INCLR  CEL+1
DECLR  CEL+1
SITE SITD
SITI SITd
SITO  -SITd
DELSITE SITO
DELSITI SITo
DELSITO -SITo
MULTSIT SITm
VAL x  LNKv
VALO x  -LNKv
VAL+ LNKv 1
VAL- LNKv -
INC LNK+v
DEC LNK+v
MULT2  LNK#v
DIV2 LNK/v
RAND x  LNK?
ON LNKs 1
OFF LNKs 0
WAIT x  EXEw
WAIT EXEf
JMP x  EXEj
JMP EXEj
REC EXEr
END EXEe
BLOC EXEq
NOP_O  EXEw
NOP_1  EXEw
DEF EXEw
BLIFE  BRAf
BLIF2  BRAg
BUN x  BRAu
BPN BRAp
BLR x  BRAL

Waits x steps

Waits one step if no arguments are supplied

Includes subnetwork x

Uses a pattern matching mechanism if no arguments are supplied
Moves the reading head back to the root of the currently read subtree
Becomes a finished neuron

Waits for the neigbour to loose their reading head

Is a label

Is a label

Starts a new branch that encodes a subnetwork

Tests if the value of the life register is one

Tests if the value of the life register is the initial value
Tests if the neigbour has x input links

Tests if the neighbour is a pointer neuron

Tests if the value of the link register equals the argument

®kkkkkkkkkkkkkkkkkkkkkkkEnhancing display of the graphkskskkskkskokkkskkkskkokkokskkkskkkk
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PN
VAR

AFFpn
AFFvar

Draws a pointer neuron
Draws a neuron that contains the value of a variable
Rk kkkkkkkkkkkkkkkkkkkkkkiperators for labelingkskkkskkkskkkkkskokkokkkkkhkkkokkkkkkkkk

DINS EXEf It indicates insertion of the right sub-tree
GINS EXEf It indicates insertion of the left sub-tree
PN_ CELe It is a pointer neuron

VAR_ EXEe It contains the initial value of a variable
EAND_ EXEe It has a dynamic EAND

AOR_ EXEe It has a dynamic AOR

INF_ EXEe It compares the 2 inputs

SUP_ EXEe It compares the 2 inputs

INFEQ_ EXEe It compares the 2 inputs

SUPEQ_ EXEe It compares the 2 inputs

PLUS_ EXEe It adds the 2 inputs

MOINS_ EXEe It substracts the first input from the second inpouts
MULT_ EXEe It multiplies the 2 inputs

Quo_ EXEe It divides the first input by the second inputs
NOT_ EXEe It does a logical NOT

OR_ EXEe It does a logical OR

AND_ EXEe It does a logical AND

NEQ_ EXEe It tests if the two inputs are different

EQ_ EXEe It tests if the two inputs are equal

EQB_ EXEe It tests if the input is equal to bias
START_ EXEe It is a Start neuron

C.6 Syntax of the parse trees that are used.

The following grammar generates parenthesized expressions that can be interpreted into correct
parse trees. A parse tree can be the parse tree of the main program, the parse tree of a procedure,
or the parse tree of a function. The compiler generates a list of trees, one tree for the main program,
and one tree for each function or procedure. The parenthesized representation used here is a bit
unusual. We do not put parenthesis when there is a single subtree; we only put a blanc. When
there are two sub trees, we consider that the right sub tree is a trunc, and put only the left subtree
between parenthesis. This special representation allows to write a simple grammar. Capital letters
and parenthesis are terminals of the grammar. Non terminals are written using small letters,

between brackets.

<parse_tree>

<program> | <procedure> | <function>

<program> ::= PROGRAM <decl_list> <inst_list>
<procedure> ::= PROCEDURE <decl_list> <inst_list>
<function> ::= FUNCTION <decl_list> <inst_f>
<decl_1list> ::= DECL attrb (<type>)<decl_list> | DECL attrb <type>
<type> ::= TYPE_ARRAY attrb <type> | TYPE_SIMPLE
<inst_1list> ::= SEMI_COLON (inst) <inst_list> | <inst>
<inst_f> ::= SEMI_COLON (<inst>) <inst_f> | RETURN <expr>
<inst> = <write> | <read> | <assign> | <if> | <#if> |
<while> | <repeat> |<call_p> | <callgen>
<assign> ::= ASSIGN ( <idf_aff> ) <expr>
<read> ::= READ <idf_aff>
<idf_aff> ::= IDF_AFF attrb
<write> ::= WRITE <expr>
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<if> ::= IF(<expr>) <then>
<then> ::= THEN (<inst_list>)<inst_list>
<#if> ::= #IF(<idf_lect>) <#then>
<#then> ::= #THEN (<inst_list>)<inst_list>
<while> ::= WHILE (<expr>) <inst_list>
<repeat> ::= REPEAT (<expr>) <inst_list>
<call_p> ::= CALL_P attrb <param_list>
<param_list> ::= COMA (<expr>)<param_list> | NO_PARAM
<callgen> ::= CALLGEN attrbO <param_list>
<expr> ::= <read_array> | <write_array> | <idf_lect> |
<const> | <bin_op> | <un_op> | <call_f>
<read_array> ::= CALLGEN attrbl <param_list>
<write_array> ::= CALLGEN attrb2 <param_list>
<idf_lect> ::= IDF_LEC attrb
<const> ::= INT_CST attrb
<bin_op> ::= BINOP attrb (<expr>)<expr>
<bin_op> ::= UNOP attrb <expr>
<call_£> ::= CALL_F attrb <param_list>

This grammar generates parse trees with nodes having sometimes some attributes. We now
indicates what each attribute represents.

Name Function of the attribute

DECL name of the declared variable

TYPE-ARRAY | dimension of the array

IDF-AFF name of the variable to assign

IDF-LEC name of the variable to read

INT-CST value of the integer constant

CALL-P name of the procedure to call

CALL-F name of the function to call

CALL-GEN attrb0 is the name of a pre-encoded solution

CALL-GEN attrbl is the name of a procedure
for reading an array

CALL-GEN attrb2 is the name of a procedure
for writing an array

BINOP name of the binary operator

UNOP name of the unary operatot

Table C.2: The attributes of the parse tree

C.7 Predefinitions

These predefinitions are elementary cellular codes that are used many times. They are defined
separately in order to reduce the size of the cellular code generated by the neural compiler

C.7.1 Arithmetic operators.

Here we enumerate elementary codes that implement arithmetic operators, using neurons, as well
as the AOR and EAND dynamic. The sigmoids are in increasing order: Identity(1), Pi-units(3),
stair step-L(5), stair step-R(6), equality to zero (7) Div-unit (8)
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OR OR SBIAS 2 (SSIGMO 5 stair step-L (OR- ) )

AND AND SSIGMO 5 stair step -L (AND- )

NEG NEG LR 1 (VAL -1 (NOT-))

INFEQ INFEQ LR 1 (VAL -1 (SSIGMO 6 stair step-R (INFEQ- ) ) )
SUPEQ SUPEQ LR 2 (VAL -1 (SSIGMO 6 stair step-R (SUPEQ- ) ) )
INF INF LR 1 (VAL -1 (SSIGMO 5 stair step-L (INEF-) ) )
SUP SUP LR 2 (VAL -1 (SSIGMO 5 stair step-L (SUP-)))
EQ EQLR1 (VAL -1 (SSIGMO 7 equality to zero (EQ-) ) )
NEQ NEQ SEQ (JMP EQ ) (JMP NEG )

PLUS PLUS SSIGMO 1 identity (PLUS-)

MOINS MOINS LR 2 (VAL -1 (SSIGMO 1 identity (MOINS-) ) )
MULT SSIGMO 3 PI Unit (MULT-)

QUO SSIGMO 8 DIV Unit (QUO-)

EOR AOR SDYN 2 (AOR-)

EAND EAND SDYN 3 (EAND- )

C.7.2 Reading and writing in an array

We present here cellular code of function that allow to read and write in a multi dimensinal array.
Each of this function needs three elementary piece of code that recurively call themselves.

1AFFECT-INDEX SITE 1 (CUTLE 3 (CUTO 1 (MULTSIT (SEQ (ADL 1 (SITE 0 (JMP CREAT-EQB ) )
(MRG -2 (SPLIT (JMP 1AFFECT-SUIT ) ) ) ) (SITE 0 (BLOC (PN-2)))))))

CREAT-EQB TAB (VAL -1 (SSIGMO 7 (EQB- ) ) )

1AFFECT-SUIT BUN 3 (JMP 2AFFECT-SUIT ) (SEQ (SPLLIL 3 (SITE 0 (CUTRI 3 (ADL 2 (JMP CREAT-
EQB ) (SPLIT (JMP AND ) ) ) ) ) (MRG -2 (SPLIT (JMP 1AFFECT-SUIT ) ) ) ) (SITE 0 (BLOC (PN- 2

))))

2AFFECT-SUIT BPN 2 (SITE 0 (JMP 3AFFECT-SUIT ) ) (MRG 3 (MRG 2 (SEQ (SPLIT (JMP 2AFFECT-
SUIT ) ) (SITE 0 (BLOC (PN-2))))))

3AFFECT-SUIT SEQ (PAR (CUT 3 (LR 1 (VAL -1 (JMP EAND ) ))) (CUT 2 (JMP EAND ) ) ) (JMP AOR )

1INDEX-LEC SITE 1 (CUTLE 3 (CUTO 1 (MULTSIT (SEQ (ADL 1 (SITE 0 (JMP CREAT-EQB ) ) (MRG
-1 (SPLIT (JMP 1INDEX-SUIT ) ) ) ) (BLOC (JMP 2INDEX-SUIT ) ) ) ) )

1INDEX-SUIT BUN 2 (JMP SUPER-EAND ) (SPLLIL 3 (SITE 0 (CUTRI 3 (ADL 2 (JMP CREAT-EQB )
(SPLIT (JMP AND ) )))) (MRG -1 (SPLIT (JMP 1INDEX-SUIT ) ) ) )

2INDEX-SUIT SPLIT (BPN 1 (JMP AOR ) (SEQ (LR -1 (JMP SUPER-MRG ) ) (SITE 0 (BLOC (PN-2)))
))
C.7.3 Recursive macro program symbol for the manipulatin of the environmnet

We enumerate here elementary codes that are used in many places in the cellular code generated
by the compiler. These code apply recursively the same operation to all the environment.

the macro SUPER-MRG BLR 0 (MG (ADDLR -1 (JMP SUPER-MRG ) ) ) (JMP 2INDEX-SUIT )

the macro SUPER-EAND SUPER-EAND SPLIT (BPN 2 (JMP EAND ) (MRG 2 (SEQ (JMP SUPER-EAND
) (SITE 0 (BLOC (PN-2))))))
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the macro SUPER-AOR  SUPER-AOR SEQ (MRG 2 (MRG 1 (SPLIT (BPN 1 (JMP AOR ) (JMP SUPER-
AOR ) )))) (SITE 0 (BLOC (PN-2)))

the macro SUPER-DYN SUPER-DYN SPLIT (BPN 1 (EVER 1 (SDYN 2 ) ) (SEQ (MRG 1 (JMP SUPER-
DYN ) ) (SITE 0 (BLOC (PN-2)))))

the macro SYNCHRO SYNCHRO IPAR 1 (VAL 0 (EVER 0) ) (SITE 0 (BLOC (DELSITO (SPLITN (EVER
1)))))

the macro REPEAND REPEAND SPLIT (BPN 2 (JMP EAND ) (MRG 2 (JMP REPEAND ) ) )
the macro WHILEND WHILEND SPLIT (BPN 1 (END ) (MRG 1 (JMP WHILEND ) ) )

the macro READ-SUIT READ-SUIT BPN 3 (CUT 3 (LR 2 (VAL 0)) ) (SEQ (MRG 3 (SPLIT (JMP READ-
SUIT ) ) ) (SITE 0 (BLOC (PN-2)) ) )

the macro WRITE-SUIT WRITE-SUIT BPN 1 (END ) (MRG 1 (SPLIT (JMP WRITE-SUIT ) ) )

C.8 Rules for rewriting nodes of the parse tree

There is one rules for each non terminal of grammar C.6.

IF SITE 1 (SPLLIL 1 (CPFO 1 (SITE 0 (DELSIT (RINS ) ) ) ) (SEQ (SITE 0 (SPLFI 2 (CUT 2 (PAR (WAIT
2 (SITE 1 (JMP SUPER-EAND ) ) ) (LR 1 NOT SIMPLIFIE (VAL -1 (SITE 1 (JMP SUPER-EAND ) ) )
)) ) (CUT 1 (CPFO 1 (LINS ) ) ) ) ) (BLOC (CUTO 1 (JMP SUPER-AOR ) ) ) ))

THEN PAR (CUT 3 (BLOC (DELSIT (RINS ) ) ) ) (CUT 2 (BLOC (DELSIT (LINS ) ) ))

REPEAT SITE 1 (CYC (SITE 0 (XSPL 1 (SITE 1 (JMP SUPER-DYN ) ) (SPLFI 1 (CPFO 1 (BLOC (DELSIT
(RINS ) ) ) ) (BLOC (MRG 2 (SITE 1 (SPLLIL 2 (CPFO 1 (SITE 0 (DELSIT (LINS ) ) ) ) (PAR (CUTO 1
(CUTO 1 (LR 1 (VAL -1 (SEQ (WAIT 2 (JMP REPEAND ) ) (JMP SYNCHRO ) ) )) ) ) (CHOPO 2 (SEQ
(JMP SUPER-EAND ) (SITE 0 (BLOC (END ))))))))))))))

WHILE SITE 1 (CYC (SITE 0 (XSPL 1 (SITE 1 (JMP SUPER-DYN ) ) (BLOC (SITE 1 (SPLLIL 1 (CPFO 1
(SITE 0 (DELSIT (LINS ) ) ) ) (PAR (CUTO 2 (SPLFI 2 (CUT 2 (JMP SUPER-EAND ) ) (SITE 0 (CUT
1 (BLOC (SEQ (CPFO 1 (RINS ) ) (BLOC (SITE 1 (CUTO 1 (SEQ (MRG 1 (WAIT (JMP WHILEND ) ) )
(JMP SYNCHRO ))))))))))) (CHOPO 2 (LR 1 (VAL -1 (SEQ (CUT 2 (JMP SUPER-EAND ) ) (SITE

)
0 (BLOC(END ))))))))))))))
PROGRAM IPAR 1 (START-) (SEQ (CPFO 1 (SWITCH 1 (LINS ) ) ) (BLOC (MRG 1 (CUTO 1)) ))

NO-INST CUTO 1 (CUT 1)

DECL IPAR 2 (RINS ) (PUTL 2 (BLOC (LINS ) ) )

TYPE-ARRAY SEQ (CLONE ATTR (LINS ) ) (BLOC (EVER 2 (PN )))
TYPE-SIMPLE VAR (LR 1 (VAL 0 (EVER 2)))

SEMICOL SPLFI 1 (CPFO 1 (LINS ) ) (BLOC (MRG 2 (RINS ) ) )
ASSIGN SPLFIL 1 (CPFO 1 (RINS ) ) (BLOC (LINS ) )

IDF-AFF SWITCH attr (CUTL 1 (CUT 1 (CUTO1)))

IDF-LEC CUTO 1 (CHOP attr (BPN 1 (END ) (MRG 1 (PN-2))))
COMMA PAR (LINS ) (RINS )

UNOP SEQ (CPFO 1 (LINS ) ) (CUTO 1 (JMP attr ) )

BINOP SEQ (CPFO 1 (PAR (LINS ) (RINS ) ) ) (CUTO 1 (JMP ATTR ))
INT-CST CHOP 2 (CUTO 1 (SBIAS ATTR (LR 1 (VAL 0 (EVER 2)))))
CALL-F SPLFI GLOBAL (CPFO 1 (RINS ) ) (BLOC (JMP ATTR (CUTO 1 (CHOP 2 (LR 1 (VAL0))))))
NO-PARAM KILL ()

FUNCTION ou RETURN LINS ()
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CALL-P SPLLI LOCAL (CPFO 1 (SPLFI GLOBAL (CPFO 1 (RINS ) ) (BLOC (JMP ATTR (END )))) )
(BLOC (MRG 1 (CUTO 1) ))

PROCEDURE SEQ (CPFO 1 (LINS ) ) (BLOC (MRG 1 (CUTRI GLOBAL (CUTO 1)) ))

READ SPLFIL 1 (SPLFI 2 (CHOP ATTR ) (MRG 3 (SITE 1 (MULTSIT (JMP READ-SUIT ) ) ) ) ) (BLOC
(RINS ) )

WRITE PAR (CHOPO 1 (SEQ (CPFO 1 (RINS ) ) (BLOC (JMP WRITE-SUIT] ) ) ) ) (CUT 1 (CUTO 1) )
#IF SEQ (CPFO 1 (PAR (CUTO 1) (RINS ) ) ) (BLOC (MRG 2 (LINS ) ) )

#THEN BUN ATTR (CHOP 1 (MRG 1 (RINS ) ) ) (CHOP 1 (MRG 1 (LINS ) ))

CALLGEN SPLFI 2 (CPFO 1 (RINS ) ) (BLOC (JMP ATTR (CUTO 1 (CHOP 2 (LR 1 (VAL0))))))

C.9 Library of functions for handling arrays.

gauche CUTLE 3 (CUTO 1 (MRG 1 (CHHR 1 (PN-2))))

droite CUTLE 3 (CUTO 1 (MRG 1 (CHHL 1 (PN-2))))

concat CUTLE 3 (CUTO 1 (MRG 2 (MRG 1 (PN-2))))

int-to-array CUTLE 3 (CUTO 1 (PN-2))

array-to-int CUTLE 3 (CUTO 1 (MRG 1 (BPN 1 (END ) (MRG 1 (PN-2)))))
randomise CUTLE 3 (CUTO 1 (JMP rand ))

rand BPN 1 (LR 1 (VAL 0 (RAND ) ) ) (SEQ (MRG 1 (SPLIT (JMP rand ) ) ) (PN-2) )

C.10 Trained neural networks

The following cellular code correspond to neural networks that are included in the pascal program
animal.p

retine CUTLE 3 (CUTO 1 (SEQ (MRG 1 (SPLIT ) ) (SEQ (CLO 10 (EVER 0) ) (BLOC (PN-2)))))
position-object CUTLE 3 (CUTO 1 (SEQ (SEQ (MRG 1 (CLO 2 (EVER 0))) (CLO 2 (EVER 0))) (EVER 0) ) )
predator CUTLE 3 (CUTO 1 (SEQ (SEQ (MRG 1 (CLO 3 (EVER 0))) (CLO 3 (EVER 0))) (EVER 0) ) )
motor CUTLE 3 (CUTO 1 (SEQ (EVER 0) (SEQ (CLO 2 (EVER 0)) (SEQ (CLO 4 (EVER 0)) (PN-2) ) ) ))

C.11 The extended switch learning

Let ¢ be the neuron currently processed;
oni:=the old net input of c;
For each neuron n that fans into ¢ through link 1
If (1’s weight is not null)
Try to modify n’s activity;
nni = the new net input of c¢; d=Abs(nni-oni)/2;
Switch(Comp(nni,oni))
Case 0 : if(Small(oni)) r_n += r_c;
else r_.n += r_c * pi
w_n += w_n + w_c;
Case + : r_n += w_c * p2;
Case - : w_.n += w_c * p3 * d; r.n += r_c * p4 * d;
If (n is an input unit) P5=1; Else P5=1/p5;
If (n’s activity is not null)
For all v in {-1,0,1}, v not equal to 1’s initial weight
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Try to set 1’s weight to v;
nni = the new net input of c; d=Abs(nni-oni)/2;
Switch(Comp(nni,oni))
Case 0 : if (Small(omni)) r_1[v] += r_c * P5;
else r_1[v] += r_c * p1 * P5
w_1l[v] += w_c;
Case + : r_1[v] += w_c * p2 * P5;
Case - : w_1l[v] += w_c * p3 * d * P5; r_1[v] += r_c * p4 * 4 * P5;
Elseif n is not input unit
For all v in {-1,0,1}, v not equal to 1’s initial weight
Try to both set 1’s weight to v and modifyn’s activity;
nni = the new net input of c; d=Abs(nni-oni)/2;
Switch(Comp(nni,oni))
Case 0 : if(Small(oni)) r_n += r_c * p6; r_1[v] += r_c * P5 * p6;
else r_n += r_c * pl * p6; r_1[v] += r_c * pl * P5 * p6;
Ww_n += w_c * p6; w_1l[v] += w_c * p6;
Case + : r_n += w_c * p2 * p6; r_1[v] += w_c * p2 * P5 * p6;
Case — : w_n += w_c * p3 * d * p6; w_1l[v] += w_c * p3 * d * P5 * p6;
rn +=1r_c * p4& * d * p6; r_1[v] += r_c * p4 * d * P5 * p6;

This algorithm describes how to computes the value r,, w,, w;[v], r[v], v € {—1,0, 1}, starting
from the output unit and going backwards to the input units, as in backpropagation. the subscript
n refers to the unit that is currently processed. and the subscript [ refers to a link. These values
are then used to select which weight to modify, and the new value in which to modify it. Function
Comp returns 0 if the net input change of sign, else it returns the sign of the difference between the
absolute value of its first and second argument. Function Small returns 1 if its argument is 0 or
1, else it returns 0.The operator += increments the variable of the left side by the quantity in the
right side. The positive integers p;,7 = 1..6 parametrize the learning algorithm.



