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Abstract

We propose and analyse a new class of neural network models for solving linear programming (LP) problems in real
time. We introduce a novel energy function that transforms linear programming into a system of nonlinear differential
equations. This system of differential equations can be solved on-line by a simplified low-cost analog neural network
containing only one single artificial neuron with adaptive synaptic weights. The network architecture is suitable for currently
available CMOS VLSI implementations. An important feature of the proposed neural network architecture is its flexibility
and universality. The correctness and performance of the proposed neural network is illustrated by extensive computer

simulation experiments.
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1. Introduction

Linear programming (LP) plays an important role
in many disciplines such as economics, strategic plan-
ning, combinatorial problems, operational research,
etc. {9,11,12,14,18].

The LP problem was first solved by Danzig forty
years ago [9]. The simplex method developed by him
is still the most widely used numerical algorithm [ 11].
Although the simplex method is efficient and elegant
it does not possess a property that becomes more and
more desired in the last two decades: polynomial com-
plexity. In fact in the simplex algorithm the number
of arithmetical operations grew exponentially with the
number of variables.
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In 1984 Karmarkar published an algorithm which
appears to be more efficient than the simplex method,
especially when the problem size increases above
some thousands of variables [14]. The simplex
method is classified as an exterior-point method while
Karmarkar’s method is classified as an interior-point
method [12,18]. A modern interior-point method
outperforms the simplex method for large problems,
and the most important and surprising characteris-
tics of the interior-point method is that the number
of iterations depends very little on the problem size
[11,12,18].

The modern numerical algorithms are very efficient
and useful in solving large LP problems, however,
they do not lend themselves to problems which require
solution in real time (on-line), i.e. in a time of the
order of hundreds of microseconds.
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In some advanced problems such as robotics,
satellite guidance, on-line parameter estimation in
control, image reconstruction, engineering design
etc. it is necessary to follow (track) a solution by
slowly varying the constraints and/or cost func-
tions [ 1-3,5,6,13,16,17,19,21,23-27]. One promising
approach to solve optimization problems in real time
is to use the neural network approach [6].

Many interesting approaches and techniques have
been proposed to solve LP problems in real-time
{1-3,5,6,10,13,15-17,19,20,22,21,23-27]. In fact in
the last forty years researchers have proposed various
dynamic solvers (analog computers) for constrained
optimization problems. This approach was first pro-
posed by Pyne in 1956 [20] and further developed
by Dennis [10], Rybashov [22], Karpinskaya [15]
and others. Recently, due to the renewed interest in
neural networks, several new dynamic solvers using
artificial neural network models have been developed,
see e.g. Tank and Hopfield [23], Kennedy and Chua
[16], Rodriquez-Vazquez et al. [21], Wang [24,25],
Zak et al. [17,26], Cichocki and Unbehauen [6], and
Cichocki and Bargiela [4].

All the dynamical solvers developed till now are
based on standard optimization techniques (penalty
or augmented Lagrange multiplier methods) and
lead to Hopfield-like networks with a large number
of processing units [1,2,16,17,21,23-27]. However,
the practical VLSI implementation of Hopfield-like
neural networks is still a difficult problem because of
the complex connectivity between a large number of
processing units. In fact, the wiring of a large number
of processing units on a two-dimensional surface of
a silicon wafer represents today a major bottleneck
for VLSI CMOS implementation of such neural net-
works. Motivated by the desire to avoid or at least to
alleviate this problem and to maximally simplify the
neural network architecture we will propose a novel
approach by formulation of a suitable energy func-
tion. This novel energy function enables us to design
a simple, efficient and highly practical neural net-
work with only one (single) adaptive processing unit
(artificial neuron) with on chip learning capability.

In other words the primary objective of this paper
is to present an alternative recurrent artificial neural
network for solving LP problems. Possessing the same
or similar dynamical properties as known dynamical
solvers, the new neural network is essentially simpler

in configuration and hence much easier to implement
in VLSI technology.

2. Problem formulation

The linear programming (LP) problem can be ex-
pressed in a number of canonical forms.

We express it in the very general form: minimize
the cost function

fx)=c"x=> cx;, (1)
=1

Jj=

subject to the linear constraints

Ax=b 2)
and
Xj minng ng maxs (3)

where A € R"™*", m < n, rank{A} =m, b € R".

We assume that the constraints are posed in the stan-
dard form in which all general constraints are equality
constraints and the inequalities are simple lower and
upper bounds on the variables x; (j =1,2,...,n).

If the number of variables n were equal to the num-
ber of constraints m, equation Ax = b would be a set
of simultaneous equations with (at most) a single so-
lution. There would be no possibility of optimization.
Normally n is significantly greater than m. A typical
medium-size LP problem may have several thousand
variables and a few thousand constraints.

Our main objective is to design a neural network
based on an analog learning machine which will be
able to find in real-time the optimal vector x* that
minimizes the cost function and simultaneously sat-
isfies the constraints. This learning machine should
perform on-line computation that requires little mem-
ory or data storage and requires no knowledge of if or
when the input data (parameters of matrix A and/or
vectors b, ¢) change.

3. Neural network models—standard
approach—critical review

The mapping of a constrained optimization prob-
lem into an appropriate energy (cost) function is the
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standard (commonly) applied approach in the design
of neural networks [3,5]. In other words, in order to
formulate the optimization problem (1)-(3) in terms
of an ANN the key step is to construct an appropri-
ate energy (cost) function E.(x) so that the lowest
energy state will correspond to the desired estimate
(optimal solution) x*. The construction of a suitable
energy function enables us to transform the minimiza-
tion problem into a system of differential or differ-
ence equations on the basis of which we can design an
associated ANN with appropriate connection weights
(synaptic weights) and input excitations.

For the LP problem we can construct the general
energy function on the basis of the penalty method

(6],

E.(x) = f(x) +rY_Plri(x)], (4)
i=1

or

Ec(x)=vf(x)+ Y _Plrd{x)], (5)

=1

where « > 0 denotes the penalty multiplier, » > 0 is
the reciprocal penalty parameter, f(x) = c'x is the
cost function, P (r;) are the penalty function terms and
ri(x) are the residuals (equality constraints) defined

as (cf. Eq. 2)

n
ri(x) =alTx—b,~=Za,~jxj—b,' (6)
Jj=1

Exemplary penalty function terms for the equality con-
straints (2) can take one of the following forms [2,6]:

P(r) = %r2 (quadratic), (7a)

P(r) = %{r|” (p-norm), (7b)
[P for |r] < B
P ‘{ Blrl - B/2 for|r| > B

(Huber’s function), (7¢)

P(r)=B*Incosh (r/B) B>0
(logistic), (7d)
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Fig. 1. Exemplary plots of some penalty functions and their deriva-
tives.

1 9
P(r)=“;'|rlp+§|r|2 e.g.p=§
(a combination penalty function). (7e)

Exemplary plots of the penalty functions and their
derivatives are shown in Figs. 1a-d.

It should be noted here that instead of the penalty
approach we can also employ the Lagrange multiplier
or augmented Lagrange multiplier methods [5,6,27].
However, in order to streamline and simplify our fur-
ther considerations we limit here our discussion to the
penalty techniques.

It is known from the theory of optimization [26]
that, except of trivial cases, only nondifferentiable
penalty functions (see Fig. 1b) provide an exact solu-
tion of the original constrained optimization problem
for a finite value of the penalty parameter « in a single
unconstrained minimization (cf. Eq. (4)). Usually, in
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order to ensure a feasible solution satisfying exactly
all the constraints the penalty parameter « in Eq. (4)
must tend to infinity. This is rather inconvenient from
the implementation point of view. Therefore, we use
Eq. (5) in which the parameter v () should be grad-
ually decreasing to zero as time goes to infinity [25].
Often a compromise is accepted by setting the param-
eter v = constant to a sufficiently small value, so the
obtained optimal solution can be very close to the ex-
act unconstrained optimization problem [2,6,21].

Using the standard gradient descent approach [6]
for the minimization of the energy function E.(x) the
LP problem can be mapped to a nonlinear system of
ordinary differential equations, i.e.

dx; JE.(x)
—_— = j 8
dt Mi (9)Cj ( )
where w; > 0 is the learning rate.

Hence taking into account Egs. (1)-(3) and (5)
we have

dx;
L= ve;+ Y ag¥(r) | (9)

with X min < X < Xjmax Vj (j=1,2,...,n), where

v (r;) 2 AP (r;)/dr; are the activation functions of
the input neurons (cf. Fig. 1). The above system of
differential equations can be written in the compact
matrix form as

x=—pve+ ATW(Ax —b)], (10)

where p = diag{ui, pu2,..., s}, ¥(Ax — b) =
W(r) = [V (r)¥(r).. .. ¥l

On the basis of the set of differential equations (9),
(10) we can easily construct the associated dynamic
solver (ANN) with the suitable connection weights,
the activation function ¥ and input excitations. The
functional block diagram of the ANN is shown in
Fig. 2a. The network consists of limiting integrators,
adders (summing amplifiers) with associated connec-
tion weights a;; and nonlinear building blocks realiz-
ing the activation function.

The network of Fig. 2a consists of two layers of
processing units. The first layer computes the actual
residuals r;(x) and actual errors ¥ [r;(x) ], while the
desired variables x; are computed in the second layer,
where the errors ¥ (r;) are combined and integrated
in time by analog integrators.
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Fig. 2. ANN’s solving the LP problems on the basis of the penalty
method. Fig. 2a shows a network where the original values x; are
chosen as state-variables and, therefore, limiting integrators are
required. In Fig. 2b the transformed states u; are used to avoid
limiting integrators. For a general view, this figure is represented
in compact matrix form.

It should be noted that the simple box (bounds)
constraints x; min < X; < X; max can be fulfilled by
employing limiting integrators with nonlinear (hard-
ware) limiters at their outputs. This means that the
input signals of an integrator are integrated but can-
not drive the output x; beyond the specified limits. In
such an approach all box constraints are “hard”, i.e.
the constraints must not be violated either at the final
solution or during the optimization process.

An alternative approach is to introduce unlimited
variables u; that provide the nonlinear transformations

x;=8j(u;), (11)

e.g.

Xj max — X min
X; = Xj min + ZJjmax 7J min
’ : 1 4+ e 74

withj=1,2,....n, (12)

where y > 0.
Substituting (11) into (5) we obtain the new en-
ergy function without any constraints imposed on the
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variables u;:
E(w)y=v) c;gi(u) + Y P(r), (13)
j=1 i=1

where ri = Z;:I a,-jg‘,»(ur,') - b,‘.
Minimizing the above energy function we obtain

duj 5EC _ c")Ef dx]'
oM T TR,
= dg; ()
=—u; |vei+ > a¥(r) e, (14)

i=1

Assuming that the activation functions x; = g;(u;) are
differentiable and strictly monotonically increasing we
note that dg;(u;)/du; > 0 V) and Vu;, hence we can
write

d . nt
=) v+ Y ainol], (15

=1
xj=g;(u;), (16)

where [i; S midg;(u;)/du; > 0 is the learning rate,
or in matrix form as (cf. Fig. 2b)

%:-p [ve+ A"W(r)], (17)

x =g(u), (18)

where o = diag{iu1, f2..... fin}, g(w) = [g1(u1),
gZ(u2)’ v wgl’l(un)]Ts r=Ax —b.

It should be noted that due to employing appropriate
limiting activation functions in the output layer the
satisfaction of the bound constraints is ensured.

It is interesting to note that the general architectures
shown in Figs. 2a,b can be somewhat simplified for
the special case of a quadratic penalty function. In this
case an energy function can be expressed as

E(x)=vc"x + L||Ax — b|3

nm

=1/Zc>,-x_,-+%2r,-2(x), (19)
=l i=I

with Xj min < X < Xj max-

(b)

Fig. 3. The ANN’s of Fig. 2 can be simplified, if a quadratic
penalty function has been chosen. This networks consist of only
one layer of processing units, but they cannot be used, if the
matrix 4 and/or the vector b is time variable.

Minimizing the energy function (19) leads to a sys-
tem of differential equations

dx; -
—d-t‘_]_ = —Uj VCj+;ijxk *@I ’ (20)

n m .
where wy; = > agai;, @; =y .| a;ib;, which can
be written in compact matrix form as

x=-plve+Wx — 0], (21)

where W = ATA and @ = A"b.

A functional block diagram illustrating the imple-
mentation of the system of differential equations (20)
is shown in Fig. 3a.

Alternatively, we can use a system of equations (cf.
Fig. 3b)

u=—fplve+ Wx — 9], (22)
x=g(u). (23)

This is a Hopfield-type analog neural network with
only one layer of processing units. However, a single
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layer ANN requires extra precalculations and there-
fore, it is rather inconvenient for large matrices espe-
cially when the entries a@;; and/or b; are slowly chang-
ing in time (i.e. they are time variable).

The techniques described above are rather simple
and straightforward, however, some problems may
arise in the practical implementation of the systems
of differential equations, especially, if the matrix A
is very large. Firstly, the VLSI implementations of
the neural network architectures shown in Figs. 2a,b
and Figs. 3a,b are rather a difficult problem because
of the complex connectivity between a large number
of processing units. Secondly, the neural networks
of Figs. 2a,b and Figs. 3a,b require an extremely
large number of programmable (adjustable) and pre-
cise synaptic weights a;; or w;;. In fact, the network
of Figs. 2a,b requires in general 2mn precise pro-
grammable connection weights, while the network of
Figs. 3a,b needs mn such weights. The connection
weights may be realized as rather expensive ana-
log four-quadrant multipliers. Thirdly, analog VLSI
neural circuits are strongly influenced by device mis-
matches from the fabriation process and a variety of
parasitic effects which consequently may degrade the
final performance (accuracy).

Motivated by the desire to maximally simplify the
neural network architecture and alleviate the problems
mentioned above we will propose a novel approach in
the next section which enables us to develop a con-
siderably simplified neural network more suitable for
VLSI implementations.

4. Simplified neural network model—novel
approach

To solve the LP problem (1)-(3) by an appropri-
ate ANN the key step is to construct a suitable com-
putational energy function. For this purpose we have
developed the following instantaneous error (penalty)
function

m

Fle(n] 2s7(Ax —b) =3 s0rlx(n], (24)
i=1
where ri(x) = Z;Ll ajjx; — by and s = [51(1),52(1),

cusm(D 1T is in general the set of zero-mean, mu-
tually independent (or uncorrelated) identically dis-

tributed (i.i.d.) external excitation signals (e.g. un-
correlated high frequency or pseudo random signals).
Usually a high frequency of such signals is required
to achieve high speed convergence.

Note that the value of the error (residuum) function
F[x(t)] is equal to zero at any time instant (or during
any time period) if and only if the constraints Ax = b
are satisfied exactly.

The instantaneous error function can be developed
as

Fle(n]=) si(Orilx(n)]

i=l

=D si0) S“a,jx (1) -
=1

Jj=1

m

Z Za,,s,u) x; (1) — stl(r)

a;(0)x;(1) = b(1),

J=1

]

It

. A
where @;(t) = S0, aisi(t), b(t) = Z"' bisi(t).
For the so formulated instantaneous error function
7[x(t)], we can construct the energy (cost) function

E.[x(t)] =vc'x + E{P[F(x(t))]} (25)

with Xmin < X < Xmyx where E{-} is the expected
value of its argument, and P (#) is the penalty function
defined for example by one of the equations (7a)-
(7e). The minimization of the energy function (25)
with respect to the vector x(t) by using the standard
gradient descent method leads to the system of differ-
ential equations

dx() _
dr

with Xmin < X < Xmax, Where p = diag{u;, ua, . .
Bk, mj >0 Vj (typically ;= p >0 Vj), a()
[a1(D),a2(1),....8,(D]" = ATs(¢), and ¥[F]
OP[F1/9F, Flx(1)] = 3 0, @;(1)x; (1) — b(1).

In practice, the expected values of the vector
p.(1) 2 a()¥[F(x(zr))] is not available and their
computation is rather difficult. In fact, the instanta-
neous gradient based on the instantaneous error func-

—p[ve+ E{a(n¥[F(x(1))1}]. (26)

He> L
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tion (24) can be used in practice since it is readily
obtained.

So, the system of differential equations (25) in our
case is approximated by

dx(t)
dt

= —p{ve+a() ¥ [F(x (1)1}, (27)

with Xmin < X < Xmax-
Equivalently we can use the system of differential
equations

d
ud(tt) =—p{ve+a(n)P[F(x()]1}, (28)
x(1) =glu(n)], (29)

where g(u) is a vector of sigmoid activation functions
(cf. Egs. (11), (12)) which are bounded between
X min and X max and ¢ = diag{ 1981 /du1, p2dg2/ouz
<.y MnOgn/duy} is a diagonal matrix containing the
transformed learning rates.
It is interesting to note that in the special case of
P(F) = %Fz the system of differential equations (27)
simplifies to

d
:;(tt) - _plve+ a(nFlx(01], (30)

with Xmin < X < Xmax-

The above system of differential equations can
be considered as the family of adaptive learning al-
gorithms of a single artificial neuron as shown in
Fig. 4a. The network of Fig. 4a consists of analog
limiting integrators, summers, an activation function
¥ (7) and analog four quadrant multipiers. The net-
work is driven by the incoming data stream a;; and
bj (i=1,2,...,m; j=1,2,...,n) modulated (mul-
tiplied) by high frequency, zero-mean mutually un-
correlated source signals s;(#). The artificial neuron
(processing unit) shown in Fig. 4a with an on-chip
adaptive learning algorithm allows processing of the
information fully simultaneously.

If only one pseudo-random generator is available in
order to approximate m independent identically dis-
tributed excitation signals s;(#) a chain of unit delays
can be employed as shown in Fig. 4b.

In order to further simplify the network implemen-
tation shown in Fig. 4a we have found that the rather
expensive analog multipliers can be replaced by the

(a)

by

- #a)=E & 0z-5()

fous

(®)

Noise
(Pseudorandom) s

s,

Generator I ' ISZ I ™

Fig. 4. The ANN of Fig. 2a has been simplified to a family of
adaptive learning algorithms of a single artificial neuron. Here
the realization of the simplified ANN with limiting integrators,
adders, multipliers etc. is shown. The stochastic processes s;(t)
are approximated by a single Noise Pseudorandom Generator and
a chain of delayers, shown in Fig. 4b. If the approximation of
mutually independent identically distributed white stochastic pro-
cesses were exactly, the dynamical properties in the special case
of a quadratic penalty function would be the same of the ANN
described in Fig. 2a.

simple switches S to S, (or sign reversers) as shown
in Fig. Sa.

Various strategies for controlling the switches can
be chosen. In the simplest strategy the switches can
be controlled by a multiphase clock, i.e. the switches
will be closed and opened cyclically. In this case the
network processes the set of equations (equality con-
straints) in a cyclical order similarly to the well known
Kaczmarz algorithm used for solving large unstruc-
tured linear equations [6].

On the other hand, in order to perform a fully simul-
taneous processing of all the constraints a] x — b; =
0 (i=1,2,...,m) the switches S| to §,, should be
controlled by a digital generator producing multiple
pseudo-random, uncorrelated bit streams.

As such a generator for example, a simple feedback
shift register can be used, which is able to generate
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- ;(e)=‘§la,-(t)z,~5(z)

B
2]
2]

N —

Fig. 5. Fig. 5a shows a further simplification of the ANN, described
by Fig. 4a. The four quadrant analog multipliers of the inputs
have been exchanged by switches. The switches are driven by the
network depicted in Fig. 5b.

almost uncorrelated multiple mutually shifted pseudo-
random bit streams with very good noise-like proper-
ties (see Fig. 5b) [6].

5. Discussion—convergence and stability analysis

At the beginning we will show that under some
mild assumptions the new neural network is princi-
pally equivalent to the standard networks shown in
Figs. 2a and 3a (or more precisely the energy func-
tions of these networks are equivalent).

For simplicity, let us assume that the penalty func-
tion term is a quadratic function of the instantaneous
error (residuum), i.e.

PIFx(0)]=1(x(1) = § [sT(1) (Ax - B)]”
=1(s"r) (31)

Then for the LP problem we can formulate the energy
function

Elx(t)] =ve'x + LE{F[x(D1}, (32)

which can be evaluated as

E(x)=vc'x + %rTE{ssT}r
=velx + %rTR”r, (33)

where Ry, = E{ss"} is the correlation matrix of the
vector s(1). Assuming that s(¢) is a zero-mean 1.i.d.
white and mutually independent stochastic process the
correlation matrix R, is a diagonal matrix with all
diagonal elements equal to the variance o 2 E{s?}
Vi.

Hence the energy function (33) can be expressed as

E(x) =chx+%0'2|!r||%. (34)

Thus the above energy function is equivalent to the
standard energy function (5) for quadratic penalty,
assuming that the excitation signals s;(t) are zero-
mean and have the unity variance (o> = 1).

Let us consider now the more practical case (cf.
Fig. 4a) in which the random uncorrelated identically
distributed excitation signals s;(7) take only two dis-
crete values 0 and 1 (a switch is OFF or ON). In this
case the exitation signals have no longer zero-mean
values. Then the stochastic process s(f) can be de-
composed as

s(t) =s,(t) + s, (35)
where

$,(8) =[S (1), 502(2), ..., 5n(D 1T, (36)

with s,,(t) € { —%, %}, is a zero-mean uncorrelated
identically distributed process and

se=sc[1,1,..., 11T withsc =3 (37)

is a constant process.
For this case the energy function (32) can be eval-
uated as

2
Ec(x)=vc'x +1E { [(s0 + 50)7r] }
=vc'x
+ SE{rT(sos) + $u8t + Sc8) + Ses0)r}
=vc'x + 3 {rT[E{s.s]} + sesilr}

=velx + %rT(a'zl + %l)r,
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a1 ot - - #a)=£ ,(0)z,-5(0)
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Fig. 6. If the mean values over the coefficients b; or a;; are
supplemented to the network of Fig. 5a, like shown in the figure
here, the dynamical properties are equal to the network depicted
in Fig. 2a for the case of a quadratic penalty function.

where I is the unit matrix and 1 is the n X n constant
matrix with all entries equal to one.

In this case the system of differential equations (30)
takes the form

dx _
dr
=—p[ve+ AT (T + {1) Ax

- AT (I +11)8].

—p [ve+ AT (oI + 1) (Ax — b)]

Note that the matrix [?I+ 1] is symmetric positive
definite and consequently the matrix A" (oI +11)A
is positive semidefinite, so the system is stable with
v(t) — 0 as t — oo. However, the dynamics of the
system are not identical with the dynamics of the sys-
tem described by (20), (21).

In order to ensure such an equivalence it is necessary
to extract appropriate constants (local mean values)
as illustrated in Fig. 6. In such a case the preprocessed
signals can be expressed as

n

a(n =Y agd() (j=12.....n) (38)
=1

and

b(e) =) bisi(1), (39)

i=1

where $;(t) = 5;(t) — 7,0 < y € 1/2 and the signals
si(t) can take only one of the two discrete (binary)
values O or 1. The values of the parameter y depend
on the strategy employed for controlling the switches.
If all the switches are operating fully parallel the pa-
rameter y should be set to 1/2.

It should be noted that the proposed learning algo-
rithm has been developed on the basis of the standard
gradient descent method, therefore the algorithm is al-
ways stable independent of initial conditions [6,16].

6. Computer simulation results

In order to check the correctness, robustness and
performance of the proposed algorithm and associated
neural network structures we have simulated them ex-
tensively on a computer [13]. Due to limited space
we shall present in this paper only some illustrative
examples.

In all our computer simulation experiments the ideal
integrators with the transfer function G(s) = u/s were
replaced by a realistic model for the high frequency
range as

wTr 1

Gls) = mo~ Sy 7r 1ot

where wr = 10% is the gain bandwidth product and
T = 5-107!"" were chosen. The value for T can be
found according to the phase margin at 60° typical for
real operational amplifiers [13].

All the computer simulation results presented in this
paper have been achieved by using a general program
for simulation of a wide class of nonlinear dynamical
systems (developed at Lehrstuhl fiir Allgemeine und
Theoretische Elektrotechnik at University Erlangen-
Nuernberg). The program is similar in performance
to the well known SIMULINK/MATLAB program.

Example 1.
Consider an LP example as

minimize f(x) = cTx
subject to
Ax=b and x>0,

where
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c={1,1,1,1,1,11%,
b=[2,1,-4]",

2 -1 4 0 31
A={5 1 -3 1 20
1 -2 1 -5 -1 4

The optimal solution of this problem is x; =
[0,0,0.1923,0.7564,0.4103,0]7, the minimal objec-
tive function value is f(x7) = 1.359. For the neural
network of Fig. 6 we used the following parameters:
so = 0.1, » = 1073, T = 5. 107" and the clock
frequency f. = 100MHz. The chosen value for wg
corresponds to a learning rate u = wrpy = 107s7L
The simulation results are shown in Figs. 7a,b. The
network was able to find the solution:

t/s

(b)

J(=(2))

€5
ifs

Fig. 7. (a) The ANN of Fig. 6 finds the optimal solution x* of
Example | with an accuracy of < 0.1% in time less than 10 us.
The simulation results takes real integrators with a transit frequency
fr = 108/2s~! and a phase margin of 60° at fr as a basis.
Real integrators are assumed for all further simulation results,
respectively. The clock frequency for the switches is 100 MHz.
(b) The objective function value appertaining to the simulation
of Example |.

x* =1[0,0,0.19224,0.75635,0.41021,0]"

in less than 10 us. The small parasitic oscillations ob-
served in the first phase of the simulation are caused
by the above mentioned nonidealities of the real in-
tegrators. They can be eliminated by choosing a little
smaller value for wg.

Example 2. Let us consider the following problem
[26]. The circuit shown in Fig. 8 should be designed
to use a 30V source to charge 10V, 6 V and 20 V bat-
teries connected parallel. The currents 1, I, I3, I and
s are limited to the maximum of 4 A, 3 A, 2 A,3 A and
2 A, respectively. The batteries may not be discharged,
i.e. all currents must be nonnegative. The problem is
to find the optimal values of the currents such that the
total power transferred to the batteries is maximized.
The problems can be equivalently expressed as

maximize the power:
p(x) =10x2 + 6x4 + 20xs,
subject to the constraints

X1 = X2 + X3,

0< x <3,

X3 = X4 + Xxs, 0
SX2 K 0
OQX5<2,

0<x <3,

where x; = 1; Vj(j=1,2,...,5).
The problem can be transformed to the standard
form as

minimize ¢'x
subject to

Ax=b and x>0,

where
x € R,
L=z, Ry Iy=z; Ra Is=z4 Rs
Source
30 Volts
Battery 2 Battery 3
TIO Volts TSVolts TZO Volts

Fig. 8. Circuit of Example 2 to charge three batteries with a single
battery charger.
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¢=[0,~10,0,—6,~20,0,0,0,0,0],

b = [O, 0;4’ 3; 3’2’2]T7

[1 -1 =1 0 000000]
0 0 1 -1 -100000
1 0 0 0 010000
A=|0 1 0 0 001000
0 0 1 0 000100
0 0 0 1 000010
[0 0 0 0 100001

Alternatively, the problem can also be formulated as
minimize

fl(x) = —10x; — 6x4 — 20x5

subject to the constraints

(a)

0 SE-7 1E-6 1.8E-6 -6 2.56-6 -6 IBE-6 4E-6 ASE-8 SE-S

tfs

(b)

fl(t)

0 57 Kb 566 8. 2566 W6 3566 AEs  ASCE  SE6
ifs

Fig. 9. Simulation results for Example 2: Fig. 9a shows the

state-variables x;(1 < j < 10), Fig. 9b the plot objective func-
tion,

One can easily check that the solution of the problem
in standard form is

x7=1[4,2,2,0,2,0,1,1,2,0].

In Figs. 9a,b the transient behaviour of the neural
network is depicted with initial conductions x;(0) =
3Vj, mo=0.1,v =0001,T =5-107", f. =
100 MHz. The network finds an optimal solution

x* = [4.0146,2.0298,1.9998,0,2.0152,0,0.9703,
1.0002,2,0]

and
f(x*) =-60.6

in less than 5 us.

Example 3. Let us consider the following very ill
conditioned problem: find the vector x € R” which
satisfies the matrix equation

Ax=b,

where A € R"™ " is the Hilbert matrix with a; =
1/G+j—1), b= e'/ia;, e =2.718281828 and
c=0.

The theoretical solution is

T
x; = [e,e'ﬂ,...,el/"J

Using the neural network of Fig. 5a we found the
solution forn =10, 2 =0, 4o =0.1,T =5 - 10—
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-

[ 2.71723
1.65009
1.40740
1.28416
| 1.21001
=1 116553 |
1.14085
1.12750
1.12790
1.13633

which is close to the theoretical solution (cf. Fig. 10)
in a time of 1 ms.

7. Conclusion

A new, very simple and low-cost analog neural net-
work architecture for solving LP problems has been
proposed. The network architecture is suitable for cur-
rently available CMOS VLSI implementations. The
proposed network consists of only one (single) neu-
ron with adaptive synaptic weights and a simple pre-
processing circuit. The synaptic weights are adjusted
(updated) according to a simple learning algorithm.
The continuous-time (analog) formalism employed in
the proposed algorithm (in fact the basic learning al-
gorithm is expressed completely by a system of non-
linear differential equations) enable us to select a very
high learning rate x#(#) (to ensure an extremely high
computation speed) without affecting the stability of
the network. In contrast, for the associated discrete-
time iterative scheme (using, e.g. Euler’s rule) the
corresponding learning rate must be upper bounded in
a small range or otherwise the network will be unsta-
ble (i.e. the learning algorithm will diverge).

An interesting and important feature of the proposed
algorithmic scheme is its universality and flexibility.

It allows either a processing of all equality con-
straints fully simultaneously in time or a processing
of groups of constraints called blocks. These blocks
of constraints need not be fixed but may vary rather
dynamically during the optimization process, i.e. the
number of blocks, their sizes and the assignment of the
constraint equations to the blocks may all vary in time.
This feature makes this scheme especially convenient
for LP problems with a large number of constraints.

0 1E-4 A4 3E-4 -4 5E-4 &E-4 TE-4 B4 9E-4 001

tfs

(b) %1

] IE-¢ A4 3E-4 44 SE-4 6E-¢ TE-4 BE-4 9E-4 001

tfs

() a1

h ﬂ \[I'l %4 34 1[‘-‘ 5E‘—l 6E-¢ TE-d !{'—l 9E-4 tl}ﬂ;
Fig. 10. (a) State-variables, (b) energy-function and (c) residuum
||Ax — b||3 for the very ill conditioned problem described in
Example 3. The variables x;(¢) all have been startet for r = 0 at
x;(0) =2, 0 < j < 10. Due to the long simulation time (lms),
the short-time dynamical behavior is not visible in the plots of
(a)-(c).

The proposed neural network can serve as an ef-
fective computational model for solving real-time and
large-scale LP problems. It may be especially attrac-
tive for real-time and/or high throughput rate appli-
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cations in which the cost function and the constraints
are slowly changing in time and if it is necessary to
continuously track or update the optimal solution. The
developed approach can be easily extended to other
convex programming problems. The dynamic behav-
ior and performance of the proposed network has been
illustrated through extensive computer simulations.
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