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Preface
Neural network refers to a multifaceted representation of neural activity constituted by the essence of
neurobiology, the framework of cognitive science, the art of computation, the physics of statistical mechanics,
and the concepts of cybernetics. Inputs from these diverse disciplines have widened the scope of neural
network modeling with the emergence of artificial neural networks and their engineering applications to
pattern recognition and adaptive systems which mimic the biological neural complex in being “trained to
learn from examples”.

Neurobiology which enclaves the global aspects of anatomy, physiology, and biochemistry of the neural
complex both at microscopic (cellular) levels and at macroscopic structures of brain and nervous system
constitutes the primary base upon which the theory and modeling of neural networks have been developed
traditionally. The imminence of such neural models refers to the issues related to understanding the brain
functions and the inherent (as well as intriguing) self-adaptive control abilities of the nervous system as
dictated by the neurons.

The cognitive and learning features of neural function attracted psychologists to probe into the intricacies of
the neural system in conjunction with similar efforts of neurobiologists. In this framework, philosophical
viewpoints on neural networks have also been posed concurrently to query whether machines could be
designed to perform cognitive functions akin to living systems.

Computer science vis-a-vis neural modeling stemmed from the underlying computational and memory
capabilities of interconnected neural units and is concerned with the development of so-called artificial neural
networks which mimic the functional characteristics of the web of real neurons and offer computational
models inspired by an analogy with the neural network of the human brain.

Since the neuronal structure has been identified as a system of interconnected units with a collective behavior,
physicists could extend the concepts of statistical mechanics to the neural complex with the related spin-glass
theory which describes the interactions and collective attributes of magnetic spins at the atomic and/or
molecular level.

Yet another phenomenological consideration of the complex neural network permits modeling in the
framework of cybernetic* which is essentially “a science of optimal control over complex processes and
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systems”.

* The concepts of cybernetics adopted in this book refer to the global self-organizing aspects of neural networks
which experience optimal reaction to an external stimulus and are not just restricted to or exclusively address the
so-called cybernetic networks with maximally asymmetric feed-forward characteristics as conceived by Müller
and Reinhardt [1].

Thus, modeling neural networks has different perspectives. It has different images as we view them through
the vagaries of natural and physical sciences. Such latitudes of visualizing the neural complex and the
associated functions have facilitated in the past the emergence of distinct models in each of the aforesaid
disciplines. All these models are, however, based on the following common characteristics of real neurons and
their artificial counterparts:

•  A neural network model represents an analogy of the human brain and the associated neural complex
— that is, the neural network is essentially a neuromorphic configuration.

•  The performance of a neural network model is equitable to real neurons in terms of being a densely
interconnected system of simple processing units (cells).

•  The basic paradigm of the neural computing model corresponds to a distributed massive parallelism.

•  Such a model bears associative memory capabilities and relies on learning through adaptation of
connection strengths between the processing units.

•  Neural network models have the memory distributed totally over the network (via connection
strengths) facilitating massively parallel executions. As a result of this massive distribution of
computational capabilities, the so-called von Neumann bottleneck is circumvented.

•  Neural network vis-a-vis real neural complex refers to a connectionist model — that is, the
performance of the network through connections is more significant than the computational dynamics
of individual units (processors) themselves.

The present and the past decades have seen a wealth of published literature on neural networks and their
modelings. Of these, the books in general emphasize the biological views and cognitive features of neural
complex and engineering aspects of developing computational systems and intelligent processing techniques
on the basis of depicting the nonlinear, adaptive, and parallel processing considerations identical to real
neuron activities supplemented by the associated microelectronics and information sciences.

The physical considerations in modeling the collective activities of the neural complex via statistical
mechanics have appeared largely as sections of books or as collections of conference papers. Notwithstanding
the fact that such physical models fortify the biological, cognitive, and information-science perspectives on
the neural complex and augment a better understanding of underlying principles, dedicated books covering
the salient aspects of bridging the concepts of physics (or statistical mechanics) and neural activity are rather
sparse.

Another lacuna in the neural network literature is the nonexistence of pertinent studies relating the neural
activities and the principles of cybernetics, though it has been well recognized that cybernetics is a “science
which fights randomness, emphasizing the idea of control counteracting disorganization and destruction
caused by diverse random factors”. The central theme of cybernetics thus being the process automation of
self-control in complex automata (in the modern sense), aptly applies to the neuronal activities as well. (In a
restricted sense, a term cybernetic network had been proposed by Müller and Reinhardt [1] to represent just
the feed-forward networks with anisotropic [or maximally unidirectional], asymmetric synaptic connections.
However, it is stressed here that such cybernetic networks are only subsets of the global interconnected units
which are more generally governed by the self-organizing optimal control or reaction to an external stimulus.)

This book attempts to fill the niche in the literature by portraying the concepts of statistical mechanics and
cybernetics as bases for neural network modeling cohesively. It is intended to bring together the scientists
who boned up on mathematical neurobiology and engineers who design the intelligent automata on the basis
of collection, conversion, transmission, storage, and retrieval of information embodied by the concepts of
neural networks to understand the physics of collective behavior pertinent to neural elements and the
self-control aspects of neurocybernetics.

Further, understanding the complex activities of communication and control pertinent to neural networks as
conceived in this book penetrates into the concept of “organizing an object (the lowering of its entropy) ... by
applying the methods of cybernetics ...”. This represents a newer approach of viewing through the classical
looking mirror of the neural complex and seeing the image of future information processing and complex
man-made automata with clarity sans haziness.



As mentioned earlier, the excellent bibliography that prevails in the archival literature on neuronal activity
and the neural network emphasizes mostly the biological aspects, cognitive perspectives, network
considerations and computational abilities of the neural system. In contrast, this book is intended to outline
the statistical mechanics considerations and cybernetic view points pertinent to the neurophysiological
complex cohesively with the associated concourse of stochastical events and phenomena. The neurological
system is a complex domain where interactive episodes are inevitable. The physics of interaction, therefore,
dominates and is encountered in the random entity of neuronal microcosm. Further, the question of symmetry
(or asymmetry?) that blends with the randomness of neural assembly is viewed in this book vis-a-vis the
disorganizing effect of chance (of events) counteracted by the organizing influence of self-controlling
neurocellular automata.

To comprehend and summarize the pertinent details, this book is written and organized in eight chapters:

Chapter 1: Introduction
Chapter 2: Neural and Brain Complex
Chapter 3: Concepts of Mathematical Neurobiology
Chapter 4: Pseudo-Thermodynamics of Neural Activity
Chapter 5: The Physics of Neural Activity: A Statistical Mechanics Perspective
Chapter 6: Stochastical Dynamics of the Neural Complex
Chapter 7: Neural Field Theory: Quasiparticle Dynamics and Wave Mechanics Analogies of

Neural Networks
Chapter 8: Informatic Aspects of Neurocybernetics

The topics addressed in Chapters 1 through 3 are introductory considerations on neuronal activity and neural
networks while the subsequent chapters outline the stochastical aspects with the associated mathematics,
physics, and biological details concerning the neural system. The theoretical perspectives and explanatory
projections presented thereof are somewhat unorthodox in that they portray newer considerations and battle
with certain conventional dogma pursued hitherto in the visualization of neuronal interactions. Some novel
features of this work are:

•  A cohesive treatment of neural biology and physicomathematical considerations in neurostochastical
perspectives.

•  A critical appraisal of the interaction physics pertinent to magnetic spins, applied as an analogy of
neuronal interactions; and searching for alternative interaction model(s) to represent the interactive
neurocellular information traffic and entropy considerations.

•  An integrated effort to apply the concepts of physics such as wave mechanics and particle dynamics
for an analogous representation and modeling the neural activity.

•  Viewing the complex cellular automata as a self-controlling organization representing a system of
cybernetics.

•  Analyzing the informatic aspects of the neurocybernetic complex.

This book is intended as a supplement and as a self-study guide to those who have the desire to understand the
physical reasonings behind neurocellular activities and pursue advanced research in theoretical modeling of
neuronal activity and neural network architecture. This book could be adopted for a graduate level course on
neural network modeling with an introductory course on the neural network as the prerequisite.

If the reader wishes to communicate with the authors, he/she may send the communication to the publishers,
who will forward it to the authors.

Boca Raton P.S. Neelakanta
1994 D. De Groff

Table of Contents

http://corpitk.earthweb.com/
http://corpitk.earthweb.com/content/corp.html
http://corpitk.earthweb.com/search/
http://corpitk.earthweb.com/faq/faq.html
http://corpitk.earthweb.com/sitemap.html
http://corpitk.earthweb.com/contactus.html


Products |  Contact Us |  About Us |  Privacy  |  Ad Info  |  Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc. All rights
reserved. Reproduction whole or in part in any form or medium without express written permission of

EarthWeb is prohibited. Read EarthWeb's privacy statement.

http://corpitk.earthweb.com/products.html
http://corpitk.earthweb.com/contactus.html
http://corpitk.earthweb.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://corpitk.earthweb.com/
http://corpitk.earthweb.com/agreement.html
http://corpitk.earthweb.com/copyright.html
http://www.earthweb.com/about_us/perm.html
http://www.earthweb.com/about_us/privacy.html


       

  

     

    

   Search Tips

   Advanced Search

    

  

  

Neural Network Modeling: Statistical Mechanics and Cybernetic Perspectives
by P. S. Neelakanta; Dolores DeGroff
CRC Press, CRC Press LLC
ISBN: 0849324882   Pub Date: 07/01/94

Search this book:

 

Table of Contents

Acknowledgments
The authors wish to express their appreciation to their colleagues Dr. R. Sudhakar, Dr. V. Aalo, and Dr. F.
Medina at Florida Atlantic University and Dr. F. Wahid of University of Central Florida for their valuable
suggestions and constructive criticism towards the development of this book.

Dedication

Dedicated to our parents

Table of Contents

Products |  Contact Us |  About Us |  Privacy  |  Ad Info  |  Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc. All rights
reserved. Reproduction whole or in part in any form or medium without express written permission of

EarthWeb is prohibited. Read EarthWeb's privacy statement.

http://www.earthweb.com/
http://corpitk.earthweb.com/
http://corpitk.earthweb.com/content/corp.html
http://corpitk.earthweb.com/search/
http://corpitk.earthweb.com/faq/faq.html
http://corpitk.earthweb.com/sitemap.html
http://corpitk.earthweb.com/contactus.html
http://corpitk.earthweb.com/search/search-tips.html
http://corpitk.earthweb.com/search/search-tips.html
http://corpitk.earthweb.com/search/
http://corpitk.earthweb.com/search/
http://corpitk.earthweb.com/
http://corpitk.earthweb.com/content/corp.html
http://corpitk.earthweb.com/search/
http://corpitk.earthweb.com/faq/faq.html
http://corpitk.earthweb.com/sitemap.html
http://corpitk.earthweb.com/contactus.html
http://corpitk.earthweb.com/products.html
http://corpitk.earthweb.com/contactus.html
http://corpitk.earthweb.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://corpitk.earthweb.com/
http://corpitk.earthweb.com/agreement.html
http://corpitk.earthweb.com/copyright.html
http://www.earthweb.com/about_us/perm.html
http://www.earthweb.com/about_us/privacy.html


       

  

     

    

   Search Tips

   Advanced Search

    

  

  

Neural Network Modeling: Statistical Mechanics and Cybernetic Perspectives
by P. S. Neelakanta; Dolores DeGroff
CRC Press, CRC Press LLC
ISBN: 0849324882   Pub Date: 07/01/94

Search this book:

 

Previous Table of Contents Next

Chapter 1
Introduction

1.1 General

The interconnected biological neurons and the network of their artificial counterparts have been modeled in
physioanatomical perspectives, largely via cognitive considerations and in terms of physical reasonings based
on statistical mechanics of interacting units. The overall objective of this book is to present a cohesive and
comprehensive compendium elaborating the considerations of statistical mechanics and cybernetic principles
in modeling real (biological) neurons as well as neuromimetic artificial networks. While the perspectives of
statistical mechanics on neural modeling address the physics of interactions associated with the collective
behavior of neurons, the cybernetic considerations describe the science of optimal control over complex
neural processes. The purpose of this book is, therefore, to highlight the common intersection of statistical
mechanics and cybernetics with the universe of the neural complex in terms of associated stochastical
attributions.

In the state-of-the-art data-processing systems, neuromimetic networks have gained limited popularity largely
due to the fragmentary knowledge of neurological systems which has consistently impeded the realistic
mathematical modeling of the associated cybernetics. Notwithstanding the fact that modern information
processing hinges on halfway adoption of biological perspectives on neurons, the concordant high-level and
intelligent processing endeavors are stretched through the self-organizing architecture of real neurons. Such
architectures are hierarchically structured on the basis of interconnection networks which represent the
inherent aspects of neuronal interactions.

In order to sway from this pseudo-parasitical attitude, notionally dependent but practically untied to biological
realities, the true and total revolution warranted in the application-based artificial neurons is to develop a
one-to-one correspondence between artificial and biological networks. Such a handshake would “smear” the
mimicking artificial system with the wealth of complex automata, the associated interaction physics, and the
cybernetics of the biological neurons — in terms of information processing mechanisms with unlimited
capabilities.

For decades, lack of in-depth knowledge on biological neurons and the nervous system has inhibited the
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growth of developing artificial networks in the image of real neurons. More impediments have stemmed from
inadequate and/or superficial physicomathematical descriptions of biological systems undermining their total
capabilities — only to be dubbed as totally insufficient for the requirements of advances in modern
information processing strategies.

However, if the real neurons and artificial networks are viewed through common perspectives via physics of
interaction and principles of cybernetics, perhaps the superficial wedlock between the biological
considerations and artificial information processing could be harmonized through a binding matrimony with
an ultimate goal of realizing a new generation of massively parallel information processing systems.

This book is organized to elucidate all those strands and strings of biological intricacies and suggest the
physicomathematical modeling of neural activities in the framework of statistical mechanics and cybernetic
principles. Newer perspectives are projected for the conception of better artificial neural networks more akin
to biological systems. In Section 1.2, a broad outline on the state-of-the-art aspects of interaction physics and
stochastical perspectives of the neural system is presented. A review on the relevant implications in the
information processing is outlined. Section 1.3 introduces the fundamental considerations in depicting the real
(or the artificial) neural network via cybernetic principles; and the basics of control and self-control
organization inherent to the neural system are indicated. The commonness of various sciences including
statistical mechanics and cybernetics in relation to complex neural functions is elucidated in Section 1.4; and
concluding remarks are furnished in Section 1.5.
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1.2 Stochastical Aspects and Physics of Neural Activity

The physics of neuronal activity, the proliferation of communication across the interconnected neurons, the
mathematical modeling of neuronal assembly, and the physioanatomical aspects of neurocellular parts have
been the topics of inquisitive research and in-depth studies over the past few decades. The cohesiveness of
biological and physical attributions of neurons has been considered in the underlying research to elucidate a
meaningful model that portrays not only the mechanism of physiochemical activities in the neurons, but also
the information-theoretic aspects of neuronal communication. With the advent of developments such as the
electron microscope, microelectrodes, and other signal-processing strategies, it has been facilitated in modern
times to study in detail the infrastructure of neurons and the associated (metabolic) physiochemical activities
manifesting as measurable electrical signals which proliferate across the interconnected neural assembly.

The dynamics of neural activity and communication/signal-flow considerations together with the associated
memory attributions have led to the emergence of so-called artificial neurons and development of neural
networks in the art of computational methods.

Whether it is the “real neuron” or its “artificial” version, the basis of its behavior has been depicted
mathematically on a core-criterion that the neurons (real or artificial) represent a system of interconnected
units embodied in a random fashion. Therefore, the associated characterizations depict stochastical variates in
the sample-space of neural assembly. That is, the neural network depicts inherently a set of implemented local
constraints as connection strengths in a stochastical network. The stochastical attributes in a biological neural
complex also stem from the fact that neurons may sometimes spontaneously become active without external
stimulus or if the synaptic excitation does not exceed the activation threshold. This phenomenon is not just a
thermal effect, but may be due to random emission of neurotransmitters at the synapses.

Further, the activities of such interconnected units closely resemble similar physical entities such as atoms
and molecules in condensed matter. Therefore, it has been a natural choice to model neurons as if emulating
the characteristics analogous to those of interacting atoms and/or molecules; and several researchers have
hence logically pursued the statistical mechanics considerations in predicting the neurocellular statistics. Such
studies broadly refer to the stochastical aspects of the collective response and the statistically unified activities
of neurons viewed in the perspectives of different algorithmic models; each time it has been attempted to
present certain newer considerations in such modeling strategies, refining the existing heuristics and
portraying better insights into the collective activities via appropriate stochastical descriptions of the neuronal
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activity.

The subject of stochastical attributions to neuronal sample-space has been researched historically in two
perspectives, namely, characterizing the response of a single (isolated) neuron and analyzing the behavior of a
set of interconnected neurons. The central theme of research that has been pursued in depicting the single
neuron in a statistical framework refers to the characteristics of spike generation (such as interspike interval
distribution) in neurons. Significantly, relevant studies enclave the topics on temporal firing patterns analyzed
in terms of stochastical system considerations such as random walk theory. For example, Gerstein and
Mandelbrot [2] applied the random walk models for the spike activity of a single neuron; and modal analysis
of renewal models for the spontaneous single neuron discharges were advocated by Feinberg and Hochman
[3]. Further considered in the literature are the markovian attributes of the spike trains [4] and the application
of time-series process and power spectral analysis to neuronal spikes [5]. Pertinent to the complexity of neural
activity, accurate modeling of a single neuron stochastics has not, however, emerged yet; and continued
efforts are still on the floor of research in this intriguing area despite of a number of interesting publications
which have surfaced to date. The vast and scattered literature on stochastic models of spontaneous activity in
single neurons has been fairly comprised as a set of lecture notes by Sampath and Srinivasan [6].

The statistics of all-or-none (dichotomous) firing characteristics of a single neuron have been studied as
logical random bistable considerations. McCulloch and Pitts in 1943 [7] pointed out an interesting
isomorphism between the input-output relations of idealized (two-state) neurons and the truth functions of
symbolic logic. Relevant analytical aspects have also since then been used profusely in the stochastical
considerations of interconnected networks.

While the stochastical perspectives of an isolated neuron formed a class of research by itself, the randomly
connected networks containing an arbitrary number of neurons have been studied as a distinct class of
scientific investigations with the main objective of elucidating information flow across the neuronal assembly.
Hence, the randomness or the entropical aspects of activities in the interconnected neurons and the
“self-re-exciting firing activities” emulating the memory aspects of the neuronal assembly have provided a
scope to consider the neuronal communication as prospective research avenues [8]; and to date the
information-theoretic memory considerations and, more broadly, the neural computation analogy have
stemmed as the bases for a comprehensive and expanding horizon for an intense research. In all these
approaches there is, however, one common denominator, namely, the stochastical attributes with probabilistic
considerations forming the basis for any meaningful analytical modeling and mathematical depictions of
neuronal dynamics. That is, the global electrical activity in the neuron (or in the interconnected neurons) is
considered essentially as a stochastical process.
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More intriguingly, the interaction of the neurons (in the statistical sample space) corresponds vastly to the
complicated dynamic interactions perceived in molecular or atomic ensembles. Therefore, an offshoot
research on neuronal assembly had emerged historically to identify and correlate on a one-to-one basis the
collective response of neurons against the physical characteristics of interacting molecules and/or atoms. In
other words, the concepts of classical and statistical mechanics; the associated principles of thermodynamics;
and the global functions such as the Lagrangian, the Hamiltonian, the total entropy, the action, and the
entropy have also become the theoretical tools in the science of neural activity and neural networks. Thus
from the times of Wiener [9], Gabor [10], and Griffith [11-14] to the current date, a host of publications has
appeared in the relevant literature; however, there are many incomplete strategies in the formulations, several
unexplained idealizations, and a few analogies with inconsistencies in the global modeling of neural activities
vis-a-vis stochastical considerations associated with the interaction physics.

Within the framework of depicting the neural assembly as a system of interconnected cells, the activities
associated with the neurons can be viewed, in general, as a collective stochastical process characterized by a
random proliferation of state transitions across the interconnected units. Whether the pertinent modeling of
neuronal interaction(s) evolved (conventionally) as analogous to interacting magnetic spins is totally
justifiable (if not what is the alternative approach) the question of considering the probabilistic progression of
neuronal state by an analogy of momentum flow (in line with particle dynamics) or as being represented by an
analog model of wave function, the stochastical modeling of noise-perturbed neural dynamics and informatic
aspects considered in the entropy plane of neurocybernetics are the newer perspectives which can be viewed
in an exploratory angle through statistical mechanics and cybernetic considerations. A streamline of relevant
bases are as follows:

•  A closer look at the existing analogy between networks of neurons and aggregates of interacting
spins in magnetic systems. Evolution of an alternative analogy by considering the neurons as molecular
free-point dipoles (as in liquid crystals of nematic phase with a long-range orientational order) to
obviate any prevalent inconsistencies of magnetic spin analogy [15].

•  Identifying the class of orientational anisotropy (or persistent spatial long-range order) in the neural
assembly to develop a nonlinear (squashed) input-output relation for a neural cell; and application of
relevant considerations in modeling a neural network with a stochastically justifiable sigmoidal
function [16].

•  Viewing the progression of state-transitions across a neuronal assembly (consisting of a large number
of interconnected cells each characterized by a dichotomous potential state) as a collective random
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activity similar to momentum flow in particle dynamics and development of an analogous model to
describe the neural network functioning [17].

•  The state-transition proliferating randomly across the neural assembly being studied as an analog of
wave mechanics so as to develop a wave function model depicting the neuronal activity [17].

•  Considering the inevitable presence of noise in a neuron, the change of internal states of neurons
being modeled via stochastical dynamics [18].

1.3 Neurocybernetic Concepts

Modern information processing systems are neuromimetic and becoming more and more sophisticated as their
functional capabilities are directed to emulate the diversified activities of complex neural systems. Naturally,
the more we urge the functions of information processing systems to follow the complexities of the inner
structure enclaved by the neural system, it becomes rather infeasible to realize a tangible representation of
such information processing systems to mimic closely the neuronal activities.

Hence, it calls for a shift of emphasis to project qualitatively a new viewpoint, in which the main aim is to
investigate the control (and self-control) aspects of the neuronal system so as to develop information
processing units emulating the image of the neural systems intact, probably with all its structural subtlety and
complex control and communication protocols.

The aforesaid emphasis could be realized by adopting the concept of universal nature for control of organizing
a complex system (by lowering its entropy) by means of standard procedures. This approach was advocated
by Wiener [9] as the method of cybernetics, which is thenceforth known as the “science of the control and
communication in complex systems, be they machines or living organisms”.

The cybernetic basis for modeling the neural complex is logical in that the neural structure and its activity are
inherently stochastic; and the neuronal information and/or communication processing represents an activity
that fights the associated randomness, thus emphasizing the idea of a “control counteracting disorganization
and destruction caused by (any) diverse random factors”.

The neural complex represents an entity wherein every activity is related essentially to the collection,
conversion, transmission storage and retrieval of information. It represents a system in a state which allows
certain functions to be carried out. It is the state normal, corresponding to a set of external conditions in
which the system operates. Should these conditions change suddenly, the system departs from the normal
state and the new conditions set forth correspond to a new normal state. The system then begs to be
transferred to this new state. In the neural complex, this is achieved first by acquiring information on the new
state, and second by ascertaining how the transition of the system to the new state can be carried out. Since
the change in the neuronal environment is invariably random, neither the new normal state nor how to
organize a transition to it is known a priori. The neural complex, therefore, advocates a random search. That
is, the system randomly changes its parameters until it (randomly) matches the new normal state. Eventually,
this matching is self-recognized as the system monitors its own behavior.

Thus, the process of random search generates the information needed to transfer the system to the new normal
state. This is an information-selection protocol with the criterion to change the system behavior approaching a
new normal state, wherein the system settles down and functions normally — a condition known as
homeostasis.
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The random search-related self-organization in a neural complex follows therefore the method of cybernetics.
Its self-control activity is perceived through the entity of information. Further, as well known, the notion of
information is based on the concepts of randomness and probability; or the self-control process of cybernetics
in the neural system is dialectically united with the stochastical aspects of the associated activities.

The cybernetic basis of the neural system stems from a structured logic of details as portrayed in Figure 1.1
pertinent to the central theme of cybernetics as applied to a neural assembly. It refers to a process of control
and self-control primarily from the viewpoint of neuronal information — its collection, transmission, storage,
and retrieval.

Figure 1.1  Cybernetics of neural complex

In the design of information processing systems, abstract simulation of a real (biological) neural system
should comply with or mimic the cybernetic aspects depicted in Figure 1.1. Structurally, a neural complex
could be modeled by a set of units communicating with each other via axonal links resembling the axons and
dendrites of a biological neural assembly. Further, the information processing in the neural network should
correspond to the self-organizing and self-adaptive (or self-behavioral monitoring) capabilities of the
cybernetics associated with the biological neural complex and it activities.

The organized search process pertinent to interconnected biological neurons which enables a dichotomous
potential state to a cellular unit corresponds to a binary threshold logic in an information processing artificial
(neural) network. Classically, McCulloch and Pitts in 1943 [7] presented a computational model of nervous
activity in terms of a dichotomous (binary) threshold logic. Subsequently, the process of random search in
pursuit of an information selection while seeking a normal state (as governed by the self-organizing
cybernetic principles) was incorporated implicitly in the artificial networks by Hebb [19]. He postulated the
principle of connectivity (of interconnections between the cells). He surmised that the connectivity depicts a
self-organizing protocol “strengthening” the pathway of connections between the neurons adaptively,
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confirming thereby a cybernetic mode of search procedure.

The state-transitional representation of neurons, together with the connectivity concept inculcate a
computational power in the artificial neural network constituting an information processing unit. Such
computational power stems from a one-to-one correspondence of the associated cybernetics in the real and
artificial neurons.

In the construction of artificial neural networks two strategies are pursued. The first one refers to a biomime,
strictly imitating the biological neural assembly. The second type is application-based with an architecture
dictated by ad hoc requirements of specific applications. In many situations, such ad hoc versions may not
replicate faithfully the neuromimetic considerations.

In essence however, both the real neural complex as well as the artificial neural network can be regarded as
“machines that learn”. Fortifying this dogma, Wiener observed that the concept of learning machines is
applicable not only to those machines which we have made ourselves, but also is relevant to those living
machines which we call animals, so that we have the possibility of throwing a new light on biological
cybernetics. Further, devoting attention to those feedbacks which maintain the working level of the nervous
system, Stanley-Jones [20] also considered the prospects of kybernetic principles as applied to the neural
complex; and as rightly forecast by Wiener neurocybernetics has become a field of activity which is expected
“to become much more alive in the (near) future”.

The basis of cybernetics vis-a-vis neural complex has the following major underlain considerations:

•  Neural activity stems from intracellular interactive processes.

•  Stochastical aspects of a noise-infested neural complex set the associated problem “nonlinear in
random theory”.

•  The nervous system is a memory machine with a self-organizing architecture.

•  Inherent feedbacks maintain the working level of the neural complex. Essentially cybernetics
includes the concept of negative feedback as a central feature from which the notion of adaptive
systems and selectively reinforced systems are derived.

•  The nervous system is a homeostat — it wakes up “to carry out a random search for new values for
its parameters; and when it finds them, it goes to sleep again”. Simply neurocybernetics depicts a
search for physiological precision.

•  Neural functions refer to process automation of self-control in a complex system.

•  Inherent to the neural complex automata, any symmetry constraints on the configuration variability
are unstable due to external actions triggering the (self) organization processes.

•  The neural complex is a domain of information-conservation wherein the protocol of activities refers
to the collection, conversion, transmission, storage, and retrieval of information.
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With the enumerated characteristics as above, neurocybernetics becomes an inevitable subset of biological
cybernetics — a global control and communication theory as applied to the “animal” as a whole. Therefore
cybernetic attributions to the nervous system forerun their extension to the universality of biological
macrocosm.

In the framework of cybernetics, the neural functions depicted in terms of “control and communication”
activities could be expanded in a more general sense by enclaving the modern C3I (Command,
Communication, Control, and Information) concepts of system management.

Such an approach could address the cognitive functions involved in decision-making, planning, and control
by the neural intelligence service through its synchronous, nonlinear synaptic agencies often functioning
under uncertainties. Yet, it could sustain the scope of machine-intelligence engineering of the neural complex
with the possibility of developing artificial neural networks which could mimic and pose the
machine-intelligence compatible with that of real neurons.

How should neural activities be modeled via cybernetics? The answer to this question rests on the feasibilities
of exploring the neural machine intelligence from the viewpoint of neurofunctional characteristics enumerated
before.

Essentially, the neural complex equates to the cybernetics of estimating input-output relations. It is a
self-organizing, “trainable-to-learn” dynamic system. It encodes (sampled) information in a framework of
parallel-distributed interconnected networks with inherent feedback(s); and it is a stochastical system.

To portray the neural activity in the cybernetic perspectives, the following family of concepts is raised:

•  The functional aspects of neurocybernetics are mediated solely by the passage of electrical impulses
across neuronal cells.

•  From a cybernetics point of view, neuronal activity or the neural network is rooted in mathematics
and logic with a set of decision procedures which are typically machine-like.

•  Neurocybernetics refers to a special class of finite automata,* namely, those which “learn from
experience”.

*Finite Automata : These are well-defined systems capable of being in only a finite number of possible
states constructed according to certain rules.
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•  In the effective model portrayal of a neuronal system, the hardware part of it refers to the electrical
or electronic model of the neuro-organismic system involved in control and communication.
Classically, it includes the models of Uttley [21], Shannon [22], Walter [23], Ashby [24], and several
others. The computer (digital or analog) hardware simulation of the effective models of
neurocybernetics could also be classified as a hardware approach involving a universal machine
programmed to simulate the neural complex.

•  The cybernetic approach of neural networks yields effective models — the models in which “if a
theory is stated in symbols or mathematics, then it should be tantamount to a blueprint from which
hardware could always be constructed” [25].

•  The software aspect of effective models includes algorithms, computer programs; finite automata;
information theory and its allied stochastical considerations; statistical physics and thermodynamics;
and specific mathematical tools such as game theory, decision theory, boolean algebra, etc.

•  The neurocybernetic complex is a richly interconnected system which has inherent self-organizing
characteristics in the sense that “the system changes its basic structure as a function of its experience
and environment”.

•  The cognitive faculties of neurocybernetics are learning and perception. The functional weights on
each neuron change with time in such a way as to “learn”. This is learning through experience which
yields the perceptive attribution to the cognitive process. What is learned through past activity is
memorized. This reinforcement of learned information is a storage or memory feature inherent to
neurocybernetic systems.

•  Homeostasis considerations of cybernetics in the self-organization procedure are applied through
random search or selection of information from a noise-infested environment as perceived in a neural
complex.

•  The entropical and information-theoretic aspects of the neural complex are evaluated in terms of
cybernetic principles.

1.4 Statistical Mechanics-Cybernetics-Neural Complex

Though the considerations of statistical mechanics and cybernetic principles as applied to neural networks
superficially appear to be disjointed, there is however, a union in their applicability — it is the stochastical
consideration associated with the interacting neurons. The magnetic-spin analogy based on statistical
mechanics models the interacting neurons and such interactions are governed by the principles of statistics (as
in magnetic spin interactions). When considering the optimal control strategies involved in self-organizing
neurocybernetic processes, the statistics of the associated randomness (being counteracted by the control
strategies) plays a dominant role.

Further, in both perspectives of statistical mechanics as well as cybernetics, the concepts of entropy and
energy relations govern the pertinent processes involved. In view of these facts, the intersecting subsets of the
neural complex are illustrated in Figures 1.2 and 1.3.

Previous Table of Contents Next

Products |  Contact Us |  About Us |  Privacy  |  Ad Info  |  Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc. All rights
reserved. Reproduction whole or in part in any form or medium without express written permission of

EarthWeb is prohibited. Read EarthWeb's privacy statement.

http://corpitk.earthweb.com/
http://corpitk.earthweb.com/content/corp.html
http://corpitk.earthweb.com/search/
http://corpitk.earthweb.com/faq/faq.html
http://corpitk.earthweb.com/sitemap.html
http://corpitk.earthweb.com/contactus.html
http://corpitk.earthweb.com/products.html
http://corpitk.earthweb.com/contactus.html
http://corpitk.earthweb.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://corpitk.earthweb.com/
http://corpitk.earthweb.com/agreement.html
http://corpitk.earthweb.com/copyright.html
http://www.earthweb.com/about_us/perm.html
http://www.earthweb.com/about_us/privacy.html


       

  

     

    

   Search Tips

   Advanced Search

    

  

  

Neural Network Modeling: Statistical Mechanics and Cybernetic Perspectives
by P. S. Neelakanta; Dolores DeGroff
CRC Press, CRC Press LLC
ISBN: 0849324882   Pub Date: 07/01/94

Search this book:

 

Previous Table of Contents Next

It is evident that the fields that intersect with the global neural complex functions have cross-linked attributes
manifesting as unions in the Venn plane. Pertinent to such unions, the vital roots of models which have been
developed for the purpose of signifying the functions of real and/or artificial neurons are embodiments of
mathematics, biology (or physioanatomy), physics, engineering, and computer and informational sciences.
This book delves in to the generalities of the above faculties of science, but largely adheres to statistical
mechanics which deals with global properties of a large number of interacting units and cybernetics which are
concerned with complex systems with constrained control efforts in seeking a self-regulation on system
disorganization.

Figure 1.2  Overlaps of neural complex-related sciences

The reasons for the bifaceted (statistical mechanics and cybernetics) perspectives adopted in this book for
neural network modeling stem from the sparse treatment in the literature in portraying the relevant physical
concepts (especially those of cybernetics) in describing the neural network complexities. Further, the
state-of-the-art informatic considerations on neural networks refer mostly to the memory and information
processing relation between the neural inputs and the output; but little has been studied on the information or
entropy relations pertinent to the controlling endeavors of neural self-regulation. An attempt is therefore made
(in the last chapter) to present the salient aspects of informatic assays in the neurocybernetic perspectives.
Collectively, the theoretical analyses furnished are to affirm the capability of the neural networks and indicate
certain reliable bases for modeling the performance of neural complexes under conditions infested with intra-
or extracellular perturbations on the state-transitions across the interconnected neurons.
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Figure 1.3  Common bases of neural theory-related sciences

1.5 Concluding Remarks

The strength of physical modeling of a neural complex lies in a coherent approach that accounts for both
stochastical considerations pertinent to interacting cells and self-regulatory features of neurocybernetics. The
mediating process common to both considerations is the entropy or the informational entity associated with
the memory, computational, and self-controlling efforts in the neural architecture. This book attempts to
address the missing links between the aforesaid considerations, the broad characteristics of which are outlined
in this chapter.
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Chapter 2
Neural and Brain Complex

2.1 Introduction

There is a hierarchy of structure in the nervous system with an inherent C3I protocol* stemming from the brain
and converging to a cell. Any single physiological action perceived (such as pain or pleasure) is the output
response of a collective activity due to innumerable neurons participating in the decision-making control
procedures in the nervous system. If the neural complex is “dubbed as a democracy, the neural activity refers
to how the votes are collected and how the result of the vote is communicated as a command to all the nerve
cells involved”. That is, the antithesis must remain that our brain is a democracy of ten thousand million cells,
yet it provides us a unified experience [14].

* C3I: Command, Communication, Control, and Information—a modern management protocol in strategic
operations.

Functionally, the neural complex “can be regarded as a three-stage system” as illustrated in Figure 2.1.
Pertinent to this three-stage hierarchy of the neural complex Griffith poses a question: “How is the level of
control organized?” It is the control which is required for the C3I protocol of neurocybernetics. A simple
possibility of this is to assume the hierarchy to converge to a single cell, a dictator for the whole nervous
system. However this is purely hypothetical. Such a dictatorship is overridden by the “democratic” aspect of
every cell participating collectively in the decision-process of yielding an ultimate response to the (neural
complex) environment.

The collectiveness of neural participation in the cybernetics of control and communication processes involved
is a direct consequence of the anatomical cohesiveness of structured neural and brain complex and the
associated order in the associated physiological activities.

The cybernetic concepts as applied to the neural complex are applicable at all levels of its anatomy — brain to
cytoblast, the nucleus of the cell. They refer to the control mechanism conceivable at every
neurophysiological activity — at the microscopic cellular level or at gross extensiveness of the entire brain.
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In the universe of neural ensemble, the morphological aspects facilitating the neural complex as a
self-organizing structure are enumerated by Kohonen [27] as follows:

•  Synergic (interaction) response of compact neuronal assembly.

•  Balance (or unbalance) of inhibitory and excitatory neuronal population.

•  Dimensional and configurational aspects of the ensemble.

•  Probabilistic (or stochastical) aspects of individual neurons in the interaction process culminating as
the collective response of the system.

•  Dependence of ensemble parameters on the type of stimuli and upon the functional state of the
systems.

The gross anatomical features and systematic physiological activities involved in the brain-neuron complex
permit the self-organizing cybernetics in the neural system on the basis of the aforesaid functional
manifestations of neuronal functions. The following sections provide basic descriptions on the anatomical and
physical aspects of the neural complex.

Figure 2.1  Three-stage model of a neural complex (Adapted from [26])

2.2 Gross Features of the Brain and the Nervous System

The measured data concerning activities of the nervous system are rather limited due to its extremely complex
structure with an interwining of innumerable cellular units. There are approximately 1010 nerve cells with
perhaps 1014 or more interconnections in human neural anatomy which essentially consists of the central
nervous system constituted by the brain and the spinal cord. Most of the neuronal processes are contained in
these two parts excluding those which go to muscles or carry the signals from sensory organs.

The cerebrum is the upper, main part of the brain of vertebrate animals and consists of two equal hemispheres
(left and right). In human beings, this is the largest part of the brain and is believed to control the conscious
and voluntary processes. The cerebellum is the section of the brain behind and below the cerebrum. It consists
of two lateral lobes and a middle lobe and functions as the coordinating center for the muscular movements.
Highly developed cerebral hemispheres are features of primates and, among these, especially of human
beings. It is widely surmised that this is the reason for the unique efficiency with which human beings can
think abstractly as well as symbolically. Another possible reason for intellectual predominance in humans is
that the brain as a whole is much more developed than the spinal cord. Even another theory suggests that such
a prominence is due to the possible connection with the surface-to-volume ratio of the brain.

The brain in comparision with man-made computers is more robust and fault-tolerent. Regardless of the daily
degeneration of cells, brain’s physiological functions remain fairly invariant. The brain also molds itself to
environment via learning from experience. Its information-processing is amazingly consistent even with
fuzzy, random, and conjectural data. The operation of the brain is highly parallel processing and negligibly
energy consuming.

The central nervous system at the microscopic level consists of [14]:

Nerve cells (or neurons): These are in the order of 1010 and are responsible for conducting the neural
signaling elements. Their properties are described in the next section.

Glial cells (or neuroglia or glia): The human brain contains about 1011 glial cells. Unlike nerve cells,
their density in different parts varies, and they fill in the spaces between the nerve cells. There has been
research evidence that glial cells actually carry out functions such as memory. However, such posited
glial functions are ignored invariably in neural complex modeling.

Blood vessels: These carry the blood which contains many nutrients and energy-giving materials. The
main arteries and veins lie outside the central nervous system with smaller branches penetrating
inwards.

Cerebrospinal fluid: This is the clear liquid surrounding the brain and spinal cord and filling the
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cavities (natural hollow spaces) of the brain. This liquid is the blood filtered of its white and red
corpuscles and contains very little protein.
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2.3 Neurons and Their Characteristics

Neurons are the building blocks of the signaling unit in the nervous system. Nerve cells come in different
shapes, sizes, connections, and excitabilities. Therefore, the impression of uniformity of character which is
often given for the cells is a vast oversimplification in almost all cases. However, certain properties such as
excitability, development of an action potential, and synaptic linkage are considered as general characteristics
of all nerve cells, and mathematical models of neurons are constructed based on these general features.

Each of the nerve cells has a nucleus and presumably a DNA. They do not normally divide in adult life, but
they do die; and an old person may perhaps have only a third of the number of neurons at the time of birth.

Almost all outputs of the brain through neuronal transmission culminate in muscular activity. Thus,
motoneurons — the neurons that signal the muscle fibers to contract — are deployed most frequently in the
neuronal activities.

A sketch of a motoneuron is shown in Figure 2.2. It consists of three parts: The center is known as the
cell-body or otherwise known as the soma (about 70 ¼m across in dimension). The cell body manufactures
complex molecules to sustain the neuron and regulates many other activities within the cell such as the
management of the energy and metabolism. This is the central-processing element of the neural complex.

Referring to Figure 2.2, the hair-like branched processes at the top of the cell emanating from them are called
dendrites (about 1 mm or longer). Most input signals from other neurons enter the cell by way of these
dendrites; and that leading from the body of the neuron is called the axon which eventually arborizes into
strands and substrands as nerve fibers. There is usually only one axon per cell, and it may be very short or
very long. For nerve cells (other than motoneurons where most branches go to muscle fibers), the axons
terminate on other nerve cells. That is, the output signal goes down the axon to its terminal branches traveling
approximately 1-100 meters/sec. The axon is the output element and it leads to a neighboring neuron. It may
or may not be myelinated, that is, covered with a sheath of myelin. An axon in simple terms is a cylindrical
semipermeable membrane containing axoplasm and surrounded by extracellular fluid.
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Figure 2.2  The biological neuron
1. Nucleus; 2. Nucleolus; 3. Soma; 4. Nissl body; 5. Ribosome; 6. Cell membrane; 7. Synaptic region; 8.
Incoming axon; 9. Outgoing axon; 10. Axon hill; 11. Dendrite; 12. Axon sheath

The connection of a neuron’s axonic nerve fiber to the soma or dendrite of another neuron is called a synapse.
That is, the axon splits into a fine arborization, each branch of which finally terminates in a little end-bulb
almost touching the dendrites of a neuron. Such a place of near-contact is a synapse. The synapse is a highly
specialized surface that forms the common boundary between the presynaptic and the postsynaptic
membrane. It covers as little as 30 nanometers, and it is this distance that a neurotransmitter must cross in the
standard synaptic interaction. There are usually between 1,000 to 10,000 synapses on each neuron.

As discussed in the next section, the axon is the neuron’s output channel and conveys the action potential of
the neural cell (along nerve fibers) to synaptic connections with other neurons. The dendrites have synaptic
connections on them which receive signals from other neurons. That is, the dendrites act as a neuron’s input
receptors for signals coming from other neurons and channel the postsynaptic or input potentials to the
neuron’s soma, which acts as an accumulator/amplifier.

The agglomeration of neurons in the human nervous system, especially in the brain, is a complex entity with a
diverse nature of constituent units and mutual interconnections. The neurons exist in different types
distinguished by size and degree of arborization, length of axons, and other physioanatomical details —
except for the fact that the functional attributes, or principle of operation, of all neurons remain the same. The
cerebellar cortex, for example, has different types of neuron multiplexed through interconnections constituting
a layered cortical structure. The cooperative functioning of these neurons is essentially responsible for the
complex cognitive neural tasks.

The neural interconnections either diverge or converge. That is, neurons of the cerebral cortex receive a
converging input from an average of 1000 synapses and are delivered through the branching outlets to
hundreds of other neurons. There are specific cells known as Purkinje cells in the cerebellar cortex which
receive in excess of 75,000 synaptic inputs; and there also exists a single granule cell that connects to 50 or
more Purkinje cells.
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2.4 Biochemical and Electrical Activities in Neurons

The following is a description of the traditional view(s) on synaptic transmission: A very thin cell membrane
separates the intracellular and extracellular regions of a biological cell shown in Figure 2.3. A high sodium
and high chloride ion concentration but a low potassium concentration are found in the extracellular region,
while high potassium but low sodium and low chloride concentrations are found in the intracellular region.
The cellular membrane maintains this imbalance in composition through active ion transport. That is, a
membrane protein, called the sodium pump, continuously passes sodium out of the cell and potassium into the
cell. A neuron may have millions of such pumps, moving hundreds of millions of ions in and out of the cell
each second. In addition, there are a large number of permanently open potassium channels (proteins that pass
potassium ions readily into the cell, but inhibit passage of sodium). The combination of these two
mechanisms is responsible for creating and maintaining the dynamic chemical equilibrium that constitutes the
resting state of the neuron.

Under these resting conditions (steady state), one can ignore the sodium since the permeability of the
biological membrane is relatively high for potassium and chloride, and low for sodium. In this case,
positively-charged potassium ions (K+) tend to leak outside the cell (due to the membrane’s permeability to
potassium) and the diffusion is balanced by an inward electric field that arises from the movement of these
positive charges. The result is an intracellular resting potential of about -100 mV relative to the outside.
When the cell is stimulated (due to synaptic inputs), the membrane permeability changes so that the sodium
permeability greatly exceeds that of potassium and chloride. The sodium then becomes the dominant factor in
establishing the steady state which arises when the inward diffusion of sodium (Na+) elicits a
counterbalancing outward electric field (and the intracellular potential becomes positive by 40 mV).

Figure 2.3  Extracellular and intracellular spaces of a biological cell

Examining the process in greater detail, as conceived by Hodgkin and Huxley [28], the cell fires (or produces
an action potential) when neurotransmitter molecules from the synapse reduce the potential to approximately
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-50 mv. At -50 mv, voltage-controlled sodium channels are opened; and sodium flows into the cell, reducing
the potential even more. As a result, further increase in sodium flow occurs into the cell and, this process
propagates to adjacent regions, turning the local cell potential to positive as it travels. This polarity reversal
spreading rapidly through the cell causes the nerve impulse to propagate down the length of the axon to its
presynaptic connections. (The cell which has provided the knob where the axonal branches end at the synapse
is referred to as the presynaptic cell.) When the impulse arrives at the terminal of an axon, voltage-controlled
calcium channels are opened. This causes neurotransmitter molecules to enter the synaptic cleft and the
process continues on to other neurons.

The sodium channels close shortly after opening and the potassium channels open. As a result, potassium
flows out of the cell and the internal potential is restored to -100 mv. This rapid voltage reversal establishes
the action potential which propagates rapidly along the full length of the axon. An electrical circuit analogy to
a cell membrane can be depicted as shown in Figure 2.4.

Action potentials refer to electrical signals that encode information by the frequency and the duration of their
transmission. They are examples of ion movement. As the action potential travels down the axon, a large
number of ions cross the axon’s membrane, affecting neighboring neurons. When many neurons exhibit
action potentials at the same time, it can give rise to relatively large currents that can produce detectable
signals. Thus, neuronal transmission physically refers to a biochemical activated flow of electric signals as a
collective process across the neuronal assembly.

At the end of the axon (presynapse), the electrical signal is converted into a chemical signal. The chemical
signal, or neurotransmitter, is released from the neuron into a narrow (synaptic) cleft, where it diffuses to
contact specialized receptor molecules embedded within the membrane of the target, or the postsynaptic
neuron. If these receptors in the postsynaptic neuron are activated, channels that admit ions are opened,
changing the electrical potential of the cell’s membrane; and the chemical signal is then changed into an
electrical signal. The postsynaptic neuron may be excited and send action potentials along its axon, or it may
be inhibited. That is, the neurons are either excitatory or inhibitory (Dale’s law). A typical cell action
potential internally recorded with a microelectrode is presented in Figure 2.5.

Considering a long cylindrical axon, the neuronal propagation is nearly at a constant velocity; and the action
potential can be interpreted either as a function of time at a given site or a function of position at a given time.
That is, the transmembrane potential can be regarded as satisfying a wave equation. The stimulus intensity
must reach or exceed a threshold for the neuron to fire, but the form of the action potential is not related to the
exact value of stimulus intensity in the occurrence or nonoccurrence of firing activity (normally specified as
the all-or-none response) of the cell.
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2.5 Mode(s) of Communication among Neurons

As discussed earlier, a neuron is activated by the flow of chemicals across the synaptic junctions from the
axons leading from other neurons. These electrical effects which reach a neuron may be excitatory (meaning
they cause an increase in the soma potential of the receiving neuron) or inhibitory (meaning that they either
lower the receiving neuron’s soma potential or prevent it from increasing) postsynaptic potentials. If the
potential gathered from all the synaptic connections exceeds a threshold value in a short period of time called
the period of latent summation, the neuron fires and an action potential propagates down its output axon
which branches and communicates with other neurons in the network through synaptic connections. After a
cell fires, it cannot fire again for a short period of several milliseconds, known as the refractory period.

Neural activation is a chain-like process. A neuron is activated by other activated neurons and, in turn,
activates other neurons. An action potential for an activated neuron is usually a spiked signal where the
frequency is proportional to the potential of the soma. The neuron fires when the neuron’s soma potential rises
above some threshold value. An action potential may cause changes in the potential of interconnected
neurons. The mean firing rate of the neuron is defined as the average frequency of the action potential. The
mean soma potential with respect to the mean resting soma potential is known as the activation level of the
neuron.

Figure 2.4  Equivalent circuit of a cell membrane

P: Polarization; DP: Depolarization
Vc: Intracellular potential with respect to cell exterior

VK: Nernst potential due to K ion differential concentration across the cell membrane

VNa: Nernst potential due to Na ion differential concentration across the cell membrane

RK: Relative membrane permeability to the flow of K ions

RNa: Relative membrane permeability to the flow of Na ions when the cell is polarized
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R: Relative membrane permeability to the flow of Na ions when the cell is depolarizing
C: Capacitance of the cell

The dendrites have synaptic connections on them which receive signals from other neurons. From these
synapses, the signals are then passed to the cell body where they are averaged over a short-time interval; and,
if this average is sufficiently large, the cell “fires”, and a pulse travels down its axon passing on to succeeding
cells. Thus, the neurons relay information along structured pathways, passing messages across synapses in the
traditional viewpoint, as explained above.

Figure 2.5  Microelectrode recording of a typical action potential
P: Polarization regime; DP: Depolarization regime; R: Regenerative breakdown regime; W: Minimum width
of amplitude invariant current stimulus required for action potential generation; VDP: Depolarized cell
potential; VB: Baseline potential; VT: Threshold potential; VRP: Polarized cell resting potential; Duration of
spike: About 1 ms; Decay time: Up to 100 ms

Besides this classical theory, Agnati et al. [29] have advocated volume transmission as another mode of neural
communication across the cellular medium constituted by the fluid-filled space between the cells of the brain;
and the chemical and electrical signals travel through this space carrying messages which can be detected by
any cell with an appropriate receptor. The extracellular space, which provides the fluid bathing of the neurons,
occupies about 20% of the brain’s volume. It is filled with ions, proteins, carbohydrates, and so on. In
volume-transmission, these extracellular molecules are also regarded as participants in conveying signals.
Accordingly, it has been suggested [29] that electrical currents or chemical signals may carry information via
extracellular molecules also. Relevant electrical effects are conceived as the movement of ions (such as
potassium, calcium and sodium) across the neuronal membrane. The chemical mode of volume transmission
involves the release of a neuroactive substance from a neuron into the extracellular fluid where it can diffuse
to other neurons. Thus, cells may communicate with each other (according to Agnati et al. [29]) without
making intimate contact.
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2.6 Collective Response of Neurons

The basis for mathematical modeling of neurons and their computational capabilities dwells on two
considerations, namely, the associated threshold logic and the massive interconnections between them. The
synergic or collective response of the neural complex is essentially stochastical due to the randomness of the
interconnections and probabilistic character of individual neurons. A neural complex is evolved by the
progressive multiplication of the interneuronal connections. As a result, the participation of an individual
neuron in the collective response of the system becomes less strongly deterministic and more probabilistic.
This gives rise to evoked responses of neurons being different each time to the repeated stimuli, though the
reactions of the entire neuronal population (manifested as ECG, EEG, EMG, etc.) could be the same every
time. Thus, the interconnected neuronal system with the stochastical input-output characteristics corresponds
to a redundant system of parallel connections with a wide choice of ways for the signal propagation (or a von
Neumann random switch — a computational basic hardware is realizable in terms of neural nets).

For the neurophysiological consideration that a neuron fires only if the total of the synapses which receive
impulses in the period of latent summation exceeds the threshold, McCulloch and Pitts [7] suggested a highly
simplified computational or logical neuron with the following attributes:

•  A formal neuron (also known as the mathematical neuron, or logical neuron, or module) is an
element with say m inputs (x1, x2, …, xm; m e 1) and one output, O where m is an axonal output or a
synaptic input of a neuron. Associating weights Wi (i � m) for each input and setting threshold at VT,
the module is presumed to operate at discrete time instants ti (i � n). The module “fires” or renders an

output at (n + 1)th instant along its axon, only if the total weight of the inputs simulated at time, n
exceeds VT. Symbolically, O (n + 1) = 1 iff ÂWixi(n) e VT.

•  The positive values of Wi (>0) correspond to excitatory synapses (that is, module inputs) whereas a
negative weight Wi < 0 means that xi is an inhibitory input. McCulloch and Pitts showed that the
network of formal neurons in principle can perform any imaginable computation, similar to a
programmable, digital computer or its mathematical abstraction, namely, the Turing machine [30].
Such a network has an implicit program code built-in via the coupling matrix (Wi). The network
performs the relevant computational process in parallel within each elementary unit (unlike the
traditional computer wherein sequential steps of the program are executed).
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•  A neural net, or a modular net, is a collection of modules each operating in the same time-scale,
interconnected by splitting the output of any module into a number of branches and connecting some or
all of these to the inputs of the modules. An output therefore may lead to any number of inputs, but an
input may come at most from one output.

•  The threshold and weights of all neurons are invariant in time.

•  The McCulloch-Pitts model is based on the following assumptions: Complete synchronization of all
the neurons. That is, the activities of all the neurons are perceived in the same time-scale.

•  Interaction between neurons (for example, the interactive electric fields across the neurons due to the
associated impulses) is neglected.

•  The influences of glial cell activity (if any) are ignored.

•  Biochemical (hormonal, drug-induced) effects (on a short- or on long-term basis) in changing
behavior of the neural complex are not considered.

In search of furthering the computational capabilities of a modular set, Hopfield in 1982 [31] queried
“whether the ability of large collections of neurons to perform computational tasks may in part be a
spontaneous collective consequence of having a large number of interacting simple neurons.” His question
has the basis that interactions among a large number of elementary components in certain physical systems
yield collective phenomena. That is, there are examples occurring in physics of certain unexpected properties
that are entirely due to interaction; and large assemblies of atoms with a high degree of interaction have
qualitatively different properties from similar assemblies with less interaction. An example is the
phenomenon of ferromagnetism (see Appendix A) which arises due to the interaction between the spins of
certain electrons in the atom making up a crystal.

The collective response of neurons can also be conceived as an interacting process and has a biological basis
for this surmise. The membrane potential of each neuron could be altered by changes in the membrane
potential of any or all of the neighboring neurons. After contemplating data on mammals involving the
average separation between the centers of neighboring cell bodies and the diameters of such cell-bodies, and
finding that in the cat the dendritic processes may extend as much as 500 ¼m away from the cell body, Cragg
and Temperley [32] advocated in favor of there being a great intermingling of dendritic processes of different
cells. Likewise, the axons of brain neurons also branch out extensively. Thus, an extreme extent of
close-packing of cellular bodies can be generalized in the neuronal anatomy with an intermingling of
physiological processes arising thereof becoming inevitable; and, hence, the corresponding neural interaction
refers to a collective activity.
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It would be possible for the neurons not to interact with each neighbor, only if there were a specific circuit
arrangement of fiber processes preventing such interactions. That is, an extracellular current from an active
neuron would not pass through the membranes of its neighbors, if specifically dictated by an inherent
arrangement. However, evidence suggests [32] that such ramification is not governed by any arrangements in
some definite scheme, but rather by some random mechanical principles of growth. Therefore, each neuron
seems to be forced to interact with all of its immediate neighbors as well as some more distant neurons.

The theory of a cooperative organization of neurons does not require a definite arrangement of neural
processes. What is required for an assembly to be cooperative is that each of its units should interact with
more than two other units, and that the degree of interaction should exceed a certain critical level. Also, each
unit should be capable of existing in two or more states of different energies. This theory applies to a
(statistically) large assembly of units. Considering such a cooperative assembly, a small change in the external
constraints may cause a finite transition in the average properties of the whole assembly. In other words,
neural interaction is an extensive phenomenon.

In short, neural networks are explicitly cooperative. The presence or absence of an action potential contributes
at least two different states (all-or-none response), and the propagation process pertaining to dichotomous
state transitions provides the mode of relevant interaction(s).

Assuming that the organization of neurons is cooperative, as mentioned earlier, there is a possible analogy
between the neuronal organization and the kind of interaction that exists among atoms which leads to
interatomic cooperative processes. Little [33] developed his neural network model based on this analogy. He
considered the correspondence between the magnetic Ising spin system and the neural network. For a
magnetic spin system which becomes ferromagnetic, the long-range order (defined as fixing the spin at one
lattice site causes the spins at sites far away from it to show a preference for one orientation) sets in at the
Curie point and exists at all temperatures below that critical point (see Appendix A). The onset of this
long-range order is associated with the occurrence of a degeneracy of the maximum eigenvalue of a certain
matrix describing the mathematics of the interactive process.

Considering the largest natural neural network, namely, the brain, the following mode of temporal
configuration determines the long-range interaction of state-transitions: The existence of correlation between
two states of the brain which are separated by a long period of time is directly analogous to the occurrence of
long-range order in the corresponding spin problem; and the occurrence of these persistent states is also
related to the occurrence of a degeneracy of the maximum eigenvalue of a certain matrix.

http://www.earthweb.com/
http://corpitk.earthweb.com/
http://corpitk.earthweb.com/content/corp.html
http://corpitk.earthweb.com/search/
http://corpitk.earthweb.com/faq/faq.html
http://corpitk.earthweb.com/sitemap.html
http://corpitk.earthweb.com/contactus.html
http://corpitk.earthweb.com/search/search-tips.html
http://corpitk.earthweb.com/search/search-tips.html
http://corpitk.earthweb.com/search/
http://corpitk.earthweb.com/search/


In view of the analogy between the neural network and the two-dimensional Ising problem as conceived by
Little, there are two main reasons or justifications posed for such an analogy: One is that already there exists a
massive theory and experimental data on the properties of ferromagnetic materials; and, therefore, it might be
possible to take the relevant results and apply them to the nervous system in order to predict certain
properties. The other reason is that, on account of unfamiliarity with biological aspects of the neural system, it
is simple and logical to relate the relevant considerations to those with which one is already familiar.

Continuing with the same connotations, Hopfield and Tank [34] stated “that the biological system operates in
a collective analog mode, with each neuron summing the inputs of hundreds or thousands of others in order to
determine its graded output.” Accordingly, they demonstrated the computational power and speed of
collective analog networks of neurons in solving optimization problems using the principle of collective
interactions.

In Hopfield’s original model [31], each neuron i has two states: Ãi = 0 (“not firing”) and Ãi = 1 (“firing at
maximum rate”). That is, he uses essentially the McCulloch-Pitts neuron [7]. This “mathematical neuron” as
deliberated earlier is capable of being excited by its inputs and of giving an output when a threshold VT

i is
exceeded. This neuron can only change its state on one of the discrete series of equally spaced times. If Wij is
the strength of the connection from neuron i to neuron j, a binary word of M bits consisting of the M values of
Ãi represents the instantaneous state of the system; and the state progresses in time or the dynamic evolution
of Hopfield’s network can be specified according to the following algorithm:

Here, each neuron evaluates randomly and asynchronously whether it is above or below the threshold and
readjusts accordingly; and the times of interrogation of each neuron are independent of the times at which
other neurons are interrogated. These considerations distinguish Hopfield’s net from that of McCulloch and
Pitts.

Hopfield’s model has stable limit points. Considering the special case of symmetric connection weights (that
is, Wij = Wji), an energy functional E can be defined by a Hamiltonian (HN) as:

and ”E due to ”Ãj is given by:

Therefore, E is a monotonically decreasing function, with the result the state-changes continue until a least
local E is reached. This process is isomorphic with the Ising spin model [35]. When Wij is symmetric, but has
a random character (analogous to spin-glass systems where atomic spins on a row of atoms in a crystal with
each atom having a spin of one half interact with the spins on the next row so that the probability of obtaining
a particular configuration in the mth row is ascertained), there are known to be many (locally) stable states
present as well.
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In a later study, Hopfield [36] points out that real neurons have continuous input-output relations. Hence, he
constructs another model based on continuous variables and responses which still retains all the significant,
characteristics of the original model (based on two-state McCulloch-Pitts’ threshold devices having outputs of

0 or 1 only). Hopfield let the output variable Ãi for neuron i have a squashed range  and
considered it as a continuous and monotone-increasing function of the instantaneous input xi to neuron i. The

typical input-output relation is then a S-shaped sigmoid with asymptotes  and . (The sigmoidal aspects
of a neural network will be discussed in detail in a later chapter.)

2.7 Neural Net: A Self-Organizing Finite Automaton

The general characteristic of a neural net is that it is essentially a finite automaton. In other words, its
input-output behavior corresponds to that of a finite automaton.

A modular net (such as the neural net) being a finite automaton has the capability for memory and
computation.

Further, the modular net emerges as a computer which has command over its input and output—it can
postpone its input (delay) and refer back to earlier inputs (memory) by an effective procedure or by a set of
rules (more often known as algorithms in reference to computers).

A neural net in its global operation achieves a formalized procedure in deciding its input-output relation. This
effective or decision procedure is typically cybernetic in that a particular operation is amenable as a
mathematical operation. Further, neural net operates on a logical basis (of precise or probabilistic form) which
governs the basic aspect of cybernetic principles.

A neural net supports a progression of state transitions (on-off type in the simplest neuronal configuration) —
channeling a flow of bit-by-bit information across it. Thus, it envisages an information or communication
protocol, deliberating the cybernetic principle.
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2.8 Concluding Remarks

A neural complex has a diversified complexity in its structure and functions but portrays a unity in its
collective behavior. The anatomy and physiology of the nervous system facilitates this coorperative neural
performance through the mediating biochemical processes manifesting as the informational flow across the
interconnected neurons. The proliferation of neural information envisages the commands, control, and
communication protocols among the neurons. The resulting automaton represents a self-organizing system—a
neurocybernetic.

The mechanism of interaction between the neurons immensely mimics the various interactive phenomena of
statistical physics; more specifically, it corresponds to the Ising spin interaction pertinent to the statistical
mechanics of ferromagnetism. Further, the neural complex is essentially a stochastical system. Its random
structural considerations and conjectural functional attributes fortify such stochastical attributes and dictate a
probabilistic modus operandi in visualizing the complex behavior of the neural system.

Modeling the biological neural complex or an artificial neural network on the basic characteristics as listed
above is, therefore, supplemented by the associated stochastical theory, principles of cybernetics, and physics
of statistical mechanics. The government of these considerations in essence constitutes the contents of the
ensuing chapters.
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Chapter 3
Concepts of Mathematical Neurobiology

3.1 Mathematical Neurobiology: Past and Present

In the middle of 19th century, German scientists Matthias Jakob Schleiden and Theodor Schwann proposed
that all living things were made of distinct units called cells. They defined a cell as being a
membrane-bounded bag containing a nucleus [29]. Neuroanatomists at that time did not realize that the brain
is also made of such cells since microscopes of that era could not be used to view the brain membrane. (In
fact, the membrane remained invisible until the advent of electron microscopy in the 1950’s.) Many
neuroanatomists believed that the entire nervous system worked as a whole independent of its individual
parts. This theory has become known as the reticular doctrine and was advocated by the Italian anatomist
Camillo Golgi. It provided a thesis that neurons communicate over relatively large distances via a continuous
link. That is, Golgi thought that it is more likely that a neural signal is conveyed by a continuous process,
rather than interrupted and somehow regenerated between the cells [29].

In 1891, the German anatomist Wilhelm Waldeyer suggested the term neuron and he was the first to apply
cell theory to the brain. An opposing view of the reticular doctrine—the neuron doctrine—held that the brain
was made of discrete cellular entities that only communicated with one another at specific points. The Spanish
neurohistologist Santiago Ramón y Cajal amassed volumes of evidence supporting this doctrine based on
microscopic techniques. This theory accounts for the view that just as electrons flow along the wires in a
circuit, the neurons in the brain relay information along structured pathways. In modern notions, this concept
translates into the statement that “a real neuronal network is inspired by circuit diagrams of electronics”.
Though polemical, in both reticular and neuronal perspectives there is, however, a “holistic conception of the
brain”.

Though Golgi has been criticized for his support of the reticular doctrine, there is some current evidence [29]
involving volume-transmission suggesting that neural information may flow along paths that run together
between relatively large, cellular territories and not only at specific points between individual cells.

A more extensive discussion on the theoretical developments concerning neuronal interactions and collective
activities in actual biological systems is furnished in Chapter 5. This is based essentially on physical
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interaction models due to Cragg and Temperley [32] who developed the possible analogy between the
organization of neurons and the kind of interaction among atoms which leads to cooperative processes in
physics. Almost a decade after Cragg and Temperley projected this interaction, Griffith [13,14] tried to refute
it; however, Little’s model of 1974 [33], Thompson and Gibson’s model of 1981 [37], Hopfield’s model of
1982 [31], and Peretto’s model of 1984 [38] as well as other related models have emerged with a common
perspective of viewing the neural interactions as being analogous to cooperative processes of physics as
conceived by Cragg and Temperley.

Artificial neural networks, a modern trend in the art of computational science, are biologically inspired in that
they perform in a manner similar to the basic functions of the biological neuron. The main advantage of using
the concepts of artificial neural networks in computational strategies is that they are able to modify their
behavior in response to their (input-output) environment. Both the real neurons and the artificial networks
(which mimic the real neurons) have the common basis of learning behavior. The attribution of learning by
real neurons was specified as a learning law by Hebb [19] as early as 1949. Hebb’s rule suggests that when a
cell A repeatedly and persistently participates in firing cell B, then A’s efficiency in firing B is increased.

Figure 3.1  Artificial neuron

Mathematically, the degree of influence that one neuron has on another is represented by a weight associated
with the interconnection between them (the biological counterpart of this interconnection is the synapse).
When the neural network learns something in response to new inputs, weights are modified. That is,

considering Figure 3.1, where all inputs  to a neuron are weighted by W and summed as NET = £M
i=1Wi

, the synapse (Wij) connecting neurons i and j is strengthened whenever both i and j fire. The mathematical
expression which is widely accepted as the approximation of this Hebbian rule is given by:

at time t. In Hebb’s original model, the output of neuron i was simply NETi. In general, OUTi = F(NETi)
where NETi = £kOUTkWik. Most of today’s training algorithms conceived in artificial neural networks are
inspired by Hebb’s work.

As mentioned before, McCulloch and Pitts [7] developed the first mathematical (logical) model of a neuron

(see Figure 3.2). The Â unit multiplies each input  by a weight W, and sums the weighted inputs. If this
sum is greater than a predetermined threshold, the output is one; otherwise, it is zero. In this model, the
neuron has the ability to be excited (or inhibited) by its inputs and to give an output when a threshold is
exceeded. It is assumed that the neuron can only change its state at one of a discrete series of equally spaced
times. In this time dependence, the logical neuron behaves differently from the actual biological one.

Figure 3.2  McCulloch-Pitts’ model of a neuron
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The McCulloch-Pitts neuron is a binary device since it exists in one of two states which can be designated as
active and inactive. Hence, it is often convenient to represent its state in binary arithmetic notation, namely, it
is in state 0 when it is inactive or in state 1 when it is active.

In the 1950’s and 1960’s, the first artificial neural networks consisting of a single layer of neurons were
developed. These systems consist of a single layer of artificial neurons connected by weights to a set of inputs
(as shown in Figure 3.3) and are known as perceptrons. As conceived by Rosenblatt [39], a simplified model
of the biological mechanisms of processing of sensory information refers to perception. Essentially, the
system receives external stimuli through the sensory units labeled as SE. Several SE units are connected to
each associative unit (AA unit), and an AA unit is on only if enough SE units are activated. These AA units
are the first stage or input units. As defined by Rosenblatt [40], “a perception is a network composed of
stimulus-unit, association-unit, and response-unit with a variable interactive matrix which depends on the
sequence of fast activity states of the network”.

Figure 3.3  Single-layer perceptron SE: Sensory array; AA: Associative array

Figure 3.4  Cybernetic notions of a perceptron

A perceptron can be represented as a logical net with cybernetic notions as shown in Figure 3.4. It was found,
however, that these single-layer perceptrons have limited computational abilities and are incapable of solving
even simple problems like the function performed by an exclusive-or gate. Following these observations,
artificial neural networks were supposed lacking in usefulness; and hence pursuant research remained
stagnant except for a few dedicated efforts due to Kohonen, Grossberg, and Anderson [41]. In the 1980’s,
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more powerful multilayer networks which could handle problems such as the function of an exclusive-or gate,
etc. emerged; and the research in neural networks has been continually growing since then.

3.2 Mathematics of Neural Activities

3.2.1 General considerations

Mathematical depiction of neural activities purport the analytical visualization of the function of real neurons.
In its simplest form, as stated earlier, the mathematical neuron refers to McCulloch-Pitts’ logical device,
which when excited (or inhibited) by its inputs delivers an output, provided a set threshold is exceeded. An
extended model improvises the time-course of the neuronal (internal) potential function describing the current
values of the potential function for each neuron at an instant t, as well as at the times of firing of all attached
presynaptic neurons back to the times (t - ”t). By storing and continuously updating the potential-time data,
the evolution of activity on the network as a function of time could be modeled mathematically. Thus,
classically the mathematics of neurons referred to two basic considerations:

•  Logical neurons.

•  Time-dependent evolution of neuronal activities.

The logical neuron lends itself to analysis through boolean-space, and therefore an isomorphism between the
bistable state of the neurons and the corresponding logic networks can be established via appropriate logical
expressions or boolean functions as advocated by McCulloch and Pitts. Further, by representing the state of a
logical network (or neurons), with a vector having 0’s and 1’s for its elements and by setting a threshold
linearly related to this vector, the development of activity in the network can be specified in a matrix form.

The logical neuron, or McCulloch-Pitts network, has also the characteristic feature that the state vector x(t)
depends only on x (t - 1). In other words, every state is affected only by the state at the preceding time-event.
This depicts the first-order markovian attribute of the logical neuron model.

Further, the logical neural network follows the principle of duality. That is, at any time, the state of a network
is given by specifying which neurons are firing at that time; or as a duality it would be also given, if the
neurons which are not firing are specified. In other words, the neural activity can be traced by considering
either the firing-activity or equivalently by the nonfiring activity, as well.

Referring to the real neurons, the action potential proliferation along the time-scale represents a time series of
a state variable; and the sequence of times at which these action-potentials appear as spikes (corresponding to
a cell firing spontaneously) does not normally occur in a regular or periodic fashion. That is, the spike-train
refers to a process developing in time according to some probabilistic regime.

In its simplest form, the stochastic process of neuronal spike occurrence could be modeled as a poissonian
process with the assumption that the probability of the cell firing in any interval of time is proportional to that
time interval. In this process, the constancy of proportionality maintains that firing events in any given
interval is not influenced by the preceding firing of the cell. In other words, the process is essentially regarded
as memoryless.

The feasibility of poissonian attribution to neural activity is constrained by the condition that with the
poissonian characteristic, even a single spike is sufficient to fire the cell. There is a mathematical support to
this possibility on the basis of mathematical probability theory: Despite the possibility that the firing action by
a neuron cell could be non-poissonian, the “pooling of a large number of non-poissonian” stochastical events
leads to a resultant process which approximates to being poissonian; that is, a non-poissonian sequence of
impulse train arriving at a synapse when observed postsynaptically would be perceived as a poissonian
process, inasmuch as the synapses involved in this process are innumerable.

Griffith [11-14] points out that even if the process underlying the sequence of spikes is not closely poissonian,
there should always be a poissonian attribute for large intervals between spikes. This is because a long time t
after the cell has last fired, it must surely have lost memory exactly when it did. Therefore, the probability of
firing settles down to a constant value for large t; or the time-interval distribution p(t) has an exponential tail
for sufficiently large t. That is, p(t) = »e-»t, where » is a constant and +0

� p(t) dt = 1. The mean time of this
process < t > is equal to 1/».
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The poissonian process pertinent to the neuronal spike train specifies that different interspike intervals are
independent of each other. Should the neuronal spike activity be non-poissonian, deviations from
spike-to-spike independence can be expected. Such deviations can be formalized in terms of the serial
correlation coefficients for the observed sequence of interspike intervals. Existence of finite (nonzero)
correlation coefficients may not, however, be ruled out altogether. The reasons are:

•  The cellular activity is decided partly by the global activity of the brain. Therefore, depending on the
part of the subject’s state of activity, long-term variations in the brain-to-cell command link could
possibly influence the interspike events.

•  The neuronal cell is a part of an interconnected network. The multiple paths of proliferation of
neuronal activity culminating at the cell could introduce correlation between the present and the future
events.

•  There is persistency of chemical activity in the intracellular region.

The variations in the interspike interval, if existing, render the neuronal process nonstationary which could
affect the underlying probability regime not being the same at all times.

3.2.2 Random sequence of neural potential spikes

Pertinent to the neural activity across the interconnected set of cells, the probabilistic attributes of neuronal
spikes can be described by the considerations of random walk theory as proposed by Gerstein and Mandelbrot
[2]. The major objective of this model is to elucidate the probability distribution for the interspike interval
with the assumption of independence for intervals and associated process being poissonian.

After the cell fires, the intracellular potential returns to its resting value (resting potential); and, due to the
arrival of a random sequence of spikes, there is a probability p at every discrete time interval that the
intracellular potential rises towards the threshold value; or there is a probability q = (1 - p) of receding from
the threshold potential. The discrete steps of time ”t versus the discrete potential change (rise or fall) ”v
constitute a (discrete) random walk stochastical process. If the threshold value is limited, the random walk
faces an absorbing barrier and is terminated. The walk could, however, be unrestricted as well, in the sense
that in order to reach a threshold v = vo exactly at time t (or after t steps), the corresponding probability, p
would decide the probability density of the interspike interval pI given by [14]:
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This refers to the probability that the interspike interval lies between t and (t + ”t) is approximately given by
pI ”t.

Considering f(v, t)dv to denote the probability at time t that the measure v of the deviation from the resting
potential lies between v and (v + dv), the following one-dimensional diffusion equation can be specified:

where C and D are constant coefficients. Gernstein and Mandelbrot used the above diffusion model equation
to elucidate the interspike interval distribution (of random walk principle). The corresponding result is:

Upon reaching the threshold and allowing the postsynaptic potential to decay with a time constant specified
by exp(- •t), an approximate diffusion equation for f(v, t) can be written as follows:

Solution of the above equation portrays an unrestricted random passage of x to xo over the time and an
unrestricted path of decay of the potential in the postsynaptic regime.

The classical temporal random neurocellular activity as described above can also be extended to consider the
spatiotemporal spread of such activities. Relevant algorithms are based on partial differential equations akin
to those of fluid mechanics. On these theories one considers the overall mean level of activity at a given point
in space rather than the firing rate in any specific neuron, as discussed below.
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3.2.3 Neural field theory

The spatiotemporal activity in randomly interconnected neurons refers to the neurodynamics or neural field
theory in which a set of differential equations describe activity patterns in bulk neural continuum [11,12]. For
example, the fluid mechanics based visualization of neuron flow has two perspectives: The governing
differential equations could be derived on the continuum point of view or on the basis of a large number of
interacting particles. (The later consideration refers to statistical mechanics principles which will be discussed
in Chapter 5 in detail.)

The earliest continuum model of neuronal spatiotemporal activity is due to Beurle [42] who deduced the
following set of differential equations governing the random activity in a neuronal network in terms of the
level of sustained activity (F) and the proportion of cells which are nonrefractory (R):

where ¦ is the probability that a sensitive cell will be energized above its threshold in unit time. The solution
of the above equations represent the proliferation of the neuronal activity (in time and space) as traveling
waves.

Considering the neuronal excitation (È) is “regarded as being carried by a continual shuffling between sources
and fields (Fa)”, Griffith in 1963 proposed [11-14] that Fa creates È and so on by an operation specified by:

where He is an undefined operation and k is a constant. The spatiotemporal distribution of the overall
excitation (È) has hence been derived in terms of the activity of some on neurons (Fa) as:

where ±, ², ³, are system coefficients.
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Another continuum model of spatiotemporal activity of neurons is due to Wilson and Cowan [43,44] who
described the spatiotemporal development in terms of the proportion of excitatory cells (Le) becoming active
per unit time; or proportion of inhibitory cells (Li) becoming active per unit time. Representing the excitatory
activity of the neurons by a function Ee and the inhibitory activity by Ei:

are derived as the functions to denote the spatiotemporal activity of the neurons. Here, ¼, ³e, ³i are system
coefficients and De, Di are densities of excitatory and inhibitory cells participating in the regime of activity.
Solutions of the above equations involve convolutions, and simplification of these equations leads to system
description in terms of coupled van der Pohl oscillators.

A more involved description of the neuronal activity continuum refers to nonlinear integro-differential
equations as elucidated by Orguztoreli [45] and Kawahara et al. [46]. Another modeling technique due to
Ventriglia [47] incorporating intraneuron excitation, proportion of neurons in refractory state, velocity of
impulses, neuronal density, synaptic density, axonic branching, and fraction of excitatory neurons in the
continuum description of spatiotemporal neuronal activity has led to the study of informational waves,
dynamic activities, and memory effect.

3.3 Models of Memory in Neural Networks

The memory associated with neural system is twofold: Long-term and short-term memories. The short-term
memory refers to a transient activity; and if that persists long enough, it would constitute the long-term
memory. The short-term memory corresponds to the input firing at a modular net stored by the impulse
reverberating in the loop as illustrated in Figure 3.5. The net has a long-term memory if the short-term
memory could cause its threshold to drop from 1 to 0, for example; for the memory would then be preserved
and persistent even if the reverberation dies down.

The concept of memory involves a storage mechanism which utilizes a storage medium; the associated
operation is termed as memory function which operates with the other functions of the neural network and/or
the biological system. Storage and recall of information by association with other information refers to the
most basic application of “collective” computation on a neural network. The information storing device is
known as the associative memory, if it permits the recall of information on the basis of partial knowledge of
its content, but without knowing its storage location. It depicts a content addressable memory.

Figure 3.5  Types of memory in the neural complex (a) Short-term memory; (b) Threshold-shift enabling
long-term persistency of state-transition
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Memory models are characterized by the physical or constitutive aspects of memory functions and by the
information processing abilities of the storage mechanism. The synaptic action and the state transitional
considerations in the neuron (or in a set of neurons), whether transient or persistent, refers to a set of data or a
spatiotemporal pattern of neural signals constituting an addressable memory on short- or long-term basis.
Such a pattern could be dubbed as a feature map. In the interconnecting set of neurons, the associated
temporal responses proliferating spatially represent a response pattern or a distribution of memory.

Relevant to this memory unit, there are writing and reading phases. The writing phase refers to the storage of
a set of information data (or functionalities) to the remembered. Retrieval of this data is termed as the reading
phase.

The storage of data implicitly specifies the training and learning experience gained by the network. That is,
the neural network adaptively updates the synaptic weights that characterize the strength of the connections.
The updating follows a set of informational training rules. That is, the actual output value is compared with a
new teacher value; and, if there is a difference, it is minimized on least-squares error basis. The optimization
is performed on the synaptic weights by minimizing an associated energy function.

The retrieval phase follows nonlinear strategies to retrieve the stored patterns. Mathematically, it is a single or
multiple iterative process based on a set of equations of dynamics, the solution of which corresponds to a
neuronal value representing the desired output to be retrieved.

The learning rules indicated before are pertinent to two strategies, unsupervised learning rule and supervised
learning rule. The unsupervised version (also known as Hebbian learning) is such that, when unit i and j are
simultaneously excited, the strength of the connection between them increases in proportion to the product of
their activation. The network is trained without the aid of a teacher via a training set consisting of input
training patterns only. The network learns to adapt based on the experiences collected through the previous
training patterns.

In the supervised learning, the training data has many pairs of input/output training patterns. Figure 3.6
illustrates the supervised and unsupervised learning schemes.

Figure 3.6  Learning schemes (a) Supervised learning; (b) Unsupervised learning (Adapted from [48])
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Networks where no learning is required are known as fixed-weight networks. Here the synaptic weights are
prestored. Such an association network has one layer of input neurons and one layer of output neurons.

Pertinent to this arrangement, the pattern can be retrieved in one shot by a feed-forward algorithm; or the
correct pattern is deduced via many iterations through the same network by means of a feedback algorithm.
The feed-forward network has a linear or nonlinear associative memory wherein the synaptic weights are
precomputed and prestored. The feedback associative memory networks are popularly known as Hopfield
nets.

3.4 Net Function and Neuron Function

The connection network neurons are mathematically represented by a basis function U (W, x) where W is the
weight matrix and x is the input matrix. In hyperplane, U is a linear basis function given by:

and in hypersphere representation the basis function is a second-order function given by:

Figure 3.7  Activation functions
(a) Step function; (b) Ramp function; (c) Sigmiodal function; (d) Gaussian function (Adapted from [48])

The net value as expressed by the basis function can be transformed to depict the nonlinear activity of the
neuron. This is accomplished by a nonlinear function known as the activation function. Commonly, step,
ramp, sigmoid, and gaussian functions are useful as activation functions. These are illustrated in Figure 3.7.

3.5 Concluding Remarks

Mathematical representation of neural activity has different avenues. It may be concerned with a single
neuron activity or the collective behavior of the neural complex. Single neuron dynamics refers to the
stochastical aspects of biochemical activity at the cells manifesting as trains of spikes. The collective behavior
of neural units embodies the interaction between massively connected units and the associated memory,
adaptive feedback or feed-forward characteristics, and the self-organizing controlling endeavors. The
analytical representation of memory functions of the neural complex governs the learning (or training)
abilities of the network exclusively via the transient and/or persistent state of the system variables.

Another mathematical consideration pertinent to the neural system refers to the spatiotemporal dynamics of
the state-transitional proliferations across the interconnected neurons. Existing models portray different
analogical “flow” considerations to equate them to the neuronal flow. Equations of wave motion and
informational transit are examples of relevant pursuits.

The contents of this chapter as summarized above provide a brief outline on the mathematical concepts as a
foundation for the chapters to follow.

Previous Table of Contents Next

javascript:displayWindow('images/03-07.jpg',498,455)
javascript:displayWindow('images/03-07.jpg',498,455)
http://corpitk.earthweb.com/
http://corpitk.earthweb.com/content/corp.html
http://corpitk.earthweb.com/search/
http://corpitk.earthweb.com/faq/faq.html
http://corpitk.earthweb.com/sitemap.html
http://corpitk.earthweb.com/contactus.html


Products |  Contact Us |  About Us |  Privacy  |  Ad Info  |  Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc. All rights
reserved. Reproduction whole or in part in any form or medium without express written permission of

EarthWeb is prohibited. Read EarthWeb's privacy statement.

http://corpitk.earthweb.com/products.html
http://corpitk.earthweb.com/contactus.html
http://corpitk.earthweb.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://corpitk.earthweb.com/
http://corpitk.earthweb.com/agreement.html
http://corpitk.earthweb.com/copyright.html
http://www.earthweb.com/about_us/perm.html
http://www.earthweb.com/about_us/privacy.html


       

  

     

    

   Search Tips

   Advanced Search

    

  

  

Neural Network Modeling: Statistical Mechanics and Cybernetic Perspectives
by P. S. Neelakanta; Dolores DeGroff
CRC Press, CRC Press LLC
ISBN: 0849324882   Pub Date: 07/01/94

Search this book:

 

Previous Table of Contents Next

Chapter 4
Pseudo-Thermodynamics of Neural Activity

4.1 Introduction

Randomly interconnected neurons emulate a redundant system of parallel connections with almost unlimited
routings of signal proliferation through an enormous number of von Neumann random switches. In this
configuration, the energy associated with a neuron should exceed the limit set by the thermodynamic
minimum Shannon’s limit) of a logical act given by:

where kBT is the Boltzmann energy. The actual energy of a neuron is about 3 × 10-3 erg per binary transition
being well above the thermodynamical (noise) energy limit as specified above.

Not only the energy dissipative aspects per neuron could be delved in thermodynamic perspective (as von
Neumann did), the state-transitional considerations (flow-of-activation) across randomly interconnected
neurons constitute a process activity which can be studied under thermodynamic principles.

Such a thermodynamical attribution to neural activity stems from the inherent statistical characteristics
associated with the spatiotemporal behavior of the neuronal nets. Since the thermodynamics and neural
networks have a common intersection of statistical considerations as primary bases, Bergstrom and
Nevanlinna [49] postulated in 1972 that the state of a neural system could be described by its total neural

energy (E) and its entropy distribution ( ). Entropy here refers to the probability or uncertanity associated
with the random switching or state-transitional behavior of the neural complex. The governing global
attributes of such a description are that the total energy remains invariant (conservation principle) and the
neural complex always strives to maximize its entropy. Therefore, the entropy of the neural system is decided
by the total energy, number of neuronal cells, and number of interconnections. The principle of maximum
entropy as applied to systems of interacting elements (such as the neural network) was advocated by Takatsuji
in 1975 [50]; and the relevant thermodynamic principles as applied to the neural network thereof have led to
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the so-called machine concepts detailing the learning/training properties of neural nets, as described below.

As discussed earlier the neural system learns or is trained by means of some process that modifies its weights
in the collective state-transitional activity of interconnected cells. If the training is successful, application of a
set of inputs to the network produces the desired set of outputs. That is, an objective function is realized.
Pertinent to real neurons, the training method follows a stochastical strategy involving random changes in the
weight values of the interconnections retaining those changes that result in improvements. Essentially, the
output of a neuron is therefore a weighted sum of its inputs operated upon by some nonlinear function (F)
characterized by the following basic training or procedural protocol governing its state-transitional behavior:

•  A set of inputs at the neuron results in computing the outputs.

•  These outputs are compared with desired (or target) outputs; if a difference exists, it is measured. The
measured difference between input and output in each module is squared and summed.

•  The object of training is to minimize this difference known as the objective function.

•  A weight is selected randomly and adjusted by a small random amount. Such an adjustment, if
reduces the objective function, is retained. Otherwise, the weight is returned to its previous value.

•  The above steps are iterated until the network is trained to a desired extent, that is, until the objective
function is attained.

Basically, the training is implemented through random adjustment of weights. At first large adjustments are
made, retaining only those weight changes that reduce the objective function. The average step-size is then
gradually reduced until a global minimum is eventually reached. This procedure is akin to the
thermodynamical process of annealing in metals.* In molten state, the atoms in a metal are in incessant
random motion and therefore less inclined to reach a minimum energy state. With gradual cooling, however,
lower and lower energy states are assumed until a global minimum is achieved and the material returns to a
crystalline state.

*Annealing in the metallurgical sense refers to the physical process of heating a solid until it melts, followed by
cooling it down until it crystallizes into a state with a perfect lattice structure. During this process, the free-energy
of the solid is minimized. The cooling has to be done gradually and carefully so as not to get trapped in locally
optimal lattice structures (metastable states) with crystal imperfections. (Trapping into a metastable state occurs
when the heated metal is quenched instantaneously, instead of being cooled gradually.)

Adoption of thermodynamic annealing to neural activity refers to achieving the global energy minimum
criterion. For example, in Hopfield nets, it is possible to define an energy function that is monotonically
decreasing; and state changes in these nets continue until a minimum is reached. However, there is no
guarantee that this will be the global minimum; and it is, in fact, most likely that the minimum will be one of
the many locally stable states. Therefore, in solving for output-input relations in such a net, the optimum
solution may not be realized.
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That is, a difficulty encountered normally with Hopfield nets is the, tendency for the system to stabilize at a
local rather than going to a global minimum. This can, however, be obviated by introducing noise at the input
so that the artificial neurons change their state in a statistical rather than in a deterministic fashion. To
illustrate this concept, a ball rolling up and down in a terrain can be considered. The ball may settle at a local
trap (Lm) such that it may not be able to climb up the global minimum valley (see Figure 4.1). However, a
strategy which introduces some disturbances can cause the ball to become unsettled and jump out from the
local minima. The ball being at Lm, corresponds to a weight setting initially to a value Lm. If the random
weight steps are small, all deviations from Lm increase the objective function (energy) and will be rejected.
This refers to trapping at a local minimum. If the weight setting is very large, both the local minimum at Lm
and the global minimum at Gm are “frequently revisited”; and the changes in weight occur so drastically that
the ball may never settle into a desired minimum.

Figure 4.1  Global and local minima
Gm: Global minimum; Lm: Local minimum; X: Weight state; E(X): Objective function or cost function; DT:
Escape from local minima (de-trapping) corresponds to annealing

By starting with large steps and gradually reducing the size of the average random step, the network could,
however, escape from the local minima ensuring an eventual network stabilization. This process mimics the
metallurgical annealing described above. This simulated annealing enables a combinatorial optimization of
finding a solution among a potentially very large number of solutions with minimal cost-function. Here, the
cost-function corresponds to the free-energy on a one-to-one basis.

The annealing in a network can be accomplished as follows: When a disturbance is deliberately introduced
and started at a random state at each time-step, a new state could be generated according to a generating
probability density. This new state would replace the old state, if the new state has a lower energy. If it has
higher energy, it is designated as a new state with a probability as determined by an acceptance function. This
way, jumps occasionally are allowed to configurations of higher energy. Otherwise the old state is retained. In
the search of minimal energy solution, there are possibilities of other suboptimal solutions emerging
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arbitrarily close to an optimum. Therefore, reaching the optimal solution invariably warrants a rather
extensive search with massive computational efforts.

4.2 Machine Representation of Neural Network

In practice, the system incorporated with a method of introducing a disturbance or a random noise for the
purpose of state de-trapping (as explained above) is referred to as a machine. For example, Hinton et al. [51]
proposed the Boltzmann statistics of thermodynamics to describe the neural system as a machine representing
the “constant satisfaction networks that learn” by the implementation of local constraints as connection
strength in stochastic networks. In these Boltzmann machines, the generating probability density is gaussian
given by:

where the time-schedule of changing fluctuations in the machine is described in terms of an artifical cooling
temperature TG(t) (also known as the pseudo-temperature) being inversely logarithmic to time; and the
acceptance probability (corresponding to the chance of the ball climbing a hump) follows the Boltzmann
distribution, namely:

where ”E is the increase in energy incurred by a transition. It may be noted that both the acceptance and
generating functions are decided essentially by the cooling schedule. The above probability distribution refers
to the probability distribution of energy states of the annealing thermodynamics, that is, the probability of the
system being in a state with energy ”E. At high temperatures, this probability approaches a single value for all
energy states, so that a high energy state is as likely as a low energy state. As the temperature is lowered, the
probability of high energy states decreases as compared to the probability of low energy states. When the
temperature approaches zero, it becomes very unlikely that the system will exist in a high energy state.

The Boltzmann machine is essentially a connectionist model of a neural network: It has a large number of
interconnected elements (neurons) with bistable states and the interconnections have real-valued strengths to
impose local constraints on the states of the neural units; and, as indicated by Aarts and Korst [52], “a
consensus function gives a quantitative measure for the ‘goodness’ of a global configuration of the Boltzmann
machine determined by the states of all individual units”.

The cooperative process across the interconnections dictates a simple, but powerful massive parallelism and
distribution of the state transitional progression and hence portrays a useful configuration model. Optimality
search via Boltzmann statistics provides a substantial reduction of computational efforts since the simulated
annealing algorithm supports a massively parallel execution. Boltzmann machines also yield higher order
optimizations via learning strategies. Further, they can accommodate self-organization (through learning) in
line with the cybernetics of the human brain.

Szu and Hartley [53] in describing neural nets advocated the use of a Cauchy machine instead of the
Boltzmann machine. The Cauchy machine uses the generating probability with the Cauchy/Lorentzian
distribution given by:

where TC(t) is the pseudothermodynamic temperature. It allows the cooling schedule to vary inversely
proportional to the time, rather than to the logarithmic function of time. That is, Szu and Hartley used the
same acceptance probability given by Equation (4.3), but TG(t) is replaced by TC(t).
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The reason for Szu and Hartley’s modification of the generating probability is that it allows a fast annealing
schedule. That is, the presence of a small number of very long jumps allows faster escapes from the local
minima. The relevent algorithm thus converges much faster. Simulation done by Szu and Hartley shows that
the Cauchy machine is better in reaching and staying in the global minimum as compared with the Boltzmann
machine. Hence, they called their method the fast simulated annealing (FSA) schedule.

Another technique rooted in thermodynamics to realize annealing faster than the Cauchy method refers to
adjusting the temperature reduction rate according to the (pseudo) specific heat calculated during the training
process. The metallurgical correspondence for this strategy follows:

During annealing, metals experience phase changes. These phases correspond to discrete energy levels. At
each phase change, there is an abrupt change of the specific heat defined as the rate of change of temperature
with energy. The change in specific heat results from the system settling into one of the local energy minima.
Similar to metallurgical phase changes, neural networks also pass through phase changes during training. At
the phase transistional boundary, a specific heat attribution to the network can therefore be considered which
undergoes an abrupt change. This pseudo specific heat refers to the average rate of change of
pseudo-temperature with respect to the objective function. Violent initial changes make the average value of
the objective function virtually independent of small changes in temperature so that the specific heat is a
constant. Also, at low temperatures, the system is frozen into a minimum energy. Thus again, the specific heat
is nearly invariant. As such, any rapid temperature fluctuations at the temperature extrema may not improve
the objective function to any significant level.

However, at certain critical temperatures (such as a ball having just enough energy for a transit from Lm to
Gm, but with insufficient energy for a shift from Gm to Lm), the average value of the objective function makes
an abrupt change. At these critical points, the training algorithm must alter the temperature very slowly to
ensure the system not trapping into a local minimum (Lm). The critical temperature is perceived by noticing
an abrupt decrease in the specific heat, namely, the average rate of change with the objective function. Upon
reaching the objective function, the temperature maximal to this value must be traversed slowly enough so as
to achieve a convergence towards a global minimum. At other temperatures, a larger extent of temperature
reduction can, however, be used freely in order to curtail the training time.
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4.3 Neural Network versus Machine Concepts

4.3.1 Boltzmann Machine

The Boltzmann machine has a binary output characterized by a stochastic decision and follows instantaneous
activation in turn. Its activation value refers to the net input specified by:

where en is the error (per unit time) on the input caused by random noise, and oj is the output value that an ith

neuron receives from other neuron units through the input links such that oj assumes a graded value over a
range 0 < oj < 1. The neuron has also an input bias, ¸i. Unit i � N has state oi � {0, 1} so that the global

state-space S of this machine is 2N. Associated with each state s � S is its consensus Cs defined as £ij Wij oj oi.
The Boltzmann machine maximizes CSi within the net through the simulated annealing algorithm via
pseudo-temperature T which asymptotically reduces to zero. For any fixed value of T > 0, the Boltzmann
machine behaves as an irreducible Markov chain tending towards equilibrium. This can be explained as
follows.

A finite Markov chain represents, in general, a sequence o(n) (n = ... -1, 0, +1 ...) probability distributions
over the finite state-space S. This state-space refers to a stochastic system with the state changing in discrete
epochs; and o(n) is the probability distribution of the state of the system in epoch, n such that o(n + 1)
depends only on o(n) and not on previous states. The transition from state s to s2 in the Markov chain is
depicted by a transitional probability Pss2. The Markov chain can be said to have attained an equilibrium, if
the probability of the state-space os(n) remains invariant as Às for all s and n. Às is referred to as the
stationary distribution; and it is irreducible, if the set {Às} has nonzero cardinality.

Writing Pss2 = (giss2 pas2), giss2 is the probability of choosing i, a global choice from N, and is taken to be
uniformly 1/n; whereas pas2 is the probability of making the change once i has been chosen and is determined
locally by the weight at a critical unit where s and s2, being adjacent, differ. The parameter gss2 is the
generating probability and pas2 is the acceptance probability considered earlier. That is, for a Boltzmann
machine Pass2 = 1/[1 + exp(”ss2)], with ”ss2 = (Cs - Cs2)/T. Hence ”s2s = ”ss2 so that pas2s = (1 - pass2)
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In terms of the consensus function, the stationary distribution of a Boltzmann machine can be written as:

where Csmax is the maximum consensus over all states. Annealing refers to T ’ 0 in the stationary distribution
Às. This reduces Às to a uniform distribution over all the maximum consensus states which is the reason for
the Boltzmann machine being capable of performing global optimization.

If the solution of binary output is described probabilistically, the output value oi is set to one with the

probability  regardless of the current state. Further:

where ”Ei is the change in energy identifiable as NETi and T is the pseudo-temperature. Given a current slate i
with energy Ei, then a subsequent state j is generated by applying a small disturbance to transform the current
state into a next state with energy Ej. If the difference (Ej - Ei) = ”Ei is less than or equal to zero, the state j is
accepted as the current state. If ”Ej > 0, the state j is accepted with a probability as given above. This rate of
probability acceptance is also known as the Metropolis criterion. Explicitly, this acceptance criterion
determines whether j is accepted from i with a probability:

where f(i), f(j) are cost-functions (equivalent of energy of a state) in respect to solutions i and j; and Cp
denotes a control parameter (equivalent to the role played by temperature). The Metropolis algorithm
indicated above differs from the Boltzmann machine in that the transition matrix is defined in terms of some
(positive) energy function Es over S. Assuming Es e Es2:
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It should be noted that pss2 ` ps2s. The difference is determined by the intrinsic ordering on {s, s2} induced by
the energy function.

Following the approach due to Akiyama et al. [54], a machine can in general be specified by three system
parameters, namely, a reference activation level, ao; pseudo-temperature, T; and discrete time-step, ”t. Thus,
the system parameter space for a Boltzmann machine is S(ao = 0, T, ”t = 1), with the output being a unit
step-function. The distribution of the output oi is specified by the following moments:

where ¦(x) is the standard cumulative gaussian distribution defined by:

It may be noted that oi being binary, <oi> refers to the probability of oi equal to 1; and the cumulative
gaussian distribution is a sigmoid which matches the probability function of the Boltzmann machine, defined
by Equation (4.3).

As indicated before, the Boltzmann machine is a basic model that enables a solution to a combinational
problem of finding the optimal (the best under constrained circumstances) solution among a “countably
infinite” number of alternative solutions. (Example: The traveling salesman problem*.)

*The traveling salesman problem: A salesman, starting from his headquarters, is to visit each town in a
prescribed list of towns exactly once and return to the headquarters in such a way that the length of his tour is
minimal.

In the Metropolis algorithm (as the Boltzmann’s acceptance rule), if the lowering of the temperature is done
adequately slowly, the network reaches thermal equilibrium at each pseudo-temperature as a result of a large
number of transitions being generated at a given temperature value. This “thermal” equilibrium condition is
decided by Boltzmann distribution, which as indicated earlier refers to the probability of state i with energy Ei
at a pseudo-temperature T. It is given by the following conjecture:

where Z(T) is the partition function defined as Z(T) = £exp[Ej/(kBT)] with the summation over all possible
states. It serves as the normalization constant in Equation (4.13).

4.3.2 McCulloch-Pitts Machine

Since the McCulloch-Pitts model has a binary output with a deterministic decision and instantaneous
activation in time, its machine parameter space can be defined by: Sm (ao = 0, T = 0, ”t = 1). The
corresponding output is a unit step function, assuming a totally deterministic decision.

4.3.3 Hopfield Machine

Contrary to the McCulloch-Pitts model, the Hopfield machine has a graded output with a deterministic
decision but with continuous (monotonic) activation in time. Therefore, its machine parameter is Sm (ao, 0,
”t). If the system gain approaches infinity, then the machine parameter becomes Sm(0, 0, 0). The neuron



model employed in the generalized delta rule* is described by Sm(ao, 0, 1) , since it is a discrete time version
of the Hopfield machine.

*Delta rule (Widrow-Hoff rule): The delta rule is a training algorithm which modifies weights appropriately for
target and actual outputs (of either polarity) and for both continuous and binary inputs and outputs. Symbolically
denoting the correction associated with the ith input xi by ”i, the difference between the target (or desired output)

and the actual output by ´o and a learning rate coefficient by , the delta rule specifies ”i as equal to ( )(
´o)(xi). Further, if the value of ith weight after adjustment is Wi(n + 1), it can be related to the value of ith weight
before adjustment, namely, Wi(n) by the equation Wi(n + 1) = Wi(n) + ”i.

Figure 4.2  Parametric space of the machines
BM: Boltzmann machine; MPM: McCulloch-Pitts machine HM: Hopfield machine (Adapted from [54])

4.3.4 Gaussian Machine

Akiyama et al. [54] proposed a machine representation of a neuron and termed it as a gaussian machine which
has a graded response like the Hopfield machine, and behaves stochastically as the Boltzmann machine. Its
output is influenced by a random noise added to each input and as a result forms a probabilistic distribution.
The relevant machine parameters allow the system to escape from local minima.

The properties of the gaussian machine are derived from the normal distribution of random noise added to the
neural input. The machine parameters are specified by Sm(ao, T, ”t.). The other three machines discussed
earlier are special cases of the Gaussian machine as depicted by the system parameter space shown in Figure
4.2.
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4.4 Simulated Annealing and Energy Function

The concept of equilibrium statistics stems from the principles of statistical physics. A basic assumption
concerning many-particle systems in statistical physics refers to the ergodicity hypothesis in respect to
ensemble averages which determine the average of observed values in the physical system at thermal
equilibrium. Examples of physical quantities which can be attributed to the physical system under such
thermal equilibrium conditions are average energy, energy-spread and entropy. Another consideration at the
thermal equilibrium is Gibbs’ statement that, if the ensemble is stationary(which is the case if equilibrium is
achieved), its density is a function of the energy of the system. Another feature of interest at thermal
equilibrium is that, applying the principle of equal probability, the probability that the system is in a state i
with energy Ei, is given by Gibbs’ or Boltzmann’s distribution indicated earlier. In the annealing procedure,
also detailed earlier, the probabilities of global states are determined by their energy levels. In the search of
global minimum, the stability of a network can be ensured by associating an energy function*which
culminates in a minimum value. Designating this energy function as the Lyapunov function, it can be
represented in a recurrent network as follows:

*The term energy function is derived from a physical analogy to the magnetic system as discussed in Appendix
A.

where E is an artifical network energy function (Lyapunov function), Wij is the weight from the output of
neuron i to the input of neuron j, oj is the output of neuron j, xj is the external input to neuron j, and VTj
represents the threshold of neuron j. The corresponding change in the energy ”E due to a change in the state of
neuron j is given by:
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where ”oj is the change in the output of neuron, j.

The above relation assures that the network energy must either decrease or stay invariant as the system
evolves according to its dynamic rule regardless of the net value being larger or less than the threshold value.
When the net value is equal to VT, the energy remains unchanged. In other words, any change in the state of a
neuron will either reduce the energy or maintain its present value. The continuous decreasing trend of E
should eventually allow it to settle at a minimum value ensuring the stability of the network as discussed
before.

4.5 Cooling Schedules

These refer to a set of parameters that govern the convergence of simulated annealing algorithms. The cooling
schedule specifies a finite sequence of values of the control parameters (Cp) involving the following steps:

•  An intial value  (or equivalently, an initial temperature To) is prescribed.

•  A decrement function indicating the manner in which the value of the control parameter decreases is
specified.

•  The final value of the control parameter is stipulated as per a stop criterion.

A cooling schedule is also in conformity of specifying a finite number of transitions at each value of the
control parameter. This condition equates to the simulated annealing algorithms being realized by generating
homogeneous chains of finite length for a finite sequence of descending values of the control parameter.

A general class of cooling schedule refers to a polynomial-time cooling schedule. It leads to a
polynomial-time execution of the simulated algorithm, but it does not guarantee the deviation in cost between
the final solution obtained by the algorithm and the optimal cost.

The Boltzmann machine follows a simple annealing schedule with a probability of a change in its objective
function, as decided by Equation (4.2).

The corresponding scheduling warrants that the rate of temperature reduction is proportional to the reciprocal
of the logarithm of time to achieve a convergence towards a global minimum. Thus, the cooling rate in a
Boltzmann machine is given by [55]:

where To is the initial (pseudo) temperature and t is the time. The above relation implies almost an impractical
cooling rate, or the Boltzmann machine often takes an infinitely large time to train.

The Cauchy distribution is long tailed which corresponds to increased probability of large step-sizes in the
search procedure for a global minimum. Hence, the Cauchy machine has a reduced training time with a
schedule given by:

The simulated annealing pertinent to a gaussian machine has a hyperbolic scheduling, namely,

where ÄT is the time-constant of the annealing schedule.

The initial value of the control parameter (To), in general, should not be large enough to allow virtually all
transitions to be accepted. This is achieved by having the initial acceptance ratio §o (defined as the ratio of
initial number of accepted transitions to the number of proposed transitions) close to unity. This corresponds
to starting with a small To multiplied by a constant factor greater than 1, until the corresponding value of §o
calculated from generated transitions approaches 1. In metallurgical annealing, this refers to heating up the
solid until all particles are randomly arranged in the liquid phase.

The functional decrement of the control parameter (T) is chosen so that only small changes in control
parameters would result. The final value of the control parameter (T) corresponds to the termination of the
execution of the algorithm when the cost function of the solution obtained in the last trial remains unchanged
for a number of consecutive chains with a Markov structure. The length of the Markov chain is bounded by a



finite value compatible to the small decremental value of the control parameter adopted.

In the network optimization problems, the change in the reference level with time adaptively for the purpose
of a better search is termed as sharpening schedule. That is, sharpening refers to altering the output gain curve
by slowly decreasing the value of the reference activation level (ao) over the time-scale. The candidates for
the sharpening scheme are commonly exponential, inverse-logarithm, or linear expressions. For gaussian
machines, a hyperbolic sharpening schedule of the type:

has been suggested. Here Ao is the initial value of ao and Äao is the time constant of the sharpening schedule.

In general, the major problems that confront the simulated annealing is the convergence speed. For real
applications, in order to guarantee fast convergence, Jeong and Park [56] developed lower bounds of
annealing schedules for Boltzmann and Cauchy machines by mathematically describing the annealing
algorithms via Markov chains. Accordingly, the simulated annealing is defined as a Markov chain consisting
of a transition probability matrix P(k) and an annealing schedule T(k) controlling P for each trial, k.

Previous Table of Contents Next

Products |  Contact Us |  About Us |  Privacy  |  Ad Info  |  Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc. All rights
reserved. Reproduction whole or in part in any form or medium without express written permission of

EarthWeb is prohibited. Read EarthWeb's privacy statement.

http://corpitk.earthweb.com/
http://corpitk.earthweb.com/content/corp.html
http://corpitk.earthweb.com/search/
http://corpitk.earthweb.com/faq/faq.html
http://corpitk.earthweb.com/sitemap.html
http://corpitk.earthweb.com/contactus.html
http://corpitk.earthweb.com/products.html
http://corpitk.earthweb.com/contactus.html
http://corpitk.earthweb.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://corpitk.earthweb.com/
http://corpitk.earthweb.com/agreement.html
http://corpitk.earthweb.com/copyright.html
http://www.earthweb.com/about_us/perm.html
http://www.earthweb.com/about_us/privacy.html


       

  

     

    

   Search Tips

   Advanced Search

    

  

  

Neural Network Modeling: Statistical Mechanics and Cybernetic Perspectives
by P. S. Neelakanta; Dolores DeGroff
CRC Press, CRC Press LLC
ISBN: 0849324882   Pub Date: 07/01/94

Search this book:

 

Previous Table of Contents Next

4.6 Reverse-Cross and Cross Entropy Concepts

In all the network trainings, it can be observed that simulated annealing is a stochastic strategy of searching
the ground state by minimizing the energy or the cooling function. Pertinent to the Boltzmann machine
Ackley et al. [57] projected alternatively a learning theory of minimizing the reversed-cross entropy or the
cross-entropy functions, as briefed below:

Figure 4.3  A multilayered perceptron with hidden layers HL1, ..., HLN

A typical neural net architecture is structured macroscopically as layers or rows of units which are fully
interconnected as depicted in Figure 4.3. Each unit is an information processing element. The first layer is a
fanout of processing elements intended to receive the inputs xi and distribute them to the next layer of units.
The hierarchical architecture permits that each unit in each layer receives the output signal of each of the units
of the row (layer) below it. This continues until the final row which delivers the network’s estimate o2 of the
correct output vector o. Except for the first row which receives the inputs and the final row which produces
the estimate o2, the intermediate rows or layers consist of units which are designated as the hidden layers.

Denoting the probability of the vector state of visible neurons (units) as P2(v±) under the free-running
conditions (with the network having no environmental input), and the corresponding probability determined
by the environment as P(V±), a distance parameter can be specified as an objective function for the purpose
of minimization. Ackley et al. [57] employed reverse cross-entropy (RCE) as defined below to depict this
distance function:
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The machine adjusts its weight Wij to minimize the distance GRCE. That is, it seeks a negative gradient of the
derivative (�GRCE/�Wij) via an estimate of this derivative. In reference to the Boltzmann machine, this
gradient is specified by:

where Pij is the average probability of two units (i and j) both being the on-state when the environment is
clamping the states of the visible neurons, and p2ij is the corresponding probability when the environmental
input is absent and the network is free-running on its own internal mechanism as a cybernetic system. To
minimize GRCE, it is therefore sufficient to observe (or estimate) Pij and p2ij under thermal equilibrium and to
change each weight by an amount proportional to the difference between these two quantities. That is:

Instead of the reverse cross-entropy (RCE), a cross-entropy parameter (GCE) as defined below has also been
advocated by Liou and Lin [58] as an alternative strategy for the aforesaid purposes:

4.7 Activation Rule

In the neural network, the relation between the net input (NETi) and its output value (oj) is written in a simple
form as in Equation (4.5). When the neuron is activated by the input (NETi), the activation value (ai) of the
neuron is altered (with respect to time) by a relation written as:

where Ä is the time-constant of the neuronal activation. By specifying the reference activation level as ao, the
output value oj of the neuron can be determined by the graded response of the neuron. Written in a functional
form:

where F is a monotonic function which limits the output value between upper and lower bounds. It is,
therefore, a squashing function which is S-shaped or sigmoidal. The reference activation level ao is termed as
the gain factor. It is the first system parameter, and the random error en is a noise term whose variance is
dictated by the (pseudo) temperature which can be regarded as the second system parameter.

4.8 Entropy at Equilibrium

Relevant to the combinational optimization problem, the simulated annealing algorithm specified by the
conjecture, namely, the distribution (Equation 4.8), pai refers to a stationary or equilibrium distribution which
guarantees asymptotic convergence towards globally optimal solutions. The corresponding entropy at
equilibrium is defined as:

which is a natural measure of disorder. High entropy corresponds to chaos and low entropy values to order.
Pertinent to the neural net, entropy also measures the degree of optimality. Associated energy of the state i,
namely Ei with an acceptance probability pai has an expected valued <Ei>T which refers to the expected cost
at equilibrium. By general definition through the first moment:

Likewise, the second moment defines the expected square cost at equilibrium. That is:



and a variance of the cost can be specified as:

Considering the neural complex as a large physical ensemble, from the corresponding principles of statistical
thermodynamics, the following relations can be stipulated:

and

These conditions indicate that in simulated annealing, the expected cost and entropy decreases monotonically
— provided equilibrium is reached at each value of the control parameter (T) to their final value, namely,

Eiopt and , respectively.

Further, the entropy function  under limiting cases of T are to be specified as follows:

and

where S and Sopt are the sets of the states and globally optimal states, respectively. (In the combinational
problems S and Sopt denote the sets of solutions and globally optimal solutions, respectively.)

In statistical physics, corresponding to the ground state, So = log (1) = 0 defines the third law of
thermodynamics.

When the annealing algorithm refers to the equilibrium distribution, the probability of finding an optimal
solution (or state) increases monotonically with decreasing T. Further, for each suboptimal solution there
exists a positive value of the pseudo-temperature Ti (or the control parameter), such that for T < Ti the
probability of finding that solution decreases monotonically with decreasing T. That is,
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4.9 Boltzmann Machine as a Connectionist Model

Apart from the neural networks being modeled to represent the neurological fidelity, the adjunct consideration
in the relevant modeling is the depiction of neural computation. Neural computational capability stems
predominantly from the massive connections with variable strengths between the neural (processing) cells.
That is, a neural complex or the neuromorphic network is essentially a connectionist model as defined by
Feldman and Ballard [59]. It is a massively distributed parallel-processing arrangement. Its relevant attributes
can be summarized by the following architectural aspects and activity-related functions:

•  Dense interconnection prevails between neuronal units with variable strengths.

•  Strength of interconnections specifies degree of interaction between the units.

•  The state of the connectionist processing unit has dichotomous values (corresponding to firing or
non-firing states of real neurons). That is, oi � {0, 1}.

•  The neural interaction can be inhibitory or excitatory. The algebraic sign of interconnecting weights
depicts the two conditions.

•  The response that a unit delegates to its neighbor can be specified by a scalar nonlinear function (F)
with appropriate connection strength. That is:

where oi is the response of unit i, Wij is the strength of interconnection and N represents the set of
neighbors of i.

•  Every unit, operates in parallel simultaneously changing its state to the states of its neighbors. The
dynamics of states lead to the units settling at a steady (nonvarying) value. The network then freezes at
a global configuration.

•  The units in the network cooperatively optimize the global entity of the network with the information
drawn from the local environmant.

•  The network information is thus distributed over the network and stored as interconnection weights.

•  The Boltzmann machine (or a connectionist model) has only dichotomous states, oi � {0, 1}. In
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contrast to this, neural modeling has also been done with continuous valued states as in the Hopfield
and Tank [34] model pertinent to neural decision network.

•  In the Boltzmann machine, the response function F is stochastic. (There are other models such as the
perceptron model, where the response function F is regarded as deterministic.)

•  The Boltzmann machine is a symmetrical network. That is, its connections are bidirectional with Wij
= Wji. (Models such as a feed-forward network, however, assume only a unidirectional connections for
the progression of state transitional information.)

•  The Boltzmann machine is adaptable for both supervised and unsupervised training. That is, it can
“learn” by capturing randomness in the stimuli they receive from the environment and adjust their
weights accordingly (unsupervised learning), or it can also learn from a set of classification flags to
learn to identify the correct output.

•  The Bolzmann machine represents a model of hidden layers of units which are not visible in the
participation of neural processing, and these hidden units capture the higher order disturbances in the
learning process.

Construction of a Boltzmann machine relies on the following considerations as spelled out by Aarts and Korst
[52]: “The strength of a connection in a Boltzmann machine can be considered as a quantitative measure of
the desirability that the units joined by the connection are both ‘on’. The units in a Boltzmann machine try to
reach a maximal consensus about their individual states, subject to the desirabilities expressed by the
connection strengths. To adjust the states of the individual units to the states of their neighbors, a probabilistic
state transition mechanism is used which is governed by the simulated annealing algorithm.”
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4.10 Pseudo-Thermodynamic Perspectives of Learning Process

Neural models represent general purpose learning systems that begin with no initial object-oriented
knowledge. In such models, learning refers to incremental changes of probability that neurons are activated.

Boltzmann machines as mentioned before have two classes of learning capabilities. They can learn from
observations, without supervision. That is, the machine captures the irregularities in its environment and
adjusts its internal representation accordingly. Alternatively, the machines can learn from examples and
counterexamples of one or more concepts and induce a general description of these concepts. This is also
known as supervised learning. The machine that follows unsupervised learning is useful as content
addressable memory. The learning capabilities of Boltzmann machines are typical of connectionist network
models.

Invariably some of the units in a Boltzmann machine are clamped to a specific state as dictated by the
environment. This leaves the machine to adjust the states of the remaining units so as to generate an output
that corresponds to the most probable interpretation of the incoming stimuli. By this, the network acquires
most probable environmental configuration, with some of its environmental units fixed or clamped.

The environment manifests itself as a certain probability distribution by interacting with the Boltzmann
machine via a set vu4 N of visible (external units) while the remaining units hu 4 N are hidden and are purely
internal. The visible units are clamped to states by samples of environment imposed on them. Under this
connection, a learning algorithm permits the determination of appropriate connection weights so that the
hidden units can change, repeated by over a number of learning cycles in which the weights are adjusted. The
degree of such adjustment is determined by the behavior of the machine under the clamped mode as compared
to the normal (free-running) mode.

Pertinent to the clamped mode, Livesey [60] observes that such a mode is not an intrinsic characteristic of the
learning algorithm associated with the Boltzmann machine, but rather a condition stipulated by the transition
probabilities of Markov chain depicting the state-transitional stochastics of these machines. The relevant
condition refers to the underlying time reversibility under equilibrium conditions. A machine in equilibrium is
time reversible when it is not possible to tell from its state which way time is flowing. In other words, the
chain and its time reversal are identical. This happens under a detailed balanced condition given by:
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The essence of machine representation of a neural network embodies a training procedure with an algorithm
which compares (for a given set of network inputs) the output set with a desired (or a target) set, and
computes the error or the difference [61]. For a given set of synaptic coupling {Wij}, denoting the training
error in terms of the energy function by ¾({Wij}), this ensemble can be specified via the equilibrium
statistical mechanics concept by Gibbs’ ensemble with the distribution function specified by exp[ - (
¾s({Wij})/kBT], where kBT represents the (pseudo) Boltzmann energy.

Here x({Wij}) is pertinent to a subsystem which is taken as the representative of the total collection of
subsystems of the total neuronal ensemble. Considering the partitioning of the weights among the energy
states given by x({Wij}), the following Gibbs’ relation can be written in terms of a partition function:

where po is existing probability distribution imposing normalization constraints on the system parameters, pM
({Wij}) is the Gibbs’ distribution pertinent to the M associated trainings (or a set of M training examples), and
ZM is the partition function defined as:

where ² = 1/kBT, and N is the total number of couplings. The average training error per example (etr) can be
specified by the (pseudo) thermodynamic (Gibbs’) free - energy, G defined as:

where <...>En is the average over the ensemble of the training examples. That is:

where <...>T is the thermal average. The above relation implies that the free-energy (and hence the training
error) are functions of the relative number of training examples and the Boltzmann energy.

From the free-energy relation, the corresponding thermodynamic entropy can be deduced via conventional
Legendre transformation, given by:

This entropy function is a measure of the deviation of PM from the initial distribution Po. At the onset of

training, (M/N) = 0. Therefore . As the training proceeds,  becomes negative. The entropy measure
thus describes the evolution or the distribution in the system parameter space.

Akin to the molal free-energy (or the chemical potential*) of thermodynamics, the corresponding factor
associated with the relative number of training examples is given by:

*Chemical potential: It is the rate of change of free-energy per mole (in a chemical system) at constant volume
and temperature.



where  is the one-step entropy defined as:

The one-step entropy is a measure (specified by a small or a large negative number) to describe qualitatively
the last learning step resulting in a small or large contraction of the relevant subspace volume respectively.
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4.11 Learning from Examples Generated by a Perceptron

The perceptron, in general, refers to a system with an input-output relation dictated by a nonlinear squashing
function. The learning rule of a test perceptron corresponds to a target to be learned as in a reference
perceptron with {x2j} inputs, {W2ij} coupling weights resulting in the output o2j. The corresponding sets for
the test perceptron are taken as {xj} and {Wij}. Because xj and x2j are not identical, a correlation coefficient
can be specified in terms of a joint gaussian distribution of the variates as indicated below:

where Ãx
2 is the variance of the inputs.

Since the output is binary, the associated error measure eo(x) is also binary. That is, eo(x) = 0 or 1, if x < 0, or
x > 0, respectively. The corresponding total training error is therefore:

which permits an explicit determination of the partition function (ZM) defined by Equation (4.37).

The ensemble average of the partition function can also be represented in terms of an average of a logarithm,
converted to that of a power as follows:

In the case of completely random examples, <Zn
M>En bifurcates into two parts, one being a power of the

connectivity N and the other that of the number M of the training examples. Further, in reference to the
correlation coefficients (Equation 4.43), the averaging process leads to two quantities which characterize the
ensemble of interconnected cells. They are:
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1.  Overlap parameter (Ra) pertinent to the reference perceptron defined as:

2.  Edwards-Anderson parameter which specifies the overlap between replicas given by:

where ´ab is the Kronecker delta.

In the dynamics of neural network training, the basic problem is to find the weighting parameters Wij for

which a set of configuration (or patterns) {¾i
¼} (i = 1, 2, 3, ..., N; ¼ = 1, 2, 3, ..., p) are stationary (fixed)

points of the dynamics. There are two lines of approach to this problem. In the first approach, the Wij are
given a specific storage (or memory) prescription. The so-called Hebb’s rule which is the basis of Hopfield’s
model essentially follows this approach. Another example of this strategy is the pseudo-inverse rule due to
Kohonen which has been applied to Hopfield’s net by Personnaz et al. [62] and studied analytically by Kanter
and Sompolinsky [63]. Essentially, Wij are assumed as symmetric (that is, Wij = Wji) in these cases.

In the event of a mixed population of symmetric and asymmetric weights, asymmetry parameters ·s can be
defined as follows:

or equivalently:

where Wsy,asy = 1/2(Wij ± Wji) are the symmetric and asymmetric components of Wij, respectively. When ·s
= 1, the matrix is fully symmetric and when ·s = -1, it is fully asymmetric. When ·s = 0, Wij and Wji are fully
correlated on the energy, implying that the symmetric and asymmetric components have equal weights.*

*Another common measure of symmetry is the parameter ks defined by Wij = Wij
sy + ksWij

asy and is related to ·s
by ·s = (1-ks

2)/(1+ks
2).

As mentioned earlier, the network training involves finding a set of stationary points which affirm the
convergence towards the target configuration or pattern. The two entities whose stationary values are relevant
to the above purpose are the overlap parameters, namely, q and R. The stationary values of q and R can be
obtained via replica symmetry ansatz solution (see Appendix C).
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4.12 Learning at Zero Temperature

This refers to a naive training strategy of minimizing the (training) error. It specifies a critical relative number
of learning examples below which training with zero error is possible and beyond which, however, error in
the training process cannot be avoided. The error normally arises from external noise in the examples.
Absence of such noise permits a perfect learning process, and the target rule can be represented by the
reference perceptron. The criticality can therefore be quantified as a function of the overlap parameters R.
Thermodynamically, an excess of the number of learning examples (beyond the critical value) makes the
system unstable.

The entities q and R represent order parameters which vary as a function of the relative number of training
examples for a given generic noise input. The R parameter exhibits a nonmonotonic behavior and is the
precursor of criticality. When R ’1, the training approaches the pure reference system, despite of the presence
of noise; or, the system self-regulates as a cybernetic complex and organizes itself so that the learning process
filters out the external noise. The convergence of R towards 1 obviously depends on the amount of noise
introduced. The smaller the external noise is the faster the convergence is. Criticality is the limit of capacity
for error-free learning in the sense that the critical number of training examples brings about a singularity in
the learning process, as it is indicated by the behavior of the training error and the different examples. Further,
the criticality marks the onset of replica symmetry breaking, implying that the parameter space of interaction
with minimal training error breaks up into disconnected subsets.

The naive learning strategy discussed earlier minimizes the training error for a given number of examples. It
also results in a generalization error. That is, in characterizing the achievement in learning via R
(representing a deviation from the reference perceptron), the probability that the trained perceptron makes an
error in predicting a noise output of the reference perceptron is also implicitly assessed; and an error on an
example independent of the training set, namely:

could be generalized. (Here, the prime refers to the new example.)

Explicit evaluation of this generalization error indicates that it decreases monotonically with R. In other
words, a maximal overlap of R is equivalent to minimizing the generalization error. Hence the algebraic
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consequence of R ’ 0 translates into algebraic decay of the generalization error, and such a decay is slower if
the examples contain external noise. However, by including the thermal noise into the learning process, the
system acquires a new degree of freedom and allows the minimization of the generalization error as a function
of temperature. Therefore, the naive learning method (with T ’ 0) is not an optimal one. In terms of the
(functional) number of examples (M/N), the effect of introducing thermal synaptic noise, with a noise
parameter (¦N), a threshold curve M/N (¦N) exists such that for M/N <(>) M/N(¦N) the optimum training
temperature is zero (positive).

4.13 Concluding Remarks

In summary, the following could be considered as the set of (pseudo) thermodynamic concepts involved in
neural network modeling:

•  Thermodynamics of learning machines.

•  Probability distributions of neural state transitional energy states.

•  Cooling schedules, annealing, and cooling rate.

•  Boltzmann energy and Boltzmann temperature.

•  Reverse-cross and cross entropy concepts.

•  System (state) parameters.

•  Equilibrium statistics.

•  Ensemble of energy functions (Gibbs’ ensemble).

•  Partition function concepts.

•  Gibbs’ free-energy function.

•  Entropy.

•  Overlaps of replicas.

•  Replica symmetry ansatz.

•  Order parameters.

•  Criticality parameter.

•  Replica symmetry breaking.

•  Concept of zero temperature.

Evolution of the aforesaid concepts of (pseudo) thermodynamics and principles of statistical physics as
applied to neural activity can be summarized by considering the chronological contributions from the genesis
of the topic to its present state as stated below. A descriptive portrayal of these contributions is presented in
the next chapter.

•  McCulloch and Pitts (1943) described the neuron as a binary, all-or-none element and showed the
ability of such elements to perform logical computations [7].

•  Gabor (1946) proposed a strategy of finding solutions to problems of sensory perception through
quantum mechanic concepts [10].

•  Wiener (1948) suggested the flexibility of describing the global properties of materials as well as
“rich and complicated” systems via principles of statistical mechanics [9].

•  Hebb (1949) developed a notion that a percept or a concept can be represented in the brain by a
cell-assembly with the suggestion that the process of learning is the modification of synaptic efficacies
[19].

•  Cragg and Temperley (1954) indicated an analogy between the persistent activity in the neural
network and the collective states of coupled magnetic dipoles [32].

•  Caianiello (1961) built the neural statistical theory on the basis of statistical mechanics concepts and
pondered over Hebb’s learning theory [64].

•  Griffith (1966) posed a criticism that the Hamiltonian of the neural assembly is totally unlike the
ferromagnetic Hamiltonian [13].

•  Cowan (1968) described the statistical mechanics of nervous nets [65].

•  Bergstrom and Nevalinna (1972) described a neural system by its total neural energy and its entropy
distribution [49].

•  Little (1974) elucidated the analogy between noise and (pseudo) temperature in a neural assembly
thereby paving “half the way towards thermodynamics” [33].



•  Amari (1974) proposed a method of statistical neurodynamics [66].

•  Thompson and Gibson (1981) advocated a general definition of long range order pertinent to the
proliferation of the neuronal state transtitional process [37].

•  Ingber (1982,1983) studied the statistical mechanics of neurocortical interactions and developed
dynamics of synaptic modifications in neural networks [67,68].

•  Hopfield (1982,1984) completed the linkage between thermodynamics vis-a-vis spin glass in terms of
models of content-addressable memory through the concepts of entropy and provided an insight into
the energy functional concept [31,36].

•  Hinton, Sejnowski, and Ackley (1984) developed the Boltzmann machine concept representing
“constraint satisfaction networks that learn” [51].

•  Peretto (1984) searched for an extensive quantity to depict the Hopfield-type networks and
constructed formulations via stochastic units which depict McCulloch and Pitts weighted-sum
computational neurons but with the associated dynamics making “mistakes” with a certain probability
analogous to the temperature in statistical mechanics [38].

•  Amit, Gutfreund, and Sompolinsky (1985) developed pertinent studies yielding results on a class of
stochastic network models such as Hopfield’s net being amenable to exact treatment [69].

•  Toulouse, Dehaene, and Changeux (1986) considered a spin-glass model of learning by selection in a
neural network [70].

•  Rumelhart, Hinton and Willliams (1986) (re)discovered back-propagation algorithm to match the
adjustment of weights connecting units in successive layers of multilayer perceptions [71].

•  Gardner (1987) explored systematically the space of couplings through the principles of statistical
mechanics with a consequence of such strategies being applied exhaustively to neural networks [72].

•  Szu and Hartley (1987) adopted the principles of thermodynamic annealing to achieve energy
minimum criterion, and proposed the Cauchy machine representation of neural network [53].

•  1989: The unifying concepts of neural networks and spin glasses were considered in the collection of
papers presented in the Stat. Phys. 17 workshop [73].

•  Aarts and Korst (1989) elaborated the stochastical approach to combinational optimization and neural
computing [52].

•  Akiyama, Yamashita, Kajiura and Aiso (1990) formalized gaussian machine representation of
neuronal activity with graded response like the Hopfield machine and stochastical characteristics akin
to the Boltzmann machine [54].
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Chapter 5
The Physics of Neural Activity: A Statistical
Mechanics Perspective

5.1 Introduction

On neural activity, several of the earliest theoretical papers appearing from the 1940’s into the 1970’s [74]
dealt mostly with random network models of interconnected cells. Typically considered were the dynamics of
the overall activity level of neurocellular random networks and the relation of dynamic characteristics to the
underlying connections. Specifically, stochastic system theory which characterizes the active variable of
indeterminate probabilistic systems (in terms of a probability density function, correlations, entropy, and the
like) were applied to the neurons in order to elucidate the inferences concerning interconnections and
emergent properties of neural networks on the basis of activity correlations (cooperative processes) among the
constituting units.

A proposal to describe the global electrical activity of the neural complex in terms of theoretical concepts
similar to those used to describe the global properties of materials in statistical mechanics was suggested in
1948 by Norbert Weiner in his classical book Cybernetics [9]—the study of self-regulating systems. The
underlying basis for his proposed analogy is founded on the following considerations: The theoretical science
of statistical mechanics makes inferences concerning global properties and constraints based on the aggregate
of the physical rules describing the individual molecular interactions. The vast number of neurons which
interact with each other represent analogously the interacting molecules, and hence the pertinent similarity
permits an inferential strategy on the global properties of the neurons, as is possible with the molecular
system. “Intuitively Wiener must have realized that statistical mechanics is ideally suited to analyze collective
phenomena in networks consisting of very many relatively simple constituents.”

Once the aforesaid analogy was recognized, the various forms of theorizing the interactions (or the so-called
cooperative processes), namely, the Lagrangian, the Hamiltonian, the total energy, the action, and the
entropy as defined in classical mechanics and in the thermodynamics of solids and fluids also were extended
to the neural activity. Hence, the essential consideration that the systems tend towards the extrema of the
aforesaid functions (for example, minimization of total energy or maximization of entropy), as adopted
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commonly in statistical mechanics, indicates the application of similar approaches to the neural system. This
also permits the evaluation of the global behavior of #147;rich and complicated#148; systems (such as the
neural assembly) by a single global function advocated by a single principle.

The organization of neurons is a collective enterprise in which the neural activity refers to a cooperative
venture involving each neuron interacting with many of its neighbors with the culmination of such activities
in a (dichotomous) all-or-none response to the incoming stimuli. In this cooperative endeavor, the interaction
between the neurons is mediated by the (all-or-nothing) impulses crossing the synapses of a closely linked
cellular anatomy randomly, constituting a collective movement of a stochastical activity.

Essentially, in the neuronal conduction process as discussed in the earlier chapters, a cellular neuron (in a
large assembly of similar units) is activated by the flow of chemicals across synaptic junctions from the axon
leading from other neurons; and the resulting output response can be viewed as either excitatory or inhibitory
postsynaptic potential. If the gathered potentials from all the incoming synapses exceed a threshold value, the
neuron fires and this excitatory process sets an action potential to propagate down one of the output axons
(which eventually communicates with other neurons, via synaptic tributory branches). After firing, the neuron
returns to its quiescent (resting) potential and is sustained in that condition over a refractory period (of about
several milliseconds) before it can be excited again. The firing pattern of the neurons is governed by the
topology of interconnected neurons and the collective behavior of the neuronal activity.

The threshold based input-output response of a neuron was represented as a simple, two-state logical system
— active and inactive — by McCulloch and Pitts in 1943 [7]. As indicated in the previous chapters, this is
known as the formal or logical or mathematical neuron model. Denoting the state of a neuron (at time t) by a
variable Si which can have two values: Si = +1 if it is active and Si = -1 if it is inactive, and referring to the

strength of synaptic connection between two arbitrary cells i and j as Wij the sum total of the stimuli at the ith

neuron from all the others is given by £jWijSj. This is the postsynaptic potential, or in physical terms a local

field hi. Setting the threshold for the ith neuron as TH
i, then Si = +1 if £ WijSj > TH

i and Si = -1 if £WijSj <

TH
i. Together with an external bias ¸i added to the summed up stimuli at the ith neuron, the neuronal activity

can be specified by a single relation namely, Si (£WijSj - ¸i) > 0; and a corresponding Hamiltonian for the
neural complex can be written as:
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with {Si} denoting the state of the whole system at a given instant of time; and both Si and Sj are the elements
of the same set {Si}.

The aforesaid mathematical depiction of simple neural activity thus presents a close analogy between the
neural network and magnetic spin model(s). That is, the neurons can be regarded as analogs of the Ising spins
(see Appendix A) and the strengths of the synaptic connections are analogous to the strengths of the exchange
interactions in spin systems. The concept of interaction physics as applied to a system of atomic magnetic
dipoles or spins refers to the phenomenon namely, atoms interact with each other by inducing a magnetic field
at the location of other (neighboring) atoms which interact with its spin. The total local magnetic field at the
location of an atom i is equal to £ijWijSj where Wij is the dipole force, and diagonal term j = i (self-energy) is
not included in the sum. Further, Newton’s third law, namely, action equates to reaction, ensures the coupling
strengths Wij being symmetric. That is, Wij = Wji. If all Wij are positive, the material is ferromagnetic; if
there is a regular change of sign between neighboring atoms, it refers to antiferromagnetism. If the signs and
absolute values of the Wij are distributed randomly, the material is called spin-glass. The ferromagnetic case
corresponds to a neural network that has stored a single pattern. The network which has been loaded with a
large number of randomly composed patterns resembles a spin glass.

Synaptic activity in neuronal systems being excitatory or inhibitory, the competition between these two types
of interactions can be considered as similar to the competition between the ferromagnetic and
antiferromagnetic exchange interactions in spin-glass systems. That is, the dichotomous “all-or-none”
variables of neurons correspond to Si = ±1 Ising spins where i labels the neurons, and range between I and N
determines the size of the network. Further, the threshold condition stipulated for the neural complex can be
regarded as the analog of the condition for metastability against single-spin flips in the Ising model (except
that in a neural complex the symmetry relation, namely, Wij = Wji, does not necessarily hold). The evolution
of the analogical considerations between interconnected neurons and the magnetic spins is discussed in detail
in the following sections.

5.2 Cragg and Temperley Model

In view of the above analogical considerations between neurons and magnetic spins, it appears that the
feasibility of applying quantum theory mathematics to neurobiology was implicitly portrayed by Gabor [10]
as early as in 1946 even before Weiner’s [9] suggestion on cybernetic aspects of biological neurons. As
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indicated by Licklider [75], “the analogy … [to] the position-momentum and energy-time problems that led
Heisenberg in 1927 to state his uncertainty principle … has led Gabor to suggest that one may find the
solution [to the problems of sensory processing] in quantum mechanics.”

In 1954, Cragg and Temperley [32] were perhaps the first to elaborate and examine qualitatively the possible
analogy between the organization of neurons and the kind of interaction among atoms which leads to the
cooperative processes in physics. That is, the purported analogy stems from the fact that large assemblies of
atoms which interact with each other correspond to the collective neural assembly exhibiting cooperative
activities through interconnections.

As explained before, in the case of an assembly of atoms, there is an explicit degree of interaction manifesting
as the phenomenon of ferromagnetism; and such an interaction between atomic magnets keeps them lined up
(polarized) below a specific temperature (known as the Curie point). (Above this temperature, the increase in
thermal agitation would, however, throw the atomic magnets out of alignment; or the material would abruptly
cease to be ferromagnetic).
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The membrane potential of each neuron due to the interconnected configuration with the other cells could
likewise be altered as a result of changes in membrane potential of any or all of the neighboring neurons. The
closely packed neurons, as observed by Cragg and Temperley, hence permit the application of the theory of
cooperative processes in which the cells are at two states of energy levels; and the interaction between the
cells introduces a correlation between the states occupied by them. The whole assembly has a fixed amount of
energy which is conserved but with no restriction to change from one configuration to the other.

The interaction across the whole assembly also permits a proliferation of state changes through all the
possible neuronal configurations. Each configuration, however, has a probability of occurrence; and hence the
average properties of the whole assembly refer to the weighted averaging over all the possible configurations.

In the mediating process by all-or-nothing impulses as mentioned before, the pertinent synaptic interaction
could be either excitatory (hypopolarized) or inhibitory (hyperpolarized) interaction perceived as two
different directional (ionic) current flows across the cellular membrane. Suppose the excitatory and inhibitory
interactions are exactly balanced. Then the overall effect is a null interaction. If, on the other hand, the
inhibitory process dominates, the situation is analogous to antiferromagnetism which arises whenever the
atomic interaction tends to set the neighboring atomic magnets in opposite directions. Then, on a macroscopic
scale no detectable spontaneous magnetism would prevail. In a neurological analogy, this corresponds to a
zero potential difference across the cellular domains.

It has been observed in neurophysiological studies that the hyperpolarization (inhibitory) process is relatively
less prominent than the excitatory process; and the collective neuronal process would occur even due to an
asymmetry of the order 1002:1000 in favor of the excitatory interactions.

Cragg and Temperley hypothesized that a (large) set of M neurons analogously corresponds to a set of M
atoms, each having spins ±1/2. A neuron is regarded as having two (dichotomous) states distinguished by the
presence (all) or absence (none) of an action potential which may be correlated with the two independent
states possible for an atom in a state having spin 1/2 with no further degeneracy* due to any other factors.

* Here degeneracy refers to several states having the same energy levels. It is quantified as follows: A
microcanonical system (in which all energies in the sum of the states are equal) has a partition function Z =
£vexp(-²Ev) = MFexp(-²U) where MF is called the degeneracy or spectral multiplicity of the energy level and U is
the average energy of the system. The partition function which essentially controls the average energy by the
relation U = -�(ln F)/�² can be written as Z = M Fexp(-²U).
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5.3 Concerns of Griffith

Almost a decade later, the qualitative analogy presented by Cragg and Temperley received a sharp criticism
from Griffith [13,14] who observed that Cragg and Temperley had not defined the relation to ferromagnetic
material in sufficient detail for one to know whether the analogies to macroscopic magnetic behavior should
actually hold in the neural system. In the pertinent study, the neural assembly representing an aggregate of M
cells with the dichotomous state of activity has 2M possible different states which could be identified by S =
1, …, 2M associated with an M-dimensional hypercube; and Griffith observed that a superficial analogy here
with the quantum statistical mechanics situation corresponds to a set of M subsystems, each having two
possible quantum states as, for example, a set of M atoms each having a spin 1/2 (with no additional
degeneracy due to any other possible contributing factors).

Each of the 2M states has a definite successor in time so that the progress of the state-transitional process (or
the neuronal wave motion) can be considered as a sequence i2 = z(i1) ’ i3 = z(i1) ’ ... and so on.

Regarding this sequence, Griffith pointed out that in the terminal cycle of the state-transitional process, there
are three possible situations, namely, a state of equilibrium with a probability distribution Á(S0); and the other
two are dichotomous states, identified as S1 Ò + SU and SU Ò - SL with the statistics depicted by the
probability distributions Á(S1) and Á(S2), respectively.

In computing the number of states which end up close to the equilibrium at the terminal cycle, Griffith
indicated the following fundamental difference between the neural and the quantum situation: From the
quantum mechanics point of view, the state-transitional probabilities (due to an underlying barrier potential
Æ) between two states S1 and S2 with probabilities Á1,2 (and corresponding wave functions ¨1,2) specified
with reference to the equilibrium state, namely, S0 (with Á0 Ò ¨0) are equal in both directions. This is because
they are proportional, respectively, to the two sides of the equation given by:

The above relation is valid inasmuch as Æ is Hermitian.* In the case of neural dynamics, however, Griffith
observed that the possibilities of i2 = z(i1) and i1 = z(i2) are rather remote. That is, there would be no
microscopic reversibility. There could only be a natural tendency for the microscopic parameter Á1,2 to move
near to Áo and “there would not seem to be any very obvious reason for the successor function z to show any
particular symmetry.”

*If A is an m × n matrix, A = [aij](mn), A is Hermitian if A = A*, where A* [bij](nm), with bij =  (the notation

 denotes the complex conjugate of the number a)
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In essence, Griffith’s objection to symmetry in the synaptic weight space has stemmed from his
nonconcurrence with the theory proposed by Cragg and Temperley to consider the neural networks as
aggregates of interacting spins (as in ferromagnetic materials). In enunciating a correspondence between the
neural networks and magnetic spin systems, as done by Cragg and Temperley, it was Griffith’s opinion that
the Hamiltonian of the neural assembly “is totally unlike a ferromagnetic Hamiltonian ... the (neural)
Hamiltonian has the undesirable features of being intractably complicated and also non-hermitian. ... [hence]
the original analogy [between neural network and magnetic spin system] is invalid. ... This appears to reduce
considerably the practical value of any such analogy.”

Notwithstanding the fact that the spin-glass analogy extended to neuronal activity was regarded by Griffith as
having no “practical value”, a number of studies have emerged in the last two decades either to justify the
analogy or to use the relevant parallelism between the spin-glass theory and neural dynamics in artificial
neural networks. Such contributions have stemmed from cohesive considerations related to statistical physics,
neurobiology, cognitive and computer sciences, and relevant topics which cover the general aspects of
time-dependent problems, coding and retrieval considerations, hierarchical organization of neural systems,
biological motivations in modeling neural networks analogous to spin glasses, and other related problems
have been developed. The analogy of the neural complex with spin systems had become an important topic of
interest due to the advances made in understanding the thermodynamic properties of disordered systems of
spins, the so-called spin glasses over the last scores of years. When the pertinent results are applied to neural
networks, the deteministic evolution law of updating the network output is replaced by a stochastic law where
the state variable of the cell (at a new instant of time) is assigned according to a probabilistic function
depending on the intensity of the synaptic input. This probabilistic function is dictated by the
pseudo-temperature concepts outlined in Chapter 4. The stochastical evolution law pertains to the features of
real neurons wherein spontaneous firing without external excitation may be encountered leading to a
persistent noise level in the network.

Among the existing studies, more basic considerations into the one-to-one analogy of spin-glass theory and
neuronal activity were considered exclusively in detail by Little [33] and by a number of others, a
chronological summary of which is presented in the following sections.

5.4 Little’s Model

Subsequent to Griffith’s verdict on the spin-glass model of the neural complex, Little in 1974 [33]
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demonstrated the existence of persistent states of firing patterns in a neural network when a certain transfer
matrix has approximately degenerate maximum eigenvalues.* He demonstrated a direct analogy of the
persistence in neuronal firing patterns (considered in discrete time-steps) to the long-range spatial order in an
Ising spin crystal system; and the order-disorder situations in the crystal lattice are dictated by the
thermodynamic considerations specified by the system temperature T. The ordered phase of the spin system
occurs below a critical temperature (TC), well known as the Curie point. Analogously, a factor (²)
representing the temperature of the neural network is assumed in Little’s model for the transfer matrix that
depicts the persistent states. The approach envisaged by Little can be summarized as follows.

*A matrix which has no two eigenvalues equal and which has, therefore, just as many distinct eigenvalues as its
dimension is said to be nondegenerate. That is, if more than one eigenvector has the same eigenvalue, the matrix
is degenerate.
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In proposing the analogy between a network of neurons and the statistical mechanics-based Ising spin system,
Little considered that the temporal development of the network (in discrete time-steps) corresponds to a
progression across one dimension in the Ising lattice. In the Ising model as indicated earlier, the spin Si at
each lattice site i can take only two different orientations, up and down, denoted by Si = +1 (up) and Si = -1
(down). The analogy to a neural network is realized by identifying each spin with a neuron and associating the
upward orientation Si = +1 with the active state I and the downward orientation Si = -1 with the resting state
0. Further, he suggested that certain networks of neurons could undergo a transition from a disordered state to
an ordered state analogous to the Ising-lattice phase transition. Since this implies temporal correlations, he
pointed out that these ordered states might be associated with memory, as well.*

*The memory, in general, can be classified on the basis of three time scales, namely:
Short-term memory: This is an image-like memory lasting from a fraction of a second to seconds. In reference to
the neuronal assembly, it depicts to a specific firing pattern or a cyclic group of patterns persisting in the active
states over this time period after an excitation by a strong stimulus (which will override any internal firing trend
in the network, forcing it to have a specific pattern or a set of patterns. Such a stimulus would facilitate
enhancement of certain neurocortical parameters associated with firing).
Intermediate memory: This could last up to hours during which time imprinting into long-term memory can be
affected by drugs or electric shock, etc. The synaptic parameters facilitated still may cause the reexcitation of a
pattern in the network.
Long-term memory: This refers to an almost permanent memory depicting plastic or permanent changes in
synaptic strength and/or growth of new synapses, but still the facilitated parameters may enable pattern
reexcitation.

Little’s model is a slightly more complex description of the logical or formal neuron due to McCulloch and
Pitts [7]. It accounts for the chemical transmission at synapses. Its model parameters are the synaptic
potentials, the dichotomous thresholds, and a quantity ² which represents the net effect on neural firing
behavior of variability in synaptic transmission. In Little’s model, the probability of firing ranges from 0 to 1
and is a function of the difference between the total membrane potential and the threshold. Further, the
probability of each neuronal firing is such that the time evolution of a network of Little’s neurons is regarded
as a Markov process.

To elaborate his model, Little considered an isolated neural network. He analyzed the state of the system
pictured in terms of the neurons being active or silent at a given time and looked at the evolution of such a
state in discrete time-steps Ä greater than the refractory period (ÄR) for long periods (greater than 100 Ä),
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searching for correlations of such states. He showed that long-time correlation of the states would occur if a
certain transfer matrix has approximately degenerate maximum eigenvalues. He suggested that these
persistent states are associated with a short-term memory.

Little related the (three-dimensional) isolated system of M neurons quantized in discrete time-steps to the spin
states of a two-dimensional Ising model of M spins with no connections between spins in the same row. The
state of the neural network at an instant of time corresponds to the configuration of spins in a row of the
lattice of the crystal. The state of the neurons after one time step Ä corresponds to the spin configuration in
the next row.

The potential Æij accruing at time t to the ith neuron from its jth synapse due to the firing of the jth neuron at

time (t - Ä) was related by analogy to the energy of spin interactions Æij between the ith and jth spins on
adjacent rows only. (Unlike the Ising problem, the neural connections, however, are not symmetric.) It was
assumed that probability of neuronal firing was given by an expression similar to the partition function of the
spin system. The persistent (in time) states of the neural network were therefore studied in the usual approach
of analyzing long-range (spatial) order in the spin systems.

A suitable product of the probabilities for firing or not firing will constitute the transition matrix elements for
the neuronal state configurations at successive time intervals. As is well known in Ising model calculations,
degeneracy of the maximum eigenvalues of the transition matrix is associated with condensation of the spin
system below the Curie point temperature and corresponds to a new phase and long-range order. Hence, a
factor (²) representing the (pseudo) temperature of the neural network appears inevitably in the transition
matrix of Little’s model.

Considering an isolated network or ganglion of M neurons, the potential of a neuron is determined effectively
by the integrated effects of all excitatory postsynaptic potentials as well as inhibitory postsynaptic potentials
received during a period of summation (which is in the order of a few milliseconds). The neurons are assumed
to fire at intervals of Ä which is the order of the refractory period ÄR, also a few milliseconds in duration.
Conduction times between neurons are taken to be small. At each time interval, the neurons are assumed to
start with a clear slate (each neuron’s potential is reset to its resting value). This corresponds to a first-order
markovian process. All properties of the synaptic junctions are assumed to be constant over the time scales of
interest (implying an adiabatic hypothesis).
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Using the terminology of a quantum mechanical spin system, the state of the brain (as determined by the set
of neurons that have fired most recently and those that have not) is the configuration represented by ¨ at the
(discrete) time t.

Si = +SU( = +1), if the ith neuron fires at time t or Si = -SL ( = -1) and if it is silent corresponding to the up

and down states of a spin system.* Let Æij be the postsynaptic potential of the ith neuron due to the firing of

the jth neuron. Thus the total potential of the ith neuron is given by £M
j=1 ¦ij (Sj + 1)/2. If the total potential

exceeds a threshold value ÆpBi (the barrier potential, possibly independent of i), the neuron will probably
fire; and the probability of firing is assumed by Little, in analogy with the spin system, to be:

*For a particular configuration of spins, say {S1, S2, …}, Si = +SU (or +1) refers to the spin being up; and,
when Si = -SL (or -1), the spin is labeled as down.

for time t’ = (t + Ä).

The temperature factor ² = 1/kBT in the spin system (with kB denoting the [pseudo] Boltzmann constant) is
related to the uncertainty in the firing of the neuron. The probability of not firing is 1- Ái(+SU). Thus, the
probability of obtaining at time (t + Ä) the state ¨’ = |S1’S2’ … SM’>, given the state ¨’ = |S1’S2’ … SM’>,
…, SM> at one unit of time Ä preceding it, is given by:
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where ¦(Sj) = £M
j=1 [¦ij (Sj + 1)/2] - ÆpBi.

It may be noted that this expression is very similar to that occurring in the study of propagation of order in
crystals with rows of atomic spins. Further, the interaction is between spins with dashed indices and
undashed indices, that is, for spins in adjacent rows and not in the same row (or different time steps in the
neural network). Long-range order exists in the crystal whenever there is a correlation between distant
rows. Ferromagnetism sets in when long range order gets established below the Curie temperature of the
spin system.* There are 2M possible spin states as specified by Equation (5.3); and likewise 2M × 2M matrix
elements as specified by Equation (5.5) which constitute a 2M × 2M transfer matrix TM. This long range
order is associated with the degeneracy of the maximum eigenvalue of TM. In the neural problem, the firing
pattern of the neuron at time t corresponds to the up-down state of spin in a row and the time steps are the
different rows of the crystal problem. Since the neuronal Æij is not equal to Æji, the matrix TM from
Equation (5.5) is not symmetric as in the spin problem and thus cannot always be diagonalized. This
problem can, however, be handled in terms of principal vectors rather than eigenvector expansions in the
spin system without any loss of generality.

*A crystal undergoes a phase transition from the paramagnetic state to the ferromagnetic state at a sharply
defined temperature (Curie point). At this transition temperature, the properties of the matrix change so that
the ferromagnetic state information contained in the first row of the crystal propagates throughout the crystal.
In a neural network, this represents analogously the capability of the network to sustain a persistent firing
pattern.

Let ¨(±i) represent the 2M possible states Equation (53). Then the probability of obtaining state ¨(±’) having
started with ¨(±) (m time intervals [Ä] earlier) can be written in terms of the transfer matrix of Equation
(5.5) as:

As is familiar in quantum mechanics, ¨(±) can be expressed in terms of the 2M (orthonormal) eigenvectors

 (with eigenvalues »r) of the operator TM. Each  has 2M components, one for each configuration ±:

Hence

Little’s approach is concerned with the probability “(±1) of finding a particular state ±1 (after in time-steps)
starting with an arbitrary initial state. Analogous to the method of using cyclic boundary conditions in the
spin problem (in order to simplify derivations, yet with no loss of generality), it is assumed that the neural
system returns to the initial conditions after Mo (>>m) steps. Hence, it follows that:

(which is independent of m). Now, with the condition that the maximum eigenvalue »max is nondegenerate,
Equation (5.9) reduces to:



Hence, it follows that the probability of obtaining the state ±2 after  time steps, given ±1 after m steps, is
given by:
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indicating no correlation. However, if the maximum eigenvalue »max is degenerate, the factorization of “(±1,
±2) is not possible; and there will be correlation in time in the neuronal-firing behavior. This type of
degeneracy occurs in the spin system for some regions of a ² - (Æij - ÆpBi) plane and refers to the transition
from the paramagnetic to the ferromagnetic phase. Relevant to the neural complex, Little suggests that such
time ordering is related to short-term memory. Since time correlations of the order less than or equal to a
second are of interest in the neural dynamics, a practical degeneracy will result if the two largest »’s are
degenerate to ~1 %.

In the above treatment, the parameter ² assumed is arbitrary. However, this ² could represent all the spread in
the uncertainty of the firing of the neuron. This has been demonstrated by Shaw and Vasudevan [76] who
suggested that the ad hoc parameter ² in reality relates to the fluctuations governing the total (summed up)
potential gathered by the neuron in a time-step (which eventually decides the state of the neuron at the end of
the time-step as well). The relevant analysis was based on the probabilistic aspects of synaptic transmission,
and the temperature-like factor or the pseudo-temperature universe ² (= 1/kBT in the Ising model) was termed
as a smearing parameter.

Explicitly, this smearing parameter (²) has been shown equal to , where ” is a factor decided by the
gaussian statistics of the action potentials and the poissonian process governing the occurrence rate of the
quanta of chemical transmitter (ACh) reaching the postsynaptic membrane (and hence causing the
postsynaptic potential). The relevant statistics indicated refer to the variations in size and the probability of
release of these quanta manifesting (and experimentally observed) as fluctuations in the postsynaptic
potentials.

In a continued study on the statistical mechanics aspects of neural activity, Little and Shaw [77] developed a
model of a large neural complex (such as the brain) to depict the nature of short- and long-term memory. They
presumed that memory results from a form of synaptic strength modification which is dependent on the
correlation of pre- and postsynaptic neuronal firing; and deduced that a reliable, well-defined behavior of the
assembly would prevail despite of noisy (and hence random) characteristics of the membrane potentials due to
the fluctuations (in the number and size) of neurochemical transmitter molecules (ACh quanta) released at the
synapses. The underlying basis for their inference is that the neuronal collection represents an extensive
assembly comprised of a (statistically) large number of cells with complex synaptic interconnections,
permitting a stochastically viable proliferation of state changes through all the possible neuronal
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configurations (or patterns of neural conduction).

In the relevant study, the pertinent assumption on modifiable synapses refers to the Hebbian learning process.
In neurophysiological terms it is explicitly postulated as: “When an axon of cell A is near enough to excite a
cell B and repeatedly or persistently takes part in firing it, some growth process or metabolic change takes
place in one or both cells such that A’s efficiency as one of the cells firing B is enhanced [19].”

In further studies concerning the analogy of neural activity versus Ising spin model, Little and Shaw [78]
developed an analytical model to elucidate the memory storage capacity of a neural network. They showed
thereof that the memory capacity is decided by the (large) number of synapses rather than by the (much
smaller) number of neurons themselves; and by virtue of this large memory capacity, there is a storage of
information generated via patterns of state-transition proliferation across the neural assembly which evolves
with time. That is, considering the long-term memory model, the synaptic strengths cannot be assumed as
time-invariant. With the result, a modified Hebb’s hypothesis, namely, that the synaptic changes do occur as a
result of correlated pre- and postneuronal firing behavior of the linear combinations of the (spatial) firing
pattern, was suggested in [78]. Thus, the relevant study portrayed the existence of possible spatial correlation
(that is, firing correlation of neighboring neurons, as evinced in experimental studies) in a neural assembly.
Also, such correlations resulting from the linear combination of firing patterns corresponds to M2 transitions,
where M is the number of neurons; and with every neuron connected to every other neuron, there are M2

number of synapses wherein the transitions would take place.

The aforesaid results and conclusions of Little and Shaw were again based mainly on the Ising spin analogy
with the neural system. However, the extent of their study on the linear combination firing patterns from the
statistical mechanics point of view is a more rigorous, statistically involved task warranting an analogy with
the three-dimensional Ising problem unfortunately, this remains unsolved to date. Nevertheless, the results of
Little and Shaw based on the elementary Ising spin model, indicate the possibility of spatial firing correlations
of neighboring neurons which have been confirmed henceforth via experiments using two or more closely
spaced microelectrodes.
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5.5 Thompson and Gibson Model

Thompson and Gibson in 1981 [37] advocated in favor of Little’s model governing the probabilistic aspects
of neuronal-firing behavior with the exception that the concept of long-range order introduced by Little is
considered rather inappropriate for the neural network; and they suggested alternatively a more general
definition of the order. The relevant synopsis of the studies due to Thompson and Gibson follows.

Considering a spin system, if fixing the spin at one lattice site causes spins at sites far away from it to show a
preference for one orientation, it refers to the long-range order of the spin system. To extend this concept to
the neural assembly, it is necessary first to consider the Ising model of the two-dimensional ferromagnet in
detail. In the Ising spin system, a regular lattice of spins Si = ±1 with an isotropic nearest-neighbor interaction
is built by successive addition of rows, each consisting of M spins, where M is finite. The probability
distribution of spins in the (m + 1)th row depends only on the distribution in the mth row, depicting a Markov
process with a transition matrix TM. In this respect, the neural network and spin structure are formally
analogous; and the time-steps for the neural network correspond to the spatial dimension of the spin lattice, as
discussed earlier.

In the spin problem, the transition matrix TM is strictly a positive stochastic matrix for all positive values of
the temperature T such that the long-range order for any finite spin system with T > 0 is not feasible.
However, in the limit as M ’ �, the largest eigenvalue of TM is asymptotically degenerate provided T < TC,

(TC being the Curie point). In this case,  no longer approaches a matrix with equal components when m
becomes arbitrarily large. This infinite two-dimensional spin system undergoes a sharp phase transition at TC.
For T > TC, there is no long range order and each spin is equally likely to be up or down, whereas for T < TC,
there is a long-range order and the spins are not randomly oriented (see Appendix A).

The nearest-neighbor spin-spin interactions in a ferromagnetic system are symmetric as discussed earlier, and
the effect that one spin has on the orientation of any other spin depends only on their spatial separation in the
lattice. Hence, the successive rows of the spin system can be added in any direction; however, considering the
neural system, the analogous time development steps have only a specific forward direction. That is, the
neuronal interaction is inherently anisotropic. The state of the neuron at any time is determined by the suite
of all the neurons at the previous time. This interaction for a given neuron can be distinctly different and
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unique when considered with other neurons. It also depends on the synaptic connectivity of the particular
network in question. Generally, the interaction of the jth neuron with the ith neuron is not the same as that of
the ith neuron with the jth; and the transition matrix TM is, therefore, nonsymmetric. That is, the synaptic
connections are generally not symmetric and are often maximally asymmetrical or unidirectional. (Müller and
Reinhardt [1] refers to such networks as cybernetic networks and indicate the feed-forward, layered neural
networks as the best-studied class of cybernetic networks. They provide an optimal reaction or answer to an
external stimulus as dictated by a supervising element [such as the brain] in the self-control endeavors.
Further, as a result of being asymmetric the theories of thermodynamic equilibrium systems have no direct
bearing on such cybernetic networks.)

Thompson and Gibson hence declared that the spin system definition of long-range order is rather
inapplicable to neural assembly due to the following reasons: (1) Inasmuch as the interaction between
different neurons have different forms, any single neuron would not influence the state of any other single
neuron (including itself) at a later time; and (2) because the transition matrix is asymmetric (not necessarily
diagonalizable) in a neuronal system, the long-range order does not necessarily imply a tendency for the
system to be in a particular or persistent state. (On the contrary, in a spin system, the order is strictly a
measure of the tendency of the spins aligned in one direction in preference to random orientation.)

As a result of the inapplicability of the spin-system based definition of long-range order to a neural system,
Thompson and Gibson proposed an alternative definition of long-range order which is applicable to both the
spin system as well as the neuronal system. Their definition refers to the order of the system applied to a
moderate time scale and not for the long-range epoch. In this moderate time-frame order, plastic changes in
synaptic parameters would be absent; and by considering the neural network as a finite (and not as an
arbitrarily large or infinite system), the phase transition process (akin to that of the spin system) from a
disordered to an ordered state would take place in a continuous graded fashion rather than as a sharp
transition. Thus, the spin system analogy is still applicable to the neural system provided a finite system
assumption and moderate time-scale order are attributed explicitly to the neuronal state transition process.
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Thompson and Gibson further observed that the aforesaid gradual transition refers to the factor ² being
finite-valued. If ² ’ �, it corresponds to the McCulloch-Pitts regime of the neuron being classified as a logical
or formal neuron. It also implicitly specifies the network of Little having a long-range order.

In the continuous/graded state transition corresponding to a moderate time-scale order, the firing pattern could
be of two types: (1) The burst discharge pattern characterized by the output of an individual neuron being a
series of separated bursts of activity rather than single spikes that is, the network fires a fixed pattern for some
time and then suddenly changes to a different pattern which is also maintained for many time steps and (2) the
quasi-reverberation pattern which corresponds to each neuron making a deterministic fire or no-fire decision
at multiples of a basic unit of time; and a group of such neurons may form a closed, self-exciting loop
yielding a cyclically repeating pattern called reverberation. Thompson and Gibson identified the possibility of
the existence of both patterns as governed by the markovian statistics of neuronal state transition. Their
further investigations on this topic [79], with relevance to Little’s model, has revealed a single model neuron
can produce a wide range of average output patterns including spontaneous bursting and tonic firing. Their
study was also extended to two neuron activities. On the basis of their results, they conclude that Little’s
model “produces a remarkably wide range of physically interesting average output patters… . In Little’s
model, the most probable behavior [of the neuronal network] is a simple consequence of the synaptic
connectivity … That is, the type of each neuron and the synaptic connections are the primary properties. They
determine the most likely behavior of the network. The actual output could be slightly modified or stabilized
as a result of the various secondary effects” [such as accommodation or postinhibitory rebound, etc.].

5.6 Hopfield’s Model

As observed by Little, the collective properties of a large number of interacting neurons compare to a large
extent with the “physical systems made from a large number of simple elements, interactions among large
numbers of elementary components yielding collective phenomena such as the stable magnetic orientation
and domains in a magnetic system or the vortex patterns in a fluid flow.” Hence, Hopfield in 1982 [31] asked
a consistent question, “Do analogous collective phenomena in a system of simple interacting neurons have
useful computational correlates?” Also, he examined a new modeling of this old and fundamental question
and showed that “important computational properties” do arise.

The thesis of Hopfield compares neural networks and physical systems in respect to emergent collective
computational abilities. It follows the time evolution of a physical system described by a set of general
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coordinates, with a point in the state-space representing the instantaneous condition of the system; and, this
state-space may be either continuous or discrete (as in the case of M Ising spins depicted by Little).

The input-output relationship for a neuron prescribed by Hopfield on the basis of collective properties of
neural assembly has relevance to the earlier works due to Little and others which can be stated as follows
[31]: “Little, Shaw, and Roney have developed ideas on the collective functioning of neural nets based on
“on/off” neurons and synchronous processing. However, in their model the relative timing of action potential
spikes was central and resulted in reverberating action potential trains. Hopfield’s model and theirs have
limited formal similarity, although there may be connections at a deeper level.”

Further, considering Hopfield’s model, when the synaptic weight (strength of the connection) Wij is
symmetric, the state changes will continue until a local minimum is reached. Hopfield took random patterns
where ¾i

¼ = ±1 with probability 1/2 and assumed Wij = [£¼ ¾i
¼¾j

¼]/N, (i, j) � N and allowed a sequential
dynamics of the form Si(t + ”t) = Sgn [hi(t)] where Sgn(x) is the sign of x and hi = £j WijSj and represents the
postsynaptical or the local field. Hopfield’s dynamic is equivalent to the rate that the state of a neuron is
changed, or a spin is flipped, iff the energy HN = -£i`j WijSiSj is lowered. That is, the Hamiltonian HN is the
so-called Lyapunov function for the Hopfield dynamics which converges to a local minimum or the ground
state. Or, the equations of motions for a network with symmetric connections (Wij = Wji) always lead to a
convergence to stable states in which the outputs of all neurons remain constant. Thus the presumed
symmetry of the network is rather essential to the relevant mathematics. However, the feasibility of the
existence of such a symmetry in real neurons has rather been viewed with skepticism as discussed earlier.
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Hopfield has also noted that real neurons need not make synapses both of i ’ j and j ’ i, and questioned
whether Wij = Wji is important vis-a-vis neuronal activity. He carried out simulations with only one ij
connection, namely, Wij ` 0, Wji = 0, and found that without symmetry the probability of making errors
increased though the algorithm continued to generate stable minima; and there was a possibility that a
minimum would be only metastable and be replaced in time eventually by another minimum. The symmetric
synaptic coupling of Hopfield, however provoked a great deal of criticism as being biologically unacceptable;
as Toulouse [80] points out Hopfield’s strategy was a “very clever step backwards.”

In a later work, Hopfield [36] introduced electronic circuit modeling of a larger network of neurons with
graded response (or sigmoidal input-output relation) depicting content-addressable memory based on the
collective computational properties of two-state neurons. The relevant model facilitates the inclusion of
propagation delays, jitter, and noise as observed in real neurons. The corresponding stochastic algorithm is
asynchronous as the interaction of each neuron is a stochastic process taking place at a mean rate for each
neuron. Hence, Hopfield’s model, in general, differs from the synchronous system of Little which might have
additional collective properties.

Pursuant to the above studies on neural activity versus statistical mechanics, Ingber [67] developed an
approach to elucidate the collective aspects of the neurocortical system via nonlinear-nonequilibrium
statistical mechanics. In the relevant studies microscopic neural synaptic interactions consistent with
anatomical observations were spatially averaged over columnar domains; and the relevant macroscopic
spatial-temporal aspects were described by a Lagrangian formalism [68]. However, the topological
constraints with the associated continuity relations posed by columnar domains and the Lagrangian approach
are rather unrealistic.

5.7 Peretto’s Model

A more pragmatic method of analyzing neural activity via statistical physics was portrayed by Peretto [38]
who considered the collective properties of neural networks by extending Hopfield’s model to Little’s model.
The underlying basis for Peretto’s approach has the following considerations:

•  Inasmuch as the statistical mechanics formalisms are arrived at in a Hamiltonian framework, Peretto
“searches” for extensive quantities which depict the Hopfield network in the ground state as well as in
noisy situations.
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•  Little’s model introduces a markovian structure to neural dynamics. Hence, Peretto verifies whether
the corresponding evolution equation would permit (at least with certain constraints) a Hamiltonian
attribution to neural activity.

•  Last, Peretto considers the feasibility of comparing both models in terms of the storage capacity and
associative memory properties.

The common denominator in all the aforesaid considerations as conceived by Peretto again, is the statistical
mechanics and/or spin-glass analogy that portrays a parallelism between Hopfield’s network and Little’s
model of a neural assembly.

Regarding the first consideration, Peretto first enumerates the rules of synthesizing the Hopfield model,
namely: 1) Every neuron i is associated with a membrane potential, Vi; 2) Vi is a linear function of the states

of the neuron related to i or Vi refers to the somatic summation/integration given by  (with Sj = 0
or 1 according to the firing state of neuron i) and Cij is the synaptic efficiency between the (upstream) neuron
j and the (downstream) neuron i; 3) a threshold level VTi will decide the state of the neuron i as Si =+1 if Vi >
VTi or as Si = 0 if Vi < VTi.

Hence, Peretto develops the following Hamiltonian to depict the Hopfield neural model analogous to the Ising
spin model:

where Ãi = (2Si - 1), (so that Ãi = 1 when Si = 1 and Ãi = 1 when Si = 0), Jij = Cij/2, hi
0 = £jCij/2 - VTi and Jij

= (Jij + Jji). In Equation (5.12), I represents the set of internal states namely, I = {Ãi} = {Ã1, Ã2,…, ÃM) for i
= 1,2,…, M. The Hamiltonian HN is identified as an extensive parameter of the system. (It should be noted
here that the concept of Hamiltonian as applied to neural networks had already been proposed by Cowan as
early as in 1967 [65]. He defined a Hamiltonian to find a corresponding invariant for the dynamics of a single
two-cell loop.)

Concerning the second consideration, Peretto formulates an evolution equation to depict a Markov process.
The relevant master equation written for the probability of finding the system state I at any time t, is shown to
be a Boltzmann type equation and hence has a Gibbs’ distribution as its steady-state solution.

Peretto shows that the markovian process having the above characteristics can be described by atleast a
narrow class of Hamiltonians which obey the detailed balance principle. In other words, a Hamiltonian
description of neural activity under markovian statistics is still feasible, though with a constraint posed by the
detailed balance principle which translates to the synaptic interactions being symmetric (Jij = Jji).
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Both Hopfield’s model and Little’s have been treated by Peretto under noisy conditions also. It is concluded
that, in Hopfield’s model, considering a Hebbian learning procedure* the Hamiltonian description of the
neuronal state (analogous to that of the spin glass) can still be modified to ascertain the steady-state properties
of the network exactly at any level of noise. (However, for a fully connected network, the dynamics is likely
to become chaotic at times.)

*Hebbian learning procedure here refers to unsupervised learning in which the synaptic strength (weight) is
increased if both the source and destination neurons are activated. According to this learning rule, the synaptic

strength is chosen as: , where N is the number of neurons of the network
accommodating a storage of pN patterns. Hebb’s rule always leads to symmetric synaptic coupling.

Though the Hamiltonian approach of Little’s model also permits the analysis of the network under noisy
conditions, it is, however, more involved than Hopfield’s model since it depends upon the noise level.

The last consideration, namely, the storage capacity of Hopfield’s and Little’s models by Peretto, leads to the
inference that both models (which have the common basis vis-a-vis spin-glass analogy) present the same
associative memory characteristics. There is, however, a small distinction: Little’s model allows some serial
processing (unlike Hopfield’s model which represents a totally parallel processing activity). Hence, Peretto
concludes that Little’s model is more akin to biological systems.

Subsequent to Peretto’s effort in compromising Hopfield’s and Little’s models on their behavior equated to
the spin-glass system, Amit et al. in 1985 [69] analyzed the two dynamic models due to Hopfield and Little to
account for the collective behavior of neural networks. Considering the long-time behavior of these models
being governed by the statistical mechanics of infinite-range Ising spin-glass Hamiltonians, certain
configurations of the spin system chosen at random are shown as memories stored in the quenched random
couplings. The relevant analysis is restricted to a finite number of memorized spin configurations (patterns) in
the thermodynamic limit of the number of neurons tending to infinity. Below the transition temperature (TC)
both models have been shown to exhibit identical long-term behavior. In the region T < TC, the states, in
general, are shown to be either metastable or stable. Below T E 0.46TC, dynamically stable states are assured.
The metastable states are portrayed as due to mixing of the embedded patterns. Again, for T < TC the states
are conceived as symmetric; and, in terms of memory configurations, the symmetrical states have equal
overlap with several memories.
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5.8 Little’s Model versus Hopfield’s Model

The Hopfield model defined by Equation. (5.12) with an associated memory has a well-defined dynamics.
That is, given the initial pattern, the system evolves in time so as to relax to a final steady-state pattern. In the
generalized Hopfield model* the transition probability Á(I/J) from state J to the next state I takes the usual
form for T > 0 as:

*In the original Hopfield model, a single-spin flip (Glauber dynamics) is assumed. This is equivalent to T = 0 in
Monte-Carlo search procedure for the spin systems. The generalized model refers to T > 0.

and the system relaxes to the Gibbs distribution:

In Little’s model the transition probability is given by:

where

Thus, in the Little model at each time-step, all the spins check simultaneously their states against the
corresponding local field; and hence such an evolution is called synchronous in contrast with the Hopfield
model which adopts the asynchronous dynamics.

Peretto has shown that Little’s model leads to a Gibbs-type steady state exp (-²HN) where the effective
Hamiltonian HN is given by:

This Hamiltonian specified by HN(I/I) corresponds to Hopfield’s Hamiltonian of Equation (5.12).

The corresponding free energy of the Little model has been shown [33] to be twice that of the generalized
Hopfield model at the extreme points. As a consequence, the nature of ground states and metastable states in
the two models are identical as explained below.

Little [33] points out only a nontrivial difference between the neural network problem and the spin problem
assuming a symmetry in the system. That is, as mentioned earlier, considering a matrix TM consisting of the
probabilities of obtaining a state |S1’, S2’, …, SM’> given state |S1, S2, …, SM> (where the primed set refers
to the row and the unprimed set to the column of the element of the matrix) immediately preceding it, TM is
symmetric for the spin system. However, in neural transmission, the signals propagate from one neuron down
its axon to the synaptic junction of the next neuron and not in the reverse direction; hence, TM is clearly not

symmetric for neural networks. That is, in general, the interaction of the jth neuron with the ith is not the same
as that of the ith neuron with the jth.

Though TM is not symmetric, Little [33] observes that the corresponding result can be generalized to an
arbitrary matrix because, while a general matrix cannot always be diagonalized, it can, however, be reduced to
so-called, Jordan cannonical form (see Appendix B); and Little develops the conditions for a persistent order
based on the Jordan canonical form representation of TM. Thus the asymmetry problem appears superficially
to have been solved.

However, there are still many differences between physical realism and Little’s model. The discrete time
assumption as discussed by Little is probably the least physically acceptable aspect of both this model and the
formal neuron. In addition, secondary effects such as potential decay, accommodation, and postinhibitory
rebound are not taken into account in the model. To compare Little’s model directly with real networks,
details such as the synaptic connectivity should be known; and these can only be worked out only for a few



networks. Thus, it should be emphasized that this model, like the formal neuron, represents only a minimal
level of description of neural firing behavior.
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As stated earlier, Thompson and Gibson [37] indicate that the spin-system definition of long-range order
(fixing the spin at one lattice site causes the spins at sites far away from it to show a preference for one
orientation) is not applicable to the neural problem. Contrary to Little [33], Thompson and Gibson state that
the existence of order (a correlation between the probability distribution Df the network at some initial time,
and the probability distribution after in (m e 1) time-steps does not mean that the network has a persistent
state; and rather, order should only be considered over a moderate number of time-steps. However, inasmuch
as order does imply a correlation between states of the network separated by time-steps, it seems reasonable to
assume that order is associated with a memory mechanism.

Clearly, Little’s model which is derived assuming a close similarity between it and the problem of an Ising
system does not provide a comprehensive model of neural-firing behavior. However, it is advantageous in that
the model neuron is both mathematically simple and able to produce a remarkably wide range of output
patterns which are similar to the discharge patterns of many real neurons.

Further, considering Hopfield’s model, Hopfield [31] states that for Wij being symmetric and having a
random character (analogous to the spin glass), state changes will continue until a local minimum is reached.
That is, the equations of motions for a network with symmetric connections (Wij = Wji) always lead to a
convergence to stable states in which the outputs of all neurons remain constant. Again, the symmetry of the
network is essential to the mathematical description of the network. Hopfield notes that real neurons need not
make synapses both of i ’ j and j ’ i; and, without this symmetry, the probability of errors would increase in
the input-output neural network simulation, and there is a possibility that the minimum reached via
algorithmic search would only be metastable and could be replaced in time by another minimum. The
question of symmetry and the symmetry condition can, however, be omitted without destroying the
associative memory. Such simplification is justifiable via the principle of universality in physics which
permits study of the collective aspects of a system’s behavior by introducing separate (and more than one)
simplifications without essentially altering the conclusions being reached.

The concept of memory or storage and retrival of information pertinent to the Little and Hopfield models
differ in the manner in which the state of the system is updated. In Little’s model all neurons (spins) are
updated synchronously as per the linear condition of output values, namely, oi(t) = £j Wijxi(t), where the
neurons are updated sequentially one at a time (either in a fixed order or randomly) in the Hopfield model.
(Though sequential updating can be more easily simulated by conventional digital logic, real neurons do not
operate sequentially.)
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5.9 Ising Spin System versus Interacting Neurons

In view of the various models as discussed above, the considerations in the analogous representation of
interacting neurons vis-a-vis the Ising magnetic spins and the contradictions or inconsistencies observed in
such an analogy are summarized in Tables 5.1 and 5.2.

5.10 Liquid-Crystal Model

Basically, the analogy between Ising spins system and the neural complex stems from the fact that the
organization of neurons is a collective enterprise in which the neuronal activity of interactive cells represents
a cooperative process similar to that of spin interactions in a magnetic system. As summarized in Table 5.1,
the strengths of synaptic connections between the cells representing the extent of interactive dynamics in the
cellular automata are considered analogous to the strengths of exchange interactions in magnetic spin systems.
Further, the synaptic activity, manifesting as the competition between the excitatory and inhibitory processes
is regarded as equitable to the competition between the ferromagnetic and antiferromagnetic exchange
interactions in spin-glass systems. Also, the threshold condition stipulated for the neuronal network is
considered as the analog of the condition of metastability against single spin flips in the Ising spin-glass
model.
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Notwithstanding the fact that the aforesaid similarities do prevail between the neurons and the magnetic spins,
major inconsistencies also, persist between these two systems regarding the synaptic coupling versus the spin
interactions (Table 5.2). Mainly, the inconsistency between neurons with inherent asymmetric synaptic
couplings and symmetric spin-glass interactions led Griffith [14] to declare the aggregate of neurons versus
magnetic spin analogy as having “no practical value”. Nevertheless, several compromising suggestions have
been proposed as discussed earlier showing the usefulness of the analogy (between the neurons and the
magnetic spins).

Table 5.1 Ising Spin System versus Neuronal System: Analogical Aspects
Magnetic Spin System Neuronal System

Interacting magnetic spins represent a collective
process.

Interacting neurons represent a collective process.

Dichotomous magnetic spin states: ±Si. Dichotomous cellular potential states: Ãi = 0 or 1.

Exchange interactions are characterized by strengths
of interaction.

Synaptic couplings are characterized by weights of
synaptic connections.

Competition between ferromagnetic and
antiferromagnetic exchange interactions.

Competition between the excitatory and inhibitory
processes.

A set of M magnetic dipoles each with two spins
(±1/2).

A set of M neurons each with two potential states, 0
or 1.

Condition of metastability against single-spin flips.
Cellular state-transition crossing a threshold
(metastable) state.

Phase transition from paramagnetism to
ferromagnetism at a critical temperature (Curie
point).

Onset of persistent firing patterns at a critical
potential level.

A spin is flipped iff, the Hamiltonion (Lyapunov
functional of energy) sets the dynamics of the spins
to a ground-state.

A state of a neuron is changed iff, the Hamiltonion
sets the dynamics of the neurons to converge to a
local minimum (ground-state).

Table 5.2 Ising Spin System versus Neuronal System: Contradictions and Inconsistencies
Magnetic Spin System Neuronal System
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Microscopic reversibility pertaining to the magnetic
spin interactions is inherent to the strength of
coupling between the exchange interactions being
symmetrical.

Symmetric weighting of neuronal interaction is
questionable from the physiological viewpoint. This
implies the prevalence of unequalness between the
number of excitatory and inhibitory synapses.

That is, in the magnetic spin exchange interactions,
the coupling coefficients Jij = Jji.

In the neuronal cycle of state-transitions, the
interconnecting weights Wij ` Wji.

The physical (molecular) arrangement of magnetic
dipoles facilitates the aforesaid symmetry.

The physiological reality forbids the synaptic
forward-backward symmetric coupling.

Symmetry in the state-transition matrix. Asymmetry in the state-transition matrix.
Diagonalizable transition matrix. Nondiagonalizable transition matrix.
No anisotropy in magnetic dipole orientations unless
dictated by an external magnetic influence.

Anisotropy is rather inherent leading to a persistent
order (in time as depicted by Little or in space as
discussed in Section 5.10).

Hamiltonians obey the principle of detailed balance. Only a subclass of Hamiltonians obey the principle
of detailed balance.

The assumption of symmetry and the specific form of the synaptic coupling in a neuronal assembly define
what is generally known as the Hopfield model. This model demonstrates the basic concepts and functioning
of a neural network and serves as a starting point for a variety of models in which many of the underlying
assumptions are relaxed to meet some of the requirements of real systems. For example, the question of Wij
being not equal to Wji in a neural system was addressed in a proposal by Little (as detailed in the previous
section), who defined a time-domain long-range order so that the corresponding anisotropy introduces bias
terms in the Hamiltonian relation, making it asymmetric to match the neuronal Hamiltonian. That is, Little’s
long-range order as referred to neurons corresponds to a time-domain based long-time correlation of the
states; and these persistent states (in time) of a neuronal network are equated to the long-range (spatial) order
in an Ising spin system.
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An alternative method of attributing the long-range order to neurons can be done by following the technique
of Little except that such a long-range order will be referred to the spatial or orientational anisotropy instead
of time correlations. To facilitate this approach, the free-point molecular dipole interactions can be considered
in lieu of magnetic spin interactions [15]. The free-point molecular dipole interactions with partial anisotropy
in spatial arrangement refer to the nematic phase in a liquid crystal. Hence, the relevant analysis equates the
neural statistics to that of a nematic phase system consistent with the Inown dogma that “the living cell is
actually a liquid crystal” [81]. That is, as Brown and Wolken [81] observed, the characteristics of molecular
patterns, structural and behavioral properties of liquid crystals, make them unique model-systems to
investigate a variety of biological phenomena. The general physioanatomical state of biological cells depicts
neither real crystals nor real liquid phase (and constitutes what is popularly known as the mesomorphous
state) much akin to several organic compounds which have become known as the “flüssige Kristalle” or liquid
crystals; and both the liquid crystalline materials as well as the biological cells have a common, irregular
pattern of side-by-side spatial arrangements in a series of layers (known as the nematic phase).

The microscopic structural studies of biological cells indicate that they are constituted by very complex
systems of macromolecules which are organized into various bodies or “organelles” that perform specific
functions for the cell. From the structural and functional point of view, Brown and Wolken have drawn an
analogy of the description of the living cells to liquid crystals on the basis that a cell has a structural order.
This in fact is a basic property of liquid crystals as well, for they have a structural order of a solid.
Furthermore, in many respects it has been observed that the physical, chemical, structural, and optical
properties of biological cells mimic closely those of liquid crystals.

Due to its liquid crystalline nature, a cell through its own structure forms a proto-organ facilitating electrical
activity. Further, the anisotropically oriented structure of cellular assembly (analogous to liquid crystals) has
been found responsible for the complex catalytic action needed to account for cellular regeneration. In other
words, by nature the cells are inherently like liquid crystals with similar functional attributions.

On the basis of these considerations a neural cell can be modeled via liquid-crystal analogy, and the squashing
action of the neural cells pertinent to the input-output relations (depicting the dynamics of the cellular
automata) can be described in terms of a stochastically justifiable sigmoidal function and statistical mechanics
considerations as presented in the pursuant sections.
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5.11 Free-Point Molecular Dipole Interactions

Suppose a set of polarizable molecules are anisotropic with a spatial long-range orientational order
corresponding to the nematic liquid crystal in the mesomorphic phase. This differs from the isotropic
molecular arrangement (as in a liquid) in that the molecules are spontaneously oriented with their long axes
approximately parallel. The preferred direction or orientational order may vary from point-to-point in the
medium, but in the long-range, a specific orientational parallelism is retained.

In the nematic phase, the statistical aspects of dipole orientation in the presence of an externally applied field
can be studied via Langevin’s theory with the following hypotheses:

1.  The molecules are point-dipoles with a prescribed extent of anisotropy.

2.  The ensemble average taken at an instant is the same as the time average taken on any element
(ergodicity property).

3.  The characteristic quantum numbers of the problem are so high that the system obeys the classical
statistics of Maxwell-Boltzmann, which is the limit of quantum statistics for systems with high
quantum numbers. The present characterization of paraelectricity differs from spin paramagnetism,
wherein the quantum levels are restricted to two values only.

4.  The dipole molecules in general when subjected to an external electric field , experience a
moment ¼E = ±E , where ±E by definition refers to the polarizability of the molecule. The dipole
orientation contributing to the polarization of the material is quantified as P = N<¼E> where N is the
dipole concentration.

5.  In an anisotropic system such as the liquid crystal, there is a permanent dipole moment ¼PE, the
direction of which is assumed along the long axis of a nonspherical dipole configuration. Consequently,
two orthogonal polarizability components exist, namely, ±E1 along the long axis and ±E2 perpendicular
to this long axis.

The dipole moments in an anisotropic molecule are depicted in Figure 5.1. Projecting along the applied
electric field  the net-induced electric polarization moment is:

where ”±E is a measure of anisotropy.

Figure 5.1  Free-point dipole and its moments : Applied electric field; : Permanent dipole moment;

: Induced dipole moment
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The corresponding energy of the polarized molecule in the presence of an applied field • is constituted by:
(1) The potential energy WPE due to the permanent dipole given by,

and (2) the potential energy due to the induced dipole given by:

Hence, the total energy is equal to WT = WPE + WiE. Further, the statistical average of ¼E can be specified
by:

where d© is the elemental solid angle around the direction of . That is, d© = 2À sin(¸)d¸. By performing
the integration of Equation (5.21) using Equation (5.18), it follows that:

where the quantity <cos2¸> varies from 1/3 (for randomly oriented molecules) to 1 for the case where all
the molecules are parallel (or antiparallel) to the field . On the basis of the limits specified by <cos2¸>, the
following parameter can be defined:

The parameter So which is bounded between 0 and 1 under the above conditions, represents the “order
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parameter” of the system [82]. Appropriate to the nematic phase, So specifies the long-range orientational
parameter pertaining to a liquid crystal of rod-like molecules as follows: Assuming the distribution function
of the molecules to be cylindrically symmetric about the axis of preferred orientation, So defines the degree
of alignment, namely, for perfectly parallel (or antiparallel) alignment So = 1, while for random orientations
So = 0. In the nematic phase So has an intermediate value which is strongly temperature dependent.

Figure 5.2  Types of disorders in spatial free-point molecular arrangement subjected to external electric

field ( ) (a) & (b) Completely ordered (total anisotropy): Parallel and antiparallel arrangements; (c) Partial
long-range order (partial anisotropy): Nematic phase arrangement; (d) Complete absence of long-range
order (total isotropy): Random arrangement

For So = 0, it refers to an isotropic statistical arrangement of random orientations so that for each dipole
pointing in one direction, there is statistically a corresponding molecule in the opposite direction (Figure
5.2). In the presence of an external electric field , the dipoles experience a torque and tend to polarize
along , so that the system becomes slightly anisotropic; and eventually under a strong field ( ) the
system becomes totally anisotropic with So = 1.

5.12 Stochastical Response of Neurons under Activation

By considering the neurons as analogous to a random, statistically isotropic dipole system, the graded
response of the neurons under activation could be modeled by applying the concepts of Langevin’s theory
of dipole polarization; and the continuous graded response of neuron activity corresponding to the
stochastical interaction between incoming excitations that produce true, collective, nonlinear effects can be
elucidated in terms of a sigmoidal function specified by a gain parameter » = ›/kBT, with › being the scaling
factor of Ãi which depicts the neuronal state-vector.

In the pertinent considerations, the neurons are depicted similar to the nematic phase of liquid crystals and
are assumed to possess an inherent, long-range spatial order. In other words, it is suggested that 0 < So < 1
is an appropriate and valid order function for the neural complex that So = 0. Specifying in terms of So =
(3/2) <cos2¸> - 1/2, the term <cos2¸> should correspond to a value between 1/3 to 1 (justifying the spatial
anisotropy).

To determine an appropriate squashing function for this range of <cos2¸> between 1/3 to 1 (or for 0 < So <
1), the quantity <cos2¸> can be replaced by (1/3 + 1/3q) in defining the order parameter So. Hence:

where q ’ � and q = 1/2 set the corresponding limits of So = 0 and So = 1 respectively.

Again, resorting to statistical mechanics, q = 1/2 refers to dichotomous states, if the number of states are
specified by (2q + 1). For the dipoles or neuronal alignments, it corresponds to the two totally discrete
anisotropic (parallel or antiparallel) orientations. In a statistically isotropic, randomly oriented system, the
number of (possible) discrete alignments would, however, approach infinity, as dictated by q ’ �.

For the intermediate (2q + 1) number of discrete orientations, the extent of dipole alignment to an external
field or, correspondingly, the (output) response of a neuron to excitation would be decided by the
probability of a discrete orientation being realized. It can be specified by [83]:
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The above function, Lq(x), is a modified Langevin function and is also known as the Bernoulli function. The
traditional Langevin function L(x) is the limit of Lq(x) for q ’ �. The other limiting case, namely, q = 1/2,
which exists for dichotomous states, corresponds to L1/2(x) = tanh(x).

Thus, the sigmoidal function FS(x) which decides the neuronal output response to an excitation has two
bounds: With FS(x) = tanh(x), it corresponds to the assumption that there exists a total orientational
long-range order in the neuronal arrangement. Conventionally [16], FS(x) = tanh(x) has been regarded as the
squashing function (for neuronal nets) purely on empirical considerations of the input-output nonlinear
relation being S-shaped (which remains bounded between two logistic limits, and follows a continuous
monotonic functional form between these limits). In terms of the input variate xi and the gain/scaling

parameter › of an ith neuron, the sigmoidal function specified as the hyberbolic tangent function is tanh(›xi).
The logistic operation that compresses the range of the input so that the output remains bounded between the
logical limits can also be specified alternatively by an exponential form, FS(y) = 1/[(1 + exp(-y)] with y = ›xi.

Except for being sigmoidal, the adoption of the hyperbolic tangent or the exponential form in the neural
network analyses has been purely empirical with no justifiable reasoning attributed to their choice. Pursuant
to the earlier discussion, L(y) = Lq’� (y) specifies the system in which the randomness is totally isotropic. That
is, the anisotropicity being zero is implicit. This, however, refers to rather an extensive situation assuming that
the neuronal configuration poses no spatial anisotropicity or long-range order whatsoever. Likewise,
considering the intuitive modeling of FS(y) = tanh(y), as adopted commonly, it depicts a totally anisotropic
system wherein the long-range order attains a value one. That is, tanh(y) = Lq’1/2(y) corresponds to the
dichotomous discrete orientations (parallel or antiparallel) specified by (2q + 1) ’ 2.

In the nematic phase, neither of the above functions, namely, tanh(y) nor L(y), is commensurable since a
partial long-range order (depicting a partial anisotropicity) is rattier imminent in such systems. Thus, with 1/2
< q < �, the true sigmoid of a neuronal arrangement (with an inherent nematic, spatial long-range order) should
be Lq(y).

Therefore, it can be regarded that the conventional sigmoid, namely, the hyperbolic tangent (or its variations)
and the Langevin function, constitute the upper and lower bounds of the state-vector squashing characteristics
of a neuronal unit, respectively.
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Relevant to the above discussions, the pertinent results are summarized in Table 5.3.

Figure 5.3  Sigmoidal function

Table 5.3 Types of Spatial Disorder in the Neural Configuration

5.13 Hamiltonian of Neural Spatial Long-Range Order

In general, the anisotropicity of a disorder leads to a Hamiltonian which can be specified in two ways: (1)
Suppose the exchange Hamiltonian is given by:

where Wxx, Wyy and Wzz are diagonal elements of the exchange matrix W (with the off- diagonal elements
being zero). If Wxx = Wyy = 0 and Wzz ` 0, it is a symmetric anisotropy (with dichotomous states as in the
Ising model). Note that the anisotropy arises if the strength of at least one of the exchange constants is
different from the other two. If Wxx = Wyy ` 0 and Wzz = 0, it corresponds to an isotropic xy model; and, if
Wxx = Wyy = Wzz, it is known as the isotropic Heisenberg model. (2) Given that the system has an anisotropy
due to partial long-range order as in the nematic phase representation of the neuronal arrangement, the
corresponding Hamiltonian is:

where Ha refers to the anisotropic contribution which can be specified by an inherent constant hi
o related to

the order parameter, So, so that

While the interactions Wij are local, HN refers to an extensive quantity corresponding to the long-range
orientational (spatial) interconnections in the neuronal arrangement.

5.14 Spatial Persistence in the Nematic Phase

The nematic-phase modeling of the neuronal arrangement specifies (as discussed earlier) a long-range spatial
anisotropy which may pose a persistency (or preferred, directional routing) of the synaptic transmission.
Pertinent analysis would be similar to the time-domain persistency demonstrated by Little [33] as existing in
neuronal firing patterns.

Considering (2q + 1) possible spatial orientations (or states) pertaining to M interacting neurons as
represented by ¨(±), then the probability of obtaining the state ¨(±’), having started with a preceding ¨(±)m

spatial intervals {x}, can be written in terms of a transfer matrix  as:
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where ¨(±) can be expressed in terms of (2q + 1)M orthonormal eigenvectors  (with eigenvalues »r) of the

operator TM. Each  has (2q + 1)M components, one for each configuration #945;; that is:

Hence

Analogous to the time-domain persistent order analysis due to Little, it is of interest to find a particular state
±1 after in spatial steps, having started at an arbitrary commencement (spatial location) in the neuronal

topology; and hence the probability of obtaining the state ±2 after  spatial steps, given ±1 after in spatial
steps from the commencement location, can be written as:
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which explicitly specifies no spatial correlation between the states ±1 and ±2. However, if the maximum
eigenvalue »max is degenerate, the above factorization of “(±1, ±2) is not possible and there will be a spatial
correlation in the synaptic transmission behavior. Such a degeneracy (in spatial order) can be attributed to any
possible transition from isotropic to anisotropic nematic phase in the neuronal configuration. That is, in the
path of synaptic transmission, should there be a persistent or orientational linkage/interaction of neurons, the
degeneracy may automatically set in. In the spin system, a similar degeneracy refers to the transition from a
paramagnetic to ferromagnetic phase. In a neural system, considering the persistency in the time-domain,
Little [33] observes that long-range time-ordering is related to the short-term memory considerations as
dictated by intracellular biochemical process(es).

5.15 Langevin Machine

The integrated effect of all the excitatory and inhibitory postsynaptic axon potentials in a neuronal network,
which decides the state transition (or “firing”), is modeled conventionally by a network with multi-input
state-vectors Si (i = 1, 2, …, M) with corresponding outputs Ãj (j = 1, 2, …, N) linked via N-component
weight-states Wij and decided by a nonlinear activation function. The corresponding input-output relation is
specified by:

where ¸i is an external (constant) bias parameter that may exist at the input and ¾n is the error (per unit time)
due to the inevitable presence of noise in the cellular regions.

The input signal is further processed by a nonlinear activation function FS to produce the neuron’s output
signal, Ã. That is, each neuron randomly and asynchronously evaluates its inputs and readjusts Ãi
accordingly.

The justification for the above modeling is based on Hopfield’s [31,36] contention that real neurons have
continuous, monotonic input-output relations and integrative time-delays. That is, neurons have sigmoid
(meaning S-shaped) input-output curves of finite steepness rather than the steplike, two-state response curve
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or the logical neuron model suggested by McCulloch and Pitts [7].

The commonly used activation function to depict the neuronal response as mentioned earlier is the hyperbolic
tangent given by FS(›Ãi) = tanh(›Ãi) where › is a gain/scaling parameter. It may be noted that as › tends to
infinity, FS(›Ãi) becomes the signum function indicating the “all-or-none” response of the McCulloch-Pitts
model.

Stornetta and Hubernian [84] have noted about the training characteristics of back-propagation networks that
the conventional 0-to-1 dynamic range of inputs and hidden neuron outputs is not optimum. The reason for
this surmise is that the magnitude of weight adjustment is proportional to the output level of the neuron.
Therefore, a level of 0 results in no weight modification. With binary input vectors, half the inputs, on the
average, will, however, be zero and the weights they connect to will not train. This problem is solved by
changing the input range to ±1/2 and adding a bias to the squashing function to modify the neuron output
range to ±1/2. The corresponding squashing function is as follows:

which is again akin to the hyperbolic tangent and/or exponential function forms discussed earlier.

These aforementioned sigmoids are symmetrical about the origin and have bipolar limiting values. They were
chosen on an empirical basis, purely on the considerations of being S-shaped. That is, by observation, they
match Hopfield’s model in that the output variable for the ith neuron is a continuous and monotone-increasing
function of the instantaneous input to ith neuron having bipolar limits.

In Section 5.12, however, the Langevin function has been shown to be the justifiable sigmoid on the basis of
stochastical attributions of neuronal activity and the implications of using Langevin function in lieu of the
conventional sigmoid in the machine description of neuronal activity are discussed in the following section.
Such a machine is designated as the Langevin machine.
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5.16 Langevin Machine versus Boltzmann Machine

In Boltzmann machines, the neurons change state in a statistical rather than a deterministic fashion. That is,
these machines function by adjusting the states of the units (neurons) asynchronously and stochastically so as
to minimize the global energy. The presence of noise is used to escape from the local minima. That is, as
discussed in Chapter 4, occasional (random) jumps to configurations of higher energy are allowed so that the
problem of stabilizing to a local rather than a global minimum (as suffered by Hopfield nets) is largely
avoided. The Boltzmann machine rule of activation is decided probabilistically so that the output value Ãi is
set to one with the probability p(Ãi = 1), where p is given in Equation (4.8), regardless of the current state. As
discussed in Chapter 4 Akiyama et al. [54] point out that the Boltzmann machine corresponds to the Gaussian
machine in that the sigmoidal characteristics of p fit very well to the conventional gaussian cumulative
distribution with identical slope at the input Ãi = 0 with an appropriate choice of the scaling parameter.

The Boltzmann function, namely, {1/[1 + exp(-x)]} and the generalized Langevin function [1 + Lq(x)]1/2
represent identical curves with a slope of +1/4 at x = 0, if q is taken as +4. Therefore, inasmuch as the
Boltzmann machine can be matched to the gaussian machine, the Langevin function can also be matched
likewise; and, in which case, it is termed here as the Langevin machine.

Considering neural network optimization problems, sharpening schedules which refer to the changes in the
reference level with time adaptively are employed in order to achieve better search methods. Such a
scheduling scheme using Langevin machine strategies is also possible and can be expressed as:

where a0 is the reference activation level which is required to decrease over time. A0 is the initial value of a0,
and Äa0 is the time constant of the sharpening schedule.

Using the Langevin machine, the annealing can also be implemented by the following scheme:

where T0 is the initial temperature and ÄTn is the time constant of the annealing schedule which may differ
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from Äa0. By proper choice of q, the speed of annealing can be controlled.

5.17 Concluding Remarks

The formal theory of stochastic neural network is based heavily on statistical mechanics considerations.
However, when a one-to-one matching between real neuronal configuration and stochastical neural network
(evolved from the principles of stochastical mechanics) is done, it is evident that there are as many
contradictions and inconsistencies as the analogies that prevail in such a comparison. The analogies are built
on the common notion, namely, the interactive collective behavior of the ensemble of units — the cells in the
neural complex and the magnetic spins in the material lattice. The inconsistencies blossom from the
asymmetric synaptic coupling of the real neurons as against the inherently symmetric attributes of magnetic
spin connection strengths.

Hopfield’s ingenious, “step backward” strategry of incorporating a symmetry in his neural models and the
pros and cons discussions and deliberations by Little and Perelto still, however, dwell on the wealth of
theoretical considerations pertinent to statistical mechanics consistent with the fact that a “reasearch under a
paradigm must be a particularly effective way of inducing a paradigm change”.
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Chapter 6
Stochastical Dynamics of the Neural Complex

6.1 Introduction

The integrated effect of all the excitatory and inhibitory postsynaptic axon potentials in the neural complex
(Figure 6.1) which decide the state transition (or “firing”) is modeled conventionally by a network with
multi-input state-vectors Si (i = 1, 2, …, M) with corresponding outputs Ãj (j = 1, 2, …, N) linked via
N-component weight-states Wij and decided by a nonlinear activation function. That is, as indicated earlier:

where ¸i is an external (constant) bias parameter that may exist at the input and en is the error (per unit time)
due to the presence of intra- or extra-neural disturbances. This unspecified noise source permits invariably the
neurons to change their internal states in a random manner. The resulting error would upset the underlying
learning or training process that sets the weighting vector Wij to such a position as to enable the network to
achieve maximization (or minimization) in its global (output) performance (such as mean-squared error). The
corresponding stability dynamics of the neural activity can be specified by a nonlinear stochastical equation
governing the variable, namely, the weighting vector W, as described in the following sections [18].

6.2 Stochastical Dynamics of the Neural Assembly

The state-transition in a neural complex (in its canonical form) represents a dichotomous (bistable) process
and the presence of noise would place the bistable potential at an unstable equilibrium point. Though the
initial (random) fluctuations/disturbances can be regarded as microscopic variables, with the progress of time
(in an intermediate time domain), the fluctuation enhancement would be of macroscopic order. Such
fluctuations can be specified in general by nonlinear stochastical dynamics governed by a relaxational
Langevin equation, namely [85]:
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where ³ is a positive coefficient and C(W) is an arbitrary function representing possible constraints on the
range of weights with a parameter of nonlinearity; and ·(t) represents the driving random disturbance usually
regarded as zero mean, gaussian white noise with a variance equal to <·(t)·(t’)> = 2kBT´(t - t’), where kBT
represents the pseudo-thermodynamic Boltzmann energy.

Figure 6.1  The biological neuronal cell structure and its network equivalent (a) Biological neuron; (b)
Network equivalent of the cell
SY: Synapse; F: Sigmoid; IG: Impulse generator; NE: Nonlinear estimator; WS: Weighted sum of external
inputs and weighted input from other neurons; ¸i: External bias; TH: Threshold; OP: Output

Equation (6.2) can be specified alternatively by an equivalent Fokker-Planck relation depicting the
probability distribution function P(W, t), given by [86,87]:

The stable states of the above equation are decided by the two extrema of the variable W, namely, ±Wm; and
the unstable steady state corresponds to Wm ’ 0. The evolution of W(t) or P(W, t) depends critically on the
choice of initial conditions with two possible modes of fluctuations: When the mean-squared value of the
fluctuations is much larger than kBT, it refers to an extensive regime depicting the passage of the states from
apparently unstable to a preferred stable state. This is a slow-time evolution process. The second category
corresponds to the mean-squared value being much smaller than kBT which specifies an intrinsic unstable
state; and it depicts the evolution of the neuronal state from an unstable condition to two steady states of the
McCulloch-Pitts regime [7]. For neuronal state disturbances, the relevant evolution process fits, therefore,
more closely to the second type [33].

Invariably, the intrinsic fluctuations are correlated in time; and in view of the central limit theorem, they may
also be gaussian. Further, the spectral characteristics of this noise are be band-limited (colored) as justified in
the next section.

Hence, the solution of the Langevin equation (6.2) and/or the Fokker-Planck equation (6.3) depicting the
state-transition behavior of the neural network should in general, refer to the fluctuations being a
gaussian-colored noise causing the action potentials to recur randomly with a finite correlation time and
thereby have a markovian structure as described below.
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6.3 Correlation of Neuronal State Disturbances

The statistical aspects of random intervals between the action potentials of biological neurons are normally
decided by the irregularities due to neural conduction velocity/dynamics, axonal fiber type mixture,
synchronization/asynchronization effects (arising from dropping out of certain neuron units in the synaptic
transmission), percentage of polyphasic action potentials, etc. The temporal dynamics of the neural
conduction (or the action potential) can therefore be modeled as a train of delta-Dirac functions (representing
a symmetric dichotomous process with bistable values), the time interval between their occurrences being a
random variable (Figure 6.2a). Though in a memoryless mathematical neuron model, the relevant statistics of
the recurrence of action potentials is presumed to be independent of the other events; the process underlying
the neuronal disturbance cannot be altogether assumed as free of dependency on the previous history. As
pointed out by McCulloch and Pitts [7], there is a possibility that a particular neural state has dependency at
least on the preceding event.

Figure 6.2  Models of action potential train (a) Delta-dirac (impulse) representation; (b) Semirandom
telegraphic signal representation (markovian statistics)

In other words, markovian statistics can be attributed to the neuronal state transition and the occurrence of
action potentials can be modeled as a symmetric dichotomous Markov process which has bistable values at
random intervals. The waiting times in each state are exponentially distributed (which ensures markovian
structure of the process involved) having a correlation function given by:

Here, Á2 = (kBT“) and the symmetric dichotomous Markov variable Xt represents the random process whose

http://www.earthweb.com/
http://corpitk.earthweb.com/
http://corpitk.earthweb.com/content/corp.html
http://corpitk.earthweb.com/search/
http://corpitk.earthweb.com/faq/faq.html
http://corpitk.earthweb.com/sitemap.html
http://corpitk.earthweb.com/contactus.html
http://corpitk.earthweb.com/search/search-tips.html
http://corpitk.earthweb.com/search/search-tips.html
http://corpitk.earthweb.com/search/
http://corpitk.earthweb.com/search/
javascript:displayWindow('images/06-02.jpg',500,545)
javascript:displayWindow('images/06-02.jpg',500,545)


value switches between two extremes (all-or-none) ±Á, at random times. The correlation time Äc is equal to
1/“, and the mean frequency of transition from one value to the other is “/2. That is, the stochastic system has
two state epochs, namely, random intervals of occurrence and random finite duration of the occurrences. (In a
simple delta-Dirac representation, however, the durations of the disturbances are assumed to be of zero
values). The process Xt (t = 0) should therefore represent approximately a semirandom telegraphic signal
(Figure 6.2b).

The transition probability between the bistable values is dictated by the Chapman-Kolmogorov system of
equations [88] for integer-valued variates; and the spectral density of the dichotomous Markov process can be
specified by the Fourier transform of the correlation function given by Equation (6.4) and corresponds to the
well-known Lorentzian relation given by:

It can be presumed that a synchronism exists between the recursive disturbances, at least on a
short-term/quasistationary basis [33]. This could result from more or less simultaneous activation of different
sections of presynaptic fibers.

Figure 6.3  Spectral densities of a dichotomous markov process (a): Under aperiodic limit; (b): Under
periodic limit

In the delta-Dirac function model, this synchronism is rather absolute and implicit. In the markovian

dichotomous model, the synchronism can be inculcated by a periodic attribute or an external parameter  so
that the periodic variation will mimic the dichotomous Markov process with a correlation time 1/“, assuming

average switching frequencies of the two variations to be identical. That is, . For this periodic
fluctuation, the correlation function is a sawtooth wave between ±Á2 of fundamental angular frequency 2À½.
The corresponding Fourier spectrum is given by:

where ´(É - 2Àq½) is an impulse unit area occurring at frequency É = 2Àq½. Typical normalized spectral
densities corresponding to the periodic and aperiodic limits of dichotomous Markov process are depicted in
Figure 6.3.

Inasmuch as the output of the neuronal unit has a characteristic colored noise spectrum, it can be surmised
that this limited bandwidth of the noise observed at the output should be due to the intrinsic, nonwhite spectral
properties of the neuronal disturbances. This is because the firing action at the cell itself would not introduce
band-limiting on the intrinsic disturbances. The reason is as follows: The state changing or the time response
of the neuronal cell refers to a signum-type switching function or a transient time response as depicted in
Figure 6.4.

Figure 6.4  Transient response of a neuronal cell (a): For arbitrary value of ± < �; (b): For the value of ± ’ �

The transient time response f(±t) has a frequency spectrum specified in terms of the Laplace transform given
by:

where ± is a constant and as ± ’ �, the transient response assumes the ideal signum-type switching function in
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which case the frequency is directly proportional to (1/É). However, the output of the neuronal unit has (1/É2)
spectral characteristics as could be evinced from Equation (6.5). Therefore, the switching action at the
neuronal cell has less influence in dictating the output spectral properties of the noise. In other words, the
colored frequency response of the disturbances elucidated at the output should be essentially due to the
colored intrinsic/inherent spectral characteristics of the disturbances existing at the neuronal structure.

Hence, in general, it is not justifiable to presume the spectral characteristics of neural disturbances as a
flat-band white noise and the solutions of Langevin and/or Fokker-Planck equations described before should
therefore correspond to a colored noise situation.
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6.4 Fokker-Planck Equation of Neural Dynamics

The state of neural dynamics as indicated earlier is essentially decided by the intrinsic disturbances (noise)
associated with the weighting function W. Due to the finite correlation time involved, the disturbance has
bandlimited (colored) gaussian statistics.

Ideally in repeated neuronal cells, there could be no coherence between state transitions induced by the
disturbance/noise, or even between successive transitions. Such complete decorrelation is valid only if the
noise or disturbance level is very small. However, inasmuch as the correlation does persist, the state-variable
W specified before in an M-dimensional space (Wi, i = 1, 2, 3, …, M), can be modeled as a simple version of
Equation (63). It is given by [89]:

where ·(t) is the noise term such that <·(t)> = 0 and <·(t)·’ (t)> = (kBT)“exp{-“|t - t’|} where “ ’ � sets the limit
that the above Fokker-Planck relation corresponds to the white noise case.

In the state-transition process, the relevant instability dynamics can be dictated by a set of stochastical
differential equations, namely:

where ·i(t) refers to the noise/disturbance involved at the ith cell and Di(W) is an arbitrary function of W. Here
as W approaches a representative value, say W0, at t = 0 so that Di(WO) = 0, then the state-transition is
regarded as unstable. An approximate solution to Equation. (6.9) can then be sought by assuming that P(W, 0)
= ´(W - W0) as the initial condition. This can be done by the scaling procedure outlined by Valsakumar [89].
Corresponding to Equation (6.9), a new stochastic process defined by a variable ¶(t) can be conceived such
that in the limit of vanishing noise Equation (6.9) would refer to the new variable ¶(t), replacing the original
variable W(t). The correspondence between ¶(t) and W(t) can then be written as [89]:
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At the enunciation of instability (at t = 0), the extent of disturbance/noise is important; however, as the time
progresses, the nonlinearity associated with the neuronal state transition overwhelms. Therefore, the initial
fluctuations can be specified by replacing �¶(t)/� Wj in Equation (6.10) by its value at the unstable point. This
refers to a scaling approximation and is explicitly written as:

The above approximation leads to a correspondence relation between the probability distribution 
of the scaled variable ¶s, and distribution function PW (W, t). The scaling solution to Equation (6.8) is hence
obtained as [89]:

where

The various moments (under scaling approximation) are:

where [Ä’/Td(“)] = 2 (²/kBT[exp(2t) -1] and Td(“) is the switching-delay given by:

The second moment <W2> as a function of time is presented in Figure (6.5) for various values of “, namely, �,
10, 1, 0.1, and 0.01, which span very small to large correlation times. Further, (²/kBT) refers to the evolution
of the normalized pseudo-thermodynamic energy level, and is decided by Equation (6.12a).

Figure 6.5  Evolution of the mean-squared value of W(t) for various discrete extents of correlation time (“)
(1. “ = 10-2; 2. “ = 10-1; 3. “ = 100; 4. “ = 10+1; 5. “ = 10+4)

From Figure (6.5), it can be observed that the correlation time does not alter the qualitative aspects of the
fluctuation behavior of the noise/disturbance. That is, in extensive terms, the onset of macroscopic order of
neuronal state-transition is simply delayed when the correlation time increases.

6.5 Stochastical Instability in Neural Networks

Typically (artificial) neural networks are useful in solving a class of discrete optimization problems [34] in
which the convergence of a system to a stable state is tracked via an energy function E, where the stable state
presumably exists at the global minimum of E as mentioned in Chapter 4.

This internal state (in biological terms specified as the soma potential) of each neuron i is given by a
time-dependent scalar value Si; the equilibrium state is assumed as 0. The output of the cell (corresponding to
spike or action potential frequency) Ãi is a continuous, bounded, monotonic function F. That is, Ãi = F(Si);
and, in general, F is nonlinear. Thus, the output of the cell is a nonlinear function of the internal state.
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Typically F(x) is a sigmoid, taken conventionally in the hyperbolic tangent form as (1/2) [1 + tanh(›x)], or
more justifiably as the Langevin function Lq(›x) as described in Chapter 5. The coefficient › is the scaling
factor which includes a pseudo-temperature corresponding to the Boltzmann (pseudo) energy of the system.
Ideally, the rate of change of internal state is decided by the sum of the inputs from other neurons of the
network in the form of weighted sum of firing rates by external sources (such as a constant bias) and by the
inhibiting internal state:

where ·i(t) represents the intracell disturbance/noise.

Upon integration (corresponding to a first-order low-pass transition with a time constant Ä0), Equation (6.16)
reduces to:

With a symmetric weighting (Wij = Wji), Hopfield [31,36] defines an energy function (E) relevant to the
above temporal model of a neuron-cell as:
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Convergence of the system to a stable state refers to E reaching its global minimum. This is feasible in the
absence of the stochastical variable ·i (caused by the cellular disturbance/noise). However, the finiteness of ·i
and the resulting strength of randomness could unstabilize the march of the network towards the global
minimum in respect to any optimization search procedure. For example, a set of variables that can take only
the two dichotomous limits (0 and 1) may represent possible solutions to discrete optimization problems. For
each variable, a neuron can be assigned, with the optimization criteria specified by the energy function (E) of
Equation (6.18). From this energy function, the coupling weights Wij and the external input Si can be decided
or derived deterministically, in the absence of the disturbance/noise function ·i. That is, starting from an
arbitrary initial state and with an appropriate scaling factor › assigned to the nonlinear function F, the neuron
achieves a final stable state 0 or 1. Hence, a high output of a neuron (i, j), corresponding to an output close to
its maximum value of 1, refers to an optimization problem similar to the considerations in assigning a closed
tour for a traveling salesman over a set of N cities with the length of the tour minimized subject to the
constraints that no city should be omitted or visited twice.

In the presence of ·(t), however, the aforesaid network modeling may become unstable; or the evolution of the
energy-function decreasing monotonically and converging to a minimum would be jeopardized, as could be
evinced from the following Hopfield energy functional analysis:

The evolution of E with progress of time in the presence of ·(t) having a dynamic state of Equation (6.16) and
an input-output relation specified by Ãi = F(Si) can be written as:

Using Equation (6.18),

The above equation permits Et(t) to decrease monotonically (that is, Et d 0) and converge to a minimum only
in the absence of ·(t). When such a convergence occurs for an increasing scaling factor of › (ultimately
reaching infinity at the McCulloch-Pitts limit), + F-1(Ã) dÃ would approach zero in any interval; and (E - Et)
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will therefore, become negligible for Ãi specified in that interval. That is, the minimum of E would remain
close to that of Et; but this separation would widen as the strength of · increases.

Failure to reach a global minimum in an optimization problem would suboptimize the solution search; and
hence the corresponding computational time will increase considerably. Two methods of obviating the
effect(s) of disturbances in the neural network have been suggested by Bulsara et al. [90]. With a certain
critical value of the nonlinearity, the system can be forced into a double-well potential to find one or the other
stable state. Alternatively, by careful choice of the input (constant) bias term ¸i, the system can be driven to
find a global minimum more rapidly.

In the neural system discussed, it is imperative that the total energy of the system is at its minimum
(Lyapunov’s condition) if the variable W reaches a stable equilibrium value. However, the presence of ·(t)
will offset this condition, and the corresponding wandering of W in the phase-plane can be traced by a phase
trajectory. Such a (random) status of W and the resulting system instability is, therefore, specified implicitly
by the joint event of instability pertaining to the firings of (presynaptic and/or postsynaptic) neurons due to
the existence of synaptic connectivity.

Hence, in the presence of noise/disturbance, the random variate W(1) can be specified in terms of its value
under noiseless conditions, namely, W(2) by a linear temporal gradient relation over the low-pass action as
follows:

where WR is the root-mean-squared value of W, namely, (<W2>)1/2. By virtue of Equations (6.16-6.1,9,
6.21), the differential time derivative of the Lyapunov energy function Et under noisy conditions can be
written (under the assumption that the �WR/�t is invariant over the low-pass action) as:

Hence, it is evident that as long as the temporal gradient of WR in Equation (6.22) or the strength of noise · in
Equation (6.20) is finite, the system will not reach per se the global minimum and hence the stable state.
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6.6 Stochastical Bounds and Estimates of Neuronal Activity

Considering a neural network, the Hopfield energy surface as given by Equation (6.18) has the first term
which refers to a combinatoric part whose minima correspond to solutions of a complex problem involving
several interactive dichotomous variates. The second part of Equation (6.18) is monadic wherein such
interactions are not present. This monadic term diminishes as the gain of the nonlinear process, namely, the
scale factor › ’ � (as in the case of ideal McCulloch-Pitt’s type of transitions). This also corresponds to
Hopfield’s pseudo-temperature being decreased in the simulated annealing process.

Suppose the variate W is uniformly distributed and the mean square deviation of W is designated as MSW =

(<W> - W)2. The functional estimates of MSW are bounded by upper and lower limits. For example, Yang et
al. [91] have derived two possible lower bounds for MSW, namely, the Cramer-Rao (CR) lower bound and the
information-theoretic (IT) lower bound. Correspondingly, an asymptotic upper bound has also been deduced
[91].

Further, considering a train of input sequences Si stipulated at discrete time values ti (i = 1, 2, …, N), the
weighting function Wi can be specified as a linear least-squares estimator as follows:

where Wi
NF is the initial intercept of Wi at ti = 0 corresponding to the noise-free state (devoid of

Fokker-Planck evolution) and ei’s are errors in the estimation; and:

The minimum least-squares estimator of Wi, namely, We is therefore written as:
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where ae = (HTH)-1(HTW) with:

Hence explicitly:

In ascertaining the best estimate of Wi, the slope (�WR/�t) should be known. For example, relevant to the data
of Figure 6.5, the variation of WR with respect to the normalized time function t/Td (for different values of “)
is depicted in Figure 6.6.

Figure 6.6  Evolution of root-mean-squared value W(t) for different extents of the correlation time (“)
(1.“ = 10-2. “=10-1; 3.“=100; 4.“=10+1 5.“=10+4

As “ increases, the corresponding time delay in neural response (Td) decreases (or t/Td increases) as in Figure
6.6. Hence, the functional relation between WR and t/Td can be “best fitted” as:

where Td� refers to the values of Td as “’�; and, exp(+Td�/Td) accounts for the constant of proportionality
between WR and exp (+t/Td). Hence:

in the presence of ·(t), Equation (6.17) can therefore be rewritten for the estimate of Si, namely, Sei as:

where Äd denotes the time of integration or the low-pass action. Further, the subscript e specifies explicitly
that the relevant parameters are least-squares estimates. Thus, the above equation refers to the time-dependent
evolution of the stochastical variable Si written in terms of its least squares estimate in the absence of ·(t) and
modified by the noise-induced root-mean-squared value of WR.

Upon integation, Equation (6.27) reduces at discrete-time instants to:

where (ti/ÄoeÄd/Äo).
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Obviously, the first part of Equation (6.28) refers to noise-free deterministic values of Si; and the second part
is an approximated contribution due to the presence of the intracell disturbance/noise ·. Implicitly, it is a
function of the root-mean-squared value (WR) of the stochastical variable Wi, spectral characteristics of ·
specified via the delay term Td(“), the time-constant of the low-pass action in the cell (Äo), and the time of
integration in the low-pass section (Äd).

The relevant estimate of the Hopfield energy function of Equation (6.28) can be written as the corresponding
Lyapunov function. Denoting the time-invariant constant term, namely, Äo[exp(Äd/Äo) - 1] as Æ1, the
estimate of the Lyapunov function is given by:

where Äd do and Æ2 [Äo
2/Td(“)] represents the following expression:

In the absence of noise or disturbance (·), the energy function E as defined by Equation (6.18) (with the
omission of ·) has minima occuring at the corners of the N-dimensional hypercube defined by 0 d i Ãi d 1,
provided ¸i’s (i = 1, 2, …, N) are forced to zero by a suitable change of coordinates.

In the event of the noise (·) being present, the estimated Lyapunov energy function given by Equation (6.29)
cannot have such uniquely definable locations of minima at the corners. This is due to the presence of the
noise-induced fourth term of the Equation (6.29a) correlating the ith and the jth terms, namely,

, unless the second term involving Ãi and this fourth term are combined as one
single effective bias parameter, Ii(ti); hence, Ii’s can be set to zero via coordinate transformation forcing the
minima to the corners of the N-dimensional hypercube as a first-order approximation discussed in the
following section.
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6.7 Stable States Search via Modified Bias Parameter

Figure 6.7  Linear recursive search of stable states ·: Noise; µr: Error; LPA: Low-pass action(integrator) F:
Nonlinear estimator; Ii: Modified bias parameter [Ii ’ ¸i, as µr ’ 0, S1 ’ S and ¸’i ’ ¸i as · ’ 0]

In the previous section, it is indicated that the presence of intracell disturbance ·i implicitly dictates the
external bias parameter ¸i being modified to a new value specified as Ii. If the strength of randomness of the
disturbance involved is small, an approximate (linear) recursive search for stable states is feasible. In general,
the noise-perturbed vector a when subjected to F-1 transformation yields the corresponding noise-perturbed
value of S1 as illustrated in Figure 6.7.

Hence, the summed input S and S1 can be compared, and the corresponding error µr can be used to cancel the
effect of the intracellular noise which tends to alter the value of the input bias ¸i to Ii as shown in Figure 6.7.
The corresponding correction leads to Ii ’ ¸i (H¸i). If necessary, a weighting WI (such as linear-logarithmic
weighting) can be incorporated on ¸i’ for piecewise compatibility against the low to high strength of the
randomness of the noise.

6.8 Noise-Induced Effects on Saturated Neural Population

The intracell disturbances could also affect implicitly the number of neurons attaining the saturation or the
dichotomous values. Relevant considerations are addressed in this section pertaining to a simple input/output
relation in a neuronal cell as depicted in Figure 6.8.
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Figure 6.8  Network representation of neurocellular activity

The dynamics of neuron cellular activity can, in general, be written explicitly as [92]:

where Äo is the time-constant (RC) of the integrator stated before and WI is the weighting factor on the
external bias ¸i (modified to value Ii due to the noise, ·). The neuronal state change is governed between its
dichotomous limits by a nonlinear amplification process (with a gain ›) as follows:

Over the transient regime of state change, the number of neurons attaining the saturation (or the dichotomous
limits) would continuously change due to the nonlinear gain (›) of the system. Denoting the instants of such
changes as a set of {tk}, k � 0, 1, 2, …, at any instant tk, the number of neurons still at subdichotomous
limiting values is assumed as ¼k. Therefore, during the period tk d t d tk+1, the following state dynamics can
be specified:

assuming that Wij = WI and Äo = 1. Further, Çi = Ii + › Sign (Si) where:

The coupled relations of Equation (6.32) are not amenable for a single solution. However, as indicated by

Yuan et al. [92], an intermediate function , with  can be introduced in
Equation (6.32) so as to modify it as follows:

If › > (M + 1) and |Si| d 1, a relevant solution of Equation (6.34) indicates Si growing exponentially. However,
if |Si| > 1, the dynamics of Si become stable provided Ii ’ ¸i with · = 0. At this stable state, considering the

intermediate function  Sign(Si) and |Si| > 1, for all 1 d i d M, the dynamic solution of Equation
(6.34) can be written as:
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As the network responds to an input vector Si to yield a dichotomous vector Ãi, the initial condition set as
Si(0) and the external bias parameter Ii (’ ¸i) determine the division of neuronal states being “high” or “low”.
Yuan et al. [92] point out that the binary output vector Ã has M/2 neuronal high states corresponding to the
M/2 high state components of the bias input; and there are M/2 neuronal low states corresponding to the rest
of the components of the bias input. In the event of ¸i being corrupted by an additive noise, the resulting input
bias, namely, Ii, will upset this division of high and low level states in the output vector Ã in a random
manner which manifests as the neuronal instability.
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6.9 Concluding Remarks

The inevitable presence of noise in a neural assembly permits the neurons to change their internal states in a
random manner. The relevant state-transitional stochastical dynamics is governed by relaxational equation(s)
of Langevin or Fokker-Planck types.

In general, the noise or intracell disturbances cited above could be gaussian, but need not be white. Such
band-limited (colored) properties are intrinsic properties of the disturbances and are not influenced by the
switching action of the state transition. Considering the colored noise situation, the Langevin and/or
Fokker-Planck equation(s) can be solved by a scaling approximation technique.

The colored nature of the cellular noise also refers implicitly to the markovian nature of the temporal statistics
of the action potentials which assume bistable values at random intervals. The weighting times in each state
are exponentially distributed. Correspondingly, the onset of macroscopic order of neuronal state transition is
simply delayed (in extensive terms) as the correlation time increases. The correlation time does not, however,
alter the qualitative aspects of intracellular disturbances.

The effect of intracellular disturbances when addressed to artificial neural networks refers to stochastical
instability in solving optimization problems. Such noise-induced effects would render the problem suboptimal
with increased computational time.

Considering Hopfield networks, the presence of intracellular noise may not permit the network to settle at a
global minimum of the energy function.

In terms of the Lyapunov condition, this nonrealization of a global minimum refers to the instability in the
state transition process with specified lower and upper statistical bounds.

In the presence of noise, linear estimates of the input/output vectors of the neuronal network can be obtained
via linear regression techniques. The corresponding estimate of the energy function indicates that the effect of
intracellular disturbances can be implicitly dictated by modifying the constant (external) input bias to an
extent proportional to the strength of the randomness.

The implications of this modified bias parameters are:

a.  For small values of noise, a linear approximation of input-output relation leads to the feasibility of a
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recursive search for stable states via appropriate feedback techniques.

b.  The modified bias parameter also alters the saturated neuronal state population randomly.
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Chapter 7
Neural Field Theory: Quasiparticle Dynamics and
Wave Mechanics Analogies of Neural Networks

7.1 Introduction

As a model, the neural topology includes a huge collection of almost identical interconnected cells, each of
which is characterized by a short-term internal state of biochemical activity. The potential (or the state) at
each cell is a dichotomous random variate; and, with a set of inputs at the synaptic junction pertaining to a
cell, the state transition that takes place in the neuron progresses across the interconnected cells. Thus, the
spatial progression of state-transitions represents a process of collective movement. Such spatiotemporal
development of neuronal activity has been considered via partial differential equations depicting the diffusion
and/or flow field considerations which refer to continuum theories (as opposed to detailed logic model of
discrete neuronal units) and designated as neurodynamics or neural field theory. For example, as elaborated in
Chapter 3, Beurle [42] proposed a flow model or wave propagation to represent the overall mean level of
neuronal activity. Griffith [11-14] modeled the spatiotemporal propagation of neuroelectric activity in terms
of an excitation function (¨e) of the neurons and an activity function (Fa) concerning the soma of the neurons.
He considered the neuronal spatial progression as an excitation that “is regarded as being carried by a
continual shuttling between sources and field”; that is, the excitation (¨e) creates the activity (Fa) and so on.
He interrelated ¨e and Fa by He¨e = kaFa where He represents an “undefined” operator and developed a
spatiotemporal differential equation to depict the neuronal flow. The efforts of Griffith were studied more
elaborately by Okuda et al. [93] and the pursuant studies due to Wilson and Cowan [44] addressed similar
spatiotemporal development in terms of a factor depicting the proportion of excitatory cells becoming active
per unit time. Relevant equations correspond to those of coupled van der Pohl oscillators. Alternative
continuum perspectives of viewing neuronal collective movement as the propagation of informational waves
in terms of memory effects have also been projected in the subsequent studies [47].

In all the above considerations, the neural activity has been essentially regarded as a deterministic process
with a traditional approach to neurodynamics based on dynamic system theory governed by a set of
differential equations. However, the neural assembly in reality refers to a disorder system wherein the neural
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interactions closely correspond to the stochastical considerations applied to interacting spins in the Ising
spin-glass model(s) as discussed in Chapter 5. Such statistical mechanics attributions of the neuronal activity
could warrant flow considerations analogous to particle dynamics of disorder systems. Hence, considered in
the present chapter are momentum flow and particle dynamics analogies vis-a-vis the neuronal collective
movement of state-transitional process in “bulk neural matter” viewed in continuum-based neural field theory.

7.2 “Momentum-Flow” Model of Neural Dynamics

As indicated by Peretto [38], the studies on the equilibrium and/or the dynamics of large systems (such as
neural networks) require a set of extensive quantities to formalize the vectors depicting the equilibrium and/or
dynamic state of the system. Such an extensive parameter embodies the distributed aspects of activity
involving real (nonpoint/macroscopic) assembly. As well, it provides the relation between the localized
phenomena (state instability, etc.) to the global picture of neural transmission, namely, the collective
movement of neurons over the long-term memory space © representing the weights of the neuronal
interconnections.

Discussed here is the possibility of representing the neural transmission or “propagation” as a collective
progression of the state-transitions across the space © as analogous to a momentum flow so that an associated
wave function formalism provides an alternative extensive quantity for the “input-outgo” reasoning pertaining
to the neural assembly.

It is assumed that the neuronal aggregate is comprised of a large number M of elementary (cells) units i, (i � 1,
..., M); and the relevant dynamics of this neural system are viewed in the phase-space continuum © being
dictated by xi trajectorial variates with the associated momenta, pi. The corresponding HN {x,p} refers to the
Hamiltonian governing the equations of neural transmission. Considering analogously a wave-packet
representation of the transport of M quasiparticles, the energy E associated with M units (on an extensive
basis) of the neural assembly can be written as:

and the corresponding momentum is:

where É is the “angular frequency”, k is the “propagation vector (constant)” of the neuronal “wave”

transmission, and  is a parameter (analogous to Planck’s constant).

Then the associated rate of flow of energy (or power flow) can be specified by:

where  is the “group velocity” of the wave analogously representing the neuronal flow; hence, the
corresponding momentum flow can be expressed as:

The input-output relation in a neuronal system refers essentially to a state-transition process depicting an
energy E1 (corresponding to a momentum p1) changing to an energy E2 with a momentum p2, and the
relevant conservation laws are therefore:

The above relations also represent analogously the neural transmission as a quasiparticulate (or corpuscular)
motion in the domain © with a dual characterization as a wave as well. Hence the neuronal cell across which
the state-transition between the dichotomous limits occurs, can be regarded as a potential bidirectional well
wherein the “neuronal particles” reside.

The synaptic biochemical potential barrier energy ¦pB, which represents a short-term activity in the neural

complex, should be exceeded so that an output is realized as a result of the neuronal input energy, .

Correspondingly, the biochemical potential barrier energy can be depicted as . The output or



no-output conditions (that is, the wave propagation or evanescent behavior), therefore, refers to ,
respectively.
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Now, denoting the neuronal momentum as , the critical transition between a progressive and an

evanescent (reflected) wave corresponds to the propagation vector , respectively.

Following the analysis due to Peretto [38], the set of internal states of a large neural network is designated by
Si{i � 1, 2, ..., M}, which represents the internal state marker for the elementary unit i. Pertinent to the set
{Si}, an extensive quantity Q(Si) can be specified which is proportional to M, the size the of the system. The
internal state has two dichotomous limits, namely, +SU and -SL associated with MU and ML cellular elements
(respectively) and (MU + ML) = M. Hence, in the bounded region ©, (MU/M) and (ML/M) are fractions of
neurons at the two dichotomous states, namely, SU and SL, respectively. It may be noted that in the
deterministic model due to Wilson and Cowan [44], these fractions represent the proportions of excitatory
cells becoming active (per unit time) and the corresponding inactive counterparts.

In terms of the phase space variable x and the associated momentum p, the probability distribution Á({x, p},
t) refers to the probability of the systems being in the {x,p} phase space, at time t. It is a localized condition
and is decided explicitly by the stationary solution of the Boltzmann equation (dp/dt = 0) leading to the Gibbs
distribution given by:

where Z refers to the partition function given by the normalization term £{x, p}exp[-HN(x, p)/kBT]); here, kB
is the pseudo-Boltzmann constant, T is the pseudo-temperature, and HN(x,p) refers to the Hamiltonian which
is the single global function describing the dynamic system.

Pertinent to the kinetic picture of the neuronal transmission, the wave function ¨ and its conjugate ¨* are two
independent variables associated with the collective movement of the neuronal process in a generalized
coordinate system with p and x being the canonical momentum and positional coordinates, respectively.
Hence, the following transformed equations can be written:
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where p and x satisfy the classical commutation rule, namely, [x, p] = 1 and, [x, x] = [p, p] = 0. Further, the
corresponding Hamiltonian in the transformed coordinate system is:

The canonical momentum p and the canonical coordinate x are related as follows:

which are Hamilton’s first and second equations, respectively; and the Hamiltonian U which refers to the
energy density can be stated in terms of an amplitude function ¦ as:

The corresponding energy-momentum tensor for the neuronal transmission can be written as:

where

G = |¦|2 k Momentum density

Energy flux density

Momentum flux density of the
neuronal flow or flux

The above tensor is not symmetric; however, if the momentum density function is defined in terms of the

weighting factor W as G = |¦|2 k/W2 (with the corresponding , then the tensor is rendered
symmetric.

The dynamics of the neuronal cellular system at the microscopic level can be described by the Hamiltonian
HN, (x1, x2, ..., xM; p1, p2, ..., pM; S1, S2, ..., SM) with the state variables Si’s depicting the kinematic
parameters imposed by the synaptic action. The link between the microscopic state of the cellular system and
its macroscopic (extensive) behavior can be described by the partition function Z written in terms of
Helmholtz free energy associated with the wave function. Hence:

where kBT represents the (pseudo) Boltzmann energy of the neural system as stated earlier. On a discrete
basis, the partition function simply represents the sum of the states, namely:

where Ei depicts the free energy of the neuronal domain ¦i. Essentially, Z refers to a controlling function
which determines the average energy of the macroscopic neuronal system. There are two possible ways of
relating the partition function versus the free energy adopted in practice in statistical mechanics. They are:

Helmholtz free energy:

Gibbs free energy:

The corresponding partition functions can be explicitly written as:

and



where f is the force vector.

The relevant Hamiltonians referred to above are related to each other by the relation,

and the following Legendre transformations provide the functional relation between  versus the force

vector  and Si versus Hf.

Physically, for a given set of microscopic variables (x, p), the function  describes a system of neuronal
“particles” with coordinates xi’s and momenta pi’s in interaction with the environment ©i having the states

(Si) stipulated by a set of kinematic parameters Si’s, i � 1, 2, ..., M; and the Legendre transform Hf (x, p; )

describes the same system in interaction with ©i with a dynamical force parameter . Thus,  and Hf are
alternative Hamiltonians to describe the neural dynamics associated with ©i.

Previous Table of Contents Next

Products |  Contact Us |  About Us |  Privacy  |  Ad Info  |  Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc. All rights
reserved. Reproduction whole or in part in any form or medium without express written permission of

EarthWeb is prohibited. Read EarthWeb's privacy statement.

http://corpitk.earthweb.com/
http://corpitk.earthweb.com/content/corp.html
http://corpitk.earthweb.com/search/
http://corpitk.earthweb.com/faq/faq.html
http://corpitk.earthweb.com/sitemap.html
http://corpitk.earthweb.com/contactus.html
http://corpitk.earthweb.com/products.html
http://corpitk.earthweb.com/contactus.html
http://corpitk.earthweb.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://corpitk.earthweb.com/
http://corpitk.earthweb.com/agreement.html
http://corpitk.earthweb.com/copyright.html
http://www.earthweb.com/about_us/perm.html
http://www.earthweb.com/about_us/privacy.html


       

  

     

    

   Search Tips

   Advanced Search

    

  

  

Neural Network Modeling: Statistical Mechanics and Cybernetic Perspectives
by P. S. Neelakanta; Dolores DeGroff
CRC Press, CRC Press LLC
ISBN: 0849324882   Pub Date: 07/01/94

Search this book:

 

Previous Table of Contents Next

7.3 Neural “Particle” Dynamics

The kinetic quasiparticle description (with a microscopic momentum-position attribution) of a neuronal phase
space is apropos in depicting the corresponding localizable wave-packet, ¨(x, t). Considering the neuronal
transmission across the ith cell similar to random particulate (Brownian) motion subjected to a quadratic
potential, the Langevin force equation depicting the fluctuation of the state variable specifies that [87,94]:

where So is a normalization constant, ± is a constant dependent on the width of the potential barrier, mN is the

pseudo-mass of the neuronal particle and  is the critical velocity at which this “particle” in the absence of
the effect of (thermal) random force will just reach the top of the barrier and come to rest. In the event of the

neuronal energy E exceeding the barrier potential ÆpB, or , the corresponding transmission function

 is given by [87,94]:

The transmission function indicated above specifies implicitly the nonlinear transition process between the
input-to-output across the neuronal cell. The motion of a “neuronal particle” can also be described by a wave

function . The eigenfunction ˜i(x) is a solution to:

and

assuming that at x = 0 crossing of the potential barrier occurs depicting a neuronal state transition.
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The traveling wave solution of Equation (7.20a) in general form is given by:

where  is the momentum equal to ; and CRn is the reflection coefficient.

Similarly, for x > 0:

where ; and (1 - CRn is the transmission coefficient

Classically, the neural state transmission corresponding to the “neuronal particle” entering the (output) region
x > 0 has a probability of one. Because of the presumed wave-like properties of the particle, there is a certain
probability that the particle may be reflected at the point x = 0 where there is a discontinuous change in the
regime of (pseudo) de Broglie wavelength. That is, the probabililty flux incident upon the potential
discontinuity can be split into a transmitted flux and a reflected flux. When E H ÆpB, the probability of
reflection would approach unity; and, in the case of E >> ÆpB, it can be shown that [95]:

or even in the limit of large energies (or E >> ÆpB), the (pseudo) de Broglie wavelength is so very short that
any physically realizable potential Æ changes by a negligible amount over a wavelength. Hence, there is total
potential transmission with no reflected wave corresponding to the classical limit. Further, the transmission

factor (for x > 0) can be decided by a function Func(.) whose argument  can be set equal to:

where aPB refers to the width of the potential barrier.

Therefore, the transmission factor of Equation (7.19) can be rewritten in terms of the energy, mass and
wave-like representation of neuronal transmission as:

In terms of neuronal network considerations, CTn can be regarded as the time-average history (or
state-transitional process) of the activation induced updates on the state-vectors (Si) leading to an output set,
Ãi. This average is decided explicitly by the modified Langevin function as indicated in Chapter 5. That is, by
analogy with particle dynamics wherein the collective response is attributed to nonlinear dependence of forces
on positions of the particles, the corresponding statistics due to Maxwell-Boltzmann could be extended to
neuronal response to describe the stochastic aspects of the neuronal state-vector. The ensemble average which
depicts the time-average history thereof (regarding the activation-induced updates on state-vectors) is the
modified Langevin function, given by [16]:

where ²G is a scaling factor and (²G/kBT) is a nonlinear (dimensionless) gain factor ›. This modified Langevin
function depicts the stochastically justifiable squashing process involving the nonlinear (sigmoidal) gain of
the neuron unit as indicated in Chapter 5. Further, the modified Langevin function has the slope of (1/3 +
1/3q) at the origin which can be considered as the order parameter of the system. Therefore, at a specified
gain-factor, any other sigmoidal function adopted to depict the nonlinear neuronal response should have its
argument multiplied by a factor (1/3 + 1/3q) of the corresponding argument of the Langevin function.

Heuristically, the modified Langevin function denotes the transmission factor across the neuronal cell. Hence,



writing in the same format as Equation (7.19), the transmission factor can be written in terms of the modified
Langevin function as follows:

Comparing the arguments of Equations (7.24) and (7.26a), it can be noted that:

omitting the order parameter which is a coefficient in the argument of Equation (7.24), due to the reasons
indicated above. Hence, it follows that:

Thus, in the nonlinear state-transition process associated with the neuron, the limiting case of the gain › ’ �
(McCulloch-Pitts regime) corresponds to the potential barrier level ÆpB ’ �. This refers to the classical limit of
the (pseudo) de Broglie wavelength approaching zero; and each neuronal state Si is equitable to an energy
level of Ei. That is, for the set of neuronal state-vectors {Si} Ô {Ei}.
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The McCulloch-Pitts depiction of a neuron (best known as the “formal” or “mathematical” neuron) is a
logical and idealized representation of neuronal activity. It purports the idealization of a real neuron with the
features of being able to be excited by its inputs and of giving an output when a threshold is exceeded. This
all-or-none response, although it provides a digital machine logic mathematically with ease of tracking the
state-transitions in the neuronal transmission, it is rather unrealistic in relation to its time dependence. That is,
the McCulloch-Pitts model presents results on the state-transitional relaxation times which are astronomically
large in value, “which is not obvious” in the real neuron situation as also observed by Griffith [11,12]. In the
present modeling strategies, the nonrealistic aspects of the McCulloch-Pitts model vis-a-vis a real neuron is
seen due to the fact that only in the limiting case of the (pseudo) de Broglie wavelength approaching zero, the
nonlinear gain (›) of the state-transition process would approach infinity (corresponding to the
McCulloch-Pitts regime). However, this is only possible when the cellular potential barrier value ÆpB
approaches infinity which is rather physically not plausible. As long as ÆpB has a finite value less than Ei, › is
finite as per the above analysis confirming a realistic model for the neuronal activity rather than being the
McCulloch-Pitts version. In terms of magnetic spins, the spontaneous state transition (McCulloch-Pitts’
model) corresponds to the thermodynamic limit of magnetization for an infinite system (at temperature below
the critical value). This infinite system concept translated into the equivalent neural network considerations,
refers to the nonlinear gain (›) of the network appproaching infinity.

The foregoing deliberations lead to the following inferences:

•  The dynamic state of neurons can be described by a set of extensive quantities vis-a-vis momentum
flow analogously equitable to a to quasiparticle dynamics model of the neuronal transmission, with
appropriate Hamiltonian perspectives.

•  Accordingly, the neural transmission through a large interconnected set of cells which assume
randomly, a dichotomous short-term state of biochemical activity can be depicted by a wave function
representing the particle motion.

•  Hence, considering the wave functional aspects of neuronal transmission, corresponding
eigen-energies can be stipulated.

•  Further, in terms of the Hamiltonian representation, of neural dynamics, there are corresponding
free-energy (Helmholtz and Gibbs’ versions) and partition functions.

•  Relevant to quasiparticle dynamics representation, the neural transmission when modeled as a
random particulate (Brownian) motion subjected to a potential barrier at the neuronal cell, a Langevin
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force equation can be specified for the state-transition variable in terms of a “neuronal mass”
parameter; and, the transmission (excitatory response) across the cell or nontransmission (inhibitory
response) is stipulated by the neuronal particle (dually regarded also as a wave with an eigen-energy)
traversing through the cellular potential or reflected by it. The quasiparticulate and wave-like
representation of neuronal transmission leads to the explicit determination of transmission and
reflection coefficients.

•  On the basis of particulate and/or wave-like representation of neuronal transmission and using the
modified Langevin function description of the nonlinear state-transition process, a corresponding gain
function can be deduced in terms of the neuronal mass and the barrier energy. Relevant formalism
specifies that the gain function approaching infinity (McCulloch-Pitts’ regime) corresponds to the
potential barrier level (ÆpB) at the cell becoming infinitely large in comparison with the eigen-energy
(Ei) of the input (which is not however attainable physically).

•  In terms of (pseudo) de Broglie’s concept extended to the dual nature of neurons, the spontaneous
transition of McCulloch-Pitts’ regime refers to the wavelength becoming so very short (with ÆpB <<
Ei) that any physically realizable potential would change only by a negligible amount over a
wavelength. This corresponds to the classical limit of transmission involving no reflection.

•  The “size” of the wave-packet associated with neuronal quasi-particle transmission can be related to
the range of the interaction and the momentum of the incident particle. When the spread is minimum,
the passage of a wave packet can be considered as the neuronal transmission with a state-transition
having taken place. This can be heuristically proved as follows.

The extent of the cluster of cells participating in the neuronal transmission refers to the average range of
interaction (equal to <xij>); and the corresponding size of the wave-packet emulating the neuronal

transmission can be decided as follows: Suppose (”xij)in is the spatial spread of the incident wave-packet at
the site, i. After the passage through the cell (local interaction site), the corresponding outgoing wave-packet

has the spread given by [3]:  where Äij is the ith to jth site-trans time; and the

velocity term  is dictated by the uncertainity principle, namely, . Also Hij H <xij>/vij =

<xij> mN/p. Hence (Äxij)out has a minimum when . The corresponding momentum

spread is, therefore, .

The aforesaid parameter spreading implicitly refers to the smearing parameter defined by Shaw and
Vasudevan [76] in respect to Little’s analogy [33] of neurons and and Ising glass spins. The ad hoc parameter
² = 1/kBT in Little’s model represents the fluctuation governing the total (summed up) potential gathered by
the neuron in a time step taken in the progression of neuronal activity. Shaw and Vasudevan relate the factor
1/kBT to the gaussian statistics of the action potential and the poissonian process governing the occurrence of
the rate of chemical quanta reaching the postsynaptic memory and electrically inducing the postsynaptic
potential. The relevant statistics elucidated in [76] referred to the variations in size and the probability of
release of these quanta manifesting as fluctuations in the postsynaptic potentials (as observed in experimental
studies).
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It can be observed that this smearing action is seen implicitly in terms of wave function attributes specified as
the spreads (”x, ”p). Thus › = ²G² = ²G/kBT is controlled by the smearing action. That is, in the total absence of
fluctuations in the postsynaptic potentials, kBT ’ 0; and › ’ � depicts McCulloch-Pitts’ regime. In the real
neurons, the inevitable fluctuations in the summed up potential would always lead to a finite smearing with
corresponding finite spreads in the wave function parameters leading to nonspontaneous state-transitions with
a finite value ›.

7.4 Wave Mechanics Representation of Neural Activity

As discussed earlier, the biological neural assembly refers to a complex linkage of an extremely large number
of cells having synaptic junctions across which the neuronal transmission takes place. Such a transmission is
governed by a complex biochemical (metabolic) activity and manifests as a train of spiky impulses (action
potentials). That is, the operation of neural networks, in essence, refers to the all-or-none response of the basic
units (neurons) to incoming stimuli. A neuron is activated by the flow of chemicals across synaptic junctions
from the axons leading from other neurons. These electrical effects which reach a neuron may be excitatory or
inhibitory postsynaptic potentials. If the potential gathered from all the synaptic connections exceeds a
threshold value, the neuron fires and an action potential propagates down its one output axon which
communicates with other neurons via tributary synaptic connections. The neuronal topology, as a model,
includes therefore a huge collection of almost identical (cell) elements; and each such element is characterized
by an internal state (of activity) with transitional dynamics and connected to each other via synaptic
interactions.

In general, the interconnected set of neurons (Figure 7.1) represents a disordered system with the following
attributes: (1) In the assembly of M neurons, the ith neuron is characterized by the ordered pair (Si, Wij)
representing the short-term (memory) state and the long-term (memory) state respectively; (2) The short-term
(memory) state Si refers to the state of the neuron’s local (biochemical) activity; (3) The long-term (memory)

state Wij is a multidimensional vector modeling the synaptic weights associated between the ith and the other
interconnected neurons; (4) With a feedback that exists between the output to the input, the neural assembly
represents a recurrent network wherein the input is updated or modified dynamically by the feedback from the
output. That is, in response to an applied input vector, each neuron delivers an output; and the ith neuron’s
output is taken commonly as a sigmoid function, F(Si), of the short-term state. The state equation for a neuron

http://www.earthweb.com/
http://corpitk.earthweb.com/
http://corpitk.earthweb.com/content/corp.html
http://corpitk.earthweb.com/search/
http://corpitk.earthweb.com/faq/faq.html
http://corpitk.earthweb.com/sitemap.html
http://corpitk.earthweb.com/contactus.html
http://corpitk.earthweb.com/search/search-tips.html
http://corpitk.earthweb.com/search/search-tips.html
http://corpitk.earthweb.com/search/
http://corpitk.earthweb.com/search/


can be written as:

where ¸i is a constant external bias; and (5) the neuronal inputs represented by a set of vectors  are a
sequence of statistically independent entities which are also distribution-ergodic.

The activity of a biological neuron as summarized above in an organization of a large neuronal assembly
represents a cooperative process in which each neuron interacts with many of its neighbors; and, as dictated
by a threshold, the input-output response of a neuron was represented as a simple dichotomous state system
— active and inactive by McCulloch and Pitts. This “formal” or “logical” neuron model has been developed
into a more comprehensive model since then with the state equation given by Equation (7.27); and the
corresponding Hamiltonian associated with the neuronal interaction is written as:

Figure 7.1  Pyramidal interconnection of neural cells and its network representation

In many respects, the aforesaid mathematical depiction of the neuron is analogous to the magnetic spin model
in which a large ensemble of magnetic dipoles/domains interact with each other in varying weights as detailed
in Chapter 5. In addition to the statistical mechanics characterization of neuronal activity, the input-output
relation depicting the collective response of the neuronal aggregates has also been treated as due to a flow of
flux spreading across the interacting units as described earlier in this chapter.

In view of these considerations which display the analogies between statistical mechanics and neuronal
dynamics indicating the feasibility of modeling the neuronal activity by a “flow system”, an alternative
approach based on wave mechanical perspectives in conjunction with the associated wave function(s)
depicting the neural transmission can be considered as discussed in the following sections.

7.5 Characteristics of Neuronal Wave Function

The neural activity as modeled here refers to the motion of the neuronal wave or the collective movement of
state-transitions through a set of interconnected sites (neuronal cells) in the domain ©. These cells are at
random dichotomous potentials as a result of short-term biochemical ionic activity across the cellular
membrane. Each time when the neuronal assembly is stimulated by an input, it corresponds to a set of inputs
causing a “collective movement” of neurons through a domain which can be designated as the long-term
(memory) space (©). This weight-space, in which both the moving state vector {Wij} and the applied input
vector exist (Figure 7.2), constitutes a continuum wherein the evolution of neuronal distribution and a
dynamic activity persist.

Figure 7.2  Long-term neural activity space (©)
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The proliferation of neuronal wave through this system can be described by a time-dependent wave function
¨(x, t) namely:

where E(x, t) refers to the random site potential with a given statistics,  is the (pseudo) velocity of neurenal
wave propagation, and (1/ÄN) is the rate at which the neuronal transmission is set inhibitory at the sites (cells)
wherein the random potential E(x) assumes a zero value with a probability w; and, at the sites where E(x)
exceeds a threshold barrier potential ÆpB, there is an excitatory process permitting the neuronal transmission
with a probability (1 - w). The random potential at a cellular site, namely, E(x), is assumed to be uncorrelated
at different sites and dichotomous in nature; that is, it takes values zero or ÆpB (with probabilities w and (1 -
w) respectively). The integral +¨(x, t)dx represents the total neuronal transmission probability.
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Assuming the initial condition for ¨(x, t = 0) as independent of the site coordinate x, then at an, ith site with a
random potential Ei(x), the solution for ¨i(x, t) can be written explicitly in terms of a complete set of
eigenfunctions and eigenvalues, namely:

where  and the eigenvalues  are all positive. Further, the asymptotic expansion of ¨i(x, t) is
decided predominantly by the lowest eigenvalues. As defined earlier, the total transmission probability for a
given site is ¨i(t) = +i(x, t)dx. The corresponding ensemble-average behavior of the neuronal transmission over

the entire neuronal cell aggregates can be specified by the first cumulant [K2(t) - K1
2(t)], where K1(t) and

K2(t) are the first and second moments of ¨i(x, t) respectively; and this first cumulant refers to the lower
bound of the neuronal transmission statistics. It is much larger than the mean value, K1(t). That is, the
fluctuations of neuronal transmission dominate the mean level of transmission. In other words, the random
neuronal transmission across the interconnected cells over the long-term (memory) space © or the collective
movement of state-transitions is a zero-mean stochastical process. Correspondingly, the wave function set
forth by the random potentials at the cellular sites has a non-self-averaging behavior.

The incident (or incoming) collective movement of neurons in the domain © has its energy relation specified
again in terms of a wave function ¨ similar to the conventional Schrödinger wave equation:

where , as indicated earlier, refers to the velocity of the “neuronal wave”; and the “connectivity” of
neuronal transmission between the cells, therefore, corresponds to a scalar weighting factor (similar to the
refractive index of a medium) given by W = [1 - (¦pB/E)2]1/2.

Considering the analogy with the Ising spin model, the interconnected set of a large number of M neurons
(with the state transition at a localized site, i) has a Hamiltonian or the extensive quantity given by [38]:
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where Wij is the weighting factor, and £¸iÃi is the Hamiltonian introduced by an external field (bias) ¸i at site
i. In terms of the extensive parameter (or the Hamiltonian) HN, the eigenvalue equation can be written as: HN
¨i = Ei¨i, where i indexing refers to the set of eigenstates.

Considering the neuronal wave equation (Equation 7.29), the progressive (traveling) wave solution given by
Equation (7.30) can be explicitly written as:

where the propagation vector (constant) k is decided by the boundary conditions relevant to the wave function
¨. Further, the quantity ¸a refers to the phase constant associated with the amplitude of the wave, and ¦ refers to
the amplitude function of the wave.

The selective wave functions ¦i (or mode functions), which are the eigen-solutions of the wave equation and
propagate across the domain ©, correspond to the excitatory neuronal transmission. Those which are cut off
can be considered as having faced an inhibitory process and represent the evanescent waves. Over the

subregions of  with ©i ) ©j = 0 for i ` j, and M as indicated earlier, refers to the total number of

subregions or cells (Figure 7.2). For the ith subregion, field ¨i is defined as ¨i = ¨ (©i) or zero for outside ©i;

and ¨ = £i
M¨i with the summation representing the geometrical conjunction or the synaptic junction wherein

the superposition of neuronal inputs occurs.

Each ¦i being orthonormal to all other mode functions permits the incident (incoming) wave function ¨in to be
expanded more explicitly in reference to the two domains ©i (i � MU) and ©i’ (i’ � ML) via spatial harmonics
as:

where (n = 0, 1, ..., �), (v = 0, 1, ..., �) and An and Bv are the amplitudes of the relevant modes.

The {(¨i)} components in the ith subregion correspond to the excitatory process leading to the final outcome as
(+SU); and (¨i’)’s are the reflected waves which are evanescent. They do not contribute to the output, and the
relevant inhibitory process renders the dichotomous state as (-SL). The existence of (¨i)’s and (¨i’)’s is dictated
by the relevant continuity conditions. In terms of energy density functions, the conservation relation can be
written in terms of the modal functions as:

If the amplitude of the incident wave function is set equal to a(©i/©) where (©i/©) is the fraction depicting

the spatial extent (or size) of the ith neuron in the state-space assembly of ¨, then £¦i and £¦i’ can be
proportionately set equal to CTn a(©i/©) and CRn a(©i/©), respectively. Here, CTn and CRn as mentioned
earlier are coefficients of transmission and reflection, respectively, so that CTn = (1 - CRn).

7.6 Concepts of Wave Mechanics versus Neural Dynamics

The concepts of wave mechanics described above can be translated into considerations relevant to the
neuronal assembly and/or a large (artificial) neural network. Considering the neuronal dynamics, the kinetics
of the neuronal state denoted by a variable Si and undergoing a transition from S1 to S2 can be specified by a
transition probability (or the probability per unit time that a transition would take place from state S1 to state
S2), namely, wi(S1, S2); and, in terms of wave mechanics perspective, wi is given by the Fermi golden rule,
namely:



where ¦i is the eigen-potential function specified by Equation (7.35),  and  are energy level transitions,
and the delta function guarantees the energy conservation.
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In terms of this transitional probability, the rate of change of the probability distribution function Á (at a given
time, t) of the neuronal state (corresponding to the subregion ¦i) can be written via the well-known Boltzmann
equation, namely:

The above Equation (7.37) specifies the net change in ¦ at the same instant (markovian attribution) as the
excitatory process permits the progressive neural transmission and the inhibitory process sets an evanescent
condition of inhibiting the neural transmission.

Under the equilibrium condition, setting dÁ/dt = 0 yields:

where the superscript o refers to equilibrium status. Assuming that the equilibrium values Áo (S1) and Áo (S2)

are decided by Boltzmann distribution, , it follows that w(S2,
S1) exp [(ES1 - ES2)/kBT] = w(S1, S2); and this relation (known as the principle of detailed balance) must be
satisfied regardless of the microscopic origin of neuronal interactions, as has been observed by Peretto [38].
Further, if the energy of the equilibrium state (S0) is much larger than the other two dichotomous states S1 and
S2, w(S2, S0) << w(S0, S2), the solution of master equation (Equation 7.37) leads to:

. That is, the probability of neurons being in the state |S0> will decay
exponentially with a time-constant ÄS0; or from the neural network point of view it refers implicitly to the
integration process (low-pass action) associated with neuronal input-output relation.

In terms of the macroscopic potential function ¦(S0) in the sample domain ©i, specified by

, the time dependency of the neuronal transition process can also be written as:
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where <Ä> is the average (energy) relaxation time or the time of integration involved in neural transmission.

In a neuronal aggregate of M cells with the dichotomous state of activity, there are 2M possible different states
which could be identified by S = 1, ..., 2M associated with an M-dimensional hypercube. A superficial
analogy here with the quantum statistical mechanics situation corresponds to a set of M subsystems, each
having two possible quantum states as, for example, a set of M atoms each having a spin 1/2 [13,32].

Each of the 2M states has a definite successor in time so that the progress of the state-transition process (or the
neuronal wave motion) can be considered as a sequence i2 = z(i1) ’ i3 = z(i2) Z ..., and so on. Regarding this
sequence, Griffith [13] observes that in the terminal cycle of the state-transitional process, there are three
possible situations, namely, a state of equilibrium with a probability distribution Á(S0); and the other two are
dichotomous states, identified as S1 Ò +SU and S2 Ò -SL with the statistics Á(S1) and Á(S2), respectively.

In computing the number of states which end up close to the equilibrium at the terminal cycle, Griffith [13]
observes the following fundamental difference between the neural and the quantum situation. From the
quantum mechanics point of view, the transition probabilities between two states Á1,2 Ò ¨1,2 with reference to
the equilibrium state, namely, Á0 Ò ¨0 (due to an underlying potential perturbation Æ), are equal in both
directions because they are proportional, respectively, to the two sides of the equation given by [96]:

which is true inasmuch as Æ is Hermitian. That is, in the case of neuronal dynamics, only with the
possibilities of i2 = z(i1) and i1 = z(i2) the microscopic reversibility is assured; and then there would be a
natural tendency for the microscopic parameter Á1,2 to move near to Á0.

7.7 Lattice Gas System Analogy of Neural Assembly

Consistent with the wave-functional characterization, the neuronal transmission can be considered as the
interaction of a wave function with the (neuronal) assembly constituted by the repeated translation of the basic
unit (neuron) cell. Such an assembly resembles or is analogous to a lattice structure in space comprising a set
of locales (or cells) normally referred to as the sites and a set of interconnections between them termed as
bonds. Relevant to this model, the neuronal assembly is regarded as translationally invariant. As a
consequence, each cell (or site) is like any other in its characteristics, state, and environment. This refers to
the equilibrium condition pertaining to the density of neuronal states. The implication of this translational
invariance is the existence of extended states (or delocalized states). Further, the neuronal assembly can be
regarded as a disordered system wherein the spatial characteristics are random so that the potentials (at each
cell) are localized.

In the case of delocalized states inasmuch as all site energies are identical, the neuronal transmission refers to
a simple case of the wave proliferating over the entire neural assembly; whereas, the localized situation would
make some regions of the neuronal lattice more preferable (energy-wise) than the others so that the neuronal
spatial spread is rather confined to these regions.

Considering the neuronal wave function localized on individual sites, the present problem refers to calculating
the probability that the neural transmission occurs between two sites i and j with the transition resulting in the
output being at one of the two dichotomous limits, namely, +SU or -SL. This would lead to the calculation of
the number of such transitions per unit time.
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In the localized regime, the neuronal transmission from site i to site j (with energies Ei and Ej) corresponds to

a transition probability wij. If the energy gaps between +SU and -SL states of ith and jth units are ”Ei and ”Ej
respectively, then regardless of the previous state set, Sk=+SU with probability wk=1/[1 + exp(-”Ek)/kBT],
where k = i or j. This local decision rule in the neuronal system ensures that in thermal equilibrium, the
relative probability of two global states is determined solely by their energy difference, dictated by the
(pseudo) Boltzmann factor, namely, exp [-(Ej - Ei)/kBT). This also refers to the extent of transmission link
(weighting factor) between the sites i and j.

The corresponding intrinsic transition rate (from site i to site j) can be written as: ³ij = exp[-2±ixij - (Ej -
Ei)/kBT], if Ej > Ei; or, ³ij = exp [-2±ixij] if Ej < Ei where ±i is specified by a simple ansatz for the wave
function ¨i(xi) localized at xi, taken as ¨i(xi) = exp(-±i |x - xi|) similar to the tunneling probability for the
overlap of the two states; and xij = |xj - xi|. Further, the average transition rate from i to j is: “ij = <(Mi/M)(1 -
Mj/M) ³ij> where the Mi’s are the neural cell population participating in the transition process out of the total
population M. Assuming the process is stationary, “ij can also be be specified in terms of the probability
distribution function Ái and Áj as a self-consistent approximation. Hence, “ij = Ái(1 - Áj)³ij. Under
equilibrium conditions, there is a detailed balance between the transitions i to j and j to i as discussed earlier.
Therefore, (“ij)o = (“ji)o, with the superscript o again referring to the equilibrium condition. Hence, Ái

o(1 -

Áj
o)(³ij)o = Áj

o (1 - Ái
o)(³ji)o. However, (³ij)o = (³ji) exp[-Ej - Ei/kBT] which yields the solution that:

And

where ÆpB is the cellular (local) barrier potential energy (or the site pseudo-Fermi level.)

The Hamiltonian corresponding to the neuronal activity with the dichotomous limits (+SU and -SL)

corresponding to the possible interactions at ith and jth sites is given by Equation (7.28). Suppose the bias ¸i is
set equal to zero. Then the Ising Hamiltonian (Equation 7.28) has a symmetry. That is, it remains unchanged
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if i and j are interchanged; or for each configuration in which a given Si has the value +SU, there is another
dichotomous value, -SL, such that +SU and -SL have the same statistical weight regardless of the
pseudo-temperature. This implies that the neuronal transition ought to be zero in this finite system. Hence,
within the framework of the Ising model, the only way to obtain a nonzero spontaneous transition (with the
absence of external bias) is to consider an infinite system (which takes into account implicitly the
thermodynamic limit). Such a limiting case corresponds to the classical continuum concept of wave
mechanics attributed to neuronal transmission depicting the McCulloch-Pitts logical limits wherein the neuron
purports to be an idealization of a real neuron and has features of being able to be excited by its inputs and of
giving a step output (0 or 1) when a threshold is exceeded.

7.8 The Average Rate of Neuronal Transmission Flow

The weighting factor or the connectivity between the cells, namely, Wij of Equation (7.28) is a random
variable as detailed in Chapter 6. The probabilistic attribute(s) of Wij can be quantified here in terms of the

average transition rate of the neuronal transmission across the ith and jth sites as follows.

The site energies Ei and Ej pertaining to the ith and jth cells are assumed as close to the cellular barrier
potential (or pseudo-Fermi level) ÆpB; and, the following relation(s) are also assumed: |Ei|, |Ej|, |Ej - Ei| >>

kBT. Hence, Ái
o H 1 for Ei < 0 and Ái

o H exp[-(Ei-ÆpB)/kBT] for Ei > 0; and under equilibrium condition:

The corresponding neuronal transmission across ith and jth cells can be specified by a flow rate, , equal to

 = (“ij-“ij). Now, suppose the perturbations at the equilibrium are Eij = (Eji)o &43; ”Eij, Áij = (Áij)o + ”Áij,

and ³ij = (³ij)o + ”ij, and assuming that the detailed balance relation, namely, (“ij)o = (“ji)o is satisfied, the
following relation can be stipulated:

For a differential change in the local potential barrier energy  (at the pseudo-Fermi level),

 Again, ” ÆpB >> kBT, Ái simplifies as equal to 

approximately with . This relation concurs implicitly with the observation of
Thompson and Gibson [37,79] who observed that neuronal firing statistics “depends continuously on the
difference between the membrane potential and the threshold”. Further, it is evident that the neuronal
transmission rate is decided by: (1) Rate of state-transition between the interconnected cells; and (2) the
difference in the local barrier potentials at the contiguous cells concerned.

Previous Table of Contents Next

Products |  Contact Us |  About Us |  Privacy  |  Ad Info  |  Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc. All rights
reserved. Reproduction whole or in part in any form or medium without express written permission of

EarthWeb is prohibited. Read EarthWeb's privacy statement.

http://corpitk.earthweb.com/
http://corpitk.earthweb.com/content/corp.html
http://corpitk.earthweb.com/search/
http://corpitk.earthweb.com/faq/faq.html
http://corpitk.earthweb.com/sitemap.html
http://corpitk.earthweb.com/contactus.html
http://corpitk.earthweb.com/products.html
http://corpitk.earthweb.com/contactus.html
http://corpitk.earthweb.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://corpitk.earthweb.com/
http://corpitk.earthweb.com/agreement.html
http://corpitk.earthweb.com/copyright.html
http://www.earthweb.com/about_us/perm.html
http://www.earthweb.com/about_us/privacy.html


       

  

     

    

   Search Tips

   Advanced Search

    

  

  

Neural Network Modeling: Statistical Mechanics and Cybernetic Perspectives
by P. S. Neelakanta; Dolores DeGroff
CRC Press, CRC Press LLC
ISBN: 0849324882   Pub Date: 07/01/94

Search this book:

 

Previous Table of Contents Next

The parameter  is an implicit measure of the weighting factor Wij. Inasmuch as the intracell disturbances

can set the local barrier potentials at random values, it can be surmised that  (and hence Wij) can be
regarded as a nonstationary stochastic variate as discussed in Chapter 6.

Further, the extent of the cluster of cells participating in the neuronal transmission can be specified by the
average range of interaction equal to <xij> and the “size” of the wave packet emulating the neuronal

transmission can be decided as follows: Suppose (”xij)in is the spatial spread of the incident wave at the site i.
After the passage through the cell (local interaction site), the corresponding outgoing wave has the spread
given by:

where Äij is the ith to jth site transit time.

7.9 Models of Peretto and Little versus Neuronal Wave

By way of analogy with statistical mechanics, Little [33] portrayed the existence of persistent states in a
neural network under certain plausible assumptions. Existence of such states of persistent order has been
shown directly analogous to the existence of long-range order in an Ising spin system, inasmuch as the
relevant transition to the state of persistent order in the neurons mimics the transition to the ordered phase of
the spin system.

In the relevant analysis, Little recognizes the persistent states of the neural system being the property of the
whole assembly rather than a localized entity. That is, the existence of a correlation or coherence between the
neurons throughout the entire interconnected assembly of a large number of cells (such as brain cells) is
implicitly assumed. Further, Little has observed that considering the enormous number of possible states in a
large neural network (such as the brain) — of the order of 2M (where M is the number of neurons of the order
1010) — the number of states which determine the long-term behavior is, however, very much smaller in
number. The third justifiable assumption of Little refers to the transformation from the uncorrelated to the
correlated state in a portion of, or in the whole, neuronal assembly. Such transformation can occur by the
variation of the mean biochemical concentrations in these regions, and these transformations are analogous to
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the phase transition in spin systems.

On the basis of the above assumptions, Little has derived a (2M × 2M) matrix whose elements give the

probability of a particular state |S1, S2, ..., SM> yielding after one cycle the new state . (The
primed states refer to the row, and the unprimed set, to the column of the element of the matrix.) This matrix
has been shown analogous to the partition function for the Ising spin system.

It is well known that the correlation in the Ising model is a measure of the interaction(s) of the atomic spins.
That is, the question of interaction refers to the correlation between a configuration in row q, say, and row r,
for a given distance between q and r; and, when the correlation does exist, a long-range order is attributed to
the lattice structure. For a spin system at a critical temperature (Curie temperature), the long-range order sets
in and the system becomes ferromagnetic and exists at all temperatures below that.

Analogously considering the neuronal assembly, existence of a correlation between two states which are
separated by a long period of time is directly analogous to the occurrence of long-range order in the
corresponding spin system.

Referring to the lattice gas model of the neuronal assembly, the interaction refers to the incidence of neuronal
wave(s) at the synaptic junction from the interconnected cells. The corresponding average range of interaction
between say, the ith and jth cell, is given by <xij>. The passage of a wave-packet in the interaction zone with
minimum spread can be considered as the neuronal transmission with a state-transition having taken place.

This situation corresponds to the spread of an incident wave packet, namely, (”xij)in equal to ;and a
zero spread can be regarded as analogous to spontaneous transition in a spin-glass model. It represents
equivalently the McCulloch-Pitts (logical) neuronal transition.

The presence of external stimuli (bias) from a kth (external) source at the synapse would alter the postsynaptic
potential of the ith neuron. Little [33] observes that the external signals would cause a rapid series of nerve
pulses at the synaptic junction; and the effect of such a barrage of signals would be to generate a constant
average potential which can transform the effective threshold to a new value on a time-average basis. He has
also demonstrated that this threshold shift could drive the network or parts of it across the phase boundary
from the ordered to the disordered state or vice versa. That is, the external stimuli could play the role of
initiating the onset of a persistent state representing the long-term memory.

In terms of wave mechanics considerations, the effect of external stimuli corresponds to altering the neuronal

transmission rate; and, in the presence of external bias,  can be written as 
where the primed quantity refers to the new threshold condition for the state transition.

The above situation which concurs with Little’s heuristic approach is justifiable since the active state
proliferation or neural transmission is decided largely by the interneuronal connection and the strength of the
synaptic junctions quantified by the intrinsic state-transition rate ³ij; and the external bias perturbs this value
via an implicit change in the local threshold potential(s). The eigenstates which represent the neuronal
information (or memory storage at the sites) warrant an extended state of the sites which is assured in the
present analysis due to the translational invariancy of the neuronal assembly presumed earlier.
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Little’s model introduces a markovian dynamics to neuronal transmission. That is, the neurons are presumed
to have no memory of states older than a specific time (normally taken as the interval between the recurring
neuronal action potentials). Corresponding evolution dynamics has been addressed by Peretto [38], and it is
shown that only a subclass of markovian processes which obeys the detailed balance principle can be
described by Hamiltonians representing an extensive parameter for a fully interconnected system such as a
neuronal assembly.

This conclusion in the framework of the present model is implicit due to the fact the intrinsic transition rate of
a wave functional attribute prevails under equilibrium conditions with the existence of a detailed balance
between the interconnection i to j or j to i sites.

7.10 Wave Functional Representation of Hopfield’s Network

Consider a unit (say, mth neuron) in a large neuronal assembly, which sets up a potential barrier ÆpB over a
spatial extent apB. Assuming the excitatory situation due to the inputs at the synaptic node of the cell, it

corresponds to the neuronal wave transmission across this mth cell, with CTn H 1. The corresponding output
or the emergent wave is given by the solution of the wave equation, namely, Equation (7.29) with appropriate
boundary conditions. It is given by:

where k(m) is the propagation vector, E(m) is the incident wave energy, ¦(m) is the mth mode amplitude
function, e(m) = [ÀE(m)apB/»(m)ÆpB] and »(m) = 2À/k(m).

Hence, the net output due to the combined effect of all the interconnected network of M neuron units at the
mth synaptic node can be written as a superposition of the wave functions. That is:

where  = 1, 2, ..., M, and  represents the incident wave at the synaptic node with a dichotomous value
as dictated by its source/origin. That is,  refers to such a wave being present and  specifies
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its absence. Let the probability that  be w and the probability that . The
parameter  in Equation (7.47) is a zero-mean, white gaussian sequence which depicts the randomness of
the stochastical inputs at the synaptic summation. Further, Equation (7.47) represents a simple convolution
process which decides the neuronal input-output activity under noise-free conditions.

Suppose intraneuronal disturbances are present. Then a noise term should be added to Equation (7.47). In
terms of wave function notations, this noise term ·(m) can be written as: ¦·(m)exp[j¾·(m))], where the
amplitude ¦· and the phase term ¾· are random variates, (usually taken as zero-mean gaussian). Hence, the
noise perturbed neural output can be explicitly specified by:

where  with  depicting the eigen-energy
associated with the noise or disturbance.

The nonlinear operation in the neuron culminating in crossing the threshold of the potential barrier
corresponds to a detection process decided by the input (random) sequence r(m) so that the summed input
exceeds the barrier energy across the neuron. Such a detection process refers to minimizing the mean square
functional relationship given by:

Written explicitly and rearranging the terms, the above relation (Equation 7.49) simplifies to:

with W(m, m) = 0 and m, n � 1, 2, ..., M; further:

and

The µ of Equation (7.50) depicts a neural network with the weights of interconnection being W and an
external (bias) input of ¸. Thus, the energy function of the Hopfield network can be constructed synonymously
with wave functional parameters.

7.11 Concluding Remarks

The application of the concept of wave mechanics and the use of quantum theory mathematics in
neurobiology were advocated implicitly by Gabor as early as in 1946. As stated by Licklider [75], “the
analogy [to] the position-momentum and energy-time problems that led Heisenberg in 1927 to state his
uncertainty principle ... has led Gabor to suggest that we may find the solution [to the problems of sensory
processing] in quantum mechanics.” Supplemented by the fact that statistical mechanics too can be applied to
study the neuronal activity, the foregoing analyses considered can be summarized as follows:

The neuronal activity can be represented by the concepts of wave mechanics. Essentially, considering the fact
that the interconnected neurons assume randomly one of the dichotomous potentials (0 or ÆpB), the input
sequence at any given neuron would set a progression of state transitions in the interconnected cells. Such a
spatial progress or the “collective movement” of state-transition flux across the neuronal assembly can be
regarded as the neuronal transmission represented as a wave motion.



Hence, the dynamic state of neurons can be described by a set of extensive quantities vis-a-vis the wave
functional attributions to the neuronal transmission with relevant alternative Hamiltonian perspectives
presented.

Accordingly, the neuronal transmission through a large interconnected set of cells which assume randomly a
dichotomous short-term state of biochemical activity can be depicted by a wave equation.

In representing the neuronal transmission as a “collective movement” of neuronal states, the weighting factor
across the neural interconnections refers implicitly to a long-term memory activity. This corresponds to a
weight space © with a “connectivity” parameter (similar to the refractive index of optical transmission
through a medium) decided by the input and local energy functions.

The wave mechanical perspectives indicate that the collective movement of state transitions in the neuronal
assembly is a zero-mean stochastical process in which the random potentials at the cellular sites force the
wave function depicting the neuronal transmission into a nonself averaging behavior.

Considering the wave functional aspects of neuronal transmission, the corresponding eigen-energies (whose
components are expressed in terms of conventional wave parameters such as the propagation constant) can be
specified.

The wave mechanical considerations explicitly stipulate the principle of detailed balance as the requisite for
microscopic reversibility in the neuronal activity. Specified in terms of the strength of synapses, it refers to
Wij = Wji. This symmetry condition restricts the one-to-one analogy of applying the spin-glass model only to
a limited subclass of collective processes.
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The neuronal assembly can also be regarded as analogous to a lattice gas system. Such a representation
enables the elucidation of the probability of state transitions at the neuronal cells. That is, by considering the
neuronal assembly as a disordered system with the wave function being localized, there is a probability that
the neural transmission occurs between two sites i and j with the transition of the state +SU to -SL (or vice
versa) leading to an output; and hence the number of such transitions per unit time can be specified.

In terms of the wave mechanics concept, the McCulloch-Pitts regime refers to the limit of the wavelength
being so very short (with ÆpB << Ei) that any physically realizable potential would change only by a very
negligible amount assuring a complete transmission. Within the framework of the Ising spin model, such a
nonzero spontaneous transition would, however, warrant an infinite system (in the thermodynamic limit and
assuming the external bias being zero) as observed by Peretto.

In the existing studies based on statistical mechanics modeling of neuronal activity, Peretto identifies an
extensive parameter (expressed as a Hamiltonian) for a fully interconnected Hopfield network, and relevant
state-transitional probability has hence been deduced. The basis for Peretto’s modeling stems from the
existence of a long-range persistent order/state in biological neurons (analogous to or mimicking the Ising
spin system), as observed by Little.

Peretto, by considering the output of action potentials occurring at regular intervals due to the synchronized
excitatory (or inhibitory) synaptic action, has elucidated the markovian aspects of neuronal activity. This is
substantiated by the evolution equation of the system described in Chapter 6. Peretto deduced a digital master
equation to characterize the markovian structure of neuronal transmission. He has indicated the existence of a
Hamiltonian at least for a narrow subclass of markovian processes which obey the detailed balance principle
governing the state-transition rate. Similar observations are plausible by considering the Fermi golden rule as
applied to the state-transition probability and its dynamics governed by Boltzmann’s equation. It is inferred
thereof that regardless of the microscopic origin of neuron interactions, the principle of detailed balance must
be satisfied in the neuronal dynamic process.

Consideration of Boltzmann’s equation indicates that the probability of neurons being in the equilibrium state
will decay exponentially. From the neural network point of view, it implicitly refers to the well-known
integration process (low-pass action) associated with neuronal input/output relation.

The average rate of neuronal transmission flow depends on the rate of state-transition between the
interconnected cells and the difference in the local barrier potentials at the contiguous cells concerned. This is
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in concurrence with a similar observation by Thompson and Gibson. The average rate of transmission has also
been shown as an implicit measure of the weighting factor. Further, by considering the spatial “spread” or the
“size” of the wave-packet emulating the neuronal transmission, the spread when minimum represents the
passage of a wave-packet across the cell. In other words, it represents the neuronal transmission with a
state-transition having taken place.

In terms of wave mechanics considerations, the effect of external stimuli refers to altering the neuronal
transmission rate. This is in concurrence with Little’s heuristic justifications that the active state proliferation
is decided largely by the interneuronal weighting function. Any external bias would perturb this value via an
implicit change in the local potentials.

The eigenstates of the “neuronal wave” represent the neuronal information (or memory storage at the sites).
The existence of eigenstates presumably warrants an extended state of the cellular sites which is guaranteed
by the translational invariancy of the neuronal assembly.

Considering the presence of intraneural disturbances in a Hopfield network the corresponding system can be
modeled in terms of wave functional parameters as could be evinced from Equation (7.50).

The spread in the neuronal wave function across a cell is an implicit indicator of whether state transition has
occurred or not. The minimum spread assures the transmission of the neuronal wave confirming that
transition has occurred; and its zero value (ideally) refers to the McCulloch-Pitts logical transition or the
spontaneous transition.

This spread in the wave function can be equated to the “smearing” condition proposed by Shaw and
Vasudevan. That is, from the thermodynamics point of view the neuronal transition (when modeled as
analogous to the Ising principle of interacting spins), corresponds to the McCulloch-Pitts model with the kBT
term tending to zero. This would require, however, a total absence of fluctuations in the postsynaptic
potentials; but, in the real neurons, there is an inevitable fluctuation in the summed up postsynaptic potentials,
which leads to a finite spread in the wave-functional transmission.

The amplitude of the transmitted wave function, namely, CTna(©i/©) is an implicit function of the domain
fraction (©i/©). The subset(s) of ©i across which a preferential wave transmission occurs decide the so-called
persistent order (based on a learning mechanism) attributed to neurons by Little.

The quasiparticle and wave-like propagation of neural transmission describe a kinetic view that stems from a
phase space kinetic equation derived from the wave equation. The resulting field theory picture of neurons is a
wave train corresponding to a system of quasiparticles whose diffusive kinetics permits the elucidation of the
amplitude and phase properties of the propagating wave train in a continuum and thereby provide a particle
portrait of neuronal dynamics. Griffith once observed the “concept of nervous energy is not theoretically
well-based, at least not yet ... However, although there are obstacles it may be argued they are not necessarily
insurmountable.”
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Chapter 8
Informatic Aspects of Neurocybernetics

8.1 Introduction

It was discussed in the previous chapters that a neural network is a conglomeration of several subsets which
are in part its constituents and in part interact with it through massive interconnections. Also was indicated
that the subspaces of a neural domain have feedbacks portraying explicit influence of one subsystem over its
neighbors. A neural network represents a self-controlling set of automata, a memory machine, and a
homeostat. It is a domain of information-conservation — a process in which a chain of elements (cells) takes
part in the collection, conversion, storage, and retrieval of information.

The neural system is also amenable for isolation into individual subsets such as cells, interconnections,
synapses, etc.; and each subsystem may in turn be broken down into microscopic structures (parts)
participating in the neural activity.

Thus, a neural network represents a complex automation — a cybernetic system [9]. The association of its
subsystems via feed-forward and/or feedback constitutes an optimum control for self-organization. As a
science, neurocybernetics deals with the operation of an automaton and its characteristic as an integral
self-controlled system seeking an optimum performance. In this endeavor, for the efficient use of methods
enabling cybernetically controlled (self-adapting) activities, the neural system deliberates the minimization of
uncertainties arising from the inherent noise or (spatiotemporal) random characteristics of its activities.

Such activities refer to the state-space of the units (cells) comprising the neural complex. Compilation of data
on the state of the system, transmission of the data (among the interacting units), and storage or retrieval of
data where and when needed constitute the information-processing tasks in the neural system. Pertinent to
neurocybernetics, information can be in a wider sense defined as a measure of the disorganization removed (a
counter default measure) from the cellular complex by receiving knowledge which is pragmatically utilized
as actions of self-organizational procedures. In this perspective, an informative entity is usefully
implementable in the neurocybernetic processes. That is, not only it does have a representative value available
to depict a disorganization, but also it lends itself to effective actions by existing means for self-organization.
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To realize optimum self-organizing characteristics, the neural system warrants a minimum amount of
information. The associated disturbances in the neural complex decide the extent of uncertainties in the
neuronal states, thereby augmenting the system entropy which influences the amount of information need to
be processed. The minimum information required is, therefore, implicitly assessed via entropy considerations.
The question of minimum information arises because an information processor, in general, could be nonideal
and lose information (null-information) as well as gain false and/or redundant information.

In real (biological) neural system, mossy fibers which originate from several brain sites carry information of
diverse nature concerning the declarative aspects of internal states (of the interconnected neurons) and the
descriptive message about the physioanatomical environment. The items of information so transmitted or
delivered as an input to the neural communication network are largely sensory data. In addition, there are also
information-bearing commands of the central motor system which coexist in the interneural communication
links.

The information discharge rates of mossy fibers are modulated over a wide range which permits them to
transmit detailed parametric information. Therefore, information-theoretic analyses could be done in a domain
which represents broadly a parametric spread-space.

The self-sustaining activity of the neural network arises from the dynamics of neural mechanisms and is due
to feedbacks of recurrent circuits in the interconnected complex. Further, such self-regulating/sustaining
activities refer to the generation of a mode (activity) pattern performed by cerebellar modules which are
matched with patterned outputs, and realization of such matching corresponds to achieving an objective goal
(function). The self-regulation process is, therefore, an adjunct accomplishment of the associative memory
problem, namely, the network's response in delivering one of the stored patterns most closely resembling that
which is presented to it. The closeness of resemblance approaching infinity corresponds to the realization of
the objective function.
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8.2 Information-Theoretics of Neural Networks

Application of informational analysis to the neural complex has so far been limited to the information
capacity heuristics of structures like Hopfield's net model of associative memory — for the purpose of
quantifying such network performance as a memory. The information capacity of a standard memory is
determined explicitly by the number of memory bits in simple models, but where complex dynamics of
activation patterns are encountered, probabilistic estimates of the information capacity are deduced on the
basis of certain simplifying assumptions. For example, estimates of the capacity of Hopfield's network via
statistical methods have been formulated and extended with more rigorous statistical techniques [97-100].
Further, Lee et al. [101] improvised an approach using Brown’s Martingale Central Limit Theorem and
Gupta’s Transformation to analyze the complex dynamics of Hopfield's memory model rigorously through
information-theoretic considerations. As an extended effort, Gardner and Derrida [102,103] considered the
relevant aspects of storage capacity of neural networks in search of optimal values. Pertinent to neurons, the
memory and thought-process are decided by the associative properties of the collective neuronal aggregates
and the underlying entropy considerations. In this perspective, Caianello [64] outlined a theory of
thought-process and thinking machines in terms of neuronic equations depicting the instantaneous behavior of
the system and mnemonics equations representing the permanent or quasi-permanent changes in the neuronal
activities. Such permanent changes in neural functioning (caused by experience) have been modeled as a
degree of plasticity which decides the fixation of memory or memory storage involving time-dependent
processes.

Shannon’s concept of information or entropy [104,105] in stochastic systems has also been extended to
neuronal associative memory which has led to the information-theoretic modeling of neural activity
manifesting as a neuronal potential train of spikes. Accordingly, the temporal and spatial statistics of this
neuronal aggregate of signal elements have featured dominantly in the information-theoretic approaches
formalized in the 1970's [106]. For example, Pfaffelhuber in 1972 [107] used the concept of entropy to
describe the learning process as one in which the entropy is depicted as a decaying function of time.

The concept of entropy has also formed the basis of elucidating the information capacity of neural networks.
For example, considering the associative memory as a plausible model for biological memory with a
collective dynamic activity, the information capacity of Hopfield's network has been quantitatively
elucidated.
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Classical characterization of information in a neural network via stochastic system considerations (as
conceived by Shannon and Weaver) simply defines a specification protocol of message transmission pertinent
to the occurrence of neuronal events (firings) observed (processed) from a milieu of possible (such events)
across the interconnected network. Thus in early 1970's, the information processing paradigms as referred to
the neural system were derived from the stochastic considerations of (or random occurrence of) neural spike
trains; relevant studies were also devoted to consider the probabilistic attributes of the neural complex; and,
considering the randomly distributed cellular elements, the storage capacity of information in those elements
(or the associated memory) was estimated. That is, the information-theoretic approach was advocated to
ascertain the multiple input-single output transfer relation of information in the neuronal nets. The
information capacity of a neural network was then deduced on the basis of the dynamics of activation
patterns. Implicitly, such a capacity is the characteristic and ability of the neural complex viewed as a
collective system. It was represented as a memory (that stores information) and was quantified via
Hartley-Shannon’s law as the logarithm of number of strings of address lines (consisting of memory locations
or units) distinguished. Memory locations here refer to the number of distinguishable threshold functions
(state-transitional process) simulated by the neurons.

In the elucidation of optimal (memory-based) storage capacity of neural networks, the following are the basic
queries posed:

•  What is the maximum number of (pattern) examples that the neural complex can store?

•  For a given set of patterns (less than the maximum value), what are the different functions that could
relate the network inputs to the output?

•  How do the statistical properties of the patterns affect the estimation of the network information
capacity?

Further, the notions of information capacity of the neural complex (associated memory) are based on:

•  Binary vector (dichotomous) definition of a neuronal state.

•  Matrix representation of the synaptic interconnections.

•  Identifying the stable state of a neuron.

•  Defining the information capacity of the network as a quantity for which the probability of the stored
state-vector patterns (as per Hebbian learning) being stable, is maximum.
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Information flow across the real neural complex, in general, often faces an axonal bottleneck. That is, the
input arriving to a neuronal cell is not as information poor as the output. On the input-end neurons are more
ajar than on the output-end. Often they receive information at a rate three orders of magnitude higher than
they give it off. Also, the neurons always fie together to form a group and, hence, permit an anisotropic
proliferation of information flow across the neural complex. These groups were termed as compacta by
Lengendy [108]. It is the property of compacta (due to massive interconnections) that, whenever a compactum
fires, the knowledge imparted by the firing stimulus is acquired by every neuron of the compactum. Thus,
neuronal knowledge proliferates from compactum-to-compactum with a self-augmentation of information
associated in the process. That is, each successive structure is able to refine the information available to it to a
maximum extent that the information can possibly be refined. Due to this self-augmentation of information,
McCulloch and Pitts called the neural nets as networks with circles. Further, routing of information across the
interconnected compacta is a goal-pursuit problem. That is, the self-organizational structure of the neural
complex permits a goal-directed neural activity and the goal-seeking is again monitored adaptively by the
associated feedback (self)-control protocols.

Pertinent to conventional memory, information storage is rather an explicit quantity. For example, in a
Random Access Memory (RAM) with M address lines and 1 data line (2M memory locations, each storing 1

bit of information), the storage capacity is 2M bits. That is, the RAM as an entity distinguishes  cases (in
respect of setting 2M bits independently as 0 or 1) and thereby stores a string of 2M bits. This definition
enables the entire contents of the RAM as one entity that encodes a message — the logarithm of such
different messages measures the information content of the message.

Along similar lines, how can the capacity of a neural network be defined? The information content in a neural
net refers to the state-transitions, the associated weights, and thresholds. How many different sets of weights
and thresholds can then be distinguished by observing the state-transitions of the network? Abu Mostafa and

St. Jacques [98] enumerated such threshold functions involved and showed that there are  distinguishable
networks of N neurons, where ± is asymptotically a constant. In logarithmic measure, the capacity of
feedback network is, therefore, proportional to N3 bits. However, the above definition of capacity of a neural
net is rather heuristic and not apparent. In order to elucidate this capacity explicitly, one has to encode
information in the state-transitions across the interconnected network; and decoding of the message warrants
observations concerning “which states go to which state”. Such a format of depicting information storage is
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not, however, practical or trivial.

Alternatively, the information storage in feedback networks can be specified vis-a-vis the stable states. For
this purpose, an energy function can be defined to indicate the state-transitions leading to the stable state.*
The stable states are vectors of bits (that correspond to words in a regular memory), and convergence to such
stable states is the inherency of a feedback network functioning as an associative memory. Now, how many

such stable states can be stored in a feedback network? The number of stable states can be deduced as ,

each consisting of N bits (depicting the individual states of N neurons), and  is an asymptotic constant.
Hence, stable state capacity of a feedback network of N neurons is proportional to N2 bits. The reduction from
N3 to N2 arises from the loss of information due to the restricted (selective) observations depicting only those
transitions leading to stable states. The selection of stable states used in the computation of the memory
storage is a rule-based algorithmic strategy that considers a set of vectors and produces a network in which
these vectors are stable states. For example, the Hebbian rule chooses the matrix of weights to be the sum of
outer products of the vectors to be stored. The stable-state storage capacity of the neural network is dependent
on the type of algorithmic rule chosen. Relevant to Hebbian rule, for example, only (gN/log N) randomly
chosen stable states can be stored (where g is an asymptotic constant). The corresponding capacity is then
proportional to N2/ log N bits.

*Stable state : It refers to a state where the neuronal state remains unchanged when the update threshold rule is
applied.

For a feed-forward network, there is no definition of memory capacity that corresponds to stable-state
capacity inasmuch as such networks do not have stable states, but rather input-output relations only.

As discussed in Chapter 4, the neural complex has an architecture with layers of cellular units which are fully
interconnected and each unit can be regarded as an information processing element. In reference to this
layered architecture, Ackley et al. [57] used the concepts of reverse cross-entropy (RCE) and defined a
distance function to depict the deviation of neural statistics in the presence of environmental inputs from that
in the absence of such inputs in the entropy plane. Minimization of this distance parameter refers to the
process of attaining the objective function. Both the reverse cross-entropy approach due to Ackley et al. and
an alternative method based on cross-entropy concepts as proposed by Liou and Lin [58], describe implicitly
an entropy-based, information-theoretic approach to analyze a layered framework of neural units.
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The information aspects of a neural complex viewed in terms of memory capacity also penetrate the
coordinated organization of firing patterns in recurrently connected cellular units. That is, the memory traces
refer to systematic sequential firing of articular sets of neurons and the variety in memory space depicts the
vagaries in traces pertinent to different sequences of different sets of neurons. In the universe of the neural
complex, any cellular unit may, in general, participate in many such traces defined by the temporal relations
among the participating neurons (as observed by Little [33]). The traces are embedded in a given cellular set
via selective modulations of the synaptic weighting among the participant neurons in accordance with the
fashion of arrangement (of the neurons) in sets in the firing patterns. Not only the temporal traces but also the
spatial proliferation of state-transitions are the embodiments of memory considerations in the neural system.
As observed by MacGregor [109], “from the very onset, anatomical connections and associated temporal
firing patterns are two distinct but intrinsically coupled manifestations of a unitary phenomenon.”

Do the memory traces overlap? MacGregor [109] answers this question by considering the cross-talk
mediated by inappropriately activated synapsis through synaptic adjustments. That is, two distinct traces may
call for the same single synapse between two cells that participate in both traces, but each asks for a distinct
value to be assigned to the synapse; or it is likely in multiple embedded nets that a given neural cell may
project to some subset of cells because of its position in one trace and to another subset of cells as a result of
its position in a second trace. Implicitly, this is the same as Gardner and Derrida's approach [102,103] of
learning an explicit target function or extraction of a rule formalized in terms of replica symmetry
consideration discussed in Chapter 4.

The multiple traces embedded in a random fashion can be regarded as being completely independent of each
other, and the cross-talk can be regarded as a disruptive aspect of memory borne by a recurrently connected
network. The stochastical theory of cross-talk has been comprehensively addressed by MacGregor who
associates the concepts of beds and realizations in describing the memory traces; that is, the firing of specific
sequences of sets of neurons which represent the items of information consists of physiological variations (or
realizations) of primarily anatomical sites which are dubbed as beds. Thus, the population of excitatory and
inhibitory neurons taken as an ordered sequence of sets constitutes the bed of a trace, and a realization is an
observable physiological manifestation of an underlying bed. It consists of an ordered sequence of subsets of
active neurons some of which are members of the corresponding sets of the bed and which fire over a given
time interval in the temporal correspondence that exists among the cells of the bed.

Using the above notion in describing the neural complex, MacGregor and Gerstein [110] elucidated
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mathematical expressions to show how the memory capacity of recurrently connected nets depends on their
characteristic anatomical and physiological parameters; and considerations of overlaps of traces, disruptive
cross-talks, and random background activities were judiciously algorithmized in determining the storage
capacities of information (via traces) pertinent to large interconnected networks.

The aforesaid existing body of information-theoretics as applied to the neural complex, however, does not per
se determine the pragmatic and semantic utility of neural information with regard to self-organizing
(cybernetic) control-goals. This is due to the fact that the techniques pursued by the statistical theory of
information do not match the analysis of control problems. Classical statistical theory of information
describes only the processes involved in the transmission and storage of information, but it is not
comprehensible to treat information vis-a-vis control strategies or the extent of contraction of the parameter
subspace as a result of previous training.
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8.3 Information Base of Neurocybernetics

The neural complex handles information at three stages: The input stage (Figure 8.1), the processor stage, and
the controlling stage (Figure 8.1). The input information includes all the objective knowledge on the structure,
arrangement, and properties (such as the synaptic anatomy, physiology, and biochemical characteristics) of
the participating neurons in the control endeavor. It also covers the details on the neural environment of the
space (or domain) accommodating these neurons.

Figure 8.1  Information traffic in the neurocybernetic system
S: Sensory input information; RE: Synaptic (recognition) information of the inputs; N: Intra- or extracellular
disturbances (noise); OF: Axonal output information; DI: Decision-making information; OF: Learning-based
objective function for self-control endeavors; PE: Predicted error information; EE: Error-correcting
information for self-organization

The processing information characterizes the relevant properties and structure of the neural activity or
state-transitional events across the interconnected neurons (these include the excitatory and inhibitory aspects,
delays, threshold levels, inherent disturbances, and a variety of processing neuronal infrastructures). In
essence, processing refers to all relevancies of the control center which strives to attain the objective function
being fullfilled. It is a rule-based set of algorithms* which extracts useful information (from the inputs) and
utilizes it to achieve the goal.

*An algorithm, in general, refers to a sequence of steps or codes or rules leading to specific results.

Once the information is processed, it represents a controlling information which is looped (forward or
backward) into the system to refine the achievement of the goal or reduce the organizational deficiency that
may prevail and offset the efforts in realizing the objective function. That is, the controlling information is the
knowledge exerted to self-control (or regulate) the automata. The controlling information process is therefore
a stand-alone strategy by itself, distinctly operating on its own as an adjunct to the main information
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processor.

The controlling information includes morsels of knowledge associated with sensing and recognition of the
processed information (from the second stage), algorithmic manipulations on the sensed data for decision
making, and strategies of predicting the errors. It supplies information to neural actuator(s) to execute the
feedback or feed-forward controls through the organizational loop. The controlling information-processing
works towards the realization of objectives or the goals with the minimization of errors.

Thus, the concept of information-processing in a neural complex viewed from a cybernetic angle assumes the
informational structure is pertinent not only to perceiving knowledge from the source and analyzing it for its
usefulness, but also to processing it (further) for applications towards achieving a self-organizing automaton.
Specific to the application of information theory to neurocybernetics, the following general considerations are
therefore implicit:

•  In view of the automatic and adaptive control strategies involved in neurocybernetics, an
informatic-based transfer function should be defined which refers to information-processing algorithms
concerning the attainment of a target or objective function; and also in terms of informational efficiency
functions they should assess how a given processing algorithm is realized by the control strategies
involved (subject to constraints on speed of response, storage capacity, range of inputs, number of
interconnections, number of learning iterations, etc.).

•  There should be elucidation of methods by which the informational characteristics of the neural
network can be derived by those strategies such as frequency domain analysis normally employed in
the theory of adaptive controls.

•  There should also be evaluation of the effectual or ineffectual aspects of classical stochastical theory
of information in describing (either quantitatively or qualitatively) the control activities of a neural
network. In general, statistical information describes the quantitative aspect of the message and does
not portray the qualitative consideration of the utility of the message in contributing the attainment of
the objective function. Further, the operation of a neural system is dynamic; and the statistical measure
of information is unfortunately inadequate to include the nonstatistical part of the dynamic system such
as its topological, combinatorial, and algorithmic features.

•  The cybernetic perspective of a neural network represents the degree of organization of neural
activity. Therefore, the corresponding informatic description of the neural system should not only
address the memory considerations, but also enclave the control aspects of modeling and programming
of the collective response of neurons.

•  From a neurocybernetic viewpoint, the information theory should address the semiotic aspects of
information, covering the syntatics which relate the formal properties of neurons and their
combinations (variety) to the amount of information they carry; and semantics and pragmatics, which
define the information content and the information utility of the neural signal elements (constituted by
the binary state vectors of the cellular potential transitions), respectively.

•  By enunciating a relation between the degree of self-organization versus the informatics of
orderliness, a new approach as applicable to neural cybernetics can be conceived. Wiener indicated
such a trend as to incorporate and extend information theory to neural cybernetics via semiotic
considerations.

•  The concept of neurocybernetic informational theory rests upon the threshold of distinguishability of
neural state variables and the amount of their variety pertinent to the self-control process.

•  Analysis and synthesis of man-machine systems as done in the development of computer architecture
and artificial neural networks mimicking the biological neurons refer to modeling and programming
only at the information structural level. Such modeling and programming via information theory in the
neurocybernetic domain should, however, broadly refer to:

a.  Informational description of the global neural complex.

b.  Similarity or dissimilarity criteria with regard to the objective structures, information
structures, and information flows specified in terms of entropy parameters of the neural complex.

c.  Establishing a similarity between informational functions of processing by self-organizing
(control) centers of the interconnected cells.
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The bases of inculcating an informatic approach to neural cybernetics are the complexity of the system (in
spatiotemporal domains), orderliness (alternatively randomness) associated with the system due to the
presence of inevitable intra- and extracellular disturbances, degree of organization (of self-control) effected
by feedback control strategies, and the entropy of the system [111].

The complexity of the neural system is decided basically by the number of units (cells), the variety of the
functional events (state variables such as the energy levels), and the complexity of occurrence of such events
in the time domain. An algorithmic description of the neural complexity in the informational plane should
therefore include all the aforesaid considerations summarized by MacGregor [109] as beds and realizations.

Neural complexity is a generalized estimate functionally related to the number variety (composition),
structure, and properties of the cellular units considered in space or time or both. The overall complexity
could be nonadditive of the influences arising from the number of cellular units participating in the neural
activity and their variety. For example, the excitatory neurons, the inhibiting neurons, the neurons with
different threshold levels, the neurons with varying extents of synaptic inputs, etc. constitute the “variety”
features indicated above. In other words, variety is an implicit attribution of diversed nature of beds and
realizations constituting the items of neural informatic domain.

8.4 Informatics of Neurocybernetic Processes

The essential parameters deciding the informatic aspects of self-control functions in a neural network viewed
in cybernetic perspective are:

•  Complexity of neural architecture.

•  Spatiotemporal randomness (disorder of the system) of neural state transitions.

•  Self-organization efficiency of the interconnected cells.

•  System entropy associated with the spatiotemporal neural events.

Corresponding informational analysis pertinent to the self-controlling or organizing characteristics of the
neural system can be specified in terms of the following entities:

•  Information processing algorithms at three stages of neural information traffic depicted in Figure 8.1

•  Information utility or the value of neural information.

•  Information efficiency resulting from loss of information due to intra- and/or extracellular
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disturbances.

•  Steady and transient (dynamic) states of neural information flow.

A major function of a complex neurocybernetic system is a goal-related (dictated by an objective function),
self-organizing (or self-regulating) effort viewed within a set of bounds. The associated randomness or
disorderliness causes the system parameters (specified by a vector set) to veer from the system objective. The
corresponding deviatory response in a neural network can be quantified by an ensemble of diversion factors
pertinent to the neural environment which can be subdivided as follows:

•  External (extraneural) diversion subset (due to disturbances or randomness introduced by external
influences such as extracellular disturbances).

•  Internal (intraneural) diversion subset (due to causes arising from internal randomness or cellular
noise).

8.5 Disorganization in the Neural System

The task of self-control through adaptive feedback in the neural complex is to achieve a self-organization
overcoming the influence of randomness which otherwise would promote a deviatory response from the
objective or target response. The extent of disorganization so promoted can be generalized in terms of a
self-organization deficiency parameter. That is, any disorganization perceived can be correlated to the
randomness and the system complexity. Accordingly, the self-organization deficiency of a neural complex is
defined as:

where  represents the union operation in the spatiotemporal domains over  instants of time, m situations
(or realizations), and N cellular units (with Ä, r, and W being the corresponding weights, respectively); and
d(Y³) denotes the randomness or disorderliness function associated with the ³th neural unit as explained below.

Disorderliness is a measure of deviation of a selected variable, say yj, with reference to a specified standard of
order, yT. Geometrically, if yT refers to the target vector pinpointing the center of a region of orderliness,
around this center a quasi-ordered region can be considered wherein the orderliness is maintained within a
bound constrained by a (statistical) standard deviatory limit (Figure 8.2). The disorderliness can be assessed in
terms of D(yj), the distance from the center of orderliness to the boundary of the quasi-ordered region.
Therefore, the disorderliness can be written as [111]:

where |yj - yT| = Qj is the magnitude of the error vector. Yj can be rendered dimensionless by normalizing it in
terms of a reference (disorderliness) value. The disorganization function d(Yj) refers explicitly to the effect of

disorderliness perceived at jth unit of the neural system.

Figure 8.2  Parameter spread-space and entropy-space of the neural complex
HST: Hartley-Shannon transform; INT: Inverse transform; OB: Locale of the objective function; BPS:
Boundary of the quasi-order of parameter spread space; BES: Boundary of the quasi-order region of entropy
space

The orderliness (or the disorderliness) of the neural system is also influenced by the system complexity Cs
which as observed from the system exterior refers to the variety of the system subsets and/or microsubsets.
Pertinent to the neural complex, the mixture of cells with excitatory and inhibitory states and individual
synaptic (physiochemical and/or anatomical) properties considered in the spatiotemporal domains (as beds
and realizations) constitute typically the universe of system complexity. Mathematically, it can be represented
by:
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where N is the number of cellular units and Å is their (associated) variety discussed earlier. The function 
measures implicitly the uncertainty or entropy due to the complexity and therefore is logarithmic as specified
by Hartley’s law.

The uncertainty indicator of the complexity should therefore be limited to the disorderliness function by a
criterion that, in the event of the system tending to be well-ordered (minimization of disorderliness) with the
condition Yj’ 0, it should be accommodated by an appropriate functional relation between Yj and Cs.

Further, by considering the geometrical space representing the disorderliness, the variate y defines a measure
of uncertainty region (deterministic or probabilistic) and it also refers implicitly to the a priori probability of a
sample within the region.

The collective influence of disorderliness and the complexity, therefore, determine the extent of entropy (or
uncertainty) associated with the self-organizational efforts in the neural system in achieving a specific control
goal. That is, the net complexity and disorderliness function bear the information on the degree of
disorganization or the self-organization deficiency defined earlier.

If self-organizational deficiency is attributed to every synaptic coupling, across N cellular units, the overall
self-organization deficiency can be stipulated by:

where pj refers to the probability of encountering the jth cell (in the neural spatial complex) wherein the
disorganization is observed, do is a function to be specified, and ˜Y is a disorderliness parameter defined by
the relation:

where WYj is a weighting function measuring the deviation of Yj of jth realization from those of other
realizations of the state variable; and CY is a conditional coefficient which sets do(˜Yj) = 0 when Yj = 0. In
writing the above relation, it is presumed that the system is ergodic with the entire ensemble of the parameter
space having a common functional relation do.

http://www.earthweb.com/
http://corpitk.earthweb.com/
http://corpitk.earthweb.com/content/corp.html
http://corpitk.earthweb.com/search/
http://corpitk.earthweb.com/faq/faq.html
http://corpitk.earthweb.com/sitemap.html
http://corpitk.earthweb.com/contactus.html
http://corpitk.earthweb.com/search/search-tips.html
http://corpitk.earthweb.com/search/search-tips.html
http://corpitk.earthweb.com/search/
http://corpitk.earthweb.com/search/


Thus, the disorganization is an ensemble-generalized characteristic of disorder in the state of the neural
system, weighted primarily by the probability of encountering a cell with a disorderly behavior and
secondarily by its relevance. The relevance of the disorder to the jth situation is decided both by the functional
relation do common to the entire ensemble and the additional weight WYj accounting for the deviation of Yj
with the corresponding disorderliness of situations other than j.

The functional relation do pertinent to the self-organizing control endeavors of a neural complex refers to the
sensitivity of the high-level goal towards the degree of failure to attain the subgoals considered. Such a failure
or deviatory response arises due to the entropy of the system. Therefore, more explicitly OD can be written as
an entropy function in terms of Hartley’s law as:

Considering both temporal and spatial disorganizations associated with interconnected neurons, a
superposition leads to the following general expression for the summation of the effects:

From the foregoing discussions it is evident that the disorganization of a neural complex is the consequence
of:

•  Spatial factors conceived in terms of the random locations of the neuronal cells.

•  Temporal characteristics as decided by the random occurrence of state transitions across the
interconnected cells.

•  Stochastical attributes of the neural complexity.

•  Combinatorial aspects due to the number and variety of the participating subsets in the neural
activity.

Referring to spatiotemporal disorderliness as indicated earlier, let the a priori probability pj denote the

probability of occurrence (in time and space) of the jth neural event. When pj ’ 1, it amounts to a total
disorderliness with Yj ’ 0. Likewise, pj ’ 0 sets a total disorderliness with Yj ’ �. The above conditions are met
simultaneously by the following coupled relations:

Therefore, the Hartley measure of the extent of disorganization can be written as:

which is again in the standard form as Shannon's statistical measure of entropy.

The structural or the combinatorial aspect of disorganization pertains to the number of alternatives (such as
the paths of state-transition proliferation or traces) in the interconnected network of cellular automata.
Usually, only n out of such N alternatives are warranted to confirm a total orderliness. Therefore, the
disorderliness is written as:

so that Yj ’ � for Nj ’ � with n being a constant and Yj ’ 0 for Nj ’ n. The corresponding measure of
disorganization written in conformity with Hartley’s measure of entropy simplifies to:
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8.6 Entropy of Neurocybernetic Self-Regulation

In the self-organization endeavor, the neurocybernetic system attempts to (self) regulate (via feedback
techniques), the state of the system (corresponding to say the ith realization of cellular state variable being
nondeviatory with respect to a target state). That is, designating the generalized state of the system vector by
yi in the ith realization from the target vector yT, the corresponding diversion is represented by (yi - yT) and |yi
- yT = Qi. A bounded two-dimensional spread-space, ©S includes all such likely diversions as depicted in

Figure 8.2. It can be decomposed into elementary subspaces ”© which can be set equal to ´2, where ´
represents the one-dimensional quantizing level of the space.

Suppose the a priori probability (pi) of finding the vector yi at the ith elementary subspace is known, along

with the distance of this ith realization from the goal (target), namely, Qi. The corresponding diversion
ensemble of the entire spread-space {©S} can be written as:

where £º i=1 pi = 1, and the number of form realizations in each subspace over the domain ©S is º = ©S/”©.

Assuming equal weights, namely, W1 = W2 = ... = Wº = 1, a goal-associated positional entropy  can be
defined as follows:

The function  defines a new entropy space ( ) as distinct from the parameter space ©S. That is, each

value of  in the entropy space could be mapped onto the parameter spread-space and denoted on a

one-to-one basis by . This value of  represents the expected mean diversion from the goal
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in the spread-space ©S. Further, the spaces ©S and  are affinely similar and the goal-related entropy
satisfies the conditions specified in the following lemmas [111]:

Lemma 1:

Lemma 2:

Lemma 3:

where

and

Lemma 4: Sum of two entropies satisfying the conditions of independence and summation in the spread-space
of the state vector leads to:

where

Lemmas 1 and 2 represent the intuitive concept of neural disorganization in the state of being controlled
towards the goal. If an ideal control is perceived, it strikes the well-ordered target domain in all realizations

specified by . Diversions from the ideality of the ensemble with an increasing or decreasing trend

enable  to increase or decrease, respectively.

Lemma 3 stipulates that, in the event of equiprobable diversions, the relation between the spread-space of the
state vector and the entropy space is logarithmic with an error µº ’ 0 for |yi - yT| >> 1.

Entropy associated with target-seeking endeavor is not additive. That is, goal-associated entropies cannot be
added or subtracted directly in the entropy space. However, these superposition operations can be performed
in the spread-space of the state vector. After the necessary extent of such operations are executed in the
spread-space, the consequent effects can be translated to the entropy space.

Lemma 4 specifies the rule of additivity in the spread space, pertaining to independent goal-associated

position entropies with an accuracy set by µ(1,2) ’ 0 with .

8.7 Subjective Neural Disorganization

Shown in Figure 8.3 is an arrangement depicting the ensemble of the state-vector realizations grouped with a



center which does not coincide with the center of order or the goal-vector. That is, the goal center may lie
outside the spread space. This happens when the neural system has self-organizing characteristics controlled
subjectively. The subjectiveness refers to the neural intellect that has an information (or entropy) from the
source, classifies the situations in it, predicts its behavior, and makes decisions leading the processed
information to a desired functional attribute. While the ensemble of subjective realizations of the state-vectors
tend to lie in a spread domain, the goal-dictated (objective) state-variables may normally cluster outside this
region as shown in Figure 8.3.

Figure 8.3  Objective and subjective neural disorganizations

The question of subjectiveness refers to the situation when the system prescribes inherently its own goal or
subjective function regardless of the training-dictated objective function. This condition in the nervous system
is, for example, due to external influences such as drug, alcohol etc. Such external factors may cause the
control strategy of neural self-regulation to seek the subjective goal rather than the objective goal learned
through experience.

Correspondingly, there are two possible disorganizations with respect to subjective and objective goals
designated as yTS and yTO, respectively. The mutual positional disorganization defined between yTS and yTO
is given by:

where gso is the mutual diversion between the subjective and objective goals; and the corresponding
fractional position entropy defined relative to the subjective goal is given by:

where |yj - yTS| is the spread about the subjective target. It should be noted that  as gso ’ 0, and
the fractional positional entropy satisfies all the four conditions imposed earlier.

While yTO is a steady-state (time-invariant) factor, yTS may change subjectively with time. Therefore, H(o/s)y
represents a dynamic parameter as decided by the dynamic wandering of the subjective goal center. In
general, gso is a stochastical quantity the extent of which is dictated by the neural (random) triggering induced
by external influences. The concept of fractional positional entropy may find application in the analysis of a
pathogenic neural complex and is a measure of fault-tolerancy in the network operation.
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8.8 Continuous Neural Entropy

Reverting back to the situation wherein the subjective and objective targets merge, the spread space can be
quantized into subspaces at the target center concentrically as shown in Figure 8.4 with a quantizing extent of
spread space equal to ´.

Figure 8.4  Discretized neural parametric spread-space

position entropy  by means of a nonlinear coefficient , such that , where  is the
Shannon entropy which depends explicitly on the quantizing level ´ as follows:

Equation (8.20) predicts that in the limiting (continuous) case,  if ´ ’ 0 in confirmation with the
fact that as the cardinality of the given set of events increases to infinity, the entropy of the system also
inclines to follow a similar trend.

Suppose the vector yi in the spread-space has an equal probability of occurrence at all subspaces ”yir
measured from the target by the same distance | yir - yT| = Qir. Then, for ´ ’ 0, the probability of finding the
vector yir in the rth annular space can be written as:

satisfying the total probability condition that:
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The corresponding position entropy is defined in a continuous form as:

with 0 d Q d Qmax and Q = 0 elsewhere.

The above expression is again identical to Shannon's entropy and represents the continuous version of

Equation (8.13) with ´ ’ 0. It can also be related functionally to Shannon's entropy  as before with 
characterizing the statistical system disorganization for a constant set of cardinality. The goal-seeking position

entropy  whenever pi ’ 1/(Qi + 1) for all realizations of the state vectors.

8.9 Differential Disorganization in the Neural Complex

The difference in entropies at two locations, namely,  in the vicinity of the objective locale of the goal

and  at an arbitrary ith location in the spread-space, measures implicitly the differential extent of

disorganization. When  the corresponding information gain is given by .

The information or entropy pertinent to the disorganized ith locale can be specified either by an associated a

priori probability of attaining the goal pai so that , or in terms of conditional

probability specified by pi/pai' where pai' is the a posteriori probability of attaining the goal in reference to ith

subspace. The corresponding value of  is equal to . In both cases, pi in general is the

actual probability of the ith subspace and pi ` pai. Further, pai' depicts the forecast probability of the ith

subspace. The value of differential measure of disorganization  is obtained by using  with p1 = p2 =

... = pº and the pragmatic aspects of  can be deduced from Hi'.

8.10 Dynamic Characteristics of Neural Informatics

The stochastical aspects of a neural complex are invariably dynamic rather than time-invariant. Due to the
presence of intra- or extracellular disturbances, the associated information in the neural system may degrade
with time; and proliferation of information across the network may also become obsolete or nonpragmatic due
to the existence of synaptic delays or processing delays across the interconnections. That is, aging of neural
information (or degenerative negentropy ) leads to a devalued (or value-weighted) knowledge with a reduced
utility. The degeneration of neural information can be depicted in a simple form by an exponential decay
function, namely:

where  is the initial information and  is the time constant specifying the duration within which 
has the pragmatic value. This time constant would depend on the rate of flow of syntactic information,
information-spread across the entropy space, the entropy of the sink which receives the information, and the
characteristics of synaptic receptors which extract the information. Should a degradation in information occur,
the network loses the pragmatic trait of the intelligence and may iterate the goal-seeking endeavor.

Another form of degradation perceived in neural information pertains to the delays encountered. Suppose the



control-loop error information is delayed when it arrives at the controlling section; it is of no pragmatic value
as it will not reflect the true neural output state because the global state of the neural complex would have
changed considerably by then. In other words, the delayed neural information is rather devalued of its
“usefullness” (or attains nonpragmatic value) at the receiving node, though the input and output contents of
syntactic information remained the same.

In either case of information degradation, the value of information (devalued for different reasons) can be

specified as  where » depicts the pragmatic measure of information. It is also
likely that there could be information enhancement due to redundancies being added in the information
processor. This redundancy could be a predictor (or a precursor such as the synchronization of cellular
state-transitional spikes) of information which would tend to obviate the synaptic delays involved. The

corresponding time dependency of  can be represented as  where Äen is
the enhancement time constant.

The information aging and/or enhancement can occur when the neural dynamics goes through a nonaging or
nonenhancement (quiescent) period. This quiescent period corresponds to the refractory effects in the
neurocellular response.

The property of neural information dynamics can be described by appropriate informational transfer

functions. Depicting the time-dependency of information function as , its Laplace transform  is the
informational transfer function which describes the changes in the processor algorithm of the neural network.

The loss of neuronal information due to degradation can be specified by an informational efficiency which is
defined as:

where  is the maximum usable information in the system and  is the available information
regarding the ith subset in the spread space. This informational efficiency is distributed among the sections of
the neural network, namely, the input section, the output unit, and the control processor.
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8.11 Jensen-Shannon Divergence Measure

As defined earlier, the disorderliness refers to a measure of deviation of a selected variable, say yi, with
reference to a specified target standard of order yT. In a geometrical representation, yT can be denoted by a
vector corresponding to the center of a region of orderliness wherein a stipulated stochastical extent of
orderliness is specified within bounds. The disorderliness at the ith realization in the parameter spread space
is, therefore, given by Equation (8.2) with j replaced by i. That is:

where |yi - yT| = Qi refers to the magnitude of error vector and D(yi) is the distance from the center to the
boundary of the quasi-ordered region. The corresponding goal-associated positional entropy is specified by

 at the ith elementary subspace in the entropy space . Elsewhere, say at jth subspace, let 
represent the goal-associated positional vector entropy perceived. Now, one can seek information in the

sample-space of y for discrimination in favor of  against , or symmetrically for discrimination in

favor of  against . Physically, these conditions represent whether the ith realization or the jth
realization (respectively) would enable achieving the goal being sought. The basic set of elements yi’s
represent univariates and multivariates, discrete or continuous; it may simply represent the occurrence or
nonoccurrence of an error signal of the control-processing loop. The elements have probability measures
pi’s which are absolutely continuous with respect to each other. These probabilities can be specified by
generalized probability densities f(yi) such that 0 < f(yi) < � and pi = +f(yi) dyi with 0 d pi d 1. The average

information for discrimination in favor of  against  can be written as:

Considering the average information for discrimination in favor of  against , namely, I (j: i, y), a
symmetric measure of divergence (known as the Kullback measure) can be, written as [112,113]:
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which is known as J-divergence and in the present case represents the divergence of disorganization
associated with the subspace regions of ith realization and that of jth realization.

More appropriately, each of the realizations should be weighted in their probability distributions to specify
their individual strength in the goal-seeking endeavor. Suppose  i and  j ( i,  je 0 and  i +  j = 1) are the
weights of the two probabilistic pi and pj, respectively. Then, a generalized divergence measure (known as
the Jensen-Shannon measure) can be stipulated as follows [114]:

This measure is nonnegative and equal to zero when pi = pj. It also provides upper and lower bounds for
Bayes' probability of error. The Jensen-Shannon (JS) divergence is ideal to describe the variations between
the subspaces or the goal-seeking realizations, and it measures the distances between the random graph

depictions of such realizations pertinent to the entropy plane .

In a more generalized form, the Jensen-Shannon divergence measure can be extended to the entire finite
number of subspace realizations. Let p1, p2, ..., pº be º probability distributions pertinent to º subspaces with
weights  i,  2, ...,  º, respectively. Then the generalized Jensen-Shannon divergence can be defined as:

where   = ( i,  2, ...,  º).

The control information processing unit sees º classes c1, c2, ..., cº with a priori probabilities  1,  2, ...,  º.
Each class specifies a distinct or unique strength of achieving the goal or minimization of the distance
between its subspace and the objective goal. Now, the control information processing faces a decision
problem pertinent to Bayes' error for º - classes written as:

This error is limited by upper and lower bounds given by [114]:

where

and

The JS divergence measure can be regarded as an estimate of the extent of disorganization. Performance of
the neural complex in the self-control endeavor to reduce the disorganization involved can be determined
by maximizing an objective function criterion, subjected to certain constraints. This can be accomplished in
an information domain via achieving a minimal JS- divergence. Denoting the information pertinent to the

subsets yi and yj as  and , respectively, and the JS-divergence measure by , a feature
vector depicting the performance criteria of the control information process in the neural complex can be
written as follows:



where the JS measure,  characterizes the loss of organizational feature of the system as
indicated above, while referring the subset yj to subset yi, and º is the number of subsets being considered.
Relevant to the performance criteria stipulated above, one should know the estimated conditional density

function  for all values of the vector y, which may however become formidable with a large
number of subsets as in the case of the neural complex.

Therefore, a generalized control criterion can be specified with the arguments by groups, each group
comprising of limited subsets {y1, y2, ..., ym}. The corresponding performance criterion is hence given by:

where  are  groups of subsets considered and:
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which refers to the divergence from the objective characterized by the parsed groups of subsets, namely,

 in reference to the entropy measure . The number of groups, each with a fixed

number of subsets m, is determined by the combination . Let the set  be denoted by

 and the subsets (y1, y2, ..., yº) be divided into two sample spaces such that the first group
(y1, y2, ..., yh) represents the subsets which are under the learning schedule to reach the objective function
and (yh+1, yh+2, ..., yº) are the subsets which have been annealed so that the dynamic states of the neurons
have almost reached the steady-state condition. The (first) learning group can therefore be denoted by

 and the second group (which is closer to the objective function) is .

The differential measure of the features in these two groups can be specified by a matrix F represented as
follows:

The corresponding average error <µ> is evaluated as

where q is the number of subsets in the group of converged subsets (PM) and the summation is performed

only in respect to subsets belonging to PM. Further,  and

.

The back-propagation algorithm in the neural network attempts to gradually reduce the error specified by
Equation (8.37) in steps. To increase the rate of algorithmic convergence, the divergence CJS can be
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weighted at each step of the algorithm so that ¶ = (1 - <µ>) approaches a maximum ¶max ’ 1. This condition
is represented by

where  and . Further,  and the elements of the
divergence matrix at the rth step of the algorithm are determined as follows:

The method of taking arguments into account by parsed groups constitutes an algorithm of evaluating a
generalized objective criterion with initial information being insufficient to compute all the values of

 for a complete vector set y.

8.12 Semiotic Framework of Neuroinformatics

As discussed earlier, the neural complex bears three domains of informatics: The first one embodies the
input, the second one is a processor stage, and the third part refers to the controlling stage.

The associated knowledge or the information in the first section is largely descriptive on the environment of
the domain space accommodating the neurons. It represents a declarative knowledge which reflects the
structure and composition of the neural environment. On the contrary, the second section has activities
which are processed in translating the neuronal state-transitions across the interconnected cells as per
certain instructions, rules, and set of learning protocols. In other words, a set of rule-based algorithms
depicting the knowledge (or information) useful to achieve the goal constitutes the processing sections of
the neural complex. The associative memory of a neural network immensely stores this declarative
information.

Likewise, the controlling section of the network has information looped into the system to refine the
achievement of the goal or minimize the organizational deficiency (or die divergence measure) which
depicts the offsets in realizing the objective function. In this self-control endeavor, the neural automaton has
the knowledge or information which is again largely procedural. It represents a collection of information
which on the basis of phenomenological aspects of neurons reflects the rational relationship between them
in evaluating the organizational deficiency.

Therefore, the neural complex and its feedback system harmoniously combine the declarative and
procedural information. Should the control activity rely only on procedural informatics, it represents the
conventional or classical model. However, due to the blend of declarative informatics, the neural
controlling processor is essentially a semiotic model — a model that depicts a sum of the declarative
knowledge pertinent to the controlled object, its inner structures, characteristic performance and response to
control actions. The control actions themselves are, however, rule-based or procedural in the informatic
domain.

The cohesive blend of declarative and procedural informatics in the neural automaton permits its
representation by a semiotic model. That is, the neural complex is a system that could be studied via
semiotics or the science of sign systems.

The semiotic modeling of the neural network relies essentially on the information pertinent to the controlled
object, the knowledge on its control being present in the associated memory so that the system can be
taught (or made to learn) and generate procedural knowledge by processing the stored control information
[115].

To understand the applicability of semiotic concepts in neural activity, a fragment of interconnected
network of neuronal cells is illustrated in Figure 8.5. The fragmented network has a set of cells {X, Y, Z, R,
S, f, a, b, c} with axonal interconnections at synapses denoted by the set of numbers {1, 2, 3, 4, 5}. The
synapses can be in either of the dichotomous states, namely, excited or inhibited. If some of the synapses
are excited, the respective cell also becomes excited and this state is transmitted along all the outgoing
axons which eventually terminate on other synapses. A synapse attains the excited state only when all the
incoming axons are activated.



Figure 8.5  Semantic network model of the neural complex
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The above network has three features: syntax, semantics, and pragmatics. The syntax refers to signs or
symbols associated with the network. Syntactic representation breaks the network into fragments of cellular
units or parsed units. Each syntax has a characteristic meaning referred to as the semantics. While a syntax
has independent significance, the semantics of a sign can be meaningful only within the universal set of
syntactics. The pragmatic aspect of the network refers to the use of a sign when the system is under a state of
activity.

With the, aforesaid semiotic attributions, the fragment of a neural network as depicted in Figure 8.5 is termed
as a semantic network. When an excited state sets in a cell (due to inherent or exterior cellular disturbances), it
proliferates across the neural complex to activate the other cells of the interconnected network. Shortly, the
dynamic state-transitional process will become stabilized to freeze the network into a static excited state.

Referring to Figure 8.5, let S denote the realization of an excited state in a particular cell and refer to an
objective goal. It is assumed that there are two rule-based state-transitional proliferations which could
accomplish this, one via the set of cells denoted by {a, b, c, f} and the other through the set {X, Y, Z, R}.
Considering the first possibility, let the cells {a, b, c} be initially activated. All the associated axonic outputs
will then become activated. This will lead to the initiation of the synapse I at the cell f; and then, through the
activation of this cell, an axonic output will render the cell S excited through synaptic coupling, 4. The above
procedure successfully meets the objective function or goal iff, S is excited. Otherwise, a feedback
mechanism will let the process repeated on the basis of information gained by a learning procedure until the
objective is met.

The process of activation to achieve the goal can be depicted in terms of semantic network representations
with the associated procedural information pertinent to the network. Let every synapse stand for a certain
procedure stored in the network memory (via training). The numerical signs (1, 2, ..., etc.) designate the name
of the; procedure, and the activation of the synapse is equivalent to the call of the respective procedure (from
the memory) for execution. One can associate the initiation of the network cells with the presence of certain
starting information required to solve the problem (or to attain the goal). In the present case, this information
is designated by syntactics (a, b, c, ..., etc). The initiation of synapse I may call for a procedure of evaluating,
say, func(c). Subsequently, synapse 4 calls for a procedure say, xy[func(c)]. If this end result is sufficient and
successfully accomplished, the activation of S takes place and the goal is completed. Otherwise an error
feedback would cause an alternative protocol (within the scope of learning rules). Nonconvergence to the
objective function could be due to the nonobservance of the syntactic rules (caused by noise, etc.). In this
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respect, a neural network works essentially as a recognizer set of syntactics.

An alternative procedure of goal-seeking could be as follows: The initial activation of cells {X, Y, Z} will
excite the synapse 3 via an axonic input. The procedural consideration at 3 could be say, (X + Y + Z)R. Then
subsequently, this information is routed to synapse 6, where the procedure could be a comparison of (X + Y +
Z)R and S. If the difference is zero, the goal is reached. Otherwise, again feedback error information is
generated to reiterate the procedure by means of a learning rule. That is, achieving the goal renders the
transition of the network into statistically active states with the search for any additional procedural
information being terminated.

The fragmented or parsed network constitutes a tree of top-down or bottom-up parse with the object-seeking
protocol commencing at a set of synapses and culminating at the goal site. In these parsed tree
representations, the error-information feedback and the subsequent control processing (or towards the
minimization of the error to achieve the objective function) refer to an error-seeking scheme. Relevant
strategy makes use of a set of tokens called synchronization set (or tokens). The tokens are identities of a set
of manageable subsets (termed as lexemes) of cellular states obtained by parsing the cellular universal set.

The exemplification of the semantic network as above indicates the roles of procedural and declarative
information in neurocybernetic endeavors. The first one refers to the stored information as the traditional
memory and the second as the specially arranged model (parsed tree) represented by the synaptic
interconnections.

The information associated with the semiotic model of a neural control processor can use three types of
languages for knowledge representation, namely, predicative, rational, and frame languages. The predicative
language employs an algorithmic notation (like a formula) to describe declarative information. Rational
languages in a semantic network state the explicit relationships between the cells; that is, they represent the
weighting functional aspects of interconnections.

The gist of these relationships represents the procedural knowledge of executing a functional characteristic at
the synapse. For this purpose, the rational language that can be deployed is a set of syntagmatic chains. These
chains can be constituted by elementary syntagma. For example, the weight and functional relation across a
pair of interconnected synapses 2 and 1 in Figure 8.5 can be specified by an elementary stygma (±2 ²c ±1)
where ±2 and ±1 are the synaptic elements interconnected by a relation, ²c. Between nodes 2 and 1 in Figure
8.5, this relation includes the state of the cell and the weights associated between 2 and 1. Proceeding further
from synapse I to synapse 4, the corresponding network activity can be depicted by ((±2 ²c ±1) ²f ±4) which
corresponds to the information pertinent to the activation, S. The entire relational language representation, as
in the above example, has both declarative and procedural information. Thus in tree-modeling, information on
the neural data structure, functioning, and control of the neural complex can be represented in a language
format constituted by syntagmatic chains.
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Another possible neural information representation is in frame language which could be again declarative or
procedural. The basic description frame is declarative and embodies such information which cannot be
reduced without losing the meaning of the process or events involved. On the other hand, there exists an
octant frame which sheds off redundancy and provides minimal information for the neuronal control process.
In a semiotic model, the frame language summarizes the languages of the relational types into multilevel
hierarchical descriptions of the cellular complex. Such hierarchy is constituted by declarative information on
the environment (descriptions of the physioanatomical aspects of the cells, axonic interconnections, etc.), and
procedural aspects of the activities in the neural network (excitations and/or inhibitory biochemical responses,
synaptic delays, etc.). It should be noted that this information is inherent in the associated memory of the
network as beds and realizations mentioned earlier.

8.13 Informational Flow in the Neural Control Process

Illustrated in Figure 8.6 is the flow chart of neural activity in the informational domains.

Figure 8.6  Semiotic model of the neural complex in the information domain (Concept adapted from [115])

The functional aspects of the neural complex in the information plane as depicted by the semiotic model of
Figure 8.6 can be summarized as follows: Pertinent to a set of input information that the neural complex
receives from its environment, the information on the current output state of a neuron is fed back to the input
of the network through an assembly of informational subsets. The first subset is a neural encoder (NC) which
encodes the diverse information into syntagmatic chains. Such descriptions are fed to a neural analyzer (NA)
which performs preliminary classification of the incoming information. If this information is needed for future
use, it is stored in a knowledge-base (which is conventionally referred to as the memory (KB) of the neural
complex) as traces. When the information in the neural analyzer is explicitly sufficient and cognizable, it is
identified as information of the known category and directed to a correlator (NR) for the overlapping of the
replicas, that is, for comparison with the trained patterns. Otherwise, it is considered as the information of
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unknown category and goes to a classifier (NL) for further categorization. The correlator serves to find a
chain of control actions (to achieve the objective function) to match the controlling required. It also turns to
the classifier to know the category of the information of the current neuronal state, if required. It may further
use the data (memory) stored in the knowledge-base, as well. If the correlator finds a single control action, it
informs the solver (NS) to let the relevant controlling activity to take place. If there are alternatives possible
on the control strategy, the correlator may find it from the extrapolator (NE). The extrapolator seeks
information from the knowledge-base pertinent to the output neuronal state and predicts the likely
consequences of different control strategies. The responsibility of final controlling action rests with the solver.

Thus, semiotic modeling of neural control processing permits the development of the entire control protocols
in the information plane; and optimization of this semiotic control process provides a scope for the
developments in neuroinformatics.

Further, the semiotic approach in implementing the control information establishes its identity with the
information existing at the input to the control. Thus, after being processed, the input information is
transformed into control information which in turn provides input information about the neural state variables
at the processor and, after the transit through the control means and the controlled system, input information
about the functioning of the entire neural network. As dictated by the goal, each of the above stages is an
information processing endeavor depicting sensing, recognition, prediction, decision making, and execution
protocols. The pragmatics of such information and the characteristics of the processor can be evaluated as
follows.

Considering the role of information processing in the control of neural disorganization, the useful information
(pragmatic assay) in reducing the disorganization in the sensing subgoal is given by:

where  and  are the amount of syntactic input information and its pragmatic values, respectively,
with regard to the sensing algorithm. Ls is the semantic processing characteristics of the sensing algorithm, ·s

is the informational efficiency of the receiving synapse, and  is the inverse of the functional relation
specified by Equation (8.4).

The sensing subgoal refers to extracting only useful parts from the total information sufficient to impart
knowledge to the controlled system. Similar to the above expression, the extent of useful information at the
receiving synapse (recognizing the knowledge) can be written as:

where ”OD(R) refers to the reduction in disorganization with respect to recognition subgoal,  is the sensing
information, &alpha;R/S is the coefficient of coupling between the pragmatic value of sensing information
and recognition subgoal, (semantic properties of recognition), and ·R is the associated informational
efficiency.

Similar expressions can be written for prediction and decision-making information protocols aimed at
minimizing the overall disorganization in the goal-related hierarchy.
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8.14 Dynamic State of Neural Organization

As indicated in Section 8.10, the neuronal informational flow has distinct dynamic characterizations dictated
by synaptic delays and cellular disturbances. The consequence of this is a devaluation of the pragmatic values
of the information content. The dynamic state of informational flow portrays the dynamic degradation of
self-regulating performance of the neural complex assessed via disorganization parameters in terms of the
devalued information parameters.

The neural complex is essentially a self-regulating automaton which maintains its stability without assistance
from the control system. Opening the control loop in such systems causes goal-related disorganization to
increase within, however, certain bounds.

Intra- and/or extracellular disturbances cause the vector y in the spread space ©S to deviate from the system
objective. Such diversions in the information plane refer to the spatial transient diversions. On opening the

control-loop in a goal-seeking self-controlling system, the corresponding disorganization  can be described
symbolically as:

where Ro is a subset of the quasi-ordered region of ©S and represents the well-ordered region or the region at
which the goal is totally attained in the spread space, and CY is the constant as defined in Equation (8.5).

When the control-loop is closed, there is a net steady-state control information  vis-a-vis disorganization
OD. They are related by:

To let  should converge , the control information. That is, an information invariance occurs
when actions of the information processor and implicit organizational activities balance against each other so
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that the vector y converges to the objective locale. By the same token, there may be information invariance in
each stage of information processing. Thus, information invariance is a relative indicator of the extent of the
objective been achieved.

Considering the dynamic state of the neural system, the control information  and the corresponding
state of disorganization OD(t), the transient (time-varying) information state of the system can be written as:

The conditions for the invariancy of this disorganization control information under the dynamic state which
stipulate the convergence towards the objective function cannot, however, be ascertained explicitly without
approximations.

8.15 Concluding Remarks

The parallel theme of cybernetics and informatics as posed in this chapter is a coordinated approach in
seeking a set of avenues to model the information processing in the neural complex via entropy of
disorganization and semiotic considerations. In this endeavor, it is strived to provide relevant conceptual and
mathematical foundations of the physical process involved supplemented by the host of definitions and
terminologies of various quantifiable terms which dictate the neural functions in the informatic plane. The
concepts of cybernetics are matched with functioning of the neural complex through the general principles of
information theory. This admixture of analysis could possibly lead to the passage of viewing higher order,
composite neural networks (interacting networks) which (unlike the simple interacting networks) are more
involved at organizational and operational levels calling for new strategies of neural information handling.

The informatic structure of neural assembly is complex. It has hierarchical relationships between and within
the control centers. The neural channels, in general, handle huge informational flows. There is an explicit
dependence of neural information and the attainment of the objective function. In fact, the processing
involved in the realization of the target (objective function) specifies the sematic and pragmatic aspects of the
data proliferating across the network of neural cells. The neural information base with its hierarchical
structure of control and goal has a system-wide domain enclosing memory locales and control centers with
distinct functions warranting specific algorithmic executions. The relevant characteristics of information
handled pertain to disorganization in the (mal)functioning of the neural complex with regard to its objective
function. Such a disorganization, in general, is a dynamic (time-dependent) entity.

A neurocybernetic system attempts to self-regulate despite of it being informatically starved. That is, more
often a neural complex is (self) controlled under conditions of incomplete information. This is due to the fact
that a massive system like the neural assembly is only partly observable and controllable (by the C3I
protocol), and consequently partly cognizable and predictable towards self-regulation (or in achieving the
objective function). The variety features dictated by the extremely complex structure, composition and
properties of the neural units and the limited time of operation involved (or available) in the control endeavor
are responsible for the incomplete acquisition of the neural information. Nevertheless, analysis of the
neurocybernetic system in the informatic plane permits a singular entity (namely, the entropy) to depict the
functioning of the neural complex system (both in terms of memory considerations as well as control
information processing) and provides a framework for alternative analytical strategies to study the neural
complex.
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Appendix A
Magnetism and the Ising Spin-Glass Model

A.1 General

Materials in which a state of magnetism can be induced are called magnetic materials. When magnetized,
such materials cause a magnetic field (force) in the surrounding space.

The molecules of a material contain electrons which orbit around their nuclei and spin about their axes.
Electronic motion equivalently represents an electric current with an associated magnetomotive force. That is,
a magnetic material consists of a set of atomic level magnets arranged on a regular lattice which represents the
crystalline structure of the material. In most molecules each magnetomotive force is neutralized by an
opposite one, rendering the material nonmagnetic. However, in certain materials (such as iron), there is a
resultant unneutralized magnetomotive force which constitutes a magnetic dipole. These dipoles are
characterized with dipole moments due to three angular momenta, namely, orbital angular momentum,
electron-spin angular momentum, and nuclear-spin angular momentum. The atomic magnets represent the
associated ±1/2 spin atoms in which the angular spin is restricted to two distinct directions and represented in
the so-called Ising model by Si = ±1 at a lattice site i.

In a magnetic material, the dipoles line up parallel with an externally applied magnetization field hext and
internal field produced by other spins. When the dipoles remain aligned despite of removing external
magnetization, the material is said to have acquired permanent magnetism. The readiness of a magnetic
material to accept magnetism is termed as its permeability (¼M).

In the process of magnetization, the dipole moment experienced per unit volume quantifies the extent of
magnetization (of the medium) and is denoted by MM. The manner in which magnetic dipoles are arranged
classifies the materials as paramagnetic, ferromagnetic, antiferromagnetic, and ferrimagnetic, as illustrated in
Figure A.1.

With reference to the arrangements of Figure A.1, the nature of dipole interactions can be described
qualitatively as follows:
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Paramagnetic Ò Disordered interaction with zero resultant magnetization.
Ferromagnetic Ò Ordered strong interaction with a large resultant magnetization.
Antiferromagnetic Ò Ordered interaction, but with zero resultant magnetization.
Ferrimagnetic Ò Ordered interaction, with relatively weak resultant magnetization.

Figure A.1  Magnetic spin arrangements

A.2 Paramagnetism

Paramagnetism is a noncooperative magnetism arising from spontaneous moments, the orientation of which is
randomized by the thermal energy kBT. The magnetic order is thus the net alignment achieved by the applied
field in the face of the thermal disarray existing at the ambient temperature. The extent of magnetization is the
time-average alignment of the moments, inasmuch as the orientations fluctuate constantly and are in no sense
fixed. Ideal paramagnetism is characterized by a susceptibility which varies inversely proportional to
temperature (Curie law) and the constant of proportionality is called the Curie constant.

At any given lattice location, the internal field pertinent to an atomic magnet due to the other (neighboring)
spins is proportional to its own spin. Thus, the total magnetic field at the site i is given by:

where the summation refers to the contribution from all the neighboring atoms and the coefficient Jij measures
the strengths of influence of spin Sj on the field at Si and is known as exchange interaction strengths.

(Another noncooperative magnetism known as diamagnetism is characterized by a negative
temperature-dependent magnetic susceptibility.)

A.3 Ferromagnetism

As indicated earlier, ferromagnetism results from an ordered interaction. it is a cooperative magnetism with a
long-range collinear alignment of all the moments, manifesting as the prevalence of magnetization even with
no external magnetic field (spontaneous magnetization). This cooperative magnetism becomes prominent and
dominates below a discrete temperature called Curie temperature (TC), and in spin-glass theory it is known as
spin-glass temperature (TG).

A.4 Antiferromagnetism

Like ferromagnetism, this is also a cooperative process with a long-range order and spontaneous moments.
The exchange coupling dominates the constraints on the moments in the cooperative process, and the
exchange parameter for an antiferromagnetism is negative. That is, for a given direction of the moment of an
ion, there is a neighboring ion with its moment pointing exactly in the opposite direction. Hence, there is no
overall spontaneous magnetization. The transition temperature in this case is known as Néel temperature
(TN).

A.5 Ferrimagnetism

This magnetism differs from the other types, as it involves two or more magnetic species that are chemically
different. The species can have ferro- or anti ferromagnetic alignment; however, if the species with
ferromagnetic moment dominate there would be a resultant spontaneous magnetization. The temperature
dependence of ferrimagnetism is qualitatively similar to that of ferromagnetism.

A.6 Magnetization

As described earlier, a permanently magnetized sample say, of iron, typically contains a number of domains
with the directions of magnetization being different in neighboring domains. The extent of magnetization MS
that exists in the sample in the absence of any applied magnetic field is called spontaneous magnetization
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(more commonly known as retentivity or remnant magnetism in engineering). Its magnitude depends on the
temperature in the manner sketched in Figure A.2.

The direction in which the spontaneous magnetization is rendered usually lies along one of several easy axes
defined by the crystal structure of the material. Upon heating to the critical or Curie temperature TC, the
spontaneous magnetism vanishes continuously. The immediate neighborhood of TC is called the critical

region and  where ²C varies rather little from one ferromagnetic material to another and is
typically about 1/3.

Figure A.2  Spontaneous magnetization versus temperature TC: Curie point

The property of the material in the neighborhood of the critical point is known as critical phenomenon which
is substantially independent of the detailed microscopic constitution of the system considered.

The forces which tend to align the spins in a ferromagnet have electrostatic and quantum mechanical origins.
The phase transition which occurs at the Curie temperature in zero magnetic field can be described as an
order-disorder transition. In the high temperature (paramagnetic) phase, one in which the fluctuations in the
orientation of each spin variable are entirely random so that the configurational average is zero, the state is a
disordered one. In the ferromagnetic phase, on the other hand, inasmuch as the spins point preferably in one
particular direction, the state is said to be ordered.

The interaction of the spins in a magnetic system dictates implicitly the minimum energy considerations
which can be mathematically specified by a Hamiltonian. That is, considering the potential energy
corresponding to Equation (A.1), it can be specified by a Hamiltonian HM given by:

A.7 Spin-Glass Model [116]

The phenomenon of ferromagnetism was modeled by Ising in 1925 [35] as due to the interaction between the
spins of certain electrons in the atom making up a crystal. As mentioned earlier, each particle of the crystal is
associated with a spin coordinate S. Assuming the particles are rigidly fixed in the lattice and either
neglecting the vibrations of the cyrstal or assuming that they act independently of the spin configuration (so
that they can be treated separately), the spin is modeled as a scalar quantity (instead of a vector) which can
assume two dichotomous levels, namely, S = ±1 (+1 refers to the up spin and -1 is the down spin). The
interaction between two particles located at the ith and jth lattice points is postulated as Eij = -JijSiSj if i and j
are nearest-neighbors; otherwise Eij = 0. This postulation assumes only nearest-neighbor interaction. That is,
the energy is -J if the nearest neighbors have the same spin and +J if they have unlike spins; and the zero
energy corresponds to the average of these two. Thus the parameter J is a measure of the strength of i to j
coupling or the exchange parameter determined by the physical properties of the system. It is positive for a
ferromagnetic system and negative for an antiferromagnetic system.

In the Ising model, it is further postulated that the particle can interact with an external magnetic field as well.
Denoting the magnetic moment mM assigned to a lattice point for an external magnetic field hM applied, the

associated energy of interaction of the ith particle can be written as EM = -mMhMSi. The corresponding
thermodynamics of the system with M lattice points can be specified by a partition function * as:

*The definition and details on partition function are presented in Section.A.13.
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where aij = 1 if i and j are nearest neighbors, otherwise aij = 0, and further kB is the Boltzmann constant and T
is the temperature.

In terms of this partition function, the internal energy Eint per particle and the magnetization MM per particle
can be written as:

and

where

The Ising partition function indicated above quantifies the scalar spin interaction which does not depend on
the spin orientation with the lattice distance being fixed.

Although the Ising model is not considered as a very realistic model for ferromagnetism, it is considered as a
good emulation of a binary substitutional alloy as well as an interesting model of a gas or liquid.

A.8 The Hamiltonian

The simplest model for a d-dimensional magnetic system is the Heisenberg Hamiltonian (in the absence of
external field) given by:

where Si, Sj, etc. are the m-component spin vectors. When m = 1, the corresponding model is the Ising model.
These vectors at the positions ri and rj, etc. (in the d-dimensional space) interact with each other, the strength
of such interaction(s) being Jij as mentioned before. In a general case, Jij depends on ri, rj, etc. The exchange
interaction Jij on the right-hand side of Equation (A.7) is called short-ranged or long-ranged interaction

depending on whether .

Commensurate with spin theory, the spontaneous magnetization is a measure of the long-range orientational
(spin) order in space. It is an order parameter that distinguishes the ferromagnetic phase from the
paramagnetic phase or the so-called phase transition.

A.9 Bonds and Sites

In a magnetic system controlled by the spins, the “disorder” discussed earlier can be introduced either at the
“bonds” or at the “sites”. The bond-random model assumes the exchange bond strengths as independent
random variables with a specific probability density function (pdf). For example, when the exchange
interaction is such that each spin is assumed to interact with every other spin in the system (specified as the
lattice coordination number tending to infinity), the corresponding pdf of Jij is shown to be gaussian.

In the site-disorder models, the randomness is due to a finite (nonzero) fraction of sites being occupied
(randomly) by spins and the remaining sites being occupied by nonmagnetic atoms/molecules. The state of
the disorder arises due to the finite temperature. That is, thermal fluctuations tend to flip the spins from down
to up or from up to down, and thus upset the tendency of each spin to align with its field. At the so-called
absolute zero temperature (-273° C or 0° K), such thermal fluctuations vanish. Conventionally, the effect of
thermal fluctuations in an Ising model is depicted by Glauber dynamics with a stochastic rule:

where the pdf depends on the temperature (T) with difference functional choices. Usually the following
sigmoidal (S-shaped) function is considered for p(hi):



where ² = 1/kBT with kB = 1.38 × 10-16 erg/K and is known as the Boltzmann constant. The dynamic rule of
symmetry for the state Si can be written as:

The factor ² (or the temperature T) controls the steepness of the sigmoid near h = 0 as shown in Figure A.3.

Figure A.3  Glauber’s rule of symmetry for the state Si

A.10 The Hard Spin

The Ising spin is referred to as hard, as the spins can have only fixed (finite) values, namely +1 and -1. In
other words, the spins are characterized by a weighting function specified by:

A.11 Quenching and Annealing

The disorder in a magnetic spin system can be classified as either quenched or annealed. Such a classification
arises from the spatial ergodic property, namely, the physical properties of a macroscopically large system are
identical with the same property averaged over all possible spatial configurations. Suppose a large sample is
divided into a large number of smaller subunits (each of which is statistically large) in such a way that each of
these subunits can be regarded as an independent number of ensemble systems characterized by a random
distribution; and, as each of the subunits is statistically large, surface interaction can be assumed as negligible.

If the original system is annealed, it refers to each of the subunits acquiring all possible configurations in
them because positions of the impurities are not frozen. Suppose the original system is quenched. Neglecting
surface interactions, there is a frozen rigidity meaning that the positions of the impurities are clamped down.
The result is that the characteristics of the quenched systems could only be the superposition of the
corresponding characteristics of the subunits. The spin-glass systems have the common features of the
quenched disorder.

A.12 Frustration

The interactions between spins are normally in conflict with each other leading to frustration. For example,
the spin arrangement in a unit of square lattice (called a plaquette) can be of two possibilities as illustrated in
Figure A.4.

Figure A.4  Plaquettes of a spin system
A: Unfrustrated interaction; B: Frustrated interaction; +, -: Two opposing spins

The individual bound energies are minimized if the two spins connected by an arbitrary bond <ij> are parallel
to each other for + sign and antiparallel to each other for - sign. In plaquette A, all the bond energies can be
minimized simultaneously whereas the same is not possible in plaquette B. Hence, plaquette B is called
frustrated. In other words, those plaquettes where topological constraints prevent the neighboring spins from
adopting a configuration with bond energy minimized are called frustrated. The extent of frustration is
quantified by a frustration function dictated by the product of bond strengths taken over a closed contour of
connected bonds.

A.13 Partition Function

In a physical system with a set of ½ states, each of which has an energy level Æ½, at a finite temperature (T >
0) the fluctuation of states attains a thermal equilibrium around a constant value. Under this condition each of
the possible states v occurs with a probability P½ = (1/Z)exp(-Æ½/kBT) where Z is a normalization factor
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equal to £½exp(-Æ½/kBT). That is associated with discrete states Æ½(½ = 1,2,...) (each of which occurs with a
probability under thermal equilibrium), a controlling function which determines the average energy known as
the sum of the states or the partition function is defined by:

In the presence of an applied magnetic field (mMhM), the partition function corresponding to the Ising model
can be specified via Equations (A.9) and (A.11) as:

where £i is taken over all spins and £<ik> is taken over all pairs of direct neighbors. Further,  is over

the 2M combinations of the M spins. The associated energy E and magnetic moment mM can be specified in
terms of Z* as:

The relations specified by Equations (A.12), (A.13), and (A.14) are explicitly stated in the thermodynamics
viewpoint with ² = kBT in Equations (A.3), (A.4), and (A.5), respectively.

A.14 Ising Model: A Summary

Let a string of M identical units, numbered as 1, 2, 3, ..., (M-1), M each identified with a state variable x1, x2,
x3, ..., xM represent a one-dimensional interacting system. A postulation of nearest-neighbor interaction is
assumed which specifies that each unit interacts with its two direct neighbors only (see Figure. A.5).

Figure A.5  A string of M cooperative interacting units

Let the interaction between two neighbors be Æ(x, y). The corresponding probability for a given state of the
system is proportional to the Boltzmann potential, namely, exp[-²{Æ(x1, x2) + Æ(x2, x3) + ... + Æ(xM, x1)}]
so that the corresponding partition function can be written as a summing (or integration) function as defined
in Equation (A.11). That is:

On the basis of the reasoning from probability calculus, the following eigenvalue problem can be associated
with the summing function:

where » has a number of different eigenvalues »v, to each of which there belongs one eigenvector av. Also, an
orthogonality relation for the a’s prevails, given by:

Hence, the following integral equation can be specified:

Using the above relations, Z reduces to:
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and

where »1 is the largest eigenvalue.

In the so-called one-dimensional Ising model as stated earlier, the variable x is the spin S which is restricted
to just the two dichotomous values ±1. The interaction Æ(x, y) is therefore a matrix. In the case of a linear
array of spins forming a closed loop (Figure A.5), the interaction Æ(x, y) simplifies to:

where J refers to the exchange coupling coefficient.

The Ising Hamiltonian with hM = 0 has a symmetry; that is, if the sign of every spin is reversed, it remains
unchanged. Therefore, for each configuration in which a given spin Si has the value +1, there is another one
obtained by reversing all the spins, in which case it has the value -1; and both configurations have, however,
the same statistical weight. The magnetization per spin is therefore zero, which is appparently valid for any
temperature and for any finite system.

Thus, within the theoretical framework of the Ising model, the only way to obtain a nonzero, spontaneous
magnetization is to consider an infinite system, that is, to take the thermodynamic limit (see Figure A.6).

Considering single spins which can be flipped back and forth randomly between the dichotomous values ±1 in
a fixed external magnetic field h = hext, the average magnetization refers to average of S given by <S> =
prob(+1).(+1) + prob(-1).(-) which reduces to tanh(›h) via Equation (A.9a).

Further considering many-spins, the fluctuating values of hi at different sites can be represented by a mean

value <hi> = £j Jij <Si> + hext. That is, the overall scenario of fluctuating many-spins is focused into a single
average background field. This mean field approximation becomes exact in the limit of infinite range
interactions, where each spin interacts with all the others so that the principle of central limit theorem comes
into vogue.

A.15 Total Energy

Considering the Ising model, the state of the system is defined by a configuration of + (up) and - (down) spins
at the vertices of a square lattice in the plane.

Each edge of the lattice in the Ising model is considered as an interaction and contributes an energy Æ(S, S’)
to the total energy where S, S’ are the spins at the ends of the edge. Thus in the Ising model, the total energy
of a state Ã is:

The corresponding partition function is then defined by (as indicated earlier):

A.16 Sigmoidal Function

The spin-glass magnetization (Figure A.6) exhibits a distinct S-shaped transition to a state of higher
magnetization. This S-shaped function as indicated earlier is referred to as the sigmoidal function. In the
thermodynamic limiting case for an infinite system at T < TC, the sigmoidal function tends to be a
step-function as illustrated. In the limit, the value of MM at h = 0 is not well defined, but the limit of MM as h
’ 0 from above or below the value zero is ±MS(T).



Figure A.6  Magnefization of the one-dimensional Ising chain as a function of the magnetic field (a) Finite
system (T > Tc); (b) Infinite system (T < Tc)

(The method of calculat.ing the actual values of magnetization under thermodynamic considerations is
dimension-dependent. For the one-dimensional case, there is no ferromagnetic state. For the two-dimensional
case, the solutions at zero magnetic field due to Onsager and for a nonzero field by Yang are available. For
three dimensions, no exact solution has been found; however, there are indications of a possible ferromagnetic
state.)

A.17 Free Energy

Pertinent to N atoms, the partition function is summed over all possible states, all the 2N combinations of the
spins, Si = ±1. That is:

The multiple summation over all states is known as the trace T£. Hence the average activation <Si> of limit i
is given by:

For Z = (hi):

By defining a free-energy term as FE = -(kBT)log(Z), Equadon (A.26) reduces to:

and the correlation function <SiSj> becomes:

This is useful in deriving the Boltzmann machine algorithm. Free energy is like an exponentially weighted
sum of energies. That is exp(-FE/kBT) = Z = £½ exp(-²Æ½) and exp(-FE/kBT)/Z = £½ exp(-Æ½T)/Z = £½ p½ =
1 depicts the sum of the probability of the states (which is just 1).

A.18 Entropy

The difference between average energy <Æ½> and the free energy FE is given by:

The above expression, except for the kBT term depicts a quantity called entropy . That is:

and in terms of , the free-energy can be written as

The entropy refers to:

•  Width of the probability distribution p½.
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•  Larger  corresponding to more states ½ that have appreciable probability.

•  Average amount of additional information required to specify one of the states; or larger entropy, to
the more uncertain of the actual state ½.
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Appendix B
Matrix Methods in Little’s Model

B.1 A Short Review on Matrix Theory

B.1.A Left and Right Eigenvectors

Assuming A is an M × M square matrix, it has eigenvectors. Denoting  and  as the left (row) and
right (column) eigenvectors, then:

and

where » is a scalar known as the eigenvalue.

It should be noted that  and  are orthogonal unless .

From Equation (B.2) it follows that:

where IM is called the identity matrix of order M.

Equation (B.3) refers to a system of homogeneous linear equations for which a nontrivial solution exists only
if the determinant is zero. That is:

The same result of Equation (B.4) is also obtained for the eigenvalues of Equation (B.1), and hence the left
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and right eigenvectors have the same set of eigenvalues.

Last, Equation (B.3) can be used to find the eigenvectors, if the values of » are known.

B.1.B Degenerate and Nondegenerate Matrices

A matrix which has no two eigenvalues equal and, therefore, has just as many distinct eigenvalues as its
dimension is said to be nondegenerate.

A matrix is degenerate if more than one eigenvector has the same eigenvalue.

A nondegenerate matrix can always be diagonalized. However, a degenerate matrix may or may not be put
into a diagonal form, but it can always be reduced to what is known as the Jordan normal or Jordan
canonical form.

B.1.C Diagonalizing a Matrix by Similarity Transform

Consider »i (i = 1, ..., M) as the eigenvalues of A. Let  be an eigenvector of A associated with »i, i = 1, 2,
..., M. Then:

Step 1: Find the eigenvalues of A. If the eigenvalues are distinct (that is, when the matrix A is
nondegenerate), then proceed to Step 2.

Step 2: Find eigenvectors of A.
Step 3: Construct the following matrix:

Step 4: Calculate , which refers to the diagonal matrix.

Note that if the eigenvalues of A are distinct, a diagonal matrix  can always be found. If, on the other hand,

the eigenvalues of A are not all distinct (repeated eigenvalues), it still is possible to find  by implementing
the above procedure if a linearly independent eigenvector can be found to correspond to each eigenvalue.
However, when there are not as many linearly independent eigenvectors as eigenvalues, diagonalization is
impossible.

B.1.D Jordan Canonical Form

When A cannot be transformed into a diagonal form (in certain cases if it has repeated eignvalues), it can
however be specified in Jordan canonical form expressed as:

in which Ji is an (mi × mi) matrix of the form:

That is, Ji has all diagonal entries », all entries immediately above the diagonal are 1’s, and all other entries
are 0’s. Ji is called a Jordan block of size mi.

The procedure for transforming A into Jordan form is similar to the method discussed in Section B.1.C, and



the generalized (or principal) eigenvectors can be considered as follows.

A vector  is said to be a generalized eigenvector of grade k of A associated with » iff:

Claim: Given an M × M matrix A, let » be an eigenvalue of multiplicity , then one can always find 
linearly independent generalized eigenvectors associated with ».

B.1.E Generalized Procedure to Find the Jordan Form

•  Factorize: 

for each »i, i = 1, 2, 3 ..., r.

•  Recall: A null space of a linear operator A is the set N(A) defined by:

N(A) = {all the elements x of (Fn, F) for which Ax = 0}

½(A) = rank of N(A) = nullity of A

Theorem B.1.E.1: Let A be an m × n matrix. Then Á(A) + ½(A) = n, where Á(A) is the rank of A equal to
the maximum number of linearly independent columns of A.

•  Proceed as per the following steps:

Step 1:
Find  denoting the smallest  such that  is equal
to the length of the longest chains, and ½ signifies the nullity.

Step 2: Find a basis for  that does not lie in .
Step 3:

Find the next vector in each chain already started by .

These lie in  but not in .
Step 4:

Complete the set of vectors as a basis for the solutions of 

which, however, do not satisfy .
Step 5: Repeat Steps (3) and (4) for successively higher levels until a basis (of dimension

ki) is found for .

Step 6: Now the complete structure of A relative to »i is known.

B.1.F Vector Space and Inner Product Space

A set V whose operations satisfy the list of requirements specified below is said to be a real vector space. V is
a set for which addition and scalar multiplication are defined and x, y, z � V. Further, ± and ² are real numbers.
The axioms of a vector space are:

1)  x + y = y + x
2)  (x + y) + z = x + (y + z)

3)  There is an element in V, denoted by 0, such that 0 + x = x + 0 = x.

4)  For each x in V, there is an element -x in V such that x + (-x) = (-x) + x = 0.

5)  (± + ²)x = ±x + ²x
6)  ± (x + y) = ±x + ²y



7)  (±²)x = ± (²x)

8)  1.x = x

An inner product of two vectors in RM denoted by (a, b) is the real number (a, b) = ±1²1 + ±2²2 + ... + ±M²M. If
V is a real vector space, a function that assigns to every pair of vectors x and y in V a real number (x, y) is
said to be an inner product on V, if it has the following properties:

1. (x,x) e 0
(x,x) = 0 iff x=0

2. (x,y + z) = (x,y) + (x,z)
(x + y,z) = (x,z) + (y,z)

3. (±x,y) = ±(x,y)
(x²y) = ²(x,y)

4. (x,y) = (y,x)

B.1.G Symmetric Matrices

If A is an M × N matrix, then A [aij](MN) is symmetric if A = AT, where AT = [bij](NM) and bij = aji

If U is a real M × M matrix and UTU = IM, U is said to be an orthogonal matrix. Clearly, any orthogonal

matrix is invertible and U-1 = UT, where UT denotes the transpose of U.

Two real matrices C and D are said to be similar if there is a real invertible matrix B such that B-1CB = D. If
A and B are two M × M matrices and there is an orthogonal matrix U such that A = U-1BU, then A and B are
orthogonally similar. A real matrix is diagonalizable over the “reals”, if it is similar over the reals to some real
diagonal matrix. In other words, an M × M matrix A is diagonalizable over the reals, iff RM has a basis*

consisting of eigenvectors of A.

* Definition: Let V be a vector space and {x1, x2, ..., xM} be a collection of vectors in V. The set {x1, x2, ..., xM}
is said to be a basis for V if, (1) {x1, x2, ..., xM} is a linearly independent set of vectors; and (2) {x1, x2, ..., xM}
spans V.

Theorem B.1.G.1: Let A be an M × M real symmetric matrix. Then any eigenvalue of A is real.

Theorem B.1.G.2: Let T be a symmetric linear operator (that is, T(x) = Ax) on a finite dimensional inner
product space V. Then V has an orthonormal basis of eigenvectors of T.

As a consequence of Theorem B.1.G.2, the following is a corollary: If A is a real symmetric matrix, A is
orthogonally similar to a real diagonal matrix.

It follows that any M × M symmetric matrix is diagonalizable.

B.2 Persistent States and Occurrence of Degeneracy in the Maximum
Eigenvalue of the Transition Matrix

As discussed in Chapter 5, Little in 1974 [33] defined a 2M × 2M matrix TM whose elements give the
probability of a particular state; |S1,S2, ..., SM> yielding after one cycle the new state |S’1,S’2, ..., SM>.

Letting ¨(±) represent the state |S1,S2, ..., SM> and ¨(±’) represent |S’1,S’2, ..., SM>, the probability of
obtaining a configuration after m cycles is given by:

If TM is diagonalizable, then a representation of ¨(±) can be made in terms of eigenvectors alone. These
eigenvectors would be linearly independent. Therefore, as referred to in Section B.1, assuming TM is
diagonalizable, from (B.5) it can be stated that:

where  are the eigenvectors of the operator TM. There are 2M such eigenvectors each of which has 2M



components , one for each configuration ±;»r is the rth eigenvalue.

However, as discussed in Section B.1, if TM were symmetric, the assumption of its diagonalizability is valid
since any symmetric matrix is diagonalizable. However, as stated previously, it is reasonably certain that TM
may not be symmetric. Initially Little assumes that TM is symmetric and then shows how his argument can be
extended to the situation in which TM is not diagonalizable.

Assuming TM is diagonalizable, ¨(±) can be represented as:

as is familiar in quantum mechanics; and assuming that the  are normalized to unity, it follows that:

where ´rs = 0 if r ` s and ´rs = 1, if r = s; and noting that ¨(±’) can be expressed as  similar to
Equation (B.13) so that:

Now the probability “(±1) of obtaining the configuration ±1 after m cycles can be elucidated. It is assumed
that after M¿ cycles, the system returns to the initial configuration and averaging over all initial
configurations:

Using Equation (B.14), Equation (B.15) can be simplified to:

Then, by using Equation (B.13), Equation (B.15) can further be reduced to:

Assuming the eigenvalues are nondegenerate and M¿ is a very large number, then the only significant
contribution to Equation (B.17) comes from the maximum eigenvalues. That is:

However, if the maximum eigenvalue of TM is degenerate or sufficiently close in value (for example

), then these degenerate eigenvalues contribute and Equation (B.17) becomes:



In an almost identical procedure to that as discussed above, Little found the probability of obtaining a
configuration ±2 after  cycles as:

if the eigenvalues are degenerate and Mo,(  - m) are large numbers. Examining Equation (B.19), one finds:

Thus, the influence of configuration a, does not affect the probability of obtaining the configuration ±2.

However, considering the case where .

The probability of obtaining a configuration ±2 is then dependent upon the configuration ±1, and thus the
influence of ±1 persists for an arbitrarily long time.

B.3 Diagonalizability of the Characteristic Matrix

It was indicated earlier that Little assumed TM is diagonalizable. However, his results also can be generalized
to any arbitrary M × M matrix because any M × M matrix can be put into Jordan form as discussed in Section
B.1.D.

In such a case, the representation of ¨(±) is made in terms of generalized eigenvectors which satisfy:

instead of pertaining to the eigenvectors alone as discussed in Section B.1.D.

The eigenvectors are the generalized vectors of grade 1. For k > 1, Equation (B.25) defines the generalized
vectors. Thus for a particular case of k = 1, the results of Equation (B.14) and Equation (B.16) are the same.
Further, an eigenvector ¨(±) can be derived from Equation (B.25) as follows:

Lemma. Let B be an M × M matrix. Let p be a principal vector of grade g e 1 belonging to the eigenvalue ¼.
Then for large k one has the asymptotic forms

where  is an eigenvector belonging to 4 and where the remainder r(k) = 0 if g = 1 or:

For the general case one must use the asymptotic form for large m. Hence, in the present case:



where r(m) H mk-2 |»|m, which yields:

where ¨rk(±) is the eigenvector of eigenvalue »r for the generalized vector tr31y(±) defined in Equation (B.26).
By using this form in Equation (B.15), the following is obtained:

The above relation is dependent on m if there is a degeneracy in the maximum eigenvalues. It means that there
is an influence from constraints or knowledge of the system at an earlier time. Also, from Equation (B.13) it is
required that the generalized vectors must be of the same grade. That is, from Equation (B.15) it follows that:

Therefore, the conditions for the persistent order are: The maximum eigenvalues must be degenerate, and
their generalized vectors must be of the same grade.
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Appendix C
Overlap of Replicas and Replica Symmetry Ansatz
In a collective computational task, the simplest manner by which computation is accomplished refers to the
associative memory problem stated as follows.

When a set of  patterns {¾i
¼}, labeled by , is stored in a network with N interconnected units

(designated by i = 1, 2, … , N), the network responds to deliver whichever one of the stored patterns most
closely resembles a new pattern ¾i presented at the network’s input.

The network stores a stable pattern (or a set of patterns) through the adjustment of its connection weights.
That is, a set of patterns {¾i

¼} is presented to the network during a training session and the connection
strengths (Wij) are adjusted on a correlatory basis via a superposition of terms:

Such an adjustment calls for a minimization of energy functional when the overlap between the network
configuration and the stored pattern ¾i is largest. This energy functional is given by the Hamiltonian:

In the event minimization is not attained, the residual overlap between ¾i
¼ and the other patterns gives rise to

a cross-talk term. The cross-talk between different patterns on account of their random overlap would affect
the recall or retrieval of a given pattern, especially when  becomes of the order of N.

To quantify the random overlaps, one can consider the average free energy associated with the random binary
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pattern. Implicitly it refers to averaging the log(Z), but computation of <<log(Z)>> is not trivial. Therefore,
log(Z) is specified by the relation:

and the corresponding averaging would involve Zn and not log(Z). The quantity Zn can be considered as the
partition function of n copies or replicas of the original system. In other words:

where each replica is indicated by a superscript (replica index) on its Si’s running from 1 to n.

In the conventional method of calculating <<Zn>> via saddle-point technique, the relevant order parameters
(overlap parameters) derived at the saddle points can be assumed to be symmetric in respect to replica indices.
That is, the saddle-point values of the order parameters do not depend on their replica indices. This is known
as replica symmetry ansatz (hypothesis).

This replica symmetry method, however, works only in certain cases where reversal of limits is justified and
<<Zn>> is calculated for integer n (eventually interpreted n as a real number). When it fails, a more rigorous
method is pursued with replica symmetry breaking ansatz.
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Algorithm, 30

•  feedback, 42

•  feed-forward, 42

All-or-none, 3, 22, 73

Annealing, 45, 46, 71, 202

Analyser, 191

Angular frequency, 131

Antiferromagnetic, 74

Artificial cooling temperature, 47

Artificial network, 1, 32

Associative array, 34

Associated memory, 13

Average energy, 54

Axon, 18

Axoplasm, 18

B
Backpropagation, 71

Basis function, 42

Baye’s (probability of) error, 183

Bernoulli function, 103, 104

Biochemical,

•  activity, 13, 20

•  effect, 26, 141

Biomime, 8

Blood vessels, 17

Bonds, 149, 201

Boltzmann

•  distribution, 47

•  energy, 44

•  machine, 49, 61

•  statistics, 46

Brain complex, 15, 17

Brown’s martingale

•  central limit theorem, 161

Brownian movement, 136

Burst discharge (pattern), 87

Bursting (spontaneous), 87

C
Cauchy/Lorentzian distribution, 48



Cauchy machine, 48

Cerebellum, 17

Cerebrum, 17

Cerebral cortex, 20

Cerebrospinal fluid, 18

Central limit theorem, 112

Chapman-Kolmogorov equation, 114

Central nervous system, 17

Chemical potential, 65

Clamped mode, 63

Classifier, 191

Cognitive

•  faculties, 11

•  process, 13

Cognitive science, 12, 13

Colored noise (band-limited), 112

Collective activity, 15

Collective movement, 130, 144

Combinatoric (part), 121

Compacta, 163

Complex automata, 1

Connectionist (model), 47, 60

Conservation principle, 43

Consensus function, 48, 50

Continuum (model), 39

Controlling information, 167

Cooling

•  polynomial time, 55

•  rate, 55

•  schedule, 47, 55,

•  temperature, 47

Cooperative process, 72

Corpuscular motion, 132

Correlator, 191

Cost function, 46, 51

Cramer-Rao bound, 121

Criticality, 68

•  precursor of, 68

Critical temperature, 49

Cross-entropy, 57, 165

Cross talk, 165

Curie point, 28, 78

(Curie temperature)



Current stimulus, 24

Cybernetics, 1, 6, 11, 48, 160

Cybernetic complex, 68

Cybernetic network, 86

C3I, 9, 15

Cyclic boundary conditions, 82

D
Dale’s law, 22

Decision procedure, 10

Declarative (message), 161

Degeneracy, 28, 76

(nondegenerate), 78

Degree of optimality, 59

Degree of organization, 169

Delocalized states, 150

Delta rule, 53

(Widrow-Hoff rule)

Dendrites, 18

Depolarization, 23

Descriptive (message), 161

Detailed balance, 150

Detailed balanced principle, 90

Deterministic decision, 52

Dichotomous potential, 8

Discrete time-step, 51

Disorganization, 7, 12, 160, 171

Disordered state, 79

Disturbance, 47

Distance

•  parameter, 58

•  function, 165

Duality principle, 36

E
Edward-Anderson parameter, 66

Effective model, 10

Effective procedure, 30

Effectors, 16

Electrical activity, 20, 142

Encoder, 191

End-bulb, 19

Energy function, 46, 54

Energy spread, 54

Energy state

•  minimum, 45



Entropy, 4, 6, 72

•  at equilibrium, 59

•  thermodynamical, 65

Ergodicity, 54, 98

Exchange interaction, 74

Excitation function, 130

Excitatory, 22, 73

(postsynaptic potential)

Expected cost, 59

Extensive

•  phenomenon, 27

•  quantity, 70, 131

•  regime, 112

Extrapolator, 191

(ECG, EEG, EMG), 25

F
Fast-simulated annealing (FSA), 48

Fault-tolerant, 17

Feature map, 40

Feedback

•  control, 7

•  negative, 9

Feed-forward, 13

Ferromagnetic, 74

Finite-automata, 10, 30

Firing activity, 36

(non-firing activity)

Fixed weight network, 41

Flow-of-activation, 44

Formal neuron, 25, 73

Frame language, 190

Free energy, 45, 134, 208

•  thermodynamic, 64

Free-point

•  dipoles, 5

•  molecules, 97

Free-running mode, 63



Frustration, 203

Fokker-Planck

•  relation, 111

•  equation, 116

Function

•  activation, 42

•  gaussian, 42

•  ramp, 42

•  sigmoidal, 42

•  step, 42

G
Gain factor, 59

Gaussian

•  machine, 53

•  statistics, 83

Generalization error, 68

Generating

•  function, 46

•  probability density, 47

Gibbs’

•  ensemble, 64

•  statement, 54

•  free energy, 135

Glauber dynamics, 91, 211

(single spin-glass)

Glia, 17

•  cell, 17, 26

Global minimum, 46

Goal pursuit problem, 163

Graded output, 53

Granule cell, 20

Group velocity, 132

Gupta’s transformation, 161

H
Hamilton’s first and second equations, 133



Hamiltonian, 4, 72

Hardware, 10

Hard spin, 202

Hartley-Shannon’s law, 162

Hebb’s rule, 32

Heisenberg model (isotropic), 105

Helmoltz free-energy, 135

Homeostatis, 6, 9

Hopfield

•  machine, 53

•  model/net/network, 28, 87, 154

Hyperbolic tangent function, 104

Hermitian, 149

Hyperpolarized, 75

Hypopolarized, 75

I
Information

•  capacity, 162

•  gain, 180

•  processing, 2, 13

•  theoretic, 121, 161

Informatics, 160

•  knowledge-base, 7

Informational wave, 130

Inhibitory, 22, 73

(postsynaptic potential)

Interaction mechanism, 13

Interactive matrix, 33

Interacting neurons, 94-96

Interconnected units, 2

Ising spin, 27, 94-96, 204

Isotropic molecular arrangement, 98

J
Jensen-Shannon divergence, 182

J-divergence, 183

Jordon canonical form, 211

K
Kullback measure, 183

Kybernetic (principles), 8

L



Lagrangian, 4,72

•  formalism, 89

Langevin

•  equation, 110

•  force equation, 136

•  machine, 106

•  modified function, 103, 104, 108

Latent summation (period), 22

Lattice gas, 149

Least squares error, 41

Learning

•  behavior, 32

•  Hebbian, 41, 84, 90

•  naive, 68

•  process, 162

•  supervised, 40, 62

•  through experience, 11

•  unsupervised, 40, 62

Legendre transformation, 65

Linear least squares estimator, 122

Linear logorithmic weighting, 126

Liquid crystal, 5

•  model, 94

Little’s model, 78, 91, 152, 210

Local minima, 46

Locally stable states, 46

Logical neuron, 25, 35, 73

Long-range (orientational) order, 5, 27, 78, 86

Lorentzian relation, 114

Low-pass action, 123

Lyapunov function, 54, 88

M
Machine, 47

•  intelligence, 9

Machine-like, 10

Macrocosm, 9

Magnetism, 196

Magnetic material



•  antiferro, 196-197

•  ferro, 196-197

•  ferri, 196-197

•  para, 196-197

Magnetic spin, 4, 27, 74, 96

Markov chain, 50, 57

Markovian process, 36, 79-80, 90

Massively parallel, 2, 13

Master equation, 90

Mathematical neuron, 25, 28, 73

McCulloch-Pitts machine, 52

Mesomorphous state, 97

Mean firing rate, 22

Memory, 2, 7, 11, 13

•  content addressable, 40, 63, 88

•  distribution, 40

•  function, 39

•  intermediate, 79

•  long term, 39, 79

•  process, 162

•  short term, 40, 79

Memoryless (model), 112

Metastability, 74

Metastable (state), 45

Metropolis criterion, 51, 52

Microscopic reversibility, 77

Mnemonic equation, 162

Moderate time-scale, 86

Module, 25

Modular net, 26, 29

Molecular free-point dipoles, 5

Momentum

•  density, 134

•  flow, 4, 131

•  flux density, 134

Monodic part, 121

Mossy fibers, 161

Motoneurons, 18

Myelin, 18

N
Nemetic phase, 5, 97

Nerve cells, 17



Network

•  fixed weight, 41

•  feedback, 42

•  feed-forward, 42

•  Hopfield, 42

Neurobiology, 12, 13

Neurocybernetics, 5, 160

Neuroglia, 17

Neuromimetic, 1

Neurotransmitter, 2

Neuron, 17

•  doctrine, 31

•  input, 41

•  output, 41

Neuronic equation, 162

Neutral

•  activity, 7

•  continuum, 39

•  complex, 7, 11, 15

•  dynamics, 130, 147

•  environment, 16

•  field theory, 130

•  flow, 38

•  net, 26

Neuronal “particle”, 132, 135

Normal state, 8

Nonlinear stochastical equation, 110

Null information, 161

O
Objective

•  disorganization, 178

•  function, 45, 161

Octant frame, 190

Optimum solution, 46

Order, 15

•  function, 102

•  general definition of, 85

•  parameter, 68



Ordered state, 79

Organelles, 97

Organization of neuron, 74-75

Organizational deficiency, 167

Overlap parameter, 66, 220

P
Paraelectricity, 98

Parallel connections, 25

Parallel processing, 91

Paramagnetism, 98

Parametric space, 53

Parametric spread space, 161

Particle dynamics, 5

Partition function, 52, 80, 134, 200, 204

Perception, 33

Perceptron, 33, 62

Perceptive attribution, 11

Peretto model, 89, 152

Persistent (state), 4, 78

Phase transition, 81, 86

Presynaptic

•  cell, 21

•  membrane, 19

Planck’s constant, 131

Poissonian (process), 36, 83

Polarization, 23

Polarizability, 98

Postsynaptic membrane, 19

Potassium channel, 20

Potential

•  barrier, 137

•  bidirectional well, 132

Pragmatics, 169

Presynaptic cell, 21

Propagation vector (constant), 131

Pseudo -

•  de Broglie wavelength, 139

•  Fermi-level, 151

•  inverse rule, 67

•  mass (of neuronal “particle”), 136

•  specific heat, 49

•  temperature, 47, 51

•  thermodynamics, 44



Purkinje cell, 20

Q
Quenching, 45, 202

Quenched random coupling, 91

R
Random

•  noise, 7, 47

•  walk (theory)/model, 3, 37

Reading phase, 41

Receptors, 16

Redundant

•  information, 161

•  system, 25

Refractory period, 73

Reinforcement (of learned information), 11

Replica symmetry ansatz, 67, 220

Response pattern, 40

Resting (intracellular)

•  potential, 20, 37

•  state, 20

Reticular doctrine, 31

Reverse cross-entropy (RCE), 57, 165

Reverberation, 87

(quasi)

Robust, 17

S
Scaling

•  approximation, 117

•  solution, 117

Sementics, 169

Semiotics, 169, 186

Semi-random telegraphic signal, 114

Self-consistent

•  approximation, 150

•  control, 7

•  deficiency, 171

•  organization, 1



•  regulation, 7, 12

Sementic network, 189

Sensory array, 34

Serial processing, 90

Sharpening schedule, 56

Shannon’s (information capacity)

•  concept, 162

Sigmoid (S-shaped), 29, 207

Signum function, 104

Simulated annealing, 47

Singularity (in the learning process), 68

Sites, 149, 201

Slow-time evolution process, 112

Smearing parameter, 83, 141

Sodium

•  channel, 21

•  pump, 20

Software, 10

Solver, 191

Specific heat, 49

Spike-generation, 3

Spinel-cord, 16, 17

Spin-flip (single), 91

(Glauber dynamics)

Spin-glass, 74, 78, 199

Squashing function, 59, 103

Stability dynamics, 110

Stable states, 164

Statistical mechanics, 1, 11-12

•  non-equilibrium, 88

•  nonlinear, 88

State

•  normal, 6

•  persistent, 40

Stationary distribution, 50

Stochastic(al)

•  instability, 118

•  process, 4, 7, 13



Stop criterion, 55

Storage

•  mechanism, 40

•  medium, 40

Structure order, 97

Subjective disorganization, 177

Supervised learning, 41, 62

Synapse, 19

Synaptic connections, 73

Syntagma, 190

Syntagmatic chain, 190

Syntax, 188

Symmetry constrains, 9

System parameter, 51

•  first, 59

•  second, 59

T
Teacher, 41

Temperature factor, 81

Thermodynamics, 44

•  annealing, 45

•  third law, 60

Thinking machine, 162

Thompson-Gibson model, 85

Thought process, 162

Threshold potential, 24

Time-reversibility, 63

Tonic firing, 87

Total energy, 72, 206

Total entropy, 4

Training, 41

Trapping (de-trapping), 46

Traveling

•  salesman problem, 52

•  wave, 8

Turing machine, 26

U
Uncertainity principle, 141



Universality, 93

Universal machine, 10

Unsupervised learning, 41, 62

V
Van der Pohl oscillator, 130

von Neumann random switch, 25, 44

W
Waiting time, 113

Wave function, 5, 131

•  neuronal, 144

Wave-mechanics, 141, 147

Wave-packet, 131

Weight state, 46

Widrow-Hoff rule (Delta rule), 53

Writing phase, 41
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