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Preface

» JUMP. TO TOPIC Thefield of artificial neural networks has come along way. Depending on one’s perspective, one can trace its

————— originsto the research on Mach bands in visual perception and its interpretation in terms of lateral inhibition,
_ to Hodgkin and Huxley’ stransmission line model of anerve fiber, to McCulloch and Pitt’s model of a
neuron, to Hebb’ s postulate on learning, and to Rosenblatt’s Perceptron. A common theme in amost all of the
earlier works is the desire to build a model of the brain. The scope of this research began to widen with the
publication of McCulloch and Pitt’s model of a neuron. It is no accident that this model has an uncanny
resemblance to the logic circuits of digital computers.

Although research in the computational capabilities of neural networks suffered a serious setback with the
publication of Minsky and Pappert’ s book on perceptrons, the ailmost simultaneous development of the back
propagation algorithm in the 1970s by several investigators marked the turning point in the direction of neural
network research. The publication of Hopfield's paper, in 1983, in the “Proceedings of the National Academy
of Sciences’ (U.S.A.) aimost caused a sensation in some circles. It iswell over two decades now since the
resurgence of neural network research. Thisisno longer afringe areg; it is mainstream.

This book is our way of celebrating the success of neural networks in different areas of engineering endeavor.
The contributing authors come from many corners of the globe. All these chapters show how the power of
neural networks can be exploited in modern engineering applications. Of the ten chapters, the first seven seem
to form one group with an emphasis on image processing and industrial or manufacturing slant. Specifically,
they touch on issues related to shape recognition, shape from shading, aircraft detection in SAR images,
visualization of high-dimensional databases of industrial systems, 3-D object learning and recognition from
multiple 2-D views, fingerprint classification and performance optimization in flexible manufacturing
systems. The remaining three are applications to the communications area. Surprisingly, one of the earliest
applications of neural networks was noise cancellation in telephone networks. That interest continues even
today. The last three chapters included here address the issues involved in the exploding area of multimedia
communications and in the area of mobile and cellular communications.

The first chapter by Ulgen, Akamatsu and Fukumi focuses on the issue of fast, on-line incremental training in
the context of solving geometric shape recognition problems. It iswell known that humans correctly
recognize shapes independent of the variations in size, orientation and distortions caused by noise. The thesis
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of this chapter is that the angular difference between any two consecutive tangent vectors drawn on the
borders of a shape, isimportant in the perceived shape of the object. The authorstrain a neural net to learn
these angular differences and perform the required classification. The authors used some pre-processing to
extract features to render the procedure invariant to trans ations and rotations. They also performed some
heuristic fuzzy filtering to impart noise immunity prior to the submission of the training samplesto a
feed-forward neural network.

The second chapter by Wei and Hirzinger deals with “ shape from shading,” an important problem in
computer vision. The problem isto infer the surface shape of an object from a single image. This problem can
be formulated either as one of solving a partia differential equation or solving the minimization problem of
the equivalent variational formulation. This chapter departs from this classical approach and usesa
feed-forward neural network to parameterize the object surface and solves an ordinary extremum problem via
a conjugate gradient method as well as aradia basis function approach.

Thethird chapter by Filippidis, Jain and Martin is about the use of neural nets to automatic target recognition
with particular emphasis on detection of aircraft from synthetic aperture radar (SAR) images. The focus of
this chapter is on fusion of different technologies to improve the target recognition statistics. In addition to the
SAR image data, the method al so uses texture data and information from the RGB bands from a color
photograph and feeds thisto afuzzy “fusion” system.

Self-organizing maps (SOMs) are a powerful tool in clustering, dimensionality reduction wherethereisa
need to preserve the topological relationships in the original data and compressed data. In Chapter 4, Simula,
Vasara, Vesanto and Helminen explore its uses in visualizing higher-dimensional data, using the forest
industry as avehicle.

In the fifth chapter, Grossberg and Bradski develop a family of self-organizing neural architectures, called
VIEWNET, for learning to recognize 3-D objects from sequences of their 2-D views. VIEWNET
architectures use View Information Encoded With NETworks to accomplish this task. VIEWNET
incorporates a preprocessor that generates a compressed but 2-D invariant representation of an image, a
supervised incrementa learning system (Fuzzy ARTMAP) that classifies the pre-processed representations
into 2-D view categories whose outputs are combined into 3-D invariant object categories, and aworking
memory that makes a 3-D object prediction by accumulating evidence over time from 3-D object category
nodes as multiple 2-D views are experienced. Fuzzy ARTMAP was modified to enable learning of the object
classes. VIEWNET was modified to enable probability learning of object classes. VIEWNET was
benchmarked on an MIT Lincoln Lab database of 128x128 2-D views of aircraft, including small frontal
views, with and without additive noise. A recognition rate of up to 90% was achieved with one 2-D view and
up to 98.5% correct with three 2-D views. The properties of 2-D view and 3-D object category nodes are
compared with those of cellsin monkey inferotemporal cortex.

Halici, Erol and Ongun, in the sixth chapter, discuss applications of hierarchical networks with particular
reference to character recognition and fingerprint classification. Drawing from rich sources pertaining to
pre-attentive and attentive levels of human cognition, the authors fashion a hierarchical system where the
pre-attentive level is modeled by a self-organizing feature map that makes a rough decision of the eventual
outcome by crudely clustering the input patterns. The attentive level is modeled by dedicating to each cluster
arecognition module, which in turn is comprised of afeature extraction stage and a classifier stage. Feature
extraction is performed using Principal Component Analysis and classification is performed using multilayer
feed-forward networks. This method is successfully used for fingerprint classification.

Chapter 7 marks aturning point in the emphasis by leaving behind issues related to classification and focusing
on optimization. Identifying the task of maximizing the throughput (i.e., the number of jobs done in atime
unit) asthe crux of optimization in aflexible manufacturing system, Cavalieri proceeds to formulate the
problem in terms of event graphs (a specia case of Petri Nets) and an integer linear programming problem.
Then, instead of solving thisusing classical optimization procedures, the author solves the problem using a
variation of the Hopfield network.

Wang and Ansari take aturn on the theme in Chapter 8 and address a problem in wireless digital
communications, an exciting area of research. The channel assignment problem in mobile communication
networks is known to be NP-complete. This problem is solved using mean field annealing (an idea borrowed
from statistical mechanics) on an energy function of the Hopfield type.

Sheu, Wang and Y oung in Chapter 9 continue the theme by addressing a problem on the use of neural
networks as baseband maximum likelihood sequence detectors. This technology islikely to play a
progressively important role in the burgeoning field of multimedia communications. The emphasis hereison
the so-called cellular compact neural networks with potential VL SI implementation possibilities.



Finally, in Chapter 10, Cavalieri and Mirabellatalk about the use of Hopfield networks for process scheduling
in communication systems, with an emphasis on scheduling for access to a physical channel in a computer
network.

Although commendable progress has been made in the use of neural networks in avariety of application
areas, the progress is not as rapid in the theoretical underpinnings of the methods. The trend in the use of
hybrid methods as away of improving performance attests to the plausible validity of this observation.

This book will be useful to researchers, practicing engineers and students who wish to devel op successful
applications of neural networks.

The editors are grateful to the authors for preparing such interesting and diverse chapters. We would like to
express our sincere thanks to Berend Jan van der Zwaag, Ashlesha Jain, Ajita Jain and Sandhya Jain for their
excellent help in the preparation of the manuscript. Thanks are due to Gerald T. Papke, Josephine Gilmore,
Jane Stark, Dawn Mesa, Mimi Williams, Lourdes Franco and Suzanne Lassandro for their editorial assistance.

L.C. Jain, Austraia
R. Vemuri, U.SA.
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Chapter 1
e On-Line Shape Recognition with Incremental Training
e Using a Neural Network with Binary Synaptic Weights

F. Ulgen
Motorola, Lexicus Division
3145 Porter Drive, Palo Alto, CA 94304, U.S.A.

N. Akamatsu
Department of Information Science, The University of Tokushima
2-1 Minami-Josanjimacho, Tokushima-shi 770 Japan

M. Fukumi
Department of Information Science, The University of Tokushima
2-1 Minami-Josanjimacho, Tokushima-shi 770 Japan

Recognition of hand-drawn shapes is beneficial in drawing packages and automated sketch entry in handheld
computers. Fast incremental training, which is performed on-line, is accomplished by the use of the Binary
Synaptic Weights algorithm, a one-pass, feed-forward neural network training algorithm. Incremental training
offers the advantage of adjusting the recognition capability of the system to the user’ s drawings. In this
chapter, we propose a new approach to on-line geometric shape recognition with incremental training which
utilizes afuzzy function for filtering angular differences and a neural network for classification and on-line
training. Instead of recognizing segments of a drawing and then performing syntactical analysis to match with
apredefined shape, which isweak in terms of generalization and dealing with noise, we examine the shape as
awhole. The main concept of the recognition method is derived from die fact that the angular difference
between any two consequent tangent vectors of a shape isimportant in the perceived shape of outlines. Our
application’s am isto recognize eliptic, rectangular, and triangular shapesin away similar to human
cognition of these shapes. Human beings recognize such basic shapes regardless of the variationsin size,
noise on the shape border, rotation, and in the case of triangles, regardless of the type of thetriangle. The key
concept is that the neural network learns the angular difference between any two consequent tangent vectors
of a shape; therefore, only afew training samples that represent the class of die shape are sufficient. The
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results are very successful in the sense that the neural network correctly classified shapes that did not have
any resemblance to the shapesill dieinitial training set.

1. Introduction

Neura networks, the focus of connectionist artificial intelligence, are characterized by alarge number of
simple processing elements connected as a network with highly parallel and distributed control. The neural
network architectures and training algorithms vary according to the problem they are applied to. Here, we
propose anew training algorithm that does not suffer from the drawbacks of the Backpropagation (BP)
agorithm. The Binary Synaptic Weights (BSW) algorithm and its application for geometric shape recognition
isthe focus of this chapter.

By using state-of-the-art MOS fabrication processes, thousands of neurons and alarge number of binary
synapses can be realized in asingle IC chip. Through the learning procedure, the binary synaptic weights can
be easily modified and this provides adaptability to a variety of applications. Using the programmable BSW
neural chips reconfigurable neural systems with learning capability can be produced. Besides being, easily
implementable, the BSW algorithm can provide fast and guaranteed learning.

2. The Binary Synaptic Weights (BSW) Algorithm for Neural Networks
2.1 Motivation

The drawbacks of the Backpropagation algorithm drove researchers to look for new algorithms that do not
suffer from the local minimatrapping, offer fast training and do not require atrial and error approach to the
parameters of the network topology. A number of learning agorithms utilizing binary synaptic weights has
been proposed [1].

The BSW agorithm [2], which isimplemented on athree layer network, determines die thresholds for the
hidden and output layer nodes and the weights of the synaptic links between the layers, in addition to the
required number of hidden layer nodes in one feed-forward pass. The main concept of the algorithm can be
explained as the separation of globally intermingled patterns within an n-dimensional space through the
formation of hyperplanes that separate different classes of patterns at alocal region in die space. Thisin
presented in Figure 1.

Each hyperplane, created to distinguish different patternsin the input space, corresponds to a hidden layer
node and therefore the number of hidden layer nodes are automatically determined during training. The
equation of ahyperplane in n-dimensional spaceis

f3
Z""’f‘;‘ = (0

j=i

wherew; isinterpreted as the synaptic link weight between the jth coordinate of the input vector [iy, i, ..., 1]
and a hidden layer node, and the constant ¢ of the equation becomes the threshold of the node corresponding
to the hyperplane. Therefore, in a network trained using the BSW algorithm, the synaptic link weights and
thresholds of the nodes correspond to the pattern space separated by the hyperplanes.

Figure 1 Separation of different patterns with multiple planes.

The activation functions of the nodes are hardlimiter thresholds, and thus a node is activated depending on
whether the input pattern is on the positive or negative side of the hyperplane that represents that node.

The input and output pairs presented to the network are binary valued while the weights of the synaptic links
between die input and hidden layer nodes are either 1 or -1. Between die hidden and output layers, die weights
of the synaptic links are either 1 or O depending on die activation level of die connected hidden layer nodes. If
a hidden layer node is activated, the corresponding synaptic link to the output node has aweight of 1. The
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hidden layer node thresholds are always the constant ¢ of equation (1). The output layer node thresholds are
determined by the number of hyperplanes that enclose a pattern type. If there are P such planes, then a
threshold of (P -0.5) is assigned to die output node associated with that pattern. The binary nature of the
synaptic weights and the simplicity of the activation function make BSW avery promising candidate for

hardware implementation.
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2.2 Separation of distinct patterns by BSW algorithm

In the separation of distinct patterns using the BSW algorithm, a representative input pattern vector,

JUMP'TO TOFIC corresponding to a particular class, is chosen. In this discussion we will use the pattern types @® ond O , Which
— were separated by hyperplanesin Figure 1. The sample input pattern vector, which we will refer to a K}z, isa
vector that is approximately at the center of all the other input pattern vector in the hyperspace for the same

class of output. Formally, die calculation of Xm‘ isasfollows: Let | bethe (m x n) input matrix where misthe
number of training samples and n is the input pattern vector size, and O be the (m x K) output matrix wherek is
the output pattern vector size:

Consider the separation of the pattern type ®in Figure 1. Initially an average vector,

'3’_ av av o, .. a
X7 = (%" %7 X ) o type @ is calculated:

‘r:v = [ziﬂ' X0y iaﬁ (2)

el p=l

whereq =1, .., n, and j represents a column of O, 1 = .-il = k. If K? exists among the ® patterns, it

z3 r

Itislikely that X™ does not exist among the L patterns, and if so the next step isto search for
r 4

among all @ patterns, to select the L pattern which has the minimum Hamming distanceto X™ .

becomes X

173

X

= arg rrrl?ln {Hamﬂi'ﬂ[,:m. Py ]) (3)
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where P, = [y, i)y, - . ., I}] iSOf type ® ond HamDist represents the Hamming distance between two vectors.

Again, using the Hamming distance formula, we determine Kﬁ’. , the furthest input pattern vector with die same

17,7 *

output classificationtypeas X~ , and X

73

, the nearest input pattern vector with an output classification type

different than X™ , which is of type © in this context.

o o arg rr};x gm!'}r'ﬂ[-(':1F1D
..: @
X =arg min {Hﬂmﬂiﬂ et ]}

R -
¢ HamDist [x*,x’"] < HamDist[x™ x"™] , then the @ and © patterns are linearly separable.
Otherwise we start the search for aHamming distance D, initially zero, which will ensure that the majority of
the @ type patterns will beincluded in the separation if we perform the separation at a distance (D + 0.5) from

2 z3

X . In other words, at distance (D + 1) from X , the number of ('.) patterns is less than the number of (
O) patterns. We then search for the O type patterns which might have been enclosed together with the ®
type patterns, and perform further separation using the same procedure, this time starting with O type patterns

%3

as X . Thisprocedureis repeated until al of the patterns have been isolated, asisillustrated in Figure 1.

The hyperplane equation in n-dimensional space given by equation (1), assumes that Kg isat the origin of the

coordinate system. Equation (1) takes the following form when there are components of Xm‘ which are
non-zero;

x (1 —w‘jq}. if X7 =1
E Y=k, wherey = o Ao (5)
el wl iff x7 =0

With reference to equation (5), the linear equation for the separation hyperplane to be formed at distance (D +

2z

0.5) from X" is

Z ¥, = (D+0.5), where ¥, =

7=

[[I —w,i, ) iff X7 =1 "

i b 2™ =
wiiff x.7 =0

where (D + 0.5) isthe constant ¢ of equation (1). Collecting the constants on the right-hand side of the equation
(6), we obtain (D + 0.5) - = which becomes the threshold of the node that represents the newly created

# =

hyperplane and where X, . The synaptic link weights are set as follows:

-1 iff x7 =1
w,, = % (M
1 if x” =0

whereq =1, -, nand w,, isthe synaptic link that connects the input node u to the newly created vth hidden
layer node.

2.3 Algorithm

The BSW agorithm is presented in pseudo-code bel ow:

Let | bethe (n x m) input matrix where n is the number of training samples and mis the input vector size, and
O be the (n x k) output matrix where k is the output vector size:



For each column, j of o,(l =j = Ko

Step 1
1.1: Calculate the vector Ave = [a;,8,,...,a,], where g, is given by

(ve)  frgsn
r=l

= where 4
% r=70,
=l

r
1.2: Calculate the vector key = [ky,,ky,,...ky. ], where key is given by

Ry isthe I rowof 1
key = min(Harr{Ave ,R,]} where { Ham{X Y] is the
[ Hamming distance
between veclors X &Y

1.3: Calculate the vector Yes.dis = [u,,U,,...U,], where Yes.disis given by

Yes dis = max(Ham{key,R)  iff 0, =1

1.4; Calculate the vector No.clo = [c,,C,,...C,], where No.clo is given by

Hn.cln-nii:amm[m,m} iff 0, =0
15: Digt:=0
Step 2:

i f (Hanfkey, Yes. di s] <Han{ key, No. cl 0])
then goto Step 4
el se{ Dist :=1;

goto Step 3}

Step 3:

r=j

n .|
2.04<2.0,
foLP

i or (Dist>Hani key, Yes.dis])
o,=1&o, =0
iff &
Hnm[key,.’?J:Ha.m[k&y,RJ: Dist

then goto Step 4;
el se {Dist := Dist +1;
goto Step 3}

Step 4:

Separation_Pl ane_Creation[Di st, Dist+1]
if (in created hyperplane there exists R where o; <> NN\(key),




(1d1 dn))
then { key := R;

Dist := 1;
goto Step 5
}
el se exit;
Step 5:
z : 0,=1&0, =1
i [Z% <Yo, ] iff
i - Ha.m[ke_y,R ]=|—I;un[kep,R}]=D:’.ﬂ
then { Dist := Dist +1;
goto Step 5
}
el se { Separation_Plane_Creation[Di st, D st+1];
goto Step 6
}
Step 6:

if(in the created hyperplane there exists R, where o
0, (1dlI dn))

then { Dist := Dist +1;
goto Step 4;
}
el se exit;

Separation_Plane_Creation

if (key = [Kyy Ky, ..., ky]) where (1 ds d m&ky, = 0)

then {sepamﬁan_ plane=y" x, = (Dist + Dist +1) /2 }{“]
=1

else {separmmn_ plane="3"(1-x,)+ 3 x, =(Dist + Dist +1) fz}("}
=1 =1

iff {k}', =1 & ky, = 0in the vector hy}

Threshol d of a hidden node = constant RHS of (*) or (**)
(each hi dden node represents one pl ane)

W,, := weight of the synaptic |ink between input node u and hi dden v.
_[Lif by, = Oinkey
© L Ry, = linkey
Z,, = weight of the synaptic |ink between hidden node k and out put node I.

| Liff node k gets activated
0,iff node k is not activated
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2.4 Example for the BSW algorithm

= In this simple example, the different patterns ®.0 in 3-dimensiona space will be separated. The input to the
WUMPTO TOPIG neural network isasin Table 1.

— Table 1 Training data for the example problem

Input Patterns | Output Patterns
P,=(0,0,0) 1@
P,=(1,1,0) 1®
P;=(0,0.1) 00
P,=(1,0,0) 00
P=(1,1,1) 00

These patterns can be represented as in Figure 2(a), coinciding with the corners of a hypercube. As explained
in Section 2.2, initialy K? will be determined. Since there are only two @ patterns, we calculate the X, to
be the average of the jth components of pattern vectors P, and P,, where(0 = j = 2) Thys X, & = (0+1)/2,
X, = (0+1)/2, x> = (0+0)/2. As 0.5 falls between 0 and 1, either (0,0,0) or (1,1,0) can become x?. Let us
choose K;'p to be (0,0,0), then HamDist[(0,0,0),(0,0,0)] = 0 and HamDist[(0,0,0),(1,1,0)] = 2 and according to
17,3

equation (3) P, = (0,0,0) become X .
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17,3

At this point, we classify all patterns in the pattern space according to their Hamming distancesto X . This
ispresented in Table 2.
Table 2 Hamming distance classifications of training patterns according Xm-
Ham. Dist.=0| Ham. Dist.=1 Ham. Dist.= 2 Ham Dist.= 3
0,00 @ 0,01 O (1,10 @ 1,11 O
1,00 O

3 _ N
From this representation we can see that = (l,l,{}}, HamDist[x™,x™] =2and

H E + of
= (0.0.1)0r(10.0) HamDist X _ ; gne HAMDISEK"R] (o
HamDist[xE}:x#]
1

one pattern X~ and at D = 1, the number of O patternsis 2, while the number of @ patternsis 0.

Therefore, as at distance D = 1, the number of & patternsis greater than number of ® patterns, we perform
separation at D = 0 and the equation of the separation hyperplane becomes x1+x2+x3 = (0+0+1)/2 = 0.5. The
side of the hyperplane which encloses (0,0,0); is represented by x1+x2+x3 = 0.5. With respect to Figure 2(b),
in order to represent thisin aform suitable for threshold logic, we multiply both sides of the inequality by -1
and obtain -x1-x2-x3 =-0.5. The threshold of the newly created hidden layer node in -0.5 and the synaptic
link weights connecting this node to the input nodes are the coefficients of the x-components in this equation
(-1,-1,-1).

, We can say that the patterns are not linearly separable. At distance D = 0, thereis only

The next step isto separate the remaining @ pattern and to accomplish this, P2 = (1,1,0) is selected as Kﬁ.
Classification of all patterns according to their Hamming distances to K}z, we determine that the separation
plane will be formed at D = 0. With reference to equation (6), the separation plane’ s equation becomes
(1-%7)+(1-x,)+x5 = (0+0+1)/2 = 0.5 and if we accumulate all constants on one side the equation becomes
-X;-X, +X5 = -1.5. Since the side of the plane which encloses (1,1,0) is desired, we set the synaptic links as
(1,1,-1) and the threshold as 1.5. Finally, the threshold of the output layer node is determined. The output
pattern vector has only one column, which requires only one output node. The number of planes created to

enclose either @ pattern was 1; therefore, the threshold of the output node is (1- 0.5) = 0.5. The resultant
network topology is shown in Figure 3.

3

Figure3 BSW network topology for the example problem of Section 2.4.

3. On-Line Geometric Shape Recognition with Fuzzy Filtering and
Neural Network Classification

3.1 Geometric Shape Recognition
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The aim of this section is to present a simple method to recognize and correctly redraw hand-drawn regular
geometric shapes, such as circles, ellipses, squares, rectangles, and triangles. This would be beneficial in
automated sketch entry in software packages to handle drawings in computers. Each shapeis recognized as a
whole, regardless of size, trandation, rotation, or choice of starting point, instead of recognizing the
individual segments and then performing syntactic analysis as discussed in [3]. The main concept of the
recognition method presented in this section, is derived from the fact that angles are very important in the
perception of shapes. Although Davis has also used this concept in his work [4], his method of syntactically
analyzing the anglesis weak in terms of dealing with the noise along the boundary of the shape. To overcome
previous works demerits and accomplish fast recognition with a high success rate, we have employed
scaling/rotation/translation-invariant feature extraction, noise reduction through fuzzy function filtering and
classification using a neural network.
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Feature extraction is performed on the captured points along the boundary of the shape. Since the captured
datafor the boundary of a hand-drawn shape invariably includes noise, the fuzzy function is beneficia in
elimination of most of the noise and also in detecting portions of the boundary of the shape that exhibit
» JUMP.TO TOPIC significant angular differences. The features of a shape are represented as a parsable string in terms of
————— significant internal angles and this string is then input to an appropriate type of classifier [5]. The feature
_ extraction and fuzzy filtering that we present in this chapter, prepares data that isinvariant in terms of
tranglation, scaling, rotation and in the case of triangles, even invariant of the particular class of the triangle,
with areduced noise level for input to the neural network. Previous work employing neural networksin the
classification process usually concentrated on teaching a particular shape to the network and then measuring
how well the network performs on noisy versions of that particular shape [6-8]. However, our purpose isto
teach the network the definition of a class of shapes, such astriangles or €llipses. In our method, the training
set is not necessary to include al kinds of possible shapes, but the training can be accomplished using only a
small representative set. The speed with which BSW can be trained enabled us to add an incremental training
modul e to the application.

3.2 Feature Extraction

Preprocessing of the data for the purpose of feature extraction is performed prior to the application of
recognition algorithms. In other words, the purpose of preprocessing is the creation of an intermediate
representation of the input data, in which information that does not help in the discrimination between
different classesis reduced and desired or ‘useful’ information is enhanced [9]. In the case of handwritten
shapes, undesirable information includes noise due to the limiting accuracy of the tablet, noise introduced in
the digitizing process, variationsin the capture speed of the mouse and erratic hand motion while drawing
with the stylus or dragging the mouse. In the presence of undesirable information in the input during shape
recognition, we have to distinguish between essential and nonessential curvature changes along the boundary.
In order to accomplish this without a significant loss in useful information, our feature extraction process
involves a number of steps. We are proposing two approaches to feature extraction designated as Method1
and Method?2.

3.2.1 Method1

Methodl involves the steps of resampling the input data, calculation of the center of the shape and extraction
of significant points.
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3.2.1.1 Resampling

The raw input data obtained from the contact between the stylus with the tablet, or the mouse with the pad,
which is the input media used for the application purposes of this chapter, has enormous variationsin drawing
speed and therefore the points that represent the shape are not equally spaced. In order to obtain equally
spaced points along the trgjectory of the stylus or the mouse, we need to resample the input data[9].

Simple linear interpolation between captured points within every pen-down/mouse button-down and
pen-up/mouse button-up portions of the drawing serves the purpose of resampling. Linear interpolation isthe
interpolation between given two points (X,,f,) and (x,,f,) through the formulae [10]:

A I:IJ =fot [J: _xo:lf[-ri*-rll
fi=fs &

Xy =X

I [.Tu..l', ] =

N T
Y

P-4
| =

mrr
el T

Fi.gure 4 Rectangle drawn with unordered strokes; N is the total number of boundary points.

The application of interpolation is feasible only between subsequent pen-down/pen-up portions of the capture
data because of the possible variations in the order of strokes while drawing a shape as seen in Figure 4.

3.2.1.2 Calculation of center of the shape

In the case of handwritten character recognition, in order to obtain a representation which is scale and
translation invariant, the center point (x., y,) of the charactersis calculated with the following formul ae:

: +
X = xma: +xnun and }’,: - yl‘[‘l.'l'.t }rmm
2 2

3

(9)

However, in shape recognition, calculation of the center of the shape with this method does not always bring
the correct center of the shape, as can be seen in Figure 5. Therefore, we chose to calculate the center point of
a shape through the center of gravity method which defines:

N=i
z X; E, Yi
x, =4 and y, =+"— (10)

[ N i N
where N is the total number of captured data points. The drawing speed, i.e., the speed at which the stylusis
moved or the mouse is dragged, makes a difference in the number of points captured in a certain part of the
shape, which may lead to shiftsin the location of the center of gravity. For this reason, the calculation of (x,,

Y,) is performed after resampling of the captured data points.

F'_gu re5 Calculation of the center of the shape.

3.2.1.3 Extraction of Significant Points

After resampling and the calculation of the center of the shape (x., Y,), we would like to extract L points,

which will sufficiently represent the shape, out of the total of N input data points. Figure 6 depicts L quantized
vectorsthat are angularly equispaced, meaning there is an angular difference of (2 A /L) between every two

successive vectors. The L sample points [p.dil. pliD. i =1, L] , Will be chosen to be the intersections of
the shape boundary with L quantized direction vectors originating from (x. y,) as seenin Figure 7. These
sample points possess the circularity property as Py, = (p,[L+K], p[L+K]) = P, = (p[K],p,[K]) for any integer
k1 = k = L. Thismethod of sample point extraction makes the resultant shape representation a
candidate for the circular auto-regressive (CAR) model [10]. Thisis desirable as the parameters of CAR
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models are invariant to transformations on the boundary, such as translation, choice of starting point and
rotation over angles that are multiples of (2 A /L).

zed vectors that are angularly equispaced (theta=2 A /L).

Figure 7 16 sample points are extracted on a shape (L = 16).
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There are cases where a significant point in a shape falls between two sample points as depicted in Figure 8.
For the purposes of this method of recognition, any point (x), which stands for the significant point, must be
taken into consideration. In addition to this, we must also keep the number of sample points a constant, as the
JUMP.TO TOPIC sample points will become the input to a neural network classifier after further manipulation.

— The method we use in abtaining significant points such as (x) in Figure 8, is based upon the method used for
obtaining line approximations of the boundary of a shapein [11]. This method involves finding the longest
line segments that have the minimum sum of absolute errors along the digitized shape boundary. The equation
of alinethat originatesin P, = (x;, y;) and endsin P; = (x;, y) is:

(v, =y )x- x,-r.]'y+x.:n—x,y. =0 {11}

The pointsthat lie in between P, and P, add towards an error term depending on how well they fit the equation
(11). This error term (E = sum of absolute errors) for each line segment [P, P is calculated as follows;

Figure 8 Significant point between two sample points.

j=1
E[(.y.r —}',-]Ik _(Ij _xi)J't +X; ¥ _x.-}';l
E= = li (12)

|‘:J:'{(.Jc‘,-—:c,-]1 +(,‘r’j _}'i)zPﬂ

wherek =i+1, -, ] -1 are the points along the boundary of the shape that lie in between P, and P, and + is the
constant associated with the sensitivity of the input device. Since our purpose isto find the longest line
segment with the minimum E, we maximize (LS - E) where LSis the length of the line segment under
consideration.
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Ls-E={(u-x,f +(u -y, F}" - a3

Maximizing the equation (13) corresponds to maximizing LS and minimizing E. We select a sample point on
the boundary and assign it to P,. We must then normalize the coordinates of the remaining points such that P,
becomes the origin. Each consecutive point on the boundary is tested until the first line segment that satisfies
the maximization of the equation (13) isfound. This point becomes the new P; and the processis repeated
until the boundary has been traversed. Eventually we obtain alist of significant pointsin addition to the
previously calculated sample points, which need to be merged to maintain a constant number of representative
points. The merging process involves shifting the sample points toward the nearest significant point in the
case where a significant point fallsin between two sample pointsisillustrated in Figure 8.

3.2.2 Method?2

In the second method of feature extraction, we aim to eliminate crossovers, both interna and external, and
finally obtain L sample points asin Methodl. The L sample points, which are the beginning and end points of
the vectors {(P,[i], P,[i]), i = 1, ---, L}, are chosen to be the intersections of the input shape boundary with the
L vectors originating from (x,, y,), as shown in Figure 9(a). Figures 9(b) and (c) present arectangle and circle,
respectively, that have been drawn by hand. As can be seen in the figures, these hand-drawn shapes contain a
large amount of undesirable information such asinternal and external extensions, and concave segments,
which should be removed. In addition to removing the undesirable information, we would like to detect
information which will aid in recognition, such as intersection points or corners, and also those input points
which contribute significant information to the class of the shape. In order to produce the intermediate
representation of the input data as shown in Figure 9(a), from hand-input shapes such as those of Figures 9(b)
and (c), without losing significant information, the feature extraction process involves a number of steps.
These include the extraction of a set of sample points which contribute significant information to the shape,
calculation of the center point of the shape, detection of intersection points, removal of internal and external
extensions, determining the convex hull of the shape, determining sample points along the shape boundary,
and the formation of tangent vectors between these points. These steps are discussed in the following
subsections.
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3.2.2.1 Extraction of Significant Sample Points

Of thetotal N input data points, we would like to extract the J points, which capture only the significant

JUMP TO TOPIC changes along the shape boundary, without losing any significant information. Also, we wish to process each
————— point on-line, asit is received from the mouse or stylus. Thiswill reduce the total amount of data which must
_ be passed to later stages of the preprocessor and aso alows the overlapping of the input and processing of the
received data. Asin Methodl, we have adapted the method proposed in [11], which determines the optimal
polygon from adigital curve using the L, norm, for use in an on-line recognition environment. This method

determines the longest line segments that have the minimum sum of absolute errors along the digitized shape
boundary. The equation of alinethat originates at P, = (X, y;) and endsin P, = (X, ¥;) isthe same asin

equation (11). The points (X, Y,.), k=1+1,i+2, -, j -1, which are on the boundary of the shape between
points P; and P, contribute to the sum of the absolute errors E, for the line segment representing the boundary
[P, P, asin equation (12). The variable M is the sensitivity parameter that is determined as a function of the

input device type and the speed with which the input device is moved while datais being captured, such as +
=f(/ t), wheretisareal number heuristically determined for each type of input deviceand A isared
number determined according to the acceleration and decel eration in the strokes of the drawing. Since our
purpose isto find the longest line segment with the minimum E, we maximize (L, - E), where L, is the length

of the line segment under consideration:

M:-LJ-E
- x:-11}+(h_}'lr}‘l:_£

EI(}',— :-r,].r, —[xj -y, + Xy - .r._vjl
=4r -1+ = ¥ M ey ¥
) { ) J} [}J & T} E{II — xr} + |:_-,|.r - }..}r}’.h

Maximizing M, in equation (14) corresponds to maximizing Lg, and minimizing E. Given the set of points
representing a stroke, P = {p,, p,,---» P} INPUt by mouse or stylus, where n is the number of points, our
on-line approach to significant point detection proceeds as follows: Thefirst point p, is accepted as a
significant point and is assigned to (x;, y;) of equation (14). Each time anew point, pr {Py, .- Pri} 1S
received from the mouse or stylus, it isassigned to (x;, y;) and M is calculated using equation (14). If Mg =

(14)
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Mg, then Py, is not significant and the process will be repeated when anew Py isreceived. If Mg < Mg,
then pg , is significant, and therefore it is saved and it is also assigned to be the new (x;, y;). This processis
repeated until al of the input points for the stroke have been received, after which the end point p,, is saved
as asignificant point.

Figl]re 10 (&) Significant points and stroke segment input data.(b) Detection of intersection points.(c)
Removal of extensions.(d) Shape after application of convex hull algorithm.

3.2.2.2 Calculation of the Center of Gravity

As explained in the section on resampling for Methodl, due to the variations in the drawing speed, the points
which represent the shape will not be equally spaced. In addition, the distance between significant points
obtained in the previous section will exhibit significant variation in spacing. Those areas of the figurein
which the rate of change in the direction of the line segments, formed by the points, is small, will result in far
less significant points than in those areas in which the rate of change is high. According to the center of
gravity method, the center point (x,, y.) is determined by equation (10) asin Methodl1. By considering the

effects of capture speed and significant point spacing, the center of gravity calculation becomes:

Ml Ml
Zh!ngth (segment, )x X {segment.) Z X segment,)
-l

X= = M-l T M-l
E le nglh{.'regm ent, } Elcn E!Th':.ifg‘mﬂiil’, )
iy iml {] 5]
M1 : Mol
¥ length(segment, )x Y, (segment,) Y Y, (segmen,)
Ye = . M=l = -'H‘I-I
Z]Englhl:.rfgm ent, ) ZI-: I'l_li_aﬂ'ﬂ:.a Eprenl, ]
=i el

where M is the number of line segments, and the functions length( ), X () and Y ,,.( ) return, respectively,
the length, average x-value, and average y-value of a segment. As each new significant point, p, is added to
the data set, the cumulative length, cumulative X 4, and cumulative Y, 4., are updated for the segment
[Pr.1, PRl further reducing the processing which must be carried out once input is complete.
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3.2.2.3 Residual Preprocessing of the Input

Once the strokes which define the input shape have been entered, we further process the significant point data.
» JUMP. TO TOPIC The center of gravity is calculated using the cumulative length, cumulative X,,¢q, and cumulative Y e g

—_———— according to (15). Intersections between any of the segments which form the strokes that define the shape are
— determined and saved. Figure 10(a) presents a shape defined by its significant points and segments between
consecutive pointsin each of four strokes. In Figure 10(b), the intersection points of the segments have been
detected. To remove the extensions present in the shape, aray isfired from the center of gravity to each
significant point asis shown in Figure 10(c). If the ray intersects with any other segment, then the point lies
outside of the shape and can be discarded; otherwise, the point is saved. With respect to Figure 10(c), thisis
correct for points aand b; however, the presence of the internal extensionsd and e will result in point cin
being erroneously discarded, while points d and e are saved. Taking thisinto consideration, the convex hull
agorithm is applied to the points of the shape, points d and e are removed, and the resultant shape is shown in
Figure 10(d).

3.3 Formation of Tangent Vectors Along Shape Boundary

A constant number of sample points that can sufficiently represent the shape of the boundary is necessary for
input to the neural network. In order to obtain the L representative points along the boundary of the shape for
the formation of the tangent vectorsillustrated in Figure 9(a), rays are fired from the center of gravity to the
boundary of the shape at an angular spacing of (2 A /L). However, in the case where a significant point falls
between two of the equispaced rays, asin Figure 8, this may result in the loss of a corner point from a shape.
To ensure that this does not occur, the J significant points, determined by the significant points process
discussed in Sections 3.2.a and 3.2b, are merged with the ray intersection points by shifting the ray
intersection points toward the nearest significant point. Once L representative points along the boundary are
obtained, we calculate the tangent vectorst v, between the ith and the (i + 1)th pointsi =0, -, L -1. Toform a
A Yo = ¥i

Iw
L
£y =%

closed shape, we aso calculate . After L tangent vectors are obtained, we want to apply an
approximation to these tangent vectors to match each vector with a quantized direction vector. The quantized
direction vectors are equally spaced to be (2 A /G) degrees apart for any number of vectors G. In our
implementation, we have chosen G to be equal to L. As G increases, the presence of noise on the shape
becomes more accented, whereas very low values of G result in asignificant lossin information. Figure 11
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depicts quantized vector differences of boundary tangent vectors.
3.4 Fuzzy Function Filtering

We propose that the information provided by the tangent vectors be analyzed by one of the following two
methods:

» Thequantized vector differences: The difference between any two consequent tangent vectors
aong the boundary of the shape is the clockwise difference between the orderings of the vectors as seen
in Figure 11. The differenced, = qv J[tv,, tv ] =k wherekisan integer.

» Theangle between two tangent vectors: This method actually utilizes the outcome of the first
method and obtains the angle betweentv; andtv ., by

angleli]= qvd[tv, v, |x(2r/L) {16)

Figure 12 depicts the angular difference between any two consequent tangent vectors of a shape. The second
method is utilized as input to our fuzzy function depicted in Figure 13. Since angular differences along the
tangents of the handwritten shape boundary are susceptible to noise, we devised a fuzzy function and tuned it
by a heuristic analysis of alarge number of sample shape boundaries. This fuzzy function helps reduce the
effect of noise by attenuating the effect of small angular deviations which it introduces. It aso brings out the
portions of the boundary that exhibit significant changesin the internal angles between consecutive tangents.

The angle between two consecutive tangent vectorsis assigned a degree of membership between 0 and 1, for
each of the fuzzy setsillustrated in Figure 13. These fuzzy sets broadly classify an angle into a category such
as straight, obtuse, right, acute, or reflex. For further detail, we have divided obtuse angle set into two;
right-obtuse, and wide-obtuse, depending on how close the angleisto 90°. In the cases where an angle has
more than one non-zero membership value, for example, right and right-obtuse, the maximum membership
value determines the winner [12]. Once we have only afew meaningful categories to classify the anglesinto,
rather than 360 individual values, we can count the frequency of their occurrence along the shape boundary.
The frequency count of significant angles will be the input to the neural network.

Figure1l Quantized vector differences of boundary tangent vectors.
gV 4 = quantized vector difference function

V[i] =i-th direction vector, i = 0,..., L= 31

d[j] = j-th quantized vector difference, j = 0,--, M-1,

M = #tangent vectors

t vk = tangent vector k, k=0,---, M-1
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3.5 On-line Shape Classification and Training by a BSW Network

The fuzzy function supplies the information on the detected angles. The four most significant types of angles
JUMP'TO TOPIC that determine a shape (with reference to Figure 13) are wide-obtuse, right-obtuse, right, and acute. This
— information is supplied as input to the neural network. Formally, the input that the neural network receivesis
asfollows:

a1

Figure 13 Fuzzy function for filtering angular differences.

L
#atype = Z rmax {ﬁtzzy membership I[angfe [:' ]}] {n

(L1

where angl€[i] is determined according to equation (16) and #atype represents the sum of a specific type of
angle, such as #wide-obtuse, #right-obtuse, #right, or #acute, as shown in Figure 13.

The neural network’ stask isto find the relationships between the fuzzy filtered internal angles of a geometric
shape and its desired classification, while maintaining its generalization ability for recognizing noisy shapes.
The desired classifications are circular shapes (circle, ellipse), rectangular shapes (square and rectangle), and
triangular shapes (any triangle). The speed with which aneural network can be trained by BSW algorithm
makes it a perfect candidate for including on-line training in the system, where the user can retrain the system
to classify a shape into a certain category.

In classification of shapes, the output of the fuzzy function supplies the information on the detected angles,
and the input that the neural network receivesis prepared asin equation (17). BSW networks accept binary
input; therefore, we convert these integer values to binary digits. However, since the BSW distinguishes
different patterns according to their Hamming distances, the conventional binary-radix integer representation
would create conflicts, as can be observed in Table 3. In order to make the Hamming distances of patterns
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equal to their Euclidean distances, we use Serial Coding, which is depicted in Table 4. In a system where L
tangent vectors are utilized, the range of values that #atype can assumeis 0 to (L-1). Therefore, each node that
represents an integer valued #atype is expanded into L nodes after seria coding. In this experiment, 31 nodes
arerequired for each #atype to be represented using Seria Coding. Therefore, the input layer consists of 31 x
4 =124 nodes.

Table 3 Conventiona Binary Coding

I nteger Binary vector Hamming Distance Euclidean Distance
From O From O
0 | 00000 | 0 | 0
1 | 00001 | 1 | 1
2 | 00010 1 | 2
3 | 00011 2 | 3
4 | 00100 1 | 4
5 | 00101 2 | 5
| |
| |
| |

Table 4 Serial Coding

I nteger Binary vector (Serially Hamming Distance Euclidean Distance
Coded) From O From O
0 | 00000 0 0
1 | 00001 1 1
2 | 00011 2 2
3 | 00111 3 3
4 | 01111 4 4
5 | 11111 5 5

The network was initialy trained with atotal of 7 sample shapes drawn by mouse which are presented in
Figures 14(a) through (c). The resultant network topology had three hidden nodes created during initial
training, as shown in Figure 15. Theinitial training, set is kept small on purpose, so that the user can
incrementally train the system according to his/her style of drawing. Therefore, initially, the network is given
enough samples to roughly classify dliptic, rectangular, and triangular shapes. For testing, geometric shapes
are again drawn by mouse and on-line recognition is performed. Four different users were given the same
initial configuration and told to draw atotal of 50 figures. Each set of figures was to include elliptic,
triangular, and rectangular shapes. They were told that they could add samples that are not recognized by the
network and train the network on-line. It was left to the discretion of the user whether the unrecognized figure
should be included in the training set as a representative of that particular class of shapes. Thus, it was
possible that the user may add a noisy figure which may create conflicts, such as the new input vector being
the same as a previously included vector that had a different output classification. However, thereisasimple
verification mechanism, so that after the user adds a training sample and performs on-line training, he/she can
test the network for the recognition of the newly added sample. If more than one classification is chosen, the
user isinformed and has the option of removing the conflicting data from the training set.

Ny

Figure 14(a) Initial training samplesfor triangular shapes
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Figure 14(b) Initi
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al training samples for rectangular shapes

Figure 14(c) Initial training samples for circular shapes
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Table 5 displays the additions to the training set made by the four users and the resultant number of hidden
layer nodes. For reference, we are including the figures drawn by users User1 and User3, in Figures
16(a),(b),(c) and 17(a),(b),(c). Also the network topology at the end of the User3's session is given in Figure
18. With reference to Figures 16 and 17, the order in which the shapes were entered into the system was from
left to right and top to bottom. The shapes enclosed in boxes are the additional samples which were added to
the system on-line. In this experiment, none of the additional shapesinput by the users caused a classification
conflict. Theinitial network exhibited very good performance by recognizing shapes that were not in the
training set and had noise along the shape boundary. Thus, in this example, our network has learned the
underlying properties of the class of triangular shapes, rather than a set of specific triangles. Variety rather
than the number of shapes recognized clearly illustrates this point. For the addition of a new shape to the
training set, the desired category information was interactively supplied by the user and the network was
retrained, which took less than 10 seconds on a 200MHz-clock PC. The resultant networks had varying
configurations depending upon the input vectors of the additional training samples.

JUMP TO TOPIC

Table 5 Results of training sessions by four users

Number of Number of Number of |Total number of | Number of
additional additional additional additional resultant hidden
triangular rectangular | eliptictraining |training samples| layer nodes
training samples|training samples samples

Userl ] 2 | 4 4 10 13

User2 ] 2 | 2 3 7 8

User3 ] 3 3 1 7 8

Userd ] 0 1 1 2 5
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Figure18 The network configuration after User3's session.
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3.6 Results

Thetotal recognit

Figure i'ém Schematic representation for the customizable figure recognition system Binary Synaptic Weight

ion time taken from the completion of shape input, until the corrected shape is redrawn, is

less than 0.03 seconds on a Pentium PC (clock: 100MHz). The process of correctionisillustrated in Figures
20(a) through (c) which present an input shape, the results of feature extraction, and the redrawn figure,

respectively.
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Figure 20 (a) Shépe drawn by mouse;(b) Feature extraction and preprocessing results;(c) Recognized and

redrawn shape.
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The BSW agorithm, used for the training purposes of the neural network, was fast enough to allow usto
include on-line training in the system. With this type of system, the user can customize the recognition of
shapes to his’her drawing style by initialy training the system with afew samples and then incrementally
training as unrecognized shapes emerge in drawings. However, caution must be taken in order not to teach a
shape that cannot be clearly judged to be of a specific category, as this would confuse the recognition ability
of the system.

The result for the application of the presented BSW algorithm has proved that this algorithm is an effective
pattern classifier. It has anumber of desirable merits such as fast and guaranteed learning and it can be easily
implemented in hardware. Therefore, it is recommended for use as an alternative neural network training
agorithm for many problems.

4. Conclusion

In this chapter, we have presented a new method to recognize basic geometric shapes and provide on-line
training through the use of feature extraction, a heuristic filtering function, and afast training neural network.
The overall structure of our current system, depicted schematically in Figure 19, takes an on-line hand-drawn
shape, input mouse, and performs feature extraction, heuristic filtering, and neural network classification,
presenting a corrected redrawing of the recognized shape on the output device. The process of correctionis
illustrated in Figures 20(a) through (c), which present an input shape, the result of feature extraction, and the
redrawn figure, respectively.

The feature extraction process isimportant since it prepares input that isinvariant in terms of scaling,
trandation, and rotation, which isamajor problem in computer recognition of images. The heuristic function
isvery beneficial in reducing the noise and accenting the significant curvature maxima. The neural network
brings the ability of dynamically expanding the knowledge of the system for the classification of shapes.
Shape recognition by most neural network application is performed by training the system with a particular
shape and trying to recognize its noisy or rotated versions rather than trying to capture the definition of that
class of shapes. With this approach, our objective was to mimic the flexibility of the human eyein the
recognition of three basic geometric shapes. In order words, the neural network learned the underlying
definition of a category of three classes of geometric shapesin terms of their internal angles instead of
learning to recognize individual shapes. The neural network, therefore, performed the task of extracting the
relationship between the significant internal angles of a shape and its classification. Theinitial training set
supplied to the neural network was only afew representative shapes for each category and the network’s
ability to recognize awide variety of shapesis enhanced on-line by the user addition of new samples and
retraining if necessary.
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The BSW agorithm, used for the training purposes of the neural network, provides fast training and this
enabled us to include on-line training in the system. With this type of a system, the user can customize the
recognition of shapes to his/her drawing style by initially training the system with afew samples and then
JUMP.TO TOPIC incrementally training as unrecognized shapes emerge in drawings. However, caution must be taken in order
— not to teach a shape that cannot be clearly judged to be of either category, as this would result in confusing the
— recognition ability of the system. Our future work will involve increasing the variety of shapeswhich the
system can manipulate.

References

1 Andree, HM.A., et.d., (1993), “A Comparison Study of Binary Feedforward Neural Networks and
Digital Circuits,” Neural Networks, vol.6, pp.785—790.

2 Ulgen, F., (1992), Akamatsu, N, “A Fast Algorithm with Guarantee to Learn: Binary Synaptic
Weight Algorithm on Neural Networks, " Proceedings of SIMTEC' 92, Houston, Texas.

3 Pavlidis, T., (1978), “A Review of Algorithmsfor Shape Analysis,” Computer Graphics and Image
Processing, vol.7, pp.243-258.

4 Davis, L.S,, (1977), “Understanding Shape: Angles and Sides,” |EEE Trans. on Computers,
vol.C-26, pp.125-132.

5 Montas, J., (1987), “Methodologies in Pattern Recognition and Image Analysis-A Brief Survey,”
Pattern Recognition, vol.20, pp.1-6.

6 Gupta, L. et. a., (1990), “Neural Network Approach to Robust Shape Classification,” Pattern
Recognition, vol.23, pp.563-568.

7 Perantonis, S.J., Lisboa, P.J.G., (1992), “ Trandation, Rotation, Scale Invariant Pattern Recognition
by Higher-Order Neural Networks and Moment Classifiers,” IEEE Trans. on Neural Networks, vol.3,
pp.243-251.

8 Khotanzad, A., Lu, J., (1990) “Classification of Invariant Image Representations Using a Neural
Network,” |EEE Trans. on Acoustics, Speech and Signal Processing, vol.38, pp.214-222.

9 Guyon, |., et. a., (1991), “Design of aNeural Network Character Recognizer for a Touch Terminal,
Pattern Recognition, vol.24, pp.105-119.

10 Kashyap, R.L.(1981), Chellappa, R., “ Stochastic Models for Closed Boundary Analysis:


http://www.earthweb.com/
http://corpitk.earthweb.com/
http://corpitk.earthweb.com/content/corp.html
http://corpitk.earthweb.com/search/
http://corpitk.earthweb.com/faq/faq.html
http://corpitk.earthweb.com/sitemap.html
http://corpitk.earthweb.com/contactus.html
http://corpitk.earthweb.com/search/search-tips.html
http://corpitk.earthweb.com/search/search-tips.html
http://corpitk.earthweb.com/search/
http://corpitk.earthweb.com/search/

Representation and Reconstruction,” IEEE Trans. on Information Theory, vol.I T-27, pp.627—637.
11 Ray, B.K., (1993), Ray, K.S,, “Determination of Optimal Polygon from Digital Curve Using L1
Norm,” Pattern Recognition, vol.26, pp.505-509.

12 Kosko, B., (1992), “Neural Networks and Fuzzy Systems: A Dynamica Systems Approach to
Machine Intelligence,” Prentice Hall.

Previous !Tabl e of Contents!Next

HOME SUBSCRIBE | SEARCH FAG SITEMAP COMNTACT US

Use of this site is subject to certain , All rights
reserved. Reproduction whole or in part in any form or medium without express written of
EarthWeb is prohibited. Read EarthWeb's statement.



http://corpitk.earthweb.com/
http://corpitk.earthweb.com/content/corp.html
http://corpitk.earthweb.com/search/
http://corpitk.earthweb.com/faq/faq.html
http://corpitk.earthweb.com/sitemap.html
http://corpitk.earthweb.com/contactus.html
http://corpitk.earthweb.com/products.html
http://corpitk.earthweb.com/contactus.html
http://corpitk.earthweb.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://corpitk.earthweb.com/
http://corpitk.earthweb.com/agreement.html
http://corpitk.earthweb.com/copyright.html
http://www.earthweb.com/about_us/perm.html
http://www.earthweb.com/about_us/privacy.html

N

An
EARTHWEB

Resource

HOME  SUBSCRIBE  SEARCH FAQ@ |SITEMAP |COMNTACT US

iT KNOWLEDG E_COMW Enterprise Subscription X

Need IT. Find IT. Know IT. ITKNOWLEDGE.COM M4

F KEYWORD SEARCH - Industrial Applications of Neural Networks
S —— by Lakhmi C. Jain; V. Rao Vemuri
CRC Press, CRC Press LLC

_ Go! ISBN: 0849398029 Pub Date: 10/01/98

¥ Search Tios Search this book:

F Advanced Search m

k PUBLICATION LOOKUP Previous!TabIeof Contents!Next

Chapter 2
mmm— Neural Network Approaches to Shape from Shading
b LUMP TO TOPIG

— Guo-Qing Wei, Gerd Hirzinger

Institute of Robotics and System Dynamics
German Aerospace Research Establishment
FF-DR/RS, DLR

82234 Oberpfaffenhofen

Germany

The multilayer feed-forward network has been used for learning a nonlinear mapping based on a set of
examples of input-output data. In this chapter, we present anovel use of the network, in which the example
data are not explicitly given. We consider the problem of shape from shading in computer vision, where the
input (image coordinates) and the output (surface depth) satisfy a known differential equation. We use the
feed-forward network as a parametric representation of the object surface and reformul ate the shape from
shading problem as the minimization of an error function over the network weights. The stochastic gradient
and conjugate gradient methods are used for the minimization. Boundary conditions for either surface depth
or surface normals (or both) can be imposed by adjusting the same network at different levels. It is further
shown that the light source direction can be estimated, based on an initial guess, by integrating the source
estimation with the surface estimation. The method is further extended by using the Radial-Basi s-Function
(RBF) network in the place of the multilayer perceptron, with increased accuracy achieved. The efficiency of
the proposed methods is verified by examples of both synthetic and real images.

1. Introduction

The problem of shape from shading is to infer the surface shape of an object based on a single intensity
image. Under some simplified assumptions, the surface depth function satisfies a partial differential equation
[10]. Most existing solutions, except for the local methods [6, 16, 27], are based on a variational
reformulation of the problem [1, 2, 7, 11, 14, 38], which usually involves a regularization term of smoothness
due to the ill-posedness in the discrete solution of the problem. Horn [11] noted, however, that during the
iteration, the weighting factor of the smoothness term should be gradually reduced to zero, to avoid the
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agorithm from walking-away from the correct solution. Too rapid a reduction would cause instabilities
(raggedness) in the surface. There is also alower limit, in the presence of noise, on the value of the
smoothness weight, beyond which the solution becomes again unstable [11, p. 65]. Since surface depth and
surface gradients were treated as separate variables [1, 2, 11, 14, 38], the integrability constraint has to be
imposed, by either using subspace projection [7] or adding a penalty term in the variational integrand [1, 11,
38]. In the latter case, the surface depth and surface gradients can be adjusted simultaneously [11, 38]. The
weighting factor of the integrability term, however, should aso be reduced [11] to an appropriate value during
the iteration. It remains an open problem to determine the optimal values of both the smoothness weight and
the integrability weight [34].

In this chapter, we present a new solution of the shape from shading problem based on using a multilayer
feed-forward network as the parameterization of the object surface. Due to this parametric and continuous
(smooth) representation, both the height (depth) and the gradients can be described by the same set of
variables: the network weights. Thisavoids, in a natural way, the explicit use of both the smoothness and the
integrability terms. The determination of shape from shading can then be converted to an ordinary extremum
problem in which a cost function is to be minimized with respect to the network weights. This conversion also
represents a new way of applying the feed-forward network: usually, a set of example data of the network
input-output should be given for the learning of a nonlinear mapping [30, 33]; while in our case, the example
data are not available; we only know that the network output satisfies a given differential equation. Thus, we
are treating a more general problem than the learning of a nonlinear mapping from examples. Regarding the
use of neural networks in shape from shading, we are aware of only one previous work (Lehky and Sejnowski
[18]): under the framework of learning from examples, a multilayer feed-forward network was used to learn
from thousands of (small) images the curvature magnitude and the curvature orientation at one surface point
in the image center; with our method, we are able to learn from one image the complete surface. The learning
isundertaken in the pixel level, instead of the picture level [18]. Here, learning a so means parameter
identification (of the object surface). It is further shown in this chapter that boundary conditions about surface
depth and surface gradients can be learned by the same network, too. We demonstrate further how a priori
knowledge about the surface can be utilized to estimate the illuminant direction by integrating the source
estimation with the surface estimation, resulting in improvements of both the estimates. Extensions of the
proposed method to the case of the RBF-network are developed, in order to increase the approximating
capability in modeling complex surfaces.

The chapter is organized as follows. In Section 2, we describe the perceptron-based shape-from-shading
method, assuming a known illuminant direction. In Section 3, we show how to estimate the illuminant
direction by integrating with the surface estimation. We report some experimental results in Section 4. In
Section 5, we extend the method to the RBF-network case, with some further experiments. In Section 6, we
draw some conclusions.

2. Height and Shape Estimation
2.1 The Problem

Suppose the surface of an object is represented by z = z(x, y) in a camera coordinate system x-y-z, with the x-y
plane coinciding with the image plane, and the z axis coinciding with the optical axis of the camera.
Assuming orthographic projection and the Lambertian reflectance model, the image intensity at position (X, )
of the image plane can then be computed as[10]:

e _poPi-glath
”fd’]-’?“ L-R[plq}-l'f m (i
where - is the composite albedo, n is the surface normal at (X, y, (X, ¥)),
B = (ny,n,N3)T = (et e S ' Yo
e VE+E+1 VP +g + 1 VP g+ 1
az &z
— E:q - ﬂ_yl (31

p and g are called the surface gradients at (X, V); L = (L2, 15) is jstheilluminant direction. Equation (1) is
called the image irradiance equation, which isanonlinear partial differential equation of the first order on z;
R(p, q) is called the reflectance map.
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Suppose in the following that the parameters - and L areknown. The shape-from-shading problem can thus
be stated as the determination of p(X, y), q(x, y), and z(x, y) from agiven image (X, y). Horn [11] reformulated

e the problem as the minimization of
JUMP'TO TOPIC

E—— o —

-n.l.:!m:j-u'ru [r—
+p[lz: = p)* + (2, = ") }dz dy (4)
integrability

with respect to p(x, ), q(x, ¥) and z(x, y). In (4), thefirst term is the intensity error, the second term a
smoothness measure of the surface, and the third term a penalty term of non-integrability; the parameters »
and Y are the rel ative weights of the smoothness term and the integrability term, respectively. The above
minimization can be performed by solving the corresponding Euler equations [3]. The finite difference
method was used by Horn [11] to iteratively adjust both the height z and the gradients (p, q) on a discrete grid
of points.

2.2 The Forward Network Representation of a Surface

Instead of solving for p, g, and z only at afinite number of points, we shall recover them on the continuous
domain. Thefirst step to achieve thisisto represent z, and thus p and g, parametrically. Since no a priori
knowledge about the shape of the surface is assumed available, the representation should be flexible enough
to approximate any surface. With this criterion, we resort to the recent discovery about the multilayer
feed-forward network that a 3-layer (one hidden layer) forward network whose input and output units are
linear and whose hidden units are semilinear is able to approximate any real-valued continuous function over
acompact set (bounded closed subset) up to any accuracy [5, 8, 13]. Thisjustifies usto model the object
surfacez=z (X, y) in terms of a feed-forward network as

N
z= Zwi-f.rl[nar + by + i) + wo (5)

1=1

where N is the number of unitsin the hidden layer, {w;,a,,b,,c} arethe network weights, A() isthe semilinear
function, which is the sigmoid function of the form A(s) = 1/(1+ e9) in our case, with s being adummy
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variable. Figure 1 shows the structure of a network representation of a surface by using 3 hidden units (here
the bias unit, i.e., the unit with a constant input of 1, is not counted in this number.)

Figurel A network structure of size2 x 3 x 1.

Although a 3-layer network is theoretically able to approximate any surface, it may require an impractically
large number of hidden unitsin the case of complex surfaces[22]. It has been found, however, that an
adequate solution can be obtained with a tractable network size by using more than one hidden layer [22, p.
133]. Thus, in the following, we will not limit ourselves to the case of only one hidden layer.

2.3 Solving the Image Irradiance Equation

If werewrite (5) as
2= 2(z,y, W) (6)

where W represents the vector of all the weights, we can analytically compute the surface gradients through

- —
(3) as P =k (I" Y W) T zy(x’ Ys W) here, the subscripts represent the partial
derivatives. Based on this parametric form, the image irradiance equation can be rewritten as

—zz(z,y, W)l - zylz, v, m]h + I3
\/{z,{z,y,ﬁ_}z + zy(z, v, ﬁ']z +1

Hz,y)=n ™

which turns out to be an eguation in the network weights W Sincethe equation is satisfied at each image
position (X, y), we get a system of equations. Due to the nonlinearity of these equations, we cannot expect the

solution for W to be unique. Thus, we will just seek one of the solutions satisfying the image irradiance
equations. But aslong as the surface is intrinsically unique for the given problem, the different solutions for

W should result in the same surface z. The uniqueness issue was discussed by Oliensisin [24, 25].

A least squares solution for W is obtained by minimizing the total intensity error E;:

Ei= 3 Eym 3 (k= Rlsabeow. Wy lz . W) L
Ll o By

where D, isthe index set of all image points; (x;, y;) are the image coordinates at pixel i; |, is the corresponding
image intensity, and E,,; isthe intensity error there. According to (8), the estimation of shape from shading has

been converted to an ordinary extremum problem in which only afinite number of parameters W aretobe
determined. Notethat it is not a functional minimization problem anymore (compare with (4)), and thereis no
smoothness term nor integrability termin it.

To minimize (8), we recall the processin learning an input-output mapping using a multilayer network [33].
The analogy motivates us to use the stochastic gradient method [20] to learn the weights. Note that in learning
an input-output mapping by neural networks [30, 33], the surface values z’ s at coordinates { (x,y;)} should be

assumed known. The purpose thereis to build a network which maps the coordinates { (x;, y;)} to the given
values{z} ={z(x, ¥)}. In our problem, however, we are required to determine the z's, knowing only that
they satisfy a differential equation. If still viewed in the mapping framework, our network is to map the (x,
y;)’ s onto a surface which generates the given image intensities |’ s. Note also that an explicit one-to-one
correspondence between a surface value z and the intensity value |; does not exist physically. In terms of the

neural networks terminology, we will call the pairs {(mi!yiifilﬂ € DI} — {ﬁ.i} =T the
intensity training patterns. According to the stochastic gradient method, we repeatedly present the training

patterns to the network and modify the network weights after each presentation of atraining pattern ﬁsi, in


javascript:displayWindow('images/02-01.jpg',300,184)
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the direction opposite to the gradient of the corresponding error E,,;. That is, the change of the weights after
the presentation of ﬁsi is made by

AE; ;
aw

aW = -254 = g1, - R)(Ryz, g + Ryzp) =
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where2isthe learning rate, R is the computed intensity at position i using the current weights, R, = dR(p,

-
o 8%5/020W  Z.m = 0%z/8yOW
e Z v zZ{0x yW .
» [JUMP TO TOPIC a)/dp, R, = 8R(p, 0)/8q, , and are quantities
i al evaluated at position i using the current weights. Similar to [33], we can aso introduce a momentum term

* to avoid possible oscillations. That is, the weights will be adjusted according to

aE;

Win+1)=Wi(n) - ﬁﬂ"ﬁ?{n]

+aAW(n-1) (10)

where n indexes the number of presentations. Typical valuesfor 2and + in our experiment are2=0.3and + =
0.6, respectively. When the iteration is getting closer to the solution, however, the value of 2 should be
reduced. We automatically reduce it by 5% of the current value whenever the total error E; computed by

accumulating the individual errors E,,;’ s shows any oscillations.

We will in the following, also call the image irradiance equation, when it isto be satisfied at a particular
point, the intensity constraint at that point, for the convenience of coupling it with boundary conditions.

2.4 Boundary Conditions

We know that a partial differential equation possesses multiple solutions. To single out a specific individual
solution, additiona conditions have to be added to the differential equation. Prescribing the values of the
solution on the boundary of the region of interest (the image boundary) is one way to constrain the solution.
In the variational formulation of the shape from shading problem, one specifies the boundary condition by
giving gradient values p and q on the image boundary [11] (more exactly, on the boundary of the region of
integration in the functional). When nothing is known about the boundary gradients, the natural boundary
condition has to be assumed, which, together with the Euler equations, serves as the necessary conditions for
the functional minimization [3, p. 208]. The natural boundary condition, however, appears as an artifact of the
variational reformulation of the original shape from shading problem (which is afirst-order partial differential
equation), since different variational formulations of the same shape from shading problem may require
different natural boundary conditions [3]In our formulation of the shape from shading problem, the
imposition of a natural boundary condition is not necessary. Besides, any other a priori knowledge about the
surface can be used to constrain the solution. These constraints can be either known depth values or known
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gradient values anywhere in the image (not necessarily on the image boundary). Compared with theinitial
values of the characteristic curves used in the solution of afirst-order partial differential equation [4, 10, 11],
our constraints are more flexible, since we do not require both the depth and the gradients to be given at the
same image points. This property al so facilitates the integration of shape from shading with stereo vision
where usually only sparse depth, not necessarily also the surface normals, is available.

1In Zheng and Chellapa’ s formulation [38], adifferent natural boundary condition from that in Horn [11] should
be derived. They simply used the same natural boundary condition as Horn [11] did.

Despite the above discrepancies, we will, for convenience, still call our constraints boundary conditions. In
the following, we will aso specialize them by using either the term gradient constraints or the term depth
constraints, according to whether the gradient or depth is given.

In the case of gradient constraints, suppose we are given the surface gradients { (p;, g)} at aset of points {(x;,
Y)} indexed by the set D,. We form the total gradient error E; as

E = Z Eyy= Z ({my; = r"lu]l’-i-l_n“ - 'n;_,:l’ + [my = h,,}’j {1y
JED, €0,

where E; isthe surface gradient error at position j. The vectors n; = (ny;,n,;,n3;)"™ and

B amifitle o W e AL
By = (nl 32 12,55 13,5 ) are the given and the computed surface normals at position j,
respectively; the latter is afunction of the network weights (refer to (6), (3), and (2)).

In the case of depth constraints, suppose we are given depth values{z} at a set of points{ (X, y,). K Dy} with
D, astheindex set. The total depth error is defined as

Es= ) Eax= Y (ax—-&) (12)

ke kEDy

where E; is the depth error at position k, Zk isthe computed depth at position k by (6).

The exertion of boundary conditionsis then equivalent to minimizing (8), (11), and (12) simultaneously with
respect to the network weights. If we treat both the gradient constraints and the depth constraints as a new

OFyg,; 9E4
kind of training pattern, we can then adjust the network weights, based on and ,

in asimilar way to that in (10) of the last section.

Due to the unknown range of the depth error, which is usually much larger than that of the intensity error (we
normalize the intensity values to the range [0,1]), we have to introduce a weighting factor w, to the depth

error, so that the weight adjustment due to the depth constraints would not overwhelm the contributions from
the intensity constraints. We determine the weight by

wy = E Epqf Z Eg (13)
€Dy ke
The value of w, thus determined is usually underestimated. Thus, during the training, we increase w,, by 10%

of its current value, whenever the total depth error shows atendency to increase. The same weighting process
can be used for the gradient constraints. But since we have used the surface normals (which are of the range
[0, 1]) instead of the original gradients for the training, a constant weighting factor of 2 has been found to
work well.

2.5 Computational Steps

We have seen that the network weights can be learned from three kinds of constraints: intensity constraints,
gradient constraints, and depth constraints. Figure 2 shows the complete training diagram. Thanks to the

OFET ; E.-'! j
II'I- a
feed-forward structure of the surface representation, we are able to compute the gradients ow oW |

BE,!- k
and W inasmila (but not the same) way as in the back-propagation algorithm [33] (see [36] for



details).
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The following summarizes the steps in the learning of network weights in the presence of all the introduced
constraints.

.

JUMP TO TOPIC ==

— Fig_ ure2 An unified traini ng framework.

1) Collect dl theintensity constraints, the gradient constraints and the depth constraints to form the

intensity training patterns 11 = {(zi, 453 1)} the gradient training patterns
Te = {(z;,v5: P i)}, and the depth training patterns 74 = {(Zk: ¥ki 2k)} The entiretraining
patternsareT =TiuTgUTq

2.) For al the intensity patternsin 'ﬁ repeat the network training using the stochastic gradient
method, until the total intensity error drops below a prescribed value.

3.) For al thetraining patternsin T repeatedly do the network training, until the total error, asthe
sum of the intensity error, the weighted gradient error and the weighted depth error, ceases to decrease.

Theinitial network weights are set by random valuesin [-0.5, 0.5]. Step 2 isto provide agood initial surface
for imposing boundary conditions. For images with singular points (see the definition in the next section),
most parts of the surface can be established before adding boundary conditions [24, 25]. If only boundary
gradient constraints are present, i.e., no boundary depth constraints, we can ignore Step 2, since we don’t have
to determine the weighting factor of the gradient constraints dynamically.

When the iteration gets closer to the solution, the conjugate gradient method [32] can be switched on to speed
up convergence and to improve accuracy. But it is not advisable to use the conjugate gradient method at the
very beginning of Step 2 or 3, since the process may get into local minima. The stochastic gradient method,
however, has been found to rarely get stuck in local minima[33].

2.6 Miscellaneous

In this subsection, we address some issues related to input-output normalization, the multiresolution
implementation, and the choice of network size.
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Normalization: To make the range of the network weights independent of image size, we normalize the
network input (image coordinates) to the range [0, 1] through

&=z[Ns; §=y/N, (14)
where N, and N, are the image sizein the x and y directions, respectively. Using the normalized coordinates
£l —_ — . ok . z i -
T and ¥, the quantities zz,z !J,z EW  and " ¥W computed using (5) (see[36] for details) for the weight
adjustment should be denormalized to give

_ 8z 8 _ _ 8z 8y _
ZI——E"B—:—I':I!NIZ'-S_!‘I-'%_;HINH (1)
zzﬁ": iwfﬂz,zuﬁ,. :Zgﬁr,-fﬂy. {16)

Notice that if we use the sigmoid instead of the linear function in the output layer, asis usua in the learning
of an input-output mapping [33], there should be a normalization and denormalization of the network output
z, and accordingly, a modification of (15) and (16). In that case, however, we should aso know a priori the
depth range of the true surface, so that the normalized depth matches the output range [0, 1] of the sigmoid
function.

Multiresolution: The multiresolution scheme has been used in the solution of many computer vision problems
for the purpose of reducing computational cost. Through subsampling of the original image, the calculation is
first donein the lowest level of resolution. Then one propagates the solution to a higher lever as an initia state
of the computation at that level. For the shape from shading problem, one propagates the depth and gradients
by an appropriate interpolation scheme [38]. With our neural network method, the interpolation is automatic
due to the continuous solution. We subsample the original image as usual, but keep the values of the sampled
image coordinates the same as in the original image. Then we normalize the sampled coordinates by the
origina image size. Thetraining is done as usual. When we transfer from alower resolution to a higher one,
we simply add new training patterns. No change has to be made to the existing network in the transition
process.

Network size: Due to the reason stated in Section 2.2, we choose to use two hidden layers instead of one. As
for the size of each hidden layer, we have no analytical methods for its determination. As an adternative, we

xoh !
employ a heuristic approach. First, an initial size for the two hidden layersis estimated ale - N:-"'ra and

Ny = N, f3 , Where ; and N !:' are, respectively, the subsampled (reduced) image size in the x-and y-
directions, chosen so that the image does not lose details. This estimation is empirical and subjective. We
denote this network by M 0 and will IateL refer to it as the basis network. After the training of N 0, we obtain
asurface So represented by 20(%, ¥, W3 ) where I‘i:rl; is the converged weights of No 1 the rms residual
error E{[}“ of theimage intensity of S0 is less than a predefined value, 50 is regarded as the solution

z(z,y) = zo(2,y, W5 ). Otherwise, we build another refining network N1 to improve the surface estimate
as:

2(2,y) = z0(z,9, Wg) + 21(z,y, Wh) (17)

where 212, ¥, iJi"r!) is the surface represented by N1, and Wi isthe weight vector of V1. To determine ﬁ"r‘-,
we use the surface representation (17) to solve the image irradiance egquation again by the stochastic gradient
method. The size of N1 should be larger than that of M 0 to ensure the increased approximating ability of
(17). We set the size of M asbei ng, say, 20% larger than that of M Therole of Mo is to reduce the
computational cost in the training of 41 . Since %0 (z,u, W5) Land thus 0= (T ¥, Ws) and

zoy(2, ¥, WEJ are fixed quantities for each pixel, they can be prestored in atable. By setting the initial
output-layer weights of M 1o zero, the starting surface in the adjustment of W isexactly So (refer to
(17) and (5)). During the training of M , we adjust the weights only for the pixels whose intensity errors are

(1}
larger than the rms intensity error of the current surface, whichis ®o for the first iteration. Thiskind of



filtering keeps only around 20% of all the pixelsin consideration. Although the sigmoid function is global, its
derivatives are relatively local, which are the quantities involved in the weight adjustment for the intensity

patterns. This ensures the stability of the above training scheme for M | This surface refinement can be
continued until the desired accuracy is reached.
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3. Estimating the Illluminant Direction

- In the last section, we assume the direction of the light source to be known prior to the surface estimation. In

JUMP'TO TOFIC practice, thisilluminant direction can only be roughly estimated before the surface estimation, since most
_ source estimation algorithms [16, 28, 38] are based on assumptions about statistical properties of the surface.

Without the use of additional constraints, we could not expect the image alone to alow for an accurate

estimation of the illuminant direction. This can be understood by noting that even when the exact illuminant
direction is given, we are not guaranteed to arrive at a unique surface estimate. So when both are unknown,
the problem is even more difficult. Notice also that there is an inherent two-way ambiguity (concave/convex)
in the combination of the surface shape and the illuminant direction [2].

In this section, we will show how to use some a priori knowledge about the surface, e.g., boundary
conditions, together with arough guess of the illuminant direction to arrive at an accurate estimate of the
illuminant direction. We consider especially the case in which the a priori knowledge alone, e.g., boundary
depth, is unable to provide such an accurate estimate of the illuminant direction, but could be integrated with
our surface estimation procedure to achieve this. We present two methods of this kind.

Thefirst method is based on representing the illuminant direction by the surface normal at a singular point
(the brightest point). At singular points, the surface normals have the same orientation as the illuminant
direction. Suppose the surface gradient at a singular image point (X, y,) is (P 0. Theilluminant direction can
then be expressed as

. 1
L=(l,lal3)" = —Pgy —qs, 1)7 18
(1 23) P§+t}‘f+1{ Psy — (s ) (18)
N 82(z4, Y5, W) _ 8z(zs,¥s, W)
e "I i e 9

Inserting (18) and (19) into (7), we get an equation with the network weights as the only unknowns:2
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2Here we assume that the albedo - has been estimated by using either the singular point or existing methods [38].

.Z':[I.,y, ﬁf}zt{zh Vs, W} 2 z]r(xt?h ﬁ}zy{xatyau ﬂ}] +1

v Zi{ﬁ:, ¥, W} * zﬂ(m.y, w] g 1 zg[zﬂlyl:r W} + zg[xh Y w} + 1

(200

Equation (20) allows usto use the same learning method as in the last section to determine the network
weights, and thus, both the object surface and the illuminant direction. We first use an initial guess of the
illuminant direction to recover only the surface through minimizing the intensity error (8), in the same manner
asin Step 2 of Section 2.5. This establishes an initial surface. Then, anew intensity error is formed, based on
(20), as the sum of the squared residuals of (20) evaluated at each image position. This new intensity error
together with the errors of the boundary conditions (11) and/or (12) are then minimized with respect to the
network weights, in asimilar way to Step 3 of Section 2.5. We call this method of source estimation the
singular point method.

The second method is based on the aternative adjustment of the surface normals and the illuminant direction
[2]. First, we establish an initial surface in the same way as in the singular point method. Then, the obtained

surface is used to solve for the illuminant direction L in terms of (7), which can be donein linear
computation. With the obtained illuminant direction, we adjust the network weights (the surface) for one
cyclein terms of both the residual error of (7) and the errors of the boundary conditions. The obtained surface
isthen used to re-estimate the illuminant direction. This process repeats until the convergence is reached. We
call this estimation process the iterative LS method.

The two methods have been found to perform complementarily. The singular point method has a wider range
and a quicker rate of convergence, while the iterative LS method is less sensitive to noise and does not depend
on the identification of a singular point. Thus we propose to combine the two methods if asingular point is
available. We can first use the singular point method to quickly find a rough solution and then use the
iterative LS method to refine the estimate.
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4. Experiments

R 4.1 Examples
k[ JUMP TO TOPIC

_ Example 1. Test of accuracy. Thefirst example is a synthetic sine surface (Figure 3(a)),

z = =2eos(my/z? +¥2/32)  \ith the origin at the image center. To specify the illuminant direction L |,
we employ the two-parameter description: thetilt angle A and the slant angle 2 [38]. Figure 3(b) is a synthetic
image of size 32 x 32 with the illuminant direction being at A = 30° and 3 = 10°. The image was generated by
orthographic projection, and no noise was added. In this and the next example, we used a network of size 2 x
10 x 10 x 1. We aso compared our method with Horn’s[11] and Leclerc and Bobick’s[15] algorithms under
different boundary conditions. Figure 3(c) shows the recovered surface by our algorithm without any
boundary conditions, after 1500 cycles of gradient searches plus 100 cycles of conjugate gradient searches.
Figure 3(d) shows the improved surface by adding boundary depths (known depth values along the image
boundaries) to Figure 3(b), after 800 more cycles of gradient searches and further 200 cycles of conjugate
gradient searches. Here, one cycle means a complete pass of the training patterns. Figures 3(e) and (f) show,
respectively, the recovered surfaces, under the same boundary condition, by Horn’s method after 10380
cycles of iterations (with » being reduced from 1.0 to 0.0001 and ¥ set to 0.1), and by Leclerc and Bovick’s
method after 1547 cycles of conjugate gradient searches. The average error, deviation, and maximum error of
the surface depth in pixel units, and of the surface normals in degrees for the three methods are shown in
Table 1. Figures 3(g), (h), (i) show the respective error surfaces, magnified by afactor of 4. Table 1 also lists
the depth errors and normal errors for our method and for Horn’s method under boundary gradient
congtraints. (The method of Leclerc and Bovick cannot consider boundary gradients.) Under only boundary
gradient constraints, the absolute depth error has no meaning, since the surface can only be determined up to a
shift. To investigate the noise sensitivities of the methods, we added + 5% random noise to the image
intensities. The results are al so shown in Table 1. From the table,3we can see that our method is able to
reconstruct a more accurate and more stable surface than the others are.

3For Horn’ s and Leclerc & Bovick’ s algorithms in the presence of image noise, we have picked up the best
results from those with different stopping values of the smoothness weight », i.e., different lower bounds of ».
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> v
Figure 3 Recovery of arotated sine surface: (a) true 3-D surface; (b) the input image; (c) recovered surface
by our algorithm without boundary conditions; (d) recovered surface by our algorithm with boundary depth;
(e) recovered surface by Horn's algorithm with boundary depth; (f) recovered surface by Leclerc and

Bobick’s algorithm with boundary depth; (g) our error surface; (h) Horn's error surface; (i) Leclerc and
Bobick’s error surface.

Table 1 The accuracy comparison of different methods under different boundary conditions

Boundary depth Boundary gradient
Methods depth error norm. error (°) depth error norm. error (°)
av.,dev.,max. av.,dev.,max. av.,dev.,max. av.,dev.,max.
Ours 0% noise 0.038,0.032,0.272 1.2,1.3,17.3 -,0.064,- 1.3,0.9,5.9
5% noise 0.093,0.081,0.357 3.1,1.9,158 -,0.125,- 2.6,1.4,6.7
Horn's 0% noise 0.196,0.264,0.700 3.5,4.5,26.2 -,0.278,- 11,1.317.1
5% noise 0.482,0.476,2.163 5.2,3.4,29.6 -,0.481,- 3.1,1.72,14.2
L.& B.'s 0% noise 0.249,0.372,1.472 6.5,5.9,31.7 — —
5% noise 0.472,0.545,2.240 8.1,7.2,35.6 — —

Example 2: Normal discontinuities and the integrability weight. The second example is a concave spherical
cap behind aplane (Figure 4(a)). The sphere radiusis 15 pixels, and the circle radius 14 pixels at the plane of
intersection. This surface contains discontinuous surface normals. Figure 4(b) is a synthetic image of size 32
x 32 with the illuminant direction at A = 150° and 2 = 10° (no image noise). Figures 4(c) and (d) show,
respectively, the recovered surfaces of Horn’s and Leclerc & Bovick’s algorithms without boundary
conditions. Figures 4(e)-(h) show, respectively, the sequence of surfaces reconstructed by our algorithm (also
without boundary conditions) after 150, 300, and 800 cycles of gradient searches and 600 more cycles of
conjugate gradient searches. We can see from this sequence how the surface buildsitself. It begins from the
area with the highest contrast and then propagates toward areas of weaker contrast. The same has been
observed with Horn’sand Leclerc & Bovick’s agorithms. This experiment demonstrates that the surface
propagation in our algorithms in the presence of normal discontinuities is more efficient than that in the other
algorithms.
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From Figure 4, it can be seen that our method recovers the correct surface even without boundary conditions
(for this example). With Horn’s method (and also with Leclerc & Bovick’s one), only when boundary
conditions (either boundary normals or boundary depth) are added, can the correct solution be recovered. The
JUMP.TO TOPIC value of the integrability weight ¥in Horn’s method, however, should be chosen carefully. In this example,
—_——— we set %2 = 1 and keep it unchanged during the iteration. To see the influence of the integrability weights on
— the solution in the presence of boundary conditions, we tried to set %= 0.1. In the case of boundary depth, we
still get the correct solution; whereas in the case of boundary gradients, we get a solution which is similar to
that without boundary conditions. This means that without an appropriate choice of the integrability weight
(and an appropriate way of reducing it, as Horn [11] proposed to do so), the solution may deviate from the
correct one.

<0s
sse

Figure4 Recovery of aconcave spherical cap behind a plane: (a) the true 3-D surface; (b) theimage; (c)
recovered surface by Horn's algorithm without boundary conditions; (d) recovered surface by Leclec and
Bobick’s algorithm without boundary conditions; (€)-(h) sequences of surfaces recovered by our algorithm
without boundary conditions.

-

Figure 5 Surface recovery of the Agrippa statue: () the image; (b) the learned image by the basis network;
(c) the learned image by adding a refining network; (d) the recovered 3-D surface.

Example 3: Real images. Here, we present results of our algorithm on two real images. The first imageisthe
Agrippa statue, see Figure 5(a). The image sizeis 128 x 128. The illuminant direction is manually estimated
to be A = 135° and 2 = 50°. The network sizeischosenas2 x 20 x 20 x 1. We use 3 levelsin the


http://www.earthweb.com/
http://corpitk.earthweb.com/
http://corpitk.earthweb.com/content/corp.html
http://corpitk.earthweb.com/search/
http://corpitk.earthweb.com/faq/faq.html
http://corpitk.earthweb.com/sitemap.html
http://corpitk.earthweb.com/contactus.html
http://corpitk.earthweb.com/search/search-tips.html
http://corpitk.earthweb.com/search/search-tips.html
http://corpitk.earthweb.com/search/
http://corpitk.earthweb.com/search/
javascript:displayWindow('images/02-04.jpg',517,511)
javascript:displayWindow('images/02-04.jpg',517,511)
javascript:displayWindow('images/02-05.jpg',526,419)
javascript:displayWindow('images/02-05.jpg',526,419)

multiresolution training. No boundary conditions are assumed to be known. Shown in Figure 5(b) isthe
learned image by the network. It can be seen that near the lip, the learned image (and therefore the
corresponding 3-D structure) is too smooth.4 Thisis because of both the inappropriate choice of the network
size and the relatively small size of the lip in the whole image: a small network can only learn the rough
structure. To remedy this, arefining network of size 2 x 25 x 25 x 1 is added to the basis network in terms of
the strategy described in Section 2.6. The refining network successfully learned the fine structure. The learned
image and the recovered 3-D surface are depicted in Figures 5(c) and (d), respectively. Figure 6(a) is another
real image, the David statue. The illuminant direction and the initial network size are the same as that for the
Agrippa statue. Similarly, the basis network fails to recover the details of the eye, see the learned image in
Figure 6(b). Adding arefining network of size 2 x 25 x 25 x 1 successfully recovers the fine structure.
Figures 6(c) and (d) show, respectively, the learned image and the recovered 3-D shape of the David statue. It
was a so found that in the initialization of the refining network, setting the initial weights of each layer
(except for the output layer) to random values in the same range as the corresponding layer of the basis
network can speed up convergence.

41t isimportant to point out that with Horn’s algorithm [11], this correspondence of smoothness between image
and 3-D structureis not true if » and %2 were not appropriately chosen. This meansthat it is not always possible to
evaluate the reconstructed 3-D shape by merely checking the reconstructed 2-D image.

] i
.@

Figure 6 Surface recovery of the David statue: (a) the image; (b) the learned image by the basis network; (c)
the learned image by adding a refining network; (d) the recovered 3-D surface.

Example 4: Source estimation. We tested our source estimation methods in Section 3 on the synthetic image
of the sine surface in Figure 3(b) with various initial guesses of the illuminant direction. We intensively
investigated the case of boundary depth. The case of boundary gradientsistrivial, since the boundary normals
together with the corresponding image intensities are sufficient to determine the illuminant directionin a
closed form (see (1). We found that the singular point method converges within a deviation range of 40° (even
50°) from the correct illuminant direction, whereas the iterative LS method converges within arange of 30°.
For both methods, the illuminant direction can be estimated within 0.5°.

Figure 7 Surface recovery on amoon image: (a) the image; (b) the recovered surface by our algorithm
without boundary conditions, under Zheng & Chellapa’ s Illuminant direction; (c) the improved surface by our
agorithmin terms of partial boundary normals and a re-adjustment of the illuminant direction; (d) the

recovered surface by our algorithm without boundary conditions, under our estimate of the illuminant
direction.

Next, we show an example on areal image. Figure 7(a) is a sub-image of the moon. The image sizeis 128 x
128. Sincethereisno a priori knowledge about the illuminant direction, we use the method of Zheng and
Chellapa [38] to obtain an estimate. This gives A = 26° and 3 = 27°. Figure 7(b) shows the recovered surface
by our algorithm without using any boundary conditions under this estimated illuminant direction. The
recovered surfaceis alittle bit oblique. Thisis due to the errors in the estimate of the illuminant direction.
Neverthel ess, we can improve both the estimates of the surface and the illuminant direction by using the
knowledge that the normals at the upper and right boundaries of the image are toward the viewer. Shown in
Figure 7(c) is the improved surface by our singular point method. The surface is more consistent with the
human perception. The improved estimate of the illuminant directionisat A = 14.10° and 3 = 51.20°. To see
whether the errorsin Figure 7(b) are really due to the erroneous illuminant direction, we use our estimate of
the illuminant direction to re-estimate the surface by dropping the boundary conditions. The resulting surface
is shown in Figure 7(d). The improvement over Figure 7(b) can be clearly seen.
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4.2 Several Comments

1) Multiple Solutions: In the absence of any boundary conditions, there will be at least two solutionsto a

» JUMPTO TOPIC shading cue, which correspond to concave/convex surfaces with opposite illuminant directions (in the image
S ——— plane); for example, Figure 4(b) may also be perceived as being convex with the illuminant direction at A =
— -30°. When the illuminant direction is known (or approximately known, asisin our source estimation),
however, this two-way ambiguity does not exist, except that the illuminant direction coincides exactly with
the viewing direction. (Almost all shape-from-shading computations assume the known illuminant direction.)
Other solution ambiguities, which areintrinsic to differential equations, should be resolved by boundary
conditions; for example, the cheek of David could appear either as being toward or as being away from the
viewer without violating the intensity constraint if no boundary conditions were applied (refer to Figure 6).;

2) Local Minima: This deals with the ability of the gradient search algorithms to find the correct solution of
the problem, i.e., the global minima of the cost function. When the learning rate 2 and the weighting factor w,
of the depth constraint are chosen appropriately (e.g., 2 d 0.3), our gradient algorithm has not been found to
get stuck into local minima Local minima might occur if 2 and w, were set too large. With the conservative

estimate of w, in Section 2.5, we get lower convergence rates, but not local minima. Concerning the conjugate
gradient algorithm in the aspect of local minima, see Section 2.5.

3) Computational Complexity: This depends on the image size and the network size. A complex surface may
require alarger network than a simple surface does. As an example, the learning of the sine surface of
Example 1 in the case of gradient constraints took 15 minutesin a SGI workstation. (Horn’s method took 5
minutes, but with reduced accuracy.) For complex surfaces like the Agripa statue, our algorithm takes longer
time in finding the fine structure, due to the globalness of the sigmoid function. This problem can be dealt
with by using locally tuned radial basis function (RBF) networks (to be in the next section).

5. Extension to the Case of RBF Network

Due to the globalness of the sigmoid function in the depth representation, high-frequency components of the
depth surface become difficult to model. According to Section 2.6, the network may have to grow to avery
large size in order to represent a complex surface. This makes the computational cost hard to bear. In this
section, we use the radial basis function in place of the multilayer perceptron to derive a more flexible method
of shape from shading.
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5.1 The Method

The whole framework for the solution of the shape from shading problem remains unchanged. The RBF
network has the same property of universal approximation [26]. There are several types of radial basis
functions used in interpolations [31]. We choose the Gaussian radial basis function. With Gaussian radial
basis functions, the surface depth z(x, y) can be modeled as

N
2= wed(x,th,5) +wy (21)

k=1

where N isthe number of Gaussian functions, and x = (x, y); parameterst, = (t,,, t,)), S = (A Ay, and w,
are, respectively, the center, width (size), and the weight of the k-th Gaussian function:

_(lemten)? | temeya

= ~ o

P(x,te,5) = e b vk (22)

Each Gaussian has areceptive field, approximately at [x t, +3A, .y t, *3A ], beyond whichits

contribution can be ignored. This finite support property, in contrast to the sigmoid functions, is the very
property we need for the incremental estimation introduced later.

If weusethevector W' = ({te}, {sx}. {wx} 1o represent all the Gaussian parametersin the
specification of depth z, asimilar set of equations as (6) and (7) can be obtained. However, due to the locality
of the Gaussian neurons, a slight different cost function from (8) will be used:

Eis = Ei+2Bs= ) Bis,
ey

= Z{[I. —R‘:#:E:lull'h I'p_:luzp[:h.llrh IIP:”I:

e Dy
+A[S, (20 w22 (20, 00, W) + 283z, 1) 23 (20 00, W)

+ Sy(zi w2l (i, w, W)} (23)

where E, and Eg are the intensity error and the smoothness error, respectively; » is aglobal smoothness
weight; D, isthe index set of all the image points; and {§ (X, y), ] = 1, 2, 3} arelocal smoothness weights:

Si(z,y) = (1-|L{=zy)))? (24)
Silz,y) = (1—%ﬁiif={=1y}|+lfn{==1rlll’ (25)
Si(z,y) = (1- |z, )))? (26)

where the partial derivatives |, and |, are computed by finite differences. The intuition for choosing the local
smoothness factors as above is based on the fact that smoother images (corresponding to smaller I,’sand I,'s)
should have been produced by smoother surfaces (corresponding to larger §'s), assuming no albedo
variations.

Although the smoothness constraint is used, in comparison to the case of perceptron, it can be eventually
dropped out without causing instabilities in the solution. Due to image noises, we fix the global smoothness
weight at » = 0.1. The introduction of the locally varying smoothness weights{§ (X, y), j = 1, 2, 3} isfor
more accurate shape recovery; asingle global weight tendsto treat surface parts of different smoothness the
same. Note that here we do not have to normalize the image coordinates, as we did for the multilayer
perceptron.

We can also apply the prior knowledge to the solution of shape from shading by minimizing error functions
similar to (11) and (12). For the gradient constraints, the error function is:
Ep = Eg+iEs= E Eys.s
JED.
= ¥ iy = 0 + M(8i23, + 2522, + 5ozl M) an
JED,

where S, S,, and S, are the same asin (8); symbol |; means the computation performed at the j-th point [refer



to (8)]. For the depth constraints, the error function is:

Es = Ea+lBs= ) Easa
AC Dy
= Y llex— 202 + MSi22, + 28222, + Sazd, )] (28)

kEDy

Equations (8), (27), and (28) are minimized in the same way as in the perceptron case. Experiment indicates
that in the case of RBF network, we do not have to compute the weight w, asin (13); it can be smply set at
1.0.

It was further shown that qualitative knowledge can a so be used to constrain the same from shading solution

[37].
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One problem remains to be clarified; that is, how to choose theinitial values of the Gaussian parameters. In
interpolation problems, the starting values for {t;, s, w;} in the iteration can be either obtained by analyzing
the given 3-D data[9, 21], or just set to random values. In shape from shading, 3-D data are not available; and
b JUMP'TIO TOPIC the use of random values was found to be inefficient both in computations and in reconstructing a reasonable

—_———— surface. Here, we employ a heuristic approach. We let the initial centers of the Gaussians regularly distributed
— in the image plane and let the initial widths cover different scales. Thisis similar in style to the use of
hierarchical basis functions [34] or scale-space [35]. However, the centers and widths (scales) in our case are
subject to continuous adjustment in accordance with the image data. This makes the number of scales very
small in comparison to that in [35].

Suppose 2M x 2M jsthe image size. We set the maximum number of levelsin the hierarchy tobeH, eg., H =
M -1. The number of Gaussiansin hierarchy hischosentobe2h x 2h, h=1, 2, .., H. Within ahierarchy, we
set theinitial positions{t;} to be equally spaced in the image plane, and the initial widthsto be equal to the
spacing; that is, at hierarchy h, the initial spacing and width are 2M / 21 in both the x and y directions. The
initial weights of all the Gaussians are set to zero.

Similar to the incremental increase of the network size in the perceptron case, the same can be done with the
RBF network. Dueto the local support of the radial basis function, more efficient schemes can be devised.
First, the Gaussians at the lowest hierarchy h = 1 are used to minimize the errors of the objective functions.
After the convergence at the current hierarchy, we add Gaussians at the higher hierarchy. For each new
Gaussian to be added, e.g., the i-th one, we check the average intensity error g, depth error e, and normal
error e, within its main receptive field defined as[x t,; £ 1.5AX’i,y t,* 1.5Ay,i]. If al theerrorse, e, and g,
are below the respective thresholds, the i-th Gaussian will not be created. When new Gaussians are generated,
we do not freeze the old ones; that is, the old Gaussians are still subject to further adjustment. This avoids
possible local minima, according to our experience. The incremental scheme spares lots of unnecessary
Gaussians (up to 50%).

5.2 Further Examples

In Section 4, we gave several examples to show the validity of the perceptron-based method. For images of
more complex objects, the perceptron-based method is inefficient; one may have to use avery large network
for the representation. In this section, we show that by using a RBF network, there is no limitation on the
complexity of the objects to reconstructed.
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Figure 8 shows the results of the RBF network-based method on the David image (size 64 x 64). We use two
levels of image resolutions, which correspond to the image sizes of 32 x 32 and 64 x 64, respectively. Five
hierarchies of Gaussians are used, which are distributed over the two image resolutions. At the 32 x 32 image
resolution, hierarchies of Gaussians corresponding to theinitial positioning intheformsof 2x 2,4 x 4,8 x 8,
and 16 x 16 are generated; while at the 64 x 64 image resolution, only the hierarchy containing Gaussians
initially spaced in the form of 32 x 32 is generated (see Section 4.1). As has been mentioned, theinitial
Gaussians at each hierarchy are equally spaced in the original 64 x 64 image plane. Using the incremental
scheme described in Section 4, atotal of 691 Gaussians have been generated after 455 cycles of iterations
when convergence is reached. (This takes about 10 minutes on an Indigo2 Silicon Graphics workstation; the
running time could be reduced by about afactor of 5 with alooser convergence criterion, without affecting
the accuracy too much.) Figure 8(b) shows the reconstructed image, and Figure 8(c) depicts the distribution of
the Gaussians after convergence. It can be easily seen that at smoother area, the Gaussians are sparely
distributed; while at structured area, the Gaussians are densely distributed. The Gaussians have been deformed
both in positions and in shapes. The recovered 3-D shape illuminated from another source direction is shown
in Figure 8(d), and the 3-D plot in Figure 8(€).

In this and the following examples, we have kept the smoothness weight » fixed at 0.1. We found that after
convergence, the smoothness term could be entirely removed for further iterations without destroying the
result, seemingly due to the presence of global Gaussians which stabilize the solution; that is, the result is
insensitive to the lower limit of the smoothness weight. Thisis not the case with variational approaches. In
Horn’s method [11] (and in others), removing the smoothness term (i.e., setting » = 0) may cause raggedness
in the recovered surface, even though the intensity error remains at avery small level (results not shown here).

= =
14
#

Figure8 An example of our parametric shape-from-shading method: (a) the input image (David); (b) the
reconstructed image; (c) the equal-height contours at 90% of the maxima of each Gaussian; (d) the
reconstructed 3-D shape illuminated from another direction.

Fig(jre 9 Thehleft Agrippaimage: (a) theinput image; (b) the reconstructed surfaces by the RBF network

i 58 e

Fig'ure 10 The Mozart image: (a) the 3-D ground truth; (b) the input image; (c) the reconstructed surfaces by
RBF network.

[

Figt'j're 11 The Pepper image: (a) the input image; (b) the reconstructed surfaces by RBF network, viewed
from Northwest.

The results on the Agrippa statue by using the RBF network are shown in Figure 9. For both the David and
the Agrippaimages, the RBF network produced more accurate results than the perceptron. Two further
examples are given in Figures 10 and 11.
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6. Conclusions

- We havein this chapter presented a new way of applying the multilayer perceptron and the RBF network. For
JUMP'TO TOFIC the first time, we use these networks as a general parameterization tool to solve the partial differential
_ equation in shape from shading. An attractive feature of such a solution isthat a priori knowledge of different
kinds (e.g., depth and normals) can be integrated into the shape-from-shading computation in a unified
computational scheme. Two new methods for the estimation of the illuminant direction are also presented.
Experiments have verified the efficiency of our method in both the surface and the source estimations.
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Chapter 3
m—— Neural Networks and Fuzzy Reasoning to Detect
JUMP T0 TOPIC

P Aircraft in SAR Images

A. Filippidis
Land Operations Division, Defence Science Technology Organisation
P.O. Box 1500, Salisbury SA 5108, Australia

L.C. Jain

Knowledge-Based Intelligent Engineering Systems Centre
University of South Australia, Adelaide

The Mawson Lakes SA 5095, Australia

N.M. Martin
Weapons Systems Division, Defence Science Technology Organisation
P.O. Box 1500, Salisbury SA 5108, Australia

Fuzzy reasoning through fuzzy rule combination is used to improve the accuracy of the automatic detection of
aircraft in Synthetic Aperture Radar (SAR) images using a priori knowledge derived from color aerial
photographs. A combination of the Fuzzy Automatic Target Recognition system with neural networksis used
in this chapter to fuse object identity attribute data derived from a SAR and a Color Aerial photo image. The
images taken by the two different sensors have quite different resolutions and are taken at different times. The
aim of this study isto automatically detect ground-based aircraft in the SAR image with greater certainty.
Using the fusion techniques, we have correctly detected five of the six aircraft (83% accuracy rate) and
reduced the number of false alarms from 40 to 8 when compared to the output of the background
discrimination algorithm.

1. Introduction

The aim of this chapter isto investigate the use of afuzzy rule-based fusion technique to automatically detect
targets, such as ground-based aircraft, in a SAR image with greater certainty by using all available
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information possible. To improve the results, we have made use of some a priori information in the form of
an aerial photographic image taken of the background (i.e., taxiways, buildings, roads etc.), afew months
before the SAR image was taken.

Automatic Target Recognition (ATR) involves extraction of critical information from complex and uncertain
data for which the traditional approaches of signal processing, pattern recognition, and rule-based artificia
intelligence (Al) techniques have been unable to provide adequate solutions [1]. Target recognition of one or
more fixed signaturesin a stationary background is a straightforward task for which numerous effective
techniques have been developed [1]. If the target signatures and the background are variable in either alimited
or known manner, more complex techniques such as using rule-based Al (e.g., expert systems) methods can
be effective. However, rule-based Al systems exhibit brittle rather than robust behavior (i.e., thereis great
sensitivity to the specific assumptions and environments). When the target signatures or backgrounds vary in
an unlimited or unknown manner, the traditional approaches have not been able to furnish appropriate
solutions [1].

A number of ATR systems, based on various methods, have been developed and tested on avery limited data
set, and good classification performance has been reported [2, 3]. However, in practice, these efforts have
been only partially successful and have produced high false-alarm rates. Some of the key reasons for this are
the nonrepeatability of the target signature, competing clutter objects having the same shape as the actua
targets, experience with avery limited database, obscuration of targets, and alimited use of a priori
information.

Neural network technology provides a number of tools, which could form a basis for a potentially fruitful
approach to the ATR problem. For ATR, one needs methods to recognize targets and backgrounds that are
both sufficiently descriptive yet robust to signature and environmental variations. One & so needs the ability to
adapt the procedure for additional targets and environments. The existence of powerful learning algorithmsis
one of the main strengths of the neural network approach. ATR needs to construct a compact set of maximally
discriminating target features. In the latter sections of this chapter, these features will be described as target
identity attributes. We demonstrate in this chapter that ATR performance can be enhanced by use of a priori
knowledge about target signatures and backgrounds, in this case a priori knowledge of aircraft size and the
type of ground surfaces on which aircraft were more and less likely to be found.

Some current target detection techniques on SAR images have been using background discrimination
agorithms described in references [4] and [5]. A fusion system is presented which improves the detection
process by using all available information to improve target detection and reduce false alarm rates. Figure 1
shows ablock diagram of the improved ATR fusion system used in our experiments. It consists of a
preprocessing stage which derives four identity attributes (A, B, C, D) of the aircraft targets from a current
(synthetic aperture radar) SAR image (aircraft positions shown in Figure 2) and the red, green, and blue bands
of acolor image (asin Figure 3) of the same scenery (but different targets) taken afew months before the
radar image. Image |1 (Figure 4) is the output of preprocessing using neural network NN1 classifier and the
image shown in Figure 5, is the output of the background-discrimination algorithm [4, 5]. Neural network
NNZ2 classifies the red, green, and blue bands (which are registered to the SAR image) to derive identity
attributes C and D, which represent a priori knowledge on the likely locations of ground-based aircraft.

Figl.J"r_('e 1 Block diagram to show the fusion of identification attribute information in SAR and color aerial
images to identify aircraft targets.

B ©
2 o
Figure2 Target positionsin circlesin a SAR Image. [Registered to Optical ]
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Figure 3 Aeria image (red band) of the same area as the SAR image taken at a different time.

Figure4 The output of neural network NN1 image I 1.

Figure5 Results of the background discrimination algorithm showing man-made targets derived from the
SAR image.
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2. Multilayer Perceptron for Classification

R 2.1 Structure
_JLIMP T0 TOPIC

— A multilayer perceptron (MLP) used in the ATR architecture of Figure 1 (i.e.,, NN1 and NN2) is considered to
be afeed-forward network constructed of interconnected nodes that perform a nonlinear function of the
weighted sum of their inputs.

A single node' s output, X', is defined by

X= f(w'x) )

where f isanonlinear function, x is the augmented state vector which includes a constant component plus all
inputs X' to the node:

T
x = (1,x1 ,ailxi ,-alxﬂ)
and w is the weights vector for this node:

T
w = (Wﬁv‘wl gEEE w‘- ,+IJWN)

where w; is the weight applied to the ith input and w,, acts as a threshold for this node. A typical nodeis
depicted in Figure 6 [6, 7].

el :).r | R

Figh‘r'eé Al Perceptron node [6].

The nonlinear function f in this case is the sigmoid, and the network is trained using the gradient descent
method known as back-propagation.
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1
f(x]=ﬁ 2)

The basic network structure of an MLP comprising a feed-forward network with each node performing the
function described in equation (1) is shown in Figure 6. For L layers, and J, nodes in each layer, the output of

the jth node in layer | becomes

X, = f(W;-x;-l) 3)

Inthis, X, is the augmented vector of inputs; that is, the threshold is included as one of the components of the
input vector.

L™

Figure7 An MLP example with 3 active layers (or 2 hidden layers, L = 3) [6].

2.2 Classification and Training

Classification in the artificial neural network context can be defined as a process that gives an output
belonging to a specified class when a pattern is presented to the input of the network. The general form of the
output is a multicomponent continuous-valued vector. The output of an MLP may be interpreted asa
probability function [8], and in our case in the ATR architecture, thisvalueisfed in as afuzzy value into the
fusion process shown in Figure 1.

Experiments described in this work use back-propagation (BP) for adapting weights. The MLP has been
defined as a special case of feed-forward network. Back-propagation will be used as a method for determining
the error signal which provides information on how each weight contributes to the output error, and
generalized gradient descent will be used to describe the way in which the error signal is used to adjust the
weights[6, 9].

For an L layer network, training proceeds by applying an augmented input vector X, to the input of the
network, and comparing the resultant output vector x, with the required output vector d. Weights are adjusted

to minimize a cost function E(W) relating the errors at the output of the MLP to the values of theinternal
parameters W. A typical, but not exclusive, definition of E isthe L2 norm of the output error summed over all
training patterns [6]:

EW) =Y {E,m}=3 (3 (xt-dr)) @

reF pelP =l

where * Li istheith output of the MLP when presented with training pattern p, II‘ir.']“is the corresponding
desired output, and P is the set of al training patterns.

It can be shown that by using arecursive procedure (BP) [10], aweight update rule due to Widrow and Hoff
shown in reference [11], could be extended to a generalized delta rule which gives adjustments for weightsin
hidden layers. The simple deltarule is given by:

Aw, =By (df -x! )x; (5)
peP

where "w; is the change made to the weight on the connection from theith node in layer L-1 to the jth node in

layer L, x{,} istheith element of the input pattern p, and’ isa carefully chosen gain factor, not necessarily
constant during training. Thisrule (ssmple delta) requires that the error contributions from all patterns be
measured before aweight update is made and was devised for networks with no hidden layers.

While the Widrow-Hoff rule [11] requires that the weight adjustments are made with respect to E(W),
provided ' is small, gradient descent can be approximated closely by making adjustments with respect to
E,(W). This alows aweight adjustment after presentation of each pattern and simplifies the requirements for

local memory at each node. Hence, the simplified delta rule becomes [12]
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= P =
A,wy W(d )-’C-::u néfxs; (6)
where” \w;; is the change made to the weight from the ith to the jth node after presentation of the training

Pl P P
pattern p, - isasmall constant gain value factor, and 5u - dﬁ *1is called the error signa. Thereis
considerable discussion about the validity of this approximation among researchers.

For an MLP with anonlinear activation function (e.g., sigmoid), it is desirable to at least approximate gradient
descent in weight space with an equally uncomplicated weight rule.

Consider the intermediate value y (the input to the activation function) formed by the weighted sum within an
MLP node. The forward transfer function of nodei in layer | can be rewritten (dropping the p superscript for
convenience):

N

Yy = war'jf(}'f-l;') )

j=0

where f isthe activation function, w;; are the weights from nodej in the (I-1)th layer to nodei in the Ith layer,
and N, ; isthe number of nodesin layer (I-1). The error function at the output layer can be written:

N 2
Ew) =3 (F(r.)-d,) ®
i=0
Suppose the values y;;, for all i, are inputs to a truncated network starting at the Ith layer. Then, the sensitivity
JE JE

of the network to the input y;; is given by ";J"h' . Moreover, if we know o, L+1i foral i, we have[6]

JE 2 oE ayn-n
ay.'r j=0 YV 141i li

JE & OE
a}’ri j=0 N i

14 [}"n }

3
= (v )Z — Wi ©)
I

J=0 M 141i
Let us defined
_9E
Yy
N
=f (yn‘)z 141j Wiaji (10)
j=0

Since w4y directly influences input yij into the truncated network [6], we have



OE  OE o,
awhlﬁ 55"1.‘ a"""mﬁ

o 5fif(yi'|')

= ‘sﬁxﬁ an

For output layer nodes, calculation of the error signal follows by taking

hence,

0 = (‘ff ‘f(ytf))f‘(yu) (12)

For a network in which each node has a sigmoid activation function, calculating the derivatives gives the error
signal for output layer nodej:

0, =(dj—xq)xq(1-xu) (13)

and the error for anode j in an arbitrary layer | is given by recursive calculation (error back-propagation):

Nia

5# = Xy (1 = Xy )Zl 5f+uws+1t_i (14)

Whileit is common to use a sigmoidal activation function, any monotonic increasing, continuously
differentiable function would be desirable [6].
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An untrained network has all weights set to randomized values. To learn from the presentation of a known
pattern, we adjust the weights into node i of layer | according to the generalized deltarule:

» [JUMP.TO TOPIC Aww = nﬁﬁx,_,j (15)

— where - isthe “learning rate.” The value of the learning rate must be chosen empirically as a compromise
between speed of learning and probability of instability. Because we are going to allow a weight update
after each pattern presentation, it is desirable to add a smoothing term to prevent single points from having
undue inluence on the weights, giving

Aw,;(n) =nd,x,_,; +0cAw, (n—1) (16)

where = isaterm known as “momentum” and n is a counter, incremented after each weight adjustment.
Again, itis necessary to select £ and - empirically, and they are generally held constant during training [6].

2.3 Classification of Multispectral Images

We address the task of supervised classification of the multispectral (red, green, and blue bands) processed
by the recurrent neural network NN2 (4 input, 6 hidden layer, and 2 output nodes are used) and the texture
measures derived from the SAR image processed by the feed-forward network NN1 (3 input, 6 hidden layer,
and 1 output node used) shown in Figure 1. The recurrent network NN2 feeds the output of the tar/cement
classification back into the input of the network. Large homogeneous areas in multispectral images such as
the tar/cement areas of the color aerial image have been shown to produce slightly higher accuracy rates (as
indicated in reference [6]) when using arecurrent network. Buildings accounted for a smaller and more
fragmented portion of the image and hence a recurrent loop input from the buildings output of NN2 would
not have resulted in any benefit in accuracy.

The am of the neural network classifiersisto classify every pixel in the given image into an appropriate
class (i.e., tar/cement, buildings, aircraft, etc.). Theinput to NN2 in Figure 1 is an image comprised of data
from a number of spectral bands (indicated by the multilayer block in Figure 8) and the limited knowledge
of a(human) supervisor. The supervisor identifies a number of known areas to be used as templates for
classifying the whole image. The sets of reference data (training sets) taken from the known areas are used
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to generate parameters which characterize the classes (e.g., mean red pixel value or particular texture
measure in a 5x5 pixel window). These parameters are then used to classify the whole image. Feed-forward
neural network classifier NN1 uses a 5x5 pixel window to process the SAR image producing the three input
texture statistics, second angular momentum, contrast, and correlation along every pixel of theimageto
produce preprocessed image |1 shown in Figure 1. The recurrent neural network NN2 also uses a 5x5 pixel
window incremented one pixel at atime calculating the three input mean color pixel values from the red,
green, and blue color bands shown in Figure 1.

The fusion algorithm processes five images simultaneously, incrementing through columnsin each row one
pixel at atime with three different size pixel windows (8x8, 9x9, and 5x5). The center four pixels of the
largest size window (9x9) moving across the SAR image (using the background discrimination agorithm)
and second largest window moving across the SAR processed image |1 (in Figure 1) liesinside the same
position as the smallest size windows (5x5) moving across the red, green, and blue bands of the aerial
image. The algorithm processesimage 11 (refer to Figure 1) by first calculating the area of an 8x8 pixel
window, only if there are at least four pixels at the center of the window (i.e., number of white pixels
connected together in the horizontal and vertical directions starting from the center four pixelsin the 8x8
pixel window over the entire image). This value isinput into the fusion algorithm as attribute “A” shown in
Figure 1. From a priori knowledge on aircraft size, we know that aircraft pixel size can range from 4 to 22
pixels. The fusion agorithm is simultaneously processing the 9x9 pixel background discrimination window
which has to be larger than the size of the targets (approximately fitting into 5x5 pixels window). This
output in this case is fed into the fusion algorithm as attribute “B.” Again simultaneously, the mean red,
green, and blue pixel values calculated from three more 5x5 pixel windows produce target identity attributes
“C" and “D” (in the fusion agorithm) from the outputs of the recurrent classifier NN2.

e

e
- i

Figure 8 Supervised classification [6].

it

2.4 Texture for Target Detection

Texture is an important property in detecting targetsin SAR images. The texture properties and gray tonein
an SAR image are mostly independent properties [18]. In the fusion process, these SAR texture and gray
tone properties of the aircraft targets are combined and fed into the fusion algorithm as identity attributes
“A” and “B” (as shown in Figure 1). For this reason, even if the target is camouflaged in gray tone, it is
difficult to camouflage these properties and the texture simultaneously [18]. Thereis alarge array of texture
measures in the literature. The choice of texture features should be based on the application, and on the
nature of the images used.

One of the drawbacks of texture featureis that it cannot be used for detecting small targetsin general. The
object should cover at least a 30 window; in our case, the aircraft targets fit in a 5x5 pixel window.

There are four types of texture measures or featuresin use [18]: a) co-occurrence, b) fractal, c) Markov
random field, and d) multi-channel filter. In reference [17], Ohanian and Dubes have compared the
performance of these texture features in classifying objects and found that co-occurrence (spatial
dependence) features performed best, followed by fractal dimension measure. Co-occurrence features are
very widely used by researchers; they were originally presented by Harlick in reference [15], where he
describes 28 features. Some of the more popular are second angular momentum, contrast, correlation,
energy, and entropy.
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3. Fuzzy Rule-Based Fusion Method

e —— The classification output of NN1 shown in Figure 4 and the results of the background discrimination

JUMP'TO TOFIC algorithm of Figure 5 show that all aircraft targets positions were detected but also produced a large number
— of false alarms. By combining thisinformation as attributes“A” and “B” in the fuzzy fusion algorithm (refer

to Figure 1), together with a priori information obtained in attributes“C” and “D,” we have reduced the false

adarm rate considerably. The thesisin reference [ 14] showed that the fuzzy rule-based fusion method of
combination compared to Dempster’ s rule, and the super Bayesian techniques met all the 10 desirable
properties of a combination technique such as generality, robustness, convexity, symmetry, complementation,
and certainty test, to name afew.

We have implemented afusion equation [14] which has identified five of the six targets with eight false
aarms as shown in Figure 12. The novelty in this method is that it will be used to solve a complex fusion
problem involving attributes derived from a current image (SAR), and a past image (optical) taken at a
different time to the SAR, together with a priori information. The differences of both SAR (9.375 GHz) and
optical imagesis not only their frequencies, resolutions, and time, but a so the fact that SAR has the ability to
pick up targets at night and during overcast days. Hence the ATR fusion system can operate at night and
during overcast days, detecting targets fusion system can operate at night and during overcast days, detecting
targets using the a priori optical images information obtained at an earlier date to help reduce the false alarm
rate.

The implementation of the fuzzy rule-based system [14] is divided into three stages: (1) fuzzification of the
real data obtained from the SAR and optica images, (2) fusion, and (3) defuzzification. In this experiment, an
SAR image together with three bands (red, green, and blue) of a color image are used.

R T
oD
o) ..
S - S
Figure 9 Four membership functions for the four inputs (area, NN2 output based on tar/cement spectral

signature, NN2 output based on building spectral signature, and the output from a background discrimination
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agorithm) are used in the rule-based fuzzy fusion method. They represent the likelihood of atarget (strong,
moderate or weak) as the 8x8 window moves across the SAR image and the red, green, and blue color bands.

Fuzzification or modeling uncertainty isthe first component in our data fusion system. Generally, the process
of fuzzification is a mechanism by which one can transform a non-fuzzy set to afuzzy set by assigning to
each subset in the universe of discourse afuzzy value. In the fuzzification problem, we are dealing with the
combination of four attributes, based on (1) a priori information on the targets size, (2) target pixel intensity
with respect to the surrounding pixels using a background discrimination windows moving across the five
images (refer to Figure 1, i.e., SAR image, target texture segmented image, and red, green, and blue bands),
we assign the variable , to measure the strength of the attribute being atarget or not. The interpretation of a
given attribute is greatly influenced by our a priori knowledge, experience, and common sense in identifying
the aircraft target.

We can characterize an aircraft target from the strength (normalized within the interval [0,1]) of the four
attributes shown in Figure 9. The assigned fuzzy values are: (1) weak likelihood of attribute being an aircraft
target (WE), (2) moderate likelihood (MO), and (3) strong likelihood of attribute being an aircraft target (ST).
These fuzzy values characterize weak, moderate, and strong portions of the universe of discourse (aircraft
target). Figure 9 shows membership functions for the fuzzy subsets of four universes of discourse. The values
.1 . -3 and , represent the strength of the attribute representing an aircraft target derived from an aerial

image (red, green, and blue bands), and the SAR and preprocessed texture SAR images as shown in Figure 1.

&1 m WE ., 92 u WE
E]
WE MOD ST
&4

wWE [ WL | WD | WD

MO WE | WE WE

T MOD [ WTE WE

Figure 10 The rule-based matrix shows how 9 of the rules are derived. Rule-based matrices, are used to
producethe 81 rules. ., ,,, .3 and ,, represent the area, tar/cement, buildings, and background discrimination
identity attributes as shown in Figure 1.

Eighty-one rules were derived from 9 rule-based matrices; 9 of the rules are shown in Figure 10. The
generated rules must be enough to construct a complete inference system for managing uncertainty. For
instance, rulel derived from the top left-hand row of the matrix is asfollows:

6,266 8,={(WEWEWE,WE)— WE|} = an element of 8

Thisisinterpreted asif the area, tar/cement, building, and back-discrimination attributes derived from the 8x8
pixel window (moving across all 5 bands as shown in Figure 1) are all weak, then the likelihood of an aircraft
target isweak. The character “«” represents the combination of the strengths of the membership valuesto
make up the support for the particular rule derived from the rule-based matrices.

The datafusion function [14] (refer to Figure 11) has been used to combine identity attribute information
derived from sensors which have obtained their information from current (SAR) and past images (optical)
together with a priori information to successfully piece together the likelihood of an aircraft target.

Ij.!l.pll... F

[S-oT
l

Hl2..n
Figure 11 Datafusion function.
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Let ™ be the sample space which contains a collection of events; i.e.,,” = {,}, and assume that ¥%4,(,), ¥4(,), - - -,
Y4 (,) are degrees of truth over ~ committed to an event , in~. The fusion technique described here will handle

any piece of evidence with a high efficiency of computation [14]. The combined evidence ¥4(,) for n pieces of
JUMP TO TOPIG evidenceisgiven by ¥a(,) = f[¥%(.), ¥&(,), - - -, Ya,(,)]

_ In the equation of Figure 11, let %4, ¥4, . . . Y4, be the truth values committed to a proposition , 47, where 0 d
Yadl, i=1,2,...,n. Becausethetruth region is defined within the interval [0,1], the identity of the truth
region e (shown in Figure 11 and implemented in equation (17)) is equal to 0.5. Supportive and nonsupportive
pieces of evidence are represented by Y4 (i represents the rule number). The parameter + (shown in Figure 11
and implemented in equation (17)) determines the weight of each piece of evidence, which in turn represents
the relative importance of the aggregated bodies of evidence. The desireis that the combination operator
shown in Figure 11 can be defined to perform various strengths. That is, the Minkowski averaging operator
can yield different aggregation functions, which are defined by different choices of the parameter + =1, 3, . . .
, . The optimum value of alphawas equal to 3 [14]. The variable n (in Figure 11) represents the number of
identity attributes, which in this caseis equal to 4. Hence, using the fusion formula given in Figure 11, the
fusion equations for rules 1, 2, and 3 (out of the nine) as described previously in the rule-based matrix
examplein Figure 10, are as follows (the four ¥4, represent the degree of confidenceof ,,, ,,, ,5, and ,,,

respectively as aweak input):

[ I e B e B osf |

Hl=

4
o Gj+[(‘u_w- os) +{_-o0s) +(1t_,-os) +{11_ --::r:sr];

4
M=ﬁ.ﬁ +[(,u“- 0s) +(g1_-0s) +{p_-0s) +(u_?-u5)} o

4
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Hence, the likelihood of atarget being an aircraft is weak for these three rules according to the rule-based
matrix in Figure 10. Only one of the nine rulesin the rule-based matrix in Figure 10 will give amoderate
likelihood output; all the other eight rules also give aweak likelihood output. Let this rule (with a moderate
output) be described asrule 7 below.

05-1-[[#“ ~0s) +(u_-03) +(u_-03) + (1, uu_s)s];
4

Asit was important to fuzzify datain order to apply nondeterministic approaches, the data was recovered
from the output fuzzy consensus. We defuzzify the output of the fusion system in order to recover crisp output
values. The defuzzification scheme is based on the centroid method. At each of the fuzzy outputs, the crisp
value is computed as follows:

M7 =

g =22 (18)

where n is the number of rules used at agiven input, and %4, (, ;) isthe centroid of the fuzzy output at the ith
rule.

4. Experiments

Fuzzy reasoning through fuzzy rule combination is used to fuse object identification attributes derived from
preprocessing co-registered SAR and color aerial photo images. The maximum number of possible identity
attributes used in the fusion processis 4. The identification attributes consist of the area of a moving 8x8
pixel window of a processed SAR image whose output indicates a homogeneous texture similar to that of
aircraft targets; the output of a background discrimination algorithm [4, 5] identifying man-made targets
derived from the SAR image; and two attribute outputs of atrained recurrent back-propagation neural
network which classifies the color aeria photo graphic image as being buildings or tar/cement. These
attributes are marked asinputs A, B, C, and D in Figure 1.

When al four attributes A, B, C, and D are fused together using fuzzy reasoning, the resultant output image is
shown in Figure 12. The circlesin Figure 12 represent the detected aircraft targets, and the squares represent
the false alarms.

We assume that we have a priori information on the approximate size/area of aircraft targets, and we also
know that there is a high likelihood that the aircraft are located on a tar/cement surface or some other known
surface.

The first object identification attribute, shown as A in Figure 1, derived from the SAR image, has been
obtained through a preprocessing stage and as part of the fusion stage. The preprocessing stage is the
classified output image from a back-propagation neural network NN1. The output is the result of supervised
texture classification of the SAR image. The texture parameters computed from the co-occurrence matrices
[15] are second angular momentum, correlation, and contrast [15]. As shown in Figure 1, these parameters are
used as inputs to the neural network NN1, which has 3 input neurons, 10 hidden, and 1 output neuron. NN1
was trained on the texture characteristics of 3 of the 6 aircraft targets shown in Figure 2. It took NN1 20,000
iterations (3 hours on a SPARC20 workstation) to train on the three aircraft targets. Hence, based on the
texture features such as second angular momentum, correlation, and contrast computed from the
co-occurrence matrices of the 5x5 window, the back-propagation neural network (NN1) classified the given
SAR input image to produce image |1 shown in Figure 4. The white areasin image |1 in Figure 4 represent
portions of the image for which the texture/context for a 5x5 pixel window are similar to that of the aircraft
targetsin the SAR target position image shown in Figure 2.
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Once preprocessing training is completed, part of the fusion stage of the ATR system extracts the first identity

attribute (shown as A in Figure 1), by performing morphological processing on image 11 to calculate the area

of the 8x8 pixel window, only if there are at least four pixels at the center of the window (i.e., number of

» JUMP TO TOPIC white pixels connected together in the horizontal and vertical directions starting from the center four pixelsin
—_——— the 8x8 pixel window over the entire image). From a priori knowledge on aircraft size, we know that the

_ aircraft pixel size can range from 4 to 22 pixels.

The second attribute extracted in the fusion stage of the ATR system, shown as B in Figure 1, is the output of
a background discrimination algorithm which rejects natural-clutter and detects man-made targets for a
certain intensity threshold value [4, 5]. Refer to the block diagram in Figure 1, and to an example showing all
man-made targets for a certain threshold value shown in Figure 5.

The third and fourth object identification attributes extracted in the fusion stage of the ATR system, shown as
Cand D inFigure 1, are derived from a color aerial photograph. The mean pixel intensity result (out of 25
pixels) obtained from each of the three 5x5 pixel windows from the red, green, and blue bands are input into
NNZ2. The color aerial photograph is classified into two categories (attributes), namely, tar/cement and
buildings using recurrent neural network NN2. From this process, each pixel will have two attributes, y(0) and
y(1), corresponding to tar/cement and building classes. The recurrent neural network NN2 has four inputs,
namely, red, green, and blue bands (Figure 3), and the previous output y(0) via afeedback loop as shownin
Figure 1. Unlike neural network NN1, which was trained on the texture of targets derived from a current SAR
image, NN2 was trained on the spectral values of tar/cement and buildings of the red, green, and blue bands of
an aerial image taken afew months prior to the SAR. The tar/cement areas indicate likely locations of aircraft,
and building locations indicate unlikely targets. It took NN2 25,000 iterations (3 hours on a SPARC20
workstation) to train on selected portions of the tar/cement and buildings shown in Figure 3.

5. Discussion of Results

The objective of this chapter was to explore the use of neural networks and the fusion technique to
automatically detect targets such as aircraft in a SAR image using a priori information derived from all
possible sources, to increase the detection rate, and to reduce the false alarm rate. For example, we used a
priori knowledge of the size or area of targets (which could range from 4 to 22 pixelsin this case), a priori
knowledge of position of existing buildings and tarred/cemented areas in the image to increase our target
detection effectiveness.
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D
Figure 12 The output image using fuzzy (rule) technique (with attributes A, B, C, and D). Five targets (in
circles) and eight false alarms (in squares).

Asshown in Figures 4 and 5, the advantages of using the fusion process quickly becomes evident when
observing the numerous fal se targets obtained from outputs of processing just one of the images or using one
preprocessing technique. The problems with the classifier outputs NN1 and NN2 could be the number of
misclassifications, due to poor training examples or poor selection of inputs or even the fact that the network
found alocal minimum, and not aglobal one. The problem with the back-discrimination a gorithm could be
the size of the window,and the amount of specklein the SAR image and the selection of the threshold value
could all produce varying results.

Asshown in Figure 5 for the optimum threshold value in the background discrimination algorithm [5], 46
targets (six of which are aircraft) were detected in the SAR image. Using the fusion technique, we are able to
successfully automatically identify 5 of the 6 aircraft shown within circlesin Figure 12. Hence by using all
the identification attribute information at hand, we have reduced the number of unwanted detections from 40,
as abtained in the background discrimination algorithm, to 8 (shown in squares in Figure 12).

We have demonstrated that by using additional information, the performance of target recognition can be
significantly improved. Even though there were 6 targets, the fusion algorithm was tested on the 24,066 pixels
as the processing window moved across the registered images (126x191, size in rows and columns
respectively). In conclusion, even though we achieved 83% accuracy rate using the fusion technique further
investigations are necessary using several images before drawing definitive conclusions.
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The Self-Organizing Map (SOM) is a powerful neural network method for the analysis and visualization of
high-dimensional data. It maps nonlinear statistical relationships between high-dimensional measurement data
into simple geometric relationships, usually on atwo-dimensional grid. The mapping roughly preserves the
most important topological and metric relationships of the original data elements and, thus, inherently clusters
the data. The need for visualization and clustering occurs, for instance, in the data analysis of complex
processes or systems. In various engineering applications, entire fields of industry can be investigated using
SOM-based methods. The data exploration tool presented in this chapter allows visualization and analysis of
large databases of industrial systems. The forest industry is the first chosen application for the tool. To
illustrate the global nature of the forest industry, the example case is used to cluster the pulp and paper mills
of theworld.

1. Introduction

The Self-Organizing Map (SOM), developed by Professor Kohonen [9], is one of the most popular neural
network models. The SOM implements a nonlinear projection from the high-dimensional space of input
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signals onto alow-dimensional array of neurons. The array forms an elastic net that during learning folds onto
the “cloud” formed by the input data. The net approximates the probability density function of the input data.
This means that the neurons tend to drift to where the data are dense, while there are only afew neurons
where data are sparsely located. The mapping tends to preserve the topological relationships of the input
signal domains. Due to this topology-preserving property, the SOM is able to cluster input information and
their relationships on the map. The SOM a so has the capability to generdlize, i.e., the network can interpolate
between previously encountered inputs.

The most important applications of the SOM are in the visualization of complex processes and systems and
discovery of dependencies and abstractions from raw data[8, 23, 26]. Especially the latter operation, data
exploration or data mining, has recently become important because of the increasing amounts of measured
information and data.

Inindustrial and engineering applications, the most straightforward applications of the SOM arein anaysis
and monitoring of complex process or machine states, otherwise difficult or even impossible to detect and
interpret. The SOM algorithm is based on the unsupervised learning principle, i.e., the training is entirely
data-driven and little or no a priori information about the input data is required. The SOM can be used for
pattern recognition and clustering of data without knowing the class memberships of the input data. The SOM
can thus be used to automatically detect features inherent to the problem. Thisis a clear advantage when
compared with artificial neural network (ANN) methods based on supervised learning (e.g., multilayered
perceptron (MLP)) which require that the target values corresponding to the data vectors be known.

The SOM has been successfully applied in various engineering applications [10], covering areas such as
pattern recognition, full-text and image analysis, financial data analysis, process monitoring and control, and
fault diagnosis[17, 18, 21]. The ordered signal mapping property of the SOM has also proven useful in
certain telecommunications tasks, e.g., in signal detection [15] and adaptive resource allocation problems
[20].

Knowledge discovery in databases (KDD) is an emerging area of research in artificial intelligence and
information management. The purpose of KDD isto find new knowledge from databases in which the
dimension, complexity or the amount of data has so far been prohibitively large for human observation alone.
Some typical tasks of KDD are classification, regression, clustering, summarization and dependency
modeling. The agorithms that are employed in these tasks include decision trees and rules, nonlinear
regression and classification methods such as feed-forward networks and adaptive splines, example-based
methods such as k-Nearest Neighbors (KNN), graphical dependency models, and relational learning [3].
Analysis of mgjor global industriesis an example of an application for these techniques.

In this chapter, the applicability of the SOM-based methods in knowledge discovery is discussed. Specia
emphasisis placed on industrial applicationsin which alot of different types of information are available
from databases and automation systems. Thorough analysis of the industry field requires, for instance, the
integration of knowledge originating from different sources. As a case study, the analysis of the world pulp
and paper industry is considered. In the case study, a data mining application, ENTIRE, based on the use of
the Self-Organizing Map was utilized as the primary analyzing tool [26].
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2. The Self-Organizing Map in Knowledge Discovery

—_ 2.1 The Self-Organizing Map
JUMP T0 TOPIC

The SOM agorithm resembles vector quantization (V Q) algorithms, such as k-means[1], and is closely
— related to principal curves[5]. The important distinction from VQ technigues is that the neurons are organized
on aregular grid and, along with the selected neuron, its neighbors are also updated, so that the SOM
performs an ordering of the neurons. In this respect, the SOM is a multidimensional scaling method projecting
data from input space to alower, typically two-dimensional output space.

A SOM consists of neurons organized in an array. The number of neurons may vary from afew dozen up to
several thousand. Each neuron is represented by an n-dimensional weight vector, m=[m, ..., m], wherenis
equal to the dimension of the input vectors. The neurons are connected to adjacent neurons by a neighborhood
relation, which dictates the topology, or structure, of the map. Typically, arectangular (asin Figure 1) or
hexagonal (asin Figure 2) neighborhood is used.

The SOM istrained iteratively. In each training step, one sample vector x from the input data set is chosen
randomly, and the distance between it and all the weight vectors of the SOM is calculated using some distance
measure, e.g., Euclidean distance. The neuron ¢ whose weight vector is closest to the input vector x is called
the Best-Matching Unit (BMU):

Jx - m | = minffs - m

Where” . ” denotes the distance measure.

After finding the BMU, the weight vectors of the SOM are updated so that the BMU is moved closer to the
input vector in the input space. The topological neighbors of the BMU are also treated in asimilar way. This
adaptation procedure stretches the BMU and its topological neighbors toward the sample vector as shown in
Figure 1. The SOM update rule for the weight vector of the uniti is

m, (t +1) = m, (1) + h,, ()] x(1) — m, (1)] @)
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where t denotes time. The x(t) is the input vector randomly drawn from the input data set at time t and h(t)
the neighborhood kernel around the winner unit ¢ at timet. The neighborhood kernel isanon-increasing
function of time and of the distance of unit i from the winner unit c. It defines the region of influence that the
input sample has on the SOM.

Figure 1 Updating the best matching unit (BMU) and its neighbors toward the input sample marked with x.
The solid and dashed lines correspond to the situation before and after updating, respectively.

2.2 Knowledge Discovery Using the SOM

The SOM has severa beneficia features which make it a useful methodology in knowledge discovery. It
follows the probability density function of the underlying data, it is readily explainable, simple, and —
perhaps most importantly — highly visual. The SOM functions as an effective clustering and data reduction
agorithm and can thus be used for data cleaning and preprocessing. Integrated with other methods, it can be
used for rule extraction [22] and regression [16].

An important property of the SOM isthat it is very robust. Naturaly, the SOM suffers from any kind of flaws
in the data, but the degradation of performance is graceful. An outlier in the data only affects one map unit
and its neighbors. The outlier is also easy to detect from the map, since its distance in the input space from
other unitsislarge. The SOM can even be used with partial data, or data with missing data component values.
Three application areas important in KDD are highlighted in greater detail below.

2.2.1 Visualization

Because of the important role that humans have in KDD, visualization is a data mining method in itself, in
addition to being essential in reporting the results, or creating the knowledge [2]. The different SOM
visualizations offer information of correlations between data components and of the cluster structure of the
data. Theillustrations can be used to summarize data sets and to compare them.
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The SOM can be efficiently used in data visualization due to its ability to represent the input data in two
dimensions. In the following, several ways to visualize the network are introduced using a ssmple application
example, where a computer system in a network environment was measured in terms of utilization rates of the
» JUMP. TO TOPIC central processing unit (CPU) and traffic volumes in the network. The SOM was used to form a representation

i of the characteristic states of the system.

« The unified distance matrix (u-matrix) method by Ultsch [23] visualizes the cluster structure of the
SOM.

First, amatrix of distances (u-matrix) between the weight vectors of adjacent units of a
two-dimensional map is formed. Second, some representation for the matrix is selected, for example, a
gray-level image [7]. The u-matrix of the example system is shown in Figure 2a. The lighter the color
between two map units, the smaller is the relative distance between them. On the |eft side, thereisa
large uniform area, which corresponds to idle state of the computer system. The top right corner forms
aclearly separated area, which corresponds to high CPU load in the system.

« Component plane representation visualizes relative component values in the weight vectors of the
SOM.

Theillustration can be considered as a“ dliced” version of the SOM, where each plane shows the
distribution of one weight vector component. Using the distributions, dependencies between different
process parameters can be studied. For example, Goser et a. [4] have used thiskind of visuaization to
investigate parameter variationsin VLSI circuit design. The component planes of the example system
are presented in Figure 2c. The colors of map units have been selected so that the lighter the color is,
the smaller is the relative component value of the corresponding weight vector. It can be seen, for
instance, that the components #1, #2, and #6 (read blocks per second, written blocks per second and
write /O percentage of CPU usage, respectively) are highly correlated.

* Sammon’s mapping is an iterative algorithm to project high-dimensional vectorsin two dimensions
[13].

The nonlinear mapping tries to preserve the relative distances between input vectors. The algorithm can
be used to visualize the SOM by mapping the values of the weight vectors onto a plane. To enhance the
net-like look, the neighboring map units may be connected to each other with lines to show the
topological relations. Since the SOM tends to approximate the probability density of the input data, the
Sammon’s mapping of the SOM can be used as a very rough approximation of the form of the input
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data. The Sammon’ s mapping of the example system isillustrated in Figure 2d. According to the
mapping, the SOM seems to be well ordered in the input space. Sammon’s mapping can also be applied
directly to data sets, but because it is computationally very intensive, it istoo slow for large data sets.
However, the SOM quantizes the input data to a small number of weight vectors, which lightens the
burden of computation to an acceptable level.

Figure 2 Different visualizations of the SOM. U-matrix presentation (), trajectory on top of labeled
u-matrix (b), planes representation (c), Sammon’s mapping (d), and data histogram on top of a
component plane (€). In figures (a) and (b), the black spots denote map units.

« Data histogram shows how input data are clustered by the SOM.

In other words, it shows how many input vectors belong to clusters defined by each map unit. The
histogram is formed using atrained SOM and a data set: for each data set vector, BMU is determined,
and “hit counter” of that unit isincreased by one. The histograms may be visualized in many ways. In
our example, we have used squares of different sizes: the larger the square, the larger the counter value.
The data histogram of the example application is shown in Figure 2e.

» Operating point and trajectory can be used to study the behavior of aprocessin time.

The operating point of the process at time't isthe BMU of the measurement vector x(t). The location of
the point on the topologically ordered SOM can be easily visualized and used to determine the current
process state. If the history of the processis also of interest, a sequence of operating pointsin time
forming atrajectory can be studied. The trgjectory shows the movement of the operating point, which
in some cases may be avery useful piece of information. A piece of trgjectory of the example system is
illustrated in Figure 2b. Also, the key areas of the SOM have been identified and labeled on the map.
The trgjectory starts from the normal operation area and moves through a disk-intensive phase to high
load area.
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2.2.2 Clustering

Clustering is one of the main application areas of the SOM. The neurons of the SOM are themselves cluster
» JUMPTO TOPIC centers; but to accommodate interpretation the map units can be combined to form bigger clusters. A

S ——— significant advantage with this approach is that while the Voronoi regions of the map units are convex, the
— combination of several map units allows the construction of non-convex clusters.

A common strategy in clustering the units of the SOM isto calculate a distance matrix between the reference
vectors and use a high value of the matrix as an indication of a cluster border [11, 23, 24]. In 3-D visualization
of such amatrix, e.g., the u-matrix, the clusters will appear as “valleys.” The problem then is how to
determine which map units belong to a given cluster. For this, agglomerative and divisive algorithms are
typically used, e.g., in[14, 25]. In addition to distance, some other joining criteria can be used, for example,
that the joined clusters are required to be adjacent [14].

Another quite interesting option is to use another SOM to cluster the map units. This kind of structureis often
referred to as a hierarchical SOM. Usually, a*hierarchical SOM” refersto atree of maps, the lower levels of
which act as a preprocessing stage to the higher ones. Asthe hierarchy is traversed upward, the information
becomes more and more abstract. Hierarchical self-organizing networks were first proposed by Luttrell [12].
He pointed out that although adding extralayers to a vector quantizer yields a higher distortionin
reconstruction, it also effectively reduces the complexity of the task. Another advantage is that different kinds
of representations are available from different levels of the hierarchy.

The SOM can be used for classification purposes by assigning a class for each reference vector and deciding
the class of a sample vector based on the class of its BMU. However, it should be noted that if the class
memberships of the training data are known, using the SOM for classification purposesis not sound, since the
SOM does not take into account the known class memberships and cannot therefore optimize the class
boundaries appropriately. In such cases, the Learning Vector Quantizer (LVQ), aclose relative of the SOM,
or another method of supervised classification should be used [9].

2.2.3 Modeling

The problem of system modeling is one of high practical importance. A traditional way to approach modeling
is to estimate the underlying function globally. In the last decade, however, local models have been a source
of much interest because in many cases they give better results than global models[19]. Thisis especialy true
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if the function characteristics vary throughout the feature space.

The elastic net formed by the SOM in the input space can be interpreted as an implicit lookup model of the
phenomenathat produced the training data. The lookup model can be used for sensitivity analysis[6]. An
expansion isto fit local models for each map unit. The local models can be constructed in various ways,
ranging from using the best example vector to splines and small MLPs. Usually, local models are kept simple,
such as weighted averages of the example vectors or linear regression models [26].

3. Requirements for a Forest Industry Analysis Tool

3.1 From the General to the Specific: The Neo-Generalist Between Sectoral Expert, Amateur,
and Polymath

In an age other than ours, it was possible to be a polymath. Now, the sheer amount of information in each
field makes this description hard to apply. Instead, we have a progression from the British “cult of the
amateur” toward the generalist with domain expertise on a broad but shallow basis. A global consulting
company such as the Jaakko Poyry Group! is a good laboratory for detecting the appearance of a new type of
knowledge worker. The company’s 35-year history isillustrative: atradition of domain expertise was over the
years slowly fused with a dose of management consulting. Then, the management consulting wing split off in
a separate company (Jaakko Poyry Consulting) under the group aegis. Finally, in the latter company the need
for “neo-generdist” consultants with a combination of broad but shallow domain expertise and general,
meta-level analyst skills is becoming apparent.

1 A market leader in management and engineering consultancy for the forest industry worldwide.

3.2 Future Direction of Knowledge Discovery in Industry Analysis

Much of the work done at Jaakko Pdyry Consulting can be put under the vague heading of “industry
anaysis,” involving al relevant aspects of the forest industry, from markets and financial analysisto
environmental issues and forestry. The arrival of the new type of consultant/knowledge worker is heralded by
new types of problems gaining in relevance. Characteristics of the problemsinherent in thistype of anaysis
include:

* Many dimensions of data.

The number of relevant fields in different Jaakko POyry pulp and paper mill data banks, of which there
are many, linked types, rarely drops below 30.

» Many categories of dimensions of data which have to be dealt with both separately and in
combination.

When the above-mentioned data banks are used, the output is mostly a combination of at least two
categories of information (technical data on equipment, time-dependent production numbers, resource
usages, production costs). These are of interest by themselves, but the combination is where the true
valuelies.

» Non-existent or poor theoretical foundation.

Rules of thumb abound, and even such a basic component as the pulping process is far from completely
understood in the sense of physical modeling.

 Incomplete data.

Even with an extensive global data collection network, it is nearly impossible to find out many highly
relevant pieces of information. Some are protected by commercial interest, others are not measured in
the same way or at all across the board, etc. The market shares of individual companies for different
productsin different countries are among these items, and environmental data is perhaps shrouded in
the greatest veil of secrecy of all.

» Correlations between variables are not obvious.

The prices for different products or resources (e.g., pulp and recovered paper; pulp and fine paper) have
alogical connection but often seem to be the output of a chaotic system. The modern pulp mill isavery
complex piece of equipment, extending over alarge area and volume, rich in feedback loops, constantly
being rebuilt and modified. The effects of changes in one area on another may be great but hard to
predict.
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3.3 Characteristics of the Forest Industry

The characteristics listed above are shared by data concerning many industries. Attempting to put the key
JUMP'TO TOPIC features of the forest industry at its current stage of development in a nutshell is a hard task. Figure 3 gives
— not a nutshell but an onion shell view of the forest industry — peeling away layer after layer of complexities.

-~

Figure 3 The forest industry onion shell.

The chosen order of these layers is not self-evident, and the onion shell ideais correct in describing the
unfolding levels of complexity but incorrect in eliminating the interplay of factors. However, more and more,
the questions asked by the industry are of the type described in the example below:

An executive wants to know the competitiveness of his packaging business units in Europe and North
America, competing with local playersin France, and contemplating the construction of a new corrugated
board mill in the same country because of the supply of recovered paper. The energy consumption of the
planned mill isrising in importance with the possibility of EU-wide harmonized CO,-taxes. Elsewhere, the
reduction of the discharges of nitrogen oxides to meet emission limitsis proving difficult because of technical
problems not easily solvable with current knowledge. The environmental element in the decision-making is
complemented by the need to take a stand on the producer responsibility issue: how should the responsibility
for paper recovery be shared by different players such as municipalities, collectors, merchants, retail stores,
and the paper industry?

If thereis aless subtly hidden message in the figure, it is perhaps the location of environmental issues at the
core.

3.4 Requirements for a Computerized Tool for a Forest Industry General Analyst
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Questions asked by companies with the need for aglobal overview, to take into account the long lifetime (up
to 30 years) of an investment, and to try to assure along-term supply of fiber, energy, and water put a heavy

strain on the resources of the analyst. Computer tools are the basis of most analysis assignments, but the bag

of tricks of the “neo-generalist” is of special importance. Presenting a set of possible elements from the field
of mathematics and artificial intelligence, we have:

* Extracting production rules.

If “ company concentrates on newsprint” AND “ company is situated in Canada,” then with probability
X% “ company does not use recovered paper.”

« Forecasting with exact numbers.

What is the price of market pulp for the next quarter in Asia?
* Visualization.

When Sweden took the path of making internal changes in the process and Finland chose external
treatment of effluents, how did the Scandinavian effluent discharge emission landscape change?

» Classification.

The Finnish major company Enso decided to acquire the Holtzmann paper company in Germany, thus
reinforcing its publication paper sector. Find an acquisition analogous in effects on the
company-internal geographical and production balance.

» Time dimension/trajectories.

How has the state of the Finnish company UPM-Kymmene changed when it has emerged (as the result
of a series of fusions and acquisitions) to become the higgest forest sector company in Europe?

« Cutting across and combining problem dimensions.

When the Swedish company SCA acquired the German company PWA, how did the acquisition change
the company, when we combine (a) financial and environmental, (b) environmental and technological,
(c) financial and technological, or (d) all three aspects?

 Correlation hunting.

Taking the top 150 pulp and paper companiesin the world, isthere a link between return on investment
and product sortiment?

All of these features are useful. However, exact forecasts are perhaps the most researched areain forest
industry analysis — and the predictions are no more correct than el sewhere. Experiments conducted with
Jaakko Poyry Consulting databases resulted in highly stochastic rules with a generous amount of
preconditions. Single experiments are of course not conclusive, and rule extraction is atask worth pursuing.
Rules could even be extracted from back-propagation networks, thus combining a limited degree of numeric
forecasting and rule extraction. The last five features above, however, are intriguing questions rarely asked
because of their difficulty. They also describe characteristics of the Self-Organizing Map (SOM).

3.5 A SOM of ENTIRE Tasks: Mapping the Consultant’s Workload Trajectory

We can make the characteristics above into a series of questions about one company. The example chosen for
the set is the large Finnish company Enso.

» How should Enso’ s investments in the future be directed to best match the group’ s product sortiment
to market demands?

« How istheresult of the merger of two state-owned forest industry companies, Enso and Veitsiluoto,
different from the two starting points, when the enviro-techno-economic profile is examined?
 Doesthe path of formation of today’s Enso (acquisitions and fusions) represent a clear strategy or has
the company changed strategic direction as aresult of circumstances?

« How does the Enso acquisition of the Holtzmann company change its recovered paper consumption
profile?

» How well do the emission changes for Enso’ s pulp mills match the overall trend of changesin, on
one hand, Finland and Sweden, and, on the other hand, the Northern hemisphere?

In answering questions, an array of databases is needed, financial, technological, and environmental data are
combined in different ways, and both static and dynamic data must be considered. The consultants can use
SOMs in each case.



Taking a set of projects completed by consultant teams at Jaakko Pdyry Consulting and classifying them
using a suitably chosen descriptive vector (including, e.g., client type, country, project financial overhead)
would lead to ameta-SOM of tasks performed using SOMs. The number of projectsin the 1990s is around

2000 so far; not all of them are obvious candidates for SOMs, but a suitable set could be found and a Jaakko
Poyry Consulting trajectory “ SOMmed.”
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4. Study of Pulp and Paper Technology

- In this case study, the SOM is used to analyze data from the world pulp and paper industry. Three data sets

» JUMP TO TOFIC were used, including information on over 4000 pulp and paper mills, and over 11,000 paper machines and

_ pulp linesin them. The first one included information on the production capacities of the mills, the second
included information on the technology of the paper machines, and the third, the technology of the pulp lines.

e "
M
=]

Figure4 (a) There were three technological data sets: one of mill production capacities, one of paper
machines and one of pulp lines. Each mill could contain several paper machines and pulp lines. (b) The
hierarchical map structure. Data histograms from the two smaller maps were utilized in the training of the
third map. The arrows show which data sets were used in training the maps.

Each mill could contain several paper machines and pulp lines and, therefore, a hierarchical structure of maps
was used (see Figure 4). At first, two low-level maps were constructed from the paper machine and pulp line
data sets. These maps provided a clustering of the different machine types. The technology map was trained
using the mill-specific info in the mill data set and the data histograms from the two low-level maps.

4.1 Paper Machines and Pulp Lines

In the construction of the paper machine map seven features were used: wire width, wire trim width, speed,
minimum and maximum grammages, present technical production capacity, and the year the machine was
(re)built. For the pulp lines, five features were used: bleaching type, fiber type, main pulp grade type, market
capacity as a percentage of the total pulp production, and the total pulp production capacity itself. The units
and ranges are given in Table 1. Prior to training, each component was linearly scaled so that its variance was
equal to 1.

The vector component values in the map units can be seen from the component plane representations in
Figure 5. By visual inspection of the paper machine map, the first three components (wire width, wire trim
width, and speed) have a strong correlation, as do the next two components (minimum and maximum
grammage). In the pulp line map, no such global correlations can be seen.
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The clustering of the maps was based on visual inspection of the u-matrices shown in Figure 6 supplemented
by the knowledge of the distribution of component values. The clusters and their descriptions are shown in
Table 2. From the paper machine map, six clusters were extracted corresponding to different types of
machines. Thefirst cluster corresponds to new, high-capacity machines with high speed and high value for
wire width. The second cluster includes slightly older big or average sized machines. The third cluster
consists of machines with big paper weight. The fourth cluster resembled the second with the difference that
the machines are a bit smaller and about 5 years older. The last two clusters had the largest number of hits.
They correspond to smallest and oldest paper machines. Based on the properties of the clusters, the paper
machines can be divided into three different types:

1. The new machines with highest capacity and speed and widest wire (cluster 1).

2. The paper machines with big paper weight (cluster 3).

3. The mgjority of the paper machines belong to the third type. Their capacity and size decrease
steadily with increasing age (clusters 2, 4-6).

Table 1 Paper machine feature vector components (top) and pulp line feature vector components (bottom);
the second column gives the range of values of the component

Component Valuerange

Paper machine data

Wire width (mm) 0-10160
Wire trim width (mm) 0-9450
Speed (MVmin) 0-2800
Grammage, min (g/mg) 0-999
Grammage, max (g/mp) 0-9999
Capacity (1000 t/a) 0.1-525
(Re)built (year) 1863-1996
Pulp line data

Bleaching code 1,23
Fiber code 1,2,34
Main pulp grade code 1,2345
Market pulp capacity (%) 0-100
Total capacity (1000 t/a) 1-1075

on the right and the corresponding values in the map units from 1 to 20 in the middle. All components are
presented with a grayscale, with black representing the maximum value and white the minimum.

Figure he u-matrix presentations of the paper machine (a) and pulp line (b) maps, with the map unit on
the x-axis and the value of u-matrix on y-axis. Clusters on map are separated by peaks in the u-matrix.
Clustersarelisted in Table 2.

Table 2 Clusters of the paper machine map (top) and pulp line map (bottom). The second column gives the
units that belong to a certain cluster. The third column gives the number of samples that were projected to the
cluster. See also Figures 5 and 6.

Cluster Units Hits Description

Paper machine map

1 1,2 454 Wide wire and high speed, small paper weight, high capacity, new
machines.

2 3-6 1024 Average sized machines, over 10 years old on average.

3 7-9 467 Narrow wire, slow speed, big paper weight, small capacity.
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4 10-12 1033 Average wire width and speed, over 15 years old on average.

5 13-16 2648 Small machines, over 15 years old on average.

6 17-20 3139 Small and old machines.

Pulp line map

1 1-4 557 Pulp made from waste paper.

2 5-11 993 Unbleached pulp, both fiber and grade vary.

3 12-15 762 Bleached pulp, wood or other virgin fibers, chemical main grade.

4 16-18 303 Bleached pulp, mostly wood fiber and chemical main grade, average
market ratio, high capacity.

5 19,20 364 Big market ratio, mostly wood fiber and chemical main grade.
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The pulp line map can be divided into five clusterslisted in Table 2. The pulp linesin the first cluster make
bleached pulp and use recovered paper for fiber. The second cluster corresponds to pulp lines making
unbleached pulp with varying fiber and main grade types. The third cluster has pulp lines which produce
JUMP.TO TOPIC bleached pulp mostly from wood or other virgin fibers with chemical main grade. The fourth cluster consists
————— of pulp lines with high capacity and an average market ratio. The pulp is bleached, fiber mostly wood, and
— grade mostly chemical. Thelast cluster consists of pulp lines with high market pulp ratio. All in al, there are
three major pulp line types:

1. Those using recovered paper for pulp.

2. Those making unbleached pulp, further divided into three subtypes:

a. Wood fiber and semichemical pulp grade
b. Wood fiber and either chemical or mechanical pulp grade
c. Other virgin fibers with chemical pulp grade

3. Those using chemical pulpwood to produce mainly bleached pulp from wood fiber. This type could
further be divided into three subtypes: those with small capacity, those with high capacity, and those
with a high market ratio of pulp production.

4.2 Mill Technology

The mill data set consisted of the total pulp and paper production capacities, the number of paper machines,
the number of coaters and the percentage of total production of different pulp and paper types for each mill,
for atotal of 35 features. They were augmented by the data histograms from the paper machine and pulp line
maps. For each mill, the two data histograms were constructed using the paper machines and pulp linesin that
particular mill. To emphasize the importance of high capacity, the histograms were weighted by the
production capacities of the machines/lines. After this, the histograms were smoothed by convoluting them
with a symmetric vector [0.3, 1, 0.3] .2 Finally, the histograms were normalized. All in all, the technology data
set consisted of 4205 75-dimensional vectors, each corresponding to one mill. A 40 times 25 -sized SOM was
trained with this data.

2 Since the neighboring units of the SOM have similar data items projected to them, the histograms (1) and (2) in
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Figure 7 should be considered more similar than histograms (1) and (3).

Figure7 Onthe left side three different histograms 1, 2, and 3. Since in the SOM, similar vectors are
projected to close lying map units, histograms 1 and 2 should be more similar than histograms 1 and 3.
However, using Euclidean distance between histograms, thisis not so. Instead, the quantization errors (QE)
areequal. Thisis corrected by convoluting the histograms with a symmetric matrix, as seen on the right side.

The u-matrix of the mill technology map is shown in Figure 8 and part of the component planesin Figure 9.
Several correlations between components can be seen from the component plane representation, such as that
the mills with high paper production capacity usually also have a high pulp production and that newsprint
production corresponded to high thermomechanical pulp production. Of special interest are correlations
between different pulp and paper types. From Figure 9 it can also be seen that for some components, the high
values were divided between clearly different types of mills. For example, there are two types of mills that
produce chemimechanical pulp: those that also produce wood containing paper and those that concentrate
purely on producing pulp.

An analysis of mill typeswas performed by first dividing the map into 31 initial clusters. After this, all
components were separated into three ranges and it was investigated which clusters had component valuesin
the two highest thirds. Finally, each cluster was examined to see what kind of mill type it corresponded to.
During this procedure, some of theinitia clusters were combined. For example, the Smallind cluster was
combined from several initial clusters corresponding to mills producing variousindustrial papers. The only
truly separating factor between the initial clusters was that they received data from different units of the paper
machine map: units 13-20 corresponding to old and small paper machines. The cluster analysis resulted in the
20 different mill types described in Table 3.

Figr T iJ-rlr1aIrix of the mill technology map. Black corresponds to a high value of the u-matrix, white
to small value. The mill types have been marked on the map with lines and labeled asin Table 3.

£l

3 £ 375aa3
s

map. For each component, the black corresponds to the highest value and white to the smallest.

Table 3 Pulp and paper mill type (the clusters refer to the areas marked on the u-matrix of the mill technology
map in Figure 8.)

Type Description

UncWF Uncoated wood-free paper.

Smalllnd Variousindustrial papers, machines old and small.

Tissue Tissue paper, average wire width, and speed.

Dewa Some tissue paper, but especialy high deinked waste paper usage.

CoWF Many coaters, coated wood-free paper, machines of average capacity and speed.

Pms Many paper machines, including some high-capacity paper machines, uncoated
wood-free but also various industrial papers, unbleached and semibleached sulfite
pulp.

Diwa Cartonboard, linerboard and fluting papers, dispersed waste paper for pulp.

BIWF Uncoated wood-free paper, bleached chemical pulp from wood fiber.

Big High capacity, many machines and coaters, wood-free paper or linerboard, pulpis
chemical (sulfate), machines are big.

WrLi Wrapping paper and linerboard, unbleached sulfate pulp, big paper machines.

Mech Variousindustrial papers, pulp is unbleached and mechanical: groundwood or rmp.

Avelnd Cartonboard, linerboard, and fluting paper, average capacity machines.
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Flut Fluting paper, semichemical unbleached pulp, average capacity paper machines.

WoodC Wood containing paper, chemimechanical or mechanical pulp from wood fiber,
average capacity paper machines.

News High paper capacity: newsprint, thermomechanical pulp, high-capacity paper machines
and pulp lines.

Pulp No paper production but large pulp production, high-capacity pulp lines, big market
percentage.

Carton Cartonboard and other papers, big weight in paper machines.

LinFl1 Linerboard and fluting paper, small to average sized machines.

LinFI2 Linerboard and fluting paper, high-capacity machines.

Bigind Cartonboard, wrapping, tissue and other papers, high-capacity machines.
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A couple of important notices are in place here. First, the set of 20 mill typesis by no means definitive.
Depending on the desired precision, several other clusters could be extracted from the map. For example, the
Pulp cluster can be divided into three subtypes based on the pulp type and the production capacity. Second,
JUMP.TO TOPIC the clustering is heavily influenced by the choice and scaling of the components. The mill typesin this study
—_——— reflect only the information present in the data components used. By changing part of the components, or
[ | evenscaling them differently, a different set of mill types could be obtained. Third, the analysis made so far
details the different clusters only in very sketchy terms. To get a better view of the different types, amore
detailed in-cluster or in-type analysis would be beneficial.

4.3 Geographical Areas

It isinteresting to note that some mill types are typical of certain geographical regions. For the analysis of
different geographical areas, the data was separated into 11 sets, each consisting of pulp and paper millsin a
certain area. The data sets were projected on the map and, based on the resulting histograms, some
conclusions can be drawn for each region, as listed in Table 4. The same approach can be directly used for
comparing and analyzing different companies.

Table 4 Different geographical areas and the main mill types they have

Region Mills Description

Scandinavia 149 Big capacity mills, newsprint and pulp-only mills but relatively

little industrial paper.

Western Europe 1004 Even spread of al mill types, special notice on the many mills
using dispersed waste paper.

North America 759 Printing/writing paper production resembles that of Scandinavia,
but in addition quite alot of old Smalllnd mills.

Eastern Europe 302 Industrial papers; old Smalllnd mills and mills making
mechanical pulp. Also some millsin Diwa cluster.

Latin America 533 Even spread of al mill types, special notice of mechanical pulp.

Near and Middle East 65 Industrial papers, millsin Diwaand Biglnd clusters.

Africa 106 Mainly industrial papers.
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China 370 Many paper machines per mill, wood-free paper, some
high-capacity industrial paper mills and several small pulp-only

mills.

Japan 221 Even spread of all mill types, many mills using deinked waste
paper.

Far Asia 665 Wood-free and various industrial papers, many of them with
high-capacity machines.

Oceania 31 Mostly new machines, otherwise an even spread of al mill

types, many millsin Diwa cluster.

Four of the histograms are shown in Figure 10: Scandinavia, North America, Far Asia, and China.
Scandinavia and North America represent technologically advanced regions. Scandinaviain particular has
mostly new, high-capacity mills, the majority of which produce printing/writing papers and pulp. North
Americahasin addition alarge number of old and small industrial paper mills. Far Asia, on the other hand, is
agrowing region with mostly average or small-capacity mills, though the paper machines themselves are big.
Chinaisaspecia case; the mills have many machines and they produce both industrial and printing/writing
papers. Both Far Asian and Chinese printing/writing paper is almost exclusively wood-containing.

R R

Fig'l]-r“ep 10 The dataset histograms of four different geographical regions on the u-matrix of the pulp and
paper mills map. The bigger the square, the more mills were projected to that unit on the map.
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5. Future Directions

e The Sdlf-Organizing Map is aversatile tool for exploring data sets. It is an effective clustering method and it
» JUMP TO TOFIC has excellent visualization capabilities, including techniques which use the weight vectors of the SOM to give
_ an informative picture of the data space, and techniques which use data projections to compare data vectors or
whole data sets with each other. The visualization capabilities of the SOM make it avauabletool in data
summarization and in consolidating the discovered knowledge. The SOM can aso be used for regression and
modeling or as a preprocessing stage for other methods. The many abilities of the SOM, together with its
robustness and flexibility, are a combination which makes the SOM an excellent tool in knowledge discovery
and data mining.

At present, our implementation of the SOM, ENTIRE, is clearly an expert tool. An understanding of the SOM
fundamentals and a modicum of domain expertise are of essence for efficient utilization of ENTIRE's
potential. Thus, it isatool for a“neo-generaist” with at least a neural network veneer. In developing ENTIRE
further, several directions are possible. They can be pursued simultaneously, but the amount of resources
available makes a focus necessary. Goals include:

* Further improvementsin visualization.

Using 3-D graphicsin virtual reality environments is a particular interest.
* Injecting a degree of expertiseinto the tool.

ENTIRE could be developed in an application-specific direction, resulting in a help desk in the form of
small expert systems. This expertise can be used both as a reference during SOM processing and,
perhaps more importantly, in the interpretation phase.

 Improving clustering, autolabeling, correlation hunting.

In the more general realm of research, an aid in the visual hunt for correlation between variables, in the
form of a primitive “reporter” summarizing links between SOM layers, would speed up analysisand
ensure asmaller rate of missed connections. Combining this with an improved autolabeling function
and, more fundamentally, autoclustering, would yield benefits to the user. It would simultaneously
provide a pivot point for research: an application and an application areato test new concepts on. This
type of cross-fertilization between use in industry and research at university is only possible given a
consistent vision and enough time for the cooperation.
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In the case study, the world pulp and paper technology was investigated. A hierarchical structure of SOMs
was used to combine data from the different data sets. Such use of multiple interpretation layers introduces
some additional error due to necessary generalizations but, on the other hand, provides a structured solution to
datafusion.

A study combining economic, environmental, and technological data has been made to produce a
comprehensive view of the whole pulp and paper industry [26]. The case study has added value, asit
transforms a long-talked-about idea in the forest industry (combining economy, technology, and environment
in decision-making) into a concrete example.

The results achieved so far have been encouraging. However, much work is still needed in the postprocessing
stage and the interpretation of results. The development and automated usage of algorithms that cluster the
units of the SOM will be an essential part of future work. This may be accomplished by the use of the
hierarchical maps or with fuzzy interpretation rules.

The use of ANNsinindustria applicationsis often ssimplified due to the availahility of large amounts of
measurement data. The unsupervised learning principle of the SOM is a desirable property, and noise and
distortion in data can partly be compensated by the robustness of the algorithm. In this chapter, the forest
industry has been considered as a case study. However, the methods used are applicable to other fields of
industry aswell. The ENTIRE tool could easily be modified to a SOM of ENTIRE tasksin, e.g., steel or
telecommunications industries. In addition, the behavior of industry fields could be simulated, for instance, in
changing environments.
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Chapter 5

A Self-Organizing Architecture for Invariant 3-D
Object Learning and Recognition from Multiple 2-D
Views
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A family of self-organizing neural architectures, called VIEWNET, is developed for learning to recognize 3-D
objects from sequences of their 2-D views. VIEWNET architectures use View Information Encoded With
NETworks to accomplish this task. VIEWNET incorporates a preprocessor that generates a compressed but
2-D invariant representation of an image, a supervised incremental learning system (Fuzzy ARTMARP) that
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classifies the preprocessed representations into 2-D view categories whose outputs are combined into 3-D
invariant object categories, and aworking memory that makes a, 3-D object prediction by accumulating
evidence over time from 3-D object category nodes as multiple 2-D views are experienced. Fuzzy ARTMAP
was modified to enable probability learning of the object classes. VIEWNET was benchmarked on an MIT
Lincoln Laboratory database of 128 x 128 2-D views of aircraft, including small frontal views, with and
without additive noise. A recognition rate of up to 90% was achieved with one 2-D view and up to 98.5%
correct with three 2-D views. The properties of 2-D view and 3-D object category nodes are compared with
those of cellsin monkey inferotemporal cortex.

1. Introduction: Transforming Variant Image Data into Invariant Object
Predictions

This chapter describes a class of self-organizing fuzzy neural architectures, generically called VIEWNET,
wherein spatially and temporally variant, noisy, and incomplete data may be transformed into invariant
recognition events. VIEWNET processing stages compute increasingly stable and invariant representations of
fluctuating and uncertain data. No one processing stage, in itself, accomplishes the transformation of these
datainto an invariant code.

The simplest type of VIEWNET architecture, called VIEWNET 1, is capable of learning invariant
representations of 3-D objects from sequences of their 2-D views (Bradski and Grossberg, 1993, 1995).
VIEWNET architectures may be generalized to accomplish more complex tasks of scene understanding.

The VIEWNET 1 architecture incorporates a preprocessor that generates a compressed but 2-D invariant
representation of an image, a supervised incremental |earning system that classifies the preprocessed
representations into 2-D view categories whose outputs are combined into 3-D invariant object categories, and
aworking memory that makes a 3-D object prediction by accumulating evidence from 3-D object category
nodes as multiple 2-D views are experienced.

The VIEWNET 1 preprocessor includes the CORT-X 2 filter, which discounts the illuminant, regularizes and
completes figural boundaries, and suppresses image noise. This boundary segmentation is rendered invariant
under 2-D tranglation, rotation, and dilation by use of alog-polar transform. The invariant spectra undergo
Gaussian coarse coding to further reduce noise, compensate for small shiftsin log-polar processing, partially
overcome 3-D foreshortening effects, and increase generalization.

These compressed codes are input into the classifier, a supervised learning system based on the Fuzzy
ARTMAP agorithm. Fuzzy ARTMAP learns compressed 2-D view categories that are invariant under 2-D
image translation, rotation, and dilation as well as 3-D image transformations that do not cause a predictive
error. Evidence from sequences of 2-D view categories converges at 3-D object nodes that generate a
response which isinvariant under changes of 2-D view. The properties of these 2-D view and 3-D object
category nodes may be compared with those of analogous cells in monkey inferotemporal cortex.

These 3-D object nodes input to aworking memory that accumulates evidence over time to improve object
recognition. In the simplest working memory, each occurrence (nonoccurrence) of a2-D view category
increases (decreases) the corresponding node' s activity in working memory. The maximally active nodeis
used to predict the 3-D object.

Recognition has been studied with noisy and clean images using both slow and fast learning. Slow learning at
the Fuzzy ARTMAP map field is adapted to learn the conditional probability of the 3-D object given the
selected 2-D view category. VIEWNET 1 was originally benchmarked on an MIT Lincoln Laboratory
database of 128 x 128 2-D views of aircraft with and without additive noise. A recognition rate of up to 90%
was achieved with one 2-D view and of up to 98.5% correct with three 2-D views.

2. The Tradeoff Between Preprocessor, Classifier, and Accumulator

Seibert and Waxman (1990a, 1990b, 1991, 1992) pioneered the development, of neural network architectures
that self-organize representations of 3-D objects from 2-D view sequences. Since the work on VIEWNET was
inspired by their model and uses the same data base to benchmark its results, their model isfirst reviewed in
some detail.

Seibert and Waxman relied on building a neural “cross-correlation matrix” as shownin Figure 1. This
network provides arealization of the aspect graph concept of Koenerink and van Doorn (1979). An aspect
graph represents 2-D views of a 3-D object by nodes of a graph, and legal transitions between nodes by the
arcs between them. The Seibert-Waxman cross-correlation matrix was used to learn both 2-D views and 2-D



view transitions and to associate the 2-D views and view transitions with the 3-D objects that produced them.
To test their architecture, the 2-D views were taken from 3-D airplane models painted black and digitized
against alight background for ease of segmentation.
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Sequences of images were obtained by rotating the airplanes 360° for each of the many angles of inclination
that the video camera was set at, from 0° (horizontal) to 72° (looking down at the spinning jet). These images
were then binarized using a high threshold to remove noise. Points of high curvature and the object centroid
» JUMP. TO TOPIC were found using a reaction-diffusion process. A log-polar transform around the object centroid was used to
—_——— remove 2-D rotation and scale variations. The output of this filter was (approximately) invariant under 2-D
— tranglations, rotations, and dilations of the image. In order to compress this invariant spectrum and reduce 3-D
foreshortening effects, the result was coarse coded (compressed to 5 x 5 pixels from 128 x 128) using
Gaussian filters.
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Figurel View Transition Matrix from the architecture of Seibert and Waxman computes cross-correlations
between itsinput 2-D view categories. The matrix represents the correlation between the present categorical
2-D view and the decaying activation of the previous view. As preprocessed images enter ART 2, the
resulting categorical views excite learned weights in this cross-correlation “aspect graph” devoted to each 3-D
object. An evidence node integrates activation from the learned connections in the matrix. Another network
(not shown) chooses the evidence node with the highest accumulated activation as the 3-D object most likely
being viewed by the architecture. [Reprinted with permission from Bradski and Grossberg, 1995.]

The coarse coded vectors (25 data points) were fed into an ART 2 (Carpenter and Grossberg, 1987) network
for unsupervised learning and categorization. These “categorical” 2-D views further compressed the 2-D
representation so that a new 2-D view category was chosen only if significant changes occurred in the 2-D
appearance of the object that were not invariant under trandlation, rotation, dilation, or modest foreshortening.
How much change was tolerated was controlled by the ART 2 vigilance parameter. These 2-D view
categories were then fed into a series of cross-correlation matrices, or view graphs, one for each possible 3-D
object, so that views and view transitions could be learned by a 3-D object categorization layer. The 3-D
categorization layer incorporated “ evidence accumulation” nodes which integrate activations that they receive
from learned connections to the correlation matrix. Decay termsin these integrator nodes determine how long
they stay active without input support.
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Seibert and Waxman' s approach of automatically generating aspect graphs directly from the imagery that the
architecture experiences vastly simplifies earlier attempts which generated aspect graphs by constructing
projections from mathematical descriptions of the 3-D objects. However, using view transition information
comes at a cost; given N 2-D views and M objects, the architecture must have the potential to encode on order
of N2 x M 2-D view transitions and the corresponding adaptive weights. Another potential problem isthat an
error in identifying a2-D view may introduce a spurious 2-D view transition. Finally, unless one presumes a
2-D view frame capture rate fast enough to capture the highest, speed movement that an object can make,
view transitions may be skipped inadvertently by fast object motion.

Asreported by Seibert and Waxman (1992), 75% of the 2-D airplane images were ambiguous to some degree.
That is, 75% of the 2-D view categories formed by ART 2 gave evidence for more than one type of airplane.
Two possible reasons for this level of ambiguity exist: (1) image preprocessing using high curvature points
followed by coarse coding may lump together object features that are needed for unambiguous recognition;
(2) the 2-D views were categorized by ART 2 without using any supervised feedback to help correct category
boundaries. Although most, 2-D view categories were ambiguous, the transitions between them were used to
unambiguously identify a particular 3-D object. Thus, view transitions are critically important in the Seibert
and Waxman architecture, which may then incur the cost of needing up to N2 x M view transition correlation
matrices.

This analysis suggests that a tradeoff exists between the choice of preprocessor, learned categorizer, and
evidence accumulation parts of the architecture. If the preprocessor and categorizer generate 2-D view
categories that are too coarse or ambiguous, then the evidence accumulation network may have to be
enhanced to overcome these limitations. VIEWNET explores this tradeoff by using a different preprocessor
and categorizer that generate less ambiguous 2-D view categories. In Fact, VIEWNET can categorize
individual views on the Seibert-Waxman data base with high accuracy (up to 90%), in accord with the human
experience that many objects can be identified with a single view, except, when they are observed from an
unfamiliar perspective or from a perspective that reduces the object’ s apparent dimension. A computationally
less costly evidence accumulation, or working memory, network could then be used, at least on these data.
The genera problem isto design the optimally balanced preprocessor, categorizer, and working memory
networks to handle the largest possible set of images.

3. VIEWNET 1 Heuristics

Asdiagramed in Figure 2, VIEWNET consists of three parts: an image pre-processor, a self-organizing
recognition network that may operate in either unsupervised or supervised modes, and a working memory
network to accumulate evidence over multiple views. It is assumed that the figure to be recognized has
aready been separated from its background. Neural networks for figure-ground separation that use
computations consistent with those in the VIEWNET pre-processor were described by Grossberg (1994) and
Grossberg and Wyse (1991; 1992). The image figure is then processed by a boundary segmentation network,
called the CORT-X 2 filter (Carpenter, Grossberg, and Mehanian, 1989; Grossberg and Wyse, 1991; 1992).
CORT-X 2isafeed-forward network that first compensates for variable illumination, extracts ratio contrasts,
and normalizes image intensities. It then suppresses image noise while it completes and regularizes a
boundary segmentation of the figure. Thus, the maximal curvature point representation of Seibert and
Waxman is replaced by an illumination-compensated, noise-sup pressed boundary segmentation of the entire
figure.
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This boundary segmentation is then rendered invariant under 2-D rotation, translation, and scale by a
centering, log-polar, centering operation as described by Schwartz (1977). Asin Seibert and Waxman, the
resulting spectra are then compressed by coarse coding to gain some insensitivity to pixel shift and 3-D
» JUMP. TO TOPIC deformation effects and to reduce memory requirements. Coarse coding was done by two methods in Bradski
————— and Grossberg (1995) whose performance was compared: a many-to-few pixel simple spatial averaging, and
_ Gaussian spatial averaging. The latter generated somewhat better results for reasons summarized below. The
output of this preprocessor is a coarse-coded, invariant spectrum of an illumination-compensated,
noise-suppressed boundary segmentation. This representation provides the input vectors to the self-organizing
neural network classifier.

Fuzzy ARTMAP (Carpenter, Grossberg, Markuzon, Reynolds, and Rosen, 1992) was used to categorize the
output spectra. This architecture is capable of fast, stable learning of recognition categoriesin response to
nonstationary multidimensional data, and of learning to generate many-to-one output predictions from the
recognition categories to output labels. Fuzzy ARTMAP runs under either unsupervised or supervised
learning conditions. Under supervised conditions, erroneous predictions trigger further hypothesistesting, or
memory search, in the input classifier. Fuzzy ARTMAP converts the vigilance parameter of unsupervised
ART classifiers, such as ART 2, into an internally controlled parameter. When an erroneous prediction
occurs, vigilance isincreased just enough to trigger a new bout of hypothesis testing to discover a better
category. Multiple 2-D views can be compressed into a single 2-D view category by this mechanism.

This control scheme is called match tracking because the vigilance parameter tracks the match value that
encodes how well the selected category’ s prototype matches the input spectrum. Using match tracking,
memory search discovers and learns recognition categories that conjointly maximize code compression and
minimize predictive error. Fuzzy ARTMAP can hereby use supervised learning to rapidly fit the number, size,
and shape of input categories to the statistical demands of the environment. This added power helps Fuzzy
ARTMAPto learn 2-D view categories that tend to fit the data better than ART 2. It is this combination of
boundary segmentation preprocessing combined with supervised ART learning that achieves correct
prediction of up to 90% accuracy in response to asingle airplane view.
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Er™
Figure2 The image processing flow chart of the VIEWNET system. [Reprinted with permission from
Bradski and Grossberg, 1995.]

- L —

Figure 3 Thetwo left-hand pictures are frontal views of an F-16. The right-hand picture is of an HK-1.
[Reprinted with permission from Bradski arid Grossberg, 1995.]

In the VIEWNET 1 architecture, Fuzzy ARTMAP automatically combines the outputs of 2-D view categories
at 3-D object category nodes that are invariant under changes of experienced 2-D views. This learned fusion
of 2-D view categoriesinto invariant 3-D object categories occurs at the Fuzzy ARTMAP map field that is
defined below. A similar type of hierarchical organization from 2-D view to 3-D object has been reported in
neurophysiological studies of cell responsesin monkey inferotemporal cortex, where some cells respond to
individual 2-D views whereas others, like 3-D object nodes, respond to awide range of views (Logothetis et
al., 1994). These studies were motivated by the regularization networks of Poggio and Girosi (1990) which
also add up responses from 2-D views at 3-D object nodes. These networks do not, however, incrementally
learn their categoriesin real-time and have not yet been incorporated into a self-organizing image processing
architecture.

Given the high accuracy attained by individual 2-D view categories, the simplest possible working memory
was used in VIEWNET 1 to illustrate the tradeoff between preprocessor, categorizer, and working memory.
No view transitions were used. In fact, no temporal order information was used. Instead, the working memory
simply updated its representation of each 3-D object category every time one of its 2-D views was
experienced, and the 3-D object was predicted by voting for the winning 3-D category. Using this scheme,
voting with two views achieves up to 94%, and with three views up to 98.5% accuracy. It was thereby shown
that the simplest evidence accumulation from multiple views, without view transitions or even a
representation of view temporal orders, can lead to high recognition on the Seibert-Waxman database if the
preprocessor and classifier are designed as indicated.

The remainder of this chapter describes these operations in more detail. Section 4 describes the airplane
database. Section 5 describes the CORT-X 2 boundary segmentation network. The Appendix describesits
equations. Section 6 describes the operations to generate an invariant representation of the boundary
segmentation. Section 7 describes the coarse coding algorithm. Section 8 describes the Fuzzy ARTMAP
network. The Appendices describe the equations. Section 9 describes computer simulation results in response
to asingle view, using fast or slow learning with or without image noise. The results are robust across all
simulation conditions. Section 10 summarizes how multiple views may improve recognition scores. Section
11 provides concluding remarks.
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4. Simulated Database

e Bradski and Grossberg (1995) tested VIEWNET 1 on a database consisting of multiple 2-D images of three
» JUMP TO TOPIC airplanes: an F-16, F-18, and HK-1. Michael Seibert and Allen Waxman of MIT Lincoln Laboratory kindly
_ provided access to this database. Video images were taken of three models of these airplanes. Each was
painted black and suspended by string against a light background to aid in segmentation. The camerawas
mounted anywhere in an arc around the airplanes that started at 0.0° above horizontal and went in increments
of 4.5° to amaximum of 72.0° above horizontal. For each camera angle, the airplanes were spun and frames
covering one full revolution (an average of 88 frames) were retained resulting in 1200 to 1400 images per
object. The images themselves were 128 x 128 pixel gray scale. The images were then thresholded and
binarized into a SUN raster format to form the “raw” database. For our processing, data was turned into a
floating point format scaled between 0.0 and 1.0 and an additive noise process was introduced. The noise
consisted of a128 x 128 pixel images with each pixel taken from a uniform distribution between 0.0 and 1.0
scaled by aconstant C e 0.0. That is, every pixe in the noise imageis multiplied by C to create a* scaled”
noiseimage. Thus, if C = 0.5, the noise image would consist of pixels that varied randomly in amplitude with
uniform distribution between 0.0 and 0.5. These scaled, 128 x 128 noise images were then added to the 128 x
128 airplane images prior to preprocessing. Thus, both noise-free and noisy 2-D views covering a half-sphere
surrounding the 3-D object were collected, keeping their spatial relationships intact.

Even-numbered rotation images from each camera angle were taken as the training set, with the
odd-numbered images forming the test set. The system was trained using random walks over the half-sphere
of training images. Testing was done using random walks over the half-sphere of test images so that the paths
taken and views seen were never the same between the training and test sets. Problem difficulty derivesin
part from the existence of small ambiguous frontal viewsin the data base, asin Figure 3.

5. CORT-X 2 Filter

The CORT-X 2 filter was used to preprocess the 128 x 128 airplane images. Thisis afeed-forward network
that detects, regularizes, and completes image boundaries from edge, texture, and shading contrasts, while
suppressing noise that does not have an underlying anisotropic structure. The CORT-X 2 filter isan
enhancement of the original CORT-X filter (Carpenter, Grossberg, and Mehanian, 1989). It generates better
boundary segmentations, deals better with noise, and may also be used for figure-ground separation. The
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figure-ground separation properties were not needed in this research because the data images were already
separated from their backgrounds. These CORT-X filters are smplifications of the Boundary Contour System
(or BCYS) for boundary segmentation (Grossberg, 1987; 1994; Grossberg and Mingolla, 1985; Grossberg,

Mingolla, and Todorovié, 1989; Grossberg, Mingolla, and Williamson, 1994). The BCS includes internal
feedback loops to generate coherent boundary completions even over image regions defined by sparse image
contrasts. A full BCS system can be inserted into the VIEWNET architecture to handle awider class of
imagery.

The CORT-X 2 filter incorporates a number of features that are useful for processing noisy imagery,
including ON and OFF cells and multiple size scales, that respond to images in complementary ways. The
CORT-X 2 filter embodies a computational strategy for combining these complementary computations to
achieve enhanced image processing. The processing stages of the CORT-X 2 filter are schematized in Figure
4 and summarized below. Equations and parameters are listed in Appendix A.

Step 1. Discount the llluminant. The first processing stage compensates for variable illumination, and
thereby extracts ratio contrasts from the image while normalizing the overall activity level in each image
region. Both ON cells and OFF cells process the image in thisway, using parallel shunting
on-center/off-surround (“ON-C") and off-center/on-surround (“ OFF-C”) networks. Parameters are set so that
the ON-C network has a zero baseline activity and the OFF-C network has a positive baseline activity. The
OFF-C filter performs an image inversion because it has a positive baseline activity that isinhibited by
positive signal values in the image. Figure 5 shows a noise-free image as well as the ON-C and OFF-C
outputs.

Along straight contrast boundaries in an image, both the ON-C and OFF-C networks enhance the contrast. On
the other hand, the ON-C network has a stronger response to concave corners of activity in an image than the

OFF-C network, while the converseistrue at convex corners, as was noted by Grossberg and Todorovi ¢

(1988). These complementary responses are joined at later processing stages used to build more complete
boundary segmentations.

Step 2: Boundary Segmentation. The CORT-X 2 filter transforms the normalized ON-C and OFF-C images
into aboundary segmentation using fast feed-forward computations with oriented contrast-sensitive cells.
Each processing stage possesses afull range of oriented cells as at each pixel in the image.

L TOHAT=X 1 Flow Chard
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Figure4 CORT-X 2 flow chart and filter kernels. The image is processed in parallel with small and large

scalefilters. Grey areasin the kernels are the active regions. All kernels are normalized to have an area equal
to 1. [Reprinted with permission from Bradski and Grossberg, 1995.]
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Flgure (a) The original F16 image. (b) CORT-X 2 ON-C output. (c) CORT-X 2 OFF-C output. [Reprinted
with permission from Bradski and Grossberg, 1995.]

Image processing is donein parallel using two sets of convolution kernels at two different size scales. As
noted in Carpenter, Grossberg, and Mehanian (1989), larger scale oriented cells are better able to complete
gapsin image boundaries and to suppress noise. On the other hand, smaller scale oriented cells do a better job
of boundary localization than do larger scale cells. Interactions between the two size scales are designed to
generate boundary outputs that combine good localization, boundary completion, and noise suppression
properties.
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Thefirst stage, called the ssimple cell layer, consists of oriented contrast detectors that are sensitive to the
orientation, amount, direction, and spatial scale of image contrast at a given image location. The orientation
sensitivity results from using an elliptically shaped kernel, or input field, one for each of eight orientations
» JUMP. TO TOPIC spaced 45° apart that operate in parallel at each position in the image. Sensitivity to direct ion-of-contrast
—_——— results from a kernel in which one half is excitatory and the other half inhibitory. At each orientation, a pair of
_ detectors sensitive to opposite directions-of-contrast processes the image. The net activity of each detector is
rectified, giving rise to a half-wave rectified output signal. Figure 7 shows the results of processing the ON-C
(Figure 6a) and OFF-C (Figure 6b) image with the small spatia scale (6 x 3 pixels) simple cell layer. Theline
lengthsin the figure indicate the magnitude of the simple cell responses at each orientation and position.

The next processing stage generates a cell type whose output is insensitive to direction-of-contrast, or contrast
polarity. Such an operation enables image boundaries to bridge textured and shaded image regions where
contrast polarity reverses. This complex cell layer combines outputs from the simple cells at each position as
shown in Figure 5. Complex cells perform a full-wave rectification of the image that is sensitive to the
orientation, amount, and spatial scale of the contrast in the image, but not to its direction-of-contrast. To
achieve this, complex cells sum up the half-wave rectified outputs of like-oriented and scaled simple cells of
both directions-of-contrast at each position from both the ON-C and OFF-C networks. Thisis donein two
parallel circuits at both the small and large spatial scales (see Figure 4).

Lo~ :
it =t

] (£]
I \ V2N

ik ()
Figure6 CORT-X 2 processing. (a) Output resulting from the ON-C network, using left-sided elliptical
filters (ssimple cell output) with asmall spatial scale (6 x 3 pixels). A “left-sided” filter refers to filters that
respond to avertical left-to-right, high-to-low contrast transition area in the image when the filter isin vertical
orientation. A “right-sided” filter isthe opposite. Linesin the figure are proportional to the magnitude of the
response at each orientation at each position. (b) Output from the OFF-C network using small left-sided
dliptical filters. (c) Hypercomplex cell output for the small scale. (d) The final CORT-X 2 output. [Reprinted
with permission from Bradski and Grossberg, 1995.]
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Complex cells excite hypercomplex cellsin the next layer at their position and orientation while inhibiting
hypercomplex cells at nearby locations that are not colinear with the complex cell’s orientation. This
positional competition is called the first competitive stage. It positionally sharpens the location of the
segmentation, especially in response to textured and shaded images. Figure 6¢ shows the output of the
hypercomplex cell layer for the small scale.

The next layer, called the second competitive stage, chooses the hypercomplex cell whose orientation is
maximally activated to represent the activity at each position. These orientationally favored hypercomplex
cells are often called higher-order hypercomplex cellsin the full BCS. Figure 7a displays the small scale
output of these higher-order cells.

The final stages of CORT-X 2 involve cooperative interactions between the large and small scale filtersto
join together the better boundary completion and noise suppression properties of the larger scale cells and the
better localization properties of the smaller scale cells. One type of cooperative interaction is used to complete
boundaries across boundary gaps caused by image noise. In the full BCS, boundary compl etion bridges gaps
between distant image contrasts using a feedback loop that includes another cell type, called the bipole cell.
Lacking afeedback loop, the CORT-X 2 filter uses a simplified interaction that captures the main heuristic for
completing boundaries across small image gaps. In particular, cooperative interactions among the
higher-order hypercomplex cells activate an inactive cell if enough cells that share the inactive cell’s
orientation are active on both sides of its oriented axis.

el i)
Figure7 CORT-X 2 final stage outputs. (a) The maximal orientations of the hypercomplex cells (second
competitive stage). (b) The long-range boundary completion output. (c) The multiple scale interaction output.
(d) Thefinal CORT-X 2 output from the additive combination of the top right and bottom left outputs.
[Reprinted with permission from Bradski and Grossberg, 1995.]

Another type of cooperative interaction combines large and small scales in such away that the better
localization properties of the smaller scale filters have an effect only within regions where the larger scales
have located a boundary. The output of the boundary-completing cooperative cellsis shown in Figure 7b.
Figure 7c displays the multiple scal e cooperative interaction, and Figure 7d shows the final CORT-X 2 output
consisting of the sum of output of the boundary-completion and multiple scale localization interactions.
Figure 8 shows the results of processing images with two levels of additive noise: C = 0.5 or 50% hoise (a),
and C = 1.0, or 100% noise (b). Because of the relative simplicity of the images being processed, only
amplitude information was used. The CORT-X filter also computes potentially useful information about the
relative orientation of different object parts, asin Figure 7a. The boundary completion capabilities of the
CORT-X filter are al'so not greatly taxed by these images.
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6. Translation, Rotation, and Scale Invariance

- The next processing stages generate a representation, using standard methods, that is invariant under 2-D
» JUMP TO TOFIC tranglation, rotation, and dilation. First, the 2-D boundary segmentation is centered by dividing its 1s
_ moments by its 0t moment to find the figure centroid, subtracting off the center of the image, and then
shifting the figure by this amount. A log-polar transform is then taken with respect to the center of the image.
Each point (x, y) is represented asré.. Taking the logarithm yields coordinates of log radial magnitude and
angle. Asiswell known (Schwartz, 1977), figural sizes and rotations are converted into figural shifts under
log-polar transformation. Using these shift parameters to center the log-polar transformed image leads to a
figural representation that isinvariant under 2-D changes in position, size and rotation. Figure 9 shows the
results of processing two F-18 images which are identical except for scaling and rotation. The images become
very similar in the centered log-polar domain.

7. Two Coarse-Coding Strategies

Coarse coding reduces memory requirements, as it compensates for modest 3-D foreshortening effects and
inaccuracies of figural alignment in the invariant filter. Coarse coding by averaging in the space domainis
equivalent to low pass filtering in the frequency domain. Neighboring pixel features are thereby blurred,
compensating for slight alignment variations. In addition, 2-D images of 3-D objects suffer from 3-D
perspective distortions that cannot be corrected by log-polar transforms. These are viewpoint-specific
foreshortening effects and self-occlusions. The blurring associated with coarse coding can help to increase
generalization by causing foreshortened and non-foreshortened images to map to nearly the same image. On
the other hand, too much blurring can obscure critical input features and thereby harm recognition
performance. Our analysis suggests how to balance these effects to maximize the benefits of coarse coding.
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pixel in the original image. The original image (left column) had pixels with activity levels between 0.0 and
1.0. Uniform random noise with pixel values ranging between 0.0 and 1.0 was scaled by C and added to the
clean image prior to processing by CORT-X 2 with results shown in the right column. At top (a,b), random
noise between 0.0 and 0.5 (C = 0.5 or 50% noise) was added, on the bottom (c,d), noise between 0.0 and 1.0
(C =1.0 or 100% noise) was added. For example, 100% noise refers to the fact that the magnitude of any
given noise pixel can be aslarge as the largest magnitude pixel in the noise-free image. [Reprinted with
permission from Bradski and Grossberg, 1995.]

e
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Fi ure 9 Log polar transform example. At top (a,d) are the results of processing F-18 images at two different
scales and orientations using CORT-X 2. The middle images (b,e) show the results of alog-polar transform of
the top images. At bottom (c,f) are the centered log-polar images that have been made more identical in the
sense that, overall, many more (X, y) pixel locations obtain similar values between the two images after
processing. In the log-polar images, the ordinate is the log-radial magnitude and the abscissa is the periodic
angle axis. [Reprinted with permission from Bradski and Grossberg, 1995.]

Data reduction is an important practical issuein its own right in many realistic pattern recognition problems.
Seibert and Waxman' s database contains 4300 images of three distinct objects. Each image is made up of 128
x 128 floating point pixels of 4 bytes each for atotal of 128 x 128 x 4 x 4300 = 281, 804, 800 bytes. Yet, as
reported below, object identification performance based on single 2-D views did well even when images were
reduced to just 4 x 4 pixels, yielding a database of just 4 x 4 x 4 x 4300 = 275, 200 bytes. This reduction
affords an enormous saving in both computation and memory storage.

Coarse coding of the 2-D images used a spatial averaging method that preserves sufficient information for
accurate recognition. This method was selected as follows. Spatial averaging consists of convolving the
origina image | with afunction ™ and then sampling the resultant image with deltafunctions spaced every T
pixels. “(x - nT, y - KT). For simplicity, in 1-D thisis

oo

(Ix¥)- > &z - nT) (1)

NZ=-=00

If the Fourier transform of | isT, and that of " is ﬁ', then the Fourier transform of equation (1) is

- qr].,_ f: 5(9 — kQ,) (2)

k==co

where ©, = 2A/T, and T is the sampling period in pixels. If ©, is the highest frequency in the image, then for
the image to be uniquely determined by its samples, we must have by the Nyquist sampling theorem that

2m
Q, = ';i;;' > 29}\! (3)

Two simple spatial averaging functions ™ are: (1) uniform averaging of the input image so that all pixelsin a
window of some width are summed and divided by the number of pixelsin the window; (2) Gaussian
averaging of the input image so that a normalized Gaussian weighted sum of all pixelsis taken over awindow
of some width. Both approaches were investigated by Bradski and Grossberg (1995), who noted that method
(1) isarectangular filter in space, and thus a sinc function in frequency. The side lobes of the sinc function
can introduce high-frequency aliasing (“ringing”) in the resultant image, which can be reduced by using a
function that provides a better low pass filter, such as the Gaussian filter method (2). The Gaussian filter has
the further advantage of being an eigenfunction of a Fourier transform, since the Fourier transform of a
Gaussian is a Gaussian with reciprocal variance, thereby simplifying calculation.
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To optimize Gaussian-based spatia averaging, we must determine how to best set the standard deviation A of
the Gaussians. L et us define two standard deviations away from the Gaussian midpoint to be essentially zero.
The cutoff frequency of such alow passfilter isthen A/2A. Equation (3) then implies

2r 2
| S— — 4
T~ % “)
which yields, at equality
T
- 5
o= )

By (5), the standard deviation should be set to half the Gaussian center-to-center sampling period so that the
zero point of each Gaussian just touches the center of the next Gaussian asin Figure 10c. Figures 10d-f show
the results of coarse coding the image in Figure 10b in thisway to reduce the original image of 128 x 128
pixelsdownto 16 x 16, 8 x 8, and 4 x 4 pixels, respectively.
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8. Fuzzy ARTMAP Classification

- Fuzzy ARTMAP was used to learn 2-D view categories from the coarse-coded invariant spectrum of the
JUMP'TO TOFIC noise-suppressed boundary segmentations. Fuzzy ARTMAP was chosen because it can achieve stable fast
_ incremental learning of categoriesin response to unlimited amounts of nonstationary input data, can runin
both unsupervised and supervised modes, and in its supervised mode can fit the size, number, and shape of its
categories to the input statistics. Fuzzy ARTMAP parameters were chosen to enabl e the network to learn the
conditional probability of the true 3-D object given the selected 2-D view category at the map field, whichis
now defined.

We utilized the simplified version of the Fuzzy ARTMAP network of Carpenter, Grossberg, Markuzon,
Reynolds, and Rosen (1992) that was employed in Carpenter, Grossberg, and lizuka (1992). This circuit
consists of a Fuzzy ART module (Carpenter, Grossberg, and Rosen, 1991) ART, that learns 2-D view

categories and afield of 3-D object category output nodes Fb. The 2-D view and 3-D object category nodes
are linked together by an associative memory Fa° that is called the Map Field (Figure 11). In supervised
learning mode, Fuzzy ARTMAP receives a sequence of input pairs (a,, b,) where b, is the correct 3-D object

class given the analog 2-D view input pattern a,. The ART, module classifies analog input vectors a, into
categories and the Map Field makes associations from the ART, categoriesto the outputs b, in Fb. This
simplified architecture thus does not include an ART,, module for independently clustering the outputs b, into
their own categories. In the present application, the ART, categories are 2-D view categories and their

associations converge at the map field upon invariant 3-D object categories. In the present application, the
ART, categories are 2-D view categories and their associations converge at the map field upon invariant 3-D

object categories.
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Figure 10 Preprocessing summary: (a) output of CORT-X 2 preprocessing; (b) centered log-polar image; (c)
Gaussian coarse coding pattern; (d-f) coarse coding reduction from 128 x 128 pixels down to 16 x 16, 8 x 8,
and 4 x 4 pixels. [Reprinted with permission from Bradski and Grossberg, 1995.]
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Fig“u_r' e 11l Fuzzy ARTMAP architecture. Each preprocessed 2-D input vector ais fed sequentialy to the
network as it becomes available. The inputs are complement coded, which transforms the M-vector ainto the
2M-vector A = (&£25) 4 field Fo | which is then fed into theinput field F1. A category node k is chosen at
F3 which reads out its prediction to the Map Field viaweights wi' If the prediction is disconfirmed, a match
tracking process isinvoked in ART,. Match tracking raises the ART, vigilance A, to just above the match
ratio |xa|/|A|. This triggers an ART, search which activates either a different existing category, or a previously

uncommitted category node at F3 . After the search process concludes, F+a chooses the maximally activated
nodein Fa as the 3-D object being viewed. [Reprinted with permission from Bradski and Grossberg, 1995.]

Under supervised learning conditions, if a, is categorized into an ART, category that predicts an incorrect
output b,,, then the mismatch between actual and predicted b, causes amemory search within ART, viathe
match tracking mechanism. Match tracking raises the ART,, vigilance parameter A, by the minimum amount
that will trigger amemory search. In particular, A grows until it just exceeds the match value between the
input vector a, and the prototype of the active ART, category. Since low vigilance leadsto learning of large,

coarse categories and high vigilance leads to learning of small, fine categories, match tracking sacrifices the
minimum amount of category compression that is needed to correct each predictive error. Memory search by
match tracking continues until a pre-existing ART, category that predicts the correct ART,, category is found,

or anew ART, category is chosen.

After one of these conditions is satisfied, learning takes place both within ART, and from the chosen ART,
category to the Map Field. Match tracking assures that predictive error is minimized while maintaining
maximum generalization during fast or slow incremental learning conditions. Between learning trials,
vigilance relaxes to its baseline vigilance Pa. In test mode, input vectors a, are classified by ART, and the

chosen category reads out its prediction to the Map Field. The index of the maximally activated node in the
Map Field is taken to represent the predicted output class.
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Theinput vector a, is complement coded before it activates ART,. This preprocessing step enables the
network to code both input features that are critically present and input features that are critically absent. In

response to an input vector a, complement coding delivers an input vector Ap = (ap,a7) 1o ART,, where

a; = 1 —a; complement coding also normalizes the total input A, t0 ART,_ such thatll Ap lh= 1 11

— thereby prevents a category proliferation problem that could otherwise occur (Carpenter, Grossberg, and
Rosen, 1991). Complement coding means intuitively that an input vector turns ON the cells corresponding to

a, asit turns OFF the cells corresponding to ";, much as in the ON and OFF channels of the CORT-X 2 filter.
The algorithm is mathematically defined in Appendix B.

JUMP TO TOPIC

Table 1 The parameter set used for CORT-X 2 in the simulations. [Reprinted with permission from Bradski
and Grossberg, 1995.]

Parameter Description

On-center magnitude
On-center standard deviation

3.333 Off-surround magnitude
1.875 Off-surround standard deviation
B=1.0 Shunting values
D=05 Shunting values
Spontaneous activity level
Shunting decay
11 Threshold contrast parameters
=.003 Threshold noise parameters

Complex cell scaling constant
Hypercomplex cell divisive offset
Hypercomplex cell convolution scaling



http://www.earthweb.com/
http://corpitk.earthweb.com/
http://corpitk.earthweb.com/content/corp.html
http://corpitk.earthweb.com/search/
http://corpitk.earthweb.com/faq/faq.html
http://corpitk.earthweb.com/sitemap.html
http://corpitk.earthweb.com/contactus.html
http://corpitk.earthweb.com/search/search-tips.html
http://corpitk.earthweb.com/search/search-tips.html
http://corpitk.earthweb.com/search/
http://corpitk.earthweb.com/search/

A =0.004 Hypercomplex cell threshold

" =0.001 L ong range cooperation threshold

A/8 Oriented kernel orientation spacing

(32, B)1arge = (16, 8) Large set, large ellipse axis

(&, B)iarge = (10, 5) Large set, small ellipse axis

8y, by)gra = (10, 5) Small set, large ellipse axis

(ay, by)gra = (6, 3) Small set, small ellipse axis

G, =2a,/3 Hypercomplex small kernel diameter

G, =2a,/3 Hypercomplex large kernel diameter

U =2a,/5 Multiple scale interaction kernel diameter
0=3a,/5 Long-range cooperation kernel length

Fuzzy ARTMAP parameters were chosen to allow for on-line slow learning from ART, F3 tothe Map Field
nodes. A maximal ART, vigilance level, Pmaz wasintroduced such that an error at the Map Field triggers
match tracking only if match tracking leads to a vigilance Pa < Pmaz._Thisbound prevents categories from
becoming too small. In response to an error that would otherwise cause A, to exceed ﬁmur-, learning takes
place instead from the active node in F3 to the Map Field. By setting the Map Field learning rate 2,,, baseline
(A) and maximal (Pmaz=) vigilance levels appropriately, weights from F3' hodes to the Map Field may begin

to approximate the conditional probability of the true class (the 3-D object) given the selected Fy category
(the 2-D view category). A related approach to slow probability learning is described by Carpenter,
Grossberg, and Reynolds (1993).

Table 2 The Fuzzy ARTMAP parameter set used for the simulations. [Reprinted with permission from
Bradski and Grossberg, 1995.]

Parameter Description

+=0.6 Fuzzy ART search order

2,=10 Fuzzy ART learning rate

2,=10 Map Field learning rate

Prmaz = 1.0 Baseline Fuzzy ART vigilance A,
Pmaz = 1.0 Maximum ART, vigilance
A,=10 Map Field vigilance
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9. Computer Simulations

- A computer simulation was run on the airplane database using the CORT-X 2 parameters shown in Table 1.

JUMP'TO TOFIC The database was processed twice by CORT-X 2, once with alarge pair of large and small oriented filters and
_ once with asmaller pair of large and small filters. The large oriented filter pairs consisted of elliptical

receptive fields with axes 16 x 8 and 10 x 5 pixels. The small oriented filter pair consisted of oriented ellipses

with axes 10 x 5 and 6 x 3 pixels. This was done so that recognition results could be compared when images
were processed at different scales. Coarse coding was done with both simple spatial averaging and Gaussian
averaging, reducing the image down to 16 x 16, 8 x 8, and 4 x 4 pixels from an original size of 128 x 128.
The window for simple spatial averaging was square with awidth twice the sampling period T; that is, a
window centered at one pixel extended until it just touched its neighboring pixels. The standard deviation for
Gaussian averaging was set to T/2, as discussed in Section 7. Training and testing sets were assembled as
discussed in Section 4 with even-numbered images forming the training set and odd numbered images
forming the testing set. Except where explicitly mentioned, the simulations were run with the parameters
shown in Tables 1 and 2.

The data were presented to the network in two different ways: (1) 2-D views were presented in the “ natural”
order in which they would appear if viewing the actual object in motion; (2) 2-D views were presented in
random order. These two methods of data presentation were used to test whether presenting views in natural
order helps recognition scores. Training in natural order consisted of 160 runs of from 1 to 50 views over each
object. Training in random order consisted of a series of 40 runs of 100 training set views over each object.
Recognition scores are taken as an average of 15 separate training-testing cycles.

Table 3 Percent of additive white noise surviving processing by CORT-X 2 and coarse coding. [Reprinted
with permission from Bradski and Grossberg, 1995.]

% noise surviving CORT-X 2 filtering and Coarse Coding:

Large CORT-X 2 filters (16 x 8, 10 x 5) Small CORT-X 2 filters
(10x 5,6 % 3)
1.79 2.42

After Gaussian coarse coding from 128 x 128 down to:
16 x 16 0.33 | 0.34
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8x8 0.23 0.29

4x4 0.19 0.26
| After spatial average coarse coding from 128 x 128 down to:
| 16 x 16 | 0.40 | 0.40
| 8x8 | 0.28 | 0.30
| 4x4 | 0.21 | 0.28

9.1 Fast Learning With and Without Noise

No clear advantage results from ordered presentation as compared to unordered presentation using noise-free
data (C = 0) and fast learning, as shown by the resultsin Table 4. It can be seen that the smaller CORT-X 2
filter set resulted in better recognition performance overall and did better given more detail (Iess coarse
coding).

The system was al so tested with noisy data using additive white noise scaled by C = 1.0; that is, each pixel
could have noise added to it less than or equal to the value of the maximum activity of pixels (= 1.0) inthe
origina image. Table 3 shows what percent of the additive noise survives processing by CORT-X 2 alone,
and by CORT-X 2 and coarse coding together, for two different filter sets and three different coarse codings.
The percent noise surviving these transformations was measured by the following formula:

ax !11'(1 + N) - ¥(I)
Y(zy) c

where | istheimage, N isthe noiseimage, " isthe CORT-X 2 filter, C > 0 isthe noise scaling parameter and
(%, y) isthe pixel index in the images. Table 3 represents the average results from ten measurements using
Equation (6).

‘ x 100 (6)
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It can be seen that the combination of CORT-X 2 filtering followed by coarse coding is effective in reducing
additive noise. Using afast learning paradigm, the recognition results shown in Table 5 were similar to those
for the noise-free case in Table 4, except for some minor falling off of recognition scores at the lowest level of
coarse coding (the 16 x 16 case). Less coarse coding has the same effect on noise as raising the cutoff
frequency of alow passfilter. Thus, as seen in Table 3, more noise gets through with less coarse coding,
yielding slightly lower recognition performance.

JUMP'TO TOPIC
[ |
Table 4 Recognition results on a noise free database (C = 0). CORT-X 2 filter sizes refers to the size of the
oriented receptive field filters. CORT-X 2 was run twice using alarger and asmaller set of itslarge and small
elliptical oriented filters. In thetable, “Large” refersto the run with the larger set of oriented ellipses with
axes 16 x 8 and 10 x 5 pixels; “Small” refers to the run with the smaller set of oriented ellipses with axes 10 x
5and 6 x 3 pixels. Views were presented either in natural order or in random order. Data was coarse coded
from 128 x 128 downto 4 x 4, 8 x 8, or 16 x 16 using simple spatial averaging or Gaussian averaging.
Recognition scores refer to the percent of 2-D views correctly associated with a 3-D object. [Reprinted with
permission from Bradski and Grossberg, 1995.]

CORT-X 2 |Data Coarse code using spatial avg / Gaussian avg
filter set  |presentation [ axa 8x8 16 x 16
Small Ordered 81.0/83.1 84.4/86.4 86.7/90.5
Small Unordered 80.3/83.9 84.9/86.5 86.8/89.3
Large Ordered 76.8/78.7 79.0/81.6 79.1/80.1
Large Unordered 77.4/79.7 80.5/81.5 77.1/80.5

Table 5 Recognition results on noisy data (C = 1) with fast learning (2, = 1.0). These results differ little from

the noise-free resultsin Table 4 (no noise condition) with the exception of some consistent reduction in scores
for the 16 x 16 coarse coding. [Reprinted with permission from Bradski and Grossberg, 1995.]

CORT-X 2 |Data Coarse code using spatial avg / Gaussian avg
filter set  [presentation 4x4 8x8 16x 16
Small Ordered 80.1/83.3 84.5/85.9 84.2/89.1
Small Unordered 79.4/83.2 83.9/86.4 84.3/88.0
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Unordered 76.0/79.7 78.4/80.7 75.5/79.0

Large
Large

Ordered ’ 76.6/79.4 ’ 79.3/80.8 ’ 75.8/79.3

Table 6 Average number of ART, categories formed during training for the simulations of Table 4 (no noise)

and Table 5 (noise). The format in the tableis asfollows: [spatia avg.]/[Gaussian avg.] = [No noise,
Noise]/[No noise, Noise]. [Reprinted with permission from Bradski and Grossberg, 1995.]

CORT-X 2 Data Coarse code using spatial avg / Gaussian avg
filter set | presentation 4x4 | 8x8 16 x 16
Small Ordered [172, 184]/[165, 169] [77,73)/[70, 73] [34, 33]/[33, 35]
Small Unordered [191, 198]/[175, 179] [76, 77)/[73, 76] [34, 35]/[35, 36]
Large Ordered [168, 179]/[160, 162] [71, 68]/[67, 71] [31, 33]/[30, 31]
Large Unordered [183, 192]/[169, 174] [73, 75]/[69, 72] [32, 32)/[33, 32]

Table 6 shows the number of nodes created by the network after training for the no noise (left entry) and noise
(right entry) results reported above. Noise causes a small increase in the number of categories formed on
average as the network attempts to correct a greater number of noise-induced errors during supervised
training.

9.2 Slow Learning Simulation With Noise

The network was a so run on the noisy data using slow learning to the Map Field (2,, = 0.2 in Equation (42)).
Fast learning was still used within the ART, module itself however (2a= 1.0 in Equation (41)). In addition, a

maximum vigilance level in ART, (Pmaz = 0.95) was set so that when match tracking due to error feedback
attempts to create an ART,, category smaller than a given size, no new category forms and learning takes place

for the current category instead. With noisy inputs, rather than continually making new categories to correct
for the noise, ART,, categories below a set prescribed size begin to learn the conditional probability of the true
class (the 3-D object) given the selected ART, category (the categorical 2-D view).
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For Pmaz = l-ﬂ, the results for slow learning and fast learning to the Map Field are equivalent. They are
equivalent because, with Map Field vigilance set to A, = 1.0 asin Table 2, the slightest mismatch at the Map

Field will invoke match tracking and a new category will be created. The main difference between slow and

P UV VALY fast learning using Pmaz = 1.0jstha ART, categories may learn their associations to nodesin the Map

— Field at different rates. The weights from an F3 nodein ART, to the correct node in the Map Field will always

have avalue of 1.0, however, since any error is corrected by forming a new category. Weights to the other
nodes in the Map Field will be lessthan 1.0 (slow learning) or equal to 0.0 (fast learning). Recognition results
on the test set are not hereby affected, since awinner-take-all field chooses the maximum activation in the
Map Field as the recognition code via equation (43) in Appendix B.

Table 7 Recognition results on noisy data (C = 1) with slow learning to the Map Field

(Bab = 0.2, pmaz = 0.95) Dyeto the low levels of noise surviving preprocessing, the recognition results
here are not substantially different than those found using fast learning in noisein Table 5 except where noise
was highest asin the 16 x 16 coarse coding. As noise increases, slow |earning becomes more important for
maintai ning good recognition scores. [Reprinted with permission from Bradski and Grossberg, 1995.]

CORT-X 2 |Data Coarse code using spatial avg / Gaussian avg
filter set  presentation 4% 4 8x8 16x 16

Small Ordered 79.9/83.1 84.0/85.6 84.7/89.9
Small Unordered 78.8/83.3 83.2/85.7 84.9/89.1

Large Ordered 76.3/78.2 78.5/81.5 77.0/78.8
Large Unordered 77.4/80.2 79.6/80.41 75.8/79.2

To derive benefit from slow learning, in the caseAab =1.0, we set Pmaz = 0.99 por Aab = 1.0, we may then

compare the results of fast learning to the Map Field using Pmaz = 1.0 with the results of Slow learni ng to

the Map Field using Pmaz = 0,93 Table 7 records the results using slow learning in large amplitude noise
(C =1). Where noise levels after preprocessing were very small, the results were approximately the same as
in the fast learning case shown in Table 5. Slow learning begins to help when the noise level increases, as
with the 16 x 16 coarse coding. Table 8 records the average number of categories formed for the noisy data
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case using fast learning and slow learning. Slow learning with Pmaz = (}_95’ caused approximately 10%

fewer categories to be formed than with Pmaz = 1-9, since noise-induced errors do not always cause the
formation of a new category in the former case.

For arecognition system that can gather information from successive 2-D views, akey question is. given that
an error occurs, how many successive errors will follow on average? For the airplane data set as processed by
VIEWNET, it was found that the average overall length of an error sequence was 1.31 2-D viewswith a
standard deviation of 0.57 views. On average then, when an error occurs, collecting two more views will
usually be sufficient to correct the error. Thus, asin Seibert and Waxman’s system, better 3-D object
predictions may be derived by accumulating evidence from 2-D views. Thisis accomplished in VIEWNET in
perhaps the simplest way by using a working memory whose unordered states are updated whenever a new
2-D view category is chosen. The working memory is realized as an integration field (Fint) between the Map
Field (Fab) that codes 3-D object, categories and the winner-take-all field (F) in Figure 11. The equation for
the integrator field is updated each time ART, chooses a new 2-D view category:

(a::,"nt}naw i ﬁintmzb + (1 - ﬂint)(xi;m old (T)

where e is an integrator node for the kih 3-D object, 2, is the integration rate each time the equation is

b
stepped, and T isthe kth Map Field 3-D object category. The integration node with the largest activation
represents the prediction of the 3-D object being viewed by the system. This maximum activation in the

integration field is chosen by the winner-take-all field (F“2) as the network’ s prediction of the 3-D object.

Table 8 Average number of nodes formed during training for the simulations of Tables 5 (noise with fast
learning) and 7 (noise with slow learning). The format in the tableis as follows: [spatial avg.]/[Gaussian avg.]
= [fast learning, slow learning]/[fast learning, slow learning]. It can be seen that slow learning reduced the
number of nodes formed by approximately 10%. [Reprinted with permission from Bradski and Grossberg,

1995.]
CORT-X 2 |Data Coarse code using spatial avg / Gaussian avg
filter st |presentation 4x4 8x8 16x 16
Small Ordered [184, 165]/[169, 150] [73, 67]/[73, 66] [33, 30]/[35, 32]
Small Unordered [198, 180]/[179, 163] [77, 69]/[76, 70] [35, 32]/[36, 33]
Large Ordered [179, 160]/[162, 147] [68, 61]/[71, 66] [33, 30]/[31, 29]
Large Unordered [192, 175]/[174, 160] [75, 69]/[72, 67] [32, 30]/[32, 30]
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10. Voting or View Transitions for Evidence Accumulation Voting

- Figure 12 shows a simulation of the integrator field where Equation (7) is stepped once each time ART,

JUMP TO TOPIC chooses a category. Three integrator nodes are shown along the ordinate, one for each of the airplanes. Grey
— shading in the figure shows which 3-D object is“winning.” In this simulation, the 3-D object being viewed is
an F-16. The sequence of ART, 3 categories that occurred is shown aong the abscissa. The first two
categories, 1 and 22, werein error since they were associated with the F-18 node in the Map Field. Categories
21 and 26 code correctly for the F-16 followed by category 48 which codes for the HK-1. Next, category 71is

selected. It is an uncommitted category that has never been activated before. By default, it gives equal
activation to al integrator nodes. The remaining categories code correctly for the F-16.

e
]

Figure 12 Simulation of the integration field. The ordinate axis contains the integrator nodes representing the

3-D objects: F-16, F-18, and HK-1. The abscissa represents ART, Fy categories chosen by the preprocessed
2-D views being presented to VIEWNET. Black horizontal lines denote activity of the corresponding
integrator node through time. Gray shading in the figure indicates the integrator node with maximal activation
which represents the VIEWNET decision as to which object is being presented. Categories 1 and 22
erroneously code for the F-18 jet here. Category 48 erroneously codes for the HK-1. Category 71 has not been
chosen before and so selects all objects simultaneously. The rest of the categories code correctly for the F-16.
The integration step size was set to 2, = 0.2. [Reprinted with permission from Bradski and Grossberg, 1995.]
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Figure 13 Recognition results for voting with an integration rate of 2, = 0.2. The graphs show the
recognition results after gathering evidence over one, two, and three 2-D views for data preprocessed using
large (solid line) and small (dotted line) scale CORT-X 2 filters. Results from both Gaussian and spatial
averaging coarse-coding methods are shown where the images were reduced from 128 x 128 downto 4 x 4, 8
x 8, and 16 x 16 pixels. The circles and sguares represent recognition scores resulting from using view
transitions as discussed in Section 8. The black circles represent the recognition scores using view transitions
for preprocessing with the large scale CORT-X 2 filters, the black squares represent recognition scores using
view transitions for preprocessing with small scale CORT-X 2 filters. [Reprinted with permission from
Bradski and Grossberg, 1995.]

Implementing evidence accumulation in thisway is similar to voting for the 3-D object over a sequence of
2-D view inputs, but with recent views being given more weight. For 1 e 2, e 0, the closer %, isto 1, the more
weight is given to recent votes. To measure performance on the test set with voting, the integrator field was
alowed to collect first two (for the two votes score), or three (for the three votes score) activations before
VIEWNET' s recognition decision was recorded. The integrator field was then cleared and two or three more
activations were again collected before the next decision was made. This process was repeated until 1000
views had been seen in the test set for each object at which time the percent correct recognition score was
computed. Figure 13 shows the average recognition scores for voting with 2int = 0.2 over one, two, and three
views under CORT-X 2 preprocessing with large and small scale filter sets and coarse codingto 4 x 4,8 x 8
and 16 x 16 pixels using both Gaussian and spatial averaging. Voting over three frames improves recognition
results by an average of 10% with the best results being 98.5% correct for small scale filtered, 16 x 16
Gaussian coarse-coded data. The black dots and squares in the figure show recognition results from using 2-D
view transition information. Note that view transitions did not improve performance; see Bradski and
Grossberg (1995) for further details.

11. Summary

The cascade of processing stagesin VIEWNET 1 converts spatialy and temporally variant, noisy, and
incomplete datainto invariant 3-D object representations and predictions. The architecture thus illustrates that
no one computational operation can, in and of itself, fully process noisy and fuzzy data. Qualitatively
different, types of algorithms are appropriate to apply at prescribed stages of information processing. Within
their own computational domains, however, these distinct types of processing may be realized by the most
general processing of that type. Such algorithms may be called general-purpose solutions of modal problems
in order to emphasize that distinct modalities of intelligence, such as vision, audition, and recognition, require
different computational constraints for their solution, but that each modality seemsto admit a genera -purpose
solution. In the VIEWNET architecture, simplified algorithms from theories that are working to develop
genera-purpose vision architectures, such as FACADE theory (Grossberg, 1987b; 1988; 1994), and
recognition architectures, such as Adaptive Resonance Theory (Carpenter and Grossberg, 1991; 1993; 1994;
Grossberg, 1987a; 1988; 1995), illustrate this theme. The CORT-X 2 filter is a simplified module inspired by
FACADE theory and the Fuzzy ARTMAP algorithm is one module of the larger ART cognitive and neural
theory.

Using the smaller scale of CORT-X 2 filters described above, a 3-D object recognition rate of approximately
90% was achieved from single 2-D views alone without recourse to more elaborate methods of generating
aspect graph models of the 3-D objects. When evidence integration or voting over an unordered sequence of
views was added, recognition rates reached 98.5% within three views. Voting over two views did aswell as
using view transitions on this database, but without the drawback of needing to learn O(N?) view transitions
given N 2-D views. In addition, it was shown that the above recognition rates can be maintained even in high
noise conditions using the preprocessing methods described herein.
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These high recognition rates are achieved by using a different preprocessor and supervised learning to create

more optimal category boundaries than in the Seibert and Waxman studies. Asreported in Seibert and

Waxman (1992), their unsupervised clustering of coarse-coded maximal curvature data created genera

» [ JUMP TO TOPIC categories that unambiguously selected for the correct 3-D object only 25% of the time. In so doing, their
—_——— network created 41 categories during training. In order to overcome the ambiguity of their general ART 2

_ categories, Seibert and Waxman used explicitly coded 2-D view category transitions to help identify the 3-D

objects.

Using this approach, the network must be able to represent possible cross-correl ations between every
categorical 2-D view in the view transition matrices, one for each object, even if no correlations are
eventually found between some of the categories. Thisis because aview transition matrix represents a
definite network structure that explicitly codes the particular sequence of view transitions that ends up coding
aprescribed 3-D object. Thus, such an algorithm is committed to represent all possible correlations between
each of the 41 2-D view categories. The total number of correlationsisthen (412 - 41)/2 = 820, since
transitions and their reverse are equivalent and there are no self-transitions, thisis done for each object, then
atotal of 820 x 3 = 2460 correlation matrices would be needed. Add to thisthe 41 ART 2 categories and up
to 2501 activations could be needed to recognize the three airplanes. As seenin Table 6, VIEWNET needs
only 30-some odd nodes to categorize this database of 4000 examples since, by using unordered voting, it
avoids the O(N?) penalty for using view transition information given N 2-D views.

Appendix A: CORT-X 2 Equations

The equations for the CORT-X 2 filter as described in Section 5. are discussed below. Figure 4a showsthe
model flow chart and Figure 4b shows the kernels used in the CORT-X 2 filter algorithm. Table 1
summarizes the parameters used in the simulations.

Step 1. Discounting the Illuminant

The 1-D cross-sections of the on- and off-center kernels are shown in Figure 4a.

ON-C and OFF-C Network

The activation x;; at node v;; at position (i, j) obeys the shunting on-center off-surround equation:
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d

Emi‘f = —Azi; + (B — 2;5)Csj — (zij + D)Ey; (8)

and Tij obeys the off-center, on-surround equation:

d » . — e o —_—

75 = —A(zi; — S) + (B — z4)Cij — (2i5 + D)Ey; (9)
where C;, Eﬁ, E;, Eij are discrete convolutions of the input with Gaussian kernels of the form:

Kij = Y Ipg Kpgij (10)
P.q

with

Kpqij = exp {—a~?log2[(p— i)* + (¢ - 1)°]} (11)

rquy

The on-center kernel of ¥4j is the off-surround kernel of %;, and the off-surround kernel of Zij isthe
on-center kernel of x;. Then, Cij = Eij Eyj = GCij, Also, in Equations (8) and (9), B = Dad
D = B. At equilibrium in the ON-C network,
s — 2_(p,q)(BCpqii — DEpqij)Ipg
lJ = [ L]
A+ 2 00,0 Craii + Epgii)Ipg
and in the OFF-C network,
_ AS+ 2 .0)(DEpgij — BCpyij)Ipg

(12)

T = (13)
! A+ 30 o Crai + Epgij Hpg
Step 2. CORT-X 2 Filter
Oriented receptive fields are elliptical as shown in Figure 4b so that
2 2
y £
M 14
a2 (14)

where a; is the major axis and b is the minor axis with a; e b,. Two sizes of receptive fields were used,

indexed by the subscript s with 1 = small and 2 = large scale. Orientations were chosen at angles spaced
every A/8 degrees indexed below by the subscript k.

Simple Cells: The output of the pair of simple cells of scale swith activation variable x = x; and receptive
field orientation k is defined by

Ss(%,j, k) = max[L,(z, k) — as Rs(z, k) — Bs, 0] (15)
and
S,n(i, 3, E) = max{R, (z, k) — &, L (2, k) — By, 0] (16)

where L, (x, k) and R, (x, k) are the image inputs to the left- and right-oriented receptive fields:

e
L,(:c,k) i Z{P.EJEI-(t.J,kJ Py~pq (1?)
E(ma)e!.(i.j.k} Wpq

and




s e
R,(E,k} - E(PJ}E"J(F:J-*} P9™pPq (18)
2 (p.q)€rs (irisk) WP

and w,,, is aweighting factor proportional to the area of a cell covered by the receptivefield. L and Rin §
and S, indicate that each receptive field is sensitive to the opposite direction-of-contrast from its companion.

st

The ON and OFF networks have separate sets of simple cells with the ON simple cells denoted by ~'st and

+ - o
5/r and the OFF simple cells denoted by SaL and Sa R.
Complex Cells: The complex cell output C, (X, K) is defined by

Ca“nj: k] = F[‘S:'-L(il j:r k) = S:-R(i1 j: k) +S:L{i: j. k) T S.;R(il jr k}] (19)

These cells are sensitive to the spatial scale s and amount-of-contrast x with orientation k, but are insensitive
to direct ion-of-contrast.

Hypercomplex Cells (First Competitive Stage): The hypercomplex cells D, (i, j, K) receive input from the
spatial competition among the complex cells:

Cs(i,j, k)
e+ p Em Zy Cs(p,q, m)Gs(p,q,%,5, k)

The circular oriented competition kernel G (p, g, i, j, k) shown in Figure 4c is normalized such that

Y Gi(pa,i,5 k) =1 (21)
r.q

Partial cells at the kernel periphery are weighted in proportion to their area (taken to be one square unit).
Grey areasin Figure 4c are inhibitory. Cells with centers within the one unit wide band through the middle of
the kernel do not contribute to the inhibition. In our simulations, the small- and large-scal e kernels were 2/3
the diameter of the small and large scale major axes of the ellipses shown in Figure 14b, respectively.

D, (i, j, k) = max —r,0|  (20)

Hypercomplex Cells (Second Competitive Stage): Hypercomplex cells DG, j) compute the competition
among oriented activities D1, j, K) at each position. This process is simplified as a winner-take-all process:

Dy(i, ) = Da(i, j, K) = max D, (i, j, k) (22)

where K denotes the orientation of the maximally activated cell.

Multiple Scale Interaction: The interaction between the small and large scalesis defined by

Bya(i, i) = Di(3,5) Y _ Da(p,9)U(p, 9,1, ) (23)
nq
where the unoriented excitatory kernel U (p, q, i, j) iscircular asin Figure 5b and is normalized so that

S Ui =1 (24)
g
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In our simulations, U (p, q, i, ) had adiameter 2/5 as large as the mgjor axis of the large-scale elliptical
filter. Cells covered by the kernel contribute to the excitation to the extent that their areais covered by the
kernel. The smaller kernel D,(i, j) in (23) localizes boundary segments and suppresses noise near the

JUMP TO TOPIC boundary, while the larger kernel D,(p, g) suppresses noise far from the boundary.

— Boundary Completion: The large detectors D.(i, j), are capable of responding at |ocations where pixel
signal strength has been reduced by noise. Such boundary signals may, however, be poorly localized. To
overcome this tradeoff between boundary completion and localization, large-scale cells interact
cooperatively as:

Bﬂ(isj} o Dg(i,j) max EDE(P:‘LKJO(PI q,%,J, K) — 6,0 (25)
F.q

Kernel O(y, X, K) is defined by the one-unit-wide white strips in Figure 4e. Cells with centers lying within
the one unit wide band contribute to the cooperative process. The kernel is normalized so that:

(p,q) in kernel

In the ssimulations, the length of the kernel is 3/5 as long as the major axis of the large-scale ellipse.

CORT-X 2 Output: Thefinal output of the CORT-X 2 filter is the sum of the multiple scale interaction
and the cooperative process:

Appendix B: Fuzzy ARTMAP Equations

In the following, all architectural references are to Figure 11. Three parameters determine Fuzzy ART
dynamics: a choice parameter + > 0; alearning rate parameter 2, [0, 1]; and avigilance parameter A, [0,
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1].
Input preprocessing: Input A into a Fuzzy ART module is normalized by preprocessing the vector A as
a
A= — (28)
a

where the norm operator, | * | is defined as

M
jal = 3 fal (20)

k=1

Inputs are then complement coded by setting A = (a, a°), where

ai =1-a (30)
Category choice: Category choice is determined by choosing the maximum choice function T3

Tj =maz{T} :j=1...N} (31)
where N is the number of nodesin F'f, and T? is defined by
3 |A A w|
Ti(A) = ool w] (32)

where wj isthe template belonging to the jth Fy node, and the operator /A is defined as the fuzzy AND
operation:

(P A ) = min(pe, q) (33)

for M-dimensional vectors p and q (Zadeh, 1965). If more than one T3 is maximal , the category j with the
smallest index is chosen. When category J is chosen, the node representing that category has activation

vi =19 =0forj 3 The fT activity vector xa obeys
2 { A if Fy§ is inactive

X" =1 AAwS if the J"F§ node is chosen (34)

M atch resonance and mismatch reset; A match and resonance are said to occur if

AAwS|

i Blnal” 2 3 WA 35
T (35)

Otherwise, amismatch reset occurs. When areset occurs, the currently active node J is set to zero for the
duration of the current input presentation and a new maximal node is found until the chosen node J satisfies
Equation (35).

Map Field: The Map Field Fab becomes active whenever one or both of ART, or the supervised input b is
active. Supervised inputs b, are in 1-to-1 correspondence with nodes in the Map Field. If node J of Fiis
active, then its weights w3’ activate Fo, If asupervised input b, becomes active, it directly activates Fa

b
node®k at an activation level of b, = 1. The F& activity vector xa> obeys

b Aw3® if the Jth F{ node is active and b is active,
ab ) Wy if the Jth F# node is active and b is inactive, (36)
b if F§ is inactive and b is active,
0 if Fj and b are inactive.

"
I



Match tracking: At the start of an input presentation to ART,, the vigilance parameter is set to a baseline
vigilance Pa = P. Parameter A isthe Map Field vigilance parameter with 0d A, d 1. If

1x**| < pas|bl (37)
then subject to
Pa f:-_ Pmazx (38)
match tracking causes A, to be increased so that
A AWS
Pa = |T"J—I + € (39)

where nisasmall positive constant. If match tracking causes Equation (38) to be violated, then match
tracking isinhibited and learning takes place. If after match tracking, Equation (38) is still satisfied, then a

new search cyclein ART, leads to a different F3' node J with

|AAWS| > pa]A| and |bAwWS®| > pas|b] (40)
or, if no such node exists, ART,, is shut down until it next gets an input.

L ear ning: Once search ends and a winning node Y3 ischosenin ART,, the Fuzzy ART weight vector WJ of
the winning node is updated according to

(W3)™ = Ba(A A (W5)") + (1 - Ba)(w§)*" (41)

where W$(0) = 1 The weight vectors ™3, j ~ J of non-winning nodes are not updated.

The weight vectors from the Fuzzy ART modules to the Map Field are updated according to

ﬁ“"h[x:h] + “ = ﬁa&][w?th]ﬂ:d Ifj‘ =.J
{""ﬁ]"‘“ = {wf:}ald ifj#J (42)
1 initially

where h(zg") =1 if 2 > 0 dse h{z3"] = 0, When 2, =1, Fuzzy ARTMAP s said be in the fast learning
mode, when 0 d 2, < 1, Fuzzy ARTMAP isin the slow learning mode.

Winner-take-all: A choice, or winner-take-all network F*a sits above the Map Field F&. A winner-take-all
field is needed above the map field when slow learning has been in effect from ART, to the Map Field

becauseit isthen possible that a chosen F3 node may read out activation to more than one node in the Map
Field during test mode.

The winner-take-all field isimplemented algorithmically as

1 if j = arg max; [z$?]
wie o P For 43
4 { 0 otherwise. (43)

Since nodes in F*a are in one-to-one correspondence with nodes in the supervised field F°, the winning
node in Fa a represents VIEWNET' s choice of the 3-D object given the single 2-D view that the network
has experienced. When evidence accumulation is used, a working memory, asin Section 10 interpolates the
Map Field and the winner-take-all 3-D object recognition field.
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Chapter 6

Industrial Applications of Hierarchical Neural
Networks: Character Recognition and Fingerprint
Classification

JUMP TO TOPIC
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The hierarchical neural network (FINN) proposed in [7, 11] is aneural network structure that can be used
efficiently in pattern recognition problems having alarge number of classes, each containing awide variety of
samples. In this chapter, we present two industrial applications of this hierarchical neural network structure,
namely, a document processing system called HAL doc and a fingerprint identification system called HAL&fis,
for which prototypes are generated by Halici Software Inc. HNN isimplemented for optical character
recognition as a part of HALdoc and tested on computer fonts, character samples extracted from real
documents, and also on handwritten digits. UHNN, which is the unsupervised version of HNN, is
implemented for fingerprint classification as a part of HALafis[12, 22].

The hierarchical architecture of HNN isinspired by the pre-attentive and attentive levels related to attention
concept in human cognition [9]. While the pre-attentive level is represented by self-organizing feature map
(SOM) which clusters similar sasmples and makes a rough decision about the outcome; the attentive level is
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formed by dedicating to each cluster a recognition module that has the expertise on the discriminating features
within the cluster. Each recognition module consists of its own feature extraction module and classifier.
Feature extraction is performed using principa component analysis (PCA) implemented by principal
component neural networks. Extracted features are classified by multilayer perceptron (MLP). The system has
avoting mechanism applied to a selected set of recognition modules. In UHNN the MLP layer is replaced by
another SOM layer and voting mechanism is removed.

1. Introduction

Thefirst stage of a simple pattern recognition system is feature extraction, which constitutes amajor part of
the system. The feature extraction process can be viewed as a transformation from the pattern spaceto a
feature space. The features extracted should give areliable representation, free from redundant information, of
the raw input pattern. From amore formal point of view, the reliability of the representation corresponds to
minimization of an error criterion in a reconstruction process. Eliminating redundant information mostly
implies a feature space of lower dimension than the pattern space. Reduction in dimensionisamust asit
provides away to reduce the number of free parameters of the classifier in the system, which leads to a better
generalization capability.

PCA [4, 16] isastatistical feature extraction method that meets the requirements described above. It extracts
optimal orthogonal features from an input process in the mean-squared error sense and is equivaent to the
Karhunen-L o€ ve transform of a stationary stochastic vector process. As PCA yields alinear transformation,
which only depends on the distribution of input patterns, it can be viewed as an unsupervised form of feature
extraction. PCA can be implemented directly or by self-organizing neura networks [25] to form unsupervised
neural preprocessing modules in pattern recognition problems [1, 21].

The second stage of pattern recognition system isa classifier. Classification is a mapping from feature space
to the classes. ANNSs (Artificial Neural Networks) provide a general framework with a highly parallel
architecture for implementing mapping from severa input variablesto several output variables and are used
as classifiersin many pattern recognition problems. In the statistical approach, classification isimplemented
by calculation of Bayesian a posteriori probabilities but it has been shown that when trained appropriately,
some ANN models can directly calculate posterior probabilities [17, 18]. A desired property of a classifier is
that its complexity, i.e., number of free parameters in the classifier, should not grow mainly with the
dimensions of the input or the size of the training set. ANNSs provide such classifiers and are similar to the
mixture density estimation modelsin SPR (Statistical Pattern Recognition) [4].

MLPs[30] form the most common models used in classification problems as they can implement arbitrarily
complex mappings. ML Ps provide easy-to-use classifiers but have deficiencies regarding the learning speed
and convergence to an optimum solution. The back-propagation training algorithm [30] needs alot of passes
over the training set and does not always guarantee the best possible performance. In practical applications,
the algorithm is modified for minimizing learning time and maximizing robustness in terms of convergence to
an optimum solution [8]. PCA extracts components that are statistically orthogonal to each other; when the
components of the input vector of an MLP are decorrelated, training is faster and more robust [19].

Theoretically, asingle MLP classifier can be used in arbitrary pattern recognition problems but practical
implementations show that the classifier should be of huge size, which yields an infeasible training process. A
preprocessing stage is still needed with ANNS. It isusually not easy to design a feature extraction module,
and simple modules such as PCA do not suffice to reduce the complexity of the classification network.

An approach to cope with the complexity of the problem is to use a preclassification stage in the beginning of
the system to create subsets of the classes and handle each subset by a different recognition module. A way of
preclassification is clustering the input space. Clustering can be viewed as an unsupervised preclassification
process in which the system itself decides about the elements of the subsets of classes using the distribution of
patterns. SOM [15] isawell-known ANN model used for clustering. SOM has a close relationship with the
K-Means Clustering algorithm but it also provides atopological ordering of model vectors corresponding to
clusters. The model vectors, together with the topology in the output layer of the network, forms a snapshot of
the input distribution on alower dimensional space. Clustering yields convex regions corresponding to the
clustersin the input space and higher correlation is expected between the components of the vectors belonging
to asingle cluster. When PCA is performed over each cluster, a better compression is expected.

A drawback of the clustering techniqueis that preclassification error is usually high, as one expects alot of
input patterns at the borders of clusters. A logical way, which has been implemented in HNN to cope with the
preclassification error, is merging the neighboring clusters to obtain overlapping regions of clusters.
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The last point that affected the structure of HNN is related to the technique of using multiple classifiers for
classification to decrease classification error [14]. The recognition modules of overlapping clusters can form a
committee of classifiers whose outputs can be processed to make a better decision about the class of the input
JUMP.TO TOPIC pattern. In HNN, we have implemented a voting mechanism among a set of activated classifiers.

— In this chapter, we present the HNN and UHNN, which isamodified version of HNN, and their utilization in
two industrial applications, namely, the document processing system HALdoc and the fingerprint
identification system HAL afis. HALdoc contains a character recognition system based on HNN, which is
tested in both the classical multifont character recognition problem [7] and on handprint digit recognition.
HALafis contains a classifier based on UHNN, which is used to classify fingerprintsin an unsupervised
manner prior to identification [12]. The organization of the rest of the chapter isasfollows. In Section 2, a
description of architecture of HNN and training algorithmsis given. Section 3 describes the character
recognition module of HAL doc and summarizes the performance of experimented networks. Section 4
describes the UHNN and its use for fingerprint classification in HAL afis. Section 5 concludes the study.

2. The Hierarchical Neural Network
2.1 Network Architecture

The overall system has a hierarchical architecture based on preclassification of input data by a SOM network
with m-by-mneuron output layer. Preclassification network is followed by an m-by-m array of recognition
modules (see Figure 1) which are made of a PCA network cascaded with an MLP. Each recognition moduleis
triggered by a unique unit on the output layer of the SOM network. A set of winnersin the output layer of the
SOM network trigger recognition modules to classify the input data. In the case of multiple winners, avoting
mechanism is applied to decide about the pattern class.

The flow of data through the network can be summarized as follows (see Figure 1): The input patternisfirst
preprocessed to obtain vectors that provide the input to the preclassifier and the recognition modules. The
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purpose of the preprocessing stage isto get an intermediate representation of the input pattern that can be
processed using SOM and PCA. The representation is supposed to be a normalized one, which can provide
invariance to distortions. It is possible to handle other forms of feature extraction when PCA does not suffice
and it may be better to use different preprocessing modules for the preclassifier and the recognition modules.
Having been fed with the preprocessor output, the SOM preclassifier chooses a set of first K winners. Each
winner triggers the corresponding recognition module and the output of preprocessor corresponding to the
recognition modulesis fed to the activated networks in which it is compressed to principal components by the
PCA and classified by the MLP classifier. The output of arecognition moduleisthe class label for the input
and a confidence factor. Each unit on the output layer of the MLP corresponds to alabel and the output value
of the unit isthe confidence factor for the label. The label with maximum confidence and the corresponding
confidence factor forms the output of the recognition module. The label assigned by the majority of the
recognition modules triggered by the first K winners of SOM forms the output of the system. When thereis
no majority, the label with the maximum number of votes and maximum confidence is chosen as the final
output.

2.2 Training Algorithms

The training of HNN starts with training of the SOM network, at the end of which the training datais
clustered and each cluster correspondsto a unit in the SOM output layer. Then, for each unit, its
corresponding cluster and the clusters corresponding to its neighboring units are merged to obtain alarger
cluster for the unit. The neighboring units can be chosen to be the four nearest neighbors or the onesin the
3-by-3 neighborhood. Choosing large neighborhood decreases preclassification error and supports the voting
mechanism but increases training overhead. Then, for each cluster obtained, a PCA network istrained; thisis
followed by the training of a corresponding MLP network. In implementation, standard algorithms reported in
the literature are used for training the network modules. The SOM Network is trained using the algorithm
givenin [27]. PCA isimplemented by the self-organizing network and learning algorithm given in [25]. For
MLP, the algorithm given in [26] has been used. These algorithms are explained in detail in the following
subsections.
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2.2.1 Self-Organizing Feature Maps

SOM is aspecia neural network that accepts n-dimensional input vectors and maps them to alower (usually
JUMP'TO TOPIC two) dimensional output plane. The topology for atypical SOM network is shown in Figure 2. It has n input
S ——— nodes and m-by-m output nodes. Each output node j in the SOM network has a connection from each input
— node i and w; denotes the connection weight between them.

There are two phases of operation in SOM: the training phase and the classification phase. In the training
phase, the network finds an output node such that the Euclidean distance between the current input vector and
the weight set connecting the input units to this output unit is minimum. Thisnodeis called the winner and its
weights and the weights of the neighboring output units of the winner are updated so that the new weight set
is closer to the current input vector. The effect of update for each unit is proportional to a neighborhood
function, which depends on the unit’s distance to the winner unit. This procedure is applied repeatedly for all
input vectors until weights are stabilized. The choice of the neighborhood function, the learning rate, and the
termination criteria are all problem dependent. The classification phase is simple once the training phaseis
completed successfully. In this phase, after applying the input vector, only the winner unit is determined.

.....

|
s s

Figure 2 Network topology of the SOM. (From [12], Copyright © |EEE.)

The training steps of SOM are as follows:
1. Assign small random values to weights w = [w;;, W, ....W;];

2. Choose avector x from the training set and apply it asinput;
3. Find the winning output node d;,, by the following criterion:

d,.= n'jin{ﬂx- w‘,.“} (1)

where I ; || denotes the Euclidean norm and w; is the weight vector connecting input nodes to the output
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nodej;
4. Adjust the weight vectors according to the following update formula:

w, (8 + 1) = w, () +1(0)[x,(6) = w, (O] N Ui, 0) 2)

where w; is the it component of the weight vector w;, «(t) is the learning rate and N(j.t) isthe
neighborhood function;
5. Repeat Steps 2 through 4 until no significant changes occur in the weights.

The learning rate -(t) is adecaying function of time; it is kept large at the beginning of the training and
decreased gradually aslearning proceeds. The neighborhood function N(j,t) is awindow centered on the
winning unit d,;,, found in Step 3, whose radius decreases with time. Neighborhood function determines the
degree; an output neuron j participates in training. This function is chosen such that the magnitude of weight
change decays with increase in distance of the neuron to the winner. This distance is calculated using the
topology defined on the output layer of the network. Neighborhood function is usually chosen as rectangular,
2-dimensional Gaussian or Mexican hat windows. In the implementations presented in this chapter, a
Gaussian window is used.

2.2.2 Principal Component Analysis Network

The Principal Component Analysis (PCA) is a statistical method that performs a linear mapping to extract
optimal features from an input distribution in the mean-squared error sense. The method originated from the
Karhunen-Lo€e ve (K-L) transform which was originally developed for continuous time signals. PCA can be
implemented by self-organizing neural networks to form unsupervised neural preprocessing modules for
classification problems[1, 24].

Animportant virtue of PCA isthat the extracted components are statistically orthogonal to each other.
Orthogonality of components of the input vector of a MLP network resultsin speed-up in training and robust
convergence [19].

The K-L transform, which is used in PCA, finds the representation of the input vectorsin terms of the
eigenvectors of their covariance matrix. It has an excellent energy compaction property; therefore, it is
frequently used in statistical pattern recognition. The method is asfollows [4, 12, 16].

Given an ensemble of M real-valued vectors, x* [ 'ER", 1 dk dM, their covariance matrix Ry, is calculated as

R, =—1ﬁﬁ(x* —-R)(x* -%)7 (3)
M k=1
where
b =~Lix” (4)
M k=l

The unit length eigenvectors of R, are the orthogonal basis for K-L transform and are obtained by solving the
following equation:

RY¥ =¥A (3)

where > isadiagona matrix having the eigenvalues of R, and ” is the modal matrix having eigenvectors of R,

for its columns ordered in decreasing eigenvalues. After determining ", the K-L transform of any vector can
be found asfollows:

v="Tx (6)

Reducing " to "m and eliminating the last (n-m) eigenvectors results in an m-dimensional subspace spanned by
the remaining m eigenvectorsin "m. The subspace spanned by these eigenvectorsis called the principal
subspace. The components of the projection of a vector in the principal subspace are called the principal
components. It resultsin dimensionality reduction if "mis used instead of " in Equation (6). If the mth
eigenvalue is considerably small when compared to the first eigenvalue, the vector transformed to the



principal subspace carries approximately the same information as the original vector although the
dimensionality is reduced.

PCA can be implemented by the neural network shown in Figure 3. The network has two layers consisting of
linear units. There exists a hierarchical lateral connection scheme in the output layer. Each output unit k
receives input from each input unit and the output unitsj < k.

For a network with n input units and m output units, the activation of an output unit k is given by

Ye = WX+ 30 (WiX)
Jk {?:l
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wherey, denotes the activation of the output unit k, X =[xy, X,, ..., X;]T denotes the input vector, w, = [w,,
Wy, - W] T denotes the weight vector of the output unit k coming from the input layer, and u;  denotes the

e weight of connection from the output unit i to the output unit k. The input processis assumed to be a zero
WJUMPTO TOPIC mean, wide-sense stationary process.

— The weights between the layers are updated by

Aw, =1 (R‘w, + Eu” R,w,
s (8)

and normalized to have a magnitude of unit length. The lateral weights are updated by
Au,, = —pn E
[ [Fr y J:] (g }

Yaand - in (8) and (9) are learning parameters, and they should be kept small enough in order not to violate the
assumption of small learning steps. Training ends when lateral weights converge to zero; by that time weights
between the layers converge to "™, that is, the first m eigenvectors of R,.

Figure 3 Lateral network for extracting m principal components.

2.2.3 Back-propagation Algorithm
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Back-propagation algorithm [30] is alearning algorithm applied on multilayer feed-forward networks
consisting of nonlinear units. An L layer network is given in Figure 4.

The activation for aunit j in layer £ denoted by a':' iscaculated as

a) = wa_jyf'l £21 it

4
where W i. j represents the weight of the connection from the it unit in the (¢=1)" layer to the jt unit in the

layer £. £ = 0 correspondsto theinput layer in which yi=x,, Output of the units are determined by a
shifted sigmoid function given as

W

y¢ = f( aﬂ}=;~—f}.5 21

1+e " (1)

The training session consists of presentation of randomly selected samplesin the training set and update of
weights using the desired output value for the presented sample. An optimum set of weightsis obtained after a
number of passes over the training set. Weight update equations can be summarized as follows:

{ _ off =]
Aw, =€, Y, ¢zl (12)

¥
where 0 < pu< listhelearning rate. 8y is called the error derivative and given by

¢
where €k denotes the error for the kih neuron at the £ o layer. For output layer, error is calculated using
¢ _ t -
e =d, -y, £=L
(14)

where L isthe index of output layer and d, is the k" component of the desired output vector. For hidden
layers, we have

el =X "w!) 1S¢<L
; (15)

In practical applications, the algorithm needs many passes over the training set and the algorithmis
complemented with some techniques to minimize the number of training cycles. When aweight in the
network approaches zero, it cannot recover for along time because the learning steps al so approaches zero.
Thisis called the flat spot problem and it causes a decrease in learning speed. In this study, atechnique given
in [8] isimplemented to cope with the flat spot problem.

3. Character Recognition Module of HALdoc

HALdoc is a general-purpose document processing and archiving system. The documents archived in the
system are not restricted only to text files. It can also archive images, sounds etc., in addition to text files. The
system includes a built-in OCR program and a Scan Control Subsystem to get images of new documents[2, 3,
5,7, 10, 11].
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The block diagram of the text reading system developed for HALdoc is shown in Figure 5. In this system, a
document imageis taken in PCX format. It is converted into bitmap and binarized using agray level
histogram. Then, a document analysisis performed to separate text areas from graphics and photograph areas.
At the same time, the lines in the text areas are found. Then, character segmentation is done with contour
following in each text line to extract character images. The characters found are normalized with a scaling
invariancy transform; then they are fed to the character recognition module of the system.
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3.1 Multifont Character Recognition

The character recognition module is the HNN given in Figure 1. In the implementation of the recognition
» JUMPTO TOPIC modul e, the preprocessing stages only perform size normalization by scaling the input image to a constant

S ——— size grid without preserving the aspect ratio. For the recognition modules, the image is scaled to a 10-by-7 16
— gray level grid; for the preclassifier, it is scaled to 10-by-7 binary grid.

For a character recognition module, construction of the training set is an important problem. The training set
should represent variations of character shapes and distortions. It is best to a use considerably large number of
samples from various document images [28]. In this study, a database is constructed using high-resolution
computer fonts. For some of the samples, scanner outputs for each character are simulated by adding noise to
the screen image of these computer fonts. Added noise consists of clearing or enlarging the edge points on the
image with a probability proportional to the slope of the curve that the edge point resides on and producing
some blobs on the main body of the character. This simulator is built intuitively after examining scanned
images of some documents.

For evaluating the generalization capability of the classification module, two types of test sets have been used.
The first type of test sets has been implemented using computer fonts as in the case of the training set. The
second type of training set. represents the real environment and has been prepared using randomly selected
samples from scanner images of real documents like magazines and books. The documents are processed
using the OCR system but images resulting from incorrect segmentation are eliminated during the sampling

Figure5 The automatic text recognition systemin HALdoc.

A character set consisting of letters in the Turkish and English al phabet, numbers, and most common symbols
is chosen for the classifier. Not all of these symbols correspond to different classes. In some of the fonts, a
single character image can correspond to multiple characters, e.g., | and | have the sameimagein al of the
sans-serif fonts. Furthermore, as aresult of the preprocessing stage, the classifier does not have the ability to
differentiate some of the lower case and upper case letters, e.g., the couples (Cc), (Ss). After eliminating such
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characters, a set consisting of 73 different classes that corresponds to 90 characters is constructed as shown in
Figure 6. The characters that are not separated by a comma are elements of the same class.

liaanaro®amcscel A
B L L, e, B T U
i, e, s B, Y, L B

Figure6 Character set of the recognition module.

The character set does not include punctuation marks as the segmentation algorithm is designed to detect
them using the structural information available in the segmentation process. The structural information is also
used to differentiate upper case and lower case letters for pairs (Cc), (Ss), (Pp), (O0), etc. in the contextual
processing stage of the OCR system that the recognition module residesin.

Thetraining set is built from 8, 10, 12 and 16 point size samples without noise, and 10 and 16 point size
samples with noise, from 36 different stylesincluding italic styles of 14 font families. The physical size of
charactersis calculated for 300-dpi resolution. The training set has 16,152 characters. The system is tested on
both computer fonts and samples collected from real documents. The test set of computer fontsis built with
14, 11 and 9 point size samples without noise, and 11 point size samples with noise, from eight font styles of
five font families. The test set does not include any font family used in the training set. The test set of rea
documentsis built from randomly chosen samples from 23 different Turkish and English documents scanned
at 300 or 200 dpi resolution and contains 6283 samples (see Figure 7). The samples from real documents are
extracted using the OCR system that the character recognition module is designed for; but in the sampling
phase, erroneous sampl es resulting from incorrect segmentation are eliminated. As al the test sets prepared
for the system are free from segmentation error, the recognition rates reported in this chapter are a measure of
the performance of the hierarchical network proposed in Section 2.

The parameters of the experiments concentrated on the compression ratio for PCA modules and the size of the
output layer of the SOM. After some experiments, the size of the output layer of SOM is constrained to
6-by-6 or 9-by-9. The size of hidden layers of MLPsin each module is chosen to be 70 units. The PCA
networks compressed datato 30 or 15 principal components. It is possible to optimize the size of each PCA
and MLP couple but that is not desirable, asit istime consuming.

Some of the networks, together with their recognition rates on the training set, are listed with the parameters
of the networksin Table 1. The first column of the table liststhe ID of the network. The second column lists
the size of the output layer of the SOM networks. The third column refers to the size of the neighborhood
used in merging the training sets for the branch networks. The fourth column refers to the number of principal
components extracted from the input grid for each classification module. The fifth column gives the number
of gray level colors of the image that provides the input to the branch networks. The sixth column givesthe
recognition rate of the whole network on the training set. The training set recognition rate is measured without
using the voting mechanism.
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Figure7 A sample document used in testing the OCR system.
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High performance on the training set shows that the system can learn easily. To measure the generalization
ability of the system, the networks has been tested on the samples collected from real documents.

——————————— Table 1 The networks used in the experiments and their recognition rate on the training set.
_JLIMP T0 TOPIG

—" . Size SOM Merged Neighbors No. of PCs I_Gervaelys Training Set Rec. Rate %
6-by-6 0 30 | 16 99.26
6-by-6 4 30 | 16 99.54
6-by-6 8 30 | 16 99.80
6-by-6 8 30 | 256 99.73
9-by-9 0 15 16 98.71
9-by-9 8 15 | 16 99.85
9-by-9 8 15 | 256 99.75

Table 2 lists the results. Columns 2, 3, 4 and 5 list the recognition rate on the test set constructed from real
documents. The parameter K refers to the number of recognition modules that contribute to voting and K = 1
means that voting mechanism is not activated.

Table 2 Recognition rate on the test set of real document samples.

TEST SET RECOGNITION RATE (%)

D K=1 K=3 K=5 K=7
1 90.56 91.71 92.03 90.83
2 93.92 94.89 94.99 95.23
3 95.30 95.89 96.12 96.32
4 94.97 95.70 95.78 96.04
5 89.61 88.37 - -

6 93.25 95.11 95.00 95.32
7 94.22 95.56 95.75 95.83
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It is observed that the voting mechanism increases the performance, but using an excessive number of winners
does not always guarantee an increase in recognition rate. Comparison of the performance measures of
Networks 1, 2, and 3 shows that assigning MLPs to multiple clusters has an important effect on the voting
mechanism. As the number of neighboring clusters that are merged for a single recognition module increases,
the winners are guaranteed to know something about the pattern they vote for. Increasing the number of voters
causes novice recognition modules to contribute to the voting, which resultsin a decrease or anegligible
increase in the recognition rate. For Network 3, the voting mechanism causes a 1% increase in recognition
accuracy but using more winners slows down the speed of recognition. One should choose between speed and
accuracy.

An important source of error for a machine-printed OCR system is due to the confusion between the similar
characters. The error matrix shows a high failure rate for some of the input classes. For example, the pairs
(c,e), (6,6), (5,5) are among these classes. One reason for thisfailure is that the resolution of theinput grid is
very low. Adding more gray levels or using alarger grid can provide a solution to the problem but the
recognition speed should be sacrificed. A possible solution is using a postprocessing module containing
specidized classifiers that can differentiate the most remarkable couples.

The proposed hierarchical neural network has a very high recognition rate of 99.80% on the training set
prepared using computer fonts, which shows that it learns very easily. The generalization capability of the
system is measured both on character samples collected from scanned images of real documents and on
computer fonts that are not used in the training set. Assuming no segmentation error, the recognition ratein a
real environment is between 95.32% and 96.32%, depending on the voting policy.

It is not possible to compare different recognition systems using only the test set performance asthey are
trained and tested in different environments. It is best to consider test set and training set recognition rates,
together with the nature and size of the training and test sets. In [6], atest set recognition rate of 97.2% and a
training set recognition rate of 99.5% are reported for a neural network classifier trained and tested in an
environment of scanner images of 12 different documents. In this study, atraining set of 7102 samples from
five different documents, and atest set of 8730 samples from seven different documents are reported. In [26]
and [27], test set recognition rates of 97.5% and 96.7% are reported, respectively, where atraining set of
110,000 samples from 200 different fonts and 50 documents and a test set of 10,500 samples from five
documentsis used. The training set recognition rate is given as around 99% in both of the studies. A more
recent study [29] gives performance measures for a neural character classification system trained and tested
using aNIST database of isolated alphanumeric characters. The recognition rate on the test set is given as
89.40% for lower case characters and 96.44% for upper case characters. All of these studies report recognition
rates for neural character classification systems and the data shows that the system implemented in this study
is comparable with existing studies.
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The recognition rates given in Table 2 indicate that Network 3 has the highest performance measures on real
documents and has a good performance even without voting. This network has been further tested on
untrained computer font samples that were explained previously. The results of these tests are given in Table

JUMP TO TOPIC 3.
— Table 3 Recognition rate of the Network 3 on test set of computer fonts.
Number of Winners Recogition Rate (%)
K=1 97.50
K=3 98.17
K=5 98.13
K=7 98.13

These tests on the test set of computer fonts show that the training set used cannot simulate the real
environment perfectly. The noise level in poor-quality imagesis much higher than the noise added to the
perfect images of characters and an inevitable kind of distortion, skew distortion, is not simulated at all.
Increasing the number of fonts used in training the network and using samples from real documents can
provide a better system in the real environment. However, the resultsin Table 2 gives information about the
general behavior of the hierarchical network proposed. Although the test set of computer fonts represents an
environment closer to the training environment, the problem is still acomplex one as there are 75 different
classes, each having awide variety of samples from 44 different font styles. Reaching a recognition rate of
98.17% for such a complex set is quite important since we observed in our experiments that it was not even
possible to make the training session converge when a single MLP classifier was used.

In an experiment with asingle module of PCA network and MLP classifier, we trained this module using
computer fonts and tested on real document samples. The maximum possible recognition rate was 99.58% on
atraining set of computer fonts and 88.96% on the test set of real document samples. These test set results are
much lower than the results obtained for the hierarchical architecture for which the recognition rate is 96.32%
with real document samples and 99.80% with the training set. These results strongly support that the
preclassification technique drastically enhances the performance.

3.2 Handwritten Digit Recognition
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In the experiments on handwritten digit recognition, a database in afreely distributed CD-ROM of “NIST
Form-Based Handprint Recognition System” has been used. The system of NIST (The National Institute of
Standards and Technology, USA) provides a part of the NIST Specia database 3 (SD3) which contains
313,389 segmented and labeled handwritten character images from 2100 different writers. The database that
has been used includes 119,740 segmented and |abeled images of handwritten digits from 1000 different
writers. In the experiments, the samples available were divided into two disjoint groups for testing and
training.

The preprocessing scheme given in “NIST Form-Based Handwritten Recognition System” has been used and
it consists of the following stages:

1. Size Normalization: The image of the character is scaled to a 20-by-32 grid without preserving the aspect
ratio and placed at the center of a 32-by-32 grid. The scaling algorithm (referred to as second-generation
normalization) applies a simple morphological operator to normalize the stroke width within the character
image. If the pixel content of an image is significantly high, then the image is eroded (i.e., strokes are
thinned). If the pixel content of the image is significantly low, then the image is dilated (i.e., strokes are
widened).

2. Slant Nor malization: Another great variation observed in handwritten digit images is the slant of the
characters. For that reason, the slants of the characters are normalized by a technique that uses horizontal
shears in which rows in the image are shifted left or right to straighten the character in the image. Given a
segmented character image on a grid, the top and bottom image rows of the grid containing black pixels are
located. The left-most black pixel islocated in each of the two rows and a shifting function is calculated to
shift the rows of the image so that the left-most pixel in the top and bottom rows lines up in the same column.
The rows between the top and bottom are shifted by lesser amounts based on the linear shifting function.

A slopefactor f, defining the linear shifting function, is calculated as

s t, — b,
A

(16)

wheret, isthe vertical position of the top row, b, is the vertical position of the bottom row, t, is the horizontal
position of the left-most black pixel in the top row, and b is the horizontal position of the left-most black
pixel in the bottom row. The slope factor is used to compute a shift coefficient as follows:

s=(r-m)f an

wherer isthe vertical row index in the image and misthe vertical middle of the image. This causes the
shifting to be centered about the middle of the image. A positive value of the shift coefficient causes the row
to be shifted s pixel positions to the right and a negative value of the shift coefficient causes the row to be
shifted s pixel positions to the | eft.

A major problem with training is that the convergence rate of the PCA network istoo slow. The PCA network
simply calculates the eigenvectors of the autocorrelation matrix of the input image; so it isreplaced by a
standard FORTRAN linear algebra routine in EISPACK whose code is provided in the CD-ROM of the
“NIST Form Based Handprint Recognition System.” The speed gain is enormous, but still the training process
is computationally expensive and it takes about 3 to 4 days to train a complete system of 36 subnetworks on a
dedicated SPARC workstation.
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The training time of the network forced us to choose the size of the input layer of SOM as small as possible.
Using the results of experiments on multifont printed characters, we have intuitively fixed it to 6-by-6 units
and 3-by-3 neighborhood is merged in the formulation of training sets of branch networks. The experiments
concentrated on the amount of compression handled by PCA and the size of hidden layer unitsin MLP
subnetworks. Table 4 lists the parameters of the networks and the recognition rates on the training set. For the
last network (Network 5), the training set size has been increased.

JUMP TO TOPIC

Table 4 Recognition rate on the training set of handwritten digits.

ID No. of PCs Hidden Layer Size Training Set Size Training Set Rec.
Rate (%)
30 80 29051 (250 person) 97.43
64 140 29051 (250 person) 100
50 90 29051 (250 person) 98.80
64 90 29051 (250 person) 100
64 140 58646 (500 person) 100

Table 5 lists the recognition rates on the training and test sets with different voting parameters.

Table 5 Recognition rate on the test set of handwritten digits.

TEST SET RECOGNITION RATE (%)
Test Set Size K=1 K=3 K=5 K=7
90689 (750 person) 93.77 96.49 9.75 96.87
90689 (750 person) 96.76 96.99 97.14 97.19
90689 (750 person) 96.28 96.76 96.95 96.99
| | 90689 (750 person) [ %40 | %8 | 998 | 9701
| | 161094 (500 person) 9726 | 9749 | 9758 | 9763

Possible sources of error are due to distortions caused by the size and slant normalization process and also due
to badly segmented or badly written samples in the database. Some randomly selected examples of digits that
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are misclassified are presented in Figure 8.

e Tasar

Figure 8 Randomly selected examples of misclassified digits.

4. Fingerprint Classifier in HALafis

With the increasing power of computers, automated fingerprint identification systems (AFIS) are developed to
automate the tedious manual classification and matching processes of fingerprints [20]. The Automatic
Fingerprint Identification System HAL&fis has the basic structure given in Figure 9 [12, 22-24]. As shown in
the figure, there are two different routes of operation: classification and matching.

4.1 Feature Extraction

One of the most important parts of a classification problem is the generation of a feature space for the input
samples that are to be classified. Generally, in AFIS, afingerprint image is scanned and digitized, then
processed to generate a feature vector, and then fed to the classifier. When neural networks are used for
classification purposes, the choice of input vectors plays acrucia rolein the performance of the net. In the
fingerprint classifier of HALafis, ablock directional image is used as feature vector. The steps implemented
in HAL afis for feature extraction on a scanned fingerprint are shown in Figure 10 [12, 22, 23].

Processing starts with the segmentation of the fingerprint image so that noisy and corrupted parts that do not
carry valid information are deleted. Then the block directional image and its corresponding certainty values
are generated. The generated vector isthen fed to the classifier and the classis selected. This class will be
used as a search space in the matching phase. The feature extraction steps are explained in detail in [12].
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Figure 9- Block diagram of HAL &fis. (From [12], Copyright © |EEE.)

There are 65,536 pixels, each being assigned a direction, on a 256-by-256 fingerprint image. In order to
obtain areasonable size input vectors, it is preferable to divide the fingerprint image of size 256-by-256 into
16-by-16 pixel grids and take the average of directions for each grid. The resultant vector obtained using
average directions on the 16-by-16 grid is called the block directional image. Applying the algorithm on atest
image yields the block directional image as shown in Figure 11. In addition to reducing the size of the feature
vector, averaging has a smoothing effect that increases the validity of directions. Here, the average is not
computed by summing up al the directionsin agrid and dividing the result by 16-by-16. Instead, directions
are considered as vectors of length 1; the vectors are added together and the magnitude is divided by
16-by-16. The resultant directional vector is assigned to the grid. Thus, the grids that do not carry valid
direction information are assigned shorter directional vectors, since vectors having different directions cancel
each other. These vector magnitudes will constitute the certainties of the gridsin the classification process,
which is based on the SOM algorithm that we modified as depicted in Section 4.2.1.

L]

Figure 10 Featu"re extraction for classification. (From [12], Copyright © |IEEE.)
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Figure 11 The block directional image overlaid on asample fingerprint. (From [12], Copyright a |EEE.)
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4.2 Classification of Fingerprints

The classification of fingerprintsin this study is performed by UHNN. However, instead of the original SOM
JUMP'TO TOPIC agorithms for training/classification we used the algorithms that we modified by introducing the parameter

| Sdeew

4.2.1 Modified SOM Algorithm

In order to increase the accuracy of fingerprint classification, we have introduced a parameter called certainty
for each input node and have modified the SOM algorithm presented in Section 2.2.1 accordingly. The
network topology of the modified SOM (MSOM) is shown in Figure 12. The network connections are the
same asin the original topology of SOM except for the introduction of the certainty parameter ci on the
connections.

i T R

FigL-Jre i2 Néiwork topology of MSOM. (From [12], Copyright © IEEE.)

When the network is to be trained, it chooses the output node with the smallest modified distance, which takes
certainty values into consideration, between the weights from the input nodes and the current input vector.

The training algorithm of MSOM is as follows:
1. Assign small random valuesto weights w;.

2. Choose a vector x from the sample space and preprocess it to form x¢, considering certainty vector ¢
such that

xE = e + (1=¢) x™* (18)

where subscript i refersto the it component of the corresponding vector, x249 is the average value of x;
computed over the sample space and then apply x¢ as input to the network.
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3. Find the winning output node d,,;, by the following criterion:

win

.. =minf - w | } (19)
where I ' || denotes the Euclidean norm and w; is the weight vector connecting input nodes to the output
nodej.
4. Adjust the weight vectors according to the following update formula:

w; (2 +1) = wy (1) + (N (f,00x] (1) = wy (1))e, (20)

where w;; is the i'" component of the weight vector w;, -(t) isthe learning rate and N(j,t) is the
neighborhood function.
5. Repeat Steps 2 through 4 until no significant changes occur in weights.

One of the differences between this algorithm and the original SOM isthat MSOM uses preprocessed input
vectors instead of the input vector itself. The input vector is preprocessed using the certainty values, which are
between 0 and 1. The basic idea behind using such a means of preprocessing is to stimulate the components of
the input vector x of which we are certain and inhibit the less certain onesin the SOM competition process.
The preprocessing is designed such that if the certainty is high for the it component, i.e., ¢; = 1, then x¢ = x.
Therefore, the network behaves as the original SOM if al the certainty values are high. However, if the
certainty islow, i.e., ¢, = 0, then x¢ = x29, where x4 is the average value of the x, computed over the sample
space; therefore it has aminimal contribution to the decision of the winner. For the intermediate values of ¢;,
the value of x is determined by interpolation.

The other differenceisin the weight update rule, in which certainty values are taken into consideration. If we
are certain about the value x, i.e. ¢, = 1, the weight update rule reduces to the one used in the original SOM.

However, if we are uncertain about x;, that is, ¢; = 0, then the weight w;; connecting the input x; to the nodej is
not updated. For the intermediate values of c;, the amount of weight change is in between these two cases.

After training is completed, classification is a matter of applying Step 3 for the vector to be classified. The
winning output node determines the class of the applied input vector. In thisway, al fingerprintsin the
database are assigned a class number. Given an unseen rolling of afingerprint, if it is desired to search the
original rolling of the same fingerprint in a database, then the new rolling is applied as input to the SOM
network and the search is conducted beginning first with the class related to the winner of the network.
However, if the fingerprint is not found within this class, the class related to the second winner of the SOM is
considered and so on for the other winnersin the order of activation.
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4.2.2 Fingerprint Classification Based on UHNN

When asingle layer of SOM network is used for classification of fingerprints, the classes represented by some
» JUMPTO TOPIC of the neurons may become more crowded with fingerprints as compared to other classes, dueto the

S ——— self-organizing characteristics of the SOM network. Increasing the number of classes by enlarging the SOM
— network solves the problem to some degree; but after a certain network size, the number of non-empty classes
remains the same even though the network size is increased since some classes become empty while others
remain too crowded. Instead of enlarging the SOM size within the layer, the use of UHNN (two layers
SOM-PCA) helps to divide those crowded classes (see Figure 13). In Section 3, we explained the use of the
HNN network for character recognition where SOM is used for preclassification, PCA for feature extraction,
and then MLP with back-propagation algorithm for classification. However, it is not convenient to use MLP
in fingerprint classification since the classes are not known when they are not determined by Henry
classification [12].

The network istrained as follows: First of all, the reduced modal matrix (Egn. 5) made of the principal
components for the block directional feature vectorsis generated by using all the fingerprintsin the training
set. The PCA shown in the first layer uses these principal components. Then the feature vectors transformed
through this PCA are fed asinput to the SOM network of the first layer and the SOM istrained. Another layer
of PCA-SOM network is attached for each of crowded classes. Each additional PCA-SOM network in the
second layer is trained using the feature vectors extracted by the first layer PCA but only by those samplesin
the class represented by the related SOM neuron in the previous layer. Therefore, each PCA in the second
layer has different characteristics. Each SOM network in the second layer is trained by using the features
extracted by the related PCA. If some classes in the second layer are still too crowded, the process can be
repeated for several layersin the same manner.

Llw}

Once the system istrained in order to classify anew entry, the block directional feature vector is applied as
input to the first layer, then PCA transformsit into the principal subspace that it represents. The transformed
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feature vector isfed asinput to SOM of the first layer and the winner is determined. If the winner of the first
layer is attached to a second layer PCA-SOM network, then it triggers the related network in the second layer
while the feature vector extracted by the PCA of the first layer isfed asinput to the related PCA in the second
layer, which in turn transforms it to its principal subspace. The output of PCA of the second layer isfed as
input to the related SOM and the winner is determined.

Each fingerprint in the database is assigned a hierarchical class number indicating the related neuron at each
layer. When a new rolling of afingerprint isto be used to find the original fingerprint in the database, the
search is conducted within the class related to the winner of the SOM network at the last layer. However, if
the fingerprint is not found within this class, the class related to the second winner of the SOM in the same
layer is considered, and so on for the other winnersin the order of activation. If the fingerprint is not found
within any of the classesrelated to the last layer nodes, the search continues with the second winner of the
previous layer, in the same manner as was conducted with the first winner, and so on.

4.3 Experimental Results

In this section, we present the experimental results obtained by using the algorithms discussed in section 4.2.
Here, the modified SOM algorithms (M SOM) are used for training and classification instead of the original
SOM dgorithms.

The fingerprint database used in the experiments was obtained from The American National Institute of
Technology (NIST). In the test database there are 1000 fingerprints of which the second 500 are different
rollings of the first 500.

In Table 6, we present the worst-case search performance for various sizes of single-layer and two-layers
SOM, MSOM, and UHNN networks. In this table, the column headings show the size of the networks used.
The row headings show the percentage of the fingerprint database searched in order to find the origina
fingerprint.

Each entry of the table denotes the worst-case percentage of the database that is correctly identified by using
the search space percentage given in the row heading. The worst-case is the onein which all elementsin each
class visited are used in comparison and thus contribute to the search space percentage mentioned in the row
heading.

The valuesin the table are obtained as follows: The network isfirst trained using only the first rolling of the
fingerprints and then it is tested through the second rolling of the same fingerprints. For each of the 500
fingerprintsin the test set, the sizes of the classes related to the winners are summed up as these classes are
visited to find the original rolling of the fingerprint in the manner explained in Section 4.2.2. The summation
represents the worst-case search size; here all the classes visited, correctly or incorrectly, contribute in full
size to the summation, although the related fingerprint can be reached when only half of the last classis
searched on the average. The summation would constitute the average search size if half of the size for the last
visited class were added to the full sizes of incorrectly visited classes since the original rolling would be
reached on the average when the half of the class that contain the original rolling is examined through
matching process. Then a histogram is prepared showing the distribution of cases on the mentioned
summations. The values in the histogram are converted to percentages of the database size. The integral of the
histogram up to the search percentage specified in the related row heading gives the values presented in the
table, where only selected rows are included due to space limitations.
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It is evident from Table 6 that introducing a second layer to the network drastically reduces the search space
percentage necessary to find the fingerprints, independently of whether SOM or MSOM is used. From the
same table, we also observe that MSOM performs better than the original SOM for all cases. These results are
JUMP.TO TOPIC further improved when UHNN is used, although there are some exceptional cases where two layers MSOM

= = performs better than UHNN.

— Table 6 Worst-case performances for original SOM, modified SOM, and UHNN networks. (Adapted from
[12], Copyright © |IEEE.)

SOM M SOM | UHNN
SEARCH % | Singlelayer | Twolayers | SingleLayer | Twolayers

10 21.2 28.2 25.8 39.8 45.0
20 63.4 68.0 69.0 72.0 72.8
30 77.4 79.4 76.4 82.0 84.2
40 81.6 88.6 87.0 94.0 924
50 88.0 93.2 90.6 96.8 98.6
60 924 95.0 95.4 100.0 100.0
70 924 99.0 98.4
80 94.6 100.0 99.0
0 97.0 100.0
100 100.0
10 49.0 55.0 56.8 62.8 65.0
20 66.0 | 74.2 71.2 80.0 90.2
30 76.0 | 86.0 84.4 94.2 100.0
40 84.4 90.8 91.2 96.2
50 90.8 94.6 96.0 100.0
60 96.0 97.0 99.4
70 98.0 100.0 100.0
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80 100.0
90
o | | |
| 10 51.2 55.0 | 57.8 | 62.0 | 70.4
| 20 77.0 77.4 | 80.6 | 82.0 | 84.2
| 30 85.0 88.0 | 90.8 | 94.3 | 100.0
| 40 92.6 91.0 | 96.0 | 100.0 |
8-by-8 | 50 96.8 96.8 | 100.0 | |
| 60 96.8 100.0 | | |
| 70 100.0 | | |
w | |
w |
100 |
10 55.6 69.6 | 60.2 754 694
20 78.0 82.2 | 824 87.2 86.2
30 88.0 92.8 | 94.2 96.8 100.0
40 92.2 97.2 | 99.6 100.0
10-by-10 50 96.0 98.8 | 100.0
60 100.0 100.0 |
70 |
80
90
100

For SOM and MSOM, the results improve with increasing network size. Thisis the general trend for the case
of UHNN aswell, however the best performance is obtained by the UHNN of size of 5-by-5. With this
network size 90.2% of the original fingerprints are reached in the worst-case, when only 20% of the database
is searched.
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5. Conclusion

e In this chapter, we presented two industrial applications HALdoc and HAL &fis, based on the hierarchical
» JUMP TO TOFIC neural network architecture called HNN. HALdoc contains a character recognition system based on HNN
_ itself and HA L &fis contains a fingerprint classifier based on UHNN, the unsupervised version of HNN.

HNN has a hybrid architecture in which different ANN models have been used for different purposes. Every
component of the network isan ANN model specialized for the task that the component handles. The
combination resulted in a more flexible and robust system.

The proposed hierarchical architecture has an anaogy to the pre-attentive and attentive levelsrelated to
attention concept in human cognition where pre-attentive level examines global features and the attentive
level takes discriminating features between similar patterns into consideration. The attentive level is
responsible for finding which parts of the pattern convey most discriminating information while shadowing
unrelated features [9]. In our hierarchical neural network structure the SOM layer, which corresponds to the
pre-attentive level, makes arough decision for possible candidates. The PCA-MLP combination corresponds
to the attentive level. The PCA extracts the feature components with most discriminating information for a
decision among the candidates and MLP (or a second layer of SOM for unsupervised case) makes its decision
paying focused attention to these discriminating details. V oting mechanism helps to decide in the case of
dternative possibilities. HNN and UHNN performed successfully as the Character Recognition Module of
HALdoc and Fingerprint Classifier module of HAL&fis, respectively.
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Chapter 7

mm——— Neural Networks for Performance Optimization in
=8 Flexible Manufacturing Systems

[

S Cavalieri

University of Catania

Faculty of Engineering

Institute of Informatic and Telecommunications
ViaeA. Doria, 6

95125 Catania

Italy

A Flexible Manufacturing System (FMS) is an interconnected system of resources (machine tools, robots,
etc.) capable of automatically processing awide variety of products simultaneously and under computer
control [1]. Each product (also called part type) is the result of a production cycle, i.e., a sequence of
processes performed by the resources available according to its technological requirements. A production
cycleis generally characterized by atechnological routing, i.e., a sequence of resources (e.g., machines). In an
FMS, several jobs may be done simultaneously on the same part type (i.e., the same kind of product) in each
production cycle. In this case, the number of jobsis called Work-in-Process (WIP). Generally, jobs are carried
on facilities such as pallets or carts. Due to the very high costs incurred by the implementation of these
transportation facilities and to avoid any congestion problems, it is generally desirable to minimize the WIP.

Maximization of the number of jobs donein atime unit (i.e., throughput) isakey point in FMS performance
optimization. It is clear that the maximization of throughput is strongly linked to the WIP. A lesser number of
jobs processed underexpl oits the available resources and reduces the throughput, while a higher number
causes conflicts between resources, which slow down the productivity of the system. The aim is a trade-off
between WIP and throughput; on account of what was said previoudly, it is hecessary to determine a
minimum WIP such that the productivity of the FMS as awhole is optimized.

One of the best-known theoretical solutionsto this problemis presented in [2]. It is based on the use of Event
Graphs, which are a particular category of Petri Nets[3, 4], and is characterized by the solution of an integer
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linear programming problem. Two algorithms which are able to solve the FM'S performance optimization
problem according to the theoretical approach presented in [2], were proposed in [5]. They are essentially
based on a heuristic search which aimsto identify an optimal or quasioptimal solution to the problem.

The aim of this chapter is to present an alternative to these heuristic algorithms. The FM S performance
optimization approach proposed here is still based on the theoretical results presented in [2], but appliesa
neural strategy to find an optimal or quasi-optimal solution to the problem. Thisis done according to two
different aims. Thefirst isto present an example of application of neural networks in real engineering
applications. This example may be added to the large number of neural network applications present in the
literature. The second and more important aim isto propose a novel neural model, obtained by making
significant changes to the well-known Hopfield network [6][7].

The chapter will present the novel neural model and its use in FM S performance optimization. Then, in order
to highlight the capacity of the neural approach to solve the problem, some examples of FMS performance
optimization are shown. Finaly, its computational capability will be discussed.

1. A Brief Overview of Event Graphs

An Event Graph is a Petri Net [4] in which each place (graphically represented by acircle) is connected with
only one output transition (graphically represented by athin bar) by means of an arc going from the place to
the transition (in the following, the place is defined as an input place for the transition) and with only one
input transition by means of an arc going from the transition to the place (thisis defined as an output place for
the transition) [3]. A cost (known as multiplicity) may be associated to each arc. In the following it is assumed
that each arc hasamultiplicity of 1. Like Petri Nets, in an Event Graph each transition may have an associated
firing time, in which case the Event Graph is called timed, and each place can contain one or more tokens
(graphically represented by black dots).

A transition is enabled to fire if each input place contains at least one token, and if the transition itself is not
dready in afiring state. If the transition isimmediate, onceit is enabled to fire, one token is removed from
each input place and isimmediately transferred to each output place. If the transition is timed, the token
remainsin each input place of the transition until the firing process ends (i.e., the time associated to the
transition elapses). One token then disappears from each input place and a new token appears in each output
place.

Figure 1 shows an example of an Event Graph. As can be seen, it ismade up of 7 places and 6 timed
transitions. For each transition, the firing time is represented inside the parentheses.

An Event Graph is said to be strongly connected if there is a sequence of transitions connecting any pair of
placesin the graph. In astrongly connected Event Graph, we can identify elementary circuits, each of which
is a sequence of places and transitions that goes from one place (or from atransition) back to the same place
(or to the same transition), while no other place (or transition) is repeated. In the following, an e ementary
circuit will be indicated with 3. For example, in Figure 1, the sequence of places and transitions 3, = { P1, t0,
PO, t1, P2, t2, P3, t3, P1} is an elementary circuit, connecting place P1 with itself. The sequence 3, = { P1, t0,
PO, t1, P2, t2, P3, 13, P6, t5, P5, t4, P4, t1, P2, t2, P3, t3, P1} also connects P1 with itself, but it isnot an
elementary circuit, as places P2, P3 and transitionst1, t2, and t3 are repeated twice.

Er

Figur- :a 1 A strongly connected timed event graph.

If ¥4(3) isthe sum of firing times related to the transitions belonging to the elementary circuit 3, and M(3) the
number of tokens circulating in 3, the following ratio is called the cycle time of the circuit:

Cly)=p(y) / MUy} (1)
C"= max C(¥)

Let “ represent the set of elementary circuitsin a strongly connected Event Graph, and, yel .Any3
“ such that C(3) = C' iscalled acritical circuit.
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1.1 Performance Optimization of Strongly Connected Event Graphs

The performance optimization theory based on Event Graphsis mainly due to the following two results. The
JUMP/TO TOPIG first is due to Commoner [8].

— Result 1. The total number of tokensin any elementary circuit 3 isinvariant by transition firing.
In other words, this result states that C(3) is a constant in each elementary circuit.
The other result was given by Chretienne [9].

Result 2. Under an operational mode where transitions fire as soon as they are enabled, the firing rate of each
transition in the steady stateis given by:

p=1/C’

From Result 2, it is obvious that if we want to increase the speed (i.e., the throughput) of the system modeled
by the Event Graph, we have to reduce the quantity C'. According to (1), C' may be reduced by acting on M(
3), adding tokens in each critical circuit.

In general, an increase in the number of tokens will lead to several disadvantages. Let us consider, for
example, an Event Graph modeling a distributed system, where several resources (e.g., computers, machines)
are shared among several users. In this scenario, the users are represented by the number of tokensin each
elementary circuit. Although an increase in tokens leads to a better exploitation of the available resources, a
decrease in the performance of the system may occur on account of the excessive conflicts for use of the
resources. With particular reference to the FM S, an increase in the number of tokens in each elementary
circuit may correspond to an increase in the number of jobs processed (i.e., WIP), leading to further
disadvantages. In FM S, jobs are carried on such facilities as pallets or carts. Due to the very high costs
incurred by the implementation of these transportation facilities and to avoid any congestion problems, itis
generally desirable to minimize the in-process inventories.

A reduction in the number of tokensin each elementary circuit should not be at the cost of reducing the
overall productivity of the system, modeled by the Event Graph. What is hecessary to reach is an optimal
trade-off between the production rate and the in-process inventories. This can be achieved by minimizing a
linear function of place markings under the constraint of reaching a given level of performance.
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If + isthe required performance index (i.e., the desired throughput), the performance optimization can be set
asfollows:

n
minimize( 3 u; - x;) (2)
izl
where u; are integer numbers, called P-Invariants [3][4], x; represents the number of tokensin place Pi, and n
isthe number of placesin the Event Graph. Condition (2) must be constrained by
p=1/C'za (3)

Taking into account (1), condition (3) can be rewritten as

M(Y)Za-u(y) Vyel “4)

As can be seen, condition (2) minimizes the overall number of tokensin the Event Graph, without leading to a
decrease in throughput, which is guaranteed by condition (3) or (4).

As the throughput of the system is limited by the slowest transition (i.e., the transition featuring the highest

] |
min —

firing time), + must be chosen less than or equal to i=!--n 8 where _, isthe firing time of transition t.

sl

The linear function to be minimized (2) should not depend on the state of the system. In other words, this
function should remain unaltered by any transition firing, otherwise, its minimization would be meaningless.
For this reason, the use of the P-Invariantsin (2) is needed (see [3] for a better explanation of P-Invariants).

Consider the Event Graph presented in Figure 1. It can be shown that a possible P-Invariant of this net isthe
vector U = (1, 1,2,2,1,1,1), where the i-th component, u, (i = 1,.., 7) refersto thei-th place in the Event Graph
considered. In this case, the performance optimization problem to solve is as follows:

minimize(X, + Xa+ 2X3+ 2X3+ X+ Xg+ X7)

under the constraints

X{+ X2+ X3+ x421301=1.3
X3+ Xg+ Xs+ Xg+ X7 2260.1=2.6

having chosen + = 0.1 as the highest firing time is 9. An optimal solution to this problem is
X1=2,X=X3=X4=0, Xs= 3, 4= X9=0

2. FMS Performance Optimization by Event Graphs

The results presented in the previous section allow us to define a methodol ogy to optimize the performance of
an FMSin terms of throughput and WIP. The methodology is based on the realistic assumption of the cyclic
manufacturing of jobsin the FMS. On this basis, when ajob is completed and |eaves the production cycle, a
new job isinserted in the same production cycle.

The FM S performance optimization methodology is made up of two phases: modeling the FM S, and
definition and solution of an integer linear programming problem.

2.1 Modeling an FMS by Event Graphs

Modeling an FM S by Event Graphsis very easy and consists of representing each FM S resource (buffer,
machine, robot, etc.) by aplace. Moreover, each activity aresource performsis represented by atransition, to
which the time required to complete the activity is associated [2, 3, 5]. The cyclic manufacturing is modeled
connecting the transition concerning the last process of each production cycle with the transition
corresponding to the first process of the same production cycle by means of a place. In thisway, when atoken
(i.e., ajob) leaves the production cycle, anew one isinserted in the same production cycle.

The Event Graph in Figure 2 is asignificant example of FM'S modeling. It refers to a Kanban system [10]



composed of three machines, M1, M2 and M 3, which manufacture two different part types denoted as R1 and
R2.

,.Qﬁ ol

Flgure 2 Event graoh model of a Kanban system with three machines and two part types.

Each place in the Event Graph represents aresource: P18, P19, P20, P21, P22 and P23 model possible states
of the machines (the machine Ml, for example, can be in the state P18 or P19 according to whether it is
processing R1 or R2 part type), while the remaining places are input/output buffers in which the jobs
belonging to the two part types wait to be processed by the relative machines. Asfar as the transitions are
concerned, only TR12, TR22, TR32, TR11, TR21, and TR31 are timed (the figure shows the time associated
with each transition), while the remaining ones are immediate, i.e., the time associated with themis zero.
More specificaly, transitions TR12, TR22, and TR32 mode! the activities performed by the machines M1,
M2, and M3 to process part type R2, while transitions TR11, TR21, and TR31 mode! the activities performed
by the machines M1, M2, and M3 for part type R1. The presence of places PO, P3, P6, P9, P12, and P15
guarantees the cyclic manufacturing assumption.
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The Event Graph in Figure 3 shows another example of FM 'S modeling by an Event Graph. It models a
job-shop composed of four machines, M1, M2, M3, and M4, which manufacture three part types denoted by
R1, R2, and R3[5]. As can be seen, the job-shop features a production cycle related to R1, another production
JUMP.TO TOPIC cyclerelated to R2, and two production cycles both related to the part type R3. For each production cycle, the
————— Event Graph models the sequence of activities performed by the four machines to process the specific part
_ type. In particular, the sequence of activities to process the part type R1is{M1, M2, M3, M4}; in the R2
production cycle, the sequenceis{M1, M4, M3}; and in R3, the sequence of activitiesis{M1, M2, M4}. The
processing times are shown in Figure 3 for each transition. Finally, the presence of the places P3, P6, P9, and
P12 again refers to the cyclic manufacturing assumption.

Figure 3 Event graph model of ajob-shop.

2.2 Integer Linear Programming Problem

In order to apply the theory shown in Section 1 to FM S performance optimization, some modifications must
be introduced. As said in the introduction, FM Ss feature the presence of sequence of activities performed by a
particular resource (e.g., amachine). As seen in Section 2.1, the Kanban system represented in Figure 2
features the presence of three machines, each processing part types R1 and R2. The elementary circuits 3,
(made up of the sequence of places and transitions P18, TR11, P19, TR12), 3, (made up of the places and
transitions P20, TR21, P21, TR22), and 3, (made up of the sequence of places and transitions P22, TR31, P23,
TR32), represents the sequence of activities performed by machine M1, M2, and M3, respectively. The same
considerations can be applied to the Event Graph shown in Figure 3. It features the presence of four machines,
each performing a sequence of activities modeled by the elementary circuits 3; (made up of P13, t0, P14, t4,
P15, t7, P16, t10), 3, (made up of P17, t1, P18, t8, P19, t11), 3, (made up of P20, t2, P21, t6), and 3, (made up
of P22, 13, P23, t5, P24, t9, P25, t12).

In the following, each elementary circuit which specifies the operations sequentialy performed by asingle


http://www.earthweb.com/
http://corpitk.earthweb.com/
http://corpitk.earthweb.com/content/corp.html
http://corpitk.earthweb.com/search/
http://corpitk.earthweb.com/faq/faq.html
http://corpitk.earthweb.com/sitemap.html
http://corpitk.earthweb.com/contactus.html
http://corpitk.earthweb.com/search/search-tips.html
http://corpitk.earthweb.com/search/search-tips.html
http://corpitk.earthweb.com/search/
http://corpitk.earthweb.com/search/
javascript:displayWindow('images/07-03.jpg',400,360)
javascript:displayWindow('images/07-03.jpg',400,360)

resource is called acommand circuit. A generic command circuit will be indicated with 3¢, and “c will
represent the set of command circuits. If “* =* - “c, 3 will indicate the generic elementary circuit belonging
to“*.

Two considerations must be made concerning the command circuits. The first is about the number of tokens
present in each of them. It must be exactly equal to 1. A higher number of tokens would be meaningless, asa
machine can only process one job at atime. The second consideration concerns the throughput of the system
which is now limited by the bottleneck machine, i.e., by the machine featuring the highest processing time.

According to these considerations, the FM S optimization problem, for a strongly connected Event Graph and
in the presence of command circuits, can be formulated through the following integer linear programming
problem:

minimize(3u; - x;) (5a)

=]

IM(¥*)=1 Wy‘ers® (5b) (5)
My )ze- py vy el (5c)

where + isthe FM S performance index required [2, 5]. As can be seen, condition (5.b) fixes the number of
tokensin each command circuit equal to 1. Condition (5.c) fixes alower bound for the number of tokensin
each elementary circuit which is not acommand circuit. The desired throughput, or, must be fixed taking into
account the bottleneck machine. In particular, £ must be chosen less than or equal to the minimum value of

[

3. A Novel Neural Model

The aim of this section is to describe the novel neural model used to solve the FM'S performance optimization
problem. In order to gain a better understanding of the need for a new neural model, the following subsection
presents the original Hopfield model [6, 7] on which the new model is based. Then, the limits of the original
Hopfield model and the capacity of the new model to overcome them will be pointed out.

3.1 The Hopfield Neural Network

The Hopfield neural model is very suitable for solving optimization problems. This network was first used to
solve the well-known Traveling Salesman Problem (TSP) [11], and then its use was extended to alarge
number of optimization problems (see [12 - 16]). The Hopfield-type model is based on asingle-layer
architecture of neurons, the outputs of which are fed back toward the inputs.

Figure 4 shows a Hopfield network with n neurons. As can be seen, the i-th neuron (which is drawn by a
circle), i = 1,..,n, receives the outputs of the other neurons and an external fixed bias current I,, and produces

an output O,. Each feedback between the output of the j-th neuron and the input of the i-th neuron has an
associated weight, Wi, which determines the influence of the j-th neuron on the i-th neuron. In the i-th neuron,
the weighted sum of the outputs, O,, and the external bias current, |, produces asignal, U;, given by:

au;

U.
& - g rIwioi+k (©)

where A is a user-selected decay constant. As can be seen, (6) describes the dynamics of the Hopfield model.
The output of the i-th neuron, O, is linked to U; by amonotonic increasing function. In this chapter, the

following function will be considered:

1+ tanh(2i)

Di=gi(Ui]=Tw (N

where the parameter u, controls the effective steepness of the function: the lower it is, the steeper the function.
As can be seen, the function g;, gives a positive value O, ranging between 0 and 1.



Hopfield [7] showed that if the weights matrix W=[w;] is symmetrical, the dynamics of the neurons described
by (6) follow a gradient descendent of the quadratic energy function, aso known as the Lyapunov function:

sl 1.9
E=-—TZw;j0;-0j+_3 [ gi(OMO-ZI;-O; ®)
i Tio i
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Its derivative with the respect to timeis

dE do, U,
————— — ==Y —L (Tw;i- O - —L+1;) 9)
JUMP TO TOPIC dt R I T

[ | inwhichtheterm in brackets coincides with dU,/clt as defined in (6). According to the definition of the
function g, given by (7), it follows that if dU,/dt dO, then dO,/dt dO as well and, vice versa, if dU/dt €0 then
dO/dt e0 aswell. Equation (9) therefore establishes that dE/dtdO, i.e., the energy function is always
decreasing during evolution of the network. In addition, the achievement of a steady state, dO/dt = 0,
corresponds to a minimum of the energy function (i.e., dE/dt = 0).

5;;1 Ll

Figu.r.;z Hopfi+eil'd neural model.

Againin [7], Hopfield showed that if the function g; is a steep-like curve (i.e., u, " 0), then (6) coincides with:
1
=-E‘%§Wﬁ'0i'0j—zi‘li'ﬂi (10)

In this case, it can be shown that the minima of the energy function (10) coincide at the corners of the
hypercube defined by O; {0,1}. This means that the Hopfield model iterates until a stable solution is reached.
This stable solution coincides with a minimum of the energy function (10) and is coded by output values
equal toO;=00r O, = 1.

These theoretical results allow a solution to a particular optimization problem to be obtained from the
stabilized outputs of the Hopfield network, by the following method. First, the surrounding conditions of the
optimization problem are identified and expressed in the form of the energy function given by (10). Then,
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each term of the energy function relating to a surrounding condition is multiplied by areal coefficient which
weights the influence of the condition itself on the solution to the problem. By comparison of each term
linked to a surrounding condition with function (10), the weights and bias currents values are finally obtained
asafunction of thereal coefficients. If the weights matrix is symmetrical and the function g; is steep-like, the

stable output of the Hopfield model corresponds to a minimum of (10) and thus to a solution to the problem.
3.2 Description of the Novel Neural Model

As pointed out above, the original Hopfield model features the presence of a constant bias current throughout

the neura evolution. The bias current plays an essentia role in the dynamics of the neural model since, as can

be seenin (6), it determines the value of each neuron. A bias current value close to zero makes the output, O,
2 wij"0;j

of thei-th neuron assume avalue of 1 or 0, depending exclusively on the weighted sum 1 . A very

positive bias current value determines an output value closeto 1.

By virtue of itsrole, the bias current is always tied to one or more surrounding conditions of the optimization
problem to be solved, so as to make the output of each neuron respect the surrounding condition/s in question.
In particular, the neural model proposed in [6, 7] is applied to solving optimization problems in which one or
more surrounding conditions impose rigid constraints on the solution, in which case an appropriate fixed bias
current value can ensure the validity of the solution. For example, many optimization problems, like the TSP
[11], feature at least one surrounding condition which imposes a fixed number of activated neurons. In such
cases, abias current value proportional to the number of neurons that must be activated is generally fixed.

There are, however, many optimization problems (such the FM S optimization problem dealt with in this
chapter) whose surrounding conditions do not impose rigid constraints on the solution, but allow it to vary
within an admissible range of values. An example would be a problem such that the validity of its solution is
guaranteed by the presence in the binary coding of the solution of a number of activated neurons that can vary
within an interval known a priori. Application of the Hopfield neural model presented in [6, 7] to problems of
this kind may not give valid solutions, as it would rigidly fix the number of activated neurons.

A strategy which can solve this kind of problem features the possibility of dynamically modifying the bias
current values during the neural iterations in order to meet all the surrounding conditions. The neural model
which is proposed to achieve thisis shown in Figure 5 [17 - 20]. Comparison between Figures4 and 5
highlights the modifications made to the model originally proposed in [6, 7].

Two different levels can be seen in the novel neural model: the Bias Current Level and the Neuron Level.
Both levels receive the fed-back neural outputs. The Bias Current level is made up of processing units,
represented in Figure 5 by squares and labeled with I, (i = 1,.., n). Each processing unit |, is connected with the
corresponding neuron with index i, to which it supplies abias current. At each neural iteration, the processing
units I; receive the output values of al the neurons. If the neural solution meets all the surrounding conditions
at that iteration, the bias current each neuron is supplied with isleft unaltered. If, on the other hand, one or
more conditions are not met, the bias current for each neuron which does not meet the condition(s) is
modified. Obviously, this modification has to be made in such away as to force the neural solution to meet
the surrounding condition(s). The Neuron Level is the same as the one in the Hopfield model presented in [6,
7]. Ascan be seenin Figure 5, thislevel is made up of neurons (represented by circles), each of which
receives its own output, the outputs of the remaining neurons and the bias current supplied by the
corresponding processing unit in the Bias Current Level.

+

Figure5 The novel neural model proposed.

Processing at the two levelsisin cascade asit isfirst necessary to modify the bias currents for each neuron (at
the Bias Current Level) and then calculate the output (at the Neuron Level).
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3.2.1 Analytical Description of the Novel Neural Model

From the description of the novel neural model given previously, the dynamics of the model are quite
JUMP TO TOPIC straightforward to deduce. They are described by

[ | du; _ _U;
- 'T"‘zjnwij‘ﬂj""li(‘:'

which isidentical to (6) except for the term, I,(t), relating to the bias current, which now variesin time. If the
weights matrix W = [w;] is symmetrical, (8) continues to hold and its derivative with the respect to time now
becomes

dE dO; U,
e ; T o .
dt ? dt (%w“ I ¢

+1i)-;%-oi (an
1

From (11) it can be seen that, unlike the original Hopfield model, the evolution in time of the energy function
dl;
—L.0

also depends on theterm i dt . For the energy function to continue decreasing, during the neural
iterations the following must always hold:

_z%lii--u-,aﬂ (12)
I

That is, it is necessary for the bias currents to be modified by means of increments (since the outputs O, are

aways positive or equal to zero). This ensures convergence toward a minimum of the function during
evolution of the neural network.

If (12) holds, the modifications made to the origina Hopfield model do not jeopardise stahility, as
convergence to a (local or global) minimum of the Lyapunov function is always guaranteed. Thisis confirmed
by experimental tests performed on alarge number of different optimization problems. In all the tests, it was
seen that the modification made to the Hopfield model does not alter the stability of the network aslong as
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condition (12) holds and the symmetry of the weights matrix is maintained.

4. FMS Performance Optimization Using the Novel Neural Model

The solution of the FM S performance optimization problem by the novel neural model may be achieved by
the following four steps.

4.1 Modeling the FMS by an Event Graph

The FMSisfirst modeled by means of an Event Graph. As stated previously, modeling an FM S by an Event
Graph isvery easy, and Section 2.1 has shown two examples.

4.2 Mapping the Event Graph onto the Neural Model

Once the FM S has been modeled by the Event Graph, it is transformed into a neural model of the type
presented in Section 3.2. Thisis achieved by making each place, Pi, in the Event Graph correspond to a
neuron, O;, in the neural network. The value (1 or 0) of the output of each neuron O, models the presence or
absence of atoken in the place Pi modeled: if the output O, is 1 the place Pi corresponding to the neuron
contains atoken, if O, is 0 the place Pi contains no tokens. It is clear that the proposed coding of the neural
output is based on the necessary assumption that each place in the Event Graph contains at most one token.
This does not represent alimit, asit is demonstrated in [5] that it is always possible to modify a generic Event
Graph into an equivalent one in which each place possesses at most one token. The mapping between the
Event Graph modeling the FM S and the novel neural model allows the number of neurons it contains to be
defined. For example, the Event Graph shown in Figure 2 is transformed into a neural network of the kind
shown in Figure 5 with 24 neurons.

4.3 Determination of Weights and Bias Currents for the Novel Neural Model

Once the number of neurons and their relationship with the Event Graph modeling the FM S has been fixed,
the next step isto obtain the weights and bias current values for the neural model. This must be done by
expressing each surrounding condition of the FM S performance optimization problem in terms of the
Lyapunov Energy Function (10), and then by comparing each of these terms with (10). In the following, the
determination of weights and bias currents will be shown for each of the three surrounding conditions of the
FMS performance optimization problem. As said before, the first surrounding condition (5a) refersto the
quality of solution, while the other two surrounding conditions (5b) and (5c) refer to the validity of the
solution.

4.3.1 Quality of the Solution

The energy function term relating to the quality of the solution can be obtained by considering that condition
(5a) can also be expressed in the following form:

minimize ( u; - x; )= minimize (3u; - x;)? (13)
i=l i=1

where n, as said, is the number of placesin the Event Graph, i.e., the number of neuronsin the novel neural
model. Condition (13) can be expressed by

minimize {ii‘,ui-xi-uj-xj}z (14)
i=lj=1

This condition can be formalized by the following term of the Lyapunov energy function:

A nn A an
2 juljml 2 jaljel
based on the consideration that each x; corresponds to O, according to the mapping between the Event Graph

and the neural model, as outlined previously. The aim of the real coefficient A isto weight the influence of
condition (15) on the solution to the problem. By comparing (15) with (10), we obtain the contribution to the
bias currents and weights of this term:



Wi =—A-0;-0; vigell,..n]

;=0 Vie[l..n)

(16a)
(16b)
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4.3.2 Validity of the Solution

The energy function term relating to the validity of the solution has to impose a certain number of tokensin
JUMP'TO TOPIC each elementary circuit 3 in the Event Graph, according to (5b) and (5c¢). The corresponding term of the

— Lyapunov energy function has to be of the following kind:

M-E[ Eﬂi'M:ET}T (7
2 ¥ LPey

where the first sum is extended to every elementary circuit 3, the second sum isextended to i [1,.., n] such
that the place Pi belongs to the elementary circuit 3, and M,(3) represents the number of tokens desired in each

circuit 3. The term (17) is minimized when the number of activated neuronsin each circuit 2 is equal to M,(3).
The value of M,(%) is given by conditions (5b) and (5c).

« Validity of the solution according to (5b). Condition (5b) imposes a single token in each of the
command circuits 3. It corresponds to the Lyapunov function term:

E~E[ % &,-1]1 (18)
2 yliriey

where B, like A, weights the influence of condition (18) on the solution to the problem. As can be seen,
term (18) is minimized when a single token is present in each command circuit 3. The contribution to
the bias currents and weights of (18) becomes

Wij =*B‘ﬂ_rij Vije[l,..n] (19a)
lj=+B'n . Vie[l.,n] (19b)

n c
where  Tij represents the number of circuits in the set “c to which the places Pi and Pj Simultaneously
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c
belong, and Ti represents the number of circuitsin the set “ to which the place Pi belongs. It is
important to point out that the bias currents given by (19b) exactly fix one token in each command

circuit %.
* Validity of the solution according to (5c). Condition (5c) establishes that M,(%) has to be greater or
-
[wnay] . .
at least equal to in al thecircuits3 “*. Let us consider the subcondition:
- ] -
M.(ﬂ=|-a-uw fl Vy el (20)
It can be formalized by the following Lyapunov function term:
C
5% X0 Jau(y)] (21)
Y \cPiey
where C performs the same role as A and B. Comparison with (10) gives the following weights and
bias current values:
wy=-C-n_. Vijel(l,.n] (22a)
Tl.j
L=+c: 3 [aply)] Vien,.n (22b)
T BEey

n s
where Tij represents the number of circuitsin the set “* to which the places Pi and Pj simultaneously
belong. As can be seen, condition (22a) determines a constant bias current vaue, fixing the number of

tokens in each non-command elementary circuit ]‘“ ny }-l. In thisway, condition (5c) may not be
respected, because a valid solution may feature the presence of some circuits in which the number of

tokensis strictly greater than ]]:: Y }.l. These considerations show that the solution of the
optimization problem being dealt with requires dynamic modification of the bias current values during
the neural iteration, in order to cause the number of tokens in each circuit 3*, to be no less than

]-ﬂ ny }-l. This can be obtained by using the processing unitsin the Bias Current Level of the novel
neural model presented in Section 3.2. The dynamic modification of the bias currents will be explained
in greater detail in the following subsection.

4.4 FMS Performance Optimization by the Novel Neural Model

Once the weights and bias currents have been determined, the novel neural model can provide a solution
constrained to satisfy the surrounding conditions (5a), (5b) and (5c¢) of the FM S performance optimization
problem. The respect of conditions (5a) and (5b) is guaranteed by imposing the weights and bias current
values given by (16a), (16b), (19a), and (19b). The respect of condition (5¢) is guaranteed by imposing the
weight values given by (22a) and providing for modification of the bias currents during the neural iteration.
This modification is performed by the processing unitsin the Bias Current Level, and itsaim is to force the

number of tokensin each circuit 3 “*, to be no less than ]‘u WY }.l. The bias current modification procedure
will be described in greater detail below.

During a preliminary phase, the values for the weights of the novel neural model are fixed according to
conditions (16a), (19a) and (22a). They are equal to:
Wi = =AUy

i
-B:n
'?f.;

=C-n. Vije(l,.,n] (23)




The bias currents, on the other hand, are fixed on the basis of the contribution made by (16b) and (19b). The
contribution of (22b) is not initially considered because, as said above, it might determine anon-valid
solution. Theinitia value of the bias currentsis thus:

[;=B-n, Vie[l..n) (24)

Once these initial values have been fixed, the network startsto iterate. At each neural iteration, the generic
processing unit |; in the Bias Current Level checks whether the output of the corresponding neuron, O, is

closeto 0. If it is, al the elementary circuits 3* to which the corresponding place Pi belongs are considered.

The number of tokens M (3*) for each of these circuitsis counted. If it islessthan Fu Y }.l, i.e., condition
(5¢) is not met for that circuit, the bias current of the i-th neuron being considered is increased by:

¢ 2 [ana) (25)
1 :Pjey

where the value “C represents a user-selected fraction of C. If the processing unit |; detects activation of the
corresponding neuron, the bias current value is left unaltered. In thisway the increase in current provided by
(25) isafraction of the contribution of condition (5¢) expressed by (22b). In addition, the bias current is
aways increased, respecting the condition requiring convergence toward a minimum of the energy function
expressed by (12). The modification of the bias currents in the novel neural model can be better explained by
the Pascal-like algorithm shown in Figure 6.

_____

v 3 mh e maas g [

Fingre 6 Updating the bias currents during neural iterations.

5. Examples of FMS Performance Optimization by the Neural Approach

The aim of this section is to give some FM S performance optimization results obtained using the neural
approach presented above. Two examples will be considered which are well known in literature and refer to a
deterministic Kanban system [10] and to ajob shop system [5].

As noted before, the Event Graph in Figure 2 shows a Kanban system composed of three machines, M1, M2,
and M3, which manufacture two part types denoted as R1 and R2. It can easily be verified that the Event
Graph in Figure 2 is strongly connected. So the theory presented before (see equations (??7?)) can be applied,
aimed at determining the optimal number of jobs (i.e., the number of tokens) simultaneously present in the
production cycles R1 and R2.
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Table 1 refersto the solution of this Kanban system performance optimization problem provided by the neural
strategy proposed in the previous sections, considering avalue of = = 1/3 and valuesof u. =1 i [0, 17] and

u =0 i [18, 23]. Thevaueof + = 1/3 isdue to the processing timesin each of the three command circuits.
JUMP TO TOPIG As can be seen in Figure 2, the sum of the firing times in these circuitsis aways 3.

— For each place in the Event Graph, the table shows the distribution of the tokens determined by the neural
network. Only the places containing one token are shown. The places not shown in Table 1 contain no token.
As can be verified, this solution produces the best performance for the whole system.
Table 1 Solution by the Neural Approach of the Kanban System Performance Optimization Problem.
P2 P3 | p7 P11 | P14 P17 P18 | P20 P22

1 1 | 1 1 | 1 1 1 | 1 1

The Event Graph shown in Figure 3 models a job-shop composed of four machines M1, M2, M3, and M4,
which manufacture three part-types denoted by R1, R2 and R3. Here again, the theory seen before (equations
(5)) can be applied as the Event Graph in Figure 3 is strongly connected.

Table 2 refersto the solution of the job-shop performance optimization problem provided by the neural
strategy proposed in the previous sections, considering avalue of £ = 1/6, imposed by the bottleneck machine
M4, and the following valuesof u; in(1): U;=1 i [0,12] andu, =0 i [13, 25]. For each placein the Event
Graph, the table shows the distribution of the tokens determined by the neural network. As before, only the
places containing one token are shown. Again, it can be verified that this solution produces the best
performance for the whole system.

Table 2 Solution by the Neural Approach of the Job-Shop System Performance Optimization Problem
| P3 P4 | P5 P8 | P11 ] P13 P17 | P20 P23
| 1 1 | 1 1 | 1 ] 1 1 | 1 1

6. Some Considerations on the Neural Computation

The aim of this section is to give some indication about the time required for the neural solution proposed
here to reach a solution of the FM S optimization problem.
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The time required to compute a solution depends on the complexity of the following types of operations that
have to be performed in sequence:

1. Beforethe neural network startsto iterate, it is necessary to determine all the network weights. In
the FM S performance optimization problem, the initialization of the weights and bias currentsis
represented by (23) and (24). As can easily be seen, the time needed to initialize the weights and bias
currentsis proportional to the size of the weights matrix, i.e., to the number of neurons squared. As
each neuron corresponds to a place in the Event Graph modeling the FM S, thistime is proportional to
the number of placesin the Event Graph squared. This computational overhead is generally known as
programming complexity, which, on account of what said, is O(n?).

2. At each iteration, the bias current has to be determined for each node. This operation is performed
by the processing units in the Bias Current Level, indicated in Figure 5 as |,. Figure 6 gives the
agorithm used to calculate these currents, which will be repeated in the following for the sake of

clarity:
a. foriz=ltondo
if 0, =0 then
B, for¥y*eI'": Fie y*do
c. if T 0;< ]-ﬂ-J-l{T'}] then I+ = 8C- 3 x rﬁ-u[?-}.l
PRy 1 Per’

It comprisestwo for cycles (lines (@) and (b)). Thefirst (line (a)) featurestheindexi: =1ton,i.e, it
executes n operations. It is, in fact, necessary to determine the bias currents, 1,(t), for al the neuronsin
the network. For each index i, the second cycle (line (b)) features as many iterations as there are
elementary circuits3* “* to which the place Pi (i = 1,.., n) belongs. Let nmax, be the maximum number
of elementary circuits each place can belong to. According to this definition, for each index i, nmax,
iterations are done in the worst case. The number of operations performed in each iteration of the for
cycleinline (b) is equal to the number of places belonging to each of the elementary circuits 3*
considered. In fact, the condition controlled by the if in line (c) relates to the sum of the network
outputs for al the places belonging to the elementary circuit #* being considered by the for cyclein line
(b). Let nmax, be the maximum number of places belonging to an elementary circuit; it is obvious that
the number of operations performed in each iteration of the for cyclein line (b) is equal to nmax; in the
worst case. On account of what was said, it is clear that the computational complexity of calculating the
bias currentsis O(n - nmax, nmax.).

3. At each iteration, the neura network output is obtained by calculating the weighted sum of all then
inputs. It can be easily shown that the complexity of this operation is O(n?), as the computational
complexity to determine the weighted sum of al the n inputs of each neuron is O(n).

4. The neural network must perform a certain number of iterations until it converges toward a stable
state. In [21], it was shown that the number of iterations is aways very limited (afew hundred
iterations) and is practically independent of the complexity of the problem (i.e., the number of neurons
in the network).

Therefore, it is clear that the time needed for the neural network to converge and to provide for a solution to
the FM S Performance Optimization problem is therefore equal to the sum of the complexities of operations
(1), (2), and (3), i.e., O(n2 + n- nmax, nmax.).
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7. Conclusion

- This chapter has presented an original approach to FM S performance optimization, featuring the application
JUMP'TO TOFIC of aneura strategy to find an optimal or quasi-optimal solution to the problem.

— A novel neural model has been proposed and described. It derives from the original Hopfield model, to which
some modifications were applied. The need for this model has been clearly pointed out in the chapter.
Essentidly, the original Hopfield model is able to solve optimization problemsin which one or more
surrounding conditions impose rigid constraints on the solution. There are many optimization problems whose
surrounding conditions do not impose rigid constraints on the solution, but allow it to vary within an
admissible range of values. Application of the original Hopfield neural model to problems of this kind may
not give valid solutions. The proposed neural model was conceived to overcome this limit, allowing the bias
current to vary during the evolution of the neural network.

The FM S performance optimization is based on the modeling of an FM S by the proposed novel neural model.
The solution the neural network provides determines the FM S configuration which will maximize
performance.

From tests carried out on alarge number of examples, it was found that the quality of the neural solutionis
aways high, as the solution reached is always optimal or close to optimal. Furthermore it was experimentally
found that the computational time the neural approach provides for is polynomial with the dimension of the
FMS (i.e., number of resources). Thiswas confirmed by the computational analysis presented in the chapter.
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Chapter 8

p——— Channel Assignment in Mobile Communication
a8 Networks - A Computational Intelligence Approach
[ |

Gangsheng Wang

Department of Multimedia Communications
Sharp Laboratories of America, Inc.

5750 NW Pacific Rim Blvd.

Camas, WA 98607

U.SA.

Nirwan Ansari

Center for Communications and Signal Processing
Department of Electrical and Computer Engineering
New Jersey Institute of Technology

Newark, NJ 07102

U.SA.

The channel assignment problem arises when the scarce and expensive spectral resources must be shared and
utilized efficiently. In this chapter, a computational intelligence approach isintroduced to allocate channelsin
amobile communication network. Numerical simulations have demonstrated the feasibility of the proposed
approach.

1. Introduction

The recent telecommunications revolution poses a greater demand and sophi stication on optimization
problems encountered in today’ s telecommunications systems. As aresult, conventional optimization
techniques can no longer meet the new challenge. New approaches such as neural networks, simulated
annealing, stochastic machines, mean field annealing, and genetic algorithms, have been proven to be
effective in solving complex optimization problemsin recent years. Readers are referred to the recently
published text [1] for a solid foundation on computational intelligence for optimization.
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In this chapter, a computational intelligence approach based on Mean Field Annealing (MFA) is presented to
solve the channel assignment problem in mobile communication networks. A communication network is
expected to serve an increasing number of users for data transmissions, information exchanges, and various
multimedia applications. Bandwidth is often a primary and invaluable resource. In order to support concurrent
access by numerous users in a network, this finite and expensive resource must be shared among many
independent contending users. Multiaccess protocols control the access of resources among users to achieve
their efficient utilization, to satisfy connectivity requirements, and to resolve any conflict among the
contending users. Frequency-division multiple access (FDMA) is awidely used protocol in current mobile
telephone communication systems, in which the available bandwidth is subdivided into a number of subbands
called channels. Three interferences, namely co-channel, adjacent, and co-site, must be avoided in channel
assignment while maximizing the number of communication connections. Such a channel assignment
problem has proved to be NP-complete, for which efficient algorithms rarely exist. Asthe problem size gets
large, there may exist alarge number of local optima, and searching for the global optimal solution by using
conventional heuristic algorithms may become intractable. On the other hand, Simulated Annealing (SA)
provides a means to search for global solutions. However, SA is often time consuming. MFA replaces the
stochastic processin SA by using a set of deterministic equations, which can usually find suboptimal
solutions much faster than its counterpart. In Section 2, the channel assignment problem is described. The
energy function required by MFA isformulated in Section 3. In Section 4, the determination of the frequency
span and convergence of the algorithm are presented. In Section 5, remarks are drawn based on numerical
results of three test instances. In Appendix A, the MFA theory and its convergence are discussed. The
NP-completeness of the channel assignment problem is proved in Appendix B.

2. The Channel Assignment Problem

In the FDMA protocol, each user in the network is confined to access an allocated channel only. Although
FDMA consumes a fraction of the bandwidth to achieve adequate frequency separation, it isrelatively easy to
implement and requires no real-time coordination. One of the FDMA examplesis cellular communication
systems, in which the frequency band is allocated by the Federal Communications Commission (FCC) to be
on 824-849 MHz for uplink transmissions (from a mobile to a base station) and on 869-894 MHz for
downlink transmissions (from a base station to a mobile). The frequency band is subdivided into acertain
number of narrowband channels, each capable of supporting one phone circuit that can be accessed by any
user. The channels are indexed by a sequence of numbers{1, 2,..., N}. Channel i and Channel i+1 are called
adjacent. The channel bandwidth is 30 kHz. Therefore, this frequency band can accommodate 832 duplex
channels[2, 3]. Furthermore, the 832 duplex channels are equally divided into Bands A and B. Voice and
control channels are assigned at each base station from the allocated spectrum, either A or B band. Therefore,
there are 416 channels for each band, including 21 control channels for call setup. Thus, each band has 395
available traffic channels for voice transmissions. Figure 1 shows a cellular communication system in which a
geographical areais divided into hexagonal cells. The number of cells K in which the same channel cannot be
used is called the frequency reuse factor. Using different channels within K cells prevents adjacent cells from
interfering with one another. Starting from the center of acell, say Cell a, one can reach another cell’ s center
by traversing through i cells, rotating 45°, then traversing j cells, and finally reaching the other cell a that can
reuse the same channel, as shown in Figure 1. A frequency pattern, or cluster, composed of K céllsis

determined by the equation K = i2ij + j2, wherei,J € f, and I" isthe set of positive integers. The cluster
shown by the shaded cellsin 1 correspondstoi=1andj=2,0or K= 7.

Figurel A cellular network with K = 7.

To minimize interference, each cell can only use 395/K channels for each band. For example, for K= 7 as
shown in Figure 1, each cell can support 56 traffic channels. As the demand for communications increases,
hundreds of channels may be required to serve thousands of concurrent users. To meet this requirement,
channels must be reused in an efficient manner. In a cellular mobile-telephone system, the same channel used
in one cell might be reused in another cell provided that the two cells are separated by a certain distance in
space. Interference may occur when the same cell or different cells use certain pairs of channels. In order to
avoid any interference, three types of interference constraints, namely co-channel, adjacent-channel, and
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co-site, must be satisfied. The constraints will be addressed in the next section. The channel assignment task,
given agroup of available channels, isto find an assignment that meets various constraints [4].
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3. Problem Formulation

- For an n-cell cellular radio network, the cell system isdenoted by X = {x,, X, ..., X.}, wherex;, i, represents a
JUMP TO TOPIC cell. The requirement on X is an n-vector R = (r,) wherer, is the number of required channels by cell x. The

— interference constraints can be specified by an n x n non-negative matrix C = [¢;]. C is called a compatibility

matrix on X. For agiven problem, C is prespecified by the designer. For any channel f assigned to Cell x; and f

2 assigned to Cell x;, it must satisfy the condition |f - f2| e ¢;. Based on the value of ¢;;, three types of

constraints are defined:

1. Co-channel constraint: If ¢; = 1, then [f - f2| e 1 must hold, implying that Cells x; and x; cannot use

the same channel.

2. Adjacent-channel constraint: Two cells x; and x; are prohibited from using adjacent channels; i.e,

any two channels assigned to Cells x, and x, must be separated by at least two channels. It is reflected

by the inequality c; e 2.

3. Co-site channel constraint: Two channels assigned to a cell x, must be separated by a certain number

of channels, i.e., ¢; el wherel e 2.

jv

Define an n-vector F = (F;), where F; isabundle of channels assigned to cell x; and the cardinality of F; isthe
number of channels assigned to cell x.. A triple .= (X, R, C) is called an instance of the channel assignment
problem. F will be called afeasible channel assignment for  if the following conditions are satisfied.

1. Thecardinality of F; equalsr;, i
2. [f-f2|ec; forall>q,xj X, f F,f2 Fi

ij?
If m successive channels are assigned to cellsin an assignment without causing interference, mis called the
span of the assignment. For a given channel assignment problem, the objective isto find afeasible channel
assignment F that has the minimum span while satisfying the interference constraints and user requests.

In the simplest form of the channel assignment problem where only co-channel constraint is considered, it is
shown in Appendix B that the problem is equivalent to a graph coloring problem, and thereforeit isan
NP-complete optimization problem. The extension of the constraints will show that the channel assignment is
NP-complete. The proof of its NP-completeness is given in Appendix B.
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To map the problem onto a Hopfield-type neural network [5], define

1 if channel j is assigned to cell xi
5ij = (1)
0 otherwise

Asshown in Appendix A, an energy function must be formulated in order to solve an optimization problem
by MFA. The energy function should reflect the parameters to be optimized and various constraints. Then, the
MFA procedureis simply to find the optimal solutions which yield the minimum energy.

For a channel assignment problem = (X, R, C) with n cells and m channels (to be decided), S=[s)] isann x

m binary matrix representing a neural network. The steady state of the neural network S corresponds to an
assignment. The energy function is composed of two parts, E; and E,. E, reflects the interference constraints

as given above:

=YY Tass,

i=l j=1p=lq lg-p< gy

When achannel qisassigned to Cell i, any channel p assigned to Cell j must satisfy I‘i" Plz":ﬁr' tobe
considered as a feasible assignment, which is equivalent to

Zc‘js,-ps e = 0
gq: lg-pl< ¢
If al channels and cells are taken into account, a feasible assignment will result in

n n m

E=222 CiSipSig = 0

i=1 j=1 p=lq:lg-pk ¢;
In other words, any invalid channel assignment will yield a non-zero energy value.

The second part of the energy function is E,, which reflects the channel requirement constraint

E, =i(iﬁ; —n]i

i=1\, j=1
For achannel assignment, E, is minimized only when the number of channels assigned to any cell x; i is
T
si - ri|=0
equal to the number of required channelsr,, e.g., \ /=1

The energy function E can be expressed as
W i
E(S]=?E,+TE1 (2)

where w,, w, > 0 are the weights.

Combining E, and E,, it can be seen that for a feasible channel assignment, Equation (2) yields the minimum
energy value, zero. Any channel assignment that violates the interference constraints and channel requirement
will yield higher energy. The MFA procedure is to find a feasible channel assignment which provides the
minimum energy. If afunction g(x) is defined as



1 ifx<l
glx)=¢x ifl€x<m (3)
m ifx>m
then the energy function can be written as
A A m !':.P"l-‘.r-U

2
E{SJ:EF*E&"‘%ZEZ Efu%’n’*%z[z%—ﬂ] ()
f=1 y

-I,u--l-;-ﬂp—:_-lr i=ml g =l
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4. Convergence and Determination of the Frequency Span

e For a given compatibility matrix C and the channel requirement vector R, one needs to determine the

JUMP'TO TOFIC minimum frequency span (the number of required successive channels), denoted by m. However, as shown in
_ Appendix B, the determination of the minimum span is polynomially related to the graph coloring problem

which is an NP-complete problem. Therefore, the problem itself is NP-complete. In order to apply the MFA

scheme to solve the channel problem, the minimum span is approximated for the following two cases. Then,
the MFA algorithm is used to search for the feasible channel assignment. If no satisfactory assignments can be
found, the span misincremented by one or more, depending on how far the assignments are from the channel
requirement R.

4.1 Case 1l

Usualy, ¢;, the minimum frequency separation for any channels assigned to Cell i ( i), islarger than ¢, the

frequency separation for channels assigned to any two different cellsi, j. If ¢; >> ¢;, mcan be obtained as
follows.

m=c; (-1+1,

where i = |k: rp, = max r;)
ek J

W n m-1 m i
+—2-z E:E’,i-ﬂz EF‘.:PI,"W-EZII'FF:“"T]E
2 i=1 | p=l p=lg=p+l p=l

R

= %Zzzzcﬁ’ﬁﬂsh H(l-ﬁq;_] -

i=1 j=1 p=l¢=1 1=Z Jgtp+e,=1). glp+cy-1))
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Tos ==5¢y [T0-8,) |-—-8,8, -w8,0-8,.) [la-8,)
2 | leZistp-ciongtpeci-my | 2 inZ, 1.5}
"ru =w,r
IRIP = Erl.z
i=l
4.2 Case 2

If ¢; iscloseto ¢; for all i, j, the procedure described for Case 1 may not be applicable. The following
heuristic algorithm is used to determine the minimum span m. It can provide atighter span only when ¢; = 2

andc;=0or 1 Let X = (%;) pe the set of cells. Denote A as the set of assigned cells which have been
incorporated in evaluating m, and U asthe set of the unass gned cells. The notation A € Xpindicates that
cell x; isassigned to Set A,

1 m=c, (ry1)+1, A <5V €X- (% } where p stisfies the inequality Cp(fyl) €C; (1) sy

0 (if y = 0, mremains unchanged in the next step; if y = 1, mwill be incremented by 1).

2 salect X2 € U gpentna Coa (g 1) 2 €ilri1) V xie U,

If Cqi = 1 Vxe Aandy=1,thenm= M+ Cyq (g - 1), y*0.

3 A <A +{J£4},U1'—U‘ {Iq}, repeat Step 2 until U isempty.

Asdemonstrated by simulations, the above approximation procedures provide satisfactory results. The
determination of the exact required frequency span is still an open question.

4.3 Convergence of the MFA Channel Assignment Algorithm



Define
Z,(ab)={Llabez", aslsh}

f_ (a,b)={l: le Z_(1,m), and IEEH[a,b)} {5y
Then,
n m d=glpsey-=1) W, n m 2
E{S} _EZZ zﬁ’w’ﬁ"’? [z 5:1:“":‘
iml j=]l p=l gmg{p- |.'.'+]:I i=l pel
rrr qugipreg=1] w " - 2 m 3
=—EE Ec&sws +—LE Esw —ZE Sp rit+
izl j=1 pu]l gmg(p=¢ %1} 2 i=| p=l puj
=& ¥ 33 e ns [ nuwu}
iml jml p=] g=l iEf.l;i,p—r_ +lhgiprey =11
2RI
Since 2 is aconstant for agiven w, and does not affect the iteration procedure, this term can be

ignored, and the energy function can be written in the form of

E(S)= ZZ Z ip.igSip*® zz_l{ffp‘gfp (6)

i=l j=1 p=1g=1
Note that
Lpjqs =Tjp Ty )

In Equation A.4, it is shown that, if the energy function can be written in aform of the Hopfield energy
function, the MFA iterations will guarantee stahility, and therefore convergence at each temperature. Since
Equation (6) is expressed in this form and the matrix [T;,;,] is symmetric, the MFA approach to solve the
channel assignment problem will converge to the local minima at each temperature.

By taking the derivative of the energy,

+c;—1
aE(S) n &lpte—1) m
== Dci Sig +Wy| X8y -, (8)
ip i=lg=g(p—c;+1) q=1
Therefore, the MFA iterations can be performed according to
1 1 1 n §=g{prg-1)
:;:1__ e S ——e z Z &V ,E: n_,_wzz[ (k=) _ ) ©)
2 2 2r J=l g=g(p—gy+1)

5. Numerical Examples and Conclusions

Three instances with 5, 10 and 25 cells have been tested by the proposed MFA channel assignment algorithm.
Figure 2 lists the compatibility matrix and the requirement vectors for each of the instances. The assignments
obtained by the proposed algorithm are shown in Figure 3. In Figures 3a and 3b, the frequency spansmare
estimated using the procedure outlined for Case 1. They are 67 and 204, respectively, and are equal to the
spans of the actual assignments. In Figure 3c, m estimated by the procedure outlined for Case 2 is 69, which is
rather close to the actual required span of the assignment, 73. Although the determination of mis
NP-complete, the proposed procedures provide satisfactory resultsin our simulations.

As pointed out in Section 3, each binary neuron s; represents an assignment, e.g., if s; = 1, then channel j is



assigned to cell i. The MFA procedure is iterated according to Equation (9), starting at temperature T, = 5.
The weightsw;, w, are set to 15 and 20, respectively. The annealing schedule, in which the temperature is
lowered, T, = 0.98T, ,, is used, where k is the k-th iteration. The annealing process terminates and the
decoding v = [v;] provides the channel assignment solutions when the following condition is met:

2

22 v =X Y v | <001 (10)
J i

1
nm|
. 0
where ¥ isthevalue of v; at equilibrium at temperature T,, n is the number of cells, and misthe

frequency span.

In summary, the channel assignment problem arises when scarce and expensive spectral resources must be
fully utilized. It is proved that the assignment problem is NP-complete. In this chapter, an MFA-based
agorithm is proposed to solve the difficult optimization problem. Three interference constraints, namely
co-cell, adjacent, and co-site, are considered. The energy function can be written in the form of Hopfield net,
and subsequently the convergence of the proposed MFA iteration is guaranteed. Two procedures are
presented to estimate the minimum span, and they provide satisfactory results. Three instances are tested by
the algorithm, and feasible solutions are obtained for each of the instances.

bility matrix and requirement matrix: (@) C1 and R1; (b) C2 and R2; (c) C3 and R3.

== R

Figureé Channel assignments: (a) F1; (b) F2; (c) F3.
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Appendix A: Mean Field Annealing

In acombinatorial optimization problem, cost is defined as a function of discrete variables representing
configurations. A combinatorial optimization problem is defined by II= (f. S)where S = {5} isafinite
— set of configurations and f is the cost function, & I" and fi5 = R’ here I represents the

e
n-dimensional integer space and R the positive real value space. The objectiveisto find an optimal
configuration s, which provides the minimum cost, i.e.,

[ = f(som) = min f(s) (Al)
e o selsf

JUMP TO TOPIC

A.1 Statistical Mechanics

There exists a significant analogy between statistical mechanics and the process in solving complicated
combinatorial optimization problems. Statistical mechanics examines the properties of ensemble of particles.
Since the number of particlesis quite large per cubic centimeter, only the behavior of the system in thermal
equilibrium at a given temperature is observable. Different position placements of particlesin aliquid or solid
matter will yield different energies. At each temperature, all particles randomly move around until thermal
equilibrium isreached. If a state is defined by the set of particle positions, then, at thermal equilibrium, the
probability of the system being in statei is represented by the Gibbs distribution [6, 7]:

K= Pris=i) ==z (A2)
E(j)
Emﬂﬂ[“ U]
kT Jiscalled the partition function, k, is the Boltzmann

constant, T the absolute temperature, E(i) the energy of statei, Sthe state space (corresponding to the
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configuration space in an optimization problem), wherek,, T, E(i)e R+. It is easy to show that [6]

lim x; = lim = (A3)
Fabwo © Teboe Z e E(J‘} 15l
CLCK
ks kT
implying that, at a very high temperature, al states are equally probable.
On the other hand,
exal - E0)= E_]
: i kT
) l'i'lz E(j)~ Evn |
ms€XP| = j

E\i) = E min
) "‘{" ks T ]

= lim
r_

w E(j)= Ewin E{j)= Epin
Er-#_.,up[_-.—hr ]4- ijﬁu[{— =

— if { €5 mn

= (A4)

where Smin = {J: E(7) = Eqin} ang Emin = min je. E(J)

As can be seen from this equation, the system will likely settle in those states with minimum local energy as
the temperature approaches zero.

The crystalline lattice structure in asolid usually yields lower energy. A physical process called annealing is
often performed in order to form a crystal. In the annealing process, asolid is heated up in a heat bath by
increasing the temperature of the heat bath until it has melted into liquid, and then the temperature is slowly
lowered. At each temperature, all particles randomly arrange themselves until thermal equilibrium is reached.
If the annealing is slow enough to allow the solid to reach thermal equilibrium at each temperature, a
low-energy crystalline solid would be formed when the system is frozen (T ' 0). If the annealing istoo fast, the
solid may become glass-like with noncrystalline structure or consist of defective crystals with metastable
amorphous structures.

A.2 Simulated Annealing

Based on the annealing process in statistical mechanics, Kirkpatrick et al. [8] proposed an algorithm, namely,
simulated annealing (SA), for solving complicated combinatorial optimization problems. The cost function
and configuration in optimization correspond, respectively, to the energy function and state in statistical
physics. Therefore, state and configuration are used interchangeably. The temperature isintroduced as a
control parameter.

Suppose that a cost function f: § —* R+, S € S isdefined on some finite configuration set S For exch

configuration 8 € S, thereis aneighboring set Ms) € S whichis generated by a small perturbation of
s.

Given the current state s(k), a neighboring state s' (k) is randomly selected from M 3), wherek isthe k-th trial.
Thetransition probability from state s(k) to s'(K) is given by Metropolis-[9]:

Lf (5 (k) - f{S(k})]*] (AS)
T

P[s(k),s'(k)]= Pris(k) = s'(k)} = ﬁxp]:—



where

[x]" = max {0, x} (A6)
Equation (A5) can be written in another form:
1 if fis"(k)) < f(s(k)),
Pr{sk +) =5'(K)) =1, p[— f (5" (k)= f (s(k }}] o (A7)
T

Equation (A7) allows occasiona transitions from alower cost configuration to a higher cost configuration
with certain probability, thus preventing the system from getting stuck in local minima. The random process

X=(s(k): k20) produced thus can be characterized by a discrete time homogeneous-Markov chain [6].
The one-step transition matrix is

Pr(x,y) = Pris(k+D) =yl stk)=x]

0 if yeN(x)andy# x

= G{.x;y}nirl{l, u;(-m'—];@l]} if yeN(x)andy# x
| ]'Z,A,.,G{Inf}l'in{l, wq{-&ﬁ)} if y=x

where G(x,y) is the probability of generating configuration y from x.

If the generation probability of any configuration x is uniformly distributed its neighboring configuration set

N(x) and the configuration transition is based on the above equation, the corresponding Markov chains are
irreducible, aperiodic, and recurrent [6]. Under these conditions, the stationary equilibrium distribution A, for

configuration i isreached after an infinite number of transitions:

x,(T)= ill_ll'll Pr{s(k)=iIT}

= lim Pr{s(k)=ils(0)=15,,T}

[ L]

(AB)
Fi0]
_ np(- T ]
- FiJ)
Ehstxp[— T ]
From Equation (A4),
— ifi € Suin
f.l_'; = Eﬂjﬂﬂ: | Srinl (A9)
0 otherwise
Therefore,

lim{lim P(s(k) € Smin)] = lim 2, 7(T) = 2.7 =1 (A0

T=) k—ye= T=0 ies ie S min
Equation (A10) states that the SA algorithm asymptotically converges to the configurations with the
minimum cost, i.e., if the temperature is slowly lowered and the system performs a sufficient number of



transitions at each temperature, the configurations (solutions) with the global minimum cost will be found
with probability one.
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A.3 Mean Field Annealing

Even though SA is proven to be able to reach the global optima asymptotically, it is often time-consuming to

JUMP'TO TOPIC reach thermal equilibrium at each temperature. A finite number of transitions at each temperature cannot

S ——— guarantee convergence to the globa optima. In statistical physics, mean field approximation is often used.
— Mean field annealing (MFA) uses a set of deterministic equations to replace the stochastic processin SA. It
uses saddle point approximation in the calculation of the stationary probability distribution at equilibrium, and
reaches equilibrium at each temperature much faster than SA. Even though this approximation method may
not be guaranteed to converge to global minima, it does provide a good approximation in finding near-optimal
solutions with much less computing effort.

As shown in the previous section, the stationary probability distribution at equilibrium for configuration s’ is

given by
ox [_ f (s'})
e R

Jrg" ol z

Z= gexp(— %J

wheres, § 'e I are configurations and I" isthe n-dimensional integer space. For alarge optimization
problem, exact calculation of the partition function Z is prohibitive. The saddle point approximation [10] is
used. Note that the Dirac deltafunction, “(.), can be expressed as

1
P thia R Xy All
5(x) zm_Le dy (A1)

where the integral istaken along the imaginary axis. Hence,
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Z=Zexp[— %} = cujxdujre'fr"‘*”du (A12)

where
foluw) = Jd1) ': = uv- ane (A13)

C, isacomplex constant, and f, is called the effective energy in statistical mechanics. At saddle points,

¥ _,_2se

= e

and

Fo_1F0)
e +u=0 (Ald)

T o

Therefore,

25
vﬂr—T
.El
(A15)
__170)
T o
where . T isthe thermal average of s at temperature T.

_ (v
In statistical physics, T oo is called the mean field. If aconfiguration s=[s,, S,

., S| T isrepresented by a sequence of binary values, i.e., s {0, 1}, then v=[v,, v,, ..., v,]T and

1
2.5 e
&

,_F=ﬂ e 1 u.']
= = =— t — Al6
L 1 1+ e 2[1+ El'lhl 5 ] (A16)

Z ™

5wl
he-ZO)
whereu =[u, u,, ..., u]T and o
For the binary system,
1 hi
v, = 2[l+te1.nh(21'.,]j| (AIT)
df (v)
h =- Al8
; o (A18)

In 1982, Hopfield [5] defined the following energy function of the Hopfield net for optimization:




fu(s)= ‘%EZTH-'% —Zsf!,- (A19)
i i

where s {0, 1} . In the Hopfield model, the system is represented by a network composed of n neurons. Each
neuron i can be represented by an operational amplifier, s isthe output of neuron i, and T;, which is
symmetric (T;=T; and T;=0), represents the synaptic connection between neuroni andj. I; is the input current
to amplifier i. The stable states of the network correspond to the 2n corners of the hypercube {0, 1}, the local
minima of the energy function defined in Equation (A19). For the MFA approximation, if the energy is
formulated as in Equation (A19), the mean field h; and the thermal average v, become

h, =-%=Ziﬁ}.v1+n (A20)
i

ey A hy
1,-1.=5|.=E 1+ tan E (A21)

The iterative procedure to reach thermal equilibrium at each temperature is called relaxation, in which the
mean field is updated by

h (t + Af) =h,.{:)+m[- &a":“) —h,-(r}}
Taking the limit,
dh, . R(t+AD—h(D)
Fi - wa
or
dh; - o (v) o
o —ﬁ;{f]—gf:jvj+f|-—ﬁf (A23)

The MFA relaxation operation at each temperature should lead the system to stable equilibrium. The stability
and convergence of MFA will be analyzed in the next section. The MFA procedure can be summarized in the
flow chart shown in Figure Al. In thisfigure, a sweep represents a complete update of al neurons, and an
iteration consists of L, sweeps at temperature T,.

Figure Al The MFA iteration procedure.

A.4 Convergence of MFA

To prove convergence of MFA requires some knowledge of stability theory [11]. Consider the following
differential equation:

dx
o F(x) (A24)

X +n
where x€ R" fx—=R7 g™ represents the n-dimensional positive real value space.
Definition A1 (Equilibrium Point): x* is called an equilibrium point of Equation (A24) if f(x*) = 0. That is, at
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the equilibrium point, the systemwill no longer change with time.

Definition A2 (Stability): Let x*(t) be a solution to X = f (X¥). An equilibrium point x* is stableif, for every
neighborhood set N of x*, thereis a neighborhood N, of x* such that every solution x(t) with initial
point(t,) in N; defined in both Nj and N for all t> t,- That is, for any x, = X(t,) and any given value p> 0,

L] L]
there exists an arbitrarily small value” > 0 sothat if | X(fp) =X 1l < & thenll x(£) —x Il < €,
where l1x1] isthe Euclidean norm, i e,

5 (A25)

lx, —x,ll = I:Z{x,-t—xﬁf]
k

Definition A3 (Asymptotically Stable): If x* isstableand lim. x(t) = x*, then x* isasymptotically stable.

Figt]reAZ St.ability: (a) stable; (b) asymptotically stable.
Figure A2 illustrates the stable and asymptotically stable points.

Theorem A1 (Liapunov's Stability Theorem) [11]: Let x* be an equilibrium point for Equation (A24). Let E:
N — R beacontinuous and differentiable function defined on a nei ghborhood N of x* such that if:
a) E(x*) = E;,and E(x) > E(x*) if x * x*,

b) E <0 YXeN, thenx* isstable. Furthermore, if also,
o) E<0 ¥ xe N, x* isasymptotically stable, where:

oy JE_vOE dy _ o1 (A26)
E“J'd:'gax; ik
JE OJE dE 4 (A27)
vE(I) _[arl [ &2 ® ---‘&"jl

A function E(x) satisfying (a) and (b) is called a Liapunov function. If (c) also holds, E(x) is known as a strict
Liapunov function.

For MFA, if we construct

E(v)=f, + ZJ&- (y)dy (A28)

i=1 0
then
ag(’:') = @;"Ifiv) +h, =-§?:jvj ~I. +h (A29)
or
VE(w)=-Tv-1I+h (A30)
whereT={T,: }andv,1, B € R".

Let
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Y(v)=E(v)-

E(»")

(A31)

and assume that v* is an equilibrium point and alocal minimum; then,
a) “(v*) = E(*) - EW*) = 0, and ¥(¥) = E() = E(v) >0, VreN(y")

b) From Equation (A17), we have

I

Therefore,

2

|
=
¥
-
e
¥|¥
|
¥
=
S

]
-
¥|¥
e

+

S

T(1+e*7) M

2
+J'|,-]

= .VET.W-VE <0

W=dj ﬁi au“
~ O oh, om, " T an,

where

1 h;
v, =—| 1+ tanh(ﬂ,]

(A32)

]. It is shown that if an equilibrium point v* isalocal

minimum, it will be asymptotically stable. "(v); therefore E(v) isastrict Liaponov function; i.e., at each
temperature, the evolution of Equation (A23) will lead the system to converging to alocal minimum.
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Appendix B: NP-Completeness of the Channel Assignment Problem

- The channel assignment problem, , isto assign channels to cell sites while satisfying channel constraints
JUMP TO TOPIC described by the compatibility matrix C = [c;]. In the FDMA cellular communication systems, the frequency

— band is subdivided into a certain number of narrowband channels, each capable of supporting one phone
circuit that can be accessed by any user. The channels are labeled as a sequence of numbers{1, 2,..., N}.
Channel i and Channel i+1 are called adjacent. The frequency distance between channel f and f2is|f - 2. ¢;

represents the channel constraint that the frequency distance between the channels assigned to cell i and cell j
must be greater than or equal to c;. Each diagonal element ¢; in C represents the minimum separation distance
between any two channels assigned to cell i. Let vector X = (X, X,, ..., X,) represent the n cell sitesfor agiven
cellular communication system. R=(ry, r,,..., ;) isthe requirement vector, where r; indicates that cell x; is
requesting for r;, channels. F = (F,, F,,..., F)) isafeasible channel assignment, where F; = (f;, f.,,..., f, ;), and

f, Kisthe channel number assigned to cell x;.. For example, if three channels numbered 2, 5, 7 are assigned to
cell x, andr, = 3, thenF, = (2, 5, 7). Thus, the problem  can be defined as a decision problem:

INSTANCE:HC= [X, R, C K] WhereK isapositive integer.

QUESTION: Isthere afeasible channel assignment vector F such that the frequency spanis K orless?
Here, the frequency span is defined as the frequency distance between the largest channel humber and the
smallest channel number assigned to cells.

c isclassified into two subcategories: co-channel and co-site. Those where only co-channel constraints occur

are called co-channel cases. Those where al channel constraints - co-channel, adjacent channel and co-site
occur are called co-site cases. The channel assignment problems for co-channel and co-site cases are denoted
as o and ,, respectively.

Theorem B1 , is NP-complete.

Proof. To prove , is NP-complete, one first needs to show ., NP, and then show that ., is NP-hard by
finding a polynomial transformation from a known NP-complete problem.
1. o NP
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For agiven instance ., = [X, R, C], checking whether a given assignment is feasible can be completed
in polynomial time. The checking procedure is outlined below:

For the assignment F, check whether the frequency distance | f - f;| ec; fori,j=1,2,..,n,k=12,.,r,
and|l =1, 2,..., r;. Then check if the frequency span is K or less Obvioudly, the checking operations
can be completed in polynomial time. Therefore, o, NP.

Let |, denote the independent set problem. The independent set problemis, for a given graph, to find the
maximum independent set for the graph. |, is proved NP-completein [12]. ., can be proven NP-hard
by showing that | , ;, wherea , b standsfor a polynomia transformation fromato b.

2. I pcl

In the problem ,;, only co-channel constraints are considered. Therefore, ¢; = 1, ¢; {0,1} foral i, (i
J). A graph G = (V, E) can be used to represent ;. Vertex v V represents arequirement and alink (u,
V) connects pairs of requirements u, v that cannot be assigned the same channel; i.e,, (u,v) Eifc, =1
and (u,v) Eif ¢, = 0. For example, agiveninstance of ., is

X ={.I-I-| I:, xa_-, Id_? IS}

[ ] 2]

[ T N ™
e e = T =
—_— = o O O

gj::ll—ll—l-l—l
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The derived graph is shown in Figure B1, where i stands for the j-th requirement by cell x.. In the derived

graph G, every connected pair of vertices cannot be assigned the same channel. The channel assignment
problem ; isto find the minimum number of channels which satisfy the co-channel constraints and the cells

JUMP TO TOPIG requirements. By observation, , isequivalent to the graph coloring problem. In a graph coloring problem,

— interconnected vertices may not have the same color. The objectiveis to find the minimum number of colors

required to color all vertices. In ,, the vertices represent requirements and the colors represent channels.
Obvioudly, if one color isused to cover as many vertices as possible, the number of required colorswill be
minimum. Since the unconnected vertices can use the same color, the graph coloring problem is transformed
into the independent set problem |; i.e., finding the minimum number of colorsis equivalent to the problem ,
by simply finding the maximum independent set for the graph. Then the independent set V~ and the links
attached to the verticesin V” are removed. For the reduced graph, repeat the search procedure for a new
maximum independent set until the graph is reduced to empty. Due to the equivalent relationship between -,
and |, itisnot difficult to find a polynomial transformationto map | to ¢;, €9., | , c1-

Since ¢; NPand | ¢, isNP-complete.

In the example shown in Figure B1, the graph can be decomposed into a bunch of subgraphs. In each
sub-graph, the maximum independent set is found. The decomposition and coloring procedure areillustrated
in Figure B2 (8)-(c). The shaded circles (cells) will be assigned to use the same channel. The feasible channel
assignment is shown in Figure B2(d), where the shaded box represents the assigned cell.

A
‘ﬁ )
s

Figure B1 The construction of a graph.
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Figu.r'e B2 Tﬁé decomposition of the graph (a)-(c), and (d) the channel assignment.
Theorem B2 , is NP-complete.

Proof:
1 o NP

It can be shown that -, NP by performing the same checking procedure asin the proof of ., NP.
Therefore, o, NP.

2. o p C2

Once (, isproven NP-complete, the NP-complete proof of ., isrelatively easy. Sinceit has been
shown , NP, itisonly necessary to provethat thereis atransformation ¢; , ¢,

All of the constraintsin , can be described by the compatibility matrix C = [¢;] withc; Z*. ¢, isjust
the subset of -, withc; {0,1}. Therefore, every instance of ., can be directly mapped to an instance
of o, i.e,ifeachinstancel ;, thenl , Therefore, ¢; , o

Since ; isNP-complete, and ., NPand (; , c,, it can beconcluded that , is NP-complete.
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Chapter 9
m————— Application of Cellular Compact Neural Networks in
JUMP T0 TOPIC

P Digital Communication

Bing J. Sheu, Michelle Y. Wang, Wayne C. Young
Dept. of Electrical Engineering

and Integrated Media Systems Center

University of Southern California

Los Angeles, CA 90089-0271

U.SA.

In the digital communication field, neural networks can be applied as baseband maximum likelihood sequence
detectors with high speed, low power and competitive detection bit error rate. Thus, it can replace some kinds
of digital communication receivers. Two neural networks based detectors for hard-disk drive recording
channel and code-division multiple access (CDMA) multi-user detection are presented. Performance
comparison between neural network based detectors and digital counterparts are also proposed.

1. Introduction

With the rapid progress of multimedia technology, there is strong necessity for high speed, high capacity and
high quality communication systems. In order to process the large amount of data through different channels
in real-time and with high accuracy, the ability to overcome channel imperfectnessis essential.

Neural networksis avery promising computational technology due to its capabilities in modeling and solving
complex problems hardly approachable with traditional methods. In the communication field, neural networks
a so show agood potential for replacing certain kinds of digital communication receivers. The advantages of
neural networks are the following:

» Competitive bit error rate (BER) of data detection
 Paralel computing architecture
* Low power consumption
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« No need for analog-to-digital conversion (A/D) before detection as in conventional digital systems

The motivation of applying artificial neural networks or biologically inspired neural networks to the
communication field also comes from the rapid improvement of the research on human brains. The research
project, Chip in the Brain, which isworking on replacing the impaired brain cells or a part of the brain with
artificial neural network chips, is going on very well here at the Center of Neural Engineering, University of
Southern California. We tried to implement the biologically inspired neural networks not only for the
chip-to-brain communication purpose, but also for the real-world machine-to-machine communication
applications. In this chapter, the basic theory of cellular/compact neural networksis first described. Then, the
generic 1-D architecture for communication is presented. In Section 4, the implementations of 1-D compact
neural network for detection of partial response (PR) signals and code division multiple access (CDMA)
signals are described, and the performance comparisons between the neural network approaches and the
conventional approaches are given.

2. Cellular/Compact Neural Networks

Many complex scientific problems can be formulated with aregular 1-D, 2-D, or 3-D grid. Direct interaction
between the signals on various grid pointsis limited within afinite local neighborhood, which is sometimes
called the receptive field. The original cellular neural network (CNN) paradigm was first proposed by Chua
and Yang [1, 2] in 1988. Later, it was modified to be the compact neural network by Sheu and Choi [3] for the
communication purpose in 1-D form. The two most fundamental ingredients of the CNN paradigm are the use
of analog processing cells with continuous signal values, and local interaction within afinite radius. Many
results on the algorithm development, VL S| implementations of the CNN systems are reported in the first
three |EEE International Workshops on Cellular Neural Networks and Their Applications (Budapest,
Hungary, 1990; Munich, Germany, 1992; Rome, Italy, 1994), the book entitled Cellular Neural Networks,
which was edited by T. Roska and J. Vandewalle, and papers published in |EEE Transactions on Circuits and
Systems, and other |EEE journals and conference proceedings.

Dueto itsregular structure and parallelism, a 10 times 10 mm2 CNN microchip in a 0.5 ¥4m CMOS
technology can achieve the equivalence of more than 1 tera operations per second. The CNN architecture
could be the paradigm that biologists have been seeking for many years [4]. It provides a unified model of
many complex neural network architectures, especialy for various forms of sensory modality.

The cellular neural networks can be viewed as cellular nonlinear networks. A CNN has many important
features. It isa 2-, 3-, or n-dimensional array of mainly identical dynamical cells, which satisfies two
properties:

» Most interactions are local within afiniteradiusr

 All state variables are continuous valued signals

A cloning template specifies the interaction between each cell and its neighboring cellsin terms of their input,
state, and output variables.

Each cell isidentified by 2, 3, or nintegers, (i, j, k,..., n). The time variable t may be continuous or discrete.
The cloning template may be alinear or a nonlinear function of the state, input, and output variables of each
cell. It could contain time-delay or time-varying coefficients. The dynamic systems may be perturbed by some
noise sources of known statistics.

The heat equation, which isatypical partial differential equation, can be mapped onto a CNN as reported in
[1]. If acapacitor is added at the output node, wave-type equations can also be processed by a CNN. At
equilibrium, the Laplace equation can be effectively handled [3]. Hence, the CNN can be used to solve all
three basic types of PDEs (partial differential equations): the diffusion equation, the Laplace equation, and the
wave equation.
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2.1 Basic Theory and Computation Paradigm

A cellular/compact neural network is a continuous- or discrete-time artificial neural network that features a
» JUMPTO TOPIC multidimensional array of neuron cells and local interconnections among the cells. The basic cellular neural

S ——— network proposed by Chuaand Yang [1, 2] in 1988 is a continuous-time network in the form of an n-by-m
— rectangular-grid array where n and m are the numbers of rows and columns, respectively. Each cell ina
cellular neural network corresponds to an element of the array. However, the geometry of the array need not
be rectangular and can be such shapes as triangles or hexagons [5]. A multiple of arrays can be cascaded with
an appropriate interconnect structure to construct a multilayered cellular neural network. Ther-th
neighborhood N,(i,j) of acell C(i,j),1didn,1djdm,isdefined asaset of cellsC(k,l), 1dkdn,1dldm,
for which [k-i|drand|l -j|dr. Thecell C(i,j) has direct interconnections with cellsin N(i,j) through two
kinds of weights, the feedback weights A(k,l;i,j) & A(i,j;k,1) and the feedforward weights B(k,l;i,j) & B(i,j;k)l),
where the index pair (k,l;i,j) represents the direction of signal from C(i,j) to C(k,1). The cell C(i,j)
communicates directly with its neighborhood cells C(k,1) N,(i,j). Since every C(k,|) has its neighborhood
cells, cell C(i,j) can a'so communicate with all other cellsindirectly. Figure 1(a) shows an n-by-m CNN with r
= 1. The shaded cells represent the neighborhood N, (i,j) of C(i,j), including C(i,j) itself.

AR Y
Figure 1 Cellular neura network (CNN). (&) An n-by-m cellular neural network on rectangular grid (shaded
boxed are the neighborhood cells of C(i,j)). (b) Functional block diagram of neuron cell.

The block diagram of the cell C(i,j) is shown in Figure 1(b). The external input to the cell is denoted by
Vyii(t), and typically assumed to be constant, i.e., Vi,;(t) = v,(i,j) over an operation interval 0d t < T. The input
is connected to N,(i,j) through the feedforward weights B(i,j; k,l)s. The output of the cell, denoted by v,(i,j), is
coupled to the neighborhood cells C(k,I) N,(i,j) through the feedforward weights A(i,j; k,1)s. Therefore, the
input signals is the weighted sum of feedforward inputs and weighted sum of feedback inputs. In addition, a
constant bias term is added to the cell. If the weights represent the transconductances, the total input current
i;; to the cell is given by
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L= Y AG kv, 0+ Y B jik Dy )+, (1)
CLE Iha N, 004} Cik 10N, (i j)
where |, is the bias current. The equivalent circuit diagram of acell is shown in Figure 2, where R, and C are
the equivalent resistance and capacitance of the cell, respectively. For simplicity, I, R,, and C, are assumed to

be the same for all cells throughout the network. All inputs are represented by dependent current sources and
summed together. Due to the capacitance C, and resistance R,, the state voltage v,(ij) is established at the

summing node and satisfies a set of differential equations:

dv_ (1) 1 .
C‘J: ;;‘ =_R_Ing{:}+lzlf';'!.}
:-va(r}-k Y AG, jik Dy (0
R, Cikdr N, i)
+ X Bl ik v (0 + 1,
Ck.Te N v, )

1<i<n, 1<j<m (2)

The cell contains a nonlinearity between the state node and the output, and its input-output relationship is
represented by V,;(t) = f(v,;(t)). The nonlinear function used in a CNN can be any differentiable,
non-decreasing function y = f(x), provided that f(0) = O, df(x)/dx e 0, f(+) ' +1and f(- ) ' -1. Two widely used
nonlinearities are the piecewise-linear and sigmoid functions as given by

% (x+1-|x-1)) piecewise- linear

y=f@={2_ & 2/

sigmoid
l4+e™ §

=t R P

dipsial

e Timed

Figuréz Equivalent circuit diagram of one cell.

Here, the parameter » is proportional to the gain of the sigmoid function. For aunity neuron gainat x=0, » =
2 may be used for the sigmoid function. The gain of neuronsin aHopfield neural network is very large so that
the steady-state outputs are all binary-vaued. However, if the positive feedback in the CNN cell is so strong
that the feedback factor is greater than one, the gain of the cell need not be large to get a guaranteed binary
output in the steady state. Typically, aunity gain df(x)/dxI|,-, = 1 isused in CNNs. The transfer characteristics

of the piecewise-linear function are shown in Figure 3.

M = i:l.wn-u-u]
Figure 3 Piecewise-linear function.

The piecewise-linear function provides a mathematical tractability in the analysis, while the sigmoid-like
nonlinearity can be easily obtained as a by-product of electronic circuits such as operational amplifier. The
shift-invariant CNNs have the interconnections that do not depend on the position of cellsin the array except
at the edges. The shift-invariant property of a CNN is the most desirable feature when implementing a
large-size electronic network such asa VLS| chip. The weights of a shift-invariant CNN can be represented
by the (2r+1)x(2r+1) feedforward and feedback cloning templates:

T, =la,,—r<pgsrl,
T, =[b

)
-rsp.gsr)

Pt

Let N = n x mbe the number of cellsin aCNN. By using the vector and matrix notations, (2) can be rewritten
as
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1
CE———K+A}r+Bn+Ibw ©)

*dt R,
where
X =[x xpxy 1=[va () § v | v (0] Nx1
y=13, 5 1=V @ | ve® L Ly, Nx1
u= [yt 1= [V L v(0) o Ly (0] Nx1
=roepfirz[(h. g :n:...]’(a_ A L1--1A, :u!...) NxN
B = toeplitz{(B, !B, | !B, {01} (B, 1B, .- !B, l0i-)) NxXN
w=[l1 - 1Jf Nxl1
Here,
Vik =[""xn-|(t) "xtz{r)”"’m{ﬂ] Lxm
Vo = [V, (V00 (0] 1 % m
Yk =["’ml Vuu'“""utm] Lxm
A, =I£?Epl'l'lz(( Ay o at.:G'"]'(at.nﬂﬁ_-u“"at.-rn'")) . m
B, = woeplite{(b, ., ,,0- by pr-b,.,0-)) mxm
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and toeplitz(a,b) is defined as the Toeplitz matrix with a in the first row and b in the first column. Note that

the submatrices A, and B, are toeplitz, but A and B are not. The elementsof T, and T are often normalized

tothescaleof T, , e.g., 103 The notations of voltages v,(t), v(t) and the state variables x, y will be used

JUMP TO TOPIG interchangeably hereafter. Because-1dy, d + 1, k, the output variabley is confined within the N-dimensional

— hypercubesothaty DN={y RN:-1dy,d1; k=1, 2, ..., N}. The cloning templates are called symmetric if
Aliji kD = Ak l;1,)) and B(i,j; k,1) = B(k,l;i,j). In this case, A and B are symmetric matrices and the stability of

the network is guaranteed. In fact, the symmetry of A isasufficient condition for stability. Under the

constraint conditions |v,;(0)| d 1 and |v;;; | d 1, i, J, theshift-invariant CNN always produces a stable output in

the steady state. Moreover, if A(ij;i,j) > U/R,, then the saturated binary outputs are guaranteed.

Inany CNNs, all states v,(t), t e 0, are bounded and the bound v, .., can be determined by [1]:
Ve =1+ R L]+ R, m Y {AG, j:k 1) +|BCG, ik, 1)1)] (6}
oo\ CURLIaN, (i)

Thetermsin (6) account for theinitial value, bias, feedback, and feedforward interactions, respectively.
Therefore, the operating range of the circuits for summeation and integration in Figure 1(b) must be at least
Vi max d inj (t) d Vx,max

2.2 Stability

The energy function of a cellular/compact neural network with the piecewise-linear function [1] whichis
stable for signal processing is described by the Lyapunov or generalized energy function [6]

E{r):—%z > AG, i, (0 () 4 3 (1,50

i\ ClEJIEN (£ ) ER.# b ﬁ}
=2, 2 BO kDY (e = X (D)
iJ Clk.NeN (i.n i

For the networks with sigmoid function, the second item of (7) is replaced by
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Vﬁ{ 3]

Y, | £y ®)

-rffu

The expression (8) can be used for any suitable nonlinearity y = f(X) if itsinverse function x = -1 (y) can be
well defined over the range of x. It can beinterpreted as the area of the function x = f-1(y) when integrated
fromy=0toy =V, d 1. The piecewise-linear function used in (7) is a specia case of this general expression
(8). For the piecewise-linear function, x=f(y) =y,-1dyd 1,

7 oy = [ vy =3 (v, @ ®

which is consistent with the onein (7). In the vector form, (7) is a scalar-valued quadratic function of output
vector y,

1 T T T T
E=-Zy ﬁnr+m1:r y-y Bu-ly'w (10)
__ 1,4 T
7Y My-y'b

whereM = A - (UR)! and b = Bu + I ,w. The stability of the network can be tested by checking the behavior
of the energy function after the network is activated at time't = t,,.

If A issymmetric, soisM and M =MT. From [3], we have

1 dx
VE=—Ay+—7F" i RO e 11
JE= ﬁj’-l"le i¥y}=-b ﬁy+Rlx =b==C, 2 (11)
and
dE dx dy N c?f[dx T
__vg s o i 0 ) (12)
dt dr . i dt ”E’&x* dt J

So, the network is stable.

Note that in any case, the initialization of the state voltage v,(t) is required at the beginning of each operation,
such that |v;(0)| d 1, i,j. Otherwise, the undesirable situation E(t = 0) < E(t = +) may occur.
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3. 1-D Compact Neural Networks for Wireless Communication

- The performance of digital communication systemsis largely affected by an ability to overcome the channel
» JUMP TO TOPIC impairment introduced during signal transmission. Information-carrying signals in wireless communication
_ are often distorted severely due to noise, limited bandwidth, and multipath propagation through surrounding

objects. An optimum method of detecting digital data symbols transmitted over time-dispersive, time-varying
channelsin the presence of additive white Gaussian noise has been known as the maximum-likelihood
sequence estimation (ML SE). As aclass of nonlinear receivers, the ML SE detectors exhibit optimum error
rate performance compared to their linear counterparts. However, it is often impractical to construct ML SE
receivers due to the computation-intensive complexity required for the signal processing functions. A more
efficient computational method of implementing ML SE isthe Viterbi algorithm [7, 8] in which redundant
computation involved in the ML SE is avoided. Research toward more efficient VLS| implementations of the
agorithm continues in both academia and industry [9, 10].

From an optimization point of view, the MLSE is a combinatorial maximization or minimization of the cost
function over all possible sequences of a certain length. The signaling alphabet, + = {+,}, k=1, 2,..., M, and
sequence s, ={s},i =0, 1,..., n- 1, correspond to afinite set of numbers and the degree of freedom,
respectively. There are possible combinations over which the ML SE computes the cost function.

Artificial neural networks have shown great promise in solving many complex signal processing and
optimization problems that cannot be addressed satisfactorily with conventional approaches. The neural
network approaches in communications have been motivated by the adaptive learning capability and the
collective comput