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Preface

This third edition of the well-known calculus review book by Frank Ayres,
Jr., has been thoroughly revised and includes many new features. Here are some
of the more significant changes:

1. Analytic geometry, knowledge of which was presupposed in the first two
editions, is now treated in detail from the beginning. Chapters 1 through
5 are completely new and introduce the reader to the basic ideas and
results.

2. Exponential and logarithmic functions are now treated in two places.
They are first discussed briefly in Chapter 14, in the classical manner of
earlier editions. Then, in Chapter 40, they are introduced and studied
rigorously as is now customary in calculus courses. A thorough treatment
of exponential growth and decay also is included in that chapter.

3. Terminology, notation, and standards of rigor have been brought up to
date. This is especially true in connection with limits, continuity, the
chain rule, and the derivative tests for extreme values.

4. Definitions of the trigonometric functions and information about the
important trigonometric identities have been provided.

S. The chapter on curve tracing has been thoroughly revised, with the
emphasis shifted from singular points to examples that occur more
frequently in current calculus courses.

The purpose and method of the original text have nonetheless been pre-
served. In particular, the direct and concise exposition typical of the Schaum
Outline Series has been retained. The basic aim is to offer to students a collection
of carefully solved problems that are representative of those they will encounter
in elementary calculus courses (generally, the first two or three semesters of a
calculus sequence). Moreover, since all fundamental concepts are defined and the
most important theorems are proved, this book may be used as a text for a
regular calculus course, in both colleges and secondary schools.

Each chapter begins with statements of definitions, principles, and theorems.
These are followed by the solved problems that form the core of the book. They
give step-by-step practice in applying the principles and provide derivations of
some of the theorems. In choosing these problems, we have attempted to
anticipate the difficulties that normally beset the beginner. Every chapter ends
with a carefully selected group of supplementary problems (with answers) whose
solution is essential to the effective use of this book.

ELLIOTT MENDELSON
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Chapter 1

Absolute Value; Linear Coordinate Systems;
Inequalities

THE SET OF REAL NUMBERS consists of the rational numbers (the fractions a/b, where a and b
are integers) and the irrational numbers (such as V2=1.4142. .. and = = 3.14159 . . .), which
are not ratios of integers. Imaginary numbers, of the form x + yV/ —1, will not be considered.
Since no confusion can result, the word number will always mean real number here.

THE ABSOLUTE VALUE |x| of a number x is defined as follows:

| = x if x is zero or a positive number
* —x if x is a negative number

For example, |3| =|-3] =3 and 0| =0.
In general, if x and y are any two numbers, then

—|x|=x=|x| (1.1)
|-x|=|x| and |x-y|l=|y-x| (1.2)
|x| =|y| implies x = xy (1.3)

x| x|,
xy|=[x|- —-|==ify#0 1.4
byl =Ixl-yl {3 iy (1.4)
|x +y|<|x| +|y| (Triangle inequality) (1.5)

A LINEAR COORDINATE SYSTEM is a graphical representation of the real numbers as the points
of a straight line. To each number corresponds one and only one point, and conversely.
To set up a linear coordinate system on a given line: (1) select any point of the line as the
origin (corresponding to 0); (2) choose a positive direction (indicated by an arrow); and (3)
choose a fixed distance as a unit of measure. If x is a positive number, find the point
corresponding to x by moving a distance of x units from the origin in the positive direction. If x
is negative, find the point corresponding to x by moving a distance of | x| units from the origin in
the negative direction. (See Fig. 1-1.)

4 L L 1 L i - i 4 d i 1l - R —
L] T 1 T T F 1 L] L )) ¥ LI 1 Ll
—4 -3 -6/2 -2 —3/2 -1 0 172 1 2 2 T 4

Fig. 1-1

The number assigned to a point on such a line is called the coordinate of that point. We
often will make no distinction between a point and its coordinate. Thus, we might refer to *‘the
point 3" rather than to “‘the point with coordinate 3.”

If points P, and P, on the line have coordinates x, and x, (as in Fig. 1-2), then

|x, — x,| = P, P, = distance between P, and P, (1.6)
As a special case, if x is the coordinate of a point P, then

|x| = distance between P and the origin (1.7)

1



2 ABSOLUTE VALUE; LINEAR COORDINATE SYSTEMS; INEQUALITIES [CHAP. 1

]

> =+ v

™
x4

Fig. 1-2

FINITE INTERVALS. Let a and b be two points such that a < b. By the open interval (a, b) we mean
the set of all points between a and b, that is, the set of all x such that a < x < b. By the closed
interval [a, b] we mean the set of all points between a and b or equal to a or b, that is, the set of
all x such that a=<x=b). (See Fig. 1-3.) The points a and b are called the endpoints of the
intervals (a, b) and [a, b].

O O —& g
a b a b
Open interval (a, b): a<x<b Closed interval [a,b]: a<x<b
Fig. 1-3

By a half-open interval we mean an open interval (a, b) together with one of its endpoints.
There are two such intervals: [a, b) is the set of all x such that @ < x < b, and (a, b] is the set of
all x such that a<x =<b.

For any positive number c,

|x}=cif and only if —c=x=¢ (1.8)
|x| <c if and only if —c<x<c¢ (1.9)
See Fig. 1-4.

,xl<c

P

|
()
o
[

Fig. 14

INFINITE INTERVALS. Let a be any number. The set of all points x such that a < x is denoted by
(a, =); the set of all points x such that a = x is denoted by [a, =). Similarly, (-, b) denotes the
set of all points x such that x < b, and (—=, b] denotes the set of all x such that x < b.

INEQUALITIES such as 2x —3 >0 and 5 <3x + 10 =< 16 define intervals on a line, with respect to a
given coordinate system.
EXAMPLE 1: Solve 2x —3>0.

2x-3>0
2x>3 (Adding 3)
x>13 (Dividing by 2)

Thus, the corresponding interval is (3, %).
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EXAMPLE 2: Solve 5<3x+10=16.

5<3x+10=16
-5< 3x =6 (Subtracting 10)
-3< x =2 (Dividing by 3)

Thus, the corresponding interval is (—5/3,2].

EXAMPLE 3: Solve —2x+3<7.

—2x+3<7
-2x<4 (Subtracting 3)
x> -2 (Dividing by -2)

Note, in the last step, that division by a negative number reverses an inequality (as does multiplication by
a negative number).

Solved Problems

1. Describe and diagram the following intervals, and write their interval notation: (a) —3 <
x<5,(b)2=x=6;(c) 4<x=0;(d)x>5;, () x=2;,(f)3x—4=8; (g 1 <5-3x<11.

(a) All numbers greater than ~3 and less than 5; the interval notation is (—3,5):

O O-
-0 2y
-3 5

(b) All numbers equal to or greater than 2 and less than or equal to 6, [2, 6]:

—— - —
2 6

(c) All numbers greater than —4 and less than or equal to 0; (—4,0]:

ale

. &
-4 0

(d) All numbers greater than 5; (5, ®):

v
5

(e) All numbers less than or equal to 2; (—=,2]:

-
2

(f) 3x — 4=8 is equivalent to 3x =12 and, therefore, to x =4. Thus, we get (—x,4]:

—-
4

(g) 1<5-3x<11
—4< —3x <6 (Subtracting 5)
-2< x <% (Dividing by —3; note the reversal of inequalities)

Thus, we obtain (-2, 1):
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Describe and diagram the intervals determined by the following inequalities: (a) |x| <2; (b)
|x| >3; (¢) |x —3|<1; (d) |x — 2| < 8, where § >0; () |[x +2|=3; (f) 0<|x — 4] <8, where
8 <.

(a) This is equivalent to —2 < x <2, defining the open interval (—2,2):

et —
e e

-2 2

(b) This is equivalent to x >3 or x < -3, defining the union of the infinite intervals (3,=) and
(—oc‘ _3)
3

-3

(c) This is equivalent to saying that the distance between x and 3 is less than 1, or that 2 < x <4, which
defines the open interval (2, 4):

O
L s —
4

We can also note that |x — 3| <1 is equivalent to —1 < x —3<1. Adding 3, we obtain 2 < x <4.
(d) This is equivalent to saying that the distance between x and 2 is less than 8, or that 2 - § <x <2+ §,
which defines the open interval (2 — 8,2 + 8). This interval is called the 8-neighborhood of 2:

— e -

ad T
2-46 2 2+8

(€) |x +2| <3 is equivalent to —3 < x + 2< 3. Subtracting 2, we obtain —5 < x <1, which defines the
open interval (=5, 1):

O el
O
-5 i

(f) The inequality |x —4} <8 determines the interval 4— 8 <x <4+ 8. The additional condition
0 < |x — 4| tells us that x # 4. Thus, we get the union of the two intervals (4 — §,4) and (4,4 + §).
The result is called the deleted 5-neighborhood of 4:

- el O
O L L
4-

5 4 4+8

Describe and diagram the intervals determined by the following inequalities: (a) |5 — x| =3;
(b) 2x —3]<5; () |1 —4x| < }.

(a) Since |S — x| =|x — 5|, we have |x — 5| =3, which is equivalent to —3 = x — 5=3. Adding 5, we get
2 < x = 8, which defines the open interval (2, 8):

g 0
2 8
(b) |2x — 3| <5 is equivalent to —5<2x —3<5. Adding 3, we have —2 < 2x <8; then dividing by 2
yields — 1< x <4, which defines the open interval (—1, 4):

O >
L 2 —
4

(¢) Since |1 — 4x| = |4x — 1|, we have |4x — 1] < }, which is equivalent to — 3 <4x — 1< }. Adding 1, we

get § <dx < 3. Dividing by 4, we obtain 3 < x < }, which defines the interval (3. 3):

Fat
e

O
"
1/8 3/8
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4, Solve the inequalities (a) 18x — 3x* >0, (b) (x + 3)(x — 2)(x —4) <0, and
(¢) (x +1)’(x — 3)>0, and diagram the solutions.

(a) Set 18x — 3x* = 3x(6 — x) =0, obtaining x = 0 and x = 6. We need to determine the sign of 18x — 3x°
on each of the intervals x <0, 0< x <6, and x > 6, to determine where 18x — 3x > 0. We note that
it is negative when x <0, and that it changes sign when we pass through 0 and 6. Hence. it is positive
when and only when 0 <x <6:

> . &
— L -

0 6

(k) The crucial points are x= -3, x=2, and x =4. Note that (x + 3)(x —2)(x — 4) is negative for
x < —3 (since each of the factors is negative) and that it changes sign when we pass through each of
the crucial points. Hence, it is negative for x < -3 and for 2 <x <4:

e

-~ O O—
20y O
-3 2 4

(c) Note that (x + 1) is always positive (except at x = —1. where it is 0). Hence (x + 1)’(x —=3)>0
when and only when x — 3 >0, that is, for x >3:

3
5. Solve |3x —7|=8.
In general, when ¢ =0, |4| = ¢ if and only if u = ¢ or u = —¢. Thus, we need to solve 3x - 7 =8 and
3x — 7= -8, from which we get x =5 or x =~ 1.
2x +1
6. Solve >3.
x+3

Case 1: x + 3>0. Multiply by x + 3 to obtain 2x + 1> 3x + 9, which reduces to —8 > x. However,
since x + 3> 0, it must be that x > — 3. Thus, this case yields no solutions.

Case 2: x + 3<0. Multiply by x + 3 to obtain 2x + 1 <3x + 9. (Note that the inequality is reversed,
since we multiplied by a negative number.) This yields —8 <x. Since x + 3 <0, we have x < —3.

Thus, the only solutions are —8<x < —3.

7. Solve

2
——3l<5.
X

The given inequality is equivalent to —5 < 2_ 3<5. Add 3 to obtain —2 < 2/x <8, and divide by 2
to get ~1<1/x<4. *

Case 1: x > 0. Multiply by x to get —x <1<4x. Then x > } and x > — 1; these two inequalities are
equivalent to the single inequality x > §.

Case 2: x < 0. Multiply by x to obtain —x > 1> 4x. (Note that the inequalities have been reversed,
since we multiplied by the negative number x.) Then x <} and x < —1. These two inequalities are
equivalent to x < —1.

Thus, the solutions are x > § or x < —1, the union of the two infinite intervals ( j. =) and (-=, — 1),

8. Solve |2x — 5| = 3.

Let us first solve the negation |2x — 5| < 3. The latter is equivalent to —3<2x —5<3. Add 5 to
obtain 2 < 2x <8, and divide by 2 to obtain 1<x <4. Since this is the solution of the negation. the
original inequality has the solution x <1 or x 4.

9. Prove the triangle inequality, |x + y|=|x| +|y|.



10.

11.

12.

13.

14.
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Add the inequalities — x| < x<|x] and —|y| =y =<|y| to obtain
—(xl+{yD=x+y=|xl+]yl
Then, by (1.8), |x + y| = |x| +[yl.

Supplementary Problems

Describe and diagram the set determined by each of the following conditions:

(@) -5<x<0 (b) x=0 (c) —2=x<3 (d)yx=1
(e) |x]<3 (f) x| =5 (8) |x—2|<: (h) |x +3[>1
(H 0<lx-2]<1 (HOo<|x+3<} (k) [x—2{=1.

Ans. (e) -3<x<3;(fyx=Sorx=-5;(g)i<x<i;(Wx>-2orx<-4,({)x#2and 1 <x<3;
(j)) ¥ <x<-%;(k)x=3orx=<]1

Describe and diagram the set determined by each of the following conditions:
(a) 3Bx—7| <2 (b) l4x - 1] =1 (c) ‘3—2‘54

(d)‘%—2l54 (e) ‘2+£’>1 (f)’§1<3

Ans. (@) i<x<3; (b)x=lorx=0;(c) -6=x=18;(d)x=-3orx=
(e)x>0orx<-—-lor —3<x<0;(flx>%orx<—4%

>

[N

Describe and diagram the set determined by each of the following conditions:

(a) x(x—-5)<0 b)) (x=-2)(x—-6)>0 (c) (x+1)(x-2)<0

(d) x(x = 2)(x +3)>0 (&) (x+2)(x+3)(x+4)<0 (Hx-Dx+1D)(x-2)(x+3)>0
(g) (x-1D(x+4)>0 M) (x—-3(x+5)x-4)<0 (i) x=-2)'>0

(Yx+1) <0 k) (x -2 (x+1)<0 ) (x-1P(x+1)<0

(MGx-D2x+3)>0  (n) (x—4)(2x -3)<0

Ans. (@) 0<x<35;(b)x>60rx<2;(c) ~1<x<2;(dyx>2o0r -3<x<0;
() “3<x<—-2o0rx<-4;,(fl)x>20r ~1<x<lorx<-3;(g)x>-4and x#1,
(h) -5<x<3:; (D)x>2,(j)x<—-1; (k) —1<x<2; () <1l and x# —1;
(m)x>jorx<—3;(n)3<x<4

Describe and diagram the set determined by each of the following conditions:

(@) x*<4 (b) x*=9 () (x-2)*=16 (d) 2x+ 1)’ >1
(e) x’ +3x—4>0 (f)x*+6x+8=<0 (g) x><5x+14 (h) 2x*>x+6
(i) 6x° +13x <5 (j) x* +3x* > 10x

Ans. (a) 2<x<2;(b)xz=3orx=-3;(c) 2=x=6;(d)x>0o0rx<-1;
(e)x>lorx<—4;(f) ~4=x=-2;(g) ~2<x<T; (h) x>2o0rx<-3;
(1) —3<x<3;(j) -5<x<Oorx>2

2x — 1 X
<3 @ 37 <!

Zx‘I‘

Solve: (a) ~4<2-x<7 (b)

3 —
(d) 3 >3 (@)




CHAP. 1]

15.

16.

Solve:

Prove:

(Hint:

ABSOLUTE VALUE; LINEAR COORDINATE SYSTEMS,; INEQUALITIES

(@) -5<x<6; (b)x>0o0rx<—1;(c)x>-2;(d) ¥ <x<-1;
(&) x<0or0<x<i;(flx=—4orx=-1

(a) [4x-5]=3 b) |x+6|=2 (c) I3x—4|=2x+ 1]
d)|x+1=|x+2| (e) [x+1=3x-1 (f)le+1]<]3x - 1]
(8) [3x—4|=2x +1]

(@) x=2o0rx=3;(b)x=—dorx=—8 ()x=5orx=3;(d)x=-3(e) x=1;
(flx>lorx<0;(gx>50rx<?

@li=kbl @[ =Hiyro @ wisLe
@l -yI=ll+ (@) le=yl= ol Iy

In (e), prove that [x ~ y| =[x| - |y| and |x — y|=]y| ~ |x|.)



Chapter 2

The Rectangular Coordinate System

COORDINATE AXES. In any plane 2, choose a pair of perpendicular lines. Let one of the lines be
horizontal. Then the other line must be vertical. The horizontal line is called the x axis, and the
vertical line the y axis. (See Fig. 2-1.)

Fig. 2-1

Now choose linear coordinate systems on the x axis and the y axis satisfying the following
conditions: The origin for each coordinate system is the point O at which the axes intersect.
The x axis is directed from left to right, and the y axis from bottom to top. The part of the x
axis with positive coordinates is called the positive x axis, and the part of the y axis with positive
coordinates is called the positive y axis.

We shall establish a correspondence between the points of the plane ? and pairs of real
numbers.

COORDINATES. Consider any point P of the plane (Fig. 2-1). The vertical line through P
intersects the x axis at a unique point; let a be the coordinate of this point on the x axis. The
number a is called the x coordinate of P (or the abscissa of P). The horizontal line through P
intersects the y axis at a unique point; let b be the coordinate of this point on the y axis. The
number b is called the y coordinate of P (or the ordinate of P). In this way, every point P has a
unique pair (a, b) of real numbers associated with it. Conversely, every pair (a, b) of real
numbers is associated with a unique point in the plane.

The coordinates of several points are shown in Fig. 2-2. For the sake of simplicity. we have
limited them to integers.

EXAMPLE 1: In the coordinate system of Fig. 2-3, to find the point having coordinates (2, 3), start at
the origin. move two units to the right, and then three units upward.

To find the point with coordinates (—4, 2), start at the origin, move four units to the lefr. and then
two units upward.

To find the point with coordinates (—3, — 1), start at the origin, move three units to the left, and then
one unit downward.

The order of these moves is not important. Hence. for example, the point (2, 3) can also be reached
by starting at the origin, moving three units upward, and then two units to the right.

8
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y
8
(-3.7e T
6 -
5P
o b ®(5.4)
ik ®(3.1
(-4.2)® 2 -
1} (6,0
1 1 1.1 [N S S S TP ¢ x
-4 -3 -2 -1 0 i 2 3 4 S 6
_l b
_2 -
-39 (0.-3)
(-3.-4e -4 b
_5 -
Fig. 2-2
y
4P
k) ®(2.3)
|
{
®(-4.2) 2 |
) ‘
I
| 1+ |
| |
] | 1 1 1 1 x
-4 -3 -2 -1 ¢ 1 2 3
(-3,-ne -1
_2-—
_3}-
Fig. 2-3

QUADRANTS. Assume that a coordinate system has been established in the plane ?. Then the
whole plane 2, with the exception of the coordinate axes, can be divided into four equal parts,
called quadrants. All points with both coordinates positive form the first quadrant, called
quadrant I, in the upper right-hand corner. (See Fig. 2-4.) Quadrant II consists of all points

with negative x coordinate and positive y coordinate. Quadrants III and IV are also shown in
Fig. 2-4.
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y
n 1
(-.+) (+.+)
(-1.27¢ 2"
- e(3.1)
1 1 1 1 1 1 x
-3 -2 -1 o0 1 2 3
(-2.-1)® -
-2} ®(2,-2)
1 v
(-.-) (+.-)
Fig. 2-4

The points on the x axis have coordinates of the form (a,0). The y axis consists of the
points with coordinates of the form (0, b).

Given a coordinate system, it is customary to refer to the point with coordinates (a, b) as
“the point (a, b).”” For example, one might say, “The point (0, 1) lies on the y axis.”

DISTANCE FORMULA. The distance P, P, between points P, and P, with coordinates (x,, y,) and
(x3, ¥,) i

PIPZ:\/(XI_XZ)2+(yl_y2)2 (2.1)
EXAMPLE 2: (a) The distance between (2,5) and (7, 17) is
VE-77+G-17)7 =V(-5) +(-12)’ = V5 + 144 = V169 = 13
(b) The distance between (1,4) and (5,2)
V(I =5  +(4-2)=V(-4) + (2’ =VI6+4=V20=V3-5=V3d-V5=2V3

MIDPOINT FORMULAS. The point M(x, y) that is the midpoint of the segment connecting the
points P (x,, y,) and P,(x,, y,) has coordinates
_xtx Ity
xX=— y==>" (2.2)

The coordinates of the midpoint are the averages of the coordinates of the endpoints.

EXAMPLE 3: (a) The midpoint of the segment connecting (2,9) and (4, 3) is (2~¥ ()TH) =(3,6).

-5+1 1+4 5
(b) The point halfway between (—5,1) and (1, 4) is ( 7 T) = (—2, i)

PROOFS OF GEOMETRIC THEOREMS can often be given more easily by use of coordinates than
by deduction from axioms and previously derived theorems. Proofs by means of coordinates are
called analytic, in contrast to the so-called synthetic proofs from axioms.
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EXAMPLE 4: Let us prove analytically that the segment joining the midpoints of two sides of a triangle
is one-half the length of the third side. Construct a coordinate system so that the third side AB lies on the
positive x axis, A is the origin, and the third vertex C lies above the x axis, as in Fig. 2-5.

y
C(u, v)
M, M
(0,0) (b,0)
X
A B
Fig. 2-5

Let b be the x coordinate of B. (In other words, let 5 = AB.) Let C have coordinates (u, v). Let M,
and M, be the midpoints of sides AC and BC, respectively. By the midpoint formulas (2.2), the

+
coordinates of M, are (2 2) and the coordinates of M, are (1‘2—[) %) By the distance formula (2.1).

= (5250 4 (58 () -3

which is half the length of side AB.

Solved Problems

1. Derive the distance formula (2.1).

Given points P, and P, in Fig. 2-6, let Q be the point at which the vertical line through P, intersects
the horizontal line through P,. The x coordinate of Q is x,, the same as that of P,. The y coordinate of
Q is y,, the same as that of P,.

y
V¢ — — — - — — — — Py(x;, ¥,)
?
t
|
[
Yyer ———® —— - — —— 0 O(xy, ¥1)
Py(x,, )’|)| |

I |
: I
|
a, L4
14 42 x
X, LP)

Fig. 26
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By the Pythagorean theorem,
(P,P,) = (P,Q) +(P,Q)’ (1)

If A, and A, are the projections of P, and P, on the x axis, then the segments P,Q and A A, are
opposite sides of a rectangle. Hence, P,Q = A A,. But A A, =|x, — x,| by (1.6). Therefore, P,Q =
|x, = x,|. By similar reasoning, P,Q = |y, — y,|. Hence, by (1),

P,P22=|I| _x2|2+|)’1_)'2|2=(x1 _12)2+()’| _yz)z

Taking square roots yields the distance formula (2.1).

Show that the distance between a point P(x, y) and the origin is Vx* + y*.

Since the origin has coordinates (0, 0), the distance formula yields \/(x —0)P+(y-0y=Vx+ v

Prove the midpoint formulas (2.2).

We wish to find the coordinates (x, y) of the midpoint M of the segment P P, in Fig. 2-7. Let A, B,
and C be the perpendicular projections of P,, M, and P, on the x axis.

Py(x;. ¥2)

Fig. 2-7

The x coordinates of A, B, and C are x|, x, and x,, respectively. Since the lines P, A, MB, and P,C
are parallel, the ratios P, M/MP, and AB/BC are equal. (In general, if two lines are intersected by three
parallel lines, the ratios of corresponding segments are equal.) But, P,M = MP,. Hence, AB = BC.
Since AB = x — x, and BC = x, — x, we obtain x — x, = x, — x, and therefore 2x = x, + x,. Dividing by
2, we get x=(x +x,)/2. (We obtain the same result when P, is to the left of P,. In that case,
AB=x, - xand BC=x — x,.) A similar argument shows that y = (y, +y,)/2.

Is the triangle with vertices A(1,5), B(4,2), and C(5, 6) isosceles?

AB=\(1-4F+(5-2) = V(-3 +(3)’=V9+9=VT8
AC=V(A-5) + (5 -6\ =V(4y + (-1’ =VIB+1=VTT
BC=V(@-57+(2-6=V(=1) + (-4 =VI+16= V17

Since AC = BC, the triangle is isosceles.

Is the triangle with vertices A(—5, 6), B(2,3), and C(5, 10) a right triangle?
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AB=V(-5-2F+(6-3Y=V(-7)+ (3’ = VA + 9= V38
AC=V(=5-5V +(6-10)° = V/(-10)* + (-4)* = V00 + 16 = V116

BC=V(2-5) +(3-10)° = V(=3)"+ (-7)" = V9 +49 = V38

Since AC*="AB’ + BC”, the converse of the Pythagorean theorem tells us that AABC is a right
triangle, with right angle at B; in fact, since AB = BC, AABC is an isosceles right triangle.

Prove analytically that, if the medians to two sides of a triangle are equal, then those sides are
equal. (Recall that a median of a triangle is a line segment joining a vertex to the midpoint of
the opposite side.)

In AABC, let M, and M, be the midpoints of sides AC and BC, respectively. Construct a
coordinate system so that A is the origin, B lies on the positive x axis, and C lies above the x axis (see
Fig. 2-8). Assume that AM, = BM,. We must prove that AC = BC. Let b be the x coordinate of B, and

let C have coordinates (u, v). Then, by the midpoint formulas, M, has coordinates g %) and M, has
+
coordinates (u E). Hence,
2 "2
_{u+tb v =  Hu ) v
(5w meyE ) (0
y
C(u, v)
Ml MZ
A B
X
Fig. 2-8

Since AM, = BM,

(527 (3 5o 0 =52 )
2 2 2 2 2 2

2 2 2 2
(Chals + % = (u=2b) + % and, therefore, (u + b)> =(u — 2b)*. So, u+ b= *(u—2b). If
u+b=u—-2b, then b =—2b, and therefore, b =0, which is impossible, since A # B. Hence, u + b =
—(u—2b)=-u+2b, whence 2u=b. Now BC=V(u—-byY + v’ =V(u-2u) +v =V(~u) + v’ =
Vu' + v, and AC = Vu® + v°. Thus, AC = BC.

Hence,

Find the coordinates (x, y) of the point Q on the line segment joining P (1, 2) and P,(6,7),
such that Q divides the segment in the ratio 2:3, that is, such that P,Q/QP,=2/3.

Let the projections of P,, @, and P, on the x axis be A, @, and A ,, with x coordinates 1, x, and 6,
respectively (see Fig. 2-9). Now A Q/Q'A,=P,Q/QP,=2/3. (When two lines are cut by three
parallel lines, corresponding segments are in proportion.) But A,Q"'=x—-1, and Q'A,=6—-x. So
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y
| P,(6,7)
I
B |
sk |
e |
N | '
P, | I
- l i [
-, | lor 4
All L4t 1 42 X
1 X 6
Fig. 2-9
x—1 2 s . .
6-x 3" and2 cross-multiplying yields 3x —3 =12 —2x. Hence 5x =15, whence x =3. By similar
reasoning, f;—_—y =3 from which it follows that y = 4.

Supplementary Problems

In Fig. 2-10, find the coordinates of points A, B, C, D, E, and F.

y
4L Ee
it Ce
bl o o F
Ae 1k
1 1 1 1 i 1 I I | N 1 X
-5 -4 -3 -2 -1 1 2 3 4 s 6 7
-1}
De -2 F
Fig. 2-10

Ans. A=(-2,1); B=(0,-1); C=(1,3); D=(—-4,-2); E=(4,4); F=(7.2).

Draw a coordinate system and show the points having the following coordinates: (2, —3), (3, 3). (-1, 1),
(2,-2), (0,3), (3,0), (=2,3).

Find the distances between the following pairs of points:
(a) (3,4) and (3,6) (b) (2,5) and (2, -2) (¢) (3,1)and (2, 1)
(d) (2,3) and (5,7) () (-2,4) and (3,0) (f)(=2,%)and (4,-1)

Ans.  (a) 2; (b) 7; (c) 1; (d) 5; (e) V4TI, (f) W17
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11,

12.

13.

14.

15,

16.

17.

18.

19.

20.

21.

22.

Draw the triangle with vertices A(2,5), B(2, —35), and C(-3,5), and find its area.

Ans. area=25

If (2,2), (2, —4), and (5, 2) are three vertices of a rectangle, find the fourth vertex.

Ans. (5, -4)

If the points (2,4) and (—1,3) are opposite vertices of a rectangle whose sides are parallel to the
coordinate axes (that is, the x and y axes), find the other two vertices.

Ans. (—1,4) and (2,3)

Determine whether the following triples of points are the vertices of an isosceles triangle: (a) (4, 3),
(1,4), (3,10); (b) (—1,1), (3,3), (1, —1); (c) (2,4), (5,2), (6,53).

Ans. (a) no; (b) yes; (¢) no

Determine whether the following triples of points are the vertices of a right triangle. For those that are,

find the area of the right triangle: (a) (10, 6), (3, 3), (6, —4); (&) (3, 1), (1, =2), (=3, - 1); (c) (5, —2),
(0,3), (2,4).

Ans. (a) yes, area=129; (b) no; (c) yes, area= ¥

Find the perimeter of the triangle with vertices A(4,9), B(-3,2), and C(8, -5).
Ans. V2 + V170 +2V53

Find the value or values of y for which (6, y) is equidistant from (4, 2) and (9, 7).
Ans. S

Find the midpoints of the line segments with the following endpoints: (a) (2, - 3) and (7, 4); (b) (3,2)
and (4,1); (¢) (V3.0) and (1, 4).

5 Doy (2,2); 0 (113.2)
ans. @ (3.5): 0 (£.3): 0 (F52.2
Find the point (x, y) such that (2, 4) is the midpoint of the line segment connecting (x, y) and (1, 5).

Ans. (3,3)

Determine the point that is equidistant from the points A(—1,7), B(6,6), and C(5, —1).

Ans. (2,3

Prove analytically that the midpoint of the hypotenuse of a right triangle is equidistant from the three
vertices.

Show analytically that the sum of the squares of the distances of any point P from two opposite vertices
of a rectangle is equal to the sum of the squares of its distances from the other two vertices.

Prove analytically that the sum of the squares of the four sides of a parallelogram is equal to the sum of
the squares of the diagonals.

Prove analytically that the sum of the squares of the medians of a triangle is equal to three-fourths the
sum of the squares of the sides.

Prove analytically that the line segments joining the midpoints of opposite sides of a quadrilateral bisect
each other.
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Prove that the coordinates (x, y) of the point Q that divides the line segment from P (x,.y,) to
. . . rx, rx, Ny, tr.y, .
P,(x,, y,) in the ratio r :r, are determined by the formulas x = ————and y = ————=' (Hinr:

r,tr, rotr,

Use the reasoning of Problem 7.)

Find the coordinates of the point Q on the segment P, P, such that P,Q/QP, =2/7, if (a) P, = (0, 0).
P,=(7,9)% (b) P,=(=1,0), P,=(0,7); (¢c) P, =(=7,-2), P,=(2,7); (d) P,=(1,3), P, =(4.2).

Ans. (a) (3.2):(b) (=3, %); (0) (=5, %) (@) (¥. %)



Chapter 3

Lines

THE STEEPNESS OF A LINE is measured by a number called the slope of the line. Let £ be any
line, and let P,(x,, y,) and P,(x,, y,) be two points of £. The slope of £ is defined to be the
number m = H The slope is the ratio of a change in the y coordinate to the correspond-

2
ing change in the x coordinate. (See Fig. 3-1.)

/

Fig. 3-1

For the definition of the slope to make sense, it is necessary to check that the number m is
independent of the choice of the points P, and P,. If we choose another pair P,(x,, y;) and
P,(x,, y,), the same value of m must result. In Fig. 3-2, triangle P,P,T is similar to triangle
P,P,Q. Hence,

P, TP, Yo 7N _YaT s

PO PT Xy, =X, X, X,

Therefore, P, and P, determine the same slope as P, and P,.

P(x. y4)

= —_————

_—— e —|=d T
Py(x5, y3)

Fig. 3-2

17
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4
EXAMPLE 1: The slope of the line joining the points (1, 2) and (4, 6) in Fig. 3-3 i is o 6 =3 Hence, as
a point on the line moves 3 units to the right, it moves 4 units upward. Moreover, the slope is not affected

2—6 -4 _ 4 YZ Y1 YI Y2
by the order in which the points are given: -2~ 3" 3 In general, P Xz.

y

(4.6)

T

(,2)

T

Fig. 3-3

THE SIGN OF THE SLOPE has significance. Consider, for example, a line £ that moves upward as
it moves to the right, as in Fig. 3-4(a). Since y, > y, and x, > x,, we have m = 227N >0. The

Xy T X
slope of £ is positive.

Now consider a line & that moves downward as it moves to the right, as in Fig. 3-4(b).
Here y, <y, while x, > x,; hence, m = i — — N < 0. The slope of £ is negative.
2
Now let the line £ be horizontal, as in Flg 3-4(c). Here y, =y,, so that y, —y, =0. In
addition, x, — x, # 0. Hence, m =

= 0. The slope of X is zero.

2 1
Line £ is vertical in Fig. 3-4(d), where we see that y, — y, >0 while x, — x, = 0. Thus, the
expression Y2 ! is undefined. The slope is not defined for a vertical line ¥. (Sometimes we

13
describe this situation by saying that the slope of £ is “infinite.”")

y
y ¥

Py(x,. P.(X.N

Pl(xl’y M(sz)’z)
P ’ \ '

L4
(2) (b)
y
y
Py(x;. y;)
- ¥
Pi(x, y)) Py, y,) PP, (x0 ¥))
X X

d
) (@)
Fig. 3-4
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SLOPE AND STEEPNESS. Consider any line £ with positive slope, passing through a point
P,(x,, y,); such a line is shown in Fig. 3-5. Choose the point P,(x,, ¥,) on Z such that
x, —x, = 1. Then the slope m of £ is equal to the distance AP,. As the steepness of the line
increases, AP, increases without limit, as shown in Fig. 3-6(a). Thus, the slope of £ increases
without bound from 0 (when £ is horizontal) to + (when the line is vertical). By a similar
argument, using Fig. 3-6(b), we can show that as a negatively sloped line becomes steeper, the
slope steadily decreases from 0 (when the line is horizontal) to —o (when the line is vertical).

Pi(xy, y1)

7) AR ~

(b)
Fig. 3-6

EQUATIONS OF LINES. Let Zbe a line that passes through a point P,(x,, y,) and has slope m, as

in Fig. 3-7(a). For any other point P(x, y) on the line, the slope m is, by definition, the ratio of
y—y, to x—x,. Thus, for any point (x, y) on %,

_Y™h
m —x—x, (3.1)

Y= X4 o8 the line PP, is
X - x,

different from the slope m of £; hence (3.1) does not hold for points that are not on ¥. Thus,
the line & consists of only those points (x, y) that satisfy (3.1). In such a case, we say that & is
the graph of (3.1).

Conversely, if P(x, y) is not on line %, as in Fig. 3-7(b), then the slope
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y &

P(x, y) P(x, y)

Z Pi(xy, y,) /1' Pi(xy,y))
/ /

(@) (®)

Fig. 3-7

A POINT-SLOPE EQUATION of the line £ is any equation of the form (3.1). If the slope m of Zis
known, then each point (x,, y,) of £ yields a point-slope equation of ¥. Hence, there are

infinitely many point-slope equations for £.

EXAMPLE 2: (a) The line passing through the point (2,5) with slope 3 has a point-slope equation

yo3._ 3. (b) Let &£ be the line through the points (3, —1) and (2, 3). Its slope is m = 3—;_3—1) = *41 =

x—2
. . +1 -3
—4. Two point-slope equations of ¥ are i 3= -4 and %—_—2 = -4

SLOPE-INTERCEPT EQUATION. If we multiply (3.1) by x — x,, we obtain the equationy ~ y, =

m(x — x,), which can be reduced first to y — y, = mx — mx, and then to y = mx + (y, — mx,).

Let b stand for the number y;, — mx,. Then the equation for line £ becomes

y=mx+b (3.2)

Equation (3.2) yields the value y = b when x = 0, so the point (0, b) lies on £. Thus, b is the y

coordinate of the intersection of £ and the y axis, as shown in Fig. 3-8. The number b is called
the y intercept of ¥, and (3.2) is called the slope-intercept equation for £.

(0, b)

e x

e

EXAMPLE 3: The line through the points (2, 3) and (4, 9) has slope
9-3 6
mT 2T
Its slope-intercept equation has the form y =3x + b. Since the point (2, 3) lies on the line, (2, 3) must
satisfy this equation. Substitution yields 3 =3(2) + b, from which we find b= —3. Thus, the slope-

intercept equation is y =3x — 3.

Fig. 3-8
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. . -3
Another method for finding this equation is to write a point-slope equation of the line, say 4 =3.

x—2
Then multiplying by x — 2 and adding 3 yield y = 3x — 3.

PARALLEL LINES. Let ¥, and %, be parallel nonvertical lines, and let A, and A, be the points at
which %, and %, intersect the y axis, as in Fig. 3-9(a). Further, let B, be one unit to the right of
A,, and B, one unit to the right of A,. Let C, and C, be the intersections of the verticals
through B, and B, with &, and ¥,. Now, triangle A,B,C, is congruent to triangle A,B,C, (by

the angle-side-angle congruence theorem). Hence, B,C, = B,C, and
Bl Cl BZ C2

Slope of %, = I T 1

= slope of %,

Thus, parallel lines have equal slopes.

(a) &)
Fig. 3-9

Conversely, assume that two different lines £, and %, are not parallel, and let them meet at
point P, as in Fig. 3-9(b). If Z, and %, had the same slope, then they would have to be the same
line. Hence, ¥, and %, have different slopes.

Theorem 3.1: Two distinct nonvertical lines are parallel if and only if their slopes are equal.
EXAMPLE 4: Find the slope-intercept equation of the line £ through (4, 1) and parallel to the line #
having the equation 4x — 2y = 5.

By solving the latter equation for y, we see that 4 has the slope-intercept equation y =2x — §.
Hence, # has slope 2. The slope of the parallel line £ also must be 2. So the slope-intercept equation of £

has the form y =2x + b. Since (4, 1) lies on &, we can write 1=2(4)+ b. Hence, b= -7, and the
slope-intercept equation of £ is y =2x —7.

PERPENDICULAR LINES. In Problem 5 we shall prove the following:

Theorem 3.2: Two nonvertical lines are perpendicular if and only if the product of their slopes is —1.

If m, and m, are the slopes of perpendicular lines, then m,m, = —1. This is equivalent to

1 . . ) )
my=—--; hence, the slopes of perpendicular lines are negative reciprocals of each other.
1
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Solved Problems

Find the slope of the line having the equation 3x — 4y = 8. Draw the line. Do the points (6. 2)
and (12, 7) lie on the line?

Solving the equation for y yields y = 3x — 2. This is the slope-intercept equation; the slope is ? and
the y intercept is —2.

Substituting 0 for x shows that the line passes through the point (0, —2). To draw the line, we need
another point. If we substitute 4 for x in the siope-intercept equation, we gety = 3(4) —2=1. So, (4.1)
also lies on the line, which is drawn in Fig. 3-10. (We could have found other points on the line by
substituting numbers other than 4 for x.)

4.1

Fig. 3-10

To test whether (6,2) is on the line, we substitute 6 for x and 2 for y in the original equation,
3x — 4y = 8. The two sides turn out to be unequal; hence, (6, 2) is not on the line. The same procedure
shows that (12, 7) lies on the line.

Line £ is the perpendicular bisector of the line segment joining the points A(—1,2) and
B(3, 4), as shown in Fig. 3-11. Find an equation for £.

Fig. 3-11
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& passes through the midpoint M of segment AB. By the midpoint formulas (2.2), the coordinates

4-2 1
of M are (1, 3). The slope of the line through A4 and B is = -~ = = Let m be the slope of £. By

3-(-1) 4 2
Theorem 3.2, im = —1, whence m = —2.
The slope-intercept equation for £ has the form y = —2x + b. Since M (1, 3) lies on Z, we have
3=-2(1)+ b. Hence, b =5, and the slope-intercept equation of £is y = —2x + 5.

Determine whether the points A(1, —1), B(3, 2), and C(7, 8) are collinear, that is, lie on the
same line.

A, B, and C are collinear if and only if the line AB is identical with the line AC, which is equivalent

2—-(-1 3
to the slope of AB being equal to the slope of AC. (Why?) The slopes of AB and AC are —3(_—1—) =3
and 8;—5_1—1—) = 2 =3 Hence, A, B, and C are collinear.

Prove analytically that the figure obtained by joining the midpoints of consecutive sides of a
quadrilateral is a parallelogram.

Locate a quadrilateral with consecutive vertices A, B, C, and D on a coordinate system so that A is
the origin, B lies on the positive x axis, and C and D lie above the x axis. (See Fig. 3-12.) Let b be the x
coordinate of B, (u, v) the coordinates of C, and (x, y) the coordinates of D. Then, by the midpoint
formula (2.2), the midpoints M,, M,, M,, and M, of sides AB, BC, CD, and DA have coordinates

b u+b v x+tu y+tvu xy . .

(5,0), (—2— i)’ ( ] ) and (5, 5) respectively. We must show that M M,M M, is a
parallelogram. To do this, it suffices to prove that lines M, M, and M, M, are parallel and that lines
M,M, and M M, are parallel. Let us calculate the slopes of these lines:

v_ o v y_ytv v
2 2 v 2 2 2
Slope(M M,) = P =;=; slope(M,M4)=x v e u-u

2 2 2 2 2
yrv_ vy Y o

2 2 2 y 2 y

SIOPC(MZM"‘)=x+u u+b x-b x-b SIOPC(M'M“)=X b x-b
2 2 2 2 2

Since slope(M,M,) =slope(M,M,), MM, and M, M, are parallel. Since slope(M,M,) = slope(M, M),
M,M, and M, M, are parallel. Thus, M,M,M .M, is a parallelogram.
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Prove Theorem 3.2.

First we assume ¥, and ¥, are perpendicular nonvertical lines with slopes m, and m,. We must
show that m m, = —1. Let M, and 4, be the lines through the origin O that are parallel to ¥, and .,,
as shown in Fig. 3-13(a). Then the slope of #, is m,, and the slope of #, is m, (by Theorem I).
Moreover, #, and 4, are perpendicular, since £, and ¥, are perpendicular.

y 4

(a) (6)
Fig. 3-13

Now let A be the point on #, with x coordinate 1, and let B be the point on A, with x coordinate 1,
as in Fig. 3-13(b). The slope-intercept equation of #  is y = m x; therefore, the y coordinate of A ism
since its x coordinate is 1. Similarly, the y coordinate of B is m,. By the distance formula (2.1).

OB=V(1 -0 +(m, -0y =V1+m’
OA=V(1~0)+(m,~0) =V1+m
BA = \/TI — 1Y +(m,—m,) = \/(m2 -m,)
Then by the Pythaporean theorem for right triangle BOA,
BA’= 0B’ + 04’

or (m,—m,)=(1+m)+(l+m)
2

=2m,m, + mi=2+m;+m;
mm, = —1

Now, conversely, we assume that m m, = — 1, where m, and m, are the slopes of nonvertical lines
£, and ¥,. Then ¥, is not parallel to #,. (Otherwise, by Theorem 3.1, m, = m, and, therefore,

Fig. 3-14
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m? = —1, which contradicts the fact that the square of a real number is never negative.) We must show
that #, and %, are perpendicular. Let P be the intersection of ¥, and <, (see Fig. 3-14). Let ¥, be the
line through P that is perpendicular to .Z,. If m, is the slope of £;, then, by the first part of the proof,
m,m, = —1 and, therefore, m,m, = m m,. Since m;m, = —1, m, #0; therefore, m, = m,. Since £, and
%, pass through the same point P and have the same slope, they must coincide. Since %, and %, are
perpendicular, £, and %, are also perpendicular.

6. Show that, if @ and b are not both zero, then the equation ax + by = c is the equation of a line
and, conversely, every line has an equation of that form.

Assume b #0. Then, if the equation ax + by = ¢ is solved for y, we obtain a slope-intercept
equation y = (—a/b)x + c¢/b of a line. If b =0, then a # 0, and the equation ax + by = ¢ reduces to
ax = c; this is equivalent to x = c/a, the equation of a vertical line.

Conversely, every nonvertical line has a slope-intercept equation y = mx + b, which is equivalent to
—mx + y = b, an equation of the desired form. A vertical line has an equation of the form x = ¢, which
is also an equation of the required form with a=1 and b =0.

7. Show that the line y = x makes an angle of 45° with the positive x axis (that is, that angle
BOA in Fig. 3-15 contains 45°).

A(1L 1)

4 X

B

Fig. 3-15

Let A be the point on the line y = x with coordinates (1, 1). Drop a perpendicular AB to the
positive x axis. Then AB =1 and OB =1. Hence, angle OAB = angle BOA, since they are the base
angles of isosceles triangle BOA. Since angle OBA is a right angle,

Angle OAB + angle BOA = 180° — angle OBA = 180° — 90° = 90°
Since angle BOA = angle OAB, they each contain 45°,

8. Show that the distance d from a point P(x, y,) to a line £ with equation ax + by = ¢ is given
lax + by — c|

Va* + b*

Let A be the line through P that is perpendicular to . Then 4 intersects £ at some point Q with
coordinates (u, v}, as in Fig. 3-16. Clearly, d is the length PQ, so if we can find u and v, we can compute
d with the distance formula. The slope of & is —a/b. Hence, by Theorem 3.2, the slope of 4 is b/a.
yY—-n
b xX—Xx;
=7 Tedious algebraic calculations yield the solution

by the formula d =

Then a point-slope equation of # is
vy

= Thus, u and v are the solutions of the pair of equations

au + bv = ¢ and
1

2
_ac+b’x, +aby,

u _bc—abx, +a’y,
a2+b2

and v=
a’ + b?
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10.

11.

12.

LINES [CHAP. 3

B
®

P(x,, y,)

yd
7 N

Fig. 3-16

X

The distance formula. together with further calculations, yields

|ax,+by,-c|

d=PQ=V(x -u+(y, o) = —=—x

Supplementary Problems

Find a point-slope equation for the line through each of the following pairs of points: (a) (3,6) and
(2. —4); (b) (8,5) and (4,0); () (1.3) and the origin; (d) (2,4) and (-2, 4).

y-6 y—5~§. y-3 y—4
=10:0) T2 =51 0 L5 =3 @) 25

x—3 x—8 X - =0

Ans.  (a)

Find the slope-intercept equation of each line:

(a) Through the points (4, —2) and (1,7)

(b) Having slope 3 and y intercept 4

(¢) Through the points (—1,0) and (0, 3)

(d) Through (2, —3) and parallel to the x axis

(e) Through (2, 3) and rising 4 units for every unit increase in x

(f) Through (~2,2) and falling 2 units for every unit increase in x

(g) Through (3, —4) and parallel to the line with equation 5x — 2y =4

(h) Through the origin and parallel to the line with equation y =2

(i) Through (—-2.5) and perpendicular to the line with equation 4x + 8y =3
(/) Through the origin and perpendicular to the line with equation 3x — 2y =1
(k) Through (2. 1) and perpendicular to the line with equation x =2

(/) Through the origin and bisecting the angle between the positive x axis and the positive y axis

Ans. (@) y=-3x+10; () y=3x+3, () y=3x+3, (d) y=-3(e) y=4x—-5 (f) y=-2x -2,
(y=3x-FWy=06@y=2x+%(Hy=-ix(k)y=Ly=x

(a) Describe the lines having equations of the form x = a.
(&) Describe the lines having equations of the form y = b.
(c¢) Describe the line having the equation y = —x.

(a) Find the slopes and y intercepts of the lines that have the following equations: (i) y = 3x — 2; (ii)
. y x
2x -5y =3; (iit) y=4x - 3; (iv) y = -3, (v) 5 + §=l.
(b) Find the coordinates of a point other than (0, b) on each of the lines of part (a).
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13.

14,

15.

16.

17.

18.

19.

20.

21.

22,

Ans. (@) ()Ym=3,b==-2;(iiym=%,b=-12; (i) m=4,b=-3;(ivym=0, b=-3;
() m=-3%,b=2(b) (i) (1,1); (ii) (-6, =3); (iii) (1, 1); (iv) (1. =3); (v) (3.0)

If the point (3, k) lies on the line with slope m = —2 passing through the point (2, 5), find k.

Ans. k=3

Does the point (3, —2) lie on the line through the points (8,0) and (—7, —6)?

Ans. yes

Use slopes to determine whether the points (7, —1), (10, 1), and (6,7) are the vertices of a right
triangle.

Ans. They are.

Use slopes to determine whether (8,0), (-1, —2), (—2,3), and (7,5) are the vertices of a paral-
lelogram.

Ans. They are.

Under what conditions are the points (4, v + w), (v, u + w), and (w, u + v) collinear?

Ans. always

Determine k& so that the points A(7.3), B(—1,0), and C(k, —2) are the vertices of a right triangle with
right angle at B.

Ans. k=1

Determine whether the following pairs of lines are parallel, perpendicular, or neither:

(@) y=3x+2and y=3x-2 (b) y=2x—-4and y=3x+5
(¢) 3x-2y=5and 2x +3y =4 (d)y6x+3y=1and 4x+2y=3
(¢) x=3and y=—-4 (f)S5x+4y=1and 4x + 5y =2

(g)x=-2and x=7.

Ans.  (a) parallel; (b) neither; (c) perpendicular; (d) parallel; (e) perpendicular; ( f) neither;
(g) parallel

Draw the lines determined by the equation 2x + 5y = 10. Determine if the points (10,2) and (12, 3) lie
on this line.

For what values of k will the line kx — 3y = 4k have the following properties: (a) have slope 1; (b) have y
intercept 2; (c) pass through the point (2, 4); (d) be parallel to the line 2x — 4y = 1; (e) be perpendicular
to the line x — 6y =27

Ans. (@) k=3, (B)k=—3; () k=-6;(d) k=3;(e) k=18

Describe geometrically the families of lines (@) y = mx — 3 and (b) y = 4x + b, where m and b are any
real numbers.

Ans.  (a) lines with y intercept —3; (b) lines with slope 4

In the triangle with vertices A(0, 0), B(2,0), and C(3, 3), find equations for (a) the median from B to
the midpoint of the opposite side; (b) the perpendicular bisector of side BC; and (c) the altitude from B
to the opposite side.

Ans. (@) y=-3x+6; (b)x+3y=7;(c) y=-x+2
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27.

29.

31

32.

33.

3s.
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In the triangle with vertices A(2,0), B(1, 6), and C(3,9), find the slope-intercept equation of (a) the
median from B to the opposite side; (b) the perpendicular bisector of side AB; (¢) the altitude from 4 to
the opposite side.

Ans. (@)y=-x+7;B)y=ix+%, (@) y=-

win

x +

wis

Temperature is usually measured in either Fahrenheit or Celsius degrees. Fahrenheit (F) and Celsius (C)
temperatures are related by a linear equation of the form F = aC + b. The freezing point of water is 0°C
and 32°F, and the boiling point of water is 100°C and 212°F. (a) Find the equation relating F and C. (b)
What temperature is the same in both scales?

Ans. (a) F=12C+32; (b) —40°

The x intercept of a line £ is defined to be the x coordinate of the unique point where £ intersects the x

axis. It is the number a for which (a, 0) lies on £.

(a) Which lines do not have x intercepts?

(b) Find the x intercepts of (i) 3x —4y =2; (ii)) x +y=1; (iii) 12x — 13y =2; (iv) x =2; (v) y = 0.

(c) If a and b are the x intercept and y intercept of a line, show that x/a + y/b =1 is an equation of the
line.

(d) If x/a + y/b =1 is an equation of a line, show that a and b are the x intercept and y intercept of the
line.

Ans.  (a) horizontal lines. (b) (i) 3; (ii) 1; (iii) §; (iv) 2; (v) none

Prove analytically that the diagonals of a rhombus (a parallelogram of which all sides are equal) are
perpendicular to each other.

(a) Prove analytically that the altitudes of a triangle meet at a point. [Hint: Let the vertices of the
triangle be (2a,0), (2b,0) and (0, 2¢).]

(b) Prove analytically that the medians of a triangle meet at a point (called the centroid).

(c) Prove analytically that the perpendicular bisectors of the sides of a triangle meet at a point.

(d) Prove that the three points in parts (a) to (c) are collinear.

Prove analytically that a parallelogram with perpendicular diagonals is a thombus.
Prove analytically that a quadrilateral with diagonals that bisect each other is a parallelogram.
Prove analytically that the line joining the midpoints of two sides of a triangle is parallel to the third side.

(a) If a line ¥ has the equation 5x + 3y =4, prove that a point P(x, y) is above . if and only if
S5x +3y>4.

(b) If a line ¥ has the equation ax + by = ¢ and b >0, prove that a point P(x, y) is above £ if and only
if ax + by > c.

(c) If a line ¥ has the equation ax + by = ¢ and b <0, prove that a point P(x, y) is above £ if and only
if ax + by <c.

Use two inequalities to describe the set of all points above the line 3x + 2y =7 and below the line
4x — 2y = 1. Draw a diagram showing the set.

Ans. 3x+2y>7;4x-2y<1

Find the distance from the point (4,7) to the line 3x +4y =1.

Ans. %

Find the distance from the point (-1, 2) to the line 8x — 15y =3.

-

1

Ans.

<l
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37.

39.

41.

42,

43.

45,

47.

Find the area of the triangle with vertices A(0, 1), B(5,3), and C(2, —2).
Ans.

~S

Show that two equations a,x + b,y =c, and a,x + b,y = ¢, determine parallel lines if and only if
a,b, = a,b,. (When neither a, nor b, is 0, this is equivalent to a,/a, = b,/b,.)

Show that two equations a,x + b,y = ¢, and a,x + b,y = ¢, determine the same line if and only if the
coefficients of one equation are proportional to those of the other, that is, there is a number r such that
a,=ra,, b,=rb,, and ¢, = rc,.

If ax + by = c is an equation of a line &£ and ¢ =0, then the normal equation of ¥ is defined to be
a 4 b _ c
Vit Vaibl Vaib
(@) Show that |c| /V a® + b7 is the distance from the origin to £.

(b) Find the normal equation of the line 5x — 12y = 26 and compute the distance from the origin to the
line.

Ans. (b) #x - 3y =2; distance =2

Find equations of the lines parallel to the line 3x + 4y =7 and at a perpendicular distance of 4 from it.
Ans. 3x+4y=-13; 3x +4y =27
Show that a point-slope equation of the line passing through the points (x,.y,) and (x,.y,) is

Y= _"Nh”Y.

X—x, X, X,
Find the values of k such that the distance from (-2, 3) to the line 7x - 24y = k is 3.

Ans. k=-11; k=-161

Find equations for the families of lines (a) passing through (2,5); (b) having slope 3; (c) having v

intercept 1, (d) having x intercept —2; (e) having y intercept three times the x intercept; ( f) whose x
intercept and y intercept add up to 6.

Ans. (@) y-5=m(x—-2); (b)) y=3x+b;(c)y=mx+1;(d)y=m(x+2); (¢) 3x + y = 3a;
X y
Na*e=!

Find the value of k such that the line 3x — 4y = k determines, with the coordinate axes. a triangle of area
6.

Ans. k==12

Find the point on the line 3x + y = —4 that is equidistant from (-5, 6) and (3, 2).

Ans. (-2,2)

Find the equation of the line that passes through the point of intersection of the lines 3x — 2y = 6 and
x + 3y =13 and whose distance from the origin is 5.

Ans. 4x+3y =25

Find the equations of the two lines that are the bisectors of the angles formed by the intersection of the

lines 3x +4y =2 and 5x — 12y =7. (Hint: Points on an angle bisector are equidistant from the two
sides.)

Ans. 14x+ 112y +9=0; 64x — 8y — 61 =0



30

49,

50.

51

52.

53.

54.

55.
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(a) Find the distance between the parallel lines 3x + 4y = 2 and 6x + 8y = 1. (b) Find the equation of the
line midway between the lines of part (a).

Ans. (a) &: (b)) 12x + 16y =5

What are the conditions on a, b, and ¢ so that the line ax + by = ¢ forms an isosceles triangle with the
coordinate axes?

Ans.  |a| =b|

Show that, if a, b, and ¢ are nonzero, the area bounded by the line ax + by = ¢ and the coordinate axes
is ¢/ |ab|.

Show that the lines ax + by = ¢, and bx — ay = ¢, are perpendicular.

Show that the area of the triangle with vertices A(x,,y,), B(x,,y;), and C(x,, y,) is
Mx, = 2y, — ¥2) = (¥, = ¥, 0%, — x3)]. (Hine: The altitude from A to side BC is the distance from A
to the line through B and C.)

e, — ¢
Show that the distance between parallel lines ax + by = ¢, and ax + by = ¢, is \[—,——“
a” +b”

Prove that, if the lines @, x + b,y = ¢, and a,x + b,y = ¢, are nonparallel lines that intersect at point P,
then, for any number k. the equation (@, x + b,y ~ ¢,) + k{a,x + b,y — ¢,) = 0 determines a line through
P. Conversely. any linc through P other than a,x + b,y = c, is represented by such an equation for a
suitable value of k.

Of all the lines that pass through the intersection point of the two lines 2x —3y =5 and 4x + y =2 find
an equation of the line that also passes through (1,0).

Ans. 16x -3y =16



Chapter 4

Circles

EQUATIONS OF CIRCLES. For a point P(x, y) to lie on the circle with center C(a, b) and radius
r, the distance PC must be equal to r (see Fig. 4-1). By the distance formula (2.1),

PC=V(x—ay +(y-b)

y //,’-\\\ P(X, y)
/ N\
4 N\
/ r \
f \
| |
' |
\ C(a, b) /
\\ /
\ l/ x
\\\ ///
Fig. 4-1

Thus, P lies on the circle if and only if
(x—a)’+(y-b)=r (4.1)
Equation (4.1) is called the standard equation of the circle with center at (a, b) and radius r.
EXAMPLE 1: (a) The circle with center (3, 1) and radius 2 has the equation (x —3)* + (y — 1)* = 4.
(b) The circle with center (2, —1) and radius 3 has the equation (x —2)" + (y + 1)> =9,
(c) What is the set of points satisfying the equation (x — 4)* + (y — 5)* =25?
By (4.1), this is the equation of the circle with center at (4, 5) and radius 5. That circle is said to be

the graph of the given equation, that is, the set of points satisfying the equation.
(d) The graph of the equation (x + 3)* + y* =2 is the circle with center at (—3, 0) and radius V2.

THE STANDARD EQUATION OF A CIRCLE with center at the origin (0, 0) and radius r is
X +yi=r (4.2)

For example, x’ + y* = 1 is the equation of the circle with center at the origin and radius 1. The
graph of x’ + y* =5 is the circle with center at the origin and radius V5.
The equation of a circle sometimes appears in a disguised form. For example, the equation

X +y +8x—~6y+21=0 (4.3)
turns out to be equivalent to
(x+4)Y2+(y—-3)Y =4 (4.4)

Equation (4.4) is the standard equation of a circle with center at (—4, 3) and radius 2.

3
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Equation (4.4) is obtained from (4.3) by a process called completing the square. In general
terms, the process involves finding the number that must be added to the sum x* + Ax to obtain

AN A
a square. Here, we note that (x + 5) =x'+ Ax + (5) . Thus, in general, we must add

A - ki d

(~2— to x~ + Ax to obtain the square (x + 7/ For example, to get a square from x° + 8x, we
add (%)°, that is, 16. The result is x* + 8x + 16, which is (x +4)°. This is the process of
completing the square. |

Consider the original (4.3): x° + y~ + 8x — 6y + 21 =0. To complete the square in x° + 8x,
we add 16. To complete the square in y~ — 6y, we add (- )2, which is 9. Of course, since we
added 16 and 9 to the left side of the equation, we must also add them to the right side,
obtaining

(x*+8x+16)+(y —6y+9)+21=16+9
This is equivalent to
(x+4)Y +(y-3)+21=25

and subtraction of 21 from both sides yields (4.4).

EXAMPLE 2: Consider the equation x* + y* — 4x — 10y + 20 = 0. Completing the square yields

(3 —4x+4)+(y" - 10y +25)+20=4+25
(x =2 +(y-51=9

Thus, the original equation is the equation of a circle with center at (2.5) and radius 3.

The process of completing the square can be applied to any equation of the form

X +y + Ax+ By + C=0 (4.5)
to obtain
( +é>2+( +§)2+C—A—Z+Ei
*T 32 Y73 a4 T s
A>2 ( B)z_A2+Bz—4C
or (x+ 5 + y+2 = n (4.6)

There are three different cases, depending on whether A+ B> —4C is positive, zero, or
negative.

Case 1: A+ B> —4C>0. In this case, (4.6) is the standard equation of a circle with

A B . VA’+B'-4C
center at (— 20 5) and radius -

Case 2: A*+ B> —4C=0. A sum of the squares of two quantities is zero when and only
when each of the quantities is zero. Hence, (4.6) is equivalent to the conjunction of the
equations x + A/2=0 and y + B/2 =0 in this case, and the only solution of (4.6) is the point
(—A/2, - B/2). Hence, the graph of (4.5) is a single point, which may be considered a
degenerate circle of radius 0.

Case 3: A’ + B> —4C <0. A sum of two squares cannot be negative. So, in this case,
(4.5) has no solution at all.

We can show that any circle has an equation of the form (4.5). Suppose its center is (a. b)

and its radius is r; then its standard equation is

(x-a)+(y-b)y=r’
Expanding yields x* —2ax + a’ + y* = 2by + b’ = r’, or
X +y —2ax-2by+ (@ +b°—r’)=0
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Solved Problems

1. Identify the graphs of (a) 2x” + 2P —4x+y+1=0; (b)) X" +y' -4y +7=0;
(c) x> +y* —6x—2y+10=0.

(a) First divide by 2, obtaining x* + y* —2x + }y + } =0. Then complete the squares:

=
3

1

(F=-2x+ D+ (Y +iy+ L)+ 1i=1+;
-1+ (y+i)V=8-

[NTERI"N
3 3

(£
!
(V]

[
[

o
3
@

Thus, the graph is the circle with center (1, —}) and radius 3.
(b) Complete the square:

X (y—2Y+7=4
X+ (y-2)=-3

Because the right side is negative, there are no points in the graph.
(c) Complete the square:

(x=3 +(y-17+10=9+1
(x=3Y+(y-1)’=0

The only solution is the point (3, 1).

2. Find the standard equation of the circle with center at C(2, 3) and passing through the point
P(—1,5).

The radius of the circle is the distance
CP=V(5-37 +(-1-27=V2 +(-3)'=V4+9=VT3

so the standard equation is (x —2)* + (y — 3)* = 13.

3. Find the standard equation of the circle passing through the points P(3, 8), Q(9,6), and
R(13, -2).

First method: The circle has an equation of the form x* + y*> + Ax + By + C =0. Substitute the
values of x and y at point P, to obtain 9+64+3A4A+8B+ C=0or

3A+8B+C=-73 eD

A similar procedure for points O and R yields the equations
9A+6B+ C=—-117 (2)
13A-2B+C=-173 (3)

Eliminate C from (1) and (2) by subtracting (2) from (I):
—-6A+2B=44 or -3A+B=22 4)

Eliminate C from (1) and (3) by subtracting (3) from (1):
-10A+108=100 or -A+B=10 (5

Eliminate B from (4) and (5) by subtracting (5) from (4), obtaining A = —6. Substitute this value in
(5) to find that B =4. Then solve for C in (1): C= —87.

Hence, the original equation for the circle is x* + y* ~ 6x + 4y — 87 = 0. Completing the squares
then yields

(x-3+(y+2)’=87+9+4=100

Thus, the circle has center (3, —2) and radius 10.
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Second method: The perpendicular bisector of any chord of a circle passes through the center of the
circle. Hence, the perpendicular bisector £ of chord PQ will intersect the perpendicular bisector 4 of
chord QR at the center of the circle (see Fig. 4-2).

Y P@3,8) ¥

Q(9.6)

\

R(13.-2)

A

Fig. 4-2

The slope of line PQ is — 3. So, by Theorem 3.2, the slope of £ is 3. Also, ¥ passes through the

midpoint (6,7) of segment PQ. Hence a point-slope equation of £ is i_

=3, and therefore its

slope-intercept equation is y = 3x — 11. Similarly, the slope of line OR is —2, and therefore the slope of
M is }. Since M passes through the midpoint (11,2) of segment QR, it has a point-slope equation
y-—2
x—11 .
of the circle satisfy the two equations y = 3x — 11 and y = x — , and we may write

1 . . . . .
=3 which yields the slope-intercept equation y = ix — . Hence, the coordinates of the center

3x-11=}x-1}
from which we find that x = 3. Therefore,
y=3x-11=33)~-11=-2
So the center is at (3, —2). The radius is the distance between the center and the point (3, 8):
V(-2-8)7+(3-3)°=V(-10) = V100 = 10
Thus, the standard equation of the circle is (x — 3)* + (y + 2)* = 100.

Find the center and radius of the circle that passes through P(1, 1) and is tangent to the line
y =2x — 3 at the point Q(3,3). (See Fig. 4-3.)

The line ¥ perpendicular to y =2x ~ 3 at (3,3) must pass through the center of the circle. By
Theorem 3.2, the slope of £ is —}. Therefore, the slope-intercept equation of ¥ has the form
y=—3ix+b. Since (3,3) is on ¥, we have 3=—~1(3)+ b; hence, b =%, and ¥ has the equation
y=-lx+3.

The perpendicular bisector # of chord PQ in Fig. 4-3 also passes through the center of the circle, so
the intersection of £ and # will be the center of the circle. The slope of PQ is 1. Hence, by Theorem
3.2, the slope of # is —1. So A has the slope-intercept equation y = —x + b’. Since the midpoint (2, 2)
of chord PQ is a point on #, we have 2= —(2) + b’; hence, b’ =4, and the equation of M isy = —x + 4.
We must find the common solution of y = —x +4 and y = — 1x + 5. Setting

—x+4=—1x+}

yields x = ~ 1. Therefore, y=—-x+4=—(—-1)+4 =35, and the center C of the circle is (—1,5). The
radius is the distance PC = \/(=1 - 3)* + (5 - 3)> = V16 + 4 = V20. The standard equation of the circle
is then (x + 1)* + (y — 5)* =20.
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Fig. 4-3

S. Find the standard equation of every circle that passes through the points P(1, —1) and Q(3, 1)
and is tangent to the line y = —3x.

Let C(c, d) be the center of one of the circles, and let A be the point of tangency (see Fig. 4-4).
Then, because CP = CQ, we have

CP'=CQ° or (c~1P+d+1)Y=(c-3)+d-1)
Expanding and simplifying, we obtain
ctd=2 (1)
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T —_— +d —=1 2
In addition, CP = CA, and by the formula of Problem 8 in Chapter 3, CA = 3:/—ﬁ_ Setting CP” = CA”
+d)
thus yields (¢ — 1)’ +(d + 1)* = (361—0) Substituting (1) in the right-hand side and multiplying by 10
then yields

10[(c— 1)’ +(d +1))]=(2c+2)*  from which 3c*+5d>—14c+10d +8=0
By (1), we can replace d by 2 — ¢, obtaining
27 ~11c+12=0 or (2c-3)c-4)=0

Hence, ¢ = 3 or ¢ =4. Then (1) gives us the two solutions c=2, d= ! and c =4, d = —2. Since the

c+d 10/2 V10 10
i =t luti d iiof === = —and —=—= =V10. T
radius CA \/TG 5 hese solutions produce radii of 10 2 and \/—1—0 10 hUS, there are two

such circles, and their standard equations are

(x—3P+(y-4)’=3 and (x-4)Y+(y+2)°=10

Supplementary Problems

Find the standard equations of the circles satisfying the following conditions:

(a) center at (3,5) and radius 2 (b) center at (4, —1) and radius 1

{(¢) center at (5,0) and radius V3 (d) center at (=2, —2) and radius 5V2
(e) center at (-2, 3) and passing through (3, —2)

(f) center at (6, 1) and passing through the origin

Ans. (@) (x =3+ (y=5)7=4;(b) (x =4 +(y+1)Y°=1;(c) (x =57 +y"=3;
(d) (x +2) +(y+2)"=50; (&) (x+2° +(y —3)>=50; (f) (x—6)" +(y ~ 1) =37

Identify the graphs of the following equations:
(@) X*+y " +16x— 12y +10=0 (b)) x*+ )y —dx+S5y+10=0 (¢) X’ +y’+x—-y=0
(d)4x> +4y" +8y - 3=0 () x¥*+y'—x~2y+3=0 (HX+y +VIix—-2=0

Ans. (a) circle, center at (—8, 6), radius 3V10; (b) circle, center at (2, — 3), radius } ; (c) circle, center
at (— 34, 1), radius V2/2; (d) circle, center at (0, —1), radius 3; (e) empty graph; (f) circle,
center at (—V2/2,0), radius V572

Find the standard equations of the circles through (a) (=2, 1), (1, 4), and (-3, 2); (b) (0, 1), (2. 3), and
(L 1+V3); () (6.1), (2, -5), and (1, —4); (d) (2,3), (-6, ~3), and (1, 4).
Ans. (a) (x+1)"+(y =3 =5 (b) (x =2+ (y ~ 1)’ =4; () (x —4) + (y +2)’ = 13;
(d) (x+2) +y*=25
For what values of k does the circle (x + 2k)* + (y — 3k)’ = 10 pass through the point (1.0)?

Ans. =Jork=-1

Find the standard equations of the circles of radius 2 that are tangent to both the lines x = 1 and y = 3.

Ans. (x+ 1)+ (y=1Y =4 (x+ 1)’ +(y-57=4; (x -3V +(y— 1)’ =4; (x—=3)* +(y - 5)' =4

Find the value of k so that x* + y* + 4x — 6y + k =0 is the equation of a circle of radius 5.
Ans. k=-12
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12.

13.

14.

15.

16.

17.

18.

19,

20.

21.

Find the standard equation of the circle having as a diameter the segment joining (2, —3) and (6. 5).
Ans. (x-4Y+(y-1)’'=20

Find the standard equation of every circle that passes through the origin, has radius S, and is such that
the y coordinate of its center is —4.

Ans. (x=3V+(y+4Y=250r (x+3)Y +(y+4)°=25

Find the standard equation of the circle that passes through the points (8. —5) and (-1, 4) and has its
center on the line 2x + 3y =3.

Ans. (x=3V+(y+1)Y =41

Find the standard equation of the circle with center (3, 5) that is tangent to the line 12x — 5y +2=0.
Ans. (x=3V+(y-57=1

Find the standard equation of the circle that passes through the point (1,3 + V2) and is tangent to the
line x + y =2 at (2,0).

Ans. (x=57+(y—-3) =18

Prove analytically that an angle inscribed in a semicircle is a right angle. (See Fig. 4-5.)

X

| \

(6,-2)

Fig. 4-5 Fig. 4-6

Find the length of a tangent from (6, —2) to the circle (x — 1)’ + (y — 3)> = 1. (See Fig. 4-6.)

Ans. 7

Find the standard equations of the circles that pass through (2,3) and are tangent to both the lines
3x —4y=-1and 4x +3y ="7.

Ans. (x=2)°+(y-8)Y=25and (x-§)’ +(y - 8y =1

Find the standard equations of the circles that have their centers on the line 4x + 3y = 8 and are tangent
to both the lines x+y=—-2 and 7x —y = —6.

Ans. (x~2)"+y’=2and (x+4)’+(y-8)°=18

Find the standard equation of the circle that is concentric with the circle x* + y* - 2x — 8y + 1 =0 and is
tangent to the line 2x — y = 3.

Ans. (x—-1)+(y-4)°=5
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26.

27.

29.

CIRCLES [CHAP. 4

Find the standard equations of the circles that have radius 10 and are tangent to the circle x> + y* = 25 at
the point (3, 4).

Ans. (x=9)"+(y—-12)>=100 and (x +3)* + (y +4)* = 100

Find the longest and shortest distances from the point (7, 12) to the circle x* + y* + 2x + 6y — 15 =0.
Ans. 22 and 12
Let €, and €, be two intersecting circles determined by the equations x> + y° + A,x + B,y + C, =0 and
x*+y>+ A,x + B,y + C,=0. For any number k # —1, show that
X4y’ + Ax+By+C +k(x*+y + A, x+ B,y +C,)=0

is the equation of a circle through the intersection points of €, and €,. Show, conversely, that every such
circle may be represented by such an equation for a suitable k.
Find the standard equation of the circle passing through the point (-3, 1) and containing the points of
intersection of the circles x> +y* +Sx=1and x> +y +y=17.
Ans. (x+3) +(y+ &)=
Find the standard equations of the circles that have centers on the line Sx — 2y = —21 and are tangent to
both coordinate axes.
Ans. (x+7P +(y+7)’=49and (x +3) +(y -3’ =9
(a) If two circles x*+y*+ A x+ By+C, =0 and x> +y*+ A,x + B,y + C, =0 intersect at two

points, find an equation of the line through their points of intersection.

(b) Prove that if two circles intersect at two points, then the line through their points of intersection is
perpendicular to the line through their centers.

Ans. (@) (A, —A,)x+(B, - B,)y+(C,-C,)=0

Find the points of intersection of the circles x* + y* + 8y — 64 =0 and x* + y* ~ 6x - 16 = 0.

Ans. (8.0) and (£, %)

Find the equations of the lines through (4, 10) and tangent to the circle x* + y> — 4y — 36 = 0.
Ans. y=-3x+22and x -3y +26=0



Chapter 5

Equations and Their Graphs

THE GRAPH OF AN EQUATION involving x and y as its only vanables consists of all points (x, y)
satisfying the equation.

EXAMPLE 1: (a) What is the graph of the equation 2x — y = 3?
The equation is equivalent to y = 2x — 3, which we know is the slope-intercept equation of the line
with slope 2 and y intercept —3.
(b) What is the graph of the equation x° + y° —2x + 4y — 4 =0?
Completing the square shows that the given equation is equivalent to the equation
(x —1)°+ (y +2)>=9. Hence, its graph is the circle with center (1, —2) and radius 3.

PARABOLAS. Consider the equation y = x°. If we substitute a few values for x and calculate the
associated values of y, we obtain the results tabulated in Fig. 5-1. We can plot the correspond-
ing points, as shown in the figure. These points suggest the heavy curve, which belongs to a
family of curves called parabolas. In particular, the graphs of cquations of the form y = cx’,
where ¢ is a nonzero constant, are parabolas, as are any other curves obtained from them by
translations and rotations.

— 10
x y | .
3 9 (—x.y) - (x, v)
2 4 6
1 1 —
0 0 - 4
-1 1 -
-2 4 -2
_3 9 -
| I N T j W W T W | X
-3 -2 -1 Jor 2 03
Fig. 5-1

In Fig. 5-1, we note that the graph of y = x” contains the origin (0, 0) but all its other points
lie above the x axis, since x’ is positive except when x = 0. When x is positive and increasing, y
increases without bound. Hence, in the first quadrant, the graph moves up without bound as it
moves right. Since (—x)’ = x°, it follows that, if any point (x, y) lies on the graph in the first
quadrant, then the point (—x, y) also lies on the graph in the second quadrant. Thus, the graph
is symmetric with respect to the y axis. The y axis is called the axis of symmetry of this
parabola.

2 2
ELLIPSES. To construct the graph of the equation % + % =1, we again compute a few values and

plot the corresponding points, as shown in Fig. 5-2. The graph suggested by these points is also

39
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>
e
-

—_ W
I+ I+

-2

2
-1 + V32

Fig. 5-2

drawn in the figure; itis a memzber 02f a family of curves called ellipses. In particular, the graph

. X . . . . .
of an equation of the form — + i—z =1 is an ellipse, as is any curve obtained from it by
a

translation or rotation.
Note that, in contrast to parabolas, ellipses are bounded. In fact, if (x, y) is on the graph of
2 2 2

5

% + yz =1, then %— =< % + % =1, and, therefore, x’<9. Hence, —3 < x < 3. So, the graph
lies between the vertical lines x = —3 and x = 3. Its rightmost point is (3, 0), and its leftmost

point is (—3,0). A similar argument shows that the graph lies between the horizontal lines
y=—2and y =2, and that its lowest point is (0, —2) and its highest point is (0, 2). In the first
quadrant, as x increases from 0 to 3, y decreases from 2 to 0. If (x, y) is any point on the graph,
then (—x, y) also is on the graph. Hence, the graph is symmetric with respect to the y axis.
Similarly, if (x, ¥) is on the graph, so is (x, —y), and therefore the graph is symmetric with

respect to the x axis.
2 2

When a = b, the ellipse Lz + i—z =1 is the circle with the equation x* + y* = a°, that is, a
a

circle with center at the origin and radius a. Thus, circles are special cases of ellipses.

2 2

y

HYPERBOLAS. Consider the graph of the equation % e 1. Some of the points on this graph

are tabulated and plotted in Fig. 5-3. These points suggest the curve shown in the figure, which
is, a member of a family of curves called hyperbolas. The graphs of equations of the form
x_: - z— = | are hyperbolas, as are any curves obtained from them by tganslatioqs and rotations.
Let us look at the hyperbola L L oqin more detail. Since % —1+L = 1, it follows
that x* = 9, and therefore, |x| = 3. Hence, there are no points on the graph between the vertical
lines x = —3 and x = 3. If (x, y) is on the graph, so is (—x, y); thus, the graph is symmetric with
respect to the y axis. Similarly, the graph is symmetric with respect to the x axis. In the first
quadrant, as x increases, y increases without bound.
Note the dashed lines in Fig. 5-3; they are the lines y = $x and y = — $x, and they called
the asymptotes of the hyperbola: Points on the hyperbola get closer and closer to these

asymptotes as they recede from the origin. In general, the asymptotes of the hyperbola

b
x—’—y—.:larethelinesy:—xandy=——x.
a b- a a

CONIC SECTIONS. Parabolas, ellipses, and hyperbolas together make up a class of curves called

conic sections. They can be defined geometrically as the intersections of planes with the surface
of a right circular cone, as shown in Fig. 5-4.
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Solved Problems

1. Sketch the graph of the cubic curve y = x°

The graph passes through the origin (0, 0). Also, for any point (x, y) on the graph, x and y have the
same sign; hence, the graph lies in the first and third quadrants. In the first quadrant, as x increases, y
increases without bound. Moreover, if (x, y) lies on the graph, then (—x, —y) also lies on the graph.
Since the origin is the midpoint of the segment connecting the points (x, y) and (—x, —y), the graph is
symmetric with respect to the origin. Some points on the graph are tabulated and shown in Fig. 5-5;
these points suggest the heavy curve in the figure.

X Yy

0 0

172 1/8

1 1
3/2 27/8

2 8
-1/2 -1/8
-1 -1
-3/2 -27/8
-2 -8

Fig. 5-5

2. Sketch the graph of the equation y = —x’.

If (x, y) is on the graph of the parabola y = x* (Fig. 5-1), then (x, —y) is on the graph of y = —x7,
and vice versa. Hence, the graph of y = —~x” is the reflection in the x axis of the graph of y = x” The
result is the parabola in Fig. 5-6.

y
3 -2 -1 for o2 03
T 1 T 7T *

.

-2

4-3

-4

- -5

4-¢

-7

-8

4 -
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3. Sketch the graph of x = y*.

This graph is obtained from the parabola y = x* by exchanging the roles of x and y. The resulting
curve is a parabola with the x axis as its axis of symmetry and its “‘nose" at the origin (see Fig. 5-7). A
point (x, y) is on the graph of x = y® if and only if (y, x) is on the graph of y = x*. Since the segment
connecting the points (x, y) and (y, x) is perpendicular to the diagonal line y = x (why?), and the

L + + . )
midpoint (u x > y) of that segment is on the line y = x (see Fig. 5-8), the parabola x =y~ is
obtained from the parabola y = x* by reflection in the line y = x.

Y
y (x. y)
ir N
2+ S
1+ N\
PR WS N S D S S N x ®(y,x)
1 2 3 4 5 6 1 8 9
Ok
X
-2 F
_3 —
Fig. 5-7 Fig. 5-8

4. Let £ be a line, and let F be a point not on Z. Show that the set of all points equidistant from
F and £ is a parabola.

Construct a coordinate system such that F lies on the positive y axis, and the x axis is parallel to ¥
and halfway between F and . (See Fig. 5-9.) Let 2p be the distance between F and £. Then ¥ has the
equation y = —p, and the coordinates of F are (0, p).

Consider _an arbitrary point P(x, y). Its distance from £ is |y + p|, and its distance from F is
Vx*+ (y — p)’. Thus, for the point to be equidistant from F and % we must have |y +p|=
Vx* + (y — p)°. Squaring yields (y + p)’ = x> + (y — p), from which we find that 4py = x°. This is the
equation of a parabola with the y axis as its axis of symmetry. The point F is called the focus of the
parabola, and the line £ is called its directrix. The chord AB through the focus and parallel to £ is called
the latus rectum. The ‘“‘nose” of the parabola at (0,0) is called its vertex.

y

P(x, y)

Fig. 5-9
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Find the length of the latus rectum of a parabola 4py = x°.

The y coordinate of the endpoints A and B of the latus rectum (see Fig. 5-9) is p. Hence, at these
points, 4p° = x* and, therefore, x = +2p. Thus, the length AB of the latus rectum is 4p.

Find the focus, directrix, and the length of the latus rectum of the parabola y = }x°. and draw
its graph.

The equation of the parabola can be written as 2y = x>. Hence, 4p =2 and p = |. Therefore, the
focus is at (0, §), the equation of the directix is y = — 1, and the length of the latus rectum is 2. The
graph is shown in Fig. 5-10.

A F B
1 ) 1 1 1 x
- -2 -1 1 2 3
Fig. 5-10

Let F and F’ be two distinct points at a distance 2¢ from each other. Show that the set of all
points P(x. y) such that PF + PF' =2a, a> c, is an ellipse.

Construct a coordinate system such that the x axis passes through F and F’, the origin is the
midpoint of the segment FF', and F lies on the positive x axis. Then the coordinates of F and F' are
(c.0) and (-, 0). (See Fig. 5-11.) Thus, the condition PF + PF’ = 2a is equivalent to \/(x — ¢)* + y* +

(x + ¢}’ + y® = 2a. After rearranging and squaring twice (to eliminate the square roots) and perform-
ing indicated operations, we obtain

(az_cz)xz+azy:=az(az_cz) (1)

Since a > ¢, a’—¢*>0. Let b=Va’ — ¢ Then (1) becomes b’x” + a’y* = a’b”. which we may rewrite

as x_’ + i—z =1, the equation of an ellipse.
a

h

P(x. y) B(0, b)

.

F(c,0) ] A(a.0)

B'(0, - b)

Fig. 5-11
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10.

When y =0, x* = a°; hence, the ellipse intersects the x axis at the points A'(—a,0), and A(a,0),
called the vertices of the ellipse (Fig. 5-11). The segment A'A is called the major axis; the segment OA is
called the semimajor axis and has length a. The origin is the center of the ellipse. F and F’ are called the
foci (each is a focus). When x = 0, y* = b, Hence, the ellipse intersects the y axis at the points B'(0, — b)
and B(0, b). The segment B'B is called the minor axis; the segment OB is called the semiminor axis and
has length b. Note that b=Va’ - c®<Va’=a. Hence, the semiminor axis is smaller than the
semimajor axis. The basic relation among a, b, and c is a’ = b* + >

The eccentricity of an ellipse is defined to be e=c/a. Note that 0<e<1. Moreover, e =
Va® - b¥a =\/1 - (b/a)’ Hence, when e is very small, b/a is very close to 1, the minor axis is close in
size to the major axis, and the ellipse is close to being a circle. On the other hand, when e is close to 1,
b/a is close to zero, the minor axis is very small in comparison with the major axis, and the ellipse is very
“flat.”

Identify the graph of the equation 9x* + 16y’ = 144,

The given equation is equivalent to x”/16 + y*/9 = 1. Hence, the graph is an ellipse with semimajor
axis of length a =4 and semiminor axis of length b = 3. (See Fig. 5-12.) The vertices are (—4,0) and
(4,0). Since c=Va' - b* =V16 -9 = V7, the eccentricity e is c/a = V7 /4 =0.6614.

Fig. 5-12

Identify the graph of the equation 25x* + 4y* = 100.

The given equation is equivalent to x”/4 + y%/25 =1, an ellipse. Since the denominator under y° is
larger than the denominator under x° the graph is an ellipse with the major axis on the y axis and the
minor axis on the x axis (see Fig. 5-13). The vertices are at (0, —5) and (0, 5). Since ¢ = Va*> - b° =
V21, the eccentricity is V21/5 = 0.9165.

Let F and F’ be distinct points at a distance of 2¢ from each other. Find the set of all points
P(x, y) such that |PF — PF'| =2a, fora<ec.

Choose a coordinate system such that the x axis passes through F and F’, with the origin as the
midpoeint of the segment FF’ and with F on the positive x axis (see Fig. 5-14). The coordinates of F and

F’ are (c,0) and (—c, 0). Hence, the given condition is equivalent to V/(x — ¢}’ + y° = V(x + ¢)  + y° =
*+2a. After manipulations required to eliminate the square roots, this yields

(CZ_aZ)xz_a2y2=aZ(c2_a2) (I)
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Fig. 5-13 Fig. 5-14

Since ¢ >a, ¢’ —a*>0. Let b =2V ¢’ — a’. (Notice that @* + b” = ¢") Then (I) becomes b’x” — @'y’ =
a’b®, which we rewrite as — - i—z =1, the equation of a hyperbola.

When y =0, x = +a. ﬁencc, the hyperbola intersects the x axis at the points A’(—a,0) and A(a.0),
which are called the vertices of the hyperbola. The asymptotes are y = * P The segment A’A is called

the transverse axis. The segment connecting the points (0, — &) and (0, b) is called the conjugate axis.
The center of the hyperbola is the origin. The points F and F' are called the foci. The eccentricity is

Va + b / I
defined to be e = g = GT =yt (;) . Since ¢ > a, e >1. When e is close to 1. b is very small
relative to a, and the hyperbola has a very pointed ‘'nose’’; when e is very large. b is very large relative
to a, and the hyperbola is very “flat.”

Identify the graph of the equation 25x — 16y” = 400.

The given equation is equivalent to x*/ 16 — y*/25 = 1. This is the equation of a hyperbola with the x
axis as its transverse axis, vertices (—4,0) and (4, 0), and asymptotes y = = 3x. (See Fig. 5-15.)

Fig. 5-15
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12.  Identify the graph of the equation y° — 4x° = 4.
2 2

The given equation is equivalent to L _% 1 Thisis the equation of a hyperbola, with the roles

of x and y interchanged. Thus, the transverse axis is the y axis, the conjugate axis is the x axis, and the
vertices are (0, —2) and (0, 2). The asymptotes are x = + } y or, equivalently, y = +2x. (See Fig. 5-16.)

Fig. 5-16

13.  Identify the graph of the equation y = (x — 1)>.

A point (u, v) is on the graph of y = (x — 1)* if and only if the point (u — 1, v) is on the graph of
y = x*. Hence, the desired graph is obtained from the parabola y = x* by moving each point of the latter
one unit to the right. (See Fig. 5-17.)

Fig. 5-17



48 EQUATIONS AND THEIR GRAPHS [CHAP. §

-1 (=27 _
4 9
A point (u, v) is on the graph if and only if the point (u ~ 1, v — 2) is on the graph of the equation
x*/4 4 y%9 = 1. Hence, the desired graph is obtained by moving the ellipse x4 + y*/9 =1 one unit to
the right and two units upward. (See Fig. 5-18.) The center of the ellipse is at (1, 2), the major axis is
along the line x = 1, and the minor axis is along the line y = 2.

1.

14.  Identify the graph of the equation

Y

e

(1.5)

(-1.2) (1,2) (3.2)

o

N

(L. -1

Fig. 5-18

15. How is the graph of an equation F(x —a, y — b) =0 related to the graph of the equation
F(x, y)=0?

A point (u, v) is on the graph of F(x — a, y — ) =0 if and only if the point (1 — a, v ~ b) is on the
graph of F(x, y) =0. Hence, the graph of F(x —a, y — ) =0 is obtained by moving each point of the
graph of F(x, y) =0 by a units to the right and b units upward. (If a is negative, we move the point |a|
units to the left. If b is negative, we move the point |5 units downward.) Such a motion is calied a
translation.

16. Identify the graph of the equation y = x* ~ 2x.

Completing the square in x, we obtain y + 1 = (x — 1)>. Based on the results of Problem 15, the
graph is obtained by a translation of the parabola y = x’ so that the new vertex is (1, — 1). [Notice that
y+1lisy—(—1).] It is shown in Fig. 5-19.

y

Fig. 5-19
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Identify the graph of 4x* —9y® ~ 16x + 18y — 29 = 0.

Factoring yields 4(x* —4x)—9(y*>—2y)—29=0, and then completing the square in x and y
Y 132
produces 4(x — 2)% — 9(y — 1)? = 36. Dividing by 36 then yields * -2 - L =2)

9 T, 1. By the results of
2
Problem 15, the graph of this equation is obtained by translating the hyperbola — — % =1 two units to

the right and one unit upward, so that the new center of symmetry of the hyperbola is (2, 1). (See Fig.
5-20.)

Fig. 5-20

Draw the graph of the equation xy = 1.

Some points of the graph are tabulated and plotted in Fig. 5-21. The curve suggested by these points
is shown dashed as well. It can be demonstrated that this curve is a hyperbola with the line y = x as
transverse axis, the line y = —x as converse axis, vertices (-1, —1) and (1, 1), and the x axis and y axis
as asymptotes. Similarly, the graph of any equation xy = d, where d is a positive constant, is a hyperbola
with y = x as transverse axis and y = —x as converse axis, and with the coordinate axes as asymptotes.

Such hyperbolas are called equilateral hyperbolas. They can be shown to be rotations of hyperbolas of
the form x%a® — y¥a’ = 1.

y
|
a
|
c | Al
3 1/3 \‘
2 1/2 2| §
\
1 1 \
1/2 2 TS
1/3 3 <
-4 -3 -2 -1 e
1/4 4 1 1 1 1 1 1 T --= x
-4 | -4 TTTTS el i
-1/3 -3 \\ - -1
-1/2 -2
\
-1 -1 \ |-
-2 -1/2 |‘
-3 -1/3 VEos
\
1
-4
)

Fig. 5-21
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Supplementary Problems

On the same sheet of paper, draw the graphs of the following parabolas: (a) y = 2x°; (b) y = 3x7; (¢)
y=4x* (d) y = 1x’; () y = 2%

On the same sheet of paper, draw the graphs of the following parabolas, and indicate points of
intersection: (@) y =x>; (b) y=—~x%, (¢) x=y"; (d) x = —y>

Draw the graphs of the following equations:

(@) y=x" -1 by y=(x-2) () y=(x+1)°-2

(d) y=-x (&) y=-(x-1) (f)y=-(x-1)+2

Identify and draw the graphs of the following equations:

(@) y'-x"=1 (b) 25x° + 36y° =900 (c) 2x* —y*=4 (d) xy=4

(e) 4x" +4y’ =1 (f)8x=y* (g) 10y =x* (h) 4x> +9y* =16
() xy=-1 (j) 3y’ -x*=9

Ans.  (a) hyperbola, y axis as transverse axis, vertices (0, 1), asymptotes y = +x; (b) ellipse, vertices
(£6,0) foci (= V11, 0); (c) hyperbola, x axis as transverse axis, vertices (+ V2, 0), asymptotes
y = #V2x; (d) hyperbola, y = x as transverse axis, vertices (2, 2) and (=2, —2), x and y axes as
asymptotes; (e) circle, center (0, 0), radius }; (f) parabola, vertex (0, 0), focus (2, 0), directrix
x = —2; (g) parabola, vertex (0, 0), focus (0, ), directrix y = — 3; (h) ellipse, vertices (+2,0),
foci (= 3V'5,0); (i) hyperbola, y = —x as transverse axis, vertlces ( 1,1) and (1, -1), x and y
axes as asymptotes; (j) hyperbola, y axis as transverse axis, vertices (0, +V3). asymptotes

y=*V3x/3
Identify and draw the graphs of the following equations:
(@) 4x" =3y  +8x+ 12y —4=0 (b) 5x2 +y>~20x + 6y +25=10
(¢) x*—6x—4y+5=0 (d)2x*+y' ~4x+4y +6=0
(6) 3 +2y° +12x 4y +15=0 (Nx-D(y+2)=1
(g) xy — 3x — 2y + 5=0 [Hint: Compare (f).] (h) 4’ + y* +8x +4y +4=0
(H 2 -8x—-y+11=0 (j) 25x% + 16y” — 100x — 32y — 284 =0

Ans. (a) empty graph; (b) ellipse, center at (2, —3); (c) parabola, vertex at (3, —1); (d) single point
(1, —2); (e) empty graph; ( f) hyperbola, center at (1, —2); (g) hyperbola, center at (2, 3);
(h) ellipse, center at (—1,2); (/) parabola, vertex at (2, 3); (j) ellipse, center at (2,1)

Find the focus, directrix, and length of the latus rectum of the following parabolas: (a) 10x° = 3y;
(b) 2y* =3x; (c) 4y =x"+4x+8; (d) 8y =—-x°

Ans. (a) focus at (0, ), directrix y = — &, latum rectum g ; (b) focus at (3,0), directrix x = — 3,

latus rectum 3, (c) focus at (—2.2), directrix y = 0, latus rectum 4; (d) focus at (0, —2), directrix
y =2, latus rectum 8

Find an equation for each parabola satisfying the following conditions:

(a) Focus at (0, —3), directrix y =3 (b) Focus at (6,0), directrix x =2

(¢) Focus at (1, 4), directrix y =0 (d) Vertex at (1,2) focus at (1, 4)

(e) Vertex at (3, 0), directrix x = 1

( f) Vertex at the origin, y axis as axis of symmetry, contains the point (3, 18)

(g) Vertex at (3,5), axis of symmetry parallel to the y axis, contains the point (5, 7)

(h) Axis of symmetry parallel to the x axis, contains the points (0, 1), (3,2), (1, 3)

(i) Latus rectum is the segment joining (2, 4) and (6, 4), contains the point (8, 1)

() Contains the points (1, 10) and (2, 4), axis of symmetry is vertical, vertex is on the line 4x -3y =6

Ans.  (a) 12y=—xz;(b)8(x—4)—y (c) 8(y—2)= (X'l) (d) 8(y —2) = (x - 1)

(e) 8(x —3) =" Ny= 2275 (8) 2y - 5)—(1—3) (h)Z(x—’“)‘—5(y—— ;
(NAy-9=-(x-4(j)y-2=2(x-3) or y - & =26(x -
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26. Find an equation for each ellipse satisfying the following conditions:
(a) Center at the origin, one focus at (0, 5), length of semimajor axis is 13
(b) Center at the origin, major axis on the y axis, contains the points (1,2V3) and (}. VI5)
(c) Center at (2,4), focus at (7,4), contains the point (5, 8)
(d) Center at (0, 1), one vertex at (6, 1), eccentricity }
(e) Foci at (0, = %), contains (2,1)
(f) Foci (0, =9), semiminor axis of length 12

2y 2y (x-2°  (y-4r X (y-1y
Ans. (a)m+12—6§—1,(b)?+—1—62—1,(c) G + 20 —1,(d)%+ 70 =1
9y y

IS SN Y N I

N

27. Find an equation for each hyperbola satisfying the following conditions:
(a) Center at the origin, transverse axis the x axis, contains the points (6,4) and (-3, 1)
(b) Center at the origin, one vertex at (3, 0), one asymptote is y = 3x
(c) Has asymptotes y = = V2x, contains the point (1, 2)
(d) Center at the origin, one focus at (4, 0), one vertex at (3,0)

2
X

yz
977!

xZ 2 2
ans. @3 -L=tGT -0 -F=1@

28.  Find an equation of the hyperbola consisting of all points P(x, y) such that |PF — PF'| = 2V2, where
F=(2,V2) and F' =(-V2Z, —V2).

Ans. xy=1



Chapter 6

Functions

FUNCTION OF A VARIABLE. A function is a rule that associates, with each value of a variable x
in a certain set, exactly one value of another variable y. The variable y is then called the
dependent variable, and x is called the independent variable. The set from which the values of x
can be chosen is called the domain of the function. The set of all the corresponding values of y
is called the range of the function.

EXAMPLE 1: The equation x’ — y = 10, with x the independent variable, associates one value of y with
each value of x. The function can be calculated with the formula y = x* — 10. The domain is the set of all
real numbers. The same equation, x*> — y = 10, with y taken as the independent variable, sometimes
associates two values of x with each value of y. Thus, we must distinguish two functions of y: x =10+ y
and x = —\/10 + y. The domain of both these functions is the set of all y such that y = - 10, since V10 + y
is not a real number when 10 + y <0.

If a function is denoted by a symbol f, then the expression f(b) denotes the value obtained
when f is applied to a number b in the domain of f. Often, a function is defined by giving the
formula for an arbitrary value f(x). For example, the formula f(x) = x* — 10 determines the first
functizon mentioned in Example 1. The same function also can be defined by an equation like
y=x"-10.

EXAMPLE 2: (a) If f(x) = x’ — 4x +2, then
f(1)y=(1P —4(1)+2=1-4+2=—1  f(-2)=(=2) —4(-2)+2=-8+8+2=2
flay=a’—4a+2

(b) The function f(x) = 18x — 3x? is defined for every number x; that is, without exception, 18x —3x" is a
real number whenever x is a real number. Thus, the domain of the function is the set of all real numbers.
(c) The area A of a certain rectangle, one of whose sides has length x, is given by A = 18x — 3x°. Here,
both x and A must be positive. By completing the square, we obtain A = —3(x —3)* +27. In order to
have A >0, we must have 3(x — 3)> <27, which limits x to values below 6; hence, 0 < x < 6. Thus, the
function determining A has the open interval (0, 6) as domain. From Fig. 6-1, we see that the range of the
function is the interval (0, 27].

Notice that the function of part (c) here is given by the same formula as the function of part (b). but
the domain of the former is a proper subset of the domain of the latter.

A
uk
-
0] 3 6 o
Fig. 6-1

52
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THE GRAPH of a function f is the graph of the equation y = f(x).

EXAMPLE 3: (a) Consider the function f(x) = |x|. Its graph is the graph of the equation y = |x|, shown
in Fig. 6-2. Notice that f(x) = x when x = 0, whereas f(x) = —x when x 0. The domain of f consists of all
real numbers, but the range is the set of all nonnegative real numbers.

(b) The formula g(x) = 2x + 3 defines a function g. The graph of this function is the graph of the equation
y = 2x + 3, which is the straight line with slope 2 and y intercept 3. The set of all real numbers is both the
domain and range of g.

A function is said to be defined on a set B if it is defined for every point of that set.

V4

Fig. 6-2

Solved Problems

. -1
1. Given f(x) = T, + h).
0~ 1 -1~ 2
@ f0)= 575 =3 b) f-1)= 5t =3 @ floa)- 5
1 x-x x+h-1 x+h-1
@ f(”)_l/2+2 1420 @ SOt B = T h 2 ok i 42
2. If f(x) =2, show that (a) f(x +3) — f(x — 1) = % f(x) and () ;Ex 0 = f(4).
_ Axt3 x-1 _ Axsa3 1y _ 15 f(x+3) 2”‘
(@ fx+3)-flx-1)=2""-2""=2%(2"-3)= 7 fln) (b) e =f(4)
3. Determine the domains of the functions
(a) y=Vd-x% (b) y=Vx’-16; (c)y=~——x12;
—_ 1 . — x
@ y= =g @ y==.

(a) Since y must be real, 4 — x> =0, or x> =4. The domain is the interval —2 = x < 2.
(b) Here, x* —16=0, or x* = 16. The domain consists of the intervals x < —4 and x = 4.
(c) The function is defined for every value of x except 2.

(d) The function is defined for x # *3.

(e) Since x> + 40 for all x, the domain is the set of all real numbers.
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Sketch the graph of the function defined as follows:

f(x)=5when0<x=1 f(x)=10 when 1<x=2
fix)=15when2<x=3 f(x)=20when3<x=4  etc.

Determine the domain and range of the function.

The graph is shown in Fig. 6-3. The domain is the set of all positive real numbers, and the range is
the set of integers, 5, 10, 15, 20, . ...

y
25+ O— = —
2 [0 e —
15 [ e —
10 |- O
s———

1 1 1 x

o 1 2 3 4 5

Fig. 6-3

A rectangular plot requires 2000 ft of fencing to enclose it. If one of its dimensions is x (in

feet), express its area y (in square feet) as a function of x, and determine the domain of the
function.

Since one dimension is x, the other is § (2000 — 2x) = 1000 — x. The area is then y = x(1000 — x), and
the domain of this function is 0 < x < 1000.

Express the length [ of a chord of a circle of radius 8 in as a function of its distance x (in
inches) from the center of the circle. Determine the domain of the function.

From Fig. 6-4 we see that 4/ = V64 — x°, so that / = 2V 64 — x° The domain is the interval 0 < x <8,

/I
/

From each corner of a square of tin, 12 in on a side, small squares of side x (in inches) are
removed, and the edges are turned up to form an open box (Fig. 6-5). Express the volume V
of the box (in cubic inches) as a function of x, and determine the domain of the function.

Fig. 6-4

The box has a square base of side 12 —2x and a height of x. The volume of the box is then
V= x(12 — 2x)* = 4x(6 — x)°. The domain is the interval 0 < x <6.

As x increases over its domain, V increases for a time and then decreases thereafter. Thus, among
such boxes that may be constructed, there is one of greatest volume, say M. To determine M, it is
necessary to locate the precise value of x at which V ceases to increase. This problem will be studied in a
later chapter.
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8.

10.

and interpret the result.

at+h)—fla
If f(x) = x>+ 2x, find f(——%—f(—)
fla+h)y—fla) [(a+h)’ +2(a+ h)]—(a’ +2a)
h - h
On the graph of the function (Fig. 6-6), locate points P and Q whose respective abscissas are a and
a + h. The ordinate of P is f(a), and that of Q is f(a + h). Then

f(a + h) — f(a) _ difference of ordinates
h " difference of abscissas

=2a+2+h

= slope of PQ

Q(a+h,f(a+h))4

A f(a+h) - f(a)
z
Pla, !(G))(/

h

Fig. 6-6

Let f(x) = x> = 2x + 3. Evaluate (a) f(3); (b) f(=3); (¢) f(=x); (d) fix +2); (e) flx —2);
(f) flx + h); (8) flx + h) = flx); “"W-

(a) f(3)=3"-2(3)+3=9-6+3=6 by (-3)=(-3~-2(-3)+3=9+6+3=18

(©) fl=x)=(-x)-2(-x)+3=x’+2x +3

(d) fx+2)=(x+2) -2(x+2)+3=x"+dx+4-2x-4+3=x"+2x+3

(6) fx=)=(x -2V -2x-2)+3=x"-4x+4-2x+4+3=x"-6x+ 11
(f)fx+h)=(x+h)Y —2x+h)+3=x"+2hx + K> —2x - 2h+3 =2+ (2h - 2)x + (W’ —2h + 3)
(&) fx+h)—f)=[x"+(h—-Dx+ (K’ -2k +3)] - (x> —2x+3)=2hx + K = 2h=h(2x + h - 2)

) f(x+hh)—f(x) _ h(2x+hh~2) ot h—2

Draw the graph of the function f(x) = V4 — x? and find the domain and range of the function.

:I'he graph of f is the graph of the equation y = V4 — x”. For points on this graph, y’ =4 — x?; that
is, x* + y* = 4. The graph of the last equation is the circle with center at the origin and radius 2. Since
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Fig. 6-7

y=V4—x*=0, the desired graph is the upper half of that circle. Figure 6-7 shows that the domain is
the interval —2 < x <2, and the range is the interval 0=y <2.

Supplementary Problems

If fix)=x>—4x+6, find (a) £(0); (b) f(3); () f(~2). Show that f(!)=f(1) and f(2- h)=
f(2+h).  Ans. (a) —6; (b) 3; (c) 18

If flx )— ——, find (a) f(0); (b) f(1); (c) f(—2). Show that f( )=—f(x) and f(—%):~]7é—).

Ans. (a) - l, b)0;(c)3

If f(x) = x" — x, show that f(x + 1) = f(—x).

If f(x) = 1/x, show that f(a) — f(b) = f( ab )
If y = f(x) = +3 . show that x = f( y).

Determine the domain of each of the following functions:

(@) y=x"+4 (b) y=Vx’ +4 () y=Vx -4 @) y=
x ! X1 e
@y=Gern Ve BrTEn Wy y=N3-%
Ans.  (a), (b), (g) all values of x; (¢) |x|=2; (d) x=-3; () x# -1, 2, (f) -3<x <3,
(h) 0= x<2

Compute u,:—@ in the following cases: (a) f(x) = % when a#2 and a+ h+#2; (b) f(x) =

Vi~4d when a=4 and a+ h=4; (¢) f(x) = —x—whena#-ldnda+h#—1

-1 1 1
@ e Ovearr—arva e Q@rnarrs

Ans.

Draw the graphs of the following functions, and find their domains and ranges:

(@ f(x)= -2 +1 b) fy={3 7" HYsrs!

(¢) f(x)=[x] = the greatest integer less than or equal to x
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19.

21.

x4

d) fx)= T3 (&) fx)=5-x* (f) f(x)=—-4vx
(8) flx)=|x-3| (h) fx)=4/x =0 (i) flx)y=|x|/x
) _ _[x ifx=
() f)=x = Ix] ) fm =3 Hx=0
Ans. (a) domain, all numbers; range, y <1 (b) domain, x >0; range, —1<y<0 or y=2
(¢) domain, all numbers; range, all integers (d) domain, x # 2; range, y # 4
(e) domain, all numbers; range, y <5 (f) domain, x = 0; range, y <0
(g) domain, all numbers; range, y=0 (h) domain, x #0; range, y #0
(/) domain, x #0; range, {—1,1} (j) domain, all numbers; range, y =0

(k) domain, all numbers; range, y =0
+ —
Evaluate the expression W’Q for the following functions f: (a) f(x) = 3x — x°; (b) f(x) = V2x;
(¢) f(x)=3x-5; (d) f(x)=x>-2.
2
Ans. 3-2x—h; (b)) —=————;(c) 3; (d) 3x> +3xh + h*
ns. (a) x —h; (b) 2(H,I)Jr\/ﬂ,(c),()3x xh + h

Find a formula for the function f whose graph consists of all points (x, y) satisfying each of the following

equations (in plain language, solve each equation for y): (a) x’y +4x —2=0; (b) x = > i;
(c) 4x* —4xy + y* =0,

2-4x 2(x -1
ans. (@) f) =255 ) f = 20D () fo =2

X

(a) Prove the vertical-line test: A set of points in the xy plane is the graph of a function if and only if the
set intersects every vertical line in at most one point. () Determine whether each set of points in Fig.
6-8 is the graph of a function.

Ans. only (b) is a function

1]
g

)

(a)

(5)

(c) (d)

Fig. 6-8
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Limits

AN INFINITE SEQUENCE is a function whose domain is the set of positive integers. For example,

L . . 1
when n is given in turn the values 1, 2, 3, 4, ..., the function defined by the formula 1
n
yields the sequence §, i, %, §,.... The sequence is called an infinite sequence to indicate that
there is no last term.
By the general or nth term of an infinite sequence we mean a formula s, for the value of the
function determining the sequence. The infinite sequence itself is often denoted by enclosing

the general term in braces, as in {s_}, or by displaying the first few terms of the sequence. For

example, the general term s, of the sequence in the preceding paragraph is Pt and that

+1

I 1
}Orby§,§,4,§,....

sequence can be denoted by {n 1

LIMIT OF A SEQUENCE. If the terms of a sequence {s,} approach a fixed number ¢ as n gets
larger and larger, we say that ¢ is the flimir of the sequence, and we write either s — c or

lim s, =c.
""" As an example, consider the sequence
3579 1
15345 2—;,... (7.1)

some of whose terms are plotted on the coordinate system in Fig. 7-1. As n increases,
consecutive points cluster toward the point 2 in such a way that the distance of the points from

2 eventually becomes less than any positive number that might have been preassigned as a
measure of closeness, however small For example, the point 2 — @5 = 23 and all subsequent

points are at a distance less than g from 2, the point 01 and all subsequent points are at a

1 1
distance less than ;mome from 2, and so on. Hence, {2 - ;}—92 or lim (2 - ;) =2.

n—s+x

44 4 e

+

t -
0 1 372 5/3 2

Fig. 7-1

The sequence (7.1) does not contain its limit 2 as a term. On the other hand, the sequence
Iy, 1,3. 1,4, 1,... has 1 as limit, and every odd-numbered term is 1. Thus, a sequence
having a limit may or may not contain that limit as a term.

Many sequences do not have a limit. For example, the sequence {(—1)"}, that is, —1, 1,
-1. 1. =1, 1,..., keeps alternating between —1 and 1 and does not get closer and closer to
any fixed number.

LIMIT OF A FUNCTION. If fis a function, then we say that llm flx)=Aif the value off(x) gets
arbitrarily close to A as x gets closer and closer to a. For 1 example hm x* =9, since x” gets
arbitrarily close to 9 as x approaches as close as one wishes to 3. =

The definition can be stated more precisely as follows: lim f(x) = A if and only if, for any

chosen positive number €, however small, there exists a positive number & such that, whenever
0<|x —al <8, then | f(x) — A|<e.

58
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The gist of the definition is illustrated in Fig. 7-2: After £ has been chosen [that is, after
interval (ii) has been chosen], then & can be found [that is, interval (i) can be determined] so
that, whenever x # a is on interval (i), say at x,, then f(x) is on interval (ii), at f(x,). Notice the
important fact that whether or not llm f(x) = A is true does not depend upon the value of f(x)
when x = a. In fact, f(x) need not ‘even be defined when x = a.

Xg flx,)
—0- O4———-O0————» x —O— ——t —O0—f(x)
a—6 a ats A-€ A A+e
(i) Fig. 7-2 (i)
x*-4 x*-4 x’—4

EXAMPLE 1: lim = 2 =4, although — is not defined when x=2. Since =7 =
(x=2)x+2) "7 Xt -
——3 - x +2, we see that T2 approaches 4 as x approaches 2.

EXAMPLE 2: Let us use the precise definition to show that hm2 (x* + 3x) = 10. Let € >0 be chosen. We
must produce a & >0 such that, whenever 0< |x —2| < & then |(x + 3x) — 10| < €. First we note that

[(x® +3x) - 10| = |(x — 2)* + T(x — 2|

Also, if 0< & =<1, then 8 <5. Hence, if we take & to be the minimum of 1 and e/8, then. whenever
0<|x—2|<8,
(x> +3x)— 10| < 8°+76<8+76=88<¢

The definition of lim f(x) = A given above is equivalent to the following definition in terms of
infinite sequences hm f(x)= A if and only if, for any sequence {s,} such that hm s, =a,

n—+

hm fis.)=A.In ‘other words, no matter what sequence {s,} we may consider such that s,
approaches a, the corresponding sequence { f(s_ )} must approach A.

RIGHT AND LEFT LIMITS. By lim f(x) = A we mean that f(x) approaches A as x approaches a
through values less than a4, that is, as x approaches a from the left. Similarly, lim f(x) =

means that f(x) approaches A as x approaches a through values greater than a, that is, as x
approaches a from the right. The statement lim f(x) = A is equivalent to the conjunction of the

two statements llm f(x)= A and lim f(x) A The existence of the limit from the left does

not imply the exrstence of the limit from the right, and conversely.
When a function f is defined on only one side of a point a, then h_rg f(x) is identical with

the one-sided limit, if it exists. For example, if f(x) = VX, then fis defined only to the right of
zero. Hence, hm vx = lim vx =0. Of course, hm Vv x does not exist, since Vx is not defined

x—0"

when x <0. On the other hand, consider the functlon g(x) = V1/x, which is defined only for
x>0. In this case, lim V1/x does not exist and, therefore, hm V1/x does not exist.

x—0*

EXAMPLE 3: The function f(x) = V9 — x* has the interval —=3 < X =3 as its domain of deﬁnilion. Ifais
any number on the open interval —3 <x <3, then llm V9 - x? exlsts and is equal to V9~ a". Now
consider a = 3. First, let x approach 3 from the left; then l|m V9 — x* =0. Next, let x approach 3 from
the right; then lim V9 — x° does not exist, since for x>3 V9 —x is not a real number. Thus,

—3*
lrm\/ —x—hm\/ 9-x’=0.
Slmrlarly, hm V9 — x? exists and is equal to 0, but Ilim V9- x° does not exist. Thus,

lim \/9—-_—1‘_’ ’ o

x—-3
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THEOREMS ON LIMITS. The following theorems on limits are listed for future reference.
Theorem 7.1: If f(x) = ¢, a constant, then ‘!151 fx)=c.
If lim flx)= A and lim g(x) = B, then:
Theorem 7.2: lim kf(x) = kA, k being any constant.
Theorem 7.3: lim [f(x) * g(x)] = lim f(x) * lim g(x) = A *+ B.
Theorem 7.4: lim [f(x)g(x)] = lim f(x) lim g(x) = AB.

f _ Jm )

= —, provided B #0.

Theorem 7.5: lim "~ = limg(x) B

Theorem 7.6: lim{/f(x) =V/lim f(x) =V'A, provided V'4 is a real number.

INFINITY. We say that a sequence {s,} approaches +=, and we write 5, —> +x>or lim s, = +x,

n—+=

if the values s eventually become and thereafter remain greater than any preassigned positive
number, however large. For example, lim vi=+x and lim n’= +=.

n— -+ n—»-f—m
We say that a sequence {s,} approaches —«, and we write s, — —x< or lim s, = —x, if
n—+x
the values s, eventually become and thereafter remain less than any prea551gned negative
number, however small. For example, llm —n=—% and Ilm (10— n*)= -

The corresponding notions for functions are the followmg

We say that f(x) approaches +o as x approaches a, and we write lim f(x) = +=, if, as x
approaches its limit a (without assuming the value a), f(x) eventually becomes and thereafter
remains greater than any preassigned positive number, however large. This can be given the
following more precise definition: l1m f(x) =+ if and only if, for any positive number M,
there exists a positive number 8 such that whenever 0 < |x — a| < §, then f(x)> M.

We say that f(x) approaches —x as x approaches a, and we write 11m fx)=—=if, as x
approaches its limit @ (without assuming the value a), f(x) eventually becomes and thereafter
remains less than any preassigned negatlve number. By hm f(x) =~ we mean that, as x
approaches its limit a (without assuming the value a), | f(x)| eventually becomes and thereafter
remains larger than any preassigned number. Thus, lim f(x) = = if and only if lim [ f(x)] = +ce.

1 B 1
EXAMPLE 4: (a) Jl(lil:l) 2o + o0 (b) EILT} G 1) 0 (©) !lﬂ Pl

These ideas can be extended to one-sided (left and right) limits in the obvious way.

1
EXAMPLE 5: (a) lim - =+, since, as x approaches 0 from the right (that is, through positive
x—0*

numbers) - is positive and eventually becomes larger than any preassinged number.

. 1. .
() lim 1 = —=, since, as x approaches 0 from the left (that is, through negative numbers), L negative
x—0
and eventually becomes smaller than any preassigned number.

The limit concepts already introduced also can be extended in an obvious way to the case in
which the variable approaches +x or —x. For example, ,l_i.r{lw f(x)= A means that f(x)
approaches A as x — +; or, in more precise terms, given any positive €, there exists a number
N such that, whenever x> N, |f(x) — A| <e.

Similar definitions can be given for the statements lim_f(x) = A, l_i.l')l;lz flx) = +oo,
Jim_f(x)= =%, lim fx)=- and lim_f(x)=+=. )
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EXAMPLE 6: lim L 0 and lim (2+ —13) =2.

x—+x X x—4+x X

Caution: When lim f(x) =+ and llm g(x) =z, Theorems 3.3 to 3.5 do not make

1 1 1/x°
sense and cannot be used. For example, hm =+ and lim — = +=; however, ]111(1] e =
x—0 x x— X
lim x* = 0.
x—0
Solved Problems
1. Write the first five terms of each of the following sequences.
1 } _. 1 _ 1 1 _ 1 3 _ 1 5
(a) {1 1n : 7Set s, =1 3’ then s, =1 71° 3 s;=1 72 3 STl 3356 8=
1-5 =g ands,= . The required terms are §, 3. 2, §, &.

I 1 1 , 11
() {(—1) '3n_1}: Heresl=(—1)23.1_1=§'52=(_1)‘3.2_l_qg.

1 1
= 1 =1 : 1 _ 11 L
s;=(—1) 3.3_1=g,s4——ﬁ,s5—~ﬁ."['hcrequuedtermsarez, S+ 8. T ITs 14

Gl

(c) {linnz}: The terms are 1, %, 2, &,

_ n+1 n } __L - - - _-
(d){( D W D(nr2y ) The tems are 5 3. 3 4 £5° 5667

(&) {3[(—1)" +1]}: The terms are 0, 1, 0, 1, 0.

2 Write the general term of each of the following sequences.

(@) 1,4, 4,3, 4,...: The terms are the reciprocals of the odd positive integers. The general term is
2n — 1

(b) 1, —4.3, =%, 4,...: Apart from sign, these are the reciprocals of the positive integers. The general

1
: _ n+1 _ _ n—1 _

term is (—1) nor( 1) e

(¢) 1,4,3%, %, %,...: The terms are the reciprocals of the squares of the positive integers. The general
term is 1/n°

1-3 1-3-5 1-3-5-7 ) . 135 (2n—-1)

(d) 2'7 47462468 - The general term is 24.6---(2n)

(e) 1, -3, %, —%,...: Apart from sign, the numerators are the squares of positive integers andzthe
denominators are the cubes of these integers increased by 1. The general term is (— ! ﬁ

3. Determine the limit of each of the following sequences.

(@) 1,3,5.4,%,...: The general term is 1/n. As n takes on the values 1, 2, 3, 4,... in tumn, 1l/n
decreases but remains positive. The limit is 0.

(b) 1, } i 5, 1. %,...: The general term is (l/n)z; the limit is 0.

(c) 2,3,%, 4, '_?4, ...: The general term is 3 — 1/n; the limit is 3.

(d) 5 4 u-z '{ : The general term is 3 + 2/n; the limit is 3.

11

(¢) 3.34.%, 15, 32,...: The general term is 1/2"; the limit is 0.
(£)0.9, 0.99, 0.999, 0 9999, 0.99999, . . .: The general term is 1 — 1/10"; the limit is 1.
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Evaluate the limit in each of the following.
(a) Iim5x=5|in;x=5°2=10 (b) limz(2x+3)=2limx+ Iin;3=2-2+3=7
x—2 x— x—
-7 lim(x-2)

= x—3

-3 x+2 lm;(x+2) =5

©) lin}(x2—4x+1)=4—8+1=—3 (d) lim

x*-4 4-4
1 x’+4 4+4
Note: Do not assume from these problems that ’l‘l_r‘r’)‘ f(x) is invariably f(a).

() lim 0 (f)anI\/és—x2=\/liﬂ(zs—xz)=\/§=3

x?=-25
(8) :l—lor?s x+5 =xl—l-n—‘s(x—5)=_10

Examine the behavior of f(x) =(—1)" as x ranges over the sequences (a) }, £, %, 5,... and

(b)%,%,3,%,.... (c) What can be said concerning lim (- 1)* and £(0)?

(a) (—1)"— —1 over the sequence },%,4%,5,....
(b) (—1)"— +1 over the sequence }, 3,3, %,....
(c) Since (—1)* approaches different limits over the two sequences, ling (—=1)" does not exist;

f0)=(-1)°=+1.

~
ISR

Evaluate the limit in each of the following.

) i x=4 . x—4 R
@ lim o =M e e My

The division by x — 4 before passing to the limit is valid since x # 4 as x—4; hence, x — 4 is

never zero.

ox =27 (x=3)(x"+3x+9) x2+3x+9_2
() lim =g =M G+ 3y M T3 T3

xRy - A2 R - 2hxt R N
(c) fim h = him h =lm = Nim (2x + h) = 2x

Here, and again in Problems 8 and 9, 4 is a variable so that it could be argued that we are in reality
dealing with functions of two variables. However, the fact that x is a variable plays no role in these
problems; we may then for the moment consider x to be a constant, that is, some one of the values of its
range. The gist of the problem, as we shall see in Chapter 9, is that if x is any value, say x = x,, in the

(x +h)2 -x°

is always twice the selected value of x.
. (4-xH)3+Vxi+5) (4 B+ V+5)
(d) h = lim =
=23 v 75 "2 (3-Vr+5B+Vr+s) g 4-x°
=lirr%(3+ Vx*+5)=6

2

x+x-2  (x-Dx+2)
=1 = lim

-1 S -1y it x—l

domain of y = x°, then lim

=o; no limit exists.

(e) liml

In the following, interpret 11m as an abbreviation for hm or llm Evaluate the limit by
first dividing numerator and denominator by the hlghest power of x present and then using

lim - =
x—x X

i 357 3-2/x _3-0_1
(@ lim o =My 5 =950~ 3
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10.

11.

b tim 6x2+2x+1_I,m6+2/x+1/x2_6+0+0=1
( A 6T —3x+4 e 6—3/x+4/x’ 6-0+0
x*+x-2 Ux+1/x*=2/x" 0
1 = i =—=0
@M s T e 2

3
(d) lim —22—1—-:lim ——2—=—00; no limit exists

== x> 41 == 1/x+1/x°

lim —————— = +%; no limit exists
== 1/x+1/x°

Given f(x) = x* — 3x, find ll_r.r(l) f(_xj_hz_—_f(_xl

Since f(x) = x> — 3x, we have f(x + A)=(x+ h)* —3(x + k) and
_ 2 2 _ _ _ 2 _ 2 _
lim fix+h)-fx) _ lim (" +2hx + A" —3x —3h) - (x" - 3x) _ lim 2hx + h* - 3h

A0 h—0 h A0 h

=lim (2x+h—3)=2x -3
h—0

fix + k) - f(x)
h

Given f(x) = V5x + 1, find 'l'irr(l)

when x> — =

f(x+h) f(x) - lim Vix +5h+1-V5x +1

h—-o h—0 h
- lim V5x+5h+1-V5x+1 Vix +5h+ 1+ V5x + 1
A0 h V5x+5h+1+V5x+1

i XA ShED) = (Sx+1)
h~0h(\/5x+5h+1+\/5x+1)

b 5 5
P V3xi5htl+Vox+1l 2Vox 1

In each of the following, determme the points x = a for which each denominator is zero. Then
examine y as x—>a_ and x—a”.

(a) y=f(x)=2/x: The denominator is zero when x =0. As x—>07, y— ~x; as x> 0", y— + o,

®) ¥ =10~ 33563

x> =37yt Asx—=27, y> —m as x—>2", yo +,

the denominator is zero for x= -3 and x=2. Asx—-3", y—> —; as

x—3
(¢ y=f(x)= (_X+—2)(X_—) The denominator is zero forx=—-2andx=1. Asx— —27, y— —»; as

x> -2 yo+w Asx—>1, yo>+x asx—>1", y > o,

+2
(d) y=flx)= % The denominator is zero for x=3. As x—37, y— +o; as x—3",
y— +o,
(x+2)(1 x) - , - ’
(€) y=f(x)= "——">—": The denominator is zero for x=3. As x—37, y— +x; as x—3",
y— =
1 142~
Exami im — 7z im -
xamine (a) 1@3 31207 and (b) 1‘_’.’}) 342U

(@) Let x—07; then 1/x— —, 2°* (), and xI_l‘m 3+12,,x = %

Let x—0"; then 1/x— +%, 2'"* > 4+, and lim —— =
x—0* 3+2

1
Thus lim ——— ;7 does not exist.

x—0 3+ 1/x
(b) Let x—0 Hien 2 2" 0 and lim 1+2 - 1

342 3
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13.

14.

15.
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1+21/x 2-1/x+1 . . i . 2A11x+1
Let x—0". For x #0, 3577 - 3.7 1 and since ,l_l’lon 271 =0, Xlir(t’l R 1.
Thus, lim ——= s does not exist.

For each of the functions of Problem 10, examine y as x — —= and as x — +x,
(a) When |x| is large, |y| is small.

For x = —1000, y<0; as x— —=, y—0". For x = +1000, y>0; as x —» +x, y—0",
(b), (c) Same as (a).
(d) When |x| is large, | y| is approximately 1.

For x = —1000, y<1l;as x— —%, y— 1. For x=+1000, y>1; as x = +x, y— 1",
(¢) When |x| is large, |y| is large.

For x = - 1000, y >0; as x— —«, y— +x. For x = +1000, y <0; as x — +x, y— —x.

Examine the function of Problem 4 in Chapter 6 as x—a~ and as x—a' when a is any
positive integer.

Consider, as a typical case, a =2. As x—27, f(x)— 10. As x—2", f(x)— 15. Thus, hm f(x) does
not exist. In general, the limit fails to exist for all positive integers. (Note, however, that hm flx)=
lim f(x) =5, since f(x) is not defined for x =0.)

r—0 "
Use the precxse definition to show that (a) hm (4x* +3x* —24x +22) =5 and
(b) hm (-2x’ +9x +4)=

{a) Let € be chosen. For 0<|x — 1| <A <1,
[(4x* + 3x% = 24x +22) — 5| = [4(x — 1)° + 15x" — 36x + 21| = [4(x — 1)* + 15(x — 1)* = 6(x — 1)|
=d4lx— 1"+ 15lx - 1> + 6[x — 1]
<4A+15A+6A=25A
Now [(4x" + 3x° — 24x +22) — 5| < € for A < €/25; hence, any positive number smaller than both 1
and €/25 is an effective 8, and the limit is established.
(b) Let € be chosen. For 0<|x + 1]< A <1,
[(=2x° +9x + 4) + 3] =|—2(x + 1)* + 6(x + 1)* + 3(x + 1)
=2lx+ 1 +6lx+ 17 +3x + 1< 11A

Any positive number smaller than both 1 and €/11 is an effective §, and the limit is established.

Given 11_1’1‘1‘ flx)= A and ll_l;!{]l g(x) = B, prove:

@ lim [f) + )= A*B  (5) lim fg()=AB (o) lim LD -

e g(x) B
Since lim f(x) = A and lim g(x) = B, it follows by the precise definition that for numbers €, >0 and
€, >0, however small, there exist numbers §, >0 and 8, > 0 such that:
Whenever 0 <|x —a| < §8,, then |f(x) — A|<e¢, 1)
Whenever 0 < |x — a| < §,, then |g(x) — Bl <, (2)

B#0

Let A denote the smaller of 8§, and 8,; now
Whenever 0 < |x — a| <A, then | f(x) — A| <e¢, and |g(x} — B| <, (3)
(a) Let € be chosen. We are required to produce a & > ( such that
Whenever 0< |x — a| < 8, then |[f(x) + g(x)] - (A + B)| <€

Now |[f(x) + g(x)] — (A + B)| =|[f(x) — A] + [g(x) - B]| =|f(x) — A| +|g(x) - B|. By (3),
| fix) — A| < €, whenever 0 < |x — a] < A and | g(x) — A] < ¢, whenever 0 < |x — a| < A, where A is the
smaller of 8, and §,. Thus,
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[[f(x)+ g(x)] — (A + B)| <e¢ + ¢, whenever 0<|x —a|< A
Take €, = €, = 1€ and 8 = A for this choice of €, and ¢,; then, as required,

|[f(x)+g(x)]—(A+B)|<%e+%e=ewhenever0<|x—a|<6

(b) Let € be chosen. We are required to produce a 8 >0 such that

(o)

Whenever 0< |x — a| < § then |f(x)g(x) - AB|<e

Now | f(x)g(x) — AB| = |[f(x) — Allg(x) — B] + B[ f(x) — A] + A[g(x) - B]|
=|f(x) - Al g(x) — B| + |B|| f(x) - A| + | Al|g(x) - B|

so that, by (3), | fx)g(x) - AB|<e €+ |B|el +|Ale, whenever 0<|x — a| < A. Take ¢, and &,

1 1
such that €€, < 36 €< 3 |B| and ¢, < are simultaneously satisfied and let § = A for this
choice of ¢, and ¢,. Then, as required,

3 IAI

| fix)g(x) — AB| < § + § + § =€ whenever 0<|x —a|<$§
fx) _ . 11
Since —=% ( ) = f(x) —— ( )’ the theorem follows from () provided we can show that ll_l"n @ =35 for
B#
Let € be chosen. We are required to produce a § >0 such that
1
Whenever 0< [x —a|<é then | — - —
Now 11 =‘B—g(x) =|g(x)——B|=|g(x)—B| 1
glx) B Bg(x) |Bl| g(x)l Bl |g(x)l
By (2),

| g(x) — B| < €, whenever 0<|x — a| < §,

However, we are also dealing with 1/g(x), so we must be sure 8, is sufficiently small that the
interval a — 8, < x < a + 8, does not contain a root of g(x) =0. Let §, < §, meet this requirement so
that [g(x) — B| <e, and |g(x)] >0 whenever 0 < |x — a| = 5,. Now |g(x)| >0 on the interval implies

lg(x)|>b>0 and —— on the interval for some b. Thus, we have

I()I

1 1 & 1
—_— - = whenever 0 <|x — a| <38,
@ T8l b b = al

Take €, < eb|B|, so that —— < € and 8 = §, for this choice of ¢,. Then, as required,

IBIb
‘E(x—)—%'<ewhcnever0<|x—a|<8
16 Prove (a) hm LN o; (b) lim —x—-—l (¢) lim x = +o
) x—2 (Jr—2)3 = X + x—~+e x — 1 )

(a)

(b)

()

Let M be any negative number. Choose 8 positive and equal to the minimum of 1 and |17| Assume
x<2 and 0<|x—-2|<8. Then |x- 2|3<8 <8$M Hence, ﬁ>|M|=—M. But

1 x=
(x — 2)’ < 0. Therefore, = <M.

-2 x —2|3
Let € be any positive number, and let M = 1/e. Assume x > M. Then
x \ |1 l 1 1 <1
x+1 T+l x+1 Txom €

2
Let M >1 be any positive number. Assume x > M. Then xx_

2£=X>M.
1 x
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Supplementary Problems

Write the first five terms of each sequence:

@ {1+1] O i) @ ere-nd @
o=} o] @ {2} ) {2}

Ans. (@)2,3,4,3.5, ()54, 5.h.%:(c)a,a+d,a+2d,a+3d,a+4d;(d)a, —ar, ar’,
(e)1/\/7,2/\/3,3/m,4/\/ﬁ,5/\/2_6;(f) V2, V3, 4,5, 1 Ve, (g) 1, -}, 8, -5, &
A 2 2 20 727 728
()3 3.5"3.5"37.52"3.52

Determine the general term of each sequence:

(a) 1/2,2/3, 3/4, 4/5, 5/6, ... (b) 1/2, —1/6, 1/12, —1/20, 1/30, . ..
(c) 1/2, 1/12, 1/30, 1/56, 1/90, . .. (d) 1/5° 3/5°, 5/57, 7/5°, 9/5", . ..
(e) 172!, —1/4! 1/6t, —1/8!, 1/101, . ..

T 1 ) 2n - o1
Ans. (a) n+ l > (b) ( 1) n2 +n ’ (C) (2’1 —- 1)2” ’ (d) 2n4l ; (e) ( 1) (2 )|
Evaluate: R
. 2 _ . 3 2 _ ( -1y
(a) ,lang (x* - 4x) (b) ,llr[ll (x" +2x"-3x—4) (0) )l‘l_’] w1y
3x _ x _1 2_4
(d) lim == 1 (f)[l_.zx——*_sjc+6
x*+3x+2 .o x=2 o e x—2
(g) lim T rar 3 (k) lim -4 (@) lim o
V -2  x+R) -2 x—1
(j) tim —— (k) lim S —% ) lim
Ans. (a) —4; (b) 0; () §: (d) 0; (&) 5: (f) —4; (g) §; (h) &5 (§) 0; (j) =, no limit; (k) 3x*; (/) 2
Evaluate:
. 2x+3 2 +1 . X +5x+6
(@) fim 4x -5 ) Jim 6+ x-3x* © 1—9}‘ X+ 5 (d) fim x+1
. x+3 -3 3 -3
© T sre N fim 33= () lim, 3753

Ans. (a) 1; (b) =3 (c) 0; (d) =, no limit; (e) 0; (f) 1; (g) —1

Find ,I'm(ll f(_a+_h’3_—M for the functions f in Problems 11, 12, 13, 15, 16(a), (b), (d), and (g), and
18(b). (c), (g), and (i) of Chapter 6.

2 27 a
Ans. 11. 2a-4; 12 (—rl?, 13. 2a- 1; 15. —-(47_5—)2, 16. (a) 20, (b) ﬁ,
(d) (033) (8 1)2, 18. (a) —2a, (b) 1, () no limit, (g) —1, (i) no limit

ax" +tax" '+ +a,

What is ,h_'.Tl box™ + b,x"_' +oo+ b,
(@m>n, (b)) m=n; (c) m<n?  Ans. (a) no limit; (b) a,/b,; (c) 0

, where a,b,#0 and m and n are positive integers, when
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27.

29.

31

32.

Investigate the behavior of f(x) = |x| as x— 0. Draw a graph. (Hinr: Examine lirg_ f(x) and lim f(x).)
x—* x—0"
Ans.  lim [x|=0

Investigate the behavior of {}K; - i +1 iSO as x— 0. Draw a graph.

Ans. Iirr()) f(x) does not exist.

(a) Use Theorem 7.4 and mathematical induction to prove lim x" = a”, for n a positive integer.
(b) Use Theorem 7.3 and mathematical induction to prove

lim [£,(5) + £,00) + -+ + £,0] = lim £,(x) + im £,(x) + -+~ + lim £,(x)

Use Theorem 7.2 and the results of Problem 25 to prove ll_rﬂ P(x) = P(a), where P(x) is any polynomial
in x.

For f(x) =5x — 6, find a & >0 such that whenever 0 < |x — 4| <§, then | f(x) — 14| <€, when (a) € =}
and (b) € = 0.001. Ans. (a) 15; (b) 0.0002

Use the precise definition to prove () lim 5x = 15; (b) lim ¥ =4; (c) lim (X’ -3x+5)=3.

Use the precise definition to prove

=

2w (c) lim =~ =1 (d) lim

.1 .
(@) ll—?});_x (b)ll-rgx—l P = x + 1

Prove: If f(x) is defined for all x near x = a and has a limit as x — a, that limit is unique. (Hint; Assume
lim f(x)= A, lim f(x) = B, and B # A. Choose ¢,, €, < | A — B|. Determine 8, and &, for the two limits
and take & the smaller of 8, and §,. Show that then |A — B|=|[A — f(x)] +[f(x) - B]|<|A- B|. a
contradiction.)

Let f(x), g(x), and A(x) be such that (1) f(x)= g(x) = h(x) for all values of x near x = a and (2)
ll_rpn flx)= 11_1_11 h(x) = A. Show that ll_l:l’; g(x)= A. (Hint: For a given € >0, however small, there exists a

8 >0 such that whenever 0 <|x — a| < & then | f(x) — A|<eand |A(x) -~ A|<eor A —e<f(x)=<g(x) =
h(x)< A+e)

Prove: If f(x)<M for all x and if 11‘1_131 f(x)= A, then A=<M. (Hint: Suppose A> M. Choose
€ = 3(A — M) and obtain a contradiction.)



Chapter 8

Continuity

A FUNCTION f(x) IS CONTINUOUS at x = x,, if
f(x;) is defined lim f(x) exists lim f(x) = f(x,)
X"’Xo I—’IO

For example, f(x) = x* + 1 is continuous at x =2 since Iin; f(x) =5=f(2). The first condition
above implies that a function can be continuous only “at points of its domain. Thus, f(x) =
4 — x* is not continuous at x =3 because f(3) is imaginary, i.e., is not defined.

A function f(x) is called continuous if it is continuous at every point of its domain. Thus,
f(x)=x"+1 and all other polynomials in x are continuous functions; other examples are ¢,
sin x, and cos x.

A function fis said to be continuous on a closed interval |a, b] if the function that restricts f
to [a, b] is continuous at each point of [a, b]; in other words, we ignore what happens to the
left of @ and to the right of b. Consider, for example, the function f such that f(x) = x for
0=x=1, f(x)=—1 for x <0, and f(x) = 2 for x > 1. This function is continuous at every point
except x =0 and x = 1. However, the function is continuous on the interval [0, 1] because, for
that interval, we are considering the function g whose domain is [0, 1] such that g(x) = x for x in
[0, 1]. Because

lin(l) g(x)= lim g(x)=0 and lirr} g(x)= lin]1 glx)=1
x— x—0* x— x—

g is continuous at 0 and 1 (and, clearly, at all points between 0 and 1).

A FUNCTION f(x) IS DISCONTINUOUS at x = x, if one or more of the conditions for continuity
fails there.

EXAMPLE 1: (a) f(x)= xi

denominator) and because lim f(x) does not exist (equals =<). The function is, however. continuous
x—2

is discontinuous at x =2 because f(2) is not defined (has zero as

everywhere except at x =2, where it is said to have an infinite discontinuity. See Fig. 8-1.

b) fix) =25

x*—4
are zero) and because lirrzl flx) = 42. The discontinuity here is called removable since it may be removed by

2 is discontinuous at x =2 because f(2) is not defined (both numerator and denominator
x°—4

x—=2
removed because the limit also does not exist.) The graphs of f(x) =

redefining the function as f(x) = for x # 2; f(2) = 4. (Note that tt;e discontinuity in (a) cannot be so

x" -4
. x n 2 . - . . .

except at x = 2, where the former has a ‘hole’ (see Fig. 8-2). Removing the discontinuity consists simply of

filling the ‘hole.’

and g(x) = x + 2 are identical

Fig. 8-1 Fig. 8-2

68
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3 pa—
(©) fix)= xx §7 for x # 3; f(3) = 9 is discontinuous at x = 3 because f(3) = 9 while lirrl f(x) =27, so that
— L i

=27
lin; f(x) # f(3). The discontinuity may be removed by redefining the function as f(x) = xx _— for x # 3,
f(3)=27.
(d) The function of Problem 4 of Chapter 6 is defined for all x >0 but has discontinuities at x =1, 2,
3,... (see Problem 13 of Chapter 7) arising from the fact that

lim f(x)# lim f(x) for s any positive integer

These are called jump discontinuities. (See Problems 1 and 2.)

PROPERTIES OF CONTINUOUS FUNCTIONS. The theorems on limits in Chapter 7 lead readily
to theorems on continuous functions. In particular, if f(x) and g(x) are continuous at x = a, so
also are f(x)* g(x), f(x)g(x), and f(x)/g(x), provided in the latter that g(a)# 0. Hence,
polynomials in x are everywhere continuous whereas rational functions of x are continuous
everywhere except at values of x for which the denominator is zero.

You have probably used certain properties of continuous functions in your study of algebra:

1. In sketching the graph of a polynomial y = f(x), any two points (a, f(a)) and (b, f(b))
are joined by an unbroken arc.

2. If f(a) and f(b) have opposite signs, the graph of y = f(x) crosses the x axis at least
once, and the equation f(x) =0 has at least one root between x = a and x = b.

The property of continuous functions used here is

Property 8.1: If f(x) is continuous on the interval a < x < b and if f(a) # f(b), then for any number ¢
between f(a) and f(b) there is at least one value of x, say x = x,,, for which f(x,)=c and a < x, =< b.

Figure 8-3 illustrates the two applications of this property, and Fig. 8-4 shows that
continuity throughout the interval is essential.

[
R

(a) {b) f(x) =0 has three roots
Fig. 8-3 between x = a and x = b.

Other properties of continuous functions are important here:

Property 8.2: If f(x) is continuous on the interval a < x < b, then f(x) takes on a least value m and a
greatest value M on the interval.

Although a proof of Property 8.2 is beyond the scope of this book, the property will be
used freely in later chapters. Consider Figure 8-5(a)—(c). In Fig. 8-5(a) the function is
continuous on a < x < p; the least value m and the greatest value M occur at x =c and x = d
respectively, both points being within the interval. In Fig. 8-5(b) the function is continuous on
a = x = b; the least value occurs at the endpoint x = a, while the greatest value occurs at x = ¢
within the interval. In Fig. 8-5(c) there is a discontinuity at x = ¢, where a < ¢ < b; the function
has a least value at x = a but no greatest value.
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(b) f(x) =0 has no root

fb)|— —— —————

el- - ————

=b.

between x = a and x

(a)

Fig. 8-4

(b)

(@)

|

|

I
L
a

()

Fig. 8-5

c+A

Fig. 8-6
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Property 8.3: If f(x) is continuous on the interval a < x < b, and if ¢ is any number between a and b and
f(c) >0, then there exists a number A >0 such that whenever ¢ — A <x <c¢ + A, then f(x) >0.

This property is illustrated in Fig. 8-6. For a proof, see Problem 4.

Solved Problems

Use Problem 10 of Chapter 7 to find the discontinuities of:

(a) f(x) =2/x: Has an infinite discontinuity at x = 0.

) fx)= #)_(:_23: Has infinite discontinuities at x = —3 and x =2.
() f(x)= %2: Has an infinite discontinuity at x = 3.

Use Problem 6 of Chapter 7 to find the discontinuities of:

x3-27
2

(a) fix)= 29 : Has a removable discontinuity at x = 3. There is also an infinite discontinuity at
x=-3 5

) f(x)= ;ﬁ: Has a removable discontinuity at x = 2. There is also a removable discontinuity
at x = —22.

© fix)= x—(:_x—l;zz—: Has an infinite discontinuity at x = 1.

implies f(x) is continuous at x = a.

fa + k) - f(a)
h

The existence of the limit implies that f(a + h) — f(a)— 0 as h— 0. Thus, lim f(a + k) = f(a) and
h—0
f(x) is continuous at x = a.

Show that the existence of ’l'il'l(l)

Prove: If f(x) is continuous on the interval a < x < b, and if ¢ is any number between a and b
and f(c) >0, then there exists a number A >0 such that whenever c — A<x<c+ A, then

f(x)>0.
Since f(x) is continuous at x = ¢, lim f(x) = f(c) and for any € >0 there exists a 8 >0 such that

Whenever 0< |x — ¢| < 6 then | f(x) — f(c)| < e (1)

Now f(x) >0 at all points on the interval ¢ — § <x < c + 8 for which f(x) = f(c). At all other points of
the interval f(x) < f(c) so that | f(x) - f(c)| = f(c) — f(x) < € and f(x) > f(c) — €. Thus, at these points,
f(x) >0 unless € = f(c). Hence, to determine an interval meeting the requirements of the theorem, select
€ < f(c), determine § satisfying (1), and take A < 8. (See Problem 10 for the companion theorem.)

Supplementary Problems

Examine the functions of Problem 19(a) to (k) of Chapter 7 for points of discontinuity.
Ans. (a), (b),(d) none; (c)x=-1;(e)x==1, () x=2,3; (gl x=—-1, -3; (h) x==*2
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11.

12.
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Show that f(x) = |x| is everywhere continuous.

1ix

1 . . -
Show that f(x) = T+ has a jump discontinuity at x = 0.

+2

Show that at x =0, (a) f(x) =
discontinuity.

1
Y] has a jump discontinuity and (b) f(x) = 3,:r—+1 has a removable

. . x’—4x-21
If Fig. 8-4(a) is the graph of f(x) = —_7

7 show that there is a removable discontinuity at x =7
and that ¢ = 10 there.

Prove: If f(x) is continuous on the interval a =<x < b, and if ¢ is any number between @ and b and
f(c) <0, then there exists a number A >0 such that whenever ¢ — A <x < ¢+ A then f(x) <O0.

Sketch the graph of each of the following functions, find any discontinuities, and state why the function
fails to be continuous at those points. Indicate which discontinuities are removable.

_ : 310 x+3 ifx=2
(@ fixr =21 ) f="—=5— (0 f=y
x+1 fx<2
4—-x ifx=3 -1
(d) f(x)= |x| - x (e) f(x)={x—2 if0<x<3 () f =5
x—1 ifx=0 -1

'+ xT—17x+ 15
x24+2x-15

(8) flx)=

Ans. (a) x=0; (b) x = =2 (removable); (c¢), (d) no discontinuities; (¢) x =0; (f) x=1. —1 (both
removable); (g) x =3, —5 (both removable)

Sketch the graphs of the following functions, and determine whether they are continuous on the closed
interval [0, 1].

-1 forx<0

1
(@) fix)={ 0 for0=x=<1 (b) f(x)zl; for x>0 () f(x)={_21 for x <0
X for x =0
0 forx>1 1 forx=0
x forx=90
(d) f(x)=1for0<x=1 (e) flx)=70 for0<x<1
x forx=1



Chapter 9

The Derivative

INCREMENTS. The increment Ax of a variable x is the change in x as it increases or decreases
from one value x = x, to another value x = x, in its domain. Here, Ax = x;, — x, and we may
write x; = xo + Ax.

If the variable x is given an increment Ax from x = x, (that is, if x changes from x = x, to
x = x, + Ax) and a function y = f(x) is thereby given an increment Ay = f(x, + Ax) — f(x,) from
y = f(x,), then the quotient

Ay _ changein y
Ax ~ change in x

is called the average rate of change of the function on the interval between x = x, and
x=ux,+ Ax.

EXAMPLE 1: When x is given the increment Ax = 0.5 from x, = 1, the function y = f(x) = x* + 2x is
given the increment Ay = f(1+0.5) — f(1) =5.25 — 3 =2.25. Thus, the average rate of change of y on the

interval between x =1 and x=1.5is ﬂ = g-é =4.5.
Ax 05

(See Problems 1 and 2.)

THE DERIVATIVE of a function y = f(x) with respect to x at the point x = x, is defined as
. Ay o f(x0+Ax)"f(xu)
lim — = lim

Ax—0 Ax  Ax—0 Ax

provided the limit exists. This limit is also called the instantaneous rate of change (or simply, the
rate of change) of y with respect to x at x = x,,.

EXAMPLE 2: Find the derivative of y = f(x) = x> + 3x with respect to x at x = x,. Use this to find the
value of the derivative at (a) x, =2 and (b) x, = —4.

Yo=flxg) = x(Z) +3x,
Yo t Ay = flxy +Ax) = (x, + Ax)’ + 3(x, + Ax)
=xl+2x,Ax + (Ax)’ + 3x, + 3 Ax
Ay = f(x, + Ax) — f(x,) = 2x, Ax + 3 Ax + (Ax)’
Ay _ flxo + A%) ~ fx,)

= +3+
Ax Ax 2x, 3+ Ax
The derivative at x = x,, is
. Ay . _
Jfim, 3 = Jim, 2+ 3+ 80 =25 +3

(a) At x, =2, the value of the derivative is 2(2) +3=17.
(b) At x, = —4, the value of the derivative is 2(—4) + 3= -5.

IN FINDING DERIVATIVES it is customary to drop the subscript 0 and obtain the derivative of
y = f(x) with respect to x as

lim 22 = jig [EF 40 2 /()
ar—0 Ax Ax—0 Ax

73
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The derivative of y = f(x) with respect to x may be indicated by any one of the symbols
d dy , , d
=Y & Dby o 2 fx)

(See Problems 3 to 8.)

DIFFERENTIABILITY. A function is said to be differentiable at a point x = x, if the derivative of
the function exists at that point. Problem 3 of Chapter 8 shows that differentiability implies
continuity. The converse is false (see Problem 11).

Solved Problems

1. Given y = f(x) = x’+5x—8, find Ay and Ay/Ax as x changes (a) from x, = 1 to
X, =x,+Ax =12 and (b) from x,=1 to x, =0.8.

(a) Ax=x, ~x,=12-1=0.2 and A .
Ay = flx, + 8x) = f(x,) = f(1.2) = f(1) = —0.56 — (~2) = 1.44. So Kf =97 12
() Ax=08-1=-0.2 and '

Ay = f(0.8) — f(1) = —=3.36 — (-2) = ~1.36. So % - 136

-0.2

Geometrically, Ay/Ax in (a) is the slope of the secant line joining the points (1. -2) and
(1.2, —0.56) of the parabola y = x>+ 5x — 8, and in (b) is the slope of the secant line joining the points
(0.8, —3.36) and (1. —2) of the same parabola.

=6.8

2. When a body freely falls a distance s feet from rest in ¢ seconds, s = 167> Find As/A¢ as ¢
changes from ¢, to ¢, + At. Use this to find As/At as ¢ changes (a) from 3 to 3.5, (b) from 3 to
3.2, and (c¢) from 3 to 3.1.

As _ 16(1, + A1)’ = 161) 321, At + 16(A1)°
At At - At
(a) Here 1, =3, Atr=0.5, and As/Ar =32(3) + 16(0.5) = 104 ft/s.
(b) Here ¢, =3, At=0.2, and As/At =32(3) + 16(0.2) = 99.2 ft/s.
(¢) Here t, =3, Ar=0.1, and As/At =97.6ft/s.
Since As is the displacement of the body from time r=1¢,to t =1, + At,

=321, + 16 At

As _ displacement

- - = average velocity of the body over the time interval
At time

3. Find dy/dx, given y = x> — x* — 4. Find also the value of dy/dx when (a) x=4, (b) x=0,
{(c)x=~1.
y+Ay=(x+Ax) - (x+Ax)’ -4
= x* + 3x%(Ax) + 3x(Ax)’ + (Ax)’ — x* — 2x(Ax) — (Ax)* - 4
Ay = (3x* — 2x) Ax + (3x - 1)(Ax)* + (Ax)’

Ay 2 2
—_— = — + — +
3X 2X (3X 1) AX (AI)

ZX_L lim [3x% - 2x + (3x — 1) Ax + (Ax)*] = 3x? — 2x

Axr—0

4 2 d 2
@ D) =say-a=a0 0) L =307 -200=0; @ L[ =3-nP-2-1=s
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4. Find the derivative

THE DERIVATIVE

0fy=x2+3x+5.

y+Ay=(x+AxP +3(x+Ax)+5=x>+2xAx+Ax’ +3x+3Ax+5
Ay =(2x +3) Ax + Ax?

Ay _(2x+3)Ax+8x7

Ax Ax

=2x+3+ Ax

d
—y=Alim0(2x+3+Ax)=2x+3

dx

s. Find the derivative of y =

y+Ay=

Ay =

Ay _
Ax

dx

d

-1
Atx=1, —

6. Find the derivative of f(x) =

1 at x=1and x=3.
x—2
1
x+Ax-2

1 1 =(x—2)—(x+Ax—2)_ —Ax

x+Ax-2 x-2 (x-2(x+Aax-2) (x-2)(x+Ax-2)
-1
(x—2)(x+Ax-2)

. -1 o
I TG+ =2) =2

dy -1

y——=_' = = —_—— = —
dx_(l—z)z 1; at x 3,dx (3__2)2

2x -3

3x+4°

2(x + Ax) -3
3(x+Ax)+4
2x+2Ax—-3 2x-3

flx + Ax) =

f(x+Ax)—f(x)=3x+3Ax+4 T 3x+4

_ (Bx+4)[(2x —3) + 2 Ax] — (2x = 3)[(3x +4) + 3 Ax]

(3x+4)(3x +3Ax +4)
_ (6x+8—-6x+9Ax 17 Ax
T (Bx+4)(Bx+3Ax+4) (3x+4)(3x +3Ax+4)
flx+Ax) — f(x) 17
Ax T (Bx+4)(3x+3Ax +4)
f)= tim 17 17

as%0 Bx+4)(3x+3Ax+4)  (3x+4)

7. Find the derivative of y = V2x + 1.

y+Aay=
Ay =

Ay _

-
dy

dx=

2x+24ax+1)'"?
(2x+2Ax+1)""* = (2x +1)'"?
Qx+2Ax+1)"?+(2x + 1)

12 _ 172
(Gxr28x V7= @r+ D e 2as v )P v @ v )

(2x+24ax+1)—(2x+1) _ 2Ax
Qr+2Ax+ D)+ 2x+ D' (2x+2Ax+ 1)+ (2 + 1)
2
Qx+2Ax+ 1D+ (2x+ 1)

2 1

Jim, Cx+28x+ 1) 2+ 2x+ 1) (2x+1)'"7
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For the function f(x) = V2x + 1, lim  f(x)=0= f(-

1) while limz) f(x) does not exist: the
x—( 1:2) x—(- 1/
function has right-hand continuity at x = — §. At x = — 1, the derivative is infinite.

8.  Find the derivative of f(x)=x'"". Examine f'(0).

flx+Ax)=(x+Ax)""
fx + Ax) = flx) = (x + Ax)'"F = x'"?

(G A - e+ AT A x e+ AR T
(x+Ax)"? +x'"x +Ax)' T+ 177

o xrbx-x
(x+Ax)2.J+xl/3(X+AX)1/3+x2/3
fla + Ax0) ~ fx) _ !
Ax (X+Ax)213+xl:‘3(x+Ax)l/3+x2/3
) 1 1
f'x)= 1l ; =

m - ; ; 3
ax=0 (x + AX) P+ X N x + A P+ T 3

The derivative does not exist at x = 0 because the denominator is zero there. However, the function
is continuous at x =0. This, together with the remark at the end of Problem 7, illustrates: If the
derivative of a function exists at x = a then the function is continuous there, but not conversely.

9. Interpret dy/dx geometrically.

From Fig. 9-1 we see that Ay/Ax is the slope of the secant line joining an arbitrary but fixed point
P(x. v) and a nearby point Q(x + Ax, y + Ay) of the curve. As Ax— 0, P remains fixed while Q moves
along the curve toward P, and the line PQ revolves about P toward its limiting position, the tangent line
PT to the curve at P. Thus, dy/dx gives the slope of the tangent at P to the curve y = f(x).

¥ = f(z)

Q(x + Az, y + Ay)

Fig. 9-1

For example, from Problem 3, the slope of the cubic y = x* — x* — 4 is m = 40 at the point x = 4; it is
m = () at the point x =0; and it is m =5 at the point x = —1.

10.  Find ds/dr for the function of Problem 2 and interpret it physically.
Here
as _

ds .
A =32+ 16A0  and = lim (326, + 16 Ar) =321,
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11.

12.

13.

14.

15.

16.

17.

As At—0, As/At gives the average velocity of the body for shorter and shorter time intervals Az. Then
we can define ds/dt to be the instantaneous velocity v of the body at time ¢t = ¢,. For example, at 7 =3,
v =32(3) =96 ft/s.

Find f’(x), given f(x) = |x|.

The function is continuous for all values of x. For x<0, f(x)=-x and f'(x)=
. —(x +Ax) — (—x) ,
lim ————————* =—1;for x>0, f(x)=x and f'(x) = 1.

- Ax
: 0At)r=0 f(x)=0and lim w= lim |A_x As Ax—0~ |A_):|
Ax ’ Ax—0 Ax ax—0 Ax ' Ax

Ax — 1. Hence, the derivative does not exist at x =0.

— —1; but as Ax— 0",

Compute € = % - % for the function of (a) Problem 3 and (b) Problem 5. Verify that e =0

as Ax—0.
(a) € =[3x% = 2x + B3x — 1) Ax + (Ax)*] - (3x* — 2x) = (3x — 1 + Ax) Ax
_ -1 1 =—(x-2)+(x+Ax—2)= 1
O €= DG +8r-2) G-2F  -2G+di-2)  G-2arar-2)

Both obviously go to zero as Ax— 0.

dy
dx

d
In Fig. 9-1, Ay = RQ and zy Ax = PRtan £ TPR = RS, thus, € Ax = §Q. For a change Ax in x from
P(x, y), Ay is the corresponding change in y along the curve while % Axis the corresponding change in

Interpret Ay = —— Ax + € Ax of Problem 12 geometrically.

y along the tangent line PT. Since their difference € Ax is a multiple of (Ax)? it goes to zero faster than

Ax, and I Ax can be used as an approximation of Ay when |Ax| is small.

Supplementary Problems

Find Ay and Ay/Ax, given

(a) y=2x—3 and x changes from 3.3 to 3.5.
(b) y =x*+4x and x changes from 0.7 to 0.85.
(c) y=2/x and x changes from 0.75 to 0.5.

Ans.  (a) 0.4 and 2; (b) 0.8325 and 5.55; (¢) $ and — ¥

Find Ay, given y = x> —3x+35, x=5, and Ax = —0.01. What then is the value of y when x = 4.99?
Ans. Ay =-0.0699; y = 14.9301
Find the average velocity, given

(@) s =(3t*+5) ft and ¢ changes from 2 to 3s.
(b) s =(26*+ 5t —3) ft and ¢ changes from 2 to 5s.

Ans. (a) 15 ft/s; (b) 19 ft/s

Find the increase in the volume of a spherical balloon when its radius is increased () from r to r + Ar in;
(b) from 2 to 3in.  Ans. (a) 2w(3r +3rAr+Ar) Arin®; (b) ¥ 7 in’
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18.

19,

21.

22.
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Find the derivative of each of the following:

(@) y=4x-3 (b) y=4-3x (c) y=x*+2x-3
(d) y=1/2* (&) y=Q2x-1)/(2x +1) (f) y=(Q+2x)/(1 - 2x)
(g y=vx () y=1/vx () y=vV1+2x

() y=1V2+x
Ans. (@) 4; (b) =3; () 2(x + 1); (d) —-2/x°; (e)
) 1 . 1
(‘)m»(.’) 2(2+x)3/2
Find the slope of the following curves at the point x = 1:

Lo <2 _ 4 2
(a)y_s Sx (b)y_x+1 +3

Ans.  (a) —10; (b) —1; (¢) — }

1
(1 2)2’(3) 2\/—’(”) '—m;

G O

Find the coordinates of the vertex v of the parabola y = x* — 4x + 1 by making use of the fact that at the
vertex the slope of the tangent is zero. Ans. V(2,-3)

Find the slope of the tangents to the parabola y = —x” + 5x - 6 at its points of intersection with the x
axis. Ans. atx=2, m=1;atx=3, m=-1

When s is measured in feet and ¢ in seconds, find the velocity at time ¢ =2 of the following motions:

(@) s=1"+3t (b) s=r -3 (c) s=Vi+2
Ans. (a) 7ft/s; (b) 0 ft/s; (c) § ft/s

Show that the instantancous rate of change of the volume of a cube with respect to its edge x in inches is
12in*/in when x =2 in.



Chapter 10

Rules for Differentiating Functions

DIFFERENTIATION. Recall that a function f is said to be differentiable at x = x, if the derivative
f'(x,) exists. A function is said to be differentiable on an interval if it is differentiable at every
point of the interval. The functions of elementary calculus are differentiable, except possibly at
isolated points, on their intervals of definition. The process of finding the derivative of a
function is called differentiation.

DIFFERENTIATION FORMULAS. In the following formulas u, v, and w are differentiable
functions of x, and ¢ and m are constants.

1. d%(c)=0 2 %(x)=l

d d d
3 Lot )= @t @) 4. %(Cu)=6%(u)
5. %(u)=ui(v)+vi(u)

(uvw) = uv 4 (w) + uw i (u) + uvw 4 (u)

6. E dx
7. %( )—%z(u) c#0
o A () d (D)5 Lo
4,4
9. %(S)=vd"(u)v2udx(v),u¢o 10. —(x )= mx
11. ;i(u) mu _'%(u)

(See Problems 1 to 13.)

INVERSE FUNCTIONS. Two functions f and g such that g( f(x)) = x and f( g( y)) = y are said to be
inverse functions. Inverse functions reverse the effect of each other.

EXAMPLE 1: (a) The inverse of f(x) = x + 1 is the function g(y)=y — 1.
(b) The inverse of f(x) = —x is the same function.
(c) The inverse of f(x) = VX is the function g(y) = y* (defined for y = 0).
+

(d) The inverse of f(x) =2x — 1 is the function g(y) = Y_2_1

Not every function has an inverse function. For example, the function f(x) = x> does not
possess an inverse. Since f(1) = f(—1) = 1, an inverse function g would have to satisfy g(1) =1
and g(1) = — 1, which is impossible. However, if we restrict the function f(x) = x” to the domain
x =0, then the function g( y) = vy would be an inverse of f. The condition that a function f
must satisfy to have an inverse is that f is one-to-one; that is, for any x, and x, in the domain of

[, if x; # x,, then f(x,) # f(x,).

79
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Notation: The inverse of f is denoted f ' If y = f(x), we often write x = f "'(y). If fis
differentiable, we write, as usual, dy/dx for the derivative f'(x), and dx/dy for the derivative
f ().

If a function f has an inverse and we are given a formula for f(x), then to find a formula for
the inverse f ', we solve the equation y = f(x) for x in terms of y. For example, given

and a formula for the inverse function is

fix)=5x+2, set y=5x+2. Then, x=y; ,
-1 _y—2
foyy=—

DIFFERENTIATION FORMULA for finding dy/dx given dx/dy:

dy 1
dx  dx/dy

12.

EXAMPLE 2: Find dy/dx, given x =\/y + 5.
First method: Solve for y = (x — 5)% Then dy/dx = 2(x - 5).

. . Di : A _ 1 o ] dy v m iy -
Second method: Differentiate to find dy 32 y N Then, by rule 12, - 2Vy =2(x = 5).

(See Problems 14, 15, and 57 to 62.)

COMPOSITE FUNCTIONS; THE CHAIN RULE. For two functions f and g, the function given by
the formula f( g(x)) is called a composite function. If f and g are differentiable, then so is the
composite function, and its derivative may be obtained by either of two procedures. The first is

to compute an explicit formula for f( g(x)) and differentiate.

EXAMPLE 3: If f(x) = x’ + 3 and g(x) = 2x + 1, then
y=flgx)=(2x+ 1Y’ +3=4x’+4x+4  and % =8x+4
The derivative of a composite function may also be obtained with the following rule:
13.  The chain rule: D _( f(g(x))) = f'(g(x))g’'(x)

If f is called the outer function and g is called the inner function, then D ( f( g(x))) is the
product of the derivative of the outer function (evaluated at g(x)) and the derivative of the

inner function.

EXAMPLE 4: In Example 3, f'(x) = 2x and g'(x) = 2. Hence, by the chain rule,
D (f(g(x)) = f'(g(x))g'(x) =2g(x)-2=4g(x) =4(2x + 1) =8x + 4

ALTERNATIVE FORMULATION OF THE CHAIN RULE. Write y = f(u) and u = g(x). Then the
composite function is y = f(u) = f( g(x)), and we have:

, dy dy du
The chain rule: x ~ du dx
EXAMPLE 5: Lety =1’ and u = 4x* — 2x + 5. Then the composite function y = (4x — 2x + 3)" has the
derivative
dy _dydu_
o =3 (8x - 2) = 3(4x ~ 20 + 5)'(8x - 2)
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dy dy du
dx  du dx’
denotes the composite function of x, whereas the y on the right denotes the original function of
u (what we called the outer function before). (2) Differentiation rule 11 is a special case of the
chain rule. (See Problems 16 to 20.)

Notes: (1) In the second formulation of the chain rule, the y on the left

HIGHER DERIVATIVES. Let y = f(x) be a differentiable function of x, and let its derivative be
called the first derivative of the function. If the first derivative is differentiable, its derivative is

y", or f"(x). In turn, the derivative of the second gerivative is called the third derivative of the

d
function and is denoted by one of the symbols -dx—};, y”, or f"(x). And so on.

Note: The derivative of a given order at a point can exist only when the function and all
derivatives of lower order are differentiable at the point. (See Problems 21 to 23.)

Solved Problems

d d
1. Prove: (a) e (c) =0, where c is any constant; (b) Ic (x)=1; (c) dix (cx) = ¢, where ¢ is any

constant; and (d) — (x") = nx""', when n is a positive integer.
dx p g

Since - f(x)— lm w,

d .
@ G (@)= Jim, "5 = Jim, 0=0
_ ( +Ax)-x . Ax _
®) = (x) h Ax B Al:To x AllTo 1=1
i o clxtAx)—ex _
© dx (ex) = Al;erO Ax - Al:r—‘-]o €=c

nin—1)

- i 1:2
- A:TO Ax

[x" +nx" " Ax + " (Ax) + -~~+(Ax)"]—

(x+Ax)" —x"

@ £
n(n~-1)
1-2

= lim [nx"“'-f- Jc"'zAx+---+(Ax)"7']=nx"7l

Ax—0

2, Let u and v be differentiable functions of x. Prove: (a) % (u+v)= dix (u) + % (v);

(b)(%(uv)=u%(v)+v%(u); (c)%(g)e dx . 00

(a) Set f(x) = u+ v = u(x) + v(x); then

fx+Ax) = f(x) _ulx +Ax)+v(x + Ax) —u(x) —v(x) _u(x + Ax) —u(x)  v(x + Ax) - v(x)
Ax = Ax = Ax * Ax

Taking the limit as Ax — 0 yields — dx flx)= dx (u+v)= u(x) + — v(x) = % (u) + % (v).
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(b) Set f(x) = uv = u(x)v(x); then
flx + Ax) ~ f(x) _ u(x + Ax)v(x + Ax) — u(x)v(x)

Ax Ax
~u(x + Ax)u(x + Ax) — v(x)u(x + Ax)] + [v(x)u(x + Ax) — u(x)v(x)]
- Ax
= u(x + Ax) v(ix + AAxl - v{x) + v(x) u(x + A:; - u(x)

and for Ax— 0, % flx)= d.ix (uv) = u(x) dix v(x) + v(x) dix u(x)=u dix (v)+v % (u).

_ux)
(c) Set fix)= ; ok ; then
u(x + Ax)  u(x)
fix +Ax) = flx) _ v(x+Ax) wv(x)  ulx + Ax)u(x) — u(x)v(x + Ax)
Ax a Ax h Ax{v(x)v(x + Ax)}
_ [u(x + Axju(x) — u(x)v(x)] = [u(x)vlx + Ax) — u(x)v(x)]
- Ax[v(x)v(x + Ax)]
— ) A —
o(x) u(x + Asz u(x) u(x) v(x + .,;2 v(x)
v(x)v(x + Ax)

and for Ax—0 d _i(u>-v(x)%u(x)—u(x)%v(x)=vd%(u)—u%(u)'
mdfor &m0 g O™ g\ [v(0)]? i

3. Differentiate y =4 + 2x — 3x* - 5x* — 8x* + 9x°

d 2
Ey =0+2(1) = 3(2x) — 5(3x%) — 8(4x>) + 9(5x*) =2 - 6x — 15x% — 32x" + 45x*
1 3 2 - - -
4, Differentiate y = - + 5 + S5 =x ' +3x 2+ 2x”"
X x X
d 2 , , . .
ay=—x"+3(—2x ) +2(-3x )= —x 2—6Jc'3—6x"'=—l2—g—g4
X X X
5. Differentiate y =2x'"* + 6x'"* — 2x*'%
ﬂ_ (l —1/2) (l —2/3)_ (§ 1/2)~ -2 -2/3 2 _ |l 2 12
dx—?_zx +63x 22x =x + 2x 3x _x"'2+x:"" 3x
. . 2 6 2 4 _ _ _ _3
6. Differentiate y= —5 + 5 — =5 — —573 =2x V2 +6x VT —2x7 M2 -4
x X x X
dy _ (__ 12) (_1 4/3)_ (_3 4/2)_ (_§ 74)
dx—z 3 X +6 X 2 X 4 i
X X X X

7. Differentiate y =V3x’ — 1 =(3x%)'" = (5x)7'2

V5x
dy -2/3 l —3:2 _ 2x 5 _ 2 1
3 G260~ (= 3)60 0 = R s = e
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8. Differentiate s = (> — 3)*.

ds 3moy o
Z° 40 -3y (20) =81(1* - 3)

3 -
9. Differentiate z = ————— =3(a’ ~ y*) 2
(@ -y%)
fi_z___ 2_2—3_1 22N _ A 2 2v-3, __12—Y_
dy—3( 2)(a" ~y") dy (@ -y)=3-2)@ -y) ZY)_(az_yz)J

10. Differentiate f(x)= Vx> +6x+3=(x*+6x+3)"?

o d Y +3
f(x)= 107+ 6x +3)7"2 - (4 6x+3) = 1(x* +6x +3) (20 +6) = “—”Tfm
11.  Differentiate y = (x* + 4)’(2x* - 1)°.
y =@ +4) % 2 -1+ @2 -1) % (x* + 4y
= +47°03)N2x° - 1) % 2 -1+ - 1)’Q2)x*+4) % x>+ 4)

= (x* + 4)%(3)(2x> — 1)’(6x%) + (2x° — 1)’ (2)(x* + 4)(2x)
=2x(x" + 4)(2x° — 1)’(13x° + 36x — 2)

. . _3-2
12.  Differentiate y = TP
3+2)i 3-2x)—-(3-2 4 3+2
,_ B g 0--0-295, 0420 5ig¢-2-3-0Q) _ -2
r = (3 + 2x)° (3 + 2x)° (3 + 2x)°
2 2

X X
13.  Differentiate y = = .
ifferentiate y Vi @-O"

(4_x2)1/2%(xz)_xzzdx_(4_xz)xzz

dy _ (-0 - ()G - x7) (= 2x)
dx 4—x? 4-x°

~ (4_xz)|/2(2x)+x3(4_x2)—1/2 (4_x2)1/2 _ 2x(4—x2)+x3 _ 8x—x’

= 4- 1 (4_x2)1/2 (4-1’2)3/2 (4_x2)3/2

14.  Find dy/dx, given x = y\/1 -y

1-2y? dy 1 1-y

dx —
___=1_2“2+l 1_2‘1/2_ = - =
dy (1-y9 (1 =y7)" (-2y) o, O & /dy — 1-2y°

15.  Find the slope of the curve x = y*> — 4y at the points where it crosses the y axis.

. . dr _ dy 1 _ 1
The points of crossing are (0, 0) and (0, 4). We have dy -~ 2y — 4 and so dx " dxldy “ 2y -4 At

{0, 0) the slope is — 4, and at (0, 4) the slope is 3.
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THE CHAIN RULE

. . . d dy du
16. Derive the alternative chain rule, @ _ 8 —.
dx du dx
Let Au and Ay be, respectively, the increments given to y and u when x is given an increment Ax.
N ided Au 0, 5 =AY M.y provided Au %0 as Ax—0, 2 = @ ¥ d
ow, provided Au Ar - Au Ar’ p u as Ax = require

The restriction on Au can usually be met by taking |Ax| sufficiently small. When this is not possible,
the chain rule may be established as follows:

Set Ay = % Au+ € Au, where e >0 as Ax— 0. (See Problem 13 of Chapter 9.) Then

Ay dy Au+ Au
Ar  du Ax € Ax

dy _dy d“+ g‘i:‘l_yﬂaSbefore

and. taking the limits as Ax— 0 yields - du dr i dn ax

2
-1
17.  Find dy/dx, given y = u,_ and u =V’ +2.
u

+1
dy 4w w22
du W1y ° 3+ 3
dy _dy du 4u 2x 8x

Then dr T dude (W1 38 u( + 1)

18. A point moves along the curve y = x* — 3x + 5 so that x = $V/7 + 3, where ¢ is time. At what
rate is y changing when ¢ = 4?

We are to find the value of dy/dt when 1 =4. We have

dy 3,7 dx _ 1 dy _dy dx _3(x"-1)
4D A G S Y AT A i
When t=4, x = V4 +3=4, and dy_3de-1) _ 4 umts per unit of time.

di T a2) 8

19. A point moves in the plane according to the equations x = £ +2tand y =2’ — 61. Find dy/dx
when 1 =0, 2, and §.

Since the first relation may be solved for ¢ and this result substituted for ¢ in the second relation, y is

. : dy ax . r_ 1
clearly a function of x. We have i 61" — 6 and - 2¢ + 2, from which il et Then
dy _dy dt 5 1 _
dr o dx O T D3y T3

The required values of dy/dx are —3 att=0,3 at =2, and 12 at r =5.

20. Ify=x"—4x and x=V2r +1, find dy/dt when t = V2.

dy _ oo x _ 2 dy _dy dx _ 4f(x-2)
dx x-2)  and = (2:2+ 1)"2 O W Tdx A 2rrne
dy 4VI(V5-2)

When 1=VZ, x=V3and = T_ 5 (5 2V3).

21.  Show that the function f(x) = x* + 3x” - 8x + 2 has derivatives of all orders at x = a.
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fl(x)=3x"+6x—8 and f'(a)=3a’+6a-8
f'(x)=6x+6 and f(a)=6a+6
f"(x)=6 and f"(a)=6

All derivatives of higher order exist and are identically zero.

/

22. Investigate the successive derivatives of f(x) =x*" at x=0.

f’(x)=§x“3 and  f'(0)=0

f'x)= —é% and f"(0) does not exist

Thus the first derivative, but no derivative of higher order, exists at x =0.

23.  Given f(x) = % =2(1-x)"", find f™(x).
f=2-D1-)"7-=20-x""=20)1-x""
f)=20(-2)A -0 (-1 =221 - %)’
) =22H(=-3)1 -0 (-n=23N1-x)*
which suggest f“'(x) =2(n!)(1 — x)"“""). This result may be established by mathematical induction by
showing that if £f*(x) =2(k)(1-x)"“"", then

£ = =20k + 1)1 =07 * ) =21k + DA -0 4D

Supplementary Problems

. N . 1
4. Establish formula 10 for m = —1/n, n a positive integer, by using formula 9 to compute de‘ (7) (For
the case m = p/q, p and q integers, see Problem 4 of Chapter 11.)

In Problems 25 to 43, find the derivative.

25. y=x"+5x"-10x*+6 Ans.  dyldx=5x(x"+4x* - 4)
3
— 172 _ 32 -1/2 - _ 3 _ 32
26 y=3x x4 2x Ans. dyldx N VX —1/x
D SN S S e y__1_ 2
27. y—212+\/i—2x + 4x Ans. E—‘xg 2
28,  y=V2x+2vx Ans. y'=(1+V2)V2x
2 6 , 12 42723
29. fly= Vi +\37_t Ans. f'(t)=-— 1—2
3. y=(1-5x° Ans.  y'=-30(1-5x)
3. f)y=Cx-x+1)* Ans. f'(0)=121-x)CBx-x*+1)
32 y=3+4x—x})"? Ans. y'=(Q2-x)/y
_3r+2 de 5
B =53 Ans. G~ (2r +3)°
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3 -( ul )S ans. yr= X
e S Y Ty
BN . x(8—5x)
3s. y=2xV2-x Ans. y RV
_ 2
36. flx)=xV3-2° Ans.  f'(x)= i—“—z
3-2x
dy 2x°—4x+3
37. =(x-)Vx' -2x+2 Ans. == Tt
y=emb dx " Vi 2x 12
w dz 1
I R (e A G T T aw)”
S
3. y=VIzvx Ans. Y S AT VR
0. fo =yt Ans. fi(x)= —— e
) x+1 ' (x+ V-1
41. y=(x"+3)'(2«> - 5) Ans.  y' =2x(x* +3)’(2x* - 5)’(17x> + 27x - 20)
£ +2 ds 10¢
42. 5= P Ans. dar G-y
=1 ) 36x%(x - 1)°
. = Ans. y'= " —=
| (2x‘ 1 YT Ta Ry

M. For c¢ach of the following, compute dy/dx by two different methods and check that the results are the
same: (a) x =(1+2y)", (b) x =1/(2+ y).

In Problems 45 to 48, use the chain rule to find dy/dx.

u-1 dy 1
45, y—u+l.u—\/I Ans. dx_\/}(1+\/i)2
46. =t d, u=x"+2x Ans.  dyldx =6x*(x +2)’(x + 1)
47. v=VI+u u=vx Ans. See Problem 39.
. dy dy du dv )
= = _ = 2 P = L — —
48. y=vu, u=v(3-2v),v=x (Hml. dx -~ de do dx Ans. See Problem 36.

In Problems 49 to 52, find the indicated derivative.

49, y=3x"- 227+ x-5; y" Ans.  y"=T2x
105
50. = 1vE Yy Ans.  y™ =
y Xy ns y 16x°2
51, fx)=V2-3x% f(x) Ans.  f(x)=-6/(2~3x")"
52 y=xVr-1.y" Ans. yr= 27X
. ¥ =x/V .y .y Ax -1

In Problems 53 and 54, find the nth derivative.
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n -1)"[(n + 1)!
§3. y=1/x* Ans. y()=——-————-—( ))E'('” i

3"(n!)

5. f0)=1/(3x+2) Ans. f70) =(=1) Gy

S5. If y = f(u) and u = g(x), show that

)Ly by Bu Ay () By b Su Ly Sy de Ly ey
(a dx? ~ du drx? du? \dx dx’ ~ du dc’ dil ai dx da’ \dx
56 From E _ l derive d_zx _ yn and d—lx _ 3(yu)2 _ylym

. dy y- ’ dyZ (yy)3 dy3 (y,)s .

In Problems 57 to 62, determine whether the given function f has an inverse; if it does, find a formula
for the inverse f ' and calculate its derivative.

§7. f(x)=1/x Ans. x=f"'(y)=1/y; dxldy = —x*=—1/y*
58. flx)=1ix+4 Ans. x=f"'(y)=3y-12; dx/dy=3
5. f(x)=Vx-5 Ans. x=f"'(y)=y*+5; dx/dy=2y=2Vx~5
60. fixy=x*+2 Ans. no inverse function

=5 P PRRNE N S SR S VE
6. fix)=x Ams. x=fTN=VViF=3a=37
62. f(x)=2x_1 Ans. x=f“(y)=—-—2y+l'dx— 5

42 y-2'dy (y-2)°



Chapter 11

Implicit Differentiation

IMPLICIT FUNCTIONS. An equation f(x, y) =0, on perhaps certain restricted ranges of the
variables, is said to define y implicitly as a function of x.

1-x

EXAMPLE 1: (a) The equation xy + x — 2y — 1 =0, with x # 2, defines the function y = —

(b) The equation 4x> +9y* — 36 =0 defines the function y = 2V 9 — x* when |x[ =3 and y =0, and the
function y = — 3V 9 — x” when |x| =3 and y =< 0. The ellipse determined by the given equation should be
thought of as consisting of two arcs joined at the points (—3,0) and (3,0).

The derivative y' may be obtained by one of the following procedures:

1. Solve, when possible, for y and differentiate with respect to x. Except for very simple
equations, this procedure is to be avoided.

2. Thinking of y as a function of x, differentiate both sides of the given equation with
respect to x and solve the resulting relation for y’. This differentiation process is known
as implicit differentiation.

EXAMPLE 2: (a) Find y', given xy + x —~2y — 1 = 0.
d d d d d d
We have x Z(Y)+)’a(1)+l‘§(x)*2d—;(y)~Ex—(l)—a(())
orxy' +y+1~2y" =0; then y' = 5—_—)’-
(b) Find y’ when x = V3, given 4x* + 9y’ =36 =0.
d . d o d o dy _ -
We have 4dx (x )+9dx (y )—8x+9dy (y )dx =8x + 18yy' =0
or y'=—4x/9y. When x=V35, y=+4/3. At the point (V5,4/3) on the upper arc of the ellipse,
y'=~V5/3, and at the point (V5, —4/3) on the lower arc, y' = V5/3.

DERIVATIVES OF HIGHER ORDER may be obtained in two ways. The first is to differentiate
implicitly the derivative of one lower order and replace y’ by the relation previously found.

EXAMPLE 3: From Example 2(a), y' = ;—f—i Then
1+y
4 e "=_d_(l+y)=(2—x)y’+l+y:(2 x)<2~x)+1+y 242y
dx YTV T \a 7« 2-x) (2-x) T 2-x)

The second method is to differentiate implicitly both sides of the given equation as many
times as is necessary to produce the required derivative and eliminate all derivatives of lower
order. This procedure is recommended only when a derivative of higher order at a given point
is required.

EXAMPLE 4: Find the value of y” at the point (-1, 1) of the curve x’y + 3y — 4 =0.
We differentiate implicitly with respect to x twice, obtaining
£y +2xy +3y' =0 and X’y 4+ 2xy" + 2xy' +2y +3y" =0

’

We substitute x = —1, y = 1 in the first relation to obtain y’ = 5. Then we substitute x = ~1, y =1, y" = }
in the second relation to get y” =0.

88
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Solved Problems

L Find y’, givenxzy—xy2+x2+y220.
4 (e d e Doy 4=
E(XY)—d—x(XYde(x)+dx()’)“0
7d d 2 d d d d ,
Wty g () mx ON)=y p 0F p) F e(y)=0

_ y = 2x = 2xy
x*+ 2y — 2xy

'

Hence Xy +2xy—=2xyy' -y +2x+2yy’=0 and y

2. Find y’ and y”, given x> — xy + y* = 3.

d , d d  , _ . , ,_2x-y
)T g T O =xmny my s 2yyt=0. So y'= Ty

d
(x —2)’) B} (2x ‘Y)—(ZX‘Y) ZX- (X—z)’) (x —2)‘)(2—)")—(21 “)')(1 -2y

Th "= =
o (x-2y) (x-2y)
2x - y)
_3xy'—3y_3x(x—2y 3y_6(x2—xy+y2) _ 18
(x = 2y)° (x —2y) (x = 2y)° (x =2y)°

3. Find y' and y", given x’y + xy* =2 and x = 1.
We have
Oy +3x%y + 3%y +y =0
and x'y" 4+ 3x%y’ + 3x7y 4 6xy + 3xy’y" 4 6xy(y' ) +3y°y + 3y’y =0

When x =1, y =1; substituting these values in the first derived relation yields y' = —1. Then
substituting x =1, y =1, ¥’ = —1 in the second relation yields y” = 0.

Supplementary Problems

4. Establish formula 10 of Chapter 10 for m = p/q, p and ¢ integers, by writing y = x”'? as y¥ = x” and
differentiating with respect to x.

5. Find y”, given (@) x +xy +y=2; (b) x* =3xy +y = 1.
_ 2(1+y) 4xy
(1+x" (¥ -2’

6. Find y’, y*, and y™ at (a) the point (2,1) on x* — y* — x = 1; (b) the point (1, 1) on x*+3x%y - 6xy* +
2y'=0. Ans. (a) 3/2, —5/4,45/8, (b)1,0,0

Ans. (a) y" b) y'=-

7. Find the slope at the point (x,, y,) of (a) b*x* +a’y* =a’b’; (b) b’x’ —a’y’ =a’b?; (c) x" +y' -

6x’y = 0.
b*x b? dxgy, — x2
Ans. (@) =252 (b) 252 (€) SRRt
ay, ayq Yo~ 2x,
8. Prove that the lines tangent to the curves 5y —2x +y* —x’y =0 and 2y +5x + x* —x’y* =0 at the

origin intersect at right angles.
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(a) The total surface area of a rectangular parallelepiped of square base y on a side and height x is given
by $ =2y’ +4xy. If § is constant, find dy/dx without solving for y.

(b) The total surface area of a right circular cylinder of radius r and height A is given by
S=2ar’+2mrh. If S is constant, find dr/dh.

r

2r+ h

Ans.  (a) -X—i—y—; (b) -

"

Y
[1 + (y,)2]3/2

1
For the circle x> + y* = r’, show that -

Given S = wx(x +2y) and V = mx’y, show that dS/dx =2m(x — y) when V is a constant and dV/dx =
~mx(x — y) when § is a constant.



Chapter 12

Tangents and Normals

IF THE FUNCTION f(x) has a finite derivative f'(x,) at x = x,, the curve y = f(x) has a tangent at
Py(x,, y,) whose slope is
m=tan 6 = f'(x,)

If m =0, the curve has a horizontal tangent of equation y = y, at P,, as at A, C, and E of Fig.
2-1. Otherwise the equation of the tangent is

Y= Yo =m(x — x,)
If f(x) is continuous at x = x, but xllgl f'(x) ==, the curve has a vertical tangent of

equation x = x,, as at B and D of Fig. 12-1.

v

Fig. 12-1

The normal to a curve at one of its points is the line that passes through the point and is
perpendicular to the tangent at the point. The equation of the normal at Py(x,, y,) is
x = x, if the tangent is horizontal
y =y, if the tangent is vertical

1
Y= Y=~ 11 (x — x,) otherwise
(See Problems 1 to 8.)

THE ANGLE OF INTERSECTION of two curves is defined as the angle between the tangents to the
curve at their point of intersection.
To determine the angles of intersection of two curves:

1. Solve the equations simultaneously to find the points of intersection.
2. Find the slopes m,; and m, of the tangents to the two curves at each point of

intersection.
3. If m,=m,, the angle of intersection is ¢ =0°, and if m, = —1/m,, the angle of
intersection is ¢ = 90°; otherwise it can be found from
_om,—m,
tan ¢ = 1+mm,

¢ is the acute angle of intersection when tan ¢ >0, and 180° — ¢ is the acute angle of
intersection when tan ¢ <0,

(See Problems 9 to 11.)
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Solved Problems

Find the points of tangency of horizontal and vertical tangents to the curve x* — xy + y° = 27.
y—2x
2y —x’

For horizontal tangents: Set the numerator of y’ equal to zero and obtain y = 2x. The points of
tangency are the points of intersection of the line y = 2x and the given curve. Simultaneously solve the
two equations to find that these points are (3, 6) and (-3, —6).

For vertical tangents: Set the denominator of y’' equal to zero and obtain x =2y. The points of
tangency are the points of intersection of the line x =2y and the given curve. Simultaneously solve the
two equations to find that these points are (6,3) and (-6, —3).

Differentiating yields y’ =

Find the equations of the tangent and normal to y = x> — 2x> + 4 at (2, 4).

f'(x) = 3x* — 4x; hence the slope of the tangent at (2,4) is m = f'(2) = 4.
The equation of the tangent is y —4=4(x —2) or y =4x — 4.
The equation of the normal is y —4=—1(x —2) or x + 4y = 18.

Find the equations of the tangent and normal to x* + 3xy + y° =5 at (1, 1).

dy  2x+3y
dc~  3x+2y
The equation of the tangentis y —~1=-1(x —1)orx+y=2.
The equation of the normalis y —1=1(x —1) or x —y =0,

; hence the slope of the tangent at (1,1) is m = —1.

Find the equations of the tangents with slope m = — % to the ellipse 4x° + 9y’ = 40.

Let P,(x,. y,) be the point of tangency of a required tangent. P, is on the ellipse, so
4x +9yZ =40 1)
dy 4x 4x, 2

Also, i 9y Hence, at (x,, y,), m= — 9 =-3 So y, =2x,. The points of tangency are the

o
simultaneous solutions (1,2) and (=1, —2) of (1) and the equation y, = 2x,.
The equation of the tangent at (1,2)is y —2= — i(x—-1) or 2x +9y =20.
The equation of the tangent at (-1, —2)is y +2=—§(x+ 1) or 2x + 9y = - 20.

Find the equation of the tangent, through the point (2, ~2), to the hyperbola x*—y*=16.

Let P,(x,. y,) be the point of tangency of the required tangent. P, is on the hyperbola, so

X~ yo=16 (1)
o By X Ko _Yt2 _ o o
Also, Ay Hence, at (x,, y,), m= Yo X =2 slope of the line joining P, and (2, —2); then
2x,+2y,=x-yi=16 or x,ty,=8 2)

The point of tangency is the simultaneous solution (5, 3) of (1) and (2). Thus the equation of the
tangentis y — 3= 3(x —5) or Sx — 3y =16.

Find the equations of the vertical lines that meet the curves (1) y = x* + 2x’ — 4x + 5 and (2)
3y =2x" +9x° — 3x — 3 in points at which the tangents to the respective curves are parallel.

Let x = x, be such a vertical line. The tangents to the curves at x, have the slopes

For (1): y =3x’+4x~-4;atx=x, m,=3x,+4x,~4
For (2): 3y ' =6x"+18x-3;at x=x,, m,=2x2+6x,—1
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9.

Since m, = m,, we have 3x] + 4x, — 4 = 2x] + 6x, — 1, from which x, = —1 and x, = 3. The lines are
x=—1and x=3.

(a) Show that the equation of the tangent of slope m#0 to the parabola y2=4px is
y=mx+p/m.

(b) Show that the equation of the tan%ent to the ellipse bx? + azy2 =a’b’ at the point
Py(x,. ¥,) on the ellipse is b’x,x + a’y,y = a’b’.

(@) y'=2ply. Let Py(x,,y,) be the point of tangency; then y3=4px, and m=2p/y,. Hence,
y, =2p/m and x, = }y2/p = p/m’ The equation of the tangent is then y — 2p/m = m(x — p/m°) ot
y=mx+p/m.

b’ b’x ) x
b) y'= —ﬁ. At P, m= - Zyo’ and the equation of the tangent is y — y, = — —— (x — x,,) or
0 0
bixyx + a’y,y = b'xl + a’yl = a’b’

Show that at a point Py(x,, ¥,) on the hyperbola b’x* — a’y’ = a’h’ the tangent bisects the
angle included by the focal radii of P,.

At P, the slope of the tangent to the hyperbola is b’x,/a’y, and the slopes of the focal radii P,F’
and P,F (see Fig. 12-2) are y,/(x, + ¢) and y,/(x, — ¢), respectively. Now

b’x, _ Yo
tana — a’y, X,*tc N (b°x; — a’yy) + biex, _ a’b’ + biex, B b(a* + ex,) b
- 2 - 2 2 2 -2 2 - 2 =
1+ bx, y, (@ + b )xoy, +a'cy, cxoy,+a‘cy, cy.la +ex,) oy
a’y, x,t¢

- 2.2 2
since b’x) — a’y) = a’b” and @’ + b* = ¢%, and

2
Yo _ b'x,
an g= 0S¥ _bon-(x-dlyy)  ber,matt b
= 2 =2 2 2 -2 2 .
1+ b’x, Yo (@ + b )xpy, —a’cy, Cxpy,—acy, ¥

a’y, x,-—c¢
Hence, a = B because tan a =tan 8.

Po(xe, yo)

(—e, O)F

/

Fig. 12-2

Find the acute angles of intersection of the curves (1) y’=4x and (2) 2x* = 12 - 5y.

The points of intersection of the curves are P,(1,2) and P,(4, —4).
For (1), y'=2/y; for (2), y' = —4x/5. Hence,
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13.

14.

15.
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m ~m, 1+4/5
I+mm, 1-4/5

AtP:m,=land m,=~1%, 50 tan¢ = =9 and ¢ = 83°40' is the acute angle of

intersection.
. 6 -1/2+16/5 s -
AtP:m =—-1and m,=-3,sotan¢ = TI+R5 1.0385 and ¢ =46°5' is the acute angle of
intersection.

Find the acute angles of intersection of the curves (1) 2x*+ y* =20 and (2) 4y — x* = 8.

The points of intersection are (+2V?2,2) and (+2V2, —2).

For (1), y' = —=2x/y; for (2), y' = x/4y.

At the point (2V2,2), m, = —2V2 and m, = }V'2. Since m,m, = — 1, the angle of intersection is
& = 90° (i.e.. the curves are orthogonal). By symmetry, the curves are orthogonal at each of their points
of intersection.

A cable of a certain suspension bridge is attached to supporting pillars 250 ft apart. If it hangs
in the form of a parabola with the lowest point 50 ft below the point of suspension, find the
angle between the cable and the pillar.

Take the origin at the vertex of the parabola, as in Fig. 12-3. The equation of the parabola is
y = &x° and y' = 4x/625.

At (125,50), m = 4(125)/625 = 0.8000 and 6 = 38°40". Hence, the required angle is ¢ =90°— 6 =
51°20°.

Ve
7

7
4

(125, 50)

Supplementary Problems

Examine x° + dxy + 16y” = 27 for horizontal and vertical tangents.

Ans. horizontal tangents at (3, —3/2) and (-3, 3/2); vertical tangents at (6, —3/4) and (-6, 3/4)

Find the equations of the tangent and normal to x* — y*> =7 at the point (4, —3).

Ans. 4x+3y=7;3x—-4y=2

At what points on the curve y=x’+5 is its tangent (a) parallel to the line 12x-y=17;
(b) perpendicular to the line x + 3y =27 Ans. (a) (2,13), (=2, =3); (b) (1,6), (—1,4)

Find the equations of the tangents to 9x° + 16y” = 52 that are paraliel to the line 9x — 8y = 1.

Ans. 9x -8y ==*26
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16.

17.

18.

19.

20.

21.

22.

27.

29.

Find the equations of the tangents to the hyperbola xy =1 through the point (-1, 1).
Ans. y=(V2Z-Nx+2V2-2y=-(2V2+3)x-2V2-2

For the parabola y* = 4px, show that the equation of the tangent at one of its points P(x,. y,) is
¥Yo =2p(x + X,).
For the ellipse b°x’+ a’y’ =a’h’ show that the equations of its tangents of slope m are

y=mx*Va'm®+ b

For the hyperbola b’x’ — a’y’ = a’b’, show that (a) the equation of the tangent at one of its
points P(x,, y,) is b’x,x —a’y,y = a’b’® and (b) the equations of its tangents of slope m are

y=mxxVa’m® - b’

Show that the normal to a parabola at any of its points P, bisects the angle included by the focal radius
of P, and the line through P, parallel to the axis of the parabola.

Prove: Any tangent to a parabola, except at the vertex, intersects the directrix and the latus rectum
{produced if necessary) in points equidistant from the focus.

Prove: The chord joining the points of contact of the tangents to a parabola through any point on its
directrix passes through the focus.

Prove: The normal to an ellipse at any of its points P, bisects the angle included by the focal radii of P,,.

Prove: The point of contact of a tangent of a hyperbola is the midpoint of the segment of the tangent
included between the asymptotes.

Prove: (a) The sum of the intercepts on the coordinate axes of any tangent to Vx+Vy=Vva is a

constant. (b) The sum of the squares of the intercepts on the coordinate axes of any tangent to

x*?* + y**=4a%" is a constant.

Find the acute angles of intersection of the circles x> —4x + y* =0 and x> + y*=8.  Ans. 45°

Show that the curves y = x* + 2 and y = 2x* + 2 have a common tangent at the point (0, 2) and intersect
at an angle ¢ = Arctan 35 at the point (2, 10).

Show that the ellipse 4x* + 9y® =45 and the hyperbola x> — 4y’ =5 are orthogonal.

Find the equations of the tangent and normal to the parabola y = 4x® at the point (-1, 4).
q P po

Ans. y+8x+4=0;8y—-x-33=0

At what points on the curve y =2x’ + 13x” + 5x + 9 does its tangent pass through the origin?

Ans. x=-3,-1,3/4



Chapter 13

Maximum and Minimum Values

INCREASING AND DECREASING FUNCTIONS. A function f(x) is said to be increasing on an
open interval if u < v implies f(u) < f(v) for all ¥ and v in the interval. A function f(x) is said to
be increasing at x = x; if f(x) is increasing on an open interval containing x,. Similarly, f(x) is
decreasing on an open interval if ¥ <v implies f(u) > f(v) for all u and v in the interval, and
f(x) is decreasing at x = x, if f(x) is decreasing on an open interval containing x,,.

If f'(x,) >0, then it can be shown that f(x) is an increasing function at x = x,; similarly, if
f'(x,) <0, then f(x) is a decreasing function at x = x,. (For a proof, see Problem 17.) If
f'(x,) =0, then f(x) is said to be stationary at x = x,.

) SR ——

Fig. 13-1

In Fig. 13-1, the curve y = f(x) is rising (the function is increasing) on the intervals
a<x<randt<x<u,; the curve is falling (the function is decreasing) on the interval r <x <.
The function is stationary at x =r, x =5, and x = ¢; the curve has a horizontal tangent at the
points R, §, and 7. The values of x (that is, r, s, and ¢), for which the function f(x) is stationary
(that is, for f'(x) = 0) are frequently called critical values (or critical numbers) for the function,
and the corresponding points (R, S, and T') of the graph are called critical points of the curve.

RELATIVE MAXIMUM AND MINIMUM VALUES OF A FUNCTION. A function f(x) is said to
have a relative maximum at x = x,, if f(x,) = f(x) for all x in some open interval containing x,,
that is, if the value of f(x,) is greater than or equal to the values of f(x) at all nearby points. A
function f(x) is said to have a relative minimum at x = x, if f(x,) =< f(x) for all x in some open
interval containing x,, that is, if the value of f(x,) is less than or equal to the values of f(x) at
all nearby points. (See Problem 1.)

In Fig. 13-1, R(r, f(r)) is a relative maximum point of the curve since f(r) > f(x) on any
sufficiently small neighborhood 0<|x — r| < 8. We say that y = f(x) has a relative maximum
value (=f(r)) when x = r. In the same figure, T(t, f(¢)) is a relative minimum point of the curve
since f(f) < f(x) on any sufficiently small neighborhood 0 < |x — f| < 8. We say that y = f(x) has
a relative minimum value (=f(t)) when x =t. Note that R joins an arc AR which is rising
(f'(x) >0) and an arc RB which is falling ( f'(x) <0), while T joins an arc CT which is falling
(f'(x) <0) and an arc TU which is rising ( f'(x) >0). At S two arcs BS and SC, both of which
are falling, are joined; § is neither a relative maximum point nor a relative minimum point of
the curve,

If f(x) is differentiable on @ < x < b and if f(x) has a relative maximum (minimum) value at
x = x,, where a <x,<b, then f'(x,) =0. For a proof, see Problem 18.
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FIRST-DERIVATIVE TEST. The following steps can be used to find the relative maximum (or
minimum) values (hereafter called simply maximum [or minimum] values) of a function f(x)
that, together with its first derivative, is continuous.

1. Solve f'(x) = 0 for the critical values.

2. Locate the critical values on the x axis, thereby establishing a number of intervals.
3. Determine the sign of f'(x) on each interval.

4. Let x increase through each critical value x = x,; then:

f(x) has a maximum value f(x,) if f'(x) changes from + to — (Fig. 13-2(a)).
f(x) has a minimum value f(x,) if f'(x) changes from — to + (Fig. 13-2(b)).

f(x) has neither a maximum nor a minimum value at x = x, if f'(x) does not
change sign (Fig. 13-2(c) and (d)).

(See Problems 2 to S.)

A function f(x), necessarily less simple than those of Problems 2 to 5, may have a
maximum or minimum value f(x,) although f’(x,) does not exist. The values x = x, for which
f(x) is defined but f'(x) does not exist will also be called critical values for the function. They,
together with the values for which f’'(x) =0, are to be used as the critical values in the
first-derivative test. (See Problems 6 to 8.)

CONCAVITY. An arc of a curve y = f(x) is called concave upward if, at each of its points, the arc
lies above the tangent at that point. As x increases, f'(x) either is of the same sign and
increasing (as on the interval b < x <s of Fig. 13-1) or changes sign from negative to positive
(as on the interval ¢ < x < u). In either case, the slope f’'(x) is increasing and f"(x) > 0.

An arc of a curve y = f(x) is called concave downward if, at each of its points, the arc lies
below the tangent at that point. As x increases, f'(x) either is of the same sign and decreasing
(as on the interval s <x < c) or changes sign from positive to negative {as on the interval
a<x<b). In either case, the slope f'(x) is decreasing and f"(x) <0.

A POINT OF INFLECTION is a point at which a curve changes from concave upward to concave
downward, or vice versa. In Fig. 13-1, the points of inflection are B, S, and C.
A curve y = f(x) has one of its points x = x, as an inflection point if f"(x;) =0 or is not
defined and f"(x) changes sign as x increases through x = x;,. The latter condition may be
replaced by f*(x,) # 0 when f"(x,) exists. (See Problems 9 to 13.)

SECOND-DERIVATIVE TEST. There is a second, and possibly more useful, test for maxima and
minima:

1. Solve f'(x,) =0 for the critical values.
2. For a critical value x = x:

f(x) has a maximum value f(x,) if f"(x,) <0 (Fig. 13-2(a)).
f(x) has a minimum value f(x,) if f"(x,) >0 (Fig. 13-2(b)).
The test fails if f"(x,) =0 or is not defined (Fig. 13-2(c) and (d)).

In this case, the first-derivative test must be used.

(See Problems 14 to 16.)
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| 1
(a) (b)

SN

(¢} (d)

Fig. 13-2

Solved Problems

Locate the maximum or minimum values of (a) y = —x%; (b) y = (x = 3)%; (¢) y = V25 — 4x%;
and (d) y=Vx —4.

(a) y=—x" has a relative maximum value (=0) when x =0, since y =0 when x =0 and y <0 when
x#0.

(b) y = (x — 3)? has a relative minimum value (=0) when x = 3, since y =0 when x = 3 and y >0 when
x#3.

{¢) y=V25-4x’ has a relative maximum value (=5) when x =0, since y =5 when x =0 and y <5
when —1<x <1.

(d) y=Vx ~ 4 has neither a relative maximum nor a relative minimum value. (Some authors define
relative maximum (minimum) values so that this function has a relative minimum at x = 4. See
Problem 30.)

Given y=ix’+ ix* —6x +8, find (a) the critical points; (b) the intervals on which y is
increasing and decreasing; and (c) the maximum and minimum values of y.

(@) y'=x*+x—6=(x+3)(x —2). Setting y' =0 gives the critical values x = —3 and 2. The critical
points are (-3, ¥) and (2, 3).
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(b) When y’ is positive, y increases; when y' is negative, y decreases.

When x < -3, say x = —4, y'=(=}-)=+, and y is increasing.
When -3 <x <2, say x =0, y' =(+)(—-)= —, and y is decreasing.
When x > 2, say x =3, y' =(+)(+)=+, and y is increasing.
These results are illustrated by the following diagram (see Fig. 13-3);
x<-3 x=-3 -3<x<2 x=2 x>2
y! =+ yr = — yl = 4+
y increases y decreases y increases
(-8,48/2) ¥
0 (2,2/3)
| z
Fig. 13-3

(c) We test the critical values x = —3 and 2 for maxima and minima:
As x increases through —3, y’ changes sign from + to —; hence at x = —3, y has a maximum

value 2.
As x increases through 2, y’ changes sign from — to +; hence at x =2, y has a minimum
value 3.
3. Given y = x* + 2x” — 3x* — 4x + 4, find (a) the intervals on which y is increasing and decreas-

ing, and (b) the maximum and minimum values of y.

We have y' =4x> +6x° — 6x — 4 =2(x +2)(2x + 1)(x — 1). Setting y’ =0 gives the critical values
x=—2, —3, and 1. (See Fig. 13-4.)

(—1/2, 81/16) v

(-2,0) 1,0

Fig. 13-4

(-)(-)(=) =-—, and y is decreasing.

(a) When x < -2, 2
2(+)(-)(~) =+, and y is increasing.
2 =

2

yl
When -2<x< -1, y'
When -} <x<1, y'
When x > 1, y'

[

(+)(+)X(-) = —, and y is decreasing.
(+)(+)(+) =+, and y is increasing.
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These results are illustrated by the following diagram (see Fig. 13-4):

x< -2 x=-2 —2<x< -} x=-1 -i<x<l1 x=1 x>1

' — [ r
y'=- y'=+ y'= =+
y decreases y increases y decreases y increases

(b) We test the critical values x = —2, — 4, and 1 for maxima and minima:
As x increases through —2, y’ changes from — to +; hence at x = —2, y has a minimum value 0.
As x increases through — 3, y’ changes from + to —; hence at x = — }, y has a maximum value
81/16.

As x increases through 1, y’ changes from ~ to +; hence at x =1, y has a minimum value 0.

Show that the curve y = x” — 8 has no maximum or minimum value.

Setting v’ =3x” =0 gives the critical value x =0. But y’ >0 when x <0 and when x >0. Hence y
has no maximum or minimum value.
The curve has a point of inflection at x = 0.

Examine y = f(x) = for maxima and minima, and locate the intervais on which the

1
T _x—2 :
function is increasing and decreasing.

f'(x)=- (-—1—2)—2 Since f(2) is not defined (that is, f(x) becomes infinite as x approaches 2), there
X —

is no critical value. However, x = 2 may be employed to locate intervals on which f(x) is increasing and
decreasing.
f'(x) <0 for all x #2. Hence f(x) is decreasing on the intervals x <2 and x >2. (See Fig. 13-5.)

¥V o
| v
I
]
|

0 21

—— H x

: 0,2)
| z
|
' (o)

Fig. 13-5 Fig. 13-6

Locate the maximum and minimum values of f(x) =2+ x*'> and the intervals on which the
function is increasing and decreasing.

2
f'(X)=§a~

When x <0, f'(x)= —, and f(x) is decreasing. When x >0, f'(x) = +, and f(x) is increasing.
Hence, at x =0 the function has the minimum value 2. (See Fig. 13-6.)

The critical value is x = 0, since f'(x) becomes infinite as x approaches 0.

Examine y = x**(1 ~ x)'"* for maximum and minimum values.
x'(4-5x)
3(1- x)z/s
When x <0, y'<0. When 0<x< %, y'>0. When { <x <1,y <0. When x> 1, y’ <0.

The function has a minimum value (=0) when x =0 and a maximum value (= %V20) when x = ¢.

Here y' = and the critical values are x =0, %, and 1.

Examine y = |x| for maximum and minimum values.
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The function is everywhere defined and has a derivative for all x except x = 0. (See Problem 11 of
Chapter 9.) Thus, x =0 is a critical value. For x <0, f'(x) = — 1; for x>0, f’(x) = + 1. The function has
a minimum (=0) when x = 0. This result is immediate from a figure.

9.  Examine y =3x* — 10x” — 12x* + 12x — 7 for concavity and points of inflection.
We have

y' =12x> - 30x* — 24x + 12
y" =36x" —60x — 24 =12(3x + 1)(x - 2)

Set y” =0 and solve to obtain the possible points of inflection x = — § and 2. Then:

When x < — 1, y" =+, and the arc is concave upward.
When - § <x <2, y" = —, and the arc is concave downward.
When x >2, y" =+, and the arc is concave upward.
The points of inflection are (— 4, — %) and (2, —63), since y” changes sign at x = — j and x =2 (see Fig.
13-7).
v
z

A

(—1/8, —822/27)

(2,~63)

Fig. 13-7

10.  Examine y = x* — 6x + 2 for concavity and points of inflection. (See Fig. 13-8.)

We have y” = 12x> The possible point of inflection is at x = 0.
On the intervals x <0 and x >0, y”"= +, and the arcs on both sides of x = 0 are concave upward.
The point (0, 2) is not a point of inflection.

v v
z
©,2) 0
0 x
(-2,-8)
Fig. 13-8 Fig. 13-9

11.  Examine y = 3x + (x + 2)'® for concavity and points of inflection. (See Fig. 13-9.)
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3 -6
H =34 —— " O
ere V=3t sary M YISy
The possible point of inflection is at x = —2.
When x> -2, y"=— and the arc is concave downward. When x < -2, y"=+ and the arc is

concave upward. Hence, (=2, —6) is a point of inflection.

Find the equations of the tangents at the points of inflection of y = f(x) = x* — 6x> + 12x* -
8x.

A point of inflection exists at x = x, when f"(x,) =0 and f"(x,) #0. Here,
flx)=4x>~18x> +24x - 8
F(x)=12x* —36x + 24 =12(x ~ 1)(x — 2)
f(x) =24x ~ 36 = 12(2x - 3)

The possible points of inflection are at x =1 and 2. Since f”(1) # 0 and f"(2) # 0, the points (1, — 1) and
(2,0) are points of inflection.
At (1, — 1), the slope of the tangent is m = f'(1) =2, and its equation is

y—y,=m(x—-x,) or y+1=2(x-1) or y=2x-3
At (2,0), the slope is f'(2) =0, and the equation of the tangent is y =0.

. . . a—x .. . . . .
Show that the points of inflection of y = e lie on a straight line, and find its equation.
x'+a

' "o

H x'=2ax-a’ and x’=3ax’ - 3a’x+a’
ere = = -
(xz+a2)z y (IZ +az)3

Now x* — 3ax” — 3a°x + @’ = 0 when x = ~ g and a(2 * V3); hence the points of inflection are (—a, 1/a),
(a(2 + V3), (1 — V3)/4a), and (a(2 ~ V3), (1 + V3)/4a). The slope of the line joining any two of these
points is —1/4a° and the equation of the line of inflection points is x + 4a’y = 3a.

Examine f(x) = x(12 — 2J\r)2 for maxima and minima using the second-derivative method.

Here f'(x) = 12(x* — 8x + 12) = 12(x — 2)(x ~ 6). Hence, the critical values are x =2 and 6.
Also, f"(x) = 12(2x — 8) = 24(x — 4). Because f"(2) <0, f(x) has a maximum value (=128) at x = 2.
Because f"(6) >0, f(x) has a minimum value (=0) at x =6.

Examine y = x> + 250/x for maxima and minima using the second-derivative method.

250 2(x’ - 125)
=2 72
X

Here y' =2x - —- , so the critical value is x = 5.
x

500
Also, y' =2+ = Because y" >0 at x =5, y has a minimum value (=75) at x = 5.

Examine y = (x — 2)*"> for maximum and minimum values.
2
3(x - 2)1/3 -

" __ g - -4/3 _ 0«
y = 9 (x 2) - 9(X _ 2)4/3

tive test fails, and we employ the first-derivative method: When x <2, y' = —; when x>2, y' =+,
Hence y has a relative minimum (=0) at x =2.

y' = % (x~2)y"= Hence, the critical value is x = 2.

becomes infinite as x approaches 2. Hence the second-deriva-

A function f(x) is said to be increasing at x =x, if for #>0 and sufficiently small,
f(x, — h) < f(xy) < f(x, + h). Prove: If f'(x,) >0, then f(x) is increasing at x = x,,.
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18.

19.

20.

21.

flxo + Ax) — flxy) flxo + Ax) — flxo)

Since lim = f'(x,) >0, we have Ax > 0 for sufficiently small |Ax|

by Problen‘:x4 oof Chapter 8.

If Ax <0, then f(x, + Ax) — f(x,) <0, and setting Ax = —h vyields f(x, — h) < f(x,). If Ax >0, say
Ax = h, then f(x, + h) > f(x,). Hence, f(x, — h) < f(x,) < f(x, + h) as required in the definition. (See
Problem 33 for a companion theorem.)

Prove: If y = f(x) is differentiable on a < x =< b and f(x) has a relative maximum at x = x,,,
where a < x, < b, then f'(x,)=0.

Since f(x) has a relative maximum at x = x,, for every Ax with |Ax| sufficiently small we have
flxog + Ax) <flxg);  so  flxyg+Ax) = flx,) <0
When Ax <0,

flxg + Ax) — flx,) -0
Ax

flxo + A0~ fxe) _ o

nd 0= i T

When Ax >0,

fro *+ 8%) = fx) _ fxro + 80) ~ fxa) _
Ax Ax n

Thus, 0= f'(x,) =0 and f'(x,) =0, as was to be proved. (See Problem 34 for a companion theorem.)

and fl(xy)= Alirr(ly

Prove the second-derivative test for maximum and minimum: If f(x) and f'(x) are differenti-
able ona = x = b, if x = x, (Where a < x, < b) is a critical value for f(x), and if f"(x,) > 0, then
f(x) has a relative minimum value at x = x,,.

Since f"(x,) > 0, f'(x) is increasing at x = x,, and there exists an & > 0 such that f'(x, — A) <f'(x,) <
f'(x, + h). Thus, when x is near to but less than x,, f'(x) < f’(x,); when x is near to but greater than x,,
f'(x)>f'(x,). Now since f'(x,) =0, f'(x) <0 when x<x, and f'(x) >0 when x >x,. By the First-
Derivative Test, f(x) has a relative minimum at x =x,. (It is left for the reader to consider the
companion theorem for relative maximum.)

Consider the problem of locating the point (X, Y) on the hyperbola x* — y* =1 nearest a
given point P(a, 0), where a >0. We have D’ = (X — a)’ + Y’ for the square of the distance
between the two points and X° — Y? =1, since (X, Y) is on the hyperbola.

Expressing D? as a function of X alone, we obtain
fX)=(X-a+ X’ -1=2X"-2aX+a" -1

with critical value X = }a.

Take a= 3. No point is found, since Y is imaginary for the critical value X = }. From a figure,
however, it is clear that the point on the hyperbola nearest P(3,0) is V(1, 0). The trouble here is that we
have overlooked the fact that f(X)=(X - )+ X* -1 is to be minimized subject to the restriction
X = 1. (Note that this restriction does not arise from f(X') itself. The function f(X), with X unrestricted,
has indeed a relative minimum at X = ;.) On the interval X = 1, f(X) has an absolute minimum at the
endpoint X = 1, but no relative minimum. It is left as an exercise to examine the cases a = V2 anda =3,

Supplementary Problems

Examine each function of Problem 1 and determine the intervals on which it is increasing and
decreasing.
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22,

27.

29,

.
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Ans. (a) increasing x <0, decreasing x >0; (b) increasing x >3, decreasing x <3; (c) increasing
-3 <x <0, decreasing 0 < x < §; (d) increasing x >4

(a) Show that y = x* + 20x — 6 is an increasing function for all values of x.
(b) Show that y =1— x - x is a decreasing function for all values of x.

Examine each of the following for relative maximum and minimum values, using the first-derivative test.

(@) fx)=x+2x-3 Ans. x = —1 yields relative minimum -4

by fx)=3+2x-x° Ans. x =1 yields relative maximum 4

(¢) f(x)=x"+2x"-4x-8 Ans. x =1 yields relative minimum - 2% ; x = — 2 yields
relative maximum 0

d) fly=x"- 6x°+9x —8 Ans. x =1 yields relative maximum -4; x =3 yields relative
minimum —8

(e) flxy=(2- x)’ Ans. neither relative maximum nor relative minimum

(f) fxy=(x*~4) Ans. x =0 yields relative maximum 16; x = #2 yields relative
minimum 0

(8) fix)=(x—-4)(x+3) Ans. x =0 yields relative maximum 6912; x = 4 yields relative
minimum 0; x = —3 yields neither

(h) f(x)=x+48/x Ans.  x = —2 yields relative maximum —32; x = 2 yields
relative minimum 32

(i) f)y=(x-1)" x+2y" Ans. x = -2 yields relative maximum 0; x = 0 yields relative

minimum -V3; x = 1 yields neither

Examine the functions of Problem 23(a) to (f) for relative maximum and minimum values using the
second-derivative method. Also determine the points of inflection and the intervals on which the curve is
concave upward and concave downward.

Ans. (&) no inflection point, concave upward everywhere
(b) no inflection point, concave downward everywhere
(c) inflection point x = — §; concave up for x > — %, concave down for x < -}
(d) inflection point x = 2; concave up for x > 2, concave down for x <2
(e) inflection point x = 2; concave down for x > 2, concave up for x <2
(f) inflection point x = +2V3/3; concave up for x >2V3/3 and x < —2V3/3, concave down for
-2V3/3<x<2V3/3
+b

v has neither a relative maximum nor a relative minimum, if l‘gg # 0.

Show that y = z "

Examine y = x* — 3px + ¢ for relative maximum and minimum values.
Ans.  minimum = g — 2p>"°, maximum = g + 2p*'* if p > 0; otherwise neither.

Show that y = (a, — x)’ + (a, — x)* + - - - + (a, — x)’ has a relative minimum when
x=(a,+ta,+ -+a,)ln

Prove: If f"(x,) =0 and f"(x,) # 0. then there is a point of inflection at x = x,.

Prove: If y = ax’ + bx® + cx + d has two critical points, they are bisected by the point of inflection. If the
curve has just one critical point, it is the point of inflection.

A function f(x) is said to have an absolute maximum (minimum) value at x = x, provided f(x,) is greater
(less) than or equal to every other value of the function on its domain of definition. Use graphs to verify:
(@) y = —x’_has an absolute maximum at x = 0; (b) y = (x — 3) has an absolute minimum (=0) at x = 3;
(¢} y = V25 — 4x” has an absolute maximum (=5) at x = 0 and an absolute minimum (=0) at x = +5/2;
(d) y = Vx — 4 has an absolute minimum (=0) at x =4.

Examine the following for absolute maximum and minimum values on the given interval only:
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.

33.

35,

37.

(@) y=-x*on —2<x<2 Ans. maximum (=0) at x=0

) y=(x-3)’on0=x=<4 Ans.  maximum (=9) at x =0; minimum (=0) at x =3
(c) y=V25- 4xon —2=x=2 Ans.  maximum (=5) at x = 0; minimum (=3) atx = %2
(d) y=Vx—-4ond4=<x=<29 Ans. maximum (=5) at x = 29; minimum (=0) atx =4

Note: These are the greatest and least values of Property 8.2 for continuous functions.

Verify: A function f(x) is increasing (decreasing) at x = x,, if the angle of inclination of the tangent at
x = x, to the curve y = f(x) is acute (obtuse).

Prove the companion theorem of Problem 17 for a decreasing function: If f'(x,)<0, then f(x) is
decreasing at x,.

State and prove the companion theorem of Problem 18 for a relative minimum: If y= f(x) is
differentiable on a = x < b and f(x) has a relative minimum at x = x,, where a < x, < b, then f'(x,) = 0.

Examine 2x* — 4xy + 3y” — 8x + 8y — 1 = 0 for maximum and minimum points.

Ans. maximum at (5, 3); minimum at (-1, —-3)

kx
(IZ‘*'—VZ)SH on a small
magnet located a distance x above the center of the coil. Show that F is maximum when x = }r.

An electric current, when flowing in a circular coil of radius r, exerts a force F =

The work done by a voltaic cell of constant electromotive force E and constant internal resistance r in
passing a steady current through an external resistance R is proportional to ER/(r + R)>. Show that the
work done is maximum when R = r.
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Applied Problems Involving Max