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Abstract—Real-codedgenetic algorithms on a parallel architecture are applied to optimize the synaptic couplings of a
Cellular Neural Network for specific greyscale image processing tasks. Using supervised learning information in the
jitnessfinction, we propose the Genetic Algorithm as a general training methodfor Cellular Neural Networks. 01997
Elsevier Science Ltd.
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1. INTRODUCTION

Cellular Neural Networks (CNNS), a new type of locally
connected neural network with continuous activation
values, have recently demonstrated their efficacy for
bipolar signal processing. Several models of cortical neu-
rons have been proposed so far, but the time evolution in
the neuron’s activation has always been rather under-
estimated. CNNS on the other hand, have shown how
the transient regime may play a decisive role in obtaining
the correct stimulus-response association. An evolution-
ary approach, inspired from natural laws like the survival
of the fittest, has already been proposed in several works,
the main argument being that the actual brain structure
has itself evolved through a competitive trial and error
process. Genetic Algorithms (GAs), an attempt to emu-
late this trial and error process, have exhibited good per-
formance in the design of feed-forward neural network
architectures (Bornholdt & Graudenz, 1992) and it is
therefore quite natural to investigate their performance
in modelling the synaptic connections which influence
the dynamic trajectory of a neuron’s activation level. In
Sections 2 and 3 the notions of CNN and GA are briefly
recalled. Section 4 describes the specific kind of GA used
and Sections 5 and 6 give more details on the overall
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system and its parallelization. Some comments on the
results are given in Section 7.

2. THE CELLULAR NEURAL NETWORK MODEL

Cellular Neural Networks invented by Chua and Yang
(1988), consist of a partial unification of the paradigms
Cellular Automaton and Neural Network, retaining
several elements of both. Neurons, intended as usual as
elementary computational units, are placed on a reguku
two-dimensional lattice and are characterized by a state
(x), input (u) and output (y). We will use the indices i,j
for the case of a regular square lattice and we will denote
with Ni,j the neighbourhood of neuron i,j.

The state of a neuron is then ruled by the following
first-order differential equation:

(1)

with the additional constraints

[util<1, lxti(0)l<1, C,R >0 (2)

and the choice of any non-linear, bounded, output func-
tion, such as

Yij= ;(1%+1I–I%j–1 0. (3)

The matrices Akland BMare called, respectively, the~eed-
back and control templates and represent the strength of
the synaptic interaction between neighboring neurons
and the central neuron. Given a sufficient number of
time steps, neurons not directly connected may interact
with each other because of the propagation effects of the



1144 M. Zamparelli

continuous-time dynamics of the network. This type of
structure with only local synaptic connections makes
CNNS ideally suited for VLSI implementation. In fact,
CNNS were first conceived as a large scale non-linear
circuit, with continuous range cells to overcome the lim-
itations of discrete state Cellular Automata.

The neighbourhood radius r is typically chosen to be 1
or 2. C, R and Z are respectively called the capaci~,
resistance and induction of the network. II@ (1) is dis-
cretized through the corresponding difference equation

Xi,j(rz+ 1)=Xi,j(n) + :

[

— 1;Xi,j(n)+ ~ Aklyk.(t)+ ~ Bklukl+Z (4)
k, IENG k,lENu

where h is the dynamic time step.
A CNN is uniquely determined given the feedback and

control templates (Akland Bu) and the additional three
parameters C, R and Z.It can be demonstrated that under
conditions (2), the CNN will always converge to a steady
state. The output is then used for evaluation.

The initial pattern representing the external stimulus
may be loaded onto the initial state and/or onto the input.
Several variations of the original CNN have been pro-
posed and used for black and white image processing
tasks, like edge detection, noise removal, horizontal or
vertical line filtering, hole filling, object shadowing and
others. An analytical method, based on the comparison
principle for differential equations, has been proposed
for synthesizing CNNS for simple transformations on
bipolar images (Chua & Thiran, 1991). Nevertheless,
when the desired transformation cannot be coded into a
set of simple rules and greyscale pixels are used, GAs
may represent a valuable alternative and overcome the
typical limitations of methods based on gradient descent
as in Chua et al. (1992).

3. GENETIC ALGORITHMS

GAs are stochastic similarity-based sampling techniques,
especially suited for optimization problems in which lit-
tle a priori knowledge is available about the function to
be optimized. Often they have proved suitable for com-
plex optimization problems, like combinatorial optimiza-
tion, in which an analytical solution is not directly
available or in which numerical techniques are misled
by local minima. Their theoretical foundations lie simply
in Darwin’s evolutionary explanation of the genesis of
species, i.e. they use simple concepts like the survival of
the fittest or the genetic diversity in a given population as
source of further species improvement. GA optimization
has often been referred to as guided blind search; guided
since a reinforcement signal drives it, but blind since
it does not access the inside of the signal production
itself.

Schematically, it works as follows: a coding is chosen
to map any possible candidate solution of a given pro-
blem into a finite-size string (the chromosome) taken
from some alphabet. An initial pool of such strings is
randomly initialized and each of them is in turn evalu-
ated, ranked according to its capability to solve the given
problem. The latter is normally referred to as the jitness
of the individual, and measures what in nature would be
the individual’s skills in positively interacting with the
surrounding environment. The fitness ranking is then
used for cloning the genetic material present in the popu-
lation, i.e. the higher the fitness, the higher the chances
that the individual gets its chromosome duplicated and
used for mating with other individuals. Mating can be
implemented in a variety of ways, but the basic mechan-
isms are the exchange of substring in the chromosome
(crossover) and, with a low probability, a mutation of the
same. The newborn individuals then replace totally or
partially the old ones in the population, thus a new gen-
eration is built. This iterative process is stopped when the
maximum fitness in the population does not increase
further or has reached a satisfactory value. In either
case, the best individual is taken as the solution. The
choice of the coding strategy may be critical for the
efficiency of the method but this issue, often questioned
in the literature, is beyond the scope of this introduction.
For a complete description see Goldberg (1989) and
Davis (1991).

4. OUR GENETIC ALGORITHM

A real coded Genetic Algorithm has been used to guar-
antee a faster convergence and to allow a reduced-size
population. Also, experience has shown how real number
representation is more flexible when the range for the
optimization parameters is not known in advance, as
may be the case with some image processing tasks.

The following features have been used to enforce a
more efficient reproduction phase.

●

●

●

The best individual from the previous generation sub-
stitutes the worst in the current generation if no
improvement is made (elitism).
Fitness values are scaled linearly so as to stress small
differences between sirniliar individuals. Scaling coef-
ficients are computed every generation and depend
upon the maximum, minimum and average of the cur-
rent fitness. It is not uncommon that two individuals
perform rather differently although their fitnesses are
close.
An individual gets exactly the number of offsprings he
deserves in proportion to his rounded fitness (expected
value model). This is to overcome stochastic errors
connected with populations of small size and roul-
ette-wheel selection schemes.

The current implementation of the GA does not
systematically apply crossover and mutation to all the

,.
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offspring. Instead, for each couple of new individuals one
operator is selected to act on them according to its usage
probability (actually percentage), as in Montana and
Davis (1987).

Several of these operators have been tested. Mutation,
for example, may occur basically in two ways, either
totally replacing the specific gene with a new one ran-
domly chosen from a given distribution, or simply adding
a small perturbation to the pre-existing value (creeping).
The latter is especially useful for performing stochastic
hill-climbing in the parameter space and has often been
quoted as the major advantage of the real coding strategy.

Crossover operators typically swap the corresponding
genes in the parents, but they may also randomly choose
one of the two to be put in both offspring. Other possi-
bilities are linear combinations of the two values, for
instance the average. Couple operators with probability
100% which always call both the desired crossover and
mutation operators may be introduced. In addition a para-
meter is associated with each operator representing the
probability of being applied to a single gene, once that
operator has been chosen for usage. A mechanism to
increase or decrease operators’ usage probabilities
when the convergence stalls has been implemented in
order to keep the population diversity high in the later
generations. Number of generations, population size and
specific problem dependent parameters may also be
adjusted.

5. PUTTING IT ALL TOGETHER

Supervised learning normally consists of presenting to
the network a sequence of training patterns, namely
couples of input and target patterns used to compute
the average performance error. When the latter has
become small enough the training phase is completed
and the network may be used for operation. We have
used in our simulations only one training couple since
we expected the optimized CNN to be able to reproduce
its performance on images sharing a similar greyscale
distribution.

As in common GA practice, a population of P, indi-
viduals is randomly initialized. An individual of such a
population COIISkS of Akl,Bkl, C, R, Z pWInete13, ran-
domly chosen in the uniform intervals

[1C(Jco
Akl,Bkl,ZE – ~, ~ and C,R G [0, Co].

Three kinds of symmetry for the template may be used:
no symmetry, point symmetry and isotropy, reducing the
number of genes per chromosome to (2r + 1)2,r(2r + 1)
+ r + 1 and r + 1, respectively.

In each generation, all individuals are evaluated, i.e. its
corresponding templates and parameters are used for sol-
ving (1) for T steps, namely until the system has reached
the steady state (in this case the individual is considered
stable) or the threshold of maximum dynamic steps has

been exceeded (unstable
for the steady state, the
magnetization

m(t)= :

1145

individual). As a criterion,
settling down of the global

IW,IH

x Y,(t)> (5)
‘v (i,j)qo,o)

has been used.
The simplest approach is to enforce supervised learn-

ing through the following fitness function for an indivi-
dual X

f(w)= 1– ~ 1w~H lyti(T,w)– rtil
N (i,j)=(O,O)

(6)

where we have stressed the dependence of the steady
stite outputvalueyti(T,w) from the individual w. rj are
the desired pixel greyscale values, ZWand Z~, respec-
tively, the image width and height and N = ZwX IH.

Several other features may be taken into account,
depending upon the specific task. Information entropy,
magnetization, average correlation or other macroscopic
features may be used for comparing the output pattern
with the target, in pattern-matching applications as well
as in ordinary image processing contexts. The variance of
the above error may be used as well.

As long as each of these fitness components can be
bounded, a more useful and general expression for the
overall fitness of an individual w is therefore:

P P

f(W)= ~ CL(W) with ~ ci= 1 (7)
i=l i= 1

where P is the number of fitness components and the
weights ci have to be chosen by tentative.

6. PARALLELIZATION

In this section, the double parallelism implemented on
the Paragon XWS 10 architecture is briefly explained.

A parallel GA can be implemented very easily by
chosing P1 different processors among the Nn available,
to oversee PI independent subpopulations, each with the
same number of individuals (Tanese, 1987). These pro-
cessors, called masters, perform the genetic operations
on the genomes of the members of their subpopulations,
each carrying out its own optimization procedure. If
necessary, according to the task to be optimized, differ-
ent initialization parameters can be chosen for each sub-
population, to guarantee that the initial individuals are
localized in different regions of the search space and
different genetic operators can be used by each master,
if needed.

Similarly, the locality of the system specified in eqn
(l), i.e. the fact that each iv is a function of its geome-
trical neighbors only, can be conveniently exploited to
split the processing of the image into a certain number of
independent slices. Suppose P2 processors are chosen for
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this task, each being assigned to a single slice of the
image. The image can be divided into stripes so that
each processor oversees a rectangular area and has, at
most, a left and a right neighbour. For each integration
step, each processor oversees the dynamic (1) in its own
slice only and merely needs to exchange the information
contained on the borders with its own neighbors. The
width of this border is equal to the radius r. The integra-
tion is carried out for the desired maximum number of
steps or until the criterion for the steady state is fulfilled.
In this way, the dynamic in eqn (1) and thus the compu-
tation of the fitness (6) for a single individual is paralla-
lized with P2 different processors, henceforth called
slaves.

A number P2 of unique slaves is assigned to each
master for the parallel evaluation of the individuals in
its subpopulation. Within each master, members of the
subpopulations are evaluated sequentially, one after the
other, but each evaluation takes place in parallel.

In order to prevent the master from idling in a wait
state during each evaluation, its role is changed into slave
so that it can actively contribute to the computation (in
this sense master processors are in fact master and slave).
The number of masters and slaves thus fulfils N. = PI X
P2. After each individual in the subpopulation has
been ranked according to its fitness, reproduction, cross-
over and mutation take place through the usage of the
different genetic operators until the next generation is
built up.

All communication within the PI subgroups takes
place via the master nodes which are disposed on a
ring topology so that each one has a left and right neigh-
bour. With a desired frequency they exchange their best
individuals by passing them rightwards along the ring.
This prevents too much computational power from being
lost by one group of nodes when another master is
already optimizing in a more promising region of the
search space (Tanese, 1987). This technique may be
convenient for best exploiting computing power

EDGE DETECTION
1

0.9 f’- cmax-fit> —
<stable> --------

0.8 -

0.7 -
0.6 -
0.5 -
0.4 -
0.3

0.2

I

.......-.... -------—---—--—-—----—--”/e/---------

0.1 ‘ 1
01 I

0 100200300400500600700 8009001000
generations

when the number of processors handling the image
has already exceeded the speed up threshold and increas-
ing the number of slave processors would make it no
better.

During the initialization phase, all processors are
assigned to their specific roles (master or simply slave)
and grouped together in PI subgroups (each with one
master/slave and P1 – 1 slaves). The whole image is
then subdivided and transmitted from node zero, which
accesses mass storage devices, to all the others and the
computation can start.

7. SIMULATION RESULTS

We applied the system described in Section 5 to con-
struct templates implementing an edge detection filter,
a CO1OWpalette changing filter and one reproducing
the convolution between the image and the second
derivative of a Gaussian (the so-called Mexican hat
operator, used in MRI images for edge detection)
(Ehricke, 1990).

The maximum theoretical value for fitness (6) is 1,
meaning that the desired mapping was learnt error-free.
Although such a value was never reached in our runs,
results are satisfactory and the method proved to be valid,
at least for the desired tasks. Its efficacy may be easily
inspected from Figures 1–3, showing examples of train-
ing and operation phases as well as graphs of maximum
fitness in population against generation number.

The use of analytical methods for optimizing CNN
connectivity in pattern recognition tasks has been so far
limited to bipolar images, preventing therefore a direct
comparison on the quality of obtained results, and the
study of convergence speed of numerical methods versus
genetic ones was not in the scope of this work.

In all the experiments a population of eight individuals
was evolved for 1000 generations. The neighbourhood
radius r was set to 1 in all cases. The maximum
fitness function plots in Figure 4 behave consistently

COLOR CHANGING
1 N

0.9 - <msx.tb —
<stable> --------

0.6 ~

0.7 -
0.6 -
0.5 -
0.4 [
0.3
0.2 L ----------------------------------------------------------0.1

01 I
0 100200300400500600700 8009001000

generations

FIGURE 4. Averaged maximum fitneaa and stabilized percentage (reacaled to unity) for edge deteetlon and colour changing
taaks. Parameters are: T= 6, I% = 8, Co= 1,1000generations.

—..



1150 M. Zamparelli

STABILITY PERCENTAGE COMPARISON
0.5 , ........ --------............................ --------....... .....................

0.45 f T= 10 — -
T= 20 -------

0.4 -

0.35 t i
0.3

0.25 1
0.2

0.15
I

01 I
0 100 200 300 400 500 600 700 800 9001000

generations

FIGURE 5. Stabilized percentage behavlourfor different max-
imum number of stepe for convolution tack.

with all GA results to date, namely, after initial rapid
improvements, the diversity in the population is reduced
and the convergence stalls.

As for other real-coded GAs, mutation played a major
role in our system and was granted 60% of the usage
percentage. In particular the operator adding a small
perturbation to the genes and the one totally replacing
them with a certain probability have shown the best
performance for all the applications. The remaining
4070 of usage percentage was given to a crossover
operator that swaps the corresponding genes in the parent
chromosomes.

The maximum number of time steps Tplays an impor-
tant role, as can be seen from Figure 4 which shows how
genetic pressure can lead to stable or unstable individuals
according to the different tasks. The effects of increasing
Ton the percentage of stable individuals can be seen for
the convolution task in Figure 5.

The templates obtained after 1000 generations (see for
instance Figure 6) were tested in the operational phase

EDGE DETECTION

# S1 1 S2 3
C: 3.400787 R: 0.168945 I : -0.270355

1.372711 1.952759 0.340668
0.821655 -1.285492 0.744843
1.012238 -1.410400 -1.085815

0.959442 -0.422333 -1.316528
-1.274567 -1.192474 0.162292
-0.318390 -0.578308 -0.223236

# FITNESS 0.896841

FiGURE 6. An exampie of CNN tempiatee for the convolution
fiiter with r= 1.

and worked equally well on the training pattern as on
several other images of the same kind.

The training patterns used were approximately 1000 X
1000points large, later reduced by one order of magnitude
to deerease evaluation times. Nevertheless some care must
be taken to choose a sample containing all the necessary
features so that the network can learn the desired mapping,
for example in pattern classification tasks.

The fitness used in the previous examples can be quite
small even when results are rather different from
expected, as can be seen in Figure 7.

8. CONCLUSIONS AND FUTURE WORK

Besides the simplicity of the transformations shown in
this paper, we have shown that GAs can be used success-
fully for CNN training even with relatively small target
patterns which need to be constructed using computa-
tionally more expensive techniques.

Unfortunately, real-coded GAs can be hindered from
reaching the best fit individual if the problem is deceptive
(see Goldberg, 1991), however, using the slower but
more robust messy GAs (Goldberg et al., 1989) might
provide a method for determining whether or not the
CNN can perform a given task.

COLOR CHANGING

FITNESS 0.780494 FflNESS 0.827669

FiGURE 7. Exampiee of individual performance at generation zero.
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