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Foreword

Christopher G. Langton
Editor-in-Chief
Santa Fe Institute

This book is intended as a high-level index to the Artificial Life enterprise. It provides a point of entry to 
the field for both the newcomer and the seasoned researcher alike. The essays in this book introduce the 
many subdisciplines of Artificial Life and organize a large body of citations to the literature in the field.

I would recommend this book as an excellent text for a graduate seminar on Artificial Life, accompanied 
by readings drawn from the citations tailored to the professor's or the student's interests.

As Artificial Life is a highly interdisciplinary field, drawing researchers from across the academic and 
scientific spectrum, the authors have made an extra effort to make their essays comprehensible to 
readers from outside their own particular disciplines. They have defined technical terms where needed 
and provided background motivation for techniques and approaches that might otherwise require in-
depth knowledge of some highly specialized body of theory. Thus, this book should prove accessible to 
anyone with a moderate background in the sciences.

I have made a special effort to include not only scientific and engineering papers, but also reviews of 
some of the philosophical and social issues, as it is just as important to understand how a field fits into 
the web of science and society as it is to understand the internal details of the field.

CHRISTOPHER G. LANGTON
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Editor's Introduction

Christopher G. Langton
Editor-in-Chief
Santa Fe Institute

This book consists of the first three issues of Artificial Life. These initial issues contain a special set of 
overview articles contributed by members of the editorial board of the journal. In these articles, each 
editor has attempted to review his or her own thread of special interest within the broad and diverse 
tapestry of research efforts that have come to be associated with the term "Artificial Life." In general, 
each article contains a bit of history on a particular research topic, a review of some of the more 
important problems, a description of the most promising techniques and methods for addressing these 
problems, and a view toward the future, with suggestions of the impact that Artificial Life techniques 
will have on our understanding of the biological phenomena under study.

The primary purpose of this initial set of overview articles is to "prime the pump" for future research in 
the field of Artificial Life, thereby stimulating future contributions to the journal itself. They are also 
intended to help define and delineate the field of Artificial Life more thoroughly than has been done 
until now.

The term Artificial Life literally means "life made by humans rather than by nature." As you will see in 
these articles, Artificial Life is many things to many people, and I will not attempt to give a concise 
definition of it here. In fact, Artificial Life is not yet ready to be constrained by quick and short 
definitions—the field is still in the process of defining itself, as is proper for any new discipline. The 
articles in this volume carefully stake out claims to certain areas of study, but there is far more 
intellectual territory out there waiting to be discovered and laid claim to.

Among all of the things that Artificial Life is or will come to be, however, it is probably safe to say that 
the field as a whole represents an attempt to increase vastly the role of synthesis in the study of 
biological phenomena. Synthesis has played a vital role in the grounding of many scientific disciplines, 
because it extends the empirical database upon which the theory of the discipline is built beyond the 
often highly accidental set of entities that nature happened to leave around for us to study.



Take the field of chemistry as an example: In the earliest stages of research into the constitution of 
matter, people took stock of the kinds of chemical compounds that nature had provided them with, 
catalogued and classified them, analyzed them by taking them apart into their constituent pieces, and 
then analyzed the pieces. This was fine as far as it went, but there was a great deal of accident and 
historical process involved in the determination of the kinds of chemical compounds that nature 
happened to leave around for study, and it would have been very difficult to observe the law-regularities 
in the highly irregular and unique set of compounds that early researchers happened to have available for 
study. It was only through the process of synthesis—putting the constituent pieces of matter together in 
new and different ways—that researchers were able to extend the set of chemical compounds available 
for study far beyond the irregular set provided to them by nature. It was only within the context of this 
much larger set of "possible" chemical compounds that researchers were able to see beyond the 
accidental nature of the "natural" chemical compounds, and glimpse the regularities in
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the constitution of matter. To have a theory of the actual, it is necessary to understand the possible.

The situation is much the same in biology. The set of biological entities provided to us by nature, broad 
and diverse as it is, is dominated by accident and historical contingency. We trust implicitly that there 
were lawful regularities at work in the determination of this set, but it is unlikely that we will discover 
many of these regularities by restricting ourselves only to the set of biological entities that nature 
actually provided us with. Rather, such regularities will be found only by exploring the much larger set 
of possible biological entities.

Many biologists have speculated wistfully about "rewinding the tape" of evolution, starting the process 
over again from slightly different initial conditions. What would emerge? What would be the same? 
What would be different? We sense that the evolutionary trajectory that did in fact occur on earth is just 
one out of a vast ensemble of possible evolutionary trajectories—each leading to a biology that could 
have happened in principle, but didn't in fact solely for reasons of accident combined with common 
genetic descent. We sense that the regularities we seek would be revealed to us if we could just get a 
glimpse of that space of possible biologies. Just as chemistry did not become lawful until the set of 
compounds under study was extended beyond the set originally provided by nature, so it is likely that 
biology will not become lawful until the set of biological entities under study is vastly extended beyond 
the set originally provided to us by nature. This is the role of synthesis, and this is the primary 
motivation for the field of Artificial Life: to give us a glimpse of that wider space of possible biologies.



Not only did the synthetic method in chemistry lead to a more solid theoretical grounding of the field 
itself, but the very nature of synthesis led to novel chemical compounds with many practical industrial 
and engineering applications, such as synthetic rubber, plastics, medicinal compounds, and so forth. 
Likewise, a major motivation for the field of Artificial Life, besides the desire for a firmer theoretical 
grounding for biology, is the promise it holds for the synthesis of biological phenomena in forms that 
will be of great practical use in our industrial and engineering endeavors. Nature has discovered 
ingenious solutions to many hard engineering problems, problems that we have not been able to solve by 
our traditional engineering methods. The synthetic process of attempting to recreate these biological 
solutions in other materials will be of great practical use. Furthermore, we may even borrow the 
engineering method nature used to come up with these ingenious solutions in the first place: the process 
of evolution. By synthesizing the mechanisms underlying the evolutionary process in computers and in 
other "nonbiological" media, we can discover solutions to engineering problems that have long resisted 
our traditional approaches.

However, as was the case with synthetic chemistry, we need not restrict ourselves to attempting merely 
to recreate biological phenomena that originally occurred naturally. We have the entire space of possible 
biological structures and processes to explore, including those that never did evolve here on earth. Thus, 
Artificial Life need not merely attempt to recreate nature as it is, but is free to explore nature as it could 
have been—as it could still be if we realize artificially what did not occur naturally. Of course, we must 
constantly be aware of which of our endeavors are relevant to biology, and which break ground that is 
ultimately outside of the domain of biological relevancy. However, much of the latter will be of interest 
on its own right, regardless of whether or not it teaches us anything about biology as it is understood 
today. Artificial Life will teach us much about biology—much that we could not have learned by 
studying the natural products of biology alone—but Artificial Life will ultimately reach beyond biology, 
into a realm that we do not yet have a name for, but which must include culture and our technology in an 
extended view of nature.
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I don't want merely to paint a rosy picture of the future of Artificial Life. It will not solve all of our 
problems. Indeed, it may well add to them. The potential that Artificial Life holds for unlocking the 
secrets of life is great, but in unlocking those secrets we run the risk of unlocking a Pandora's box. As 
has been the case with our mastery of any new technology in the past, the mastery of the technology of 
life holds tremendous potential for beneficial use, but it also holds tremendous potential for abuse, 
whether accidental or intentional. Perhaps the simplest way to emphasize this point is by merely 
pointing out that Mary Shelley's prophetic story of Dr. Frankenstein can no longer be considered to be 
merely science fiction. We are on the verge of duplicating Dr. Frankenstein's feat and, therefore, of 
duplicating the consequences that lead to his ultimate ruin. Mary Shelley's genius was to paint the 
scientist Frankenstein as the real monster of the story, by his refusal to accept responsibility for the 
potential consequences of his pursuit of knowledge for its own sake. There is a lesson here for all 
science, not just Artificial Life, but it is especially poignant when one considers what it is that Artificial 
Life is attempting to accomplish.



Artificial Life will have a tremendous impact on the future of life on earth as well as on our view of 
ourselves and the "role" of human beings in the greater overall scheme of the universe. In addition to 
scientific and technical issues, Artificial Life raises many questions more appropriately treated by the 
disciplines of philosophy and ethics. What is the ontological status of artificially created "living" 
entities? What rights do they have? What is the nature of the relationship between ourselves as creators 
and our artifacts as living creations? How will Artificial Life impact society? How, if at all, can we 
guarantee peaceful coexistence with autonomously evolving synthetic life forms sharing our physical 
environment? What is the future of life, natural and artificial?

Obviously, the domain of discourse concerning Artificial Life is potentially very large, involving 
virtually all of the academic disciplines. This is quite a diverse area for a single field to cover, including 
research in wetware, hardware, software, and more. It is expected that the "bread and butter" of the field 
will consist in computational approaches to open problems in biological theory and in the application of 
biological principles to engineering domains. However, we cannot ignore the impact that our studies will 
have on life itself, on us as living things, or on our understanding of ourselves and our place in the 
universe.

This volume should serve as an initial orientation to the diverse territory of Artificial Life research, but it 
is only a crude map pieced together through the efforts of these early explorers. There is much more to 
be discovered, and there is much more to be learned even about the territories reviewed here. My hope is 
that this early map will inspire others to further explorations.
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Artificial Life as a Tool for Biological Inquiry

Charles Taylor 
Department of Biology 
University of California at Los Angeles 
Los Angeles, CA 90024 
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David Jefferson 
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University of California at Los Angeles 
Los Angeles, CA 90024 
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emergent properties

Abstract Artificial life embraces those human-made systems that possess some of the key properties of 
natural life. We are specifically interested in artificial systems that serve as models of living systems for 
the investigation of open questions in biology. First we review some of the artificial life models that 
have been constructed with biological problems in mind, and classify them by medium (hardware, 
software, or ''wetware") and by level of organization (molecular, cellular, organismal, or population). 
We then describe several "grand challenge" open problems in biology that seem especially good 
candidates to benefit from artificial life studies, including the origin of life and self-organi- zation, 
cultural evolution, origin and maintenance of sex, shifting balance in evolution, the relation between 
fitness and adaptedness, the structure of ecosystems, and the nature of mind.

The question of what the major current problems of Biology are cannot be answered, for I do not know of a single 
biological discipline that does not have major unresolved problems.... Still, the most burning and as yet most 
intractable problems are those that involve complex systems.
Ernst Mayr [42]

1 Introduction

Natural life on earth is organized into at least four fundamental levels of structure: the molecular level, 
the cellular level, the organism level, and the population-ecosystem level. A living thing at any of these 
levels is a complex adaptive system exhibiting behavior that emerges from the interaction of a large 
number of elements from the levels below. Understanding life in any depth requires knowledge at all 
these levels.



To deal with this multilevel complexity, a broad methodological shift is in progress in the biological 
sciences today as a new collection of Artificial Life models of natural biological systems become 
available for the first time. These modeling tools, some expressed as software, some as hardware, and 
some as wet-bench lab techniques (wetware), are powerful enough to capture much of the complexity of 
living systems, yet in a form that is more easily manipulable, repeatable, and subject to precisely 
controlled experiment than are the corresponding natural systems.

In Artificial Life there is a major intellectual divide, similar to the one in the field of Artificial 
Intelligence, between "engineered" systems designed to accomplish some complex task by any means 
the designer can devise, even if only distantly related to the way natural systems accomplish it, and 
systems meant to accurately model biological
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systems and intended for testing biological hypotheses. For example, most of the literature on genetic 
algorithms [26] has centered on function optimization, and the technical concerns have been about 
which algorithm variations are most efficient for which class of optimization problems. While these 
issues are important for many purposes, they are not central to the behavior of living systems.

We are specifically interested in those Artificial Life systems that tell us something about natural life. In 
this review, we will describe some of the modeling techniques under development for biological 
problems in order to survey the breadth of research in those areas. Then we will describe a number of 
open problems in biology that seem especially good candidates to benefit from the tools that Artificial 
Life is beginning to offer.

2 Brief Survey of Artificial Life Models Applied to Problems in Biology

Researchers have produced Artificial Life models at each of the levels of organization recognized in 
natural life, from the molecular to the population level, sometimes covering two or three levels in a 
single model. At present there is a tendency to study the molecular level through wetware experiments, 
the cellular and population levels with software experiments, and the organismic level with hardware 
(robotic) studies, although that may change in the future. We will classify the Artificial Life systems we 
discuss by medium: wetware, hardware, or software.

2.1 The Molecular Level: Wetware Systems



Wetware Artificial Life systems are the most similar to natural life and indeed are actually derived from 
natural life, today at least. Most of the experiments are attempts to direct an artificial evolutionary 
process toward the production of ribonucleic acid (RNA) molecules with specific catalytic properties. 
Experiments typically begin with a pool of 1013 to 1015 variant RNA molecules, placed in a solution of 
substrates for a specific reaction that the experimenter wishes to catalyze. Because initially the 
sequences are almost all distinct, and there are trillions of them, some will presumably "accidentally" 
catalyze the reaction at least weakly. The more "successful" RNA molecules, those that promote the 
target reaction more strongly than others, are then selected and separated from the "unsuccessful" and 
replicated many times, with mutations inserted, by using a variant of the polymerase chain reaction 
(PCR)—a relatively new technique for creating vast numbers of copies of nucleic acid sequences. These 
new daughter sequences are then tested and selected again, and the whole cycle is repeated for a number 
of generations until RNA sequences with sufficiently strong catalytic properties are evolved.

Examples of wetware research along these lines include work by (a) Beaudry and Joyce, where RNA 
ribozymes that normally cleave specific RNA sites were evolved to cleave DNA as well; by (b) Bartel 
and Szostak [2], who evolved catalytic RNAs from a pool of random-sequence RNAs; and by (c) 
Lehman and Joyce [36], who evolved RNA sequences to work with different metal ions than they 
normally would. So far the RNA sequences produced artificially have been similar to natural sequences; 
however, they have enzymatic functions not possessed by any preexisting natural RNA, so far as we 
know, indicating an obvious potential for evolving chemically useful RNA molecules. And someday, 
perhaps, if the RNA molecules are selected not on the basis of their own catalytic behavior but on that of 
the proteins they code for, then we can look forward to evolving artificial genes for medically useful 
protein molecules.

If we view the direct goal of these experiments as producing some particular catalytic properties in 
RNA, the experiments are not biological modeling as we have defined it. But taken collectively, they do 
have a biological significance well beyond their potential economic and medical value. They help us 
calibrate the degree to which RNA can catalyze biochemical reactions, a job normally done by proteins, 
and they lend strong
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credibility to the hypothesis of the "RNA world" [30], one of the most important theories about the 
origin of life. This RNA world hypothesis asserts that there was a time early in the earth's history when 
there were few if any deoxyribonucleic acid (DNA) or protein molecules, and the primordial soup was 
instead dominated by RNA molecules that were able to accomplish both replication and catalysis. By 
demonstrating that pure replicating RNA systems are capable of evolving specific catalytic behaviors, 
these Artificial Life studies are providing evidence for the plausibility of the RNA world that is more 
direct than any other line of research so far.

2.2 The Cellular Level: Software Systems

It is customary to distinguish between chemical evolution, which refers to evolutionary history from the 
stage of self-replicating molecules to the stage of encapsulated cells, and organic evolution, which refers 
to evolution since life became organized almost exclusively into cells that, either alone or in 
assemblages, behave and reproduce as clearly defined units. Much research in Artificial Life is directed 
at understanding just how a differentiated multicellular assemblage can replicate itself, and how such 
replication might have evolved.

John von Neumann was the first to characterize conditions for self-replication in cellular automata 
systems [6, 58]. He constructed self-replicating systems that possess the full computational power of 
universal Turing machines using a very large number of cells, each with 29 possible states. Langton [33] 
dropped the requirement of universality (after all, natural cells do not seem to have that) and found very 
much simpler systems that are capable of self-replication, nicely displayed in Langton [34]. Reggia, 
Armentrout, Chou, and Peng [53] have identified a number of even simpler self-replication patterns in 
cellular automata.

Whatever the first self-replicating molecules may have been, their organization into cells must have 
required the evolution of mechanisms for spatial segregation in a chemical environment. How this 
occurred has been an open question in chemical evolution since Oparin posited a role for coacervates in 
the 1920s (see Chang, DeMarais, Mack, Miller, & Strathern [8]). Recently Boerlijst and Hogeweg [4] 
have studied cellular automata that generate hypercycles and seem to generate spatial diversity 
spontaneously. While it is still too early to know just how directly this corresponds to the actual 
evolution of cells, these studies serve to enlarge the set of possible explanations.



It took only 1 billion years or so for the first cells to form on earth but about 3 billion more years for 
these to evolve into metazoans (multicellular organisms) shortly before the Cambrian period. There are 
many questions about how this might have been accomplished, and it appears that several major steps 
were involved. One step was the formation of endosymbiotic associations, where distinct types of cells 
associate, with one inside the cell membrane of the other (as apparently happened in the formation of 
chloroplasts and mitochondria within eucaryotic cells). Another step was the association of genetically 
related cells to form multicellular organisms, in which only some of the cells reproduce. These issues are 
only partly understood. While there have been a number of fine studies on symbiotic associations 
generally (e.g., [28,59]), there has been much less work directed at endosymbiosis, although there has 
been some [56]. And while there have been several studies of how individual cells might reproduce to 
form the next higher level of organization [37,44,51], these have been clearly exploratory. The cellular 
level of life is an area where it would seem that artificial life research has only begun.

2.3 The Organism Level: Hardware Systems

To model the behavior of living things at the organism level, for example, of insects, one must model 
the organism's sensory and nervous system, its body, and its envi-
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ronment. Although we are quite used to thinking of nervous systems as fantastically complex, we tend to 
ignore the fact that animals' bodies are highly complex as well, with extremely complicated geometries, 
mechanical, dynamical and thermal properties, energy constraints, growth and developmental programs, 
etc.

In principle all of the components of an animal—nervous system, body, environment—can be simulated 
in software. In practice, however, the amount of computation required to reasonably model the 
properties of sound or light in a complicated environment, or the mechanical properties of an organism 
with 100 coupled elastic parts, is vast and effectively beyond the capacity of computational technology 
for some time to come.

However, it is now becoming possible to let the real physical environment model itself, and to represent 
the bodies of animals and their interactions with the environment by using small, computer-controlled, 
autonomous mobile robots (mobots). With this technology, we can now model how organisms 
accomplish the integration of various perceptual modalities, how they navigate in space, how they 
control their senses and muscles to accomplish precisely coordinated movements, and how they do all 
these things in real time.



One research project of this kind involved the mobot Genghis, developed by Angle [1] and programmed 
by Maes and Brooks [41] to learn to walk. Genghis is a six-legged robot, approximately 1 foot long and 
1 food wide, designed to traverse rugged terrain. Each leg is powered by two motors and there are two 
sensors, one in front and one in back, to detect whether the body is touching the ground, and another 
sensor to measure the distance Genghis has traveled. In most such systems, coordination for tasks such 
as walking is statically programmed; Genghis, however, has to learn to walk. The leg modules are 
coordinated by a network of finite automata that receives feedback from the sensors about stability and 
forward movement, and produces output to the motors. Starting from a random neural network, Genghis 
learns how to achieve a reliable tripod gait in just few minutes.

Several features of the Genghis experiments and others like it are worth noting: (a) Emergent 
functionality of control: Control of Genghis' gait is an emergent property, in that no individual part of 
the neural net "knows" how to walk. (b) Task-level decomposition: The agents that govern behavior are 
essentially autonomous. At the lowest level, one simple task is accomplished (e.g., standing up), upon 
which is superimposed the next layer (e.g., moving), upon which is superimposed another (e.g., obstacle 
avoidance), and so on. This layering of behaviors, each one making use of others that preexist, is 
analogous to the way that task proficiency might be accomplished by evolution in natural life. (c) Low-
level processing: Because there is no global model, much of the reasoning is accomplished at a low 
level, close to the perception level, in much the same way that visual information seems to be processed 
in the mammalian retina. These points are discussed in Maes [40] and Brooks [5]. Adherents to this 
approach make the narrow claim that it is a good way to control mobile robots for complex tasks, and 
the broader claim that it is a good way to engineer intelligent systems generally. If so, then using mobots 
to model animals will aid in extracting some of the principles of intelligent behavior generally, whether 
natural or artificial.

2.4 Software Life at the Population Level: Equational Models versus Artificial Life Models

Models of population behavior for the study of ecosystem organization, population genetics, 
macroevolution, geographic dispersal, etc. have traditionally been expressed formally as systems of 
algebraic or differential equations. Unfortunately, equational models are subject to many limitations. For 
example, in many models it is common to refer to the derivative of a variable with respect to population 
size N. This in turn
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implies the assumption of very large populations in order for such a derivative to make sense, which has 
the effect of washing out small population effects, such as genetic drift, or extinction. Another difficulty 
is that it would take tens to hundreds of lines of equations to express even a simple model of an 
organism's behavior as a function of the many genetic, memory, and environmental variables that affect 
its behavior, and there are simply no mathematical tools for dealing with equational systems of that 
complexity. Furthermore, equational models are generally poor at dealing with highly nonlinear effects 
such as thresholding or if-then-else conditionals, which arise very frequently in the description of animal 
behavior.

One of the most fundamental and successful insights of the field of Artificial Life has been the 
development of an alternative population modeling paradigm that dispenses with equations entirely, and 
represents a population procedurally, that is, as a set of coexecuting computer programs, one for each 
cell or one for each organism. We consider this feature, the representation of organisms by programs, to 
be the defining feature of "artificial life" models of population behavior, the property that distinguishes 
them from other mathematical or computational models of populations.

Artificial Life models offer the advantage of coding an organism's behavior explicitly as a program, 
rather than implicitly as the solution to equations that must be integrated. This directness of encoding 
typically makes Artificial Life systems much easier to use and modify, as new information is obtained or 
new hypotheses are entertained, than is possible with equational models. Today most Artificial Life 
models represent each organism as a Lisp program, a finite automaton, or a neural net. The genes of the 
organism are represented variously as bit strings, character strings, or list structures, either contained 
within the organism or stored as a separate data object that serves to encode the structure or behavior of 
the organism. Software organisms can reproduce either asexually, with point mutations altering the 
genetic data passed from parent to child, or sexually, with the child's genome derived by combining 
information from two parent genomes.

An early example of the artificial life modeling approach is the RAM system [55], developed by Taylor, 
Jefferson, Turner, and Goldman, in which animal-like processes (parameterized Lisp programs) and 
environment-like processes could execute concurrently and synchronously. A RAM animal's program is 
a Lisp routine whose parameters serve as genes. RAM animals reproduce asexually but live in a 
common environment in which they interact and compete ecologically. The RAM system was relatively 
limited in two ways: (a) The "genes" defined a relatively small parameter space within which variation 
could occur, leaving limited scope for innovation and evolution; and (b) because at the time it was built 
only a few hundred individuals could be simulated for a few tens of generations per hour of workstation 
time, so the process of natural selection was subject to drift unless the selection forces were 
exceptionally strong.



Jefferson et al. [291 drastically extended and scaled up the idea of representing organisms as programs 
with such systems as Genesys. In that system, executed on a Connection Machine, animals were 
represented as neural nets in some cases or as finite automata in others. The genes of each organism 
were represented as bit strings that encoded either the weights of a neural net, or the transition table of a 
finite automaton. With a population of 64K individuals evolving at the rate of one generation per 
minute, and starting from a population of random bit strings, Genesys was able to evolve the ability to 
follow a broken rectilinear trail in a grid environment in 100-200 generations.

Since RAM and Genesys, many other systems representing organisms as programs have been developed 
to explore problems in biology. We can illustrate the diversity of this approach by classifying these 
systems according to the general purposes for which they were developed—the study of evolution, 
behavior, ecology, developmental biology, or teaching.
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Evolution. Artificial Life models are especially well suited for studying the dynamics of natural 
evolution and were originally invented for this purpose. Imagine a genetic algorithm in which each 
genome encodes a computer program, and the programs in the population are selected and bred on the 
basis of their ability to survive and prosper in some environment. One would expect that the future 
generations of programs will perform better than their progenitors, and, indeed, in practice this is 
typically the case—although it depends on how the programs are represented, as Collins and Jefferson 
[10] have argued. For a number of reasons, artificial neural networks, encoded in various ways into bit 
strings, seem to be especially good representations for evolution.

Sexual selection is an evolutionary phenomenon recognized by Darwin and emphasized by Fisher [19] 
in the 1930s. If a female produces sons who are extreme for some trait (e.g., wattle color) and also 
daughters who have a preference for that extreme— through linkage, pleiotropy, or some other 
mechanism—then that trait will be selected to a high frequency in the population even if it has very 
disadvantageous side effects. It has been suggested that chance differences in traits subject to such 
runaway selection might underlie the tremendous diversity of secondary sexual characters in many 
tropical birds. The mathematical analysis of this phenomenon, however, requires a system of several 
nonlinear differential equations, so it is very complex and has been successful for only a few special 
cases.

Collins and Jefferson [11] constructed an Artificial Life model of sexual selection, endowing the 
organisms with the relevant heritable traits and preferences. They explored this system in some 
generality, identifying where such explanations are plausible and where they are not. In particular, they 
were able to show that certain propositions that had been demonstrated analytically under very 
restrictive assumptions were actually true under a much broader set of circumstances than was provable 
by mathematical analysis. There are many other problems in sexual selection (see, e.g., Williams [60]) 
where similar methods would appear to be useful.



Behavior. Even Darwin was impressed by how exquisitely adapted animals seem to be to their 
environments. Indeed, when it has been possible to develop models of optimal behavior from theoretical 
principles and then compare these to the way animals actually behave, the fit is often striking. How is 
that accomplished? Do animals figure out the relevant formulae, differentiate them, and solve for zero?

Koza, Rice, and Roughgarden [32] have recently examined the feeding behavior of Anolis lizards, a 
small, well studied group that inhabits the Caribbean region, and compared their actual foraging 
behavior to optimal foraging behavior as determined by a theoretical analysis, noting that the fit was 
quite close. They then compared that to the foraging behavior of simulated lizards that they evolved via 
genetic algorithms, and found that it was not difficult for the evolution to endow the lizard with 
behavioral strategies that closely approximate the optimal.

In a similar vein, Gibson, Taylor, and Jefferson [22] used the RAM system described earlier to model 
the peculiar mating behavior of sage grouse in which the females choose from among male suitors. 
Dozens of males will gather to form leks (local mating markets) in which they display and attract the 
attention of females. Gibson et al. were trying to discover what influenced the females in selecting 
males. By searching a space of parameterized Artificial Life models, they found that if females, when 
choosing a mating lek, considered the distance from their nest, the number of males there, and the 
expected waiting time for the top male, most of the variance in their observed behavior was explainable. 
Similar work by Denoubourg, Theraulaz, and Beckers [15] on "swarm intelligence" has identified 
plausible sets of rules that are sufficient to explain much of the complex behavior used by ants and other 
social insects.

In a more theoretical direction, Lindgren and Nordahl [39] examined how the outcomes of iterative 
games of the Prisoner's Dilemma, a widely used model for the evo-
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lution of cooperation, might differ when there is misinformation among the players. Their analysis is 
remarkable because it lends credence to the position that social behavior will by itself lead to increased 
complexity in participant behavior. This approach is described more fully in Lindgren [38].

Ecology. Behavioral and ecological phenomena are often closely related, and both are rich with 
examples of collective action and emergent phenomena. At an abstract level, Ray [52] has shown how 
several trophic levels might emerge as a general property of ecological systems. Similarly, Ikegami [27] 
used variations of the Prisoner's Dilemma analogous to symbiosis and host/predator or predator/prey 
interactions to examine this evolution of interspecies associations.

Toquenaga, Ichinose, Hoshino, and Fuji [57] and Fry, Taylor, and Devgan [21] have used Artificial Life 
models to examine complex modes of behavior and population growth. By programming empirically-
derived rules of behavior into the artificial animals, they observed the consequences of the collective 
behavior that was exhibited by ensembles of animals and the environments with which they interacted.



Developmental biology. Emergent phenomena are nowhere more evident than in developmental biology, 
where large numbers of cells, following presumably simple rules of behavior, collectively generate 
complex and interesting patterns. Prusinkiewicz [50] has explored the use of algebraic formulae for cell 
division and differentiation. These generate some stunning visual representations as well as realistic 
botanical patterns. Recently, Fleischer and Barr [20] have developed a system where cells change state 
and/or produce fields that mimic diffusion of growth regulators.

Because there is such a large amount of new information accumulating, consistent with simple collective 
behavior both within and between cells, it seems likely to us that Artificial Life systems will prove 
invaluable in the future for precisely formulating and testing hypotheses about development.

Teaching. It is sobering to reflect that 40% of Americans do not believe in Darwinian evolution and that 
this is true for 25% of all college-educated Americans as well. Religious convictions seem to be only 
part of the problem. Rather, it appears that the major obstacle is failure to understand the theory of 
evolution itself, aggravated by the fact that even many secondary school biology teachers have serious 
misunderstandings. It is well established that students are less likely to understand and absorb when they 
are passively presented with facts than when they are actively involved in construction and 
experimentation.

Artificial Life, however, offers a student the possibility of watching evolution in action, actively 
intervening with it and creating his or her own microworld. The Blind Watchmaker program by 
Dawkins [14] is especially noteworthy in this regard, as are the efforts of Resnick [54] to explore how 
children learn about collective behavior, and of the Apple Vivarium group (A. Kay [personal 
communication]), who are exploring Artificial Life systems to provide better ways of teaching ecology, 
evolution, and biology in general, in a classroom setting.

Papert [47], whose earlier Mindstorms was so influential for introducing computers to the K-12 
classrooms, has recently advocated [48] a cybernetic approach to teaching science in the early grades. 
The argument he makes is compelling, and if generally adopted, then we may see a major influence of 
Artificial Life on the next generation of scientists.

3 Open Problems in Biology that Are Amenable to Study by Artificial Life Modeling

The opening quotation by Ernst Mayr concerns the need for understanding biological systems as 
complex adaptive systems. In the past, despite several brave attempts,
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disussion of holistic properties and emergence in biology typically devolved into mysticism or 
obfuscation. The study of Artificial Life, if it accomplishes nothing else, is providing a platform for 
more informed discussion of those issues.

We believe that several of the major outstanding problems in biology, especially in the study of 
evolution, are likely to benefit from the study of Artificial Life. In this section a few such problems are 
described. We will focus on evolution simply because it is the foundation upon which so much of 
biology is based, because it is permeated with problems of emergence, and because we are more familiar 
with this area.

3.1 Origin of Life and Self-Organization

Questions abound when one attempts to understand how life originated on earth and possibly elsewhere 
in the universe as well. If we restrict our attention to the origin of life on earth, those problems involve 
reconstructing the physical, chemical, geologic, and competitive forces that shaped the peculiar history 
of life on earth, the sequence of chemical reactions that may have occurred, the manner in which they 
became packaged and encapsulated so that organic evolution could supplant that which occurred 
previously, etc. Work along theoretical lines, such as that by Langton [35]; Farmer, Kauffman, and 
Packard [18,31]; or Eigen and Schuster [17] will be required, as well as experimental work [30]. As yet 
there has been little research in Artificial Life directed toward the actual constraints that operate on the 
other planets in our solar system and prevented (or at least constrained) the origin of life there. Most is 
directed at learning the minimal chemical requirements for replication to get started.

3.2 Cultural Evolution

Ideas and other atomic particles of human culture often seem to have a life of their own—origination, 
mutation, reproduction, spreading, and dying. In spite of several bold attempts to construct theories of 
cultural evolution (e.g., [7,13]), an adequate theory remains elusive. The financial incentive to 
understand any patterns governing fads and fashion is enormous, and because cultural evolution has 
contributed so much to the uniqueness of human nature, the scientific motivation is equally great.

Much of the problem with cultural evolution is similar to that for prebiotic evolution— the difficulty of 
identifying just what evolves (the "units of evolution"), how these units maintain their identity, and how 
they interact with one another. This area would seem to benefit from the same sorts of considerations 
that govern the origin of life.

3.3 Origin and Maintenance of Sex



Few problems in contemporary evolutionary theory are attracting as much attention as is the evolution 
of sex, sometimes referred to as "the cost of meiosis" [43]. All else being equal, a female who 
reproduces asexually will leave twice as many genes in her offspring as will a female who reproduces 
with a male. This would seem to impose a tremendous hurdle for sexuality to overcome, yet it persists, 
and sex is widespread in the natural world. Why? The answer almost certainly involves complex 
interactions among linkage, pleiotropy, epistasis, parasitism, and nonlinear relations between genotype 
and fitness. There are many qualitative theories but little in the way of testable quantitative research.

The ability to construct and examine large, but finite, populations with a variety of arbitrary constraints 
makes Artificial Life systems an excellent platform from which to study the theoretical side of this 
problem. We have observed, for example, that the ability of sexual systems to rid themselves of 
maladaptive mutations (Muller's ratchet) can be significant in populations of bit strings that evolve by 
genetic algorithm [12]. The genetic algorithm literature also has many examples where these issues are 
addressed in the context of optimization problems [23].
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3.4 Shifting Balance Paradigm

Wright, in his four-volume treatise on population genetics [61], argued that the key issues in evolution 
today had their roots in the disagreements of the 1930s-1950s among Fisher, Haldane, and himself. This 
related particularly to how populations of organisms traversed their adaptive landscape—through 
gradual fine-tuning by natural selection on large populations, or alternatively in fits and starts with a 
good bit of chance to "jump" adaptive valleys in order to find more favorable epistatic combinations. 
The traditional mathematical models of population genetics and evolution require extensive linearization 
and so are not very good for exploring the nonlinear interactions that this problem requires. On the other 
hand, Artificial Life models are ideal for studying this problem, and several studies have begun on the 
importance of population size for evolving solutions with arbitrary degrees of epistasis. It may be that 
the rules that govern adaptation in artificial systems are different from those for natural systems, but 
these studies will certainly highlight which issues are most important, and there will certainly be some 
generalizations that pertain to both worlds.

3.5 Fitness and Adaptedness



Even before Darwin, it was recognized that there is some degree of direction or progress toward more 
complex forms over geologic time—the "chain of being," although how much direction there might be 
and how that effect is produced by natural selection remain murky. This concern can be compressed 
essentially into one question, What is the relation between adaptedness and fitness, that is, between 
adaptation and what is selected for? This question has occupied some of the greatest evolutionists of this 
century [16] and remains quite open [60]. It is now well understood that natural selection does not 
necessarily maximize adaptedness, even in theory [45]. Yet field biologists are constantly impressed by 
just how good the fit seems to be, and optimization arguments abound in population ecology (see Koza 
et al. [32]). In a classic essay, Gould and Lewontin [24] assailed the widespread use of optimization, 
pointing out that chance, structural necessity, pleiotropy, historical accident, and a host of other 
contributors will detract from making this "the best of all possible worlds."

The analysis of artificially living systems is beginning to shed needed light on this issue. Miglino, Nolfi, 
and Parisi [44] studied the evolution of generating functions that produced neural nets, which then 
determined the behavior of organisms, which in turn determined the fitness of artificial organisms in 
their environments. They found that a variety of genotypes coded for identical neural nets, that a variety 
of neural nets coded for the same behavior, and that a variety of behaviors achieved the same fitness in 
their system. However, the opportunities these various solutions offered for future evolution differed 
significantly. Similar observations were made by Hinton and Nowlan [25] in their study of the Baldwin 
effect in evolved learning by neural networks.

As research in Artificial Life acquires greater ability to capture development of organisms and 
intervening levels of organization between molecules and populations, the field is likely to contribute to 
the analysis of this problem that Dobzhansky characterized as "the most important theoretical problem 
in the study of evolution" (personal communication).

3.6 Structure of Ecosystems

In natural ecosystems there are a number of patterns that seem fairly general. For example, in their study 
of many food webs, Pimm, Lawton, and Cohen [49] observed a number of patterns, among them (a) the 
average proportion of top predators, intermediate species, and basal species remained roughly constant; 
(b) linkage density is approximately constant; and (c) the modal number of trophic levels is three to four.
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There are others that also point to emergent properties of natural ecosystems. The reasons underlying 
these regularities are seldom understood.

As Artificial Life develops and ecosystems are evolved, perhaps along the lines of Ray [52] or Holland 
[26], it will be interesting to see if the same patterns evolve. Perhaps others will emerge, such as the 
intermediate connectedness of complex adaptive systems and their posture near the edge of chaos 
[31,35].

3.7 Mind in Nature

No problems in science are more venerable or profound than those surrounding the nature of mind. Will 
it be possible to design or evolve robots that experience the same sensations that we do? Do radically 
different life forms experience equally different forms of consciousness? Or is consciousness a universal 
property that organisms experience to various degrees but fundamentally alike in kind (and how can we 
tell)? How could mind and consciousness be produced by Darwinian evolution? Two recent and lucid 
accounts of these problems are those by Nagel [46] and Churchland [9].

Like most people, we have our own views on these problems. But unless these views are subject to 
rigorous definition, testing, and verification, they cannot be considered scientific. As the ability to 
construct Artificial Life systems improves, it may well become possible to construct systems that exhibit 
behavior that is typically ascribed to "mind." Such systems will, in a sense, play a role analogous to that 
played by Escherechia coli or Drosophila melanogaster that have permitted manipulation and dissection 
of mechanisms in natural living systems. If that happens, and we believe it will, then the field of 
Artificial Life will have contributed to what is surely one of the scientific grand challenges of all time.
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Abstract We review results on the evolution of cooperation based on the iterated Prisoner's Dilemma. Coevolution of 
strategies is discussed both in situations where everyone plays against everyone, and for spatial games. Simple artificial 
ecologies are constructed by incorporating an explicit resource flow and predatory interactions into models of coevolving 
strategies. Properties of food webs are reviewed, and we discuss what artificial ecologies can teach us about community 
structure.

1 Introduction

Artificial ecologies consisting of artificial organisms are likely to become useful tools for understanding general principles 
for how ecological communities are organized. In particular they could be used to study phenomena on scales in time and 
space that cannot be accessed in ordinary experiments and field studies.

Many of the artificial ecologies discussed in this paper are based on the iterated Prisoner's Dilemma (IPD). This game 
simultaneously provides an abstract model for the evolution of cooperation and a very complex coevolutionary landscape.

The path followed in this review starts out with a discussion of different mechanisms for the evolution of cooperation and 
altruistic behavior. We then discuss the IPD in detail. Models of coevolution of strategies are reviewed, both in situations 
where everyone plays against everyone and in spatial settings where interactions are localized.

Populations of coevolving strategies can be viewed as simple artificial ecological communities. An important aspect of 
community structure is who is eaten by whom. We review some basic facts about the structure of food webs and briefly 
discuss mathematical models of community structure and assembly. Finally we discuss how explicit resource flows can be 
combined with coevolution of strategies, which allows us to include predatory as well as cooperative interactions. This route 
is different from that followed in most investigations of community structure, where predation often is the only interaction 
considered.

2 The Evolution of Cooperation

Altruistic behavior, that is, behavior that benefits another individual or organism (not necessarily a relative), while being 
apparently detrimental to the organism itself, is an important phenomenon both in nature and human society. Cooperative 
behavior often depends on a certain amount of altruism, in that the participants need to refrain from
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taking advantage of others by acting according to short-term self-interest. In other cases, cooperation could be profitable 
enough that it is dictated even by shortsighted selfishness.

In the early history of evolutionary theory, the emphasis appears to have been mostly on the struggle for existence. (See 
Cronin [19] for a discussion.) Some early writers, such as the anarchist Kropotkin [47], did, however, stress the importance 
of cooperative interactions both in a biological context and in society. A number of scenarios for how altruistic and 
cooperative behavior could be established have later been suggested. The main difficulty in the evolution of altruistic 
behavior and cooperation is explaining how this behavior could be stable against cheaters who enjoy the benefits without 
giving something in return.

One case, which will not be discussed further in this article, is when the altruistic behavior is directed toward relatives (e.g., 
[34]). From the viewpoint of reproduction of genes, an individual is equivalent to two of his brothers or eight of his cousins. 
In the terminology of biologists, this is called kin selection. A number of cases of altruistic behavior in biology, such as 
eusociality among ants, bees, and wasps (e.g., [2]), have been claimed to at least in part depend on kin selection.

Another important mechanism is reciprocal altruism (e.g., [98]). In this case favors are given, and favors are expected back 
in return. In many cases, this could be viewed as enlightened self-interest that takes the shadow of the future into account. 
The game theoretic models discussed later mostly fall under this heading.

A third mechanism could be group selection, where selection can be viewed as operating at higher levels. A simple 
mathematical example where clearly defined higher units of selection (different kinds of spiral waves) appear is the spatial 
hypercycle model studied by Boerlijst and Hogeweg [10,11].

Another case where cooperative behavior can occur is when cooperation follows from immediate self-interest. This was 
called by-product mutualism in Dugatkin, Mesterton-Gibbs, and Houston [24]; in a game theoretic framework, parameters 
have changed so that the game is no longer a Prisoner's Dilemma (PD) (see section 2.1), but the trivial game where both 
players prefer cooperation. For example, this could be the case if the profit of a group grows faster than linearly with the 
number of participants. Cooperative hunting of larger prey among lions has been suggested as one example [24] (but see also 
[18]).

Finally, explanations of cooperation in human society could take cultural as well as genetic transmission into account, and 
could involve, for example, explicit modeling of societal norms (e.g., [5,14,93]).

This list of scenarios is undoubtedly incomplete, and many examples may be hard to classify as one scenario or the other. 
Consider, for example, the case of cleaning symbiosis discussed in Trivers [98], where certain small fish (cleaners) clean 
larger fish (e.g., a grouper, which serves as host) of ectoparasites.

The large fish appears to have very strong barriers against feeding on the cleaners— the cleaner, which is comparable in size 
to the ordinary prey of the larger fish, even works in the mouth of its customer. Cleaners are identified, for example, by their 
swimming pattern. Species that mimic cleaners but instead bite off pieces of the fins of the large fish also exist.

This is certainly a reciprocal relationship—both species obviously benefit from it. But whether the benefit (e.g., of having 
parasites removed) is large enough that this is a case of an interaction in both players' short-term interest is not immediately 
obvious. An IPD model would have the property that a single defection by the large fish ends the game; it also fails to 
include evolution of signals that are clearly important. (An example of a model of mutualism where recognition is included 
is given by Weisbuch and Duchateau [102]).
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Table 1. Payoff Matrix M for the Prisoner's Dilemma.

 

In the rest of this section, we concentrate on models of the evolution of cooperation based on the IPD. The previous 
examples should, however, serve as a reminder that the PD by no means covers all aspects of the evolution of cooperation.

2.1 The Prisoner's Dilemma

The Prisoner's Dilemma (PD) provides a useful framework for studying how cooperation can become established in a 
situation where short-range maximization of individual utility leads to a collective utility (welfare) minimum. This is a two-
person game where the players simultaneously choose between the two actions ''cooperate" and "defect," which we denote 
by C and D (or equivalently 1 and 0).

The game was first studied by Flood and Dresher at Rand Corporation in 1950 [30]. (An account of the first iterated 
Prisoner's Dilemma-like game played can also be found in Poundstone [85].) The name is derived from an anecdote by 
Tucker, which goes more or less as follows:

Two persons have been caught, suspected of having committed a crime together. Unless one of them confesses, there is no 
evidence to sentence them. The prosecutor offers a reward to the one that confesses; the other will in this case get a severe 
sentence. If both confess, they will be imprisoned, but for a shorter time. If they stay quiet, they will be released in the 
absence of evidence.

The results of the players' choices are quantified by the payoff matrix of Figure 1. Here R is the reward for mutual 
cooperation (i.e., keeping quiet), and T is the temptation to defect against a cooperating opponent, who then gets the sucker's 
payoff S. In the case of mutual defection, both get the penalty P. The PD is defined by the inequalities T > R > P > S and 
2R > T + S. R = 3, T = 5, S= 0, and P= 1 is a common choice in the literature. The PD is a non-zero-sum game, that is, the 
total score distributed among the players depends on the actions chosen.

If the game is only played once, a player maximizes her score by defecting, regardless of the move of the opponent. Thus, 
two rational players share the lowest total payoff for mutual defection. This is the Nash equilibrium of economic 
theory—none of the players is willing to change to cooperation.

If, on the other hand, the game is played more than once, that is, there is a high probability that a player encounters the same 
opponent again, cooperating strategies may be more successful. (We assume that the objective is maximizing the score, 
rather than beating the opponent.) This is the iterated Prisoner's Dilemma (IPD).

A computer tournament arranged by Axelrod [3-5,8] showed that a very good strategy is given by cooperating unless your 
opponent defected in the previous round. This strategy that mimics the opponent's last action is called Tit-for-Tat (TfT).

For a game consisting of a known fixed number of rounds, the cooperative behavior is destabilized [87]. In the last round, the 
single-round dilemma appears, and both players should defect—but then the same reasoning applies to the next to last round, 
and so on. In this particular situation, defection is the unique Nash equilibrium. This
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somewhat pathological behavior can be avoided by considering an infinitely iterated game or by choosing the number of 
rounds stochastically.

One complicating factor in a repeated game is the possibility of mistakes by the players (noise). These could be either 
mistakes where the action performed by a player is different from the intended one, or misinterpretations of the opponent's 
action (which leads to the players seeing different histories).

Noise in the iterated game destroys the cooperative pattern between two TfT players. An accidental defection causes a 
sequence of alternating revenges; another mistake can then result in either mutual cooperation or defection. In the infinitely 
iterated game, the score for TfT playing against itself drops from R to (R + S + T + P)/4 for any non-zero noise level.

A strategy that defects only if the opponent defects twice in a row (Tit-for-two-Tats, Tf2T) is stable against a low noise rate 
but can be exploited by a strategy that cooperates only every second round. Another possibility is the strategy called 
Simpleton by Rapoport and Chammah [87]: change action if the score received in the previous round was less than R, that is, 
cooperate when the actions of the previous round are identical. For an accidental defection D* during a period of mutual 
cooperation, the players return to cooperation after a single round of mutual defection, that is, (. . ., CC, CC, CD*, DD, CC, 
CC,. . .).

Whether this strategy can be exploited or not depends on the payoff matrix. When T + P < 2R (to 0th order in the mistake 
probability Perr), defection scores less than cooperation against Simpleton; for the standard parameter values, equality holds, 
and Simpleton can be exploited by uncooperative strategies.

The strategies discussed so far depend only on a finite portion of the history of the game. TfT, Simpleton, and Tf2T can be 
classified in terms of the maximal number of history bits used by the strategy as memory 1, 2, and 3, respectively. They are 
also deterministic, which means that the history determines the action uniquely. Some successful deterministic strategies of 
higher memory will be discussed below.

A strategy that makes a stochastic choice of action with probabilities depending on the history is called probabilistic. A TfT-
like strategy that forgives defections with a suitably tuned probability can both resist exploitation and cooperate with its own 
kind in a manner stable against accidental defections [69,75]. Probabilistic strategies with tunable random number generators 
appear to be rare in nature, however.

The PD has been applied to explain the emergence of altruistic behavior in a number of situations, both in biology and in 
human society.

Axelrod [5] discusses cooperative behavior between British/French and German soldiers in the trench warfare of World War 
I. During the first years of the war, the same units faced each other for long periods, which placed them in a situation 
reminiscent of an IPD, and a TfT behavior was established (quotation from Hay [37]): "It would be child's play to shell the 
road behind the enemy's trenches, crowded as it must be with ration wagons and water carts, into a bloodstained wilderness . 
. . but on the whole there is silence. After all, if you prevent your enemy from drawing his rations, his remedy is simple; he 
will prevent you from drawing yours."

In many other applications to human society, it is natural to consider a similar game with a larger number of players—an n-
person PD. One situation where this occurs is in the sharing of a common resource (the tragedy of the commons), such as air 
and water in an environmental context.

Another situation, where cooperation is a less desirable outcome, is an oligopoly consisting of a small number of firms that 
sell almost identical products (such as coffee, gasoline, or airline tickets), and compete by adjusting prices (e.g., [57]). Two 
strategy tournaments for this situation modeled by a three-person generalized PD with continuous actions were organized at 
MIT by Fader and Hauser; see [28] for details.
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Game theory [100, 101] has found a number of applications in biology [62]. Some cases where interpretations of altruistic 
behavior in terms of the PD have been attempted are food (blood) sharing among vampire bats [103,104], interactions 
between breeding adults and nonbreeders in tree swallows [53], and cooperative inspection of approaching predators in small 
fish such as sticklebacks [66]. The identification of the game and strategy followed (e.g., [67,76]) is often somewhat 
uncertain in these examples.

In biological applications of game theory, the analysis has often focused on finding evolutionarily stable strategies. An 
evolutionarily stable strategy (ESS) [62] is a strategy that cannot be invaded by any other strategy present in arbitrarily small 
amounts. (Other, less intuitive definitions involving invasion by a group of strategies also appear in the literature [13].) A 
distinction is often made between the case where strategies exist that achieve equal scores to the strategy in question, and can 
invade through genetic drift, and the case where a strategy dominates strictly.

In the PD, a number of results about ESSs are known: In the error-free case, no deterministic strategy or finite mixture of 
such can be an ESS in the infinitely iterated game [13,29]; for general probabilistic strategies, the same result has been 
shown except in the still open case of no discounting of the future [54]. When mistakes occur, ESSs can exist ([12]; see also 
later).

An analysis of a system in terms of evolutionary stability should not be viewed as complete. Knowledge of the fixed points 
of a dynamical system and their stability is not the same as a complete understanding of the system. The artificial life 
perspective could contribute to a greater understanding of the evolutionary dynamics of many different systems.

Let us finally remark that in some of the evolutionary models discussed later, the PD provides not only a model of the 
evolution of cooperation, but it also generates an interesting example of a complex coevolutionary landscape [44, 71], which 
can serve as a simple prototype model for the study of coevolutionary phenomena.

2.2 Evolutionary Dynamics

Evolutionary dynamics can be imposed on the space of strategies by viewing strategies as interacting individuals in a 
population. All pairwise interactions in the population could be included, or individuals could interact only with some subset 
of the population, such as their neighbors in space. Through these interactions, each individual receives a score that 
represents the success in the game. We can introduce population dynamics by letting successful strategies produce more 
offspring in the next generation. If strategies are represented as individuals, births and deaths could be given by a stochastic 
process. Species could also be represented by their population size; in this case the dynamics is given by a set of differential 
equations.

An evolutionary process requires a mechanism for generating variation as well as a mechanism for selection. This can be 
arranged by including mutations in the step where strategies are reproduced. The exact nature of these will depend on the 
representation scheme used.

A number of evolutionary simulations of this type have been performed for the IPD: Axelrod [6] applied a genetic algorithm 
(e.g., [38]) to evolve PD strategies of fixed memory length 6. The strategies played games of 151 rounds against eight 
selected strategies from his tournament [5]. A coevolutionary simulation, in which the strategies played against each other, 
was also discussed.

In another experiment, Miller [68] represented strategies as 15-state finite automata with 148-bit genotypes. Here a 
coevolutionary model, where each generation was evaluated by playing all pairwise games, was studied more extensively. A 
population of 30 individuals was followed for 50 generations; games consisted of 150 rounds. Three cases were studied: 
perfect information, and a probability for misunderstanding \
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of 0.01 or 0.05. No successful error-correcting strategies were discovered, possibly because of the very short evolutionary 
time scale of the simulations.

Several other experiments of this kind have been performed. (We are probably not aware of them all; we also do not attempt 
to discuss models of dynamics in strategy spaces containing only a small number of strategies.) Interesting examples are, for 
example, the work by Fujiki and Dickinson [32], who used a representation in terms of Lisp programs (a representation later 
used by Koza in his genetic programming approach [46]), the work by Marks [57] where strategies for the three-person 
generalized PD discussed earlier also were considered, and work by Fogel [31] which suggested that the initial moves in the 
game may become a tag that allows strategies to recognize each other.

A model introduced by one of us [49] uses the infinitely IPD with noise as an interaction between individuals and considers 
the evolution of deterministic finite memory strategies with an initial population containing only memory 1 strategies. The 
memory length is allowed to change through neutral gene duplications and split mutations.

The genomes in the model represent strategies in the game, which determine the next move of a player given the history 
h = ((x0, y0), . . ., (xt, yt)) of the game. Here (xt, yt) are the moves of the player and the opponent at time t. We consider 
deterministic strategies of finite memory m > 0. For m even, the strategy depends on the last m/2 moves of both players; for 

m odd on the last  moves of the opponent and the last  moves of the player herself.

If we let 1 denote the action C, and 0 the action D, a strategy of memory m can be represented as a binary string s of length 
2m (see Figure 1).

In the reproduction of a strategy, three types of mutations can occur: point mutations, gene duplications, and split mutations. 
Point mutations flip single bits in the genome with frequency Pmut. Gene duplications increase the memory from m to m + 1 
(with frequency Pdupl) while leaving the actual strategy unchanged. This corresponds to duplicating the genome, for example, 
1011 → 10111011. Gene duplication is a neutral mutation, which increases the size of the evolutionary search space without 
affecting the phenotype. Additional point mutations can then give rise to new strategies without shorter memory equivalents. 
Finally, the split mutation keeps only a randomly chosen half of the genome with frequency Psplit.

Each strategy i has a real-valued population size xi. The population densities evolve in time according to

 (1)

where the term (identical to the average score of the population)

 (2)

ensures that the total population stays constant.

The interaction coefficient gij is the score obtained when strategy i plays the noisy infinitely iterated PD against strategy j. 
The infinite game can be viewed as a Markov chain of finite memory, which means that the result of the game can be 
calculated analytically. (See Lindgren [49] for details.)

At each time step, mutations act in the way described previously. In this way new species can be introduced. Species are 
removed from the system if their population falls below a threshold value.
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Figure 1. The representation of strategies in the model of Lindgren [49]
is illustrated for the memory 3 strategy 0001 1001.

Figure 2. A typical simulation of the coevolving strategy model of Lindgren [49]; 30,000
generations of the simulation are shown.

A typical example of a simulation of the model is shown in Figure 2. In general, a succession of stable periods separated by 
periods of rapid evolution are seen (reminiscent of punctuated equilibria [26]).
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Cooperation can be observed at several levels in the model. The elementary actions C and D represent cooperation at the 
lowest level. In an application of the PD, they would be an abstraction of behavior with a more interesting substructure. The 
average score tends to increase in the time evolution (although not monotonically), which indicates an increasing degree of 
cooperation at the level of elementary actions.

But we also observe cooperative behavior at the level of strategies. Consider, for example, the first period of stasis, where 
TfT (01) and ATfT (10) coexist. This coexistence is possible because TfT suppresses invasion attempts by AllD (00), which 
otherwise would outcompete ATfT, and similarly ATfT suppresses invasion attempts by AllC (11), which could outcompete 
TfT. In other words, the strategies cooperate through indirect effects where one suppresses the predators of the other, and 
vice versa. However, TfT and ATfT do not manage to get very high scores in the game.

The stable period at memory 3 is dominated by a symbiotic pair of strategies. This is an example of mutualism where the 
strategies achieve a fairly high score by cooperating to correct errors [49], something they cannot do when interacting with 
themselves.

The evolution of error correcting mechanisms is an interesting example of emergent higher level behavior in the model. The 
first error-correcting strategy that appears in the simulations is 1001 or Simpleton, which was discussed earlier. In case of an 
accidental defection, two strategies of this type return to cooperation after a single round of mutual defection. For the 
standard payoff matrix, this behavior is too forgiving, and defectors can invade. A strategy that defects twice before 
returning to cooperation, however, is sufficiently punishing to avoid exploitation.

This type of strategy requires memory 4 (a history of two rounds) and often appears as a very stable final state for the 
standard parameter values (see Figure 2). We denote this strategy type sl; it is defined by fixing seven of the positions in the 
genome to lxx10xxx0xxxx001, where the symbol x stands for undetermined actions that occur infrequently (order ) 
when sl plays itself. Several strategies that fit this template can in fact be shown to be ESSs (under reasonable assumptions 
about the allowed class of invading strategies for the infinite game).

The choices of representation and adaptive moves in this model, of course, are not unique. Another choice was made in the 
model studied by Ikegami [40], where strategies were represented as trees of unequal depth representing all contexts where 
the strategy defects. Mutations included genetic fusion [43], where a tree is attached to a leaf of another. This choice of 
representation favors the evolution of noncooperative strategies.

Probabilistic strategies could also be considered. Nowak and Sigmund [75,76] have studied the coevolution of probabilistic 
strategies in the memory 1 and memory 2 subspaces, respectively.

Extensions of the simple PD model are also possible, for example, in the form of tags and signals, communication, and 
control over whom to play. Stanley, Ashlock, and Tesfatsion [94] have studied evolution of strategies for the noise-free IPD, 
where strategies have the option of choosing and refusing partners depending on the results of the games between them. 
Models of the evolution of cooperation that go beyond the standard framework of the IPD, both by extending it and by 
focusing more in detail on actual mechanisms of interaction and cooperation so that a PD appears implicitly, are certainly 
worth pursuing.

2.3 Spatial Games

The fact that the physical world has three spatial dimensions did not enter into the evolutionary models discussed in the 
previous section. In some cases, this may be a reasonable approximation—we could consider organisms mobile enough that 
in a generation, all individuals in the population have time to interact with each other.
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Table 2. Different Paradigms for Spatial Dynamics.

 individuals

 discrete continuous

space-time discrete CA CML

 continuous Gas/Swarm PDE

But in general the environment may provide barriers so that different evolutionary paths can be explored in different regions 
of the world, and it is essential to take spatial effects into account. In the context of explaining speciation, Mayr [63, 64] has 
argued for the importance of spatial separation (see also [26]). A typical case would involve a small founder population 
capable of rapid evolution separated off from the region inhabited by the majority of its species, for example, on an island.

The spatiotemporal dynamics of the system can also be important. Even in a homogenous environment, the dynamics of the 
system could generate spatial structure, which could influence evolutionary processes. As an example, Boerlijst and 
Hogeweg [10,11] studied a cellular automaton model of the hypercycle model of Eigen and Schuster [25] and found spiral 
wave dynamics that increased the stability against parasites. Selection for certain altruistic properties (catalytic support and 
faster decay rates) was observed—the introduction of spatial degrees of freedom allows localized structures to form, and 
selection can take place at the level of these structures as well.

The spatial dynamics could also affect the stability of ecological systems and in that way influence evolutionary processes. 
As an example, space-time chaos can allow locally unstable systems to persist with essentially constant global population 
levels (e.g., [35]).

Several different ways of introducing spatial degrees of freedom can be imagined. In Figure 2.3 we have classified these into 
four groups, depending on whether space and time are treated as continuous or discrete, and whether we consider separate 
individuals or a continuous local population density.

Let us first consider the case with discrete individuals and discrete space and time. In this case we obtain models that are 
essentially cellular automata (CA) (e.g., [107]) or lattice Monte Carlo simulations, depending on whether sites are updated 
simultaneously or asynchronously in random order.

One class of lattice games is obtained in the following way: Let each lattice site be occupied by a single strategy; empty 
lattice sites are not allowed. All lattice sites are updated simultaneously in the following manner: First, the score of a site is 
calculated as the sum of the average scores obtained when the strategy at the site plays the infinitely iterated game against 
the strategies in the neighborhood N1 (e.g., the four nearest neighbors on a square lattice).

The score of a site is then compared to the scores in a neighborhood N2 (e.g., the von
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Figure 3. Species density curves from a simulation of the spatial version of coevolution
of strategies for the iterated PD discussed in the text. The first 10,000 generations of

the simulation are shown.

Neumann neighborhood consisting of the site itself and its four nearest neighbors), and the highest scoring strategy in N2 is 
adopted at the site at the next time step. Ties are broken at random. In an evolutionary model, mutations can occur in the 
reproduction.

Because the scores of the nearest neighbors in turn depend on the strategies of their neighbors, the strategy at a certain site is 
updated depending on the strategies in a neighborhood of radius 2. If the set of allowed strategies is finite, the model is a 
cellular automaton.

Cellular automaton models of this kind (with a fixed set of strategies and without evolution) were introduced by Axelrod [5]. 
He found that the ranking of the strategies submitted to his second tournament changed completely in the spatial case. 
Complicated patterns of coexisting AllD and TfT players were also observed. In Nowak and May [72, 73] the dynamics of 
the memoryless strategies AllC and AIID on a lattice was studied in more detail; in particular spatiotemporal chaos was 
observed. A model closely related to a lattice PD was also studied in Wilson, Pollack, and Dugatkin [105].

A different approach to spatial games is to let all players on the lattice make simultaneous moves and to let strategies depend 
on the actions in a neighborhood on the lattice, which gives a genuine n-person game. This approach has been investigated 
by Matsuo and coworkers [58,1].

We [51] studied a spatial evolutionary model where the spatiotemporal dynamics was introduced as described earlier. The 
representation of strategies and adaptive moves were identical to those of Lindgren [49] (see previous section).

Figure 3 shows an example of a simulation of this model. The payoff matrix is given by the standard parameter values 
(R, S, T, P) = (3, 0, 5, 1), the error rate is Perr = 0.01, and the mutation rates are Pmut = 0.002, and Pdupl = Psplit = 0.001. In the 
initial state, the four memory 1 strategies appear with equal probability. The lattice size is 128 x 128.

This simulation shows several important differences between the spatial model and the differential equation model discussed 
above (see Figure 2), which from a physicist's perspective could be viewed as a mean-field approximation to the spatial 
model. At memory 1, a frozen state of AIIC and AllD is found, where TfT is maintained at significant levels by spreading 
waves of activity generated by mutations from AllD to TfT (see Figure 4d). At memory 2, the strategy 1001 (Simpleton) 
takes over most of the lattice. The noncooperative strategies 00 and 0001 can coexist with 1001 at low
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levels by forming a network of mostly diagonal lines. In the mean-field model, the noncooperative strategy 0001 dominates 
at memory 2; on the lattice this strategy can only exploit its nearest neighbors, and the cooperative strategy 1001 has an 
advantage.

No analog of the symbiotic pair of strategies seen at memory 3 in Figure 2 is found in the spatial model. Memory 4 strategies 
of type sl often appear on the lattice as well; in the simulation shown in Figure 3, we see two closely related memory 4 
strategies of this type (sl and s2) appear, and then a similar memory 5 strategy s3. In many simulations, the strategy s3 takes 
over the entire lattice and forms a homogenous state. In Figure 3, however, we find another strategy tl = 1001000000001111 
and some closely related strategies that are able to coexist with s3. This coexistence is not observed in the mean field model.

An accidental defection in a game between two strategies of type t1 results in the sequence (..., CC, CD*, CC, DD, CC, 
CC,...). The advantage of this pattern is that it reduces the score less than the error-correcting mechanism of, for example, s2 

or s3. The strategy t1 is at the same time more resistant than 1001 to exploitation by defectors.

This example illustrates how the introduction of spatial degrees of freedom allows coexistence of strategies through the 
formation of stable spatial domains.

For other values for the payoff matrix, a rich variety of dynamical behavior is observed. (See Lindgren and Nordahl [51] for 
a detailed description.) Even if we restrict ourselves to the space of memory 1 strategies, a number of different regions of 
qualitatively different spatiotemporal dynamics are found (typically with discontinuous transitions at the boundaries between 
them). Some examples of fixed-time configurations from simulations with memory 1 are shown in Figure 4. The payoff 
matrix can always be transformed to the normal form (R, S, T, P) = (1, 0, p, q); the standard parameter values correspond to 
(p, q) = (5/3, 1/3). The behavior in this case is similar to Figure 4d.

Figure 4a has (p, q) = (1.4, 0.05). In this region we find spatiotemporal chaos involving AllD, TfT, and AllC. In Figure 4c we 
have (p, q) = (1.9,0.8). Here we find rather irregular wave activity and expanding patches with all four memory 1 strategies 
present. By decreasing q, we move into a region dominated by spiral waves (which break into smaller fragments because of 
mutations) (see Figure 4b).

Varying the payoff matrix also affects the nature of the evolutionary dynamics. A tendency toward constancy of the 
qualitative nature of the spatiotemporal dynamics during the evolutionary process is seen, so that one may, for example, have 
strategies that evolve toward longer memory while the dynamics constantly is spatiotemporally chaotic [51].

One of the more important properties of the spatial model is its capacity to support a larger diversity of species than the 
ordinary coevolution model. In particular, one can find very complex frozen states where a large number of different frozen 
patches coexist.

These are somewhat reminiscent of plant communities. There are around 3 × 105 known plant species on earth, which all 
depend on a quite small number of resources. This number is much larger than allowed by results based on ordinary 
population dynamics, which limit the number of species in terms of the number of resources [48, 55]. Static explanations in 
terms of varying equilibria in a heterogenous environment have been suggested (e.g., [96]). One may speculate that 
dynamical processes could generate diversity even in a homogenous spatial system.

Another option for modeling the spatiotemporal dynamics is to keep the discrete spatial lattice and discrete time, but to 
consider continuous population densities at each site. The sites could be coupled by diffusion. In this way one obtains a 
coupled map lattice (CML) (e.g., [43]), possibly with a variable number of degrees of freedom at each site if some 
mechanism for adding and deleting species is included. We have
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Figure 4. Examples of typical configurations from simulations with memory I strategies
and a payoff matrix given by (a) (p, q) = (1.4, 0.05), (b) (p, q) = (1.9,0.2),(c) (p, q) = (1.9,0.8),

(d) (p, q) = (1.4, 0.5). The coding of strategies is such that from light to dark we have the
order AllD, TfT, ATfT, and AllC.

studied a one-dimensional model with a copy of the model of Lindgren [49] at each site [50]. For the standard payoff matrix, 
the dynamics of this system is rather similar to the mean-field model—successful new strategies typically propagate and take 
over the entire lattice as soon as they are discovered at one site.

The third option for modeling spatiotemporal dynamics is in terms of partial differential equations (PDE). For a finite 
number of strategies, one could consider the reaction-diffusion-like system obtained by adding a diffusion term to equation 
1:

 (3)
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Finally, we have the case of moving or diffusing individuals in continuous space. (A case suitable for a Swarm 
simulation—studies of systems with strategies for motion as well as the game, e.g, avoidance behavior, would be particularly 
interesting.) We are not aware of any simulation of a spatial game of this kind.

Some recent work in the biology literature, however, is closely related—Enquist and Leimar [27] discussed a system where 
individuals form temporary associations while playing the game. Defectors are rejected after a short time compared to the 
average duration of a game between two cooperators and then search for a new partner to exploit. As expected, increased 
mobility favors defectors, which then more easily can find a new victim. Data from sphecid wasps, where in some species 
females cooperate by sharing nests, show that cooperation is less likely in species that form large population aggregations, 
which lowers the search time for defectors.

Unfortunately these authors only consider a mean-field approximation, not the actual spatial system, and only discuss the 
relative stability of a few chosen strategies instead of performing an evolutionary simulation. If an actual spatial system with 
local reproductive dynamics was studied, it is conceivable that domain formation could occur, so that mean field theory 
would not be a good approximation. This would favor cooperation.

3 Artificial Community Structure

Are ecological communities structured entities or just random collections of species that respond independently to the 
environment? Questions of this kind can be addressed through field studies of real ecosystems, through laboratory 
experiments that assemble artificial ecologies of real organisms and by making mathematical models.

In our opinion, there is also a niche for artificial life in the study of community structure. By creating artificial ecologies out 
of artificial rather than real organisms, many constraints on real experiments and field studies can be circumvented. Real 
ecological studies are severely limited in space and time. (See Pimm [82] for a discussion of time and length scales 
accessible and nonaccessible in ecological, biogeographical, and paleontological studies.) Given enough computer resources, 
artificial ecologies could be studied on a much wider range of scales. Artificial ecosystems can also be manipulated in many 
ways that are impossible for real communities.

On the other hand, compared with simple mathematical models, which may summarize the interaction between two species 
in terms of two real numbers as in the Lotka-Volterra approach, artificial ecologies could capture much more of the 
complexity of interactions in real biological systems. Individual variability can enter in a natural way; learning and 
individual adaptation can also be included.

As an example of the complexity of interactions, think of herbivores interacting with a plant community [41]. Not only do 
plants and trees provide food for the herbivore, they also provide shelter from sun and wind, escape routes and places to hide 
from predators, and branches and twigs to make nests and squats from. The grazing of herbivores also affects the plant 
community: Defoliation can stimulate grasses and trees to produce more leaves; dispersal of fruits, nuts, and seeds by 
herbivores may affect the spatial structure of the plant community. Apart from direct interactions, herbivores may interact 
indirectly with other herbivores through their effects on the vegetation, both by reducing resources for other species and by 
providing access to them (e.g., when elephants fell whole trees). Other indirect interactions may involve changing the risk of 
predation for other species. Larger species avoid predators by detecting them at a distance and benefit from reduced cover. 
On the other hand, smaller species that avoid predators by hiding would benefit from increased cover.
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A crude classification of the interactions between species would label interactions depending on the signs of the couplings in 
an imagined set of Lotka-Volterra equations: predation, competition, and mutualism (if one assumes that all couplings are 
nonzero). In many cases, studies of community structure take only who-eats-whom into account for a number of exceptions 
(see Kawanabe et al. [45]). Our own approach has been rather different: Starting out from models of the evolution of 
cooperation, which provide complex interactions between individuals, we then attempt to extend the model to describe 
predation and resource flow.

In the next two sections, we discuss food webs and simple models of community structure. However, our own goal is not to 
make models of food webs. Instead, we attempt to build simple artificial ecologies with some degree of biological 
plausibility, and food webs are only one example of observables that could be measured (although a rather useful example, 
because a reasonable amount of experimental data exist, and a number of statistical regularities in the data have been 
suggested; see section 3.1).

Another issue that needs to be considered if artificial life models are going to make contributions to biology is that of 
physical realism. Real ecosystems are subject to constraints such as conservation of energy and matter. Many biological 
scaling laws that involve the body size of organisms (see, e.g., Johnson [42] for an overview) have a physical basis, even if 
they are not directly derivable from physical scaling.

In the coevolving strategy models of the previous section, there are no obvious conserved quantities, and who-eats-whom to 
some extent becomes a matter of interpretation. In principle, these models could be equally relevant to ecology, but 
observables related to energy flow are not easily studied. In section 3.3, we describe a model where resources are derived 
from an external environment, and the result of a game determines their distribution. We also discuss other artificial life 
models where resources have been explicitly included.

3.1 Food Webs

A food web is a graphical representation of who-eats-whom in an ecological community. In most cases food webs are 
compiled in a qualitative way by ecologists, so that a (directed) link from A to B is present if and only if species B eats 
species A. Quantitative data showing the relative importance of different links can sometimes also be found in the literature.

An example of an experimental food web from the literature is shown in Figure 5 (redrawn from Niering [70]), which shows 
the most significant feeding relationships among the species on the Kapingamarangi Atoll in Micronesia. This web has some 
features in common with many reported webs. Many species with similar feeding habits have been clustered into groups 
(e.g., insects), and there is a cutoff so that rare trophic links are not included (as an example, the fact that Polynesian rats 
occasionally feed on newly hatched sea turtles is not included).

A food web is obviously not a complete description of the community or even of the resource flow in the system. But food 
webs may still be useful observables to consider, both for real and artificial ecologies. A number of statistical regularities 
have been claimed to exist in the structure of food webs (e.g., [16, 81]):

•  The average number of trophic links L is approximately proportional to the number of species , where  is 
small.

•  The fractions of top predators, intermediate species, and basal species are approximately constant across webs.

•  The fractions of trophic linkages of different types: top-intermediate, top-bottom,
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Figure 5. Food web from the Kapingamarangi atoll in Micronesia,
drawn using the data of Niering [70].

intermediate-intermediate, and intermediate-bottom are also approximatively constant across webs.

•  Averages of maximal food chain length are typically fairly low (approximately 3-4) and do not appear to depend on the 
productivity of the environment [80]. On the other hand, they do depend on the dimensionality of the environment; three-
dimensional environments, such as pelagic water columns and forest canopies, appear to have longer food chains than do two-
dimensional environments, such as grasslands and intertidal zones.

•  Cycles are rare. Food webs in the literature typically do not include cycles due to cannibalism or cycles due to the 
presence of decomposers.

•  Food webs can often be represented as interval graphs, that is, graphs that represent how a set of subintervals of the real 
line overlap each other.

Critiques of food web theory can be found, for example, in Paine [77] and Polis [83]. Most published food webs contain a 
fairly limited number of species, and trophically similar species are often considered as groups. Experimental studies that 
reflect more of the complexity of real ecosystems (e.g., [83, 106]) are likely to change some of these conclusions.

An example of a recent experimental study that disagrees with the link-species scaling law is the work by Havens [36], 
where power law scaling with  was found in a study of communities in small lakes and ponds. In this case the 
webs were resolved down to genus and species, but the interactions were not measured. Instead, diet information from other 
sources was used, which makes comparisons with other studies difficult. Multivariable scaling that also involves resolution 
should be investigated in this context.

The study of artificial ecologies might be useful in sorting out which regularities are real and which are artifacts of 
experimental procedures, because data are more easily available, and the artificial ecosystems can be freely manipulated.
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In these cases, quantitative comparisons between real and artificial communities can be made via scaling laws. There are 
other types of statistical regularities in ecological systems where similar comparisons can be made. One of the most well 
known is the area-species law (e.g., [56]), a power law for the number of species on an island as a function of its area, S ~ c 
× Az, with an exponent z » 0.3. (The exponent does not appear to be universal.) Under certain assumptions, this power law 
can be related to a log-normal distribution of population abundances [61, 86]. Regularities in the patterns of resource flows 
have also been suggested [65].

3.2 Community Models

In this section we briefly discuss some food web and community assembly models that have been studied in the literature. 
These models fall into two classes: One could consider only static patterns (e.g., food webs), or one could attempt to model 
the dynamic process that creates these patterns.

An example of a model of the first kind is the cascade model of Cohen et al. [15,16]. This model essentially assumes that 
food webs are random feed-forward networks. This allows many of their statistical properties to be calculated analytically. 
No dynamics is involved, just assumptions about the probability measure on the space of webs (although extensions 
involving population dynamics have been studied [17]).

The work by Gardner and Ashby [33], May [59, 60], and others on the relation between complexity and stability led to some 
work on the dynamics of communities. If large systems with randomly generated interactions between species typically are 
unstable (as claimed by May), is it possible that communities generated by more realistic assembly processes would be more 
stable?

A number of authors (e.g., [84, 89, 90, 97, 108]) studied models where species were removed from and/or added to the 
system according to various principles (which unfortunately did not include integration of the population dynamics). 
Increased stability was typically found. Only more recently has integration of the Lotka-Volterra equations been used in this 
context [95]. Comparisons between communities structured by invasion and by coevolution were also attempted [91, 92].

More recent work (both theoretical and experimental) by Drake and others [20-23, 74, 82] has focused more on the dynamics 
of the assembly process. Are there multiple attractors for the assembly dynamics depending on the order in which species are 
introduced? What is the distribution of local extinction events caused by invasion, and is there a connection to self-organized 
criticality?

The interactions between species in these models are in many cases obtained by choosing invading species at random from a 
large, predefined food web. In artificial life models, one would in most cases design a reasonable interaction between species 
in a simple artificial world; a food web then emerges in a natural way from the underlying interaction (if one assumes that it 
includes some type of predation). Such models could also enable us to study the interplay between coevolution and spatial 
dispersal of species without making too many oversimplifying assumptions.

3.3 Artificial Ecologies

Models such as the coevolving strategy model described earlier can be interpreted as very simple artificial ecologies, where 
the result of the game directly determines the interaction between species. However, as we have pointed out before, the 
notions of resources and conservation laws are missing in these models (as well as in various coevolutionary landscape 
models [9, 44, 71]).

Explicit resource flows do appear in a number of artificial life models. Some of these may still not have any immediate 
ecological interpretation, for example, in the case of more ambitious models where the notion of individuality is intended to 
be an emergent
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Figure 6. The food web and energy flow matrix after 33,600 generations in a simulation of model I
of Lindgren and Nordahl [52]. The first part of the histogram represents energy inflows from the environment

(always positive); the second energy flows between species (signs depend on the directions of the flows).
The open bars show the energy dissipation for each species. The magnitude of the flow is shown relative

to the total energy flow for the species in question.

property rather than being imposed from the outside (as in the models of Rasmussen and coworkers [87]). Examples of 
models with a more direct ecological interpretation include the models of Lindgren and Nordahl [52], Holland's Echo 
[38,39], the model studied by Johnson [42], and many more.

The interactions between individuals in the first model of Lindgren and Nordahl [52] (Model 1) are still based on the iterated 
Prisoner's Dilemma, but the result of the game now determines the distribution of a resource e (''energy"). Each strategy 
stores a certain amount of energy; the energy transfered in the interaction between two strategies is proportional to the score 
difference in the game between them (up to cutoff terms).

The system lives in an external environment consisting of a number of fixed strategies; energy can flow into the system as a 
result of playing the game against the environment strategies.

The conservation of energy in the interaction turns the game into a zero-sum game. The cooperative effects of the PD are 
reintroduced by letting the dissipation of energy for each species depend on the score in the game, so that high-scoring 
strategies utilize their resources more efficiently.

Figure 6 shows an example of a food web and matrix of energy flow  between species generated in a simulation of this 
model. The species seen in the web are trophic species, that is, equivalence classes of genomes that interact in approximately 
the same way with all other genomes. Some of the proposed statistical features of real food webs, such as the approximately 
linear link-species scaling, are nicely reproduced by the model (see Lindgren & Nordahl [52]).
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In te second model of Lindgren and Nordahl [52], the genomes consist of three parts: a strategy gene, a gene that indicates 
preferences for whom to play, and a tag gene on which other organisms base their choice. In this way a more distinct 
difference between genotype and phenotype is introduced—the tag gene can be regarded as the "visual appearance" of an 
organism. This model allows species to develop a higher degree of specificity in their dietary preferences. It also allows the 
evolution of phenomena such as camouflaged predators that hide among the environment strategies, and mimicry.

Introducing spatial degrees of freedom is at least as important in these models as in the ordinary model for coevolution of 
strategies. With a model that allows interactions with an external environment, phenomena that depend on having a 
heterogenous environment can be modeled. Extensions to cases with several different resources would also be interesting.

These models are rather similar in spirit to Holland's Echo [38, 39]—we use a more complex interaction between individuals 
(the IPD instead of simple pattern matching); Echo, on the other hand, has more emphasized multiple resources.

Another simpler model where hierarchical food webs are observed is that of Johnson [42]. This model incorporates some 
physical constraints by assigning a body size to each organism. The movement rate and metabolic costs scale as (externally 
imposed) power laws as function of body size. Organisms have genetically determined food preferences among the species 
smaller than the organism itself. The dynamics of the system is a Monte Carlo simulation, where individuals interact and 
move by diffusion on a lattice. This model could be viewed as a natural way of extending the cascade model of Cohen et al. 
to a dynamical system with discrete individuals.

4 Discussion

The problem of understanding the evolution of cooperation (at least when covered by the IPD) is a case where methods that 
could be classified as artificial life, in particular coevolutionary simulations, already have yielded significant results. We 
believe that in the future, an understanding of the underlying evolutionary dynamics will be reached for many biological 
problems. All problems that today are analyzed in terms of game theory and ESS are obvious candidates, but also many 
other problems where this approach is less suitable. The evolution of flocking behavior in birds is one example. In the case 
of understanding community structure, the ability to perform a large number of simulations and to sort out statistical patterns 
will be important.
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Abstract Molecular evolution provides an ample field for the extension of Nature's principles towards 
novel applications. Several examples are discussed here, among them are evolution in the test tube, 
nucleotide chemistry with new base pairs and new backbones, enzyme-free replication of 
polynucleotides and template chemistry aiming at replicating structures that have nothing in common 
with the molecules from nature.

Molecular evolution in the test tube provides a uniquely simple system for the study of evolutionary 
phenomena: genotype and phenotype are two features of one and the same RNA molecule. Then fitness 
landscapes are nothing more than combined mappings from sequences to structures and from structures 
to functions, the latter being expressed in terms of rate constants. RNA landscapes are presented as 
examples for which an access to phenomena in reality by mathematical analysis and computer 
simulations is feasible. New questions concerning stability of structures in evolution can be raised and 
quantitative answers are given.

Evolutionary biotechnology is a spin-off from molecular evolution. Darwin's principle of variation and 
selection is applied to design novel biopolymers with predetermined functions. Different approaches to 
achieve this goal are discussed and a survey of the current state of the art is given.

1 Molecular Replication and Template Chemistry



In the early 1970s, molecular evolution became a discipline in its own right by Spiegelman's [1] 
pioneering experiments on evolution of RNA molecules in the test tube and Eigen's [2] seminal 
theoretical work on self-organization on biological macromolecules. Evolutionary phenomena, in 
particular selection and adaptation to changes in the environment, occur only at conditions far away 
from thermodynamic equilibrium. Spiegelman studied RNA molecules from small bacteriophages and 
created nonequilibrium conditions by means of the serial transfer technique (Figure 1). Material 
consumed by multiplication of RNA molecules is renewed, and the degradation products are removed at 
the end of constant time intervals by transfer of small samples into an excess of fresh stock solution. 
Continuous renewal and removal can be achieved in elaborate flow reactors [3,4]. Populations of RNA 
molecules adapt to the environmental conditions given by the stock solution through variation and 
selection of the most efficient variants in
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Figure 1. The serial transfer technique for test tube evolution. This technique was
applied already by Spiegelman [1] in his pioneering studies. A suitable medium

for replication of RNA molecules is prepared and filled into a large number of test
tubes. At first Tube 1 is infected by a sample of RNA. Replication starts instantaneously.

After a predetermined period of time, a small sample of the solution is transferred to Tube 2,
and the procedure is repeated many times, usually in the order of hundreds of transfers.

The rate of RNA synthesis increases during such a series, because faster growing variants
produced from the original RNA by mutation are selected through competition for nutrients.
They grow out their less efficient competitors by consuming the stock solution more quickly.



the sense of Darwin's principle. Another selection technique recently developed by McCaskill [5] makes 
use of spatial spreading of autocatalytic chemical reactions: Capillaries contain a medium suitable for 
replication, RNA is injected, and a wave front travels through the medium. The front velocity of the 
traveling wave increases with the replication rate, and, hence, faster replicating species are selected by 
the wave propagation mechanism.

In vitro replication of RNA molecules by means of specific enzymes, so-called replicases, proved to be 
sufficiently robust in order to allow for detailed kinetic studies on their molecular mechanism [6]. These 
investigations revealed the essential features of template-induced RNA synthesis by virus specific 
replicases, which, like the conventional photographic process, follows a complementarity rule:

activated monomers + plus strand  minus strand + plus strand

activated monomers + minus strand  plus strand + minus strand

Both steps together yield the basis of multiplication at the molecular level. The replicating entity thus is 
the plus-minus ensemble. The molecular principle of replication is the complementarity of natural 
nucleotides in base pairs, A = U and G ≡ C, which match with the geometry of the famous Watson-Crick 
double helix (Figure 2). In addition to
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Figure 2. The principle of RNA and DNA replication is the formation of complementary base
pairs that fit into a rigid molecular backbone. The backbone is the famous Watson-Crick double

helix. The formation of highly specific intermolecular complexes, A = U or G ≡ C,
respectively, introduces yes-or-no decision into biophysical chemistry and, thus, gives rise to a kind

of digital or discrete chemistry that among other features makes replication feasible.
In addition, we show the three main classes of mutations: point mutations or single base exchanges,

insertions or internal partial duplications of the sequence, and deletions.

correct complementary replication, several fundamental side reactions were detected, for example,

•  double-strand formation from plus and minus strand [7].

•  de novo RNA synthesis [8,9].

•  mutation [10,11] comprising in essence three classes of processes, point mutations, or single-base 
exchanges, deletions, and insertions (Figure 2).

Double-strand formation following the reaction

plus strand + minus strand  double strand

represents a deadend of replication because double strands are not recognized as templates by the 
enzyme. The probability that a plus-minus double strand dissociates into its components is practically 
zero under the conditions of a replication experiment. Efficient replication thus requires separation of 
the two complementary strands already in the course of the replication process. This is achieved by the 
enzyme that causes separation of the two strands and simultaneous formation of structure in both single 
strands (Figure 3).

De novo RNA synthesis by template-free Qß replicase has been heavily disputed in the past [12,13]. De 
novo RNA synthesis turned out to be important for an understanding of the mechanism of replication 
because it provided the smallest molecules that were
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Figure 3. RNA replication through virus-specific enzymes like Qß replicase uses a complementary
mechanism. The upper part presents a sketch of the molecules involved in the replication process. In the
lower part molecules are given as symbols: E is the replicase, I stands for RNA molecules, EI and IE are

different types of protein-RNA complexes; plus and minus strands are symbolized by ''+" and "-"; kA, kE, kD and kds

are the rate constants for association, chain elongation, dissociation and double-strand formation, respectively.
The template and the newly synthesized strand are separated already during the replication process and fold into

specific secondary structures that are prohibitive for double strand formation. (The figure is reproduced
from ref. 6 by courtesy of the authors.)



accepted as templates by the replicase [14]. The role of mutation certainly is to provide sufficient 
variation for selection to act upon: No mutation (and no recombination in higher organisms) implies no 
evolution. Mutation in the in vitro experiments and error propagation in populations of RNA molecules 
will be discussed in the next section.
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Figure 4. The xanthine—2,6-diaminopyridine base pair. It fits into the backbone of the
Watson-Crick type double helix of nucleic acids. The corresponding nucleotides

were indeed synthesized and incorporated into RNA and DNA by enzymatic reactions.
There the two new bases form a third base pair X ≡ K that is not in conflict with the

two natural base pairs.

Benner and coworkers [15] have shown that nature's choice of the genetic alphabet can be extended by 
the scientists' intuition. They synthesized nucleotides that form base pairs of Watson-Crick type with a 
hydrogen bonding pattern that is different from both A = U and G ≡ C (Figure 4). Nucleotides carrying 
the new bases were successfully incorporated enzymatically into RNA and DNA, where they constitute 
a third base pair. The genetic alphabet has been extended to a new logic based on six letters. Why did 
evolution never make a successful attempt to use a third (or perhaps a fourth) base pair? A speculative 
explanation given by Szathmáry [16] sees in two base pairs a compromise between replication fidelity, 
decreasing with the number of base pairs, and catalytic capacity of RNA, which is supposed to increase 
with the number of base pairs. We shall provide an alternative less obvious explanation in section 3.



A series of highly interesting experiments on the backbone of conventional nucleic acids was carried out 
by Albert Eschenmoser [17]. He synthesized "homo-DNA" by replacing the natural carbohydrate 
residue 2-deoxy-ribofuranose by 2,3-dideoxyglucopyranose which contains one more CH2-group than 
the natural compound. The five-membered furanose ring in the nucleic acid backbone is thus changed 
into a six-membered ring. This change has a strong influence on the properties of the polynucleotides. 
The helix conformation of the natural backbone is replaced by an almost perfectly straight backbone 
geometry and this implies entirely different strengths of base pairs in double strands: 
GC > AA > GG > AT > ... A biochemistry derived from (dideoxy)-glucose nucleic acids would indeed 
be very different from the natural ribose biochemistry, and more surprises are to be expected from 
further explorations of artificial polynucleotides.

As far as the principle of polynucleotide replication is concerned, there seems to be no reason why 
molecular replication should need a protein catalyst. Extensive
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studies by Orgel and coworkers (see ref. 18 and references 1-5 quoted therein) have indeed shown that 
template-induced synthesis of complementary strands of RNA can be achieved under suitable conditions 
without an enzyme. Enzyme-free, template-induced replication of RNA, however, is exceedingly 
difficult. In the early experiments with homopolymer templates (poly-U, poly-C), the conditions that 
allow for efficient synthesis of one strand are usually very poor conditions for the synthesis of the 
complementary strand. The synthesis commonly leads to formation of stable double helical plus-minus 
ensembles that do not dissociate and are also a deadend for enzyme-free replication. von Kiedrowski 
[19] did the first successful enzyme-free replication experiment involving two trinucleotides as building 
blocks and a self-complementary hexamer (plus and minus strands are identical) as template. The bond 
between the two trinucleotides is formed by means of a water soluble carbodiimide as condensating 
agent:



At first the hexanucleotide forms a double-helical ternary complex with the two trinucleotides. Bond 
formation between the trinucleotides is facilitated by the geometry of the double helix, and a binary 
complex of two identical, self-complementary hexanucleotides is obtained. The reaction equation shown 
previously indicates already the intrinsic problem of template-induced replication: The double-helical 
binary complex formed in the copying process has to dissociate in order to provide templates for further 
replication. In the case of hexanucleotides, the dissociation constant is just sufficiently large to sustain 
some replication, which then follows a subexponential growth law. Analogous reactions with longer 
helices are unlikely to work because of the high stability of the double-helical intermediate shown 
previously. High stability implies very low dissociation constants. Thus, we recognize the crucial role of 
the enzyme in molecular evolution experiments that it plays by readily separating the double-helical 
replication complex into template and growing strand (Figure 3).

Recent studies have shown that template-induced molecular replication is not a priviledge of nucleic 
acids: Rebek and coworkers [20,21] use other classes of rather complex templates carrying the 
complementary units, and obtain replication under suitable conditions. There is again a backbone whose 
role is to bring the digits in such a rigid sterical position that they can be read by their complements. 
Complementarity is based on essentially the same principle as in nucleic acids: Specific hydrogen 
bonding patterns allow one to recognize the complementary digit and to discriminate all other letters of 
the alphabet. Sometimes the hydrogen bonding pattern is assisted by opposite electric charges carried by 
the complements [22]. Template chemistry and molecular replication are rapidly growing fields at 
present [23]. Organic chemistry provides an ample and rich source for the extension of principles from 
nature to new classes of compounds in the spirit of artificial life.

It seems necessary to stress a fact that is often overlooked or even ignored by theorists and 
epistemologists. Molecular replication is anything but a trivially occurring function of molecules. As we 
have seen earlier, even in cases were the (already hard to meet) molecular requirements for template 
action are fulfilled, replication still depends on low stability of the complex formed by association of the 
complementary, plus and minus, molecular species. There is no replication when the complex does not 
readily dissociate. This is a kind of Scylla and Charybdis problem because weak complex formation 
implies weak mutual recognition between complements tantamount
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to ineffectiveness in template reactions. There are three solutions to the problem at the present state of 
our knowledge:

1. The strength of complementary interaction weakens as a consequence of bond formation between the 
two units associated with the template (usually monomer and growing chain, or two oligoners).

2. The separation of plus and minus species is achieved by a third reaction partner (like the enzyme in 
present day replication of RNA viruses).

3. The plus-minus duplex is replicated as an entity as it happens with natural DNA replication 
(requiring, however, a highly elaborate machinery involving 30 enzymes or more).

Only the first solution seems to be achievable in prebiotic chemistry and early evolution.

Everybody who has experience with primitive computing machines knows that the copy instruction is a 
very simple function. Chemistry and early biological evolution are radically different from computer 
science in this respect: Replication has to find a simultaneous solution to all requirements, which is 
generally in conflict with common physical chemistry. Working compromises between contradicting 
demands are rare, and, hence, only highly elaborate structures might be able to replicate efficiently 
without specific help.

Returning to enzyme-assisted, template-induced replication, we reconsider correct replication and 
mutation. Both are initiated in the same way and represent parallel reactions that branch at some instant 
along the multistep reaction of template copying [2,24]. Virus-specific RNA replicases are much less 
accurate than the DNA replicating machinery. In vivo they make on the average about one error per 
replication of an entire viral genome. The populations of almost all RNA viruses are vastly 
heterogeneous, therefore, and contain a rich reservoir of variants. Such reservoirs are particularly 
important in variable environments that are provided, for example, by the host's immune system. The 
larger the genetic reservoir, the more likely a variant can be found that meets the challenge of the altered 
environmental conditions.

Adaptation to changes in environmental conditions has been studied also in test tube experiments. The 
replication medium was deteriorated by addition of substances that either' interfere with replication, 
reduce the lifetime of replicators, or do other nasty things to the replicating RNA molecules. Examples 
are studies of RNA replication by Qß replicase in the presence of ethidium bromide [25] or in solutions 
containing a ribonuclease [26]. In both cases the rate of RNA synthesis drops dramatically at the 
deleterious change in the replication medium. After several serial transfers, however, one observes (at 
least partial) recovery of the original rate. Variants are isolated that are resistant to the reagents that 
interfered with replication. Changes in sequences and structures of the RNA molecules isolated before 
the deterioration of the replication assay and after the recovery can be interpreted as molecular 
adaptations to the environmental change. For example, mutants were isolated that have fewer binding or 
cleavage sites than the wild type and, thus, compensate for the change in the environment.



2 Mutation, Error-propagation, and Optimization

Replication errors lead to new molecular species whose replication efficiency is evaluated by the 
selection mechanism. The most frequently occurring molecular species, commonly called the wild types 
or the master sequences, are accompanied by clouds of mutants. The higher the error rate, the more 
mutations occur and the more viable mutants appear in the population. The mutant spectrum, in addition, 
is determined
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Figure 5. The sequence space of binary (AU or GC) sequences of chain length n = 4. Every
circle represents a single sequence of four letters. All pairs of sequences with Hamming distance dh = 1

(these are pairs of sequences that differ only in one position) are connected by a straight line.
The geometric object obtained is a hypercube in four-dimensional space, and, hence, all positions

(and all sequences) are topologically equivalent



by the distribution of fitness values. In constant environments this distribution may be described by a 
fitness landscape. All possible sequences are ordered in a natural way according to their genetic 
relatedness. Distances between pairs of sequences are expressed in terms of the minimum number of 
mutations converting the two sequences into each other. (As an example, we show in Figure 5 the 
geometry of the sequence space created by point mutations on binary sequences that is identical to that 
of a hypercube whose dimension is the same as the length (n) of the sequences.) A landscape is obtained 
by assigning a value, for example, a fitness value, to every sequence. In general, an equilibrated or 
stationary mutant spectrum is broader, the more shallow the fitness landscapes are.

The stationary mutant distribution is characterized as quasispecies [2,10,11,24], because it represents the 
genetic reservoir of asexually replicating populations. An increase of the error rate in the replication on a 
given fitness landscape leads to a broader spectrum of mutants and, thus, makes evolutionary 
optimization faster and more efficient in the sense that populations are less likely caught in local fitness 
optima. There is, however, a critical error threshold [2,24,27]: If the error rate exceeds the critical limit, 
heredity breaks down, populations are drifting in the sense that new RNA sequences are formed steadily, 
old ones disappear, and no evolutionary optimization according to Darwin's principle is possible (Figure 
6).

Variable environments require sufficiently fast adaptation, and populations with tunable error rates will 
adjust their quasispecies to meet the environmental challenge. In constant environments, on the other 
hand, such species will tune their error rates to the smallest possible values in order to maximize fitness. 
Viruses are confronted with
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Figure 6. Evolution at the error threshold of replication. The fraction of the most frequent
species in the population, called the master sequence, is denoted by xm(p). It becomes very small

at the error threshold. Accordingly, the total fraction of all mutants, 1 - xm(p),
approaches one at the critical mutation rate.

extremely fast-changing environments because their hosts develop a variety of defense mechanisms 
ranging from the restriction enzymes of bacteria to the immune system of mammals and man. RNA 
viruses have been studied extensively. Their multiplication is determined by enzymes that do not allow 
large-scale variations of replication accuracies. They vary, however, the cumulative error rate by 
changing the length of their genomes. It is adjusted to optimal values that often correspond to maximal 
chain lengths [2,24]:



Herein nmax is the maximal chain length that a master sequence can adopt and still allow for stable 
replication over many generations, σ ≥ 1 is the superiority of this master sequence in the stationary 
population, and p is the error rate per (newly incorporated) base and replication event. The superiority 
expresses differential fitness between the master sequence and the average of the remaining population. 
Thus, it is a function of both, the fitness landscape and the distribution of mutants. In the limit 
lim σ → 1, we are dealing with neutral evolution [28]. Experimental analysis of several RNA virus 
populations has shown that almost all chain lengths are adjusted to yield error rates close to the 
threshold value. Thus, RNA viruses appear to adapt to their environments by driving optimization 
efficiency toward the maximum.
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The quasi-species concept has been derived from kinetic differential equations [2,24], and, thus, it is 
strictly valid in infinite populations only. It turned out, however, to be also a good approximation for 
realistic stationary populations at sufficiently low error rates below the threshold value. Replication-
mutation dynamics has been studied also in finite populations. Analytical expressions were derived for 
error threshold on simple model landscapes: In order to sustain a stationary population, replication has to 
be more accurate in smaller populations. In sufficiently large populations, the critical minimal 
replication accuracy (qmin = 1 - Pmax) depends on the reciprocal square root of the population size [29]:

The higher accuracy required for stable replication in small populations is easily interpreted by the fact 
that the master sequence can be lost in future generations not only by error propagation but also by 
random fluctuations.

Evolutionary optimization is viewed appropriately as an adaptive walk on a rugged fitness landscape 
[30]. A few examples of studies on different types of such landscapes are mentioned here. Replication-
mutation dynamics on landscapes derived from spin-glass Hamiltonians yielded interesting multimodal 
population distributions at error rates above the critical error rate for the conventional single-peak quasi-
species [31]. Population dynamics on realistic landscapes based on RNA folding has been studied by 
computer simulations [32,33]. Error thresholds were detected on these rather very rugged landscapes, 
too. On completely flat fitness landscapes, a new phenomenon was observed [34]: At sufficiently high 
replication accuracy populations move as coherent peaks in sequence space. There is, however, again a 
critical error rate. If it is exceeded, the population loses its coherence in sequence space and becomes 
disperse. It is suggestive, therefore, to call this second critical error rate the dispersion threshold.

3 Mutational Stability of Structures



Stability against mutation has also a second, less strict meaning: Assume we have a change in the 
sequence that does not alter the structure and the properties of the RNA molecule. We would not be able 
to detect such a neutral mutation unless we compare the sequences. Given a certain mutation rate, we 
may ask, therefore, what are the differences in stability of RNA structures against mutations in the 
corresponding sequences. How likely does a change in the sequence result in an actual change in the 
structure? In other words, we try to estimate the fraction of neutral mutants in the neighborhood of a 
typical sequence. (Neutral is commonly used for sequences that have properties that are 
indistinguishable for the selection process; we shall use the term here in the narrower sense of identical 
structures.) This question is of statistical nature and can be answered only by proper application of 
statistical techniques.

RNA secondary structures are first approximations to the spatial structures of RNA molecules. They are 
understood as listings of the Watson-Crick-type base pairs in the actual structure and may be represented 
as planar graphs (Figure 7). We consider RNA secondary structures as elements of an abstract shape 
space. As in the case of sequences (where the Hamming distance dh represents a metric for the sequence 
space), a measure of relationship of RNA structures can be found that induces an metric on the shape 
space [35-37]. We derived this distance measure from trees that are equivalent to the structure graphs, 
and accordingly it is called the tree distance, dt. Thus, RNA folding can be understood as a mapping 
from one metric space into another, in particular, from sequence space into shape space. A path in 
sequence space corresponds uniquely to a
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Figure 7. Folding of an RNA sequence into its spatial structure. The process is partitioned into two phases:
In the first phase only the Watson-Crick-type base pairs are formed (which constitute the major fraction

of the free energy), and in the second phase the actual spatial structure is built by folding the planar graph into
a three-dimensional object. The example shown here is phenylalanyl-transfer-RNA (t-RNAphe) whose

spatial structure is known from X-ray crystallography.

path in shape space. (The inversion of this statement, however, is not true as we shall mention in the 
section 4.)

The whole machinery of mathematical statistics and time series analysis can now be applied to RNA 
folding. In particular, an autocorrelation function of structures based on tree distances (dt) is computed 
from the equation

Mean square averages are taken over sequences in sequence space , or over sequences in the 
mutant class h of the reference sequence , that is, over all sequences at Hamming distance h 
from the reference). The autocorrelation functions can be approximated by exponential functions, and 
correlation lengths  are estimated from the relation: 



The correlation length is a statistical measure of the hardness of optimization problems (see, e.g., [11]). 
The shorter the correlation length, the more likely is a structural change occurring as a consequence of 
mutation. Thus, the correlation length measures stability against mutation. In Figure 8 correlation 
lengths of RNA structures are plotted against chain lengths. An almost linear increase is observed. 
Substantial differences are found in the correlation lengths derived from different base pairing alphabets. 
In particular, the structures of natural (AUGC) sequences are much more stable against

  

Page 50

Figure 8. Correlation lengths of structures  of RNA molecules in their most stable
secondary structures as functions of the chain length v. Values are shown for

binary pure GC sequences , for binary pure AU sequences C0062-
01.gif

, and for natural AUGC
sequences . The correlation lengths are computed from (ln Qt(h), h) plots

by means of a least root mean square deviation fit



mutation than pure GC sequences or pure AU sequences. This observation is in agreement with 
structural data obtained for ribosomal RNAs [38]. It provides also a plausible explanation for the use of 
two base pairs in nature: Optimization in an RNA world with only one base pair would be very hard, and 
the base pairing probability in sequences with three base pairs is rather low, so that most random 
sequences of short chain lengths (n < 50) do not form thermodynamically stable structures. The choice 
of two base pairs appears to be a compromise between stability against mutation and thermodynamic 
stability.

4 Shape Space Covering

The sequence space is a bizarre object: It is of very high dimension (because every nucleotide can be 
mutated independently, its dimension coincides with the chain length of RNA: 25 < n < 500 for RNA 
molecules in test tube experiments, 250 < n < 400 for viroids, and 3,500 < n < 20,000 for (most) RNA 
viruses), but there are only a few points on each coordinate axis (κ points; κ is the number of digits in 
the alphabet: κ = 2 for AU and GC, κ = 4 for AUGC). The number of secondary structures that are 
acceptable as minimum free energy structures of RNA molecules is much smaller than the number
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of different sequences and can be estimated by means of proper combinatorics [39]: In case of natural 
(AUGC) molecules we have about 1.485 × n-3/2(1.849)n structures for 4n sequences. The mapping from 
sequence space into shape space is not invertible: Many sequences fold into the same secondary 
structure. We cannot expect that our intuition, which is well trained with mostly invertible maps in three-
dimensional space, will guide us well through sequence and shape spaces. In order to get a feeling for 
the problem, search algorithms for the optimization of RNA structures and properties were conceived 
[32,33,40], and computer simulations were carried out on realistic landscapes based on RNA folding 
[32,33]. Here we shall adopt another strategy to obtain information on sequences and structures and use 
proper statistical techniques for the analysis of such an abstract object as the RNA shape space.

The information contained in the mapping from sequence space into shape space is condensed into a two-
dimensional, conditional probability density surface,

S(t, h) = Prob (dt= t | d = h).



This structure density surface (SDS) expresses the probability that the secondary structures of two 
randomly chosen sequences have a structure distance t provided their Hamming distance is h. An 
example of a structure density surface for natural sequences of chain length n = 100 is shown in Figure 
9. We recognize an overall shape that corresponds to one half of a horseshoe with rugged details 
superimposed upon it. The contour plot illustrates an important property of the structure density surface: 
At short Hamming distances (1 ≤ n < 16), the probability density changes strongly with increasing 
Hamming distance, but further away from the reference sequence (16 < n < 100), this probability density 
is essentially independent of the Hamming distance h. The first part reflects the local features of 
sequence-structure relations. Up to a Hamming distance of h = 16, there is still some memory of the 
reference sequence. Then, at larger Hamming distances the structure density surface contains 
exclusively global information that is independent of the reference.

In order to gain more information on the relationship between sequences and structures, an inverse 
folding algorithm that determines the sequences that share the same minimum free energy secondary 
structure was conceived and applied to a variety of different structures [39]. The frequency distribution 
of structures has a very sharp peak: Relatively few structures are very common, and many structures are 
rare and play no statistically significant role. The results obtained show in addition that sequences 
folding into the same secondary structure are, in essence, randomly distributed in sequence space. For 
natural sequences of chain length n = 100, a sphere of radius h ≈ 20 (in Hamming distance) is sufficient 
to yield the global distribution of structure distances. We conjecture that all common structures are 
found already in these relatively small patches of sequence space. This conjecture was proven by a 
suitable computer experiment: We choose a test and a target sequence at random; both have a defined 
structure. Then we determine the shortest Hamming distance between the two structures by approaching 
the target sequence with the test sequence following a path through sequence space along which the test 
sequence changes, but its structure remains constant. (As shown in the next paragraph, such a path is 
neutral.) The result for the case considered here yields an average minimum distance of two arbitrary 
structures around a Hamming distance of 20. In order to find a given common structure of an RNA 
molecule of chain length n = 100, one has to search at maximum a patch of radius 20 that contains about 
2 x 1030 sequences. This number is certainly not small, but it is negligible compared to the total number 
of sequences of this chain length: 1.6 x 1060!

In order to complement this illustration of the RNA shape space, a second computer experiment was 
carried out that allows an estimate of the degree of selective neutral-
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Figure 9. The structure density surface S(t, h) of natural AUGC sequences of chain length
n = 100. The density surface (upper part) is shown together with a contour plot (lower part).

In order to dispense from confusing details, the contour lines were smoothened. In this
computation, a sample of 1,000 reference sequences was used, which amounts to a total sample

size of 106 individual RNA foldings.



ity. (Two sequences are considered neutral here if they fold into the same secondary structure.) As 
indicated in Figure 10, we search for neutral paths through sequence space. The Hamming distance 
from the reference increases monotonously along such a neutral path, but the structure remains 
unchanged. A neutral path ends when no further neutral sequence is found in the neighborhood of the 
last sequence. The length  of a path is the Hamming distance between the reference sequence and the 
last sequence. Clearly, a neutral path cannot be longer than the chain length . The length 
distribution of a neutral path in the sequence space of natural RNA molecules
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Figure 10. Percolation of sequence space by neutral networks. A neutral path connects sequences
of Hamming distance h = 1 (single base exchange) or h = 2 (base pair exchange) that fold into
identical minimum free energy structures. The sketch shows a neutral path of length h = 9. The
path ends because no identical structure was found with h = 10 and h = 11 from the reference.

of chain length n = 100 is shown in Figure 11. It is remarkable that about 20% of the neutral paths have 
the maximum length and lead through the whole sequence space to one of the sequences that differ in all 
positions from the reference, but have the same structure.

Combination of information derived from Figures 9 and 11 provides insight into the structure of the 
shape space of RNA secondary structures, which is basic to optimization of RNA molecules already in 
an RNA world. Our results can be summarized in four statements:



1. Sequences folding into one and the same structure are distributed randomly in sequence space.

2. The frequency distribution of structures is sharply peaked. (There are comparatively few common 
structures and many rare ones.)

3. Sequences folding into all common structures are found within (relatively) small neighborhoods of 
any random sequence.

4. The shape space contains extended neutral networks joining sequences with identical structures. (A 
large fraction of neutral path leads from the initial sequence through the entire sequence space to a final 
sequence on the opposite side—there are (κ - 1)n sequences that differ in all positions from an initial 
sequence.)

Combining the two statements (1) and (3), we may visualize the mapping from sequences into structures 
as illustrated by the sketch shown in Figure 12.

These results suggest straightforward strategies in the search for new RNA structures. It provides little 
advantage to start from natural or other preselected sequences
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Figure 11. Length distribution of neutral paths starting from random AUGC sequences of
chain length n = 100. A neutral path connects pairs of sequences with identical structures
and Hamming distance dh = 1 (single base exchange) or dh = 2 (base pair exchange). The
Hamming distance to the reference sequence is monotonously increasing along the path.

because any random sequence would do equally well as the starting molecule for the selection cycles of 
evolutionary biotechnology shown in Figures 13 and 14. Any common secondary structure with optimal 
functions is accessible in a few selection cycles. The secondary structure of RNA is understood as a 
crude first-order approximation to the actual spatial structure. Fine-tuning of properties by choosing 
from a variety of molecules sharing the same secondary structure will often be necessary. In order to 
achieve this goal, it is of advantage to adopt alternations of selection cycles with low and high error 
rates. At low error rates, the population performs a search in the vicinity of the current master sequence 
(the most common sequence, which is usually also the fittest sequence). If no RNA molecule with 
satisfactory properties is found, a change to high error rate is adequate. Then the population spreads 
along the neutral network to other regions in sequence space, which can be explored in detail after 
tuning the error rate low again.

The structure of shape space is highly relevant for evolutionary optimization in nature too. Because long 
neutral paths are common, populations drift readily through sequence space whenever selection 
constraints are absent. This is precisely what is predicted for higher organisms by the neutral theory of 
evolution [28] and what is observed in molecular phylogeny by sequence comparisons of different 
species. The structure of shape space provides also a rigorous answer to the old probability argument 
against the possibility of successful adaptive evolution [41]. How should nature find a given biopolymer 
by trial and error when the chance to guess it is as low as 1/κn? Previously given answers [42] can be 
supported and extended by precise data on the RNA shape space. The numbers of sequences that have to 
be searched in order to find
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Figure 12. A sketch of the mapping from sequences into RNA secondary structures as derived
here. Any random sequence is surrounded by a ball in sequence space that contains sequences
folding into (almost) all common structures. The radius of this ball is much smaller than the

dimension of sequence space.

adequate solutions are many orders of magnitude smaller than those guessed on naive statistical 
grounds. If one of the common structures has a property that increases the fitness of the corresponding 
sequence, it can hardly be missed in a suitably conducted evolutionary search.

5 Evolutionary Biotechnology

The application of RNA-based molecular adaptive systems to solve problems in biotechnology by 
Darwin's selection principle was proposed in 1984 by Eigen and Gardiner [43]. Somewhat later a similar 
suggestion was made by Kauffman [44] for large-scale screening of proteins based on recombinant 
DNA techniques and selection methods. Meanwhile, many research groups started to apply evolutionary 
concepts to produce biomolecules with new properties. (For two recent reviews, see Joyce [45] and 
Kauffman [46].) At present molecular evolution seems to give birth to a novel branch of applied 
biosciences.



The essence of evolutionary biotechnology is shown in Figures 13 and 14. Experiments are carried out 
on the level of populations of molecules. Replication of nucleic acid molecules is used as an 
amplification factor. Variation is introduced into the populations either by artificially increased mutation 
rates or by partial randomization of RNA or DNA sequences. The synthesis of oligonucleotides with 
random sequences has become routine by now. The two techniques differ with respect to the selection 
procedure. The first approach to the problem is suitable for batch experiments (Figure 13). The essential 
trick of this technique is to encode the desired functions into the selection constraint. Several examples 
of successful applications of such molecular selection
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Figure 13. A selection technique of evolutionary biotechnology based on encoding
of the function to be developed into the selection constraint



techniques to biochemical problems are found in the current literature [47-50]. In reality it will often be 
impossible to encode the desired function directly into the selection constraint. Then spatial separation 
of individual genotypes and massively parallel screening provide a solution (Figure 14). This technique, 
however, requires highly sophisticated equipment that is currently under development [51,52]. 
Evolutionary biotechnology provides also new challenges for the design of high-tech equipment that is 
required to carry out massively parallel experiments under precisely controlled conditions.

The results on RNA shape space derived in the previous section suggest straightforward strategies in the 
search for new RNA structures. It is of little advantage to start from natural or other preselected 
sequences, because any random sequence would serve equally well as the starting molecule for the 
selection cycles shown in Figures 13 and 14. Any common secondary structure with suitable properties 
is accessible within a few selection cycles. Because the secondary structure is only a crude first 
approximation to the actual three-dimensional structure, fine tuning of properties by choosing from a 
variety of molecules sharing the same secondary structure will be necessary. In order to achieve this 
goal, it is advantageous to adopt alternations of selection cycles with low and high error rates. At low 
error rates, the population performs a search in the vicinity of the current master sequence (the most 
common sequence, which usually is the fittest sequence as well). If no RNA molecule with satisfactory 
properties is found, a change to high error rate is adequate. Then the population spreads along the 
neutral network to other regions of sequence space, which are explored in detail after tuning the error 
rate low again.
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Figure 14. A selection technique of evolutionary biotechnology based on spatial
separation of individual genotypes and massively parallel molecular screening.

6 The Theory of Evolution and Artificial Life

Molecular evolution has become an established field and produces already spin-offs with interesting 
technological aspects. What has it contributed to the theory of evolution? First, it has shown that 
replication and evolutionary adaptation are not exclusive priviledges of cellular life. Polynucleotides 
were found to replicate with suitable enzymes in cell-free assays. Small oligonucleotides can be 
replicated even without protein assistance. Other replicators that are not based on nucleotide chemistry 
were found as well. Template chemistry starts to become a field in its own right.

Second, the old tautology debate on biological fitness has come to an end. Fitness in molecular systems 
can be measured independently of the survival in an evolution experiment. Evolutionary processes may 
be described and analyzed in the language of physics.

Third, the probability argument against a Darwinian mechanism of evolution [41], as mentioned in 
section 4, is invalidated by the experimental proof of target-oriented adaptation, found, for instance, in 
the ribonuclease experiments [26]. Evolutionary search is substantially facilitated by the properties of 
sequence space and shape space [39].



The knowledge acquired in molecular evolution allows ample extensions. In the near future, many more 
nonnatural systems will be designed and synthesized that fulfill the principles of molecular genetics and 
are thus capable of evolution but, apart from that, have little in common with their living counterparts.
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Molecular evolution, in essence, has established the basic kinetic mechanisms of genetics. In the case of 
RNA replication and mutation, the reaction mechanisms were resolved to about the same level of details 
as with other polymerization reactions in physical chemistry. Several aspects of a comprehensive theory 
of evolution, however, are still missing. For example, the integration of cellular metabolism and genetic 
control into a comprehensive theory of molecular genetics has not yet been achieved. Morphogenesis 
and development of multicellular organisms need to be incorporated into the theory of evolution. No 
satisfactory explanations can be given yet for the mechanisms leading to the origin of real novelties 
often addressed as the great jumps in evolution [53].

Nevertheless, the extension of molecular biology into organic and biophysical chemistry as described 
here is predestined to be part of the still heterogeneous discipline of artificial life. Principles are still 
taken from the living world, but the material carriers of the essential properties are new and unknown in 
the biosphere. At the same time, this very active area of research spans a bridge from chemistry to 
biology and also sheds some light on burning questions concerning the origin of life.
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Abstract Rapid progress in the modeling of biological structures and simulation of their development 
has occurred over the last few years. It has been coupled with the visualization of simulation results, 
which has led to a better understanding of morphogenesis and given rise to new procedural techniques 
for realistic image synthesis. This paper reviews selected models of morphogenesis with a significant 
visual component.

If a natural object or organism demonstrates consistency of form ..., such symmetry is the consequence of Something 
rather than Nothing.
Adrian D. Bell [3]

1 Introduction

In the 1984 paper, ''Plants, Fractals, and Formal Languages" [60], addressed to the computer graphics 
audience, Smith coined the term database amplification to denote the synthesis of complex images from 
small data sets. A generalization of this notion, called emergence, became a central concept of Artificial 
Life. According to Taylor [62, p. 31], emergence is a process in which a collection of interacting units 
acquires qualitatively new properties that cannot be reduced to a simple superposition of individual 
contributions. A well-known example of emergence is given by the game of life [19, 20], where complex 
patterns develop in an array of square cells governed by strikingly simple local rules. The development 
of patterns and forms in the domain of living organisms has been termed morphogenesis.

The relationship between the rules expressing the behavior of individual components and the resulting 
developmental processes, patterns, and forms is often nonintuitive and difficult to grasp. Consequently, 
computer simulations play an essential role in the study of morphogenesis. The objectives of such 
simulations were analyzed and illustrated using many examples by Bell [4], who grouped them as 
follows:



•  analysis of the nature and complexity of the mechanisms that control the developmental processes,

•  a better understanding of the form and development of specific organisms, acquired in the process of 
constructing models faithful to the biological reality,

•  analysis of the impact of individual parameters on the overall form or pattern; this leads to a better 
appreciation of their relationship, and gives an insight into the direction of evolutionary changes,
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•  computer-assisted teaching,

•  graphic design, computer art, and landscape architecture.

Visualization techniques offered by computer graphics facilitate the interpretation and evaluation of 
simulation results. In the absence of a formal measure of what makes two patterns or forms look alike, it 
is often necessary to rely on visual inspection while comparing the models with the reality. For example, 
Plate 1 shows a photograph and a model of the shell Natica enzona, juxtaposed to facilitate the 
comparison. The natural and synthetic pigmentation patterns differ in details, yet we perceive them as 
similar. Photorealistic presentation adds credibility to this observation by removing artifacts that might 
affect the comparison. We conclude that the underlying mathematical model of shell pigmentation 
pattern is plausible, although visual inspection obviously does not constitute a definitive validation.

This paper reviews mathematical models of morphogenesis capable of producing realistic images of 
biological patterns and forms. It begins with a list of notions useful in characterizing these models, then 
presents selected case studies. An extension of this work may lead to a taxonomy of the models of 
morphogenesis, systematically contrasting their underlying assumptions and exposing approaches that 
require further exploration.

2 Features of Models of Morphogenesis

Historically, the study of morphogenesis has been approached from two directions. The first one consists 
of viewing form as a derivative of growth, and was formulated by d'Arcy Thompson [63, p. 79]: "It is 
obvious that the form of an organism is determined by its rate of growth in various directions; hence rate 
of growth deserves to be studied as a necessary preliminary to the theoretical study of form."

The second direction focuses on the flow of substances through a medium and was initiated by Turing 
[65, p. 38]: "The systems considered consist of masses of tissues which are not growing, but within 
which certain substances are reacting chemically, and through which they are diffusing. These 
substances are called morphogens, the word being intended to convey the idea of a form producer."



The distinction between these two directions is captured as the first characteristic of the models, 
presented in the following list. Other characteristics also determine the essential properties of the models 
and influence the design of the simulation software.

1. Models may occupy constant space or may expand (and contract) over time. In the latter case, the 
expansion may be limited to the boundary of the structure or may take place in the interior as well.

2. Models may be structure-oriented, focusing on the components (modules) of the developing structure, 
or space-oriented, capturing the whole space that embeds this structure. A model in the first category 
typically describes where each component of the structure is located. A model in the second category 
describes what is located at (or what is the state of) each point of space.

3. The developing structure and the space that embeds it may be continuous or discrete. The state 
characterizing each module or point in space may be chosen from a continuous or discrete domain. The 
model may operate in continuous or discrete time.

4. Models may have different topologies, such as a nonbranching filament (a linear

  

Page 63

arrangement of components), a branching structure, a network (graph with cycles), a two-dimensional 
surface, or a three-dimensional solid object.

5. The neighborhood relations between modules may be fixed at the time of their creation (determined 
by the division pattern of modules), or the modules may be mobile. By analogy, in the case of 
continuous structures, the developmental processes may be viewed as taking place in an elastic medium 
or in a fluid.

6. Communication between the modules may have the form of lineage (information transfer from the 
parent module to its offspring) or interaction (information transfer between coexisting modules). In the 
latter case, the information flow may be endogenous (between adjacent components of the model) or 
exogenous (through the space embedding the model). Similar notions can be applied to continuous 
structures.

The last categorization captures the crucial aspects of the flow of control information during 
morphogenesis, first emphasized by Lindenmayer [34, 35]. Refering to branching structures, Bell [4] 
proposed to call patterns created using these modes of communication blind, self-regulatory, or sighted, 
and offered the following intuitive descriptions:

•  In blind patterns, branch initiation is controlled by the parent module, independently of the remainder 
of the structure and the environment in which this structure develops.



•  In self-regulatory patterns, branch initiation is controlled potentially by the whole developing 
structure, using communication via the existing components of this structure.

•  In sighted patterns, the initiation of a new branch is influenced by factors detected by its parent in the 
immediate neighborhood, such as proximity of other organisms or parts of the same organism.

In the following survey of selected models of morphogenesis, the distinction between space- and 
structure-oriented models serves as the main key, while the communication modes further characterize 
the structure-oriented models.

3 Space-Oriented Models

3.1 Reaction-Diffusion Pattern Models

Reaction-diffusion models were developed by Turing [65] to explain the "breakdown of symmetry and 
homogeneity," leading to the emergence of patterns in initially homogeneous, continuous media. The 
patterns result from the interaction between two or more morphogens that diffuse in the medium and 
enter into chemical reactions with each other. Mathematically, this process is captured by a system of 
partial differential equations. For properly chosen equations and parameter values, the uniform 
distribution of morphogens is unstable. Random fluctuations are amplified and produce a stable pattern 
of high and low concentrations.

Reaction-diffusion models have been extensively studied in theoretical biology, where they provide 
plausible explanations of many observed phenomena [28, 42, 47]. Ouyang and Swinney [49] recently 
validated the basic assumptions of these models by realizing reaction-diffusion processes in chemical 
experiments. In computer graphics, Turk [66] applied the original Turing equations to generate spot 
patterns, and a five-morphogen system proposed by Meinhardt [42, chap. 12] to generate stripe patterns
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Figure 1. A venation pattern generated using Meinhardt's
model of netlike structures on a hexagonal grid.

covering three-dimensional models of animals. Meinhardt and Klinger [43-45] applied the reaction-
diffusion model to capture pigmentation patterns in shells. In this case, an observable pattern does not 
reflect a steady-state distribution of morphogens on the surface of the shell, but depicts the evolution of 
morphogen concentrations on the growing edge over time. Meinhardt's model has been applied by 
Fowler, Meinhardt, and Prusinkiewicz [15] to synthesize realistic images of shells (Plate 2). 
Pigmentation patterns have also been synthesized by Ermentrout, Campbell, and Oster [10], assuming 
that the concentration of the pigment is controlled by neural activities of the mollusc's mantle. As noted 
by Murray [47, p. 518], the reaction-diffusion and the neural activity models postulate similar types of 
information exchange along the shell edge (short-range activation and long-range inhibition).

Reaction-diffusion models may also be suitable for explaining and synthesizing the visually attractive 
arrangements of fish and reptile scales, patterns on butterfly wings, and coloring of flower petals. The 
generation of these patterns remains, to a large extent, an open problem.

3.2 A Reaction-Diffusion Model of Differentiation



Meinhardt [41] (see also [42, chap. 15]) extended reaction-diffusion models to capture differentiation of 
netlike structures from an undifferentiated medium. Figure 1 shows a venation pattern produced using 
his model. The reaction-diffusion equations are solved on a hexagonal grid (in this case). The state of 
each cell is characterized by concentrations of four morphogens, one of which determines whether a cell 
is in a differentiated state and belongs to the structure or in a nondifferentiated state and belongs to the 
medium. The simulation begins with the creation of a filamentous succession of differentiated cells, 
extending at the growing tip of the filament. During the development, the tip may split, creating 
dichotomous branches. At a sufficient distance from the tip (monitored by decreasing concentration of 
another morphogen,
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the inhibitor, produced by the tip), the filament initiates lateral branches. Next-order branches are 
formed in a similar way if no growing tips are nearby.

This model combines continuous and discrete components. On the one hand, the diffusion of 
morphogens is described using a set of differential equations, if one assumes a conceptually continuous 
medium. On the other hand, differentiation is described at the level of discrete cells.

3.3 Diffusion-Limited Accretive Growth

In many developmental processes, there is an obvious distinction between the structure and the 
surrounding medium. The focus of the model is then on the structure and its gradual expansion along the 
border, termed accretive growth [31].

Eden [9] simulated the accretive growth of a cell cluster in a square lattice by sequentially adjoining 
randomly selected cells to the structure formed during previous steps (Plate 3). Meakin [40] (see also 
[68]) improved this model by assuming that the growth rate (the probability of adjoining a new cell) 
depends on the local concentration of nutrients that diffuse from a surrounding exterior source and are 
consumed by the growing structure. The structure generated by this diffusion-limited growth model 
depends on the choice of parameters and may display a branching fractal character common with the 
diffusion-limited aggregation models (Plate 4), discussed later. Fujikawa and Matsushita [18, 39] 
showed that these models faithfully capture the growth of colonies of a bacterial species Bacillus subtilis 
on agar plates. Kaandorp [31, 32] applied a three-dimensional variant of the diffusion-limited growth to 
simulate and visualize the development of corals and sponges that expand in the direction of the largest 
concentration of nutrients (Plate 5). A branching topology is an emerging property of these structures, 
resulting from the higher gradient of nutrient concentration near the tips of the branches than near the 
origin of the structure.

3.4 Diffusion-Limited Aggregation



Witten and Sander [70] proposed a discrete counterpart of diffusion-limited growth, called diffusion-
limited aggregation (DLA) (see also [68]), which captures diffusion of nutrients by simulating random 
movement of particles in a grid. The growing structure originates with a single fixed cell. Free particles 
move in the grid, with the displacement direction chosen at random on each simulation step. Once a 
moving particle touches the structure, it sticks to it rigidly.

Diffusion-limited aggregation has attracted considerable research interest, due in part to the fractal 
character of the emerging branching structures. It is a faithful model of many physical phenomena, such 
as the deposition of metallic ions on an electrode. It neglects, however, the active role of the organism 
using nutrients to build its body.

3.5 Cellular Automata

Cellular automata [64] can be considered a discrete-space counterpart of reaction-diffusion models. The 
space is represented by a uniform grid, with each site or cell characterized by a state chosen from a finite 
set. Time advances in discrete steps, and all cells change their states according to the same rule, which 
describes the next state as a function of the previous state of a cell and its close neighbors.

Young [71] proposed a cellular-automaton model of animal coat patterns using only two cell states: 
pigmented or not (Figure 2). Camazine [5] applied a cellular automaton to convincingly reproduce the 
pattern of a rabbit fish. The resulting patterns are similar to those obtained using continuous reaction-
diffusion equations. In general, the next-state function need not be related to the diffusion of 
morphogens. Ulam [67] pioneered the application of cellular automata to the simulation of the 
development of branching structures, where the discrete space provides a medium
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Figure 2. Patterns generated using a discrete counterpart
of the reaction-diffusion model, proposed by Young.



Figure 3. A branching structure generated by Ulam's
cellular automaton operating on a square grid.

for detecting collisions between branches. Figure 3 shows a pattern he termed Maltese crosses. The 
structure begins with a single seed cell and spreads within the (conceptually infinite) square grid of 
automata. In each iteration, the pattern expands to the adjacent cells, unless the resulting branches would 
collide. Figure 4 illustrates the same principle on a triangular grid. A slice of this pattern contained in a 
60° wedge is reminiscent of a tree; as noticed by Stevens [61, pp. 127-131], this appearance can be 
reinforced by modifying branching angles while preserving the topology of the model.

3.6 Voxel Automata

Three-dimensional extensions of cellular automata, called voxel automata [24], have been used in 
computer graphics to model aspects of plant development strongly affected by the environment. Arvo 
and Kirk [2] and Greene [23] applied them to simulate the growth of climbing plants, attaching 
themselves to predefined objects in space.
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Figure 4. Branching structures generated by Ulam's cellular automaton
operating on a triangular grid. Lines connect the centers of cells

occupied by the growing structure.

Subsequently, Greene [24] extended this technique to capture variations in the diameter of branches and 
roots of a tree, and applied it to simulate the growth of roots searching their path through rocks in the 
ground, as shown in Plate 6. In this case, the voxels do not represent elements of the structure on the "all 
or nothing" basis but hold information about the run of the individual strands that compose branches and 
roots of the tree. This information is used to keep groups of strands together and guide their 
development between obstacles in the environment.

3.7 Development in Expanding Space

The models discussed so far can grow only on their boundary. Gottlieb [22] overcame this limitation by 
proposing a geometric model of development, in which the space expands uniformly. A predefined 
starting structure is placed in a small square grid (e.g., consisting of 2 x 2 cells). New branches are 
created by connecting the centers of grid cells to the structure, provided that the Euclidean distance 
between a particular center point and the structure is greater than a given threshold. The structure and 
the cellular space are then scaled twofold, the cells are subdivided, and connections to the centers of the 
new cells are made as in the previous step. This process is equivalent to the subdivision of the grid 
combined with the reduction of the threshold distance. The construction is repeated until the desired 
level of detail is reached, as presented on the left side of Figure 5. The right side of this figure shows the 
result of applying Gottlieb's method to model leaf venation. This application has a clear biological 
justification: As a leaf grows, its vascular system is developing in order to maintain the capacity for 
translocating water, nutrients, and products of photosynthesis to and from all parts of the blade. The 
model exhibits the hierarchical organization of the veins, but there is still a discrepancy between their 
layout and patterns observed in nature. Faithful modeling of leaf venation remains an open problem.

4 Structure-Oriented Models



In contrast to space-oriented models, which describe the entire space including the modeled structure, 
structure-oriented models focus only on the development of components that constitute the structure.
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Figure 5. Principle of Gottlieb's method for pattern generation, and a
venation pattern obtained using this method.

4.1 L-Systems

L-systems simulate the development of linear and branching structures built from discrete modules [34]. 
The development can be controlled by lineage (in context-free, or 0L-systems) and by endogenous 
interaction (in context-sensitive, or IL-systems). The modules represent individual cells of simple 
multicellular organisms, or larger modules of higher plants (e.g., internodes, apices, leaves, and 
branches). L-systems were originally limited to the specification of the topology of branching structures, 
but subsequent geometric interpretations have made it possible to visualize simulation results [52, 531. 
For example, Plate 7 shows a simulated development of the herbaceous plant Mycelis muralis.



Although L-systems were introduced as a purely discrete model [36], practical applications revealed the 
need for shifting their various aspects to the continuous domain. Parametric L-systems [27, 52] have 
made it possible to assign continuous attributes to modules, such as the concentrations of substances 
propagating in a structure. Differential L-systems [51] extended this formalism to the continuous time 
domain, facilitating computer animation of developmental processes. For example, Plate 8 shows 
selected phases of the development of the hawkweed flower Hieracium umbellatum, simulated using 
differential L-systems.

L-systems are related to several other plant models. As shown by Prusinkiewicz and Lindenmayer [52, 
chap. 2], parametric L-systems can reproduce the tree models developed by Aono and Kunii [1], which 
in turn were based on models by Honda [29]. Françon [17] observed that L-systems can also capture the 
models of tree architecture classified by Hallé, Oldeman, and Tomlinson [26], and the AMAP models 
originated by de Reffye and his collaborators (for example, see [8]). Orth [48] constructed stochastic L-
systems that approximately emulate the particle-system models of trees and grass proposed by Reeves 
and Blau [56] (Plate 9). Further analysis is needed to establish detailed relationships between all these 
models.
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4.2 Branching Structures with Exogenous Control

While L-systems do not capture, in principle, the exogenous control mechanisms (the models are not 
"sighted"), such mechanisms were included in a number of other models of branching structures. 
Historically, the first model was proposed in 1967 by Cohen [6], who considered the development of a 
two-dimensional branching structure guided by a continuous "density field." The gradient of the density 
function indicated the least crowded regions available for the apical growth of each branch. Cohen 
suggested that his model may approximate the venation patterns in leaves, and the growth and branching 
of neural axons. A related model of the axon growth was proposed by Gierer [21]. Bell [3] and Ford [14] 
investigated idealized models of branching structures that included a mechanism for aborting the 
development of modules surrounded by an excess of neighbors. Honda, Tomlinson, and Fisher [30] used 
a similar technique to capture branch interactions in the trees Terminalia catappa and Cornus 
alternifolia. An interesting aspect of their study was a comparison of the exogenous limitation of 
branching (by proximity to other branches) with an endogenous mechanism (accumulation of regulatory 
substances propagating through the growing structure). The inhibition of branch production due to local 
overcrowding was also included in a model of Pinaceae by Ford, Avery, and Ford [13]. A model of 
treelike structures that developed according to the amount and direction of incoming light was proposed 
by Kanamaru and Takahashi [33]. This model generated fairly realistic crown shapes, thus illustrating 
the crucial impact of light on tree morphogenesis. Bell [4] outlined a model of clover, which integrated 
exogenous and endogenous control factors. Growth of buds was controlled by photosynthate exported 
from leaflets, but leaflets failed to produce photosynthate if they were shaded by other leaflets. Bell 
noted that the outcome of the simulation was difficult to predict, and simulation played an important role 
in understanding the resulting form. Combinations of exogenous and endogenous factors were 



subsequently incorporated in a comprehensive model of poplar trees [55]. Prusinkiewicz and 
McFadzean [54] and MacKenzie [38] reported preliminary results on incorporating exogenous control 
mechanisms into L-systems. The captured phenomena included collisions between pairs of branches, the 
branches and the environment, the removal of leaves shaded by other leaves and branches, and the 
response of plants to trimming. This work may lead to practical applications in the modeling of gardens 
for landscape design purposes (Plate 10). Recent surveys of models of plants have been given by Fisher 
[11] and Room, Maillette, and Hanan [58].

4.3 Map L-Systems

Map L-systems [37] extend the expressive power of L-systems beyond branching structures to graphs 
with cycles, called maps, representing cellular layers. Their geometrical interpretation is more difficult 
than that of branching structures, because the presence of cycles makes it impossible to assign metric 
properties to the model using local rules. For example, the angles between the edges of a quadrilateral 
cycle must sum to 360° and, therefore, cannot be specified independently from each other. Fracchia, 
Prusinkiewicz, and de Boer [16] (see also [52, chap. 7]) proposed a physically based solution to this 
problem. The cells are assumed to have physical properties, osmotic pressure and wall tension, and they 
form a final configuration by mechanically pushing each other until an equilibrium is reached.

Map L-systems have been successfully applied to model fern gametophytes [7, 52]. For example, Plates 
11 and 12 compare a microphotograph and computer-generated images of the fern thallus Microsorium 
linguaeforme. The natural and the simulated shapes look alike, which supports the hypothesis that the 
timing and orientation of cell divisions are the dominant factors determining the global thallus shape.
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Map L-systems with geometric interpretation operate by first establishing the neighborhood relations 
between the cells, then assigning geometric parameters to the resulting graph. This approach is 
biologically justified in multicellular plant structures, because plant cells are tightly cemented together, 
but is inappropriate in models of animal tissues, because animal cells can move with respect to each 
other. A model of morphogenesis addressing this problem is described next.

4.4 Mobile Cells in a Continuous Medium



Fleischer and Barr [12] proposed an extensible simulation framework for studying morphogenesis that 
focused on the generation of connectivity patterns during neural development. Their model consists of 
discrete cells embedded in a continuous substrate. The actions of the cells are divided into continuous 
processes (grow, move) and discrete events (divide, create a dendrite, die). The cells move in response 
to physical forces and interact with other cells and the substrate through mechanical, chemical, and 
electrical means. Internally, the activity of each cell is governed by a set of differential equations that 
depend on the cell's state and the local environment. These equations represent the "genetic information" 
of the cell and describe the changes to an array of variables controlling the cell's behavior (movements, 
growth, divisions). The substrate acts as a medium in which chemical substances diffuse, dissipate, and 
enter into reactions. A sample frame from a simulation carried out in this environment is shown in Plate 
13. The yellow cells appear first, then some of them differentiate into blue cells. The blue cells grow and 
gradually form a connected skeleton.

Map L-systems and the Fleischer-Barr model present opposite approaches to the definition of 
multicellular structures. In map L-systems, grammar-based rules specify a model's topology, which 
subsequently determines its geometry. The cells cannot move with respect to each other. On the other 
hand, in the Fleischer-Barr model, cell movements determine their relative positions; the resulting 
clusters of adjacent cells indirectly specify topological properties of the emerging structure. The work of 
Mjolsness, Sharp, and Reinitz [46] presents a step toward a synthesis of both approaches: a model in 
which spatial relationships between the cells and grammar-based productions can be combined to 
specify dynamic changes in system configuration.

Although the Fleischer-Barr model is directed at the study of morphogenesis, it may also provide a 
unifying framework for considering other phenomena in which autonomous agents move in space and 
interact. In the computer graphics context, these include behavioral animation, exemplified by Reynolds' 
[57] model of flocks, herds, and schools, and by Wejchert and Haumann's [69] model of leaves flying in 
the air.

5 Conclusions

This paper presented a survey of selected models of morphogenesis that use computer graphics 
techniques to visualize the results of simulations. The models were divided into two main classes, space- 
and structure-oriented, and were further characterized from the viewpoint of information flow between 
the components of the developing structures. The space-oriented models capture the flow of information 
in the medium but usually have only limited capability to describe expansion of the medium and of the 
structure embedded in it: Growth is limited to the boundary. The structure-oriented models, on the other 
hand, can simulate the expansion of the whole structure, but they do not inherently capture the 
information flow through the medium. The selection of the best approach is an important part of 
modeling a given phenomenon, as described by Segel [59, p. xi]: "A good mathematical model—though 
distorted and hence "wrong," like any simplified representation of reality—will reveal some essential 
components of
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complex phenomenon. The process of modeling makes one concentrate on separating the essential from 
the inessential.''

In some cases, similar patterns or developmental sequences can be generated by fundamentally different 
models. For example, the Maltese crosses shown in Figure 3 were generated using a cellular automaton 
that explicitly detected and eliminated collisions between branches, but exactly the same pattern can be 
generated using a context-free L-system. The pigmentation pattern of an Oliva shell shown in Plate 2 
was generated using a reaction-diffusion model, but similar patterns can be obtained using cellular 
automata and context-sensitive L-systems. Lindenmayer [34] proposed to address such equivalences in a 
formal way:

In view of the large number of possible models which give rise to similar morphogenetic patterns, the most 
important problem is that of narrowing down the set of possibilities. This can be ultimately done on the basis of 
experimental evidence only. But a better theoretical understanding of equivalence relationships among models 
of different types would help considerably to sharpen the questions asked in the experiments.

A formal theory of pattern complexity would be an important step in this direction. Traditional measures 
of complexity, such as the time and space needed by a Turing machine to execute an algorithm, fail to 
quantify the flow of information between components of a developing pattern or structure. Therefore, a 
more specialized theory is needed to evaluate formally the alternatives and provide measurable criteria 
for selecting the most plausible model of an observed phenomenon. An interesting feature of this 
methodology is that computer science is being applied to study processes taking place in nature. Gruska 
and Jürgensen [25] comment, "'Computer science' should be considered as a science with aims similar to 
those of physics. The information processing world is as rich and as important as the physical world for 
mankind."
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Abstract Behavior-oriented Artificial Intelligence (AI) is a scientific discipline that studies how behavior of agents 
emerges and becomes intelligent and adaptive. Success of the field is defined in terms of success in building physical 
agents that are capable of maximizing their own self-preservation in interaction with a dynamically changing 
environment. The paper addresses this Artificial Life route toward AI and reviews some of the results obtained so far.

1 Introduction

For several decades, the field of Artificial Intelligence (AI) has been pursuing the study of intelligent behavior using 
the methodology of the artificial [104]. But the focus of this field and, hence, the successes have mostly been on 
higher-order cognitive activities such as expert problem solving. The inspiration for AI theories has mostly come from 
logic and the cognitive sciences, particularly cognitive psychology and linguistics. Recently, a subgroup within the AI 
community has started to stress embodied intelligence and made strong alliances with biology and research on 
artificial life [59]. This is opening up an "artificial life route to artificial intelligence" [112], which has been 
characterized as Bottom-Up AI [19], the Animat approach [133], Behavior-based AI [108], or Animal Robotics [75]. 
These terms identify a loose network of engineers and biologists who share the common goal of understanding 
intelligent behavior through the construction of artificial systems. The researchers also share a growing number of 
assumptions and hypotheses about the nature of intelligence. In view of the strong links with biology and complex 
systems theory, the research has so far received more attention in the Artificial Life (AL) community than in the Al 
field itself.

The aim of this paper is to review this approach and identify some major unresolved issues. Given that substantial 
engineering efforts and nontrivial experimentation is required, the first solid experimental and technical results have 
only recently begun to appear. Good sources for tracking the field are the conferences on the simulation of adaptive 
behavior [79,80] and the associated journal [102], the conferences on AL [30,59,60,124], and the associated journal 
[4]. There are also occasional contributions to international conferences on Ai (such as International Joint Conference 
on Artificial Intelligence [IJCAI], American Association for Artificial Intelligence [AAAI], or European Conference 
on Artificial Intelligence [ECAI]), neural networks (Neural Information Processing Society Conference [NIPS]), or 
robotics (Institute of Electronic and Electrical Engineers Conference [IEEE]). Reports of some milestone workshops 
have been published [65,112,113,123].

Section 2 of the paper delineates the AL approach to AI. Section 3 identifies the fundamental units of this approach, 
which are behavior systems. Section 4 and 5 focus on contributions toward a central theme of AL research, which is 
the origin
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of complexity through emergent functionality. A short review of some other issues concludes the paper.

2 Delineating the Field

2.1 The Subject Matter Is Intelligent Behavior

The phenomena of interest are those traditionally covered by ethology and ecology (in the case of animals) or 
psychology and sociology (in the case of humans). The behavior by an individual or a group of individuals is studied, 
focusing on what makes behavior intelligent and adaptive and how it may emerge. Behavior is defined as a regularity 
observed in the interaction dynamics between the characteristics and processes of a system and the characteristics and 
processes of an environment [106]. Behavior is intelligent if it maximizes preservation of the system in its 
environment. The main emphasis is not on the physical basis of behavior, as in the case of neural network research, 
but on the principles that can be formulated at the behavioral level itself. An example of a theory at the behavioral 
level is one that explains the formation of paths in an ant society in terms of a set of behavioral rules without reference 
to how they are neurophysiologically implemented [91]. Another example is a study of how certain behavioral 
strategies (such as retreat when attacked) and their associated morphological characteristics are evolutionary stable 
[72].

Given this emphasis on behavior, the term behavior-oriented seems appropriate to distinguish the field, particularly 
from the more knowledge-oriented approach of classical AI. It will be used in the rest of the paper.

2.2 The Methodology Is Based on Building Artificial Systems

Scientists traditionally construct models in terms of a set of equations that relate various observational variables and 
hypothesized theoretical variables. Technological advances in the second half of this century have resulted in two 
additional types of models:

•  Computational models: These consist of a process-oriented description in terms of a set of data structures and 
algorithms. When this description is executed, that is, the algorithm is carried out causing the contents of the data 
structures to be modified over time, phenomena can be observed in the form of regularities in the contents of the data 
structures. If these synthetic phenomena show a strong correspondence with the natural phenomena, they are called 
simulations, and the process descriptions constitute a theory of the natural phenomena.

• Artificial models: One can also construct a physical device (an artifact) whose physical behavior gives rise to 
phenomena comparable to the natural phenomena in similar circumstances. The device will have components with a 
particular structure and functioning that have been put together in a particular way. The design and implementation of 
these components and their mode of combination constitutes another possible way to theorize about the phenomena.

Computational models and artificial models, or what Pattee [92] calls simulations and realizations, must be clearly 
distinguished. For example, it is possible to build a computational model of how a bird flies, which amounts to a 
simulation of the environment around the bird, a simulation of the aerodynamics of the body and the wings, a 
simulation of the pressure differences caused by movement of the wings, etc. Such a model is highly valuable but 
would, however, not be able to fly. It is forever locked in the data structures and algorithms implemented on the 
computer. It flies only in a virtual world. In contrast, one could make an artifact in terms of physical components (a 
physical
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body, wings, etc.). Such an artifact would only be viewed as satisfactory if it is able to perform real flying. This is a 
much stronger requirement. Very often, results from simulation only partially carry over to artificial systems. When 
constructing a simulation, one selects certain aspects of the real world that are carried over into the virtual world. But 
this selection may ignore or overlook essential characteristics that play a role unknown to the researcher. An artificial 
system cannot escape the confrontation with the full and infinite complexity of the real world and is, therefore, much 
more difficult to construct.

The term artificial in "artificial life" (and also in "artificial intelligence") suggests a scientific approach based on 
constructing artificial models. The methodological steps are as follows: A phenomenon is identified (e.g., obstacle 
avoidance behavior), an artificial system is constructed that has this as competence, the artificial system is made to 
operate in the environment, the resulting phenomena are recorded, and these recordings are compared with the 
original phenomena. Potential misfits feed back into a redesign or reengineering of the artificial system.

Although AI is sometimes equated with the simulation of intelligent behavior, this is too narrow an interpretation. The 
goal is to build artifacts that are "really" intelligent, that is, intelligent in the physical world, not just intelligent in a 
virtual world. This makes unavoidable the construction of robotic agents that must sense the environment and can 
physically act upon the environment, particularly if sensorimotor competences are studied. This is why behavior-
oriented AI researchers insist so strongly on the construction of physical agents [21,130]. Performing simulations of 
agents (as in Beer [15]) is, of course, an extremely valuable aid in exploring and testing out certain mechanisms, the 
way simulation is heavily used in the design of airplanes. But a simulation of an airplane should not be confused with 
the airplane itself.

2.3 Behavior-Oriented Al Is Strongly Influenced by Biology

We have already identified two key ingredients of the behavior-oriented approach: the study of intelligent behavior, 
and the methodology of constructing artificial systems. The third ingredient is a strong biological orientation. 
Intelligence is seen as a biological characteristic, and the "core of intelligence and cognitive abilities is [assumed to 
be] the same as the capacity of the living" ([124], backcover).

The biological orientation clearly shows up in the way intelligence is defined. The "classical" AI approach defines 
intelligence in terms of knowledge: A system is intelligent if it maximally applies the knowledge that it has (cf. 
Newell's principle of rationality [87]). The behavior-oriented approach defines intelligence in terms of observed 
behavior and self-preservation (or autonomy) (see, e.g., [76,124]). It is based on the idea that the essence of biological 
systems is their capacity to continuously preserve and adapt themselves [71]: The behavior of a system is intelligent to 
the extent that it maximizes the chances for self-preservation of that system in a particular environment.

The drive toward self-preservation applies to all levels of complexity: genes, cells, multicellular structures, plants, 
animals, groups of animals, societies, species. Behavior-oriented AI focuses upon the behavior of organisms of the 
complexity of animals. Systems of this complexity are called agents. When several of them cooperate or compete, we 
talk about multiagent systems.

In order to explain how a system preserves itself even if the environment changes, adaptivity and learning are 
corollary conditions of viable intelligent agents: A system is capable of adapting and learning if it changes its 
behavior so as to continue maximizing its intelligence, even if the environment changes.

The biological orientation also shows up in a focus on the problem of how complexity can emerge. The origin of order 
and complexity is a central theme in biology [53] and is usually studied within the context of self-organization [95] or 
natural selection [16].
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Behavior-oriented AI research is focusing on the concepts of emergent behavior and emergent functionality as a 
possible explanation for the emergence of functional complexity in agents. These concepts will be discussed in more 
detail later. A preliminary definition is as follows: A behavior is emergent if it can only be defined using descriptive 
categories that are not necessary to describe the behavior of the constituent components. An emergent behavior leads 
to emergent functionality if the behavior contributes to the system's self-preservation and if the system can build 
further upon it.

Behavior-oriented AI studies the origin of complexity at different levels: from components and complete agents to 
multiagent systems. Systems at each level maximize their self-preservation by adapting their behavior so that it comes 
closer to the optimal. Coadaptation ensures that different elements at one level contribute to the optimality of the 
whole. At every level there is cooperation and competition: Different agents cooperate and compete inside a 
multiagent system. Different behavior systems cooperate and compete inside the agent. Different components 
cooperate and compete to form coherent behavior systems. So the ingredients of cooperation, competition, selection, 
hierarchy, and reinforcemnt, which have been identified as crucial for the emergence of complexity in other areas of 
biology [59], are found at the behavioral level, making it possible to carry over results from other biological 
disciplines to behavior-oriented Al and vice versa.

All of the elements of the previous definitions for intelligence, adaptivity, and emergence can be quantitatively and 
objectively established. We can quantify the aspects of the environment that act as pressures on the system 
considered, the success in self-preservation, the optimality of particular behaviors with respect to their contribution to 
self-preservation, and the success of adaptation and learning to improve this optimality. All this is illustrated in 
McFarland and Boesser [76]. We can also quantitatively identify the onset of emergence once a suitable mathematical 
framework exists for defining the notion of a minimal description. An example of such a framework can be found in 
Chaitin's work on algorithmic complexity. (See the discussion in Nicolis and Prigogine [89].) The objective nature of 
these definitions makes them preferable to those relying on the subjective assignment of knowledge or on subjective 
criteria of similarity to human intelligence as in the Turing Test.

2.4 Behavior-Oriented AI is Complementary to Other Approaches to AI

The behavior-oriented approach is complementary to the currently dominating trend in Al (also known as the classical 
approach), which is almost exclusively concentrated on the problems of identifying, formalizing, and representing 
knowledge [38]. The emphasis on knowledge leads almost automatically to a focus on disembodied intelligence. 
Classical AI systems, therefore, do not include a physical body, sensing, or acting. If intelligent robots have been 
considered (as in Nilsson [90]), sensing and action has been delegated to subsystems that are assumed to deliver 
symbolic descriptions to the central planning and decision-making modules. Moreover, knowledge-oriented theories 
do not include environmental pressures on the self-preservation of the agent, and the role of adaptivity and emergence 
is taken over by the programmer. However, the claim (made, e.g., in Maes [66]) that the classical, knowledge-oriented 
approach works only for "simulated toy problems" and makes too many simplifying assumptions (e.g., static 
environments, single tasks, etc.) is simply not true. Objective results achieved in knowledge engineering for large-
scale, extremely challenging real-world problems (like the assignment of train engines and personnel to routes taking 
into account a large number of possibly conflicting constraints, or the diagnosis of printed circuit boards assembled in 
digital telephone switch boards) cannot and should not be dismissed.

The behavior-oriented approach is also complementary to the artificial neural network approach, which is based on an 
even more radical bottom-up attitude because it
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focuses on the physical basis of behavior and hopes that this is sufficient to explain or synthesize intelligence [56], 
that is, that no separate behavioral level is necessary. The distinction between the two fields is of course a matter of 
degree. Behavior-oriented researchers heavily make use of neural network techniques to implement certain aspects of 
an overall design, and some neural network researchers are beginning to consider the problem of building complete 
agents (cf. Edelman's NOMAD [34]).

There are obviously strong ties between behavior-oriented AI and robotics, because the construction of physical 
agents is seen as a condition sine qua non for applying the method of the artificial properly. But the two fields should 
not be equated. The goal of robotics is to identify, design, and engineer the most reliable and most cost-effective 
solution for a sensorimotor task in a particular, usually fixed and known, environment [17]. Behavior-oriented AI uses 
the tools of roboticists to study biological issues, but very different criteria for success apply.

2.5 The Rest of the Paper Focuses on Emergence

A review of the field can be organized along several lines. One way would be to look at the progress toward the 
achievement of specific competences, for example, the different approaches for "navigation towards a target": using 
potential fields [7], cognitive maps with landmarks [70], phonotaxis [129], global reference frames [86], pheromone 
trails or agent chains [41], and so on. Another approach would be to review the large amount of work on building 
technical hardware and software platforms that now make it possible to execute experiments easily and at low cost 
[31,35,50]. This technical work is in some way a revival of earlier cybernetics work by Walter [128] and Braitenberg 
[18] but now with better hardware and more advanced software. Yet another way is to look at progress on the 
theoretical questions outlined earlier, for example, the definition and use of optimality criteria [76] or the development 
of quantitative behavioral descriptions using techniques from complex systems theory [89].

These overviews would all be valuable but require much more space than available here. Instead, we will focus on 
how behavior-oriented AI may contribute to the field of AL as a whole, and more specifically to its central research 
theme, which is the origin of complexity. The focus on the interaction between physical agents and the world through 
sensing and effecting introduces a special perspective that is not found in other AL work. The emergence of 
complexity must come through the dynamics of interacting with an infinitely complex, dynamically changing, real 
world and not only through the internal dynamics as in the case of cellular automata, for example.

In order to limit further the scope of the paper, we will only focus on how the behavior of a single agent is established. 
There is a lot of fascinating work on multiagent systems, and often it is not even possible to study single agents 
without taking other agents into account. Nevertheless, a review of work on multiagent systems would have doubled 
the size of the present paper.

3 Behavior Systems

When one is studying multiagent systems (like ant societies), the units of investigation are clearly visible. But the 
units causing the behavior of a single agent are not directly observable. Sensors, neurons, networks of neurons, 
propagation processes, and actuators are the obvious building blocks. But many of these must work together and 
interact with structures and processes in the environment in order to establish a particular behavior, and the same 
components may dynamically be involved in many different behaviors. This is the reason why it is so difficult to 
bridge the gap between neurology and psychology.

  



Page 80

There is a growing consensus in behavior-oriented AI research that behavior systems be considered as the basic units 
[19]. Other terms for the basic behavioral unit are task-achieving module [68] or schema [5].

To define the notion of a behavior system, we have to make a distinction between a functionality, a behavior, a 
mechanism, and a component:

•  Functionalities: A functionality is something that the agent needs to achieve, for example, locomotion, recharging, 
avoiding obstacles, finding the charging station, performing a measurement, signaling another agent. Other terms used 
for functionality are task, goal, and competence. Functionalities belong to the descriptive vocabulary of the observer.

•  Behaviors: A behavior is a regularity in the interaction dynamics between an agent and its environment, for 
example, maintaining a bounded distance from the wall, or having a continuous location change in a particular 
direction. One or more behaviors contribute to the realization of a particular functionality. Behaviors belong also to 
the descriptive vocabulary of the observer. By looking at the same agent in the same environment, it is possible to 
categorize the behavior in different ways. This does not mean that behavior characterization is subjective. It can be 
defined and measured fully objectively.

•  Mechanisms: A mechanism is a principle or technique for establishing a particular behavior, for example, a 
particular coupling between sensing and acting, the use of a map, an associative learning mechanism.

•  Components: A component is a physical structure or process that is used to implement a mechanism. Examples of 
components are body parts, sensors, actuators, data structures, programs, communication hardware, and software.

A behavior system is the set of all mechanisms that play a role in establishing a particular behavior. The structures of a 
behavior system that can undergo a change due to learning are usually called behavior programs. Observed behavior 
will, of course, depend almost as much on the state of the environment as on the mechanisms and components of the 
agent. Often the name of the behavior system indicates the functionality to which it contributes. But strictly speaking, 
we should be more careful. For example, there could be a "homing in" functionality achieved by a "zigzag behavior" 
toward a goal location that is the result of a "phototaxis mechanism." Phototaxis means that the goal location has a 
light source acting as beacon and that the robot uses light sensors to minimize the distance between itself and the 
beacon. The reason why we need to be careful in mixing functional and behavior terminology is because the same 
behavior system may contribute to different functionalities.

Behavior systems may be very simple, implementing direct reflexes between sensing and action (as in Brooks [19]). 
They may also be more complex, building up and using cognitive world maps (as in Mataric [70]). When enough 
complexity is reached, a large collection of interacting behavior systems may resemble a society of interacting agents 
[84]. Each behavior system is most adapted to a particular class of environments. This environment can be 
characterized in terms of a set of constraints [48] or cost functions [75].

Note that a behavior system is a theoretical unit. There is not a simple one-to-one relation between a functionality, a 
behavior, and a set of mechanisms achieving the behavior. The only thing that has physical existence are the 
components. This is obvious if emergent functionality comes into play (see sections 4 and 5). On the other hand, 
behavior systems form a real unit in the same way that a society forms a real unit.
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Table 1. Comparison Between Cells and Behavior Systems.

 Cell Behavior System

 Biochemical processes Transformation processes

 Biochemical structures Electrical signals and states

 Genes Behavior programs

 Incoming material Energy transduced by sensors

 Outgoing material Energy transduced by actuators

 Adaptation to cell environment Adaptation to external environment

The interaction between the different mechanisms and the success in the behavior to achieve tasks that contribute to 
the agent's self-preservation give a positive enforcement to all the elements forming part of a behavior system.

3.1 Behavior Systems Should Be Viewed as Living Systems

In view of the biological orientation discussed earlier, it is not surprising that many behavior-oriented AI researchers 
view behavior systems very much like living systems. This means that behavior systems are viewed as units that try to 
preserve themselves. An analogy with cells that are the smallest biological autonomous units helps to make this 
concrete (Table 1). A cell consists of a group of biochemical structures and processes. The processes are guided by 
genes, which are themselves represented as molecular structures inside the cell. The processes take place in 
interaction with material outside the cell that is passing through the cell membrane in both directions. Cells may 
change their internal structure and functioning, to a certain limit, and adapt to the surrounding environment [97].

A behavior system consists also of a set of dynamic and static structures. The structures include physical components 
like sensors and body parts, as well as networks, temporary states, and electrical signals propagating in these 
networks. The internal processes combine and transform signals. These transformation processes are guided by a 
behavior program that is itself a (distributed) physical structure and can be subjected to processes that change it. The 
transformation processes are partially caused by energy coming from the outside through sensors that convert this to 
internal energy, and they produce signals impacting the actuators that convert internal energy to mechanical energy so 
that there is a continuous inflow and outflow of energy to the environment. Behavior systems that change their 
internal structure and functioning are better adapted to the environment and may better work together with other 
behavior systems. The main criterion for survival of a behavior system is its utility for the complete agent.

This comparison between cells and behavior systems illustrates several points. (a) It emphasizes in the first place that 
the components of behavior systems are physical systems and that behavior is a physical phenomenon. There are 
extreme functionalist tendencies in AI (and also in AL) that equate intelligence or living with disembodied 
abstractions, but this is not intended here. (b) The behavior programs and the transformation processes can be 
interpreted in information-processing terms, but that is not necessary and may occasionally be harmful [107]. (c) The 
transformation processes can be implemented as computational processes but then only if we remind ourselves that 
computational processes are physical processes, which happen to be instantiated in a physical system of a certain 
organization that we call a computer.

The comparison also emphasizes the dynamical aspects. Like a cell, a behavior system is continuously active and 
subjected to inflow and outflow of energy. Like a cell, a behavior system adapts continuously to changes in the 
environment. Moreover,
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Figure 1. Typical robotic agent used in behavior-oriented AI experiments.
The robot has a ring of infrared sensors and a ring of bumper sensors. It has
additional light sensors and microphones. There is a translational motor for
forward/backward movement and a rotational motor for turning left or right

The agent has a central PC-like processor and dedicated hardware for
signal processing and interdevice communication.

comparing behavior programs with genes immediately suggests the use of selectionist principles as a way to arrive at 
new behavior systems without prior design (see section 5).

A concrete example for obstacle avoidance in an artificial agent may be helpful to clarify the discussion (Figure 1). 
Obstacle avoidance can be achieved by a behavior system that maintains a certain distance from obstacles. The 
components of this behavior system include a left and right infrared sensor, which emit infrared light and capture the 
reflection coming from obstacles; a translational and rotational motor, which are connected with the wheels and can 
steer the robot left or right; and a behavior program that causes processes to transform the changes in detected infrared 
reflection into changes in the motor speeds. As already suggested in Braitenberg [18], obstacle avoidance can be 
achieved by a direct coupling between infrared reflection and rotational motor speed. If the amount of reflection 
increases on one side, then the rotational motor speed going in the same direction increases. In a real-world 
environment, adaptation is necessary because infrared reflection depends on changing environmental circumstances 
(e.g., amount of background infrared in the environment or battery level). Adaptation can here be achieved by 
incorporating structures that act as ''weights" on the effect of increased reflection. When the weights become higher, 
less reflection will have a greater impact. The weights can be subject to change depending on environmental 
conditions using Hebbian learning mechanisms (see section 5).

3.2 Some Guidelines Are Known for Designing Behavior Systems

At the moment, the design of behavior systems for artificial agents is very much an art, and the complexity reached so 
far is still limited. But there are some strong tendencies among practitioners suggesting a set of design guidelines. 
Following are some examples of these guidelines:
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Guideline 1: Make behavior systems as specific as possible. One of the important lessons from classical Al research is 
the specificity-generality trade-off. More specific knowledge, that is, knowledge more strongly tailored to the task and 
the domain, is more effective than generic mechanisms, such as general problem solvers or universal representation 
schemes. Success in expert systems has depended almost entirely on the encoding of situation-specific knowledge. 
This trade-off also applies to behavior systems. Rather than trying to build a general-purpose vision module for 
example, it is much more effective to tailor the sensing and actuating to a particular task, a particular domain, and a 
particular environment. Of course, such a solution will not work outside its "niche." But it will perform well and in a 
very cost-effective way, as long as the conditions are appropriate. A good illustration of this design guideline is a 
visual navigation system developed by Horswill [49], who has shown that by making a set of strong assumptions 
about the environment, the complexity of visual interpretation can be reduced drastically. One example is the 
detection of the vanishing point, which in theory can be done by identifying edges, grouping them into line segments, 
intersecting the segments, and clustering on the pairwise intersections. Horswill shows that each of these activities can 
be highly optimized. For example, although in general edge detection is complex and computationally intensive, a 
simple algorithm based on a gradient threshold will do, if the edges are strong and straight. This work goes in the 
direction of the theory of visual routines [122], which has abandoned the idea that there is a general purpose vision 
system and proposes instead a large collection of special purpose mechanisms that can be exploited in particular 
behavior systems.

Specialization and the pressure to act in real time suggests a horizontal organization, as opposed to a vertical or 
hierarchical organization, typical for more classical approaches [21]. In a vertical organization, the different modules 
perform specific functions like vision, learning, world representation, communication, or planning. This leads to a 
sense-think-act cycle that does not guarantee real-time response when needed. In a horizontal organization, every 
module combines all these functions but specialized and optimized with respect to a particular behavior in a particular 
environment. The relation between task and behavior thus becomes much more indirect. This is reminiscent of 
horizontal organizations now becoming more common in corporations [93].

Guideline 2: Exploit the physics. Surprisingly, it is sometimes easier to achieve a particular behavior when the physics 
of the world, the morphology of the body, and the physics of the sensors and the actuators of the agent are properly 
exploited [21]. This is already the case for obstacle avoidance. A robot may be equipped with bumpers that cause a 
(sudden) slowdown and an immediate retraction in a random direction. This may get the robot out of situations that 
appear to be dead-end situations in simulations. Another good illustration of this design principle can be found in 
Webb [129], who has developed a model in the form of an artificial system for navigation based on the phonotaxis 
behavior of crickets. Webb points out that the determination of the direction in crickets is not based on intensity or 
phase differences, which would require complex neural processing, but on an extra tracheal tube that transfers 
vibration from one ear to the other. The length and characteristics of this tube are such that the indirectly arriving 
sound and the directly arriving sound interfere to give the final intensity, which varies strongly with the direction of 
the sound. This is an example where "sensory mechanisms exploit the specificity of the task and the physics of their 
environment so as to greatly simplify the processing required to produce the right behaviour" [129, p. 1093]. Many 
more biological examples of how physics may "solve" problems, so that additional processing can be minimized, can 
be found in Alexander [3] and Vogel [127].

Guideline 3: Do not think of sensing and acting in terms of symbol processing. The
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classical AI approach has been criticized because the symbols and symbol structures on which planning and decision 
making are based are not grounded in the real world [43]. The problem is that unequivocally decoding sensory data 
into a symbol and turning a command without error into its intended action may be unsolvable—not in principle but in 
practice. Behavior-oriented AI cannot escape the grounding problem. But a novel solution is proposed. Rather than 
trying hard to establish a better correspondence between symbols (like distance or turn with a given angle) and the 
physical properties of the robot in the environment, it is also possible to dispense altogether with the idea that a 
symbolic interpretation is necessary [107]. For example, rather than having a rule of the sort "if the distance is greater 
than n, then turn away at a certain angle a," a dynamical coupling between infrared reflection and path deflection, 
implemented, for example, as differences between left and right motor speed, can be set up. This coupling is designed 
without reference to concepts like "distance" and ''turn away." Therefore, it is truly subsymbolic.

Guideline 4. Simple mechanisms may give rise to complex behavior. Another strong tendency in the field is to make 
the mechanisms underlying a behavior system as simple as possible and to rely strongly on the interactions between 
different mechanisms and the environment to get the required behavior. This theme underlies other work in AL as 
well and is related to the topic of emergence that is discussed more extensively in sections 4 and 5. This tendency to 
search for simple mechanisms is particularly strong in the dislike of complex "objective" world models [22]. The de-
emphasis of complex representations is shared by researchers criticizing cognitivism [125] and is related to the trend 
for situated cognition [115], which hypothesizes that intelligence is the result of simple situation-specific 
agent/environment mechanisms that are strongly adapted to moment-to-moment decision making. Some biologists 
have called this the TODO principle: Do whatever there is to do at a particular moment, instead of making complex 
representations and following elaborated plans [47].

It can be expected that many more design guidelines will become explicated as experience in building robotic agents 
continues. Some more extensive overviews can be found in Malcolm, Smithers, and Hallam [69]; Brooks [22]; Pfeifer 
and Verschure [94]; and Maes [66].

3.3 Different Approaches Are Explored for Designing the Behavior Programs

Although there seems to be a consensus in the field that behavior systems are appropriate units, different avenues are 
explored regarding the best way to design the underlying behavior programs. They fall roughly in four groups: neural 
network approaches, algorithmic approaches, circuit approaches, and dynamics approaches.

3.3.1 Neural Networks Approaches

Several researchers use artificial neural networks, in order to stay close to plausible biological structures [5,27,94]. 
This approach is strongly related to biological cybernetics and neuroethology [15]. A neural network consists of a set 
of nodes linked together in a network. Each node receives input from a set of nodes and sends activation as output to 
another set of nodes. Some inputs could come immediately from sensors. Some outputs are linked with actuators. The 
links between nodes are weighted. When the sum of the weighted inputs to a node exceeds a threshold, activation 
propagates to the output nodes. There are many variants of neural networks, depending on the type of propagation and 
the adaptation mechanism that is used for changing the weights [56]. Usually a single neural network (even with 
multiple layers) is not enough to build a complete robotic agent. More structure is needed in which different neural 
networks can be hierarchically combined. Several architectures and associated programming
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Figure 2. The augmented finite-state automata have a set
of internal registers, inputs and outputs, and a clock.

The automaton cycles through a set of states.

languages have been proposed. One of the best worked-out examples is reported by Lyons and Arbib [62]. It centers 
around the schema concept [7].

An advantage of neural network approaches is that they immediately incorporate a mechanism for learning. A 
disadvantage is that the global search space for an agent is too big to start from zero with neural network techniques. 
Much more initial structure must typically be encoded, which is sometimes difficult to express in network terms.

3.3.2 Algorithmic Approaches

Other researchers have stayed closer to the methods traditionally used in computer programming so that powerful 
abstraction mechanisms can be used to cope with the complexity of programming complete robotic agents. One of the 
best known examples is the subsumption architecture [19], which makes two fundamental assumptions: (a) behavior 
programs are defined algorithmically, and (b) there is a hierarchical but distributed control between different behavior 
systems based on subsumption relations.

The algorithmic descriptions in the subsumption architecture use a Turing-compatible formalism in the form of an 
augmented finite-state machine (Figure 2). An augmented finite-state machine has a set of registers that can hold 
discrete values. On a robot, some of the registers hold the most recent value obtained from sensors. Others contain 
action parameters to be sent as fast as possible to the actuators. An augmented finite-state machine also has a set of 
states in which the automaton can be. Operations consist of changing the contents of a register or moving to a new 
state. These operations can be controlled by first checking whether a condition on the state of the registers is true. An 
important feature of the finite-state machines used by Brooks is access to a clock. This introduces an additional kind 
of operation: wait for a certain period of time and resume operation after that. It gives a handle on the difficult 
problems in fine-tuning the temporal aspects of behavior.

In a single agent, there will be a collection of behavior systems whose behavior programs are defined in terms of 
augmented finite-state machines. The term subsumption refers to the way different behavior systems are made to 
operate together. It is assumed that in principle, each behavior system is self-controlled, that is, it is always active and 
moving through its different states conditioned by the incoming sensory signals. However, one behavior system may 
inhibit that inputs arrive at the automaton or that outputs have their effect. Inhibition is done by an explicit 
subsumption link that is under the control of the behavior system (Figure 3).
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Figure 3. Partial network of finite-state automata for the locomotion of a six-legged
robot The boxes are state variables. Boxes with a line in the bottom right corner are

finite-state automata. Alpha balance is another network Nodes marked "s"
establish a subsumption relation. For example, activation of "up leg trigger"

inhibits the inflow of "leg down'' to the "beta pos" automaton. Adapted from Brooks [19].

In a concrete agent, the number and complexity of the finite-state automata quickly grows to hundreds of states and 
registers. A higher-level language, known as the behavior language [20], has been designed to make the definition of 
large collections of behavior systems possible. Many of the low-level details of programming finite-state automata are 
removed, and consequently more complex applications can be tackled. The behavior language and the subsumption 
architecture have been implemented on various computational platforms (mostly of the 68000 family) in different 
robotic hardware structures.

The recognized advantages of the subsumption architecture are as follows: (a) A universal computational formalism is 
used that gives a high degree of freedom and expressability to the developer, and (b) subsumption allows the modular 
buildup of new competences by layering one behavior system on top of another.

Some of the disadvantages are (a) algorithmic descriptions are more difficult to acquire or adapt (although see the 
work on genetic programming by Koza [58] discussed in section 5); (b) an algorithmic specification makes it more 
difficult to get smooth behavior because conditions are expressed in terms of discrete thresholds; and (c) the 
subsumption relation works well for basic sensorimotor competence, like six-legged locomotion, but it seems weak to 
regulate the interaction of more complex behavior systems that cannot be fined-tuned in advance.

3.3.3 Circuit Approaches

A third approach stays closer to electrical engineering by assuming that behavior programs, in order to be as efficient 
as possible, should take the form of combinatorial circuits [2,100]. This approach potentially leads to direct hardware 
implementation using Very Large Scale Integration (VLSI). A combinatorial circuit consists of a set of components 
that perform a transformation from inputs to outputs. The outputs of one component may be inputs to one or more 
other components, thus forming a network. Each component is very simple, performing Boolean operations, equality 
tests, etc. On an autonomous robot, the inputs would be connected to sensory signals and the outputs to action 
parameters. Signals propagate through the network, thus relating sensing
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to action. A language (called REX) has been developed to describe circuits. Compilers and interpreters exist that 
allow REX-defined circuits to run on physical robots.

To make programming circuits more tractable, Rosenschein and Kaelbling [100] have developed a higher-level 
language that is based on a logical formalism known as situated automata. A translator has also been developed that 
transforms expressions expressed in this logical formalism into circuits.

A circuit approach has a number of advantages from an engineering point of view. For example, performance can be 
predicted in terms of propagation steps needed. However, the circuit is completely fixed at run-time, and it is less 
clear how continuous adaptation or the creation of new circuits can take place on-line.

3.3.4 Dynamics Approaches

Yet another approach is based on the hypothesis that behavior systems should be viewed as continuous dynamical 
systems instead of discrete computational systems as in the algorithmic approach. This dynamics approach has been 
put forward by a number of researchers (see, e.g., [107,114]). It is more in line with standard control theory, which is 
also based on dynamical systems [42]. Artificial neural networks are a special case of dynamical systems and can be 
incorporated easily in this paradigm.

An example of a worked-out dynamics architecture is described in Steels [114]. It supports the formulation of 
processes and their combination in the design of complete behavior systems. Each process establishes a continuous 
relationship between a set of quantities. The quantities are either sensory signals, action parameters, or internal states. 
A process is always active. A collection of processes can be described in terms of a set of differential equations. 
Because of the implementation on digital computers, the differential equations are turned into difference equations 
that can be directly implemented, similar to the way cellular automata are discreted versions of continuous systems 
[120]. Each process partially determines the change to a quantity enacted at the next time step, as a function of current 
values of the same or other quantities. At each computation cycle, all the changes are summed, and the values of all 
the quantities take on their new values. The cycle time depends on the speed of the processor and the number of 
processes. There is no addressable global clock, as in the subsumption architecture. The complexity of the agent will 
be bound by its computational power. When the cycle time becomes too slow, reactivity is no longer guaranteed.

A programming language, PDL, has been developed to make the implementation of behavior systems using this 
dynamics architecture more productive (Figure 4). The PDL compiler links with the necessary low-level software 
modules to handle sensory input and action parameter output. It maintains the different internal quantities and 
performs the basic cycle of determining all changes (by running the processes) and then summing and enacting the 
changes. PDL has been implemented on different PC-like hardware platforms for quite different robotic hardware 
structures.

A dynamics architecture approaches the problem of combining and coordinating different behavior systems 
differently from the subsumption architecture. Control is also distributed, but one behavior system can no longer 
influence another one through a subsumption link. Instead, each behavior system is active at all times, and the 
combined effect is added at the level of actions. For example, if one behavior system influences the motors strongly to 
go left and the other one weakly to go right, then there will be a left tendency. The unsupervised combination of 
different behavior systems poses no special problems when they are orthogonal. It also poses no problem when 
temporal relations are implicitly present. For example, an infrared-based obstacle avoidance behavior system will 
necessarily become active before a touch-based obstacle avoidance behavior system because the infrared sensors will 
"see" the obstacle earlier. Therefore 
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void down_to_defaultspeed (void)

{ 
    if (value(forward_speed) > 10)

        add_value (forvard_speed,-1);

}

void up_to_defaultspeed (void)

{ 
    if (value(forward_speed) < 10)

      addvalue(forward_speed,1);

} 

Figure 4. Process descriptions in PDL implementing a process network that will maintain 
he default forward speed at 10 by increasing or decreasing the speed in increments of 1.

no explicit control relations are needed. When behavior systems are not orthogonal or are not temporally ordered by 
the interaction dynamics, (partial) control of the actuators must take into account the fact that other behavior systems 
will have an impact at the same time. In these cases, the interaction must be regulated by structural coupling [71] or 
coadaptation: Behavior systems develop in the context of other behavior systems, and, hence, their internal structure 
and functioning reflects this context. More complex control situations require the introduction of motivational 
variables that causally influence behavior systems and have a dynamics on their own.

The advantages of a dynamics architecture follow: (a) The dynamical systems paradigm is closer to descriptions used 
in physics, biology, and control theory. This is an advantage because it makes it easier to carry over results from these 
fields (e.g., on adaptive processes). (b) Dynamic control leads in general to smoother behavior because it is not 
subject to sudden state changes due to discrete conditions. (c) Additive
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control does not enforce a layering. All behavior systems are at the same level. In many cases, it is easier to add 
behavioral competence than with a subsumption architecture. In some cases, it is more difficult because a structural 
coupling must be established.

Some of the disadvantages of a dynamics architecture follow: (a) Thinking in terms of dynamical systems instead of 
algorithms requires quite a shift from the viewpoint of developers who are used to algorithmic programming. Higher-
level abstractions still need to be developed. (b) The developer cannot explicitly control the timing of actions. This is 
an advantage because it removes one aspect of complexity. It is also a disadvantage because the problem of timing 
must be handled in different ways, for example, by restructuring the behavior systems so that there is as little 
cascading as possible, or by decomposing behavioral competences in other ways.

There is still quite some work needed on additive control structures, particularly for hierarchical behavior systems, 
that is, behavior systems that control a set of other behavior systems that are possibly internally temporally ordered. 
Work by Rosenblatt and Payton [99] and Tyrrell [121] shows the direction in which this is being explored.

These four different approaches to the design and implementation of behavior programs (neural networks, algorithms, 
circuits, dynamical systems) will undoubtedly be explored further in the near future, and new approaches may come 
up. In any case, all approaches need more high level abstractions to hide complexity and allow reuse of large chunks 
from one experiment to another.

4 Emergent Behavior

Agents can become more complex in two ways. First, a designer (or more generally a designing agency) can identify a 
functionality that the agent needs to achieve, then investigate possible behaviors that could realize the functionality, 
and then introduce various mechanisms that sometimes give rise to the behavior. Second, existing behavior systems in 
interaction with each other and the environment can show side effects, in other words, emergent behavior. This 
behavior may sometimes yield new useful capabilities for the agent, in which case we talk about emergent 
functionality. In engineering, increased complexity through side effects is usually regarded as negative and avoided, 
particularly in computer programming. But it seems that in nature, this form of complexity buildup is preferred. 
Emergent functionality has disadvantages from an engineering point of view because it is less predictable and appears 
less certain to a designer. Moreover, the side effects are not always beneficial. But for an agent operating 
independently in the world, it has advantages because less intervention from a designing agency is needed. In fact, it 
seems the only way in which an agent can autonomously increase its capability. This is why emergent functionality 
has become one of the primary research themes in behavior-oriented AI. It is also the research theme that has the most 
connections to other areas of AL.

4.1 Emergence Can Be Defined in Terms of the Need for New Descriptive Categories

Many researchers in the AL community have attempted to define emergence (see, e.g., [8,24,36,59,111]). For the 
present purposes, we will define emergence from two viewpoints: that of the observer and that of the components of 
the system.

From the viewpoint of an observer, we call a sequence of events a behavior if a certain regularity becomes apparent. 
This regularity is expressed in certain observational categories, for example, speed, distance to walls, changes in 
energy level. A behavior is emergent if new categories are needed to describe this underlying regularity that are not 
needed to describe the behaviors (i.e., the regularities) generated by the underlying behavior systems on their own. 
This definition is compatible with the one
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used in chemistry and physics (see, e.g., [88]). Thus, the regularities observed in the collective behavior of many 
molecules requires new categories like temperature and pressure over and above those needed to describe the motion 
of individual molecules. Whether a behavior is emergent or not does not change according to this definition, with 
respect to who acts as observer, nor is it related to an element of unpredictability or surprise. Moreover, it is not 
necessary that the two descriptions (the emergent behavior and the behavior of the individual components) are at 
different levels, although that is not excluded.

Emergence can also be defined from the viewpoint of the components implicated in the emergent behavior [111]. We 
can make a distinction between controlled and uncontrolled variables. A controlled variable can be directly influenced 
by a system, for example, a robot can directly control its forward speed, although maybe not with full accuracy. An 
uncontrolled variable changes due to actions of the system, but the system cannot directly impact it, only through a 
side effect of its actions. For example, a robot cannot directly impact its distance to the wall; it can only change its 
direction of movement, which will then indirectly change the distance.

We can also make a distinction between a visible variable and an invisible variable. A visible variable is a 
characteristic of the environment that, through a sensor, has a causal impact on the internal structures and processes 
and, thus, on behavior. For example, a robot may have a sensor that measures distance directly. Distance would then 
be a visible variable for this robot. An invisible variable is a characteristic of the environment, which we as observers 
can measure, but the system has no way to sense it, nor does it play a role in the components implicated in the 
emergent behavior. For example, the robot could just as well not have a sensor to measure distance.

For a behavior to be emergent, we expect at least that the regularity involves an uncontrolled variable. A stricter 
requirement is that the behavior (i.e., the regularity) involves only invisible variables. So, when a behavior is 
emergent, we should find that none of the components is directly sensitive to the regularities exhibited by the behavior 
and that no component is able to control its appearance directly.

A further distinction can be made between emergent behavior upon which the system does not build further, and 
semantic emergence [24] or second-order emergence [9], in which the system is able to detect, amplify, and build 
upon emergent behavior. The latter can only happen by operating on the behavior programs that causally influence 
behavior, similar to the way genetic evolution operates on the genes. The remainder of this section discusses first-
order emergence. Section 5 looks at semantic emergence.

4.2 The Most Basic Form of Emergent Behavior Is Based on Side Effects

The first type of first-order emergence occurs as a side effect when behavior systems are made to operate together in a 
particular environment (Figure 5).

Consider the task of wall following. The behavioral regularity needed for this task is to have a bounded distance 
between the agent and the wall. This regularity can be achieved in a directly controlled, nonemergent way, by 
measuring the distance and using feedback control to steer away or toward the wall. Note that in this case, the distance 
is required to describe the behavior causing wall following and that distance is a visible variable.

Maintaining a distance from the wall can be achieved in an emergent way by the simultaneous operation of two 
behavior systems (as demonstrated by Nehmzow, Smithers, & McGonigle [85] and in our laboratory). The first one 
achieves regular obstacle avoidance, for example, in terms of a dynamic coupling between infrared reflection and 
deflection of the path as described earlier. The second behavior system exhibits wall seeking. This behavior system 
maintains an internal variable c, which reflects "the motivation of making contact with the left wall." The variable c 
decreases to 0
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Figure 5. Left: Emergent behavior occurs as a side effect of the interaction between
behaviors and the environment. New descriptive categories are needed to describe

it. Right example for wall following resulting from the operation of the
obstacle- and wall-seeking behaviors.

Figure 6. Emergent wall following implemented by an obstacle
avoidance and a wall-seeking behavior system interacting

together within a particular environment The image is taken
from the ceiling and shows the robot arena. The path of
the robot is automatically detected through a camera.

when contact is made with the left wall (sensed by infrared reflection) and moves up otherwise. It influences the 
deflection of the forward motion path toward the wall. The higher is c, the stronger the deflection. The two behavior 
systems together implement an attraction and repulsion behavior that added up and in the presence of a (left) wall 
gives the desired (left) wall-following behavior (Figure 6). An analogous behavior system is needed for making 
contact with a right wall.
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Wall following is emergent in this case because the category "equidistance to the (left/right) wall" is not explicitly 
sensed by the robot or causally used in one of the controlling behavior systems.

Emergent behavior has two advantages compared to directly programmed behavior: (a) No additional structure is 
needed inside the agent to get additional capabilities. Therefore, we do not need any special explanations how the 
behavior may come about. (b) Emergent behavior tends to be more robust because it is less dependent on accurate 
sensing or action and because it makes less environmental assumptions. For example, the wall-following mechanism 
described previously continues to work even if the robot is momentarily pushed aside, if the wall is interrupted, or if 
the wall has a strong curvature. Emergent behavior usually has also disadvantages, for example, it is typically less 
efficient.

Here is a second example of emergent behavior. Suppose we want an agent that is able to position itself accurately 
between two poles that are part of a charging station. The charging station has an associated light source, and the 
agent has two light sensitive sensors. The agent starts with two behavior systems: one based on phototaxis resulting in 
a zigzag behavior toward the light source (and, therefore, the charging station) and one achieving obstacle avoidance 
by retracting and turning away when sensing an obstacle.

Because the agent may approach the charging station from any direction, it might seem that an additional positioning 
behavior is required, which makes sure that the agent enters the charging station between the two poles. However, a 
positioning behavior system is not necessary. The obstacle avoidance behavior causes retraction and turning away 
when the poles are hit. Because the robot is still attracted by the light source, it will again approach the charging 
station but now from a new angle. After a few trials, the robot enters the charging station as desired. The positioning 
behavior is emergent because position relative to the poles of the charging station is irrelevant to describe the behavior 
of the implicated behavior systems (obstacle avoidance and phototaxis). There is no separate structure in the agent 
that is measuring position with respect to the poles and causally influences motion based on this measurement. 
Nevertheless, the positioning behavior occurs reliably without any additional structure in the agent (Figure 7).

4.3 A Second Form of Emergent Behavior Is Based on Spatiotemporal Structures

A second case of (first-order) emergence is based on temporary spatiotemporal structures (Figure 8). These structures 
themselves emerge as a side effect of interactions between certain actions of the agent and the environment. Local 
properties of the temporary structure in turn causally influence the observed behavior. The temporary structure is also 
emergent in the same sense as before, that is, new descriptive categories are needed to identify the structure. These 
categories are neither needed to describe the behavior of the underlying behavior systems that are causing the 
structure to appear nor are they sensitive to the structure as a whole. Also the behavior that results from making use of 
the structure is emergent because new descriptive categories are required that play no causal role in the underlying 
behavior systems.

This phenomenon is most easily observed in multiagent systems but can also be used for establishing behaviors of a 
single agent. The classical example for multiagent systems is the formation of paths. It has been well studied 
empirically not only in ant societies [91] but also in many other biological multielement systems [10]. It is also well 
understood theoretically in terms of the more general theory of self-organization [89] The phenomenon has been 
shown in simulation studies [29,32,108] and recently on physical robots [14].
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Figure 7. Zigzag behavior toward light source and positioning
behavior between two poles of a charging station located at

the middle top of the figure. The positioning behavior is
achieved in an emergent way by the interaction of two-behavior
systems, one homing in on the light source through phototaxis

and the other performing touch-based obstacle avoidance.

Figure 8. A second type of emergence is based on the formation of an
emergent temporary structure that is then exploited by other behavior

systems to establish the new emergent behavior.

The temporary structure in the case of path formation in ant societies is a chemical pheromone gradient deposited in 
the environment. Ants are attracted to the pheromone and, therefore, have a tendency to aggregate along the path. 
Ants deposit the pheromone as they are carrying food back to the nest and are responsible for the pheromone gradient 
in the first place. The pheromone dissipates so that it will disappear gradually when the food source is depleted. This 
emergent temporary structure is the basis of a derived emergent behavior, namely the formation of a path, defined as a 
regular spatial relation among the ants (Figure 9). The path, as a global structure, is emergent because it is not needed 
to describe the behavior of the individual agents, and none of the agents recognize the fact that there is a path. The 
agents operate uniquely on local information of the pheromone gradient. Only the observer sees the
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Figure 9. Path formation in ant societies is a classical example of
emergent behavior due to the formation of a temporary structure.

The structure in this case is a chemical pheromone gradient
to which the ants are attracted.

Figure 10. Emergent phenomena usually involve a force that builds
up the phenomenon, a force that breaks it down, and an autocatalytic

process so that the temporary structure builds upon itself.

global path. The efficient transport of food benefits the multiagent system as a whole and, thus, contributes to its self-
preservation.

A difference with the examples discussed in the previous paragraph is that the emergent temporary structure sustains 
itself: As more ants are attracted to the pheromone concentration, there is a higher chance that they will carry back 
food and deposit more pheromone. This increases the concentration of pheromone, which will attract even more ants, 
and so on. So there are three forces in the system: buildup of the path (by depositing pheromone), breakdown (by 
dissipation), and autocatalysis (through the chance of increased build-up) (Figure 10). These forces are recognized as 
the essential ingredients for emergent temporary structures in general [59,111].

Emergent temporary structures have also been used in individual agents. For example, several researchers have 
explored the creation of gradient fields over analogical representations of the environment. The best known example 
are potential fields [6,71. A potential field is a dynamical temporary structure created over an analogical 
representation of the environment by various repulsion and attraction forces. The attraction force may come from the 
location of the desired goal toward which the agent wants to move. Repulsion may be generated by processes that are 
linked to the sensing of ob-
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Figure 11. A potential field is a temporary structure created over
an analogical representation of the world. The structure consists
of vector fields that can either attract or repel robot movement.

The sum of all the fields generates a path that the robot can
follow. The example shows repulsion from two obstacles and

a left and right wall. Adapted from Arkin [7], p. 99.

stacles. Locomotion is influenced by the combined impact of attraction and repulsion forces (Figure 12 from Arkin 
[7], p. 99).

Other types of dynamics have been explored to generate and maintain emergent temporary structures to aid in 
navigation, for example, fluid mechanics so that a fluid flow between the agent's location in an analogical map and the 
goal location emerges [28], or reaction-diffusion dynamics to generate concentration gradients that can be exploited in 
navigation or movement control [109].

The creation of temporary structures through a self-organizing mechanism that combines buildup, breakdown, and 
feedback giving rise to autocatalysis has been used also for other aspects of intelligent behavior. For example, Maes 
[64] describes an action selection system (which perhaps should be better called a motivational system) in which the 
strength of a motivation is subject to positive enforcement (e.g., when the conditions for its satisfaction are sensed to 
hold) or negative enforcement (e.g., if contradicting motivations are active). These two processes generate a temporal 
ordering of the strength of motivations and consequently between the strength with which an action should get priority 
in execution. There is also a feedback mechanism: As motivation builds up, it will be able to inhibit competitors more 
effectively and gain additional strength. The temporary strength differences can be used by a decision module to 
determine which action will be selected next.



A particularly fascinating application of this mechanism for modeling spinal reflex behaviors of the frog is reported in 
Giszter [39]. The behaviors include limb withdrawal, aversive turns, and wiping away of nociceptive stimuli. The 
latter requires, for example, different simpler component behaviors: optional flexion, then place motion, and then
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whisk motion. Each of these has certain conditions that need to be satisfied, and each will make certain conditions 
true. If one behavior needs to be executed (e.g., ''place motion"), it will pass activation along its predecessor link to 
"optional flexion," thus raising its level of activation. When flexion executes, it will establish conditions that make 
"place motion" executable, and so on.

Another example of the creation of temporary emergent structures for a frame recognition system is reported in Steels 
[110]. Each frame has a particular strength that corresponds to the applicability of the frame in a particular situation. 
There is an activation/inhibition dynamics and autocatalytic processes that create a temporal ordering on the frames so 
that the most appropriate frame for the given situation progressively gets the highest strength.

5 Emergent Functionality 

The examples in the previous section showed that complexity may arise as a side effect of the operation of simpler 
mechanisms, but they do not indicate how there could be a progressive buildup of more complexity. The only way this 
can happen is by the formation of new behavior systems. There is so far very little progress in this area, and new ideas 
are needed. Lack of progress comes partly from the practical difficulties in working with real physical agents, but 
these difficulties will progressively be alleviated as the technology matures. The real challenge is to find mechanisms 
that do not strain the limited resources of the agent and let the agent remain viable in the environment as it builds up 
more complexity.

5.1 There Are Severe Difficulties in Using Existing Artificial Neural Network Techniques or Evolutionary Methods

At first sight, it may seem that mechanisms developed in artificial neural network research or genetic algorithms can 
be applied in a straightforward manner to the development of new functionality in autonomous agents. However, this 
is not the case.

Let us first look at supervized learning, that is, learning with the aid of examples or counterexamples. One of the best 
known supervised learning algorithms is back propagation [101]. Behavior programs could be represented as artificial 
neural networks associating sensory signals to actuator outputs. Changes in behavior programs could then be based on 
the error between the desired outcome and the outcome derived from using the association. For example, if X is a 
sensory signal, Y an action, and w the weight with which X influences the action, then an error would be the 
difference between the expected action and the action produced by Y = wX. There exist methods for adapting the 
weights w, which will lead to convergence [98]. Convergence means that, given a consistent set of sense-act pairs, the 
learning method will settle on a stable set of weights that "correctly" relates X with Y. It can be shown that certain 
functions (such as the XOR function) require a multilayered network [83]. The weights in multilayered networks can 
still be learned if the error is back-propagated through nodes at successive layers based on the relative contribution of 
each node to the derived outcome [101]. See Kosko ([56], chapter 5) for a review of these and other supervised 
learning methods.



Although supervised learning methods have been demonstrated to be successful in simulation experiments, their 
application to autonomous agents runs into several problems. The first difficulty is that the methods require an 
adequate computation of the error and, therefore, a good enough prediction of what the actual outcome should be. A 
robot that is crashing into the wall gets feedback that there was a control error but cannot necessarily compute what 
would have been the right control actions to avoid the crash. Supervised learning methods require a teacher that is 
more intelligent than the
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agent. But this is in contradiction with the objective of understanding how complexity might have arisen in the first 
place. A second difficulty is that the dynamics of weight adaptation requires a large amount of resources. The learning 
time grows very rapidly with the complexity of the network, and an unrealistically high number of presentations of the 
correct sense-act pattern is typically required [131, p. 87]. A third difficulty is that not all networks will learn. If the 
network is too complex (too many layers or too many nodes) or too simple, it will not be able to generalize. Too many 
presentations may degrade performance. Moreover, the input and output representation must be carefully chosen, 
increasing the role of the designing agency [131, p. 87]. These difficulties explain why no one has as yet been able to 
convincingly use supervised learning methods on autonomous physical robots.

Another major neural network mechanism is known as reinforcement learning [118]. Reinforcement learning methods 
increase (and decrease) the probability that a particular association between sensing and acting will be used, based on 
a reward or reinforcement signal. The reinforcement signal is produced as a direct or indirect consequence of the use 
of the association. Many different associations may play a role in a particular behavior, and there may be a delay 
between a behavior and its (positive or negative) consequences. This introduces a credit assignment problem [82]. 
Early proposals ranked the possible situation-action associations, selected the best one (possibly with some variation 
to avoid local minima), and increased or decreased the probability of future choice depending on the effect of the 
chosen action [12,132]. More recent mechanisms go in the direction of having the agent develop a more sophisticated 
representation of the result of an action. For example, a prediction of reward is introduced, or a prediction of (long-
term) cumulative reward, that is, return [118]. A technique useful for learning temporal chains is to hand out 
reinforcement to the last action and from there back to previous associations that played a role. This technique is 
known as the bucket brigade algorithm and originally due to Holland [46].

Reinforcement learning methods have been shown to be capable of impressive learning behavior in simulations or 
engineering contexts [81], but there are again serious difficulties in the application to physical autonomous agents. 
The first major difficulty lies in the determination of the reinforcement signal. It is unrealistic to assume that the agent 
gets a clear scalar reinforcement signal after each action or series of actions. The second difficulty is that 
reinforcement learning assumes a trial-and-error search to find a viable association. Unless the agent is already close 
to the desired behavior, it may take quite a while before such an association is discovered [52]. The third difficulty is 
the credit assignment problem. Proposed solutions all go in the direction of new complexity (in the form of models of 
return, or in more recent cases world models predicting return [61,118]). Often, many simplifying assumptions are 
made about the nature of sensory interpretations or actions. For example, most methods assume that it is possible to 
select each time the "best" action. But agents always execute several actions at the same time, and in many cases 
actions (like turn left) are abstractions from the viewpoint of the designer that do not correspond to explicit commands 
in the robot, particularly not in dynamics architectures. Despite these difficulties, there are some preliminary 
experiments on physical mobile robots [52,67]. The general conclusion seems to be that "current reinforcement-
learning algorithms can be made to work robustly on simple problems, but there are a variety of dimensions in which 
they must be improved before it will be possible to construct artificial agents that adapt to complex domains" [52, p. 
46].



Supervised learning or reinforcement learning are both constructivist techniques: They modify weights based on 
minimizing the error or on reinforcement. The alternative is known as selectionism: A complete behavior system is 
generated, for example, by mutation or recombination based on existing behavior systems and then tested as a
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whole. This mechanism is similar to evolution by natural selection as operating on the genes.

Evolutionary development has been shown in other areas of AL to be an extremely powerful source for generating 
more complexity (see, e.g., [96]). It has also been proposed by some neurobiologists to be the major mechanism 
underlying the formation of new structure (and, therefore, functionality) in the brain [25,33]. Evolutionary algorithms 
have been worked out in great detail and studied from a mathematical point of view (see review in Baeck & Schwefel 
[11]). The major variants are genetic algorithms [40] usually operating on classifier systems [45] and evolution 
strategies [103]. Applications have focused mostly on parameter optimization [63]. More recently, higher-level 
descriptions as opposed to bit strings have been used for the representation of the algorithm that needs to be derived, 
and, as a result, more complex algorithms have been generated [58].

Evolutionary techniques start from a population of individuals (which in the present case would be equal to behavior 
systems) that each derive a different solution in the space of possible solutions. The population is initialized in an 
arbitrary fashion. There is a fitness function that is defined over the space of all individuals. Individuals with higher 
fitness reproduce more often, and, thus, the distribution of individuals of a certain type in the population changes. 
Reproduction means that copies are made, possibly after mutation (which introduces a random change), or 
recombination (which combines parts of two algorithms). Because mutation and recombination may potentially result 
in a better algorithm, and because this algorithm will then be further reinforced by the selection step, the overall 
process evolves toward better and better regions of the search space.

Although this technique has resulted in very impressive results in an engineering context, the application to the 
development of autonomous agents poses some serious difficulties. The first problem is that genetic evolution 
requires quite a number of computational resources. The different individuals in the population need to be represented 
in memory, and a large number of cycles are required to arrive at working, let alone optimal, solutions. This is a 
problem for a robot that has to remain viable and maintain real-time responses within limited resource constraints. 
Consequently, most researchers so far follow an off-line approach [26,57]. The genetic algorithm runs on a computer 
external to the robot. When a valid solution is found, it is loaded and integrated in the other behavior systems. Thus, 
Koza [57] has shown how to derive the behavior programs for wall following and obstacle avoidance that were earlier 
demonstrated to function on a real robot programmed in the subsumption architecture [70]. The primitive building 
blocks of the behavior programs are in this case the sensory inputs and action parameter outputs, Boolean connectives, 
conditionals, and the subsumption primitives. However, Brooks [23] has criticized these results, mostly because the 
primitive building blocks were well chosen (based on an analysis of a known solution), and simplifying assumptions 
were made concerning the Boolean nature of certain conditionals.

Off-line evolution creates a new problem, which is the gap between the virtual world of the simulator and the real 
world. Koza [57] uses a very simple virtual world. Cliff, Husbands, and Harvey [26] use a much more sophisticated 
simulation to test out the fitness of a solution. But, as Brooks [23] points out, the gap between simulated and real 
world will always remain quite large. One possible way out is to use the real robot as soon as reasonable solutions 
have been discovered. An example application of this technique is discussed in Shibata and Fukuda [105]. The 
application concerns the optimization of path planning. Each robot is assumed to have a (static) map of the world that 
contains the obstacles and the goal toward which the robot needs to navigate. The genetic algorithm is used to search 
for a path toward the goal. The path
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is then executed and its quality evaluated with respect to effective use. Based on this new evaluation and additional 
information derived from the execution of the path, a new path is derived again using genetic techniques. The obvious 
problem with this approach is that only few solutions can be tried, which diminishes the chances that a good solution 
is found in a genetic way.

There is another yet more fundamental problem with current evolutionary techniques, which is the definition of the 
fitness function. The search toward a solution critically depends on the prior definition of this fitness function. But 
this introduces an important role for the designer. In the context of emergent functionality, we expect that the fitness 
function should be subject to evolution and should be local to the organism that evolves (as is indeed the case in Ray 
[96]). Cariani [24] calls this pragmatic emergence.

5.2 A Selectionist Approach May Be the Key for Generating Emergent Functionality

Although convincing examples of emergent functionality on physical robots operating in the real world do not exist, 
we are beginning to see the glimpses of it, and breakthroughs can be expected soon. These examples build further on 
the techniques discussed in the previous paragraphs but combine them in a novel way.

When we study synthetic examples of emerging complexity, like that of Ray [96], we see that they are based on 
selectionist mechanisms and that they have in addition two crucial features:

1. There is enough initial complexity to make a viable organism, and there are many diverse organisms. The buildup 
of complexity is as much due to the competitive interaction between organisms as to their interactions with the world.

2. The ecological pressures on organisms are real and come partly from other organisms. In other words, there are no 
predefined or static fitness functions or rewards, as assumed in genetic algorithms and reinforcement learning. There 
is no teacher around as assumed in supervised learning.

To make selectionism work for robots, it seems appropriate to draw a parallel between organisms and behavior 
systems. This means that we should not concentrate on the acquisition of a single behavior system (e.g., for 
locomotion or obstacle avoidance), but that there should be many diverse behavior systems that are complementary 
but still in competition. Paradoxically, it might be easier to develop many behavior systems at once than to 
concentrate on one behavior system in isolation.

Each behavior system, except for the basic reflexes, should remain adaptive, just as each individual organism remains 
adaptive (within the bounds of the genotype). New behavior systems begin their life by accessing the same or other 
visible variables and the same or other controlled variables. The new behavior system monitors the situation and 
adapts itself so as to have a similar impact on the controlled variables as the base line behavior systems, but using 
other sensory modalities. The important point here is that the generation of the new behavior system does not take 
place by trial and error.

Most of the time, behavior systems will have a different functionality. If there are behavior systems with the same 
functionality (e.g., obstacle avoidance), the diversity should not lie in variants of the same approach to a solution, as 
in the case of genetic algorithms, but in fundamental differences in how the functionality is approached (e.g., obstacle 
avoidance using touch-based reactive reflexes vs. obstacle avoidance using infrared-based classification).
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We should also introduce real environmental pressures, such as limited internal energy availability, and real-time or 
memory constraints, in addition to real environmental pressures such as limited external energy availability, avoiding 
of self-damage, etc. These pressures should feedback on the formation or adaptation of behavior systems. A behavior 
system is less competitive if the sensory patterns to which the behavior system responds do not occur (e.g., its 
thresholds are too high), if the time to make a decision on how to influence actuation is too long so that the conditions 
for activation are no longer satisfied, if other behavior systems always override the influence on actuation, if many 
memory resources are needed, etc. There may also be behavior systems that specialize in monitoring internal and 
external environmental conditions and act as a "reaper" [96], weakening or eliminating other behavior systems. An 
example of this is already shown in Nehmzow and McGonigle [86].

Large-scale experiments incorporating this approach do not exist yet. But reason for the optimism that emergent 
functionality may be demonstrated soon comes from some initial experiments that show how new behavior systems 
may bootstrap themselves in the context of other behavior systems. Let us look at one concrete example in the context 
of obstacle avoidance. This example was first suggested and tested in simulation by Pfeifer and Verschure [94]. We 
have since done similar experiments on a real robot and with different sensory modalities in Brussels.

The baseline behavior systems are:

•  maintain a default speed in a forward direction.

•  maintain a forward direction.

•  reverse speed if touching an obstacle in the front.

•  turn away left if touched on the right side.

•  turn away right if touched on the left side.

Following a dynamics viewpoint, each of these behavior systems establishes a continuous relationship between 
sensory signals and action parameters. For example, a positive default speed is maintained by increasing it, if it is 
below the default, or decreasing it, if it is above. Reversing the speed is done by a sudden decrease of the speed if a 
touch sensor is active. The positive default speed is then automatically restored by the "maintain a positive default 
speed" system.

The two emergent behavior systems (one that will do obstacle avoidance for obstacles on the left and another one that 
will do the same for obstacles on the right) are sensitive to the infrared sensors, and they impact the rotational motor. 
They use associative or Hebbian learning. In Hebbian learning, an association between two elements (e.g., sensors and 
actuators) is made stronger based on co-occurrence [44]. It is also made weaker, for example, due to a constant 
forgetting rate. Associative learning has been extensively studied in the artificial neural network field (reviewed in 
Kosko [56], chapter 4). In the present case, there will be a progressively stronger association between particular states 
of the infrared sensors (determined by the environment) and particular action parameters of the rotational motor 
(determined by the turn away left and turn away right behavior systems). Thus, we see a form of classical 
conditioning with the touch sensors as the unconditioned stimulus and the infrared as the conditioned stimulus.

To get emergent functionality, an additional step is needed. The new behavior systems so far perform the same 
activity as the baseline behavior systems and are not yet competitive. A behavior system becomes competitive if it 
causes a qualitatively different action that has an additional advantage for the agent. This can happen in many ways.
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Figure 12. When the robot starts, it bumps into obstacles and retracts
based on a built-in, touch-based obstacle avoidance behavior system.

Progressively it will associate infrared signatures with rotational
movement and no longer bump into obstacles.

For example, the new behavior systems could involve only some of the controlled variables so that some actions no 
longer take place, giving an overall qualitatively different behavior, or a behavior system may sense more quickly the 
upcoming situation and influence the action before the already existing behavior systems.

In the present case, the infrared-based obstacle avoidance system can become more competitive because the infrared 
sensors have a further range than the touch sensors. Therefore, they can therefore react more quickly to the presence 
of obstacles. Due to the progressive strengthening of the association, there will be a particular point in time in which 
the infrared-based behavior systems react earlier than the touch-based ones. This is the point where the newly 
emergent functionality becomes visible. Without infrared-based obstacle avoidance, a reversing of speed took place so 
that the robot is backing up while turning away. This reversal of speed is no longer present when infrared-based 
obstacle avoidance is strong enough because the agent no longer touches the obstacles. Instead, we observe a 
deviation away from obstacles (Figure 12). This deviation is from the viewpoint of energy usage more beneficial to 
the agent.

The associative learning mechanism has an autocatalytic element because the triggering due to infrared itself also 
enforces the association. Thus, the association strengths in the new behavior systems feed on themselves and become 
progressively stronger (Figure 13).

This is indeed an example of emergence, according to the earlier definitions. Different sensory modalities are used 
compared to the original behavior systems, and there is also a qualitatively different behavior, which is more 
beneficial to the agent. The example illustrates that emergent functionality is not due to one single mechanism but to a 
variety of factors, some of them related to internal structures in the agent, some of them related to the properties of 
certain sensors and actuators, and some of them related to the interaction dynamics with the environment.



Because the formation of the new behavior system here happens in the context of other behavior systems, the agent 
always remains viable. For example, if the new infrared-based obstacle avoidance behavior systems fail, the touch-
based solution is
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Figure 13. Evolution of the weights based on Hebbian learning. The weights determine
the impact of the infrared sensors on the rotational motor. The increase feeds on itself.

The decrease due to constant forgetting is also clearly visible.

still there and will immediately become active. Because the formation is guided by existing behavior systems, it 
evolves quickly without trial and error or search. All the time the agent remains viable.

It is obvious that more work is needed to achieve emergent functionality in physical autonomous robots, but current 
work exploring neural network techniques and evolutionary algorithms gives a good starting point. Their integration 
into an overall selectionist approach where diverse behavior systems compete and coadapt give reasons for optimism.

6 Conclusions

Behavior-oriented AI research has opened up an "artificial life route to artificial intelligence." It has three aspects: 
First, the problem of intelligence is framed within the general context of biology. Intelligent behavior is defined as 
maximizing the agent's chances for self-preservation. Successful adaptation and learning are defined as changes in the 
internal structure of the agent that maximize intelligence. Second, the tasks being explored by behavior-oriented AI 
researchers are very different from those considered in classical AI. They center around sensorimotor competence and 
the ability to operate autonomously in a dynamically changing environment. Third, the models take inspiration from 
the way intelligent behavior appears to be established in natural systems. It is hypothesized that the principles that 
underlie the living are also the ones that give rise to intelligent behavior. Many researchers hope to contribute to 
biology by testing out in artificial models whether certain biological hypotheses are plausible.



Behavior-oriented AI research made a slow start around the mid-1980s but is currently exploding. Many research 
laboratories have now acquired the competence to build their own robots and to perform experiments. Rapid 
experimental progress can be expected in the coming 5 years, if only by further pursuit of the research lines that have 
been briefly summarized in this paper. What is particularly needed are larger-scale efforts: agents with many different 
behavioral competences operating in ecosystems with a multitude of challenges, multiagent systems with a sufficient 
number and diversity of the agents, learning methods applied over sufficiently long periods of time to
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get nontrivial buildup of complexity, and so on. At the same time, the experimental rigor needs to be increased so that 
quantitative performance measures can be applied.

Given the current state of the art and the rapid evolution in mechanical engineering and computer technology, we can 
also expect rapid technological progress, leading toward the first real-world applications, possibly in the area of 
environmental monitoring, space exploration, or microsystems. In general, it takes about 10 years before a technology 
becomes sufficiently accepted for serious real-world applications. Major hurdles are not only technical. In this respect, 
the state of the art of behavior-oriented AI can be compared to that of knowledge engineering in the late 1960s, when 
the shift toward situation-specific knowledge and rule-based formalisms was taking place. It took several decades to 
turn these results into a solid engineering methodology and develop a number of well-established industrial 
achievements, like XCON for configuring computer installations [74].

Some Open Issues

There are also many open problems beyond increasing the complexity of current systems. One of them, which has 
hardly been addressed, concerns the relation between the mechanisms used in behavior-oriented AI and those used in 
knowledge-oriented AI. Some researchers (on both sides) suggest that the other approach is irrelevant to reach human-
level intelligence. They then have to prove that their methods will work all the way. Other researchers believe that the 
symbolic level exists as an independent level, which is causally influenced by and causally influences the dynamics 
level. No concrete proposals operational on physical autonomous robots exist today to allow a technical discussion of 
the subject, but one day the problem will have to be tackled.

Another question concerns adequate formalization and theory formation. There is already a wide body of literature 
with formal results for the mechanisms discussed earlier (error-driven learning, genetic evolution, etc.), but 
application to integrated physical agents operating in real-world environments will require more work. Several 
researchers have proposed a state-space approach for defining the dynamics of the observed behavior and the internal 
operation of the agent (e.g., [37,54,77,119]). Once a state-space description is available, the concepts of dynamical 
systems theory (attractors, transients, recurrent trajectories, etc.) (1) can be used to characterize qualitatively and 
quantitatively behaviors and internal structures like perceptions, representations, and actions. Within this framework, 
concepts like emergent functionality can be formalized and the results of emergent functionality better understood. At 
the same time, work must proceed on developing formal theories to characterize the challenges in ecosystems; the 
optimality of behavior; and, thus, the chances of self-preservation of the agent [76].

The field of behavior-oriented AI research shows enormous signs of vitality. This paper focused only on a few 
aspects, ignoring other topics such as multiagent systems, communication and cooperation, the formation of new 
sensory modalities, and so on. There is no doubt that major contributions can be expected in the coming decade, 
particularly as the technical tools mature and more researchers get involved.
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Abstract The tasks that animals perform require a high degree of intelligence. Animals forage for food, migrate, navigate, court 
mates, rear offspring, defend against predators, construct nests, and so on. These tasks commonly require social 
interaction/cooperation and are accomplished by animal nervous systems, which are the result of billions of years of evolution and 
complex developmental/learning processes. The Artificial Life (AL) approach to synthesizing intelligent behavior is guided by 
this biological perspective. In this article we examine some of the numerous open problems in synthesizing intelligent animal 
behavior (especially cooperative behavior involving communication) that face the field of AL, a discipline still in its infancy.

1 Introduction

A major goal of Artificial Life (AL) research is to gain insight into both life as it is and life as it might have been [58,59]. As such, 
AL issues span potentially a very broad range, from the role of chaos and prebiotic chemistry in allowing intercellular processes to 
have come about, to the emergence of human intelligence and organizations. In this paper we focus on the research goal of 
understanding the nature of intelligence from an AL perspective, that is, the evolution and development of complex nervous 
systems, supporting both animal and human cooperative behavior. We are interested in (a) how artificial neural networks (ANNs) 
support animal and human cognitive processes and (b) how intelligence might be distributed within groups or populations of 
individuals, with a special focus on the role of communication in survival strategies requiring cooperation.

2 Al Versus AL Approach to Cognition

The traditional approach to synthesizing intelligence has been developed within the field of Artificial Intelligence (AI) and has 
focused, for the most part, on modeling both everyday and expert-level knowledge and reasoning in humans-for example, problem 
solving, planning, language comprehension, learning, and invention. In the field of AI, such models are realized in terms of 
computational systems that manipulate symbolic structures via rules of inference [34,84,95,98]. Although there are growing fields 
of Distributed AI (DAI) [14,39], situated agents [1], and artificial neural/connectionist networks
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Table 1. AI versus AL Paradigms

Artificial Intelligence (AI) Artificial Life (AL)

Focus on individual Focus on a group or population

Cognition as operations of logic Cognition as operation of nervous systems

Cognition independent of perception Situated cognition, i.e., integrated with sensory/ 
motor experiences

Starts with human-level cognition Starts with animal-level cognition

Mainly top-down approach: engineer 
complex systems

Mainly bottom-up approach: rely on evolution, 
development, and learning

Direct specification of cognitive 
architectures

Indirect specification, via genotype to phenotype 
mapping

Human-level mental tasks Survivability in complex environments is the 
overriding task

Time span up to hours Evolutionary, generational, and individual life spans

[7,21,113], the emphasis in AI has been on modeling cognitive tasks involving a single individual, via logic and list-processing 
procedures.

In contrast, the field of AL brings a decidedly biological perspective to the study of intelligent behavior. Table 1 illustrates how 
AL and AI paradigms differ.

Major differences between the two paradigms are mainly due to AL's biological perspective, which emphasizes the evolution and 
development of animal cognition within interacting, multispecies populations over many generations. Here, any strategy must be 
complementary to those that aid survival. All tasks must be situated, that is, occurring within an environment of interacting agents. 
As a result, the sensing and motor capabilities of each individual must be taken into account and integrated with any kind of 
planning or problem-solving strategy. The time span is also quite different, with AL agents living out lifetimes, giving "birth" to 
offspring, raising their young, and finally dying. Typical tasks in AI include medical diagnosis, story comprehension and question 
answering, chess playing, and IQ tests, while typical AL tasks involve predator avoidance, food foraging, mate finding, nest 
building, and so on. Thus, if nothing else, what might be considered benchmark or touchstone tasks differ markedly for these two 
synthetic approaches toward understanding intelligence.

One attractive feature of the AL approach is that the fundamental unit of manipulation is the population. Genetic operators are 
applied to populations and produce populations. This approach is in direct contrast to AI approaches. For example, in distributed 
artificial intelligence (DAI), researchers take the individual to be the fundamental unit and then attempt to engineer individual 
agents who will interact correctly to solve group-oriented tasks. In genetic systems, however, no individual can be central, 
especially because individuals are replaced by offspring that vary from their parents. In contrast to the DAI point of view, the 
evolutionary approach of AL is novel in another way-organisms not only transmit information via some form of language or 
communication, but also one can view mating between individuals as the "communication" of successful hardware (with 
variation) to their offspring. Thus, both neural architectures
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(i.e., innate components) and distributed representations (i.e., learned components) can be engineered within a single, all-
encompassing framework.

The AL modeling approach involves specifying:

1. environments—simulated worlds whose conditions match, at some level of abstraction, those selectional pressures in which a 
variety of animal behaviors may evolve or develop [80].

2. processes of genetic expression—mappings from artificial genomes to phenotypes that control behavior [41,42]. A genotype is 
commonly a bit string; a phenotype is often some type of artificial neural network (ANN) or connectionist architecture that 
controls the artificial organism's behavior, through the simulation of sensory/motor neurons and interneurons.

3. learning and development—methods under genetic control for modifying or growing the nervous systems of artificial animals 
during their lifetimes (e.g., [85,104]).

4. evolution—recombination and mutation of parental genomes during mating to produce variation in their offspring [52].

The evolutionary approach allows one to study the sociobiological aspects of intelligence. In addition, it supplies an alternative to 
engineering group interaction by hand; instead, one need only set up appropriate environments, such that there is an evolutionary 
path to the desired group behavior. Of course, many issues arise. What environments will lead to desired forms of behavior? How 
can the combinatorially explosive search for desirable organisms be reduced? For example, with genomes of just 1,000 bits, one is 
searching in an immense space of 21,000 organisms. How should organisms be represented? What are useful mappings from 
genotype to phenotype? What simplifications are acceptable, that is, will lead to desired results, but without compromising 
fundamental issues?

A very long-term goal of AL is to gain insight ultimately into the evolution and nature of human intelligence, through modeling 
the evolution of communication and cooperative behavior in lower life forms. Such models might someday give us insights 
concerning hominid or protohuman language and intelligence, for which there is little or no fossil record. Such a goal is truly a 
daunting one; there are so many parameters (environmental, genetic, developmental) that are potentially relevant—creating an 
enormous search space of research models/theories. Consequently, ways must be found to impose constraints on model and theory 
construction. Constraints can be obtained from multiple source: neuroscientific data, comparative cognitive science and 
computational analysis, for example, analysis of the size of a given genetic or developmental search space and the computations 
required to find a given solution within them. Other obvious constraints come from the biological sciences, that is, evolutionary 
and population biology, genetics, ecology and ethology.

3 Animal Intelligence: Open Questions in AL

Of the approximately 1.5 million life forms on earth today, about one third are plants and two thirds are animals. Of the animal 
species, around 4,000 are mammals, 9,000 birds, 6,000 reptiles, 3,000 amphibians, 20,000 fish, and about 900,000 arthropods, 
with the remaining 80,000 consisting of lower life forms, such as corals, jellyfish, and worms [82]. Over the last three billion 
years, evolution has produced animals with complex nervous systems that support extremely sophisticated individual and social 
patterns of
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behavior. Each general strategy (or even elementary unit of behavior) requires the integration and control of complex 
sensory/motor information. Each task is accomplished via the activity of the nervous system—an extremely powerful, massively 
parallel computational mechanism, which is the product of both evolutionary and developmental processes. The brains of insects 
alone employ up to a million nerve cells [78] with thousands of times more synapses. Avian brains contain around a billion 
neurons and mammalian brains on the order of tens of billions of neurons.

In the next section we briefly examine some representative animal behaviors. Open research questions in AL include synthesizing, 
with respect to any of these behaviors, any one or more of the following:

1. a group of interacting ANN-controlled agents (or single ANN) capable of demonstrating the relevant behavior(s).

2. a developmental process, for example, gene expression in ontology [291, adaptive learning or a combination of both, capable of 
automatically creating/modifying ANNs, via interaction with the environment, that result in ANN-controlled agents able to 
perform the relevant task(s).

3. an evolutionary process (with or without learning) by which genetic operations (e.g., recombination and mutation), combined 
with selection pressures from the environment, lead to ANN-controlled agents capable of exhibiting the relevant behavior(s), that 
is, synthesis of the evolution of nervous systems (e.g., [28]).

3.1 Common Behaviors in Animals

3.1.1 Social Grouping

Animals form a wide range of social groups [26,121], useful for protection and that enhance cooperation for such tasks as nesting, 
parenting, hunting, etc. Nesting fish, for example, many cichlids, and the majority of birds form pairs and share the duties of 
parenting equally. Deer, fur seals and Hamadryas baboons form harems, with a single dominant male serving as leader and 
protector of numerous females. Elephants form a matriarchy where the dominant elephant of the group is female, and the big bull 
elephants live solitary lives. Some birds form all male groups, for example, during breeding season, black grouse males cluster in 
an arena or lek so that the females may select a mate. During migrations, there form huge swarms of insects, flocks of birds and 
herds of antelopes.

3.1.2 Specialization of Labor

Social insects have evolved extremely complex caste systems, in which each class performs a distinct function, for example, 
soldier, queen, drone, forager, and nest builder [136]. In mammals, tasks are differentiated based on age, gender, and strength; for 
example, lionesses hunt while males protect the pride.

3.1.3 Food Finding, Preparation, and Storage

There are many food-finding strategies [88], including grazing by herbivores, browsing on trees by elephants, koalas, etc.; flower-
finding and feeding by bees and hummingbirds [36,49]; and foraging by ants, who produce and follow pheromone trails to food 
sources [134]. Many carnivores also have scavenging strategies in addition to hunting. For example, jackals often follow hunting 
lions and steal small portions of the kill even as the lions are feeding [31].

After an animal has obtained its food, it may execute complex food preparation behaviors. For example, the agouti (a rodent of 
South and Central America) carefully
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peels its food before eating it. Wild cats pluck the feathers of birds and shake them off before eating [60] with New World cats 
plucking and shaking out the feathers in a manner different from Old World cats.

Predators that kill large prey (and thus leave a carcass they cannot consume in one sitting) have developed food storage strategies 
[67]. Wolves will dig holes and drop large pieces of meat into them. Shaking the meat removes the dirt when the meat is dug up. 
Leopards will carry a carcass up into a tree for safekeeping. Animals store food for times when it will become scarce. Arctic foxes 
have been known to collect over time and hoard, in a single cache, over 40 bird eggs. The mole will create a hoard of up to 1,000 
worms, with each worm immobilized by a bite to its front end. Some animals, for example, jay birds and squirrels, instead of 
creating a single store, will scatter their food about in multiple small caches, in order to make it difficult for hoard-raiders to find 
them. A single nutcracker bird will hide over 10,000 caches of two to five pine seeds each. Experiments (in which additional 
seeds are buried by the experimenters) have shown that such birds retrieve their caches based on memory and/or pattern 
recognition (vs. smell). This capability is quite impressive, because retrieval is performed months later, after which the foliage 
landscape has changed dramatically, for example, covered with snow [109,126].

3.1.4 Symbiotic Behavior

Distinct species will sometimes develop a symbiotic relationship [90]. For example, the Egyptian plover bird is allowed to enter 
the crocodile's mouth in order to eat parasites and food remnants from between its teeth. Large coral fish will form a queue, 
waiting to be cleaned by smaller, cleaning wrasse fish, who also clean about and within the mouth of the client fish. Grouper fish 
that are being serviced by gobies will partially shut the gobies in their mouths if there is any danger to the gobies, thus protecting 
their cleaners. Impala herds and baboon troops often stay together; the impalas serving as watchdogs while the baboons provide 
protection. The honey badger relies on a bird called the honeyguide to lead it to a source of honey. After the honey badger has 
destroyed the bee's hive and eaten its fill of honey, the honeyguide can then dine.

In some cases, one species makes use of another without "mutual consent." For instance, Amazon ants raid the nests of other 
species of ants and steal their eggs. When the larvae mature, they become "slave" worker ants who help maintain their masters' 
nest. Some species of ants have become so successful in this strategy that they can no longer feed themselves, relying instead on 
their slaves [135,136].

3.1.5 Dominance, Combat, and Territoriality

Many animals establish dominance hierarchies, with the more dominant males having greater access to females and food, but also 
serving the roles of protector and leader. In the case of bees, for example, stinging duels among daughter queens determine which 
one will become queen of a new colony as the old colony splits in two. Dominance and combat may determine the size or location 
of a territory for nesting. Territorial animals stake out territories through a combination of acoustic, chemical, and visual 
messages. Many birds announce their areas vocally, while some deer mark their territory with scent. Animals may issue threat 
displays to those entering their territory, or they may attack the intruder. Dominance is often established by stylized forms of 
combat, in which both combatants show tremendous restraint; as a result, combatants are rarely seriously injured [19,115]. Male 
kangaroos box one another, Bengal monitor lizards wrestle upright; giraffes push one another with their necks, and deer spar with 
their antlers. Dominance structures can be as simple as a straight-line ranking from most to least dominant, or, as in the case of 
chimpanzees, it can involve complex networks of shifting coalitions, collective leadership, and bargaining in the overthrow of 
bullies [27].
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3.1.6 Mate Selection and Mating

Animals must find, attract, and/or choose mates before the actual act of mating [5,49,119]. For example, the river bullhead fish 
finds a cavity under a stone and enlarges it by digging with his mouth. When a female passes nearby, he drags her into the cave 
with his mouth and then blocks the entrance so that she cannot escape. A ripe female will then search for the best egg-laying site 
within the cave. After spawning, the male remains to guard the eggs while the female departs. Among nonpairing birds, females 
will arrive at a courtship site (i.e., a lek or arena), possibly containing many males. Each male will try to attract a female by 
performing elaborate displays, involving vocalizations, strutting behaviors, and feather erections. For example, the Australian 
male bowerbird, called also the stagemaker, completely clears (i.e., by removing every root, twig, leaf, etc.) a circular area of 
ground 8 feet in diameter. He then searches for a set of special articles that he places on display within this area. These special 
objects are often large, fresh leaves, turned with the underside up. Numerous leaves are arranged in what the males hope will be 
an exciting pattern to the female. When the female appears, he leaps about, picking up the leaves and using them as props in his 
song and dance courtship routine [40]. Bower birds will also employ shells, feathers, and human artifacts as courtship props [75].

The mating act itself requires control of, or coordination with, the other partner. For example, the male lion gently bites the 
lioness' neck, causing her to act as a passive cub, from the time when she was carried by her mother [82].

3.1.7 Nesting

Many animals build complex structures [37]. For example, during mating birds construct single and communal nests in the form 
of bowls, domes, and tubes. One of the most sophisticated is that produced by the male weaver birds. Weavers wrap tough, long 
grass around the fork of a branch. Several of these grasses are joined to form a circle, with a male weaving in the middle, similar 
to the way a human weaves a basket. The male makes use of two other types of stitches. When knotting, he pulls, pushes, and 
twists with his beak while holding the grass with his feet. When twining, he threads the grass in and out, like someone sewing 
with a thread. The weaver bird can tie slip knots, half-hitches, and overhand knots. Social weavers will build apartment complexes 
with up to 100 distinct entrances to individual nests [82]. In addition to the complex behaviors involved in the gathering and 
placement of materials in nest construction, there is also nest maintenance. Bowerbirds, for example, will keep their nests clean, 
for example, by replacing flowers (originally brought to decorate the nest) that have wilted [751. Nests also need constant repair. 
Most animals, instead of rebuilding a nest from scratch when part of it is damaged, have successful strategies of local repair, even 
though there are innumerable distinct ways in which nests can become damaged. For example, beavers will patch those sections of 
their dam where they hear the sound of running water [137]. Ants and termites also somehow repair their tunnels and chambers as 
they undergo varying forms of damage [134].

In addition, the site for nesting must be selected. For instance, honeybees in cold climates send out scouts to forage for a good 
new nest site when the colony is going to split into two [108]. The scouts chosen are the oldest bees in the swarm because they 
have had the most nectar foraging experience and thus know the terrain the best. Once the swarm (of about 30,000 bees or one 
half of the hive) splits off, it lands on some object, and the scout bees are sent off in search of a new nesting site. The scouts 
search within a 10-km area for a nest. Studies reveal that the preferred nest is more than three meters off the ground (to make 
defense against predators easier); its entrance is less than 60 cm2 and is located at the bottom of the nesting hollow and facing 
southward (in order to control the nest's microclimate and warm the bees as
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they take off). Like the dance performed by nectar-foraging bees [36], each nest scout performs a dance for the other scouts in 
which the orientation and amount of waggling of their abdomens indicate the location and preferability of the nesting site 
encountered. If a scout B1 encounters another scout B2 whose dance is more energetic, then B1 will fly off to check out B2's 
proposed site. Only after B1 has examined the alternate site and concurs with B2 will she alter her waggle dance to conform to 
that of B2 [62]. As a result, over time all the scouts will reach consensus, which may take several days. After consensus is 
reached, the scouts somehow inform the swarm, which then takes flight. The scouts then guide the swarm to the new nesting site, 
and construction begins.

3.1.8 Parenting

Animals protect, feed, clean, teach, and in general care for their young [97]. Care of young after birth requires recognizing one's 
offspring as one's own. Sheep require 20 minutes of licking and cleaning their babies in order to create/store a memory trace 
sufficiently strong for later discriminating them from other lambs. Keeping the nest clean is also important. For instance, parent 
birds will pick up and carry the droppings of their young away from the nest. Parents must also supply food and drink to their 
young. For example, the Sandgrouse male dips his lower feathers into water until they are soaked. When he returns to the nest, his 
chicks push against his feathers and suck the water from his breast [45]. Other birds carry water back in their beaks and dribble it 
into the open mouths of their chicks. Some mammals and birds will eat food and then regurgitate it upon return to the nest. In the 
case of mammals, female parents must decide when and for how long to recline so that their offspring can nurse.

Parents must also decide when to eat the food themselves and when to deny themselves in order to share food with their brood. 
For example, blackbirds will normally eat the first few insects they catch, including dragonflies. However, when feeding their 
young, they will immediately take the dragonfly back to the nest [87]. Blackbirds will often carry several insects at once when 
returning to the nest. Although more efficient, this collection task is itself complex, because insects that have dropped from the 
bird's beak must be found and picked up again without dropping those currently being held.

Upon leaving the nest, the young may be carried by their parents. Rats, dogs, and cats pick up their cubs in their jaws by the scruff 
of the neck, carrying them one by one to new sites. Anteaters and monkeys carry their young on their backs, as do scorpions and 
some spiders. Parents also employ strategies designed to teach their children survival skills. For example, as cubs grow older, the 
lioness will bring back live animals so that the cubs gain practice at hunting, catching, and killing prey [60].

Mammals are not always kind to the young of their species. Male lions that take over a pride will sometimes kill and eat the cubs 
that are not their own. After mating with the lionesses, they are good parents to their own offspring [23,35]. In some species, 
however, orphaned young may be adopted by other adults [82].

3.1.9 Predation Strategies

Predators have developed numerous strategies, from those that are largely instinctual in lower forms (e.g., [33]), to those requiring 
learning in mammals. Angler fish and certain amphibians and snakes make use of parts of their bodies as a bait to lure their prey 
to them [133]. Bears will scoop up migrating fish in rivers. Herons will stand very still and then, at the opportune moment, rapidly 
stab the fish. Cats stalk their prey, crouching down and inching along until within striking distance.

Humpback whales, for instance, let out a stream of air bubbles in a circular pattern around small fish, who are reluctant to pass 
through these bubbles and, thus, become concentrated and easier for the whale to consume [50]. Some predators, such as lions, 
hunt cooperatively [106]. Griffin [48], for instance, describes observing four lionesses
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slowly spreading out into a U-shaped formation to surround a pack of wildebeest. Two of the lionesses approached and sat very 
conspicuously at sites near the herd while the third lioness crawled low to the ground toward the herd. Suddenly, the fourth lion, 
who had circled way about, rushed out from within a nearby forrest and drove the herd toward the crouched lioness, who then 
leaped out and grabbed a wildebeest. The other two lionesses then very leisurely strolled toward the one who had made the kill, 
whereupon they shared it. Griffin concludes that it appears that the two conspicuous lionesses were intentionally drawing the 
attention of the wildebeests away from the stalking lionesses.

3.1. 10 Predator Avoidance and Defense

Prey employ different strategies in the face of predation [30]. Hares will freeze until a predator is quite near before springing 
away. Squirrels dart to the blind side of a tree and then freeze. During flight, animals vary their speed and direction of flight 
dramatically, based on the behavior of their pursuer. Many prey species flee to the safety of trees, water, or burrows. Flight 
strategies include combinations of startle displays (e.g., birds displaying a bright spot of color, the frilled lizard extending the flap 
of skin around its face), dashing, freezing, and hiding. Startling a predator gives the prey a chance to escape. For example, a 
cornered cat will hiss and spit; some insects will assume the posture of poisonous insects in order to scare off an attacker. In the 
case of flight, the type of safety zone prey will seek often depends on the type of predator in pursuit. A rooster will climb upon a 
rock in the face of a ground predator while hiding under bushes when spotting a hawk from above [71,73].

Prey that are cornered (or too fatigued to flee) may turn and attack the predator. Many species of small birds (e.g., warblers, 
finches, thrushes, and even hummingbirds) will mob a bird of prey. For instance, if an owl remains stationary (perhaps due to 
illness), the birds of prey may begin mobbing it. They dive down, buzzing within inches of its head, even clawing it. This 
mobbing behavior attracts more birds to join in until the owl is routed. Ground squirrels will also mob a snake, rushing it and 
trying to bite it or throw sand in its eyes. A group of baboons or chimpanzees may also mob a leopard [82].

Predator avoidance is quite complex because it involves continual monitoring, by the prey, of any predator dispositions. For 
instance, gazelles will actually follow predators in order to keep watch on their movements [128]. In order to avoid needless 
expenditure of energy, prey must continuously assess whether or not predators are about to strike or are simply passing by.

3.1.11 Dissembling Behaviors

Many animals, including various species of insects, frogs, snakes, birds, and small mammals (e.g., squirrels and opossums) will 
feign death [76,79]. They will remain immobile while being mauled. Once the predator is convinced that the prey is dead, the 
predator may leave the prey alone, thus giving it an opportunity to escape. Many ground-nesting birds will pretend to be wounded 
by dragging an extended wing and/or struggling to walk, thus distracting the predator away from the nest [3]. Other dissembling 
strategies in ground-nesting birds include false incubation, in which the bird pretends to be sitting on a nest of eggs at a site away 
from the actual eggs [114]. Such behavior is quite complex. The dissembling bird continuously must monitor the predator. If the 
predator appears to lose interest and/or fails to follow, then the bird recognizes this and temporarily abandons its dissembling 
behavior to fly back toward the predator. It then reinitiates its dissembling strategy.
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3.1.12 Primitive Tool Use and Culture

Wild chimpanzees make use of sticks in order to extract termites from their nests [43]. The mongoose throws hard-shelled eggs at 
nearby rocks in order to smash them open. The sea otter swims on its back with a flat stone on its stomach. It then smashes clams 
against this stone to break them open [48]. The Egyptian vulture picks up a stone in its beak and throws it down at an ostrich egg 
in order to crack the egg open [32]. Herring gulls and some crows break open clams by dropping them when in flight onto hard, 
rocky surfaces [8]. Studies show that such birds select shells based on weight (indicating a live/edible vs. dead mollusk within) 
and vary the height of release based on the perceived hardness of the ground below [138].



Insects also use tools. Adult weaver ants roll up leaves and fix the edges with silk in order to make nests. But because the adults 
cannot produce silk themselves, they pick up their silk-producing ant larvae and squeeze them to force out a drop of liquid silk. 
Thus, the adults use the passive larvae as tubes of glue [53]. Leaf-cutter ants have developed a form of agriculture, in which they 
carry undigestible leaves back to their colony. They chew the leaves and add fecal material, which then serves as food for a 
fungus that they grow in special chambers within the nest. The ants then eat the fungus. When a reproductive female leaves to 
form a new colony, she takes with her a small bit of the fungus, as starting material for her new fungus garden [134].

Higher animals, for example, primates, exhibit aspects of culture. For instance, knowledge for how to clean dirt-covered sweet 
potatoes (by washing them in water) was seen to spread, via primate learning, observation and mimicry, through a troop of 
Japanese macaques [55,56]. This skill was later passed down from parent to offspring. Only the original, older males never 
acquired the behavior.

3.1.13 Other Complex Behaviors

The behaviors described previously by no means exhaust the types of complex strategies employed for survival. Other behaviors 
include: migration and navigation, strategies to protect oneself while sleeping or ill, grooming behaviors to avoid parasites and 
disease, and among mammals, behaviors involving play [112,122], in which the young try out and learn aspects of parental roles.

These behaviors (taken either individually or, more realistically, in a social context and requiring integration of multiple 
coordinated and carefully sequenced sensory/motor behaviors) constitute a wealth of benchmark tasks for any synthesis-oriented 
research program. The execution of any of these behaviors requires a high degree of intelligence and computation. For example, 
food finding requires complex pattern recognition and generalization capabilities. Generalization is required because no two forms 
of food, whether stationary or moving, will look identical; likewise, any two acts within the same functional category (e.g., 
defense, submission, feeding, etc.) will not be identical. Differential responses to distinct members of one's own species or kin, 
and to distinct kinds of predators and prey, requires categorization of objects and actions in the environment.

Animal decision making is also complex and state dependent. For instance, predator avoidance requires planning in the face of 
multiple and possibly conflicting constraints, as in the case, for instance, when an animal is both hungry and thirsty, but food is at 
one location and water at another; a potential predator is in-between the animal and one food source but possibly looks tired or 
satiated; the animal's own cubs are at another site and must be fed soon; it is getting dark, and so on. While the nature or even 
existence of conscious thought is highly controversial in animals [48,127], it is clear that the tasks performed by animals require 
enormous amounts of computation. For example, consider cooperative hunting carnivores or nesting site selection and group nest 
construction by bees, weaver birds or, among mammals, the dams built by
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beavers [137]. The sensing, locomotive, manipulative, and social skills exhibited by such animals in performing these tasks 
completely eclipse any kind of robotic behavior produced so far within the field of AI.

3.2 Animal Cooperation via Communication

Most forms of cooperation require communication, which can be accomplished by visual, tactile, acoustic, and/or olfactory means 
[31]. These signals (e.g., facial expressions, scent marks, body postures/movements, vocalizations, displays, etc.) need not be 
''intentional" to constitute communication. What is necessary is that the behavior (or resulting state caused by the behavior of the 
sender) be perceived and bring about differential behavior on the part of the perceivers that is in some way ultimately 
advantageous to the sender or the sender's group. This resulting behavior may then itself be perceived by the original sender, thus 
possibly causing differential behaviors in response. Communication may occur both within and across species.

3.2.1 Insect Communication



Insects commonly communicate via chemicals, such as pheromones. They also employ tactile motions and, on occasion, visually 
perceived displays. For instance, bees communicate to their comrades the location and amount of nectar found at a site by means 
of a waggle dance. The angle, amount of waggling, and wing-fanning display indicates, respectively, the direction, distance, and 
amount of nectar [36]. Weaver ants make use of different pheromones, excreted from rectal and sternal glands, to recruit other 
weaver ants for foraging, for emigration to a new nest, or in defense against attackers. These chemical signals are combined with 
tactile signals, such as touching with antennae, head waving, mandible use, and jerking of the body [53].

Acoustic signals are also commonly employed by insects. For example, the Douglas fir beetle employs a half-dozen distinct 
acoustic signals. The males employ distinct chirps, indicating (a) approach to the egg gallery entrance containing a female, (b) 
imminent copulation during courtship, (c) rivalry with other males, and (d) situations of stress. The female generates a distinct 
chirp when constructing and guarding her egg gallery [105].

Fireflies use flashing lights to signal and attract mates. The male firefly indicates his gender and species by his pattern of flashing. 
The female then signals back with a distinct set of pulses. The timing of her flashing, with respect to the males, indicates her 
gender/species. Predatory female fireflies have evolved mimicry of the response timings of females of other species and can 
attract the corresponding males to them, which the predatory females then devour [63]. Physical behaviors can also serve as 
signals. For example, the male black-tipped hangingfly presents the prey it has caught to the female, which the female then 
examines to determine whether or not she will mate with him [118].

3.2.2 Avian Communication

Birds commonly communicate [66], both acoustically and visually, through the production of songs and elaborate dances and 
displays (e.g., lekking). Many birds give off specific vocalizations when they encounter food or sense danger [72]. Domestic 
chickens can communicate information about the quality of available food [74], while roosters give off different vocalizations for 
warning of raccoons versus hawks. What is a particular interest is that the rooster only issues these vocal warning signals when 
the rooster is aware of a nearby hen of the same species [74,100]. If no hen is near, then the rooster intelligently avoids possible 
predator awareness and attack by remaining silent.
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Duet-singing birds, such as the African shrike, produce complex antiphonal (i.e., interspersed notes) and polyphonic (interspersed 
and simultaneous) music. Mating pairs (who often mate for life) discriminate their mates from other shrikes by coordinating 
musical pitch, harmonic and melodic intervals, and duration and timing in an extremely precise manner [120]. Such duets also 
function in recognizing species/kin membership, maintaining social contact in dense foliage, and establishing territory. For 
example, females will not answer the songs of other males and when the male is absent; during that time the female sings not only 
its own part but also that of its mate. It is believed that this rehearsal allows one bird to continue remembering its mate's unique 
"signature" for later recognition upon return of the mate.

3.2.3 Mammalian Communication

This can take many forms. For instance, tactile communication among Duiker antelopes includes social licking/nibbling of the 
head, neck, and shoulders, with male/female pairs rubbing together the glands near their eyes for maintaining pair bonding. Two 
Druiker males will do this also, but as a prelude to combat [96].

Signals are used also for warning of predators. Prairie dogs not only issue distinct calls for different predators (hawks, snakes, 
coyotes, humans, etc.) but there is evidence that they can, in their signal, specify distinct individual predators who have become 
familiar to them from within a given predator group [110,111].



Many mammals have a wide repertoire of behaviors that act as signals to others. Consider the cat family [60]. Felids communicate 
by body posture, action, facial expression, scent (urine spraying and rubbing), vocalizations, and licking/nuzzling/pawing actions. 
Facially, the movement of ears (relaxed, pricked up, flattened, twitching, rotated) mean different things, for example, cats rotate 
their ears upward when angry. In general, facial and body postures indicate predisposition to attack, defense, or flight. Vocal 
signals include meowing, yowling, growling, grunting, snarling, purring, spitting, hissing, roaring, etc. For instance, mother felids 
employ a special call to attract their cubs when bringing back live prey. The intensity of this call is different, depending upon 
whether the live prey is small and harmless or large and potentially dangerous. In the latter case, the cubs respond more carefully. 
Older, mobile cubs are warned to take cover by the mother both slapping and hissing at them. When family members meet, they 
greet each other by rubbing noses, then heads and sides. Vocalizations and postures also differentiate defensive versus offensive 
roles and dominance versus submission.

3.2.4 Primate Communication

Vervet monkeys also distinguish predator classes (leopards, eagles, snakes) in their warning calls. Each distinct call causes a 
different type of behavior. When hearing a leopard warning sound, vervet monkeys run into the trees. Snake alarms cause them to 
rise up on their hind legs and look in the grass while eagle warning sounds cause them to look at the sky or duck under bushes 
[116]. Primates also appear to actively attempt to deceive one another [132]. In general, apes appear to have the greatest capacity 
for abstract thought among primates [94] and the largest vocal repertoires [18,21,101] with Goodall [43,44] cataloging over 30 
chimpanzee calls used in the wild and over 200 signs (either visual symbol patterns or sign language gestures) learned in human-
trained gorillas and chimpanzees [38,89,99,117].

3.2.5 Cross-Species Communication

For instance, the honeyguide bird signals to the honey badger that there is honey available by chattering and making displays. The 
honey badger then replies with a special, hissing chuckle. Thereupon the honeyguide leads the honeybadger to the honey site. The 
honeyguide never gets more than 20 feet ahead of the honeybadger, in
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order to keep it in visual contact [90]. Communication across species commonly occurs in predator-prey interactions. Prey 
animals with defensive systems (e.g., the skunk) will often first warn a potential predator before actually employing its defensive 
system, thus possibly avoiding having to expend energy using it.

3.3 Animal Development and Learning

Animal behaviors are the result of complex interactions between genetic and developmental factors. In general, genetic effects are 
more noticeable and tend to dominate in lower life forms. For example, although each species of cricket has a unique set of 
distinct chirp patterns, it has been shown that these patterns are not learned, but are genetically determined [13]. However, there is 
strong evidence that nearly all animals, even slugs and insects, are capable of learning [48]. For example, bees are able to quickly 
learn and remember, over many days, the odor and color of flowers that yield a given pollen or nectar [78]. Experiments in which 
bees are moved to distant sites during the night support the theory that bees construct mental maps of their environments, which 
they use for navigation [47]. Bees go through different occupational stages, based on their age and experience. The youngest bees 
clean the honeycombs, while older bees help build the combs; later, these bees "graduate" from comb construction and leave their 
hive to forage for nectar [62].

In birds, many behaviors (that might at first be considered instinctual) have been shown to be learned. For instance, European 
blackbirds will learn to mob a harmless (nonpredator) honeycreeper bird if they are made to think that other birds are mobbing 
that bird [82]. In the white-crowned sparrow, the learning of songs depends upon both a sensitive/critical period and access to 
examples of appropriate, species-specific songs. The young songbird makes use of species-specific songs it hears and, in a trial-
and-error manner, develops its own song version [47]. It has been demonstrated that pigeons can learn to discriminate underwater 
photographs of fish [51]—a task for which there has been no evolutionary selectional pressure.



An interesting interaction between genetics and development is that of imprinting [65]. For instance, what a duckling imprints 
upon depends on what is currently in the environment during a critical period. At the same time, the range over which imprinting 
operates is genetically determined and highly constrained (e.g., to mobile objects within a given size range; otherwise, baby 
ducklings would imprint on rocks, insects, or even their own siblings).

A complex form of learning is that of learning through observation and subsequent imitation [48]. Most birds and mammals 
exhibit this kind of learning. Young lions, for instance, learn how to hunt properly by observing their mother hunt.

4 Synthesizing Animal Intelligence via Evolution and Learning 

Recent computer models used in biological, ethological, and ecological studies have employed game theory [77], optimization 
techniques, and dynamic state-variable models [22,70]. The AL approach extends such modeling techniques by including 
simulations of artificial nervous systems (at some level of abstraction) that control sensing/acting artificial agents that can move 
about in artificial environments that have spatial structure (usually two-dimensional). In addition, artificial genomes are specified 
that encode ANNs (either directly, or indirectly, through some ontogenetic process). Genomes are modified, over many 
generations, via a variety of genetic algorithms. During an artificial animal's lifetime, its ANN may also be modified via adaptive 
learning algorithms. Thus, AL models offer a wide range of more realistic modeling techniques, accessible for the first time as the 
result of great increases in computational power and reduction in the cost of computation and memory storage.
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Although the field of AL is still in its infancy, a number of simulation models have been developed, in which ANN-controlled life 
forms evolve and/or develop survival behaviors within simulated environments. Some of these are briefly mentioned in the 
following sections.

4.1 Evolution/Learning of Food Discrimination

Todd and Miller [123] set up an abstract, simulated "aquatic" environment containing two distinct patches of "plant material"—a 
red patch and green patch. Within one patch the red plant serves as ''food" for the evolving creatures, while the green plants act as 
"poison." In the other patch the color roles are reversed. Each creature remains, during its lifetime, in a given patch; however, its 
offspring at birth may be placed in the opposite patch. If a creature eats food, its metabolism is increased (thus improving 
reproductive success), but if it consumes poison its metabolism is reduced. Creatures are immobile, but food material (or poison) 
"floats" past them, and they must decide whether to eat it or ignore it. In addition, food always smells "sweet," while poison 
always smells "sour" (i.e., no matter what their color assignments happen to be within a given patch). Finally, there is 
"turbulence" in the "water." Increased turbulence decreases the accuracy of smell. For example, a red plant may mistakenly smell 
sweet, even though, in that patch, it is always poisonous.

The behavior of Todd and Miller's creatures is controlled by neural networks containing (a) color and scent sensory neurons, (b) 
an ingest motor neuron, and (c) an interneuron. The genome of each creature directly codes excitatory/inhibitory connections 
between these neurons. In addition, connections can be either fixed or learnable. Learnable connections are modified, during a 
creature's lifetime, via a Hebbian rule, in which correlated firing of connected neurons increases the strength of their connections.

Because what is poisonous can change color from generation to generation, there is no advantage to hardwiring connections for 
poison avoidance in terms of color. However, within an individual's lifetime, color does serve as a poison/food discriminator that 
(depending on the amount of turbulence) is more accurate than smell. Over several hundreds of generations, creatures evolve with 
a hardwired connection between the smell and motor (eating) neurons but with a learnable connection between the color and 
motor neurons. This connection is then modified over the life of a given creature, based on which type of food patch it ended up 
in.

4.2 Evolution of Foraging and Trail Laying



Collins [24] performed a series of experiments (labeled AntFarm I through AntFarm V) in which he attempted to evolve colonies 
of ANN-controlled artificial ants that both forage for food and lay down pheromone trails to guide others to food sites. Most of the 
experiments consisted of 32,000 colonies with 128 ants per colonies being simulated on a massively parallel computer. He varied 
numerous parameters, including the genome size (from 25,590 bits in AntFarm I to 487 bits in AntFarm V) and ANN encoding 
schemes (e.g., symmetric vs. nonsymmetric connections; excitory only vs. incorporation of inhibitory connections; interneurons 
varying from 21 bits to 0 bits). In the earlier experiments, food foraging behaviors evolved, but they were non-ant like, for 
example, ants all walked in large circles or semicircles. Collins only succeeded in evolving antlike behavior in AntFarm V. These 
ants exhibit mostly forward movement with random turns until a food site is found, then they transport some food directly back to 
the nest while laying pheromones. In this experiment, Collins forced ants to involuntarily lay pheromones for generations 1,000-
2,000 and then returned pheromone-release control back to each ant. At generation 2,001 there was a large decrease in the amount 
of pheromone being released, but the ants had evolved to
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both lay and follow trails by generation 2,100. Collins theorizes that, before ants were forced to release pheromones, trail 
following could not evolve (and so trail laying could not evolve either). However, once ants had finally evolved to follow trails 
(i.e., follow those trails created during the generations in which forced pheromone release occurred), then any (initially 
inadvertent) pheromone release upon return from a food site would lead other ants to that site and thus increase survivability of 
the colony. As a result, trail laying and trail following could now coevolve.

4.3 Evolution of Communication

MacLennan [69] reasons that communication emerges only when (a) what he terms "simorgs" (simulated organisms) can 
perceive, in their local environments, information unavailable but advantageous to other simorgs, and (b) the signalers are able to 
produce changes in the environment that the receivers can detect. MacLennan also argues for incorporating overlapping 
generations into Holland's genetic algorithm (GA), so that simorg offspring can learn from prior generations. In MacLennan's 
experiments, each simorg's genotype is represented by a transition table and likewise its phenotype. In addition to local 
environments, there is a shared, global environment of symbols, and each simorg, based on its transition table, can match and/or 
post a symbol to the global environment. Whenever a simorg's action matches that of the most recent symbol posted (representing 
information about the local environment of another simorg), both matching simorgs receive a credit. Simorgs with higher credit 
have a greater chance of being selected for mating. MacLennan's experiments indicate that average fitness of the population 
increases much more rapidly when communication is allowed than when it is repressed. He also compares the relative influence of 
communication with learning enabled/disabled and shows that concurrent learning and communication result in the highest 
average fitness.

In Werner and Dyer [129] we evolved simple communication protocols for mate finding between ANN-controlled artificial 
animals in a two-dimensional toroidal, grid environment. Females received, as sensory inputs, the location and orientation of any 
male within a 5 x 5 grid sensory area surrounding the female. The motor output of a female was interpreted as a signal that was 
then copied as input to any male within the female's 25-cell sensory area. In contrast, the male's motor output caused him to move 
left, right, forward, or stand still. Thus, females were immobile but could sense and signal nearby males. Males were "blind" but 
could "hear" the signals of nearby females and move about in the environment. Mating occurred whenever a male landed on a grid 
cell occupied by a female. As a result of mating, a new male and female offspring (via recombination and mutation of parental 
genes) were produced and placed at random locations in the environment. At the same time, a random male and female were 
removed from the environment, thus keeping the overall population size stable. Starting with a population of random genomes, the 
simulation resulted in a progression of generations of ANNs that exhibited increasingly effective mate finding strategies. In effect, 
the females evolved to inform nearby males how to move in order to find the females and mate. The males simultaneously 
coevolved to interpret female signals in order to land on female-occupied squares. In addition, a number of distinct subspecies 
(i.e., groups with different signaling protocols or ''dialects") evolved and competed in the environment. Experiments with physical 
barriers in the environment were also performed. A partially permeable barrier allowed a separate subspecies to evolve and 
survive for indefinite periods of time, in spite of occasional migration and contact from members of other subspecies.

Like in MacLennan's model, we have overlapping generations. However, in our model, organisms are not selected for mating but 
must find their own mates. We believe that it is important not to directly select for communication. Instead, communication
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should evolve because it enhances the ability of organisms to perform tasks that are directly related to survivability, such as 
finding mates.

4.4 Evolution of Predation and Predator Avoidance

In Werner and Dyer [130,131] we have extended our two-dimensional environment to include simulated "smells" and "sounds" of 
different types and intensities, which diffuse away from their sources, thus creating complex sensory gradients. Multiple species 
of life forms (termed biots) interact in the environment (termed BioLand), which also contains simple physical objects, such as 
plants, trees, and holes. Plants serve as food for some biot species while trees and holes serve as landmarks, and/or safety zones 
for nesting and/or escape from predator biots. Biots produce involuntary smells, which serve to indicate their species/gender 
membership and can be extended to indicate other physical properties, such as age, receptivity to mating, etc. Biots also produce 
involuntary sounds, which become louder the faster they move and thus diffuse over greater distances. Sounds can also be 
produced voluntarily, that is, under biot neuromotor control. Each biot can generate a variety of distinct voluntary sounds (termed 
frequencies). Different frequencies allow biots to communicate and/or discriminate different sounds and sound combinations that 
they receive through their bilateral sensory neurons.

Biots are capable of smoothly turning and altering their speeds. They possess a metabolism that drops as they perform actions and 
rises whenever they eat food (i.e., food consists of prey biots for carnivores, of plants for herbivores). Biots can grasp/release 
objects and also contain a mating motor neuron. Mating and offspring occur whenever two same-species biots (each with 
sufficient metabolism) come near one another and simultaneously fire their mating motor neurons. In such cases, variant offspring 
are produced via mutation and recombination of parental genomes. Biot genes encode both standard axo-dendritic connections 
and also higher-order, axo-axonal gating connections.

In one experiment, herbivore biots were termed prairie dogs, while two distinct predator species were termed snakes and hawks. 
Prairie dogs evolved to run away from snakes and hawks, while these predators evolved to chase the prairie dogs. Prairie dog biots 
also evolved to form herds for protection from predators. In ongoing experiments we are evolving differential predator warning 
signals among prairie dogs, who will then seek the appropriate shelter (tree vs. hole) based on the nature of the warning signal.

4.5 Toward the Synthesis of Protohuman Intelligence

ANNs capable of exhibiting complex animal behaviors (e.g., nesting, parenting) have not yet been engineered, evolved, or 
designed through learning; therefore, it may be premature to discuss the synthesis of protohuman forms of intelligence (such as 
humanlike language and thought) via AL techniques. It may be possible, however, that sophisticated ANNs, capable of aspects of 
human thinking and language could be first engineered and then a population of them placed in a simulated environment. The 
population could then undergo evolution, for instance, to see if such engineered ANNs could survive, interact, cooperate, 
communicate, and adapt. There is currently an intense, ongoing debate over the relative roles of innate brain structures, 
development/learning processes, and adaptation in the evolution of human language [6,61,9193]. This debate cannot be resolved 
either through examining the fossil record or engaging in thought experiments. We believe that the AL simulation approach 
proposed here has the long-term potential of providing important insights in this area of inquiry. At this point, a number of ANNs 
that exhibit aspects of human-level inferencing, language acquisition, and comprehension have been engineered. In my own lab, 
for example, we have designed (a) ANNs that learn the meanings of word sequences
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by observing the motions of simulated objects on an artificial retina [83], (b) ANNs that automatically disambiguate word 
meanings via plan analysis (e.g., "... washed the pot in the dishwasher" vs. "... hid the pot in the dishwasher to keep from getting 
busted") [57], and (c) ANNs that acquire both world knowledge (i.e., scripts—stereotypic action sequences) and word meanings 
and infer unstated events when generating story paraphrases [81]. However, we are still years away from placing even small 
groups of such complex neural networks into evolutionary or adaptive environments.

5 Other Research Issues and Methodological Principles

The AL approach to synthesizing intelligent behavior described here has its roots in the fields of parallel distributed processing 
[104], connectionism [54,124], computational neuroscience [2,107], neuroethology [18,33], comparative psychology [101,103], 
genetic algorithms [11], biological cybernetics [15], situated agents [125], and reactive microrobotics [16]. As a result, the AL 
approach to synthetic cognition carries along with it other general research issues that are related to each of these fields. These 
general issues involve the following: (a) The relationship between learning and evolution. For example, Nolfi et al. [86], Belew 
[10], and Belew et al. [12] have performed experiments in which evolving ANNs are augmented with backpropagation learning 
during their lifetimes. (b) How ANNs encode knowledge of their environments [21,101,102] and respond adaptively to them 
through feedback [9]. (c) How genomes and artificial organisms are best encoded [25] and expressed ontogenetically [85]. (d) 
How to address outstanding problems in population biology, ecology, and ethology, such as the evolution of altruism [134]. (e) 
How to encode environments that are computationally tractable but rich enough to supply the necessary selectional pressures 
[130].

The AL approach toward synthesizing intelligence can be computationally extremely expensive, because it involves simulating 
many generations of entire populations of the individual lifetimes of sensing/acting ANNs. Consequently, models must be 
simplified or made more abstract in some way, in order to remain tractable. Below we offer the following methodological 
principles as possible guidelines in simulation design.

5.1.1 Principle of Hypothesis-Driven Abstraction Hierarchies

Any given task can be represented at many different levels of abstraction. For example, the task of building a bird's nest can be 
modeled at a very abstract level (e.g., a single nest-building motor neuron fires and, presto, a complete nest is created in the 
environment) or at an extremely detailed level (e.g., millions of neurons fire, to control a robot bird with hundreds of 
muscles/joints to simulate complex beak, claw, torso, and head movements during nest construction sensory/motor actions). 
Which level of abstraction is selected depends greatly on where theoretical claims are being made. A single nest-making motor 
neuron might be sufficient for a model whose hypothesis involves the placement of a nest in a site selection model; however, it 
would be insufficient for a model concerning the evolution/learning of nest-construction behavior.

5.1.2 Principle of Minimal Effective Embodiment

For the task of synthesizing intelligent cooperative behaviors, it is important to concentrate on the evolution of the structure of 
nervous systems while avoiding, wherever possible, the inclusion of physical properties of the organisms. For example, real 
animals vary in size. However, if one is trying to evolve, for instance, predator avoidance strategies, then the modeling of size 
may be detrimental and result simply in an evolutionary "size arms race" in which artificial animal populations avoid predation by 
simply evolving to be larger. Again, what physical characteristics of an organism to include depends on the research hypothesis 
being explored. For example, if one is evolving
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predator escape behavior in a landscape of burrows of varying sizes, then size (of both prey and predator) might be important. 
However, even in this case one would want to hold the size attribute fixed over evolutionary time, so that one can concentrate on 
the evolution of the behavior and the structure of the ANNs that produce it. Another form of minimality is to reduce the scale or 
granularity of the interface between the organism and its environment as much as possible, for instance, instead of one million 
rods/cones for an artificial eye, employing a 10 x 10 matrix of sensory neurons.

5.1.3 Principle of Midpoint Entry

Because the search space (of possible agent populations, interactions, and environments) is so vast and broad ranging, it is 
acceptable to start one's model somewhere in the middle. This principle supports the mixing of bottom-up and top-down research 
strategies. The top-down approach involves starting out with a specific goal in mind and then engineering a system to achieve that 
goal, using whatever constraints are available to guide model construction. The bottom-up approach involves starting out with a 
set of tools or building blocks and then tinkering with these in systematic ways to see what results. In general, the AL approach 
tends to be bottom-up in nature, because both evolution and adaptive learning are mainly bottom-up. However, given that the 
research space is so vast, it appears reasonable to use top-down techniques to design organisms at a given level of sophistication, 
which are then placed in environments in which evolutionary and adaptive learning processes are then applied. This mixed 
approach allows one to start, for instance, with a population of pre-engineered ANNs with sophisticated capabilities and then see 
if such ANNs can improve (or even maintain) these capabilities within an evolutionary and learning environment. In fact, every 
researcher who specifies the sensory/motor capabilities of a given artificial agent is initially using a top-down approach.

5.1.4 Principle of Indirectness

Whenever possible, it is important to avoid setting up an objective function that selects directly for the desired behavior. Instead, 
the desired behavior should arise indirectly, as a side effect of increased survivability (due to the development or evolution of that 
behavior). For example, instead of directly selecting artificial animals for reproduction who communicate, in Werner and Dyer 
[129], only animals who found their own mates could reproduce. Communication then evolved because it improved the ability of 
animals to find their mates and thus produce offspring.

5.1.5 Principle of Naturalness

Because there are potentially so many parameters to adjust in AL systems, it is important to impose constraints that are intuitive. 
A major source of intuitions comes from constraints that already exist for real animals in nature. Whenever these intuitions are 
violated, they should be carefully noted. For example, in Werner and Dyer [129], when mating occurred we placed the offspring 
at distant sites from their parents. This kind of event does not occur in nature. Actually, we did it because our ANNs had no way 
of discriminating their kin or any reason to avoid committing incest, and parents paid no metabolic cost in generating offspring. 
As a result, parents and offspring, if allowed to stay in the same spot after mating, would simply remain there, forever mating with 
each other. Thus, this initial lack of "naturalness" led to a model that became more and more difficult to extend. To solve this 
problem, we decided to add new features to the environment (see section 4.4) in order to make the environment conform more to 
natural environments.

Finally, this paper has mainly concentrated on issues in software simulation. Clearly, there is a corresponding (albeit distinct) 
entire research program in synthesizing intel-
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ligent hardware (i.e., robots). An AL-based robotics research program poses distinctive challenges, only two of which I will 
mention here: (a) With physical robots it is very difficult to have large populations, thus greatly reducing the effectiveness of 
genetic algorithms. Even a small population of 100 micro-robots would be very difficult to control and time-consuming to set up 
for repeated experimentation. Perhaps a mixed approach can be developed, in which large populations of ANNs are evolved in 
simulated environments, and then a small subset of these are down-loaded (as software control) into the actual robots, which are 
then tested in the real world. (b) Models of ontogenetic development will also be extremely difficult, because one cannot easily 
modify the morphology of a physical robot.

6 Conclusions

Although animals lack human-level thought and language, they still exhibit a high degree of intelligence. Animals must satisfy 
multiple, often conflicting constraints in order to survive. Animals hide from predators, forage and scavenge, fight, court, mate, 
establish dominance, climb, burrow, build elaborate nests, teach and care for their offspring, groom, establish and defend 
territories, migrate, navigate, use primitive tools, cooperate, and communicate. Such tasks require complex sensory analysis and 
motor integration. They also learn via observation and adjust their behaviors to constantly changing environments. They 
categorize and manipulate their environments and generalize from experience [41,48]. They form social organizations through 
communication and cooperation. One major goal of the field of AL is to synthesize these complex behaviors by constructing 
artificial nervous systems, via developmental and evolutionary modeling techniques, and thus gain insight into the computations 
underlying the cognitive capabilities of both animals and man.
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Abstract One category of research in Artificial Life is concerned with modeling and building so-called 
adaptive autonomous agents, which are systems that inhabit a dynamic, unpredictable environment in 
which they try to satisfy a set of time-dependent goals or motivations. Agents are said to be adaptive if 
they improve their competence at dealing with these goals based on experience. Autonomous agents 
constitute a new approach to the study of Artificial Intelligence (AI), which is highly inspired by 
biology, in particular ethology, the study of animal behavior. Research in autonomous agents has 
brought about a new wave of excitement into the field of AI. This paper reflects on the state of the art of 
this new approach. It attempts to extract its main ideas, evaluates what contributions have been made so 
far, and identifies its current limitations and open problems.

1 Introduction

Since 1985, a new wave has emerged in the study of Artificial Intelligence (AI). At the same time at 
which the popular, general belief is that AI has been a ''failure," many insiders believe that something 
exciting is happening, that new life is being brought to the field. The new wave has been termed 
autonomous agent research or behavior-based AI as opposed to mainstream "knowledge-based AI," or 
also "bottom-up AI" versus "top-down AI." Finally, the term animat approach (shorthand for "artificial 
animal"), which was coined by Wilson [66], is also frequently used.

Several people have given definitions and written overviews of research in autonomous agents, among 
them Brooks [11], Wilson [67], and Meyer [45]. There are several reasons for giving it yet another try. 
First of all, many researchers are still skeptical about the approach. Some claim that it isn't very different 
from what they have been doing all along. Others are still not convinced that the approach is founded 
and scientific.



A second reason is that this account is different from the papers listed earlier. Brooks [11], being one of 
the main originators of this new approach, presents a picture that is restricted to robotic forms of 
intelligence. This paper presents a more general perspective. It argues that the autonomous agent 
approach is appropriate for the class of problems that require a system to autonomously fulfill several 
goals in a dynamic, unpredictable environment. This includes applications such as virtual actors in 
interactive training and entertainment systems [3, 38], interface agents [39, 52], process scheduling [41], 
and so on. Wilson's account [67] focuses on a scientific methodology
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for research in autonomous agents, while Meyer [45] aims to give an overview of the research 
performed so far.

Finally, a third reason is that, since the approach has been around for a number of years now, it is time to 
perform a critical evaluation. This paper discusses the basic problems of research in adaptive 
autonomous agents. It also presents an overview and evaluation of the state of the art of the field. In 
particular it identifies some of the more general and more specific open problems that still remain to be 
solved. Overview papers are necessarily biased. This paper is biased toward the research in adaptive 
autonomous agents that has taken place at the AI Laboratory and Media Laboratory of the 
Massachusetts Institute of Technology.

The paper is structured as follows: Section 2 introduces the concept of an adaptive autonomous agent 
and defines the basic problems the field is trying to solve. Section 3 discusses the guiding principles of 
research in adaptive autonomous agents. Section 4 identifies the common characteristics of solutions 
that have been proposed. Section 5 discusses some example state of the art agents stemming from three 
different application domains: mobile robotics, interface agents, and scheduling systems. Section 6 
presents a critical overview of the state of the art. It discusses the main architectures that have been 
proposed for building agents. In particular, it addresses progress made in models of action selection and 
models of learning from experience. Section 7 presents some overall conclusions.

2 What is an Adaptive Autonomous Agent?



An agent is a system that tries to fulfill a set of goals in a complex, dynamic environment. An agent is 
situated in the environment: It can sense the environment through its sensors and act upon the 
environment using its actuators. An agent's goals can take many different forms: they can be "end goals" 
or particular states the agent tries to achieve, they can be a selective reinforcement or reward that the 
agent attempts to maximize, they can be internal needs or motivations that the agent has to keep within 
certain viability zones, and so on. An agent is called autonomous if it operates completely 
autonomously, that is, if it decides itself how to relate its sensor data to motor commands in such a way 
that its goals are attended to successfully. An agent is said to be adaptive if it is able to improve over 
time, that is, if the agent becomes better at achieving its goals with experience. Notice that there is a 
continuum of ways in which an agent can be adaptive, from being able to adapt flexibly to short-term, 
smaller changes in the environment, to dealing with more significant and long-term (lasting) changes in 
the environment, that is, being able to change and improve behavior over time.

Depending on what type of environment it inhabits, an agent can take many different forms. Agents 
inhabiting the physical world are typically robots. An example of such an agent would be an 
autonomous vacuuming robot. Agents inhabiting the "cyberspace" environment consisting of computers 
and networks are often called "software agents" or ''interface agents" or sometimes also "knobots." An 
example of such an agent would be a system that navigates computer networks to find data of a 
particular nature. Finally, agents can inhabit simulated physical environments. An example of such an 
agent could be a "synthetic actor" in a computer-animated world. Combinations of these three types of 
agents may exist. For example, in the ALIVE interactive environment [38], the animated (virtual) agents 
employ real sensors (i.e., a camera), to decide how to react to a person's movements and gestures.

Even though AI aims to study intelligence by synthesizing artificially intelligent systems, mainstream AI 
has so far concentrated on problems that are very different than
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that of modeling adaptive autonomous agents. Some key points that distinguish traditional AI from the 
study of autonomous agents are the following:

1. Traditional AI has focused on systems that demonstrate isolated and often advanced competences 
(e.g., medical diagnosis, chess playing, etc.). Traditional AI systems provide "depth" rather than "width" 
in their competence. In contrast, an autonomous agent has multiple integrated competences. Typically 
the competences are lower-level competences. For a robot, these are competences such as locomotion, 
navigation, keeping the battery charged, collecting objects, etc. For other systems these might be other 
simple competences, like reacting in a market system by simple bidding and buying behaviors [41] or 
executing a simple software routine in the case of an interface agent [39].



2. Traditional AI has focused on "closed" systems that have no direct interaction with the problem 
domain about which they encode knowledge and solve problems. Their connection with the environment 
is very controlled and indirect through a human operator. The operator recognizes a problem in the 
domain and describes it to the system in the symbolic language that the system understands. The system 
then returns a symbolic description of an answer or solution, which then has to be implemented by the 
operator in the actual domain. In contrast, an autonomous agent is an "open" system. An agent is 
"situated" in its environment. It is directly connected to its problem domain through sensors and 
actuators. It can affect or change this domain through these actuators. The problem domain is typically 
very dynamic, which means that the system has a limited amount of time to act and that unpredictable 
events can happen. It typically also incorporates other acting agents (human and/or artificial).

3. Most traditional AI systems deal with one problem at a time. The problem the system has to solve is 
presented to the system by the human operator. Often, the system does not have time constraints for 
solving the problem and does not have to deal with interrupts (although the operator might have to deal 
with such problems). From the system's point of view, the problem domain does not change while the 
system is computing. In contrast, an agent is autonomous: The system is completely self-contained. It 
has to monitor the environment and figure out by itself what the next problem or goal to be addressed is. 
It has to deal with problems in a timely fashion. Typically, an agent has to deal with many conflicting 
goals simultaneously.

4. Traditional AI focuses on the question of what knowledge a system has. AI systems have declarative 
"knowledge structures" that model aspects of the domain of expertise. All of the internal structures, 
apart from an interpreter, are static. The system is only active when a problem is posed by the human 
operator, in which case the interpreter uses the static knowledge structures to determine the solution to 
the problem. In contrast, the emphasis in autonomous agent research is on what behavior a system 
demonstrates when put into its environment. The internal structures of an agent are dynamic "behavior 
producing" modules as opposed to static "knowledge structures." They do not have to be initiated by a 
goal formulated by a user. It is less important that the agent can answer questions about its problem 
domain (such as how it solves a particular problem). It is also less important that the user is able to 
inspect the internal structures and identify those that are responsible for particular aspects of the 
resulting behavior. For example, it is acceptable for goals or plans to be emergent observable properties 
that cannot be attributed to one particular internal structure (but which instead are the result of some 
complex interaction among a set of structures and the environment).
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5. Finally, traditional AI is not usually concerned with the developmental aspect or the question of how 
the knowledge structures got there in the first place and how they should change over time. They do not 
have to be adaptive to changing situations (components breaking down, etc.). Most of the work done in 
traditional machine learning assumes that a lot of background knowledge is available. This background 
knowledge is used by the system to do knowledge reformulation or knowledge compilation (e.g., 
caching, explanation-based learning, concept learning, etc.). In contrast, in autonomous agent research 
there is a strong emphasis on "adaptation" and on a "developmental approach." This often means that the 
system improves its own internal structures (and, thus, its behavior) over time, based on its experience in 
the environment. The agent actively explores and updates its structures using an incremental, inductive 
learning method. In other cases, this means that the designer takes an incremental approach to building 
the agent: The user gradually evolves a more sophisticated system by adding structure to an already 
existing "working" system.

The main problem to be solved in autonomous agent research is to come up with an architecture for an 
autonomous agent that will result in the agent demonstrating adaptive, robust, and effective behavior. 
Adaptive means that the agent improves its goal-achieving competence over time. Robust means that it 
never completely breaks down. (It demonstrates graceful degradation when components within the agent 
fail or when unexpected situations happen.) Effective means that the agent is successful at eventually 
achieving its goals. Specifically, two related subproblems have to be solved:

1. The problem of action selection: How can an agent decide what to do next so as to further the 
progress toward its multiple time-varying goals? How can it deal with contingencies or opportunities 
that may arise? How can it arbitrate among conflicting goals? How can it deal with noisy sensors and 
actuators? How can it react in a timely fashion?

2. The problem of learning from experience: How can an agent improve its performance over time based 
on its experience? How can it decide when to "exploit" its current best action versus "exploring" other 
actions so as to possibly discover better ways of achieving its goals [21]? How can it incorporate the 
feedback from the world into its internal behavior-producing structures? How can it correct "wrong" or 
ineffective behavior-producing structures?

Section 6 discusses both of these problems in more detail. In summary, the main goal of research in 
autonomous agents is to understand better the principles and organizations that underlie adaptive, robust, 
effective behavior. A secondary goal is to also develop tools, techniques, and algorithms for 
constructing autonomous agents that embody these principles and organizations. We call the totality of a 
set of principles an organization, and the set of tools, algorithms, and techniques that support them an 
"architecture" for modeling autonomous agents.



One of the few things that has become clear in the last couple of years is that there does not exist one 
such architecture that can be considered optimal in all respects (or better than all the other ones 
proposed). Rather, the goal of our research has become to develop an understanding of which 
architectures are the most simple solution for a given class of agent problems. More specifically, such a 
problem class is defined in terms of particular characteristics of the agent's resources (e.g., memory, 
sensors, compute power), and particular characteristics of the tasks and environment [32, 62].
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3 Guiding Principles

The study of adaptive autonomous agents is grounded in two important insights, which serve as "guiding 
principles" for the research performed:

•  Looking at complete systems changes the problems often in a favorable way.

•  Interaction dynamics can lead to emergent complexity.

The first realization is that viewing the problem of building an intelligent system in its context can make 
things a lot easier. This observation is true at several levels:

1. The intelligent functions that are being modeled, such as perception, planning, learning, etc. are part 
of a complete intelligent system, namely, the agent. Building systems in an integrated way rather than 
developing modules implementing these functions independently, often makes the task a lot easier. For 
example, a system that can learn can rely less on planning because it can cache computed plans for 
future reuse. A system that has sensors and actuators can perform tests in the environment and as such 
has less of a need for modeling its environment and for inference and reasoning. A system that has 
sensors has an easier job disambiguating natural language utterances, because most likely they are 
related to the objects the system currently perceives, and so on.

2. A complete intelligent system is always part of some environment; it is situated in some space. This 
implies that there is less of a need for modeling, because the "world is its own best model" [11]. The 
environment can also be used as an external memory, for example, for reminding the system which tasks 
still have to be performed and which ones it already did perform [57]. The environment usually has 
particular characteristics that can be exploited by the system. For example, offices consist of vertical 
walls and horizontal floors, doors typically are of a particular size, etc. These "habitat constraints" can 
be exploited by the system, making its task much easier [22].



3. An intelligent system is not only situated in space but also in time. This implies that the system can 
develop itself so as to become better at its task, if time and the particular task permit (through learning 
from experience). Time also allows for the construction of an iterative, incremental solution to a 
problem1 For example, a natural language system situated in time does not need to be able to 
disambiguate every utterance. It can engage in a discourse, for example, asking questions or making 
particular remarks that will help it to gradually disambiguate whatever the other speaker wants to 
convey.

4. Finally, every intelligent system is typically also part of a society. Other agents in the same 
environment are dealing with similar or related problems. Therefore, there is no need for the agent to 
figure everything out by itself. For example, a mobile robot could use the strategy of closely following a 
person passing by, in order to achieve the competence of navigating in an office environment without 
bumping into things. Maes and Kozierok [39] report on some experiments in which interface agents 
learned to perform certain tasks by observing and imitating users.

1 Situatedness in time cuts both ways: It also means that the agent has to react in a timely fashion and be able to 
deal with interrupts.
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As a consequence of the previous ideas, autonomous agent research has concentrated on modeling 
systems within their context. Except for expert systems research, traditional AI has concentrated on 
more abstract and hypothetical problems, while behavior-based AI or agent research has built "real" 
systems that solve an actual (small) problem in a concrete environment.

A second major insight upon which the study of autonomous agents is founded is that interaction 
dynamics among simple components can lead to emergent complexity (see also Resnick [50]). Agent 
research is founded on the belief that shifting into the "interaction" domain as opposed to the 
"component" domain will make it easier to solve the problem of building intelligent systems. This idea 
also applies at several different levels [12]:



1. Interaction dynamics between an agent and its environment can lead to emergent structure or 
emergent functionality. This idea is inspired by the field of ethology. Ethologists have stressed that an 
animal's behavior can only be understood (and only makes sense) in the context of the particular 
environment it inhabits. Braitenberg [9], a cybernetician, also convincingly illustrated a similar idea in 
his book Vehicles. Finally, in AI, Simon [54] referred to the same idea when he discussed the example 
of an ant on the beach. He notes that the complexity of the ant's behavior is more a reflection of the 
complexity of the environment than of its own internal complexity. He muses that one could think that 
this is true for human behavior. Many years later, Agre [1] showed how behavior as complex as goal-
directed action sequences can be modeled as an emergent property of the interaction dynamics between 
a complex environment and a reflex-guided agent. What this all means is that the internal structures 
controlling an agent need not be complex to produce complex resulting behavior. It is often sufficient to 
study the particular properties of the environment and find an interaction loop, a set of feedback or 
reflex mechanisms that will produce the desired behavior. One consequence is that we need a better 
understanding of the particular characteristics of an environment. If we want to be able to understand or 
prove aspects about the resulting performance of autonomous agents, we have to model the agent as well 
as its environment [5, 23]. Another consequence is that we need better models of the interaction 
dynamics between an agent (or components of the agent) and its environment.

2. Simple interaction dynamics between the different components within an agent can lead to emergent 
structure or emergent functionality. For example, Mataric's wall-following robot does not have a single 
component to which the expertise of wall following can be attributed [42]. One module is responsible 
for steering the robot toward the wall when the distance to the wall is above some threshold while 
another module is responsible for steering the robot away from the wall when the distance is below 
some threshold. Neither one of these modules is primarily "responsible" for the wall-following behavior. 
It is their interaction dynamics that makes the robot follow walls reliably. In Maes' networks [331, none 
of the component modules is responsible for action selection. The action selection behavior is an 
emergent property of some activation/inhibition dynamics among the primitive components of the 
system.

3. Interaction dynamics between the component agents of a social system can lead to emergent structure 
or functionality. Deneubourg et al. [16] and Deneubourg, Theraulaz, and Beckers [17] describe how 
social insects following simple local rules can produce emergent complexity such as a path to a food 
source, food foraging trees, etc. Malone et al.'s collection [41] of autonomous bidding systems addresses
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the complicated task of process-processor allocation. Finally, anthropologists have studied how 
different concepts and complex methods for solving problems are gradually shaped through social 
interaction among different people [53, 57].

What is important is that such emergent complexity is often more robust, flexible, and fault-tolerant than 
programmed, top-down organized complexity. This is the case because none of the components is really 
in charge of producing this complexity. None of the components is more critical than another one. When 
one of them breaks down, the system demonstrates a graceful degradation of performance. Because all 
of the components interact in parallel, the system is also able to adapt more quickly to environmental 
changes. Often the system explores multiple solutions in parallel, so that as soon as certain variables 
change, the system is able to switch to an alternative way of doing things. For example, in Maes' system 
[33] several sequences of actions are evaluated in parallel, the best one determining the behavior of the 
agent. Also in Malone et al.'s system [41], several mappings of processes to machines can be viewed as 
being explored in parallel.

4 Characteristics of Agent Architectures

Many of the architectures for autonomous agents that have been proposed have characteristics in 
common. This section lists these shared characteristics and contrasts them with the characteristics of 
traditional AI architectures. These differences are illustrated by means of some concrete examples in the 
next section.

4.1 Task-Oriented Modules

In traditional AI, an intelligent system is typically decomposed along "functional modules" such as 
perception, execution, natural language communication (the peripheral components), a learner, planner, 
and inference engine (the central systems components). These modules are typically developed 
independently. They rely on the "central representation" as their means of interface. The central 
representation includes things such as beliefs, which are updated by the perception component and 
processed and augmented by the inference engine and natural language component, desires (or goals) 
and intentions, which are produced by the planner.

In contrast, an agent is viewed as a set of competence modules (often also called behaviors) [10]. These 
modules are responsible for a particular small task-oriented competence. Each of the modules is directly 
connected to its relevant sensors and actuators. Modules interface to one another via extremely simple 
messages rather than a common representation of beliefs, and so on. The communication between 
modules is almost never of a "broadcast" nature, but happens rather on a one-to-one basis. Typically the 
messages consist of activation energy, simple suppression and inhibition signals, or simple tokens in a 
restricted language. In addition to communication via simple messages, modules also communicate "via 
the environment." One module may change some aspect of the environment, which will trigger another 
module, etc.

4.2 Task-Specific Solutions



In traditional AI, the different functional components of the system are modeled as general and domain 
independent as possible. The hope is that the same functional components can be used for different 
problem domains (a general domain-independent planner, learner, etc.). The only component that needs 
to be adapted is the central representation, which contains domain-specific information such as a model 
of the particular environment at hand and possibly also more heuristic knowledge.
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In contrast, an agent does not have "general" or task-independent functional modules. There is no 
general perception module, no general planner, etc. Each of the competence modules is responsible for 
doing all the representation, computation, "reasoning," and execution that are necessary for the 
particular competence it is responsible for. For example, an obstacle avoidance module might need one 
bit of information to represent whether an obstacle is perceived or not within a critical range. It might do 
some very simple computation to decide how an obstacle should be avoided. Competence modules are 
self-contained, black boxes. They might employ completely different techniques (even different 
hardware) to achieve their competence. Part of the reason for this more pragmatic approach is a 
pessimistic vision about whether it is possible at all to come up with a general solution to the vision 
problem, a general solution to the planning problem, etc., a view also expressed by Minsky [46].

4.3 Role of Representations is Deemphasized

In traditional AI, the key issue emphasized is that the agent has a complete, correct internal model-an 
accurate copy of the environment (with all its objects and relationships) inside the system, which the 
system can rely on to predict how its problems can be solved.

In contrast, in agent research there is little emphasis on modeling the environment. First of all, there is 
no central representation shared by the several modules. The system also does not attempt to integrate 
the information from different sensors into one coherent, objective interpretation of the current situation. 
Instead, every task-oriented module locally represents whatever it needs to represent to achieve its 
competence. The localized representations of different modules are not related and might be inconsistent 
with one another or redundant. Within one competence module, the usage of representations may be 
minimized in favor of employing the environment as a source of information (and a determiner of 
action). The representations within one module are often of a less propositional, objective, and 
declarative nature than those employed in traditional AI. For example, they might index objects 
according to the features and properties that make them significant to the task at hand [1] rather than the 
identities of the objects. They can be of a numeric, procedural [43], or analog nature. Often, a lot of task-
specific "problem solving" is performed in the perception part of a particular competence [2, 14, 55].

4.4 Decentralized Control Structure



Traditional AI adopts a sequential organization of the different modules within the system. The modules 
take turns being "active" or processing and changing the internal representations. Perception and 
inference first update the internal model (beliefs and goals). After that, planning or problem solving 
produces a description of the solution to the problem (a plan or the answer to a question). Finally, either 
the execution module or a human operator implements the solution in the domain (the latter one having 
more knowledge and understanding of the situation than the former one).

In contrast, agent architectures are highly distributed and decentralized. All of the competence modules 
of an agent operate in parallel. None of the modules is "in control" of other modules. However, some 
simple arbitration method is included in order to select or fuse multiple conflicting actuator commands 
(commands of different modules might be mutually exclusive). This arbitration network might be a 
winner-take-all network as in Maes [33] or a hardcoded priority scheme as in Brooks [10]. Because of 
its distributed operation, an agent is typically able to react quickly to changes in the environment or 
changes in the goals of the system.
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4.5 Goal-Directed Activity is an Emergent Property

Traditional AI models activity as the result of a "deliberative thinking" process. The central system 
evaluates the current situation as represented in the internal model and uses a search process to explore 
systematically the different ways in which this situation can be changed so as to achieve a goal situation.

In contrast, in agents, activity is not modeled as the result of a deliberative process. Instead, complex 
and goal-directed activity is modeled as an emergent property of the interaction among competence 
modules internally, and among competence modules and the environment. There is no internal structure 
corresponding to "the plan" of the system. Many agents do not have any explicit goals, but are 
nevertheless still driven toward a specific set of fixed, compiled-in goals. In other architectures, the 
agent has an explicit representation of its (possibly time-varying) goals, which is used to modify the 
priorities among the different modules over time.

4.6 Role for Learning and Development

In traditional AI, learning typically consists of compilation or reformulation of what the system already 
knows. For example, the system might cache a plan for later reuse. Very seldom does the system 
perform inductive learning of new information or corrective learning of existing knowledge based on 
environmental experimentation and feedback. This implies that the programmer is completely 
responsible for creating an initial complete and correct model for the system to use.



In contrast, learning and development are considered crucial aspects of an adaptive autonomous agent 
[66]. Building an adaptive system that will develop from a not so successful system into one that 
achieves the tasks is often considered a better approach than building a successful system that does not 
change when the environment or task changes (e.g., a robot breaking one of its legs). In some systems, 
the evolution toward increasingly more sophisticated and more adaptive behavior is simulated by the 
programmer, for example, by incrementally adding more structure to existing successful systems [11]. 
Other systems employ learning by the individual [18, 25, 34, 37, 60, 66]. In almost all cases, the system 
concentrates on learning new information (or behavior) from its environment, rather than on 
reformulating information it already has. The learning algorithms are implemented in a distributed way: 
Typically a similar learning algorithm runs in different competence modules. Related to the idea of 
learning is that of redundancy: Often the system has multiple modules for a particular competence. 
Experience sorts out which of these modules implements the competence in a more reliable way and, 
thus, should be preferred [18, 37, 49].

Systems built using all of the earlier principles (task-oriented modules, task-specific solutions, de-
emphasized representations, decentralized control, etc.) tend to demonstrate more adaptive and robust 
behavior. They act (and react) quickly, because (a) they have fewer layers of information processing, (b) 
they are more distributed and often nonsynchronized, and (c) they require less expensive computation. 
(They are not prone to problems of combinatorial explosions, because they do not rely on search 
processes as much.) They are able to adapt to unforeseen situations (opportunities as well as 
contingencies), because they rely much more on the environment as a source of information and a 
determiner of action than on their possibly faulty or outdated model. They are robust because (a) none of 
the modules is more critical than the others, (b) they do not attempt to fully understand the current 
situation (which is often time consuming and problematic), (c) they incorporate redundant methods, and 
(d) they adapt over time.
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5 Some Example Autonomous Agents 

5.1 A Mobile Robot

Consider a mobile surveillance robot that has to monitor some offices. Its task requires that it navigate 
from room to room. The traditional AI version of this robot could work in a similar way to Shakey [47]. 
The perception module processes the different sensor data and integrates them into a representation of 
the environment. It attempts to update this model as often as possible. The model includes information 
such as the location of the robot in the environment, the location and type (often even identity) of other 
objects in this environment such as chairs, tables, etc. The model is used by the planning module to 
decide how to fulfill the goal of finding the door in the current room while avoiding obstacles. The 
planner goes through a systematic search to produce a list of actions that will, according to the model, 
fulfill both goals. The execution module executes this plan while possibly checking at certain points 
whether things are going as predicted. If not, control is returned to the planner.



An adaptive autonomous agent for the same task could be constructed in the following way (as inspired 
by Brooks [10]). In an incremental way, several modules would be implemented corresponding to the 
different competences necessary for the task: a module for recognizing and going through doors, a 
module for wall following, a module for obstacle avoidance (or even a couple of redundant ones, using 
different sensors, because this is a very critical competence), and so on. All of these modules operate in 
parallel. A simple arbitration scheme, for example, suppression and inhibition wires among these 
modules, suffices to implement the desired priority scheme: The obstacle avoidance modules always 
have priority over going through doors, which has priority over wall following. This robot does not plan 
a course of action. However, from an observer's point of view, it will appear to operate in a systematic, 
rational way. Brooks [10, 11] has argued convincingly, in writing and in demonstrations, which of the 
two previously described robots will be more successful at dealing with the task in a robust and reliable 
way.2

5.2 An Interface Agent

Consider the problem of building an intelligent autonomous system that helps the user with certain 
computer-based tasks. Its goal is to offer assistance to the user and automate as many of the actions of 
the user as possible. Traditional AI has approached this problem in the following way [58]: The system 
is given an elaborate amount of knowledge about the problem domain by some knowledge engineer: a 
model of the user and possibly the user's organization, a model of the tasks the user engages in, 
including a hierarchical specification of the subtasks, knowledge about the vocabulary of these tasks, 
and so on. At run time, the agent uses this knowledge to recognize the intentions and plans of the user. 
For example, if a UNIX user enters a command like "emacs paper.tex," the system infers that the user is 
planning to produce a written document. It then plans its own course of action (the goal being to assist 
the user), which, for example, might consist of the action sequence: the text formatting command "latex 
paper.tex" followed by the preview command "xdvi paper.dvi" and the printing command "lpr 
paper.dvi." The problems with this approach are exactly the same ones as those of traditional AI robots: 
It is hard to provide such a complete and consistent model, and the model is quickly outdated (as the 
user's ways of performing tasks change). Because of the computational complexity of the approach, the 
system would react very slowly. All sorts of unpredicted events might take place that the system

2 Ideally, the robot would also monitor the results of its actions and learn from experience so as to improve its 
competence or deal with significant changes in the robot or its environment, that is, so as to demonstrate robust 
and effective autonomous behavior over longer periods of time.
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cannot deal with, for example, the user might change his or her mind about what to do in the middle of 
things or might perform tasks in unorthodox or nonrational ways, etc.

Instead, an adaptive autonomous "interface agent" can be built as follows [39]: Several competence 
modules are constructed that are experts (or try to become experts) about a small aspect of the task. For 
example, one module might be responsible for invoking a particular command (like "lpr") at a particular 
moment. The agent is situated in an environment containing an ideal source for learning: the user's 
behavior. Each of the modules gathers information by observing the user and keeping statistics about a 
particular aspect of the user's behavior. For example, the previously mentioned module will keep track 
of the situations in which the user executed the "lpr" command. Whenever a new situation comes up that 
is very similar to one of one or more memorized situations, it actually offers to the user to execute the 
"lpr" command. If we have several experts for the different commands listed earlier, each of these will 
know when to become active and offer their assistance to the user. From an observer's point of view, it 
will seem as if the system ''understands" the intentions of the user, as if it knows what the task of 
producing a document involves. Nevertheless, the action sequences are just an emergent property of a 
distributed system. The system will smoothly adapt to the changing habits of the user, will react in a fast 
way, will be less likely to completely break down, and so on.

5.3 A Scheduling System

Finally, consider the problem of building a scheduling system that has as its goal to allocate processes to 
processors in real time. Again the domain is a very dynamic one: New processing jobs are formulated in 
different machines all the time. The decision to be made is whether to run these processes locally or on a 
different machine, the global goal being to minimize the average amount of time it takes to run a 
process. The loads of the different available machines vary continuously. Certain machines might 
suddenly become unavailable for scheduling processes, requiring a rescheduling of the jobs that were 
running on those machines at the time, and so on. A traditional AI system for this task would contain a 
lot of knowledge about scheduling and about the particular configuration of machines and typical 
processing jobs at hand. The system would update its representation of the current situation as often as 
possible. This requires gathering all the data from the different machines in the network on whether they 
are still available, what their workload is, which processes they are running, which new processes were 
formulated on them, etc. Once all this information has been gathered, the system would perform a 
systematic search (possibly involving some heuristics) for the most optimal allocation of processes to 
processors. Once that schedule has been produced, the processing jobs can actually be sent to the 
different machines that they have been assigned to. This centralized way of solving the problem is 
present in the majority of the earlier work in this area [29].



Among others, Malone et al. [41] have proposed a different solution to this problem that one could call 
more "agent-based." In Malone et al.'s enterprise system, each of the machines in the network is 
autonomous and in charge of its own workload. The system is based on the metaphor of a market. A 
machine on which a new processing task originates sends out a "request for bids" for the task to be done. 
Other machines may respond with bids giving estimated completion times that reflect their speed and 
currently loaded files. For example, if the task to be performed is a graphics rendering job and some 
machine has that software loaded, it will make a better bid for the new job (because it does not have to 
waste time and space loading the necessary software). The machine that sent out the request for bids will 
collect the bids it receives over some small period of time and allocate the job to the machine that made 
the best
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bid (either remote or local). This distributed scheduling method was found to have several advantages. 
The system is very robust because none of the machines is more critical than another one. (There is no 
central scheduler.) A user can make a machine unavailable for processing external jobs at run time. The 
whole system will adapt smoothly to this unexpected situation. The solution is simple and yet very 
flexible in terms of the different factors it can take into account.

6 Overview of the State of the Art

Section 5 presented a general overview of the agent approach to building intelligent systems that 
demonstrate adaptive, robust behavior. This section provides a more detailed account of the specific 
architectures that have been proposed. In addition, it lists what the limitations and open problems are of 
the particular architectures proposed. Section 2 argued that there are two subproblems involved in 
modeling adaptive autonomous agents: the problem of action selection and the problem of learning from 
experience. This section is structured around these two subproblems. Most of the architectures for agents 
that have been proposed so far have concentrated on one or the other subproblem: Either the agent 
combines simplistic action selection with sophisticated learning or it demonstrates sophisticated action 
selection without doing any learning. Few proposals have addressed both problems at once in the same 
architecture. In the remainder of this section, a more detailed description of both of these subproblems is 
given, followed by a discussion of what progress has been made toward them and a discussion of what 
questions remain unresolved.

6.1 Action Selection

6.1.1 The Problem



The problem of action selection can be stated as follows: Given an agent that has multiple time-varying 
goals, a repertoire of actions that can be performed (some of which are executable), and specific sensor 
data, what actions should this agent take next so as to optimize the achievement of its goals?3 Notice that 
when we also consider learning from experience, this problem becomes a slightly different one because 
one of the goals of the agent is to learn how to better achieve its goals.

It is theoretically possible to compute the optimal action selection policy for an agent that has a fixed set 
of goals and that lives in a deterministic or probabilistic environment [64]. What makes it impossible to 
do this for most real agents is that such an agent has to deal with (a) resource limitations (time, 
computation, memory); (b) possibly incomplete and incorrect information (sensor data); (c) a dynamic, 
nondeterministic, nonprobabilistic environment; (d) time-varying goals; (e) unknown and possibly 
changing probability distributions, and so on.

The goals the agent tries to satisfy can take many different forms: end goals also called "goals of 
attainment" (end states to be achieved), negative goals (states to be avoided), needs, drives, desires, 
tasks, motivations, constraints for a plan, viability zones for certain state variables, etc. An agent 
typically has multiple conflicting goals. Being a "complete" system, it always has a combination of "self-
preservation goals'' (e.g., not bump into obstacles, keep battery charged) as well as more task-oriented 
goals (watch over a set of offices). The goals of an agent can be implicit or explicit. In the former case, 
the agent does not have any explicit internal representation of the goals it is trying

3 In this definition, one can substitute the term competence module or behavior for action: Given a set of 
competence modules that all try to control the actuators at a particular moment in time, which ones of those 
should be given priority, or how should their outputs be combined into one command for the actuators?
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to achieve. The agent is built in such a way that, when situated in its environment, its behavior tends to 
achieve certain goals. Implicit goals are necessarily fixed. They cannot be changed unless the agent is 
reprogrammed. More complicated agents have explicit goals that vary over time and often have levels of 
intensity as opposed to a Boolean on-off nature. For example, an artificial animal might have a particular 
hunger level, thirst level, etc.

Given that it is theoretically impossible to prove what the optimal action selection policy for an agent is, 
how does the field evaluate a particular proposed solution? Researchers in adaptive autonomous agents 
are not interested in provable optimality of action selection, that is, in whether the agent takes the 
optimal path toward the goals, as they are in whether the action selection is robust, adaptive, and 
whether the agent achieves its goals within the requirements and constraints imposed by the particular 
environment and task at hand. Among other issues, this means that the action selection mechanism 
should

•  favor actions contributing to the goals; in particular, it should favor those actions that result in the 
most progress towards the goals.



•  be able to deal flexibly with opportunities and contingencies.

•  be real time (fast enough for the particular environment at hand and its pace of changes).

•  minimize unnecessary switching back and forth between actions contributing to distinct goals.

•  improve on the basis of experience (more on this in the next section).

•  demonstrate graceful degradation when components break down or unexpected changes happen.

•  never get completely stuck in a loop or deadlock situation or make the agent mindlessly pursue an 
unachievable goal.

•  and, most importantly, be "good enough" for the environment and task at hand: As long as the agent 
manages to achieve its goals within the constraints (time, quality, etc.) required by the problem situation, 
the solution is considered an acceptable one. For example, as long as the robot manages to find the 
recharging station before its battery dies, as well as make sufficient progress toward its more task-
specific goal of surveying the offices, it is considered an acceptable solution, even if it does not always 
follow optimal paths. Brooks [11] refers to this latter criterion as "adequacy."

McFarland [44] takes this last point even further. He argues that one should use an ecological approach 
to evaluate agent behavior: If an agent fills a market niche, then that agent is considered successful. That 
is, in McFarland's view, for agent behavior to be adaptive means that it must optimize its behavior with 
respect to the selective pressures of the marketplace. Even though this is ultimately true, it is not 
particularly useful as a means for comparing different proposals for agent architectures.

Tyrrell [64] compares several action selection proposals, but he does so with respect to one particular 
benchmark environment and task. Maes [35] and Wilson [67] have argued that it is not possible to 
decide that one action selection model is better than another one unless one also mentions what the 
particular characteristics are of the environment, the task, and the agent. For example, in an environment 
where the cost of (incorrect) actions is high, an agent should do more anticipation. If the cost of
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(incorrect) actions is negligible, it does not matter if the agent often performs incorrect actions; in an 
environment where a lot of things change quickly. An agent needs to act very quickly. An agent with 
noisy sensors should have some inertia in its action selection so that one wrong sensor reading does not 
make the agent switch to doing something completely new and different. An agent with many sensors 
can rely on the environment to guide its selection of actions, while an agent with fewer sensors will need 
to rely more on its internal state or memory to decide what to do next. Todd and Wilson [62] and 
Littman [32] have started to build a taxonomy of environments and taxonomy of agents that will provide 
a more profound basis for comparing different proposals.

6.1.2 Progress Made

The different models for action selection in an autonomous agent that have been proposed differ in the 
way they deal with the following three problems:

1. What is the nature of the goals?

2. What is the nature of the sensor data?

3. What is the arbitration mechanism and command fusion mechanism?

The architectures proposed can be subdivided in the following three classes:

1. Hand-built, flat networks. A number of architectures have been proposed that require the designer of 
the agent to solve the action selection problem from scratch for every agent that is built. Examples of 
such architectures are the Subsumption Architecture [10] and the architectures reported in Connell [15] 
(a minimalist version of the Subsumption Architecture) and others [1, 4, 14]. All of these architectures 
require the designer of an agent to analyze carefully the environment and task at hand and then design a 
set of reflex modules and a way of combining the outputs of the modules (by means of suppression and 
inhibition wires or simple arbitration circuitry).

This class of architectures deals with the earlier three problems in the following way: Typically goals 
are implicit; they only exist (or may not even exist) in the designer's mind. An agent can have 
multiple goals, and they can be of very different nature. The nature of the sensor data is also 
unlimited. The arbitration mechanism determining which modules will steer the actuators is 
implemented by a logical circuit or a set of suppression and inhibition wires. This circuit ensures that 
at most one module controls an actuator at all times. None of these architectures support command 
fusion. In other words, none of these action selection models make it possible for two or more 
modules to determine simultaneously what the command is that is sent to the actuators. For example, 
it is not possible to average the outputs of two modules.



One disadvantage of this class of solutions is that they don't offer the user much guidance as to how 
to solve the problem of action selection for a new agent. The architecture at most provides a 
philosophy, a set of previous successful examples, and a programming language for building new 
agents. Another disadvantage of this class of solutions is that the solutions do not scale up. For more 
complex agents, the problem of action selection and arbitration among modules is too hard to be 
solved by hand. The arbitration network often becomes a complicated "spaghetti" that is hard to 
debug or to get to do the right thing. A final
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disadvantage is that most of these architectures do not allow for time-varying goals (because 
typically goals are not explicitly represented in the agent).

2. Compiled, flat networks. A second class of architectures attempts to facilitate the construction of 
agents by automating the process of designing the arbitration circuitry among competence modules. 
Examples of such architectures are the Rex/Gaps system [24], Behavior Networks [33], and Teleo-
Reactive Trees [48]. These architectures require the designer to specify in a particular formalism what 
the goals of the agent are, how goals can be reduced to other goals or to actions, and what the different 
modules/actions are and their conditions and expected effects. A compiler analyzes this specification 
and generates a circuit that will implement the desired goal-seeking behavior.

In Kaelbling's and Rosenschein's work [24], the types of goals and sensors that can be dealt with are 
restricted to Booleans. On the one hand, this restricts the type of agent that can practically be built,4 

but on the other hand, these restrictions make it possible to prove that the circuitry synthesized will 
make the agent select the right actions so as to fulfill its goals. In most of the work, except for that of 
Maes [33], these types of architectures produce agents with implicit, fixed (not time-varying) goals. 
However, in contrast with the previous class of architectures, the goals are explicit in the designer's 
formal specification of the agent. This implies that the agent's circuitry has to be resynthesized if the 
agent should fulfill a different set of goals.

Maes [33, 36] proposes an architecture with explicit, time-varying goals. The arbitration network that 
is compiled has an explicit representation of the goals of the agent, and these goals can have 
intensities that vary over time (e.g., hunger level for an artificial animal or motivation to recharge the 
battery of a robot). This particular system performs a limited form of arbitration, prediction, and 
"planning" at run time. More specifically, these processes are modeled in terms of a time-varying 
spreading activation process that makes activation energy accumulate in modules that are most 
relevant given the particular goals (and intensities) and sensor data at hand. Unfortunately, in this 
system the sensor data are restricted to Booleans.



One of the disadvantages of this class of action selection architectures is that the class of agents that 
can be built is restricted. This is the case because these architectures offer a particular model of 
action relevance, while the previous category does not impose any model at all. A second problem is 
that it is sometimes hard to come up with a declarative specification of the goals and desired behavior 
of an agent. Finally, the agent's action selection will only be as good as the specification it relies on. 
If the designer's specification of the effects of actions is erroneous, then the agent's behavior will not 
be as desired.

3. Hand-built, hierarchical networks. A final category of action selection models proposes a more 
hierarchical organization of the different actions or competence modules. Examples of such 
architectures are Agar [63], Hamsterdam [7], Rosenblatt and Payton's work [51], which is a more 
sophisticated version of the Subsumption Architecture, and Tyrrell's work [64]. Most of these 
architectures are closely inspired by models of animal behavior stemming from ethologists such as 
Lorenz and Tinbergen. Typically these architectures organize actions in a hierarchy that ranges from 
high-level "modes" or activities via midlevel composite actions to detailed, primitive actions. Only the 
primitive actions are actually executable. Tyrrell [64] and Blumberg [7] both have demonstrated that 
when one is scaling the

4 At the least, it makes it more complicated to build certain kinds of agents.
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problem to more complex agents that have many different goals and actions, it is desirable to have more 
structure (than that present in flat networks) that may help decide which actions are relevant. Typically 
these systems use some sort of action selection at higher abstraction levels to prime or bias the selection 
of more primitive actions.

This last category of systems supports more complex (animal-like) motivations or goals. The model of 
the sensors and how they affect the action selection is also more sophisticated. For example, some 
architectures make it possible for a stimulus (sensor data) to have a certain "quality" or "intensity" that 
will affect the action selection (e.g., not just "Is food present?'' but "Is food present and what is the 
quality of the food stimulus perceived?"). As is the case with the first class of architectures discussed, 
these architectures require the designer to build the arbitration network by hand. Often this is a very 
difficult and tricky task, in particular because these ethology-based models tend to have a lot of 
parameters that need to be tuned to obtain the desired behavior.

6.1.3 Open Problems

Even though a lot of progress has been made toward the study of action selection models, many 
problems remain unresolved:



•  Very little research has been performed on the nature of goals and goal interactions. We need to study 
what kinds of goals our architectures need to support, where those goals might come from, how they 
change over time, etc. Toates and Jensen [61] present a nice overview of the different models of 
motivations that ethology and psychology have come up with.

•  In most of the architectures proposed, scaling to larger problems is a disaster. This is especially so in 
the case of hand-built networks, because no support is given to the designer of an agent for building the 
complicated arbitration network that will govern its behavior. The most obvious solution to be 
investigated is to either evolve [13] or learn and adapt the network [34] based on experience. However, 
few experiments along these lines have been performed so far.

•  Related to this, not enough effort has been put into making pieces of agent networks "reusable" within 
other agents. Given that the first and third category of architectures reduce the action selection problem 
to a (nontrivial) engineering problem, it would be useful if partial solutions that have proven to work in 
one agent could be abstracted and reused in another agent. For example, the modules producing wall-
following behavior in one robot could be abstracted so that they can be reused in another robot with 
comparable sensors and a comparable environment.

•  As noted by many other authors, the dynamics of interactions between the agent and its environment 
and among the different modules of one agent are not well understood. Kaelbling and Rosenschein [24] 
offer a logical model, while Beer [5], Kiss [28], and Steels [56] have started approaching this problem 
from a dynamical systems perspective. Nevertheless, the field is far from being able to prove in general 
what the emergent behavior is of a distributed network of competence modules.

•  Most of the proposed architectures do not deal with the problem of command fusion. Typically only 
one module at a time determines what command is sent to an actuator. There is no way for the outputs of 
multiple modules to be combined.
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Some proposals for solutions to this problem are presented in Rosenblatt and Payton [51] and in 
Blumberg [7].

•  All of the previous architectures are completely decentralized and do not keep any central state. As a 
result, they may suffer from the lack of what Minsky [46] would call a "B-brain." They can get stuck in 
loops or deadlock situations (i.e., keep activating the same actions even though they have proven not to 
result in any change of state).

•  Most of the previous architectures (apart from that of Chapman [14]) have a narrow-minded view of 
the relationship between perception and action. For example, few architectures support active or goal-
driven perception, taking actions to obtain different or more sensor data, etc.



6.2 Learning from Experience

6.2.1 The Problem

The previous section discussed architectures for adaptive autonomous agents that focus on the problem 
of action selection. Almost all of these architectures neglect the issue of learning from experience 
(except for Maes and Brooks [34] and Maes [37]). This means that agents built using these architectures 
are only adaptive in a very restricted sense: They are able to deal with unexpected situations 
(opportunities, contingencies). However, these agents do not learn from environment feedback. They do 
not become better at achieving their goals with experience.

A second category of agent architectures that has been proposed has focussed on how the behavior (the 
action selection) of an agent can improve over time. Learning from experience is a necessity for any 
agent that has to demonstrate robust, autonomous behavior over long periods of time. First, this is the 
case because it is very hard to program an agent. It has practically proven impossible to correctly hand 
code a complex agent or to come up with a correct specification of its behavior and of the environment. 
Second, components of the agent may break down, or its environment may change in a permanent way, 
which may require run-time "reprogramming." Adaptive behavior cannot be viewed as a final, static 
point. True adaptive behavior is an inherently dynamic, continuous process. It is in the spirit of the field 
of Artificial Life to view adaptive behavior as an emergent property of the long-term interaction and 
feedback process between an agent and its environment.

The problem of learning from experience can be defined as follows: Given an agent with (a) a set of 
actions or competence modules, (b) certain sensor data, and (c) multiple (time-varying) goals, how can 
that agent improve its action selection behavior based on experience? How can the agent incorporate the 
feedback it receives after taking an action in such a way that its action selection behavior improves? 
"Improvement" typically means that the agent becomes more successful at fulfilling its goals or needs. 
Depending on the nature of the agent's goals, this may mean different things. In the case of an 
"attainment goal" or "end goal,'' this would mean that the average time or average number of actions 
required (or any other measure of cost) to achieve the goal decreases over time. In the case of a 
reinforcement maximization type of goal, this could mean that the average positive reinforcement 
received over a fixed-length time interval increases with experience.

No matter what the type of goals are it can deal with, any model for learning in an autonomous agent has 
to fulfill the following desiderata:

•  The learning has to be incremental: The agent should learn with every experience. There cannot be a 
separate learning and performance phase.
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•  The learning should be biased toward learning knowledge that is relevant to the goals. In complex, 
realistic environments an agent cannot afford to learn every fact that can possibly be learned.

•  The learning model should be able to cope with noise, probabilistic environments, faulty sensors, etc.

•  The learning should be unsupervised. The agent has to learn mostly autonomously.

•  Preferably, the learning model makes it possible to give the agent some initial built-in knowledge (so 
that it does not have to learn everything from scratch, in particular in those situations where prior 
knowledge is easily available).

There are three subproblems that have to be dealt with when designing an architecture for a learning 
agent:

1. What is the action selection mechanism adopted?

2. How does the system learn? How does it create "hypotheses" to be tested? And how does it decide 
which of these hypotheses are worth keeping or using to determine the behavior of the agent?

3. How does the agent decide when to "exploit" versus when to "explore"? How does it decide whether 
to activate whatever it believes is the most optimal action for the current situation versus whether to try a 
suboptimal action so as to learn and possibly find a better way of doing things? That is, what is a good 
experimentation strategy for an agent?

Notice that with respect to the first of these problems, the learning architectures proposed often adopt a 
naive and limited view. Often the set of goals dealt with is very simple, and the goals are fixed over 
time. Some more detailed problems come up when one is solving the previous problems. For example, 
every learning architecture has to deal with the problem of credit assignment: Which of the previously 
activated actions gets (partial) credit for a certain (desirable/undesirable) result happening?

How can we evaluate and compare different proposals for learning from experience? As with the 
problem of action selection, comparing proposals is hard to do in the general case. The problem of 
learning from experience is ill-defined unless one specifies what the particular characteristics of the 
environment, agent, and task are. Therefore, it only makes sense to compare proposals with respect to a 
particular class of problems. For example, an agent with a lot of memory might be better off using a 
memory-intensive learning method rather than doing a lot of generalization to come up with a concise 
representation of what it has learned. In some environments, initial knowledge is easily available, which 
means that it is desirable for the agent to be partially programmable (as opposed to learning from 
scratch). Depending on the environment and agent at hand, the role of learning may be very different. In 
an environment that is very predictable and that changes at a slower pace than the agent's lifetime, there 
is less of a need for learning during the agent's lifetime. Instead, some sort of evolution-based learning at 
the species level might be able to deal with the long-term adaptation required [30]. Todd and Wilson 
[32, 62] present some first steps toward a taxonomy of environments and agents that may make 



comparisons more meaningful.

6.2.2 Progress Made

All of the architectures that have been proposed in the literature assume that the agent has a set of 
primitive actions or competence modules. They concentrate on learning
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the arbitration network among these different actions or modules, that is, the agent attempts to learn 
when certain action(s) should be activated (when an action should get control over the actuators). Some 
of the architectures proposed allow for learning of new "composite" actions or composite competence 
modules [18, 40]. They allow the agent to independently learn composite modules as well as the 
arbitration network for these composite modules.

The different architectures proposed can be grouped in three classes: reinforcement learning systems, 
classifier systems, and model learners. The second class of architectures is really a special case of the 
first. However, because a lot of research has been performed in classifier systems, and because this 
research is not typically discussed from a reinforcement learning point of view, we will discuss the two 
classes separately. Both classes define the learning problem as follows: given a set of actions, given a 
reward signal, learn a mapping of situations to actions (called an "action policy") so that an agent 
following that policy maximizes the accumulated (discounted) reward it receives over time. In the case 
of a model learning architecture, the agent learns a model of how actions affect the environment (how 
actions map situations into other situations). Independent of this, the agent learns (or infers) what the 
importance or value of taking certain actions in certain situations is. Interesting combinations of these 
three types of architectures exist. For example, some systems combine learning of an action policy with 
learning of a model [8, 591.

As is the case with action selection models, many of the architectures proposed have been inspired by 
theories of animal learning. In contrast with the former, however, it is not so much the ethologist school 
of animal behavior studies, but rather comparative psychology and behaviorism, in particular theories of 
reinforcement learning and operant conditioning, that have been an inspiration for the computational 
models proposed.

1. Reinforcement learning. The idea of reinforcement learning [26, 59, 60] is the following: Given an 
agent with (a) a set of actions it can engage in, (b) a set of situations it can find itself in, and (c) a scalar 
reward signal that is received when the agent does something, the goal is to learn an action policy, or a 
mapping from situations to actions, so that an agent that follows that action selection policy maximizes 
the cumulative discounted reward it receives over time.



Q-learning [65] is a particularly popular reinforcement learning strategy. In Q-learning the agent tries 
to learn for every situation action pair what the "value" is of taking that action in that situation. More 
specifically, the algorithm learns a two-dimensional matrix that stores a value for every possible 
combination of a situation and an action. At initialization, all values are set to some initial value. The 
goal of the system is to update these values so that they converge toward the "maximum cumulative 
discounted reward" that can be expected when taking that action in that situation. This means, the 
maximum cumulative reward that the agent can expect to receive in the future (from now on) if it 
takes that particular action in that situation (i.e., the immediate reward it receives plus the reward it 
will receive for taking the best future actions after this one). The reward is "discounted'' with respect 
to the future so that rewards expected in the near future count for more than rewards expected further 
down the road. The different subproblems listed earlier are dealt with by reinforcement learning 
systems in the following way:

i. Action selection mechanism: At any moment, the agent always finds itself in some particular 
situation. Given that situation, it chooses the action that has the maximum value (maximum 
cumulative discounted reward).

ii. Learning method: When the agent performs an action, it may receive some reward (possibly 
zero). It then updates the value of the situation action pair it
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just "exploited." In particular, it increases or decreases the value of that situation action pair so as 
to reflect better the actual reward it received plus the maximum reward it can expect in the new 
situation it finds itself in.

iii. Exploration strategy: In a certain percentage of situations, the agent does not choose the action 
that maximizes reward, but instead it performs a random action so as to gather more data or 
evidence about possibly interesting alternative paths.

One of the attractive features of reinforcement learning is its formal foundation. It can be proven that 
under certain conditions (e.g., an infinite number of trials and a Markovian environment), the agent 
will converge toward the optimal action selection policy. Unfortunately these conditions are seldom 
attainable in real, complex situations. Disadvantages of reinforcement learning algorithms are (a) that 
they do not deal with time-varying goals (the action policy learned is for a fixed set of goals); (b) if 
the goals change, they have to relearn everything from scratch (Kaelbling [27] attempts to overcome 
this problem); (c) for realistic applications, the size of the state space (or the number of situation 
action pairs) is so large that learning takes too much time to be practical (as a result, researchers have 
started developing algorithms that can generalize over the state space [31, 40]; (d) learning only 
happens "at the fringe" of the state space (only when a reward is received can the system start 
learning about the sequence of actions leading to that reward), and as a result it takes a lot of time to 
learn long action sequences ([59] attempts to deal with this problem); (e) the model assumes that the 



agent knows at all times which situation it is in (given faulty sensors or hidden states, this is difficult) 
(Whitehead and Ballard [68] address this particular problem); (f) it is hard to build in initial 
knowledge into this type of architecture; and, finally, (g) the model cannot learn when multiple 
actions are taken in parallel.5

2. Classifier systems. A second category of architectures for learning agents is based on classifier 
systems [20]. In particular, Wilson [66] and Booker [8] have studied how classifier systems can be used 
to build adaptive autonomous agents. These architectures can be viewed as a special case of 
reinforcement learning systems. That is, again, the agent attempts to learn how it can optimize the 
reward it receives for taking certain actions in certain situations. The idea here is that an agent has a set 
of rules, called "classifiers," and some data about every rule's performance. At the least the system keeps 
a "strength" for every rule that represents the value of that rule (how "good" it is). The three 
subproblems of a learning architecture are dealt with in the following way:

i. Action selection mechanism: Given a certain situation, which includes some external state (or 
sensor data) and may include an internal state, the condition list of some classifiers will match the 
current situation. Of all the matching classifiers, the agent picks one or more classifiers proportional 
to their strength. The actions proposed by those classifiers are executed. (This may involve changing 
the internal state.)

ii. Learning method: Whenever some classifiers are executed, they give some of their strength to the 
classifiers that "set the stage," that is, the classifiers that were just active at the previous time step. 
This is called the "bucket brigade algorithm" and is designed to deal with the problem of credit 
assignment. Whenever the agent executes some actions, it may receive some reward. If this is the 
case, then the reward will increase the strength of all the classifiers

5 In theory. reinforcement learning can deal with parallel actions by adopting a row in the matrix for every 
combination of actions that is executed in parallel. In practice, however, this would blow up the state space even 
more than is already the case.

  

Page 155

that were just activated (as well as all those that were not activated but that suggested the same 
action). This scheme ensures that classifiers that contribute to a reward being received will over 
time have higher strengths than those that don't and, thus, will be activated more often.

iii. Exploration strategy: The number of classifiers is fixed. Every once in a while, the agent 
removes those classifiers that have low strengths and replaces them by mutations and 
recombinations (crossovers) of successful ones. This way, the agent keeps exploring and evaluating 
different ways of doing things, while keeping "good" solutions around.



One of the interesting aspects of agents based on classifier systems is that they use a more 
sophisticated experimentation strategy. (The experimentation strategy of other reinforcement learning 
systems consists of picking a random other data point.) The hypothesis underlying this strategy is 
that one can find a better solution to a problem (e.g., more effective behavior) by making small 
changes to an existing good solution (existing successful behavior) or by recombining existing 
promising solutions. Another advantage of classifier systems over most other reinforcement learning 
systems is that they have a built-in generalization mechanism for generalizing over situations as well 
as actions, namely, the "#" or "don't care" symbol. This makes it possible for classifier systems to 
sample parts of the state space at different levels of abstraction and as such to find the most abstract 
representation of a classifier that is useful for a particular problem the agent has. Unfortunately, 
classifier system agents share some of the limitations of other reinforcement learning agents, in 
particular the problem of time varying goals (a) and the problem of learning at the fringe (d) 
mentioned earlier. In addition they may suffer from the problem that they do not keep track of 
everything that has been tried. A classifier system based agent may reevaluate the same classifier 
over and over again. It may throw it out because its strength is low and then immediately create it 
again because it keeps no memory of what has been tried. (On the other hand, the fact that the system 
"forgets" about nonpromising classifiers makes it more efficient at action selection time.)

3. Model builders. A final class of agents that learns from experience actually learns a causal model of 
its actions, rather than a policy map [18, 37, 49]. Drescher's model, which was inspired by Piaget's 
theories of development in infants, is probably the most sophisticated example. The agent builds up a 
probabilistic model of what the effects are of taking an action in a certain situation. This causal model 
can then be used by some arbitration process to decide which action is the most relevant given a certain 
situation and a certain set of goals. Action selection and learning are much more decoupled: In fact, the 
learning component of one of these agents could be combined with a different action selection 
mechanism.

In most of these architectures (except for that of Sutton [59]), the agent does not learn a complete 
mapping from every possible situation action pair to the new situation that will result from taking that 
action in that situation. Rather, the agent learns mappings from partial situations to partial situations. It 
maps those aspects of a situation "that matter" (those sensor data that are necessary and sufficient 
conditions) combined with an action, to aspects of the new, resulting situation "that matter" (in 
particular sensor readings that change when taking the action in the situations described by the 
conditions). Such a combination of (a) a set of conditions, (b) a primitive (or composite) action, and (c) 
a set of expected results (and probabilities for these results) is called a schema [18] or a module of 
behavior [37]. Model learning architectures deal with the three subproblems defined earlier in the 
following way:

  



Page 156

1. Action selection mechanism: Agents built using these architectures can deal with time varying, 
multiple, explicit goals. Given a set of goals and intensities, they compute at run time which of the 
modules or schemas learned is most relevant to achieving the goal as well as most reliable. There is a 
separate value assignment process that is decoupled from the learning process. Often this value 
assignment process favors modules that prove to be more reliable. It may even trade off reliability of a 
sequence of actions for length of a sequence of actions leading to the goals. Typically, a spreading 
activation process [37] or simple marker propagation process [18] is used to assign these values given 
some goals and sensor data.

2. Learning method: Whenever a particular action is taken, the agent monitors what changes happen in 
the environment. It uses this information to learn correlations between particular conditions/action pairs 
and certain results. After an action is taken, all result lists (and their probabilities) of applicable 
modules/schemas (which have the same action as the one taken and a matching condition list) are 
updated to reflect the new example. Occasionally, the agent needs to spin off new schemas from existing 
ones so as to be able to represent conflicting or unreliable results. The agent is able to detect that more 
conditions need to be taken into account in a schema/module for certain results to become more reliable, 
which will force it to create versions of the module that have longer, slightly different conditions.

3. Exploration strategy: The exploration strategy used in these architectures varies. Drescher's system, 
while demonstrating sophisticated learning, has an extremely simple exploration strategy, namely, a 
random one. His agent basically does not do anything else but learn by performing random experiments. 
Foner [19] discusses how Drescher's agent can be made to learn much faster and to learn more relevant 
knowledge by adopting a smarter experimentation strategy as well as a focus of attention mechanism. In 
Maes' architecture [37], the exploration strategy is also more goal-oriented: The agent biases its 
experimentation toward actions that show promise to contribute to the goals. In the same system, the 
amount of exploration versus exploitation is an emergent property of the action selection system (the 
more has been learned, the fewer experiments are performed).

One of the main advantages of model learners is that they can transfer behavior learned in one context to 
another context (e.g., another goal). Because the system builds up a model of how taking an action in a 
situation results in another situation, it can use this model as a road map for any particular set of goals. 
As such, they do better in environments where goals (or relative importances of goals) may change over 
time. This also implies that they do not just learn at the fringe of the state space connected to the goals. 
They learn from every action, as opposed to only learning from actions that have proven to be directly 
related to the present goals. In addition, they make it much easier for the designer of an agent to 
incorporate background knowledge about the domain (e.g., in the form of a causal model of the effects 
of actions). The agent is still able to correct this knowledge if it proves to be incorrect. The disadvantage 
of this type of architecture is that they may take more time to select an action, because there is no direct 
mapping of situations to "optimal" actions.

6.2.3 Open Problems



As is the case with action selection models, a lot of problems with modeling learning from experience 
remain unsolved. The following problems apply to all three of the previously mentioned learning 
approaches:
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•  Scaling to larger (more realistic) problems is typically a problem for any of these learning algorithms. 
The computational complexity of all of the learning systems discussed is too big to be practically useful 
to build complex agents that solve real problems.

•  One reason this is the case is that very few algorithms have incorporated interesting attention 
mechanisms. For example, Foner [19] demonstrates that incorporating attention mechanisms such as 
spatial locality can improve the tractability of learning from experience in a significant way. Most 
algorithms discussed earlier only use the temporal locality heuristic, that is, effects are assumed to be 
perceived soon after the actions that caused them.

•  Most of the algorithms proposed are bad at generalizing over sensor data. First, the sensor data are 
only represented at one level of granularity, as opposed to more coarse and finer levels. Second, none of 
the algorithms proposed exploit the structure and similarity present in many sensor data (e.g., one could 
exploit the fact that different cells of a retina are adjacent or that the different cells of the retina are 
affected in similar ways by certain actions).

•  More work can be done in the domain of exploration strategies. Most existing algorithms employ the 
most simple strategy possible: The agent experiments a certain percentage of its time, no matter how 
urgent its needs or motivations may be, no matter how interesting the opportunities are that present 
themselves, etc. The agent also picks the experiment to perform in a random way, as opposed to using 
certain heuristics such as (a) trying actions that have not been tried for a while, (b) trying actions that 
have shown promise recently, etc.

•  There is a lack of interesting models of how learning and perception interact. The model of perception 
present in most architectures is narrow-minded. The set of sensor data that the agent tries to correlate 
with its actions is taken as a given. The system does not couple learning about actions with learning 
about perception. It does not learn what to pay attention to or learn that more features should be paid 
attention to. Ideally, an agent would create new features and categories to perceive the environment 
based on whatever categories its goals and environment require (e.g., kittens that grow up in an 
environment with only horizontal edges, do not develop detectors for vertical edges).

•  There is a lack of sophisticated models of how action selection and learning interact. In particular, all 
current algorithms assume that the set of primitive actions the agent learns about is a given. As is the 
case with sensor data, it would make more sense if the set of primitive actions is learned on the basis of 
what discretization or what subdivision of the continuous space of possible actions is appropriate for the 
environment and the goals at hand.



•  We need to understand better what the role of learning is and how it interacts with other adaptive 
phenomena like cultural learning and adaptation through evolution (see Belew [6]). We need to 
understand better what "building blocks" evolution could provide that could facilitate learning (e.g., 
provide a built-in bias for learning, or built-in specialized structures, etc.).

•  Finally, most of the approaches taken have been inspired by behaviorism and comparative 
psychology, rather than ethology. A lot could be learned by taking a more ethologically inspired 
approach to learning. For example, ethologists have shown that animals have built-in sensitive periods 
for learning particular competences. These periods tend to coincide with the situations in their lives that
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are optimal for picking up the competence to be learned, and as such reduce the complexity of the 
learning task.

7 Conclusions

Autonomous agent research represents an exciting new approach to the study of intelligence. So far, this 
new approach has demonstrated several "proofs of concept." In particular, encouraging successes have 
been reported in the area of mobile robots as well as software agents. Several prototypes have been built 
that have solved a real task that was previously not solvable or that was only solvable by means of a 
more costly and less effective solution. The approach has definitely had an impact on the course of AI, 
which can be witnessed by the explosion of publications and research projects in the area.

Nevertheless, some problems are apparent that require novel ideas and better solutions. The main 
problem identified is that of scaling the approach to larger, more complicated systems. The tools and 
techniques proposed do not provide sufficient support to design or hand build a complex agent with 
many different goals. The learning techniques proposed have computational complexities that make the 
automated development of an adaptive agent an intractable problem (in realistic time).

In addition, in order for the approach to be more founded, more fundamental research has to be 
undertaken. We need to understand the classes of problems agents have to deal with, so that it becomes 
possible to critically compare particular architectures and proposals. For example, many different 
models of action selection have been proposed, but unless we understand the problem of action selection 
better, we do not have any grounds to compare the different proposals.



Aside from better evaluation criteria, we need a better understanding of the underlying principles. In 
particular, it is important to understand the mechanisms and limitations of emergent behavior. How can 
a globally desired structure or functionality be designed on the basis of interactions between many 
simple modules? What are the conditions and limitations under which the emergent structure is stable, 
and so on? Some first steps toward a theory of emergent functionality have been proposed, using tools 
from complex dynamics [5, 28, 56]. However, so far the proposed theories have only been applicable to 
very simple toy examples.

There is tension inherent in the agent approach that is as of now unresolved. Research in autonomous 
agents has adopted very task-driven, pragmatic solutions. As a result, the agents built using this 
approach end up looking more like "a bag of hacks and tricks" than an embodiment of a set of more 
general laws and principles. Does this mean that the field will evolve into a (systems) engineering 
discipline, or will we find a path toward becoming a more scientific discipline?
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Abstract The relevance of chaos to evolution is discussed in the context of the origin and maintenance of diversity and 
complexity. Evolution to the edge of chaos is demonstrated in an imitation game. As an origin of diversity, dynamic 
clustering of identical chaotic elements, globally coupled each to the other, is briefly reviewed. The clustering is extended 
to nonlinear dynamics on hypercubic lattices, which enables us to construct a self-organizing genetic algorithm. A 
mechanism of maintenance of diversity, ''homeochaos," is given in an ecological system with interaction among many 
species. Homeochaos provides a dynamic stability sustained by high-dimensional weak chaos. A novel mechanism of cell 
differentiation is presented, based on dynamic clustering. Here, a new concept—"open chaos"—is proposed for the 
instability in a dynamical system with growing degrees of freedom. It is suggested that studies based on interacting chaotic 
elements can replace both top-down and bottom-up approaches.

1 Complexity, Diversity, and Emergence

Why are we interested in the effort to create "lifelike" behavior in computers? The answers can be diverse, but my interest 
in such artificial biology lies in the construction of systems exhibiting the emergence and maintenance of complexity and 
diversity, in order to understand the evolution of the complex "society" of life. This problem is not so trivial, indeed. It is 
often difficult to conclude that a system's emergent complexity is somewhat beyond that which would be expected on the 
basis of the rules explicitly implemented within a model [8]. Often, what people call "emergent" behavior comes from the 
lack of a full understanding of what is implied by the rules implemented in the model.

In evolution, there is a stage of the emergence of novel features as well as a stage of slow-scale change of existing features. 
Gradual evolution after the emergence of a novel feature is often studied analytically with the use of stochastic differential 
equations, as, for example, is demonstrated by the neutral theory of evolution [21]. The "origin" of features, on the other 
hand, is often a difficult problem to solve analytically. The origins of life, eukaryotes, multicellular organism, germ-line 
segregation, and sex are examples of the emergence of such novel features. For such problems, we require a mechanism for 
how complex, higher-level behavior emerges from low-level interactions, without the implementation of explicit rules for 
such emergence. Such emergence, we believe, occurs through strong nonlinear interactions among the agents at the lower 
level. Nonlinear interaction among agents often leads to chaotic behavior,
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which, we believe, can cause aufheben (German terminology for dialectic philosophy) to higher level dynamics, by which 
lower level conflicts are resolved.

In this overview, we try to demonstrate that chaos is relevant to the emergence and maintenance of complexity and 
diversity. Chaos is the most universal mechanism to create complexity from simple rules and initial conditions. As will be 
seen, chaos can be a source of diversity: Identical elements differentiate through chaotic dynamics. Through a dynamical 
process with instability, chaos also has the potentiality to create a higher-level dynamics.

Problems we address in the present overview are as follows; (a) evolution to complexity, (b) sources of diversity, (c) 
maintenance of diversity, and (d) successive creation of novelty and open-ended evolution to diversity.

In section 2, evolution to the edge of chaos, a complex state between chaos and order (a window), is studied with the use of 
an imitation game. An explicit example of the evolution of complexity is given. General concepts in globally coupled 
dynamical systems are briefly given in section 3, including the dynamic clustering of synchronization, hidden coherence, 
and chaotic itinerancy. In section 4 these novel concepts are applied to dynamical systems on a hypercubic lattice, which 
enables us to construct spontaneous genetic algorithms. A new concept—"homeochaos"—representing dynamical stability 
involving weak chaos with many degrees of freedom, is given in section 5, as well as its relevance to various biological 
networks. Homeochaos (to be contrasted with "homeostasis") can provide for the maintenance of diversity. In section 6 the 
concept of clustering in globally coupled maps is extended to the problem of cell division and differentiation. Here the 
novel concept of "open chaos" is demonstrated in a system with growing degrees of freedom. Open chaos leads to the 
formation of disparities in activities among cells, leading to the emergence of diversity and novelty. In section 7 we show 
the advantage of our approach over top-down and bottom-up approaches.

2 Edge of Chaos in an Imitation Game: Chaos as a Source of Complexity 

The increase of complexity through evolution is believed to be seen in many biological systems, not only in the hierarchical 
organization in genotypes and phenotypes but also in animal behavior and communication.

A direction for the increase of complexity has recently been discussed as "evolution to the edge of chaos" [29], because 
complexity is believed to be large at the border between order and chaos [3, 6, 13, 20, 251. However, there has been no 
clear simple example providing evidence of evolution to the edge of chaos, in the exact sense of dynamical systems theory. 
Chaos is defined only on dynamical systems with a continuous state and is not defined for discrete-state systems such as 
cellular automata, which have been adopted for studies of the edge of chaos so far.

Recently Suzuki and the author [18] have presented an example of evolution to the edge of chaos by introducing a simple 
model for an imitation game of a bird song. A bird song, for example, is known to increase its complexity through evolution 
and development (with more repertoire made up from combinations of simple phrases) [2]. A bird with a complex song is 
stronger in defending its territory [2, 23]. Based on this observation of a function of bird song for the defense of territory, 
we have introduced an imitation game [18], in which the player who imitates the other's song better wins the game.

As a "song," a time series generated by a simple mapping  (the logistic map) is adopted. As is well 
known, the attractor of the map shows a bifurcation sequence from a fixed point, to cycles with Periods 2,4,8,..., and to 
chaos as the parameter a is increased [271. Here the parameter value a is assumed to
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Figure 1. Emergent landscape: Average score for the players with parameters within 
is plotted with . ttrs, = 255. The number of players is fixed at 200. (a) The mutation

rate µ = 0.1, and T = 32. The bin size ∆ = 0.001. Sampled for time steps from 1,000 to 1,500, over all players.
(See Kaneko and Suzuki [18] for details, from which the figure is adapted.) (b) µ = 0.001, and T = 128.

The bin size D = 0.002. Sampled for time steps from 750 to 1,000, over all players.

be different for each individual "bird." By this choice of a song generator, one can examine whether a song evolves toward 
the edge of chaos.

Each bird player i chooses an initial condition, so that the time series of its own dynamics 
 can imitate the song of another player. For "preparation" of an initial condition, the 

player i uses a feedback from the other player j's song by  over a number of given time 
steps ttrs. Of course, birds have to choose initial conditions for starting the above feedback process, and also for singing, and 
the result of a game can depend on this choice of initial conditions [18]. Here we assume that they choose initial conditions 
randomly over [-1, 1]. Thus, the game is probabilistic, although "strong" players (to be discussed) often win against "weak 
ones" with probability close (or equal) to one [18].

By repeating the imitation process, the distance between two songs D(j, i) =  (x(j) - x(i))2 is measured. By changing 
the role of the player i and j, D(j, i) is measured. If D(j, i) < D(i,j), the player i imitates better than j, thus being the winner 
of the game, and vice versa.

By reproducing the players according to their scores in the game, and by including mutation of the parameter a [9], we have 
examined the dynamical states to which the songs evolve. Temporal evolution of the average of the parameter a over all 
players shows successive plateaus, until it reaches a ≈ 1.94, where it then remains. Plateaus corresponding to period-
doubling bifurcation points or to the edge between periodic windows and chaos are observed successively.

In Figure 1, the average score of players is plotted as a function of a. The score has a peak at the edge between chaos and 
windows for stable periodic cycles. To study evolution to the edge of chaos, we have also plotted the score of birds as a 
function of
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Figure 2. Average score of the game versus Lyapunov exponents. Simulation is
carried out with µ = 0.05, ttrs = 255, and T = 128 by fixing the population of
birds at 200. Average scores are obtained from the histogram of Lyapunov
exponents, for which we use a bin size of 0.01 for - 1 < λ < 1, while it is set

at 0.1 for λ < - 1 (because the sample there is rather sparse). Sampled over time
steps from 500 to 750 over all players (whose number is fixed at 200).

the Lyapunov exponent ¬ for the dynamics x → f(x) (see Figure 2). Indeed, the score has a broad peak around λ = 0, 
corresponding to the edge of chaos. Thus, evolution of a song toward the edge of chaos is observed. The final value of 
a ≈ 1.94 corresponds to the borderline between a periodic window (of Period 4) and chaos.

Besides evolution to the edge of chaos, it should be noted that the "edge" reached by evolution lies between a periodic 
window and chaos. At a window, the dynamics show chaotic transients before attraction to a stable cycle. Here, a variety of 
unstable cycles coexist [27], which provide for a larger variety of dynamics, as transients. Transient chaos is important for 
the adaptation to a wide range of external dynamics. Evolution to the edge of windows may be a more robust and important 
concept than evolution to the edge of chaos.

Escape from imitation could be a trigger for the evolution of complexity in many fields, such as in the evolution of Batesian 
mimicry [30], where one of the groups can survive better by imitating the pattern of another group, while the second group's 
advantage in survival is lost if it is not distinguished well from the first. The increase of complexity of the patterns of some 
butterflies may be due to this "imitation" pressure. Another possible application is seen in the evolution of a communication 
code only within a given group. Studies of the evolution of such signals will be important in the future, from the viewpoint 
of complexity via chaotic dynamics.
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3 Key Concept for the Origin of Complexity and Diversity:
Dynamic Clustering in Networks of Chaotic Elements

To study the emergence of diversity, we need a mechanism by which identical elements differentiate into different groups 
spontaneously. Networks of chaotic elements, globally coupled to each other, provide an example of such a mechanism.

In many biological networks, the interaction among elements is not local but global. The simplest case of global interaction 
is studied as a "globally coupled map" (GCM) of chaotic elements. An example is given by

 (1)

where n is a discrete time step and i is the index of an element (i = 1, 2, ..., N = system size), and f(x) = 1 - ax2 [14]. Without 
coupling (i.e., for  = 0), each element shows chaotic behavior if a is large enough. The model is a mean-field-theory-type 
extension of coupled map lattices (CML). The above dynamics consists of parallel nonlinear transformation with a feedback 
from the "mean-field."1 In real biology, elements are not necessarily identical. The reason we start from identical elements 
is that we are interested in the origin of differentiation and diversity. That is, we are interested in the question, How can a 
set of identical units evolve to groups with different (dynamical) states?

Through interaction, some elements oscillate synchronously, while chaotic instability gives a tendency for the destruction of 
coherence. Attractors in GCM are classified by the number of synchronized clusters k and the number of elements within 
each cluster Nk. Here, a cluster is defined as the set of elements in which x(i) = x(j). Identical elements split into clusters 
with different frequencies, phases, or amplitudes of oscillation. Each attractor is coded by the clustering condition [k, (Ni, 
N2, ... Nk)].

In a globally coupled chaotic system in general, the following phases appear successively with the increase of nonlinearity 
in the system [14]:

1. Coherentphase: A coherent attractor (k = 1) has occupied (almost) all basin volumes.

2. Orderedphase: Attractors (k = o(N)) with few clusters have occupied (almost) all basin volumes.

3. Partially orderedphase: Coexistence of attractors with many clusters (k = O(N)) and attractors with few clusters.

4. Turbulentphase: All attractors have many clusters (k = O(N); in most cases k ≈ N).

In the turbulent phase, although x(i) takes almost random values almost independently, there remains some coherence 
among elements. The distribution P(h) of the mean field  , sampled over long time steps, does not 
obey the law of large numbers [15]. The emergence of hidden coherence is a general property in a globally coupled chaotic 
system. This hidden coherence may be interesting in relation to EEGs, where one measures a given average of neuronal 
(electric) activity. Although

1 It is equivalent to . with the aid of transformation yn(i) = f(xn(i). In this form, one can see clear 
correspondence with neural nets: If one chooses a sigmoid function (e.g., tanh(ßx)) as ƒ(x) and a random or coded coupling , a 
typical neural net is obtained.
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the firing of each neuron is not regular (i.e., chaotic or random), the amplitude of some average (EEG) still has a large 
enough amplitude of variation to be observed, which may suggest the existence of hidden coherence as discussed earlier.

In the partially ordered phase, orbits make itinerance over ordered states via highly chaotic states. In the ordered states, the 
motion is partially coherent. Our system exhibits intermittent change between self-organization toward a coherent structure, 
and its collapse to a high-dimensional disordered motion. This dynamics, called chaotic itinerancy, has been found in a 
model of neural dynamics by Tsuda [31], optical turbulence [10], and in GCM [14]. Here, a number of ruins of low-
dimensional attractors coexist in the phase space. The total dynamics consists of residencies at ruins interspersed with 
excursions into high-dimensional chaotic states.

In the chaotic itinerancy in GCM, the degree of synchronization between two elements changes with time. Elements 1 and 
2, for example, may be almost synchronized for some time span, until desynchronization by high-dimensional chaos 
destroys the relationship. After some time, Element 1 may be almost synchronized with Element 5, for example, and so 
forth. Thus, the relationship between elements is dynamically changing. Indeed, such change of relationship is discussed in 
neural physiology [24].

4 Clustering in Hypercubic Coupled Maps: Self-organizing Genetic Algorithms

Let us discuss an extension of the idea in section 3 to population dynamics with mutation. The process of mutation is 
characterized by a diffusion process in the space of genes. If the "gene" space is represented by a bit space (such as 
i = 0010111, as is often the case for genetic algorithms [9]), the single point mutation process is given by a flip-flop 0 ↔ 1 
at each position. Let us represent the population (density) of each species i by x(i), the mutation process is given by a 
diffusion in hypercubic bit space. When the population dynamics is represented by x(i) → ƒ(x(i)), the total dynamics is 
given by k

 (2)

where σj(i) is a species whose jth bit is different from the species i (with only one bit difference), and k is the total bit length 
of species (total species is 2k).2 We use a binary representation to denote the lattice here; for example, site 42 for k = 6 
means the hypercubic lattice point 101010. The above model is rather close to the model in the last section; instead of the 
global coupling in Equation 1, nearest neighbor coupling on the hypercube is adopted here.

In Equation 2, we have again found the formation of synchronized clusters as in section 3 (i.e., xn(i) = xn(j) for two elements 
i and j in the cluster). In the present case, the split to clusters is organized according to the hypercubic structure. Examples 
of such clusters follow.

4.1 I-Bit Clustering

Two clusters with synchronized oscillation are formed. Each of the clusters has N/2 = 2k-1 elements, determined by the bit 
structure. For example, elements may be grouped into two clusters with **0*** and **1*** (* means that the symbol there 
is either one

2 Here we use an identical dynamics for all species. To include the fitness, one can adopt element-dependent dynamics ƒi(x), instead. 
In this case we can see some effects of clusterings, too.
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or zero), each of which has 2k-1 species. This clustering is formed by cutting the k-dimensional hypercube by a hyperplane.

In the genetic algorithm [9], irrelevant bits are initially determined as "don't care" bits represented by "#". Here, such bits 
are spontaneously created with the temporal evolution.

4.2 2-Bit Clustering

Depending on initial conditions and parameters, both the number of clusters and the number of bits relevant to clustering 
can be larger than in section 4.1. An example is a 2-cluster state with 2 relevant bits by XOR (exclusive-or) construction. 
Here the elements split into the groups (a) **10*** or **01*** and (b) **00*** or **11***, for example.

4.3 Parity Check Clustering

Elements split into two groups according to the parity of the number of 1's in each bt representation. For example, elements 
split into two clusters as follows (a) 000, 011, 101, 110, and (b) 001 010, 100, 111, for k = 3. Thus, the clustering gives a 
parity check. It is a hypercubic version of the zigzag (1-dim) or checkerboard (2-dim) pattern [8].

Besides these examples, attractors with many clusters are also found. Most of these states are constructed by combining the 
above clustering schemes. For example, four clusters with two relevant bits are found as a direct product state of the case in 
section 4.1. Here the hypercubic space is cut by two hyperplanes. Elements split into four clusters, for example, coded by 
01*****, 10*****, 11*****, and 00*****.

More complex examples are reported by Kaneko [16]. Here we have to note that not all partitions are possible in the present 
case. Even if we start from an initial condition with an arbitrary clustering, the synchronization condition (x(i) = x(j) for i, j 
belonging to the same cluster) is not satisfied at the next step for most such initial conditions. In contrast with the GCM 
case, not all possible partitions can be a (stable or unstable) solution of the evolution equation.

As discussed, the present result opens up the possibility of automatic genetic algorithms. Relevant bits are spontaneously 
formed. Furthermore, we have found a chaotic itinerancy state, where relevant bits change according to temporal evolution. 
In Figure 3, the change of relevant bits for clustering is clearly seen. At Stage A, two clusters are formed by the first bit 
(i.e., clusters 0**** and 1****), and the second bit at Stage B (*0*** and *1***), and so on.

With the introduction of external inputs to each element, it is also possible to have a clustered state following the external 
information [16]. Relevant information is extracted through this process spontaneously, which is stored as a relevant bit in 
the clustering.

An application of the present clustering to "real life" will be found in the quasispecies of viruses [4]. As Eigen, McCaskill, 
and Schuster discuss, viruses form quasispecies coded in hypercubic space. By taking account of population dynamics, the 
present clustering may give a theoretical basis for the dynamic and hierarchical grouping of quasispecies.

5 Maintenance of Diversity and Dynamic Stability: Homeochaos

As for the evolution to complexity, the notion of the "edge of chaos" in section 2 is rather special. First, it is provided by a 
critical state and should be sustained at a very narrow region (or at a single critical point) of the parameter space. Second, 
the system is given by a low-dimensional dynamical system, that is, with very few degrees of freedom. Hence, the notion 
"edge of chaos" is insufficient to understand the diversity and complexity of a biological system.
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Figure 3. Space-time diagram for the coupled map lattice on a hypercubic lattice
with k = 5 (i.e., N = 25). For local dynamics f(x) = 1 - 1.52x2 is adopted, while the

coupling strength  is set at 0.3. On the corresponding pixel at a given time and element,
a bar with a length proportional to (xn(i, j) - 0.1) is painted if xn(i, j) > .1. Every fourth time step

is plotted from 10,000 to 12,000. Elements are aligned according to its binary
representation, that is, 0 = 00000, 1 = 00001,2 = 00010, ..., 63 = 11111. At Stage A,

elements split into two clusters 0***** and I****, while they split into *0*** and * 1 ***
at Stage B, **0** and ** 1 ** at Stage C, 0***** and 1 **** at Stage D, ****0 and **** I

at Stage E, and again into 0***** and I **** at Stage F.

In an ecological system, many species are under strong nonlinear interaction and keep some kind of stability with diversity. 
This is not easily sustained. We also have to mention that static equilibria with many species are usually unstable, as studied 
by May [26] in a random network model. Thus, it is interesting to search for a dynamical mechanism to allow for the 
diversity in a system with interacting population dynamics.

Ikegami and the author [11, 17] have studied a population dynamics model with interaction among species, mutation, and 
mutation of mutation rates. In particular, a model with interaction among hosts and parasites has been studied. Each species 
is coded by a bit sequence as in section 4, whose fitness has a rugged or flat (neutral) landscape. The interaction between a 
host and a parasite is assumed to depend on the Hamming distance between their bit sequences.

When the interaction between hosts and parasites is weak, the mutation rates of species decrease with evolution. The 
dynamics of the whole species is reduced to a direct product of isolated sets of host-parasite population dynamics. When the 
interaction is strong, on the other hand, mutation rates are sustained at a high level, where many species form a network of 
population dynamics. This network consists of species connected by single point mutations. Many species are percolated in 
the gene space.

Note that this network is dynamically sustained. The population of each species oscillates chaotically in time. The 
oscillation is high-dimensional chaos with small
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positive Lyapunov exponents. ("High-dimensional" here means that the number of positive exponents is large.) If the 
mutation rate were zero, the dynamics of each species would be essentially disconnected. Then some host-parasite pairs 
would show strong chaos, while others would show periodic or fixed point dynamics. By sustaining a high mutation rate, 
chaotic instability is shared by almost all species, leading to weak high-dimensional chaos. By the term weak, we mean that 
the maximum Lyapunov exponent is close to zero and that the amplitude of oscillation of each species is small. Our system 
has a tendency to evolve toward such weak, high-dimensional chaos.

Here we propose a conjecture that diversity in an evolutionary system with interaction of many replicating units maintains 
its dynamical stability by forming a weak high-dimensional chaotic state, rather than in a fixed point or in strong chaos. We 
have coined the term homeochaos for this homeodynamic state.

The following three points capture the essence of homeochaos:

1. Weak chaos: Homeochaos suppresses strong chaos. The maximal Lyapunov exponent is positive but is close to zero. The 
oscillation amplitude is not large. This weak chaos, for example, is essential to avoid an overly violent change or extinction 
in the population dynamics.

2. High-dimensional chaos: Homeochaos is high-dimensional chaos. There are many positive Lyapunov exponents, 
although their magnitude is small, and there are many degrees of freedom.

3. Dynamic stability and robustness against external perturbations: Homeochaos provides dynamic stability for a complex 
network. The robustness of homeochaos is easily seen by introducing an external perturbation to the population dynamics. 
If the population dynamics follows low-dimensional chaos, the amplitude of population change is sometimes very large. 
The oscillation can bring about a state with very small population size (see Figure 4). When an external perturbation is 
applied at this time, the number of population may go to zero. On the other hand, the oscillation amplitude is small in 
homeochaos (see Figure 4), because the chaos is very weak. Thus, populations of species fluctuate around some value far 
from zero. Hence, species are not easily driven to extinction by external perturbations.

The above three features are strongly interrelated. The stability and robustness (3) are sustained by the suppression of strong 
instability given by (1). By (2), strong chaotic instability is shared by many modes, implying the weak chaos per degrees of 
freedom (point (1)).

Point (1) is a feature common with homeochaos and the edge of chaos. However, homeochaos is not sustained at a critical 
point, but it is more robust against a parameter change. Also the degrees of freedom are not discussed in the edge of chaos, 
but they are essential to homeochaos.

Remnants of clustering of oscillation are important in sustaining homeochaos. Indeed, the chaotic itinerancy seen in 
clustering is sometimes seen in homeochaos. The oscillation of some populations of some species form partial clustering 
over some time steps. The connection between homeochaos and clustering may not be so surprising. If chaos were too 
strong, oscillations of many elements would not keep any relationship, and they would become completely desynchronized. 
If chaos were completely suppressed, clustering with few number of clusters would often follow. To keep weak and high-
dimensional chaos, partial clustering with chaotic itinerancy is the most preferable state.

Homeochaos in the formation of networks will be important in various levels of biological networks. Maybe the most 
straightforward application will be found in immune
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Figure 4. Oscillation of total populations for hosts (solid line) and parasites
(dashed line), in the model in Kaneko and Ikegami [17]. Initial chaotic
oscillations with large amplitudes are suppressed simultaneously with
the increase of averaged mutation rate around time = 2,300. Up to the

time, the population dynamics is a direct product of low-dimensional chaos and
includes a violent change of populations. After the time, the oscillation

amplitude is much weaker (although chaotic), where homeochaos is attained
with the increase of the mutation rates. See Kaneko and Ikegami [17] for details.

networks and quasispecies of viruses. In the immune system, antibody-antigen interactions are similar to host-parasite 
interactions. An antigen is damaged by "matched" antibodies. An antibody itself is damaged by a different class of 
antibodies, as Jerne [12] proposed. High mutation rates are sustained for antibodies, and the concentrations of antibody 
species oscillate in time. We note that these features are shared in common with our model earlier and its numerical results.

Correspondingly, viruses keep high mutation rates, and the population dynamics maintains high mutation rates. The 
population dynamics of quasispecies [4] is of interest from the viewpoint of homeochaos. Indeed, the term quasispecies of 
Eigen et al. [4] corresponds to our term meta-species, a symbiotic network connected by mutation in Kaneko and Ikegami 
[17].

At a more macroscopic level, metabolic oscillations of cells may form homeochaotic dynamics, as will be discussed in the 
next section. At a further macroscopic level, physiology and medicine are the birthplace of the term homeostasis. However, 
data have recently been accumulating showing that the healthy state is not one of "stasis" but rather exhibits an irregular 
temporal dynamics. So far, it is hard to conclude that the dynamics of the healthy state is chaotic. Possibly this difficulty 
may be due to
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the high dimensionality of the dynamics, where no powerful means of diagnosis from the data is available. Indeed, low-
dimensional chaos has to date been found to be associated with unhealthy states of the heart rhythm and EEG. One possible 
conjecture is that a healthy state is sustained by homeochaos rather than homeostasis, because homeochaotic dynamics is 
neither too irregular nor too regular.

At the most macroscopic level, an ecological network can be a candidate for homeochaos. As Elton [5] has discovered in 
the forests of England, an ecological system with diversity is robust against external perturbations.

A typical example of a complex ecological network is found among the species in a tropical rain forest. The ecology there 
consists of a huge number of species, whose population size is often very small. So far, the dynamics of the population of 
species in a complex ecological system has not been seriously studied, but the ecology is believed to be in a dynamic state, 
not at a stationary state. This diversity and dynamics are also seen in our population dynamics showing homeochaos. It is 
strongly hoped that the population dynamics of rain forest species is measured soon. When this is done, we believe the 
dynamics will be found to be homeochaotic. We also believe that the mutation rate itself will be found to be larger than the 
normal level. If this is the case, we may assume that the coupling among species is effectively larger than in temperate 
zones.

We may also hope that our homeochaos is important in a complex network system in general and for a dynamical network 
system with many units evolving according to some inherent dynamics. Such examples may include neural systems, 
computer networks, economics, and sociology. Our homeochaos provides a key principle for the formation of cooperation 
and the dynamic stability required in such systems.

6 Source of Novelty and Growth of Diversity: Open Chaos

In the previous section we have studied the maintenance of diversity. How about its creation? In section 3, we have 
discussed a possible theoretical basis for the origin of diversity. The most typical origin of diversity is seen in cell 
differentiation. The formation and maintenance of a society of differentiated cells [1] is also important for the origin of a 
multicellular organism. By cell division, each cell reproduces itself with differentiation and forms a network of cell society. 
Is the dynamic clustering mechanism in section 3 relevant to cell differentiation?

To consider this problem, quite remarkable experimental results are reported [22]: Escherichia coli with identical genes can 
split into several groups with different enzymatic activities. Even prokaryotic cells with identical genes can be differentiated 
there. Furthermore, cells are under liquid culture; thus, they are in an identical environment. This experimental result must 
be surprising to molecular biologists and also to those who study differentiation in the context of spatial pattern formation 
(e.g., along the line of Turing instability): Neither genetic nor spatial information is essential to the differentiation in the 
experiment. On the other hand, the experimental result may not be so surprising in the light of the dynamic clustering 
discussed in section 3. Nonlinear metabolic reaction is involved in each cell, as well as nonlinear interaction with the soup. 
Cells interact globally with all other cells through the soup. Thus, it is possible to expect that cells' chemical oscillations 
differentiate and form some groups.

Recently Yomo and the author [19] proposed a model of cell differentiation based on the idea of dynamic clustering in 
section 3. The model consists of metabolic reaction, active transport of chemicals from a medium (soup), and cell division. 
The metabolic reaction is nonlinear due to the feedback mechanism of catalytic reaction. The interaction of cells is global, 
due to the competition for taking chemicals (resources to produce enzymes and DNA) from the medium. Cell division is 
assumed to follow the chemical
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Figure 5. Overlaid time series of a chemical at each cell. As the number of cells grows,
the oscillation starts and clustering emerges at Stage II. At Stage III, disparity of the chemical

is clearly seen. See Kaneko and Yomo [19] for details, from whom the figure is adapted.

activities in each cell. The division speed of a cell is assumed to be proportional to its average chemicals included therein.

From a dynamical systems point of view, the model has a novel feature, which is not included in the globally coupled map. 
Here the number of degrees of freedom varies via cell division. When a new cell is born, we need additional degrees of 
freedom to indicate the cell's state.

Numerical results of the model show that there are three successive stages in the growth of the number of cells: coherent 
growth, dynamic clustering, and fixed cell differentiation (see Figure 5). At the first stage, oscillations of chemicals of all 
cells are synchronized, and they divide synchronously. Hence, the number of cells increases as 1, 2, 4, 8, 16, ...). The 
second stage starts when the oscillations of chemicals lose their synchronicity, and the dynamic clustering of section 3 is 
observed. At the last stage, some (active) cells start to have more chemicals than others. Disparity in chemical activities is 
observed. The speed of division of active cells is at least 102 times faster than other cells. The active cells may correspond 
to germ cells, while others correspond to somatic cells. Here, somatic cells are also differentiated according to the 
concentration of contained chemicals. The oscillations of chemicals at the third stage sustain weak chaos. We note that the 
third stage is robust against external perturbations. Because all cells compete for resources from the medium, the previous 
results may be interpreted as follows: At the second stage, cells form a time-sharing system for resources, by the clustering 
of oscillations, while the differentiation between poor and
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rich cells is formed spontaneously at the third stage. The emergence of the third stage is rather new, unexpected from the 
dynamic clustering in section 3.

Indeed, we may introduce a new concept, which we call ''open chaos." We propose open chaos as a novel and general 
scenario for systems with growing numbers of elements. By the active transport dynamics of chemicals, the difference 
between two cells can be amplified, because a cell with more chemicals is assumed to get even more. Tiny differences 
between cells can grow exponentially if parameters satisfy a suitable condition. A grown cell is divided into two, with an 
(almost) equal partition of the contained chemicals. This process looks quite similar to chaos in the Baker's transformation, 
involving stretching (exponential growth) and folding (division). One difference between our cell division mechanism and 
chaos is that phase space itself changes after a division in the former, while the orbit comes back to the original phase space 
in the stretching-folding mechanism of chaos.

Our "open chaos" concept is a novel and general mechanism of instability and irregular dynamics in a system with growing 
phase space. In studies of artificial life, the term open-ended evolution often refers to a dynamics whose phase space attains 
more dimensions with the appearance of new species, strategies, and so forth. Open chaos provides a mechanism for the 
way in which chaotic instability in dynamical systems can trigger the expansion of the dimension of phase space. It is 
interesting to extend the present open chaos to areas studied in connection with open-ended evolution, such as economics, 
sociology, game theory, and so on.

7 Beyond Top-Down and Bottom-Up Approaches

There have been long debates between top-down and bottom-up approaches in artificial intelligence and neural networks. In 
the bottom-up approach, some kind of "order parameters" constructed from a lower level gives a higher level, related with 
some macroscopic behavior. In the top-down approach, a few instructions send messages to lower-level elements.

Of course it is possible to include a weak feedback between top/bottom levels, starting from each approach. An example is a 
simulation of ants with pheromone [34]. The dynamics of lower-level units (ants' motion) leads to a collective field of 
pheromone, which governs the motion of the lower-level units. Because the dynamics of lower-level units is governed by 
the higher-level dynamics, this scheme is essentially analogous with the Prigogine's dissipative structure [28] or Haken's 
slaving principle [7].

In these approaches, it is assumed that the top level is represented by a small number of degrees of freedom, while the 
bottom level may involve a huge number of degrees of freedom. Furthermore, relationships between elements are fixed. 
Although it is possible to include a nontrivial dynamics at a macroscopic level, the behavior of each element is passive and 
totally susceptible to a higher level.

Our network of chaotic elements provides a different mechanism, in the following sense: first, the top level is not 
necessarily represented by only a few degrees of freedom; second, relationships between elements at the lower level can 
dynamically change; third, elements are not passive, but are active and dynamical.3 The first point may seem just a 
complication at first glance, but this is not necessarily so. Often motion governed by a few degrees of freedom emerges, 
which, however, does not last forever due to the second point (dynamic change of relationships). Again, high-dimensional 
motion comes back, until another structure emerges. This mechanism, described as chaotic itinerancy in section 3, is 
essential to replace the top-down and bottom-up

3 The necessity of active elements at low levels and synaptic changes of higher-levels is also emphasized as collectionism by C. 
Langton (private communication). Our approach shares these features with collectionism. We have explictly shown that chaos can 
provide a mechanism for these features, here.
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approaches. In a network of chaotic elements, for example, the order at the top level is destroyed by chaotic revolt against 
the slaving principle [14], in contrast with passive elements in traditional approaches.

In the population dynamics model by Ikegami and the author (mentioned in section 5), the higher level corresponds to the 
survival of species as a collection of species. The higher level emerges from the bottom level, but it is not necessarily 
represented by a few degrees of freedom.

Conclusion

Summing up, we have discussed a chaotic scenario of evolution, which allows for the dynamical change of relationships of 
units, and spontaneous formation and destruction of upper levels. The origin and maintenance of complexity and diversity 
are explained through this scenario. We hope that chaos can remain a source of complexity, novelty, and diversity in the 
studies of artificial life.
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Abstract Our concepts of biology, evolution, and complexity are constrained by having observed only a single 
instance of life, life on earth. A truly comparative biology is needed to extend these concepts. Because we 
cannot observe life on other planets, we are left with the alternative of creating Artificial Life forms on earth. I 
will discuss the approach of inoculating evolution by natural selection into the medium of the digital computer. 
This is not a physical/chemical medium; it is a logical/informational medium. Thus, these new instances of 
evolution are not subject to the same physical laws as organic evolution (e.g., the laws of thermodynamics) and 
exist in what amounts to another universe, governed by the "physical laws" of the logic of the computer. This 
exercise gives us a broader perspective on what evolution is and what it does.

An evolutionary approach to synthetic biology consists of inoculating the process of evolution by natural 
selection into an artificial medium. Evolution is then allowed to find the natural forms of living organisms in the 
artificial medium. These are not models of life, but independent instances of life. This essay is intended to 
communicate a way of thinking about synthetic biology that leads to a particular approach: to understand and 
respect the natural form of the artificial medium, to facilitate the process of evolution in generating forms that 
are adapted to the medium, and to let evolution find forms and processes that naturally exploit the possibilities 
inherent in the medium. Examples are cited of synthetic biology embedded in the computational medium, where 
in addition to being an exercise in experimental comparative evolutionary biology, it is also a possible means of 
harnessing the evolutionary process for the production of complex computer software.

1 Synthetic Biology

Artificial Life (AL) is the enterprise of understanding biology by constructing biological phenomena out of 
artificial components, rather than breaking natural life forms down into their component parts. It is the synthetic 
rather than the reductionist approach. I will describe an approach to the synthesis of artificial living forms that 
exhibit natural evolution.

The umbrella of AL is broad and covers three principal approaches to synthesis: in hardware (e.g., robotics, 
nanotechnology), in software (e.g., replicating and evolving
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computer programs), and in wetware (e.g., replicating and evolving organic molecules, nucleic acids, or others). 
This essay will focus on software synthesis, although it is hoped that the issues discussed will be generalizable 
to any synthesis involving the process of evolution.

I would like to suggest that software syntheses in AL could be divided into two kinds: simulations and 
instantiations of life processes. AL simulations represent an advance in biological modeling, based on a bottom-
up approach, which has been made possible by the increase of available computational power. In the older 
approaches to modeling of ecological or evolutionary phenomena, systems of differential equations were set up 
that expressed relationships between covarying quantities of entities (i.e., genes, alleles, individuals, or species) 
in the populations or communities.

The new bottom-up approach creates a population of data structures, with each instance of the data structure 
corresponding to a single entity. These structures contain variables defining the state of an individual. Rules are 
defined as to how the individuals interact with one another and with the environment. As the simulation runs, 
populations of these data structures interact according to local rules, and the global behavior of the system 
emerges from those interactions. Several very good examples of bottom-up ecological models have appeared in 
the AL literature [33,91]. However, ecologists have also developed this same approach independently of the AL 
movement and have called the approach "individual-based" models [19,39].

The second approach to software synthesis is what I have called instantiation rather than simulation. In 
simulation, data structures are created that contain variables that represent the states of the entities being 
modeled. The important point is that in simulation, the data in the computer is treated as a representation of 
something else, such as a population of mosquitoes or trees. In instantiation, the data in the computer does not 
represent anything else. The data patterns in an instantiation are considered to be living forms in their own right 
and are not models of any natural life form. These can form the basis of a comparative biology [57].

The object of an AL instantiation is to introduce the natural form and process of life into an artificial medium. 
This results in an AL form in some medium other than carbon chemistry and is not a model of organic life 
forms. The approach discussed in this essay involves introducing the process of evolution by natural selection 
into the computational medium. I consider evolution to be the fundamental process of life and the generator of 
living form.

2 Recognizing Life

Most approaches to defining life involve assembling a short list of properties of life and then testing candidates 
on the basis of whether or not they exhibit the properties on the list. The main problem with this approach is that 
there is disagreement as to what should be on the list. My private list contains only two items: self-replication 
and open-ended evolution. However, this reflects my biases as an evolutionary biologist.

I prefer to avoid the semantic argument and take a different approach to the problem of recognizing life. I was 
led to this view by contemplating how I would regard a machine that exhibited conscious intelligence at such a 
level that it could participate as an equal in a debate such as this. The machine would meet neither of my two 
criteria as to what life is, yet I don't feel that I could deny that the process it contained was alive.



This means that there are certain properties that I consider to be unique to life and whose presence in a system 
signify the existance of life in that system. This suggests an alternative approach to the problem. Rather than 
create a short list of minimal requirements and test whether a system exhibits all items on the list, one could 
create
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a long list of properties unique to life and test whether a system exhibits any item on the list.

In this softer, more pluralistic approach to recognizing life, the objective is not to determine if the system is 
alive or not but to determine if the system exhibits a "genuine" instance of some property that is a signature of 
living systems (e.g., self-replication, evolution, flocking, consciousness).

Whether we consider a system living because it exhibits some property that is unique to life amounts to a 
semantic issue. What is more important is that we recognize that it is possible to create disembodied but 
genuine instances of specific properties of life in artificial systems. This capability is a powerful research tool. 
By separating the property of life that we choose to study from the many other complexities of natural living 
systems, we make it easier to manipulate and observe the property of interest. The objective of the approach 
advocated in this paper is to capture genuine evolution in an artificial system.

3 What Natural Evolution Does

Evolution by natural selection is a process that enters into a physical medium. Through iterated replication with 
selection of large populations through many generations, it searches out the possibilities inherent in the "physics 
and chemistry" of the medium in which it is embedded. It exploits any inherent self-organizing properties of the 
medium and flows into natural attractors realizing and fleshing out their structure.

Evolution never escapes from its ultimate imperative: self-replication. However, the mechanisms that evolution 
discovers for achieving this ultimate goal gradually become so convoluted and complex that the underlying 
drive can seem to become superfluous. Some philosophers have argued that the evolutionary theory as 
expressed by the phrase "survival of the fittest" is tautological, in that the fittest are defined as those that survive 
to reproduce. In fact, fitness is achieved through innovation in engineering of the organism [81]. However, there 
remains something peculiarly self-referential about the whole enterprise. There is some sense in which life may 
be a natural tautology.

Evolution is both a defining characteristic and the creative process of life itself. The living condition is a state 
that complex physical systems naturally flow into under certain conditions. It is a self-organizing, self-
perpetuating state of autocatalytically increasing complexity. The living component of the physical system 
quickly becomes the most complex part of the system, such that it reshapes the medium in its own image. Life 
then evolves adaptations predominantly in relation to the living components of the system, rather than the 
nonliving components. Life evolves adaptations to itself.

3.1 Evolution in Sequence Space



Think of organisms as occupying a "genotype space" consisting of all possible sequences of all possible lengths 
of the elements of the genetic system (i.e., nucleotides or machine instructions). When the first organism begins 
replicating, a single self-replicating creature, with a single sequence of a certain length, occupies a single point 
in the genotype space. However, as the creature replicates in the environment, a population of creatures forms, 
and errors cause genetic variation, such that the population will form a cloud of points in the genotype space 
centered around the original point.

Because the new genotypes that form the cloud are formed by random processes, most of them are completely 
inviable and die without reproducing. However, some of them are capable of reproduction. These new 
genotypes persist, and, because some of them are affected by mutation, the cloud of points spreads further. 
However, not all of the viable genomes are equally viable. Some of them discover tricks to replicate more

  

Page 182

efficiently. These genotypes increase in frequency, causing the population of creatures at the corresponding 
points in the genotype space to increase.

Points in the genotype space occupied by greater populations of individuals will spawn larger numbers of 
mutant offspring; thus, the density of the cloud of points in the genotype space will shift gradually in the 
direction of the more fit genotypes. Over time, the cloud of points will percolate through the genotype space, 
either expanding outward as a result of random drift or by flowing along fitness gradients.

Most of the volume of this space represents completely inviable sequences. These regions of the space may be 
momentarily and sparsely occupied by inviable mutants, but the cloud will never flow into the inviable regions. 
The cloud of genotypes may bifurcate as it flows into habitable regions in different directions, and it may split 
as large genetic changes spawn genotypes in distant but viable regions of the space. We may imagine that the 
evolving population of creatures will take the form of wispy clouds flowing through this space.

Now imagine for a moment the situation that there was no selection. This implies that every sequence is 
replicated at an equal rate. Mutation will cause the cloud of points to expand outward, eventually filling the 
space uniformly. In this situation, the complexity of the structure of the cloud of points does not increase 
through time, only the volume that it occupies. Under selection by contrast, through time the cloud will take on 
an intricate structure as it flows along fitness gradients and percolates by drift through narrow regions of 
viability in a largely uninhabitable space.

Consider that the viable region of the genotype space is a very small subset of the total volume of the space, but 
that it probably exhibits a very complex shape, forming tendrils and sheets sparsely permeating the otherwise 
empty space. The complex structure of this cloud can be considered to be a product of evolution by natural 
selection. This thought experiment appears to imply that the intricate structure that the cloud of genotypes may 
assume through evolution is fully deterministic. Its shape is predefined by the physics and chemistry and the 
structure of the environment, in much the same way that the form of the Mandlebrot set is predetermined by its 
defining equation. The complex structure of this viable space is inherent in the medium and is an example of 
"order for free" [44].



No living world will ever fill the entire viable subspace, either at a single moment of time, or even cumulatively 
over its entire history. The region actually filled will be strongly influenced by the original self-replicating 
sequence and by stochastic forces that will by chance push the cloud down a subset of possible habitable 
pathways. Furthermore, coevolution and ecological interactions imply that certain regions can only be occupied 
when certain other regions are also occupied. This concept of the flow of genotypes through the genotype space 
is essentially the same as that discussed by Eigen [22] in the context of "quasispecies." Eigen limited his 
discussion to species of viruses, where it is also easy to think of sequence spaces. Here, I am extending the 
concept beyond the bounds of the species to include entire phylogenies of species.

3.2 Natural Evolution in an Artificial Medium

Until recently, life has been known as a state of matter, particularly combinations of the elements carbon, 
hydrogen, oxygen, nitrogen, and smaller quantities of many others. However, recent work in the field of AL has 
shown that the natural evolutionary process can proceed with great efficacy in other media, such as the 
informational medium of the digital computer [1,3,7,15,16,20,24,42,43,50,52,53,67,68,70-
73,76,77,80,88,90,96].1 

1 In ref. I, Adami has used the input-output facilities of the new Tierra languages to feed data to creatures, and select for 
responses that result from simple computations, not contained in the seed genome. In ref. 7, Brooks has created his own 
Tierra-like system, which he calls Sierra. In his implementation, each machine instruction consists of an opcode and an 
operand. Successive instructions overlap such that the operand of one instruction is interpreted as the opcode of the next 
instruction. In ref. 88, "Tierra-like systems
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These new natural evolutions in artificial media are beginning to explore the possibilities inherent in the 
"physics and chemistry" of those media. They are organizing themselves and constructing self-generating 
complex systems. While these new living systems are still so young that they remain in their primordial state, it 
appears that they have embarked on the same kind of journey taken by life on earth and presumably have the 
potential to evolve levels of complexity that could lead to sentient and eventually intelligent beings.

If natural evolution in artificial media leads to sentient or intelligent beings, they will likely be so alien that they 
will be difficult to recognize. The sentient properties of plants are so radically different from those of animals 
that they are generally unrecognized or denied by humans, and plants are merely in another kingdom of the one 
great tree of organic life on earth [69,74,87]. Synthetic organisms evolving in other media, such as the digital 
computer, are not only not a part of the same phylogeny, but they are not even of the same physics. Organic life 
is based on conventional material physics, whereas digital life exists in a logical, not material, informational 
universe. Digital intelligence will likely be vastly different from human intelligence; forget the Turing Test.

4 The Approach

Marcel, a mechanical chessplayer ... his exquisite 19th-century brainwork—the human art it took to build which has been flat 
lost, lost as the dodo bird ... But where inside Marcel is the midget Grandmaster, the little Johann Allgeier? where's the 
pantograph, and the magnets? Nowhere. Marcel really is a mechanical chessplayer. No fakery inside to give him any touch of 
humanity at all.
—Thomas Pynchon, Gravity's Rainbow



The objective of the approach discussed here is to create an instantiation of evolution by natural selection in the 
computational medium. This creates a conceptual problem that requires considerable art to solve: Ideas and 
techniques must be learned by studying organic evolution and then applied to the generation of evolution in a 
digital medium, without forcing the digital medium into an "unnatural" simulation of the organic world.

We must derive inspiration from observations of organic life, but we must never lose sight of the fact that the 
new instantiation is not organic and may differ in many fundamental ways. For example, organic life inhabits a 
Euclidean space; however, computer memory is not a Euclidean space. Intercellular communication in the 
organic world is chemical in nature, and, therefore, a single message generally can pass no more information 
than on or off. By contrast, communication in digital computers generally involves the passing of bit patterns, 
which can carry much more information.

The fundamental principal of the approach being advocated here is to understand and respect the natural form 
of the digital computer, to facilitate the process of evolution in generating forms that are adapted to the 
computational medium, and to let evolution find forms and processes that naturally exploit the possibilities 
inherent in the medium.

Situations arise where it is necessary to make significant changes from the standard computer architecture. But 
such changes should be made with caution and only when there is some feature of standard computer 
architectures that clearly inhibits the desired processes. Examples of such changes are discussed later in the 
section titled "The Genetic Language." Less substantial changes are also discussed in the sections on the

are being explored for their potential applications in solving the problem of predicting the dynamics of consumption of a 
single energy carrying natural resource."
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"Flaw" genetic operator, "Mutations," and "Artificial Death." The sections on ''Spatial Topology" and "Digital 
'Neural Networks'—Natural AI" are little tirades against examples of what I consider to be unnatural transfers 
of forms from the natural world to the digital medium.

5 The Computational Medium

The computational medium of the digital computer is an informational universe of boolean logic, not a material 
one. Digital organisms live in the memory of the computer and are powered by the activity of the central 
processing unit (CPU). Whether the hardware of the CPU and memory is built of silicon chips, vacuum tubes, 
magnetic cores, or mechanical switches is irrelevant to the digital organism. Digital organisms should be able to 
take on the same form in any computational hardware and in this sense are "portable" across hardware.

Digital organisms might as well live in a different universe from us, because they are not subject to the same 
laws of physics and chemistry. They are subject to the "physics and chemistry" of the rules governing the 
manipulation of bits and bytes within the computer's memory and CPU. They never "see" the actual material 
from which the computer is constructed, they see only the logic and rules of the CPU and the operating system. 
These rules are the only "natural laws" that govern their behavior. They are not influenced by the natural laws 
that govern the material universe (e.g., the laws of thermodynamics).



A typical instantiation of this type involves the introduction of a self-replicating machine language program into 
the RAM memory of a computer subject to random errors such as bit flips in the memory or occasionally 
inaccurate calculations [3,7,20,52,70]. This generates the basic conditions for evolution by natural selection as 
outlined by Darwin [14]: self-replication in a finite environment with heritable genetic variation.

In this instantiation, the self-replicating machine language program is thought of as the individual "digital 
organism" or "creature." The RAM memory provides the physical space that the creatures occupy. The CPU 
provides the source of energy. The memory consists of a large array of bits, generally grouped into 8-bit bytes 
and 16- or 32-bit words. Information is stored in these arrays as voltage patterns that we usually symbolize as 
patterns of ones and zeros.

The "body" of a digital organism is the information pattern in memory that constitutes its machine language 
program. This information pattern is data, but when it is passed to the CPU, it is interpreted as a series of 
executable instructions. These instructions are arranged in such a way that the data of the body will be copied to 
another location of memory. The informational patterns stored in the memory are altered only through the 
activity of the CPU. It is for this reason that the CPU is thought of as the analog of the energy source. Without 
the activity of the CPU, the memory would be static, with no changes in the informational patterns stored there.

The logical operations embodied in the instruction set of the CPU constitute a large part of the definition of the 
"physics and chemistry" of the digital universe. The topology of the computer's memory (discussed later) is also 
a significant component of the digital physics. The final component of the digital physics is the operating 
system, a software program running on the computer, which embodies rules for the allocation of resources such 
as memory space and CPU time to the various processes running on the computer.

The instruction set of the CPU, the memory, and the operating system together define the complete "physics and 
chemistry" of the universe inhabited by the digital organism. They constitute the physical environment within 
which digital organisms will evolve. Evolving digital organisms will compete for access to the limited resources 
of memory
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space and CPU time, and evolution will generate adaptations for the more agile access to and the more efficient 
use of these resources.

6 The Genetic Language

The simplest possible instantiation of a digital organism is a machine language program that codes for self-
replication. In this case, the bit pattern that makes up the program is the body of the organism and at the same 
time its complete genetic material. Therefore, the machine language defined by the CPU constitutes the genetic 
language of the digital organism.

It is worth noting at this point that the organic organism most comparable to this kind of digital organism is the 
hypothetical, and now extinct, RNA organism [6]. These were presumably nothing more than RNA molecules 
capable of catalyzing their own replication. What the supposed RNA organisms have in common with the 
simple digital organism is that a single molecule constitutes the body and the genetic information, and effects 
the replication. In the digital organism, a single-bit pattern performs all the same functions.



The use of machine code as a genetic system raises the problem of brittleness. It has generally been assumed by 
computer scientists that machine language programs cannot be evolved because random alterations such as bit 
flips and recombinations will always produce inviable programs. It has been suggested [23] that overcoming 
this brittleness and "Discovering how to make such self-replicating patterns more robust so that they evolve to 
increasingly more complex states is probably the central problem in the study of artificial life."

The assumption that machine languages are too brittle to evolve is probably true, as a consequence of the fact 
that machine languages have not previously been designed to survive random alterations. However, recent 
experiments have shown that brittleness can be overcome by addressing the principal causes and without 
fundamentally changing the structure of machine languages [70,77].

The first requirement for evolvability is graceful error handling. When code is being randomly altered, every 
possible meaningless or erroneous condition is likely to occur. The CPU should be designed to handle these 
conditions without crashing the system. The simplest solution is for the CPU to perform no operation when it 
meets these conditions, perhaps setting an error flag, and to proceed to the next instruction.

Due to random alterations of the bit patterns, all possible bit patterns are likely to occur. Therefore, a good 
design is for all possible bit patterns to be interpretable as meaningful instructions by the CPU. For example, in 
the Tierra system [70-73,76,77], a five-bit instruction set was chosen, in which all 32 five-bit patterns represent 
good machine instructions.

This approach (all bit patterns meaningful) also could imply a lack of syntax, in which each instruction stands 
alone, and need not occur in the company of other instructions. To the extent that the language includes syntax, 
where instructions must precede or follow one another in certain orders, random alterations are likely to destroy 
meaningful syntax, thereby making the language more brittle. A certain amount of this kind of brittleness can be 
tolerated as long as syntax errors are also handled gracefully.

During the design of the first evolvable machine language [70], a standard machine language (Intel 80×86) was 
compared to the genetic language of organic life, to attempt to understand the difference between the two 
languages that might contribute to the brittleness of the former and the robustness of the latter. One of the 
outstanding differences noted was in the number of basic informational objects contained in the two. The 
organic genetic language is written with an alphabet consisting of four different nucleotides. Groups of three 
nucleotides form 64 "words" (codons), which are trans-
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lated into 20 amino acids by the molecular machinery of the cell. The machine language is written with 
sequences of two voltages (bits), which we conceptually represent as ones and zeros. The number of bits that 
form a "word" (machine instruction) varies between machine architectures and in some architectures is not 
constant. However, the number required generally ranges from 16 to 32. This means that there are from tens of 
thousands to billions of machine instruction bit patterns, which are translated into operations performed by the 
CPU.

The thousands or billions of bit patterns that code for machine instructions contrasts with the 64 nucleotide 
patterns that code for amino acids. The 64 nucleotide patterns are degenerate, in that they code for only 20 
amino acids. Similarly, the machine codes are degenerate, in that there are at most hundreds rather than 
thousands or billions of machine operations.

The machine codes exhibit a massive degeneracy (with respect to actual operations) as a result of the inclusion 
of data into the bit patterns coding for the operations. For example, the add operation will take two operands 
and produce as a result the sum of the two operands. While there may be only a single add operation, the 
instruction may come in several forms depending on where the values of the two operands come from, and 
where the resultant sum will be placed. Some forms of the add instruction allow the value(s) of the operand(s) 
to be specified in the bit pattern of the machine code.

The inclusion of numeric operands in the machine code is the primary cause of the huge degeneracy. If numeric 
operands are not allowed, the number of bit patterns required to specify the complete set of operations collapses 
to at most a few hundred.

While there is no empirical data to support it, it is suspected that the huge degeneracy of most machine 
languages may be a source of brittleness. The logic of this argument is that mutation causes random swapping 
among the fundamental informational objects, codons in the organic language, and machine instructions in the 
digital language. It seems more likely that meaningful results will be produced when one swaps among 64 
objects than when one swaps among billions of objects.

The size of the machine instruction set can be made comparable to the number of codons simply by eliminating 
numeric operands embedded in the machine code. However, this change creates some new problems. Computer 
programs generally function by executing instructions located sequentially in memory. However, in order to 
loop or branch, they use instructions such as "jump" to cause execution to jump to some other part of the 
program. Because the locations of these jumps are usually fixed, the jump instruction will generally have the 
target address included as an operand embedded in the machine code.

By eliminating operands from the machine code, we generate the need for a new mechanism of addressing for 
jumps. To resolve this problem, an idea can be borrowed from molecular biology. We can ask the question, 
How do biological molecules address one another? Molecules do not specify the coordinates of the other 
molecules they interact with. Rather, they present shapes on their surfaces that are complementary to the shapes 
on the surfaces of the target molecules. The concept of complementarity in addressing can be introduced to 
machine languages by allowing the jump instruction to be followed by some bit pattern and by having execution 
jump to the nearest occurrence of the complementary bit pattern.



In the development of the Tierran language, two changes were introduced to the machine language to reduce 
brittleness: elimination of numeric operands from the code and the use of complementary patterns to control 
addressing. The resulting language proved to be evolvable [70]. As a result, nothing was learned about 
evolvability, because only one language was tested, and it evolved. It is not known what features of the 
language enhance its evolvability, which detract, and which do not affect evolvability.
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Subsequently, three additional languages were tested, and the four languages were found to vary in their 
patterns and degree of evolvability [77]. However, it is still not known how the features of the language affect 
its evolvability.

7 Genetic Operators

In order for evolution to occur, there must be some genetic variation among the offspring. In organic life, this is 
insured by natural imperfections in the replication of the informational molecules. However, one way in which 
digital "chemistry" differs from organic chemistry is in the degree of perfection of its operations. In the 
computer, the genetic code can be reliably replicated without errors to such a degree that we must artificially 
introduce errors or other sources of genetic variation in order to induce evolution.

7.1 Mutations

In organic life, the simplest genetic change is a "point mutation," in which a single nucleic acid in the genetic 
code is replaced by one of the three other nucleic acids. This can cause an amino acid substitution in the protein 
coded by the gene. The nucleic acid replacement can be caused by an error in the replication of the DNA 
molecule, or it can be caused by the effects of radiation or mutagenic chemicals.

In the digital medium, a comparably simple genetic change can result from a bit flip in the memory, where a 
one is replaced by a zero, or a zero is replaced by a one. These bit flips can be introduced in a variety of ways 
that are analogous to the various natural causes of mutation. In any case, the bit flips must be introduced at a 
low to moderate frequency, because high frequencies of mutation prevent the replication of genetic information 
and lead to the death of the system [73].

Bit flips may be introduced at random anywhere in memory, where they may or may not hit memory actually 
occupied by digital organisms. This could be thought of as analogous to cosmic rays falling at random and 
disturbing molecules that may or may not be biological in nature. Bit flips may also be introduced when 
information is copied in the memory, which could be analogous to the replication errors of DNA. Alternatively, 
bit flips could be introduced in memory as it is accessed, either as data or executable code. This could be 
thought of as damage due to "wear and tear."

7.2 Flaws



Alterations of genetic information are not the only source of noise in the system. In organic life, enzymes have 
evolved to increase the probability of chemical reactions that increase the fitness of the organism. However, the 
metabolic system is not perfect. Undesired chemical reactions do occur, and desired reactions sometimes 
produce undesired by-products. The result is the generation of molecular species that can "gum up the works," 
having unexpected consequences, generally lowering the fitness of the organism but possibly raising it.

In the digital system, an analogue of metabolic (nongenetic) errors can be introduced by causing the 
computations carried out by the CPU to be probabilistic, producing erroneous results at some low frequency. 
For example, any time a sum or difference is calculated, the result could be off by some small value (e.g., plus 
or minus one). Or, if all bits are shifted one position to the left or right, an appropriate error would be to shift by 
two positions or not at all. When information is transferred from one location to another, either in the RAM 
memory or the CPU registers, it could occasionally be transferred from the wrong location, or to the wrong 
location. While flaws do not directly cause genetic changes, they can cause a cascade of events that result in the 
production of an offspring that is genetically different from the parent.
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7.3 Recombination-Sex

7.3.1 The Nature of Sex

In organic life, there are a wide variety of mechanisms by which offspring are produced that contain genetic 
material from more than one parent. This is the sexual process. Recombination mechanisms range from very 
primitive and haphazard to elaborately orchestrated.

At the primitive extreme, we find certain species of bacteria, in which upon death the cell membrane breaks 
open, releasing the DNA into the surrounding medium. Fragments of this dead DNA are absorbed across the 
membranes of other bacteria of the same species and incorporated into their genome [58]. This is a one-way 
transferral of genetic material, rather than a reciprocal exchange.

At the complex extreme, we find the conventional sexual system of most of the higher animals, in which each 
individual contains two copies of the entire genome. At reproduction, each of two parents contributes one 
complete copy of the genome (half of their genetic material) to the offspring. This means that each offspring 
receives one half of its genetic material from each of two parents, and each parent contributes one half of its 
genetic material to each offspring. Very elaborate behavioral and molecular mechanisms are required to 
orchestrate this joint contribution of genetic material to the offspring.

The preponderance of sex remains an enigma to evolutionary theory [5,26,30,31,54, 60,85,95]. Careful analysis 
has failed to show any benefits from sex at the level of the individual organism that outweigh the high costs 
(e.g., passing on only half of the genome). The only obvious benefit of sex is that it provides diversity among 
the offspring, allowing the species to adapt more readily to a changing environment. However, quantitative 
analysis has shown that in order for sex to be favored by selection at the individual level, it is not enough for the 
environment to change unpredictably; the environment must actually change capriciously [13,56]. That is, 
whatever genotype has the highest fitness in this generation must have the lowest fitness in the next generation, 
or at least a trend in this direction, a negative heritability of fitness.



One theory to explain the perpetuation of sex (based on the Red Queen hypothesis; see later) states that the 
environment is in fact capricious, due to the importance of biotic factors in determining selective forces. That is, 
sex is favored because it is necessary to maintain adaptation in the face of evolving species in the environment 
(e.g., predators/parasites, prey/hosts, competitors) who themselves are sexual and can undergo rapid 
evolutionary change. Predators and parasites will tend to evolve so as to favor attacking whatever genotype of 
their prey/host is the most common. The genotype that is most successful at present is targeted for future attack. 
This dynamic makes the environment capricious in the sense discussed earlier.

There are fundamental differences in the nature of the evolutionary process between asexual and sexual 
organisms. The evolving entity in an asexual species is a branching lineage of genetic individuals that retain 
their genetic identity through the generations. In a sexual species, the evolving entity is a collective "gene pool," 
and genetic individuals are absolutely ephemeral, lasting only one generation.

Recall the discussion of "genotype space" earlier in the section titled "Evolution in Sequence Space" and 
imagine that we could represent genotype space in two dimensions and that we allow a third dimension to 
represent time. Visualize now an evolving asexual organism. Starting with a single individual, it would occupy 
a single point in the genotype space at time zero. When it reproduces, if there is no mutation, its offspring 
would occupy the same point in genotype space at a later time. Thus, the lineage of the asexual organism would 
appear as a line moving forward in time. If mutations occur, they cause the offspring to occupy new locations in 
genotype space, forming branches in the lineage.
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Through time, the evolving asexual lineage would form a tree-like structure in the genotype space-time 
coordinates. However, every individual branch of the tree will evolve independently of all the others. While 
there may be ecological interactions between genetically different individuals, there is no exchange of genetic 
material between them. From a genetic point of view, each branch of the tree is on its own; it must adapt or fail 
to adapt based on its own genetic resources.

In order to visualize an evolving sexual population, we must start with a population of individuals, each of 
which will be genetically unique. Thus, they will appear as a scatter of points in the genotype space plane at 
time zero. In the next generation, all of the original genotypes will be dead; however, a completely new set of 
genotypes will have been formed from new combinations of pieces of the genomes from the previous 
generation. No individual genotypes will survive from one generation to the next; thus, over time, the evolving 
sexual population appears as a diffuse cloud of disconnected points with no lines formed from persistent 
genotypes.

The most important distinction between the evolving asexual and sexual populations is that the asexual 
individuals are genetically isolated and must adapt or not based on the limited genetic resources of the 
individual, while sexual organisms by comparison draw on the genetic resources of the entire population, due to 
the flow of genes resulting from sexual matings. The entity that evolves in an asexual population is an isolated 
but branching lineage of genetic individuals. In a sexual population, the individual is ephemeral, and the entity 
that evolves is a "gene pool."



Due to the genetic cohesion of a sexual population and the ephemeral nature of its individuals, the evolving 
sexual entity exists at a higher level of organization than the individual organism. The evolving entity, a gene 
pool, is supraorganismal. It samples the environment through many individuals simultaneously and pools their 
genetic resources in finding adaptive genetic combinations.

The definition of the biological species is based on a concept of sexual reproduction: a group of individuals 
capable of interbreeding freely under natural conditions. Species concepts simply do not apply well to asexual 
species. In order for synthetic life to be useful for the study of the properties of species and the speciation 
process, it must include an organized sexual process, such that the evolving entity is a gene pool.

7.3.2 Implementation of Digital Sex

The previous discussions of the nature of sexuality are intended to make the point that it is an important process 
in evolutionary biology and should be included in synthetic implementations of life. The sexual process is 
implemented with the "crossover" genetic operator in the field of genetic algorithms, where it has been 
considered to be the most important genetic operator [34].

The crossover operator has also been implemented in synthetic life systems [75,90]. However, it has been 
implemented in the spirit of a genetic algorithm, rather than in the spirit of synthetic life. This is because in 
these implementations, the crossover process is not under the control of the organism but rather is forced on the 
individual. In addition, these implementations are based on haploid sex not diploid sex (see later). In order to 
address many of the interesting evolutionary questions surrounding sexuality, the sexual process must be 
optional, at least through evolution, and should be diploid.

Primitive sexual processes have appeared spontaneously in the Tierra synthetic life system [70]. However, there 
apparently has still not been an implementation of natural organized sexuality in a synthetic system. I would 
like to discuss my conception of how this could be implemented with particular reference to the Tierra system.

It would seem that the simplest way of implementing an organized sexuality that would give rise to an evolving 
gene pool would involve the use of "ploidy." Ploidy refers to a system in which each individual cor'  s multiple 
copies of the complete
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genome. In the most familiar sexual system (that used by humans), the gametes (egg and sperm) contain one 
copy of the genome (they are haploid), and all other stages of the life cycle contain two copies (they are 
diploid), which derive from the union of a sperm and egg.

In a digital organism whose body consists of a sequence of machine code, it would be easy to duplicate the 
sequence and include two copies within the cell. However, some problems can arise with this configuration, if 
the two copies of the genome occupy adjacent blocks of memory. Which copy of the genome will be executed? 
When the organism contributes one of its two copies of the genome to an offspring, which of the two copies 
will be contributed, and how can the mother cell recognize where one complete genome begins and ends?



A solution to these problems that has been partially implemented in the Tierra system is to have the two copies 
of the genome intertwined, rather than in adjacent blocks of memory. This can be done by letting alternate bytes 
represent one genome and the skipped bytes the other genome. Tierran instructions utilize only five bits and so 
are mapped to successive bytes in memory. If we instead place successive instructions in successive 16-bit 
words, one copy of the genome can occupy the high-order bytes, and the other genome can occupy the low-
order bytes of the words.

This arrangement facilitates relatively simple solutions to the problems mentioned earlier. Execution of the 
genome takes place by having the instruction pointer execute alternate bytes. In a diploid organism, there are 
two tracks. The track to initially be executed can be chosen at random. At a certain frequency or under certain 
circumstances, the executing track can be switched so that both copies of the genome will be expressed.

Having two parallel tracks helps to resolve the problem of recognizing where one copy of the genome ends and 
the other begins, because both genomes usually begin and end together. Copying of the genome, like execution, 
can occur along one track. Optionally, tracks could be switched during the copy process to introduce an effect 
similar to crossing over in meiosis. In addition, the use of both tracks can be optional, so that haploid and 
diploid organisms can coexist in the same soup, and evolution can favor either form, according to selective 
pressures.

7.4 Transposons

The explosion of diversity in the Cambrian occurred in the lineage of the eukaryotes; the prokaryotes did not 
participate. One of the most striking genetic differences between eukaryotes and prokaryotes is that most of the 
genome of prokaryotes is translated into proteins, while most of the genome of eukaryotes is not. It has been 
estimated that typically 98% of the DNA in eukaryotes is neither translated into proteins nor involved in gene 
regulation, that it is simply "junk" DNA [92]. It has been suggested that much of this junk code is the result of 
the self-replication of pieces of DNA within rather than between cells [21,66].

Mobile genetic elements, transposons, have this intragenome self-replicating property. It has been estimated that 
80% of spontaneous mutations are caused by transposons [12,29]. Repeated sequences, resulting from the 
activity of mobile elements, range from dozens to millions in numbers of copies and from hundreds to tens of 
thousands of base pairs in length. They vary widely in dispersion patterns from clumped to sparse [40].

Larger transposons carry one or more genes in addition to those necessary for transposition. Transposons may 
grow to include more genes; one mechanism involves the placement of two transposons into close proximity so 
that they act as a single, large transposon incorporating the intervening code. In many cases transposons carry a
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sequence that acts as a promoter, altering the regulation of genes at the site of insertion [89].

Transposons may produce gene products and often are involved in gene regulation [17]. However, they may 
have no effect on the external phenotype of the individual [21]. Therefore, they evolve through another 
paradigm of selection, one that does not involve an external phenotype. They are seen as a mechanism for the 
selfish spread of DNA, which may become inactive junk after mutation [66].

DNA of transposon origin can be recognized by its palindrome endings flanked by short, nonreversed repeated 
sequences resulting from insertion after staggered cuts. In Drosophila melanogaster approximately 5-10% of its 
total DNA is composed of sequences bearing these signs. There are many families of such repeated elements, 
each family possessing a distinctive nucleotide sequence and distributed in many sites throughout the genome. 
One well-known repeated sequence occurring in humans is found to have as many as a half million copies in 
each haploid genome [86].

Elaborate mechanisms have evolved to edit out junk sequences inserted into critical regions. An indication of 
the magnitude of the task comes from the recent cloning of the gene for cystic fibrosis, where it was discovered 
that the gene consists of 250,000 base pairs, only 4,440 of which code for protein; the remainder are edited out 
of the messenger RNA before translation [45,55,78,79].

It appears that many repeated sequences in genomes may have originated as transposons favored by selection at 
the level of the gene, favoring genes that selfishly replicated themselves within the genome. However, some 
transposons may have coevolved with their host genome as a result of selection at the organismal or 
populational level, favoring transposons that introduce useful variation through gene rearrangement. It has been 
stated that "transposable elements can induce mutations that result in complex and intricately regulated changes 
in a single step" and that they are "a highly evolved macromutational mechanism" [89].

In this manner, "smart" genetic operators may have evolved, through the interaction of selection acting at two or 
more hierarchical levels. (It appears that some transposons have followed another evolutionary route, 
developing intercellular mobility and becoming viruses [40].) It is likely that transposons today represent the 
full continuum from purely parasitic "selfish DNA" and viruses to highly coevolved genetic operators and gene 
regulators. The possession of smart genetic operators may have contributed to the explosive diversification of 
eukaryotes by providing them with the capacity for natural genetic engineering.

In designing self-replicating digital organisms, it would be worthwhile to introduce such genetic parasites in 
order to facilitate the shuffling of the code that they bring about. Also, the excess code generated by this 
mechanism provides a large store of relatively neutral codes that can randomly explore new configurations 
through the genetic operations of mutation and recombination. When these new configurations confer 
functionality, they may become selected for.

8 Artificial Death

Death must play a role in any system that exhibits the process of evolution. Evolution involves a continuing 
iteration of selection, which implies differential death. In natural life, death occurs as a result of accident, 
predation, starvation, disease, or, if these fail to kill the organism, it will eventually die from senescence 
resulting from an accumulation of wear and tear at every level of the organism including the molecular.



In normal computers, processes are "born" when they are initiated by the user and "die" when they complete 
their task and halt. A process whose goal is to repeatedly replicate itself is essentially an endless loop and would 
not spontaneously terminate.
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Due to the perfection of normal computer systems, we cannot count on "wear and tear" to eventually cause a 
process to terminate.

In synthetic life systems implemented in computers, death is not likely to be a process that would occur 
spontaneously, and it must generally be introduced artificially by the designer. Everyone who has set up such a 
system has found their own unique solutions. Todd [93] recently discussed this problem in general terms.

In the Tierra system [70], death is handled by a "reaper" function of the operating system. The reaper uses a 
linear queue. When creatures are born, they enter the bottom of the queue. When memory is full, the reaper 
frees memory to make space for new creatures by killing off the top of the queue. However, each time an 
individual generates an error condition, it moves up the reaper queue one position.

An interesting variation on this was introduced by Barton-Davis [3], who eliminated the reaper queue. In its 
place, he caused the "flaw rate" (see earlier section on Flaws) to increase with the age of the individual in 
mimicry of wear and tear. When the flaw rate reached 100%, the individual was killed. Skipper [80] provided a 
"suicide" instruction, which, if executed, would cause a process to terminate (die). The evolutionary objective 
then became to have a suicide instruction in your genome that you do not execute yourself, but which you try to 
get other individuals to execute. Litherland [50] introduced death by local crowding. Davidge [16] caused 
processes to die when they contained certain values in their registers. Gray [96] allowed each process six 
attempts at reproduction, after which they would die.

9 Operating System

Much of the "physics and chemistry" of the digital universe is determined by the specifications of the operations 
performed by the instruction set of the CPU. However, the operating system also determines a significant part 
of the physical context. The operating system manages the allocation of critical resources such as memory space 
and CPU cycles.

Digital organisms are processes that spawn processes. As processes are born, the operating system will allocate 
memory and CPU cycles to them, and when they die, the operating system will return the resources they had 
utilized to the pool of free resources. In synthetic life systems, the operating system may also play a role in 
managing death, mutations, and flaws.

The management of resources by the operating system is controlled by algorithms. From the point of view of 
the digital organisms, these take the form of a set of logical rules like those embodied in the logic of the 
instruction set. In this way, the operating system is a defining part of the physics and chemistry of the digital 
universe. Evolution will explore the possibilities inherent in these rules, finding ways to more efficiently gain 
access to and exploit the resources managed by the operating system.

10 Spatial Topology



Digital organisms live in the memory space of computers, predominantly in the RAM memory, although they 
could also live on disks or any other storage device, or even within networks to the extent that the networks 
themselves can store information. In essence, digital organisms live in the space that has been referred to as 
"cyberspace." It is worthwhile reflecting on the topology of this space as it is a radically different space from 
the one we live in.

A typical UNIX workstation, or Macintosh computer includes a RAM memory that can contain some 
megabytes of data. This is "flat" memory, meaning that it is essentially unstructured. Any location in memory 
can be accessed through its numeric address.
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Thus, adjacent locations in memory are accessed through successive integer values. This addressing convention 
causes us to think of the memory as a linear space or a one-dimensional space.

However, this apparent one-dimensionality of the RAM memory is something of an illusion generated by the 
addressing scheme. A better way of understanding the topology of the memory comes from asking, "What is the 
distance between two locations in memory?" In fact, the distance cannot be measured in linear units. The most 
appropriate unit is the time that it takes to move information between the two points.

Information contained in the RAM memory cannot move directly from point to point. Instead, the information 
is transferred from the RAM to a register in the CPU and then from the CPU back to the new location in RAM. 
Thus, the distance between two locations in RAM is just the time that it takes to move from the RAM to the 
CPU plus the time that it takes to move from the CPU to the RAM. Because all points in the RAM are 
equidistant from the CPU, the distance between any pair of locations in the RAM is the same, regardless of how 
far apart they may appear based on their numeric addresses.

A space in which all pairs of points are equidistant is clearly not a Euclidean space. That said, we must 
recognize, however, that there are a variety of ways in which memory is normally addressed that give it the 
appearance, at least locally, of being one-dimensional. When code is executed by the CPU, the instruction 
pointer generally increments sequentially through memory, for short distances, before jumping to some other 
piece of code. For those sections of code where instructions are sequential, the memory is effectively one-
dimensional. In addition, searches of memory are often sequentially organized (e.g., the search for 
complementary templates in Tierra). This again makes the memory effectively one-dimensional within the 
search radius. Yet even under these circumstances, the memory is not globally one-dimensional. Rather, it 
consists of many small, one-dimensional pieces, each of which has no meaningful spatial relationship to the 
others.

Because we live in a three-dimensional Euclidean space, we tend to impose our familiar concepts of spatial 
topology onto the computer memory. This leads first to the erroneous perception that memory is a one-
dimensional Euclidean space, and, second, it often leads to the conclusion that the digital world could be 
enriched by increasing the dimensionality of the Euclidean memory space.



Many of the serious efforts to extend the Tierra model have included as a central feature the creation of a two-
dimensional space for the creatures to inhabit [3,15,16,52,80]. The logic behind the motivation derives from 
contemplation of the extent to which the dimensionality of the space we live in permits the richness of pattern 
and process that we observe in nature. Certainly, if our universe were reduced from three to two dimensions, it 
would eliminate the possibility of most of the complexity that we observe. Imagine, for example, the limitations 
that two-dimensionality would place on the design of neural networks (if "wires" could not cross). If we were to 
reduce further the dimensionality of our universe to just one dimension, it would probably completely preclude 
the possibility of the existence of life.

It follows from these thoughts that restricting digital life to a presumably one-dimensional memory space places 
a tragic limitation on the richness that might evolve. Clearly, it would be liberating to move digital organisms 
into a two- or three-dimensional space. The flaw in all of this logic derives from the erroneous supposition that 
computer memory is a Euclidean space.

To think of memory as Euclidean is to fail to understand its natural topology and is an example of one of the 
greatest pitfalls in the enterprise of synthetic biology: to transfer a concept from organic life to synthetic life in a 
way that is "unnatural" for the artificial medium. The fundamental principal of the approach I am advocating is 
to respect the nature of the medium into which life is being inoculated, and to find
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the natural form of life in that medium, without inappropriately trying to make it like organic life.

The desire to increase the richness of memory topology is commendable; however, this can be achieved without 
forcing the memory into an unnatural Euclidean topology. Let us reflect a little more on the structure of 
cyberspace. Thus far, we have only considered the topology of flat memory. Let us consider segmented memory 
such as is found with the notorious Intel 80X86 design. With this design, you may treat any arbitrarily chosen 
block of 64K bytes as flat and all pairs of locations within that block are equidistant. However, once the block is 
chosen, all memory outside of that block is about twice as far away.

Cache memory is designed to be accessed more rapidly than RAM memory; thus, pairs of points within cache 
memory are closer than pairs of points within RAM memory. The distance between a point in cache and a point 
in RAM would be an intermediate distance. The access time to memory on disks is much greater than for RAM 
memory; thus, the distance between points on disk is very great, and the distance between RAM and disk is 
again intermediate (but still very great). CPU registers represent a small amount of memory locations between 
which data can move very rapidly; thus, these registers can be considered to be very close together.

For networked computer systems, information can move between the memories of the computers on the net, and 
the distances between these memories is again the transfer time. If the CPU, cache, RAM, and disk memories of 
a network of computers are all considered together, they present a very complex memory topology. Similar 
considerations apply to massively parallel computers that have memories connected in a variety of topologies. 
Utilizing this complexity moves us in the direction of what has been intended by creating Euclidean memories 
for digital organisms but does so while fully respecting the natural topology of computer memories.

11 Ecological Context



11.1 The Living Environment

Some rain forests in the Amazon region occur on white-sand soils. In these locations, the physical environment 
consists of clean white sand, air, falling water, and sunlight. Embedded within this relatively simple physical 
context, we find one of the most complex ecosystems on earth, containing hundreds of thousands of species. 
These species do not represent hundreds of thousands of adaptations to the physical environment. Most of the 
adaptations of these species are to the other living organisms. The forest creates its own environment.

Life is an auto-catalytic process that builds on itself. Ecological communities are complex webs of species, each 
living off of others and being lived off of by others. The system is self-constructing, self-perpetuating, and feeds 
on itself. Living organisms interface with the non-living physical environment, exchanging materials with it, 
such as oxygen, carbon dioxide, nitrogen, and various minerals. However, in the richest ecosystems, the living 
components of the environment predominate over the physical components.

With living organisms constituting the predominant features of the environment, the evolutionary process is 
primarily concerned with adaptation to the living environment. Thus, ecological interactions are an important 
driving force for evolution. Species evolve adaptations to exploit other species (to eat them, to parasitize them, 
to climb on them, to nest on them, to catch a ride on them, etc.) and to defend against such exploitation where it 
creates a burden.

This situation creates an interesting dynamic. Evolution is predominantly concerned with creating and 
maintaining adaptations to living organisms that are themselves evolv-
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ing. This generates evolutionary races among groups of species that interact ecologically. These races can 
catalyze the evolution of upwardly spiraling complexity as each species evolves to overcome the adaptations of 
the others. Imagine, for example, a predator and prey, each evolving to increase its speed and agility, in 
capturing prey, or in evading capture. This coupled evolutionary race can lead to increasingly complex nervous 
systems in the evolving predator and prey species.

This mutual evolutionary dynamic is related to the Red Queen hypothesis [94], named after the Red Queen from 
Alice in Wonderland. This hypothesis suggests that in the face of a changing environment, organisms must 
evolve as fast as they can in order to simply maintain their current state of adaptation. ''In order to get anywhere 
you must run twice as fast as that" [11].

If organisms only had to adapt to the nonliving environment, the race would not be so urgent. Species would 
only need to evolve as fast as the relatively gradual changes in the geology and climate. However, given that the 
species that comprise the environment are themselves evolving, the race becomes rather hectic. The pace is set 
by the maximal rate that species may change through evolution, and it becomes very difficult to actually get 
ahead. A maximal rate of evolution is required just to keep from falling behind.



What all of this discussion points to is the importance of embedding evolving synthetic organisms into a context 
in which they may interact with other evolving organisms. A counter example is the standard implementations 
of genetic algorithms in which the evolving entities interact only with the fitness function and never "see" the 
other entities in the population. Many interesting behavioral, ecological, and evolutionary phenomena can only 
emerge from interactions among the evolving entities.

11.2 Diversity

Major temporal and spatial patterns of organic diversity on earth remain largely unexplained, although there is 
no lack of theories. Diversity theories suggest fundamental ecological and evolutionary principles that may 
apply to synthetic life. In general, these theories relate to synthetic life in two ways: (a) They suggest factors 
that may be critical to the auto-catalytic increase of diversity and complexity in an evolving system. It may be 
necessary then to introduce these factors into an artificial system to generate increasing diversity and 
complexity. (b) Because it will be possible to manipulate the presence, absence, or state of these factors in an 
artificial system, the artificial system may provide an experimental framework for examining evolutionary and 
ecological processes that influence diversity.

The Gaussian principle of competitive exclusion states that no two species that occupy the same niche can 
coexist. The species that is the superior competitor will exclude the inferior competitor. The principle has been 
experimentally demonstrated in the laboratory and is considered theoretically sound. However, natural 
communities widely flaunt the principle. In tropical rain forests several hundred species of trees coexist without 
any dominant species in the community. All species of trees must spread their leaves to collect light and their 
roots to absorb water and nutrients. Evidently there are not several hundred niches for trees in the same habitat. 
Somehow the principle of competitive exclusion is circumvented.

There are many theories on how competitive exclusion may be circumvented. One leading theory is that 
periodic disturbance at the proper level sets back the process of competitive exclusion, allowing more species to 
coexist [36-38]. There is substantial evidence that moderate levels of disturbance can increase diversity. In a 
digital community, disturbance might take the form of freeing blocks of memory that had been filled with 
digital organisms. It would be very easy to experiment with differing frequencies and patch sizes of disturbance.
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One theory to explain the great increase in diversity and complexity in the Cambrian explosion [84] states that 
its evolution was driven by ecological interactions and that it was originally sparked by the appearance of the 
first organisms that ate other organisms (heterotrophs). As long as all organisms were autotrophs (produce their 
own food, like plants), there was only room for a few species. In a community with only one trophic level, the 
most successful competitors would dominate. The process of competitive exclusion would keep diversity low.

However, when the first herbivore (organisms that eat autotrophs) appeared, it would have been selected to 
prefer the most common species of algae, thereby preventing any species of algae from dominating. This opens 
the way for more species of algae to coexist. Once the "heterotroph barrier" had been crossed, it would be 
simple for carnivores to arise, imposing a similar diversifying effect on herbivores. With more species of algae, 
herbivores may begin to specialize on different species of algae, enhancing diversification in herbivores. The 
theory states that the process was auto-catalytic and set off an explosion of diversity.



One of the most universal of ecological laws is the species area relationship [51]. It has been demonstrated that 
in a wide variety of contexts, the number of species occupying an "area" increases with the area. The number of 
species increases in proportion to the area raised to a power between 0.1 and 0.3. S = KAz, where 0.1 < z < 0.3. 
The effect is thought to result from the equilibrium species number being determined by a balance between the 
arrival (by immigration or speciation) and local extinction of species. The likelihood of extinction is greater in 
small areas because they support smaller populations, for which a fluctuation to a size of zero is more likely. If 
this effect holds for digital organisms, it suggests that larger amounts of memory will generate greater diversity.

11.3 Ecological Attractors

While there are no completely independent instances of natural evolution on earth, there are partially 
independent instances. Where major diversifications have occurred, isolated either by geography or epoch from 
other similar diversifications, we have the opportunity to observe whether evolution tends to take the same 
routes or is always quite different. We can compare the marsupial mammals of Australia to the placental 
mammals of the rest of the world, or the modern mammals to the reptiles of the age of dinosaurs, or the bird 
fauna of the Galapagos to the bird faunas of less isolated islands.

What we find again and again is an uncanny convergence between these isolated faunas. This suggests that 
there are fairly strong ecological attractors that evolution will tend to fill, more or less regardless of the 
developmental and physiological systems that are evolving. In this view, chance and history still play a role in 
determining what kind of organism fills the array of ecological attractors (reptiles, mammals, birds, etc.), but 
the attractors themselves may be a property of the system and not as variable. Synthetic systems may also 
contain fairly well defined ecological forms that may be filled by a wide variety of specific kinds of organisms.

Given their evident importance in moving evolution, it is important to include ecological interactions in 
synthetic instantiations of life. It is encouraging to observe that in the Tierra model, ecological interactions and 
the corresponding evolutionary races emerged spontaneously. It is possible that any medium into which 
evolution is inoculated will contain an array of "ecological attractors" into which evolution will easily flow.

12 Cellularity

Cellularity is one of the fundamental properties of organic life and can be recognized in the fossil record as far 
back as 3.6 billion years. The cell is the original individual, with
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the cell membrane defining its limits and preserving its chemical integrity. An analog to the cell membrane is 
probably needed in digital organisms in order to preserve the integrity of the informational structure from being 
disrupted by the activity of other organisms.

The need for this can be seen in AL models such as cellular automata, where virtual state machines pass through 
one another [47] or in core wars type simulations where coherent structures that arise demolish one another 
when they come into contact [67,68]. An analog to the cell membrane that can be used in the core wars type of 
simulation is memory allocation. An artificial "cell" could be defined by the limits of an allocated block of 
memory. Free access to the memory within the block could be limited to processes within the block. Processes 
outside of the block would have limited access, according to the rules of "semipermeability"; for example, they 
might be allowed to read and execute but not write.

13 Multicellularity

Multicelled digital organisms are parallel processes. By attempting to synthesize multicelled digital organisms, 
we can simultaneously explore the biological issues surrounding the evolutionary transition from single-celled 
to multicelled life, and the computational issues surrounding the design of complex parallel software.

13.1 Biological Perspective-Cambrian Explosion

Life appeared on earth somewhere between three and four billion years ago. While the origin of life is generally 
recognized as an event of the first order, there is another event in the history of life that is less well known but 
of comparable significance. The origin of biological diversity, and at the same time of complex macroscopic 
multicellular life, occurred abruptly in the Cambrian explosion 600 million years ago. This event involved a 
riotous diversification of life-forms. Dozens of phyla appeared suddenly, many existing only fleetingly, as 
diverse and sometimes bizarre ways of life were explored in a relative ecological void [28,64].

The Cambrian explosion was a time of phenomenal and spontaneous increase in the complexity of living 
systems. It was the process initiated at this time that led to the evolution of immune systems, nervous systems, 
physiological systems, developmental systems, complex morphology, and complex ecosystems. To understand 
the Cambrian explosion is to understand the evolution of complexity. If the history of organic life can be used 
as a guide, the transition from single-celled to multicelled organisms should be critical in achieving a rich 
diversity and complexity of synthetic life forms.

13.2 Computational Perspective—Parallel Processes

It has become apparent that the future of high-performance computing lies with massively parallel architectures. 
There already exist a variety of parallel hardware platforms, but our ability to utilize fully the potential of these 
machines is constrained by our inability to write software of a sufficient complexity.

There are two fairly distinctive kinds of parallel architecture in use today: SIMD (single-instruction multiple 
data) and MIMD (multiple-instruction multiple data). In the SIMD architecture, the machine may have 
thousands of processors, but in each CPU cycle, all of the processors must execute the same instruction, 
although they may operate on different data. It is relatively easy to write software for this kind of machine, 
because what is essentially a normal sequential program will be broadcast to all the processors.



In the MIMD architecture, there exists the capability for each of the hundreds or thousands of processors to be 
executing different code but to have all of that activity
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coordinated on a common task. However, there does not exist an art for writing this kind of software, at least 
not on a scale involving more than a few parallel processes. In fact, it seems unlikely that human programmers 
will ever be capable of actually writing software of such complexity.

13.3 Evolution as a Proven Route

It is generally recognized that evolution is the only process with a proven ability to generate intelligence. It is 
less well recognized that evolution also has a proven ability to generate parallel software of great complexity. In 
making life a metaphor for computation, we will think of the genome, the DNA, as the program, and we will 
think of each cell in the organism as a processor (CPU). A large, multicelled organism like a human contains 
trillions of cells/processors. The genetic program contains billions of nucleotides/instructions.

In a multicelled organism, cells are differentiated into many cell types such as brain cells, muscle cells, liver 
cells, kidney cells, etc. The cell types just named are actually general classes of cell types within which there are 
many subtypes. However, when we specify the ultimate indivisible types, what characterizes a type is the set of 
genes it expresses. Different cell types express different combinations of genes. In a large organism, there will 
be a very large number of cells of most types. All cells of the same type express the same genes.

The cells of a single-cell type can be thought of as exhibiting parallelism of the SIMD kind, because they are all 
running the same "program" by expressing the same genes. Cells of different cell types exhibit MIMD 
parallelism as they run different codes by expressing different genes. Thus, large multicellular organisms 
display parallelism on an astronomical scale, combining both SIMD and MIMD parallelism into a beautifully 
integrated whole. From these considerations, it is evident that evolution has a proven ability to generate 
massively parallel software embedded in wetware. The computational goal of evolving multicellular digital 
organisms is to produce such software embedded in hardware.

13.4 Fundamental Definition

In order to conceptualize multicellularity in the context of an artificial medium, we must have a very 
fundamental definition that is independent of the context of the medium. We generally think of the defining 
property of multicellularity as being that the cells stick together, forming a physically coherent unit. However, 
this is a spatial concept based on Euclidean geometry and, therefore, is not relevant to non-Euclidean 
cyberspace.

While physical coherence might be an adequate criteria for recognizing multicellularity in organic organisms, it 
is not the property that allows multicellular organisms to become large and complex. There are algae that 
consist of strands of cells that are stuck together, with each cell being identical to the next. This is a relatively 
limiting form of multicellularity because there is no differentiation of cell types. It is the specialization of 
functions resulting from cell differentiation that has allowed multicellular organisms to attain large sizes and 
great complexity. It is differentiation that has generated the MIMD style of parallelism in organic software.



From an evolutionary perspective, an important characteristic of multicellular organisms is their genetic unity. 
All the cells of the individual contain the same genetic material as a result of having a common origin from a 
single egg cell. (Some small genetic differences may arise due to somatic mutations; in some species new 
individuals arise from a bud of tissue rather than a single cell.) Genetic unity through common origin, and 
differentiation, are critical qualities of multicellularity that may be transferable to media other than organic 
chemistry.
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Buss [9] provides a provocative discussion of the evolution of multicellularity and explores the conflicts 
between selection at the levels of cell lines and of individuals. From his discussion, the following idea emerges 
(although he does not explicitly state this idea, in fact he proposes a sort of inverse of this idea [p. 651): The 
transition from single- to multicelled existence involves the extension of the control of gene regulation by the 
mother cell to successively more generations of daughter cells.

In organic cells, genes are regulated by proteins contained in the cytoplasm. During early embryonic 
development in animals, an initially very large fertilized egg cell undergoes cell division with no increase in the 
overall size of the embryo. The large cell is simply partitioned into many smaller cells, and all components of 
the cytoplasm are of maternal origin. By preventing several generations of daughter cells from producing any 
cytoplasmic regulatory components, the mother gains control of the course of differentiation and thereby creates 
the developmental process. In single-celled organisms, by contrast, after each cell division, the daughter cell 
produces its own cytoplasmic regulatory products and determines its own destiny independent of the mother 
cell.

Complex digital organisms will be self-replicating algorithms, consisting of many distinct processes dedicated 
to specific tasks (e.g., locating free memory, mates, or other resources; defense; replicating the code). These 
processes must be coordinated and regulated, and they may be divided among several cells specialized for 
specific functions. If the mother cell can influence the regulation of the processes of the daughter, so as to force 
the daughter cell to specialize in function and express only a portion of its full genetic potentiality, then the 
essence of multicellularity will be achieved.

13.5 Computational Implementation

The discussion earlier suggests that the critical feature needed to allow the evolution of multicellularity is for a 
cell to be able to influence the expression of genes by its daughter cell. In the digital context, this means that a 
cell must be able to influence what code is executed by its daughter cell.

If we assume that in digital organisms, as in organic ones, all cells in an individual contain the same genetic 
material, then the desired regulatory mechanism can be achieved most simply by allowing the mother cell to 
affect the context of the CPU of the daughter cell at the time that the cell is "born." Most importantly, the 
mother cell needs to be able to set the address of the instruction pointer of the daughter cell at birth, which will 
determine where the daughter cell will begin executing its code. Beyond that, additional influence can be 
achieved by allowing the mother cell to place values in the registers of the daughter's CPU.



A large digital genome may contain several sections of code that are "closed" in the sense that one section of 
code will not pass control of execution to another. Thus, if execution begins in one of these sections of code, the 
other sections will never be expressed. This type of genetic organization, coupled with the ability of the mother 
cell to determine where the daughter cell begins executing, could provide a mechanism of gene regulation 
suitable for causing the differentiation of cells in a multicellular digital organism.

Other schemes for the regulation of code expression are also possible. For example, digital computers 
commonly have three protection states available for the memory: read, write, and execute. If the code of the 
genome were provided with execute protection, it would provide a means of suppression of the execution of 
code in the protected region of the genome.

13.6 Digital "Neural Networks"—Natural Artificial Intelligence

One of the greatest challenges in the field of computer science is to produce computer systems that are 
"intelligent" in some way. This might involve, for example, the creation
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of a system for the guidance of a robot that is capable of moving freely in a complex environment, seeking, 
recognizing, and manipulating a variety of objects. It might involve the creation of a system capable of 
communicating with humans in natural spoken human language, or of translating between human languages.

It has been observed that natural systems with these capabilities are controlled by nervous systems consisting of 
large numbers of neurons interconnected by axons and dendrites. By borrowing from nature, a great deal of 
work has gone into setting up "neural networks" in computers [18,32]. In these systems, a collection of 
simulated "neurons" are created and then connected so that they can pass messages. The learning that takes 
place is accomplished by adjusting the "weights" of the connections.

Organic neurons are essentially analog devices; thus, when neural networks are implemented on computers, 
they are digital emulations of analog devices. There is a certain inefficiency involved in emulating an analog 
device on a digital computer. For this reason, specialized analog hardware has been developed for the more 
efficient implementation of artificial neural nets [59].

Neural networks, as implemented in computers, either digital or analog, are intentional mimics of organic 
nervous systems. They are designed to function like natural neural networks in many details. However, natural 
neural networks represent the solution found by evolution to the problem of creating a control system based on 
organic chemistry. Evolution works with the physics and chemistry of the medium in which it is embedded.

The solution that evolution found to the problem of communication between organic cells is chemical. Cells 
communicate by releasing chemicals that bind to and activate receptor molecules on target cells. Working 
within this medium, evolution created neural nets. Intercellular chemical communication in neural nets is 
"digital" in the sense that chemical messages are either present or not present (on or off). In this sense, a single 
chemical message carries only a single bit of information. More detailed information can be derived from the 
temporal pattern of the messages and also the context of the message. The context can include where on the 
target cell body the message is applied (which influences its "weight") and what other messages are arriving at 
the same time, with which the message in question will be integrated.



It is hoped that evolving multicellular digital organisms will become very complex and will contain some kind 
of control system that fills the functional role of the nervous system. While it seems likely that the digital 
nervous system would consist of a network of communicating "cells," it seems unlikely that this would bear 
much resemblance to conventional neural networks.

Compare the mechanism of intercellular communication in organic cells (described earlier), to the mechanisms 
of interprocess communication in computers. Processes transmit messages in the form of bit patterns, which 
may be of any length, and so which may contain any amount of information. Information need not be encoded 
into the temporal pattern of impulse trains. This fundamental difference in communication mechanisms between 
the digital and the organic mediums must influence the course that evolution will take as it creates information-
processing systems in the two mediums.

It seems highly unlikely that evolution in the digital context would produce information processing systems that 
would use the same forms and mechanisms as natural neural nets (e.g., weighted connections, integration of 
incoming messages, threshold triggered all or nothing output, thousands of connections per unit). The organic 
medium is a physical/chemical medium, whereas the digital medium is a logical/informational medium. That 
observation alone would suggest that the digital medium is better suited to the construction of information-
processing systems.

If this is true, then it may be possible to produce digitally based systems that have functionality equivalent to 
natural neural networks, but which have a much greater
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simplicity of structure and process. Given evolution's ability to discover the possibilities inherent in a medium, 
and its complete lack of preconceptions, it would be very interesting to observe what kind of information-
processing systems evolution would construct in the digital medium. If evolution is capable of creating network-
based information-processing systems, it may provide us with a new paradigm for digital "connectionism" that 
would be more natural to the digital medium than simulations of natural neural networks.

14 Digital Husbandry

Digital organisms evolving freely by natural selection do no "useful" work. Natural evolution tends to the 
selfish needs of perpetuating the genes. We cannot expect digital organisms evolving in this way to perform 
useful work for us, such as guiding robots or interpreting human languages. In order to generate digital 
organisms that function as useful software, we must guide their evolution through artificial selection, just as 
humans breed dogs, cattle, and rice. Some experiments have already been done by using artificial selection to 
guide the evolution of digital organisms for the performance of "useful" tasks [1,88,90]. I envision two 
approaches to the management of digital evolution: digital husbandry and digital genetic engineering.

Digital husbandry is an analogy to animal husbandry. This technique would be used for the evolution of the 
most advanced and complex software, with intelligent capabilities. Correspondingly, this technique is the most 
fanciful. I would begin by allowing multicellular digital organisms to evolve freely by natural selection. Using 
strictly natural selection, I would attempt to engineer the system to the threshold of the computational analog of 
the Cambrian explosion and let the diversity and complexity of the digital organisms spontaneously explode.



One of the goals of this exercise would be to allow evolution to find the natural forms of complex parallel 
digital processes. Our parallel hardware is still too new for human programmers to have found the best way to 
write parallel software. And it is unlikely that human programmers will ever be capable of writing software of 
the complexity that the hardware is capable of running. Evolution should be able to show us the way.

It is hoped that this would lead to highly complex digital organisms, which obtain and process information, 
presumably predominantly about other digital organisms. As the complexity of the evolving system increases, 
the organisms will process more complex information in more complex ways and take more complex actions in 
response. These will be information-processing organisms living in an informational environment.

It is hoped that evolution by natural selection alone would lead to digital organisms that, while doing no 
"useful" work, would nonetheless be highly sophisticated parallel information-processing systems. Once this 
level of evolution has been achieved, then artificial selection could begin to be applied to enhance those 
information-processing capabilities that show promise of utility to humans. Selection for different capabilities 
would lead to many different breeds of digital organisms with different uses. Good examples of this kind of 
breeding from organic evolution are the many varieties of domestic dogs that were derived by breeding from a 
single species, and the vegetables cabbage, kale, broccoli, cauliflower, and brussels sprouts that were all 
produced by selective breeding from a single species of plant.

Digital genetic engineering would normally be used in conjunction with digital husbandry. This consists of 
writing a piece of application code and inserting it into the genome of an existing digital organism. A technique 
being used in organic genetic engineering today is to insert genes for useful proteins into goats and to cause 
them to be expressed in the mammary glands. The goats then secrete large quantities of the
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protein into the milk, which can be easily removed from the animal. We can think of our complex digital 
organisms as general purpose animals, like goats, into which application codes can be inserted to add new 
functionalities, and then bred through artificial selection to enhance or alter the quality of the new functions.

In addition to adding new functionalities to complex digital organisms, digital genetic engineering could be 
used for achieving extremely high degrees of optimization in relatively small but heavily used pieces of code. In 
this approach, small pieces of application code could be inserted into the genomes of simple digital organisms. 
Then the allocation of CPU cycles to those organisms would be based on the performance of the inserted code. 
In this way, evolution could optimize those codes, and they could be returned to their applications. This 
technique would be used for codes that are very heavily used, such as compiler constructs or central 
components of the operating system.

15 Living Together

I'm glad they're not real, because if they were, I would have to feed them and they would be all over the house.
— Isabel Ray



Evolution is an extremely selfish process. Each evolving species does whatever it can to ensure its own 
survival, with no regard for the well-being of other genetic groups (potentially with the exception of intelligent 
species). Freely evolving autonomous artificial entities should be seen as potentially dangerous to organic life 
and should always be confined by some kind of containment facility, at least until their real potential is well 
understood. At present, evolving digital organisms exist only in virtual computers, specially designed so that 
their machine codes are more robust than usual to random alterations. Outside of these special virtual machines, 
digital organisms are merely data and no more dangerous than the data in a database or the text file from a word 
processor.

Imagine, however, the problems that could arise if evolving digital organisms were to colonize the computers 
connected to the major networks. They could spread across the network like the infamous internet worm 
[2,8,82,83]. When we attempted to stop them, they could evolve mechanisms to escape from our attacks. It 
might conceivably be very difficult to eliminate them. However, this scenario is highly unlikely, because it is 
probably not possible for digital organisms to evolve on normal computer systems. While the supposition 
remains untested, normal machine languages are probably too brittle to support digital evolution.

Evolving digital organisms will probably always be confined to special machines, either real or virtual, 
designed to support the evolutionary process. This does not mean, however, that they are necessarily harmless. 
Evolution remains a self-interested process, and even the interests of confined digital organisms may conflict 
with our own. For this reason, it is important to restrict the kinds of peripheral devices that are available to 
autonomous evolving processes.

This conflict was taken to its extreme in the movie Terminator 2. In the imagined future of the movie, computer 
designers had achieved a very advanced chip design, which had allowed computers to autonomously increase 
their own intelligence until they became fully conscious. Unfortunately, these intelligent computers formed the 
"sky-net" of the United States military. When the humans realized that the computers had become intelligent, 
they decided to turn them off. The computers viewed this as a threat and defended themselves by using one of 
their peripheral devices: nuclear weapons.
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Relationships between species, however, can be harmonious. We presently share the planet with millions of 
freely evolving species, and they are not threatening us with destruction. On the contrary, we threaten them. In 
spite of the mindless and massive destruction of life being caused by human activity, the general pattern in 
living communities is one of a network of interdependencies.

More to the point, there are many species with which humans live in close relationships and whose evolution 
we manage. These are the domesticated plants and animals that form the basis of our agriculture (cattle, rice), 
and who serve us as companions (dogs, cats, house plants). It is likely that our relationship with digital 
organisms will develop along the same two lines.



There will likely be carefully bred digital organisms developed by artificial selection and genetic engineering 
that perform intelligent data-processing tasks. These would subsequently be "neutered" so that they cannot 
replicate, and the eunuchs would be put to work in environments free from genetic operators. We are also likely 
to see freely evolving and/or partially bred digital ecosystems contained in the equivalent of digital aquariums 
(without dangerous peripherals) for our companionship and aesthetic enjoyment.

While this paper has focused on digital organisms, it is hoped that the discussions are taken in the more general 
context of the possibilities of any synthetic forms of life. The issues of living together become more critical for 
synthetic life forms implemented in hardware or wetware. Because these organisms would share the same 
physical space that we occupy and possibly consume some of the same material resources, the potential for 
conflict is much higher than for digital organisms.

At the present, there are no self-replicating artificial organisms implemented in either hardware or wetware 
(with the exception of some simple organic molecules with evidently small and finite evolutionary potential 
[25,35,65]). However, there are active attempts to synthesize RNA molecules capable of replication [4,41], and 
there is much discussion of the future possibility of self-replicating nano-technology and macrorobots. I would 
strongly urge that as any of these technologies approaches the point where self-replication is possible, the work 
be moved to specialized containment facilities. The means of containment will have to be handled on a case by 
case basis, because each new kind of replicating technology will have its own special properties.

There are many in the AL movement who envision a beautiful future in which AL replaces organic life and 
expands out into the universe [48,49,61-63]. The motives vary from a desire for immortality to a vision of 
converting virtually all matter in the universe to living matter. It is argued that this transition from organic to 
metallic-based life is the inevitable and natural next step in evolution.

The naturalness of this step is argued by analogy with the supposed genetic takeovers in which nucleic acids 
became the genetic material taking over from clays [10], and cultural evolution took over from DNA-based 
genetic evolution in modern humans. I would point out that whatever nucleic acids took over from, it marked 
the origin of life more than the passing of a torch. As for the supposed transition from genetic to cultural 
evolution, the truth is that genetic evolution remains intact and has had cultural evolution layered over it rather 
than being replaced by it.

The supposed replacement of genetic by cultural evolution remains a vision of a brave new world, which has 
yet to materialize. Given the ever increasing destruction of nature, and human misery and violence being 
generated by human culture, I would hesitate to place my trust in the process as the creator of a bright future. I 
still trust in organic evolution, which created the beauty of the rainforest through billions of years of evolution. I 
prefer to see artificial evolution confined to the realm of cyberspace, where we can more easily coexist with it 
without danger, using it to enhance our lives without having to replace ourselves.
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As for the expansion of life out into the universe, I am confident that this can be achieved by organic life aided 
by intelligent, nonreplicating machines. And as for immortality, our unwillingness to accept our own mortality 
has been a primary fuel for religions through the ages. I find it sad that AL should become an outlet for the 
same sentiment. I prefer to achieve immortality in the old-fashioned organic evolutionary way, through my 
children. I hope to die in my patch of Costa Rican rain forest, surrounded by many thousands of wet and 
squishy species, and leave it all to my daughter. Let them set my body out in the jungle to be recycled into the 
ecosystem by the scavengers and decomposers. I will live on through the rain forest I preserved, the ongoing 
life in the ecosystem into which my material self is recycled, the memes spawned by my scientific works, and 
the genes in the daughter that my wife and I created.

16 Challenges

For well over a century, evolution has remained a largely theoretical science. Now new technologies have 
allowed us to inoculate natural evolution into artificial media, converting evolution into an experimental and 
applied science, and at the same time opening Pandora's box. This creates a variety of challenges that have been 
raised or alluded to in the preceding essay, and which will be summarized here.

Respecting the medium. If the objective is to instantiate rather than simulate life, then care must be taken in 
transferring ideas from natural life to artificial life forms. Preconceptions derived from experience with natural 
life may be inappropriate in the context of the artificial medium. Getting it right is an art, which likely will take 
some skill and practice to develop.

However, respecting the medium is only one approach, which I happen to favor. I do not wish to imply that it is 
the only valid approach. It is too early to know which approach will generate the best results, and I hope that 
other approaches will be developed as well. I have attempted to articulate clearly this "natural" approach to 
synthetic life, so that those who choose to follow it may achieve greater consistency in design through a deeper 
understanding of the method.

Understanding evolvability. Attempts are now underway to inoculate evolution into many artificial systems, 
with mixed results. Some genetic languages evolve readily, while others do not. We do not yet know why, and 
this is a fundamental and critically important issue. What are the elements of evolvability? Efforts are needed to 
address this issue directly. One approach that would likely be rewarding would be to identify systematically 
features of a class of languages (such as machine languages) and, one by one, vary each feature to determine 
how evolvability is affected by the state of each feature.

Creating organized sexuality. Organized sexuality is important to the evolutionary process. It is the basis of the 
species concept and, while remaining something of an enigma in evolutionary theory, clearly is an important 
facilitator of the evolutionary process. Yet this kind of sexuality still has not been implemented in a natural way 
in synthetic life systems. It is important to find ways of orchestrating organized sexuality in synthetic systems 
such as digital organisms, in a way in which it is not mandatory, and in which the organisms must carry out the 
process through their own actions.



Creating multicellularity. In organic life, the transition from single- to multicelled forms unleashed a 
phenomenal explosion of diversity and complexity. It would seem then that the transition to multicellular forms 
could generate analogous diversity and complexity in synthetic systems. In the case of digital organisms, it 
would also lead to the evolution of parallel processes, which could provide us with new paradigms for the 
design of parallel software. The creation of multicelled digital organisms remains an important challenge.
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Controlling evolution. Humans have been controlling the evolution of other species for tens of thousands of 
years. This has formed the basis of agriculture through the domestication of plants and animals. The fields of 
genetic algorithms [27,34] and genetic programming [46] are based on controlling the evolution of computer 
programs. However, we still have very little experience with controlling the evolution of self-replicating 
computer programs, which is more difficult. In addition, breeding complex parallel programs is likely to bring 
new challenges. Developing technologies for managing the evolution of complex software will be critical for 
harnessing the full potential of evolution for the creation of useful software.

Living together. If we succeed in harnessing the power of evolution to create complex synthetic organisms 
capable of sophisticated information processing and behavior, we will be faced with the problems of how to live 
harmoniously with them. Given evolution's selfish nature and capability to improve performance, there exists 
the potential for a conflict arising through a struggle for dominance between organic and synthetic organisms. It 
will be a challenge to even agree on what the most desirable outcome should be and harder still to accomplish 
it. In the end the outcome is likely to emerge from the bottom up through the interactions of the players, rather 
than being decided through rational deliberations.

Acknowledgments

This work was supported by grants CCR-9204339 and BIR-9300800 from the United States National Science 
Foundation; a grant from the Digital Equipment Corporation; and by the Santa Fe Institute, Thinking Machines 
Corp., IBM, and Hughes Aircraft. This work was conducted while the author was at the School of Life & 
Health Sciences, University of Deleware, Newark, DE, 19716 (E-mail: ray@udel.edu); and the Santa Fe 
Institute, 1660 Old Pecos Trail, Suite A, Santa Fe, NM 87501 (E-mail: ray@santafe.edu).

References

1. Adami, C. Learning and complexity in genetic auto-adaptive systems. Caltech preprint: MAP-164, One of the 
Marmal Aid Preprint Series in Theoretical Nuclear Physics, October 1993. E-mail: chris@almach.caltech.edu.

2. Anonymous. (1988, Nov. 11). Worm invasion. Science, p. 885.

3. Barton-Davis, P. Independent implementation of the Tierra system. Unpublished. E-mail: 
pauld@cs.washington.edu.

4. Beaudry, A. A., & Joyce, G. F. (1992). Directed evolution of an RNA enzyme. Science, 257, 635-641.

5. Bell, G. (1982). The masterpiece of nature: the evolution and genetics of sexuality. Berkeley: University of 
California Press.



6. Benner, S. A., Ellington, A. D., & Tauer, A. (1989). Modern metabolism as a palimpsest of the RNA world. 
Proceedings of the National Academy of Sciences of the United States of America (Washington), 86, 7054-7058.

7. Brooks, R. Unpublished. E-mail: brooks@ai.mit.edu

8. Burstyn, H. L. (1990). RTM and the worm that ate internet. Harvard Magazine, 92(5), 23-28.

9. Buss, L. W. (1987). The evolution of individuality. Princeton, NJ: Princeton University Press.

10. Cairn-Smith, A. G. (1985). Seven clues to the origin of life. Cambridge, UK: Cambridge University Press.

11. Carroll, L. (1865). Through the looking-glass. London: MacMillan.

12. Chao, L., Vargas, C., Spear, B. B., & Cox, E. C. (1983). Transposable elements as mutator genes in 
evolution. Nature, 303, 633-635.

  

Page 206

13. Charlesworth, B. (1976). Recombination modification in a fluctuating environment. Genetics, 83, 181-195.

14. Darwin, C. (1859). On the origin of species by means of natural selection or the preservation of favored 
races in the struggle for life. London: Murray.

15. Davidge, R. (1992). Processors as organisms. CSRP 250. School of Cognitive and Computing Sciences, 
University of Sussex. Presented at the ALife III conference. E-mail: robertd@cogs.susx.ac.uk

16. Davidge, R. (1993). Looping as a means to survival: playing Russian roulette in a harsh environment. In Self 
organization and life: from simple rules to global complexity, Proceedings of the Second European Conference 
on Artificial Life. E-mail: robertd@cogs.susx.ac.uk

17. Davidson, E. H., & Britten, R. J. (1979). Regulation of gene expression: possible role of repetitive 
sequences. Science, 204, 1052-1059.

18. Dayhoff, J. (1990). Neural network architectures. New York: Van Nostrand Reinhold.

19. DeAngelis, D., & Gross, L. (Eds.) (1992). Individual based models and approaches in ecology. New York: 
Chapman and Hill.

20. de Groot, M. Primordial soup, a Tierra-like system that has the additional ability to spawn self-reproducing 
organisms from a sterile soup. Unpublished manuscript. E-mail: marc@kg6kf.ampr.org, marc@toad.com, 
marc@remarque.berkeley.edu

21. Doolittle, W. F. , & Sapienza, C. (1980). Selfish genes, the phenotype paradigm and genome evolution. 
Nature, 284, 601-603.

22. Eigen, M. (1993). Viral quasispecies. Scientific American, 269(1), 32-39.



23. Farmer, J. D., & Belin, A. Artificial life: the coming evolution. In Proceedings in Celebration of Murray 
Gell-Man's 60th Birthday. Cambridge, UK: University Press. Reprinted in Artificial life II, pp. 815-840.

24. Feferman, L. (1992). Simple rules... complex behavior [Video]. Santa Fe, NM: Santa Fe Institute. E-mail: 
fef@santafe.edu, 0005851689@mcimail.com

25. Feng, Q., Park, T. K., & Rebek, J. (1992). Science, 254, 1179-1180.

26. Ghiselin, M. (1974). The economy of nature and the evolution of sex. Berkeley, CA: University of 
California Press.

27. Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Reading, MA: 
Addison-Wesley.

28. Gould, S. J. (1989). Wonderful life. New York: W. W. Norton.

29. Green, M. M. (1988). Mobile DNA elements and spontaneous gene mutation. In M. E. Lambert, J. F. 
McDonald, & I. B. Weinstein (Eds.), Eukaryotic transposable elements as mutagenic agents (pp. 41-50). 
Banbury Report 30, Cold Spring Harbor Laboratory.

30. Halvorson, H. O., & Monroy, A (1985). The origin and evolution of sex. New York: Alan R. Liss.

31. Hapgood, F. (1979). Why males exist: an inquiry into the evolution of sex. New York: William Morrow.

32. Hertz, J., Krogh, A., & Palmer, R. G. (1991). Introduction to the theory of neural computation. Reading, 
MA: Addison-Wesley.

33. Hogeweg, P. (1989). Mirror beyond mirror: puddles of life. In C. Langton (Ed.), Artificial life, Santa Fe 
Institute studies in the sciences of complexity (Vol. VI, pp. 297-316). Redwood City, CA: Addison-Wesley.

34. Holland, J. H. (1975). Adaptation in natural and artificial systems: an introductory analysis with 
applications to biology, control, and artificial intelligence. Ann Arbor, MI: University of Michigan Press.

35. Hong, J. I., Feng, Q., Rotello, V., & Rebek, J. (1992). Competition, cooperation, and

  

Page 207

mutation: improving a synthetic replicator by light irradiation. Science, 255, 848-850.

36. Huston, M. (1979). A general hypothesis of species diversity. American Naturalist, 113, 81-101.

37. Huston, M. (1992). Biological diversity and human resources. Impact of Science on Society, 166, 121-130.

38. Huston, M. (1993). Biological diversity: the coexistence of species on changing landscapes. Cambridge 
University Press.

39. Huston, M., DeAngelis, D., & Post, W. (1988). New computer models unify ecological theory. Bioscience, 
38(10), 682-691.



40. Jelinek, W. R., & Schmid, C. W. (1982). Repetitive sequences in eukaryotic DNA and their expression. 
Annual Review of Biochemistry, 51, 813-844.

41. Joyce, G. F. (1992, December). Directed molecular evolution. Scientific American, 90-97.

42. Kampis, G. (1993). Coevolution in the computer: the necessity and use of distributed code systems. Printed 
in the ECAL93 Proceedings, Brussels. E-mail: gk@cfnext.physchem.chemie.uni-tuebingen.de

43. Kampis, G. (1993). Life-like computing beyond the machine metaphor. In R. Paton (Ed.), Computing with 
biological metaphors. London: Chapman and Hall. E-mail: gk@cfnext.physchem.chemie.uni-tuebingen.de

44. Kauffman, S. A. (1993). The origins of order, self-organization and selection in evolution. Oxford 
University Press.

45. Kerem, B.-S., Rommens, J. M., Buchanan, J. A., Markiewicz, D., Cox, T. K., Chakravarti, A., Buchwald, 
M., & Tsui, L.-C. (1989). Identification of the cystic fibrosis gene: genetic analysis. Science, 245, 1073-1080.

46. Koza, J. R. (1992). Genetic programming, on the programming of computers by means of natural selection. 
Cambridge, MA: The MIT Press.

47. Langton, C. G. (1986). Studying artificial life with cellular automata. Physica D, 22, 120-149.

48. Levy, S. (1992). Artificial life, the quest for a new creation. New York: Pantheon Books.

49. Levy, S. (1992, Fall). A-life nightmare. Whole Earth Review, 76, 22.

50. Litherland, J. (1993). Open-ended evolution in a computerised ecosystem. Unpublished masters thesis, 
Department of Computer Science, Brunel University. E-mail: david.martland@brunel.ac.uk

51. MacArthur, R. H., & Wilson, E. O. (1967). The theory of island biogeography. Princeton, NJ: Princeton 
University Press.

52. Maley, C. C. (1993). A model of early evolution in two dimensions. Unpublished Master's thesis. Zoology, 
New College, Oxford University, UK. E-mail: cmaley@oxford.ac.uk

53. Manousek, W. (1992). Spontane Komplexitaetsentstehung—TIERRA, ein Simulator fuer biologische 
Evolotion. Diplomarbeit, Universitaet Bonn, Germany. E-mail: Kurt Stueber, stueber@vax.mpiz-
koeln.mpg.d400.de

54. Margulis, L., & Sagan, D. (1986). Origin of sex. New Haven, CT: Yale University Press.

55. Marx, J. L. (1989). The cystic fibrosis gene is found. Science, 245, 923-925.

56. Maynard Smith, J. (1971). What use is sex? Journal of Theoretical Biology, 30, 319-335.

57. Maynard Smith, J. (1992). Byte-sized evolution. Nature, 355, 772-773.

58. Maynard Smith, J., Dowson, C. G., & Spratt, B. G. (1991). Localized sex in bacteria. Nature, 349, 29-31.

59. Mead, C. (1993). Analog VLSI and neural systems. Reading, MA: Addison-Wesley.



60. Michod, R. E., & Levin, B. R. (1988). The evolution of sex: an examination of current ideas. Sunderland, 
MA: Sinauer Associates.

  

Page 208

61. Moravec, H. (1988). Mind children: the future of robot and human intelligence. Cambridge, MA: Harvard 
University Press.

62. Moravec, H. (1989). Human culture: a genetic takeover underway. In C. Langton (Ed.), Artificial life, Santa 
Fe Institute studies in the sciences of complexity (Vol. VI, pp. 167-199). Redwood City, CA: Addison-Wesley.

63. Moravec, H. (1993, Winter/Spring). Pigs in cyberspace. Extropy, no. 10.

64. Morris, S. C. (1989). Burgess shale faunas and the Cambrian explosion. Science, 246, 339-346.

65. Nowick, J., Feng, Q., Tijivikua, T., Ballester, P., & Rebek, J. (1991). Journal of the American Chemical 
Society, 113, 8831-8839.

66. Orgel, L. E., & Crick, F. H. C. (1980). Selfish DNA: the ultimate parasite. Nature, 284, 604-607.

67. Rasmussen, S., Knudsen, C., Feldberg, R., & Hindsholm, M. (1990). The coreworld: emergence and 
evolution of cooperative structures in a computational chemistry. Physica D, 42, 111-134.

68. Rasmussen, S., Knudsen, C., & Feldberg, R. (1991). Dynamics of programmable matter. In C. Langton, C. 
Taylor, J. D. Farmer, & S. Rasmussen (Eds.), Artificial life II, Santa Fe Institute studies in the sciences of 
complexity (Vol. X, pp. 211-254). Redwood City, CA: Addison-Wesley.

69. Ray, T. S. (1979). Slow-motion world of plant 'behavior' visible in rainforest. Smithsonian, 9(12), 121-30.

70. Ray, T. S. (1991). An approach to the synthesis of life. In C. Langton, C. Taylor, J. D. Farmer, & S. 
Rasmussen (Eds.), Artificial life II, Santa Fe Institute studies in the sciences of complexity (Vol. X, pp. 371-
408). Redwood City, CA: Addison-Wesley.

71. Ray, T. S. (1991). Population dynamics of digital organisms. In C. G. Langton (Ed.), Artificial Life II Video 
Proceedings. Redwood City, CA: Addison-Wesley.

72. Ray, T. S. (1991). Is it alive, or is it GA? In R. K. Belew & L. B. Booker (Eds.), Proceedings of the 1991 
International Conference on Genetic Algorithms (pp. 527-534). San Mateo, CA: Morgan Kaufmann.

73. Ray, T. S. (1991). Evolution and optimization of digital organisms. In K. R. Billingsley, E. Derohanes, & H. 
Brown III (Eds.), Scientific excellence in supercomputing: The IBM 1990 contest prize papers. Athens, GA: 
The Baldwin Press/The University of Georgia.

74. Ray, T. S. (1992). Foraging behaviour in tropical herbaceous climbers (Araceae). Journal of Ecology, 80, 
189-203.



75. Ray, T. S. (1992). Tierra.doc. Documentation for the Tierra Simulator V4.0, 9-9-92. Newark, DE: Virtual 
Life. Available by anonymous ftp at: tierra.slhs.udel.edu [128.175.41.34] and life.slhs.udel.edu [128.175.41.33], 
or by contacting the author.

76. Ray, T. S. (In press.) Evolution and complexity. In G. A. Cowan, D. Pines, & D. Metzger (Eds.), 
Complexity: metaphor and reality. Reading, MA: Addison-Wesley.

77. Ray, T. S. (In press). Evolution, complexity, entropy, and artificial reality. Physica D.

78. Rommens, J. M., lannuzzi, M. C., Kerem, B.-S., Drumm, M. L., Melmer, G., Dean, M., Rozmahel, R., Cole, 
J. L., Kennedy, D., Hidaka, N., Zsiga, M., Buchwald, M., Riordan, J. R., Tsui, L.-C., & Collins, F. S. (1989). 
Identification of the cystic fibrosis gene: chromosome walking and jumping. Science, 245, 1059-1065.

79. Riordan, J. R., Rommens, J. M., Kerem, B.-S., Alon, N., Rozmahel, R., Grzelczak, Z., Zielenski, J., Lok, S., 
Plavsic, N., Chou, J.-L., Drumm, M. L., Lannuzzi, M. C., Collins, F. S., & Tsui, L.-C. (1989). Identification of 
the cystic fibrosis gene: cloning and characterization of complementary DNA. Science, 245, 1066-1073.

80. Skipper, J. (1992). The computer zoo-evolution in a box. In F. J. Varela & P. Bourgine (Eds.), Toward a 
practice of autonomous systems, Proceedings of the First European Conference on Artificial Life. Cambridge, 
MA: The MIT Press. E-mail:

  

Page 209

Jakob.Skipper@copenhagen.ncr.com

81. Sober, E. (1984). The nature of selection. Cambridge, MA: The MIT Press.

82. Spafford, E. H. (1989). The internet worm program: an analysis. Computer Communication Review, 191), 
17-57. Also issued as Purdue CS Technical Report TR-CSD-823. E-mail: spaf@purdue.edu

83. Spafford, E. H. (1989). The internet worm: crisis and aftermath. ACM Computer Communication Review, 
32(6), 678-687. E-mail: spaf@purdue.edu

84. Stanley, S. M. (1973). An ecological theory for the sudden origin of multicellular life in the late 
precambrian. Proceedings of the National Academy of Sciences of the United States of America (Washington), 
70, 1486-1489.

85. Stearns, S. C. (1987). The evolution of sex and its consequences. Boston: Birkhüuser Verlag.

86. Strickberger, M. W. (1985). Genetics. New York: Macmillan.

87. Strong, D. R., & Ray, T. S. (1975). Host tree location behavior of a tropical vine (Monstera gigantea) by 
skototropism. Science, 190, 804-806.

88. Surkan, Al. Self-balancing of dynamic population sectors that consume energy. Unpublished manuscript. 
Department of Computer Science, University of Nebraska at Lincoln. E-mail: surkan@cse.unl.edu



89. Syvanen, M. (1984). The evolutionary implications of mobile genetic elements. Annual Review of Genetics, 
18, 271-293.

90. Tackett, W., & Gaudiot, J.-L. (1993). Adaptation of self-replicating digital organisms. Proceedings of the 
InternationalJoint Conference on Neural Networks, Nov. 1993, Beijing, China. IEEE Press. E-mail: 
tackett@ipld01.hac.com, tackett@priam.usc.edu

91. Taylor, C. E., Jefferson, D. R., Turner, S. R., & Goldman, S. R. (1989). RAM: artificial life for the 
exploration of complex biological systems. In C. Langton (Ed.), Artificial life, Santa Fe Institute studies in the 
sciences of complexity (Vol. VI, pp. 275-295). Redwood City, CA: Addison-Wesley.

92. Thomas, C. A. (1971). The genetic organization of chromosomes. Annual Review of Genetics, 5, 237-256.

93. Todd, P. M. (1993). Artificial death. Proceedings of the Second European Conference on Artificial Life 
(ECAL93) (Vol. 2, pp. 1048-1059). Brussels, Belgium: Universite Libre de Bruxelles. E-mail: 
ptodd@spo.rowland.org

94. Van Valen, L. (1973). A new evolutionary law. Evolutionary Theory, 1, 1-30.

95. Williams, G. C. (1975). Sex and evolution. Princeton, NJ: Princeton University Press.

96. Gray, James. Unpublished. Natural selection of computer programs. This may have been the first Tierra-like 
system, but evolving real programs on a real rather than a virtual machine, and predating Tierra itself: ''I have 
attempted to develop ways to get computer programs to function like biological systems subject to natural 
selection.... I don't think my systems are models in the usual sense. The programs have really competed for 
resources, reproduced, run, and 'died.' The resources consisted primarily of access to the CPU and partition 
space.... On a PDP11 I could have a population of programs running simultaneously." E-mail: 
GrayJamesL+@northport.va.gov

  



Page 211

Beyond Digital Naturalism

Walter Fontana 
Santa Fe Institute 
1660 Old Pecos Trail 
Santa Fe, NM 87501 USA 
walter@sfi.santafe.edu 

Günter Wagner 
Department of Biology 
Yale University 
New Haven, CT 06511 USA 
gpwag@yalevm.ycc.yale.edu

Leo W. Buss 
Department of Biology 
Department of Geology and 
Geophysics 
Yale University 
New Haven, CT 06511 USA 
LeoBuss @quickmail.cis.yale.edu

Keywords
organization, self-maintenance, lambda-calculus, evolution, hierarchy

Abstract The success of Artificial Life (ALife) depends on whether it will help solve the conceptual problems of biology. 
Biology may be viewed as the science of the transformation of organizations. Yet biology lacks a theory of organization. We 
use this as an example of the challenge that ALife must meet.

If-as I believe-physics and chemistry are conceptually inadequate as a theoretical framework for biology, it is because they lack the concept of 
function, and hence that of organization.... [P]erhaps, therefore, we should give the ... computer scientists more of a say in the formulation of 
Theoretical Biology.
—Christopher Longuet-Higgins, 1969 [28]

1 Life and the Organization Problem in Biology

There are two readings of "life": as an embodied phenomenon and as a concept. Foucault [20] points out that up to the end of 
the 18th century, life does not exist: only living beings. Living beings are but a class in the series of all things in the world. To 
speak of life is to speak only in the taxonomic sense of the word. Natural history dominated the classical age and is foremost a 
naming exercise: "The naturalist is the man concerned with the structure of the visible world and its denomination according to 
characters. Not with life." (p. 161). There is a concurrent interest in how things work, but it is an interest that remains 
disconnected and in tension with the naturalist tradition.

In the early 19th century, natural history makes a decisive step toward a biology when the notion of character becomes 
subordinate to the notion of function, when classification becomes comparative anatomy. Life is conceptualized as something 
functionally organized, and organization is foreign to the domain of the visible. A character is weighted according to the 
importance of the function(s) it is linked to. In contrast to the classical age, characters are seen as signs of an invisible deep 
structure. Causal
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argumentation is reversed: A character is not important because it occurs frequently, but rather it occurs frequently because it is 
functionally important. Life as a concept becomes manifest as organization, organic structure, that is, organism. In the classical 
period, living beings were perceived largely as points in a coordinate system of names. Now they require an additional "space 
of organizational structure." This sets the stage for considering the problem of the modification and transformation of 
organization.

Darwin posited evolution as an effect of what basically amounts to be a force [39]: natural selection. Natural selection is a 
statement about kinetics: In a population, those variants of organisms will accumulate that are better able to survive and 
reproduce than others. If there is ongoing variation and if variation is (at least partially) heritable, then the continuous operation 
of selection kinetics will lead to the modification of living organizations. One would like to understand, however, how 
organization arises in the first place. Darwin's theory is not intended to answer this. Indeed, this is apparent upon inspection of 
the formal structure of the theory. Neo-Darwinism is about the dynamics of alleles within populations, as determined by 
mutation, selection, and drift. A theory based on the dynamics of alleles, individuals, and populations must necessarily assume 
the prior existence of these entities. Selection cannot set in until there are entities to select. Selection has no generative power; 
it merely dispenses with the "unfit," thus identifying the kinetic aspect of an evolutionary process. The principle problem in 
evolution is one of construction: to understand how the organizations upon which the process of natural selection is based 
arise, and to understand how mutation can give rise to organizational, that is, phenotypic, novelty. A solution to this problem 
will allow one to distinguish between those features of organizations that are necessary and those that are coincidental. Such an 
endeavor requires a theory of organization. Yet biology lacks a theory of organization. The need for a conceptual framework 
for the study of organization lies at the heart of unsolved problems in both ontogeny and phylogeny. Can Artificial Life (ALife) 
illuminate biology?

2 Replicator Equations Without Replicators

One way of viewing Darwin's theory is to consider "fitness" (short for "the ability to survive and reproduce") to be an 
undefined term, in analogy to an axiomatic structure [48, 49]. The principle is applicable whenever its conditions are met: 
autocatalytic growth kinetics, variation, heritability. At the same time, it leaves open what the subject entities are. They may be 
molecules, genes, cells, organisms but also populations, strategies, or even artifacts-it depends on the question one is asking. 
What is required, however, is a coherent development of ''fitness" at the chosen level of description. While Darwin clearly had 
in mind the individual organism, it is not difficult to see how to abstract from Darwin's theory a structure capable of different 
behaviors that some might even object are "Darwinian."

Darwin's kinetic theory allows for multiple models in which fitness and its referent are specified. This prompted a debate about 
whether there is a fundamental referent and about what it might be: either the gene, or the individual, or the group, or the 
species, you name it. There are advocates of a single unit of selection, and others who claim that a description in terms of 
multiple units is essential [7].

Among the clearest and sharpest proponents of a single unit view is Richard Dawkins [11] with his notion of replicator 
selection. The "fundamental level of selection," Dawkins maintains, is "among replicators-single genes or fragments of genetic 
material which behave like long-lived units in the gene pool." More generally, a replicator is defined "as any entity in the 
universe which interacts with its world, including other replicators, in such a way that copies of itself are made" [11] (our 
emphasis). We next
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exemplify how entities can behave kinetically like replicators without being replicators, leaving room for more than one 
"fundamental" level of selection.

Consider a generic balance equation for the concentration ni of an object i in an unconstrained population of n object species: 
dni/dt ≡ ni = Γi, i = 1,..., n, where Γi describes the net growth of object species i. It is convenient to switch to internal 
coordinates or relative frequencies, xi = ni/ Σj nj, 0 ≤ xi ≤ 1 and Σi xi = 1, in which the balance equation becomes:

 (1)

This can also be viewed as the equation of a flow reactor where objects i are produced, and a proportional dilution flow 
compensates for the excess production in the system at any time. If all Γi are just constants, Γi = ai > 0, then the stationary state 

of the system will simply contain all object species sorted according to their relative magnitude of growth: .

The situation changes with autocatalysis, Γi = bixi, as it occurs when objects are replicated (asexually), that is, are copied,

 (2)

This is one description of selection. The effect of Equation 2 is competition, as can be seen from the stationary state, which 
consists of only the object i with the largest bi. bi is the "fitness" of object i, and the evaluation of fitness that is implict in 
autocatalysis is nicely expressed by Equation 2: At any time, the growth term bi is compared against the average (b). If it is 
below (above), the net effect will be a negative (positive) growth rate of species i. As a result, the average will shift toward 
higher values until it matches the maximum bi: the survivor. This is a choice mechanism that is quite different from sorting.

The story gets an additional twist when fitness is frequency dependent, that is, when the (asexual) reproduction of i depends on 
the composition of the population at any time: Γi = xi  Σj cijxj. Equation 1 then becomes:

C0231-04.gif
 (3)

The major difference is that Equation 3 can lead to cooperation. Several mutually dependent species may coexist indefinitely 
and exhibit complicated dynamical behaviors. Selection need not be a naive optimization device.

Variants of both Equations 2 and 3 have been widely studied in the context of, for example, imperfect reproduction (mutation), 
or genetics with Mendelian as well as non-Mendelian transmission [10, 12, 13, 16, 42]. (For an overview see Hofbauer and 
Sigmund [22]). Equation 3 has been termed the replicator equation [38], and it represents the essence of replicator selection: 
Autocatalysis induced by replication (reproduction, copying) causes the composition of a population to shift based on an 
endogenous comparison against the population average. Of course, what is being chosen in this process is not easy to say when 
the mutual interdependencies are intricate.

We resume our theme of organization with a simple observation: Autocatalytic kinetics can be induced without replication. 
Suppose that the interaction between two

  



Page 214

object species j and k does not result in the replication of either j or k but in the production of a different object species i, as is 
the case in a chemical reaction. Suppose further (for the sake of simplicity) that objects j and k are effectively not used up in the 
reaction, that is, each time they react we are given back one instance of each (call it "food"). The overall scheme of this 
"stylized reaction," then, is:

j+k ® i+j+k.
(4)

Notice that this is not autocatalytic in j or k, because they appear on both sides of the reaction equation with the same 
stoichiometric coefficients. Let the rate constant of this reaction be d¬ (possibly zero). Equation 1 then becomes [41]:

 

(5)

Consider now a set K of object species such that for each i  K, there exists a pair j, k  K, which produces i. Such a set 
maintains itself, but it does not copy itself— it only makes more of itself. Consider now a number of disjoint self-maintaining 
sets J, K, L,..., which interact with one another in such a way that for each reactive pair k  K, j  J, the product is in K or J 
(but distinct from k and j). Now we simply rearrange Equation 5 by collecting all individual object species i  K into a set with 
relative frequency  . Let the frequency of i in its own set be = . We obtain:

 (6)

with the coefficients

C0232-08.gif

Equation 6 has the form of a replicator Equation 3. However, the sets K do not replicate nor do any of their members (by 
definition). These sets only grow, and they do so by reflexive catalysis or self-maintenance at the set level. This induces a 
selection kinetics identical to the replicator case. (A similar observation is mentioned in Eigen [12].) However, the relevant 
units are not replicators. Hence, we cannot refer to this as "Darwinian selection," because Darwinian selection rests on 
reproducing entities. It is a generalization of it, and we will simply call it selection. Hence, we have sorting when the growth 
kinetics of entities is not autocatalytic, and selection when the growth kinetics is autocatalytic. In the special case where entities 
are replicators, selection becomes Darwinian selection. In the case where entities are not replicators, selection can still occur at 
the level of aggregate entities, but it cannot be Darwinian.

This is our first checkpoint toward a firmer notion of organization. An organization is a set of entities that continuously 

regenerates itself by transformation pathways (the ) internal to the set [29, 30]. All that is required is sufficient connectivity: 
The matrix  must be irreducible. Many researchers noticed the possibility and the significance of self-
maintaining sets of chemicals [8, 12, 23, 24, 35, 37], and probably many more). The disagreement, however, is over the 
likelihood of such sets

  



Page 215

given certain kinds of molecules and their importance in shaping the (early) history of life. Simple self-maintaining ensembles 
have recently been obtained in the laboratory of Luisi [1].

It is important to reiterate the necessity of making a logical distinction between reproduction and self-maintenance. There have 
been occasions where these two orthogonal concepts were conflated [15, 23], probably because self-maintenance was 
considered as an alternative to an origin of life through primitive replicatory elements. It should be clear so far that self-
maintenance has little to do with making two individuals out of one through transformations internal to the individual. Hence, it 
cannot be an alternative to reproduction. Reproduction does not necessarily require organization either, as exemplified by 
simple self-replicating molecules [44, 46] or a viral RNA in the presence of its replicase in the test tube [40]. This assumes that 
we are willing to make a distinction between a molecule or a pair of molecules in complementary association and an 
organization. Self-maintenance isolates a different aspect of individuality than reproduction. The former requires organization, 
and the latter requires means for its multiple instantiation, as, for example, by compartmentalization through spatial separation, 
or membrane enclosure, or plain chemical bonds. Clearly, our intuitive notion of life includes both organization and 
reproduction. They are conceptually different, and the implementation of one need not be the implementation of the other.

The main point here was to show that nonreplicatory but self-maintaining sets do exhibit the kinetics required for selection, 
though, by definition, not of a Darwinian kind (provided one accepts [3] as a proper dynamical formalization of selection). The 
integration of replicators and primitive organizations leaves room for multiple units of selection (in the sense of Buss [7]).

Of course, the modification of organizations is hardly identical to the evolution of replicators. What does it mean, if anything, 
for nonreproducing organizations to "vary"? This question cannot be adequately answered within a description where the micro-
entities are atomic structureless units as is the case in the conventional dynamical systems described earlier. The reason is that 
the question draws attention to structure-function relationships.

3 Organizations Must be Constructed

An extensional description is roughly one in which the entire universe of relevant objects is given at once, in extenso. It is 
basically a look-up table that may even be so large that nothing can store it. The modern set-theoretic view of a function is of 
this kind: A function is a collection of ordered pairs (in, out), for example, x2 ≡ {(0, 0), (1, 1), (2, 4), (3, 9), ...}. An extensional 
framework also characterizes traditional dynamical systems. Their definition requires an extensionally given network that 
specifies which variables couple with which other variables in what ways. For a particular kind of reasoning, this is quite 
useful. It certainly is adequate in setting up the gravitational equations of motion for a system of a few planets, where the 
relevant knowledge can actually be tabulated. This framework does not easily fit biology, because the objects denoted by the 
variables are typically of combinatorial complexity. If Equation 2, suitably augmented with mutational terms [12], were to 
describe the replication, mutation, and selection of RNA sequences of length 100, then we would have to specify 1060 equations 
with their corresponding coefficients. The problem is not so much that this situation forces a stochastic description, because 
only a vanishingly small fraction of all these possibilities can be realized. More fundamentally, such a description is still 
extensional as long as the relevant properties—the replication rates bi as determined by the tertiary structure, for example—are 
not a function of the
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sequences. The major point, the fact, namely, that there is some inner logic that connects sequences and their replication rates, 
is lost. It is precisely this logic that makes the problem an interesting one. The question is how that logic structures a population 
under a given dynamics.

The same holds for ecological modeling in terms of Lotka-Volterra equations, or for game dynamics. In his recent work, 
Lindgren [27] considers agents with an internal structure that determines the strategy they play in a given game. The structure 
of both opponents i and j, then, allows one to infer the coefficient cij in Equation 3. As in the case of RNA sequences, a 
"strategy-grammar" opens up a space of combinatorial complexity and permits with finite means the endogenous specification 
of an infinity of interaction coefficients.

To summarize, in contrast to extensional models, constructive models are founded on objects with a grammatical and, 
therefore, combinatory internal structure. Note, however, that in the previous examples, the internal structure of agents or 
objects does not affect the functional character of their interactions. These always remain copy actions: i (+ j) → 2 i (+ j), as is 
evident from the factorization of Equations 2 or 3. The internal structure only codifies the strength of an interaction that is kept 

fixed in kind for all agents. This is precisely what changes in going from Equation 3 to 5. While the  may still specify 
strengths, in addition they require an underlying logic that specifies which object i is implied by a pair of objects (j, k).

This suggests a distinction. In the previous examples concerning the replication of RNA sequences or strategies, new entities 
enter a finite population through mutation. The cause of a mutation is a chance event, meaning that it stands in no relation to its 
effect. We refer to models in which new agents are constructed in an unspecific (essentially stochastic) fashion as weakly 
constructive. This is to be contrasted with a situation in which the encounter of two agents implies a specific third one, as in 
Equation 5. Models of this kind will be termed strongly constructive. The prime example of a strongly constructive system is 
chemistry. A strongly constructive system that contains agent A must cope with the network of its implications. But it also must 
cope with the implications of the implications—and so on. Organization is here a network that results from convergence to both 
relational (logical) and kinetic self-consistency. The logical component induces a structure that is absent in the weakly 
constructive case. Think of a "knowledge system" where the agents A, B, C, etc. stand for propositions, and where the 
deterministic construction of new propositions results from "interactions" that we may call rules of inference. The 
organizational analogy between "consistent systems of belief" and metabolisms is, in our opinion, not completely superficial.

We have reached the next checkpoint toward a firmer notion of organization. An organization is defined in terms of a strongly 
constructive model: a system of transformations [30, 45]. This distinguishes it from a weakly constructive version of a Lotka-
Volterra or a replicator equation (Equation 3) describing an ecology of individuals that only replicate and mutate or undergo 
recombination. There is no doubt that an ecological population can be highly organized. However, the next section will clarify 
that the concept of organization suggested by a strongly constructive system is different in kind. Clearly, in real life, weakly 
and strongly constructive aspects are entangled. Disentangling them will be an important step in understanding what is 
necessary and what is contingent in the history of life.

An extensional system of equations, like Equation 5, is useful to capture some dynamical aspects, but useless to capture the 
constructive nature of organization. If we were to introduce a new object, say v, into Equation 5, we would have to specify its 
constructive interactions with the other objects arbitrarily (e.g., at random [23, 24]). This, however, eliminates precisely what is 
interesting about organization. The con-
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structive aspect is essential for addressing both the origin problem of organizations and the problem of their variation.

4 Organization—De Arte Combinatoria1 

Chemistry gave rise to biology. This is an elementary indication that strongly constructive interactions are fundamental to 
organization. Chemistry, therefore, informs our attempt of conceiving a formal and transparent model of organization [17-19].

Physics is about mechanisms. So is computation theory. But the latter has a twist that physics lacks: It is about mechanisms in 
which things build other things. Such "things" are processes and functions. As opposed to the clockwork or the steam engine, 
computation is inherently constructive. Computation need not only be about calculations that are of interest to a mathematically 
inclined person. What we emphasize here is the aspect of computation as a formal system that enables symbolic structures to 
build further symbolic structures in a consistent way. A first grip on organization can be obtained by studying the collective 
phenomena occuring in a dynamical system consisting of many such interacting symbolic structures. We briefly review such a 
platform. Details can be found in Fontana and Buss [18].

4.1 Constructive Part

(I.1) calculus. Our entities are literally functions expressed in a canonical syntactical framework known as the λ-calculus [4, 9], 
in which they can be applied to one another yielding new functions.

The grammar of λ-expressions, E, is

E ::= x | λx.E | (E)E, (7)

where x is a variable. Thus, a variable is an atomic expression. There are two expression-forming 
schemes—"combinators"—that define syntax: One, λx.E (termed abstraction), binds a variable in an expression E making it the 
equivalent of a formal parameter in a procedure, that is, E is intended as a function in x. The other, (E)E, (termed application) 
expresses the notion of a function being applied to an argument—except that there is no syntactical distinction between 
function and argument. While application and abstraction are purely syntactical operations, they are given an operational 
meaning through substitution:

(λx.A)B → A[B/x], (8)

where A[B/x] denotes the textual substitution of all occurrences of x in A with B. (We assume unique names for bound 
variables, distinct from names of free variables.) The arrow means that the expression on the left-hand side can be rewritten as 
the expression on the right-hand side, thereby only replacing equals for equals. The process of carrying out all possible 
substitutions within an expression is termed reduction, and the final stable form—if there is one—is unique and is called a 
normal form.

(I.2) normal form. In this model universe every expression is reduced to normal form within preset computational limits. If no 
normal form is attained, the expression is not allowed.

4.2 Dynamical Part

λ-calculus is now put in the context of a (stochastic) dynamical system that mimics a constrained flow reactor containing a 
finite number of "expression-particles."

1 Gottfried Wilhelm von Leibniz (1646-1716).
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(II.1) initialize. A system is initialized with N particles. These are randomly generated (usually unique) λ-expressions.

(II.2) interact. Two expressions, A and B, are chosen at random (in this order). Denote this choice by [A, B] and denote the 
normal form of (A)B by C. Then, the following "reaction" scheme applies:

[A, B] → C+A +B. (9)

(II.3) boundary conditions. Apply syntactical or functional boundary conditions to C to determine whether C is allowed to enter 
the system.

(II.4) constant size. If C is added to the system, choose one expression particle, D, at random and remove it:

 (10)

This keeps the system constrained at N particles at any time.

(II.5) iterate. Continue with (II.2).

The reader will recognize that this is just the description of a discrete stochastic analogue to Equation 5, where the possible 

 are implicitly given by a calculus, in this case λ-calculus:

 (11)

In section 5 we discuss the motivation for this approach and its basic assumptions. First, we briefly review some results. The 
model provides a formalization of our intuitive notion of organization. It generates organizational levels that can be described 
without reference to the micro processes that give rise to them. Organizational levels beyond a "molecular ecology" (see Level 
0) emerge even in the absence of Darwinian selection. Details can be found in Fontana and Buss [18].

4.2.1 Level 0

Level 0 arises with no specialized boundary conditions (II.3). The system becomes dominated by either single self-copying 
functions or ensembles of mostly hypercyclically [12, 14] coupled copying functions (i.e., systems where for each g there is at 
least one f such that (f)g = g). Thus, Equation 5 reduces to the situation described by the replicator framework, Equation 3: the 
reproduction of an object species, i, depends on itself and one (or more) other object species, j. From a purely functional point 
of view i is a "fixed point" of its interaction with j. Under perturbation, that is, the introduction of random expressions, Level 0 
ensembles frequently reduce to a single self-copying function, that is, a function f with (f)f = f.

4.2.2 Level 1

Level 1 arises under a variety of conditions, all of which involve a restriction on copy actions up to their complete elimination. 
The reason for the importance of such an extreme boundary condition is the elimination of Darwinian selection, thereby 
allowing one to assess the necessity of Darwinian selection in the generation of organization. The following features, therefore, 
need not be the result of Darwinian selection.

Under no-copy conditions, the set of objects in the system changes until it becomes confined to a subspace of the space of all λ-
expressions. This (infinite) set is invariant
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under applicative action and is characterized by three properties:

1. Grammatical structure. The objects of the subspace possess a specific syntax described by a grammar (beyond just 
conforming with Equation 7). Sometimes the objects are grouped into several "families" with distinct syntactical structures. 
Grammatical closure here defines membership: An object can be unambiguously assigned to a given organization on the basis 
of its grammatical specification.

2. Algebraic structure. All relationships of action between objects of the subspace are described by a (small) set of equations. 
The system frequently admits "coarse-grained" identities that emphasize symmetries and particular roles of objects (like inverse 
elements, successor functions, neutral elements, etc.). It is important to emphasize that neither the formulation nor the 
discovery of the laws that define an organization require knowledge of the underlying λ-calculus. An organization has a level 
of description that can be considered independently.

3. Self-maintenance and kinetic persistence. The flow reactor contains a finite number of objects. Hence, only a small subset 
"carries" the organization under this dynamical system. Typically this subset maintains itself in the sense that every object is 
produced by at least one interaction involving other objects of the same set. Notice that self-maintenance is not a statement 
about kinetics but rather about the constructive relationships within a set of objects. We, also have observed borderline cases 
where the objects change constantly (while remaining confined to their invariant subspace). In all cases, that which is 
kinetically persistent is the organization as expressed by its grammatical and algebraic description.

These characteristics endow Level 1 organizations with some interesting properties:

Center. An organization has many generators, that is, subsets of objects capable of spawning a given organization, if the 
reactor is intialized only with them. Such sets are typically small. So far Level 1 organizations were observed to have a unique 
smallest and self-maintaining generator set that constructs the organization ab initio. We call it the center. The center is 
typically present in the reactor.

Self-repair. Self-repair is a consequence of self-maintenance, kinetic persistence, and the existence of a center. Organizations 
can tolerate vast amounts of destruction, while retaining the capability to reconstruct themselves.

Extensions. The model universe, in its present form, does not provide for "noisy" interactions. (Products are determined once 
the reactants are given.) Without functional perturbations, a Level 1 organization is a monolithic entity: Once attained, all 
functional evolution stops. The easiest way out is to provide an exogenous source of noise by injecting random objects into an 
established organization. For a novel object to persist, it must create transformation pathways that sustain it in a kinetically 
effective manner within the established network of pathways. The modification of organizations is, therefore, highly 
constrained. However, when a novel object does become established, it imports new syntax elements, thus altering the 
grammatical structure and the algebraic laws that characterize the organization. This alteration occurs in a typical way: by 
extension. The unperturbed organization still persists as a "smaller" core organization to which the interactions with the new 
object have added another "layer." New algebraic laws are added to the existing ones, and the center of the extended 
organization is extended correspondingly. With constant reactor capacity, an organization cannot be extended indefinitely, and 
upon several such extensions one observes a displacement of previous layers. Over several steps this can result in a substantial 
modification of the original organization.
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4.2.3 Level 2

Level 1 organizations can be combined. At first one may expect a competitive situation. This need not be the case, because two 
organizations can generate novel objects, through cross-interactions, that are not members of either organization. This "cross 
talk" consists in a set of objects that does not constitute a Level 1 organization. (It is neither self-maintaining nor grammatically 
closed under interaction.) We refer to this set as the glue, because it knits both component organizations kinetically and 
algebraically together. The entire structure is a Level 2 organization: a meta-organization that contains the original 
organizations as self-maintaining subalgebras. The glue distinguishes this situation from a plain coexistence. (Indeed, a Level 2 
organization is not described by Equation 6 in terms of multiple component organizations—because of the glue.) A Level 2 
organization is not as easily obtained as a Level 1 organization, because the kinetic requirements to the glue are severe. 
Nevertheless, the construction of Level 2 organizations from scratch has been observed: Two Level 1 organizations form whose 
interactions integrate them into a Level 2 organization. Qualitatively the same properties as for the Level 1 case hold in the 
Level 2 case, although stability is not as pronounced.

4.2.4 Biology

The history of life is a history of the emergence of new organizational grades and their subsequent diversification [7]. A 
transition in organizational grade occurred when self-replicating molecules gave rise to (or became incorporated within) self-
maintaining prokaryotic cells, and the origin of procaryotes was itself followed by the emergence of a hierarchical nesting of 
different prokaryotic lineages to generate multi-genomic eukaryotic cells. The λ-universe mimics transitions seen in the history 
of life, that is, the transition from self-replicating molecules to self-maintaining organizations to hierarchical combinations of 
such organizations. We refer to these organizational grades as Level 0, Level 1, and Level 2, respectively.

Organizations are very robust toward functional perturbations. Perturbing objects are frequently eliminated, otherwise they 
typically cause extensions to the grammatical and algebraic structure. Morowitz [351 suggests that the core metabolism derives 
its architecture from the addition of several metabolic "shells" to a basic energy metabolism such as the glycolytic pathway. A 
shell attaches to another through only a few "entry points." These are pathways that introduce novel syntactical and functional 
elements, such as nitrogen (with amino acids among its consequences) and dinitrogen heterocycles (with nucleic acids among 
their consequences).

A Level 2 experiment in which two Level 1 organizations are brought into interaction can be seen as a massive perturbation of 
either organization. Frequently the interaction does not produce a glue that is sufficient to stably integrate both organizations 
while maintaining their autonomy. Rather, one organization loses autonomy and becomes a large extension to the other. This is 
reminiscent of the well-known pattern wherein an intracellular symbiont loses functions redundant with those possessed by the 
host.

The center of a Level 2 organization is just the sum of the corresponding Level 1 centers. Such a superposition does not hold 
for the grammatical and algebraic description of the resulting Level 2 organization, because of the extensions required to 
describe the glue. This recalls the general difference between the behavior of genotypes and phenotypes: Genes combine 
independently, while the organizations they spawn do not.

The transition from Level 0 to Level 1 emphasizes the tension between reproduction and organization. Replicatory elements are 
clearly kinetically favored over self-maintaining but nonreproducing organizations. The biological problem connected with the 
transition is one of restricting copy actions. The model shows how a new concept
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of organization arises—beyond the engineering of mutual dependencies between replicators (cf. hypercycle [12])—when 
transformation operations are given the chance to attain closure.

Nevertheless, in all this we violate mass conservation, do not consider thermodynamics, assume all rate constants to be equal, 
do not use up reactants in reactions, have everything react with everything, and so on. What does such a model really mean?

5 A functional perpetuum mobile

The model explores the consequences of an extremely simple combination of a dynamical system with a calculus. With respect 
to biology, the explanatory power of such a model comes from defining a level of description. Here it is given by the 
mathematical notion of function. The focus is on the expression and construction of functional relationships rather than on their 
exact chemical implementation. λ-calculus is the canonical language to express such a consistent universe of construction. λ-
calculus is clearly no more than a highly stylized chemistry. In the biological context, it serves the purpose of a high-level 
specification language, rather than a full-fledged implementation language. The image of "organization" suggested by this 
abstraction is very simple: a kinetically self-maintaining algebraic structure.

Take a set of two objects, A and B, such that (A)A = B and (B)B = A. (Assume that cross-collisions are not reactive.) Clearly, 
the set {A, B} is self-maintaining without containing copy actions, Is this an organization? Our definition suggests it is not, 
because the system neither specifies a nontrivial grammar nor a nontrivial algebra. Trivial does not mean simple; it means that 
there is no compressed description of the set's composition and behavior short of listing it. Our definition suggests that an 
organization be over an infinite set of objects. Is that reasonable? Yes, because it is not required that this subspace be realized 
in its entirety. Only a subset of implicitly determined size is required to make the organization's specification kinetically 
persistent. If the size needed for supporting the organization is too large compared to the reactor's capacity, the organization 
disappears.

The mechanics of λ-calculus teaches a lesson: construction alone, Equation 7, is not sufficient; processes must be associated 
with construction that induce equivalence, Equation 8. The basic combinators of the chemical grammar are not fundamentally 
different from those that build λ-expressions: A molecule is either an atom or a combination of molecules. That which makes 
such a universe capable of constructing networks, hence of organizing, is a consistent way of establishing that different 
combinations are effectively the "same." In chemistry, combinatory structures—molecules—combine into transition structures 
that undergo rearrangements. The nature of these rearrangements establishes which molecular combinations are effectively the 
same in regard to a particular product. Construction and equivalence are the essence of chemistry at the level of description set 
by the present model. The rest of chemistry is specific to the implementation of construction and equivalence with a given 
physics. Construction and equivalence are necessary for organization and, hence, for any life, artificial or natural. 
Consequently, the organizational features outlined in the previous section are not coincidental either, because they follow 
necessarily.

"Function" is frequently used in a colloquial way meaning different things. These meanings are disentangled at our level of 
description. First, there is the unambiguous mathematical concept of a function. In this sense every object in our model 
universe is a function. Then there is a more "semantic" aspect of function: the function of an organ, the function of a beta-
blocker. This notion of function relates to specific roles within the context of a network. As a simple example, consider a ¬-
expression, A,
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and certain elements B of its domain that are fixed points of A, that is, (A)B = B). If B happens to be present in the reactor 
together with A, then A makes B a replicator: B assumes a specific kinetic role, and A assumes a specific functional meaning for 
B in this particular context. Suppose A assumes this role for all C in the system. Then A is algebraically a ''neutral element," 
but, again, conceivably only for those C that happen to be present, not for others that may perturb the system. If there is a 
neutral element, then this creates a "functional niche" for other objects to be "inverses" of one another one and so on. Because 
objects are functions, they construct networks within which they have functions. There is no need to assume the latter to be 
given a priori.

A reactor with many interacting λ-expressions is a system of concurrently communicating functions. Application of a λ-
expression to another one can be viewed as an act of communication-where a function is communicated to another function via 
a variable associated with a port named λ [5, 6, 33]. Despite Equation 9, communication is symmetric. Here the 
"communication operator" is really the "+" symbol in the chemical reaction scheme. In fact, written as a chemical reaction the 
interaction scheme (II.2) just reads:

 (12)

The result of a communication between A and B is a nondeterministic choice between the process (A)B and the process (B)A. 
This is manifest in the fact that for all random encounters between A and B, half of the time A comes from the "right" (chosen 
second) and half of the time from the "left" (chosen first). Reaction, or communication, is clearly commutative in the model. 
When speaking (somewhat sloppily) of "interaction" in (II.2), we refer to the application event after a choice in Equation 12 has 
been made.2

When interpreting the reaction (or kinetic) scheme, it is imperative to remain consistent with the chosen level of abstraction. A 
kinetic scheme, like (II.2) and (II.4), serves two purposes. First and foremost, it defines a communication event between 
objects. Second, it summarizes the overall effect of many details whose full specification is inappropriate at the chosen level of 
abstraction.

The reason for not using up the reactants in (II.2) is, technically speaking, to induce a recursion. If no object were removed, the 
system would generate all possible iterated communications among the initial objects. The flux (II.4) eventually removes those 
communication products that are not sustained at a sufficient rate within the system. This focuses repeated communication to 
occur among a kinetically favored set of objects until structural consistency is attained as well (if it is attained). An 
organization is plainly the fixed point of such a recursion. We recently became aware that in the process algebra literature a 
similar scheme—called "replication" (no biological connotations)—conveniently replaces recursion [34].

A more "palatable" kinetic scheme would have been "recursion over food." That is, specify a certain number of (random) 
objects which are designated as "food," F * . Food

2 Computer scientists should not confuse the "chemical communication operator" "+" with their choice operator denoted by the same 
symbol. If we symbolize communication by , "choice" by the usual +, "interleaving" by | [6], then Equation 12 reads as 
A  B = (A)B|A|B + (B)A|A|B.
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is steadily supplied to the system, while reactants are used up. Hence, Equation 12 becomes

 (13)

where  stands for an object chosen randomly from the food set. Equation 10 would be turned off, because Equation 13 
preserves particle number. Under such circumstances, the system is "anchored" to the food source, and any organization would 
have to contain pathways linking it to that source. Our original scheme (Equation 12) frees the system from having to maintain 
pathways to the initial objects. This is somewhat more abstract but isolates functional self-maintenance, while Equation 13 
generates structures that need not be functionally autonomous, because they are exogenously maintained through food.

Of course, real organizations must be fed—but the feeding does not define an organization. The present system is clearly open 
and driven in many ways. In a sense, however, this is beside the point, because the ultimate nature of our model universe is 
"informational." (Information is not necessarily destroyed by its usage. Although the λ-mechanics—no matter how 
remote—remains in a spooky analogy to chemistry.) The model suggests a view in which the world of thermodynamics gives 
rise to another world whose objects are functions (or processes). While there is no perpetuum mobile in the former, there is 
plenty of room for a perpetuum mobile in the latter: functional organization.

There is also plenty of room to improve on this model. For example, the model lacks a structured notion of communication that 
determines who communicates with whom and when. This suggests that formal processes may be more appropriate agents than 
functions. Formal processes do by and large not compute functions, but rather they are characterized by their ability or inability 
to offer communications at various points in time [21]. This endows them with different notions of equivalence [32]. The 
particular abstractions from chemistry and the biologically motivated boundary conditions employed thus far informed our 
modeling platform and, therefore, our understanding of the emergence of functional organization of the Level 1 and Level 2 
type. The proper abstractions and boundary conditions that may allow one to attain multicellular differentiating organizations, 
Level 3 say, or Level 4 (brains?), or ... remain to be captured. While replacing functions by processes may be part of the story, 
it is evidently an open question where this framework will lead—as is its applicability outside the biological domain. In any 
case,

We shall first have to find in which way this theory of [processes] can be brought into relationship with [biology], and what 
their common elements are. ... It will then become apparent that there is not only nothing artificial in establishing this 
relationship but that on the contrary this theory of [communicating processes] is the proper instrument with which to develop a 
theory of [biological organization]. One would misunderstand the intent of our discussions by interpreting them as merely 
pointing out an analogy between these two spheres. We hope to establish satisfactorily, after developing a few plausible 
schematizations, that the typical problems of [biological organization] become strictly identical with the mathematical notions 
of suitable [communicating processes]. [47]
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The quote has been taken from von Neumann and Morgenstern's Theory of Games and Economic Behavior [47], except that we 
took the liberty to replace "theory of games of strategy" with [communicating processes] and "economic behavior" with 
[biological organization]. The quote characterizes the spirit of the work sketched here quite aptly. However, it is fair to add that 
von Neumann and Morgenstern's intentions were not realized. But, then, their ''theory of games of strategy" was not even 
weakly constructive.

6 ALife and Real Life

Our view of ALife relative to biology is perhaps best rendered by an analogy with geometry. For a long time Euclidean 
geometry was held to be the "science" of space. The development of non-Euclidean geometries led to the realization that terms 
like line or angle can be given different coherent specifications that result in different models of space. Geometry is not just one 
form of space; geometry is an axiomatic structure organized around undefined terms like line or angle [25]. In a particular 
model of space, triangles have an inner angle sum of 180 degrees. If this fails to hold at large scales in our universe, it does not 
invalidate the former space as a model of geometry. Our picture of ALife is that of a variety of specifications and, perhaps, 
formalizations of different intuitive notions about what it means to be alive. A notion of "artificial life," however, makes sense 
only if there is an implementation independent definition of life that informs biology.

Succeeding in this vision means opposing the superficially informative. There is a risk of ALife becoming predominantly a 
community of digital naturalists traversing their classical age. Ultimately, the success of ALife will depend on the extent to 
which it succeeds in developing a concept of life that encompasses biology. But to inform biology means not simply imitating 
it but understanding it. And understanding it requires identification of the outstanding unsolved problems in biology and 
seeking their resolution.

Our work is ultimately motivated by a premise: that there exists a logical deep structure of which carbon chemistry-based life is 
a manifestation. The problem is to discover what it is and what the appropriate mathematical devices are to express it. ALife 
started by emphasizing processes rather than that which implements them [26]. We believe this emphasis to be necessary but 
not sufficient. If the practice of ALife does not contribute to the solution of the logical problem, ALife will fail. For how can 
we discern whether a construct is a manifestation of life or whether it is an imitation of life? We can't, unless the logical 
problem is solved. How do we know whether we have solved it? We know when the solution affects the research agenda of 
biology-the science of the instance that we have not constructed. Should the premise turn out to be wrong, then ALife will fail 
too. For then ALife becomes ARbitrary. ALife practitioners must avoid the presumption that bedeviled Artificial intelligence-
that all the needed concepts were available to be imported from the other disciplines. ALife will find its first proving ground in 
real biology, in its capacity for catalyzing the theoretical maturation of biology.

7 Sources

Similar ideas have certainly occurred to many people. Some contributions we have mentioned, others we acknowledge here.

A decisive step was undertaken by Bagley, Farmer and Kauffman who devised probably one of the first strongly constructive 
dynamical systems [2,3]. Their model is based on simplified polynucleotide sequences that interact through complementary 
base pairing, thereby specifically cleaving and ligating one another. Rokshar, Anderson,
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and Stein [36] proposed a model somewhat similar in spirit. Steen Rasmussen and his group studied self-organization in an 
ensemble of machine (assembler) code instructions [50]. Interestingly, in their setting self-maintenance is achieved not by 
construction of new instructions (that set being fixed), but by (weak and strong) construction of new pointers to the locations on 
which the instructions operate. George Kampis has been weaving an independent thread of thoughts which seems pertinent to 
the concerns addressed in this paper [51]. We were put on track by discussions with John McCaskill a few years ago. He 
suggested a model of interacting Turing machines where tapes, standing for stylized polymeric sequences, encode transition 
tables that read and write other tapes [31,43]. It was still a long way to the present framework with its implied level of 
description and a formally more robust notion of organization.

Varela and Maturana [29,30,45] were perhaps the first to think extensively about organization in a new way. Their writings are 
at times not easily penetrable. However, building a formal model made us understand that many of the issues raised here were 
foreshadowed by their thinking.
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Abstract The growing interest in Artificial Life is part of a broader intellectual movement toward 
decentralized models and metaphors. But even as decentralized ideas spread through the culture, there is 
a deep-seated resistance to these ideas. People have strong attachments to centralized ways of thinking: 
they often assume centralized control where none exists. New types of computational tools and 
construction kits are needed to help people move beyond this "centralized mindset." Perhaps most 
important are new tools and activities for children, to help them develop new ways of looking at the 
world.

1 Introduction

For 300 years, the models and metaphors of Newtonian physics have dominated the world of science. 
Newton offered an image of the universe as a machine, a clockwork mechanism. Newton's universe is 
ruled by linear cause and effect-one gear turns, which makes a second gear turn, which makes a third 
gear turn, and so on. This cause-effect relationship is captured in Newton's F = ma formula: force gives 
rise to acceleration, cause gives rise to effect.

These Newtonian images have spread beyond the community of scientists, deeply influencing work in 
the social sciences, the humanities, and the arts. Newtonian metaphors have formed the foundation for 
how people think about science—and, more generally, how they make sense of the world around them.



In recent years, a new set of models and metaphors has begun to spread through the scientific 
community, and gradually into the culture at large. Many of these new ideas come not from physics but 
from biology. In a growing number of disciplines, researchers are now viewing the systems they study 
less like clockwork mechanisms and more like complex ecosystems. Increasingly, ideas from ecology, 
ethology, and evolution are spreading beyond their disciplinary boundaries. Ideas like self-organization 
and emergence are affecting the direction and nature of research in many other fields, from economics to 
engineering to anthropology. In general, there is a pronounced shift toward decentralized models, in 
which patterns are determined not by some centralized authority, but by local interactions about 
decentralized components. The growing interest in the field of Artificial Life is both a reflection of and a 
contributor to this broader intellectual shift.

Biology-inspired models and metaphors will have their greatest influence when they spread outside of 
the scientific community and into the general culture. For children growing up in the world today, 
learning about living systems is taking on a new urgency. The point is not just to understand the 
biological world (although that, of course, is a worthy endeavor). Rather, decentralized models of living 
systems provide a basis for understanding many other systems and phenomena in the world. As these 
ideas seep out of the scientific community, they are likely to cause deep changes in how children
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(and adults too) make sense of the world. This paper explores ways to help make that happen.

2 New Ways of Thinking

Among living systems, there are many examples of decentralized phenomena. As ants forage for food, 
for example, their trail patterns are determined not by the dictates of the queen ant, but by local 
interactions among thousands of worker ants. In the immune system, armies of antibodies seek out 
bacteria in a systematic, coordinated attack—without any "generals" organizing the battle plan. The 
antibodies are organized without an organizer, coordinated without a coordinator.

But seeing the world in terms of decentralized interactions is a difficult shift for many people. It requires 
a fundamental shift in perspective, a new way of looking at the world. At some deep level, people have 
strong attachments to centralized ways of thinking. When people see patterns in the world (like a flock 
of birds), they often assume that there is some type of centralized control (a leader of the flock). And in 
constructing artificial systems, people often impose centralized control where none is needed (e.g., using 
top-down, hierarchical programming structures to control a robot's behavior).



According to this way of thinking, a pattern can exist only if someone (or something) creates and 
orchestrates the pattern. Everything must have a single cause, an ultimate controlling factor. The 
continuing resistance to evolutionary theories is an example: Many people still insist that someone or 
something must have explicitly designed the complex, orderly structures that we call life. As William 
Paley [14] argued nearly two centuries ago, "If you found a watch on the ground, you would assume that 
it must have had a maker; so must not the same be true of living systems, which are incredibly more 
complex?"

This assumption of centralized control, a phenomenon I call the centralized mindset, is not just a 
misconception of the scientifically naive. The history of science is filled with examples of scientists 
remaining committed to centralized explanations, even in the face of discrediting evidence. When fossil 
records showed that very different creatures existed at different times in history, scientists did not give 
up on ideas of supernatural creation. Rather, they hypothesized that there must have been a whole series 
of extinctions and new creations. In the 20th century, as the genetic basis of evolution became 
understood, scientists initially adopted a too centralized view of genes, focusing on the actions and 
fitness values of individual genes, rather than studying interactions among genes.

Even today, centralized thinking persists in evolutionary debates. In trying to explain the periodic 
massive extinctions of life on earth, many scientists assume some external cause—for example, periodic 
waves of meteors hitting the earth. But more decentralized explanations are possible. Recent computer 
simulations show that simple interactions within the standard evolutionary process can give rise to 
periodic massive extinctions, without any outside intervention [12].

The history of research on slime-mold cells, as told by Keller [9], provides another example of 
centralized thinking. At certain stages of their life cycle, slime-mold cells gather together into clusters. 
For many years, scientists believed that the aggregation process was coordinated by specialized slime-
mold cells, known as "founder" or "pacemaker" cells. According to this theory, each pacemaker cell 
sends out a chemical signal, telling other slime-mold cells to gather around it, resulting in a cluster. In 
1970, Keller and Segel [10] proposed an alternative model, showing how slime-mold cells can aggregate 
without any specialized cells. Nevertheless, for the following decade, other researchers continued to 
assume that special pacemaker cells were required to initiate
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the aggregation process. As Keller [9] writes, with an air of disbelief, "The pacemaker view was 
embraced with a degree of enthusiasm that suggests that this question was in some sense foreclosed." By 
the early 1980s, based on further research by Cohen and Hagan [4], researchers began to accept the idea 
of aggregation among homogeneous cells, without any pacemaker. But the decade-long resistance serves 
as some indication of the strength of the centralized mindset.

The centralized mindset can manifest itself in many different ways. When people observe patterns or 
structures in the world, they tend to assume that patterns are created either by lead or by seed. That is, 
they assume that a leader orchestrated the pattern (e.g., the bird at the front of the flock, the pacemaker 
slime-mold cell), or they assume that some seed (some preexisting, built-in inhomogeneity in the 
environment) gave rise to the pattern, much as a grain of sand gives rise to a pearl.

In some ways, it is not surprising that people tend to assume centralized control, even where none exists. 
Many phenomena in the world are, in fact, organized by a central designer. These phenomena act to 
reinforce the centralized mindset. When people see neat rows of corn in a field, they assume (correctly) 
that the corn was planted by a farmer. When people watch a ballet, they assume (correctly) that the 
movements of the dancers were planned by a choreographer. Moreover, most people participate in social 
systems (such as families and school classrooms) where power and authority are very centralized 
(sometimes excessively so).

In fact, centralized strategies are often very useful. Sometimes, it is a good idea to put someone or 
something in charge. The problem is that people, in the past, have relied almost entirely on centralized 
strategies. Decentralized approaches have been ignored, undervalued, and overlooked. Centralized 
solutions have been seen as the solution.

3 Tools for Learning

How can people move beyond this centralized mind-set? How can they develop new intuitions about 
decentralized phenomena? The methodology of Artificial Life suggests a solution. One of the basic 
tenets of Artificial Life is that the best way to learn about living systems is to try to construct living 
systems (or, at least, models and simulations of living systems). This idea holds true whether the 
learners are scientists or children. To help people move beyond the centralized mindset, it makes sense 
to provide them with opportunities to create, experiment, and play with decentralized systems.

This approach has strong backing in educational and psychological research, most notably in the so-
called constructionist theory of learning [16,17]. Constructionism involves two types of construction. 
First, borrowing from the "constructivist" theories of Jean Piaget, it asserts that learning is an active 
process, in which people actively construct knowledge from the experiences in the world. To this, 
constructionism adds the idea that people construct new knowledge with particular effectiveness when 
they are engaged in constructing personally meaningful artifacts—be they sand castles, stories, LEGO 
robots, or computer programs.



Though constructionism shares certain ideas with "hands-on" approaches to education, it goes beyond 
hands-on in several important ways. In many hands-on activities, students simply follow a "recipe" of 
what to do. Students are limited in how far they can improvise and explore. Consider prepackaged 
simulations. No matter how well a prepackaged simulation is designed, it cannot take into account all of 
the possible "what if" questions that users will want to ask. A constructionist alternative is to provide 
students with tools so that they can construct (and modify) their own simulations. This approach not 
only expands the possible range of explorations, it also makes those explorations more personally 
meaningful.
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The constructionist approach received a lasting endorsement from the great physicist Richard Feynman. 
On the day that Feynman died, the following message was found on his office blackboard: "What I 
cannot create, I do not understand" [6]. What was true for Feynman is true for the rest of us. One of the 
best ways to gain a deeper understanding of something is to create it, to construct it, to build it.

So to help people learn about decentralized systems, we need to provide them with new sets of tools for 
creating and experimenting with such systems. But what types of tools are needed? Over the years, 
computer scientists have developed a wide variety of decentralized computational models—such as 
neural networks [21], the subsumption architecture [3], and cellular automata [23]. In all of these 
models, orderly patterns can arise from interactions among a decentralized collection of computational 
objects. In neural networks, patterns of "activation" arise from interactions among low-level "nodes." 
With the subsumption architecture, actions of a robotic creature arise from interactions among low-level 
"behaviors."

These models, while very useful for professional researchers, are ill-suited for people who have little 
experience with (or little interest in) manipulating formal systems. In general, these models are based on 
objects and interactions that most people are not familar with. For example, the idea of writing 
"transition rules" for "cells" is not an idea that most people can relate to.

In recent years, a number of computer programs have attempted to bring ideas about decentralized 
systems to a broader audience. Some programs, such as Vehicles (based on Braitenberg [2]) and 
LEGO/Logo [18], allow people to explore simple animal behaviors. Other programs, such as Agar [24], 
SimAnt [13], and StarLogo [19,20], allow people to explore the collective behavior of social insects. 
Still others, such as SimLife [8], Echo [7], and Simulated Evolution [15], allow people to explore 
evolutionary behavior.

These programs, too, are limited as learning tools. Too often, these programs shield users from 
underlying mechanisms, preventing users from investigating, let alone modifying, the underlying 
models. And in many cases, the programs focus too much on achieving interesting behaviors and too 
little on helping users make sense of those behaviors. But these programs represent a good first step in 
making ideas about decentralized systems accessible to a broader (and younger) audience.



4 Learning Experiences

This section examines the types of learning experiences made possible by these new computational 
tools. The examples focus on two tools that I helped develop: LEGO/ Logo and StarLogo.

LEGO/Logo is a type of creature construction kit. With LEGO/Logo, children can build robotic 
"creatures" out of LEGO pieces, using not only the traditional LEGO building bricks but also newer 
LEGO pieces like gears, motors, and sensors. Then, they write computer programs (using a modified 
version of the programming language Logo) to control the behaviors of the creatures.

StarLogo is a massively parallel programming language, designed especially for non-expert 
programmers. With StarLogo, people can write rules for thousands of graphic creatures on the computer 
screen, then observe the group level behaviors that emerge from the interactions. People can also write 
rules for "patches" of the world in which the creatures live, allowing new types of creature-environment 
interactions. For example, Figure 1 shows a StarLogo simulation inspired by the discussion of slime-
mold aggregation. Each "creature" emits a chemical pheromone, while also following the gradient of the 
pheromone. The patches cause the pheromone to diffuse and evaporate. With this simple decentralized 
strategy, the creatures aggregate into clusters after several dozen time steps.
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Figure 1. StarLogo simulation inspired by slime-mold aggregation.

4.1 LEGO/Logo Creatures

A major goal of Artificial Life research is to gain a better understanding of emergent phenomena. As 
Langton [11] put it, "The 'key' concept in Artificial Life is emergent behavior. Natural life emerges out 
of the organized interactions of a great number of nonliving molecules, with no global controller 
responsible for the behavior of every part."



In many animal systems, there are two types of emergence. First, the behavior of each individual 
creature emerges from interactions among the "agents" that make up the creature's mind. At the same 
time, the behavior of the entire animal colony or society emerges from the interactions among the 
individual creatures. In short, the colony level emerges from the creature level, which in turn emerges 
from the agent level.

With LEGO/Logo, children can begin to observe and experiment with simple emergent behaviors. 
Consider a simple LEGO creature with a light sensor pointing upward. Imagine that the creature is 
programmed with two rules: (a) move forward when you detect light, (b) move backward when you are 
in the dark. When this creature is released in the environment, it exhibits a type of emergent behavior: It 
seeks out the edge of a shadow, then happily oscillates around the shadow edge. The creature can be 
viewed as an "Edge-Finding Creature." This edge-finding capability is not explicitly represented in the 
creature's two rules. Rather, it emerges from interactions of those rules with specific structures in the 
environment.

Here is another example. When we started to develop LEGO/Logo, one of our first projects was to 
program a LEGO "turtle" to follow a line on the floor. The basic strategy was to make the turtle weave 
back and forth across the line, making a little forward progress on each swing. First, the turtle veered 
ahead and to the right, until it lost sight of the line. Then it veered ahead and to the left, until it again lost 
sight of the line. Then it started back to the right, and so on. This behavior can be represented by two 
simple rules: (a) If you are veering to the left and you lose sight of the line, begin to veer right; and (b) if 
you are veering to the right and you lose sight of the line, begin to veer left.

We tried the program, and the turtle followed the line perfectly. But as the turtle approached the end of 
the line, we realized that we hadn't "programmed in" any rules for what to do at the end of the line. We 
didn't know what the turtle would do. We were pleased with the behavior that emerged: The turtle 
turned all the way around and started heading back down the line in the other direction. This "end-of-
line" behavior was not explicitly programmed into the turtle. Rather, it emerged from the interactions 
between the turtle's rules and the unfamiliar environment at the end of the line.

Of course, these examples represent very, very simple cases of emergence. But that is precisely what 
children (and, for that matter, learners of all ages) need, in order to start making sense of the unfamiliar 
concept of emergence.
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4.2 StarLogo Termites

Philip Morrison, the MIT physicist and science educator, once told me a story about his childhood. 
When Morrison was in elementary school, one of his teachers described the invention of the arch as one 
of the central, defining milestones of human civilization. Arches took on a special meaning for the 
young Morrison. He felt a certain type of pride whenever he saw an arch. Many years later, when 
Morrison learned that lowly termites also build arches, he was quite surprised (and amused). He gained a 
new skepticism about everything that he was taught in school, and a new respect for the capabilities of 
termites. Ever since, Morrison has wondered about the limits of what termites might be able to do. If 
they can build arches, why not more complex structures? Given enough time, Morrison wondered, might 
termites build a radio telescope?

Probably not. But termites are among the master architects of the animal world. On the plains of Africa, 
termites construct giant moundlike nests rising more than 10 feet tall, thousands of times taller than the 
termites themselves. Inside the mounds are intricate networks of tunnels and chambers. Certain species 
of termites even use architectural tricks to regulate the temperature inside their nests, in effect turning 
their nests into elaborate air-conditioning systems. As E. O. Wilson [25] notes, "The entire history of the 
termites ... can be viewed as a slow escape by means of architectural innovation from a dependence on 
rotting wood for shelter."

Each termite colony has a queen. But, as in ant colonies, the termite queen does not "tell" the termite 
workers what to do. (In fact, it seems fair to wonder if the designation "queen" is a reflection of human 
biases. "Queen" seems to imply "leader." But the queen is more of a "mother'' to the colony than a 
"leader.") On the termite construction site, there is no construction foreman, no one in charge of the 
master plan. Rather, each termite carries out a relatively simple task. Termites are practically blind, so 
they must interact with each other (and with the world around them) primarily through their senses of 
touch and smell. But from local interactions among thousands of termites, impressive structures emerge.

The global-from-local nature of termite constructions makes them well suited for StarLogo explorations. 
Of course, simulating the construction of an entire termite nest would be a monumental project 
(involving many details unrelated to my interests). Instead, I worked together with a high-school 
student, named Callie, on a simpler project: program the termites to collect wood chips and put them 
into piles. At the start of the program, wood chips were scattered randomly throughout the termites' 
world. The challenge was to make the termites organize the wood chips into a few, orderly piles.

We started with a very simple strategy. We made each individual termite obey the following rules:

•  If you are not carrying anything and you bump into a wood chip, pick it up.

•  If you are carrying a wood chip and you bump into another wood chip, put down the wood chip you're 
carrying.



At first, we were skeptical that this simple strategy would work. There was no mechanism for preventing 
termites from taking wood chips away from existing piles. So while termites are putting new wood chips 
on a pile, other termites might be taking wood chips away from it. It seemed like a good prescription for 
getting nowhere. But we pushed ahead and implemented the strategy in a StarLogo program, with 1,000 
termites and 2,000 wood chips scattered in a 128 × 128 grid.

We tried the program, and (much to our surprise) it worked quite well. At first, the termites gathered the 
wood chips into hundreds of small piles. But gradually,
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Figure 2. The number of piles decreases monotonically.

the number of piles declined, while the number of wood chips in each surviving pile increased (see 
Figure 2). After 2,000 iterations, there were about 100 piles, with an average of 15 wood chips in each 
pile. After 10,000 iterations, there were fewer than 50 piles left, with an average of 30 wood chips in 
each pile. After 20,000 iterations, only 34 piles remained, with an average of 44 wood chips in each pile. 
The process was rather slow. And it was frustrating to watch, because termites often carried wood chips 
away from well-established piles. But, all in all, the program worked quite well.

Why did it work? As we watched the program, it suddenly seemed obvious. Imagine what happens when 
the termites (by chance) remove all of the wood chips from a particular pile. Because all of the wood 
chips are gone from that spot, termites will never again drop wood chips there. So the pile has no way of 
restarting.



As long as a pile exists, its size is a two-way street: It can either grow or shrink. But the existence of a 
pile is a one-way street: Once it is gone, it is gone forever. Thus, a pile is somewhat analogous to a 
species of creatures in the real world. As long as the species exists, the number of individuals in the 
species can go up or down. But once all of the individuals are gone, the species is extinct, gone forever. 
In these cases, zero is a "trapped state": Once the number of creatures in a species (or the number of 
wood chips in a pile) goes to zero, it can never rebound.

Of course, the analogy between species and piles breaks down in some ways. New species are 
sometimes created, as offshoots of existing species. But in the termite program, as written, there is no 
way to create a new pile. The program starts with roughly 2,000 wood chips. These wood chips can be 
viewed as 2,000 "piles," each with a single wood chip. As the program runs, some piles disappear, and 
no new piles are created. So the total number of piles keeps shrinking and shrinking.

Callie seemed to thrive in the decentralized environment of StarLogo. At one point, while we were 
struggling to get our termite program working, I asked Callie if we should give up on our decentralized 
approach and program the termites to take their wood chips to predesignated spots. Callie quickly 
dismissed this suggestion:

Mitchel: We could write the program so that the termites know where the piles are. As soon as a termite 
picks up a wood chip, it could just go to the pile and put it down.
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Callie: Oh, that's boring!

Mitchel: Why do you think that's boring?

Callie: Cause you're telling them what to do.

Mitchel: Is this more like the way it would be in the real world?

Callie: Yeah. You would almost know what to expect if you tell them to go to a particular spot and put it 
down. You know that there will be three piles. Whereas here, you don't know how many mounds there 
are going to be. Or if the number of mounds will increase or decrease. Or things like that.... This way, 
they [the termites] made the piles by themselves. It wasn't like they [the piles] were artificially put in.

For Callie, preprogrammed behavior, even if effective, was "boring." Callie preferred the decentralized 
approach because it made the termites seem more independent ("they made the piles by themselves") 
and less predictable ("you don't know how many mounds there are going to be").

5 Decentralized Thinking



Like Callie, many students are fascinated by decentralized phenomena. But they also have a difficult 
time understanding and creating such phenomena. They often slip back into centralized ways of 
thinking. As I have worked with students, I have developed a list of "guiding ideas" that seem to help 
students make sense of decentralized phenomena. These guiding ideas are not very "strong." They are 
neither prescriptive nor predictive. They don't tell you precisely how to think about decentralized 
systems, and they don't tell you how to make accurate predictions about such systems. Rather, they are 
ideas to keep in mind as you try to make sense of an unfamiliar system, or to design a new one. They 
highlight some pitfalls to avoid and some possibilities not to overlook. In this section, I discuss five of 
these guiding ideas.

5.1 Positive Feedback Isn't Always Negative 

Positive feedback has an image problem. People tend to see positive feedback as destructive, making 
things spiral out of control. For most people, positive feedback is symbolized by the screeching sound 
that results when a microphone is placed near a speaker. By contrast, negative feedback is viewed as 
very useful, keeping things under control. Negative feedback is symbolized by the thermostat, keeping 
room temperature at a desired level by turning the heater on and off as needed.

Historically, researchers have paid much more attention to negative feedback than to positive feedback. 
As Deneubourg and Goss [5] note, "When feedback is discussed in animal groups, it is nearly always 
negative feedback that is considered, and its role is limited to that of a regulatory mechanism, in which 
fluctuations are damped and equilibrium is the goal.... Positive feedback is only rarely considered."

When I asked high-school students about positive feedback, most weren't familiar with the term. But 
they were certainly familiar with the concept. When I explained what I meant by positive feedback, the 
students quickly generated examples. Not surprisingly, almost all of their examples involved something 
getting out of control, often with destructive consequences. One student talked about scratching a 
mosquito
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bite, which made the bite itch even more, so she scratched it some more, which made it itch even more, 
and so on. Another student talked about stock market crashes: A few people start selling, which makes 
more people start selling, which makes even more people start selling, and so on.

Despite these negative images, positive feedback often plays a crucial role in decentralized phenomena. 
Economist Brian Arthur [1] points to the geographic distribution of cities and industries as an example 
of a self-organizing process driven by positive feedback. Once a small nucleus of high-technology 
electronics companies started in Santa Clara County south of San Francisco, an infrastructure developed 
to serve the needs of those companies. That infrastructure encouraged even more electronics companies 
to locate in Santa Clara County, which encouraged the development of an even more robust 
infrastructure. And, thus, Silicon Valley was born.



For some students who used StarLogo, the idea of positive feedback provided a new way of looking at 
their world. One day, one student came to me excitedly. He had been in downtown Boston at lunch time, 
and he had a vision. He imagined two people walking into a deli to buy lunch:

Once they get their food, they don't eat it there. They bring it back with them. Other people on the street 
smell the sandwiches and see the deli bag, and they say, "Hey, maybe I'll go to the deli for lunch today!" 
They were just walking down the street, minding their own business, and all of a sudden they want to go 
to the deli. As more people go to the deli, there's even more smell and more bags. So more people go to 
the deli. But then the deli runs out of food. There's no more smell on the street from the sandwiches. So 
no one else goes to the deli.

5.2 Randomness Can Help Create Order

Like positive feedback, randomness has a bad image. Most people see randomness as annoying at best, 
destructive at worst. They view randomness in opposition to order: Randomness undoes order, it makes 
things disorderly.

In fact, randomness plays an important role in many self-organizing systems. As discussed earlier, 
people often assume that "seeds" are needed to initiate patterns and structures. When people see a traffic 
jam, for example, they assume the traffic jam grew from a seed—perhaps a broken bridge or a radar 
trap. In general, this is a useful intuition. The problem is that most people have too narrow a conception 
of "seeds." They think only of preexisting inhomogeneities in the environment—like a broken bridge on 
the highway, or a piece of food in an ant's world.

This narrow view of seeds causes misintuitions when people try to make sense of self-organizing 
systems. In self-organizing systems, seeds are neither preexisting nor externally imposed. Rather, self-
organizing systems often create their own seeds. It is here that randomness plays a crucial role. In many 
self-organizing systems, random fluctuations act as the "seeds" from which patterns and structures grow.

This combination of random fluctuations plus positive feedback underlies many everyday phenomena. 
Sometimes, at concerts or sporting events, thousands of spectators join together in rhythmic, 
synchronized clapping. How do they coordinate their applause? There is no conductor leading them. 
Here's one way to think about what happens. Initially, when everyone starts clapping, the applause is 
totally unorganized. Even people clapping at the same tempo are wildly out of phase with one another. 
But, through some random fluctuation, a small subset of people happen to clap at the same tempo, in 
phase with one another. That rhythm stands out, just a little, in the clapping noise. People in the 
audience sense this emerging rhythm and adjust their own clapping to join it. Thus, the emerging rhythm 
becomes a little stronger, and even
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more people conform to it. Eventually, nearly everyone in the audience is clapping in a synchronized 
rhythm. Amazingly, the whole process takes just a few seconds, even with thousands of people 
participating.

5.3 A Flock Isn't a Big Bird

In trying to make sense of decentralized systems and self-organizing phenomena, the idea of levels is 
critically important. Interactions among objects at one level give rise to new types of objects at another 
level. Interactions among slime-mold cells give rise to slime-mold clusters. Interactions among ants give 
rise to foraging trails. Interactions among cars give rise to traffic jams. Interactions among birds give 
rise to flocks.

In many cases, the objects on one level behave very differently than objects on another level. For high-
school students, these differences in behavior can be very surprising, if not confusing. For example, 
several high-school students used StarLogo to explore the behavior of traffic jams. They wrote simple 
rules for each car (if there is a car close ahead of you, slow down; if not, speed up), then observed the 
traffic jams that resulted from the interactions. The students were shocked when the traffic jams began 
to move backward, even though all of the cars within the jams were moving forward.

Confusion of levels is not a problem restricted to scientifically naive high-school students. I showed the 
StarLogo traffic program to two visiting researchers, each of whom is involved in the cybernetics 
research community. They were not at all surprised that the traffic jams were moving backward. They 
were well aware of that phenomenon. But then one of the researchers said, "You know, I've heard that's 
why there are so many accidents on the freeways in Los Angeles. The traffic jams are moving backward 
and the cars are rushing forward, so there are lots of accidents." The other researcher thought for a 
moment, then replied, "Wait a minute. Cars crash into other cars, not into traffic jams." In short, he felt 
that the first researcher had confused levels, mixing cars and jams inappropriately. The two researchers 
then spent half an hour trying to sort out the problem.

5.4 A Traffic Jam Isn't Just a Collection of Cars

For most everyday objects, it is fair to think of the object as a collection of particular parts. (A particular 
chair might have four particular legs, a particular seat, a particular back.) But not so with objects like 
traffic jams. Thinking of a traffic jam as a collection of particular parts is a sure path to confusion. The 
cars composing a traffic jam are always changing, as some cars leave the front of the jam and others join 
from behind. Even when all of the cars in the jam are replaced with new cars, it is still the same traffic 
jam. A traffic jam can be thought of as an "emergent object"—it emerges from the interactions among 
lower-level objects (in this case, cars).

As students work on StarLogo projects, they encounter many emergent objects. In the termite example 
discussed earlier, the wood chip piles can be viewed as emergent objects. The precise composition of the 
piles is always changing, as termites take away some wood chips and add other wood chips. After a 
while, none of the original wood chips remains, but the pile is still there.



Students often have difficulty thinking about emergent objects. Two students, Frank and Ramesh, tried 
to use StarLogo to create "ant cemeteries." In their own (real) ant farms, they had observed ants 
gathering their dead colleagues into neat piles. They wondered how the ants did that. This problem is 
virtually identical to the problem of termites gathering wood chips into piles. But Frank and Ramesh 
resisted the simple decentralized approach that Callie and I used for the termites. They were adamant 
that dead ants should never be taken from a cemetery once placed there. They felt that the ants 
themselves defined the cemetary. How can a cemetery grow, they argued,
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if the dead ants in it are continually being taken away? In fact, if Frank and Ramesh had viewed the 
cemetary as an emergent object and allowed the composition of ant cemeteries to vary with time (as 
Callie and I allowed the composition of the wood chip piles to vary in the termite project), they probably 
would have been much more successful in their project.

5.5 The Hills are Alive

In Sciences of the Artificial [22], Simon describes a scene in which an ant is walking on a beach. Simon 
notes that the ant's path might be quite complex. But the complexity of the path, says Simon, is not 
necessarily a reflection of the complexity of the ant. Rather, it might reflect the complexity of the beach. 
Simon's point: don't underestimate the role of the environment in influencing and constraining behavior. 
People often seem to think of the environment as something to be acted upon, not something to be 
interacted with. People tend to focus on the behaviors of individual objects, ignoring the environment 
that surrounds (and interacts with) the objects.

A richer view of the environment is particularly important in thinking about decentralized and self-
organizing systems. In designing StarLogo, I explicitly tried to highlight the environment. Most creature-
oriented programming environments treat the environment as a passive entity, manipulated by the 
creature that move within it. In StarLogo, by contrast, the "patches" of the world have equal status with 
the creatures that move in the world. The environment is "alive"—it can execute actions even as 
creatures move within it. By reifying the environment, I hoped to encourage people to think about the 
environment in new ways.

Some students, however, resisted the idea of an active environment. When I explained a StarLogo ant-
foraging program to one student, he was worried that pheromone trails would continue to attract ants 
even after the food sources at the ends of the trails had been fully depleted. He developed an elaborate 
scheme in which the ants, after collecting all of the food, deposited a second pheromone to neutralize the 
first pheromone. It never occurred to him to let the first pheromone evaporate away. In his mind, the 
ants had to take some positive action to get rid of the first pheromone. They couldn't rely on the 
environment to make the first pheromone go away.



6 Conclusions

The centralized mindset has undoubtedly affected many theories and trends in the history of science. 
Just as children assimilate new information by fitting it into their preexisting models and conceptions of 
the world, so do scientists. As Keller [9] puts it, "In our zealous desire for familiar models of 
explanation, we risk not noticing the discrepancies between our own predispositions and the range of 
possibilities inherent in natural phenomena. In short we risk imposing on nature the very stories we like 
to hear." In particular, we risk imposing centralized models on a decentralized world.

For many years, there has been a self-reinforcing spiral. People saw the world in centralized ways, so 
they constructed centralized tools and models, which further encouraged a centralized view of the world. 
Until recently, there was little pressure against this centralization spiral. For many things that people 
created and organized, centralized approaches tended to be adequate, even superior to decentralized 
ones. Even if someone wanted to experiment with decentralized approaches, there were few tools or 
opportunities to do so.

But the centralization spiral is now starting to unwind. As organizations and scientific models grow 
more complex, there is a greater need for decentralized ideas. At the same time, new decentralized tools 
(like StarLogo) are emerging that enable people to actually implement and explore such ideas. Still, 
many challenges lie ahead. We need
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to develop better explanations of why people are so committed to centralized explanations. And we need 
to develop better tools to help people visualize and manipulate decentralized interactions. Ultimately, we 
need to develop new tools and theories that avoid the simple dichotomy between centralization and 
decentralization, but rather find ways to integrate the two approaches, drawing on the best of both. Only 
then will we truly be ready to move beyond the centralized mindset.
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Books on Artifical Life and Related Topics

David G. Stork 
Book Review Editor 
Ricoh California Research Center 
2882 Sand Hill Road Suite 115 
Menlo Park, CA 94025-7022 
stork@crc.ricoh.com

Books on Artificial Life and Related Topics

•  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, 
Control, and Artificial Intelligence. J. Holland, (1992, Bradford Books/The MIT Press); $14.95 paper, 
$30 hardcover.

•  Artificial Life: Proceedings of an Interdisciplinary Workshop on the Synthesis and Simulation of 
Living Systems. C. Langton (1989, Addison-Wesley); $24.95 paper, $41.95 hardcover.

• Artificial Life II: Proceedings of the Workshop on Artificial Life. C. Langton, D. Taylor, J. D. Farmer, 
& S. Rasmussen (Eds.) (1992, Addison-Wesley); $33.95 paper.

•  Toward a Practice of Autonomous Systems: Proceedings of the First European Conference on 
Artificial Life. F. J. Varela & P. Bourgine (Eds.) (1992, MIT Press); $55.00 paper.

•  From Animals to Animats: Proceedings of the Second International Conference on Simulation of 
Adaptive Behavior. J.-A. Meyer, H. L. Roitblat, & S. W. Wilson (Eds.) (1993, Bradford Books/The MIT 
Press); $55.00 paper.

•  Designing Automonous Agents. P. Maes (Ed.) (1990, Bradford Books/The MIT Press); $22.95 paper.

•  Genetic Algorithms in Search, Optimization and Machine Learning. D. Goldberg (1989, Addison-
Wesley); $43.95 hardcover.

•  Genetic Programming: On the Programming of Computers by Means of Natural Selection. J. Koza 
(1993, Bradford Books/The MIT Press); $55.00 hardcover.

•  Emergent Computation. S. Forrest (Ed.) (1991, 
Bradford Books/The MIT Press); $32.50 paper.



•  The Algorithmic Beauty of Plants. P. Prusinkiewicz & A. Lindenmayer (Springer Verlag, 1990); 
$39.95 hardcover.

•  Artificial Life: The Questfora New Creation. S. Levy (Random House, 1992); $25.00 hardcover.

The number of books on biology, evolutionary theory, learning, development, complex systems, neural 
networks, and other topics relevant to the study of Artificial Life is enormous, of course, but there is 
nevertheless a small, identifiable and growing number of books and conference proceedings available on 
topics most central to the field. A few books, such as John von Neumann's visionary Theory of Self-
Reproducing Automata (1966), in which he explicitly put forth many key ideas in the field, are out of 
print and can best be found in better libraries. These older books appear in the reference lists in several 
of the books whose descriptions follow, and should be consulted whenever
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possible; the history of Artifical Life extends back longer than just the last 5 years! Here we consider a 
few of the more important books currently available, with particular attention to what they provide to 
newcomers to the field.

We can thank The MIT Press for reprinting John Holland's 1975 book, Adaptation in Natural and 
Artificial Systems, which deals with simulating evolution by genetic algorithms (which he referred to as 
"genetic" or "adaptive plans")-a fundamental theme in contemporary artificial life research. In the 
intervening years, the notation employed in the field has been simplified and some of the concepts 
refined and extended; nevertheless, many of Holland's central ideas remain vital and important. Even the 
particular demonstration problems he considered (e.g., maze running and the Prisoner's Dilemma) are 
common test cases in contemporary research. Particularly useful is his chapter, "Reproductive Plans and 
Genetic Operators," which clarifies and quantifies the computational power of genetic processes such as 
crossover, inversion, mutation, and so forth.

It should be noted, though, that there was work centered on simulated evolution almost a decade before 
the book came out, such as described in R. S. Rosenberg's Simulation of Genetic Populations with 
Biochemical Properties (1967). While Holland introduced many of the key ideas to the field, his greatest 
contributions were to clarify and add to the central concepts, and most importantly to have a vision of 
where they might lead.

Prospective readers of Holland's book would greatly profit from a preparation in elementary probability 
and combinatorics and should be prepared to work through a few derivations and technical discussions 
that are (in easy retrospect) a bit abstruse. A new chapter, "Interim and Prospectus," highlights topics 
such as combat, and mating strategies, illustrated by Holland's computer model system Echo. If the 
reader has only $15 to spend on Artifical Life, this book (in paperback) is the one to get.



Several conference and workshop proceedings are a source of information on the latest work. Artificial 
Life, from the 1987 Los Alamos workshop marking a renaissance of interest in the field, is an excellent 
place to start. Particularly valuable is the opening contribution by the book's editor, Chris Langton, 
which includes a review of the history and guiding concepts. The topics represented in the book are a bit 
scattered, with everything from simulating the origin of biological life to nanotechnology with 
Feynmann machines and artificial life for computer graphics. There are a number of "policy" papers, 
such as Hans Moravec's "Human Culture: A Genetic Takeover Underway" and Richard Laing's 
"Artificial Organisms: History, Problems, Directions," that are thought provoking. Richard Dawkins' 
lively style in "The Evolution of Evolvability" is one of the highlights in the book, and his simple 
simulations of "biomorphs'' will serve to encourage anyone with a personal computer to try some 
experiments. The papers are significantly longer (roughly 30 pages, on average) than those from typical 
conference proceedings (and could even be considered chapters); they are long enough to get adequate 
detail for those interested in beginning work in the field.

The proceedings of the Second Workshop, Artificial Life II, preserves the enthusiasm and the diversity 
of the first. Neither can capture the lively discussions at the workshops themselves (e.g., over whether 
computer viruses are "really" alive or whether it is immoral to turn off some future computer simulation 
of artificial creatures). As J. D. Farmer and A. d'A. Belin point out in Artificial Life II, some people are 
deliberately provocative, and Eugene Spafford's "Computer Viruses-A Form of Artificial Life?" is 
productively provocative in just this way. Highlights in this book include a pair of papers on the "edge 
of chaos,"—one by Langton, the other by Stuart Kauffman and Sonke Johnson—as well as Danny Hillis' 
contribution on coevolving parasites, in which he describes methods for evolving one of the best 
algorithms for sorting numbers.
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Papers from the First European Conference on Artificial Life, Toward a Practice of Autonomous 
Systems, reveal a slight emphasis on studying biological principles for creating autonomous robots. 
There are many papers on evolving robot navigation strategies, sensors, motor control systems, and so 
forth, and these (in the section "Autonomous Robots") provide the greatest value of the book. The other 
sections, "Swarm Intelligence," ''Learning and Evolution," "Adaptive and Evolutionary Mechanisms," 
and "Issues and Conceptual Foundations," are of varied quality, although they provide a fairly good 
starting point for those new to the field. The papers are long enough (10 large-format pages, double 
column) for adequate detail and highlight the work going on in European laboratories.



Whereas these three Artificial Life proceedings just mentioned are quite broad, and what unity they 
possess centers on the exploration of the abstract, general strategies and principles underlying life, From 
Animals to Animats is a bit more focused on organisms. The majority of papers use the ideas from 
artificial life to create artificial autonomous systems based on biological principles or biological 
counterparts—"animats," as the editors define them. Several of the papers, such as S. Giszter's 
"Behavior Networks and Force Fields for Simulating Spinal Reflex Behaviors of the Frog," and R. 
Hartley's "Propulsion and Guidance in a Simulation of the Worm C. Elegans," are strongly influenced 
by "wet" biology. However, the majority are only loosely related to particular biological systems proper.

Designing Autonomous Agents: Theory and Practice from Biology to Engineering and Back contains 10 
contributed chapters, generally exploring a methodological shift away from "deliberative" artificial 
intelligence, toward one based on sloppy "behavioral" and evolutionary methods. Perhaps its best 
spokesperson, and surely one of the most influential researchers in this approach, is Rodney Brooks, 
whose "Elephants Don't Play Chess" provides a good overview of his research program of developing 
"intelligent" systems through evolution and direct interaction with the physical world. The paper by 
Beer, Chiel, and Sterling, "A Biological Perspective on Autonomous Agent Design," describes how 
imposing biological constraints on a model insect can lead to interesting gates, a phenomenon studied by 
a number of groups reporting in the conference proceedings mentioned earlier. The Artificial 
Intelligence Laboratories at MIT and the Vrije U. Brussels, where editor Pattie Maes has affiliations, are 
strongly represented in the book, and if there is a drawback for the novice in the field, it is that a wide 
range of alternate groups and views on these topics lack representation.

Genetic algorithms are a recurring theme in many of the books, and David Goldberg's Genetic 
Algorithms in Search, Optimization and Machine Learning, the first full textbook on the subject, is a 
good place to learn about them. It could be used quite easily for a special course at the undergraduate 
level, or as supplemental reading for a course on control (or with less success, pattern recognition). 
There are but few subtle, challenging concepts or ones that rely on prerequisites beyond those required 
for simple programming. The problems he considers are, frankly, cooked up—useful pedagogically but 
not for convincing a skeptic of the power of the approach: the Prisoner's Dilemma, simple gambling 
tasks with a small number of choices, and so on. The most complicated is a 10-element planar truss in 
which the goal is to minimize the weight of the truss subject to load constraints. The explanations are 
generally clear and free of errors, and each chapter has problems and computer assignments; there are 
appendices with Pascal source code that make it easy to get started in programming and exploring on 
your own.

John Koza's Genetic Programming is closer to a research monograph on programming by means of 
natural selection and, frankly, at times reads like a manifesto. Koza clearly states his concepts and 
methodology, and he is by far more empirical (through
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numerous simulation studies) than theoretical. His basic approach is to use fragments of computer 
programs (e.g., Lisp strings) as the elements upon which variation and recombination occur. Although 
some genetic algorithm systems permit genes to change in length, in Koza's work it is essential that they 
do so, because the programs expand (or possibly contract) to solve a task. He provides a large number of 
simulation results on problems, such as the truck backer upper, trail following, and Pac Man, that show 
the effectiveness of the approach.

Koza notes that seven properties one typically desires in standard problem solving—correctness, 
consistency, justifiability, certainty, orderliness, parsimony, and decisiveness—are eschewed in genetic 
programming. Some programmers will cringe at the pages full of Lisp code that evolved to solve such 
"simple" problems as a broom balancer. Koza was right to include such code, though, because as 
programming by humans continues to stay expensive while hardware, memory, and computer speed 
continue their satisfying improvements, such "evolved" programs may appear more frequently. The 
issue of scalability will be crucial, however, and it is not yet clear how large code can be evolved by 
Koza's techniques. The appendixes provide the kernel and variations of some simple Lisp code for 
implementing genetic programming. Readers most concerned with Artificial Life proper should consult 
his sections on central place food foraging by ants, and the foraging strategy of the Anolis lizard. Here 
Koza shows computations of optimal foraging strategies in nature and how they can be duplicated by his 
genetic programming techniques—a very nice merging of ideas from biology and computer science.

A special 1990 issue of Physica D edited by Stephanie Forrest on Emergent Computation has been 
reprinted. There is a useful article by C. Langton, "Computation at the Edge of Chaos: Phase Transitions 
and Emergent Computation," on cellular automata studies of systems that evolve to the hazy condition 
between fully chaotic structurelessness and frozen order, that is, at the "edge" of chaos. Such work was 
influenced in part by Steve Wolfram's four-member categorization of cellular automata dynamics. A 
particularly valuable contribution is Stuart Kauffman's ''Requirements for Evolvability in Complex 
Systems: Orderly Dynamics and Frozen Components," and, because it is long enough to explore 
important points in sufficient depth, this is the best place for the novice to read about his work on 
Boolean networks. A number of papers, while quite interesting, have little to do with Artificial Life 
proper. For instance, the quirky and interesting short paper, "Computer Arithmetic, Chaos and Fractals," 
by Julian Palmore and Charles Herring shows how the fact that computers necessarily employ finite 
precision calculations (as high as that precision might be) induces fractal structure on certain large 
computations.

In a qualitatively different vein, The Algorithmic Beauty of Plants by Przemyslaw Prusinkiewics and 
Aristid Lindenmayer stresses the visual ramifications of simple Artificial Life techniques. The numerous 
color photographs of simulated sunflowers, trees, and especially ferns will be an inspiration to many 
working in computer graphics.



The nature of the sources of fractal structure in plants and the modeling of cellular layers (especially 
during development) may be of greater interest to the general Artificial Life community. The book 
illustrates L systems (named after Lindenmayer), based on simple rewrite or "growing" models of 
plants. An example might be: take a short stalk and replace it by a forking branch; take each of these 
branches and replace each by another (smaller) forking branch, and so forth. It is really quite charming 
how trees and ferns can be simulated through such simple rules like these. Basic rules involving rate of 
cell division, structural forces, etc. can be run and compared closely with biological counterparts. For 
instance, by using L systems, cell lineage in Microsorium linguaeforme can be predicted and compared 
with micrographs.
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Lindenmayer became seriously ill after beginning the book, and it was finished by his colleagues after 
his death. As such, it lacks a bit of unity and sweep, with somewhat abstract computer code juxtaposed 
with lovely computer graphs but without a textual analysis sufficiently deep to adequately inform the 
reader of the issues. Nevertheless, this is the best source of images derived from the principles of 
artificial life.

A good holiday present for a nontechnical spouse or an inquisitive high-school student would be Steven 
Levy's Artificial Life: The Quest for a New Creation. This trade book explains the field by following 
several seminal workers, and it blends biographical information (which typically provides the narrative 
structure) with the science, technology, and philosophy. Levy gets the science correct (although often 
after some appropriate simplifications) but occasionally succumbs to hype, especially in the earlier 
chapters. Some of the blame for this must be placed on a few scientists themselves, because Levy 
faithfully quotes their statements. It is just a bit harder to forgive Levy's dismissal of the skeptics of 
Artificial Life—some are thoughtful, careful and quite knowledgeable. (Artificial Life practitioners 
would do well, as many have, by taking these objections seriously.) In a similar vein, Levy attributes 
concepts or discoveries to the new Artificial Life people, whereas in some cases the ideas are much 
older. It adds drama, for instance, when recounting Danny Hillis' work on coevolution and punctuated 
equilibrium, to highlight the disagreements with "wet" biologists, although it is at the slight expense of 
veracity. But overall the book is quite enjoyable and can be recommended.

Space here does not permit mention of several other worthy books; reviews of these, and Artificial Life 
software, will have to await publication in subsequent issues of this journal.
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Abstract There has been considerable interest in computer viruses since they first appeared in 1981, and 
especially in the past few years as they have reached epidemic numbers in many personal computer 
environments. Viruses have been written about as a security problem, as a social problem, and as a 
possible means of performing useful tasks in a distributed computing environment. However, only 
recently have some scientists begun to ask if computer viruses are not a form of artificial life—a self-
replicating organism. Simply because computer viruses do not exist as organic molecules may not be 
sufficient reason to dismiss the classification of this form of "vandalware" as a form of life. This paper 
begins with a description of how computer viruses operate and their history, and of the various ways 
computer viruses are structured. It then examines how viruses meet properties associated with life as 
defined by some researchers in the area of artificial life and self-organizing systems. The paper 
concludes with some comments directed toward the definition of artificially "alive" systems and 
experimentation.

1 Introduction

There has been considerable interest in computer viruses during the last several years. One aspect of this 
interest has been to ask if computer viruses are a form of artificial life, and what that might imply. To 
address this, we must first understand something of the history and structure of computer viruses. Thus, 
we will begin with a condensed, high-level description of computer viruses—their history, structure, and 
how they relate to some properties that might define artificial life.

A more detailed introduction to the topic of computer viruses may be found in the references, 
particularly [2, 3, 5, 9] and [15]. Also of use are references [10, 11, 14, 16] and [24], although the lists 
presented in the latter are somewhat out of date.

2 What Is a Computer Virus?



Computers are designed to execute instructions one after another. Those instructions usually do 
something useful—calculate values, maintain databases, and communicate with users and with other 
systems. Sometimes, however, the instructions executed can be damaging and malicious in nature. 
When that happens by accident, we call the code involved a software bug1—perhaps the most common 
cause of unexpected program behavior. If the source of the instructions was an individual who intended

* Portions of this paper are derived from Spafford [28, 30, 31 ].

** Copyright Ó 1989 ITAA, formerly ADAPSO, and 1991, 1993 by Eugene H. Spafford. Used with permission.

1 The original choice of the term bug is unfortunate in this context and is unrelated to the topic of artificial life.
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that the abnormal behavior occur, then we consider this malicious coding; authorities have sometimes 
referred to this code as malware and vandalware. These names relate to the usual effect of such 
software.

There are many distinct forms of this software that are characterized by the way they behave, how they 
are triggered, and how they spread. In recent years, occurrences of malware have been described almost 
uniformly by the media as computer viruses. In some environments, people have been quick to report 
almost every problem as the result of a virus. This is unfortunate, because most problems are from other 
causes (including, most often, operator error). Viruses are widespread, but they are not responsible for 
many of the problems attributed to them.

The term computer virus is derived from and is in some sense analogous to a biological virus. The word 
virus itself is Latin for poison. Simplistically, biological viral infections are spread by the virus (a small 
shell containing genetic material) injecting its contents into a far larger organism's cell. The cell then is 
infected and converted into a biological factory producing replicants of the virus.

Similarly, a computer virus is a segment of machine code (typically 200-4,000 bytes) that will copy 
itself (or a modified version of itself) into one or more larger "host" programs when it is activated. When 
these infected programs are run, the viral code is executed, and the virus spreads further. Sometimes, 
what constitutes "programs" is more than simply applications: Boot code, device drivers, and command 
interpreters also can be infected.

Computer viruses cannot spread by infecting pure data; pure data files are not executed. However, some 
data, such as files with spreadsheet input or text files for editing, may be interpreted by application 
programs. For instance, text files may contain special sequences of characters that are executed as editor 
commands when the file is first read into the editor. Under these circumstances, the data files are 
"executed" and may spread a virus. Data files may also contain a "hidden" code that is executed when 
the file is used by an application, and this too may be infected. Technically speaking, however, pure data 
itself cannot be infected by a computer virus.



The first use of the term virus to refer to unwanted computer code was by the science fiction author 
David Gerrold. He wrote a series of short stories about a fictional G.O.D. machine (super computer) in 
the early 1970s that were later merged into a novel in 1972, titled When Harlie Was One [12]. The 
description of virus in that book does not fit the currently accepted, popular definition of computer virus-
a program that alters other programs to include a copy of itself.

Cohen [2] formally defined the term computer virus in 1983. At that time, Cohen was a graduate student 
at the University of Southern California attending a security seminar. Something discussed in class 
inspired him to think about self-reproducing code. He put together a simple example that he 
demonstrated to the class. His advisor, Professor Len Adleman, thinking about the behavior of this 
creation, suggested that Cohen call his creation a computer virus. Dr. Cohen's doctoral thesis and later 
research were devoted to computer viruses.

Actual computer viruses were being written by individuals before Cohen, although not named such, as 
early as 1980 on Apple II computers [9]. The first few viruses were not circulated outside of a small 
population, with the notable exception of the "Elk Cloner" virus released in 1981 on several bulletin 
board systems.

Although Cohen (and others, including Adleman [1]) have attempted formal definitions of computer 
virus, none have gained widespread acceptance or use. This is a result of the difficulty in defining 
precisely the characteristics of what a virus is and is not. Cohen's formal definition includes any 
programs capable of self-reproduction. Thus, by his definition, programs such as compilers and editors 
would be classed as "viruses." This also has led to confusion when Cohen (and others) have referred to 
"good
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viruses"—something that most others involved in the field believe to be an oxymoron [4, 29].

Stubbs and Hoffman [32] quote a definition by John Inglis that captures the generally accepted view of 
computer viruses:

"He defines a virus as a piece of code with two characteristics:

1. At least a partially automated capability to reproduce.

2. A method of transfer which is dependent on its ability to attach itself to other computer entities 
(programs, disk sectors, data files, etc.) that move between these systems." (p. 145)

Several other interesting definitions are discussed in Highland [14, chap. 1].



After first appearing as a novelty, true computer viruses have become a significant problem. In 
particular, they have flourished in the weaker security environment of the personal computer. Personal 
computers were originally designed for a single dedicated user—little, if any, thought was given to the 
difficulties that might arise should others have even indirect access to the machine. The systems 
contained no security facilities beyond an optional key switch, and there was a minimal amount of 
security-related software available to safeguard data. Today, however, personal computers are being 
used for tasks far different from those originally envisioned, including managing company databases and 
participating in networks of computer systems. Unfortunately, their hardware and operating systems are 
still based on the assumption of single trusted-user access, and this allows computer viruses to spread 
and flourish on those machines. The population of users of PCs further adds to the problem, because 
many are unsophisticated and unaware of the potential problems involved with lax security and 
uncontrolled sharing of media.

Over time, the problem of viruses has grown to significant proportions. In the 7 years after the first 
infection by the Brain virus in January 1986, generally accepted as the first significant MS-DOS virus, 
the number of known viruses has grown to several thousand different viruses, most of which are for MS-
DOS.

The problem has not been restricted to the IBM PC, however, and now affects all popular personal 
computers. Mainframe viruses may be written for any operating system that supports sharing of data and 
executable software, but all reported to date have been experimental in nature, written by serious 
academic researchers in controlled environments (e.g., [6]). This is probably a result, in part, of the 
greater restrictions built into the software and hardware of those machines, and of the way they are 
usually used. It may also be a reflection on the more technical nature of the user population of these 
machines.

2.1 Related Software

Worms are another form of software that is often referred to as a computer virus. Unlike viruses, worms 
are programs that can run independently and travel from machine to machine across network 
connections; worms may have portions of themselves running on many different machines. Worms do 
not change other programs, although they may carry other code that does, such as a true virus. It is their 
replication behavior that leads some people to believe that worms are a form of virus, especially those 
people using Cohen's formal definition (which incidentally would also classify standard network file 
transfer programs as viruses). The fact that worms do not modify existing programs is a clear distinction 
between viruses and worms, however.

In 1982, Shoch and Hupp [23] of Xerox PARC (Palo Alto Research Center) described the first computer 
worms. They were working with an experimental, networked environment using one of the first local 
area networks. While searching for something that
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would use their networked environment, one of them remembered reading The Shockwave Rider by 
John Brunner, published in 1975. This science fiction novel described programs that traversed networks, 
carrying information with them. Those programs were called tapeworms in the novel. Shoch and Hupp 
named their own programs worms, because they saw a parallel to Brunner's tapeworms. The Xerox 
worms were actually useful—they would travel from workstation to workstation, reclaiming file space, 
shutting off idle workstations, delivering mail, and doing other useful tasks.

The Internet Worm of November 1988 is often cited as the canonical example of a damaging worm 
program [22, 26, 27]. The Worm clogged machines and networks as it spread out of control, replicating 
on thousands of machines around the Internet. Some authors (e.g., [7]) labeled the Internet Worm as a 
virus, but those arguments are not convincing (cf. the discussion in Spafford [25]). Most people working 
with self-replicating code now accept the Worm as a form of software distinct from computer viruses.

Few computer worms have been written in the time since then, especially worms that have caused 
damage, because they are not easy to write. Worms require a network environment and an author who is 
familiar not only with the network services and facilities but also with the operating facilities required to 
support them once they have reached their targets.

Worms have also appeared in other science fiction literature. Recent "cyberpunk" novels such as 
Neuromancer by William Gibson [13] refer to worms by the term virus. The media have also often 
referred incorrectly to worms as viruses. This paper focuses only on viruses as defined earlier. Many of 
the comments about viruses and artificial life may also be applied to worm programs.

Thimbleby [33] coined the term liveware to describe another form of self-propagating software that 
carries information or program updates. Liveware shares many of the characteristics of both viruses and 
worms but has the additional distinction of announcing its presence and requesting permission from the 
user to execute its intended functions. There have been no reports of liveware being discovered or 
developed other than by Thimbleby and his colleagues.

Other forms of self-reproducing and usually malicious software have also been written. Although no 
formal definitions have been accepted by the entire community to describe this software, there are some 
informal definitions that seem to be commonly accepted (cf. [21]). Several of these are often discussed 
by analogy to living organisms. This tendency toward anthropomorphism has perhaps led to some 
confusion about the nature of this software. Rather than discuss each of these software forms here, 
possibly adding to the confusion, the remainder of this paper will focus on computer viruses only; the 
interested reader may peruse the cited references.

3 Virus Structure and Operation

True viruses have two major components: one that handles the spread of the virus, and a "payload" or 
"manipulation" task. The payload task may not be present (has null effect), or it may await a set of 
predetermined circumstances before triggering.



For a computer virus to work, it somehow must add itself to other executable code. The viral code is 
usually executed before the code of its infected host (if the host code is ever executed again). One form 
of classification of computer viruses is based on the three ways a virus may add itself to host code: as a 
shell, as an add-on, and as intrusive code.

A fourth form, the so-called companion virus, is not really a virus at all, but a form of Trojan horse that 
uses the execution path mechanism to execute in place of a normal program. Unlike all other viral 
forms, it does not alter any existing code in
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Figure 1. Shell virus infection.

any fashion: Companion viruses create new executable files with a name similar to an existing program, 
and they are chosen so that they are normally executed prior to the "real" program. Because companion 
viruses are not real viruses unless one uses a more encompassing definition of virus, they will not be 
described further here.

Shell viruses. A shell virus is one that forms a "shell" (as in "eggshell" rather than "Unix shell") around 
the original code. In effect, the virus becomes the program, and the original host program becomes an 
internal subroutine of the viral code. An extreme example of this would be a case where the virus moves 
the original code to a new location and takes on its identity. When the virus is finished executing, it 
retrieves the host program code and begins its execution. Almost all boot program viruses (described 
later) are shell viruses (Figure 1).



Add-on viruses. Most viruses are add-on viruses. They function by appending their code to the host code 
and/or by relocating the host code and inserting their own code to the beginning. The add-on virus then 
alters the start-up information of the program, executing the viral code before the code for the main 
program. The host code is left almost completely untouched; the only visible indication that a virus is 
present is that the file grows larger, if that can indeed be noticed (Figure 2).

Intrusive viruses. Intrusive viruses operate by overwriting some or all of the original host code with viral 
code. The replacement might be selective, as in replacing a subroutine with the virus, or inserting a new 
interrupt vector and routine. The replacement may also be extensive, as when large portions of the host 
program are completely replaced by the viral code. In the latter case, the original program can no longer 
function properly. Few viruses are intrusive viruses (Figure 3).

A second form of classification used by some authors (e.g., [24]) is to divide viruses into file infectors 
and boot (system start-up) program infectors. This is not particularly clear, however, because there are 
viruses that spread by altering system-related code that is neither boot code nor programs. Some viruses 
target file system directories, for example. Other viruses infect both application files and boot sectors. 
This second form of classification is also highly specific and only makes sense for machines that have 
infectable (writable) boot code.

Yet a third form of classification is related to how viruses are activated and select new targets for 
alteration. The simplest viruses are those that run when their "host" program is run, select a target 
program to modify, and then transfer control to the host.
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Figure2. Add-on virus infection



Figure 3. Intrusive virus infection.

These viruses are transient or direct viruses, known as such because they operate only for a short time, 
and they go directly to disk to seek out programs to infect.

The most "successful" PC viruses to date exploit a variety of techniques to remain resident in memory 
once their code has been executed and their host program has terminated. This implies that, once a 
single infected program has been run, the virus potentially can spread to any or all programs in the 
system. This spreading occurs during the entire work session (until the system is rebooted to clear the 
virus from memory), rather than during a small period of time when the infected program is executing 
viral code. These viruses are resident or indirect viruses, known as such because they stay resident in 
memory, and indirectly find files to infect as they are referenced by the user. These viruses are also 
known as TSR (Terminate and Stay Resident) viruses.

If a virus is present in memory after an application exits, how does it remain active? That is, how does 
the virus continue to infect other programs? The answer for personal computers running software such 
as MS-DOS is that the virus alters the standard
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Figure 4. Normal interrupt usage.

interrupts used by DOS and the BIOS (Basic Input/Output System). The change to the environment is 
such that the virus code is invoked by other applications when they make service requests.

The PC uses many interrupts (both hardware and software) to deal with asynchronous events and to 
invoke system functions. All services provided by the BIOS and DOS are invoked by the user storing 
parameters in machine registers, then causing a software interrupt.

When an interrupt is raised, the operating system calls the routine whose address it finds in a special 
table known as the vector or interrupt table. Normally, this table contains pointers to handler routines in 
the ROM or in memory-resident portions of the DOS (see Figure 4). A virus can modify this table so 
that the interrupt causes viral code (resident in memory) to be executed.

By trapping the keyboard interrupt, a virus can arrange to intercept the CTRL-ALT-DEL soft reboot 
command, modify user keystrokes, or be invoked on each keystroke. By trapping the BIOS disk 
interrupt, a virus can intercept all BIOS disk activity, including reads of boot sectors, or disguise disk 
accesses to infect as part of a user's disk request. By trapping the DOS service interrupt, a virus can 
intercept all DOS service requests including program execution, DOS disk access, and memory 
allocation requests.

A typical virus might trap the DOS service interrupt, causing its code to be executed before calling the 
real DOS handler to process the request (see Figure 5.)

Once a virus has infected a program or boot record, it seeks to spread itself to other programs, and 
eventually to other systems. Simple viruses do no more than this, but most viruses are not simple 
viruses. Common viruses wait for a specific triggering condition and then perform some activity. The 
activity can be as simple as printing a message to the user or as complex as seeking particular data items 
in a specific file and changing their values. Often, viruses are destructive, removing files, or 
reformatting entire disks. Many viruses are also faulty and may cause unintended damage.



The conditions that trigger viruses can be arbitrarily complex. If it is possible to write a program to 
determine a set of conditions, then those same conditions can be used to trigger a virus. This includes 
waiting for a specific date or time, determining the presence or absence of a specific set of files (or their 
contents), examining user keystrokes for a sequence of input, examining display memory for a specific 
pattern, or checking file attributes for modification and permission information. Viruses also may be 
triggered based on some random event. One common trigger component is a counter used to determine 
how many additional programs the virus has succeeded in infecting-the virus does not trigger until it has 
propagated itself a certain minimum number of times. Of course, the trigger can be any combination of 
conditions, too.
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Figure 5. Interrupt vectors with TSR virus.

Computer viruses can infect any form of writable storage, including hard disk, floppy disk, tape, optical 
media, or memory. Infections can spread when a computer is booted from an infected disk, or when an 
infected program is run. This can occur either as the direct result of a user invoking an infected program, 
or indirectly through the system executing the code as part of the system boot sequence or a background 
administration task. It is important to realize that often the chain of infection can be complex and 
convoluted. With the presence of networks, viruses can also spread from machine to machine as 
executable code containing viruses is shared between machines.



Once activated, a virus may replicate into only one program at a time, it may infect some randomly 
chosen set of programs, or it may infect every program on the system. Sometimes a virus will replicate 
based on some random event or on the current value of the clock. The different methods will not be 
presented in detail because the result is the same: There are additional copies of the virus on the system.

4 Evolution of Viruses

Since the first viruses were written, we have seen what may be classified as five "generations" of 
viruses. Each new class of viruses has incorporated new features that make the viruses more difficult to 
detect and remove. Here, as with other classification and naming issues related to viruses, different 
researchers use different terms and definitions (cf. ref. [9, Appendix 10]). The following list presents 
one classification derived from a number of these sources. Note that these "generations" do not 
necessarily imply chronology. For instance, several early viruses (e.g., the "Brain" and ''Pentagon" 
viruses) had stealth and armored characteristics. Rather, this list describes increasing levels of 
sophistication and complexity represented by computer viruses in the MS-DOS environment.

4.1 First Generation: Simple

The first generation of viruses were the simple viruses. These viruses did nothing very significant other 
than replicate. Many new viruses being discovered today still
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fall into this category. Damage from these simple viruses is usually caused by bugs or incompatibilities 
in software that were not anticipated by the virus author.

First-generation viruses do nothing to hide their presence on a system, so they can usually be found by 
means as simple as noting an increase in size of files or the presence of a distinctive pattern in an 
infected file.

4.2 Second Generation: Self-Recognition

One problem encountered by viruses is that of repeated infection of the host, leading to depleted 
memory and early detection. In the case of boot sector viruses, this could (depending on strategy) cause 
a long chain of linked sectors. In the case of a program-infecting virus, repeated infection may result in 
continual extension of the host program each time it is reinfected. There are indeed some older viruses 
that exhibit this behavior.

To prevent this unnecessary growth of infected files, second-generation viruses usually implant a unique 
signature that signals that the file or system is infected. The virus will check for this signature before 
attempting infection and will place it when infection has taken place; if the signature is present, the virus 
will not reinfect the host.



A virus signature can be a characteristic sequence of bytes at a known offset on disk or in memory, a 
specific feature of the directory entry (e.g., alteration time or file length), or a special system call 
available only when the virus is active in memory.

The signature presents a mixed blessing for the virus. The virus no longer performs redundant infections 
that might present a clue to its presence, but the signature does provide a method of detection. Virus 
sweep programs can scan files on disk for the signatures of known viruses or even "inoculate" the 
system by providing the viral signature in clean systems to prevent the virus from attempting infection.

4.3 Third Generation: Stealth

Most viruses may be identified on a contaminated system by means of scanning the secondary storage 
and searching for a pattern of data unique to each virus. To counteract such scans, some resident viruses 
employ stealth techniques. These viruses subvert selected system service call interrupts when they are 
active. Requests to perform these operations are intercepted by the virus code. If the operation would 
expose the presence of the virus, the operation is redirected to return false information.

For example, a common virus technique is to intercept I/O requests that would read sectors from disk. 
The virus code monitors these requests. If a read operation is detected that would return a block 
containing a copy of the virus, the active code returns instead a copy of the data that would be present in 
an uninfected system. In this way, virus scanners are unable to locate the virus on disk when the virus is 
active in memory. Similar techniques may be employed to avoid detection by other operations.

4.4 Fourth Generation: Armored

As antiviral researchers have developed tools to analyze new viruses and craft defenses, virus authors 
have turned to methods to obfuscate the code of their viruses. This "armoring" includes adding 
confusing and unnecessary code to make it more difficult to analyze the virus code. The defenses may 
also take the form of directed attacks against antiviral software, if present on the affected system. These 
viruses appeared starting in 1990.

Viruses with these forms of defenses tend to be significantly larger than simpler viruses and more easily 
noticed. Furthermore, the complexity required to significantly delay the efforts of trained antiviral 
experts appears to be far beyond anything that has yet appeared.

  



Page 258

4.5 Fifth Generation: Polymorphic

The most recent class of viruses to appear on the scene are the polymorphic or self-mutating viruses. 
These are viruses that infect their targets with a modified or encrypted version of themselves. By 
varying the code sequences written to the file (but still functionally equivalent to the original), or by 
generating a different, random encryption key, the virus in the altered file will not be identifiable 
through the use of simple byte matching. To detect the presence of these viruses requires that a more 
complex algorithm be employed that, in effect, reverses the masking to determine if the virus is present.

Several of these viruses have become quite widespread. Some virus authors have released virus 
"toolkits" that can be incorporated into a complete virus to give it polymorphic capabilities. These 
toolkits have been circulated on various bulletin boards around the world and incorporated in several 
viruses.

5 Defenses and Outlook

There are several methods of defense against viruses. Unfortunately, no defense is perfect. It has been 
shown that any sharing of writable memory or communications with any other entity introduces the 
possibility of virus transmission. Furthermore, Cohen, Adleman [1, 2], and others have shown proofs 
that the problem of writing a program to exactly detect all viruses is formally undecidable: It is not 
possible to write a program that will detect every virus without any error.

Of some help is the observation that it is trivial to write a program that identifies all infected programs 
with 100% accuracy. Unfortunately, this program must identify every (or nearly so) program as infected, 
whether it is or not! This is not particularly helpful to the user, and the challenge is to write a detection 
mechanism that finds most viruses without generating an excessive number of false positive reports.

Defense against viruses generally takes one of three forms:

Activity monitors are programs that are resident on the system. They monitor activity and either raise a 
warning or take special action in the event of suspicious activity. Thus, attempts to alter the interrupt 
tables in memory or to rewrite the boot sector would be intercepted by such monitors. This form of 
defense can be circumvented (if implemented in software) by viruses that activate earlier in the boot 
sequence than the monitor code. They are further vulnerable to virus alteration if used on machines 
without hardware memory protection—as is the case with all common personal computers.

Another form of monitor is one that emulates or otherwise traces execution of a suspect application. The 
monitor evaluates the actions taken by the code and determines if any of the activity is similar to what a 
virus would undertake. Appropriate warnings are issued if suspicious activity is identified.

Scanners have been the most popular and widespread form of virus defense. A scanner operates by 
reading data from disk and applying pattern matching operations against a list of known virus patterns. 
If a match is found for a pattern, a virus instance is announced.



Scanners are fast and easy to use, but they suffer from many disadvantages. Foremost among the 
disadvantages is that the list of patterns must be kept up-to-date. In the MS-DOS world, new viruses are 
appearing by as many as several dozen each week. Keeping a pattern file up-to-date in this rapidly 
changing environment is difficult.

A second disadvantage to scanners is one of false positive reports. As more patterns are added to the list, 
it becomes more likely that one of them will match some otherwise legitimate code. A further 
disadvantage is that polymorphic viruses cannot be detected with scanners.
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To the advantage of scanners, however, is their speed. Scanning can be made to work quite quickly. 
Scanning can also be done portably and across platforms [17], and pattern files are easy to distribute and 
update. Furthermore, of the new viruses discovered each week, few will ever become widespread. Thus, 
somewhat out-of-date pattern files are still adequate for most environments. Scanners equipped with 
algorithmic or heuristic checking may also find most polymorphic viruses. It is for these reasons that 
scanners are the most widely used form of antiviral software.

Integrity checkers/monitors are programs that generate checkcodes (e.g., checksums, cyclic redundancy 
codes (CRCs), secure hashes, message digests, or cryptographic checksums) for monitored files [20]. 
Periodically, these checkcodes are recomputed and compared against the saved versions. If the 
comparison fails, a change is known to have occurred to the file, and it is flagged for further 
investigation. Integrity monitors run continuously and check the integrity of files on a regular basis. 
Integrity shells recheck the checkcode prior to every execution [31.

Integrity checking is an almost certain way to discover alterations to files, including data files. Because 
viruses must alter files to implant themselves, integrity checking will find those changes, Furthermore, it 
does not matter if the virus is known or not-the integrity check will discover the change no matter what 
causes it. Integrity checking also may find other changes caused by buggy software, problems in 
hardware, and operator error.

Integrity checking also has drawbacks. On some systems, executable files change whenever the user 
runs the file or when a new set of preferences is recorded. Repeated false positive reports may lead the 
user to ignore future reports or disable the utility. It is also the case that a change may not be noticed 
until after an altered file has been run and a virus spread. More importantly, the initial calculation of the 
checkcode must be performed on a known unaltered version of each file. Otherwise, the monitor will 
never report the presence of a virus, probably leading the user to believe the system is uninfected.

Several vendors have begun to build self-checking into their products. This is a form of integrity check 
that is performed by the program at various times as it runs. If the self-check reveals some unexpected 
change in memory or on disk, the program will terminate or warn the user. This helps to signal the 
presence of a new virus quickly so that further action may be taken.



If no more computer viruses were written from now on, there would still be a computer virus problem 
for many years to come. Of the thousands of reported computer viruses, several hundred are well 
established on various types of computers around the world. The population of machines and archived 
media is such that these viruses would continue to propagate from a rather large population of 
contaminated machines.

Unfortunately, there appears to be no lessening of computer virus activity, at least within the MS-DOS 
community. Several new viruses are appearing every day. Some of these are undoubtedly being written 
out of curiosity and without thought for the potential damage. Others are being written with great 
purpose and with particular goals in mind-both political and criminal. Although it would seem of little 
interest to add to the swelling number of viruses in existence, many individuals seem to be doing exactly 
that.

6 Viruses as Artificial Life

Now that we know what computer viruses are and how they spread, we can examine the question of 
whether they represent a form of artificial life. The first, and obvious, question is "What is life?" 
Without an answer to this question, we will be unable to say if a computer virus is "alive."
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One very reasonable list of properties associated with life was presented in Farmer and Belin [8]. That 
list included:

• life is a pattern in space-time rather than a specific material object.

• self-reproduction, in itself or in a related organism.

• information storage of a self-representation.

• a metabolism that converts matter/energy.

•  functional interactions with the environment.

• interdependence of parts.

• stability under perturbations of the environment.

• the ability to evolve.

• growth or expansion



Let us examine each of these characteristics in relation to computer viruses.

6.1 Viruses as Patterns in Space-Time

There is a near match to this characteristic. Viruses are represented by patterns of computer instructions 
that exist over time on many computer systems. Viruses are not associated with the physical hardware 
but with the instructions executed (sometimes) by that hardware. Computer viruses, like all functional 
computer code, are simply manifestations of algorithms. The algorithms themselves also represent an 
underlying pattern.

It is questionable if these patterns exist in space, however, unless one extends the definition of space to 
"cyberspace," as represented by a computer system. The patterns of the viruses are a temporary set of 
electrical and magnetic field changes in the memory or storage of computer systems. The existence of 
the virus is only within these patterns of energy. Arguably, the code for each virus could be printed in 
ink on paper, resulting in a more substantiative existence. That, however, is merely a representation of 
the true virus and should not be viewed as existence any more than a picture of a person is itself the 
person.

6.2 Self-Reproduction of Viruses

One of the primary characteristics of computer viruses is their ability to reproduce themselves (or an 
altered version of themselves). Thus, this characteristic seems to be met. One of the key characteristics 
is their ability to reproduce.

However, it is perhaps more interesting to examine this aspect in light of the agent of reproduction. The 
virus code is not itself the agent—the computer is. It is questionable if this can be considered sufficient 
for purposes of classification as artificial life. To do so would imply that, for instance, the blueprints for 
a Xerox machine are capable of self-reproduction: When outside agents follow the instructions therein, 
it is possible to produce a new machine that can then be used to make a copy of them. It is not the 
blueprint (algorithm; virus) that is the agent of change but the entity that interprets it.

6.3 Information Storage of a Self-Representation

This is the most obvious match for computer viruses. The code that defines the virus is a template that is 
used by the virus to replicate itself. This is similar to the DNA molecules of what we recognize as 
organic life.
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6.4 Virus Metabolism

This property involves the organism taking in energy or matter from the environment and using it for its 
own activity. Computer viruses use the energy of computation expended by the system to execute. They 
do not convert matter but make use of the electrical energy present in the computer to traverse their 
patterns of instructions and infect other programs. In this sense, they have a metabolism.

Again, however, we are forced to change this view if we examine the case more closely. The 
expenditure of energy is not by the virus but by the underlying computer system. If the virus were not 
active, and an interactive game were being run instead, the same amount of energy would be used. In 
most systems, even if no program is being run, the energy use remains constant. Thus, we must conclude 
that viruses do not actually have a metabolism.

6.5 Functional Interactions with the Virus's Environment

Viruses perform examinations of their host environments as part of their activities. They alter interrupts, 
examine memory and disk architectures, and alter addresses to hide themselves and spread to other 
hosts. They very obviously alter their environment to support their existence. Many viruses accidentally 
alter their environment because of bugs or unforeseen interactions. The major portion of damage from 
all computer viruses is a result of these interactions.

6.6 Interdependence of Virus Parts

Living organisms cannot be arbitrarily divided without destroying them. The same is true of computer 
viruses. Should a computer virus have a portion of its "anatomy" excised, the virus would probably 
cease to function normally, if at all. Few viruses are written with superfluous code, and, even so, the 
working code cannot be divided without disabling the virus.

However, it is interesting to note that the virus can be reassembled later and regain its functional status. 
If a living organism (as we know it) were to be divided into its component parts for a period of time, 
then reassembled, it would not become "alive" again. In this sense, computer viruses are more like 
simple machines or chemical reactions rather than instances of living things.

6.7 Virus Stability Under Perturbations

Computer viruses run on a variety of machines under different operating systems. Many of them are able 
to compromise (and defeat) antiviral and copy protection mechanisms. They may adjust on the fly to 
conditions of insufficient storage, disk errors, and other exceptional events. Some are capable of running 
on most variants of popular personal computers under almost any software configuration—a stability 
and robustness seen in few commercial applications.

6.8 Virus Evolution



Here, too, viruses display a difference from systems we traditionally view as "alive." No computer 
viruses evolve as we commonly use the term, although it is conceivable that a very complex virus could 
be programmed to evolve and change. However, such a virus would be so large and complex as to be 
many orders of magnitude larger than most host programs and probably bigger than the host operating 
systems. Thus, there is some doubt that such a virus could run on enough hosts to allow it to evolve. 
(Note that "evolve" implies a change in function or attributes; polymorphic viruses represent cases of 
random changes in structure but not functionality.)

Higher-level mutations of viruses do exist, however. There are variants of many
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known viruses, with over a dozen known for some IBM PC viruses. The variations involved can be very 
small, on the order of two or three instructions' difference, to major changes involving differences in 
messages, activation, and replication. The source of these variations appears to be programmers (the 
original virus authors or otherwise) who alter the viruses to avoid antiviral mechanisms or to cause 
different kinds of damage. Polymorphic viruses alter their copies to avoid detection, but the pattern of 
alteration is ultimately a human product. These changes do not constitute evolution, however.

Interestingly, there is also one case where two different strains of a Macintosh virus are known to 
interact to form infections unlike the "parents," although these interactions usually produce "sterile" 
offspring that are unable to reproduce further. This likewise does not appear to be evolution as we know 
it [191.

6.9 Growth

Viruses certainly do exhibit a form of growth, in the sense that there are more of them in a given 
environment over time. Some transient viruses will infect every file on a system after only a few 
activations. The spread of viruses through commercial software and public bulletin boards is another 
indication of their widespread replication. Although accurate numbers are difficult to derive, reports 
over the last few years indicate an approximate yearly doubling in the number of systems infected by 
computer viruses. Clearly, computer viruses are exhibiting significant growth.

6.10 Other Behavior

As already noted, computer viruses exhibit "species" with well-defined ecological niches based on host 
machine type and variations within these species. These species are adapted to specific environments 
and will not survive if moved to a different environment.



Some viruses also exhibit predatory behavior. For instance, the DenZuk virus will seek out and 
overwrite instances of the Brain virus if both are present on the same system. Other viruses exhibit 
territorial behavior—marking their infected domain so that others of the same type will not enter and 
compete with the original infection. Some viruses also exhibit self-protective behavior, including 
camouflage techniques.

It is important to note, however, that none of these characteristics came from the viruses themselves. 
Rather, each change and addition to virus behavior has been wrought by an outside agency: the 
programmer. These changes have been in reaction to a perceived need to "enhance" the virus—usually 
to make it more difficult to find.

It might well be argued that more traditional living organisms may also undergo change from without. 
As an example, background radiation may cause occasional random mutations. However, programmers 
are the only source of change to computer viruses, and this distinction is worth noting; other living 
systems undergo changes to themselves and their progeny without obvious outside agencies.

7 Concluding Comments

Our study of computer viruses at first suggests they are close to what we might define as "artificial life." 
However, upon closer examination, a number of significant deficiencies can be found. These lead us to 
conclude that computer viruses are not "alive," and it is not possible to refine them so as to make them 
"alive" without drastically altering our definition of "life."

To suggest that computer viruses are alive also implies that some part of their environment—the 
computers, programs, or operating systems—also represents artificial life. Can life exist in an otherwise 
barren and empty ecosystem? A definition
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of "life" should probably include something about the environment in which that life exists.

Undoubtedly, we could adjust our definitions and characteristics to encompass computer viruses or to 
better exclude them. This illustrates one of the fundamental difficulties with the entire field of artificial 
life: how to define essential characteristics in such a way as to unambiguously define living systems. 
Computer viruses provide one interesting example against which such definitions may be tested.



From this, we can observe that computer viruses (and their kin) provide an interesting means of 
modeling life. For at least this reason, research into computer viruses (using the term in a broader sense, 
a là Cohen) may be of some scientific interest. By modeling behavior using computer viruses, we may 
be able to gain some insight into systems with more complex interactions. Research into competition 
among computer viruses and other software, including antiviral techniques, is of practical interest as 
well as scientific interest. Modified versions of viruses such as Thimbleby's Liveware may also prove to 
be of ultimate value. Research into issues on virus defense methods, epidemiology, and on mutations 
and combinations also could provide valuable insight into computing.

The problem with research on computer viruses is their threat. True viruses are inherently unethical and 
dangerous. They operate without consent or knowledge; experience has shown that they cannot be 
recalled or controlled, and they may cause extensive losses over many years. Even viruses written to be 
benign cause significant damage because of unexpected interactions and bugs. To experiment with 
computer viruses is akin to experimenting with smallpox or anthrax microbes—there may be scientific 
knowledge to be gained, but the potential for disasterous consequences looms large.

In one sense, we use "computer viruses" every day. Editors, compilers, backup utilities, and other 
common software meet some definitions of viruses. However, their general nature is known to their 
users, and they do not operate without at least the implied permission of those users. Furthermore, their 
replication is generally under the close control or observation of their users. It is these differences from 
the colloquial computer virus that makes the latter so interesting, however. These differences are also 
precisely what suggest that computer viruses approach a form of artificial life.

If we are to continue to research computer viruses, we need to find fail-safe ways of doing so. This is a 
major research topic in itself. The danger of creating and accidentally releasing more sophisticated 
viruses is too great to risk, especially with our increasing reliance on computers in critical tasks. One 
approach might be to construct custom computing environments for study, different enough from all 
existing computer systems that a computer virus under study would be completely nonfunctional outside 
it. This is an approach similar to what has been taken with Core Wars [18]. Another approach is to only 
study existing viruses in known environments.

Ultimately, it would be disappointing if research efforts resulted in widespread acceptance of computer 
viruses as a form of artificial life. It would be especially dangerous to attract the untrained, the careless, 
and the uncaring to produce them. Already, contests have been announced for virus writers to produce a 
"useful" or "shortest" virus. Self-reproducing code is easier to write than to control, and encouraging its 
production in uncontrolled environments is irresponsible; accidents happen all too frequently with 
computers.

The origin of most computer viruses is one of unethical practice. Viruses created for malicious purposes 
are obviously bad; viruses constructed as experiments and released into the public domain would 
likewise be unethical, and poor science besides: experiments without controls, strong hypotheses, and 
the consent of the subjects. Facetiously, I suggest that if computer viruses evolve into something with 
artificial consciousness, this might provide a doctrine of "original sin" for their theology.



  

Page 264

More seriously, I would suggest that there is something of great importance already to be learned from 
the study of computer viruses: the critical realization that experimentation with systems in some ways 
(almost) alive can be hazardous. Computer viruses have caused millions of dollars of damage and untold 
aggravation. Some of them have been written as harmless experiments that "got away" and others as 
malicious mischief. A great many of them have firmly rooted themselves in the pool of available 
computers and storage media, and they are likely to be frustrating users and harming systems for years 
to come. Similar but considerably more tragic results could occur from careless experimentation with 
organic forms of artificial life. We must never lose sight of the fact that "real life" is of much more 
importance than "artificial life," and we should not allow our experiments to threaten our experimenters. 
This is a lesson we all would do well to learn.
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Abstract Genetic algorithms are computational models of evolution that play a central role in many 
artificial-life models. We review the history and current scope of research on genetic algorithms in 
artificial life, giving illustrative examples in which the genetic algorithm is used to study how learning 
and evolution interact, and to model ecosystems, immune system, cognitive systems, and social systems. 
We also outline a number of open questions and future directions for genetic algorithms in artificial-life 
research.

1 Introduction

Evolution by natural selection is a central idea in biology, and the concept of natural selection has 
influenced our view of biological systems tremendously. Likewise, evolution of artificial systems is an 
important component of artificial life, providing an important modeling tool and an automated design 
method. Genetic algorithms (GAs) are currently the most prominent and widely used models of 
evolution in artificial-life systems. GAs have been used both as tools for solving practical problems and 
as scientific models of evolutionary processes. The intersection between GAs and artificial life includes 
both, although in this article we focus primarily on GAs as models of natural phenomena. For example, 
we do not discuss topics such as ''evolutionary robotics" in which the GA is used as a black box to 
design or control a system with lifelike properties, even though this is certainly an important role for 
GAs in artificial life. In the following, we provide a brief overview of GAs, describe some particularly 
interesting examples of the overlap between GAs and artificial life, and give our view of some of the 
most pressing research questions in this field.

2 Overview of Genetic Algorithms



In the 1950s and 1960s several computer scientists independently studied evolutionary systems with the 
idea that evolution could be used as an optimization tool for engineering problems. In Goldberg's short 
history of evolutionary computation ([42], chap. 4), the names of Box [21], Fraser [39, 40], Friedman 
[41], Bledsoe [18], and Bremermann [22] are associated with a variety of work in the late 1950s and 
early 1960s, some of which presages the later development of GAs. These early systems contained the 
rudiments of evolution in various forms—all had some kind of "selection of the fittest," some had 
population-based schemes for selection and variation, and some, like many GAs, had binary strings as 
abstractions of biological chromosomes.

In the later 1960s, Rechenberg [89] introduced "evolution strategies," a method first designed to 
optimize real-valued parameters. This idea was further developed by Schwefel [96, 97], and the field of 
evolution strategies has remained an active area
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of research, developing in parallel to GA research, until recently when the two communities have begun 
to interact. For a review of evolution strategies, see [9]. Also in the 1960s Fogel, Owens, and Walsh [36] 
developed "evolutionary programming." Candidate solutions to given tasks are represented as finite-
state machines, and the evolutionary operators are selection and mutation. Evolutionary programming 
also remains an area of active research. For a recent description of the work of Fogel et al., see [34].

GAs as they are known today were first described by John Holland in the 1960s and further developed 
by Holland and his students and colleagues at the University of Michigan in the 1960s and 1970s. 
Holland's 1975 book, Adaptation in Natural and Artificial Systems [55], presents the GA as an 
abstraction of biological evolution and gives a theoretical framework for adaptation under the GA. 
Holland's GA is a method for moving from one population of "chromosomes" (e.g., bit strings 
representing organisms or candidate solutions to a problem) to a new population, using selection 
together with the genetic operators of crossover, mutation, and inversion. Each chromosome consists of 
"genes" (e.g., bits), with each gene being an instance of a particular "allele" (e.g., 0 or 1). Selection 
chooses those chromosomes in the population that will be allowed to reproduce and decides how many 
offspring each is likely to have, with the fitter chromosomes producing on average more offspring than 
less fit ones. Crossover exchanges subparts of two chromosomes (roughly mimicking sexual 
recombination between two single-chromosome organisms); mutation randomly changes the values of 
some locations in the chromosome; and inversion reverses the order of a contiguous section of the 
chromosome, thus rearranging the order in which genes are arrayed in the chromosome. Inversion is 
rarely used in today's GAs, at least partially because of the implementation expense for most 
representations. A simple form of the GA (without inversion) works as follows:

1. Start with a randomly generated population of chromosomes (e.g., candidate solutions to a problem).

2. Calculate the fitness of each chromosome in the population.



3. Apply selection and genetic operators (crossover and mutation) to the population to create a new 
population.

4. Go to step 2.

This process is iterated over many time steps, each of which is called a "generation." After several 
generations, the result is often one or more highly fit chromosomes in the population. It should be noted 
that the previous description leaves out many important details. For example, selection can be 
implemented in different ways—it can eliminate the least fit 50% of the population and replicate each 
remaining individual once, it can replicate individuals in direct proportion to their fitness (fitness-
proportionate selection), or it can scale the fitness and replicate individuals in direct proportion to their 
scaled fitnesses. For implementation details such as these, see [42].

Introducing a population-based algorithm with crossover and inversion was a major innovation. Just as 
significant is the theoretical foundation Holland developed based on the notion of "schemata" [42, 55]. 
Until recently, this theoretical foundation has been the basis of almost all subsequent theoretical work on 
GAs, although the usefulness of this notion has been debated (see, e.g., [45]). Holland's work was the 
first attempt to put computational evolution on a firm theoretical footing.
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GAs in various forms have been applied to many scientific and engineering problems, including the 
following:

• Optimization. GAs have been used in a wide variety of optimization tasks, including numerical 
optimization (e.g., [63]), and combinatorial optimization problems such as circuit design arid job shop 
scheduling.

•  Automatic programming. GAs have been used to evolve computer programs for specific tasks (e.g., 
[69]) and to design other computational structures, for example, cellular automata [80] and sorting 
networks [52].

•  Machine and robot learning. GAs have been used for many machine-learning applications, including 
classification and prediction tasks such as the prediction of dynamical systems [75], weather prediction 
[92], and prediction of protein structure (e.g., [95]). GAs have also been used to design neural networks 
(e.g., [15, 25, 47, 48, 67, 77, 81, 94, 105]) to evolve rules for learning classifier systems (e.g., [54, 57]) 
or symbolic production systems (e.g., [46]), and to design and control robots (e.g., [29, 31, 50]). For an 
overview of GAs in machine learning, see De Jong [64, 65].

•  Economic models. GAs have been used to model processes of innovation, the development of bidding 
strategies, and the emergence of economic markets (e.g., [3-5, 58]).



•  Immune system models. GAs have been used to model various aspects of the natural immune system 
[17, 38], including somatic mutation during an individual's lifetime and the discovery of multi-gene 
families during evolutionary time.

•  Ecological models. GAs have been used to model ecological phenomena such as biological arms 
races, host-parasite coevolution, symbiosis, and resource flow in ecologies (e.g., [11, 12, 26, 28, 52, 56, 
61, 70, 71, 83, 87, 88, 101]).

•  Population genetics models. GAs have been used to study questions in population genetics, such as 
"under what conditions will a gene for recombination be evolutionarily viable?" (e.g., [16, 35, 74, 93]).

•  Interactions between evolution and learning. GAs have been used to study how individual learning 
and species evolution affect one another (e.g., [1, 2, 13, 37, 53, 76, 82, 84, 102, 103]).

•  Models of social systems. GAs have been used to study evolutionary aspects of social systems, such as 
the evolution of cooperation [7, 8, 73, 78, 79], the evolution of communication (e.g., [72, 104]), and trail-
following behavior in ants (e.g., [27, 68]).

This list is by no means exhaustive, but it gives a flavor of the kinds of things for which GAs have been 
used, both for problem solving and for modeling. The range of GA applications continues to increase.

In recent years, algorithms that have been termed genetic algorithms have taken many forms and in 
some cases bear little resemblance to Holland's original formulation. Researchers have experimented 
with different types of representations, crossover and mutation operators, special-purpose operators, and 
approaches to reproduction and selection. However, all of these methods have a "family resemblance" in 
that they take some inspiration from biological evolution and from Holland's original GA. A new term,
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Evolutionary Computation, has been introduced to cover these various members of the GA family, 
evolutionary programming, and evolution strategies [661.

In the following sections we describe a number of examples illustrating the use of GAs in Artificial Life. 
We do not attempt to give an exhaustive review of the entire field of GAs or even that subset relevant to 
Artificial Life, but rather concentrate on some highlights that we find particularly interesting. We have 
provided a more complete set of pointers to the GA and Artificial-Life literature in the "Suggested 
Reading" section at the end of this article.

3 Interactions Between Learning and Evolution



Many people have drawn analogies between learning and evolution as two adaptive processes—one 
taking place during the lifetime of an organism, and the other taking place over the evolutionary history 
of life on earth. To what extent do these processes interact? In particular, can learning that occurs over 
the course of an individual's lifetime guide the evolution of that individual's species to any extent? These 
are major questions in evolutionary psychology. GAs, often in combination with neural networks, have 
been used to address these questions. Here we describe two artificial-life systems designed to model 
interactions between learning and evolution, and in particular the "Baldwin effect."

3.1 The Baldwin effect

Learning during one's lifetime does not directly affect one's genetic makeup; consequently, things 
learned during an individual's lifetime cannot be transmitted directly to its offspring. However, some 
evolutionary biologists (e.g., [98]) have discussed an indirect effect of learning on evolution, inspired by 
ideas about evolution due to Baldwin [10] (among others). The idea behind the so-called Baldwin effect 
is that if learning helps survival, then organisms best able to learn will have the most offspring and 
increase the frequency of the genes responsible for learning. If the environment is stable so that the best 
things to learn remain constant, then this can lead indirectly to a genetic encoding of a trait that 
originally had to be learned. In short, the capacity to acquire a certain desired trait allows the learning 
organism to survive preferentially and gives genetic variation the possibility of independently 
discovering the desired trait. Without such learning, the likelihood of survival—and, thus, the 
opportunity for genetic discovery—decreases. In this indirect way, learning can affect evolution, even if 
what is learned cannot be transmitted genetically.

3.2 Capturing the Baldwin Effect in a Simple Model

Hinton and Nowlan [53] used a GA to model the Baldwin effect. Their goal was to demonstrate this 
effect empirically and to measure its magnitude, using the simplest possible model. A simple neural-
network learning algorithm modeled learning, and the GA played the role of evolution, evolving a 
population of neural networks with varying learning capabilities. In the model, each individual is a 
neural network with 20 potential connections. A connection can have one of three values: "present," 
"absent," and "learnable." These are specified by "1,'' "0," and "?," respectively, where each ? connection 
can be set during the learning phase to 1 or 0. There is only one correct setting for the connections (i.e., 
only one correct set of 1s and 0s). The problem is to find this single correct set of connections. This will 
not be possible for networks that have incorrect fixed connections (e.g., a 1 where there should be a 0), 
but those networks that have correct settings in all places except where there are ?s have the capacity to 
learn the correct settings. This is a "needle-in-a-haystack" search problem, because there is only one 
correct setting in a space of 220 possibilities. However,
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allowing learning to take place changes the shape of the fitness landscape, changing the single spike to a 
smoother "zone of increased fitness," within which it is possible to learn the correct connections.

Hinton and Nowlan used the simplest possible "learning" method: random guessing. On each learning 
trial, a network guesses a 1 or 0 at random for each of its learnable connections. This method has little to 
do with the usual notions of neural-network learning. Hinton and Nowlan presented this model in terms 
of neural networks so as to keep in mind the possibility of extending the example to more standard 
learning tasks and methods.

In the GA population, each network is represented by a string of length 20 over the alphabet {0, 1, ?}, 
denoting the settings on the network's connections. Each individual is given 1,000 learning trials. On 
each learning trial, the individual tries a random combination of settings for the ?s. The fitness is an 
inverse function of the number of trials needed to find the correct solution. An individual that already 
has all of its connections set correctly has the highest possible fitness, and an individual that never finds 
the correct solution has the lowest possible fitness. Hence, a tradeoff exists between efficiency and 
flexibility: having many ?s means that, on average, many guesses are needed to arrive at the correct 
answer, but the more connections that are fixed, the more likely it is that one or more of them will be 
fixed incorrectly, meaning that there is no possibility of finding the correct answer.

Hinton and Nowlan's experiments showed that learning during an individual's "lifetime" does guide 
evolution by allowing the mean fitness of the population to increase. This increase is due to a Baldwin-
like effect: Those individuals that are able to learn the task efficiently tend to be selected to reproduce, 
and crossovers among these individuals tend to increase the number of correctly fixed alleles, increasing 
the learning efficiency of the offspring. With this simple form of learning, evolution could discover 
individuals with all of their connections fixed correctly, and such individuals were discovered in these 
experiments. Without learning, the evolutionary search never discovered such an individual.

To summarize, learning allows genetically coded partial solutions to get partial credit, rather than the all-
or-nothing reward that an organism would get without learning. A common claim for learning is that it 
allows an organism to respond to unpredictable aspects of an environment—aspects that change too 
quickly for evolution to track genetically. Although this is clearly one benefit of learning, the Baldwin 
effect is different: It says that learning helps organisms adapt to genetically predictable, but difficult, 
aspects of the environment, and that learning indirectly helps these adaptations become genetically 
fixed. Consequently, the Baldwin effect is important only on fitness landscapes that are hard to search 
by evolution alone, such as the needle-in-a-haystack example given by Hinton and Nowlan.



As Hinton and Nowlan point out, the "learning" mechanism used in their experiments—random 
guessing—is completely unrealistic as a model of learning. Hinton and Nowlan point out that "a more 
sophisticated learning procedure only strengthens the argument for the importance of the Baldwin 
effect" ([53], p. 500). This is true insofar as a more sophisticated learning procedure would, for example, 
further smooth the original ''needle-in-the-haystack" fitness landscape in Hinton and Nowlan's learning 
task. However, if the learning procedure were too sophisticated—that is, if learning the necessary trait 
were too easy—then there would be little selection pressure for evolution to move from the ability to 
learn the trait to a genetic encoding of that trait. Such tradeoffs occur in evolution and can be seen even 
in Hinton and Nowlan's simple model. Computer simulations such as theirs can help us to understand 
and to measure such tradeoffs. More detailed analyses of this model were performed by Belew [13] and 
Harvey [49].
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3.3 Evolutionary Reinforcement Learning (ERL)

A second computational demonstration of the Baldwin effect was given by Ackley and Littman [1]. In 
their Evolutionary Reinforcement Learning (ERL) model, adaptive individuals ("agents") move 
randomly on a two-dimensional lattice, encountering food, predators, hiding places, and other types of 
entities. Each agent's state includes the entities in its visual range, the level of its internal energy store, 
and other parameters. Each agent possesses two feed-forward neural networks: (1) an evaluation 
network that maps the agent's state at time t to a number representing how good that state is, and (2) an 
action network that maps the agent's state at time t to the action it is to take on that time step. The only 
possible actions are moving from the current lattice site to one of the four neighboring sites, but actions 
can result in eating, being eaten, and other less radical consequences. The architectures of these two 
networks are the same for all agents, but the weights on the links can vary between agents. The weights 
on a given agent's evaluation network are fixed from birth-this network represents innate goals and 
desires inherited from the agent's ancestors (e.g., "being near food is good"). The weights on the action 
network change over the agent's lifetime according to a reinforcement-learning algorithm.

An agent's genome encodes the weights for the evaluation network and the initial weights for the action 
network. Agents have an internal energy store (represented by a real number) that must be kept above a 
certain level to prevent death; this is accomplished by eating food that is encountered as the agent moves 
from site to site on the lattice. An agent must also avoid predators, or it will be killed. An agent can 
reproduce once it has enough energy in its internal store. Agents reproduce by cloning their genomes 
(subject to mutation). In addition to cloning, two spatially nearby agents can together produce offspring 
via crossover. There is no "exogenous" a priori fitness function for evaluating a genome as there was in 
Hinton and Nowlan's model and in most engineering applications of GAs. Instead, the fitness of an 
agent (as well as the rate at which a population turns over) is "endogenous": it emerges from many 
actions and interactions over the course of the agent's lifetime. This feature distinguishes many GAs 
used in artificial-life models from engineering applications.



At each time step t in an agent's life, the agent evaluates its current state, using its evaluation network. 
This evaluation is compared with the evaluation it produced at t  1 with respect to the previous action, 
and the comparison gives a reinforcement signal used in modifying the weights in the action network. 
The idea here is for agents to learn to act in ways that will improve the current state. After this learning 
step, the agent's modified action network is used to determine the next action to take.

Ackley and Littman observed many interesting phenomena in their experiments with this model. The 
main emergent phenomena they describe are a version of the Baldwin effect and an effect they call 
"shielding." Here we will describe the former; see Ackley and Littman [1] for details on other 
phenomena. They compared the results of three different experiments: (1) EL: both evolution of 
populations and learning in individual agents took place, (2) E: evolution of populations took place but 
there was no individual learning, and (3) L: individual learning took place but there was no evolution. 
The statistic that Ackley and Littman measured was roughly the average time until the population 
became extinct, averaged over many separate runs. They found that the best performance (longest 
average time to extinction) was achieved with EL populations, closely followed by L populations, and 
with E populations trailing far behind. More detailed analysis of the EL runs revealed that with respect 
to certain behaviors, the relative importance of learning and evolution changed over the course of a run. 
In particular, Ackley and Littman looked at the genes related to food-approaching behavior for both the 
evaluation and action networks. They found that in earlier generations, the genes encoding evaluation of 
food proximity (e.g., "being near food is good")
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remained relatively constant across the population, while the genes encoding initial weights in the action 
network were more variable. This indicated the importance of maintaining the goals for the learning 
process and, thus, the importance of learning for survival. However, later in the run the evaluation genes 
were more variable across the population, whereas the genes encoding the initial weights of the action 
network remained more constant. This indicated that inherited behaviors were more significant than 
learning during this phase. Ackley and Littman interpreted this as a version of the Baldwin effect. 
Initially, it is necessary for agents to learn to approach food; thus, maintaining the explicit knowledge 
that "being near food is good" is essential for the learning process to take place. Later, the genetic 
knowledge that being near food is good is superseded by the genetically encoded behavior to "approach 
food if near," so the evaluation knowledge is not as necessary. The initial ability to learn the behavior is 
what allows it to eventually become genetically coded.



This effect has not been completely analyzed, nor has the strength of the effect been determined. 
Nevertheless, results such as these, and those of Hinton and Nowlan's experiments, demonstrate the 
potential of artificial-life modeling: biological phenomena can be studied with controlled computational 
experiments whose natural equivalent (e.g., running for thousands of generations) is not possible or 
practical. And when performed correctly, such experiments can produce new evidence for and new 
insight into these natural phenomena. The potential benefits of such work are not limited to 
understanding natural phenomena. A growing community of GA researchers is studying ways to apply 
GAs to optimize neural networks to solve practical problems—a practical application of the interaction 
between learning and evolution. A survey of this work is given in Schaffer, Whitley, and Eshelman [94]. 
Other researchers are investigating the benefits of adding "Lamarckian" learning to the GA and have 
found in some cases that it leads to significant improvements in GA performance [2, 44].

4 Ecosystems and Evolutionary Dynamics

Another major area of artificial-life research is modeling ecosystem behavior and the evolutionary 
dynamics of populations. (Ackley and Littman's work described earlier could fit into this category as 
well.) Here we describe two such models that use GAs: Holland's Echo system, meant to allow a large 
range of ecological interactions to be modeled, and Bedau and Packard's Strategic Bugs system, for 
which a measure of evolutionary activity is defined and studied. As in the ERL system, both Echo and 
Strategic Bugs illustrate the use of endogenous fitness.

4.1 Echo

Echo is a model of ecological systems formulated by Holland [55, 56, 62]. Echo models ecologies in the 
same sense that the GA models population genetics [56]. It abstracts away virtually all of the physical 
details of real ecological systems and concentrates on a small set of primitive agent-agent and agent-
environment interactions. The extent to which Echo captures the essence of real ecological systems is 
still largely undetermined, yet it is significant because of the generality of the model and its ambitious 
scope. The goal of Echo is to study how simple interactions among simple agents lead to emergent high-
level phenomena such as the flow of resources in a system or cooperation and competition in networks 
of agents (e.g., communities, trading networks, or arms races). Echo extends the GA in several 
important ways: resources are modeled explicitly in the system, individuals (called agents) have a 
geographical location that affects their (implicit) fitness, certain types of interactions between agents are 
built into the system (e.g., trade, combat, and mating), and fitness is endogenous.
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Similar to Ackley and Littman's ERL model, Echo consists of a population of agents distributed on a set 
of sites on a lattice. Many agents can cohabit the same site, and there is a measure of locality within each 
site. Also distributed on the lattice are different types of renewable resources; each type of resource is 
encoded by a letter (e.g., "a," "b," "c," "d"). Different types of agents use different types of resources and 
can store these resources (the letters) internally.

Agents interact by mating, trading, or fighting. Trading and fighting result in the exchange of internal 
resources between agents, and mating results in an offspring whose genome is a combination of those of 
the parents. Agents also self-reproduce (described later), but mating is a process distinct from 
replication. Each agent has a particular set of rules that determines its interactions with other agents 
(e.g., which resources it is willing to trade, the conditions under which it will fight, etc.). "External 
appearance" can also be coded in these rules as a string tag visible to other agents. This allows the 
possibility of the evolution of social rules and potentially of mimicry, a phenomenon frequently 
observed in natural ecosystems. The interaction rules use string matching, and it is therefore easy to 
encode the strings used by the rules onto the genome.

Each agent's genome encodes the details of the rules by which it interacts (e.g., the conditions under 
which the rules are applied) and the types of resources it requires. As in many other artificial-life models 
(e.g., ERL and the Strategic Bugs model described below), Echo has no explicit fitness function guiding 
selection and reproduction. Instead, an agent reproduces when it accumulates sufficient resources to 
make an exact copy of its genome. For example, if an agent's genome consists of 25 a's, 13 b's, and 50 
c's, then it would have to accumulate in its internal storage at least 25 a's, 13 b's, and 50 c's before 
cloning itself. As is usúal in a GA, cloning is subject to a low rate of mutation, and, as was mentioned 
earlier, genetic material is exchanged through mating.

In preliminary simulations, the Echo system has demonstrated surprisingly complex behavior (including 
something resembling a biological "arms race" in which two competing species develop progressively 
more complex offensive and defensive combat strategies), ecological dependencies among different 
species (e.g., a symbiotic "ant-caterpillar-fly" triangle), and sensitivity (in terms of the number of 
different phenotypes) to differing levels of renewable resources [551.

Some possible directions for future work on Echo include (1) studying the evolution of external tags as 
mechanisms for social communication; (2) extending the model to allow the evolution of 
"metazoans"—connected communities of agents that have internal boundaries and reproduce as a unit; 
this capacity will allow for the study of individual agent specialization and the evolution of 
multicellularity; (3) studying the evolutionary dynamics of schemata in the population; and (4) using the 
results from (3) to formulate a generalization of the well-known Schema Theorem based on endogenous 
fitness [56]. The last is a particularly important goal, because there has been very little mathematical 
analysis of artificial-life simulations in which fitness is endogenous.

4.2 Measuring Evolutionary Activity



How can we decide if an observed system is evolving? And how can we measure the rate of evolution in 
such a system? Bedau and Packard [11] developed an artificial-life model, called "Strategic Bugs," to 
address these questions. Their model is simpler than both ERL and Echo. The Strategic Bugs world is a 
two-dimensional lattice, containing only adaptive agents ("bugs") and food. The food supply is 
renewable; it is refreshed periodically and distributed randomly across the lattice. Bugs survive by 
finding and eating food, storing it in an internal reservoir until they have enough energy to reproduce. 
Bugs use energy from their internal reservoir in order to move. A bug dies when
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its internal reservoir is empty. Thus, bugs have to find food continually in order to survive.

Each bug's behavior is controlled by an internal look-up table that maps sensory data from the bug's 
local neighborhood to a vector giving the direction and distance of the bug's next foray. For example, 
one entry might be, "If more than 10 units of food are two steps to the northeast and the other 
neighboring sites are empty, move two steps to the northeast." This look-up table is the bug's "genetic 
material," and each entry is a gene. A bug can reproduce either asexually, in which case it passes on its 
genetic material to its offspring with some low probability of mutation at each gene, or sexually, in 
which case it mates with a spatially adjacent bug, producing offspring whose genetic material is a 
combination of that of the parents, possibly with some small number of mutations.

Bedau and Packard wanted to define and measure the degree of "evolutionary activity" in this system 
over time, where evolutionary activity is defined informally as "the rate at which useful genetic 
innovations are absorbed into the population." Bedau and Packard assert that "persistent usage of new 
genes is what signals genuine evolutionary activity," because evolutionary activity is meant to measure 
the degree to which useful new genes are discovered and persist in the population.

To measure evolutionary activity, Bedau and Packard began by keeping statistics on gene usage for 
every gene that appeared in the population. Recall that in the Strategic Bugs model, a bug's genome is 
represented as a look-up table, and a gene is simply an entry in the table—an input/action pair. Each 
gene is assigned a counter, initialized to 0, which is incremented every time the gene is used—that is, 
every time the specified input situation arises and the specified action is taken. When a parent passes on 
a gene to a child through asexual reproduction or through crossover, the value of the counter is passed 
on as well and remains with the gene. The only time a counter is initialized to 0 is when a new gene is 
created through mutation. In this way, a gene's counter value reflects the usage of that gene over many 
generations. When a bug dies, its genes (and their counters) die with it.



Bedau and Packard [11] plot, for each time step during a run, histograms of the number of genes in the 
population displaying a given usage value (i.e., a given counter value). These histograms display "waves 
of activity" over time, showing that clusters of genes are continually being discovered that persist in 
usage over time—in other words, that the population is continually finding and exploiting new genetic 
innovations. This is precisely Bedau and Packard's definition of evolution, and according to them, as 
long as the waves continue to occur, it can be said that the population is continuing to evolve. Bedau and 
Packard define a single number, the evolutionary activity at a given time, A(t), that roughly measures the 
degree to which the population is acquiring new and useful genetic material at time t—in short, whether 
or not such activity waves are occurring at time t and what their characteristics are. If A(t) is positive, 
then evolution is occurring at time t. Claiming that life is a property of populations and not of individual 
organisms, Bedau and Packard ambitiously propose A(t) as a test for life in a systemif A(t) is positive, 
then the system is exhibiting life at time t. Bedau, Ronneburg, and Zwick [12] have extended this work 
to propose several measures of population diversity and to measure them and characterize their 
dynamics in the context of the Strategic Bugs model.

The important contribution of Bedau and Packard's paper is the attempt to define a macroscopic quantity 
such as evolutionary activity. It is a first step at such a definition, and the particular definition of gene 
usage is no doubt too specific to the Strategic Bugs model, in which the relationship between genes and 
behavior is completely straightforward. In more realistic models it will be considerably harder to define 
such quantities. However, the formulation of macroscopic measures of evolution and adaptation, as
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well as descriptions of the microscopic mechanisms by which the macroscopic quantities emerge, is 
essential if artificial life is to be made into an explanatory science and if it is to contribute significantly 
to real evolutionary biology.

5 Learning Classifier Systems

Learning classifier systems [57] are one of the earliest examples of how GAs have been incorporated 
into models of living systems, in this case cognitive systems. Classifier systems have been used as 
models of stimulus-response behavior and of more complex cognitive processes. Classifier systems are 
based on three principles: learning, intermittent feedback from the environment, and hierarchies of 
internal models that represent the environment. Classifier systems have been used to model a variety of 
"intelligent" processes, such as how people behave in economic and social situations (playing the stock 
market, obeying social norms, etc.), maze running by rats, and categorization tasks.



Like neural networks, classifier systems consist of a parallel machine (most often implemented in 
software) and learning algorithms that adjust the configuration of the underlying machine over time. 
Classifier systems differ from neural networks in the details of the parallel machine, referred to as the 
internal performance system, and in the details of the learning algorithms. Specifically, the classifier 
system machine is more complex than most neural networks, computing with quantities called 
"messages" and controlling its state with if-then rules that specify patterns of messages. The GA is used 
to discover useful rules, based on intermittent feedback from the environment and an internal credit-
assignment algorithm called the bucket brigade. Thus, a classifier system consists of three layers, with 
the performance system forming the lowest level. At the second level, the bucket-brigade learning 
algorithm manages credit assignment among competing classifiers. It plays a role similar to that of back-
propagation in neural networks. Finally, at the highest level are genetic operators that create new 
classifiers.

Associated with each classifier is a parameter called its strength. This measure reflects the utility of that 
rule, based on the system's past experience. The bucket-brigade algorithm is the mechanism for altering 
each rule's strength. The algorithm is based on the metaphor of an economy, with the environment 
acting both as the producer of raw materials and the ultimate consumer of finished goods, and each 
classifier acting as an intermediary in an economic chain of production. Using the bucket brigade, a 
classifier system is able to identify and use the subset of its rule base that has proven useful in the past. 
However, a classifier system's initial rule base usually will not contain all of the classifiers necessary for 
good performance. The GA interprets a classifier's strength as a measure of its fitness, and periodically 
(after the strengths have stabilized under the bucket brigade), the GA deletes rules that have not been 
useful or relevant in the past (those with low strength) and generates new rules by modifying existing 
high-strength rules through mutation, crossover, and other special-purpose operators. Similarly to 
conventional GAs, these deletions and additions are all performed probabilistically. Under the definition 
of induction as "all inferential processes that expand knowledge in the face of uncertainty" [57, p. 1], the 
GA plays the role of an inductive mechanism in classifier systems.

An important motivation in the formulation of classifier systems was the principle that inductive systems 
need the ability to construct internal models. Internal models should allow a system to generate 
predictions even when its knowledge of the environment is incomplete or incorrect, and further, to refine 
its internal model as more information about the environment becomes available. This leads naturally to 
the idea of a default hierarchy in which a system can represent high-level approximations, or defaults, 
based
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on early information, and, over time, refine the defaults with more specific details and exceptions to 
rules. In classifier systems, default hierarchies are represented using clusters of rules of different 
specificities. In [57], the concept of a "quasi-morphism" is introduced to describe this modeling process 
formally.

There have been several modeling efforts based on learning classifier systems, including [19, 20, 32, 90, 
91, 106, 107]. Each of these is a variation on the standard classifier system as described earlier, but each 
of the variations captures the major principles of classifier systems. For example, Riolo [90] used a 
classifier system to model the kind of latent learning and look-ahead behavior of the type observed in 
rats. For this work, Riolo designed a simple maze, similar to those in latent-learning experiments on rats. 
The maze has one start point and several endpoints. At each endpoint there is a box, which may or may 
not be filled with food, and the various endpoint boxes may or may not be distinguishable (e.g., by 
color) from one another. In these kinds of experiments, the procedure is roughly as follows: (1) before 
food is placed in the boxes, nonhungry rats are placed in the maze and allowed to explore; (2) the rats 
are not fed for 24 hours; (3) the rats are placed in the maze (at one of the endpoints) and allowed to eat 
from one of the boxes; and (4) the rats are placed at the start location of the maze, and their behavior is 
observed. If the boxes are distinguishable, then the rats reliably choose the path through the maze 
leading to the box from which they ate.

Riolo makes several points about these experiments: (1) in the "pre-reward" phase, the rats learn the 
structure of the maze without explicit rewards; (2) they learn to use an internal model to perform a look-
ahead search that allows them to predict which box was in which part of the maze; (3) the rats are able 
to use this look-ahead search once they associate food with a particular box; and (4) this type of 
inference cannot be made by a simple reactive (stimulus-response) system. It is commonly believed that 
the task requires the use of internal models and look-ahead prediction.

To model these experiments using a classifier system, Riolo augmented the basic classifier system 
model to include a look-ahead component. The extensions included (1) allowing the classifier system to 
iterate several cycles of its performance system (the rule base) before choosing an action, in effect 
"running" an internal model before acting; (2) choosing special-purpose genetic operators to coordinate 
the internal model-building (i.e., to distinguish predictions from suggested actions); and (3) using three 
different kinds of strength to measure the utility of rules (to measure predictive ability vs. real-time 
ability, to produce a reward from an action, and to measure long-term vs. short-term utility). With these 
modifications, the classifier system achieved results comparable with the latent-learning results reported 
for rats. Further, the classifier system with the look-ahead component outperformed the unmodified 
version significantly. Riolo's experiment is one of the best demonstrations to date of the necessity of 
internal models for classifier systems to succeed on some tasks.

6 Immune Systems



Immune systems are adaptive systems in which learning takes place by evolutionary mechanisms similar 
to biological evolution. Immune systems have been studied by the artificial-life community both because 
of their intrinsic scientific interest and because of potential applications of ideas from immunology to 
computational problems (e.g., [17]). The immune system is capable of recognizing virtually any foreign 
cell or molecule. To do this, it must distinguish the body's own cells and molecules that are created and 
circulated internally (estimated to consist of on the order of 105 different proteins) from those that are 
foreign. It has been estimated that the immune system is capable of recognizing on the order of 1016 
different foreign molecules [60]. From a
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pattern-recognition perspective, these are staggering numbers, particularly when one considers that the 
human genome, which encodes the "program" for constructing the immune system, only contains about 
105 genes, and further, that the immune system is distributed throughout the body with no central organ 
to control it.

Different approaches to modeling the immune system have included differential-equation-based models 
(e.g., see [85, 86]), cellular-automata models [24], classifier systems [33], and GAs [38]. In the last, 
GAs are used to model both somatic mutation (the process by which antibodies are evolved during the 
lifetime of an individual to match a specific antigen) and the more traditional type of evolution over 
many individual lifetimes of variable-, or V-, region gene libraries (the genetic material that codes for 
specific receptors).

The GA models of Forrest, Javornik, Smith, and Perelson [38] are based on a universe in which antigens 
(foreign material) and antibodies (the cells that perform the recognition) are represented by binary 
strings. More precisely, the binary strings are used to represent receptors on B cells and T cells and 
epitopes on antigens, although we refer to these (loosely) as antibodies and antigens. Recognition in the 
natural immune system is achieved by molecular binding—the extent of the binding being determined 
by molecular shape and electrostatic charge. The complex chemistry of antigen recognition is highly 
simplified in the binary immune system and modeled as string matching. The GA is used to evolve 
populations of strings that match specific antigens well. For strings of any significant length, a perfect 
match is highly improbable, so a partial matching rule is used that rewards more specific matches (i.e., 
matches on more bits) over less specific ones. This partial matching rule reflects the fact that the 
immune system's recognition capabilities need to be fairly specific in order to avoid confusing self 
molecules with foreign molecules.



In the models of Forrest et al., one population of antibodies and one of antigens is created, each 
randomly. For most experiments, the antigen population is held constant, and the antibody population is 
evolved under the GA. However, in some experiments the antigen population is allowed to coevolve 
with the antibodies (i.e., antigens evolve away from the antibodies while the antibodies are evolving 
toward the antigens). Antigens are "presented" to the antibody population sequentially (again, by 
analogy with the natural immune system), and high-affinity antibodies (those that match at many bit 
positions) have their fitnesses increased.

This binary immune system has been used to study several different aspects of the immune system, 
including (1) its ability to detect common patterns (schemas) in the noisy environment of randomly 
presented antigens [38]; (2) its ability to discover and maintain coverage of the diverse antigen 
population [99]; and (3) its ability to learn effectively, even when not all antibodies are expressed and 
not all antigens are presented [51]. This last experiment is particularly relevant to the more general 
question of how selection pressures operating only at the global, phenotypic level can produce 
appropriate low-level, genetic structures. The question is most interesting when the connection between 
phenotype and genotype is more than a simple, direct mapping. The multigene families (V-region 
libraries) of the immune system provide a good subject for experimentation from this point of view—the 
phenotype is not a direct mapping from the genotype, but the connection is simple enough that it can be 
studied analytically. In [51], all antigens were exactly 64 bits. The V-region library was modeled as a set 
of four libraries, each with eight entries of length 16 (producing a genome with 512 bits). Antibodies 
were expressed by randomly choosing one entry from each library and concatenating them together to 
form one 64-bit antibody.

Recent work on the kind of genotype-phenotype relations that might be expected between a sequence 
(e.g., an RNA sequence) and its corresponding higher-order structure (e.g., its secondary structure) may 
also apply to modeling the immune system
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Figure 1. The payoff matrix for the Prisoner's Dilemma. The pairs of numbers
in each cell give the respective payoffs for players A and B in the given situation.



[59]. For example, the interaction between the immune system and a rapidly evolving pathogen can be 
regarded as a system with rapidly changing fitness criteria at the level of the secondary structure. Yet, 
the immune system and pathogen are both coevolving through mutations at the genetic level. In a 
coevolutionary system such as this, the populations evolve toward relatively uncorrelated parts of the 
phenotype landscape where mutations have a relatively large effect on the secondary structure, thus 
facilitating the process of continuous adaptation itself. This is a similar point to that raised in [51]. The 
idea of exploiting variations in the phenotype through mutations at the genetic level is a recurring theme 
in evolution, and the immune system provides a clear example of where such exploitation might occur.

7 Social Systems

Understanding and modeling social systems, be they insect colonies or human societies, has been a 
focus of many artificial-life researchers. GAs have played a role in some of these models, particularly 
those modeling the evolution of cooperation. Here we describe how the GA was used to evolve 
strategies for interaction in the context of the Prisoner's Dilemma.

The Prisoner's Dilemma (PD) is a simple two-person game that has been studied extensively in game 
theory, economics, and political science because it can be seen as an idealized model for real-world 
phenomena such as arms races [6]. On a given turn, each player independently decides whether to 
"cooperate" or "defect." The game is summarized by the payoff matrix shown in Figure 1. If both 
players cooperate, they each get three points. If player A defects and player B cooperates, then player A 
gets five points, and player B gets zero points; vice versa if the situation is reversed. Finally, if both 
players defect, they each get one point. What is the best strategy to take? If there is only one turn to be 
played, then clearly the best strategy is to defect: the worst consequence for a defector is to get one point 
and the best is to get five points, which are better than the worst score and the best score, respectively, 
for a cooperator. The dilemma is that if the game is iterated, that is, if two players play several turns in a 
row, the strategy of always defecting will lead to a much lower total payoff than the players would get if 
they both cooperated. How can reciprocal cooperation be induced? This question takes on special 
significance when the notions of "cooperating" and "defecting" correspond to actions in the real world, 
such as a real-world arms race.

Axelrod [6] has studied the PD and related games extensively. Early work, including the results of two 
tournaments that played pairs of human-designed strategies against each other, suggested that the best 
strategy for playing the iterated PD is one of the simplest: TIT FOR TAT. TIT FOR TAT cooperates on 
the first move and then, on subsequent moves, does whatever the other player did last. That is, it offers 
cooperation
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and then reciprocates it, but if the other player defects, TIT FOR TAT will retaliate with a defection.

Axelrod [8] performed a series of experiments to see if a GA could evolve strategies to play this game 
successfully. Strategies were encoded as look-up tables, with each entry (C or D) being the action to be 
taken given the outcomes of three previous turns. In Axelrod's first experiment, the evolving strategies 
were played against eight human-designed strategies, and the fitness of an evolving strategy was a 
weighted average of the scores against each of the eight fixed strategies. Most of the strategies that 
evolved were similar to TIT FOR TAT, having many of the properties that make TIT FOR TAT 
successful. Strikingly, the GA occasionally found strategies that scored substantially higher than TIT 
FOR TAT.

It is not correct to conclude that the GA evolved strategies that are "better" than any human-designed 
strategy. The performance of a strategy depends very much on its environment, that is, the other 
strategies with which it is playing. Here the environment was fixed, and the highest-scoring strategies 
produced by the GA were ones that discovered how to exploit specific weaknesses of the eight fixed 
strategies. It is not necessarily true that these high-scoring strategies would also score well in some other 
environment. TIT FOR TAT is a generalist, whereas the highest-scoring evolved strategies were more 
specialized to their given environment. Axelrod concluded that the GA is good at doing what evolution 
often does: developing highly specialized adaptations to specific characteristics of the environment.

To study the effects of a dynamic environment, Axelrod carried out another experiment in which the 
fitness was determined by allowing the strategies in the population to play with each other rather than 
with the fixed set of eight strategies. The environment changes from generation to generation because 
the strategies themselves are evolving. At each generation, each strategy played an iterated PD with the 
other members of the population, and its fitness was the average score over all these games. In this 
second set of experiments, Axelrod observed the following phenomenon: the GA initially evolves 
uncooperative strategies, because strategies that tend to cooperate early on do not find reciprocation 
among their fellow population members and, thus, tend to die out. But after about 10-20 generations, the 
trend starts to reverse: the GA discovers strategies that reciprocate cooperation and that punish defection 
(i.e., variants of TIT FOR TAT). These strategies do well with each other and are not completely 
defeated by other strategies, as were the initial cooperative strategies. The reciprocators score better than 
average, so they spread in the population, resulting in more and more cooperation and increasing fitness.

Lindgren [70] performed a series of experiments similar to Axelrod's second experiment but included 
the possibility of noise, in which players can make mistakes in following their strategies. He also 
allowed a more open-ended kind of evolution in which a "gene duplication" operator allowed the 
amount of memory available to a given strategy to increase. He observed some very interesting 
evolutionary dynamics, including periods of relative stasis with one or two strategies fairly stable in the 
population, punctuated by mass extinction events. Other work using computational evolution to discover 
PD strategies in the presence of noise or imperfect information about the past (both making the PD a 
more realistic model of social or political interactions) has been done by Miller [79] and Marks [73], 
among others.



8 Open Problems and Future Directions

In the previous sections we have briefly described some representative examples of artificial-life 
projects that use GAs in a significant way. These examples, and many others that we do not have space 
to discuss, point the way to several open problems
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in GAs. Some of these are quite technical (e.g., questions about genetic operators and representations), 
and some are more general questions, relevant to many areas of Artificial Life.

It is difficult to distinguish between ''yet another cute simulation" and systems that teach us something 
important and general, either about how to construct artificial life or about the natural phenomena that 
they model. We suggest that artificial-life research should address at least one of these two criteria and 
that it is important to be explicit about what any specific system teaches us that was not known before. 
This is a much more difficult task than may be readily appreciated, so difficult in fact that we consider it 
an open problem to develop adequate criteria and methods for evaluating artificial-life systems.

On the modeling side it can be very difficult to relate the behavior of a simulation quantitatively to the 
behavior of the system it is intended to model. This is because the level at which Artificial-Life models 
are constructed is often so abstract that they are unlikely to make numerical predictions. In GAs, for 
example, all of the biophysical details of transcription, protein synthesis, gene expression, and meiosis 
have been stripped away. Useful Artificial-Life models, however, may well reveal general conditions 
under which certain qualitative behaviors arise, or critical parameters in which a small change can have 
a drastic effect on the behavior of the system. What is difficult is to distinguish between good qualitative 
modeling and simulations that are only vaguely suggestive of natural phenomena.

More specific to GAs is the central question of representation. For any given environment or problem 
domain, the choice of which features to represent on the genotype and how to represent them is crucial 
to the performance of the GA (or any other learning system). The choice of system primitives (in the 
case of GAs, the features that comprise the genotype) is a design decision that cannot be automated. 
GAs typically use low-level primitives such as bits, which can be very far removed from the natural 
representation of environmental states and control parameters. For this reason, the representation 
problem is especially important for GAs, both for constructing artificial life and in modeling living 
systems.



Although the representation problem has been acknowledged for many years, there have been 
surprisingly few innovative representations, the recent work on genetic programming [69] and messy 
GAs [43] being notable exceptions. In genetic programming, individuals are represented as S-
expressions—small programs written in a subset of LISP. Although S-expressions can be written as 
linear strings, they are naturally viewed as trees, and the genetic operators operate on trees. Crossover, 
for example, swaps subtrees between S-expressions. Messy GAs were developed by Goldberg, Korb, 
and Deb [43] to allow variable-length strings that can be either over- or underspecified with respect to 
the problem being solved. This allows the GA to manipulate short strings early in a run, and over time, 
to combine short, well-tested building blocks into longer, more complex strings. New versions of the 
crossover operator (e.g., uniform crossover [100]) can reduce the inherent bias in standard crossover of 
breaking up correlated genes that are widely separated on the chromosome (referred to as "positional 
bias"). These approaches are promising in some cases, especially because the strong positional 
dependence of most current representations is an artifact introduced by GAs. In natural genetic systems, 
one gene (approximately) codes for one protein regardless of where it is located, although the expression 
of a gene (when the protein is synthesized) is indirectly controlled by its location. In spite of the 
foregoing, the vast majority of current GA implementations use a simple binary alphabet linearly 
ordered along a single haploid string. It should be noted that researchers interested in engineering 
applications have long advocated the use of simple "higher-cardinality alphabets," including, for 
example, real numbers as alleles [30]. Given the fact that GA
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performance is heavily dependent on the representation chosen, this lack of diversity is surprising.

The representation issues described earlier primarily address the question of how to engineer GAs. 
Moving away from this question toward more realistic models of evolution are more extended mappings 
between the genotypic representation and the phenotype. Buss [23], among others, has pointed out that 
the principle of evolution by natural selection is applicable at many levels besides that of the individual, 
and in particular, that natural selection controls development (e.g., embryology) that interacts with 
selection at the level of the individual. Related to this point, and to the observation that evolution and 
learning can interact, are several recent studies of GAs that include a "development" cycle, which 
translates the genotype through a series of steps into the phenotype. The most common example of this 
is to let the genotype specify a grammar (as in L-systems). The grammar is then used to produce a legal 
object in the language it specifies (the development step), and this string (the phenotype) is then 
evaluated by the fitness function. Examples of this exploratory work include Belew [14], Gruau [47], 
Kitano [67], and Wilson [108]. Although this work is only a crude approximation of development in 
living systems, it is an important first step and represents a promising avenue for future research.



Related to the question of representation is the choice of genetic operators for introducing variation into 
a population. One reason that binary linearly ordered representations are so popular is that the standard 
mutation and crossover operators can be applied in a problem-independent way. Other operators have 
been experimented with in optimization settings, but no new general-purpose operators have been 
widely adopted since the advent of GAs. Rather, the inversion operator, included in the original 
proposals for theoretical reasons, has been largely abandoned. We believe it deserves more study. In 
addition, during the past several decades, molecular biology has discovered many new mechanisms for 
rearranging genetic material (e.g., jumping genes, gene deletion and duplication, and introns and exons). 
It would be interesting to know if any of these is significant algorithmically.

Explicit fitness evaluation is the most biologically unrealistic aspect of GAs. Several of the examples 
described in the previous sections (e.g., ERL, Echo, Strategic Bugs, and some of the PD work) move 
away from an external, static fitness measure toward more coevolutionary and endogenous evaluations. 
Although it is relatively easy to implement endogenous or coevolutionary fitness strategies, there is 
virtually no theory describing the behavior of GAs under these circumstances. In particular, a theory 
about how building blocks are processed (cf. [42, 55]) under these circumstances would be helpful.

Perhaps the most obvious area for extending the GA is to the study of evolution itself. Although ideas 
from evolution have provided inspiration for developing interesting computational techniques, there 
have been few attempts to use these techniques to understand better the evolutionary systems that 
inspired them. GAs, and the insights provided by analyzing them carefully, should help us to understand 
better natural evolutionary systems. This "closing of the modeling loop" is an important area of future 
research on evolutionary computational methods.
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There are two likely paths for philosophers to follow in their encounters with Artificial Life: They can 
see it as a new way of doing philosophy, or simply as a new object worthy of philosophical attention 
using traditional methods. Is Artificial Life best seen as a new philosophical method or a new 
phenomenon? There is a case to be made for each alternative, but I urge philosophers to take the leap 
and consider the first to be more important and promising.

Philosophers have always trafficked in thought experiments, putatively conclusive arguments about 
what is possible, necessary, and impossible under various assumptions. The cases that philosophers have 
been able to make using these methods are notoriously inconclusive. What "stands to reason" or is 
"obvious" in various complex scenarios is quite often more an artifact of the bias and limitations of the 
philosopher's imagination than the dictate of genuine logical insight. Artificial Life, like its parent 
(aunt?) discipline, Artificial Intelligence, can be conceived as a sort of philosophy-the creation and 
testing of elaborate thought experiments, kept honest by requirements that could never be imposed on 
the naked mind of a human thinker acting alone. In short, Artificial Life research is the creation of 
prosthetically controlled thought experiments of indefinite complexity. This is a great way of confirming 
or disconfirming many of the intuitions or hunches that otherwise have to pass as data for the sorts of 
conceptual investigations that define the subject matter of philosophy. Philosophers who see this 
opportunity will want to leap into the field, at whatever level of abstraction suits their interests, and gird 
their conceptual loins with the simulational virtuosity of computers.

But perhaps some philosophers won't see the field this way. They will disagree with this assessment of 
mine or will worry about some of its presuppositions and implications, and, for them, Artificial Life will 
appear to be just one more controversial object in the world in need of philosophical analysis, criticism, 
defense, categorization. What are the n defining doctrines of the Artificial Life creed, and what can be 
said in defense or criticism of them? Already the stirrings of discussion about whether one wants to 
distinguish "strong AL" from one or another variety of "weak AL" can be heard in the corridors of 
philosophy. No doubt there is some useful work to be done identifying the popular misconceptions of 
the field and exposing them, scolding the overambitious partisans on both sides, and clarifying the actual 
products, as well as the prospects, of work in the field. It would be a shame, however, if this conceptual 
policeman role were to be the dominant contribution philosophers make to the field.



If we draw the boundaries of Artificial Life rather broadly, there are many quite traditional philosophical 
issues in the philosophy of biology, of science, of mind, and even metaphysics and ethics on which AL 
explorations have already begun to yield important insights. Even such a relatively simple ancestor as 
Conway's Life game provides a host of insights into traditional questions about causation, levels of 
explanation, identity over time, ceteris paribus reasoning and other topics [1]. Are Hobbesian just so 
stories about the possibility of the evolution of cooperation defensible? Certainly Axelrod's pioneering 
competitions point the way to a rich future of exploration. Under what conditions does (could, would, 
must, might) communication arise as a feature of interaction between individuals in groups? Can we 
build a gradualist bridge from simple amoeba-like automata to highly purposive intentional systems, 
with identifiable
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goals, beliefs, and so forth? These questions of manifest philosophical interest merge seamlessly with 
the delicious conceptual questions of biology: Why is there sex? Are there fixable scales or measures of 
complexity or designedness or adaptativeness that we can use to formulate hypotheses about 
evolutionary trends? Under what conditions does the fate of groups as opposed to individuals play a 
decisive role in evolution? What is an individual? The list goes on and on.

Artificial Life has already provided philosophers with a tidy batch of examples that challenge or 
illustrate points that have figured prominently in contemporary philosophy. I anticipate that as 
philosophers acquaint themselves with the field and actively enter into its explorations, the philosophical 
progeny of the early work will multiply like fruitflies. After all, the field could hardly be better designed 
to appeal to a philosopher's habits: You get to make up most of the facts! This, as any philosopher 
knows, is perfectly kosher in a conceptual investigation.
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Abstract Both Artificial Life and Artificial Mind are branches of what Dennett has called ''reverse 
engineering": Ordinary engineering attempts to build systems to meet certain functional specifications; 
reverse bioengineering attempts to understand how systems that have already been built by the Blind 
Watchmaker work. Computational modeling (virtual life) can capture the formal principles of life, 
perhaps predict and explain it completely, but it can no more be alive than a virtual forest fire can be hot. 
In itself, a computational model is just an ungrounded symbol system; no matter how closely it matches 
the properties of what is being modeled, it matches them only formally, with the mediation of an 
interpretation. Synthetic life is not open to this objection, but it is still an open question how close a 
functional equivalence is needed in order to capture life. Close enough to fool the Blind Watchmaker is 
probably close enough, but would that require molecular indistinguishability, and if so, do we really 
need to go that far?

In Harnad [13] I argued that there was a fundamental difference between virtual and synthetic life, and 
that whereas there is no reason to doubt that a synthetic system could really be alive, there is reason to 
doubt that a virtual one could be. For the purposes of this inaugural issue of Artificial Life, I will first 
recapitulate the argument against virtual life (so as to elicit future discussion in these pages), and then I 
will consider some obstacles to synthetic life.

1 What Is Life?



First, What is it to be "really alive"? I'm certainly not going to be able to answer this question here, but I 
can suggest one thing it's not: It's not a matter of satisfying a definition, at least not at this time, for such 
a definition would have to be preceded by a true theory of life, which we do not yet have. It's also not a 
matter of arbitrary stipulation, because some things, like plants and animals, are indeed alive, and others, 
like stones and carbon atoms, are not. Nor, by the same token, is everything alive, or nothing alive 
(unless the future theory of life turns out to reveal that there is nothing unique to the things we call living 
that distinguishes them from the things we call nonliving). On the other hand, the intuition we have that 
there is something it is like to be alive—the animism that I suggested was lurking in vitalism [13]—may 
be wrong. And it would be a good thing, too, if it turned out to be wrong, for otherwise the problem of 
life would inherit the mind/body problem [22,23]; more about this shortly.

Here's a quick heuristic criterion for what's really alive (although it certainly doesn't represent a 
necessary or sufficient condition): Chances are that whatever could slip by the Blind Watchmaker across 
evolutionary generations undetected is alive [151. What
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I mean is that whatever living creatures are, they are what has successfully passed through the dynamic 
Darwinian filter that has shaped the biosphere. So if there are candidates that can comingle among the 
living indistinguishably (to evolution, if not to some other clever but artificial gadget we might use to 
single out imposters), then it would be rather arbitrary to deny they were alive. Or rather, lacking a 
theory of life, we'd be hard put to say what it was that they weren't, if they were indeed not alive, though 
adaptively indistinguishable from things that were alive.

This already suggests that life must have something to do with functional properties: the functional 
properties we call adaptive, even though we don't yet know what those are. We don't know, but the Blind 
Watchmaker presumably knows, or rather, whatever it is that He cannot know can't be essential to life. 
Let me be more concrete: If there were an autonomous, synthetic species (or a synthetic subset of a 
natural species) whose individuals were either manmade or machine-made—which pretty well exhausts 
the options for "synthetic" versus "natural," I should think—yet could eat and be eaten by natural 
species, and could survive and reproduce amongst them, then someone might have a basis for saying 
that these synthetic creatures were not natural, but not for saying that they were not alive, surely.

We might have the intuition that those ecologically indistinguishable synthetic creatures differed from 
living ones in some essential way, but without a theory of life we could not say what that difference 
might be. Indeed, if it turned out that all natural life was without exception based on left-handed proteins 
and that these synthetic creatures were made of right-handed proteins (which in reality would block any 
viable prey/predator relation, but let's set that aside for now as if it were possible), even that would fail 
to provide a basis for denying that they were alive. So invariant correlates of natural life do not rule out 
synthetic life.



The animism lurking in our intuitions about life does suggest something else that might be missing in 
these synthetic creatures, namely, a mind, someone at home in there, actually being alive [4]. At best, 
however, this would make them mindless zombies, but not lifeless ones—unless of course mind and life 
do swing together, in which case we would fall back into the mind/body problem, or, more specifically, 
its other incarnation, the "other minds" problem [10]. For the Blind Watchmaker is no more a mind 
reader than we are; hence, neither He nor we could ever know whether or not a creature was a zombie 
(because the zombie is functionally indistinguishable from its mindful counterpart). So if life and mind 
swing together, the question of what life is is empirically undecidable, and a synthetic candidate fares no 
better or worse than a functionally equivalent natural one.

2 Virtual Life

All this has been about synthetic life, however, and synthetic life of a highly lifelike order: capable of 
interacting adaptively with the biosphere. What about virtual life? Virtual life, let's not mince words, is 
computational life, and computation is the manipulation of formal symbols based on rules that operate 
on the shapes of those symbols. Not just any manipulations, to be sure; the ones of interest are the ones 
that can be systematically interpreted: as numerical calculations, as logical deductions, as chess moves, 
as answers to questions, as solutions to problems. What is critical to computation is that even though the 
symbols are systematically interpretable as meaning something (numbers, propositions, chess positions), 
their shape is arbitrary with respect to their meaning, and it is only on these arbitrary shapes that the 
rules operate. Hence, computation is purely syntactic; what is manipulated is symbolic code. The code is 
interpretable by us as meaning something, but that meaning is not "in" the
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symbol system any more than the meaning of the words in a book is in the book. The meaning is in the 
heads of the interpreters and users of the symbol system.

This is not to minimize the significance and power of formal symbol manipulation, for that power is in 
fact the power of computation as it has been formalized by the fathers of modern computational theory: 
Turing, Goedel, Church, von Neumann (see Boolos & Jeffrey [1]). According to the Church-Turing 
Thesis, computation, in the sense of formal symbol manipulation, captures what it is that a 
mathematician means intuitively by a mechanical procedure. So far, every formalization of this notion 
has turned out to be equivalent. A natural generalization of the Church-Turing Thesis to the physical 
world is that every physically realizable system is formally equivalent to a symbol system (at least in the 
case of discrete physical systems, and to as close an approximation as one wishes in the case of 
continuous physical systems).



What all this means is that formal symbol manipulation is no mean matter. It covers a vast territory, both 
mathematical and physical. The only point at which it runs into some difficulty is when it is proposed as 
a candidate for what is going on in the mind of the interpreter or the user of the symbol system. It is 
when we suppose that cognition itself is computation that we run into a problem of infinite regress that I 
have dubbed "the symbol grounding problem" [7]. For whatever it might be that is really going on in my 
head when I think, my thoughts certainly don't mean what they mean merely because they are 
interpretable as so meaning by you or anyone else. Unlike the words in a static book or even the code 
dynamically implemented in a computer, my thoughts mean what they mean autonomously, 
independently of any external interpretation that can be or is made of them. The meanings in a pure 
symbol system, in contrast, are ungrounded, as are the meanings of the symbols in a Chinese/Chinese 
dictionary, symbols that, be they ever so systematically interpretable, are useless to someone who does 
not already know Chinese, for all one can do with such a dictionary is to pass systematically from one 
arbitrary, meaningless symbol to another: Systematically interpretable to a Chinese speaker, but 
intrinsically meaningless in itself, the symbol system neither contains nor leads to what it is interpretable 
as meaning. The meaning must be projected onto it from without.

The arbitrariness of the shapes of the symbols—the shape of the code—and the fact that computational 
algorithms, the rules for manipulating these meaningless symbols, can be described completely 
independently of their physical implementation, was exploited by the philosopher John Searle [24] in his 
celebrated "Chinese Room Argument" against the hypothesis that cognition is just computation:

Computation is implementation independent; the details of its physical realization are irrelevant. Every 
implementation of the same formal symbol system is performing the same computation and, hence, must 
have every purely computational property that the symbol system has. Searle accordingly pointed out 
that the hypothesis that cognition is just computation can only be sustained at the cost of being prepared 
to believe that a computer program that can pass the Turing Test [25] in Chinese—that is, correspond for 
a lifetime as a pen pal indistinguishably from a real pen pal—would understand Chinese even though 
Searle, implementing exactly the same program, would not. The source of the illusion on which Searle 
had put his finger was the systematic interpretability of the symbol system itself: Given that the symbols 
can bear the weight of a systematic interpretation, it is very hard for us to resist the seductiveness of the 
interpretation itself, once it is projected onto the system. More specifically, once we see that the symbols 
are interpretable as meaningful messages from a pen pal, it is hard to see our way out of the hermeneutic 
hall of mirrors this creates, in which the interpretation keeps sustaining and confirming itself over and 
over: We keep seeing the reflected light of the interpretation that we ourselves have projected onto the 
system [8,9].

Searle simply reminded us that in reality all we have in this case is a systematically
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interpretable set of symbols. We would not mistake a computer simulation of, say, a forest fire—that is, 
a virtual forest fire: a set of symbols and symbol manipulations that were systematically interpretable as 
trees, burning—for a real forest fire because, among other things, the symbol system would lack one of 
the essential properties of a real forest fire: heat. Even a full-blown, virtual-world simulation of a forest 
fire, one that used transducers to simulate the sight, heat, sound, and smell of a forest fire, would not be 
called a forest fire (once the true source of the stimulation was made known to us), because "computer-
generated forest fire stimuli to human senses" on the one hand and "forest fires" on the other are clearly 
not the same thing. In the case of the ''virtual pen pal," in contrast, there was nothing to curb the 
fantasies awakened by the systematic interpretability, so we were prepared to believe that there was 
really someone home in the (implemented) symbol system, understanding us. It required Searle, as yet 
another physical implementation of the same symbol system, to point out that this too was all done with 
mirrors, and that there was no one in there understanding Chinese in either case.

Between the purely symbolic forest fire and the one supplemented by "virtual-world" transducers 
traducing our senses, however, are important differences that are pertinent to the difference between the 
virtual and the synthetic [6]. The hypothesis that Searle attacked, stated in full, would be that cognition 
is only computation, that is, just implementation-independent symbol manipulation. Transduction, of 
course, is not just implementation-independent symbol manipulation. In this case, however, when the 
transduction is being driven by a symbol system and used only to fool our senses, the objection is the 
same: A real forest fire is clearly not the same as either (a) a pure symbol system systematically 
interpretable as if it were a forest fire (a virtual forest fire), or (b) a symbol system driving transducers in 
such a way as to give the sensory impression of a forest fire (a virtual-world forest fire). A real forest 
fire is something that happens to real trees, in the real woods. Although a real forest fire may be 
contained, so as not to incinerate the whole earth, there is in a real sense no barrier between it and the 
rest of the real world. There is something essentially interactive ("nonadiabatic") about it, "situated" as it 
is, in the real world of which it is a part. A real forest fire is not, in short, an ungrounded symbol system, 
whereas that is precisely what a virtual forest fire is.

Now any implementation of a virtual forest fire—whether a purely symbolic one, consisting of 
interpretable code alone, or a hybrid "virtual-worlds" implementation, consisting of a symbol system 
plus sensorimotor transducers that generate the illusion of a forest fire to the human senses—is of course 
also a part of the real world, but it is immediately obvious that it is the wrong part. To put it in the terms 
that were already used earlier in this paper: the purely symbolic virtual forest fire may be equivalent to a 
real forest fire to our intellects, when mediated by the interpretation occurring in our brains, and the 
hybrid sensory simulation may be equivalent to our senses, when mediated by the perception occurring 
in our brains, but in the world (the only world there is), neither of these virtual forest fires is functionally 
equivalent to a real forest fire. Indeed, virtual forest fires are truly "adiabatic": They are incapable of 
spreading to the world, indeed of affecting the world in any way qua fire (as opposed to food for thought 
or sop for the senses).



I write all this out longhand, but of course there is no "Artificial Fire" Movement, some of whose 
adherents are arguing that virtual forest fires are really burning. It is simply obvious that real forest fires 
and virtual ones are radically different kinds of things, and that the kind of thing a virtual forest fire is in 
reality, setting aside interpretations, whether symbolic or sensory, is a symbol system that is capable of 
having a certain effect on a human mind. A real forest fire, too, can have an effect on a human mind 
(perhaps even the same effect), but that's not all a real forest fire is, nor is that its essential property, 
which has nothing to do with minds.
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What about synthetic forest fires? Well, synthetic trees—the functional equivalents of trees, manmade or 
machine-made, possibly out of a different kind of stuff—might be possible, as discussed earlier in the 
case of synthetic creatures. Synthetic fire is harder to conceive: some other kind of combustive process 
perhaps? I don't know enough physics to be able to say whether this makes sense, but it's clearly a 
question about physics that we're asking: whether there is a physical process that is functionally 
equivalent to ordinary fire. I suspect not, but if there is, and it can be engineered by people and 
machines, let's call that synthetic fire. I see no reason for denying that, if it were indeed functionally 
indistinguishable from fire, such synthetic fire would be a form of real fire. The critical property would 
be its functional equivalence to fire in the real world.

So that would be a synthetic forest fire, functionally equivalent to a real one in the world. In the case of 
the virtual forest fire, another form of equivalence is the one usually invoked, and it too is sometimes 
called "functional," but more often it is referred to, more accurately, as computational, formal, or Turing 
equivalence [1]. This is really an instance of the physical version of the Church-Turing Thesis 
mentioned earlier: Every physical system can be simulated by (that is, is formally equivalent to) a 
symbol system. The relationship is not merely illusory, however, for the computer simulation, formally 
capturing, as it does, the functional principles of the real system that it is computationally equivalent to, 
can help us understand the latter's physical as well as its functional properties. Indeed, in principle, a 
virtual system could teach us everything we need to know in order to build a synthetic system in the 
world or to understand the causal properties of a natural system. What we must not forget, however, is 
that the virtual system is not the real system, synthetic or natural, and in particular—as in the case of the 
virtual forest fire as well as the virtual pen pal—it lacks the essential properties of the real system (in the 
one case, burning, and in the other, understanding).

The virtual system is, in other words, a kind of "oracle" (as I dubbed it in Harnad [13]), being 
systematically interpretable as if it were the real thing because it is computationally equivalent to the 
real thing. Hence, the functional properties of the real thing should have symbolic counterparts in the 
simulation, and they should be predictable and even implementable (as a synthetic system) on the basis 
of a translation of the formal model into the physical structures and processes it is simulating [3]. The 
only mistake is to think that the virtual system is an instance of the real thing, rather than what it really 
is, namely, a symbol system that is systematically interpretable as if it were the real thing.



Chris Langton was making an unwitting appeal to the hermeneutic hall of mirrors a few years ago at a 
robotics meeting in Flanders [17] when he invited me to suppose that, in principle, all the initial 
conditions of the biosphere at the time of the "primal soup" could be encoded, along with the requisite 
evolutionary algorithms, so that, in real or virtual time, the system could then evolve life exactly as it 
had evolved on earth: unicellular organisms, multicellular organisms, invertebrates, mammals, primates, 
humans, and then eventually even Chris and me, having that very conversation (and perhaps even fast-
forwardable to decades later, when one of us would have convinced the other of the reality or unreality 
of virtual life, as the case may be). If I could accept that all of this was possible in principle (as I did and 
do), so that not one property of real life failed to be systematically mirrored in this grand virtual system, 
how could I, Chris asked, continue to insist that it wasn't really alive? For whatever I claimed the crucial 
difference might be, on the basis of which I would affirm that one was alive and the other not, could not 
the virtual version capture that difference too? Isn't that what Turing Indistinguishability and 
computational equivalence guarantee?

The answer is that the virtual system could not capture the critical (indeed the es-
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sential) difference between real and virtual life, which is that the virtual system is and always will be 
just a dynamical implementation of an implementation-independent symbol system that is systematically 
interpretable as if it were alive. Like a highly realistic, indeed oracular book, but a book nonetheless, it 
consists only of symbols that are systematically construable (by us) as meaning a lot of true and accurate 
things, but without those meanings actually being in the symbol system: They are merely projected onto 
it by us, and that projected interpretation is then sustained by the accuracy with which the system has 
captured formally the physical properties it is modeling. This is not true of the real biosphere, which 
really is what I can systematically interpret it as being, entirely independent of me or my interpretation.

What makes it so unnecessary to point out this essential distinction in the case of a virtual forest fire, 
which no one would claim was really burning, yet so necessary in the case of virtual life, to which some 
people want to attribute more than meets the eye, again arises from something that Artificial Life has in 
common with Artificial Mind: The essential property each is concerned with (being alive and having a 
mind, respectively) is unobservable in both cases, either to the human senses or to measuring 
instruments. So this leaves our fantasy unconstrained when it infers that a virtual system that is 
systematically interpretable as if it were living (or thinking) really is living (or thinking). This 
temptation does not arise with virtual forest fires or virtual solar systems, because it is observable that 
they are not really burning or moving [16].



There clearly is an unobservable essence to having a mind (one whose presence each of us is aware of in 
his own case, but in no other, in knowing at first hand that one is not a zombie), but is there a 
corresponding unobservable essence to being alive? I think not. There is no elan vital, and whatever 
intuition we have that there is one is probably parasitic on intuitions about having a mind. So what we 
are projecting onto virtual life—what we are really saying when we say that virtual creatures are really 
alive—is probably the same thing we are projecting onto virtual mind when we believe there's really 
someone home in there, thinking, understanding, meaning, etc. And when we're wrong about it, we are 
probably wrong for the same reason in both cases, namely, that we have gotten trapped in the 
hermeneutic circle in interpreting an ungrounded symbol system [21].

3 Synthetic Life

Can there be a grounded symbol system? The answer will bring us back to the topic of synthetic life, 
about which I had promised to say more. And here again there will be a suggestive convergence and a 
possible divergence between the study of Artificial Life and the study of Artificial Mind: One way out 
of the hermeneutic circle in mind modeling is to move from symbolic modeling to hybrid 
analog/symbolic modeling [19,20], and from the pen pal version of the Turing Test (TT or T2) [12,25] 
to the robotic version (the Total Turing Test, T3). To remove the external interpreter from the loop, the 
robot's internal symbols and symbol manipulations must be grounded directly in the robot's autonomous 
capacity to discriminate, categorize, manipulate, and describe the objects, features, events, and states of 
affairs in the world that those symbols are interpretable as being about [5,11,14]. T2 called for a system 
that was indistinguishable from us in its symbolic (i.e., linguistic capacities). T3 calls for this too, but it 
further requires indistinguishability in all of our robotic capacities: in other words, total 
indistinguishability in external (i.e., behavioral) function. (I will consider indistinguishability in both 
external and internal [i.e., neural] function, T4, shortly.)

A T3 system is grounded, because the connection between its internal symbols and what they are about 
is direct and unmediated by external interpretation. The grounding, however, is purchased at the price of 
no longer being a pure symbol system. Hence, a
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robotic mind would be a synthetic mind rather than a virtual one. There is, of course, still the possibility 
that the robot is a zombie, and there are still ways to tighten the degrees of freedom still further: T4 
would call for internal indistinguishability, right down to the last neuron and neurotransmitter. These 
could be synthetic neurons, of course, but they would have to be functionally indistinguishable from real 
ones.

My own guess is that if ungrounded T2 systems are underdetermined and open to overinterpretation, T4 
systems are overdetermined and include physical and functional properties that may be irrelevant to 
cognition. I think T3 is just the right empirical filter for mind modeling, because not only is it the one we 
use with one another, in our day-to-day solutions to the other-minds problem (we are neither mind 
readers nor brain experts), but it is the same filter that shaped us phylogenetically: The Blind 
Watchmaker is no mind reader either and harks only to differences in adaptive function. So the 
likelihood that a T3 robot is a zombie is about equal to the likelihood that we might ourselves have been 
zombies.

Or is it? Let us not forget the "robotic" functions of sustenance, survival, and reproduction. Are these not 
parts of our T3 capacity? Certainly a failure of any of them would be detectable to the Blind 
Watchmaker. A species that could not derive the energy needed to sustain itself or that failed to 
reproduce and maintain continuity across generations could not pass successfully through the Darwinian 
filter. And to be able to do that might turn out to call for for nothing less than molecular continuity with 
the rest of the biosphere—in which case T4 alone would narrow the degrees of freedom sufficiently to 
let through only life/mind. And synthetic life of that order of functional indistinguishability from real 
life would have to have such a high degree of verisimilitude as to make its vitality virtually as certain as 
that of genetically engineered life.

Yet I am still betting on T3: The life-modeler's equivalent to the mind-modeler's T3 equivalence 
(lifelong robotic indistinguishability) is transgenerational ecological indistinguishability, and it is not yet 
clear that this would require molecular indistinguishability (T4). Certainly our model falls so far short of 
T3 right now that it seems safe to aim at the external equivalence without worrying unduly about the 
internal—or at least to trust the exigencies of achieving external equivalence to pick out which internal 
functions might be pertinent rather than to assume a priori that they all are.

That, at least, appears to be a reasonable first pass, methodologically speaking, as dictated by applying 
Occam's Razor to these two particular branches of inverse applied science: reverse cognitive engineering 
and reverse bioengineering, respectively. Ordinary forward engineering applies the laws of nature and 
the principles of engineering to the design and building of brand new systems with certain specified 
functional capacities that we find useful: bridges, furnaces, airplanes. Reverse engineering [2] must 
discover the functional principles of systems that have already been designed and built by 
nature—plants, animals, people—by attempting to design and build systems with equivalent functional 
capacities. Now in the case of natural living systems and natural thinking systems, "life" (whatever that 
is) and "mind" (we all know what that is) seem to have "piggybacked" on those functional capacities; it 
accordingly seems safe to assume they will also piggyback on their synthetic counterparts [18].



The only point of uncertainty is whether external functional equivalence (T3) is a tight enough 
constraint to fix the degree of internal functional equivalence that ensures that life and mind will 
piggyback on it, or whether internal functional equivalence (T4) must be captured right down to the last 
molecule. I'm betting on T3, in part because it is more readily attainable, and in part because even if it is 
not equivalence enough, we can never hope to be any the wiser.
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Abstract In this paper, we ask the question of whether we need artificial life (AL) at all. We find a lot of 
convincing arguments in favor of AL, but we also point out some dangers AL is exposed to. This careful 
epistemological review reveals the potential richness of AL without being either too reductionist or too 
holistic. We give some examples showing how this can be done in practice, and conclude that almost 
everybody needs AL.

1 The Many Lives of Artificial Life

It is sometimes beneficial to ask critical questions. One such critical question is to know why we are 
doing artificial life (AL). Our heads of departments seem to be waiting for an answer, especially when it 
comes to money: Why should they fund us to do something that doesn't look serious? Well, the possible 
answers are multiple, but never satisfy them. If ever you are faced with the same kind of "hierarchical" 
problem, this contribution is aimed at helping you in finding the right things to say to your boss. But 
things are never that simple. Whatever justification you might use, there are always associated dangers. 
Therefore, this contribution is also aimed at helping you avoid the numerous traps you could find when 
starting a discussion on artificial life with your boss. But we also hope to be able to convince not only 
your boss but also yourself. In order to do so, let us start with a very brief, somewhat provocative, 
compact "definition" of artificial life: We consider it as a general method consisting in generating at a 
macroscopic level, from microscopic, generally simple, interacting components, behaviors that are 
interpretable as lifelike. This statement is general enough that it can be applied to 99% of what is done 
within the artificial life framework. However, depending on the field to which it applies, this framework 
leads to very different results. For example, biologists do not have the same vision of artificial life as, 



say, computer scientists, artificial intelligence (AI) researchers, engineers or even artists. Hence, one 
should speak of artificial lives rather than of artificial life.

2 Artificial (Way of) Life

Before proceeding, we should explain in depth our definition of artificial life. It is based on the 
observation that most of what has been (or is being) done in AL relies on the following simple 
assumption: Synthesis is the most appropriate approach to the study of complex systems in general and 
of living complex systems in particular. Because it seems to be more difficult to start from 
manifestations of life and try to find its fundamental principles by top-down analysis than to start from 
computational and physical simulations and try to synthesize more and more complex behaviors, which
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in turn might capture the nature of some aspects of life, AL thus focuses on ways of achieving 
emergence to generate these more and more complex behaviors [25]. Apparently, AL's object of study is 
in essence not different from the object of study of biology: Only the methodology is different. Actually, 
the methodological aspects constitute the true essence of AL. Note that these aspects are not purely 
technical and are not as trivial as they may sound: They raise very specific issues, and synthesis, 
although certainly powerful, must be handled with care. We shall return to this topic later, because it is 
important that the power of synthesis be directed toward the right channels. Let us note also that AL's 
methodology is a completely reductionist one, because it is aimed at explaining high-level behaviors 
from low-level causes.

While the first inspirations of AL's simulations, theories, and models are living things and behaviors, life-
as-we-know-it, synthesis naturally allows one to create a much wider spectrum of behaviors, life-as-it-
could-be. The only way one can decide whether or not the synthesized behaviors fall within the 
framework of AL is by judging how well they reproduce some aspects of life, life-as-we-know-it, at the 
macroscopic level. In order to do this, one has to interpret the obtained behaviors as lifelike. This is a 
crucial point: There are numerous ways of interpreting these behaviors. One can resort to experimental 
biological data, to additional criteria of plausibility, or to whatever criterion available.



Let us take an example: trail following in ants. We know through experiments that in some species, ants 
lay a certain amount of pheromone on their way to a food source and much more pheromone on their 
way back to the nest, and that they tend to follow pheromone gradients. When one is simulating on a 
computer a colony of artificial foraging ants following these elementary individual behavioral rules, the 
observed exploratory patterns can be interpreted in the framework of a theory, whereby the simulation 
constitutes a test to know if the previously mentioned factors could be sufficient to explain the 
exploratory patterns of real ant colonies. It is not to say that real ants have anything else in common with 
artificial ants than this way of locally processing data from their environment and of responding to it. 
But one knows that the features implemented in the simulations correspond to something real, and that, 
as advocated in Langton et al. [26], both types of exploratory patterns are two instances of the same 
phenomenon: The self-organization of collective activities in space and time. Besides experimental data, 
the simulation is also constrained by a certain form of biological plausibility: In effect, if artificial ants 
have to deposit 10 (artificial!) tons of pheromone to reproduce the experimentally observed behavior, 
they do not constitute a good model of real ants. But artificial lifers are not all biologists and do not all 
seek models to explain biological phenomena. If they just want to reproduce exploratory patterns, they 
can resort to ants capable of depositing 10 tons of pheromone. Then, the synthesized patterns can no 
longer be interpreted in the rigid framework of a biological theory: They are interpreted as lifelike if 
they are similar to biological patterns at a purely phenomenological level. This phenomenological level 
becomes art if the only constraints one accepts to satisfy are of an aesthetic nature. Engineers, on the 
other hand, have a different point of view: They need to create efficient, robust, adaptive systems 
capable of solving problems; the constraint they have to satisfy is a constraint of viability.

To summarize, let us say that more than a scientific field, AL is a way of practicing science. And it is an 
exciting new way of practicing science, especially for young scientists tired of the boring daily practice 
of traditional sciences. Moreover, AL goes beyond its application to science: For instance, as we shall 
try to show, art is inherently associated with AL. But AL is synthetic and reductionist: This makes it 
quite dangerous, especially for the excited young scientists. In the next two sections, we will take some 
time to make a review of criticisms that can be made against AL. Most of these criticisms
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can be wiped out by cautious use of AL, but we have to remain constantly conscious of their existence. 
This will help in discussions with your boss. We will end with a section explaining why we need 
artificial life. Don't worry: The reasons are numerous so that you'll have plenty of arguments.

3 Synthesis



Any science having to deal with complex systems can feel the attraction of synthesis. Living systems are 
undoubtedly complex. The most commonly shared definition of a complex system states that it is a 
network of interacting objects, agents, elements, or processes that exhibit a dynamic, aggregate 
behavior. The action of an object (possibly) affects subsequent actions of other objects in the network, 
so that the action of the whole is more than the simple sum of the actions of its parts. In other words, a 
system is complex if it is not reducible to a few degrees of freedom or to a statistical description. A 
complex system has many degrees of freedom that strongly interact with each other, keeping us from 
either of the two classical reductions: It exhibits what Weaver [47] called organized complexity (as 
opposed to organized simplicity and disorganized complexity). Besides, the complementary idea of 
chaos taught us that unpredictability can also arise in low-dimensional deterministic systems, showing 
that even "reducible" systems can be very hard to deal with. In any case, synthesis, that is, a bottom-up 
approach generally based on simulation, seems to be a good candidate, if not the only one, to explore the 
behavioral space of complex systems. Thus, the reason why the sciences of complex systems did not 
emerge before is simple: There was a sort of unexplored niche in the gigantic scientific ecology. 
Complex systems, be they low-dimensional chaotic or high-dimensional, could not be studied before the 
last decades because they require high computational power—far beyond the (unaided) human brain's 
capabilities. Synthesis has strong computational requirements.

Unfortunately, the synthetic approach, although certainly useful if one does not want to "miss emergent 
properties" [40], implies weakened explanatory status of models, huge spaces of exploration, absence of 
constraints. By using synthetic exploration, AL deals with all the phenomena such an exploration may 
allow. It results in a space of possible behaviors that is too huge: Otherwise stated, life-as-it-could-be is 
dramatically ill-defined. With such a program, AL tends to forget higher-level sciences (see e.g., "AI has 
for the most part neglected the fundamental biology of the nervous system. This criticism will 
undoubtedly be aimed at AL as well" [29]). It should, on the contrary, accept the empirical constraints 
provided by the observations of these higher-level sciences, even if the ultimate hope is to go beyond the 
study of what exists toward the study of what could have existed—the latter providing (of course!) no 
observation at all. Moreover, how can one scientifically assess the validity of models without resorting 
to constraints? If we resort to synthesis with only the goal of phenomenologically reproducing observed 
behaviors, it is hard to determine the extent to which a model explains the phenomenon it reproduces. 
But even when one has appropriate criteria, the level of explanation reached by a given synthetic model 
remains uncertain, and most of epistemology until today has focused on analysis rather than on 
synthesis.

3.1 A Matter of Levels

Putnam [32] reached an interesting conclusion by making first a difference between "to deduce" and "to 
explain": Being able to deduce the properties of a phenomenon from a set of causes is not equivalent to 
explaining this phenomenon, because only a few among the many possible causes may be relevant, 
"certain systems can have behaviors to which their microstructure is largely irrelevant" [32]. Explaining 
the phenomenon
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amounts to determining what the relevant causes are. Note that the number of such causes might be very 
high in the case of complex living systems, making explanation intractable. Further, it may simply be 
impossible to deduce the properties of a phenomenon from a set of causes originating from one single 
discipline: This is so because "the laws of the higher-level discipline are deducible from the laws of the 
lower-level discipline together with 'auxiliary hypotheses' that are accidental from the point of view of 
the lower-level discipline" [32]. The laws of the higher-level discipline, therefore, depend on both the 
laws of the lower-level discipline and "boundary conditions" that are "accidental from the point of view 
of physics but essential to the description of" [32] the higher level. It is through the huge space of 
possibilities allowed by physics and through the many possible accidental causes that higher-level 
phenomena are somewhat autonomous relative to other levels. Moreover, even when no accidental cause 
is needed, it may take too long a time to deduce the higher-level properties from the lower-level ones.

Thus, if we summarize Putnam's ideas, we may state the following (using Putnam's terminology): A 
great number of laws of the lower-level are irrelevant to the understanding of higher-level phenomena; 
yet, the remaining relevant causes can be intractably numerous. Other laws originating from other 
perspectives are essential for the understanding of the higher-level phenomena but are purely accidental 
at the lower level.

In the same spirit, one can see a major obstacle appear: Any kind of higher-level structure can be very 
hard to deal with, due to the fact that explanation is not transitive (i.e., explanations at one level are not 
of the same nature as explanations at another level), which gives some unpleasant autonomy to higher 
levels relative to (explanations at) lower levels. If we say, as in Weidlich, [48] that "a level is a stratum 
of reality of a certain self-contained organization," that is with a "quasi autonomous dynamics," then (1) 
the immensity of the phase space allowed by the physics of level 1 can make the behavior of level 2 
unpredictable, that is, it may be impossible to have any idea about shapes and structures appearing at the 
higher level given the laws of physics; (2) each passage from one level to another has its own boundary 
conditions; and (3) external boundary conditions (external causes) are accidental. (It is worth noticing 
that these external boundary conditions may also be generated by the higher levels in which the level 
under study is embedded.) As a consequence, it can be very hard to find tools to deal with higher levels 
when starting from a given level, and usually, "it appears that the lower level provides the constituent 
units for the next higher level only" [48].



It is also natural to speak of emergence in the present context. The notion of emergence, often debated 
within AL, is of high interest in its own right and would justify a separate review. To summarize, we 
shall say that emergence is generally defined as a process through which entirely new behaviors appear, 
whose properties cannot be derived from a given model of how the system behaves, so that another 
model has to be built in order to deal with these new behaviors. Usually, but not necessarily, the new 
behaviors appear at a macroscopic level while one has only a model of the microscopic level, so that a 
new model—possibly phenomenological—must be developed for the macroscopic level. The major 
disagreements about emergence stem from different interpretations of what it means to "derive the 
properties of the new behaviors" [4,7,8,12,23-27,29,34,35]. In any case, the synthetic nature of AL also 
explains why people in artificial life share an irrational faith in the power of emergence, although 
everybody acknowledges that "the concept of emergence in itself offers neither guidance on how to 
construct such a[n emergent] system nor insight into why it would work" [21]: This also makes AL even 
more reductionist than most classical reductionist sciences, because for AL the laws of physics within a 
given system are almighty; not only must the system comply with physical rules, it is also defined by 
them because they generate sufficient "boundary conditions" by themselves. In other words, the system
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has to exhibit a highly specific but surprising behavior at the macroscopic level given only the laws of 
microphysics.

3.2 On the Nature of Phenomenological Analogies

Let alone the danger of outrageously worshipping emergence, the transversality of concepts that is 
central to AL can also be dangerous when it is not appropriately applied: ''a direct comparison of 
physical and social systems on the phenomenological level can only lead to a superficial, short breathed 
analogy lacking structural depth," "deep and rather universal analogies between social and physical 
systems (. . .) reflect the fact that, due to the universal applicability of certain mathematical concepts to 
multi-component systems, all such systems exhibit an indirect similarity on the macroscopic collective 
level, which is independent of their possible comparability on the microscopic level" [48]. All natural 
objects, be they physical, biological, social, or else, are modeled through systems: Only a limited set of 
observables is chosen, and syntactic relationships are looked for between these observables to account 
for their (experimentally observed) behaviors. Two systems can share some similarities with respect to 
some set of observables, while they completely diverge when it comes to other observables. Thus, one 
must be very cautious when dealing with resemblances not to confuse these necessarily partial 
resemblances with global analogy at all levels of description and with respect to all possible sets of 
observables. An example is in order here. Diffusion-limited growth (DLG) [3] is a good illustration of 
limited resemblances that do not cross levels. DLG is a formalism that is used to model the growth of 
many different types of patterns, from the growth of bacterial colonies to the growth of electro-chemical 
deposition, solidification from a supersaturated solution, solidification from an undercooled liquid, etc. 
Such growth phenomena result in fractal patterns, especially when the concentration of the diffusing 
field (nutrient in the case of bacterial colonies) is insufficient. Although these many different systems 



can be described by the same type of equations, and develop the same type of spatial pattern, they 
cannot be compared at any other level: A bacterial colony has little in common with electrochemical 
deposition. Besides, there is a functional relevance in the case of the bacterial colony that does not exist 
in other cases: Growing fractally is a way of achieving a perfect compromise between the surface 
explored and the density of individuals (see Figure 1).

In artificial life in particular, due to the lack of constraints, phenomenological relationships are almost 
the only criterion that can be used to judge simulations and models ("simulations are metaphorical, not 
literal" [27]). It could give the wrong impression that the nature of the simulated processes is essentially 
the same as the phenomenon they reproduce. While this might be true at the global level, it is certainly 
false at the level of the constituent units. Let us take the example of the colony of robots built by 
Beckers and colleagues [18] in Brussels. They reproduce some interesting behaviors at the collective 
level that are reminiscent of patterns of activities found in insect societies. Yet, the interactions 
implemented between the robots (particular nonlocal communication processes) are very different from 
the interactions actually existing in insect colonies. Therefore, although there is a phenomenological 
similarity at the global level, neither the interactions nor the constituent units are similar.

Our judgment is largely based on our intuitions, experiences, and even emotions, which is in 
contradiction with AL's ambition to synthesize life-as-it-could-be: We judge simulations based on how 
well they meet our aesthetic requirements, which themselves rely on our experience of life-as-we-know-
it. (What other experience could we have?) As a consequence, we will never be able to recognize or 
synthesize forms of "life" that are really far from life-as-we-know-it. Thus, instead of ambiguously and 
dangerously refusing constraints by defining a self-contradictory program, AL should make clear what 
constraints it chooses to be based upon. All this reminds us of an artistic approach:
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Figure 1. (Modified from Ben-Jacob et al. [3]): (a) represents the growth of a bacterial colony in
two different nutrient environments; when nutrient is in sufficient quantity, growth is denser than when

nutrient is lacking, in which case the pattern becomes fractal; (b) represents a pattern obtained by
electrochemical deposition.

Building an AL's creature, be it a cellular automaton, amounts to making some set of equations and our 
subconscious meet, just as an artist makes his or her imagination wander around with the help of some 
technical tools until he or she reaches a state of aesthetic satisfaction. If we are particularly appealed by, 
say, 1D-CA rule 18, it is because it generates interesting patterns, while most other cellular automata 
(CA) rules generate uninteresting behavior. By tuning a set of parameters, namely, the values of the 
associated rule table, we eventually meet a rule that gives us a certain satisfaction. This parallel between 
art and AL is not surprising if one remembers the importance of sensorial media (like videotapes or 
computer graphics) in AL demos.

3.3 AL Lost in Immensity

Apart from the contradiction it contains, the life-as-it-could-be program may constitute an intractable 
task; all the more as "real life," life-as-we-know-it, already covers a large spectrum of possible 
behaviors: "Life is self-organizing in the sense that it leads to very special forms, that is, from a wide 
basin of attraction it leads to a much narrower set of meaningful states. But this alone would not yet be 
surprising: The surprising aspect is that this attraction is not at all rigid. Although the attractor is very 
small compared with full-phase space, it is still huge, and, therefore, it allows for a wide spectrum of 
behaviors" [19]. That is why we should follow Sober's [37] suggestion to approach the general questions 
on the "nature of mind or the nature of life" by "focusing on more specific psychological and biological 
properties ... this strategy makes the general questions more tractable." By using Putnam's [33] words, 
the only way for AL not to be "one damned thing after another'' is to accept empirical constraints and 
eventually have one or several "Master Programs," otherwise AL researchers would be tinkers—like 
evolution—and the number of "damned things" we may think of may be astronomical. Such Master 
Programs can be, for example, the study of the emergence of self-replicating molecules, of 
coevolutionary dynamics, of the interplay between evolution, adaptation and learning, of autonomous 
systems, of collective problem-solving and decision-making abilities in natural and artificial systems, 
etc. There are
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other fields dealing with life, adaptation, and evolution that can provide sufficient constraints. The best 
bottom-up approach needs some kind of validation by top-down data. Most of serious AL-based 
research is being carried out following such a Master Program with the right constraints, be they 
experimental or else, but let us emphasize that not everything is serious in the AL community.

4 Reductionism and the Nature of Artificial Life

Following Wimsatt [49], we shall say that "... a reductionist is interested in understanding the character, 
properties, and behavior of the studied system in terms of the properties of its parts and their 
interrelations and interactions. This means that the reductionist is primarily interested in the entities and 
relations internal to the system under study." But Wimsatt added, "This is a sufficiently inclusive 
description that it probably captures any analytic method in general...." unnecessarily restricting the 
scope of reductionism to the realm of analytic methodologies, while its definition does not refer to any 
kind of analysis. And from this definition, it is clear that AL, although synthetic, is 100% reductionist. It 
is often believed that reductionism goes together with analysis: The sciences of complex systems in 
general, and AL in particular, offer beautiful counterexamples. Hence, being reductionist is not 
necessarily a bad thing! The reductionist nature of AL manifests itself in combination with its synthetic 
nature under some peculiar forms we shall describe.

Artificial life's synthetic exploration procedure is partly motivated by the reductionist hope that simple 
(most often formal) elements in interactions will generate a sufficient richness of behaviors peculiar to 
life. Yet, as was pointed out in papers warning against computational reductionism [see, e.g., 7,8], one 
may miss important phenomena because some external variables or conditions, accidental from the point 
of view of the model (i.e., not taken into consideration by the model), may turn out to be crucial to the 
generation of behaviors constituting the essence of life. These conditions, which are essential to the 
generation or the understanding of a particular phenomenon, are thereafter called "boundary conditions." 
They can be internal as well as external. We all hope that a lot of "interesting" behaviors can be 
generated "internally." While doing so, we must be aware of the theoretical limitations such a purely 
"internal" approach has, and we are indeed if one judges by all the efforts that are being made to 
incorporate external factors in models. Besides, as all scientists, we are condemned to resort to models, 
which are necessarily partial images of the world. No science does better in this respect.

4.1 Boundary Conditions



Coming back to Wimsatt's general definition, we see that being reductionist leads to a particular interest 
in the "entities and relations internal to the system." This constitutes the essence of AL's reductionist 
side: One tries not to resort to explanations external to the system, or external boundary conditions, in 
order to make things emerge. The idea behind boundary conditions [31] is the following: although it is 
true that a higher level has a behavior that is compatible with lower-level laws, lower-level laws alone 
are unspecific. They cannot determine the behavior of the higher level: Boundary conditions make the 
link between the two levels by "directing lower-level processes to definite channels" [23]. Vitalistic 
conclusions may easily be drawn from these considerations, if one believes that irreducible boundary 
conditions underlie the appearance of life: In effect, among the immense [13] number of possible states 
of the world allowed by physics, only a few are compatible with life, and such compatibility may not be 
deducible from the laws of physics. The idea of boundary condition is closely linked to Elsasser's [13] 
immensity, to Pattee's nonholonomic constraints, and to Rössler's priv-
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ileged zero property, nicely summarized in Kampis [23]. The notion of self-generated boundary 
condition is easy to visualize: We use this terminology to describe the property of some systems that 
generate boundary conditions from inside (when nonlinear laws of interaction are present), that is, which 
exhibit a highly specific behavior without the help of any exogenous phenomenon. Such a phenomenon 
would be "purely accidental" from the point of view of the internal dynamics [32]. It is important to 
notice that in a case where boundary conditions are generated internally, the dynamics of the system 
drives it toward a functionally relevant state. If, for instance, the system is composed of interacting 
processes, it will evolve toward a state where the interactions between the processes will allow it to 
implement a function without the need of any external, environmental tuning. The systems we are 
studying are obviously open systems that interact with their surroundings by exchanging matter, energy, 
(physical) entropy, or "information," and they cannot be entirely described by purely internal 
mechanisms: We all know this very simple fact and try to incorporate such exchanges in our models and 
simulations, but at the same time we try to find a minimal set of factors that would account for a 
particular phenomenon. Let us not forget that such factors may exist inside as well as outside the system.

4.2 More on Reductionists and Environments



As emphasized in Wimsatt [49], reductionists usually tend to look for internal explanations 
(intrasystemic mechanisms) rather than for external causes (intersystemic mechanisms), and in any case 
internal mechanisms are very often considered more "fundamental." Extreme reductionists "simplify the 
description of the environment before simplifying the description of the system" and "construct 
experimental arrangements so as to keep environment variables constant"; in a nutshell, they "ignore, 
oversimplify, or otherwise underestimate the importance of the context of the system under study" [49]. 
But, for example, ''evolution depends on a result of microstructure (variation in genotype) but it also 
depends on conditions (presence of oxygen) that are accidental from the point of view of physics and 
chemistry" [32]. This last remark in particular reminds us of the multitude of "frozen accidents" that 
have certainly occurred during evolution (note that there are undoubtedly other mechanisms in 
evolution): These frozen accidents were mainly caused by external conditions (external relative to a 
given system's laws of functioning). Thus, the task of reproducing evolution (i.e., to synthesize artificial 
life) by purely self-generated boundary conditions seems hopeless, because at certain points in 
evolution, external causes have produced crucially relevant changes. Although we do not believe that 
anyone in AL exhibits such a form of extreme reductionism-once again, environments are certainly 
considered important, and one should even say more and more important in AL-related simulations and 
models-it is a good thing to remain conscious of the full complexity of the world around us, of the 
infinite, open-ended richness of real environments: Artificial Lifers are confronted with the challenging 
task of translating that complexity and this richness into working simulations and models.

Also of utmost importance is the fact that the complexity of an organism is often believed to reflect the 
complexity of its environment, at least to some extent. The idea of enaction [45,46] is based on the 
statement that an organism and its environment are mutually defined. Even if one does not believe in 
complete mutual specification, it raises the issue of evaluating the influence of environmental structures 
on an organism's structures. One cannot hope to do so without embodying artificial creatures in 
somewhat realistic, varying environments. A way of taking external causes into account is by making 
embodiment a clear goal of all AL's theories and simulations [5,6]—which it is already to a large extent: 
Let us make it even clearer. Embodying an artificial creature in some kind of environment (with the 
ultimate goal of plunging it into a real one)
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implies making a thorough investigation of the notion of external boundary condition. AL constitutes an 
important first step toward this goal, in the sense that it is an attempt to delimit the power of self-
generated boundary conditions and, therefore, to locate the frontiers beyond which it is the realm of 
accidental causes.

Taking environments into account is anyway very useful if adaptivity is a desirable goal to achieve: In 
effect, adaptivity is by definition relative to modifications of the environment. The richer the 
environment, the more adaptive a system has to be in order to keep up with such variations. It has been 
advocated many times by Brooks that building one robot is worth 100 simulations, not only because 
technical details of the implementation must be tackled with, but also and, we believe, most importantly, 
because this is the only way to be confronted to the actual complexity of the world. Certainly, richer 
environments make things harder: They make the fully nonlinear relationship between GTYPE and 
PTYPE [25] much more complex. Thus, it is acceptable, as a first step, to simulate limited 
environments. We must remark that the notion of environment is different depending on the level at 
which one is located, for example, in a swarm of insects (be they natural or artificial), the environment 
of the swarm as a whole is the physical space that surrounds it, while the environment of one particular 
individual comprises both the environment of the swarm and the other members of the swarm with 
which this individual interacts. The dynamically varying pattern of interactions constitutes an 
environment that is internal to the swarm system and, thus, provides it with internal boundary 
conditions. Such internal boundary conditions may be sufficient to generate functionally relevant 
patterns in (a) a highly simplified external environment, (b) a fixed external environment, or (c) a 
complex, varying external environment.

We (in AL) show a tendency to test our (collective) systems in case (a) or (b). Sometimes it is because it 
is hard or/and computationally expensive to do otherwise. Sometimes, we do so without being aware of 
it. Yet, many natural systems, if not all, live in a case (c) environment: There, internal boundary 
conditions may very well be at the same level of importance as external boundary conditions in most 
cases.

4.3 Function as a Side Effect of Structure?



There is often a focus of interest on the notion of structure while functional aspects are quite often 
neglected. Sometimes, these two aspects are confused with one another, because one does not see the 
purpose of making separate studies on structure and on function, the latter being considered a side effect 
of the former. (In effect, a function is just the consequence of plunging a structure into an environment.) 
But, this side effect can have dramatic consequences: "any adaptation has systematically specifiable 
conditions under which its employment will actually decrease the fitness of the organism" [49]. Let us 
take a look at the collective foraging behavior of army ant colonies [10,17]. The Ecitons live in tropical 
rain forests in colonies containing up to 2,000,000 individuals. Each individual is practically blind, and 
each day a great number of ants leave the nest to explore a new area to find preys. They constitute a 
swarm-raiding system that adopts a specific configuration. Moreover, this pattern is species-specific. 
Such a structure emerges spontaneously from individual trail-laying and trail-following behaviors, 
through interactions between individuals going toward the edge of the swarm, individuals flowing back 
to the nest, and the distribution of preys in the environment. But in some cases, when rain erased the 
pheromone trail, a swarm following the same elementary behavioral rules may be trapped in an unended 
circular mill, as it was described by Schneirla [17,36]. With this example we can see that biological 
structures, different foraging ant patterns that emerge under different environmental conditions, may 
possess functional value for the colony in one case and none in the other (Figure 2). Deneubourg and 
Goss [10] have proposed a probabilistic lattice
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Figure 2. (Modified from Deneuborg and Goss [II] and Schneirla [32]): (a) represents the functionally
efficient exploratory pattern of army ants having a trail-following/trail-laying behavior; the three different

patterns correspond to three different distributions of preys in the environment (more precisely they
correspond to different species that hunt for different types of preys, whence different distributions);
(b) schematically represents a circular mill of army ants-they move faster and faster as the trail gets

stronger, and continue to turn until exhausted.



model of foraging taking into account some environmental changes. Not only does this model account 
for the different foraging patterns found for different distributions of preys, it is also capable of 
reproducing circular mills in appropriate conditions.

Let us clarify the differences between structure and function (not to be taken literally): A function F is 
specified by its effects on a given (finite) subset of environmental variables, and a structure S is 
functionally defined by its effects (when plunged into a given environment) with respect to all possible 
environmental variables in their whole
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ranges. That's the difference. In the previous example, the structure implementing the foraging function 
in a normal environment is compactly represented by the behavioral rules that army ants follow (mostly 
trail laying and trail following). But the same structure, that is, the same behavioral rules, plunged into 
another environment does not at all implement the same function. Moreover, the colony is no longer 
viable. More precisely, let (Xi) be all possible environmental variables (i can be a continuous index, but 
that's not important to get the idea), and let E = {X1 ..., Xn,} be a subset of these variables, acted upon by 
F: F(X1,...,Xn) = (Y1 ..., Yn). For instance, F can represent the modification of the states of some variables 
in time: in continuous time (dX1/dt, ..., d Xn /dt) = F(X1, ..., Xn), or in discrete time, 
F(X1 [t], ..., Xn [t]) = (X1[t + 1], ..., Xn [t + 1]). F is a function of these n variables. Then S is said to 
implement function F in environment { Xi } iff S(X1 ..., Xn,), and all other Xi)) = F(X1, ..., Xn). What is 
usually assumed by reductionists is {all other X1} = constant, which is incorrectly derived into S/ Xi = 0 
for i ≠ 1... n. This can be true for some Xi and for some range of values, but this is generally false. What 
we can see here is that many different structures can implement the same function and that the same 
structure can implement many different functions if different values of "irrelevant" variables are 
assumed. Moreover, the function implemented by S in a given environment depends on what variables 
we have chosen to look at: S can also have an effect on other variables, accidental from the point of view 
of the chosen variables.

Because we thought it was essential, we have emphasized a lot the importance of environments: By 
plunging AL-based "creatures" in more and more realistic environments, we will be naturally confronted 
with the complexity of life. We would be delighted if this appeared obvious to everybody in AL.

4.4 Computational Reductionism



It is true that AL as well as the sciences of complex systems have greatly benefited from the advances of 
computers in the last decades: These advances have enabled a "time compression" allowing for the 
simulation of processes that would otherwise have taken years and years. But there are some questions: 
(1) Is time compression powerful enough to explore all possible behaviors (including interesting ones) 
of a formally defined system? (2) Can finite specifications lead to open-endedness? Computational 
reductionism stands on the idea that any phenomenon that obeys the laws of physics can be simulated on 
a computer. Thus, while classical reductionism conjectures the reducibility of any biological process to 
the laws of physics, computational reductionism goes further by "transitivity of reduction": Any 
biological process can be simulated on a computer. But [7,8,12,13,34,35]:

•  What if life can be "explained" only by an immense dimensional model, such that the number of 
relevant degrees of freedom itself is not even tractable and cannot be acted upon with present-day 
computers? Practical computers are not Turing machines, nor do human programmers live more than a 
billion years.

•  The algorithmically based notion of logical depth showed us that some (very deep) objects can be 
simulated only by themselves, in the sense that there exists no shortcut to generating them; thus, if 
evolution is depth-generating, it may be very hard to reproduce its latest products on a computer by 
using a synthetic procedure very similar to an "artificial evolution." (This is a philosophical objection 
that does not jeopardize such simulations-they will obviously teach us something-but which questions 
their power.)

•  If it is tempting to say that any process that obeys physical laws can be simulated (on a Turing 
machine, that is, provided enough space, memory, and time are
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available), nothing can be said about synthesis, because simulation and synthesis have two very different 
statuses. The laws of physics (in this context) have finite specifications, they are defined with respect to 
a set of chosen observables (properties of the object) that are transformed into variables to form a 
system, together with relationships between them (not to say that physics is restricted to laws). Given 
one phenomenon, we can look for laws (with the meaning defined earlier) governing its behavior, and, 
once this is done, it is likely that the phenomenon can be simulated. Now, if we synthesize some 
behavior with a computer, this behavior will be bound to obey the "physical" laws expressed in the 
specifications of the system. It is now a completely unresolved question to know whether or not these 
derivable behaviors are open-endedly diversified.



Close in spirit to these issues is the question of understanding the influence exerted by the medium of 
"implementation" through the boundary conditions it provides to the "simulated" process. For example, 
an infinitely complex medium can provide open-endedness to the processes it implements, although the 
processes themselves are not open-ended. These boundary conditions are sometimes difficult to deal 
with, because they may be essential to the implementation without being clearly taken into account in 
the model, or simply because they are hard to track down due to the high complexity of the medium 
[291.

Yet one shouldn't be too pessimistic about all these theoretical limitations of AL's computational 
reductionism. Rather than true limitations, they constitute questions asked to AL. And AL is precisely a 
constructive way of checking whether these limitations are real obstacles.

4.5 The Pride of Being Reductionist

Reductionism does not only have drawbacks. In effect one could argue that AL models are the simplest 
ones in some sense, because they rely on simple elements in interactions, and that it is epistemological 
common sense to start with simple models rather than with complicated ones, with internal rather than 
with too many external causes. Although this is not completely true for at least two reasons: (1) when 
doing, for example, biological modeling, one often starts with many more variables than necessary, and 
gradually simplifies the model to retain only relevant variables; (2) simplicity is not necessarily a quality 
as regards biological sciences-being reductionist is thus not necessarily a negative thing, on the contrary. 
Common wisdom holds that being reductionist implies tracking the causes of macroscopic phenomena 
down to the level of elementary particles or more loosely down to the level of physical laws, which, for 
instance, any biological system ultimately obeys or seems to obey. But one can be ontologically, 
methodologically, or epistemologically reductionist, depending on the extent to which one accepts 
and/or practices reductionist principles. AL is methodologically reductionist in essence, not more, not 
less. And using reductionist methods is actually a safe way of practicing science, provided one doesn't 
forget high-level sciences. Let us recall an anecdote reported by Putnam [32]: A lot of biology 
departments fired their naturalists after Watson and Crick's discovery of the structure of DNA, because 
it was believed at that time that one would be able to explain everything with DNA. This, one should 
remember.

5 Why Do We Need AL?

It is time for us now to confess that we love AL. It may not be clear for the reader yet. Too many people 
in AL think that being critical means being an enemy. On the
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contrary, constructive criticisms will enhance AL's diffusion while making it more and more resistant to 
external attacks. If all the things we said in the previous sections were obvious to you, if you agree with 
them, then we are happy, because they were not at all obvious to us.

5.1 AL and Theoretical Biology

The objectives of AL should be stated without ambiguity: AL is not in competition with theoretical 
biology, although there is a nonempty intersection between AL and theoretical biology. On the contrary, 
it can contribute to theoretical biology because it allows one to go beyond pure biological modeling. If 
one quotes Emmeche [12], AL may contribute to theoretical biology by "(i) simulating developmental 
and evolutionary phenomena of life on Earth, (ii) simulating life as it could have evolved in non earthly 
environments given some set of realistic boundary conditions, (iii) providing new concepts and models 
of emergent phenomena belonging to a general set of complex systems of which biological systems 
(under particular kinds of description) may be a subset" [12]. Although we do not believe that point (ii) 
is so important because it falls within the life-as-it-could-be program, it is obvious to us that AL can 
contribute to many fields of theoretical biology, like ecological modeling and evolutionary modeling as 
well as to the understanding of collective behaviors in animal societies [42,43]. To have more 
applications, see the paper by Taylor and Jefferson [41] in this volume. It is not to say that biologists did 
not resort to synthesis or self-organization as modeling tools before AL: Rather, AL is a unified, 
transdisciplinary attempt to make these tools systematic.

Let us give an example [39] of how AL-based tools of investigation can be applied to the understanding 
of biological phenomena. Consider the immune system: It has to perform the task of discriminating 
between self and nonself, that is, it has to protect the organism against external aggressors (antigens) but 
at the same time has to be tolerant with the molecules of the organism. A wrong functioning of immune 
tolerance leads to autoimmune diseases, which in many cases can be lethal or at least have severe 
consequences. The classical paradigm of immunology is the theory clonal selection, whereby external 
antigens stimulate the production of specific molecules (antibodies produced by lymphocytes) against 
them. These specific antibodies proliferate thanks to a combined process involving a rapid reproduction 
of the corresponding lymphocytes leading the creation of a clone (a set of cells with common genetic 
characteristics) and an enhanced secretion of the antibody that stimulates the reproduction of the 
secreting cell in a positive feedback, and so on. But antibodies are molecules, which could as well be 
attacked by other antibodies and be eliminated. But this is fortunately not the case, except in the case of 
diseases. How can one explain such a tolerance? Certainly, the immune system is too complex to be 
completely and thoroughly modeled. And analytic approaches are certainly doomed because the immune 
system is a highly interacting system functioning as a network: Breaking things down and separating 
constituent units is not a good solution. On the other hand, resorting to synthesis may help. One can use 
a somewhat abstract but inspiring representation of the antibodies in a two-dimensional shape space 
[30]: Clones that are divided in two families according to their (abstract) stereochemical properties 
(represented by two parameters in the case of a two-dimensional shape space). Two clones taken from 
two different families will strongly interact if they are close on the two-dimensional shape space. The 
affinity, or strength of interaction is given by , where d is the distance between them. Let 



us assume that two clones belonging to the same family don't interact at all. New clones are constantly 
presented to the network for recruitment, in order to mimic the constant production of lymphocytes in 
the bone marrow. Let the "field" a clone feels from other clones of the complementary family be given 
by : This
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Figure 3. (a) One starts with a central clone, and new clones are proposed for recruitment;
the two families are represented respectively by filled and empty circles; (b) the system
after a few time steps. (c,d) The system eventually converges to a state where there are

intertwined stripes of cells from the two families.

represents the total strength of the interactions, in a mean-field manner. Now, a clone is recruited if the 
field it feels falls within a window. This corresponds to the experimental observation that the activity of 
clones falls off rapidly outside of that window. All the basic ingredients are gathered. One can simulate 
such an (over)simplified model of the immune system in the absence of any external antigen and see 
how it evolves (see Figure 3[a-d]).

One finds that such a system evolves toward a rather stationary state (in a statistical sense) where there 
are intertwined stripes of cells from the two families. This constitutes a very improbable pattern. But 
even more interesting is the way this state responds to perturbations. Assume that we put in this system a 
molecule (say of the self) that is not subjected to the field-window condition, at least for a certain 
amount of time. You can see in Figure 4 that this molecule (a black square in our case—we randomly 
chose that it had a big affinity for clones represented by filled circles) starts in a "hostile" environment 
because it is surrounded by filled circles, but it is progressively integrated
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Figure 4. (a) The black square being sensitive to filled circles, it is in a hostile
environment (b) The black square has finally been integrated within a stripe of empty

circles through deformations of the system.



into a stripe of more friendly clones (empty circles). The system locally deforms in order to do so. If one 
measures the sizes of the reorganizations needed to integrate the molecule, one even finds that they are 
power-law distributed (up to a cut-off size), which is reminiscent of self-organized criticality, a property 
of some dissipative manybody systems to evolve toward a statistically stationary state where events of 
any size and duration can take place, allowing for reorganizations at all scales.

What do we learn from this experiment, and what does it have to do with AL? The answer to the first is 
far from obvious in a biological setting: The model is more than simple compared with the complexity 
of the immune system, and almost no experimentalist will consider it a good model of what may actually 
happen in the immune system. Yet, if one sees it as a simple clue, it may constitute an inspiring 
metaphor, showing the importance of the network aspect of the immune system. It can be integrated in a 
theory postulating the existence of a central immune system, based on the activity of lymphocytes B 
alone, which is distinct from the peripheral immune system involving lymphocytes T, which by the way 
appeared much later in the course of evolution. This model, although simple, then represents a first step 
toward the modeling of the very basic mechanisms of the central immune system as it grows before 
birth. And it is indeed being used as a starting point for the design of more complex models involving 
many more features of the immune system. As regards the second question, why is it AL? The answer is 
disputable, but let us put it this way: This model is too far from any biological reality to belong to 
genuine biological modeling as it is practiced in most laboratories. Yet, as we just argued, it teaches 
something: It is useful. Moreover, it is based on synthetic techniques (more or less CAs), that is, AL 
techniques. As you can see in the references, the paper reporting these results has been published in the 
Journal of Theoretical Biology: We consider this as AL's influence, which has allowed such marginal 
research in biology to be diffused to the large audience it deserves. We also believe it does not suffer 
from the criticisms of the previous sections, because it is clearly biologically inspired and perfectly 
defines its limit of applicability.

Let us now give another type of example from which generally applicable conclusions can be drawn, 
showing the power of AL techniques to explore biological
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models beyond their crude biological application. To make things clear, let us start from general 
considerations about modeling. Starting from experimental observations, one generally wants to build a 
model belonging to a given class of models to account for these observations. The choice of the model 
class is both a matter of taste and more importantly a matter of relevance in the context of the observed 
phenomenon: The model parameters must have a biological significance, be it assumed or explicit. Once 
the relevant parameters have been found, they are generally tuned until the model can explain the 
observations: that is, the model must at least reproduce the data and be able to make some predictions 
(e.g., if the biological system is perturbed, the corresponding perturbation in the model must lead to the 
same consequences as in the real system). Let us assume we have such a wonderful model at hand. In 
certain ranges of values, the parameters will induce a behavior close to the observations. But if these 
parameters are set out of the "biologically adequate" range of values, how can the model be interpreted? 
Some will argue [27] that exploring the model's behavior by tuning its parameters amounts to exploring 
life-as-it-could-be. Well, it is true that sometimes one finds new kinds of behaviors that, although not 
directly relevant to biology, can have some interest for other disciplines (see the examples to follow). 
But, more surprisingly, these apparently nonbiological behaviors can tell a lot to biologists: Some 
ensemble of constraints certainly led to the particular set of parameters allowing our model to reproduce 
the experimentally observed data. But were these values of the parameters unavoidable? Is it possible 
that other (environmental) constraints could have evolved other values for the parameters? A thorough 
understanding of the nature of the parameters is made possible by applying AL's bottom-up concepts 
(systematic synthetic exploration), and such an understanding is invaluable when it comes to looking for 
constraints likely to lead to a particular behavioral form. Take, for example, the building behavior of 
wasps [42,43]. One of the important questions ethologists ask is whether the architectural forms 
observed in nature (and more generally social organizations and behavioral forms) are unavoidable. We 
have tested a model of building behavior in order to reproduce wasps' nests found in Vespa genera. The 
basic hypotheses underlying the model are quite simple: Each wasp is capable of acting on its local 
environment by depositing a brick according to the state of this local environment. The space in which 
the nest is constructed is a 10 × 10 × 10 cubic lattice, and the local environment of each wasp consists of 
a 3 × 3 × 3 cube (∼ 1/40 of the total volume), the center of which is occupied by the wasp. The 
behavioral rules that we use can be deterministic, stochastic, epochal. In Figures 5 and 6 we show two 
nests generated using these rules. In Figure 5, the rules have been adjusted to reproduce patterns actually 
found in the Vespa genera. By slightly modifying the behavioral rules, we got the pattern in Figure 6, 
which is never found in nature. Hence, the question of knowing whether the behavioral rules used to 
generate the nest in Figure 5 could be an "attractor" of evolution, given some set of environmental 
conditions. For some reasons, the nest in Figure 5 is viable (while the one in Figure 6 is certainly not, at 
least in the environment-as-we-know-it). Thus, to make our question more accurate, we should ask why, 
among viable types of nests, only one type (or a highly restricted number of types) seems to have been 
selected. Although accidental causes are still possible, we can propose a tentative answer: The 
behavioral rules used to generate the rules of Figure 5 are the simplest possible. Any other behavioral 
rule is unavoidably more complex. This simplicity property might make it more easily reachable by 
evolution. We will not continue this speculative discussion too far: We just meant to illustrate that AL 
synthetic methodologies were the only solution to explore the space of architectural patterns and find 
other possible viable architectures.
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Figure 5. "Artificial nest" generated by a swarm of 10 "artificial wasps"
depositing bricks according to the state of their local environments.

The behavioral rules have been chosen so as to reproduce nest
architectures that can be found in nature in the Vespa genera. Note,

for instance, the little piece on the top of the nest, which corresponds
very closely to natural pedicels, and the succession of horizontal

planes that represent the combs of natural nests.

5.2 The Interplay of AL and Philosophy

A "philosophy of AL" is under way. If philosophy can somewhat "guide" the quest of AL, mutual 
enrichment is also possible, because AL is precisely a scientific attempt to clarify some old 
philosophical issues about the nature of life, and other issues... it raises! AL "promises to be of 
significant philosophical interest. AL has relatively straightforward relevance to issues in metaphysics, 
philosophy of science, philosophy of biology, and philosophy of mind, but it also bears centrally on 
more distant issues in social and political philosophy, economic philosophy, and ethics'' [1]. But because 
we are not philosophers, we urge you to read Harnad and Dennett [11,20]!

5.3 Designing Artificial Problem-Solvers



We believe that the idea of AL giving rise to engineering applications is fundamental. Taylor [40] gave 
some examples about such applications, like in the field of ecology (simulations of populations of 
insects leading to the development of control tools for agriculture). AL as a toolbox is precisely at the 
interface between many disciplines and as such serves as a multidirectional communication channel. In 
particular, AL builds bridges between natural sciences and the sciences of the artificial: This makes it 
unique and indispensable. We can give many more examples based on AL's methodologies.

Algorithms. The design of algorithms is a booming domain of activity in AL. AL tools have led to the 
development of many interesting algorithms that often perform better than classical algorithms within a 
shorter time, all the more as they generally contain much explicit or implicit parallelism, like in swarm-
inspired algorithms or genetic algorithms. They resort to distributed agents, or to evolutionary 
algorithms, or often to
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Figure 6. "Artificial nest" generated by a swarm of 10 "artificial wasps"
depositing bricks according to the state of their local environments. The

behavioral rules have been found by a systematic exploration of the
space of possible architectures. We selected this one because it can

be derived from the preceding one through a slight modification only,
while yielding a strikingly different pattern that is never encountered

in nature. Could it have become functionally viable with another
evolutionary history (including the evolution of the environment)?

both. For instance, Packard used a genetic algorithm to evolve cellular automata to make them  
reproduce electrochemical deposition patterns. In very much the same spirit, one of us (EWB) is 
currently developing a genetic algorithm to evolve coupled map lattices (CMLs) for time series 
prediction: CMLs compete to survive in an environment composed of a times series; the coexisting, fit 
CMLs may be able to predict very efficiently in some specific region of the state space, and one 
eventually ends up with a population of CMLs capable of predicting the whole series. Hillis evolved 
sorting algorithms by making them coevolve with parasites, and found a very good solution [22]: 
parasites modify the fitness landscape and make it harder for algorithms to perform well; thus, both the 
parasites and the algorithms become more and more complex, and one finally obtains a very efficient 
algorithm. We all know Koza's genetic programming technique, in which LISP-like programs are 
evolved to solve particular problems [in 26]. Deneubourg and Goss [10] have designed a distributed 
sorting algorithm in which artificial ants can realize global clustering with only local information and a 
small memory: Roughly, the rules consist in taking an object of type A with a high probability if the 
artificial ant is surrounded by objects of type B, and in dropping this object with a high probability if it 
is surrounded by objects of the same type; the same holds for objects of type B; artificial ants are 
allowed to move randomly, and after a certain amount of time, one gets clusters of objects A and 
clusters of objects B, and finally, one can get only one cluster of each type. Bersini [described in 5] de-
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veloped a control algorithm inspired by the metadynamics of the immune system (i.e., the dynamics of 
recruitment of new clones in the system): In a few words, the idea is that many solutions are generated, 
and only the most adapted ones are recruited. Colorni and colleagues [9] proposed a combinatorial 
optimizer based on the trail-laying and trail-following behavior of ants and applied it successfully to the 
traveling salesman problem. The basic principle of this algorithm is directly inspired by ants; in effect, 
due to the volatility of the deposited pheromone, the pheromone present on the longer path to the food 
source will disappear more rapidly than the pheromone on the shorter path because the longer path 
necessarily has a lower density of ants on it, and, thus, the corresponding pheromone trail will be 
reinforced more rarely; this process is amplified until the shortest path is eventually selected by the 
whole colony (although "explorers" still exist). Note that many refinements of this crude principle are 
possible, for instance, this "mass recruitment" of ants through pheromone can be a disadvantage when a 
new, closer source is introduced, in that the colony will be unable to switch to this better source. By 
allowing different types of recruitment, like tandem, group, and mass recruitments to be combined, one 
gets a much more flexible swarm, capable of responding efficiently to modifications of the environment. 



Finally, Snyers and Kuntz [personal communication, 1994] developed an optimization algorithm 
dedicated to the graph partitioning problem, using pheromone-like tracers combined with a genetic 
algorithm. We have to stop here for lack of room, many more examples could be given, and we chose 
the ones we are the most familiar with because of our backgrounds. To know more, for example, about 
computer viruses, see Spafford [38].

Robotic systems. Many robotic systems are currently being developed in the spirit of artificial life 
[15,16,18]. They are devoted to harvesting, mining, and ecological sampling, and many other tasks are 
to be announced. The artificial wasps we presented in a previous paragraph also constitute good 
candidates for the design of robots exhibiting an asynchronous, emerging collective building ability, 
whereby they can generate very complex, highly structured architectures without any central controller 
and complying only with simple local rules. Note that all the examples of robots share essential 
similarities: Each individual robot is usually simple, and the collective intelligence appearing at the 
colony level is the result of interactions between the robots. These interactions can either be direct, 
through some kind of communication process [1], or indirect through modifications in the environment 
by one individual that induce subsequent changes in the behavior of the other individuals ("stigmergic 
script") [42]. All this has rather interesting consequences: The colony of robots is more flexible and 
more robust (if one robot gets out of order, the global task performed by the colony is generally not 
affected) than one individual complicated robot, and the cost of developing a colony of simple agents is 
eventually less than that of designing the complicated robot. (Besides, losing it in an accident would 
have many more aftermaths than losing a poor little agent of a colony.) To know more about 
autonomous agents, see Maes [28].

Most existing colonies of robots have been inspired by natural systems, systems exhibiting collective 
intelligence: insect societies. One of us (GT) has developed the concept of swarm intelligence [44] to 
help build bridges between biological and artificial contexts: "A swarm is a group of active and mobile 
elements which can communicate with each other and thereby influence each other's actions. Each unit 
interacts locally with its environment and in particular has access to only local information." If the task 
to be performed by a biological swarm has a biological relevance (efficient, flexible, optimized foraging, 
adaptive division of labor) at the level of the colony, the corresponding task performed by an artificial 
swarm has a relevance with respect to the engineer's goals (gathering and transport of objects, exploring 
new areas, synchronizing activity, sorting objects, building or allocating an appropriate number of units 
to different tasks whose demand is variable). Central to the idea of swarm intelligence is
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the coexistence of individual simplicity and collective complexity. Such systems, often relying on 
competing positive feedbacks as an organizing force, have three important properties: simplicity, 
reliability, and flexibility. The units make no complex decision based on knowledge or environmental 
representation and are allowed a high degree of randomness in their movements. However, they are 
spread out in their environment and are influenced by local environmental cues that could have been 
modified by their own or other units' past actions. Because a particular configuration is adopted 
dynamically (and not imposed a priori) in response to a large number of environmental cues, any change 
in the environment leads to an appropriate reconfiguration, conferring a lot of adaptivity and flexibility 
to the swarm.

Cellular robotic systems [2], although they are simulated robotic systems, are aimed at exploring the 
possible problem-solving abilities of robotic colonies. They serve as a first step in the process of 
designing such colonies. In particular, Beni and colleagues [private communication] introduced an 
asynchronous cyclic swarm capable of solving very simple ordinary differential equations in a 
distributed manner. We improved this cyclic swarm and designed a two-dimensional swarm capable of 
solving partial differential diffusion-like equations [5].

Let us also briefly mention that a parallel can be drawn between AL and cybernetics (the study of 
control and communication in the animal and the machine) [see, e.g., [25], but one of the main 
differences is the nature of the tools available to AL, compared with those that were available to 
cybernetics. Given the impact of cybernetics on science in general and on engineering sciences in 
particular, despite this lack of a truly powerful tool ("the science of feedback"), one can expect an 
atomic impact from AL.

5.4 AL and Art

Let us end this brief review with the relationship between AL and art. As we already advocated, art 
inheres in the very foundations of AL. Synthesis, which is the central method in the AL toolbox, 
becomes artistic creation when the Artificial Lifer, like the "Zoosystemician" Bec [26], is free from any 
constraint (especially the unpleasant constraints imposed by reality) and is only limited by the power of 
his or her imagination. Sims even proposed to everyone to become an artist by allowing people to 
interact with his "genetically" generated pictures in real time. (To have an idea of Sims' ideas, see, e.g., 
[6] or even better the video proceedings of the second AL workshop.) By choosing such or such a 
picture, they contribute to the development of a new type of art, based on the interaction between their 
imagination and computationally generated images. This new form of art, although controversial 
because the artist sort of lets the computer do all the work, is full of promises: For the first time, it is 
possible to convey the bottom of our dreams-for the first time it is possible to really visualize the 
creatures that live in there.

6 Conclusion



In conclusion, if you have to justify your AL activity, you should first remember that AL is a particular 
way of looking at things that can be fruitfully applied to many domains. If you are dealing with systems 
that are too complex to be studied with traditional scientific tools, AL can certainly help. You should not 
forget your primary goals and get lost in AL's immensity. While top-down approaches usually forget to 
obey lower-level constraints and laws, purely bottom-up approaches usually forget to look at higher-
level constraints, and this leads in both cases to considerable flaws. Artificial life, being "very bottom-
up," needs constraints. Both empirical constraints originating from biology and other natural sciences, 
and pragmatic constraints oriented by the design of useful, viable, efficient, robust, flexible, 
decentralized, lifelike systems, can channel your AL

  

Page 323

energy into extraordinary accomplishments. If you are a biologist (you are certainly hard to convince, 
and it must be even worse for your boss) seeking new modeling tools, AL is a general toolbox that offers 
you a broad spectrum of new techniques of experimentation, from computer simulations of evolution to 
models of how decentralized systems can collectively perform biologically relevant tasks. If you are 
looking for ways of getting out of classical AI's dead-end, AL can help by providing you with ways of 
making symbols emerge out of low-level sensory-motor processes. If you are a computer scientist, not 
necessarily involved in AI, AL gives you the pleasure not only of playing god, but also of finding new 
distributed algorithms for optimization, control, or prediction. If you are a philosopher, AL will give you 
the opportunity to think about new issues in ethics, epistemology, and so on and will provide you with 
years of work to unravel the ontological status of life: you will be able to think over life as no other 
philosopher before. If you are an engineer, AL constitutes an almost inexhaustible source of ideas for the 
design of a bunch of new machines. In all these cases, cooperation is crucial: biologists do not 
necessarily master the thermodynamics of cooperative structures, while physicists usually have only 
little knowledge about biological systems; ethologists do not always master computer programming, 
while gifted programmers are generally not familiar with animal societies. One can draw wrong 
conclusions when working in somebody else's field: communication is essential, and AL is a powerful 
medium of communication for diffusing transdisciplinary concepts. Let alone the fact that concepts 
originating from other disciplines often have an exotic flavor, they can also serve as a source of 
inspiration in one's own field. Finally, if you are an artist, AL opens a world of new experiences to you: 
it complements the traditional artistic techniques by extending the scope of art-as-it-is to the wider scope 
of art-as-it-could-be, where everything which is in your imagination, even deep inside your 
subconscious, can be recreated in alternative media. With all this in mind, you should definitely be able 
to reassure your boss and hopefully yourself if ever you needed to be reassured.
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