

Image Processing Using Pulse-Coupled Neural Networks

T. Lindblad J.M. Kinser

Image Processing
Using Pulse-Coupled
Neural Networks

Second, Revised Edition

With 140 Figures

123

Professor Dr. Thomas Lindblad
Royal Institute of Technology, KTH-Physics, AlbaNova
S-10691 Stockholm, Sweden
E-mail: Lindblad@particle.kth.se

Professor Dr. Jason M. Kinser
George Mason University
MSN 4E3, 10900 University Blvd., Manassas, VA 20110, USA, and
12230 Scones Hill Ct., Bristow VA, 20136, USA
E-mail: jkinser@gmu.edu

Library of Congress Control Number: 2005924953

ISBN-10 3-540-24218-X 2nd Edition, Springer Berlin Heidelberg New York
ISBN-13 978-3-540-24218-5 2nd Edition Springer Berlin Heidelberg New York
ISBN 3-540-76264-7 1st Edition, Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of
this publication or parts thereof is permitted only under the provisions of the German Copyright Law
of September 9, 1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media.

springeronline.com

© Springer-Verlag Berlin Heidelberg 1998, 2005
Printed in The Netherlands

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant pro-
tective laws and regulations and therefore free for general use.

Typesetting and prodcution: PTP-Berlin, Protago-TEX-Production GmbH, Berlin
Cover design: design & production GmbH, Heidelberg

Printed on acid-free paper SPIN 10965221 57/3141/YU 5 4 3 2 1 0

Preface

It was stated in the preface to the first edition of this book that image pro-
cessing by electronic means has been a very active field for decades. This
is certainly still true and the goal has been, and still is, to have a machine
perform the same image functions which humans do quite easily. In reaching
this goal we have learnt about the human mechanisms and how to apply this
knowledge to image processing problems. Although there is still a long way to
go, we have learnt a lot during the last five or six years. This new information
and some ideas based upon it has been added to the second edition of our book

The present edition includes the theory and application of two cortical
models: the PCNN (pulse coupled neural network) and the ICM (intersecting
cortical model). These models are based upon biological models of the visual
cortex and it is prudent to review the algorithms that strongly influenced the
development of the PCNN and ICM. The outline of the book is otherwise
very much the same as in the first edition although several new application
examples have been added.

In Chap. 7 a few of these applications will be reviewed including original
ideas by co-workers and colleagues. Special thanks are due to Soonil D.D.V.
Rughooputh, the dean of the Faculty of Science at the University of Mauritius
Guisong, and Harry C.S. Rughooputh, the dean of the Faculty of Engineering
at the University of Mauritius.

We should also like to acknowledge that Guisong Wang, a doctoral can-
didate in the School of Computational Sciences at GMU, made a significant
contribution to Chap. 5.

We would also like to acknowledge the work of several diploma and Ph.D.
students at KTH, in particular Jenny Atmer, Nils Zetterlund and Ulf Ekblad.

Stockholm and Manassas, Thomas Lindblad
April 2005 Jason M. Kinser

Preface to the First Edition

Image processing by electronic means has been a very active field for decades.
The goal has been, and still is, to have a machine perform the same im-
age functions which humans do quite easily. This goal is still far from being
reached. So we must learn more about the human mechanisms and how to ap-
ply this knowledge to image processing problems. Traditionally, the activities
in the brain are assumed to take place through the aggregate action of billions
of simple processing elements referred to as neurons and connected by com-
plex systems of synapses. Within the concepts of artificial neural networks,
the neurons are generally simple devices performing summing, thresholding,
etc. However, we show now that the biological neurons are fairly complex
and perform much more sophisticated calculations than their artificial coun-
terparts. The neurons are also fairly specialised and it is thought that there
are several hundred types in the brain and messages travel from one neuron
to another as pulses.

Recently, scientists have begun to understand the visual cortex of small
mammals. This understanding has led to the creation of new algorithms that
are achieving new levels of sophistication in electronic image processing. With
the advent of such biologically inspired approaches, in particular with respect
to neural networks, we have taken another step towards the aforementioned
goals.

In our presentation of the visual cortical models we will use the term
Pulse-Coupled Neural Network (PCNN). The PCNN is a neural network
algorithm that produces a series of binary pulse images when stimulated with
a grey scale or colour image. This network is different from what we generally
mean by artificial neural networks in the sense that it does not train.

The goad for image processing is to eventually reach a decision on the
content of that image. These decisions are generally easier to accomplish by
examining the pulse output of the PCNN rather than the original image. Thus
the PCNN becomes a very useful pre-processing tool. There exists, however,
an argument that the PCNN is more than a pre-processor. It is possible that
the PCNN also has self-organising abilities which make it possible to use the
PCNN as an associative memory. This is unusual for an algorithm that does
not train.

Finally, it should be noted that the PCNN is quite feasible to implement
in hardware. Traditional neural networks have had a large fan-in and fan-

VIII Preface to the First Edition

out. In other words, each neuron was connected to several other neurons. In
electronics a different “wire” is needed to make each connection and large
networks are quite difficult to build. The PCNN, on the other hand, has only
local connections and in most cases these are always positive. This is quite
plausible for electronic implementation.

The PCNN is quite powerful and we are just in the beginning to explore
the possibilities. This text will review the theory and then explore its known
image processing applications: segmentation, edge extraction, texture ex-
traction, object identification, object isolation, motion processing, foveation,
noise suppression and image fusion. This text will also introduce arguments to
its ability to process logical arguments and its use as a synergetic computer.
Hardware realisation of the PCNN will also be presented.

This text is intended for the individual who is familiar with image pro-
cessing terms and has a basic understanding of previous image processing
techniques. It does not require the reader to have an extensive background in
these areas. Furthermore, the PCNN is not extremely complicated mathemat-
ically so it does not require extensive mathematical skills. However, the text
will use Fourier image processing techniques and a working understanding of
this field will be helpful in some areas.

The PCNN is fundamentally unique from many of the standard tech-
niques being used today. Many techniques have the same basic mathematical
foundation and the PCNN deviates from this path. It is an exciting field that
shows tremendous promise.

Contents

1 Introduction and Theory . 1
1.1 General Aspects . 1
1.2 The State of Traditional Image Processing 2

1.2.1 Generalisation versus Discrimination 2
1.2.2 “The World of Inner Products” . 3
1.2.3 The Mammalian Visual System . 4
1.2.4 Where Do We Go From Here? . 4

1.3 Visual Cortex Theory . 5
1.3.1 A Brief Overview of the Visual Cortex 5
1.3.2 The Hodgkin–Huxley Model . 6
1.3.3 The Fitzhugh–Nagumo Model . 7
1.3.4 The Eckhorn Model . 8
1.3.5 The Rybak Model . 9
1.3.6 The Parodi Model . 10

1.4 Summary . 10

2 Theory of Digital Simulation . 11
2.1 The Pulse-Coupled Neural Network . 11

2.1.1 The Original PCNN Model . 11
2.1.2 Time Signatures . 16
2.1.3 The Neural Connections . 18
2.1.4 Fast Linking . 21
2.1.5 Fast Smoothing . 22
2.1.6 Analogue Time Simulation . 23

2.2 The ICM – A Generalized Digital Model 24
2.2.1 Minimum Requirements . 25
2.2.2 The ICM . 26
2.2.3 Interference . 27
2.2.4 Curvature Flow Models . 31
2.2.5 Centripetal Autowaves . 32

2.3 Summary . 34

X Contents

3 Automated Image Object Recognition . 35
3.1 Important Image Features . 35
3.2 Image Segmentation – A Red Blood Cell Example 41
3.3 Image Segmentation – A Mammography Example 42
3.4 Image Recognition – An Aircraft Example 43
3.5 Image Classification – Aurora Borealis Example 44
3.6 The Fractional Power Filter . 46
3.7 Target Recognition – Binary Correlations 47
3.8 Image Factorisation . 51
3.9 A Feedback Pulse Image Generator . 52
3.10 Object Isolation . 55
3.11 Dynamic Object Isolation . 58
3.12 Shadowed Objects . 60
3.13 Consideration of Noisy Images . 62
3.14 Summary . 67

4 Image Fusion . 69
4.1 The Multi-spectral Model . 69
4.2 Pulse-Coupled Image Fusion Design . 71
4.3 A Colour Image Example . 73
4.4 Example of Fusing Wavelet Filtered Images 75
4.5 Detection of Multi-spectral Targets . 75
4.6 Example of Fusing Wavelet Filtered Images 80
4.7 Summary . 81

5 Image Texture Processing . 83
5.1 Pulse Spectra . 83
5.2 Statistical Separation of the Spectra . 87
5.3 Recognition Using Statistical Methods . 88
5.4 Recognition of the Pulse Spectra

via an Associative Memory . 89
5.5 Summary . 92

6 Image Signatures . 93
6.1 Image Signature Theory . 93

6.1.1 The PCNN and Image Signatures 94
6.1.2 Colour Versus Shape . 95

6.2 The Signatures of Objects . 95
6.3 The Signatures of Real Images . 97
6.4 Image Signature Database . 99
6.5 Computing the Optimal Viewing Angle 100
6.6 Motion Estimation . 103
6.7 Summary . 106

Contents XI

7 Miscellaneous Applications . 107
7.1 Foveation . 107

7.1.1 The Foveation Algorithm . 108
7.1.2 Target Recognition by a PCNN Based

Foveation Model . 110
7.2 Histogram Driven Alterations . 113
7.3 Maze Solutions . 115
7.4 Barcode Applications . 116

7.4.1 Barcode Generation from Data Sequence
and Images . 117

7.4.2 PCNN Counter . 121
7.4.3 Chemical Indexing . 121
7.4.4 Identification and Classification of Galaxies 126
7.4.5 Navigational Systems . 131
7.4.6 Hand Gesture Recognition . 134
7.4.7 Road Surface Inspection. 137

7.5 Summary . 141

8 Hardware Implementations . 143
8.1 Theory of Hardware Implementation . 143
8.2 Implementation on a CNAPs Processor 144
8.3 Implementation in VLSI . 146
8.4 Implementation in FPGA . 146
8.5 An Optical Implementation . 151
8.6 Summary . 153

References . 155

Index . 163

1 Introduction and Theory

1.1 General Aspects

Humans have an outstanding ability to recognise, classify and discriminate
objects with extreme ease. For example, if a person was in a large classroom
and was asked to find the light switch it would not take more than a second or
two. Even if the light switch was located in a different place than the human
expected or it was shaped differently than the human expected it would
not be difficult to find the switch. Humans also don’t need to see hundreds of
exemplars in order to identify similar objects. For example, a human needs to
see only a few dogs and then he is able to recognise dogs even from species that
he has not seen before. This recognition ability also holds true for animals, to
a greater or lesser extent. A spider has no problem recognising a fly. Even a
baby spider can do that. At this level we are talking about a few hundred to a
thousand processing elements or neurons. Nevertheless the biological systems
seem to do their job very well.

Computers, on the other hand, have a very difficult time with these tasks.
Machines need a large amount of memory and significant speed to even come
close to the processing time of a human. Furthermore, the software for such
simple general tasks does not exist. There are special problems where the
machine can perform specific functions well, but the machines do not perform
general image processing and recognition tasks.

In the early days of electronic image processing, many thought that a
single algorithm could be found to perform recognition. The most popular of
these is Fourier processing. It, as well as many of its successors, has fallen
short of emulating human vision. It has become obvious that the human uses
many elegantly structured processes to achieve its image processing goals,
and we are beginning to understand only a few of these.

One of the processes occurs in the visual cortex, which is the part of the
brain that receives information from the eye. At this point in the system the
eye has already processed and significantly changed the image. The visual
cortex converts the resultant eye image into a stream of pulses. A synthetic
model of this portion of the brain for small mammals has been developed
and successfully applied to many image processing applications.

So then many questions are raised. How does it work? What does it do?
How can it be applied? Does it gain us any advantage over current systems?

2 1 Introduction and Theory

Can we implement it with today’s hardware knowledge? This is what many
scientists are working with today [2].

1.2 The State of Traditional Image Processing

Image processing has been a science for decades. Early excitement was created
with the invention of the laser, which opened the door for optical Fourier im-
age processing. Excitement was heightened further as the electronic computer
became powerful enough and cheap enough to process images of significant
dimension. Even though many scientists are working in this field, progress
towards achieving recognition capabilities similar to humans has been very
slow in coming.

Emulation of the visual cortex takes new steps forward for a couple of
reasons. First, it directly emulates a portion of the brain, which we believe
to be the most efficient image processor available. Second, is that mathe-
matically it is fundamentally different than many such traditional algorithms
being used today.

1.2.1 Generalisation versus Discrimination

There are many terms used in image processing which need to be clarified
immediately. Image processing is a general term that covers many areas.
Image processing includes morphology (changing the image into another im-
age), filtering (removing or extracting portions of the image), recognition,
and classification.

Filtering an image concerns the extraction of a certain portion of the im-
age. These techniques may be used to find all of the edges, or find a particular
object within the image, or to locate particular object. There are many ways
of filtering an image of which a few will be discussed.

Recognition is concerned with the identification of a particular target
within the image. Traditionally, a target is an object such as a dog, but
targets can also be signal signatures such as a certain set of frequencies or a
pattern. The example of recognising dogs is applicable here. Once a human
has seen a few dogs he can then recognise most dogs.

Classification is slightly different that recognition. Classification also re-
quires that a label be applied to the portion of the input. It is possible to
recognise that a target exists but not be able to attach a specific label to it.

It should also be noted that there are two types of recognition and clas-
sification. These types are generalisation and discrimination. Generalisation
is finding the similarities amongst the classes. For example, we can see an
animal with four legs, a tail, fur, and the shape and style similar to those
of the dogs we have seen, and can therefore recognise the animal as a dog.
Discrimination requires knowledge of the differences. For example, this dog

1.2 The State of Traditional Image Processing 3

may have a short snout and a curly tail, which is quite different than most
other dogs, and we therefore classify this dog as a pug.

1.2.2 “The World of Inner Products”

There are many methods that are used today in image processing. Some of
the more popular techniques are frequency-based filters, neural networks, and
wavelets. The fundamental computational engine in each of these is the inner
product. For example, a Fourier filter produces the same result as a set of
inner products for each of the possible positions that the target filter can be
overlaid on the input image.

A neural network may consist of many neurons in several layers. However,
the computation for each neuron is an inner product of the weights with the
data. After the inner product computation the result is passed through a non-
linear operation. Wavelets are a set of filters, which have unique properties
when the results are considered collectively. Again the computation can be
traced back to the inner product.

The inner product is a first order operation which is limited in the services
it can provide. That is why algorithms such as filters and networks must use
many inner products to provide meaningful results for higher order problems.
The difficulty in solving a higher order problem with a set of inner products
is that the number of inner products necessary is neither known nor easy to
determine, and the role of each inner product is not easily identified. Some
work towards solving these problems for binary systems have been proposed
[8]. However, for the general case of analogue data the user must resort to
using training algorithms (many of which require the user to predetermine the
number of inner products and their relationship to each other). This training
optimises the inner products towards a correct solution. This training may
be very involved, tedious, computationally costly and provides no guarantee
of a solution.

Most importantly is that the inner product is extremely limited in what
it can do. This is a first order computation and can only extract one order of
information from a data set. One well known problem is the XOR (exclusive
OR) gate, which contains four, 2D inputs paired with 1D outputs, namely
(00:0, 01:1, 10:1, 11:0). This system can not be mapped fully by a single
inner product since it is a second order problem. Feedforward artificial neural
networks, for example, require two layers of neurons to solve the XOR task.

Although inner products are extremely limited in what they can do, most
of the image recognition engines rely heavily upon them. The mammalian
system, however, uses a higher order system that is considerably more com-
plicated and powerful.

4 1 Introduction and Theory

1.2.3 The Mammalian Visual System

The mammalian visual system is considerably more elaborate than simply
processing an input image with a set of inner products. Many operations
are performed before decisions are reached as to the content of the image.
Furthermore, neuro-science is not at all close to understanding all of the
operations. This section will mention a few of the important operations to
provide a glimpse of the complexity of the processes. It soon becomes clear
that the mammalian system is far more complicated than the usual computer
algorithms used in image recognition. It is almost silly to assume that such
simple operations can match the performance of the biological system.

Of course, image input is performed through the eyes. Receptors within
the retina at the back of the eye are not evenly distributed nor are they all
sensitive to the same optical information. Some receptors are more sensitive to
motion, colour, or intensity. Furthermore, the receptors are interconnected.
When one receptor receives optical information it alters the behaviour of
other surrounding receptors. A mathematical operation is thus performed on
the image before it even leaves the eye.

The eye also receives feedback information. We humans do not stare at
images, we foveate. Our centre of attention moves about portions of the image
as we gather clues as to the content. Furthermore, feedback information also
alters the output of the receptors.

After the image information leaves the eye it is received by the visual
cortex. Here the information is further analysed by the brain. The investi-
gations of the visual cortex of the cat [1] and the guinea pig [12] have been
the foundation of the digital models used in this text. Although these models
are a big step in emulating the mammalian visual system, they are still very
simplified models of a very complicated system. Intensive research continues
to understand fully the processing. However, much can still be implemented
or applied already today.

1.2.4 Where Do We Go From Here?

The main point of this chapter is that current computer algorithms fail miser-
ably in attempting to perform image recognition at the level of a human. The
reason is obvious. The computer algorithms are incredibly simple compared
to what we know of the biological systems. In order to advance the computer
systems it is necessary to begin to emulate some of the biological systems.

One important step in this process is to emulate the processes of the
visual cortex. These processes are becoming understood although there still
exists significant debate on them. These processes are very powerful and can
instantly lead to new tools to the image recognition field.

1.3 Visual Cortex Theory 5

1.3 Visual Cortex Theory

In this text we will explore the theory and application of two cortical models:
the PCNN (pulse coupled neural network) and the ICM (intersecting cortical
model) [3, 4]. However, these models are based upon biological models of
the visual cortex. Thus, it is prudent to review the algorithms that strongly
influenced the development of the PCNN and ICM.

1.3.1 A Brief Overview of the Visual Cortex

While there are discussions as to the actual cortex mechanisms, the prod-
ucts of these discussions are quite useful and applicable to many fields. In
other words, the algorithms being presented as cortical models are quite use-
ful regardless of their accuracy in modelling the cortex. Following this brief
introduction to the primate cortical system, the rest of this book will be con-
cerned with applying cortical models and not with the actual mechanisms of
the visual cortex.

In spite of its enormous complexity, two basic hierarchical pathways can
model the visual cortex system: the pavocellular one and the mangnocellular
one, processing (mainly) colour information and form/motion, respectively.
Figure 1.1 shows a model of these two pathways. The retina has luminance
and colour detectors which interpret images and pre-process them before
conveying the information to visual cortex. The Lateral Geniculate Nucleus,
LGN, separates the image into components that include luminance, contrast,
frequency, etc. before information is sent to the visual cortex (labelled V, in
Fig. 1.1).

The cortical visual areas are labelled V1 to V5 in Fig. 1.1. V1 represents
the striate visual cortex and is believed to contain the most detailed and
least processed image. Area V2 contains a visual map that is less detailed
and pre-processed than area V1. Areas V3 to V5 can be viewed as speciality
areas and process only selective information such as, colour/form, static form
and motion, respectively.

Information between the areas flows in both directions, although only the
feedforward signals are shown in Fig. 1.1. The processing area spanned by
each neuron increases as you move to the right in Fig. 1.1, i.e. a single neuron
in V3 processes a larger part of the input image than a single neuron in V1.

The re-entrant connections from the visual areas are not restricted to
the areas that supply its input. It is suggested that this may resolve conflict
between areas that have the same input but different capabilities.

Much is to be learnt from how the visual cortex processes information,
adapts to both the actual and feedback information for intelligent processing.
However, a ‘smart sensor’ will probably never look like the visual cortex
system, but only use a few of its basic features.

6 1 Introduction and Theory

Fig. 1.1. A model of the visual system. The abbreviations are explained in the
text. Only feedforward signals are shown

1.3.2 The Hodgkin–Huxley Model

Research into mammalian cortical models received its first major thrust about
a half century ago with the work of Hodgkin and Huxley [6]. Their system
described membrane potentials as

I = m3hGNa(E − ENa) + n4GK(E − EK) + GL(E − EL) , (1.1)

where I is the ionic current across the membrane, m is the probability that an
open channel has been produced, G is conductance (for sodium, potassium,
and leakage), E is the total potential and a subscripted E is the potential for
the different constituents. The probability term was described by,

dm

dt
= am(1 − m) − bmm , (1.2)

where am is the rate for a particle not opening a gate and bm is the rate for
activating a gate. Both am and bm are dependent upon E and have different
forms for sodium and potassium.

The importance to cortical modelling is that the neurons are now de-
scribed as a differential equation. The current is dependent upon the rate
changes of the different chemical elements. The dynamics of a neuron are
now described as an oscillatory process.

1.3 Visual Cortex Theory 7

1.3.3 The Fitzhugh–Nagumo Model

A mathematical advance published a few years later has become known as the
Fitzhugh–Nagumo model [5,10] in which the neuron’s behaviour is described
as a van der Pol oscillator. This model is described in many forms but each
form is essentially the same as it describes a coupled oscillator for each neuron.
One example [9] describes the interaction of an excitation x and a recovery y,

ε
dx

dt
= −y − g(x) + I , (1.3)

and
dy

dt
= x − by , (1.4)

where g(x) = x(x − a)(x − 1), 0 < a < 1, I is the input current, and ε � 1.
This coupled oscillator model will be the foundation of the many models that
would follow.

These equations describe a simple coupled system and very simple simu-
lations can present different characteristics of the system. By using (ε = 0.3,
a = 0.3, b = 0.3, and I = 1) it is possible to get an oscillatory behaviour as
shown in Fig. 1.2. By changing a parameter such as b it is possible to generate
different types of behaviour such as steady state (Fig. 1.3 with b = 0.6).

The importance of the Fitzhugh–Nagumo system is that it describes the
neurons in a manner that will be repeated in many different biological models.
Each neuron is two coupled oscillators that are connected to other neurons.

Fig. 1.2. An oscillatory system described through the Fitzhugh–Nagumo equations

8 1 Introduction and Theory

Fig. 1.3. A steady state system described through the Fitzhugh–Nagumo equations

1.3.4 The Eckhorn Model

Eckhorn [1] introduced a model of the cat visual cortex, and this is shown
schematically in Fig. 1.4, and inter-neuron communication is shown in Fig. 1.5.
The neuron contains two input compartments: the feeding and the linking.
The feeding receives an external stimulus as well as local stimulus. The link-
ing receives local stimulus. The feeding and the linking are combined in a
second-order fashion to create the membrane voltage, Um that is then com-
pared to a local threshold, Θ.

The Eckhorn model is expressed by the following equations,

Um,k(t) = Fk(t)[1 + Lk(t)] (1.5)

Fk(t) =
N∑

i=1

[
wf

kiYi(t) + Sk(t) + Nk(t)
]

⊗ I (V a, τa, t) (1.6)

Lk(t) =
N∑

i=1

[
wl

kiYi(t) + Nk(t)
] ⊗ I

(
V l, τ l, t

)
(1.7)

Yk(t) =

{
1 if Um,k(t) ≥ Θk(t)

0 Otherwise
(1.8)

where, in general

X(t) = Z(t) ⊗ I(v, τ, t) (1.9)

is

X[n] = X[n − 1]e−t/τ + V Z[n] (1.10)

1.3 Visual Cortex Theory 9

Fig. 1.4. The Eckhorn-type neuron

Fig. 1.5. Each PCNN neuron receives inputs from its own stimulus and also from
neighbouring sources (feeding radius). In addition, linking data, i.e. outputs of other
PCNN neurons, is added to the input

Here N is the number of neurons, w is the synaptic weights, Y is the binary
outputs, and S is the external stimulus. Typical value ranges are τa = [10, 15],
τ l = [0.1, 1.0], τ s = [5, 7], V a = 0.5, V l = [5, 30], V s = [50, 70], Θo =
[0.5, 1.8].

1.3.5 The Rybak Model

Independently, Rybak [12] studied the visual cortex of the guinea pig and
found similar neural interactions. While Rybak’s equations differ from Eck-
horn’s the behaviour of the neurons is quite similar. Rybak’s neuron has two
compartments X and Z. These interact with the stimulus, S, as,

XS
ij = FS ⊗ ‖Sij‖ , (1.11)

XI
ij = F I ⊗ ‖Zij‖ , (1.12)

Zij = f

{∑
XS

ij −
(

1
τ p + 1

)
XI

ij − h

}
. (1.13)

where FS are local On-Centre/Off-Surround connections, F I are local direc-
tional connections, τ is the time constant and h is a global inhibitor. In the

10 1 Introduction and Theory

cortex there are several such networks which work on the input at differing
resolutions and differing F I . The nonlinear threshold function is denoted f {}.

1.3.6 The Parodi Model

There is still great disagreement as to the exact model of the visual cortex.
Recently, Parodi [11] presented alternatives to the Eckhorn model. The ar-
guments against the Eckhorn model included the lack of synchronisation of
neural firings, the undesired similar outputs for both moving and station-
ary targets and that neural modulations in the linking fields were measured
considerably higher than the Eckhorn model allowed.

Parodi presented an alternative model, which included delays along the
synaptic connections and would require that the neurons be occasionally reset
en masse. Parodi’s system followed these equations,

∂ V (x, y, t)
∂ t

= −V (x, y, t)
τ

+ D∇2 V (x, y, t) + h (x, y, t) , (1.14)

where Vi is the potential for the ith neuron, D is the diffusion (D = a2/C Rc),
Rc is the neural coupling resistance, t = C Rl, Rl is the leakage resistance,
and R−1

c < R−1
l ,

hi (t) =
∑

j

wijδ (t − tsj − τij) . (1.15)

1.4 Summary

Biological models of the visual cortex portray each neuron as a coupled oscil-
lator with connections to other neurons. This differs significantly from tradi-
tional digital image processing approaches which tend to rely on first order
mathematics. Building powerful image processing engines will require the use
of more powerful engines and thus a cortical model will be employed for a
variety of image processing applications in the subsequent chapters.

2 Theory of Digital Simulation

In this section two digital models will be presented. The first is the Pulse-
Coupled Neural Network (PCNN) which for many years was the standard
for many image processing applications. The PCNN is based solely on the
Eckhorn model but there are many other cortical models that exist. These
models all have a common mathematical foundation, but beyond the common
foundation each also had unique terms. Since the goal here is to build image
processing routines and not to exactly simulate the biological system a new
model was constructed. This model contained the common foundation with-
out the extra terms and is therefore viewed as the intersection of the several
cortical models, and it is named the Intersecting Cortical Model (ICM).

2.1 The Pulse-Coupled Neural Network

The Pulse-Coupled Neural Network is to a very large extent based on the
Eckhorn model except for a few minor modifications required by digitisation.
The early experiments demonstrated that the PCNN could process images
such output was invariant to images that were shifted, rotated, scaled, and
skewed. Subsequent investigations determined the basis of the working mech-
anisms of the PCNN and led to its eventual usefulness as an image-processing
engine.

2.1.1 The Original PCNN Model

A PCNN neuron shown in Fig. 2.1 contains two main compartments: the
Feeding and Linking compartments. Each of these communicates with neigh-
bouring neurons through the synaptic weights M and W respectively. Each
retains its previous state but with a decay factor. Only the Feeding compart-
ment receives the input stimulus, S. The values of these two compartments
are determined by,

Fij [n] = eαF δnFij [n − 1] + Sij + VF

∑
kl

MijklYkl[n − 1] , (2.1)

Lij [n] = eαLδnLij [n − 1] + VL

∑
kl

WijklYkl[n − 1] , (2.2)

12 2 Theory of Digital Simulation

Fig. 2.1. Schematic representation of a PCNN processing element

where Fij is the Feeding compartment of the (i, j) neuron embedded in a 2D
array of neurons, and Lij is the corresponding Linking compartment. Ykl’s are
the outputs of neurons from a previous iteration [n − 1]. Both compartments
have a memory of the previous state, which decays in time by the exponent
term. The constants VF and VL are normalising constants. If the receptive
fields of M and W change then these constants are used to scale the resultant
correlation to prevent saturation.

The state of these two compartments are combined in a second order
fashion to create the internal state of the neuron, U . The combination is
controlled by the linking strength, β. The internal activity is calculated by,

Uij [n] = Fij [n] {1 + βLij [n]} . (2.3)

The internal state of the neuron is compared to a dynamic threshold, Θ,
to produce the output, Y , by

Yij [n] =

{
1 if Uij [n] > Θij [n]

0 Otherwise
. (2.4)

The threshold is dynamic in that when the neuron fires (Y > Θ) the
threshold then significantly increases its value. This value then decays until
the neuron fires again. This process is described by,

Θij [n] = eαΘδnΘij [n − 1] + VΘYij [n] , (2.5)

where VΘ is a large constant that is generally more than an order of magnitude
greater than the average value of U .

The PCNN consists of an array (usually rectangular) of these neurons.
Communications, M and W are traditionally local and Gaussian, but this
is not a strict requirement. Initially, values of arrays, F , L, U , and Y are
all set to zero. The values of the Θ elements are initially 0 or some larger
value depending upon the user’s needs. This option will be discussed at the

2.1 The Pulse-Coupled Neural Network 13

Fig. 2.2. An example of the progression of the states of a single neuron. See the
text for explanation of L, U , T and F

end of this chapter. Each neuron that has any stimulus will fire in the initial
iteration, which, in turn, will create a large threshold value. It will then
take several iterations before the threshold values decay enough to allow
the neuron to fire again. The latter case tends to circumvent these initial
iterations which contain little information.

The algorithm consists of iteratively computing (2.1) through (2.5) until
the user decides to stop. There is currently no automated stop mechanism
built into the PCNN.

Consider the activity of a single neuron. It is receiving some input stim-
ulus, S, and stimulus from neighbours in both the Feeding and Linking
compartments. The internal activity rises until it becomes larger than the
threshold value. Then the neuron fires and the threshold sharply increases
then begins its decay until once again the internal activity becomes larger
than the threshold. This process gives rise to the pulsing nature of the PCNN.
Figure 2.2 displays the states within a single neuron embedded in a 2D array
as it progresses in time.

In this typical example, the F , L, and U maintain values within individual
ranges. The threshold can be seen to reflect the pulsing nature of the neuron.

The pulses also trigger communications to neighbouring neurons. In equa-
tions (2.1) and (2.2) it should be noted that the inter-neuron communication
only occurs when the output of the neuron is high. Let us now consider three
neurons A, B, and C that are linearly arranged with B between A and C.
For this example, only A is receiving an input stimulus. At n = 0, the A
neuron pulses sending a large signal to B. At n = 1, B receives the large
signal, pulses, and then sends a signal to both A and C. At n = 2, the A
neuron still has a rather large threshold value and therefore the stimulus is

14 2 Theory of Digital Simulation

Fig. 2.3. A typical PCNN example

not large enough to pulse the neuron. Similarly, neuron B is turned off by
its threshold. On the other hand, C has a low threshold value and will pulse.
Thus, a pulse sequence progresses from A to C.

This process is the beginning of the autowave nature of the PCNN. Basi-
cally, when a neuron (or group of neurons) fires, an autowave emanates from
that perimeter of the group. Autowaves are defined as normal propagating
waves that do not reflect or refract. In other words, when two waves col-
lide they do not pass through each other. Autowaves are being discovered
in many aspects of nature and are creating a significant amount of scien-
tific research [13, 23]. The PCNN, however, does not necessarily produce a
pure autowave and alteration of some of the PCNN parameters can alter the
behaviour of the waves.

Consider the image in Fig. 2.3. The original input consists of two ‘T’s.
The intensity of each ‘T’ is constant, but the intensities of each ‘T’ differ
slightly.

At n = 0 the neurons that receive stimulus from either of the ‘T’s will
pulse in step n = 1 (denoted as black). As the iterations progress, the au-
towaves emanate from the original pulse regions. At n = 10 it is seen that
the two waves did not pass through each other. At n = 12 the more intense
‘T’ again pulses.

The network also exhibits some synchronising behaviour. In the early it-
erations segments tend to pulse together. However, as the iterations progress,
the segments tend to de-synchronise. Synchronicity occurs by a pulse capture.
This occurs when one neuron is close to pulsing (U < Θ) and its neighbour
fires. The input from the neighbour will provide an additional input to U
thus allowing the neuron to fire prematurely. The two neurons, in a sense,
synchronise due to their linking communications. This is a strong point of
the PCNN.

2.1 The Pulse-Coupled Neural Network 15

The de-synchronisation occurs in more complex images due to residual
signals. As the network progresses the neurons begin to receive information
indirectly from other non-neighbouring neurons. This alters their behaviour
and the synchronicity begins to fail. The beginning of this failure can be seen
by comparing n = 1 to n = 19 in Fig. 2.3. Note that the corners of the ‘T’
autowave are missing in n = 19. This phenomenon is more noticeable in more
complicated images.

Gernster [14] argues that the lack of noise in such a system is responsible
for the de-synchronisation. However, experiments shown in Chap. 3 specifi-
cally show the PCNN architecture does not exhibit this link. Synchronisation
has been explored more thoroughly for similar integrate and fire models [22].

The PCNN has many parameters that can be altered to adjust its be-
haviour. The (global) linking strength, β, in particular, has many interesting
properties (in particular effects on segmentation), which warrants its own
chapter. While this parameter, together with the two weight matrices, scales
the feeding and linking inputs, the three potentials, V , scale the internal
signals. Finally, the time constants and the offset parameter of the firing
threshold are used to adjust the conversions between pulses and magnitudes.

The dimension of the convolution kernel directly affects the speed that
the autowave travels. The dimension of the kernel allows the neurons to
communicate with neurons farther away and thus allows the autowave to
advance farther in each iteration.

The pulse behaviour of a single neuron is greatly affected by αΘ and VΘ.
The αΘ affects the decay of the threshold value and the VΘ affects the height
of the threshold increase after the neuron pulses. It is quite possible to force
the neuron to enter into a multiple pulse regime. In this scenario the neuron
pulses in consecutive iterations.

The autowave created by the PCNN is greatly affected by VF. Setting VF
to 0 prevents the autowave from entering any region in which the stimulus is
also 0. There is a range of VF values that allows the autowave to travel but
only for a limited distance.

There are also architectural changes that can alter the PCNN behaviour.
One such alteration is quantized linking where the linking values are either
1 or 0 depending on a local condition. In this system the Linking field is
computed by

Lij [n] =

{
1 if

∑
ij wijklYkl > γ

0 Otherwise
. (2.6)

Quantized linking tends to keep the autowaves clean. In the previous
system autowaves travelling along a wide channel have been observed to
decay about the edges. In other words a wave front tends to lose its shape
near its outer boundaries. Quantized linking has been observed to maintain
the wavefronts shape.

16 2 Theory of Digital Simulation

Another alteration is called fast linking . This allows the linking waves
to travel faster than the feeding waves. It basically iterates the linking and
internal activity equations until the system stabilises. A detailed description
will be discussed shortly. This system is useful in keeping the synchronisation
of the system intact.

Finally, the initial values of Θ need to be discussed. If they are initially
0 then any neuron receiving a stimulus will cause the neuron to pulse. In
a ‘real world’ image generally all of the neurons receive some stimulus and
thus in the initial iteration all neurons will pulse. Then it will take several
iterations before they can pulse again. From an image processing perspective
the first few iterations are unimportant since all neurons pulse in the first
iteration and then non pulse for the next several iterations. An alternative
is to initially set the threshold values higher. The first few iterations may
not produce any pulses since the thresholds now need to decay. However, the
frames with useful information will be produced in earlier iterations than in
the ‘initially 0’ scenario. Parodi [11] suggests that the Θ be reset after a few
iterations to prevent de-synchronisation.

2.1.2 Time Signatures

The early work of Johnson [16] was concerned with converting the pulse
images to a single vector of information. This vector, G, has been called the
‘time signal’ and is computed by,

G[n] =
∑
ij

Yij [n] . (2.7)

This time signal was shown to have an invariant nature with regard to al-
terations of the input image. For example, consider the two images in Fig. 2.4.
These images are of a ‘T’ and a ‘+’.

Each image was presented to the PCNN and each produced a time signal,
GT and G+, respectively. These are shown in Fig. 2.5.

Johnson showed that the time signal produces a cycle of activity in which
each neuron pulses once during the cycle. The two plots in Fig. 2.5 depict
single cycles of the ‘T’ and the ‘+’. As time progressed the pattern within
the cycle stabilised for these simple images. The content of the image could
be identified simply by examining a very short segment of the time signal - a
single stationary cycle. Furthermore, this signal was invariant to large changes
in rotation, scale, shift, or skew of the input object. Figure 2.6 shows several
cycles of a slightly more complicated input and how the peaks vary with
scaling and rotation as well as intensities in the input image. However, note
that the distances between the peaks remain constant, providing a fingerprint
of the actual figure. Furthermore, the peak intensities could possibly be used
to obtain information on scale and angle.

2.1 The Pulse-Coupled Neural Network 17

Fig. 2.4. Images of a ‘T’ and a ‘+’

Fig. 2.5. A Plot of GT (series 1) and G+(series 2) in arbitrary units (vertical axis).
The horizontal axis shows the frame number and the vertical axis the values of G

Fig. 2.6. Plot of G for a slightly more complicated cross than in Fig. 2.5. The cross
is then scaled and rotated and filled with shades of grey to show what happens to
the time series

However, this only held true for these simple objects with no noise or
background. Extracting a similarly useful time signal for “real-world” images
has not yet been shown.

18 2 Theory of Digital Simulation

2.1.3 The Neural Connections

The PCNN contains two convolution kernels M and W . The original Eckhorn
model used a Gaussian type of interconnections, but when the PCNN is
applied to image processing these interconnections are available to the user
for altering the behaviour of the network.

The few examples shown here all use local interconnections. It is possi-
ble to use long range interconnections but two impositions arise. The first is
that the computational load is directly dependent upon the number of inter-
connections. The second is that PCNN tests to date have not provided any
meaningful results using long range interconnections, although long range in-
hibitory connections of similar models have been proposed in similar cortical
models [24].

Subsequent experiments replaced the interconnect pattern with a target
pattern in the hope that on-target neurons would pulse more frequently. The
matrices M and W were similar to the intensity pattern of a target object.
In actuality there was very little difference in the output from this system
than from the original PCNN. Further investigations revealed the reason for
this. Positive interconnections tend to smooth the image and longer-range
connections provide even more smoothing. The internal activity of the neu-
ron may be quite altered by a change in interconnections. However, much of
this change is nullified since the internal activity is compared to a dynamic
threshold. The amount by which the internal activity surpasses the dynamic
threshold is not important and thus the effects of longer-range interconnec-
tions are reduced.

Manipulations of a small number of interconnections do, however, provide
drastic changes in the PCNN. A few examples of these are shown.

For these examples we use the input shown in Fig. 2.7. This input is a set
of two ‘T’s.

The first example computes the convolution kernel by

Kij =

{
0 if i = m and j = m

1/r Otherwise
, (2.8)

where r is the distance from the centre element to element ij, and m is half
of the linear dimension of K. In this test K was 5 × 5. Computationally, the
feeding and linking equations are

Fij [n] = e−αF δnFij [n − 1] + Sij + (K ⊗ Y)ij , (2.9)

and

Lij [n] = e−αLδnLij [n − 1] + (K ⊗ Y)ij . (2.10)

The resultant outputs of the PCNN are shown in Fig. 2.8.
The output first pulses all neurons receiving an input stimulus. Then

autowaves are established that expand from the original pulsing neurons.
These autowaves are two pixels wide since the kernel extends two elements

2.1 The Pulse-Coupled Neural Network 19

Fig. 2.7. An example of an image used as input

Fig. 2.8. Outputs of the PCNN

in any direction from the centre. These autowaves expand at the same speed
in both vertical and horizontal dimensions again due to the symmetry of the
kernel.

Setting the elements of the previous kernel to zero for i = 0 and i = 4
defines a kernel that is asymmetric. This kernel will cause the autowaves to
behave in a slightly different fashion. The results from these tests are shown
in Fig. 2.9.

The autowave in the vertical direction now travels at half the speed of the
one in the horizontal direction. Also the second pulse of the neurons receiving
stimulus is delayed a frame. This delay is due to the fact that these neurons
were receiving less stimulus from their neighbours. Increasing the values in
K could eliminate the delay.

The final test involves altering the original kernel by simply requiring that

Kij =

{
Kij if i = m and j = m

−Kij Otherwise
. (2.11)

20 2 Theory of Digital Simulation

Fig. 2.9. Outputs of a PCNN with an asymmetric kernel, as discussed in the text.
These outputs should be compared to those shown in Fig. 2.10

Fig. 2.10. Outputs of a PCNN with an on-centre/off-surround kernel

2.1 The Pulse-Coupled Neural Network 21

The kernel now has a positive value at the centre and negative values
surrounding it. This configuration is termed On-Centre/Off-Surround. Such
configurations of interconnections have been observed in the eye. Further-
more, convolutions with a zero-mean version of this function are quite often
used as an “edge enhancer”. Employing this type of function in the PCNN
has a very dramatic effect on the outputs as is shown in Fig. 2.10.

The autowaves created by this system are now dotted lines. This is due
to competition amongst the neurons since each neuron is now receiving both
positive and negative inputs.

2.1.4 Fast Linking

The PCNN is a digital version of an analogue process and this quantisation
of time does have a detrimental effect. Fast linking was originally installed
to overcome some of the effects of time quantisation and has been discussed
by [21] and [17]. This process allows the linking wave to progress a lot faster
than the feeding wave. Basically, the linking is allowed to propagate through
the entire image for each iteration.

Fast linking iterates the L, U , and Y equations until Y become static.
The equations for this system are

Fij [n] = eαF δnFij [n − 1] + Sij + VF

∑
kl

MijklYkl[n − 1] , (2.12)

Lij [n] = eαLδnLij [n − 1] + VL

∑
kl

WijklYkl[n − 1] , (2.13)

Uij [n] = Fij [n] {1 + βLij [n]} , (2.14)

Yij [n] =

{
1 if Uij [n] > Θij [n − 1]

0 Otherwise
, (2.15)

REPEAT

Lij [n] = VL

∑
kl

WijklYkl[n − 1] , (2.16)

Uij [n] = Fij [n] {1 + βLij [n]} , (2.17)

Yij [n] =

{
1 if Uij [n] > Θij [n − 1]

0 Otherwise
, (2.18)

UNTIL Y DOES NOT CHANGE

Θij [n] = eαΘδnΘij [n − 1] + VΘYij [n] . (2.19)

This system allows the autowaves to fully propagate during each iteration.
In the previous system the progression of the autowaves was restricted by the
radius of the convolution kernel.

22 2 Theory of Digital Simulation

Fig. 2.11. Outputs of a fast-linking PCNN with random initial thresholds with
the black pixels indicating which neurons have pulsed

Figure 2.11 displays the results of a PCNN with random initial threshold
values. As can be seen, the fast linking method is a tremendously powerful
method of reducing noise. It also prevents the network from experiencing
segmentation decay. This latter effect may be desired if only segmentation was
needed from the PCNN outputs and detrimental if the texture segmentation
was desired.

2.1.5 Fast Smoothing

Perhaps the fastest way to compute the PCNN iterations is to replace both
M and W with a smoothing operation. While this doesn’t exactly match the
theory it does offer a significant savings in computation time.

Consider the task of smoothing a vector v. The brute force method of
smoothing this vector is

aj =
1

2ε + 1

j+ε∑
i=j−ε

vi . (2.20)

Each element in the answer a is the average over a short window of the
elements in v. The range of the window is determined by the constant ε. This
equation is valid except for the ε elements at each end of a. Here the number
of elements available for the averaging changes and the equation is adjusted
according. For example, consider j = 0; there are no elements in the range
j − ε to 0. Thus, there are fewer elements for summation.

Consider now two elements of a that are not near the ends, ak = (vk−ε +
vk−ε + 1 + . . . + vk+ε − 1 + vvk+ε)/N and its neighbour ak+1 = (vk−ε + 1 +
vk−ε + 2 + . . . + vk+ε + vk+ε + 1)/N , where N is the normalization factor.

2.1 The Pulse-Coupled Neural Network 23

The only difference between the two is that ak+1 does not have vk−ε and it
does contain vk+ε + 1. Obviously,

ak+1 = ak − (vk+ε+1 − vk−ε)
N

. (2.21)

Using this recursion dramatically reduces the computational load and it
is more effective for larger ε. Thus, using this fast smoothing function reduces
the computational load in generating PCNN results.

2.1.6 Analogue Time Simulation

As stated earlier the PCNN is a simulation in discrete time of a system that
operates in analogue time. This is due solely to the ease of computation
in discrete time. It is possible to more closely emulate an analogue time
system. Computationally, this is performed by keeping a table of events.
These events include the time in which each neuron is scheduled to pulse and
when each inter-neural communication reaches its destination. This table is
sorted according by the scheduled time of each event.

The system operates by considering the next event in the table. This event
is computed and it either fires a neuron or modifies the state of a neuron
because a communication from another neuron has reached this destination.
All other events that are affected by this event are updated. For example, if
a communication reaches its destination then it will alter the time that the
neuron is predicted to pulse next. Also new events are added to the table.
For example, if a neuron pulses then it will generate new communications
that will eventually reach their destinations.

More formally, the system is defined by a new set of equations. The stim-
ulus is U and it is updated via,

U(t + dt) = e−dt/τU U(t) + βU(t) ⊗ K (2.22)

where K defines the inter-neural communications and β is an input scaling
factor. The neurons fire when a nonlinear condition is met,

Yij(t + dt) =

{
1 if (βU(t) ⊗ K)ij > Θij(t)
0 Otherwise , (2.23)

and the threshold is updated by,

Θ(t + dt) = e−dt/τΘΘ(t) + γY (t) . (2.24)

The effect is actually an improvement over the digital system, but the
computational costs are significant. Figure 2.12 displays an input and the
neural pulses. In order to display the pulses it is necessary to collect the
pulses over a finite period of time, so even though they are displayed together
the pulses in each frame could occur at slightly different times.

24 2 Theory of Digital Simulation

Fig. 2.12. An original image and collections of neural pulses over finite time win-
dows

2.2 The ICM – A Generalized Digital Model

The PCNN is a digital model based upon a single biological model. As stated
earlier there are several biological models that have been proposed. These
models are mathematically similar to the Fitzhugh–Nagumo system in that
each neuron consists of coupled oscillators. When the goal is to create image
processing applications it is no longer necessary to exactly replicate the bio-
logical system. The important contribution of the cortical model is to extract
information from the image and there is little concern as to the deviation
from any single biological model.

The ICM is a model that attempts to minimize the cost of calculation
but maintain the effectiveness of the cortical model when applied to images.
Its foundation is based on the common elements of several biological models.

2.2 The ICM – A Generalized Digital Model 25

2.2.1 Minimum Requirements

Each neuron must contain at least two coupled oscillators, connections to
other neurons, and a nonlinear operation that determines decisively when a
neuron pulses. In order to build a system that minimizes the computation
it must first be determined which operation creates the highest cost. In the
case of the PCNN almost all of the cost of computation stems from the
interconnection of the neurons. In many implementations users set M = W
which would cut the computational needs in half.

One method of reducing the costs of computation is to make an efficient
algorithm. Such a reduction was presented in Sect.2.1.5 in which a smoothing
operation replaced the traditional Gaussian type connections.

Another method is to reduce the number of connections. What is the
minimum number of neurons required to make an operable system? This
question is answered by building a minimal system and then determining if
it created autowave communications between the neurons [18]. Consider the
input image in Fig. 2.13 which contains two basic shapes.

Fig. 2.13. An input image

The system that is developed must create autowaves that emanate from
these two shapes. So, a model was created that connected each neuron to P
other neurons. Each neuron was permanently connected to P random nearest
neighbours and the simulation was allowed to run several iterations. The
results in Fig. 2.14 display the results of three simulations. In the first P = 1
and the figure displays which neurons pulsed during the first 10 iterations.
After 10 iterations this system stabilized. In other words the autowave stalled
and did not expand. In the second test P = 2 and again the autowave did not
expand. In both of these cases it is believed that the system had insufficient
energy to propagate the communications between the neurons. The third test
used P = 3 and the autowave propagated through the system, although due
to the minimal number of connections this propagation was not uniform. In
the image it is seen that the autowaves from the two objects did collide only
when P = 3.

26 2 Theory of Digital Simulation

Fig. 2.14. Neuron that fired in the first 10 iterations for systems with P = 1,
P = 2, and P = 3

The conclusion is that at least three connections between neurons are
needed in order to generate and autowave. However, for image processing
applications the imperfect propagation should be avoided as it will artificially
discriminate the importance of parts of the image over others.

Another desire is that the autowaves emanate as a circular wave front
rather than a square front. If the system only contained 4 connections per
neuron then the wave would propagate in the vertical and horizontal di-
rections but not along the diagonals. The propagation from any solid shape
would eventually become a square and this is not desired. Since the input im-
age will be defined as a rectangular array of pixels the creation of a circular
autowave will require more neural connections. This circular emanation can
be created when each neuron is connected to two layers of nearest neighbours.
Thus, P = 24 seems to be the minimal system.

2.2.2 The ICM

Thus, the minimal system now consists of two coupled oscillators, a small
number of connections, and a nonlinear function. This system is described
by the following three equations [19],

Fi,j [n + 1] = fFi,j [n] + Si,j + W{Y }i,j , (2.25)

Yij [n + 1] =

{
1 if Fij [n + 1] > Θij [n]

0 Otherwise
, (2.26)

and

Θi,j [n + 1] = gΘi,j [n] + hYi,j [n + 1] . (2.27)

Here the input array is S, the state of the neurons are F , the outputs are
Y , and the dynamic threshold states are Θ. The scalars f and g are both
less than 1.0 and g < f is required to ensure that the threshold eventually
falls below the state and the neuron pulses. The scalar h is a large value the
dramatically increases the threshold when the neuron fires. The connections
between the neurons are described by the function W {} and for now these
are still the 1/r type of connections. A typical example is show in Fig. 2.15.

2.2 The ICM – A Generalized Digital Model 27

Fig. 2.15. An input image and a few of the pulse outputs from the ICM

Distinctly the segments inherent in the input image are displayed as
pulses. This system behaves quite similar to the PCNN and is done so with
simpler equations.

Comparisons of the PCNN and the ICM operating on the same input are
shown in Figs. 2.16 and 2.17.

Certainly, the results do have some differences, but it must be remembered
that the goal is to develop an image processing system. Thus, the results
that are desired from these systems is the extraction of important image
information. It is desired to have the pulse images display the segments,
edges, and textures that are inherent in the input image.

2.2.3 Interference

Besides reducing the number of equations over the PCNN, the ICM has
another distinct advantage. The connection function is quite different. The
function W {} was originally similar to the PCNN’s M and W which were
proportional to 1/r. However, that model still posed a problem that plagued
the PCNN. That problem was that of interference.

The problem of interference stems from the connection function W {}.
Consider again the behaviour of communications when W {} ∼ 1/r. In
Fig. 2.18a there is an original image. The other images in Fig. 2.18 display
the emanation of autowaves from the original object. This is also depicts
how communications would travel if the ICM were stimulated by the original
image.

These expanding autowaves are the root cause of interference. The au-
towaves expanding from non-target objects will alter the autowaves emanat-

28 2 Theory of Digital Simulation

Fig. 2.16. An original image and several selected pulse images

ing from target objects. If the non-target object is brighter it will pulse earlier
than the target object autowaves, and its autowave can pass through the tar-
get region before the target has a change to pulse. The values of the target
neurons are drastically altered by the activity generated from non-target neu-

2.2 The ICM – A Generalized Digital Model 29

Fig. 2.17. Results from the ICM

rons. Thus, the pulsing behaviour of on-target pixels can be seriously altered
by the presence of other objects.

An image was created by pasting a target (a flower) on a background
(Fig. 2.19). The target was intentionally made to be darker than the back-
ground to amplify the interference effect. The ICM was run on both an image
with the background and a image without the background. Only the pixels
on-target were considered in creating the signatures shown in Fig. 2.20. The
practice of including only on-target pixels is not possible for discrimination,
but it does isolate the interference effects. Basically, the on-target pixels are
altered significantly in the presence of a background. It would be quite dif-
ficult to recognize an object from the neural pulses if those pulses are so
susceptible to the content of the background.

30 2 Theory of Digital Simulation

Fig. 2.18. Autowaves propagating from three initial objects. When the wavefronts
collide they annihilate each other

Fig. 2.19. A target pasted on a background

2.2 The ICM – A Generalized Digital Model 31

Fig. 2.20. The signature of the flower without a background (G.plt) and the sig-
nature of the flower with a background (Gb.plt)

2.2.4 Curvature Flow Models

The solution to the interference effect is based on curvature flow theory [20].
In this scenario the waves propagate towards the centripetal vectors that
are perpendicular to the wave front. Basically, they propagate towards local
centre of curvatures. For solid 2D objects the curvature flows will become a
circle and then collapse to a point [15]. (There is an ongoing debate as to the
validity of this statement in dimensions higher than two.)

Such propagation from Malladi is shown in Fig. 2.21. The initial frame
presents a intricate 2D shape. This figure will eventually evolve into a circle
and then collapse to a point. There is a strong similarity between this type
of propagation and the propagation of autowaves. In both cases the wave
front will evolve to a circle. The difference is that the autowaves will also
expand the circumference with each iteration whereas the curvature flow will
be about the same size as the original shape.

The interference in the ICM that lead to the deleterious behaviour in
Fig. 2.20 was caused when the neural communications of one object inter-
fered with the behaviour of another. In other words, the autowaves from the
background infringed upon the territory owned by the flower. This stems
from the ever expanding nature of the autowaves.

Curvature flow models evolve to the same shape as autowaves but do not
have the ever-expanding quality. Thus, the next logical step is to modify the
connection function W {} to behave more like curvature flow wavefronts.

Fig. 2.21. The propagation of curvature flow boundaries

32 2 Theory of Digital Simulation

2.2.5 Centripetal Autowaves

A centripetal autowave follows the mechanics of curvature flow. When a seg-
ment pulses its autowave will propagate towards a circle and then collapse. It
does not propagate outwards as does the traditional autowave. The advanta-
geous result is that autowaves developed from two neighbouring objects will
have far less interference.

The propagation of a curvature flow boundary is towards the local centre
of curvature. The boundary, C, is a curve with a curvature vector κ. The
evolution of the curve follows

∂C

∂t
= −→κ · n̂ , (2.28)

where n is normal. In two-dimensional space all shapes become a circle and
then collapse to a point. Such a progression is shown in Fig. 2.22 where a
curve evolves to a circle and then collapses.

Fig. 2.22. The progression of an autowave from an initial shape

The ever-expanding nature of the autowaves leads to the interference and
this quality is absent in a curvature flow model. Thus, the logical step is
to modify the neural connections to behave as in the curvature flow model.
This requires that the connections between the neurons be dependent upon
the activation state of the surrounding neurons. However, in creating such
connections the problem of interference is virtually eliminated. In this new
scenario neural activity for on-target neurons is the same independent of the
presence of other objects. This is a major requirement for the employment of
these models as image recognition engines.

The new model will propagate the autowaves towards the local centre of
curvature and thus obtain the name centripetal autowaves. The computation
of these connections requires the re-definition of the function W {}.

Computations for curvature can be cumbersome for large images, so, an
image-friendly approach is adopted. The curves in figure start with the larger,
intricate curve and progress towards the circle and then collapse to a point.
The neural communications will follow this type of curvature flow progression.
Of course, in the ICM there are other influences such as the internal mechanics
of the neurons which influence the evolution of the neural communications.

The function W {A} is computed by

W{A} = A′ = [[F2,A′ {M {A′}} + F1,A′ {A′}] < 0.5] , (2.29)

where

2.2 The ICM – A Generalized Digital Model 33

A′ = A + [F1,A {M {A}} > 0.5] . (2.30)

The function M {A} is a smoothing function. The function F1,A{X} is a
masking function that allows only the pixels originally OFF in A to survive
as in,

[F1,A {X}]ij =

{
Xij if Aij = 0

0 Otherwise
, (2.31)

and likewise F2,A{X} is the opposing function,

[F2,A {X}]ij =

{
Xij if Aij = 1

0 Otherwise
. (2.32)

The operators > and < are threshold operators as in,

[X > d]ij =

{
1 if xij ≥ d

0 Otherwise
, (2.33)

and

[X > d]ij =

{
1 if xij ≤ d

0 Otherwise
. (2.34)

This system works by basically noting that a smoothed version of the orig-
inal segment produces larger values in the off-pulse region and lower values in
the on-pulse region in the same areas that the front is to propagate. The non-
linear function isolates these desirable pixels and adjusts the communication
wave front accordingly.

The centripetal autowave signatures of the same two images used to gen-
erate the results in Fig. 2.20 are shown in Fig. 2.23. It is easy to see that the
background no longer interferes with the object signature. The behaviour of
the on-target neurons is now almost independent of the other objects in the
scene. This quality is necessary for image applications.

Fig. 2.23. The signatures of the flower and the flower with a background using the
centripetal autowave model

34 2 Theory of Digital Simulation

2.3 Summary

Cortical models have been expressed in mathematical form for five decades
now. The same basic premise of coupled oscillators or reaction-diffusion sys-
tems still apply to current models. Furthermore, in an image processing ap-
plication the differences between the different models may not be that impor-
tant. Therefore, speed and simplicity of implementation are more important
here than replication of a biological system.

For image processing applications the model selected here is the ICM
which consists of just three simple equations. Each neuron has two oscillators
(the neuron potential and the neuron threshold) and each neuron has a non-
linear operation. Thus, when stimulated, each neuron is capable of producing
a spike sequence, and groups of locally connected neurons have the ability
to synchronize pulsing activity. When stimulated by an image is that these
collectives can represent inherent segments of the stimulating image. Thus,
a cortical model can become a powerful first step in many image processing
applications.

The traditional neural connection schemes, however, allow neural com-
munications to continually progress away from the originating region. While
this may have some biological foundation, this property has been found to
be deleterious to object recognition. Activity from one region can so dras-
tically alter the activity in another region that object recognition becomes
very difficult.

The solution to this problem is to alter the connections to the neurons so
that they become sensitive to previous pulsing steps. In the model presented,
these connections are described as centripetal autowaves such that the wave
front progresses towards the local centre of curvature of the pulsing regions.
This eliminates the ever-expanding nature of the waves without altering their
shape-describing form.

The simplest applications of this ICM is to extract segments from images.
A few examples were given though out the chapter to demonstrate the abil-
ity of the cortical models in image processing applications. This is only the
beginning of the power that these algorithms can provide and the subsequent
chapters will present more involved applications and results.

3 Automated Image Object Recognition

The development of the PCNN and ICM in the previous chapter was solely
for the purpose of application to a variety of image processing and recognition
tasks. In this chapter the PCNN and ICM will be used to directly extract
pertinent information from a variety of images for the purpose of recognition.

Image recognition engines usually have multiple stages and often the first
stage is to extract the information that is important to the recognition pro-
cess. It could be argued that this is the most important stage, because the
proper information is not extracted then the subsequent decision stage, no
matter how powerful, will be unable to recognize the target. Furthermore, if
the first stage can extract enough information then the decision stage could
be a very simple algorithm. The extraction of enough information is basi-
cally the determining factor in the success of the recognition algorithm. In
the following examples the PCNN and ICM are used to extract the important
information for the individual application.

3.1 Important Image Features

Images have components that are important for the image-processing task.
For example, in image recognition it is generally the edges, texture or seg-
ments of an image that are the most important features. Of course, this is
strongly application dependent.

One traditional method of recognising objects within an image is through
a Fourier filter. The logic of this type of filter is shown in Fig. 3.1. Basically, a
filter containing the target centred in the frame is created and it is correlated
with the input image. If the target exists in the input then a large correlation
signal appears in the output correlation surface at the location of the target
in the input image.

The Fourier filter system does have some serious drawbacks. First, if the
target within the input scene does not exactly match the target image in
the filter then the correlation signal is weaker. Thus, if the target were an
aeroplane, which could be viewed at any angle with differing scale, and illu-
mination, (perhaps obscured cloud), it is very difficult to design a filter that
can recognise the target.

36 3 Automated Image Object Recognition

Fig. 3.1. Logical diagram of a Fourier filter

The point of this text though is not to discuss the pros and cons of
the Fourier filter. It is, however, to indicate that this most popular system
still relies heavily on the three main image components: edges, textures and
segments.

In the Fourier space the lower frequencies of the image are located at the
centre of the image and the higher frequencies are contained at the edges.
Lower frequencies are present when the image has large areas of fairly uniform
intensities. An aeroplane has lower frequencies from the hull and interior of
the wings. Higher frequencies exist if the image has edges. For the aeroplane
the edges of the craft and wings give rise to the higher frequencies.

There are two types of image recognition. One is generalisation in which
the filter is designed to recognise a class of objects even though it may not
be trained on the particular target in the input image. For example, a filter
may be designed to recognise aeroplanes as opposed to helicopters. This filter
would need the general shape of an aeroplane, which is contained in the lower
frequencies. These lower frequencies are from the larger, more uniform areas
of the image - in other words the segments.

Conversely, if the filter were designed to differentiate a particular type of
aeroplane, from other flying vehicles then the general shape of an aeroplane is
no longer useful. The more important information is contained in the higher
frequencies (edges).

The Fourier filter works by matching the frequencies of the target with the
frequencies in the input image. If the target exists in the input image then
a strong match occurs and a large correlation signal is produced. Another
manner in which to envision a Fourier filter is to take the target image and
collocate it sequentially at every position in the input image. Eventually, the
target in the filter and the target in the input are aligned and a match is
easily seen. A Fourier filter is no more than performing a texture, segment,
and edge match.

The whole point of this discussion is to indicate that the most common
method of image recognition relies on the fundamentals of textures, edges and
segments. Other types of image processing such as neural networks, morphol-
ogy, and statistical processing also rely on these fundamentals.

While these methods are well understood theoretically, they have per-
formed very poorly in the real world. Problems immediately arise when the
training target(s) do not exactly match the input, which is quite often the

3.1 Important Image Features 37

case. The signal of the correlation drops and the noise from the background
rises until the two become indistinguishable. The problems are far too com-
plicated for these types of processors.

The PCNN/ICM models provide tremendous advantages here. First, the
PCNN/ICM has an inherent ability to extract the fundamentals of the image.
Second, the PCNN/ICM can simplify the image to allow recognition engines
to perform a far easier task than is within their realm. The advantages of the
PCNN/ICM in this form should not be a surprise since it is based on how
mammals perform recognition.

The PCNN/ICM can extract the image fundamentals inherently. The
PCNN/ICM does not need training or adjustments to extract these funda-
mentals from a wide range of images. Edges and segments are extracted at
different iterations and segments can easily be seen over the course of a few
iterations.

Segment extraction occurs since groups of neurons in a similar state tend
to pulse in unison. Edges are extracted as the autowave expands from these
segments. In the original form, the PCNN/ICM neurons will lose the unison
pulsing according to the texture of the input. So, in time, the segments will
tend to separate according to the texture.

The most important aspect of the PCNN/ICM performing these extrac-
tions is that it is an inherent quality of the PCNN/ICM. Traditional image
processing has had engines that perform similar extractions but these are
usually trained or designed to perform the task for particular applications.
Furthermore, the PCNN/ICM will provide a higher quality of performance.
For example, a popular method of extracting edges from an image is a So-
bel filter, which consists of a small kernel in which the central elements are
positive, and the surrounding elements are negative. Convoluting this kernel
over the input image will result in an image with only the edge pixels ‘on’.
The problem is that this filter will produce a double line output for the edges
that it sees. In other words, the edges are extracted but not cleanly. The
PCNN/ICM extracts sharp, clean edges.

Also recall that the PCNN/ICM produces binary images. Segments that
are extracted are shown as a solid uniform segment in the PCNN/ICM out-
put. Edges are also of the same intensity in the output even though the input
edges may have a gradient of intensities. These binary segments and edges
are well organised in the Fourier plane. Performing recognition on these bi-
nary images is far easier to accomplish than performing recognition on the
original input. This argument will be discussed in Sect. 3.7.

Thus, the PCNN/ICM algorithms are powerful pre-processors. They ex-
tract the fundamentals of an image (edges, textures, and segments) and can
present far simpler binary images to recognition engines for analysis.

One of the major tools in image processing is the ability to extract seg-
ments from the image. This can lead directly to object identification algo-
rithms as well as many other types of analysis.

38 3 Automated Image Object Recognition

Fig. 3.2. The original image (a) and the weighted accumulation of pulses (b)

For this example, consider the ICM which has the ability to isolate the
input image into its segments. One method that demonstrates the segmenta-
tion ability of the ICM is to accumulate the pulses weighted by their iteration.
The output image is computed by,

Pi,j =
∑

n

αnYi,j [n] , (3.1)

αn is a scaling factor that is inversely, monotonically proportional to n. An
accumulation example is shown in Fig. 3.2.

In this image there are only a few gray levels in this image (one for each
iteration over only the first cycle of pulses). Thus, segmentation of the image
can be viewed in a collective context. If the ICM were a poor segmenter
then the details of the original image would be lost in the cumulative pulse
image. Small details such as those in the upper left corner, wrinkles in the
fabric, the spoon, etc. are still quite distinct in the cumulative image, thus
the segmentation is faithful to the segments inherent in the original image.

The PCNN and ICM also extract important edge information, although
they are certainly not the first algorithms to do so. Edge extraction algorithms
have been proposed for many years. Their purpose is to enhance the edges
contained within an image and this enhancement is generally proportional to
the sharpness of the edges.

There are two properties of the ICM pulses that make it ideal for edge
extraction. The first is that the pulses are binary and thus the edges are sharp.
That property is obvious. The second property is that the pulse segments are
usually solid, and these assist in separating edges of objects from the edges
due to texture.

The picture in Fig. 3.3 displays a skater with some notable properties.
There are some very distinct edges, but there are also subtle edges due to
texture such as the inside of his coat. There are also edges due between
objects with similar grey scale values (i.e., the gloves and the coat sleeves).

3.1 Important Image Features 39

Fig. 3.3. An original image of the skater

One simple method of extracting edges from an image is to accumulate the
differences between neighbouring pixels in both the vertical and horizontal
direction,

ai,j =
√

∆2
x:i,j + ∆2

y:i,j , (3.2)

where ∆x:i,j describes the change in values in the horizontal direction, as in,

∆x:i,j =
(Mi,j − Mi,j−1) + (Mi,j − Mi,j+1)

2
(3.3)

=
2Mi,j − Mi,j−1 − Mi,j+l

2
,

and

∆y:i,j =
2Mi,j − Mi−1,j − Mi+1,j

2
. (3.4)

The enhanced version of the image in Fig. 3.3 is shown in Fig. 3.4. To dis-
play this image in a print format it has been inverted such that the darkness
of the lines indicates the sharpness of the edges. Subtle edges due to coat
texture are detected but are too faint to see in the image.

Edge extraction with the ICM entails the demarcation of the edges from
the pulse images. The level of edge detection (the intensity of the resultant
edge) is inversely proportional to the ICM iteration number n,

bi,j =
M∑

n=0

βnYi,j [n] , (3.5)

The scalar β is the proportionality term and M is the number of iterations
that are considered. The image in Fig. 3.5 displays the edged detection process
with M = 2.

40 3 Automated Image Object Recognition

Fig. 3.4. An edge enhanced version of Fig. 3.3

Fig. 3.5. M = 2 edge detection Fig. 3.6. M = 6 edge detection

These edges are similar to the strong edges in Fig. 3.4. Allowing M to
increase produces more interesting results. As the ICM iterates segments will
pulse again with de-synchronization. Segments that pulsed together in early
iterations will tend to break apart in subsequent iterations. The image in
Fig. 3.6 displays the process with M = 6.

The de-synchronization is strong enough through the higher texture re-
gions (coat) that there are now many edges to display. Obviously, adjusting
the value of M determines the types of edges that the ICM can extract.

3.2 Image Segmentation – A Red Blood Cell Example 41

Fig. 3.7. An image of a red blood cell

Fig. 3.8. Outputs of the PCNN with the pulsing pixels shown in black

3.2 Image Segmentation – A Red Blood Cell Example

Consider the image in Fig. 3.7, which is a red blood cell surrounded by white
blood cells. The red blood cell has a dark nucleus and a cloudy cytoplasm.

This image was presented to a PCNN (in the original form) and it gener-
ated several outputs. Some of the outputs were trivial in that only a few of
the pixels pulsed. The more interesting outputs are shown in Fig. 3.8.

At n = 1 the output has clearly segmented the nucleus of the red blood
cell. At n = 13 the background is uniformly segmented. At n = 14 edges of
the white blood cells and the cytoplasm of the red blood cell are seen. This
is a very interesting output. In the original image the boundary between
the background and the cytoplasm is very difficult to delineate, and finding
this edge by traditional filtering would be extremely difficult. The PCNN,

42 3 Automated Image Object Recognition

however, found this edge. At n = 15 and n = 16 edges of the nucleus and
segments of the white blood cells are visible. Outputs n = 17 through n = 19
present the nucleus in three different frames. The de-synchronisation of the
image at n = 1 is due to the texture of the nucleus.

In this one example it is easily seen that the PCNN has the ability to
extract the fundamental features of an image. These extractions are presented
in a binary format, which would be far easier to recognise than trying to
determine the content of the image directly from the original input. In this
fashion the PCNN has demonstrated that it can be a powerful pre-processor
in an image recognition system.

3.3 Image Segmentation – A Mammography Example

Breast cancer is one of the leading causes of death for women the world
over and its early detection is thus very important. In clinical examinations,
physicians check for breast cancer by looking for abnormal skin thickenings,
malignant tissues and micro calcifications. The latter are hard to detect be-

Fig. 3.9. A 2D Haar wavelet transform applied to an input image showing clus-
ters of branching, pleomorphic calcification associated with poorly defined mass
diagnosed as duct carcinoma

Fig. 3.10. The input to the PCNN (left) is a mammogram showing clusters of
branching, pleomorphic calcification associated with poorly defined mass diagnosed
as duct carcinoma. The pulsing pixels are shown in black

3.4 Image Recognition – An Aircraft Example 43

cause of similarity to normal glandular tissues. Wavelet transforms [25] have
been used for automated processes has PCNN [30]. Examples of wavelet and
PCNN processing of mammograms are shown in Figs. 3.9 and 3.10, respec-
tively. The segmentation ability of the PCNN is clearly demonstrated in its
ability to isolate these regions.

3.4 Image Recognition – An Aircraft Example

Consider the image in the upper left corner of Fig. 3.11. This image gives a
grey scale input to a PCNN and the subsequent frames show the temporal
series of outputs from a PCNN. Close to perfect edge detection is obtained
and there are no problems identifying the aircraft e.g. from image number 3.
Here the damaged wing tip is also easily seen.

However, this is not the case with a more complicated background such
as mountains. Figure 3.12 shows a case where it is much harder to identify
the aeroplane. A subsequent correlator is needed, and this will be discussed
in Sect. 3.6.

Fig. 3.11. The SAAB JAS 39 Gripen aircraft as an input to the PCNN. The initial
sequence of temporal binary outputs are shown

Fig. 3.12. The upper left image shows an aircraft as an input to the PCNN.
However, this time an aeroplane is flying upside down in front of some Swiss Alps.
It is hard to ‘see’ the aeroplane in the original input as well as in the temporal
binary outputs

44 3 Automated Image Object Recognition

Table 3.1. Results of correct classification (in %)

F5XJ MIG-29 YF24 Learjet
Net Yes No Yes No Yes No Yes No
LPN 95 86 90 85 86 87 92 87
BP 85 93 81 89 82 92 88 93
MD 82 78 83 90 72 90 90 88

The PCNN has been used as the first stage in a hybrid neural network [34]
for Automatic Target Recognition (ATR). The time series provided a series
of unique patterns of each of four aeroplanes.

(F5XJ, MIG-29, YF24 and the Learjet) used in this work. The input image
to the ATR system was a 256 × 256 pixel image using 8 bit grey scale. The
input data used for training the networks was obtained from simulated move-
sequences of each aeroplane. The movie includes large variations in scale and
3D orientation of the aeroplanes. However, not all angles (and scale sizes) were
included in the training data. This was done particularly in order to evaluate
the generalisation capability of the system. Only the non-zero components
of the first period of the PCNN 1D time series were used as input to the
subsequent neural networks. The results [34] for several such ‘conventional’
neural network classifiers are shown in Table 3.1. The number of inputs was
in all cases 43. Different neural networks were tested as final ‘classificator’
of PCNN output, The Logicon Projection NetworkTM, LPN [35], the Back
Propagation network, BP, The Radial Basis Function network, RBF, using
two different algorithms, the Moody–Darken algorithm [32]. The numbers
in Table 3.1 represent the mean value of correct classification of Yes/No, in
%, for each of the four classes, together with the standard deviation, σ, of
each class. The LPN and the BP get total average results that are nearly
equal. However the LPN is always better classifying the signal (Yes), and BP
is always better classifying the background (No). Moody–Darken network
showed large standard deviations in several tests, especially for classifying
the signal (Yes) for the F5XJ and YF24 aeroplanes.

3.5 Image Classification – Aurora Borealis Example

Auroras are spectacular and beautiful phenomena that occur in the auroral
oval regions around the polar caps. Here geomagnetic field lines guide charged
particles (mainly electrons and protons of magnetospheric or magnetosheath
origin) down to ionospheric altitudes. When precipitating, the particles lose
their energy via collisions with the neutral atmosphere, i.e. mainly oxygen
and nitrogen atoms. At an altitude range of about 75–300 km, some of the
atmospheric constituents can be excited to higher energy levels and this can
lead to the formation of auroral light. The auroras during magnetospheric
sub storms and, especially, the great auroras during magnetospheric storms

3.5 Image Classification – Aurora Borealis Example 45

Fig. 3.13. Examples of Aurora Borealis and their resulting time signals when
presented to a PCNN. A single arc (left) and a double arc (right) both retain
their respective time signals when the images are rotated (top)

can create extremely impressive and beautiful spectacles. However, they are
different, non-regular appearance makes it very difficult to design systems to
recognise and categorise them.

Several Aurora projects include all-sky cameras inside automated observ-
ing stations like the ALIS ones in Sweden and those near Eagle, a small
Alaskan village. In view of the large number of images it is important to
make the classification of auroras automatic too. The classification is made
is several different ways. The schemes may be based on where the auroras
occur, how they look and/or on a physical model. In either case one needs to
pre-process the images to take care of rotation, scale and translation effect.
The PCNN has shown to be a good pre-processor in this case. Examples of
this are shown in Fig. 3.13. By using the PCNN as a pre-processor, a subse-
quent neural pre-processor can be trained to identify the different classes of
Auroras [36,37].

46 3 Automated Image Object Recognition

3.6 The Fractional Power Filter

Many of the subsequent examples will use the PCNN or ICM as the informa-
tion extraction stage and then a correlation filter to make the decision. This
filter is the fractional power filter (FPF) [26].

The FPF is a composite filter that can trade-off generalisation and dis-
crimination. The composite nature of the filter allows for invariance to be
built into the filter. This is useful when the exact presentation of the target
can not be predicted or the filter needs to be invariant to alterations such as
rotation, scale, skew, illumination, etc. The FPF also allows the same filter
to be used to detect several different targets.

While the composite nature of the filter is very desirable for this ap-
plication, it means some trade-offs are unavoidable. The binary objects on
which the filter operates, can, for example, be confused with other objects.
An increase in the discrimination ability of the filter cures this problem.

Fig. 3.14. Inputs with corresponding correlations. The plots on the right show a
linear slice through the correlation surface through the target location

3.7 Target Recognition – Binary Correlations 47

The FPF is a correlation filter built by creating a matrix X̂ whose columns
are the vectorized Fourier transform of the training images. The filter h is
built by,

ĥ = D−1/2Ŷ
[
Ŷ T Ŷ

]−1
c , (3.6)

where

Ŷ ≡ D−1/2X̂ , (3.7)

Dij =
δij

N

∑
k

|ν̂k,i|p, p = [0, 2] , (3.8)

and the vector c is the constraint vector.
A generalising FPF has p = 0, which is the synthetic discriminant filter.

The fully discriminatory filter has p = 2, which is the minimum average
correlation energy filter. A good review of this family of filters is found in [31].
Values of p between 0 and 2 trade-off generalisation and discrimination.

An example of the results from a PCNN with a FPF is shown in Fig. 3.14.
Three different masks are shown together with a cut in the correlation matrix.
The top row uses a ‘hand-tailored’ mask and yields a strong correlation. A
more ‘diffuse’ mask (second and third row) will still yield strong correlations,
in particular if several images are considered.

3.7 Target Recognition – Binary Correlations

One application of the FPF is to find targets in an image. In this case a single
image is used for the recognition of the target and the fractional power term
is adjusted to increase the importance of edge information. Consider the first
image in Fig. 3.2 and the task of identifying his hand. The procedure would
first mask the target region and place it in the centre of a frame as shown in
Fig. 3.15.

Fig. 3.15. The hand as an isolate target

48 3 Automated Image Object Recognition

Fig. 3.16. The correlation with
an FPF and p = 0.3

Fig. 3.17. The correlation of a
pulse image (n = 1) with an FPF
(p = 0.3)

This image can be correlated with the original image and the FPF will
force a positive response at the location of the target. At the centre of the
target in the original image the correlation value will be close to 1 since
that was the value set in the constraint vector c. However, none of the other
correlation surface values are similarly constrained except that as the value
of the fractional power term is increased the overall energy of the correlation
surface is reduced. This is a trade-off and as the fractional power term is
increased the filter has an increasingly difficult time identifying anything
that is not exactly like the training image. This discrimination also includes
any windowing operation. Even though the hand in the filter is exactly like
the hand in the original image the fact that the filter has a window about the
target would detrimentally affect the filter response if the fractional power
term became too high.

Thus, the trade-off between generalisation and discrimination can prevent
a good solution from being achieved. Figure 3.16 displays the correlation
between the image in Fig. 3.2a and the filter made from Fig. 3.15 with p = 0.3.

There is a small white dot at the centre of the target which indicates a
strong correlation between the image and the filter. However, the filter also
provides significant responses to other areas of the target. The conclusion
is that the filter is generalising too much. If the fractional power term is
increased to lower the generalisation then it also loses the ability to find the
target.

By employing the ICM this problem is solved. The ICM will create several
pulse images and in one the target will pulse. Complicated targets may their
pulses spread over a few iterations, but in this case the hand is a simple
target. The reason that this is important is that the pulse image presents the
target as a solid object with sharp lines. This is much easier for a correlation
filter to detect. The image in Fig. 3.17 displays the correlation of a pulse
image and an FPF built from a binary version of the target.

3.7 Target Recognition – Binary Correlations 49

Fig. 3.18. Slices through the two correlation surfaces. Clearly in the second case
the FPF can find the target from the ICM pulse image

The bright spot clearly indicates the detection of the target without in-
terference from other objects in the image. To further demonstrate the de-
tection ability using the ICM the image in Fig. 3.18 displays a slice through
each correlation surface (Figs. 3.16 and 3.17) through the target pixel. These
are the values of the pixels along the horizontal row in Fig. 3.17 that passes
through the target. Clearly, the method using the ICM provides a much more
detectable response.

The employment of the ICM in this case is not a subtle affect. One of the
unfortunate features of a correlation filter is that it prefers to find targets
with higher energy. Darker targets are harder to find. In the ICM the darker
objects will eventually create a pulse segment and in that iteration the target
will be the bright object making it easier for the filter to identify it. Consider
the images in Fig. 3.19 in which there is an image with a young boy. In this
case the boy is that target and the dark object. It would be different to build
a filter to find the boy since he is so dark. Also in this figure are some of the
pulse images. In the third pulse image the boy’s pixels pulse. In this iteration
he is now the high energy object and it much easier to find with a filter. For
display purposes the neurons that pulse are shown in black.

Again, building an FPF from the pulse image the identification of the dark
target is easily performed. The correlation is shown in Fig. 3.20 and the slice
of the correlation surface through the target pixel is shown in Fig. 3.21. In this
case the tree trunks pulsed in the same iteration and so they also correlate
with the filter. Unfortunately, in this case the tree trunks are about the same
width as the boy and so they provide strong correlations. However, the FPF
has the ability to increase the discrimination and thus the correlation signal
of the trees is not as sharp as that of the boy. The remainder of the process
merely finds large, sharp peaks to indicate the presence of a target. The peak
belonging to the boy in this case is definitely the sharpest peak and now a
decision is possible.

50 3 Automated Image Object Recognition

Fig. 3.19. An original image and some of the pulse images. In one of the pulse
images the target is the bright object and in another the outline of the target is
the bright object

Fig. 3.20. The correlation response of the pulse image and an FPF. The darkest
spot depicts the highest peak

It was the duty of the PCNN to extract the target and present it as a high
energy collective pulse segment. A Fourier filter such as the FPF could easily
detect the target and produce a sharp correlation signal. Whereas, a filter
operating on the original image would have a very difficult time in finding
the target.

3.8 Image Factorisation 51

Fig. 3.21. A slice through the centre of the target of the correlation surface

3.8 Image Factorisation

The major problem in automatic target recognition is that images of the
target change with scale, lighting, orientation, etc. One way to get around
this problem has recently been suggested by Johnson [28, 33]. It involves a
hierarchical image decomposition, which resolves an image into a set of image
product factors. The set is ordered in scale from coarse to fine with respect to
image detail. When the factored set is multiplied together it reproduces the
original image. By selecting factors, coarse scene elements such as shadows,
and fine scene factors such as noise, can be isolated. The scale of detail is
controlled by the linking strength of a pulse coupled neural network, on which
the system is based.

The factorisation system consists of three layers as shown in Fig. 3.22. The
first layer is a PCNN and its purpose is to define the limit of detail to which
the input will be resolved, both spatially and in intensity. The second layer
serves to re-normalize the input to the third layer. The second layer is also
a PCNN and together with the third layer it operates in a cyclic manner to
provide the ordered output set of factors. The re-normalization is via a shunt-
ing action approximated by dividing the previous input to the third layer by
the current output of the third layer. The output set consists of the outputs
of the third layer in the order they were generated. Both PCNN types uses
a single-pass, linear decay model with nearest-neighbour sigmoidal linking.

The algorithm is discussed in some detail in [28], but is simply ex-
pressed as,

G(n) =
G(n − 1)

Y2(n)
, (3.9)

β(n) = kβ(n − 1) , (3.10)

where G(0) = Y1 and k < 1.
HereY1 is the output of the first PCNN, G(n) is the input to the sec-

ond PCNN at the beginning of the nth cycle, Y2(n) is the output of the

52 3 Automated Image Object Recognition

Fig. 3.22. Hierarchical image factor generation. An input image is decomposed
into a set of factor images, ordered from coarse to fine in image detail. The product
of the set is equal to the original image

second PCNN at the end of the (n − 1)th cycle, and k < 1 is the linking
strength reduction factor per cycle. In the above equation β(0) is the initial
value assigned by the operator. Together with the parameter k, it determines
the initial coarseness resolution and the number of cycle’s n. In the above,
the spatial dependence of G and the PCNN output images Y1 and Y2 is
suppressed, as the re-normalisation is applied on a pixel-by-pixel basis. The
change of β is global, the same value being used by every pixel.

On the first cycle the second layer passes its input directly to the third
layer. Its coarsely grey-scale quantifies it, giving an output that is coarse in
both spatial and in intensity detail. When it is used by the second layer to
normalise the original input, the new input, and all successive ones, will be
between zero and one. As the second input is processed by the output PCNN,
which now uses a reduced value of its linking strength, only the regions of
intensity less than unity give values different than those of the first output.

3.9 A Feedback Pulse Image Generator

The PCNN can be a very powerful front-end processor for an image recogni-
tion system. This is not surprising since the PCNN is based on the biological
version of a pre-processor. The PCNN has the ability to extract edge informa-
tion, texture information, and to segment the image. This type of information
is extremely useful for image recognition engines. The PCNN also has the ad-
vantage of being very generic. Very few changes (if any) to the PCNN are
required to operate on different types of data. This is an advantage over pre-
vious image segmentation algorithms, which generally require information
about the target before they are effective.

3.9 A Feedback Pulse Image Generator 53

There are three major mechanisms inherent in the PCNN. The first mech-
anism is a dynamic neural threshold. The threshold, here denoted by Θ, of
each neuron significantly increases when the neuron fires, then the threshold
level decays. When the threshold falls below the respective neuron’s poten-
tial, the neuron again fires, which raises the threshold, Θ. This behaviour
continues which creates a pulse stream for each neuron.

The second mechanism is caused by the local interconnections between
the neurons. Neurons encourage their neighbours to fire only when they fire.
Thus, if a group of neurons is close to firing, one neuron can trigger the en-
tire group. Thus, similar segments of the image fire in unison. This creates
the segmenting ability of the PCNN. The edges have different neighbouring
activity than the interior of the object. Thus, the edges will still fire in uni-
son, but will do so at different times than the interior segments. Thus, this
algorithm isolates the edges.

The third mechanism occurs after several iterations. The groupings tend
to break in time. This “break-up“ or de-synchronisation is dependent on the
texture within a segment. This is caused by minor differences that eventually
propagate (in time) to alter the neural potentials. Thus, texture information
becomes available.

The Feedback PCNN (FPCNN) sends the output information in an in-
hibitory fashion back to the input in a similar manner to the rat’s olfactory
system. The outputs are collected as a weighted time average, A, in a fashion
similar to the computation of Θ except for the constant V ,

Aij [n] = e−αA∆tAij [n − 1] + VAYij [n] , (3.11)

where VA is much lower than V . In our case, VA = 1. The input is then
modified by,

Sij [n] =
Sij [n − 1]
Aij [n − 1]

. (3.12)

The FPCNN iterates the PCNN equations with (3.11) and (3.12) inserted
at the end of each iteration.

Two simple problems are shown to demonstrate the performance of the
FPCNN. The first problem used a simple square as the input image. Fig-
ure 3.23 displays both the input stimulus S and the output Y for a few
iterations until the input stabilised.

At n = 5 an output pulse has been generated by the FPCNN which is
a square that is one pixel smaller than the original square on all four sides.
At this point in the process the output of the FPCNN matches that of the
PCNN. The PCNN would begin to separate the edges from the interior. In
the case of the FPCNN, however, the input will now experience feedback
shunting that is not uniform for the entire input. This is where the PCNN
and the FPCNN differ.

As the iterations continue the activations go from a continuous square
to just the edges of a square, and finally to just the four corners. The four

54 3 Automated Image Object Recognition

Fig. 3.23. Input and output pairs for FPCNN calculations for a solid square input

corners will remain on indefinitely. It is interesting to note that for the case
of a solid triangle with unequal angles, the same type of behaviour occurs
except that the corner with the smallest angle will dominate. The input goes
from a solid triangle to an edge mostly triangle to the three corners to the
dominant corner.

The second test to be shown is that of a square annulus. The results of this
test are shown in Fig. 3.24. This process took more iterations than the solid
square so only a few are shown. For the initial iterations the behaviour of the
network mimics the solid square case. The edges become dominant. However,
the steady state image is a bit more complicated than the four corners.

In order for the input to stabilise, a few conditions must be met. First, the
input values must be contained above a threshold. If the input values fall too
low, then the decay (α terms) will dominate and the input will eventually
disappear. The second condition is that the output must completely enter
into the multiple pulse realms. In this scenario all of the output elements are
always on. This condition can be seen in the examples. When this occurs, the
feedback and the interconnections become constant in time. In actuality, the
outputs are independent variables and it is the outputs that force all other

3.10 Object Isolation 55

Fig. 3.24. Input and output pairs for FPCNN calculations for a square annulus
input

fluctuations within the network. When the outputs stabilise, there exists no
other force within the network that can alter the input or any other network
value.

3.10 Object Isolation

The Feedback PCNN (FPCNN) uses the FPF to filter the outputs of the
PCNN. In turn, the FPF outputs are used to alter both the input [29] and the
PCNN to isolate the objects in the input image and to enhance the PCNN’s
sensitivity to the masked areas in the FPF. The PCNN then extracts only
a subset of segments or edges of the image. The benefit of all this is that
segments and edges are very clean even when the input is quite confusing.

This attribute allows the filter to operate on clean segments and edges
of the image. This is extremely important since the filter performance is
dramatically improved when operating on clean images. Furthermore, the
fact that the inputs to the filter are binary allows the filter to operate on
sharp edges which is very important for discrimination.

The FPCNN logic flow is shown in Fig. 3.25. Initially, the dynamic input
is a copy of the original input. The filters that are used in the FPF and
the recursive image generator (RIG) are training targets. The intent of the
system is to produce large correlation spikes where the target segment is

56 3 Automated Image Object Recognition

Fig. 3.25. The schematic of the feedback PCNN system

produced by the PCNN. However, other clutter may also produce significant
correlation signals. Therefore, the correlation surface is examined for peaks.

In this system both the peak height and the peak to correlation energy
(PCE) [27] are examined. It should be noted that neither has to be signifi-
cantly better than the noise. In the example shown in the subsequent section
an acceptable peak height is one-fourth of the training value. Not only do the
filters operate on very clean inputs, but also their performance requirements
for the FPCNN are not stringent.

The RIG generates an image that is the OR of binary target images that
are centred about each sufficient correlation spike. This generated image is
inverted and negatively alters the dynamic input. The non-inverted generated
image is used as a reset mask for the PCNN. This latter step slows the
natural tendency of the PCNN to separate the image segments in subsequent
iterations.

Areas of the input image that did not provide significant correlation spikes
are shunted. Consequently, only the targets in the input are enhanced. Strong
correlations from non-target areas are allowed infrequently. These undesired
correlations occur early in the iteration sequence and degrade with the other
non-target areas as the FPCNN progresses.

Consider the image shown in Fig. 3.19a. This image contains a small boy
(which will be the target) and several other objects acting as background
clutter. The boy is certainly not the most intense object within the field of
view. Furthermore, edges between the target and background are not the
most prominent edges within the scene. The filter used for the FPF and the
RIG is shown in Fig. 3.26. The RIG filter is a binary image of the target. The
FPF is built from the same image with a fractional power of 0.5.

3.10 Object Isolation 57

Fig. 3.26. The filter

The images in Fig. 3.27 display the dynamic input for selected iterations.
Iterations not shown did not produce interesting results (for some iterations
the pulse field contains very few neurons firing). Some of the iterations shown
did not alter the dynamic input, but the pulse outputs and correlation surface
are interesting. They are presented to demonstrate the performance of the
PCNN-FPF combination when non-target segments are being produced.

Table 3.2 contains the correlation peak and PCE for selected (all non-
trivial iterations). The FPF was designed to produce a peak height of 1 as
an impulse response. Acceptable correlation spikes have a peak greater than
0.25 and a PCE greater than 0.0010.

Table 3.2. Correlation response for nontrivial iterations

Iteration Corr. Height PCE
0 0.42 .0002
1 0.99 .0015
2 0.30 .0027
3 0.16 .0089
6 0.06 .0417
7 0.19 .0030
8 0.53 .0020
9 0.34 .0002
10 0.45 .0019
11 0.37 .0009
12 0.23 .0014
13 0.22 .0020
14 0.30 .0019

58 3 Automated Image Object Recognition

Fig. 3.27. The dynamic input in the feedback system

As is seen in Fig. 3.27 the target is gradually enhanced compared to the
rest of the image. By the end of the demonstration the target is by far the
most significant object in the scene. This is the desired result. The target
object has been isolated.

3.11 Dynamic Object Isolation

Dynamic Object Isolation (DOI) is the ability to perform object isolation on
a moving target. A system to do this has two alterations to the static object
isolation system discussed above. The first is that it trains the filter on many
differing views of the target and the second is that it must be optimised to
recognise the target in frames that were not used in training. This second
goal forces the system to exhibit generalisation abilities since the target may
be presented differently in the non-training views. Using the example of the
boy kicking the ball, the non-training views would show the boy in a different

3.11 Dynamic Object Isolation 59

Fig. 3.28. A sequence of five (a, b, c, d and e) input images

configuration (arms and legs and new angles), different orientations and scale
(as he moves towards the camera).

The difference in the configuration of the system is that the filter is trained
on several views of the boy. Consider the images in Fig. 3.28, which are a series
of original images (a movie). Four of the inputs (Figs. 3.28a, b, c, and e) were
used to create the FPF filter and feedback mask. Figure 3.28d. was not used
in the training sequence but was reserved as a test image. Actually, several
other frames (not shown) were also used as test images with similar results
to Fig. 3.28d. The FPF filter is shown in Fig. 3.29. It is a composite image of

Fig. 3.29. The composite filter

60 3 Automated Image Object Recognition

Fig. 3.30. The progression of the dynamic input (n = 3, 11, 18 and 27, respectively)

four pulse images from each of the training images. The progression of the
Dynamic Object Isolation (DOI) process for the image in Fig. 3.28d is shown
in Fig. 3.30.

3.12 Shadowed Objects

The PCNN relies heavily upon the intensity of the input pixels. Thus, shad-
owed objects tend to produce a radically different response in the PCNN.
A shadowed object is one that has a diminished intensity over part of itself.
Consider an object that has two segments A and B, which originally have
very similar intensities and therefore would pulse in the same iteration. A
shadow falls upon segment B and its intensity is reduced. Now, due to its
lower intensity, the segment pulses in frames subsequent to that of A. The
object now has separate pulsing activity.

This can be a devastating effect for many PCNN-based architectures and
it can destroy effective processing. In the object isolation architecture, how-
ever, the FPF has the ability to overcome the detrimental effects of shadows.
Since the FPF has the fractional power set to include discriminatory frequen-
cies and the pulse segments have sharp edges, a sufficient correlation occurs
between the filter and the pulsing of only a part of the target. In other words,

3.12 Shadowed Objects 61

Fig. 3.31. a) The shadow mask. All pixels in the lower half of the image were used
to decay the values of the original image, b) the shadowed input

Fig. 3.32. Progression of object isolation of a shadowed input

the filter can still provide a good enough correlation with segment A or B to
progress the object isolation.

Consider the images in Fig. 3.31. In Fig. 3.31b is a shadowed image. This
image was created from an original image in which the target (the boy) was
cut-out and binarised (Fig. 3.31a). This binary image became the shadow
mask and Fig. 3.31b was created by reducing all pixels in the lower half of
the image that were ON in Fig. 3.31a. The effect is that the boy’s shorts and
legs were shadowed. The FPF filter and feedback mask were created with
pulse images from the non-shadowed image.

The shadowed area intensity was sufficient to get the boy’s shorts and legs
to pulse in frames later than the torso and arms. However, the FPF filter was
still able to find the partial target pulsing. The progression of the shadowed
input is shown in Fig. 3.32.

62 3 Automated Image Object Recognition

Fig. 3.33. An input stimulus

Fig. 3.34. Outputs of a PCNN with Fig. 6.1 as a stimulus

3.13 Consideration of Noisy Images

Random noise is an enemy of the PCNN. Pulse segments are easily destroyed
by random noise. Noise can enter the system in three basic ways. The first is
input noise in which S has noise added, the second is system noise in which
noise is added to U , and the third is a random start in which Θ is initially

3.13 Consideration of Noisy Images 63

Fig. 3.35. Outputs of the PCNN with random initial threshold values

randomised. Any of these cases can destroy the PCNN’s ability to segment.
Consider the stimulus image shown in Fig. 3.33, which shows a boy (kicking
a football), his father and some trees.

Using the input stimulus shown in Fig. 3.33, the original PCNN produces
the temporal outputs of binary images shown in Fig. 3.34. Segmentation and
edge enhancement are evident in the outputs shown. Compare these outputs
to a system that initialised the threshold to random values between 0.0 and

64 3 Automated Image Object Recognition

Fig. 3.36. Outputs of a PCNN with a signal generator

1.0. It should be noted that the initial values are less than 5% of threshold
values after a neuron pulses. The results of this experiment are summarized
in Fig. 3.35.

Certainly, the segments in the output are noisier than in the original case.
This is expected. It should also be noted that the PCNN did not clean up
the segments very well. There are methods by which this problem can be
ameliorated.

The first method to be discussed for the reduction of noise uses a signal
generator as a post-processor to the PCNN. This generator will produce
small oscillations to the threshold values, which are in synchronisation with
the natural pulsing frequency of stimulated neurons. The segments then tend
to synchronise and noise is therefore significantly reduced.

A typical signal generator is the addition of a cosine term (where f is the
design frequency) to the threshold during the creation of the output,

3.13 Consideration of Noisy Images 65

Fig. 3.37. Outputs of a PCNN with a signal generator and a noisy stimulus

Yij [n] =

{
1 if Uij [n] > Θij [n − 1] + (cos(f ∗ n/2π) + 1.0)

0 Otherwise
, (3.13)

The outputs are shown in Fig. 3.36.
The noise of the system is now almost eliminated. The threshold levels

have been synchronised by the continual addition and then subtraction of
small values to the comparison function. The function periodically delays the
pulsing of some neurons as the generator produces a larger output. When
the generator produces a smaller output the pent-up potential of the neurons
begins pulsing.

Noise can occur in other parts of the system. For example the input stim-
ulus can be noisy. In Fig. 3.37 the output of a PCNN with a signal generator
is shown for the case where the stimulus has random values between −0.1
and 0.1 added to the elements.

This system virtually eliminates the noise for the early iterations. How-
ever, the noise returns in subsequent iterations. The reason is quite simple.

66 3 Automated Image Object Recognition

Fig. 3.38. Outputs of the PCNN after noise added to U for each iteration

Each iteration has the stimulus added to F . Thus, constant noise continually
accumulates. Noise begins appearing in the output when the generator can
no longer overcome the accumulation of the noise.

The last example adds dynamic noise to the system. In other words, our
noise generator adds random zero mean noise is added to U each iteration.
The values of the additional noise are [−0.1, 0.1]. The results of this test are
shown in Fig. 3.38.

As can be seen, the noise is considerably reduced. In this case the noise
was different for each iteration. These cancelling effects allowed the system
to operate in a similar way to that of Fig. 3.37.

Another method of reducing the noise is to employ the fast linking algo-
rithm. This was demonstrated earlier in Sect. 2.1.4 using the same example.

3.14 Summary 67

3.14 Summary

The PCNN and ICM are powerful engines in the fields of image processing
and image recognition. The most important part of an image recognition
algorithm is the extraction of information from an image. Without the proper
information no recognition algorithm can perform.

The PCNN/ICM models have the ability to extract information that is
pertinent to most applications. In this chapter the ability of these models to
extract segments and edges was explored in several examples.

The ability to isolate segments as bright contiguous collections was
demonstrated to be the foundation of several algorithms. Basically, one of
the pulse iterations displays the target or a large portion of the target in
an isolate manner allowing for easy recognition. Furthermore, this pulsation
even occurs for dark targets. Thus, targets that are traditionally difficult for
filters to find become easy to find in a pulse image.

4 Image Fusion

In a multi-spectral environment information about the presence of a target
is manifest across the spectra. Detection of these targets requires the fusion
of these different kinds of data. However, image fusion is difficult due to
the large volume of data. Typically each detector channel does not provide
enough information to detect the target with a significant level of confidence.
Thus, each channel provides clues only and hints as to the presence of the
target. Thus, it is practical to pursue methods that condense such a large
volume of information to a more manageable size.

The Pulse-Coupled Neural Network (PCNN) has been shown to be a very
powerful image processing tool [29,40,41,44] for single channel images. Its use-
fulness is its inherent ability to extract edges, texture, and segments from an
image. The PCNN produces image autowaves that travel through the image.
Autowaves are expanding waves that do not reflect or refract and annihilate
each other as they collide. These autowaves are the key to the extraction of
pertinent information from the image as will be demonstrated. The fusion
process requires analysis of each channel of the image and the combination
of these analyses. Thus, the image fusion process presented here will allow
multiple PCNNs to create intra-channel autowaves and the novel addition of
inter-channel autowaves. Thus, pertinent image formation is extracted from
all channels in an interacting fashion. The solution to the image fusion prob-
lem proposed here uses a multi-channel PCNN and a FPF (fractional power
filter) [26] to determine the presence of a target in a multi-channel image.

4.1 The Multi-spectral Model

The multi-spectral PCNN (εPCNN) is a set of parallel PCNNs each operating
on a separate channel of the input with both inter- and intra-channel linking.
This has a very interesting visual effect as autowaves in one channel cause
the creation of autowaves in the other channels. The first autowave leads
a progression of autowaves, but they all maintain the shape of the object.
This is shown by the example in Figs. 4.1 and 4.2. The original image is a
256 × 256 × 24, three channel (colour) image of a boy eating ice cream. The
other images are the colour-coded pulse outputs of the three channels. Again
the edges and segments are quite visible.

70 4 Image Fusion

Fig. 4.1. A three channel (colour) input image

Fig. 4.2. The pulse outputs using the input shown in Fig. 4.1

4.2 Pulse-Coupled Image Fusion Design 71

An example of the cross channel linking is evident in the boy’s hair. The
hair is brown and changes in intensity. At n = 1 through n = 3 and n = 8
through n = 14 the autowaves are seen travelling down the boy’s hair. The
red autowave leads the others since the hair has more red than green or blue.
The other autowaves follow, but all waves follow the texture and shape of
the boy’s hair.

The εPCNN equations require small alterations to account for the many
channels denoted by ε,

F∈
ij [n] = eαF δnF∈

ij [n − 1] + S∈
ijVf

∑
kl

MijklY
∈
kl [n − 1] , (4.1)

L∈
ij [n] = eαLδnLε

ij [n − 1] + VL

∑
kl

W ε
ijklY

ε
kl[n − 1] , (4.2)

Uε
ij [n] = F e

ij [n]
{
1 + βLε

ij [n]
}

, (4.3)

Y ε
ij [n] =

{
1 if Uε

ij [n] > Θε
ij [n]

0 Otherwise
, (4.4)

and

Θε
ij [n] = eαΘδnΘε

ij [n − 1] + VΘY ε
ij [n] . (4.5)

The intra-channel autowaves present an interesting approach to image
fusion. The image processing steps and the fusion process are highly inter-
twined. Many traditional image fusion systems fuse the information before or
after the image processing steps, whereas this system fuses during the image
processing step. Furthermore, this fusion is not statistical. It is syntactical
in that the autowaves, which contain descriptions of the image objects, are
the portions of the image that cross channels. This method is significantly
different from tradition in that it provides higher-order syntactical fusion.

4.2 Pulse-Coupled Image Fusion Design

There are several reasons to fuse the inputs of images of the same scene. One
example is to fuse an infra red image with a visible image to see relations
between items only seen in one of the inputs. The same detector image may
also be filtered differently in order to enhance features of different, but related
origin. Generally one fuses the signals from several sensors to get a better
result. The system shown in Fig. 4.3 uses a multi-channel PCNN (εPCNN)
and FPF to fuse the information in many images to reach a single decision
as to the presence of a specified target and its location. The εPCNN creates
inter- and intra-channel linking waves and multi-channel pulse images [42,43].

The advantages of the εPCNN include the inherent ability to segment
an image. It does this without training or any knowledge of the target, and,

72 4 Image Fusion

Fig. 4.3. Logic schematic of the multi-channel PCNN

therefore, it cannot identify a target. The FPF is an identification tool that
allows for training of multiple targets or views. However, it is like all Fourier
filters in that it performs on general, ‘real-world’ inputs. It performs well on
clean, binary inputs, which is exactly what the εPCNN produces. The logical
course of action, then, is to use the segmentation ability of the εPCNN to
provide inputs to the FPF.

Each output pulse wave is a real binary image, and the input to the FPF
is a phase-encoded accumulation of the pulse images. The phase encoding
process basically allows for the combined representation of several channels
in a single complex array. This is possible because the pulse images are binary
in each channel and cross talk is minimal. Phase encoding of real arrays (non-
binary) would create a significant amount of cross talk and would usually
destroy a significant amount of information. However, binary images due
to their extremely limited dynamic range can create unique phase encoded
images. In many instances the original binary images can be re-created from
the phase-encoded image, thus indicating that the encoding process does
not destroy information. In the case of three channels, the elements of the
phase-encoded image can only realise one of eight different values which are
uniquely created by the eight possible binary value combinations.

Thus, the final output of the multi-channel εPCNN is a complex image
that contains data from all channels,

Y T =
∑

ε

Y εeı2πε/N . (4.6)

The FPF is trained on a multi-channel target selected in the original
images. For training views of the target are cut-outs from a few of the original
images. Each training image is

xε
i = eı2πε/NSε (4.7)

and trained with the corresponding constraint

ci = eı2πε/N (4.8)

4.3 A Colour Image Example 73

and the filter is trained according to (3.6)–(3.8).
The final result is the correlation, Z,

Z = h ⊗ Y T . (4.9)

The presence of a target will produce a large correlation signal at the
location of the target. An exact match will produce a signal of height N.
Stimuli that do not exactly match the training targets will have a lower
correlation value depending upon the fractional power.

The data set and the defined task assist in determining the value of p.
If the data set varies greatly then p can be lowered. If the targets consist
mainly of low frequency data, the mid-point of the trade-off will move to a
higher value of p. If the task requires a higher precision of discrimination the
user should give a larger value of p. Generally, the best way to determine the
proper value of p is to try several values. The entire fusion algorithm follows
the following prescription:

i. Given a defined target training set, X, the FPF filter is generated.
ii. Given a stimulus, S, with ε channels each channel is separately repre-

sented by Sε. All arrays of the PCNNs are initialised to 0.
iii. One εPCNN iteration is performed following (4.1)–(4.5).
iv. The outputs Y e are phase-encoded to form Y T as by (4.6).
v. The correlation Z is calculated to identify the presence of a target by

(4.9). A large correlation spike is indicative of the presence of a target.
vi. Steps 3–5 are repeated until a target is clearly evident or several iterations

have produced no possible target identifications. The actual number of
iterations is problem dependent and currently determined by trial and
error. Generally, 10–20 iterations are sufficient.

4.3 A Colour Image Example

The example below uses the colour-input image in Fig. 4.1. This image is a
three-channel image. The εPCNN responses are also shown.

The target was selected to be the boy’s ice cream. Cutting out and cen-
tring the ice cream created the FPF training image. In traditional filtering,
creating a training image from a cut-out may be dangerous. This is because
the cutting process induces artificial edges. These can constitute Fourier com-
ponents. These generally differ significantly from the original image and may
consequently change the correlation result. In other words, the filter may
have large Fourier components that will not exist in the input. The PCNN,
however, produces pulse images, which also contain very sharp edges, so in
this case cutting out a target is not detrimental. Both components of the
correlation contain sharp edges so the cutting-out process will not adversely
affect the signal to noise of the correlation.

The FPF with p = 0.8 is shown in Fig. 4.4. Each of the εPCNN pulses was
correlated with the filter. The correlation surfaces for the first four nontrivial

74 4 Image Fusion

Fig. 4.4. The complex Fractional Power Filter (FPF) of the target

Fig. 4.5. Correlation surfaces of the first four non-trivial PCNN responses. Images
shown are for n = 1, 2, 7 and 8

4.5 Detection of Multi-spectral Targets 75

multi-channel pulses are shown in Fig. 4.5 (where a trivial output is one in
which very few neurons pulse).

The trivial and some of the non-trivial output pulse images do not contain
the target. In these cases no significant correlation spike is generated. The
presence or absence of a target is information collected from the correlation of
several pulse images with the filter. The target will produce a spike in several
of these correlation surfaces. The advantage is that the system tolerates a
few false positives and false negatives. An occasional correlation spike can be
disregarded if only one output frame in many produced this spike, and a low
target correlation spike from one pulse image can be overlooked when many
other pulse images produced significant spikes at the target location. This
method of the accumulation of evidence has already been shown in [40].

The correlation surface for all shown iterations display a large signal that
indicates the presence of the target. It should be noted that the target appears
only partially in any channel. From the multi-channel input a single decision
to indicate the presence of the target is reached. Thus, image fusion has been
achieved.

As for computational speed, the PCNN is actually very fast. It contains
only local connections. For this application M = W so the costly computa-
tions were performed once. For some applications it has been noted that using
M = 0 decreases object crosstalk and also provides the same computational
efficiency. Also quick analysis of the content of Y can add to the efficiency for
the cases of a sparse Y . In software simulations, the cost of using the FPF is
significantly greater than using the εPCNN.

4.4 Example of Fusing Wavelet Filtered Images

In this example we will compare the results of a single PCNN to a simple fused
PCNN. The single PCNN will receive only one input, the grey scale image
of ‘Donna’. The fused PCNN will send this input to the central PCNN, and
also to two wavelet filtered inputs to two adjacent PCNNs, which are fused
with the central PCNN. The results are compared in Figs. 4.6 and 4.14.

4.5 Detection of Multi-spectral Targets

This demonstration uses images collected by an experimental AOTF (acousto-
optical tunable sensor) [38, 39] An AOTF acts as an electronically tunable
spectral bandpass filter. It consists of a crystal in which radio frequencies
(RF) are used to impose traveling acoustic waves in the crystal with resul-
tant index of refraction variations. Diffraction resulting from these variations
cause a single narrowband component to be selected from the incoming broad-
band scene. The wavelength selected is a function of the frequency of the RF
signal applied to the crystal. Multiple narrowband scenes are be generated

76 4 Image Fusion

Fig. 4.6. The original input (top) and two wavelet filtered images (here shown
inverted) are the three inputs to the fused PCNN

Fig. 4.7. 4102dt0 (long wave) and 4130dt0 (short wave)

by incrementally changing the RF signal applied to the transducer. The se-
lected wavelength is independent of device geometry. Relative bandwidth for
each component wavelength is set by the construction of the AOTF and the
crystal properties. The sensor is designed to provide 30 narrow band spectral
images within the overall bandpass of 0.48–0.76 microns.

4.5 Detection of Multi-spectral Targets 77

Fig. 4.8. The output for n = 7 and channels 18 and 2

Figure 4.7 contains examples of individual channel input images. The
image designated as 4102dt0 is near the long wavelength end of the spectrum.
The second example, 4130dt0 is the shortest wavelength image. Figure 4.8
contains examples of individual channel binary outputs of the PCNN. These
specific examples were chosen because they display features associated with
the mines. Figure 4.9 displays a gray scale representation of all channels in
particular iterations. The gray encoding coarsely displays phase. As can be
seen the targets become quite visible in detail for some iterations (e.g. n = 7).

Figure 4.10 displays the amplitude of the spiral filter built to detect one
of the targets by the FPF method. Figure 4.11 displays a 3-D plot of the
correlation surface between the filter and iteration 7.

Figure 4.12 displays a cross-sectional slice of the correlation surface that
passes through the peak of the correlation (labeled surf07b). As can be seen,
the correlation produces a signal that is significantly greater than the noise.
Similar performance was obtained from the filter built for the other target.
The other plot in the figure is the correlation between the spoked landmine
(immediately attenuated by a Kaiser window) and the original image of chan-
nel 20. As can be seen that this correlation function does little to indicate
the presence of a target. The large signal is from the Halon plate. A drastic
improvement is seen between this correlation and that produced through the
spiral filter.

Not all iterations will contain the target as a segment. This is the inherent
nature of the pulse images. The particular iteration in which the target ap-
pears is dependent upon scene intensity. It may coincidental that immediately
neighboring objects may pulse in the same iteration as the target making it
difficult to distinguish the border between the two objects in the output. FPF
correlations may still produce a significant correlation if a majority of targets
edge is present and other iterations will separate these neighboring objects.

78 4 Image Fusion

Fig. 4.9. Gray scale representations of the multi-channel pulse images

4.5 Detection of Multi-spectral Targets 79

Fig. 4.10. The amplitude of a spiral fil-
ter

Fig. 4.11. The correlation of the filter
with a portion of the iteration 7. Dark
pixels indicate a higher response

Fig. 4.12. Cross-sections of a correlation surface for the target and the original
image (orig.gnu) and the spiral filter with pulse image n = 7

80 4 Image Fusion

Fig. 4.13. Cross-sections of the spiral filter with coded pulse images from several
iterations

Figure 4.13 displays a 1D correlation slices (through the target region) for
the first seven iterations. Iterations n = 2 and n = 5 produced the largest
correlation signals, but the width of the signals (caused by the neighboring
location of the two landmines and their similarity in overall shape and size)
prevents these iterations from being indicative of the target landmine. The
Halon plate also causes significant signals due to its very high intensity which
can be highly reduced by normalizing the correlation surface with a smoothed
input intensity image. Iteration n = 7 (which is also displayed in Fig. 4.12)
indicates that a target exists.

4.6 Example of Fusing Wavelet Filtered Images

In this example we will compare the results of a single PCNN to a simple fused
PCNN. The single PCNN will receive only one input, the grey scale image
of ‘Donna’. The fused PCNN will send this input to the central PCNN, and
also to two wavelet filtered inputs to two adjacent PCNNs, which are fused
with the central PCNN. The results are compared in Fig. 4.14.

4.7 Summary 81

Fig. 4.14. Eight outputs from a fused PCNN (top two rows) and a fused PCNN
(bottom rows)

4.7 Summary

In this chapter we introduced a multi-channel εPCNN and coupled it with
an FPF with complex constraints. Image fusion is achieved by allowing the
εPCNN to create pulse images for each channel that are coupled with the
other channels. Analysis of the pulse images can then be performed by a
complex FPF. The phase degree of freedom allows for the encoding of multiple
channels in a single filter. The εPCNN is used to extract both spectral and
intensity features, which can be easily analysed by this filter.

5 Image Texture Processing

In many applications the information that is important is the textures within
an image. There are many such applications and in this chapter the use of
texture analysis using medical images will be considered.

Regions in an image pulse in unison when their stimuli are the same. If the
stimuli are varied (there exists a texture) then the synchronised behaviour
of the pulse segments will disintegrate. The regions become more desynchro-
nised as the cycles progress. This desynchronisation is dependent upon the
texture of the input and thus texture can be measured and used for segment
classification.

The authors would like to acknowledge the significant contribution of
Guisong Wang for the material in this chapter.

5.1 Pulse Spectra

Consider again the images shown in Fig. 3.6 and 3.7. The nucleus of the red
blood cell contains a texture. In iteration n = 1 the nucleus pulses as a seg-
ment completing the first cycle. The second cycle occurs in iterations n = 16–
19. The neurons of the nucleus have desynchronised and the pulses are sepa-
rated according to the texture of the original segment. Thus, measurement of
texture is performed over several iterations rather than in a single iteration.

Texture is an interesting metric in that it describes a property that spans
several pixels but in that region those pixels differ. It is a segment described
by dissimilarity. The size of this region, however, is defined by the user and
cannot be set to a uniform distance.

There have been several methods by which texture has been measured.
Many of these rely on statistical measures but the ICM is different. The
higher order system can also extract relational information.

The image in Fig. 5.1 displays two different cloth textures [54]. Even
though the pixel values vary on a local scale the texture is constant on a
global scale.

One of the simplest methods of measuring texture is to simply measure
the statistics such as the mean, the variance (and the coefficient of variance),
skewness, and kurtosis. The mean for a vector of data is defined as,

84 5 Image Texture Processing

Fig. 5.1. Example textures

m =
1
N

N∑
i=1

xi , (5.1)

where V and H are the vertical and horizontal dimensions of the image. The
variance and the coefficient of variance are defined as,

s =
N

N∑
i=1

x2
i − m2

n(n − 1)
, (5.2)

and

cv = s/m. (5.3)

The skewness and kurtosis are higher order measures and are defined as,

τ =
N

(N − 1)(N − 2)

N∑
i=1

(
xi − m

s

)3

, (5.4)

and

k =
N(N + 1)

(N − 1)(N − 2)(N − 3)

N∑
i=1

(
xi − m

s

)4

− 3(N − 1)2

(N − 2)(N − 3)
. (5.5)

For simple images like Fig. 5.1 it is possible to measure and distinguish the
textures according to these measures. The values for the two sample images
are shown in Table 5.1.

Table 5.1. First order texture measures

Texture 1 Texture 2
Mean 0.492 0.596
Variance 0.299 0.385
Coefficient of var. 0.607 0.647
Skewness 0.032 −0.058
Kurtosis 0.783 0.142

5.1 Pulse Spectra 85

Fig. 5.2. An image

Fig. 5.3. An image

However, real problems generally do not fill the image frame with a sin-
gle texture. Quite often it is desired to segment the image according to the
texture implying that the texture boundaries are not known but rather need
to be determined.

The image in Fig. 5.2 displays a secretion cell with a variety of textures.
One typical application would be to segment this image according to the
inherent textures.

To employ the ICM to extract textures data is extracted for each pixel
for all iterations. Since texture is defined by a region of pixels rather than
a single pixel the pulse images are smoothed before the texture information
is extracted. The information taken from a location (i, j) defines the pulse
spectrum for that location and is defined by,

pi,j [n] = M{Y }i,j [n] . (5.6)

Here the functionM {} is a smoothing operator over each pulse image. The
goal is that all pulse spectra within a certain texture range will be similar.
The images in Figs. 5.3 and Fig. 5.4 display an original image and a few of
the pulse images. Common textures pulse in similar iterations.

86 5 Image Texture Processing

Fig. 5.4. Pulse images for n = 1, n = 2, n = 8, and n = 9

This displays only four of many pulse images. In this case the number of
iterations was selected to be twenty.

For the case of standard textures (similar to Fig. 5.1) the method of using
pulse spectra was compared to other methods. These methods are listed with
their citations but their methods will not be reviewed here.

– Autocorrelation (ACF) [53,56]
– Co-occurrence matrices (CM) [47,48]
– Edge frequency (EF) [53,56]
– Law’s masks (LM) [51]
– Run Length (RL) [53,56]
– Binary stack method (BSM) [45,46]
– Texture Operators (TO) [57]
– Texture Spectrum (TS) [49]

In [55] the performance of all of the methods in the above list were com-
pared on a standardized database of textures. The tests consisted of training
on all but one of the images and then that image was used as a test. This
test was repeated several times using each of the images as the one not used
in training. Recall used the k-nearest neighbors algorithm and the results
are shown in Table 5.2 for different values of k. At the top of this chart the
texture recognition method using the ICM was added and it can be seen that
it rivals the best performing algorithms.

5.2 Statistical Separation of the Spectra 87

Table 5.2. Recognition rates for various texture models

Texture Analysis Methods K = 1 K = 3 K = 5 K = 7 K = 9
ICM 94.8% 94.2% 93.9% 92.1% 91%
ACF 79.3% 78.2% 77.4% 77.5% 78.8%
CM 83.5% 84.1% 83.8% 82.9% 81.3%
EF 69% 69% 69.3% 69.7% 71.3%
LM 63.3% 67.8% 69.9% 70.9% 69.8%
RL 45.3% 46.1% 46.5% 51.1% 51.9%
BSM 92.9% 93.1% 93% 91.9% 91.2%
TO 94.6% 93.6% 94.1% 93.6% 94%
TS 68.3% 67.3% 67.9% 68.5% 68.1%

Fig. 5.5. Plots of the average and standard deviation of the three selected regions
of Fig. 5.2

5.2 Statistical Separation of the Spectra

The real task at hand is to measure the textures of a complicated image as in
Fig. 5.2. A requirement for the accomplishment of this task is that the spectra
discriminate between the different textures. This means that the spectra in
one texture region must be similar and compared to another region they must
be dissimilar.

To demonstrate this three regions in Fig. 5.2 were selected for testing.
This image is 700 × 700 pixels and each region selected was only 10 × 10 at

88 5 Image Texture Processing

the locations marked in the figure. The average and standard deviation of
the spectra for each region are shown in Fig. 5.5.

The desire is to have each average signature differ significantly from the
others and to also have small standard deviations. Basically, the errorbars
should not overlap. Clearly, this is the case and therefore discrimination of
texture using the ICM is possible.

5.3 Recognition Using Statistical Methods

A simple method of classifying regions in an image by the texture is to simply
compare a pulse spectrum to all of the average spectra in a library. The library
consists of average spectra from specified training regions (as in Fig. 5.5). This
is similar to the procedures practiced in multi-spectral image recognition.

For each pixel in an image there is a pulse spectrum and this can be com-
pared to those in a library. The pixel is then classified according to which
member of the library is most similar to the pixel’s spectrum. A pixel’s spec-
trum can be classified as unknown if it is not similar to any of the members
of the library. For this example, the elements of the spectrum needed to be
within one standard deviation of the library spectrum in ordered to be con-
sidered close. This measure exclude spectrum members that were close to 0.
More formally, the spectrum of the pixel in the image is defined as di where
i = 1, 2, . . . , 20 (the number of iterations in the ICM). The library consists of
a set average spectra, mk

i , where k is the index over the number of vectors in
the library. For each member of the library there is also the standard deviation
of the elements, σk

i . The pulse spectrum is considered close if for all di > ε,∣∣di − mk
i

∣∣ < σk
i , (5.7)

where ε is a small value greater than 0.
Using this measure the pixels in the image of Fig. 5.2 that were classified

as belonging to the nucleus class are shown (black) in Fig. 5.6a. In Fig. 5.6b
the pixels classified as secretion are shown and in Fig. 5.6c the pixels classified
as goblet are shown.

In this example many of the pixels were classified correctly. However, there
were a lot of false positives. Part of the problem is that the texture of some of
these mis-classified regions is very similar to that of the target. For example
there are many nuclei outside of the large cell that have similar texture to
the nuclei inside of the cell. Likewise, the goblet cells have similar texture to
many regions outside of the cell. These strong similarities make it a difficult
problem to solve.

Another cause of these false positives is that the texture of regions of
similar class are somewhat different. The texture of the individual nuclei
inside of the large cell are different.

Unfortunately, it is quite common to have a problem in which the texture
of target regions different more than the texture between non-target and

5.4 Recognition of the Pulse Spectra via an Associative Memory 89

Fig. 5.6. The classification by texture of the pixels as nucleus, secretion, and goblet

target regions. If this wasn’t the case then this would be an easy problem to
solve.

In this situation the classification system is insufficient. In other words,
the use of statistical comparison between the spectra is incapable of discrimi-
nating between target spectra and non-target spectra. A much more powerful
discrimination algorithm is required.

5.4 Recognition of the Pulse Spectra
via an Associative Memory

The inability of the previous system to completely recognize a texture may be
caused by either of two problems. The first may be that the texture extraction
engine is inadequate. The second is that the process that converts extracted
texture to a decision may be inadequate. In the previous case the decision
was reached by simply comparing statistics of the texture. However, in a case
in which one class may contain more than one texture this decision process
will be inadequate. Thus, we attack the problem with a stronger decision
making engine.

There are several types of associative memories that are available to be
used and certainly a system that contends optimality would consider several

90 5 Image Texture Processing

of these memories. In the case here, the goal is to demonstrate that the ICM
can extract sufficient information from an image, thus only an adequate as-
sociative memory need be considered. If the combination of the ICM and the
chosen associative memory sufficiently classify the image then the contention
is that the ICM sufficiently extracted the texture information from the image.

The associative memory used here is a simple greedy algorithm that is
fast and effective [50]. The philosophy is that simple decision surfaces are
created and deleted as necessary. They are, however, never moved. This is a
different philosophy than a neural network which establishes a set number of
decision surfaces by defining the number of hidden neurons at the onset of
training. Then the training process moves these decision surfaces to optimize
the recall of the training data. In the system used here the decision surfaces
are simply created and destroyed.

Consider a set of training data represented by a set of D-dimensional input
vectors xn that are each associated with a binary scalar output yn. The goal
is to create an associative memory such that the output of the system y′

n is
sufficiently close to the desired output yn for all n, and y′

n = F{xn}.
The process begins by iteratively considering each association. The output

is binary and therefore can have one of two states, V and W . For the sake
of argument, let’s assume that the first training pair is x1 : V . So, the point
in D-space defined by x1 is defined to have a value V . At this time no other
training pairs have been considered and therefore we can declare all points
in D-space to have a value V . This can be done since information about
the existence of any other value is absent. If the next training pair to be
considered is x2 : V then our contention is not violated and therefore no
training need to take place.

However, if the second training pair in the data set it x2 : W then there is
a violation. Now, there are two points in D-space which have different values.
Absent any other a priori information the space between these two points is
divided by a decision plane. Any point on the x1 side of the decision plane
is declared as V and any point on the other side is declared a W . Thus, a
decision surface was added.

Each training pair in the data set is considered and if it violates the cur-
rent state of the system then decision surfaces between it and other training
points are added as necessary. The addition of decision surfaces may super-
sede previous decision surfaces. For example, consider a cased in which one
decision surface divides x1 and x2 and a second decision surface is later added
to divide x1 and x3. However, this second surface also divides x1 and x2.
Therefore, the first decision surface is no longer needed at it can be removed.

The process continues until each of the training data pairs has been con-
sidered. When the process is complete the system will be able to accurately
recall each of the training data pairs. The recall system simply considers and
input vector x and determines which side of each decision surface it is on.
This information is then compared to that of each of the training vectors

5.4 Recognition of the Pulse Spectra via an Associative Memory 91

Fig. 5.7. Classification of the pixels to the secretion class

Fig. 5.8. Classification of the pixels to the goblet class

and the input is classified according to the training vector that has similar
decisions.

For the texture application the input vectors are the pulse spectra and the
outputs is a declaration as to whether a spectra belongs to a class or not. It
is a binary decision. Thus, if there exist N classes then there will need to be
N associative memories as each one only has the ability to declare whether
a point is in a class or not.

The pixels used in training in the statistical example were also used here.
Figure 5.7 displays that classification of pixels in the secretion class. All of the
white pixels are declared to be in the class, all of the gray pixels are declared
to be out of the class, and all of the black pixels are undefined. In this case
the input vector to the associative memory produced a set of decisions that
were not similar enough to any of the training vectors.

92 5 Image Texture Processing

Figure 5.8 contains the classification of the pixels for the goblet class. In
this case many of the pixels are classified as not known, however, the goblet
pixels are correctly classified.

Again the intent was to demonstrate that the ICM has the ability to
extract texture information from an image. It was not to build the perfect
texture recognition engine. Clearly, large portions of the above cases are clas-
sified correctly, thus indicating that the texture information.

5.5 Summary

The ICM will create a set of pulse images from an input image and these
pulse patterns are dependent upon the image texture. Thus, it is possible
to extract texture information from the pulse images. This is accomplished
by extracting a pulse spectrum for each pixel in the image. Similar to the
methods used in the multi-spectral image recognition systems, these spectra
are used to classify the pixels according to their texture.

6 Image Signatures

With the advent of the cheap digital camera we have the ability to overwhelm
ourselves with digital images. Thus, there is a need to be able to describe the
contents of images in a condensed manner. This description must contain
information about the content of the images rather than just a statistical
description of the pixels.

Measurements of the activity in the brain of small mammals indicate
that image information is converted to small one-dimensional signals. These
signals are dependent upon the shapes contained in the input stimulus. This
is a drastic reduction in the amount of information used to represent the
input and therefore is much easier to process.

The goal is then to create a digital system that condenses image informa-
tion into a signature. This signature must be dependent upon the contents of
the image. Thus, two similar signatures would indicate that the two images
had similar content. Once this is accomplished it would be fairly easy to con-
struct an engine that could quickly find image signatures similar to a probe
signature and thus find images that had content similar to the probe image.

The reduction of images to signatures using the PCNN and ICM have
been proposed for some time. This chapter will explore the current state of
this research.

6.1 Image Signature Theory

The idea of image signatures stems from biological research performed by
McClurken et al. [59] They measure the neural response of a macaque to
checkerboard style patterns. The brain produced neural patterns that were
small and indicative of the input stimulus. They also used colour as the input
stimulus and measured the colour response. Finally, a colour pattern stimulus
led to a signature that was the multiplication of the pattern signature and
the colour signature.

Converting images to small signatures would be of great benefit to digital
image searches for two reasons. The first reason is that images do consume
memory resources. JPEG compression provides a reduction of about a factor
of 10. While this is impressive it may be insufficient for large databases.
For example, a database of 10,000 colour images that are 512 × 512 will

94 6 Image Signatures

still consume several gigabytes. This is manageable for today’s hard drives,
but it will still take time to read, decompress, and process this amount of
information. Thus, image signatures would provide an efficient representation
of the image data. The second reason is that image signatures would be
extremely fast to process.

6.1.1 The PCNN and Image Signatures

The creation of signatures with the PCNN was first proposed by Johnson [16]
In this work two objects with equal perimeter lengths and equal areas were
used. Several images were created by rotating, shifting, scaling, and skewing
the objects. Johnson showed that after several PCNN iterations the number
of neurons firing per iteration became a repetitive pattern. Furthermore, the
pattern for each shape was little changed by the input alterations. Thus, it
was possible to determine which shape was in the input space by examining
the repetitive integrated pulse activity.

This experiment worked well for single objects without a background, but
problems awaited this approach. First, it required hundreds of PCNN itera-
tions which were time consuming. Second, the signature changed dramatically
when a background was used. It was no longer possible to determine the input
object by examining the signature.

The reason for this became clear when the problem of interference was
recognized (see Sect. 2.2.3). Interference occurs when the neurons from one
object dramatically changed the activity of neurons dedicated to another ob-
ject. Thus, the presence of a background, especially a bright one, would signif-
icantly alter when the on-target neurons would pulse, and, in turn, changed
the signature. In Sect. 2.2.3 this phenomenon was demonstrated. The puls-
ing activity of the neurons on the flower were significantly changed by the
presence of a background.

The solution to the interference problem was to alter the inter-neuron
connectivity scheme. The ICM therefore employs a more complicated scheme
in which the connections between the neurons are altered with each iteration.
Now, the signatures of on-target neurons are not altered and it is much easier
to determine the presence of a target from the signature.

Johnson’s signature was just the integration of the neurons that pulse
during each iteration,

G[n] =
∑
i,j

Yi,j [n] . (6.1)

There are still several concerns with this method. The first is that if the
target only filled 20% of the input space then only 20% of the signature
would be derived from the signature. Thus, the target signature could be lost
amongst the larger background signature. The second concern is that it is
still possible for objects of different shape to produce the same signature.

6.2 The Signatures of Objects 95

The second concern was addressed by adding a second part to the signa-
ture. The signature in (6.1) represented the area of the pulsing neurons. Area
does not indicate shape and since shape is important for target recognition
a second part of the signature was added that was highly dependent on the
shape [58] This additional component was,

G[n + N] =
∑
i,j

Z{Y [n]}i,j , (6.2)

where N is the total number of iterations and Z {} is an edge enhancing
function. Basically, this second component would count again the neurons
that were on the edge of a collective pulsing segment.

Thus, the signature for a grey scale image was twice as long as the number
of ICM iterations. Usually, N ranged from 15 to 25 so at most the length of
the signature was 50 integers. This was a drastic reduction in the amount of
information required to represent an image. The following sections will show
results from using this type of signature.

6.1.2 Colour Versus Shape

Another immediate concern is that of colour. Most photo-images contain 3
colour bands (RGB), and it is possible to build a 3-channel ICM. However, it
became apparent through trials that it was not necessarily better to process
the colours in this manner. The question to be asked is what is the most
important part of an image? Of course, this is based on specific applications,
but in the case of building a image database from generic photos the most
important information is the shapes contained within the image. In this case,
shape is far more important than colour. Thus, one option is to convert the
colour images to grey scale images before using the ICM. The logic is that the
signature would be indicative of the shapes in the image and not the colour
of the shapes. However, the debate as to use colour information or not is still
ongoing.

6.2 The Signatures of Objects

The ideal signature would be unique to object shape but invariant to its
location in the image and to alterations such as in-plane rotation. This is
a difficult task to accomplish since such a drastic reduction in data volume
makes it easier to have two dissimilar objects reduce to similar signatures.

There are two distinct objects shown in Figs. 6.1 and 6.2. The signatures
for these two objects were computed independently using (6.1) and (6.2) but
they are plotted together in Fig. 6.3. The plot with the square boxes belongs
to Fig. 6.2. Since (6.1) and (6.2) are independent of location or rotation then
neither shifting the image nor rotating the image will alter the signature by
an appreciable amount.

96 6 Image Signatures

Fig. 6.1. An input image Fig. 6.2. An Image

Fig. 6.3. The signatures of the two objects. The signature with the boxes corre-
sponds to the image in Fig. 6.2

Combining the two objects into the same image will create a signature that
is the summation of the signatures of the two objects. The plots in Fig. 6.4
display the summation of the two signatures in Fig. 6.2 and the signature
from an image that contains the two objects.

As can be seen the signature of the two objects in the same image is the
same as the summation of the two signatures. This may seem trivial but it
is an important quality. For if this condition did not hold then attempts at

6.3 The Signatures of Real Images 97

Fig. 6.4. The summation of the plots in Fig. 6.3 and the signature of a single image
containing both objects of Fig. 6.1 and 6.2

target recognition would be futile. This was the case in the original PCNN
signatures.

6.3 The Signatures of Real Images

The presence of a background was debilitating for the original signature
method. So far the new signature method has eliminated the presence of
interference, but it still remains to be seen if it will be possible to recognize
a target in a real image. The image in Fig. 6.5 is the ‘background’ and the
image in Fig. 6.6 displays the vendor pasted on top of the background.

To determine the capability of identifying a target the signature of these
two images is considered. The philosophy is that the signatures of differ-
ent targets is additive. Thus, G[photo] = G[background] + G[vendor] –
G[occluded background]. It is expected that the signature of the vendor added
to the signature of the background should almost be the same as the signature
of the image in Fig. 6.6. The difference will be the portion of the background
that is occluded by the target.

The chart in Fig. 6.7 displays the signature of the vendor and the difference
of the signatures of the two images in Figs. 6.5 and 6.6. The target can be
recognized if these two plots are similar. In cases where the background is
predictable it is possible to estimate G[occluded background].

98 6 Image Signatures

Fig. 6.5. Background figure Fig. 6.6. The vendor on the background

Fig. 6.7. The signature of the vendor (Fig. 6.1) and the difference of the signatures
of the images in Figs. 6.5 and 6.6. The similarity of these two plots indicate that it
is possible to identify the target

6.4 Image Signature Database 99

6.4 Image Signature Database

Another application of image signatures is to quickly search through a
database of images. The signatures are far easier to compare to each other
than the original images since the volume of data is dramatically reduced.
Furthermore, the signatures can be compared by simple algorithms (such as
subtraction) and the comparison is still independent of shift, in-plane rota-
tion, and limited scaling. A comparison algorithm with the same qualities
operating on the original images would be more complicated.

A small database of 1000 images from random sites was created. This pro-
vided a database with several different types of images of differing qualities.
However, since some web pages had several images dedicated to a single topic
the database did contain sets of similar images. There were even a few exact
duplicates and several duplicates differing only in scale. The only qualifica-
tions were that the images had to be of sufficient size (more than 100 pixels
in both dimensions) and sufficient variance in intensity (to prevent banners
from being used).

The database itself, consisted of the signatures, the original URL, and the
data retrieved as it was not necessary to keep the original images. Each image
thus required less than two hundred bytes except for cases of very lengthy
URLs.

Comparison of the signatures was accomplished through a normalized
subtraction. Thus, the scalar representing the similarity of two signatures Gq

and Gp was computed by,

a = 1.0 −
∑

n

|(‖Gp[n]‖ − ‖Gq[n]‖)| . (6.3)

The signatures were normalized to eliminate the effects of scale.
Comparisons of all possible pairings were computed. Since there were

1000 images in the database there were 499,000 different possible pairings
(excluding self-pairings). The top scores were found and the images were
manually compared.

In the data base there eight duplicate images (each pairing scored a perfect
1.0 by (6.3)). Most of the pairings scored below 0.9 and belonged to images
that were dissimilar. Table 6.1 displays the results of the matches that scored
above 0.9. There 13 pairings in which but images were the same except for
a scale factor. There was one pairing of the same image but the scale in
the horizontal and vertical were different (1.29 and 1.43). There were several
pairings of similar objects and of objects that were somewhat similar. Of
these 499,000 different pairings 4 scored high and contained images that did
not appear to have similarity.

It was possible to mostly separate the perfect matches, the scaled pairings,
and the similar images from the rest. This, of course, was not an exhaustive
study since it was time consuming.

100 6 Image Signatures

Table 6.1. Recognition rates for image signatures

Class Scores
Different Scales 11 examples above 0.9447, 1 each at 0.9408

and 0.9126
Different Aspect 0.9016
Similar Objects 0.9380, 0.9175, 0.9163, 0.9117, 0.9099, 0.9085,

0.9081
Somewhat Similar Objects 0.9223, 0.9123, 0.9117, 0.9098, 0.9083, 0.9077,

0.9065, 0.9062
High Scoring Mismatched 0.9433, 0.9204, 0.9120, 0.9088

6.5 Computing the Optimal Viewing Angle

Nils Zetterlund

Another application is to select an optimal viewing angle for a 3D target. For
example, if we wish to place a camera along side of a road to take images
of autos then we need to ask: what is the best placement for the camera?
Should it look at the cars from a certain height and from a certain angle to
the travelling direction?

In order to answer this question we may wish to consider all possible
angles of a few vehicles. We will then have to decide on a metric to define
the ‘best viewing angle.’ The first problem encountered is that there can be
a massive volume of data. Consider a case where the camera can take images
that are 480× 640 in three colours. There are 921,600 pixels per image. If we
rotate this object about a single axis and take a picture every 5 degrees, then
there will be 72 pictures each of 900 K pixels. If this object is rotated about
three axes and take a picture for every 5 degrees of rotation then there will
be about 3.4e11 pixels of information. Obviously, we can not simply compare
images from the different viewing angles.

Image signatures have the ability to dramatically reduce the volume of
information that needs to be processed and they can be used to determine
the optimal viewing angle.

For this test two artificial objects will be considered. These two vehicles
are shown in Fig. 6.8. Each object was rotated about a vertical axis and
images for each 5 degrees of rotation were computed. For each image the
signature was computed.

In order for the signatures to be useful they must smoothly change from
one angle of rotation to the next. That is each element in the signature must
not change in a chaotic fashion as the angle is increased. Thus, we should be
able then to predict values of the elements of the signature given a sparse
sampling.

A sampling set consisted of the signatures for every 30 degrees. This set
then was Gb,θ,n where b is the class (bus or beetle), θ is the angle of viewing,

6.5 Computing the Optimal Viewing Angle 101

Fig. 6.8. Digital models of two vehicles

and n is the element index. Given the G’s for θ = 0, 30, 60, . . . is it possible
to predict the values of G for θ �= 0, 30, 60, . . .? Using a Gaussian interpola-
tion function the prediction of the intermediate G values becomes feasible.
The charts in Figs. 6.9, 6.10, and 6.11 display the measured and estimated
values of G for two fixed values of n. The estimation does indicate that the
intermediate elements are somewhat predictable. This in turn validates the
use of signatures for the representation of viewing angle information.

Fig. 6.9. The actual and estimated values of element 3 of the signature

102 6 Image Signatures

Fig. 6.10. The actual and estimated values of element 11 of the signature

Fig. 6.11. The actual and estimated values of element 13 of the signature

6.6 Motion Estimation 103

Fig. 6.12. The first order difference between the two targets

The next step in the process is to compare the signatures of two objects
to find a view that is most distinguishing. In other words, we seek the viewing
angle that best discriminates between the two objects. This angle will be the
angle in which the signatures between the two objects differ the most. Fig-
ure 6.12 displays the first order difference between the respective signatures
of the two objects. This is show for both the 5 degree and 30 degree cases.
It is seen that there are in fact four angles that greatly distinguish these two
objects. The first is at 90 degrees which is a side view (Fig. 6.8). The second is
at 270 degrees which is the other side view. The third and fourth correspond
to views at the front corners of the vehicles. Likewise, views that are directly
at the front or the back of the vehicles are shown to be poor discriminators.

This is only the beginning of what signatures can do for view angle estima-
tion. Knowing that the elements of the signatures are somewhat predictable
from other measurements can directly lead to the estimation of the optimal
viewing angle. In other words, if we have a few viewing angles can we predict
what the best view is without having seen it before? There is still much work
to be done in this area.

6.6 Motion Estimation

Image signatures have also been employed to estimate the velocity of an ob-
ject. A moving input will alter the signature of a static object. The overall

104 6 Image Signatures

characteristic of the signature is maintained but small alterations are indica-
tive of motion.

The current method of computing the signature is insensitive to opposing
movement. For example, an object moving in the −x direction is difficult
to distinguish from the same object moving in the +x direction. Thus, the
signature calculation is altered to be sensitive to directionality,

G[n] =
∑
i,j

Yi,j [n] , (6.4)

G[n + N] =
∑
i,j

(∇xY)i,j , (6.5)

and

G[n + 2N] =
∑
i,j

(∇yY)i,j , (6.6)

where N is the numbers of iterations (in this study N = 25) and ∇Nx is
the spatial derivative in the x direction. Thus, the signature has three times
as many elements as the number of iterations. A comparison score of two
signatures (Gp, Gq) is computed by (6.3).

Figure 6.13 displays signatures from a static and moving object. The
alterations to the image signature are dependent upon the speed, the direction
of the motion, and the object shape.

Signatures of a moving target can be computed by (6.3). Consider an ob-
ject capable of moving in 2D space with a constant velocity. We can construct
a velocity space R2 and compare the signature of all possible velocities to the
signature of the static target. This comparison is shown in Fig. 6.14 where
the curves depict similar values of the velocity difference Dv.

These curves are named iso-Dv since they depict constant values of the
velocity difference. Of course, the anchor velocity does not have to be v = 0.
We can compare all velocities in the space to any single velocity. If the iso-
Dv values were solely dependent upon the difference in velocity then these
curves would be circles. However, there is also a dependency upon the object
shape. Thus, we expect the different iso-Dv to be similar in shape for a single
target. As the Dv increases the iso-Dv curves lose their integrity, so there is an
effective radius – or limit on how large Dv can be in order for (6.3) to be valid.

Now, consider the case of a target with an unknown velocity v?. It is
our task to estimate this velocity using image signatures. If we compare
v? to a vx1 that is sufficiently close to v? then a value from (6.3) can be
computed. However, this computation does not uniquely identify v?. Rather,
the computed value defines an iso-Dv curve surrounding vx1. If we compare
the signature from v? to two other knowns vx2 and vx3 then the three iso-Dv
curves will intersect at a single location. This triangulation method is shown
in Fig. 6.15. The estimate of v? is the point in Rv space where the three
iso-Dv curves intersect.

6.6 Motion Estimation 105

Fig. 6.13. The signature of a static object (roughest curve), the same object moving
at velocity of (0, 50) (lightest curve), and the same object moving at a velocity of
(50, 50)

Fig. 6.14. The comparison of signatures at different velocities to the signature of
the static case. The x-axis is increasing velocity and x = 9 is a velocity of (0, 45)

Fig. 6.15. A velocity grid with 13 anchor points. The middle point is v = (0, 0).
The 3 circles are the iso-∆v for an unknown. The 3 circles intersect at a single
location. This location is the estimate of v

106 6 Image Signatures

The only caveat is that vx1, vx2 and vx3 must be sufficiently close to v?.
Since v? is unknown it is not possible to define vx1, vx2 and vx3. To circumvent
this problem many anchor velocities are considered. In the trial case 13 anchor
points distributed evenly in Rv were used. The signature from v? was com-
pared to the signatures from these anchor points. The three points with the
highest comparison value (6.3) were then used for the triangulation method.

For the example case Rv was defined by 100×100 points with the static v0
defined at (50, 50). The maximum velocity was one pixel of target movement
per iteration of the ICM. All 10,000 points in Rv were considered as v?. In all
cases this method correctly estimate v? with an accuracy of (±1, ±1). For the
cases in which there was an single element error the signature of v? and the
correct answer were identical. Thus, the velocity was accurately predicated
for all cases.

6.7 Summary

The image signatures are an efficient method for reducing the volume required
to represent pertinent image information. The signatures are unique to the
shapes inherent in the image and are loosely based on biological mechanics.
The reduction in information volume allows for the construction of a image
database that can be searched very quickly for matching images. Other uses
include the determination of the optimal viewing angle and the estimation
of motion.

7 Miscellaneous Applications

There is a wide variety of applications that the PCNN and ICM have proven
valuable. In this chapter a few of these applications will be reviewed in a terse
fashion. The PCNN has been used as a foveation engine which finds points
of focus within an image. The PCNN has also been used as a logic engine
solving such problems as maze-running. Finally, an application to generate a
bar-code representation of an image will be presented.

7.1 Foveation

The human eye does not stare at an image. It moves to different locations
within the image to gather clues as to the content of the image. This moving
of the focus of attention is called foveation. A typical foveation pattern [118]
is shown in Fig. 7.1. Many of the foveation points are on the corners and edges
of the image. More foveation points indicate an area of greater interest.

A foveated image can be qualitatively described as an image with very
rich and precise information at and around those areas of the image under
intense observation, and with poorer information elsewhere. The concept of
foveation, as applied here, exploits the limitations of the biological eye to
discriminate and detect objects in the image that are not in direct focus.
In mammalian psychophysics, most tasks are performed better with foveal
vision, with performance decreasing toward the peripheral visual field. The
visual acuity can change by as much as a factor of 50 between the fovea and
peripheral retina.

Fig. 7.1. A typical foveation pattern [12,102,118]

108 7 Miscellaneous Applications

Fig. 7.2. Diagram of the logical flow of the foveation system

Fig. 7.3. A pulse image and the filtered version of that image. The black pixels
indicate a higher intensity

7.1.1 The Foveation Algorithm

The foveation algorithm relies heavily on the segmentation ability of the
PCNN. The segments produced by the PCNN are then filtered to extract the
foveation points. The logical flow of the system is shown in Fig. 7.2. Basically,
the PCNN produces a series of binary pulse images, which contain a few
segments from the original image, and each image contains a different set of
segments. These segments are sent through a low pass filter that enhances
the desired areas. Examples of a pulse image and its filtered image are shown
in Fig. 7.3. The filtering causes the corners and some of the edges of the larger
areas to become significantly brighter than the interior. Medium sized areas
will also become smooth areas with single peaks, while smaller areas will
decrease to a level of insignificance. Finding the foveation areas now becomes
a matter of peak detection, which is quite simple since each of the peak areas
is quite smooth.

Each image was searched for peaks that were within 90% of the initial
peak value. These were then reserved for further processing, which will be
discussed later.

The first example involves handwritten letters. Traditional foveation
points for these letters are corners and junctions. Figure 7.4 shows the orig-
inal letters and the foveation points found by the PCNN. These points are
ranked to indicate the order in which the foveation points were found.

The second example is that of the face from Fig. 7.1. Unfortunately, the
PCNN does not work well with binary inputs and the original face image
is binary. So this image was smoothed to give it texture which destroyed
some of the smaller features such as the eye. The foveation points selected

7.1 Foveation 109

Fig. 7.4. Handwritten characters and their foveation points as determined by the
PCNN-based model discussed here

Fig. 7.5. The foveation points for the face image for 10, 20, 30, 40 and 50 iterations

by the PCNN model are shown in Fig. 7.5. The foveation patterns here are
roughly similar to those in Fig. 7.1. It should also be noted that the PCNN
algorithm is not simulating all of the sources for foveation. Humans are ‘hard-
wired’ to recognise humans and foveation on an image of a face is driven by
more than just the shapes contained within the image. However, there are
encouraging similarities between some of the human foveation points and the
points computed by the PCNN model.

110 7 Miscellaneous Applications

Fig. 7.6. Foveation points overlaid on a ‘real-world’ image

The final example is to compute the foveation points for a fairly com-
plicated image with many objects, noise, and non-uniform background. The
image and the foveation points are shown in Fig. 7.6. Many of the foveation
points were along lines and edges within the image. However, less important
details, such as the car grille and the features on the boy’s shorts, did not pro-
duce foveation points. It should also be noted that low contrast larger features
(such as the edges between the bottom of the car bumper and the ground)
did produce foveation points. Thus, it can be seen that these foveation points
are quite different than those that would have been produced by conventional
edge filtering of the original image.

Unfortunately, it is not possible to say which foveation points are cor-
rect – or at least which ones mimic humans. However, the PCNN model does
produce foveation points at the desired places, i.e. in regions of corners and
edges.

7.1.2 Target Recognition by a PCNN Based Foveation Model

A test consisting of handwritten characters demonstrates the ability of a
PCNN-based foveation system. The PCNN generates foveating points which
are now centers of attention – or possible centers of features. The features of
these centers can be identified, and using a fuzzy scoring algorithm [107] it is
possible to identify handwritten characters from an extremely small training
set [108].

Typical handwritten characters are shown in Fig. 7.7. In this database
there were 7 samples from a single person and 1 sample of 3 letters (A, M
and U) each from 41 individuals. Typical foveation patterns of these letters
are shown in Fig. 7.4. The logical flow of the recognition system is shown in
Fig. 7.8.

Once the foveation points are produced, new images are created by a
barrel transformation centred on each foveation point. Examples of the letter
‘A’ and barrel transformations centred on the foveation points are shown in

7.1 Foveation 111

Fig. 7.7. Typical handwritten letters

Fig. 7.8. The logical flow of the recognition system

Fig. 7.9. This distortion places more emphasis on the information closer to
the foveation point. Recognition of these images constitutes the recognition
of a set of features within the image and combining the recognition of these
features with the fuzzy scoring method.

Recognition of the feature images is performed through a Fractional Power
Filter (FPF) [26]. This filter is a composite filter that has the ability to
manipulate the trade-off between generalization and discrimination that is
inherent in first order filters. In order to demonstrate the recognition of a
feature by this method an FPF was trained on 13 images of which 5 were
target features and 8 were non-target features. For this example one target
feature is the top of the ‘A’ (see Fig. 7.9b) and the non-targets are all other
features.

112 7 Miscellaneous Applications

Fig. 7.9. An original ‘A’ and the 5 barrel distorted images based upon natural
foveation points

The results of the test are presented as three categories. The first measures
how well the filter recognised the targets, the second is how well the system
rejected non-targets, and the third considers the case of a non-target that is
similar to the target (such as the ‘M’ having two features similar to the top of
the ‘A’). The maximum correlation signature about the area of the foveation
point was recorded. The FPF was trained to return a correlation peak of
1 for targets and a peak of 0 for non-targets. The results for (non-training)
targets and dissimilar non-targets are shown in Table 7.1. Similar non-targets
produced significant correlation signatures as expected. Certainly, a single
feature cannot uniquely characterize an object. The similar features of the
‘M’ also produced significant correlation signals. This indicates the obvious:
that single features are insufficient to recognize the object.

The results demonstrate an exceedingly good separation between targets
and non-targets. There were a few targets that were not recognized well.
Such target comes from Fig. 7.7i, j and k. Figure 7.7i is understandable since
the object is poorly represented. Next, Fig. 7.7j performed poorly since the

Table 7.1. Recognition rates

Category Average Low High Std. Dev.
Target 0.995 0.338 1.700 0.242
Non-Target 0.137 0.016 0.360 0.129

7.2 Histogram Driven Alterations 113

top of the ‘A’ is extremely narrow. Furthermore, the “A” in Fig. 7.7k has
an extremely rounded feature on top. These last two features were not rep-
resented in the training features. All of the different types of ‘A’s discussed
produced a correlation signature above 0.8 which is clearly distinctive from
the non-targets.

A few false negatives are not destructive to the recognition of the object.
Following the example of [107], a collection of recognized features can be
grouped to recognize the object. Noting the locations of the correlation peaks
in relation to each other performs this. A fuzzy score is attached to these
relationships. A large fuzzy score indicates that features have been identified
and are located in positions that are indicative of the target.

It has been shown that the PCNN can extract foveation points, that at-
tentive (barrel-distorted) images can be created and centred about foveation
points. Furthermore, it has been shown that these images which now repre-
sent a feature of the image, can be recognized easily, and it has been shown
elsewhere that a combination of these recognized features and their locations
can be combined in a fuzzy scoring method to reach a decision about the
content of the input.

7.2 Histogram Driven Alterations

One interesting attribute of the PCNN is its effect on the histogram of an
averaged output image. In this scenario the PCNN runs for several hundred
iterations. The outputs of each iterations are summed into a single image and
normalised by the number of iterations. The resulting image looks very much
like the original. However, the histogram of the averaged image is unusual. We
find that most of the energy in this image lies in only a few intensity levels.
Initially, the number of levels in the histogram is the number of image cycles.
A cycle is roughly defined by each neuron pulsing once. For any non-zero
input, all neurons will eventually pulse thus completing a cycle. Unfortunately
for the study of cycles, they tend to severely overlap as the iterations progress.

The colour photo (Fig. 4.1) of the boy eating ice cream is again used as an
input image. The histogram of the three colour channels of the original image
is shown in Fig. 7.10. In Fig. 7.11 we have included the averaged outputs after
100 iterations and Fig. 7.12 displays the histogram of these three channels.
It is interesting to note that the distribution of the averaged outputs takes
on the shape of the bell curve, which is far different than the original image.
Figure 7.13 displays the averaged output after 1000 iterations. The histogram
of this image is shown in Fig. 7.14. We note that the distribution now has
separated into just a few major bands. A majority of the information of this
image is now stored in these bands.

114 7 Miscellaneous Applications

Fig. 7.10. Histogram of the RBG for the input image (Fig. 4.1)

Fig. 7.11. Averaged RGB Output after 100 iterations

Fig. 7.12. Histogram of the RGB channels after 100 iterations

Fig. 7.13. Averaged RGB output after 1000 iterations

Fig. 7.14. Histogram of the RGB channels after 1000 iterations

7.3 Maze Solutions 115

Fig. 7.15. The maze problem solved by a PCNN

7.3 Maze Solutions

Maze problems are solved by the PCNNs in a very efficient manner. There
are no changes to the PCNN algorithm itself in the maze solution. A maze is
constructed where the paths are X elements and all pixels off path are 0. The
starting point of the maze is set to a value greater than X so that it pulses
first. The PCNN is iterated and the autowave will travel the paths. X is a
value that by itself will not pulse the neurons, but it will pulse the neurons
when a neighbour pulses. The values of the elements of the threshold array
should also be initially larger than zero. In order to find the shortest path,
we simply collect each pulse output (Y) and accumulated them weighted by
an increasing factor gamma. The weighted time average allows for easy trace-
back by following the path of decreasing values. The shortest path is shown in
the accumulation as a monotonically increasing path. Starting from the end
point one can follow the monotonically decreasing path back to the beginning
along only a single path. All other paths fail the monotonic behaviour. The
number of computations is solely dependent upon the shortest path length
and not dependent upon the complexity of the problem. An example is shown
in Fig. 7.15. The upper left image is the maze with the starting point to the
left (middle). and the goal to the right. The next image shows the sum of 50
PCNN temporal (binary) outputs each tagged by the aforementioned gamma-
weights as discussed above, yielding a grey scale along the path. The next
image includes the 100 first outputs, etc. Note that the gamma tagging yields
a darker grey scale closer to the end. The last picture (lower right corner)
ends close to the exit with the darkest shade of grey. Tracing the continuously
decreasing grey scale from the exit yields the path through the maze.

The solution is not limited to a maze with thin paths as shown in Fig. 7.16.
A thick maze contains paths that have a significant width. Without modi-

116 7 Miscellaneous Applications

Fig. 7.16. The solution – shortest path through the maze

Fig. 7.17. a) shows a thick maze and b) and c) show autowaves traveling through
a thick maze

fication to the algorithm the PCNN can also find the shortest path from a
START to and END point. In Fig. 7.17 a thick maze is displayed with desig-
nated START and END points. The other two images display the progression
of the autowaves that the PCNN generates. These follow thick paths just as
easily as thin paths.

7.4 Barcode Applications

Soonil D.D.V. Rughooputh and Harry C.S. Rughooputh

The technique described in this section relates to the generation of binary
barcodes from images (including spectra) and data for use in several appli-
cations. We make use here of PCNN to produce (1D/2D) binary barcodes
of (2D/3D) images (including spectra) and data sequences – described in
Sect. 7.4.1. A few selected applications is given in Sect. 7.4.2. The PCNN has
been demonstrated to produce time signatures that are unique to the orig-
inal images/data sequence. The process of barcode signature generation is
based on a subsequent conversion of these time signatures into binary bar-
codes (1D/2D). These barcodes are unique to the input images/data and as
such have many potential applications in many fields. A number of parame-
ters are adjustable to suit individual applications that render this barcoding
technique secure, versatile and robust. Applications are numerous and in-

7.4 Barcode Applications 117

clude image analysis and processing, recognition, diagnostics, condition mon-
itoring, sorting and grading, classification, counting, security, cryptography,
counterfeit, authenticity/signature verification, copyright, information stor-
age and retrieval, data mining, surveillance, forecasting, feature extraction,
control system applications, navigation, learning, inspection, sensor/robotic
applications, change detection, defect detection, fault detection, data fusion,
error detection, coding, animation and virtual reality, sequence analysis. The
field of applications of concern include Space applications, Electronics, Com-
puter Vision, Military, Surveillance, Forensic, Aids to disabled, Biomedical,
Instruments and Devices, Pattern Recognition, Spectral recognition, Learn-
ing, Classification, image processing and analysis, Sensors, Communications,
Internet and Multimedia, Meteorology, Digital Transmission, Coding.

7.4.1 Barcode Generation from Data Sequence and Images

We now describe the technique for the generation of barcodes from (a) Still
Images and (b) Data Sequences.

Binary Code for a Still Image

The technique for the generation of binary barcode for still images requires
the use of two PCNNs – PCNN#1 and PCNN#2 is shown in Fig. 7.18.
PCNN#1 is used for time signature generation from the still image. This
time signature is then grey-coded (8-bit) as an image. The PCNN#2 is then
used for binary barcode generation from the grey-coded time signature. Al-
ternatively, PCNN#2 can be used to obtain a time signature output which
is then fed back (dotted lines in Fig. 7.18a) to obtain the corresponding grey-
coded image. This feedback can be iterated any number of times and the
parameters of PCNN#2 can be varied for individual iteration.

Algorithm

A.1 Time Signature Generation from Still Image

Step 1:
Set Parameters for the PCNN#1 (Decay parameters, thresholds, potentials, Num-
ber of Iterations).

Step 2:
Present Image (Fig. 7.18b) (direct or pre-processed) to PCNN#1 to generate time
signature (also referred as ICON) – Fig. 7.18c. For a particular set of parameters for
the PCNN#1, there is a 1:1 correspondence between the input to the PCNN#1and
the output icon.

118 7 Miscellaneous Applications

Fig. 7.18. Barcode generation from still images. a) Block diagram of barcoding
technique for a still image, b) still image, c) time signature of (b), d) 1D binary
barcode, e) 2D binary barcode

7.4 Barcode Applications 119

A.2 Grey Level Barcode (GBC) Generation from ICON

Step 3:
Set Number of Colour Levels and Select order of Colour Levels.
The set order determines the end-use sensitivity.
Convert ICON to grey-level barcoded image (Fig. 7.18d).

A.3 Binary Barcode Generation (BBC) from GBC

Step 4:
Set Parameters for the PCNN#2 (Decay parameters, thresholds, potentials, Num-
ber of Iterations N)
(if N = 1 go to step 3a, else step 3b).

Step 5a:
Present Image (Fig. 7.18d) to PCNN#2 to generate binary barcode for the first
iteration to obtain a 1D BBC (Fig. 7.18e1). For a particular set of parameters for
the PCNN#2, there is a 1:1 correspondence between the input to the PCNN#2
and this output binary barcode.

Step 5b:
Present Image (Fig. 7.18d) to PCNN#2 to generate binary barcode for 2D BBC
(Fig. 7.18e2). For a particular set of parameters for the PCNN#2, there is a 1:1 cor-
respondence between the input to the PCNN#2 and the output binary barcode set.

Note: Step 4’: Alternatively in Step 4, the parameters of PCNN#2 can be set
to produce a time signature of Fig. 7.18d. This time signature is fed back for grey-
coding (Back to Step 3). This process (feedback option) can be repeated any number
of times. However, the final steps will be 4–5 for BBC generation.

Binary Barcode for Data Sequences

The technique for the generation of binary barcode for a given data se-
quence given either as data pairs (x, y) where (x, y) ∈ R or complex numbers
(x + jy) ∈ Z, described hereunder, requires the use of one PCNN – refer to
Fig. 7.19. This PCNN is used to generate the binary barcode directly from
the grey-coded data sequence. Alternatively, this PCNN can be used to ob-
tain a time signature output that is then fed back (dotted lines in Fig. 7.19a)
to obtain the corresponding grey-coded image. This feedback can be iterated
any number of times and the parameters of the PCNN can be varied for
individual iteration.

Algorithm

B.1 Grey Level Barcode (GBC) Generation from Data Sequence

Step 1:
Set Number of Colour Levels and Select order of Colour Levels.
The set order determines the end-use sensitivity.
Convert Data Pair Sequence (Fig. 7.19b) to grey-level barcoded image (Fig. 7.19c).

120 7 Miscellaneous Applications

Fig. 7.19. Barcode generation from still images. a) Block diagram of barcoding
technique for a still image, b) data sequence as an x,y plot, c) grey level barcode
of (b), d) 1D binary barcode, e) 2D binary barcode

B.2 Binary Barcode Generation (BBC) from GBC

Step 2:
Set Parameters for the PCNN (Decay parameters, thresholds, potentials, Number
of Iterations N)
(if N = 1 go to step 3a, else step 3b).

Step 3a:
Present GBC (Fig. 7.19c) to PCNN to generate binary barcode for the first iteration
to obtain a 1D BBC (Fig. 7.19d1).

7.4 Barcode Applications 121

Step 3b:
Present GBC (Fig. 7.19c) to PCNN to generate binary barcode for 2D BBC
(Fig. 7.19d2). For a particular set of parameters for the PCNN, there is a 1:1 corre-
spondence between the input to the PCNN#2 and the output binary barcode set.

Note: Step 2’: Alternatively in Step 2, the parameters of PCNN can be set to
produce a time signature of Fig. 7.19c. This time signature is fed back for grey-
coding (Back to Step 1). This process (feedback option) can be repeated any number
of times. However, the final steps will be 2–3 for BBC generation.

7.4.2 PCNN Counter

The barcoding method described above means that it well suited for counting
objects. We illustrate this in Fig. 7.20 by applying the technique to a set
of identical or mixtures of objects (closed rectangles and/or ellipses in the
figure). The results clearly demonstrate the usefulness of this technique for
the purpose – a one-stage process irrespective of the position of the objects.
We note that, as long as the objects have non-overlapping positions, the
resulting barcodes are the same.

7.4.3 Chemical Indexing

There exists several ways to search for chemical information from the In-
ternet based World-Wide-Web system using a web browser [87]. Examples
of WWW-based chemical search server/engines include Chemical Abstracts
Services, ChemExper Chemical Directory, ChemFinder WebServer (Cam-
bridgeSoft), NIST database, ChemIDplus (Specialized Information Services),
Hazardous Substances Databank Structures (HSDB) (Specialized Informa-
tion Services), NCI-3D (Specialized Information Services), General-purpose
databases of WWW contents (such as Yahoo and Alta Vista). WebServer ca-
pacities range from several thousands to several millions with databases vary-
ing from general to specialized chemicals such as liquid crystals, pesticides,
polycyclic aromatic hydrocarbon, drugs, environmental pollutants, potential
toxins etc. Most of these databases are freely accessible to researchers from
academic and industrial laboratories.

One can search various electronic databases for chemicals by their chemi-
cal names (some accept wildcards and/or typographic variations in names) –
CA index, IUPAC names, common names, trade names or synonyms, molec-
ular formula, molecular weight, Chemical Abstracts Service (CAS) Registry
Numbers (CAS RNs are unique identifiers for chemical compounds with stan-
dard format being xxxxxx-xx-x), catalog number, chemical characteristics,
2D chemical structures and substructures and molecular descriptors. The
databases will identify the type of search you want, and provide the hits
accordingly. Today’s chemical databases are more versatile, becoming faster
and faster, and corrects for obvious errors as well as invalid CAS RNs.

122 7 Miscellaneous Applications

Fig. 7.20. PCNN Counter

7.4 Barcode Applications 123

Although sparse for the time being, some of the chemical databases also
provide additional information such as 2D/3D chemical structures (as Win-
dows metafiles or molfiles) and useful references. Helper applications or View-
ers are normally needed to display chemical structural records of the com-
pounds. Web Browsers cannot read these without a helper application and the
appropriate plug-ins. In order to display a structure, a structure drawing pro-
gram or WWW viewer must be used. Examples of software for chemical struc-
tures/viewers include ChemDraw, Chem3D, ChemOffice and ChemOffice Pro
from CambridgeSoft, ISIS/Draw (MDL Information Systems, Inc.), Wetlab
(Molecular Simulations, Inc.), ChemWeb (Softshell International, Ltd.), Ac-
cord Internet Viewer (Synopsis Scientific Systems) and Rasmol viewer. It
should be noted that most of the databases are not user-friendly and often
require hours of training. Besides, one normally finds that not all structures in
the database currently have chemical formulas / molecular weights assigned.

Quite often one would like to identify a particular compound or a related
compound (simple or complex) directly from its chemical structure alone
without a priori knowledge of the CAS number, molecular formula, chemical
functionality details and so on. Recognition of chemical structures can nor-
mally be a slow process requiring, in most cases, electronic submissions to
the Server.

Traditionally searches are carried out as follows. Given a chemical struc-
ture such as the one shown in Fig. 7.21, we are interested to retrieve the chem-
ical information on this compound. The traditional method, in the event a
name cannot be generated, a molecular formula is computed from the struc-
ture. Then, the elements are arranged in Hill order. For carbon-containing
compounds, the Hill order means that carbons are listed first, hydrogens
are listed next, and then all other elements are listed in alphabetical order.
For compounds that do not contain carbon, the elements are arranged in
alphabetical order and the number of each element is indicated. A molecular
formula search for this compound is then carried out. Obviously, there may be
many chemical structures that may satisfy the molecular formula provided.
Thus, there may be a need for further refinement. Table 7.1 shows a typical
chemical search result using the above chemical structure. In this example, a

Fig. 7.21. A chemical structure

124 7 Miscellaneous Applications

search using the molecular formula shows that there are many possible can-
didates. To reduce the number of answers from the molecular formula search,
the latter is combined with name fragments in the Basic Index of the Reg-
istry File. The process is continued until a smaller set is obtained. Then the
display option can be used to identify the RN and the name of the chemi-
cal (RN: 125705-88-6, Index Name: Carbamic acid, [5-[(3-methyl-1-oxobutyl)
amino]-1H-benzimidazol-2-yl]-,methyl ester).

Current Searching Technique

The traditional method of retrieving the chemical information on a com-
pound such as in Figure III, in the event the name is either not familiar or
cannot be generated, a molecular formula is first obtained from the chem-
ical structure. The elements therein are then arranged in the so-called Hill
order. For carbon-containing compounds, the Hill order means that carbons
are listed first, hydrogens are listed next, and then all other elements are
listed in alphabetical order. For compounds that do not contain carbon, the
elements are arranged in alphabetical order and the number of each element
is indicated. A molecular formula search for this compound is then carried
out. Obviously, there may be many chemical structures that may satisfy the
molecular formula provided. Thus, there may be a need for further refinement.
Table 7.2 shows a typical chemical search result using the chemical structure
in Fig. 7.21. In this example, a search using the molecular formula shows that
there are many possible candidates. To reduce the number of answers from
the molecular formula search, the latter is combined with name fragments in
the Basic Index of the Registry File. The process is continued until a smaller
set is obtained. Then the display option can be used to identify the RN and
the name of the chemical (RN: 125705-88-6, Index Name: Carbamic acid,
[5-[(3-methyl-1-oxobutyl) amino]-1H-benzimidazol-2-yl]-,methyl ester).

The traditional method can thus be very time-consuming and tedious to
the casual user. Searches on chemical databases are presently dominated by
the text-based content of a paper that can be indexed into a key-word search-
able form. Such traditional searches can prove to be very time consuming and
discouraging to the less frequent scientist.

We can make use of the PCNN to produce binary barcodes of images of
chemical structures [101]. A number of parameters are adjustable to suit in-
dividual applications; renders this barcoding technique secure, versatile and
robust. In Fig. 7.22 we illustrate the invariance of the technique to transla-
tion (A,B) rotation (A, C, D) scale (A,E) using a thiophene molecule. The
uniqueness property is sensitive to the drawing specification format as shown
in (A,F) where the ring size and the bond lengths have been altered. Thus,
it is important that all chemical structures are drawn according to a stan-
dard entry format. In Fig. 7.23 we show the molecular structures of a num-
ber of diverse chemical structures and their corresponding binary barcodes.
The uniqueness of the chemical structures and the binary barcodes suggest

7.4 Barcode Applications 125

Table 7.2. A chemical structure

Molecular Formula Search

⇒ FILE REGISTRY

⇒ C14H18N4O3/MF

E1 1 C14H18N4O2TL/MF
E2 1 C14H18N4O2ZR/MF
E3 248 → C14H18N4O3/MF
E4 1 C14H18N4O3.(C2H4O)NC15H24O/MF
E5 1 C14H18N4O3.(CH2O)X/MF
E6 1 C14H18N4O3.1/2CL4PT.H/MF
E7 1 C14H18N4O3.1/2H2O4S/MF
E8 1 C14H18N4O3.2C2H6O3S/MF
E9 1 C14H18N4O3.2C7H3IN2O3/MF
E10 1 C14H18N4O3.2C7H6O2/MF
E11 3 C14H18N4O3.2CLH/MF
E12 3 C14H18N4O3.BRH/MF

Molecular Formula/Fragment Search

⇒ S E3 AND BUTYL
248 C14H18N4O3/MF

526169 BUTYL
L1 28 C14H18N4O3/MF AND BUTYL

⇒ S L1 AND AMINO AND METHYL
1927517 AMINO

6665678 METHYL
L2 10 L1 AND AMINO AND METHYL

that this technique can be easily exploited for direct structure recognition of
chemicals. The binary barcodes generated from chemicals forms a database.
Comparing its binary sequences to those in a database can then search the
barcode of a chemical structure. Because of the 1:1 correspondence, the hit
from the database is thus a one step procedure. The method is thus direct,
less cumbersome (compared with traditional methods) and proves to be ro-
bust, elegant and very versatile; and can be considered as a serious option in
lieu of CAS RNs.

126 7 Miscellaneous Applications

Fig. 7.22. Effects of translation, rotation, and scaling

7.4.4 Identification and Classification of Galaxies

Astronomers predict that the universe may potentially contain over 100 bil-
lion galaxies. Classification of galaxies is an important issue in the large-
scale study of the Universe. Understanding the Hubble sequence can be very
useful in understanding the evolution of galaxies, cosmogony of the density-
morphology relation, role of mergers, understanding how normal and barred
spirals have been formed, parameters that do and do not vary along it,
whether the initial star-formation rate is the principal driver, etc.. Our un-
derstanding of them depends on how good the sensitivity and resolving power
of existing telescopes (X-ray, Optical, Infra-red, Radio, etc.). Database con-
struction of these galaxies has only just begun. Recognition or classification
of such large number of galaxies is not a simple manual task. Efficient and
robust computer automated classifiers need to be developed in order to help
astronomers derive the maximum benefit from survey studies. There are dif-
ferent ways of classifying galaxies, for example, one can look only at the mor-
phology. Even in this classification scheme there exists different techniques.
One can combine morphology with intrinsic properties of the galaxy such as
the ratio of random to rotational velocities, amount of dust and gas, metal-
licity, evidence of young stars, spectral lines present and their widths, etc.

7.4 Barcode Applications 127

Fig. 7.23. Examples of chemical structures and their corresponding 2D barcodes

128 7 Miscellaneous Applications

Nobody believes that galaxies look today as they did just after they were
formed. Newly born galaxies probably did not fit the present-day classifi-
cation continuum. The big puzzle is to find out how the galaxies evolved
onto the present forms. Did the primeval galaxies “evolve” along basically
the present Hubble sequence, or did they fall into the sequence, each from a
more primitive state, ‘landing’ at their present place in the classification ac-
cording to some parameter such as the amount of hydrogen left over after the
initial collapse [103]?. The collapse occurred either with some regularity [70],
or chaotically [104] within a collapsing envelope of regularity, or, at the other
extreme, in complete chaos. Present-day galaxies show variations of particu-
lar parameters that are systematic along the modern classification sequence.
The obvious way to begin to search for the ‘master parameter’ that gov-
erns the formation process is to enumerate the variation of trail parameters
along the sequence. Reviews by [96] and by [63] indicate somewhat different
results that nevertheless are central to the problem. Within each morpholog-
ical type, there is a distribution of the values of each parameter, and these
distributions have large overlap from class to class. Hence, the dispersion of
each distribution defines the vertical spread along the ridgeline of the clas-
sification continuum (i.e. the center line of Hubble’s tuning fork diagram).
Hence, besides a ‘master parameter’ that determines the gross Hubble Type
(T), there are other parameters that spread the galaxies of a given type into
the continuum of L values [115]. The fact that so many physical parameters
vary systematically along the Hubble sequence is strong evidence that the
classification sequence does have a fundamental significance.

The easiest property of a galaxy to discuss is its visual appearance. When
Hubble introduced his classification, he thought it might represent an evolu-
tionary sequence with galaxies possibly evolving from elliptical to spiral form
but, this is not believed to be true today. Hubble’s classification scheme,
with some modifications, is still in use today. Galaxies are classified as spi-
ral galaxies (ordinary spirals, barred spirals), lenticulars, elliptical galaxies
and irregular galaxies; including other more specialized classifications such
as as cD galaxies. The spirals are classified from Sa to Sc (ordinary spirals)
and from SBa to SBc (barred spirals); a to c represent spiral arms that are
increasingly more loosely wound. The elliptical galaxies are classified accord-
ing to their ratio of their apparent major and minor axes; the classification
is based on the perspective from Earth and not on the actual shape. The
lenticulars are intermediate between spirals and ellipticals. There are other
classification schemes like de Vaucouleurs, Yerkes, and DDO methods, which
look into higher details.

The morphological classification of optical galaxies is done more or less
visually. Better classification schemes would certainly help us to know more
about the formation and evolution of galaxies. A technique that involves the
use of robust software to do the classification is crucial, especially if we want
to classify huge number of galaxies at one shot. Since there are billions of
galaxies, a robust automated method would be desirable. Several authors

7.4 Barcode Applications 129

have reported work along this line [see Refs. 28–37 in [99]]. The techniques
studied include the use of statistical model fitting, fuzzy algebra, decision tree,
PCA, and wavelet-based image analysis. Some work has been reported on the
use of artificial neural networks for automatic morphological classification of
galaxies; using feed-forward neural network, self-organizing maps, computer
vision technique – see Refs. 32–34 in [99]. These techniques, however, require
extensive training, hence are computationally demanding and may not be
appropriate for the classification of a large number of galaxies. A galaxy
classifier/identifier using PCNN has also been reported [99,106]; initial results
of which are promising. These authors have been able to classify galaxies
according to an index parameter obtained from the time signature of the
galaxies. The results reveal that this technique is fast and can be used for
real-time classifications. The researchers have chosen a catalogue of digital
images of 113 nearby galaxies [73] since these galaxies are all nearby, bright,
large, well-resolved, and span the Hubble classification classes. Besides, Frei
et al. photometrically calibrated all data with foreground stars removed and
the catalogue is one of the first data set made publicly available on the
web. Important data on these galaxies published in the “Third Reference
Catalogue of Bright Galaxies” [67] are recorded in the FITS file headers. All
files are available through anonymous FTP from “astro.princeton.edu”; they
are also available on CD-ROM from Princeton University Press.

Binary barcodes corresponding to galaxies can be generated to consti-
tute a databank that can be consulted for the identification of any particular
galaxy (for e.g. using the N-tuple neural network). The digital image of a
galaxy is first presented as input to a PCNN to produce segmented ver-
sion output of binary images. Figure 7.24 shows a set of original images of
representative galaxies spanning over the Hubble classification classes; cor-
responding NGC values are given in Table 7.3. Figure 7.25 shows the origi-
nal images of representative galaxies spanning over the Hubble classification
classes (from top to bottom: NGC 4406, NGC 4526, NGC 4710, NGC 4548,
NGC 3184, and NGC 4449) and the corresponding segmented images for the
first five iterations (column-wise). Figure 7.26 shows the set of the third it-
eration images for a number of galaxies listed in Table 7.3 for producing the
time signatures using a second PCNN. The segmented image version was used
instead of the original image to minimize adverse effects of galactic halos.

Table 7.3. NGC values for galaxies in Fig. 7.24

3184 3726 4254 4374 4477 4636 5813

3344 3810 4303 4406 4526 4710 6384

3351 3938 4321 4429 4535 4754 4449

3486 4125 4340 4442 4564 4866 4548

3631 4136 4365 4472 4621 5322 5377

130 7 Miscellaneous Applications

Fig. 7.24. Representative galaxies

Fig. 7.25. Representative galaxies and their PCNN segmented images

7.4 Barcode Applications 131

Fig. 7.26. Third iterated PCNN binary images of galaxies (see Table 7.3 for cor-
responding NGC values)

A method was devised to mathematically compute an morphology index
parameter (mip) from the first few iterations (mip = G(3)2/(G(2)G(4)) since
these are related to the image textures and hence retain useful information
on the morphology of the galaxies [106]. We found that galaxies (except for
NGC4472) with mip values less than 10 are spirals or irregulars otherwise
ellipticals or lenticular (refer to Table 7.4). This exception may be due to the
presence of halos. Figure 7.27 shows the corresponding barcoded images of
the galaxies listed in Table 7.3 (obtained using the corresponding. 8-bit grey
level version of the time signatures). We note that the 1:1 correspondence
between the barcodes and the input NGC images.

7.4.5 Navigational Systems

Considerable research has been conducted to improve safety and efficiency
on navigational systems. For efficient control and increased safety, automatic
recognition of navigational signs has become a major international issue.
With the increasing use of semi-autonomous and autonomous systems (vehi-
cles and robots), the design and integration of real-time operated navigational
sign recognition systems have also gained in popularity. Systems that assist
navigators or provide systems with computer vision-based navigational sign
detection and recognition mechanisms have been devised. Manufacturers in
Europe, USA, and Japan and several universities even combined their efforts
in this direction. The standards used in the design of navigational signs are

132 7 Miscellaneous Applications

Fig. 7.27. Galaxies identified from their corresponding barcodes

Table 7.4. Galaxies of different Hubble types (T) with the mip computed

NGC T mip NGC T mip NGC T mip
3184 6 5.3 4303 4 9.2 4526 −2 11.1
3344 4 3.8 4321 4 7.2 4535 5 7.6
3351 3 4.9 4340 −1 16.3 4564 −5 18.1
3486 5 8.1 4365 −5 10.5 4621 −5 16.3
3631 5 4.6 4374 −5 13.9 4636 −5 10.9
3726 5 5.1 4406 −5 12.0 4710 −1 10.7
3810 5 6.0 4429 −1 10.7 4754 −3 15.9
3938 5 4.5 4442 −2 15.6 4866 −1 15.4
4125 −5 16.9 4449 10 5.1 5322 −5 17.3
4136 5 9.3 4472 −5 8.1 5813 −5 14.7
4254 5 4.5 4477 −3 14.9 6384 4 5.2

typically according to size, shapes, and colour compositions. These signs form
a very unique and easily visible set of objects within a scene. They always ap-
pear in a visible and fairly predictable region of an image. The only significant
variables are the sizes of the signs in images (due to distance) and illumina-
tion of the scene (such as bright sunlight, overcast, fog, night). Two main
characteristics of navigational signs are normally used for their detection in
camera-acquired images, namely colour [61,64,69,74,76,83,88–90,93,111,112]
and shape [60,62,68,77,81,82,84,91,92,94,109,110]. Sign recognition is per-
formed using sign contents such as pictograms and strings of characters. Nor-
mally, colour is employed in combination with shape for detection purposes
first and then for sign recognition. Different types of image processing can be
performed using colours. The three most widely used approaches are neural
network-based classifiers, colour indexing, and image segmentation based on
colour.

7.4 Barcode Applications 133

Neural network-based classifiers involve the use of neural networks specif-
ically trained to recognise patterns of colours. The use of multi-layer neural
networks as experts for sign detection and recognition has been reported and
applied a neural net as classifier to recognise signs within a region of inter-
est [83]. Swain [111,112] have developed the ‘colour indexing’ technique that
recognises signs by scanning portions of an image and then comparing the
corresponding colour histograms with colour histograms of signs stored in
a database. The technique has been improved by other researchers [74, 76].
Image segmentation based on colour uses algorithms to process an image and
extract coloured objects from the background for further analysis. It remains
the most widely used colour-based approach. Several authors have reported
techniques for colour segmentation: including clustering in colour space [114],
region splitting [69, 88, 89], colour edge detection [64, 90], new parallel seg-
mentation method based on ‘region growing’ or ‘region collection’ [93].

Shape-based sign detection relies largely on the significant achievements
realised in the field of object recognition through research, such as tech-
niques for scene analysis by robots, solid (3D) object recognition and part
localisation in CAD databases. Almost all sign recognition systems process
the colour information first to reduce the search for shape-based detection.
Kehtarnavaz [81] extracted shapes from the image by performing edge de-
tection and then applying the Hough transform to characterise the sides of
the sign. Akatsuka [60] performed shape detection by template matching. de
Saint-Blancard [68] used neural networks or expert systems as sign classi-
fiers for a set of features consisting of perimeter (number of pixels), outside
surrounding box, surfaces (inside/outside contour within surrounding box),
centre of gravity, compactness (‘aspect ratio’ of box), polygonal approxima-
tion, Freeman code, histogram of Freeman code, and average grey level inside
of box. Kellmeyer [82] trained a multi-layer neural net (with Back Propaga-
tion) to recognise diamond-shape warning signs in colour-segmented images.
Piccioli [91,92] concentrated exclusively on geometrical reasoning for sign de-
tection, detecting triangular shapes with Canny’s algorithm and circles in a
Hough-like manner. On the other hand, Priese [94] worked on a model-based
approach where basic shapes of traffic sign components (circles, triangles,
etc.) are predefined with 24-edge polygons describing their convex hulls. Seg-
mented images are first scanned for ‘objects’, which are then encoded and
assigned a probability (based on an edge-to-edge comparison between the
object and the model) for shape classification. Besserer [62] used knowledge
sources (a corner detector, a circle detector and a histogram-based analyser)
to classify chain coded objects into shape classes. Other techniques, referred
to as ‘rigid model fitting’ in [110], have also been used for shape-based sign
detection. Stein [109], Lamdan [84] and Hong [77] use specific model repre-
sentations and a common matching mechanism, geometric hashing, to index
a model database.

The PCNN technique developed here does not necessitate any colour or
shape processing. The automatic identification of signs is achieved simply

134 7 Miscellaneous Applications

through matching of the barcodes of the images with the barcodes stored in
the library (Fig. 7.28) [100].

An unknown sign can therefore be rapidly recognised using its unique
barcode; a set of standard navigational signs is shown in Fig. 7.29 along with
their respective barcodes.

7.4.6 Hand Gesture Recognition

Hand gesture recognition provides a natural and efficient communication
link between humans and computers for human computer interaction and
robotics [71, 78]. For example, new generations of intelligent robots can be
taught how to handle objects in their environments by watching human sub-
jects (if not other robots) manipulating them. Unlike most modes of commu-
nication, hand gestures usually possess multiple concurrent characteristics.
Hand gestures can be either static, like a pose, or dynamic (over space and
time) and include the hand gestures/hand signs commonly used in natural
sign languages like the American Sign Language (ASL) or Australian Sign
Language (AUSLAN). Although, there are many methods currently being
exploited for recognition purposes, using both the static and dynamic char-
acteristics of hand gestures, they are computationally time demanding, and
therefore, not suitable for real-time applications. Recognition methods can
be classified into two main groups, those requiring special gloves with sensors
and those using computer vision techniques [66,85,116]. Recognition methods
that fall under the first category can give very reliable information. Unfortu-
nately, the connection cables in the gloves highly limit human movements in
addition to being unsuitable for most real-world applications. Consequently,
interests in computer vision techniques for hand gesture recognition have
grown rapidly during the last few years.

Several researchers have devised hand gesture recognition systems in
which marks are attached on fingertips, joints, and wrist [66]. Despite being
suitable for real-time processing, it is however inconvenient for users. Another
approach uses electromagnetic sensors and stereo-vision to locate the signer
in video images [116]. To recognise ASL signs, Darrell [65] adopts a max-
imum a posteriori probability approach and uses 2D models to detect and
tract human movements. Motion trajectories have also been utilised for signer
localisation [72]. However, these approaches require a stationary background
with a certain predetermined colour or restrict the signer to wear specialised
gloves and markers, which makes them unsuitable for most real-world appli-
cations. Researchers have also investigated the use of neural network based
systems for the recognition of hand gestures. These systems should enable
major advances in the fields of robotics and human computers interaction
(HCI). Using artificial neural systems, Littmann [86] demonstrate the visual
recognition of human hand pointing gestures from stereo pairs of video cam-
era images and provide a very intuitive kind of man-machine interface to
guide robot movements. Based on Johansson’s suggestion that human ges-

7.4 Barcode Applications 135

Fig. 7.28. Barcode generation from still road signs

136 7 Miscellaneous Applications

Fig. 7.29. Typical road signs and their corresponding barcodes

7.4 Barcode Applications 137

ture recognition rests solely on motion information, several researchers have
carried out investigations on motion profiles and trajectories to recognise hu-
man motion [80]. Siskind [105] demonstrated gesture classification based on
motion profiles using a mixture of colour based and motion based techniques
for tracking. Isard [79] have come forward with the CONDENSATION algo-
rithm as a probabilistic method to track curves in visual scenes. Furthermore,
Yang [117] have used time-delay neural network (TDNN), specifically trained
with standard error back propagation learning algorithm, to recognise hand
gestures from motion patterns.

The one-to-one correspondence between each image and its corresponding
binary barcode is shown in Fig. 7.30 [97]. Recognition of hand gestures is
performed using an N-tuple weightless neural network.

7.4.7 Road Surface Inspection

Inspections of road surfaces for the assessment of road condition and for lo-
cating defects including cracks in road surfaces are the traditionally carried
out manually. As such they are time-consuming, subjective, expensive, and
can prove to be hazardous and disruptive to both the road inspectors and the
circulating traffic users. What is ideally required would be a fully equipped
automated inspecting vehicle capable of high precision location (to the near-
est cm) and characterization of road surface defects (say cracks of widths
1 mm or greater) over the width of the road at speeds (up to 80 kmh−1) over
a single pass. The automated system could also be enhanced to store the type
of cracks present.

Several studies on automated systems for the detection and characteri-
zation of road cracks have been reported recently [75, 95, 113]. In this spirit,
Transport Research Laboratory Ltd. (UK) as recently proposed an automatic
crack monitoring system, HARRIS [95]. In this system video images of the
road surface are collected by three linescan cameras mounted on a survey
vehicle with the resolution of the digital images being 2 mm of road surface
per pixel in the transverse direction and a survey width of 2.9 m. The scanned
image (256 KB) is preprocessed to 64 KB (through reduction of gray levels).
Reduced images are then stored in hard disk together with the location in-
formation. The location referencing subsystem reported in HARRIS (±1 m
accuracy) requires extra cameras and other hardware. The image processing
of HARRIS is carried out in two stages: the first one consists of cleaning and
reducing the images (on-line operation aboard the vehicle) and the second
stage consists of an off-line operation on the reduced images to characterize
the nature of the cracks. A typical one day survey of 300 km of traffic lane
would tantamount to 80 GB of data collected. Full details of HARRIS can be
found elsewhere citePynn99.

Several refinements to the HARRIS system for a more robust automatic
inspection system are obvious. First, Global Positioning Systems (GPS) can
be used (instead of video-based subsystem) to provide a much better accuracy

138 7 Miscellaneous Applications

Fig. 7.30. 2D hand gestures used in experiments and their corresponding barcodes

for position location (down to 1 mm with differential GPS). Second, there is
no need to store large volumes of scanned images of ‘acceptable’ road surface
conditions. In this respect, the PCNN technique can be used for preprocessing
each scanned image to detect defects and a second PCNN to segment this
image if any defect(s) is (are) identified [Rughooputh,00b]. The latter image is
then stored as binary image along with the GPS data. A real-time-crack map
can be displayed by combining the results of the individual cameras. Detailed
characterization of the defects can be performed offline from the recorded

7.4 Barcode Applications 139

binary images. This mode of data collection leads to a more accurate, less
costly and faster automated system.

Since the reflective responses of the material road surface can differ from
place to place, there is a need to calibrate the software with a sample of a
good road surface condition. This can be done in real-time in two modes –
either once if the inspector is assured that for the whole length of the road
has the same reflective responses in which case one sample image will suffice
or periodically taking sample images at appropriate intervals. The overall
philosophy behind the success of our method relies on the comparison of
the input images from the camera to a reference (calibrated sample) image
representing the good surface condition from defects. Our method does not
compare the image directly since this will be very time-consuming; instead it
involves the conversion of the input image into a binary barcode. The barcode
generated from an image containing a defect will be different from that of a
good road surface condition.

The basis of the crack identification process is the fact the barcode of an
image containing a crack (whatever the nature) is different from the barcode
representing a good surface condition. Figure 7.31a shows examples of dif-
ferent road conditions - the input images being stored in the PGM format
(256 levels). The binary images with defects collected at the end of the sur-
veyed road can then be analysed both in real time and off-line. Figure 7.31b
shows the binary images of the segmented images using PCNN. It is clear
that the nature of the defects depicted from these images can be easily clas-
sified (crack widths, hole sizes, etc.) according to an established priority for
remedial actions. Since cracks can be observed as dark areas on the digital
images, a second order crack identification algorithm can be used to crudely
classify the priority basis. In this case, a proper threshold level needs to be
found after carefully omitting redundant parts of the images (for e.g. corner
shadowing effects).

When compared with the performance of HARRIS, the technique reported
offers a much higher success rate (100%) for the crack identification process
[98]. The high false-positive rates i.e. low success rate of HARRIS can be
attributed to the poor image qualities arising from the fact that the number of
grey levels in the cleaned images have been reduced in the primary processing
stage (to 64 KB for storage purposes). Unlike HARRIS, there is no necessity
to add specific criteria in our crack identification process, the need to add
predetermined criteria to join crack fragments, and the need to store large
volumes of scanned images of ‘acceptable’ road surface conditions. HARRIS
also had to inbuilt a special algorithm based on predetermined criteria to join
crack fragments. In short, we save a lot in terms of computing time. We note
that road markings (such as yellow or white indicators) and artificially created
structures (such as manholes and construction plates, etc), would be initially
treated as defects. In any case, most of such markings occur on either side
of the lane so that the camera can be adjusted to reveal say around 80–90%
of the road width. In this configuration, most of the road markings will be

140 7 Miscellaneous Applications

Fig. 7.31. (a) Typical road conditions (b) Segmented images of typical road con-
ditions shown in (a)

ignored. Other markings or structures can be easily rejected when the binary
images are analysed manually. Using the GPS location data, the collected
binary segmented images from each camera are laid side by side in multi-lane
surveys to create a crack map which indicates not only the location, length
and direction of each crack identified, but also identifies cracks or defects
extending beyond the boundaries of the individual survey cameras. We note

7.5 Summary 141

that it is possible to obtain crack maps in real-time in single passes using our
technique.

7.5 Summary

Obviously, there are a variety of applications that the PCNN or ICM can
be of assistance. The main purpose of the PCNN family of algorithms is
usually to isolate the important data for further analysis. However, there are
also applications in which the PCNN was the main tool for condensing the
original information into its final form. This chapter does not cover the full
gambit of applications, but it does provide a taste of the wide variety of
applications in which the PCNN is useful.

8 Hardware Implementations

While the PCNN is easy to employ in a standard computer algorithm, there
have been a few implementations of the PCNN directly into hardware.

8.1 Theory of Hardware Implementation

To surpass the performance of a software implementation of the PCNN the
hardware implementation usually relies on parallelization. Most of the op-
erations in the PCNN are contained within the neurons, and the only real
concern of making a parallel algorithm is the inter-neuron communications.

A hardware implementation can also produce similar PCNN results with-
out employing the full algorithm. The ICM was developed after recognizing
that there is a minimal set of calculations needed to produce results similar
to the PCNN. The pursuit is to determine the communications necessary to
create autowaves. In many simulations each neuron is allowed to commu-
nicate with several of its neighbours. In many of the biological models the
neurons were connected to only their nearest neighbours

The images in Fig. 8.1 explore the possibility of communication with 1,
2 and 3 random neighbours. Figure 8.1a is the original input which would
continually expand in this simulation. Figure 8.1b demonstrates the output
of the same system in which the neurons communicate with a only single
neighbour. As can be seen, the output did not demonstrate an expansion.
Instead, the activity decayed and stabilized after 10 iterations.

Figure 8.1c demonstrates the same system with 2 neuron communica-
tions. Again this system would stabilize within a few iterations. Figure8.1d
shows behaviour more similar to the original system. Here the boundaries of
the original items expand in all directions, although not very smoothly. The
system did not stabilize and the boundaries continued to expand. From this
preliminary examine it appears that in the case of random connections at
least three connections for each neuron are necessary to keep the boundary
expanding. This is feasible in hardware constructs.

The minimal requirements for construction of these models are shown in
Fig. 8.2. This neuron has an internal accumulator, U, and a threshold, Γ.
When the neuron fires a feedback depletes the accumulation. This basic sys-
tem is contained in the many models presented above.

144 8 Hardware Implementations

Fig. 8.1. Original input and outputs from 10 iterations for 1, 2, and 3 randomly
selected connections

Fig. 8.2. Minimal cortical neuron

Hardware versions of these models may vary from the original model due
to hardware limitations. However, if the hardware models are founded in the
minimal system, the performance of the hardware model will produce similar
results. To use these models to solve other problems (e.g., target recognition,
object isolation, foveation, etc.) hardware constructions based on Fig. 8.2 will
provide similar performance characteristics as the biological models. Thus,
exact replication of the biological model is not necessary.

8.2 Implementation on a CNAPs Processor

Implementation of the PCNN in a parallel architecture can be fairly straight-
forward [123]. Unfortunately, the architectures of each parallel computer pro-
vide their own ‘anomalies’ and the example given here will therefore not
necessarily be transferable to other architectures.

The example given involves a PC expansion slot card that uses a Single
Instruction Multiple Data (SIMD) architecture named CNAPS manufactured
by Adaptive Solutions Inc. This architecture consists of a number (P) of pro-
cessing nodes or PNs. Each node has the ability to perform simple multiply
and summing computations and has 4 K of local memory. In the SIMD ar-
chitecture each node receives and executes the same instruction at the same

8.2 Implementation on a CNAPs Processor 145

Fig. 8.3. The schematic of the CNAPS

time. Each node is restricted to operate on data within its local memory. Be-
tween the host computer and the CNAPS is a large buffer. This architecture
is displayed in Fig. 8.3.

As mentioned above, the implementation of the PCNN in CNAPS is fairly
straightforward. The only complication was the convolution and the distri-
bution of the previous iteration’s results for the convolution. The data can be
transferred between nodes on a single bus. Unfortunately, the bus is a serial
device, and therefore computations from one node using data from another
node forces the algorithm into a serial mode, which destroys the whole point
of parallel implementation.

Therefore, two modifications were made. The first is that the local memory
in each node needs to store all of the values of Knecessary for that node’s
computations. The computations of the convolution are stored in W . In the
next iteration it is necessary to distribute the values of Y to the appropriate
nodes for the convolution computation. This needs to be done in a parallel
process on a serial bus. Fortunately, for a 5 × 5 kernel the Y values only
need to travel one a or two nodes distance. Adaptive Solutions does provide
commands that will shift data to neighbouring nodes simultaneously. Even
though several values exist on the bus at the same time, they do not exist at
the same place on the bus. Using these shift commands maintains the parallel
distribution of the data.

The PCNN computation then looks as follows

/* This routine performs all of the PCNN functions for
a single iteration */

void Iterate(void)
{

mono int i;
Convolution();
[domain neuron].{

146 8 Hardware Implementations

foralli {
F[i] = eaf * F[i] + S[i] + Vf * W[i];
L[i] = eal * L[i] + Vl * W[i];
U[i] = F[i] * (1.0 + beta * L[i]);
T[i] = eat * T[i] + Vt * Y[i];
if(U[i] > T[i] + 0.1) Y[i] = 1;
else Y[i] = 0;

}
}

}

Each array variable is replicated on each node so each node only has to
perform N operations instead of N × N . Once the convolution is performed
the computations are quite straightforward.

On a 90 MHz Pentium 20 iterations took about 25 seconds, and on the
CNAPS the same 20 iterations took about a second.

8.3 Implementation in VLSI

There are several ways to implement the PCNN in silicon. It may not always
be desirable to have a fixed configuration with relatively little control from
outside. On the other hand, it may sometimes be quite useful to have the
direct pre-processing provided by the PCNN implemented immediately after
the sensor. Intelligent sensors have been discussed for a long time and there
are image arrays with integrated processors like the LAPP 1100, 1510 and
MAPP2200 from IVP [119,122].

The LAPP 1100 is a line sensor with 128 pixels (24 microns) and 128
parallel processing elements (PE) with a complexity of 320 transistors per
PE. This device may thus be characterised as a detector with an integrated
processor for image processing applications. The MAPP2200 is a 256 × 256
pixels 2D sensor containing a 1D SIMD processor with a complexity of 1500
transistors per PE. A 2D/2D solution called NISP [120] has recently been
developed with 32∗32 PE and where each processor only has 110 transistors.

Another photodiode device has been suggested by Guest [121] and is
shown in Fig. 8.4. It employs a very simple PCNN and has still fewer tran-
sistors.

8.4 Implementation in FPGA

Field programmable logic devices, in particular Field Programmable Gate
Arrays (FPGAs), are without doubt one of the most important technologies
of recent years. In particular, they revolutionized system design and now of-
fer very quick turn-around. In particular large RAM available on the FPGAs

8.4 Implementation in FPGA 147

Fig. 8.4. Implementation of a simple PCNN directly following a photodiode

encouraged rapid experimentation. At the same time, a lot of commercial
tools and libraries become available. Software for design, analysis and syn-
thesis become very advanced in all respects and the VHDL is commonly used.
The tools will change rapidly particularly as the mainstream designs employ
FPGAs as primary logic source, and not just as ASIC prototype vehicles.

The VHDL code below [124] describes one single PCNN neuron that has
one image intensity input (8 bit grey scale) and 8 feedback inputs from sur-
rounding neurons. The PCNN neuron needs many multiplication steps for
each iteration: especially the merging operator of the linking and feeding
branches particularly is critical. These multiplications are implemented as
22 × 22 ones in this simple example below.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
package pcnn_package is

constant beta_VL_width:natural:=3+15; -- [0..1]*[0..10]
constant beta_VL_binal:natural:=15; -- res 0.001*0.05
constant Vf_width:natural:=1+11; -- [0..1]
constant Vf_binal:natural:=11; -- res 0.0005
constant Vt_width:natural:=6+4; -- [1..50]
constant Vt_binal:natural:=4; -- res 0.1
constant exp_width:natural:=1+15; -- [0..1]
constant exp_binal:natural:=15; -- res 5E-5

148 8 Hardware Implementations

constant beta_VL:unsigned(beta_VL_width-1 downto 0);
constant Vf:unsigned(Vf_width-1 downto 0);
constant Vt:unsigned(Vt_width-1 downto 0);
constant KL:unsigned(exp_width-1 downto 0);
constant KF:unsigned (exp_width-1 downto 0);
constant alfa_T:unsigned(exp_width-1 downto 0);

end pcnn_package;

package body pcnn_package is
constant beta_VL:unsigned(beta_VL_width-1 downto 0):=
conv_unsigned(integer(0.01*0.5*2**beta_Vl_binal),

beta_VL_width);
constant Vf:unsigned(Vf_width-1 downto 0):=
conv_unsigned(integer(0.03*2**Vf_binal),Vf_width);
constant Vt:unsigned(Vt_width-1 downto 0):=
conv_unsigned(integer(39.1*2**Vt_binal),Vt_width);
constant KL:unsigned(exp_width-1 downto 0):=
conv_unsigned(integer(0.36*2**exp_binal),exp_width);
constant KF:unsigned (exp_width-1 downto 0):=
conv_unsigned(integer(0.25*2**exp_binal),exp_width);
constant alfa_T:unsigned(exp_width-1 downto 0):=
conv_unsigned(integer(0.16*2**exp_binal),exp_width);

end pcnn_package;

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use work.pcnn_package.all;
entity pcnn is

port(clk:IN std_logic;
reset:IN std_logic;
Y0,Y1,Y2,Y3,Y4,Y5,Y6,Y7:IN unsigned(0 downto 0);
S:IN unsigned(7 downto 0);
Y:INOUT unsigned(0 downto 0));

end pcnn;

architecture behave of pcnn is

signal sum:unsigned(3 downto 0);

signal Linking:unsigned(4+beta_VL_width-1 downto 0);
signal L,L_reg:unsigned(4+beta_VL_width-1 downto 0);

8.4 Implementation in FPGA 149

signal L_mult_KL:unsigned(4+beta_VL_width+exp_width-1
downto 0);

-- L_mult_KL_binal equals exp_binal+beta_VL_binal
-- The signal should be added to Linking, which equals

beta_VL_binal
-- Thus, the final signal equals beta_VL_binal and

exp_binal is dropped

signal L_one:unsigned(4+beta_VL_width-1 downto 0);

signal Feeding:unsigned(4+Vf_width-1 downto 0);
signal F,F_reg:unsigned(8+Vf_width-1 downto 0); --

128 iterations + Y
firing

signal F_mult_KF:unsigned(8+Vf_width+exp_width-1
downto 0);

-- F_mult_KF equals exp_binal+Vf_binal
-- The signal should be added to feeding, which equals

Vf_binal
-- Thus, the final signal equals Vf_binal and

exp_binal is dropped

constant F_zero:unsigned(Vf_binal-8-1 downto 0):
=(others=>’0’);

signal L_mult_F:unsigned(8+Vf_width+4+beta_VL_width-1
downto 0);

-- Should actually be +2*(exp_width-exp_binal) more
bits, but exp_width

and
-- exp_binal should be the same
-- The signal should be compared to theta, which

equals Vt_binal
-- Thus, the final signal equals Vt_binal and

Vf_binal+beta_VL_binal-Vt_binal
-- is dropped

signal U:unsigned(8+Vf_width+4+beta_VL_width-1 downto
Vf_binal+beta_VL_binal-Vt_binal);

signal theta,theta_reg:unsigned(Vt_width-1 downto 0);
signal theta_mult_alfa_t:unsigned(Vt_width+exp_width-1

downto 0);
-- theta_mult_alfa_t equals Vt_binal+exp_binal
-- The signal should be compared to U, which

150 8 Hardware Implementations

equals Vt_binal
-- Thus, the final signal equals Vt_binal and

exp_binal is dropped

begin

sum<=(("000"&Y0)+("000"&Y1)+("000"&Y2)+("000"&Y3))+
(("000"&Y4)+("000"&Y5)+("000"&Y6)+("000"&Y7));

Linking<=sum*beta_VL;
Feeding<=sum*Vf;

L_mult_KL<=L_reg*KL;
F_mult_KF<=F_reg*KF;

L<=Linking+L_mult_KL(4+beta_VL_width+exp_width-1 downto
exp_binal+1);

F<=Feeding+F_mult_KF(8+Vf_width+exp_width-1 downto
exp_binal+1)+(S & F_zero);

L1:for i in 4+beta_VL_width-1 downto 0 generate
L_one(i)<=’1’ when i=beta_VL_binal else ’0’;

end generate;

L_mult_F<=(L_one+L)*F;

U<=L_mult_F(8+Vf_width+4+beta_VL_width-1 downto
Vf_binal+beta_VL_binal-Vt_binal);

Y<=unsigned’("1") when U>theta else unsigned’("0");

theta_mult_alfa_t<=theta_reg*alfa_t;
theta<=theta_mult_alfa_t(Vt_width-1 downto 0);
process(clk)
begin

if (clk’event and (clk=’1’)) then
if (reset=’1’) then

L_reg<=(others=>’0’);
F_reg<=(others=>’0’);

else
L_reg<=L;
F_reg<=F;

end if;
end if;

end process;

8.5 An Optical Implementation 151

process(clk)
begin

if (clk’event and (clk=’1’)) then
if ((Y=unsigned’("1")) OR (reset=’1’)) then

theta_reg<=work.pcnn_package.Vt;
else

theta_reg<=theta;
end if;

end if;
end process;

end behave;

The PCNN neuron above uses almost 1150 logic cells of a FPGA, which
is about 22% of an ALTERA FLEX 10K100 chip. The neuron can process in-
put/output in little over 4 MHz. The implementation is, however, not a very
efficient one. If we assume a 128×128 pixel image having 8 bit resolution and
a 60–70 Hz image speed we will get 16 ms total calculation time available for
each image. For each image we need at least 100 PCNN iterations (that is,
total net iterations on the input image), which gives us 0.16 ms per network it-
eration. If we solve this serially, then we have only 0.16/(128∗128) ms/neuron,
that is almost 10 ns/neuron. Thus this Altera chip cannot process an image
in real time using serial mode.

If we pipeline the critical multiplication steps of the PCNN neuron and
assume that we can fit 4 neurons on a 10K100 or 10K130 chip, we could
process approximately 64 pixels within 4 µs. This means one complete net
iteration within 1 ms. However, this is still too slow for real time purpose
using the Altera Flex family. However, the Altera 10K250 chip would fit
about twice the number of neurons, giving a total network iteration time of
about 0.5 ms. That is the 10K250 will be able to process 128 × 128 pixel
resolution in close to 20 Hz speed without modifications of the suggested
VHDL code.

The VHDL code above can be modified to be more optimal with respect
to available resources. Thus the multiplication can be moved from the chips
gate structure into the embedded array block (EAB) area on the chip, and
in the same time speed up the process.

8.5 An Optical Implementation

Johnson [7] built an optical system that performed PCNN-like computations.
This system was elegant in its simplicity and produced results similar to those
expected from a PCNN. The schematic of this system is shown in Fig. 8.5.

This system illuminated an object with a diffuse white light source. The
radiation from this source was focused on a plane that was slightly off the

152 8 Hardware Implementations

Fig. 8.5. An optical implementation of PCNN-like computations

Spatial Light Modulator (SLM) plane. A CCD detector received the image
and fed it to the computer, which in turn, wrote an image onto the SLM.

The SLM was a transmissive device whose elements could be in either
of two states. Both states transmitted light but the OFF state transmitted
significantly less light than the ON state. The image passed through the SLM
in a slightly out-of-focus state. As it passed through the SLM the image was
multiplied by the image on the SLM but the off focus nature also performed
the local interconnections. More exactly, this passing of the image produced a
local convolution of the elements of the image with the elements of the SLM.

Let the input image be S and the SLM image be A. The image at the
focal plane is F ,

Fij = Sij

∑
kl

mijklAkl , (8.1)

where m indicates the local interconnections produced by the off focus nature
of the image.

The CCD detects the energy of the incoming image so the elements F 2
ij are

read from the CCD. It should be noted that Fij are positive and incoherent
(no phase) so the detection process does not significantly alter the data.

The data is then sent to the computer for a threshold operation. Thresh-
olds are very difficult to implement optically so this step is performed in the
computer. Basically, the computer performed the operation,

Aij =

{
1 if |Fij |2 > γ

0 Otherwise
, (8.2)

where the ON and OFF states of the SLM are indicated by 1 and 0, respec-
tively, γ is a constant that is dependent upon overall illumination, detection
bias, etc.

As can be seen, the optical system performed operations different in their
mathematical form than the PCNN. However, the output images were similar
to those of the PCNN output. Thus, in practice, this optical system could be
used to simulate the PCNN.

8.6 Summary 153

The main advantage of using an optical system is that it can perform all
interconnections fully in parallel. For large convolution kernels this can be an
advantage. The speed of the system is limited by the speed of the SLM and
CCD. Common SLMs and CCDs operate at 30 Hz, but newer devices with
much higher speeds are being developed.

8.6 Summary

A variety of methods have been explored for implementing the PCNN or
equivalent into a hardware architecture. The purpose of this is to provide the
fastest speed possible for computing the pulse images. However, many of these
architectures were developed back when desktop computers were running
below 100 MHz. As computers have become faster by more than a factor of
10 since that time the need for hardware implementations is lessening. This
bodes well for the PCNN and ICM as it becomes easier to employ them
without specialized hardware.

References

1. R. Eckhorn, H. J. Reitboeck, M. Arndt, P. Dicke: Feature linking via syn-
chronization among distributed assemblies: Simulations of results from Cat
Visual Cortex. Neural Comp. 2, 293–307 (1990)

2. U. Ekblad: Earth satellites and air and ground-based activities. Thesis,
Royal Institute of Technology, Department of Physics, Trita-FYS. 2002:42

3. U. Ekblad, J.M. Kinser: Theoretical foundation of the intersecting cortical
model and its use for change detection of aircraft, cars and nuclear explosion
tests. Signal Processing 84, 1131–1146 (2004)

4. U. Ekblad, J.M. Kinser, J. Atmer, N. Zetterlund: The intersecting cortial
model in image processing. Nucl. Instr. Meth. A 525, 392–396 (2004)

5. R. FitzHugh: Impulses and phsyiological states in theoretical models of nerve
membrane. Biophysics J. 1, 445–466 (1961)

6. A.L. Hodgkin, A.F. Huxley: A quantitative description of membrane cur-
rent and its application to conduction and excitation in nerve. Journal of
Physiology 117, 500–544 (1952)

7. J.L. Johnson: Pulse-Coupled Neural Nets: Translation, rotation, scale, dis-
tortion, and intensity signal invariances for images. Appl. Opt. 33 (26),
6239–6253 (1994)

8. J.M. Kinser: The determination of hidden neurons. Optical Memories and
Neural Networks 5 (4), 245–262 (1996)

9. A. Labbi, R. Milanese, H. Bosch: A network of FitzHugh–Nagumo oscillators
for object segmentation. Proc. of International Symposium on Nonlinear
Theory and Applications, NOLTA’97, Nov. 29–Dec. 3, Hawaii 1997, pp.
581—584

10. J. Nagumo, S. Arimoto, S. Yoshizawa: An active pulse transmission line
stimulating nerve axon. Proc. IRE 50, 2061–2070 (1962)

11. O. Parodi, P. Combe, J.-C. Ducom: Temporal encoding in vision: Coding by
spike arrival times leads to oscillations in the case of moving targets. Biol.
Cybern. 74, 497–509 (1996)

12. I.A. Rybak, N.A. Shevtsova, V.A. Sandler: The model of a Neural Network
visual processor. Neurocomputing 4, 93-102 (1992)

13. Y.I. Balkarey, M.G. Evtikhov, M.I. Elinson: Autowave media and Neural
Networks. SPIE 1621, 238–249 (1991)

14. W. Gernster: Time structure of the activity in Neural Network Models. Phys.
Rev. E 51 (1), 738–758 (1995)

15. M.A. Grayson: The heat equation shrinks embedded plane curves to round
points. J. Differential Geometry 26, 285–314 (1987)

156 References

16. H.S. Ranganath, G. Kuntimad: Image segmentation using pulse coupled
neural networks. IEEE World Congress on Computational Intelligence, 1994
IEEE International Conference on Neural Networks, 1994, vol 2, pp. 1285–
1290

17. J.L. Johnson, M.L. Padgett: PCNN models and applications. IEEE Trans.
on Neural Networks, vol. 10, issue 3, May 1999 (Guest editorial overview
of Pulse Coupled Neural Network (PCNN), special issue: Johnson, J.L.;
Padgett, M.L.; Omidvar, O., pp. 461–463, 480–498)

18. J.M. Kinser: Hardware: Basic requirements for implementation. Proc. of
SPIE 3728, Stockholm, June 1998, 222–229

19. J.M. Kinser: Image signatures: Classification and ontology. Proc. of the 4th
IASTED Int. Conf. on Computer Graphics and Imaging, 2001

20. R. Malladi, J.A. Sethian: Level set methods for curvature flow, image en-
hancement, and shape recovery in medical images. Proc. of Conf. on Visu-
alization and Mathematics, June 1995 (Springer 1995) 329–345

21. C. McEniry, J.L. Johnson: Methods for image segmentation using a Pulse-
Coupled Neural Network. Neural Network World 2/97, 177–189 (1997)

22. R.E. Mirollo, S.H. Strogatz: Synchronization of pulse-coupled biological os-
cillators. SIAM J. of Appl. Math. 50 (6), 1645–1662 (1990)

23. O.A. Mornev: Elements of the optics of autowaves. In: V.I. Krirsky (Ed.):
Self-Organization Autowaves and Structures far from Equilibrium (Springer-
Verlag 1984) 111–118

24. E. Neibur, F. Wörgötter: Circular inhibition: A new concept in long-range
interaction in the Mammalian Visual Cortex. Proc. IJCNN, vol. II, San
Diego 1990, 367–372

25. M. Akay: Wavelet application in medicine. Spectrum, 50–56 (May 1997)
26. J. Brasher, J.M. Kinser: Fractional-power synthetic discriminant functions.

Pattern Recognition 27 (4), 577–585 (1994)
27. J.L. Horner: Metrics for assessing pattern recognition. Appl. Opt. 31 (2),

165–166 (1992)
28. J.L. Johnson, M.L. Padgett, W.A. Friday: Multiscale image factorisation.

Proc. Int. Conf. on Neural Networks, ICNN97, Houston TX, June 1997,
Invited paper, 1465–1468

29. J.M. Kinser, J.L. Johnson: Stabilized input with a feedback Pulse-Coupled
Neural Network. Opt. Eng. 35 (8), 2158–2161 (1996)

30. J.M. Kinser, T. Lindblad: Detection of microcalcifications by cortial stimu-
lation. In: A.B. Bulsari and S. Kallio (Eds.) Neural Networks in Engineering
Systems (Turku 1997) pp. 203–206, EANN’97, Stockholm June 1997

31. B.V.K.V. Kumar: Tutorial survey of composite filter designs for optical cor-
relators. Appl. Opt. 31 (23), 4773–4801 (1992)

32. J. Moody, C.J. Darken: Fast learning in networks of locally tuned processing
units. Neural Computation 1, 281–294 (1989)

33. M.L. Padgett, J.L. Johnson: Pulse-Coupled Neural Networks (PCNN) and
wavelets: Biosensor applications. Proc. Int. Conf. on Neural Networks,
ICNN97, Houston TX, June 1997, Invited paper, 2507–2512

34. J. Waldemark, V. Bečanović, T. Lindblad, C.S. Lindsey: Hybrid Neural Net-
works for automatic target recognition, IEEE Conf. on System, Man and Cy-
bernetics, SMC97, vol 4. pp. 4016–4021, Orlando, FL, USA, October 1997

35. G. Wilensky, N. Manukian: The projection Neural Network. Int. Joint Conf.
on Neural Networks, vol. II, 1992, pp. 358–367

References 157

36. J. Waldemark, V. Bečcanović, U. Brännström, C. Holmström, M. Larsson,
Th. Lindblad, C.S. Lindsey, Å. Steen: A Pulse-Coupled Neural Network pre
processing of aurora images. In: A.B. Bulsari and S. Kallio (Eds.) Neu-
ral Networks in Engineering Systems, (Turku 1997) pp. 29–32, EANN’97,
Stockholm June 1997

37. Å.J. Eide, J. Waldemark, V. Bečcanović, U. Brännström, C. Holmström,
M. Larsson, I.M. Lillesand, Th. Lindblad, C.S. Lindsey, Å. Steen: A Pulse-
Coupled Neural Network pre processing of aurora images. Proc. 2nd Work-
shop on AI Applications in Solar-Terrestrial Physics, July 29–31, 1997, Lund,
Sweden, ESA WPP-148

38. L.-J. Cheng, T.-H. Chao, G. Reyes: Acousto-optic tunable filter multispec-
tral imaging system. AIAA Space Programs and Technologies Conference,
paper no. 92-1439, March 24–27, 1992

39. L.-J. Cheng, T.-H. Chao, M. Dowdy, C. LaBaw, C. Mahoney, G. Reyes, K.
Bergman: Multispectral imaging systems using acousto-optic tunable filter.
Infrared and Millimeter Wave Engineering, SPIE Proc. 1874, 224 (1993)

40. J.M. Kinser: Object isolation. Optical Memories and Neural Networks 5 (3),
137–145 (1996)

41. J.M. Kinser: Object Isolation Using a Pulse-Coupled Neural Network. Proc.
SPIE 2824, 70–77, (1996)

42. J.M. Kinser: Pulse-coupled image fusion. Opt. Eng. 36 (3), 737–742 (1997)
43. J.M. Kinser, C.L. Wyman, B.L. Kerstiens: Spiral image fusion: A 30 parallel

channel case. Optical Eng. 37 (02), 492–498 (1998)
44. H. Ranganath, G. Kuntimad, J.L. Johnson: Image segmentation using Pulse-

Coupled Neural Networks. Proc. of IEEE Southeastcon, Rayleigh, N. C.,
1995, 49–53

45. Y.Q. Chen, M.S. Nixon, D.W. Thomas: Statistical geometrical features for
texture classification. Pattern Recognition 28 (4), 537–552 (1995)

46. Y.Q. Chen: Novel Techniques for image texture classification. PhD The-
sis, University of Southampton, Department of Electronics and Computer
Science, 1996

47. R.M. Haralick, K. Shanmugam, I. Dinstein: Textural features for image clas-
sification. IEEE Trans. on System, Man. Cybernetics 3, 610–621 (1973)

48. J.F. Haddon, J.F. Boyee: Co-occurrence matrices for image analysis. IEEE
Electronics and Communications Engineering Journal 5 (2), 71–83 (1993)

49. D.C. He, L. Wang: Texture features based on texture spectrum. Pattern
Recognition 25 (3), 391–399 (1991)

50. J.M. Kinser: Fast analog associative memory. Proc. SPIE 2568, 290–293
(1995)

51. K.I. Laws: Textured image segmentation. PhD Thesis, University of South-
ern California, Electrical Engineering, January 1980

52. http://www.cssip.elec.uq.edu.au/∼guy/meastex/meastex.html
53. W.K. Pratt: Digital Image Processing (A Wiley-Interscience Publication

2001)
54. S. Singh, M. Singh: Texture analysis experiments with Meastex and Vistex

benchmarks. In: S. Singh, N. Murshed and W. Kropatsch (Eds.): Proc. Int.
Conf. on Advances in Pattern Recognition, Rio (11–14 March 2001), Lecture
Notes in Computer Science 2013, 417–424 (Springer-Verlag)

158 References

55. M. Singh, S. Singh: Spatial texture analysis: A comparative study. Proc.
15th Int. Conf. on Pattern Recognition (ICPR’02), Quebec, (11–15 August
2002)

56. M. Tuceryan, A.K. Jain: Texture analysis. In: Handbook of Pattern Recog-
nition and Computer Vision, ed by C.H. Chen, L.F. Pau and P.S. Wang
(World Scientific Publishing 1993) 235–276

57. M.R. Vasquez, P. Katiyar: Texture classification using logical operations.
IEEE Trans. on Image Analysis 9 (10), 1693–1703 (2000)

58. J.M. Kinser, C. Nguyen: Image object signatures from centripetal autowaves.
Pattern Recognition Letters 21 (3), 221–225 (2000)

59. J.W. McClurken, J.A. Zarbock, L.M. Optican: Temporal codes for colors,
patterns and memories. Cerebral Cortex 10, 443–467 (1994)

60. H. Akatsuka, S. Imai: Road signposts recognition system. Proc. SAE Vehicle
Highway Infrastructure: Safety Compatibility, 189–196 (1987)

61. J. Arens, A. Saremi, C. Simmons: Color recognition of retroreflective traffic
signs under various lighting conditions. Public Roads 55, 1–7 (1991)

62. B. Besserer, S. Estable, B. Ulmer: Multiple knowledge sources and evidential
reasoning for shape recognition. Proc. IEEE 4th Conference on Computer
Vision, 624–631 (1993)

63. R. Buta, S. Mitra, G. de Vaucouleurs, H. G. Corwin: Mean morphological
types of bright galaxies. Atronomical Journal 107, 118 (1994)

64. T. Carron, P. Lambert: Color edge detector using jointly hue, saturation
and intensity. IEEE Int. Conf. on Image Processing 3, 977–981 (1994)

65. T. Darrell, I. Essa, A. Pentland: Task-specific gesture analysis in real-time
using interpolated views. IEEE Trans. Pattern Anal. and Mach. Intell. 18
(12), 1236–1242 (1996)

66. J. Davis, M. Shah: Recognizing hand gestures. ECCV’94, 331–340 (1994)
67. G. de Vaucouleurs, A. de Vaucouleurs, H.G. Corwin, R. Buta, G. Paturel,

P. Fouque: Third Reference Catalog of Bright Galaxies (Springer-Verlag NY
1991)

68. M. de Saint Blancard: Road sign recognition: A study of vision-based deci-
sion making for road environment recognition. In: I. Masaki (Ed.) Vision-
Based Vehicle Guidance (Springer-Verlag, New York, Berlin, Heidelberg
1992) 162–172

69. M.P. Dubuisson, A. Jain: Object contour extraction using color and motion.
IEEE Int. Conf. Image Processing, 471-476 (1994)

70. O.J. Eggen, D. Lynden-Bell, A.R. Sandage: Evidence from the motion of old
stars that the galaxy collapsed. Astrophysical Journal 136, 748 (1962)

71. S.S. Fels, G.E. Hinton: Glove-talk: A neural network interface between a
data-glove and a speech synthesizer. IEEE Trans. Neural Network 4, 2–8
(1993)

72. W.T. Freeman, C.D. Weissman: Television control by hand gestures. Proc.
Int. Workshop on Automatic Face and Gesture Recognition, 179–183 (1995)

73. Z. Frei, P. Guhathakurta, J.E. Gunn, J.A. Tyson: A catalog of digital images
of 113 nearby galaxies. Astronomical Journal 111, 174–181 (1996)

74. B.V. Funt, G.D. Finlayson: Color constant color indexing. IEEE Trans. on
Patt. Anal. Mach. Intell. 17 (5), 522–529 (1955)

75. L. Hawker: The introduction of economic assessment to pavement mainte-
nance management decisions on the United Kingdom using private finance.
XIIIth IRF World Meeting, Toronto, Ontario, Canada (1997)

References 159

76. G. Healey, D. Slater: Global color constancy: recognition of objects by use
of illumination-invariant properties of color distributions. J. Opt. Soc. Am.
A 11 (11), 3003–3010 (1994)

77. J. Hong, H. Wolfson: An improved model-based matching method using
footprints. Proc. 9th Int. Conf. Pattern Recognition, IEEE, 72–78 (1988)

78. T.S. Huang, V.I. Pavlovic: Hand modelling, analysis, and synthesis. Int.
Workshop on Automatic Face and Gesture Recognition, Zurich, June 26–28
(1995) pp. 73–79

79. M. Isard, A. Blake: Condensation – conditional density propagation for vi-
sual tracking. International Journal of Computer Vision 29 (1), 5–28 (1998)

80. G. Johansson: Visual perception of biological motion and a model for its
analysis. Perception and Psychophysics 73 (2), 201–211 (1973)

81. N. Kehtarnavaz, N.C. Griswold, D.S. Kang: Stop-sign recognition based on
color-shape processing. Machine Vision and Applications 6, 206–208 (1993)

82. D. Kellmeyer, H. Zwahlen: Detection of highway warning signs in natural
video images using color image processing and neural networks. IEEE Proc.
Int. Conf. Neural Net 7, 4226–4231 (1994)

83. D. Krumbiegel, K.F. Kraiss, S. Schreiber: A connectionist traffic sign recog-
nition system for onboard driver information. 5th IFAC/IFIP/IFORS/IEA
Symposium on Analysis, Design and Evaluation of Man-Machine Systems,
201–206 (1993)

84. Y. Lamdan, H. Wolfson: Geometric hashing: a general and efficient model-
based recognition scheme. Proc. 2nd Int. Conf. on Computer Vision, IEEE,
238–249 (1988)

85. J. Lee, T.L. Kunii: Model-based analysis of hand posture. IEEE Computer
Graphics and Applications, 77–86 (1995)

86. E. Littmann, A. Drees, H. Ritter: Visual gesture-based robot guidance with
a modular neural system. Advances in Neural Information Processing Sys-
tems 8 (Morgan Kaufman Publishers, San Mateo, CA 1996) 903–909; E.
Littmann, A. Drees, H. Ritter: Neural system recognizes human pointing ges-
tures in real images. In: Neuronale Netze in Ingenieursanwendungen (ISD,
Universität Stuttgart 1996) 53–64

87. M A. Miller: Chemical database techniques in drug discovery. Nature, 220–
227 (2002)

88. R. Ohlander, K. Price, D. Reddy: Picture segmentation using a recursive
region splitting method. Computer Graphics and Image Processing 8, 313–
333 (1978)

89. Y. Ohta, T. Kanade, T. Sakai: Color information for region segmentation.
Computer Graphics and Image Processing 13, 224–241 (1980)

90. F. Perez, C. Koch: Toward color image segmentation in analog VLSI: Algo-
rithm and hardware Int. J. of Computer Vision 12 (1), 17–42 (1994)

91. G. Piccioli, E.D. Michelli, M. Campani: A robust method for road sign de-
tection and recognition. Proc. European Conf. on Computer Vision, 495–500
(1994)

92. G. Piccioli, E.D. Michelli, P. Parodi, M. Campani: Robust road sign de-
tection and recognition from image sequence. Proc. Intelligent Vehicles ’94,
278–283 (1994)

93. L. Priese, V. Rehrmann: On hierarchical color segmentation and applica-
tions. Proc. CVPR, 633–634 (1993)

160 References

94. L. Priese, J. Klieber, R. Lakmann, V. Rehrmann, R. Schian: New results
on traffic sign recognition. IEEE Proc. Intelligent Vehicles’94 Symposium,
249–253 (1994)

95. J. Pynn, A. Wright, R. Lodge: Automatic identification of road cracks in
road surfaces. Proc. 7th Int. Conf. on Image Processing and Its Applications
2, Manchester (UK), 671–675 (1999)

96. M.S. Roberts, M.P. Haynes: Physical parameters along the Hubble sequence.
Annual Review Astronomy and Astrophysics 32, 115 (1994)

97. H.C.S. Rughooputh, H. Bootun, S.D.D.V. Rughooputh: Intelligent hand
gesture recognition for human computer interaction and robotics. Proc.
RESQUA2000: The First Regional Symposium on Quality and Automa-
tion: Quality and Automation Systems for Advanced Organizations in the
Information Age, IEE, Universiti Sains, Malaysia, 346–352 (2000)

98. H.C.S. Rughooputh, S.D.D.V. Rughooputh, J. Kinser: Automatic inspection
of road surfaces. In: K.W. Tobin, Jr (Ed.) Machine Vision Applications in
Industrial Inspection VIII, Proc. SPIE 3966, 349–356 (2000)

99. S.D.D.V Rughooputh, R. Somanah, H.C.S. Rughooputh: Classification of
optical galaxies using a PCNN. In: N. Nasrabadi (Ed.) Applications of Artifi-
cial Neural Networks in Image Processing V, Proc. SPIE 3962 (15), 138–147
(2000)

100. S.D.D.V. Rughooputh, H. Bootun, H.C.S. Rughooputh: Intelligent traffic
and road sign recognition for automated vehicles. Proc. RESQUA2000: The
First Regional Symposium on Quality and Automation: Quality and Au-
tomation Systems for Advanced Organizations in the Information Age, IEE,
Universiti Sains, Malaysia, May 4–5, 2000, 231–237

101. S.D.D.V. Rughooputh, H.C.S. Rughooputh: Neural network based chemical
structure indexing. J. Chem. Inf. Comput. Sci. 41, 713–717 (2001)

102. I.A. Rybak, N.A. Shevtsova, L.N. Podladchikova, A.V. Golovan: A visual
cortex domain model and its use for visual information processing. Neural
Networks 4, 3–13 (1991)

103. A. Sandage, K.C. Freeman, N.R. Stokes: The intrinsic flattening of e, so, and
spiral galaxies as related to galaxy formation and evolution. Astrophysical
Journal 160, 831 (1970)

104. L. Searle, R. Zinn: Composition of halo clusters and the formation of the
galactic halo. Astrophysical Journal 225, 357 (1978)

105. J.M. Siskind, Q. Morris: A maximum-likelihood approach to visual event
classification. Proc. 4th European Conf. on Computer Vision, 347–360 (1996)

106. R. Somanah, S.D.D.V. Rughooputh, H.C.S. Rughooputh: Identification and
classification of galaxies using a biologically-inspired neural network. Astro-
phys and Space Sci. 282, 161–169 (2002)

107. R. Srinivasan, J. Kinser, M. Schamschula, J. Shamir, H.J. Caulfield: Optical
syntactic pattern recognition using fuzzy scoring. Optics Letters 21 (11),
815–817 (1996)

108. R. Srinivasan, J. Kinser: A foveating-fuzzy scoring target recognition system.
Pattern Recognition 31 (8), 1149–1158 (1998)

109. F. Stein, G. Medioni: Structural indexing: efficient 2-D object recognition.
IEEE Trans. Patt. Anal. Mach. Intell. 14 (12), 1198–1204 (1992)

110. P. Suetens, P. Fua, A.J. Hanson: Computational strategies for object recog-
nition. ACM Computing Surveys 24 (1), 5–61 (1992)

References 161

111. M.J. Swain, D. Ballard: Indexing via color histograms. IEEE Proc. 3rd Conf.
Computer Vision, IEEE, 1390–393 (1990)

112. M.J. Swain, D. Ballard: Color indexing. Int. J. Computer Vision 7 (1), 111–
32 (1991)

113. T. Tomikawa: A study of road crack detection by the meta-generic algorithm.
Proc. of IEEE African ’99 Int. Conf., Cape Town, 543–548 (1999)

114. S. Tominaga: A color classification method for color images using a uniform
color space. IEEE CVPR, 803–807 (1990)

115. S. van de Bergh: Luminosity classification of galaxies in the revised Shapley-
Ames catalog. Publications of the Astronomical Society 94, 745 (1982)

116. A.D. Wilson, A.F. Bobick: Recognition and interpretation of parametric
gesture. Proc. 6th Int. Conf. on Computer Vision, 329-336 (1998)

117. M.H. Yang, N. Ahuja: Extraction and classification of visual motion patterns
for hand gesture recognition. Proc. of IEEE CVPR, Santa Barbara, 892–897
(1998)

118. A.L. Yarbus: The Role of Eye Movements in Vision Process (Moscow, USSR,
Nauka 1965); Eye Movements and Vision (Plenum, NY 1968)

119. R. Forchheimer, P. Ingelhag, C. Jansson: MAPP2200 – A second generation
smart optical sensor. Proc. SPIE 1659, 2–11 (1992)

120. R. Forchheimer: Smart (optical) sensor hardware realisations. Mini-
Workshop on Neural Networks for Imaging Sensors, Swedish Defence Labs,
Linköping, August 1996, unpublished

121. C. Guest: University of California at San Diego. Work presented at the
PCNN International Workshop, MICOM, Huntsville, AL, April 1965

122. LAPP1110 ISA System Users Documentation. Integrated Vision Products
AB, S-583 30 (Linköping, Sweden 1997)

123. J.M. Kinser, Th. Lindblad: Implementation of the Pulse-Coupled Neural
Network in a CNAPS environment. IEEE Trans. on Neural Nets 10 (3),
591–599 (1999)

124. J. Waldemark, T. Lindblad, C.S. Lindsey, K.E. Waldemark, J. Oberg, M.
Millberg. Proc. SPIE 3390, 392–402 (1998), Int. Conf. of Applications and
Science of Computational Intelligence, Orlando, FL, USA, April 1998

Index

acousto-optical tunable sensor 75
aircraft recognition 43
American Sign Language 134
analogue time simulation 23
anchor velocity 104
AOTF 75
ATR 44
aurora borealis 44
Australian Sign Language 134
autocorrelation 86
Automatic Target Recognition 44
autowave 14
autowaves

centripetal 32

Back Propagation network 44
barcodes 116
BBC 119, 120
Binary stack method 86

CCD 152
centripetal autowaves 32
ChemExper 121
ChemFinder 121
Chemical Abstracts Services 121
Chemical Directory 121
chemical indexing 121
chemical structure viewers 123
ChemIDplus 121
CNAPs 144
co-occurrence 86
composite filter 46
correlation

binary 47
curvature flow 31

data sequences 119
de-synchronisation 14

diffraction 75
discrimination 2, 46
dynamic object isolation 58

εPCNN 69
Eckhorn model 8
edge extraction 39, 47, 52
edge frequency 86

Feedback PCNN 53, 55
feedback pulse image generator 52
Feeding 12
Field Programmable Gate Arrays 146
Fitzhugh–Nagumo model 7
Fourier filter 35
foveating 4
foveation 107
FPCNN 53
FPF 46, 55
FPGA 146
fractional power filter 46
frequencies

higher 36
lower 36

fusion 69, 71, 80

galaxy classification 126
Gaussian connections 18
GBC 119
generalisation 2, 46
goblet 88

hand gesture recognition 134
handwritten characters 109
HARRIS 137
Hazardous Substances Databank

Structures 121
Hill order 123
histogram 113

164 Index

Hodgkin–Huxley model 6

ICM 5, 24
image 2

classification 2, 44
colour 73, 95, 113
features 35
filtering 2
multi-spectral 69, 75
noisy 62
processing 2
recognition 2, 43, 52
segmentation 41, 52
shape 95
texture 83

image factorisation 51
image fusion 69, 71
image signatures 93
interference 27, 94
iso-Dv 104

k-nearest neighbors 86
Kaiser window 77

land mines 77
LAPP 146
Law’s mask 86
Learjet 44
Linking 12

fast 16, 21
quantized 15

Logicon Projection Network 44
LPN 44

mammography 42
MAPP2200 146
maze 115
MIG-29 44
Moody–Darken algorithm 44
motion estimation 103
multi-spectral 69, 75
multi-spectral PCNN 69

navigational systems 131
neural network 3

feedforward 3
NIST databases 121
nucleus 88

object isolation 55
object recognition 35

optical PCNN 151
optimal viewing angle 100

Parodi model 10
PCE 56
PCNN 5

εPCNN 69
FPCNN 53, 55

peak to correlation energy 56
pulse capture 14
pulse image VII

Radial Basis Function 44
RBF 44
recursive image generator 55
red blood cell 41
RGB 95
road signs 131
road surface inspection 137
Run Length 86
Rybak model 9

SAAB JAS 39 43
secretion 88
shadows 60
sign language 134
signature database 99
SIMD 144
Single Instruction Multiple Data 144
SLM 152
smoothing 22
Spatial Light Modulator 152
Swiss Alps 43

TDNN 137
texture 52
Texture Operators 86
Texture Spectrum 86
thick maze 116
time signatures 16
time-delay neural network 137

van der Pol oscillator 7
VHDL 147
viewing angle 100
visual cortex 2, 4, 5
VLSI 146

wavelet 3, 80

XOR 3

