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1. Introduction

1.1. Introduction

This book is about the theory of learning in games.  Most of non-cooperative game

theory has focused on equilibrium in games, especially Nash equilibrium, and its

refinements such as perfection.   This raises the question of when and why we might expect

that observed play in a game will correspond to one of these equilibria. One traditional

explanation of equilibrium is that it results from analysis and introspection by the players

in a situation where the rules of the game, the rationality of the players, and the players’

payoff functions are all common knowledge. Both conceptually and empirically, these

theories have many problems.1

This book develops the alternative explanation that equilibrium arises as the long-

run outcome of a process in which less than fully rational players grope for optimality over

time.  The models we will discuss serve to provide a foundation for equilibrium theory. 

This is not to say that learning models provide foundations for all of the equilibrium

concepts in the literature, nor does it argue for the use of Nash equilibrium in every

situation; indeed, in some cases most learning models do not lead to any equilibrium

concept beyond the very weak notion of rationalizability.  Nevertheless, learning models

                                                
1 First, a major conceptual problem occurs when there are multiple equilibria, for in the absence of an
explanation of how players come to expect the same  equilibrium, their play need not correspond to any
equilibrium at all. While it is possible that players coordinate their expectations using  a common selection
procedure such as Harsanyi and Selten’s [1988] tracing procedure, left unexplained is how such a procedure
comes to be common knowledge.  Second, we doubt that the hypothesis of exact common knowledge of
payoffs and rationality apply to many games, and relaxing this to an assumption of almost common
knowledge yields much weaker conclusions. (See for example. Dekel and Fudenberg [1990], Borgers
[1994].)   Third, equilibrium theory does a poor job explaining play in early rounds of most experiments,
although it does much better in later rounds..  This shift  from non-equilibrium to equilibrium play  is difficult
to reconcile with a purely introspective theory.
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can suggest useful ways to evaluate and modify the traditional equilibrium concepts. 

Learning models lead to refinements of Nash equilibrium:  for example, considerations of

the long-run stochastic properties of the learning process suggest that risk dominant

equilibria will be observed in some games.  They lead also to descriptions of long-run

behavior weaker than Nash equilibrium: for example considerations of the inability of

players in extensive form games to observe how opponents would have responded to

events that did not occur suggests that self-confirming equilibria that are not Nash may be

observed as the long-run behavior in some  games.

We should acknowledge that the learning processes we analyze need not converge,

and even when they do converge the time needed for convergence is in some cases quite

long. One  branch of the literature uses these facts to argue that it may be difficult to reach

equilibrium, especially in the short run. We downplay this anti-equilibrium argument for

several reasons.  First, our impression is that there are some interesting economic situations

in which most of the participants seem to have a pretty good idea of what to expect from

day to day, perhaps because the  social arrangements and social norms that we observe

reflect a process of thousands of years of  learning from the experiences of past

generations. Second, although there are interesting periods in which social norms change

so suddenly that they break down, as for example during the transition from a controlled

economy to a market one, the dynamic learning models that have been developed so far

seem unlikely to provide much insight about the medium-term behavior that will occur in 

these circumstances.2  Third, learning theories often have little to say in the short run,

making predictions that are highly dependent on details of the learning process and prior

beliefs; the long-run predictions are generally more robust to the specification of the

                                                
2 However, Boylan and El-Gamal [1993], Crawford [1995], Roth and Er’ev [1995], Er’ev and Roth [1996],
Nagel [1993], and Stahl [1994] use theoretical learning models to try to explain data on short-term and
medium-term play in  game theory experiments.
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model.  Finally, from an empirical point of view it is difficult to gather enough data to test

predictions about short-term fluctuations along the adjustment path.  For this reason we

will focus primarily on the long-run properties of the models we study.  Learning theory

does, however, make  some  predictions about rates of convergence and behavior in the

medium run, and we will discuss these issues as well.

Even given the restriction to long-run analysis, there is a question of the relative

weight to be given to cases where behavior converges and cases where it does not. We

chose to emphasize the convergence results, in part because they are sharper, but also

because we feel that these are the cases where the behavior that is specified for the agents

is most likely to be a good description of how the agents will actually behave.  Our

argument here is that the learning models that have been studied so far do not do full

justice to the ability of  people to recognize patterns of behavior by others.  Consequently,

when learning models fail to converge, the behavior of the model’s  individuals is typically

quite naive; for example, the players may ignore the fact that the model is locked in to a

persistent cycle.  We suspect that if the cycles persisted long enough the agents would

eventually use more sophisticated inference rules that detected them; for this reason we are

not convinced that models of cycles in learning are  useful descriptions of actual behavior. 

However, this does not entirely justify our focus on convergence results:  as we discuss in

chapter 8  more sophisticated behavior may simply lead to more complicated cycles.

We find it useful to distinguish between  two related but different kinds of models

that are used to model the processes by which players change the strategies they are using

to play a game. In our terminology,  a “learning model” is any model that specifies the

learning rules used by individual players, and examines their interaction when the game (or

games) is played repeatedly.  In particular,  while Bayesian learning is certainly a form of

learning, and one that we will discuss,  learning models can be far less sophisticated, and
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include for example stimulus-response models of the type first studied by Bush and

Mosteller in the 1950’s and more recently taken up by economists.3   As will become clear

in the course of this book, our own views about learning models tend to favor those in

which the agents, while not necessarily fully rational, are nevertheless somewhat

sophisticated; we will frequently criticize learning models for assuming that agents are

more naïve than we feel is plausible. 

Individual-level models tend to be  mathematically complex, especially in models

with a large population of players.  Consequently, there has also been a great deal of work

that makes assumptions directly on the behavior of the aggregate population. The basic

assumption here is that some unspecified process at the individual level  leads the

population as a whole to adopt strategies that yield improved payoffs. The standard practice

is to call such models “evolutionary,” probably because the first examples of such

processes came from the field of evolutionary biology. However,  this terminology may be

misleading, as the main reason for interest in these processes in economics and the social

sciences is not that the behavior in question is thought to be genetically determined, but

rather that the specified “evolutionary” process corresponds to the aggregation of plausible

learning rules for the individual agents.  For example chapter 3 discusses papers that derive

the standard replicator dynamics from particular models of learning  at the individual level.

Often evolutionary models allow the possibility of mutation, that is, the repeated 

introduction (either deterministically or stochastically) of new strategies into the

population.  The causes of these mutations are not explicitly modeled, but as we shall see

mutations  are related to the notion of experimentation, which  plays an important role in

the formulation of individual learning rules. 

                                                
3 Examples include  Cross [1983], and more recently the Borgers and Sarin [1995],  Er’ev and Roth [1996],
and Roth and Er’ev [1995]  papers discussed in chapter 3.
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1.2. Large Populations and Matching Models

This book is about learning, and if learning is to take place players must play either

the same or related games repeatedly so that they have something to learn about.  So far,

most of the literature on learning has focused on repetitions of the same game, and not on

the more difficult issue of when two games are “similar enough” that the results of one

may have implications for the other.4  We too will avoid this question, even though our

presumption that players do extrapolate across  games they see as similar is an important

reason to think that learning models have some relevance to real-world situations.

To focus our thinking, we will begin by limiting attention to two-player games. 

The natural starting for the study of learning is to imagine two players playing a two person

game repeatedly and trying to learn to anticipate each other’s play by observation of past

play.  We refer to this as the fixed player model.  However, in such an environment, players

ought to consider not only how their opponent will play in the future, but also about the

possibility that their current play may influence the future play of their opponents. For

example, players might think that if they are nice they will be rewarded by their opponent

being nice in the future, or that they can “teach” their opponent to play a best response to a

particular action by playing that action over and over.

Consider for example the following game:

                                                
4Exceptions that develop models of learning from similar games are Li Calzi [1993] and Romaldo [1995].
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L R

U 1,0 3,2

D 2,1 4,0

In almost any learning model, a  player 1 who ignores considerations of repeated play will

play  D, since D is a dominant strategy and thus  maximizes 1’s current expected payoff for

any beliefs about opponents. If as seems plausible, player 2 eventually learns 1 plays  D, 

the  system will converge to  (D,L),  where 1’s payoff is 2.  But if 1 is patient, and knows

that 2 “naively” chooses each period’s action to maximize that period’s payoff given 2’s

forecast of 1’s action, then player 1 can do better by always playing  U,  since this

eventually leads 2 to play  R.  Essentially, a "sophisticated" and patient player facing a

naive opponent can develop a “reputation” for playing any fixed action, and thus in the

long run obtain the payoff of a “Stackelberg leader.”

Most of learning theory abstracts from such repeated game considerations by

explicitly or implicitly relying on a model in which the incentive to try to alter the future

play of opponents is small enough to be negligible.  One class of models of this type is one

in  players are locked in to their choices, and the discount factors are small compared to the

maximum speed at which the system can possibly adjust.  However, this is not always a

sensible assumption.  A second class of models that makes repeated play considerations

negligible is that of a large number of players, who interact relatively anonymously, with

the population size large compared to the discount factor.

We can embed a particular two- (or N-) player game in such an environment, by

specifying the process by which players in the population are paired together to play the

game.  There are a variety of models, depending on how players meet, and what

information is revealed at the end of each round of play. 
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Single Pair Model:  Each period, a single pair of players is chosen at random to

play the game.  At the end of the round, their actions are revealed to everyone.  Here if the

population is large, it is likely that the players who play today will remain inactive for a

long time. Even if players are patient, it will not be worth their while to sacrifice current

payoff to influence the future play of their opponents if the population size is sufficiently

large compared to the discount factor.

Aggregate Statistic Model:  Each period, all players are randomly matched.  At the

end of the round, the population aggregates are announced.  If the population is large each

player has little influence on the population aggregates, and consequently little influence on

future play.  Once again players have no reason to depart from myopic play.

Random Matching Model:  Each period, all players are randomly matched.  At the

end of each round each player observes only the play in his own match.  The way a player

acts today will influence the way his current opponent plays tomorrow, but the player is

unlikely to be matched with his current opponent or anyone who has met the current

opponent for a long time.  Once again myopic play is approximately optimal if the

population is finite but large compared the players’ discount factors.5 This is the treatment

most frequently used in game theory experiments.

The large population stories provide an alternative explanation of “naive” play; of

course they do so at the cost of reducing its applicability to cases where the relevant

population might plausibly be thought to be large.6  We should note that experimentalists

                                                
5The size of the potential gain depends on the relationship between the population size and the discount
factor. For any fixed discount factor, the gain becomes negligible if the population is large enough. However,
the required population size may be quite large, as shown by the “contagion” arguments of Ellison [1993]. 
6If we think of players extrapolating their experience from one game to a “similar” one, then there may be
more cases where the relevant population is larger than there appear to be at first sight.
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often claim to find that a “large” population can consist of as few  as  6  players.  Some

discussion of this  issue can be found  in  Friedman [1996].

From a technical point of view, there are two commonly used models of large

populations: finite populations and continuum populations.  The continuum model is

generally more tractable. 

Another, and important, modeling issue concerns how the populations from which

the players are drawn relates to the number of “player roles” in the stage game.  Let us

distinguish between an agent in the game, corresponding to a particular player role, and the

actual player taking on the role of the agent in a particular match.  If the game is

symmetric, we can imagine that there is a single population from which the two agents are

drawn.  This is referred to as the homogenous population model.   Alternatively, we could

assume that each agent is drawn from a distinct population.  This is referred to as the case

of an asymmetric population.  In the case of an aggregate statistic model where the

frequency of play in the population is revealed and the population is homogeneous, there

are two distinct models, depending on whether individual players are clever enough to

remove their own play from the aggregate statistic before responding to it.  There seems

little reason to believe that they cannot, but in a large population it makes little difference,

and it is frequently convenient to assume that all players react to the same statistic.

Finally, in a symmetric game, in addition to the extreme cases of  homogeneous and

heterogeneous populations,  one can also  consider intermediate mixtures of the two cases,

as in Friedman [1991], in which each player has some chance of being matched with an

opponent from a different population, and some chance of being matched with an opponent

from the same population.  This provides a range of possibilities between the homogeneous

and asymmetric cases.
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1.3. Three Common Models of Learning and /or Evolution

Three particular dynamic adjustment processes have received the most attention in

the theory of learning and evolution.  In fictitious play, players observe only the results of

their own matches and play a best response to the historical frequency of play. This model

is most frequently analyzed in the context of the fixed-player (and hence asymmetric

population) model, but the motivation for that analysis has been the belief that the same or

similar results obtain with a large population. (Chapter 4 will discuss the extent to which

that belief is correct.) In the partial best response dynamic, a fixed portion of the

population switches each period from their current action to a best response to the

aggregate statistic from the previous period.  Here the agents are assumed to have all the

information they need to compute the best response, so the distinctions between the various

matching models are unimportant; an example of this is the Cournot adjustment process

discussed in the next section.  Finally, in the replicator dynamic, the share of the

population using each strategy grows at a rate proportional to that strategy’s current payoff,

so that strategies giving the greatest utility against the aggregate statistic from the previous

period grow most rapidly, while those with the least utility decline most rapidly.  This

dynamic is usually thought of in the context of a large population and random matching,

though we will see in chapter 4 that a similar process can be derived as the result of

boundedly rational learning in a fixed player model.

The first part of this book will examine these three dynamics, the connection

between them, and some of their variants, in the setting of one-shot simultaneous-move

games.  Our focus will be on the long run behavior of the systems in  various classes of

games, in particular on whether the system will converge to a Nash equilibrium, and, if  so,

which equilibrium will be selected. The second part of the book will examine similar

questions in the setting of general extensive form games.  The third and final part of the
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book will discuss what sorts of learning rules have desirable properties, from both the

normative and descriptive points of view.

1.4.  Cournot Adjustment

To give the flavor of the type of analyses the book considers, we now develop the

example of Cournot adjustment by firms, which is perhaps the oldest and most familiar

nonequilibrium adjustment model in game theory. While the Cournot process has many

problems as a model of learning, it serves to illustrate a number of the issues and concerns

that recur in more sophisticated models. This model does not have a large population, but

only one “agent” in the role of each firm. Instead, as we explain below, the model

implicitly relies  on a combination of “lock-in” or inertia and impatience to explain why

players don’t try to influence the future play of their opponent.

Consider a simple duopoly, whose players are firms labeled i = 1 2, .  Each player’s 

strategy is to choose a quantity si ∈ ∞[ , )0 of a homogeneous good to produce..  The vector

of both strategies is the strategy profile denoted by s .  We let s i−  denote the strategy of

player i’s opponent.  The utility (or profit) of player i is u s si i i( , )− , where we assume that

u si i( , )⋅ −  is strictly concave.  The best response of  player i to a profile, denoted  BR si i( )− ,

 is

BR s u s si i

s

i i i
i( ) arg max (~ , )~

− −= .

Note that since utility is strictly concave in the player’s own action, the best response is

unique.

In the Cournot adjustment model time periods  t = 1 2, ,K  are discrete.  There is an

initial state profile θ0 ∈S .   The adjustment process itself is given by assuming that in each

period the player chooses a pure strategy that is a best response to the previous period.  In
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other words the Cournot process is θ θt
C

tf+ =1 ( ) where f BRi
C

t i t
i( ) ( )θ θ= − At each date t 

player i chooses a pure strategy  s BR st
i

i t
i= −

−( )1 .  A steady state of this process is a state $θ

such that $ ( $ )θ θ= f C .  Once θ θt = $  the system will remain in this state forever.

The crucial property of a steady state is that by definition it satisfies $ ( $ )θ θi
i iBR= −

so that is a Nash equilibrium.

1.5. Analysis of Cournot Dynamics7

We can analyze the dynamics of the two player Cournot process by drawing the

reaction curves corresponding to the best response function.

θ1

θ 2

BR1

BR2

Nash Equilibrium

θ t

θ t +1

Figure 1.1

As drawn, the process converges to the intersection of reaction curves, which is the unique

 Nash Equilibrium. 

In this example, the firms output levels change each period, so even if they started

out thinking that their opponent’s output was fixed, they should quickly learn that it is not.

                                                
7 The appendix reviews some basic facts about stability conditions in dynamical systems.
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However, we shall see later that there are variations on the Cournot process in which

players’ beliefs are less obviously wrong.

In Figure 1.1, the process converges to the unique Nash equilibrium from any initial

conditions, that is, the steady state is globally stable.  If there are multiple Nash equilibria,

we cannot really hope that where we end up is independent of the initial condition, so we

cannot hope that any one equilibria is globally stable.  What we can do is ask whether play

converges to a particular equilibrium once the state gets sufficiently close to it.  The

appendix reviews the relevant theory of the stability of dynamical systems for this and

other examples.

1.6. Cournot Process with Lock-In

We argued above that interpreting Cournot adjustment as a model of learning

supposes that the players are pretty dim-witted:  They choose their actions to maximize

against the opponent's last period play.  It is as if they expect that today's play will be the

same as yesterday's.  In addition, each player assigns probability one to a single strategy of

the opponent so there is no subjective uncertainty.   Moreover, although players have a very

strong belief that their opponent’s play is constant, their opponent’s actual play can vary

quite a bit.  Under these circumstances, it seems likely that players would learn that their

opponent's action changes over time; this knowledge might then alter their play.8

One  response to this criticism is to consider a different dynamic process with

alternating moves:  Suppose that firms are constrained to take turns with firm 1 moving in

periods 1, 3, 5, and firm 2 in periods 2, 4, 6.  Each firm’s decision is “locked in” for two

                                                
8 Selten’s [1988] model of anticipatory learning models this by considering different degrees of sophistication
in the construction of forecasts.   The least sophisticated is to assume that opponents will not change their
actions; next is to assume that opponents believe that their opponents will not change their actions, and so
forth.  However, no matter how far we carry out this procedure, in the end players are always more
sophisticated than their opponents imagine
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periods: firm 1 is constrained to set its second-period output s1
1  to be the same as its first-

period output s2
1 . 

Suppose further that each firm’s objective is to maximize the  discounted sum of its

per-period payoffs δ t i
tt

u s−
=

∞∑ 1
1

( ) , where δ < 1  is a fixed common discount factor.  There

are two reasons why a very rational firm 1 would not choose its first-period output to

maximize  its first-period payoff. First, since the output chosen must also be used in the

second period, firm one’s optimal choice for a fixed time-path of outputs by firm 2 should

maximize the weighted sum of firm 1’s first and second period profit, as opposed to

maximizing first period profit alone.  Second, as in the discussion of  Stackelberg

leadership in section 1.2, firm 1 may realize that its choice of first-period output will

influence firm 2's choice of output in the second period.

However, if firm 1 is very impatient, then neither of these effects matters, as both

pertain to future events, and so it is at least approximately optimal for firm 1 to choose at

date 1 the output that maximizes its current period payoff.  This process, in which firms

take turns setting outputs that are the static best response of the opponent’s output in the

previous period, is called the  alternating-move Cournot dynamic; it has the qualitatively

the same long-run properties as the simultaneous-move adjustment process, and in fact is

the process that Cournot actually studied. 9

There is another variant on the timing of moves that is of interest: instead of firms

taking turns, suppose that each period, one firm is chosen at random and given the

opportunity to change its output, while the output of the other remains locked in. Then

once again if firms are impatient, the equilibrium behavior is to choose the action that

maximizes the immediate payoff given the current output of the opponent.  There is no

                                                
9 Formally,  the two processes have the same steady states, and a steady state is stable under one process if
and only if it  is stable under the other. .
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need to worry about predictions of future because the future does not matter.  Note that this

model has exactly the same dynamics as the alternating move Cournot model, in the sense

that if a player gets to move twice or more in a row, his best response is the same as it was

last time, and so he does  not move at all.  In other words, the only time movement occurs

is when players switch roles, in which case the move is the same as it would be under the

Cournot alternating move dynamic.  While the dating of moves is different, and random to

boot, the condition for asymptotic stability is the same. 

What do we make of this?  Stories that make myopic play optimal require that

discount factors be very small, and in particular small compared to the speed that players

can change their outputs:  the less locked-in the players are, the smaller the discount factor

needs to be.  So the key is to understand why players might be locked in.  One story is that

choices are capital goods like computer systems, which are only replaced when they fail. 

This makes lock-in more comprehensible; but limits the applicability of the models. 

Another point is that under the perfect foresight interpretation, lock-in models do not sound

like a story of learning.  Rather they are a story of dynamics in a world where learning is

irrelevant because players know just what they need to do to compute their optimal

actions.10

                                                
10 Maskin and Tirole [1988] study the Markov-perfect equilibria of this  game with alternating moves and
two-period lock in.
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1.7. Review of Finite Simultaneous Move Games

1.7.1. Strategic- Form Games

Although we began by analyzing the Cournot game because of its familiarity to

economists, this game is complicated by the fact that each player has a continuum of

possible output levels.  Throughout the rest of the book, we are going to focus on finite

games, in which each player has only finitely many available alternatives.  Our basic

setting will be one in which a group of players i I= 1, ,K  play a stage game against one

another. 

The first half of the book will discuss the simplest kind of stage game, namely one-

shot simultaneous move games. This section reviews the basic theory of simultaneous-

move games, and introduces the notation we use to describe them. The section is not

intended as an introduction to game theory; readers who would like a more leisurely or

detailed treatment should look elsewhere.11 Instead, we try to highlight those aspects of

“standard” game theory that will be of most importance in this book, and to focus on those

problems in game theory for which learning theory has proven helpful in analyzing.

In a one-shot simultaneous-move game, each player i simultaneously chooses a

strategy s Si i∈ .  We refer to the vector of players’ strategies as a strategy profile, denoted

by s S Si
I i∈ ≡ × =1 .  As a result of these choices by the players, each player receives a utility

(also called a payoff or reward) u si( ) .  The combination of the player set, the strategy

spaces, and the payoff functions is called the strategic or normal  form of the game.  In

two-player games, the strategic form is often displayed as a matrix, where rows index 

                                                
11 For example, Fudenberg and Tirole [1991] or Myerson [1990].
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player 1’s strategies, columns index player 2’s, and the entry corresponding to each strategy

profile ( , )s s1 2  is the payoff vector

( ( , ), ( , ))u s s u s s1 1 2 2 1 2 .

In “standard” game theory, that is analysis of Nash equilibrium and its refinements,

it  does not matter what players observe at the end of the game.12  When players learn from

each play of the stage game how to play in the next one,  what the players observe makes a

great deal of difference to what they can learn.  Except in simultaneous move games,

though, it is not terribly natural to assume that players observe their opponents’ strategies,

because in general extensive form games a strategy specifies how the player would play at

every one of his information sets. For example, if the extensive form is

1

2

RL

(1,2)

l

(0,0) (2,1)

r

Figure 1.2

and suppose that player 1 plays  L.  Then player 2 does not actually get to move.  In order

for player 1 to observe 2's strategy, player 1 must observe how player 2 would have played

had 1 played  R.  We could make this assumption.  For example, player 2 may write down

his choice on a piece of paper and hand it to a third party, who will implement the choice if

2's information set is reached, and at the end of the period 1 gets to see the piece of paper. 

                                                
12 Although what players observe at  the end of the stage game in repeated games  does play a critical role
even without learning.  See for example  Fudenberg, Levine, and Maskin [1994].
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This sounds sort of far-fetched.  Consequently, when we work with strategic form games,

and suppose that the chosen strategies are revealed at the end of each period, the

interpretation is that we are looking at a simultaneous-move game, that is, a game where

each player moves only once and all players choose their actions simultaneously  This is

the case we will consider in the first part of the book

In addition to pure strategies, we also allow the possibility that players use random

or “mixed” strategies.  The space of probability distributions over a set is denoted by ∆( )⋅ .

 A randomization by a player over his pure strategies is called a mixed strategy and is

written σi i iS∈ ≡Σ ∆( ) .  Mixed strategy profiles are denoted σ ∈ = × =Σ Σi
I i

1 .  Players are

expected utility maximizers, so their payoff to a mixed strategy profile σ is the expected

value u u s si i i i
i

I

s
( ) ( ) ( )σ σ≡ =∏∑ 1

.  Notice that the randomization of each player is

independent of other players’ play.13

As in the analysis of the Cournot game, it is useful to distinguish between the play

of a player and his opponents.  We will write s i i− −,σ  for the vector of strategies (pure or

mixed) of player i’ s opponents.

In the game, each player attempts to maximize his own expected utility.  How he

should go about doing this depends on how he thinks his opponents are playing, and the

major issue addressed in the theory of learning is how he should form those expectations. 

For the moment, though, suppose that player i believes that the distribution of his

opponents play corresponds to the mixed strategy profile  σ−i .  Then player i should play a

best response, that is a strategy $σi  such that u ui i i i i i i( $ , ) ( , ),σ σ σ σ− −≥ ∀σ .  The set of all

best responses to σ−i  is denoted by BRi i( )σ− , so $ ( )σ σi i iBR∈ − .  In the Cournot

                                                
13We will not take time here to motivate the use of mixed strategies, but two motivations will be discussed
later on in the book, namely (i) the idea that the randomization corresponds the random draw of a particular
opponent from a population each of which is playing a pure strategy, and (ii) the idea that what looks like
randomization to an outside observer is the result of unobserved shocks to the player’s payoff function.
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adjustment process, players expect that their opponent will continue to play as they did last

period, and play the corresponding best-response.

In the Cournot process, and many related processes, such as fictitious play, that we

will discuss later in the book, the dynamics are determined by best response

correspondence BRi i( )σ −  .  That is, two games with the same best-response

correspondence will give rise to the same dynamic learning process.  For this reason, it is

important to know when two games have the same best-response correspondence.  If two

games have the same best-response correspondence for every player, we say that they are

best-response equivalent.

A simple transformation that leaves preferences, and consequently best-responses

unchanged, is a linear transformation of payoffs.  The following proposition gives a slight

generalization of this idea: 

Proposition 1.1:  Suppose ~ ( ) ( ) ( )u s au s v si i i i= + −  for all players i.  Then ~u  and u are best-

response equivalent.

This result is immediate, because adding a constant that depends only on other players

actions does not change what is best for the player in question.

An important class of games are zero sum games, which are two player games in

which the payoff to one player is the negative of the payoff to the other player.14 Zero-sum

games are particularly simple, and have been extensively studied.  A useful result relates

best-response correspondences of general games to those of zero-sum games in two-player,

two-action games.

                                                
14 Note that the  “zero” in “zero-sum” is unimportant; what matters is that the payoffs have a constant sum.
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Proposition 1.2 : Every 2x2 game for which the best-response correspondences have a

unique intersection that lies in the interior of the strategy space is best-response equivalent

to a zero sum game.

 Proof:  Denote the two strategies A and B respectively.  There is no loss of generality in

assuming that A is a best-response for player 1 to A, and B is a best response for player 2

to A.  (If A was also a best-response to A for 2, then the best-response correspondences

intersect at a pure strategy profile, which we have ruled out by assumption.)    Let σ i

denote player i’s probability of playing A.  Then the best-response correspondences of the

two players is determined by the intersection point, and is as diagrammed below.

σ 1

σ 2

BR1

BR2

The trick is to show that this intersection point can be realized as the intersection of best-

responses of a zero-sum game.  Notice that if 1 > a , then the matrix below are the payoffs
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to player 1 in a zero sum game in which the best response for player 1 to A is  A, and the

best response of player 2 to A is B. 

1 0

a b

�
! 

"
$#

(Recall that player 2’s payoffs are the negative of player 1’s.)  Than player 1 is indifferent

between A and B when σ σ σ2 2 21= + −a b( )  while player 2 is indifferent between A and B

when σ σ σ1 1 11 1+ − = −a b( ) ( ) .  Fixing the intersection point σ σ1 2, , we may solve these

two linear equations in two unknowns  to find

a = − +
+

σ σ σ σ
σ σ

2 1 1 2

1 21
.

Since σ σ2 1 1− <  we see that  a < 1, as required.

æ

1.7.2. Dominance and Iterated Dominance

The most primitive notion in game theory is that of dominance.  Roughly a strategy

is dominated if another strategy does better no matter how the player expects his opponents

to play.  The general idea is that we should not expect dominated strategies to be played.15

The strongest notion of dominance is that of strict dominance. 

Definition 1.1:  Strategy σ i  is strictly dominated for player i  if there is some other

~σ i i∈Σ  such that u ui i i i i i(~ , ) ( , )σ σ σ σ− −>  for all σ − −∈i iΣ . 

                                                
15 But note that in the non-simultaneous move games, strategies may differ in how much information they
generate about opponents play, so that once learning is considered,  so a strategy that yields poor payoffs may
be played in order to acquire information.
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(This condition is equivalent to  u s u si i i i i i(~ , ) ( , )σ σ− −>  for all pure strategy profiles s i−  of

i’ s opponents, because i’s  payoff when his opponents play a mixed profile is a convex

combination of the corresponding pure strategy payoffs.)

A famous example of a game where dominant strategies play a role is the one-shot

prisoner’s dilemma game

A B

A 3,3 1,5

B 5,1 2,2

In this game the strategy B does better than A no matter what the opponent does.  If we

eliminate the strategy A, then there is a unique prediction:  that both players play B.  Note

however, that (A,A) Pareto dominates (B,B), which is why there is a dilemma.

In this example, both the dominated strategy and the dominating one are pure

strategies.  Neither of these are general properties. More precisely, a pure strategy si  can be

strictly dominated by a mixed strategy σ i  and yet not dominated by any pure strategy, as in

the next example

A B

A 5,0 0,0

B 0,0 5,0

C 2,0 2,0

Here the strategy C is not dominated by either A or B for player 1, but it is dominated by a

50-50 mixture over A and B.  Moreover, although any mixed strategy that assigns positive
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probability to a strictly dominated pure strategy is strictly dominated, a mixed strategy can

also be strictly dominated even if it assigns probability 0 to every dominated pure strategy.

If a strategy of player 1’s is strictly dominated, then there are several reasons why

player 2’s beliefs might come to assign that strategy probability 0.  The first, traditional,

argument is that if player 2 knows player 1’s payoff function, and knows that 1 is rational,

then player 2 should be able to deduce that player 1 will not use a strictly dominated

strategy.  Secondly, from the viewpoint of learning theory, if the strategy is strictly

dominated then16  player 1 will have no reason to play it, and so player 2 should eventually

learn that the dominated strategy is not being played. Either story leads to the idea of

iterated strict dominance, in which the deletion of some strategies for one player permits

the deletion of some strategies for others, and so on. (It can be shown that the order in

which strategies are deleted does not matter so long as the deletion process continues until

no more deletions are possible.)  We will not give a formal definition of iterated strict

dominance here, but the following example should make the idea clear:

A B

A 1,-100 1,1

B 2,2 2,1

Here no strategy is dominated for player 2, but the strategy A is strongly dominated for

player 1.  Eliminating that strategy results in the game

                                                
16 We presume that there are not extensive-form complications of the type mentioned in footnote 15.
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A B

B 2,2 2,1

In this game, B is strongly dominated for player 2, so the unique survivor of iterated strong

dominance is (B,A).  Note however, that player 2 must be quite sure that player 1 is not

playing A, since (A,A) results in a large loss for him.  Consequently, the prediction of

(B,A) might be overturned if there were some small probability that player 1 played A.

(Perhaps there is some chance that player 1 has different payoffs than those given here, or

that player 1 makes a “mistake.”)

 Related to strict dominance is the notion of weak dominance. 

Definition 1.2:  Strategy σ i  is weakly dominated for player i if there is some ~σ i i∈Σ ,

~σ σi i≠  such that u ui i i i i i(~ , ) ( , )σ σ σ σ− −≥  for all σ − −∈i iΣ , with strict inequality for at

least one σ −i . 

Again, there seems no reason to play a weakly dominated strategy, and indeed

weakly dominated strategies will not be played in models in which agents “tremble” or,

more generally, in models where agents beliefs about their opponents’ strategies

correspond to a completely mixed strategy.  However, the notion of iterated weak

dominance is problematic, and will not play a role in this book.

1.7.3. Nash Equilibrium

One of the problems with dominance is that in many games of interest, the process

of iterated dominance does not lead to strong predictions.  This has encouraged the

application of equilibrium theory, in which all players simultaneously have correct beliefs

about each others play while playing best responses to their own beliefs. 
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Definition 1.3:  A Nash Equilibrium is a strategy profile $σ  such that $ ( $ ),σ σi i iBR i∈ ∀− . 

It follows from the Kakutani fixed point theorem that a Nash equilibrium exists in finite

games so long as mixed strategies are permitted. (Many simple games, such as “matching

pennies,” have no pure-strategy equilibria.)  A game may have several  Nash equilibria, as

in the following example of a coordination game:

A B

A 2,2 0,0

B 0,0 2,2

Here player 1 picks the row and player 2 the column.  Each player has two pure strategies

A and B.  The numbers in the table denote the utility of player 1 and player 2 respectively. 

There are two pure strategy Nash equilibria at (A,A) and (B,B).  There is also one mixed

strategy Nash equilibrium where both player randomize with a 1/2 chance of A and a 1/2

chance of B. 

What would we expect to happen in this game?  Both players prefer either of the

two pure strategy Nash equilibria to the mixed strategy Nash equilibrium, since the

expected utility to each player at the pure equilibrium is 2, while the expected utility at the

mixed equilibrium is only 1.  But in the absence of any coordinating device, it is not

obvious how the two players can guess which equilibrium to go to.  This might suggest that

they will play  the mixed equilibrium.  But at the mixed equilibrium, each player is

indifferent, so while equilibrium  requires that they  give each strategy exactly the same

probability, there is no strong reason for them to do so.  Moreover, if player 1, say, believes

that player 2 is even slightly more likely to play A than B, then player 1 will want to play A
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with probability one.  From an intuitive point of view, the stability of this mixed strategy

equilibrium seems questionable.

In contrast, it seems easier for play to remain at one of the pure equilibria, because

here each player strictly prefers to play his part of the Nash equilibrium profile as long as

he believes there is a high probability that his opponent is playing according to that

equilibrium.   Intuitively, this type of equilibrium seems more robust.  More generally, this

is true whenever equilibria are “strict” equilibria in the following sense:

Definition 1.4: A Nash equilibrium s  is strict if for each player i,  si   is the unique best

response to  s i− ,  that is, player  i  strictly prefers si  to any other response.

(Note that only pure strategy profiles can be strict equilibria, since if a mixed strategy is a

best response to the opponents’ play, then so is every pure strategy in the mixed strategy’s

support.)

This coordination game example, although simple, illustrates the two main

questions   that the theory of learning in games has tried to address, namely: When and why

should we expect play to correspond to a Nash equilibrium?  And, if there are several Nash

equilibria, which ones should we expect to occur?

Moreover, these questions are closely linked: Absent an explanation of how the

players coordinate their expectations on the same Nash equilibrium, we are faced with the

possibility that player 1 expects the equilibrium (A,A) and so plays A, while player 2

expects (B,B) and plays B, with the result the non-equilibrium outcome (A.B).  Briefly, the

idea of learning-based explanations of equilibrium is that the fact that the players share a

common history of observations can provide a way for them to coordinate their

expectations on one of the two pure-strategy equilibria.  Typical learning models predict
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that this coordination will eventually occur, with the determination of which of the two

equilibria arise left either to (unexplained) initial conditions or to random chance.

However,  for the history to serve this coordinating role, the sequence of actions

played must eventually  become constant or at least readily predictable by the players, and

there is no presumption that this is always the case.  Perhaps rather than going to a Nash

equilibrium, the result of learning is that the strategies played, wander around aimlessly, or

perhaps play lies in some set of alternative larger than the set of Nash equilibria.

Because of the extreme symmetry of the coordination game above, there is no

reason to think that any learning process should tend to favor one of its strict equilibria

over the other . The coordination game  below is more interesting:

A B

A 2,2 -a,0

B 0,-a 1,1

Here there are two strict  Nash equilibria, (A,A) and (B,B);   both players would prefer the

Nash equilibrium (A,A) with payoffs  (2,2), since it Pareto dominates the equilibrium at

(1,1).  Will players learn to play the Pareto efficient equilibrium?  One consideration lies in

the risk that they face.  That is, if a is very large, guessing that your opponent is going to

play (2,2) is very risky, because if you are wrong you suffer a large loss.  One might expect

in a learning setting, that it would be difficult to get to a very risky equilibrium, even if it is

Pareto efficient.  A notion that captures this idea of risk is the Harsanyi-Selten criterion of

risk dominance.17  In 2x2 games, the risk dominant strategy  can be found by computing

                                                
17 The use of the word  “risk” here is different than the usual meaning in economics.  Actual risk aversion by
the players is already incorporated into the utility functions.
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the minimum probability of A that makes A the best response, and comparing it to the

minimum probability of B required to make B the best response.  In this example A is

optimal if there is probability  at least ( ) / ( )a a+ +1 3  that the opposing player plays A,

while B is optimal if the probability that the opponent plays B is at least 2 3/ ( )+ a ; thus A

is risk dominant if a < 1. Alternatively, and somewhat simpler, risk dominance in 2x2

games is equivalent to  a simple concept called 1/2-dominance.  An strategy is 1/2-

dominant if  it is optimal for all players to play the strategy whenever  their opponents are

playing that strategy  with probability at least 1/2.  Thus A is  risk  dominant if 2 1− >a , or

a < 1.

In both of the examples above, there is a finite number of Nash equilibria. Although

some strategic games can have a continuum of equilibria (for example if each player’s

payoff function is a constant) generically this is not the case. More precisely, for a fixed

strategy space S,  the set of Nash equilibria is finite (and odd) for an open and dense set of

payoff functions (Wilson [1971]).18   In particular,  for generic strategic-form payoffs each

Nash equilibrium is locally isolated, a fact that will be very useful in analyzing the stability

of learning processes.  However,  this fact is really only applicable to one-shot

simultaneous-move games, since in a general extensive form generic assignments of

payoffs to outcomes or terminal nodes do not generate generic strategic-form payoffs:  For

example, in the strategic form of the game in Figure 1.3, (L,l) and (L,r) lead to the same

outcome and so must give each player the same payoff.

                                                
18For a fixed strategy space S, the payoff functions of the I players correspond to a vector in the Euclidean
space of dimension I S⋅# ; a et of payoff functions is “generic” if it is open and dense in this space.
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1.7.4. Correlated Equilibrium

There is a second important noncooperative equilibrium concept in simultaneous

move games, namely Aumann’s [1974] notion of a correlated equilibrium.  This assumes

that players have access to randomization devices that are privately viewed, but perhaps the

randomization devices are correlated with each other.  In this case, if each player chooses a

strategy based upon observations of his own randomization device, the result is a

probability distribution over strategy profiles,  which we denote by µ ∈∆( )S .  Unlike a

profile of mixed strategies, such a probability distribution allows play to be correlated.

As in the theory of Nash equilibrium, suppose that players have figured out how

their opponents’ play depends on their private randomization device, and know how the

randomization device works.   Since each player knows what pure strategy he is playing, he

can work out the conditional probability of signals received by his opponents, and the

conditional probabilities of their play.  Let µ− −∈i i is S( ) ( )∆  denote the probability

distribution over opponents play induced by µ  conditional on si , and let µ i  be the

marginal for player i.  Then if µi is( ) > 0 , so that player i is willing to play si ,  it must be a

best-response to µ−i is( ) .  Formally, if µ− −∈i iS∆( )  we may calculate the expected utility

ui i i( , )σ µ−  and define the best-response $ ( )σ µi i iBR∈ −  if u ui i i i i i i( $ , ) ( , ),σ µ σ µ σ− −≥ ∀ .   

A correlated equilibrium is then a correlated strategy profile µ  such that µi is( ) > 0

implies s BR si i i i∈ −( ( ))µ .

Jordan’s [1993] simple three person matching pennies game illustrates the idea of a

correlated equilibrium.  This game is a variant on matching pennies, where each player

simultaneously chooses “H” or “T”,  and all entries in the payoff matrix are either +1 (win)

or -1 (lose). Player 1 wins if he plays the same action as player 2, player 2 wins if he

matches player 3, and player 3 wins by not matching player 1.  The payoffs are 
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where the row corresponds to player 1 (up for H, down for T), the column to player 2, and

the matrix to player three.  This game has a unique Nash equilibrium, namely for each

player to play (1/2,1/2).  However, it also has many correlated equilibria:  one is the

distribution over outcomes in which each of the profiles (H,H,H), (H,H,T), (H,T,T),

(T,T,T), (T,T,H), (T,H,H) have equal weight of 1/6.  Notice that in this distribution, each

player has a 50% chance of playing H.  However, no weight is placed on (H,T,H) so that

the play of the players is not independent.  (It is “correlated.”)  Taking player 1, for

example, we notice that when he plays H, he faces a 1/3 chance each of his opponents

playing (H,H), (H,T) and (T,T).  Since his goal is to match player 2, he wins 2/3rds of the

time by playing H, and only 1/3 of the time if he plays T.  So H is a best response to the

distribution of opponents play given H.  Similarly when he plays T, his opponents are

equally likely to play (T,T), (T,H) and (H,H).  Now tails wins 2/3rds the time, as against

heads which wins only 1/3rd the time.  The idea of correlated play is important in the

theory of learning for two reasons.  First, the types of learning models players are assumed

to use are usually relatively naive, as for example in the Cournot adjustment model.  In the

Cournot model, it is possible for play to cycle endlessly.  One consequence of this is that

play viewed over time is correlated.  In more sophisticated models, we still have to face the

possibility that players incidentally correlate their play using time as a correlation device,

and in some instances this results in learning procedures converging to correlated rather

than Nash equilibrium.  Indeed, this is in a sense what happens if the Cournot adjustment

procedure is used in the Jordan game.  If we begin with (H,H,H) player 3 will wish to

switch, leading to (H,H,T).  Then player 2 switches to (H,T,T), then player 1 to (T,T,T). 

Now 3 wants to switch again, leading to (T,T,H), 2 switches to (T,H,H) and finally 1 to



30

(H,H,H) completing the cycle.  In other words, in this example Cournot best-response

dynamics lead to cycling, and if we observe the frequency with which different profiles

occur, each of the 6 profiles in the correlated equilibrium is observed 1/6 the time.  That is,

play in the best-response dynamic resembles a correlated equilibrium.

We should note, however, that the fact that Cournot adjustment leads to correlated

equilibrium in this particular game is actually a coincidence.  If we modify the payoffs so

that when (H,T,T) is played, player 1 gets -100 rather than -1, then the best-response cycle

remains unchanged, but it is no longer optimal for player 1 to play H against a 1/3 chance

of his opponents playing (H,H),(H,T) and (T,T) with equal probability.  It turns out  that for

some more sophisticated learning procedures, the long run actually will be a correlated

equilibrium to a good approximation.19

A second reason correlation is important is that during the process of learning,

players will have beliefs about the mixed strategies that opponents are using.  This takes

the form of a probability distribution over opponents mixed profiles.  Such a probability

distribution is always equivalent to a correlated distribution over opponents pure strategy

profiles, but need not be equivalent to a profile of mixed strategies for the opponents. 

Suppose for example there are two opponents each with two alternative A and B.  Player

1believes that there is a 50% chance both opponents are playing A, and a 50% chance both

are playing B.  If he plays against them for a while he hopes to learn which of these

alternatives is correct; that is, he does not think that they are correlating their play.  In the

meantime, however, he will wish to optimize against the correlated profile 50% (A,A)-50%

(B,B).

                                                
19 This is true for consistent procedures discussed in chapters 2 and 4 because the game has only two actions.
 However, the even more sophisticated calibrated procedures discussed in chapter 8 give rise to correlated
equilibrium in all games.
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APPENDIX:   Dynamical Systems and Local Stability

In general, at  any moment of time t, certain players are playing particular strategies,

and have available certain information on which they base their decisions.  We refer to all

the variables relevant to determining the future of the system as the state and denote it by

θt ∈Θ .  In the Cournot adjustment model, the current state is simply the output levels

chosen currently by the two firms.  More generally, the variables that are represented in θ t

will depend on the particular model we are studying.  In addition to discrete time models

where t = 1 2, ,K , such as Cournot adjustment, we will also consider some continuous time

models where t ∈ ∞[ , )0 .  In discrete time, the state variable will evolve over time

according to the deterministic law of motion θ θt t tf+ =1 ( )  or according to the stochastic

(Markovian) law of motion pr t t t( ) ( | )θ θ φ θ θ+ = =1 .  In continuous time the deterministic

law of motion will be & ( )θ θt t tf= .  Although we will discuss some results in the case of

stochastic continuous time, the notation for these models is complicated, and will be

introduced when appropriate.

We begin with some basic definitions and results about stability in dynamic

processes;  a  good reference for this material is Hirsch and Smale [1974].  We let Ft ( )θ 0

denote the  value assumed by the state variable at time t when the initial condition at time 0

is θ 0 . I In discrete time F f Ft t t+ =1 0 0( ) ( ( ))θ θ , in continuous time D F f Ft t t( ) ( ( ))θ θ0 0= ,

and in both cases F0 0 0( )θ θ= ; the map F  is called the flow  of the system.

Definition 1.5:  A steady state $θ  of a flow satisfies F tt ( $ ) $ ,θ θ= > 0 .

Definition 1.6:  A steady state $θ  of a flow is stable if for every neighborhood U of $θ  there

is a neighborhood U1  of $θ  in U such that if θ 0 1∈U  F U tt ( ) ,θ 0 0∈ > , that is, if the system
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starts close enough to the steady state, it remains nearby. If a steady state is not stable, we

say that it is unstable.

Definition 1.7:  A steady state $θ  of a flow is asymptotically stable if it is stable, and in

addition if θ 0 1∈U  then lim ( ) $
t tF→∞ =θ θ0 .  The basin (of attraction) of an asymptotically

stable steady state is the set of all points θ 0  such that lim ( ) $
t tF→∞ =θ θ0 .  If there is a

unique steady state with basin equal to the entire state space Θ , it is called globally stable.

Definition 1.8:  A steady state $θ  is locally isolated  if it has an open neighborhood in

which there are no other steady states.

Note that an asymptotically stable steady state must be locally isolated, but that a

stable steady state need not be.

Definition 1.9:  A steady state $θ  is called hyperbolic if Df ( $ )θ  has no eigenvalues on the

unit circle (discrete time) or no eigenvalues with zero real parts (continuous time).  If the

eigenvalues all lie inside the unit circle (discrete time) or have negative real parts

(continuous time) the steady state is called a sink; if the eigenvalues all lie outside the unit

circle (discrete time) or have positive real parts (continuous time) it is called a source. 

Otherwise a hyperbolic steady state is called a saddle.

The critical aspect of a hyperbolic steady state in a non-linear dynamical system is

that it behaves locally like the linear system θ θ θ θ θt tDf+ = + −1
$ ( $ )( $ )  (discrete time) or

& ( $ )θ θ θ= Df  (continuous time).  The precise meaning of this can be found in the smooth

linearization theorem of Hartmann (see Irwin [1980]), which says that there is a smooth

local coordinate system that maps the trajectories of the non-linear system exactly onto the

trajectories of the linear system.  The most significant  case is

Proposition 1.3: A sink is asymptotically stable.
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In the two player Cournot process, we may check for asymptotic stability, by

computing the appropriate eigenvalues.  Denote the slopes of the best response functions

BR si i( )−  by BR si i′ −( ) .  We have

             Df
BR

BR
=

′
′

�
��

�
��

0

0
1

2

with corresponding eigenvalues l = � � ¿ �BR BR1 2 .  Consequently, the absolute value of  λ

 is smaller than 1  if slope  BR2  is less than the slope of BR1, in which case the process is

asymptotically stable.20

To the extent that we accept the adjustment process, we can argue that sources will

not be observed.  However, the case of saddles is more complicated; a flow corresponding

to a saddle is illustrated below

Figure 1.3

                                                
20 Recall that, because s2  is on the vertical axis, the “slope” of player 1’s best response function is 1 1/ ’BR .
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Here there are paths that approach close to the steady state (at the origin in the figure), but

eventually move away.  However, once the system moves close to the steady state, the

actual speed of movement becomes very slow, so the system will remain near the steady

state for a long time before leaving.  Consequently, a saddle may be a good model of the

“intermediate run,” even though it is not a good model of the “long run.”  This point is

emphasized in Binmore and Samuelson [1995], who argue that saddles may in fact be a

sensible model of actual behavior over long periods of time.

Even if a game has stable equilibria, it may have more than one of them.

Consequently, stability analysis will not in general yield a unique prediction, although it

can help reduce the set of possible outcomes.   Moreover, the fact that a system has one or

more stable equilibria does not imply that the state will approach any of the equilibria..  As

a result, we will sometimes have need of the following more general concepts in 

characterizing the long-run behavior of dynamic systems:

Definition 1.10:  The set of ω -limit points of the flow F  are the points θ  such that for

some θ 0 , and sequence of times tn → ∞  the lim ( )n tF
n→∞ =θ θ0 .  That is, θ  is an ω -limit

point if there is an initial condition from which θ  is approached  infinitely often.  A set

′ ⊆Θ Θ  is invariant if θ 0 ∈ ′Θ  implies Ft ( )θ 0 ∈ ′Θ  for all t.  An invariant set ′ ⊆Θ Θ  is

an attractor if it has a compact invariant neighborhood ′′Θ  such that if θ 0 ∈ ′′Θ , and there

is a sequence of times tn → ∞  for which θ θ= →∞lim ( )n tF
n 0  exists, then θ ∈ ′Θ .

In addition to containing steady states, the set of ω -limit points can contain cycles

or even other limit sets known as strange attractors.  There has been a limited amount of

work on strange attractors in the theory of learning, such as that of Skyrms [1992,1993]. 

So far, however, the existence of strange attractors, and the chaotic trajectories that

surround them, have not played a central role in the theory of learning in games.
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2. Fictitious Play

2.1. Introduction

One widely used model of learning is the process of fictitious play and its variants. 

In this process, agents behave as if they think they are facing a stationary, but unknown,

distribution of opponents strategies.  In this chapter we examine whether fictitious play is a

sensible model of learning, and what happens in games when players all use fictitious play

learning rules. 

We will begin our discussion of fictitious play in a two player setting.  After

introducing fictitious play  in section 2.2, we will discuss conditions under which fictitious

play converges in section 2.3.  Although the assumption of stationarity that underlies

fictitious play is a reasonable first hypothesis in many situations, we might expect players

to eventually reject it given sufficient evidence to the contrary. In particular, if the system

in which the agents are learning fails to converge, then the assumption of stationarity does

not make much sense. As we will see in section 2.4, most of the problems with  the long-

run behavior of fictitious play arise in this case of non-convergence.

We then move on to the multi-player case in section 2.5.  Here a key issue is the

whether players form estimates of the joint distribution of opponents’ play by taking the

product of independent marginal distributions, or whether they instead form these estimates

 in ways that allow for either objective or subjective correlation.

One important issue in studying any learning process is whether it succeeds in

learning.  Section 2.6 discusses the notion of payoff consistency.  Since fictitious play only

tracks information about the frequency that each strategy is played, it is natural to ask

under what conditions fictitious play successfully learns these frequencies, in the sense that
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the players do as well (as measured by  the time average of their payoffs)  as if the limiting

 frequencies were known .  We refer to this property as “consistency” and show in section

2.6 that if the course of fictitious play involves less “infrequent” switching between

strategies  then fictitious play is consistent in this sense.  In chapter 4  we  show that a

randomized version of fictitious play can give rise to universal consistency, meaning that

they do as well asymptotically as if the frequencies were known in advance, no matter what

strategies are  used by opponents.

What can be said about the course of play when players use fictitious play rules? 

We take up this topic in section 2.8 where we show that fictitious play has dynamics very

similar to the partial- best-response dynamic discussed in chapter 1.  In chapter 3 , we will

consider more closely the behavior of best-response and related dynamics.

For the purpose of modeling short-run behavior in experiments,  fictitious play can

be improved by allowing for larger weights on more recent observations and player

“inertia” in the sense of a probability of repeating the most recently chosen action.  These

and other variants on fictitious play are discussed in section 2.9;  extension to random

versions of fictitious play are considered in chapter 4.

One important observation is that the process of fictitious play supposes that

players do not try to influence the future play of their opponents. As we discussed in the

introduction, there are several models of interactions in a large population in which such

“naive” or unsophisticated  behavior is sensible. We should also  point out that many of the

formal results deal with a small finite population, so the conceptually naïve play is

problematic.  More interesting from an economic point of view is the case of a continuum

population, since here it is legitimate to ignore strategic interactions.  In the most

interesting case, with a large but finite population and anonymous random matching, the

matching process adds a source of randomness to the evolution of the system, even if the
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play of each individual agent is a deterministic function of his observations. However, as

we will see in the next chapter, this and other sources of randomness turn out not to have

much impact on the qualitative conclusions.

2.2. Two Player Fictitious Play

To keep the formalities reasonably simple, we will start out with the case of a two-

player simultaneous-move game, with finite strategy  spaces S S1 2,  and payoff functions

u u1 2, . The model of fictitious play supposes that players choose their actions in each

period to maximize that period’s expected payoff given their prediction or assessment of

the distribution of opponent’s actions in that period, where this assessment takes the

following special form:

Player i has an exogenous initial weight function κ0
i iS: −

+→ ℜ . This weight is 

updated by adding 1 to the weight of each opponent strategy each time it is played,

so that
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Fictitious play itself is then defined as any rule ρ γt
i

t
i( )  that assigns ρ γ γt

i
t
i i

t
iBR( ) ( )∈ . 

Traditional analyses suppose that the player chooses a pure-strategy best response when

indifferent between several pure strategies;  since exact indifference will not occur for

generic payoffs and priors, the precise specification here is unimportant.  Note that there is

not a unique fictitious play rule, since there may more than one best response to a particular

assessment; note also that the behavior prescribed by fictitious play is a discontinuous 
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function of the player’s assessment, since there does not in general exist a continuous

selection from the best-response correspondence. 

One way to interpret this method of forming an assessment is to note that it

corresponds to Bayesian inference when player i believes that his opponents’ play

corresponds to a sequence of i.i.d. multinomial random variables with a fixed but unknown

distribution, and player i’s prior beliefs over that unknown distribution take the form of a

Dirichlet distribution.21   In this case player i’s prior and posterior beliefs correspond to a

distribution over the set ∆( )S i−  of probability distributions on S i− .  The distribution over

opponent’s strategies γ t
i  is the induced marginal distribution over pure strategies.  In

particular, if beliefs over ∆( )S i−  are denoted by µ i  then we have

γ σ µ σt
i i i i

t
i is s d

i
( ) ( ) [ ]− − − −=

−IΣ
.  The hypothesis to emphasize here is not the Dirichlet

functional form, but rather  the implicit assumption that the player treats the environment

as stationary.   In section 2.8 we will discuss the possibility of weighting current

observations more heavily than past observations, which is one way that players might

respond to the possibility that the environment is nonstationary.

We also define the marginal empirical distribution of j’s play as

d s
s s

tt
j j t

j j

( )
( ) ( )= −κ κ 0

The assessments  γ t
i  are not quite equal to the marginal empirical distribution dt

j  (recall

that there are only two players, so that j=-i) because of the influence of player i's prior. 

This prior has the form of a “fictitious sample” of data that might have observed before

play began. However, as observations are received over time, they will eventually outweigh

the prior, and the assessments will converge to the marginal empirical distributions.

                                                
21 The Dirichlet distribution and multinomial sampling form a “conjugate family,” meaning that if the prior
over the probability distributions belongs to the Dirichlet family, and the likelihood function is multinomial,
then posterior is also in the Dirichlet family.  See the appendix to this chapter for details.
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Compared to the updating rule in the myopic adjustment process, fictitious play has

the advantage that as long as all of the initial weights are positive, there is no finite sample

to which the beliefs assign probability zero.  The beliefs do reflect the conviction that the

opponent’s strategy is constant and unknown, and this conviction may be wrong along the

path of the process, for example, if the process cycles.  But any finite string of what looks

like cycles is consistent with the belief that the world is constant and the observations are a

fluke.  If cycles persist, we might expect the player to eventually notice them, but at least

his beliefs will not be falsified in the first few periods, as they are in the Cournot process.

2.3. The Asymptotic Behavior of Fictitious Play

One key question about fictitious play is whether or not play converges; if it does,

then the stationarity assumption employed by players makes sense, at least asymptotically;

if it does not, then it seems implausible that players will maintain that assumption.  In  this

section, we examine some sufficient conditions under which fictitious play converges.

The state of the fictitious play process is the vector of the player’s assessments, and

not the strategies played at date t, since the latter is not sufficient to determine the future

evolution of the system. Nevertheless, in a slight abuse of terminology,  we will say that a

strategy profile is a steady state if it is played in every period after some finite time T. 

Proposition 2.1:  (a) If s is a strict Nash equilibrium, and s is played at date t in the process

of fictitious play,  s is played at all subsequent dates.22 That is, strict Nash equilibria are

absorbing for the process of fictitious play.  (b) Any pure strategy steady state of  fictitious

play must be a Nash equilibrium.

                                                
22 Recall from section 1.6.3 that a strategy profile is a strict Nash equilibrium if each player’s strategy is a
strict best response to the opponents’ play, that is every other choice for the player gives a strictly lower
payoff.
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Proof:  First suppose players’ assessments  γ t
i   are  such that their optimal choices

correspond to a strict Nash equilibrium $s .  Then when the strict equilibrium is played, each

player i’s beliefs in period  t+1  are a convex combination of  γ t
i   and a point mass on $s i− : 

γ α γ α δt
i

t t
i

t
is+

−= − +1 1( ) ( $ ) .  Since expected utilities are linear in probabilities, 

u s u s s u si i
t
i

t
i i i

t
i i

t
i( $ , ) ( $ , ( $ )) ( ) ( $ , )γ α δ α γ+

−= + −1 1 , and so if

$si  is a best response for player i for  γ t
i ,  it is a strict best response for γ t

i
+1 .  Conversely, if

play remains at a pure strategy profile, then eventually the assessments will become

concentrated at that profile, and so if the profile is not a Nash equilibrium, one of the

players would eventually want to deviate.

æ

Since the only pure strategy profiles that fictitious play can converge to are those

that are Nash equilibria, fictitious play cannot converge to a pure strategy profile in a game

all of whose equilibria are mixed.  Consider for example the game “matching pennies”:

H T

H 1,-1 -1,1

T -1,1 1,-1

with initial weights (1.5,2) and (2,1.5).  Then fictitious play cycles as follows:  in the first

period, 1 and 2 play  t,  so that the weights the next period are (1.5,3) and (2,2.5).  Then 2

plays  T  and 2 plays  H  for the next two periods, after which 1's weights are (3.5,3) and 2's

are (2,4.5).  At this point 1 switches to  H,  and both players play  H  for the next 3 periods,

at which point 2 switches to  T,  and so on.   
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It may not be obvious, but although the actual play in this example cycles, the 

empirical distribution over player i’s strategies dt
i are converging to (1/2,1/2), so that the

product of the two empirical marginal distributions, namely {(1/2,1/2),(1/2,1/2)} is the

mixed-strategy equilibrium of the game.  The fact that the limiting marginal distributions

correspond to a Nash equilibrium is a general property of fictitious play:

Proposition 2.2:  Under fictitious play, if the empirical distributions dt
i  over each player's

choices converge, the strategy profile corresponding to the product of these distributions is

a Nash equilibrium.

Proof:  The proof is the same as before:  if product of the empirical distributions converges

to some profile $σ ,  then the beliefs converge to  $σ , and hence if  $σ  were not a Nash

equilibrium, some player would eventually want to deviate.  In fact, it should be clear that

this conclusion does not require that the assessments take the specific form given in

fictitious play; it suffices that they  are “asymptotically empirical”, in the sense that in the

limit of a great many observations, they become close to the empirical frequencies.

æ

Proposition 2.3:  Under fictitious play, the empirical distributions converge if the stage has

generic payoffs23 and is    2×2 [Robinson, 1951] or zero-sum [Miyasawa, 1961], or is

                                                
23By “generic” we mean “for a set of payoff vectors that have full Lebesgue measure in the relevant payoff

space, which here is ℜ8 . (See section 1.7.3 for a brief discussion of genericity in strategic form games.) 
Generic 2x2 games have either one or three Nash equilibria, but for nongeneric payoffs the set of Nash
equilibria may be a connected interval of strategy profiles.  In this case, whether fictitious play converges can
depend on the precise rule used to determine a player’s choice when indifferent. See Monderer and Sela
[1996] for a discussion of the importance of tie-breaking rules.



45

solvable by iterated strict dominance [Nachbar, 1990] or has strategic complements and

satisfies another technical condition [Krishna and Sjostrom 1995]. 

The empirical distributions, however, need not converge. The first example of this

is due to Shapley [1964], who considered a game equivalent to the following one:

L M R

T 0,0 1,0 0,1

M 0,1 0,0 1,0

D 1,0 0,1 0,0

This game has a unique Nash equilibrium, namely for each player to use the mixed strategy

(1/3,1/3,1/3).  Shapley showed that if the initial weights lead players to choose (T,M), then

the fictitious play follows the cycle (T,M)→(T,R)→(M,R)→(M,L)→(D,L)→(D,M)→

(T,M)..., which is the path of Cournot’s alternating-move best-response process. In

particular, the three “diagonal profiles” (U,L), (M,M) and (D,R) are never played. 

Moreover, the number of consecutive periods that each profile in the sequence is played 

increases sufficiently quickly that the empirical distributions d dt t
1 2,  do not converge  but

instead follow a limit cycle.  Shapley’s proof of this latter fact explicitly computes  the time

spent in each stage of the sequence. Monderer, Samet and Sela [1995] have an easier proof

of non-convergence that we present in section 2.6.

If the payoffs along the diagonal are increased to (1/2, 1/2), then the example above

becomes the zero-sum game “rock-scissors-paper” in which rock smashes scissors, scissors

cuts paper and paper wraps the rock.  This game has the same, unique, Nash equilibrium,

namely for each player to play (1/3,1/3,1/3). Moreover, this is the unique correlated

equilibrium of the game as well. Note for future reference that since rock-scissors-paper is
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a zero-sum game, the empirical distributions generated by fictitious play must converge to

the Nash equilibrium. However, the outcomes played will follow the same best-reply cycle

as in the Shapley example; the empirical distributions converge here because the time spent

playing each profile increases sufficiently slowly. The rock-scissors-paper game and its

modifications have been very useful in understanding learning and evolution in games, and

we will be referring to it again in the next chapter.

2.4. The Interpretation of Cycles in Fictitious Play

The early literature on fictitious play viewed the process as describing pre-play

calculations players might use to coordinate their expectations on a particular Nash

equilibrium (hence the name ‘fictitious’ play.) From this viewpoint, or when using

fictitious play as a means of calculating Nash equilibria, the identification of  a cycle  with

its time average is not problematic, and the early literature on fictitious play accordingly

focused on finding conditions that guaranteed the empirical distributions converge.

However, this notion of convergence has some problems as a criterion for whether

players have learned to play the corresponding strategies, as it supposes that the players

ignore the persistence of cycles, and suppose that their opponents' play corresponds to i.i.d.

draws from a fixed distribution.  Moreover, because of these cycles, the empirical joint

distribution of the two players' play (formed by tracking the empirical frequency of strategy

profiles, as opposed to the empirical marginal frequencies tracked by the dt
i ) can be

correlated.  Consider the following example, from Fudenberg and Kreps [1990], [1993]:24

A B

                                                
24Young [1993] gives a similar example.
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A 0,0 1,1

B 1,1 0,0

   

Suppose this game is played according to the process of fictitious play, with initial

weights (1, sqrt (2)) for each player.  In the first period, both players think the other will

play  B,  so both play  A. The next period the weights are (2,sqrt (2)) and both play  B; the

outcome is the alternating sequence  ((B.,B),(A,A),(B,B), etc.)  The empirical frequencies

of each player’s choices do converge to  1/2, 1/2,  which is the Nash equilibrium, but the

realized play is always on the diagonal, and both players receive payoff  0  in every period.

Another way of putting this is that the empirical joint distribution on pairs of actions does

not equal the product of the two marginal distributions, so that the empirical joint

distribution corresponds to correlated as opposed to independent play.

From the standpoint of players learning how their opponents behave, this sort of

example, where the joint distribution is correlated, does not seem a very satisfactory notion

of “converging to an equilibrium.”   More generally, even if the empirical joint distribution

does converge to the product of the empirical marginals, so that the players will end up

getting the payoffs they would expect to get from maximizing against i.i.d. draws from the

long-run empirical distribution of their opponents’ play, one might still wonder if players

would ignore persistent cycles in their opponents’ play. 

One response to this is to use a more demanding convergence notion, so that a

player’s behavior only converges to a mixed strategy if his intended actions in each period

converge to that mixed strategy.  The standard fictitious play process cannot converge to a

mixed strategy in this sense for generic payoffs, so we postpone our discussion of this

response until chapter 4.
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An alternative response is to decide that the players ignoring cycles is not

problematic because players keep track only of data on opponents’ frequency of play.

We explore this response more fully in section 2.7.

2.5. Multi-Player Fictitious Play

We now turn to an important modeling issue that arises in extending fictitious play

to games with three of more players:  in a 3-player game, say, should player 1’s assessment

γ 1 about the play of his opponents have range Σ Σ2 3× , with γ γ γ1 2 3 1 1 1 3( , ) ( ) ( )s s s s= , so

that the assessment always corresponds to a mixed strategy profile, or should the range of

the assessment be the space ∆( )S S2 3×  of all the probability distributions over opponents’

play, including the correlated ones? 

To answer this, we rely on the interpretation of fictitious play as the result of

Bayesian updating, with the assessments corresponding to the marginal distribution over

the opponents’ current period strategies that is derived from the player’s current beliefs.

From this viewpoint, player 1’s current assessment of his opponents’ play can correspond

to a correlated distribution even if player 1 is certain that the true distribution of his

opponents’ play in fact corresponds to independent randomizations.  Formally, the

assumption that 2 and 3 randomize independently implies that 

γ σ σ µ σ σt
i
ts s s s d

i

1 2 3 2 2 3 3 1 2 3( , ) ( ) ( ) [ ( , )]=
−IΣ

;

the assumption of independent mixing is reflected in the fact that the integrand uses the

product of σ 2 2( )s  and σ 3 3( )s .  Despite this, the assessment γ t
1 need not be a product

measure, and indeed it typically won’t be a product measure unless player 1’s subjective 
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uncertainty about his opponents is also uncorrelated, that is, unless µ t
1 is a product

measure. 

To make this more concrete, suppose for example that there is a 1/2 chance both

opponents are playing A, and a 1/2 chance both are playing B.  Thus the support of player

1’s beliefs is concentrated on uncorrelated (in fact, pure) strategy profiles of the opponents,

but his current assessment corresponds to the correlated profile 1/2 (A,A)-1/2 (B,B).  

Consequently, we see that there is no strong reason to suppose that the players’

initial assessments correspond to uncorrelated randomizations.  A deeper question is

whether the support of the players’ prior beliefs should be the set of opponents’ mixed

strategy profiles, as in the calculation of the marginal above, or whether the prior should

allow for the possibility that the opponents do manage to consistently correlate their play. 

If the support is the set of mixed strategies, then over time each player will become

convinced that the distribution of opponents’ play corresponds to the product of the

empirical marginal distribution of each opponent’s action, so that persistent correlation will

be ignored.

To see the difference this makes, consider a 3-player variant of the rock-scissors-

paper game discussed above, where players 1 and 2 have exactly the same actions and

payoffs as before, and player 3 has the option of betting on the play of the other two.  More

precisely, if player 3  chooses Out, 3 gets 0; if 3 chooses In she gets 10 if 1 and 2 play on

the diagonal, and -1 if 1 and 2 play on the off-diagonal; player 3’s action has no effect on

the payoffs of the others.   It is easy to see that this game has a unique Nash equilibrium:

players 1 and 2 play the mixed strategy (1/3,1/3,1/3), and player 2 chooses In. Moreover,

this is the unique correlated equilibrium of the game.

As observed above, the play of players 1 and 2 in this game will cycle through the

off-diagonal elements , the empirical distributions over the individual payers’ actions will
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converge to (1/3,1/3,1/3).  If player 3 estimates separate distributions for player 2 and

player 3, then her beliefs will eventually converge to the empirical distributions, leading

her to choose In; yet doing so will result in a payoff of -1 in every period, which is below

player 3’s reservation utility.  If, on the other hand, player 3 instead keeps track of the

frequencies of each strategy profile ( , )s s1 2  (say by having a Dirichlet prior over the 

strategy profiles of the opponents) then she will learn to play Out, so that play converges to

an outcome that is not a Nash nor even a correlated equilibrium.  Moreover, player 3 is

recognizing the correlation in the actions of players 1 and 2 that those players themselves

ignore.

In our opinion, this example shows that there are problems with either formulation

of multi-player fictitious play whenever play in each period fails to converge to a fixed

strategy profile. This is an additional argument against using the convergence of the

empirical distributions as the convergence criterion.

In the introduction, we used Jordan’s [1993] simple three person matching pennies

game to illustrate the idea of a correlated equilibrium.  Here we show how fictitious play

leads to a robust cycle in this game, similar to the best-response cycle we discussed in the

introduction.

Recall that the game in question is a variant on matching pennies, where each

player simultaneously chooses “H” or “T”,  and all entries in the payoff matrix are either

+1 (win) or -1 (lose). Player 1 wins if he plays the same action as player 2, player 2 wins if

he matches player 3, and player 3 wins by not matching player 1.  The payoffs are 

+ + − − − −
− + + + − +

�
! 

"
$#

+ − + − + +
− − − + + −

�
! 

"
$#

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1
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, , , ,

, , , ,

, , , ,

where the row corresponds to player 1 (up for H, down for T), the column to player 2, and

the matrix to player three.  This game has a unique Nash equilibrium, namely for each
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player to play (1/2,1/2), but we observed that the distribution over outcomes in which each

of the profiles (H,H,H),(H,H,T),(H,T,T),(T,T,T),(T,T,H),(T,H,H) have equal weight of 1/6

is a correlated equilibrium.

Jordan specifies that players estimate a separate marginal distribution for each

opponent as in two-player fictitious play, and that the players’ assessments are the product

of these marginals; this corresponds to the case where players believe their opponents

randomize independently and moreover the subjective prior γ i  of  each player is a  product

 measure.  However, each player cares only about the play of one of the two opponents, so

the particular assumptions about how the opponents’ play is correlated is irrelevant.  Jordan

improves on Shapley’s example by providing a game where the empirical distributions fail

to converge for all initial conditions outside of a one-dimensional stable manifold, thus

showing that the failure to converge is very robust to the initial conditions.  The cycle is

similar to the best response cycle we discussed above:  if  players start with assessments

that lead them to play (H,H,H), eventually player 3 will want to switch to T.  After playing

(H,H,T) for a long time, eventually player 2 will want to switch and so forth.  As in 

Shapley’s example, the cycle takes longer and longer as time goes on; however,  unlike the

Shapley example, the joint distribution of player’s play converges to the correlated

equilibrium putting equal weight on the 6 strategies the cycle passes through.25  We will

see below that it is not a  coincidence that the cycle passes through profiles in the same

order as the best response dynamic, nor that the joint distribution converges to a correlated

equilibrium.

                                                
25 This assertion is not meant to be obvious;  we provide a proof  in section 2.7. 
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2.6. Payoffs in Fictitious Play

In fictitious play, players keep track only of data about the frequency of opponents

play.  In particular,  they do not keep track of data on conditional probabilities, and so may

not recognize that there are cycles.26  Given this limitation, , we can still ask whether

fictitious play accomplishes its purpose.  That is, if fictitious play successfully “learns” the

frequency distribution, then it ought, asymptotically at least, yield the same utility that

would be achieved if the frequency distribution is known in advance.  This section

examines the extent to which fictitious play satisfies this  property, which we call 

“consistency.”

In this section, we will suppose that if there are more than two players, players

assessments track the joint distribution of opponents strategies.  Denote the empirical

distribution over player i’s opponents byDt
i−

  Denote the best payoff against the empirical distribution by
$ max ( , )U u Di

t i i
t

i
i= −

σ σ .  Denote by U t u s st
i i i it= −

=∑( / ) ( , )1
1 τ ττ  the time average  of player i’s

realized payoffs.

Definition 2.2 :  Fictitious play is ε -consistent along a history if there exists a T such that

for any t T≥ , U Ut
i

t
i+ ≥ε $  for all i.

Note that this is an “ex-post” form of consistency, in contrast to consistency in the sense of

classical statistics.  Chapter 4 discusses behavior rules that are “universally ε-consistent” in

the sense of being ε-consistent along every possible history.

It is useful to consider not only how well the player actually does against his

opponents’ empirical play, but also how well he does relative to the utility he expects to

                                                
26 Of course they may keep track of this information; we discuss the consequences of this more fully in
chapter 8  below.
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get. Because the expected payoffs are linear in the probabilities, a player whose assessment

over opponent’s date-t actions is γ t
i  believes that his expected date-t payoff is

U ut
i i i

t
i

i
* max ( , )= σ σ γ ; .  Since  the distance between γ t

i  and Dt
i−  converges to 0 whether

or not play converges, and the payoff function is continuous in the opponents’ mixed

strategies, $ *U Ui
t

i−  converges to 0 asymptotically.   Consequently, consistency means that

not only does a player do as well as he might if he knew the frequencies in advance, but he

does as well as he expects to do.  For example, if, as in the example of the last section,  Ut
i

 remains less than $Ui
t ,  player i should eventually realize that  something is wrong with his

model of the environment.  This provides an alternative motivation for the notion of

consistency.

Our main result concerns the connection between how frequently a player changes

strategies, and the consistency of his play.  For any time t we define the frequency of

switches ηt
i  to be the fraction of periods τ  in which s si i

τ τ≠ −1 .

Definition 2.3 Fictitious play exhibits infrequent switches along a history if for every ε

there exists a T and for any t T≥  η εt
i ≤  for all i.

Proposition 2.4  If fictitious play exhibits infrequent switches along a history, then it is it is

ε -consistent along that history for every ε > 0 .

This result was established independently by Fudenberg and Levine [1994] and by

Monderer, Samet, and Sela [1994];   we present the Monderer-Samet-Sela  proof since it is

shorter and more revealing.27   

                                                
27 Monderer, Sela and Samet only present the case of fictitious play with a null prior, so that the player’s
beliefs (at every period after the first one) exactly equal the empirical distribution, so that e = 0 but their
proof extends immediately to general priors.
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Intuitively, once there is enough data to swamp the prior, at each date  t  player i’s

action will be a best response to the empirical distribution through date t-1.  On the other

hand, if player i is not on average doing as well as the best response to the empirical

distribution, there must be a nonnegligible fractions of dates  t  at which the  action i

chooses at date t  is not be a best response to the distribution of opponents’ play through

that date.  But at such dates, player i will switch and choose a different action at date t+1;

conversely, infrequent switches imply that most of the time i’s date t action is a best

response to the empirical distribution at the end of date t. 

In what follow it is convenient to let $σ t
i  denote the argmax specified by the

fictitious play.

Proof of Proposition 2.4:.    Observe that

Ut
i*

=u u
t k u u s
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The first quotient in this expression converges to player i’s realized average payoff Ut
i .

The second sums terms that are zero except when player i switches, and so it converges to

0 on any path with infrequent switches, and the third is an effect of the prior beliefs that

converges to 0 along any path.

æ

Proposition 2.5:   For any initial weights, there is a sequence ε t → 0  such that along any

infinite horizon history,  U Ut
i

t
i

t

* ≥ + ε .  That is,  once there is enough data to outweigh the

initial weights, players believe that their current period’s expected payoff is at least as large

as their average payoff to date.

Proof:    Let k si i

s i= −
−∑ κ 0 ( )  be the length of the “fictitious history” implicit in the initial

beliefs γ 0
i , and let $σ t

i  denote a best response to  γ t
i .  Then

Ut
i*

=u u
u s t k u

t k
i

t
i

t
i i

t
i

t
i

i
t
i

t
i i

t
i
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σ γ σ γ

σ σ γ
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− −
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− −
1

1 1 1 112 7
,

 where the inequality comes from the fact that $σ t
i  is a best response to γ t

i .  Expanding

ui
t
i

t
i( $ , )σ γ− −1 1  shows that shows that

Ut
i* ≥

+ + − + + − + −
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=− −
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proceeding iteratively shows that
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Ut
i* ≥

+

+
= +

+

−

=

−

∑u s ku

t k

tU ku

t k

i i i
t

i i i

t
i i i i( $ , ) ( $ , )

( $ , )
σ σ γ

σ γτ τ
τ 1

1

1 1
1 1 .

  Taking ε t
it u> ( / ) max1  completes the proof.  Note that this proof does not use the

“infrequent switches” property.

æ

The Fudenberg and Kreps example above fails the infrequent switch test because

players change their strategies every period.  On the other hand, the non-convergent paths

in  both the Shapley and in the Jordan examples are easily  seen to have infrequent

switches.  Moreover, as noted by Monderer, Samet and Sela, Proposition 2.5 can be used to

provide an easy proof that the empirical distributions do not converge in those examples. 

In the Shapley cycle, for instance, the sum of the realized payoffs is 1  in every period, so

that by Proposition 25  the sum of the payoffs U t
i*  that the players expect to receive at least

1 for large t.  On the other hand, if the empirical distributions were to converge they would

need to converge to the Nash equilibrium distributions (from Proposition 2.2);  thus the

players’ beliefs would converge to the Nash equilibrium distributions as well, and so their

expected payoffs would converge to the Nash equilibrium payoffs,  which sum to 2/3.

2.7. Consistency and Correlated Equilibrium in 2 Strategy Games

Because in the Jordan game each player has only two actions, consistency has an

interesting consequence:  it implies that the long-run average of action profiles resembles a

correlated equilibrium. 

Specifically, suppose that the outcome of play is e -consistent in the sense of the

previous section, with ε = 0 . Let D st
i i− [ ] denote the distribution over the play of i’s

opponents derived from the joint distribution over profiles Dt  by conditioning on player i
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playing si , and let recall that dt
i  is the marginal distribution of i’ s play.  In particular

D d s D st
i

t
i i

t
i i

si
− −= ∑ ( ) [ ] .  Note also that max ( , ) max ( , )σ σ

i i
u D u s Di

i t
i

s
i

i t
i− −= . 

Consistency, then, is equivalent to the condition that u D u s Di
t

i
i t

i( ) ( , )≥ −   for all si .

 Supposing that player i has only two actions, we may write

d s u s D s d r u r D r u D

u s d s D s d r D r

d s u s D s d r u s D r

t
i i i i

t
i i

t
i i i i

t
i i i

t

i i
t
i i

t
i i

t
i i

t
i i

t
i i i i

t
i i

t
i i i i

t
i i

( ) ( , [ ]) ( ) ( , [ ]) ( )

( , ( ) [ ] ( ) [ ])

( ) ( , [ ]) ( ) ( , [ ])

− −

− −

− −

+ = ≥

+ =
+

from which we conclude by subtraction that

d r u r D r d r u s D rt
i i i i

t
i i

t
i i i i

t
i i( ) ( , [ ]) ( ) ( , [ ])− −≥

for all si .  This says that ri  is a best response to the conditional distribution of opponents

actions given ri  whenever it is played with positive probability.  We conclude that

whenever each player has only two strategies, if Dt  is consistent, it is a correlated

equilibrium as well. 

2.8. Fictitious Play and the Best Response Dynamic

We observed in the Jordan example that the sequence of pure strategy profiles

generated by fictitious play (but not the number of times of each profile occurs)  is the

same as that in the alternating-move best response dynamic.  (This is true also in the

Shapley example.)  It is easy to see that these two processes cannot be the same in general

games, for under the alternating-move best response dynamic players only choose

strategies that are best replies to some pure strategy of their opponents, while under

fictitious play a player may choose a strategy that is not a best response to any pure strategy

profile, but is a best response to some mixed opponents’ strategies. However, the

asymptotic behavior of fictitious play is closely related to the asymptotic behavior of the
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“partial best response dynamic” we discussed in the introduction, if the fraction of the

population that adjusts its play each period is sufficiently small.

Let us suppose that there is a continuum population of each type of player, and take

the state variable θ t
i  to be the frequency distribution over strategies played by type i.  That

is, θ t
i is( )  is the fraction of type i’ s that are playing si .  In discrete time, if a fraction of the

population λ  is picked at random switch to the best-response to their opponents current

play, and the rest of the population continues their current play, the partial best-response

dynamic is given  by

θ λ θ λ θ θ λ θ θt
i

t
i i

t
i

t
i i

t
i

t
iBR BR+

− −= − + = + −1 1( ) ( ) ( ( ) ) ,

where each BRi  is a (discontinuous) function corresponding to some selection from the

best response correspondence for that player. If the time periods are very short, and the

fraction of the population adjusting is very small, this may be approximated by the

continuous time adjustment process

& ( ( ) )θ β θ θt
i i

t
i

t
iBR= −− .

Notice that this dynamic is time homogeneous, as is the discrete-time version of the

process, so that the former does not “converge” to the latter as the process evolves; the

shift from the discrete-time system to the continuous-time one was justified by considering

a change in the system’s underlying parameters. 

In  contrast,  the fictitious play process  moves more and more slowly over time,

because the ratio of new observations to old observations becomes smaller and smaller. 

Suppose that when there are more than two players, population averages of opponents are

viewed as independent, so that asymptotically beliefs γ t
i  are approximately given by the

product of marginal empirical distributions dt
j

j i≠∏ .   Recalling that dt
i

−
−

1  is the vector of

marginal empirical distributions of the play of players other than player i, Then the
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marginal empirical distributions in fictitious play evolve  approximately (ignoring the

prior) according to

d
t

t
d

t
BR dt

i
t
i i

t
i= − +− −

−1 1
1 1( ) .

This is of course very much like the partial best-response dynamic, except that the weights

on the past is converging to one, and the weight on the best response to zero.

Moreover, we can make the fictitious play system seem stationary by changing the

units in which time is measured.  Specifically, let τ = log t , or t = expτ .  Suppose that

there are infrequency switches, so that play remains more or less constant between τ  and

τ + ∆ .  Observing that

exp( ) exp (exp( ) )exp expτ τ τ τ+ − = − ≈ =∆ ∆ ∆ ∆1 t ,

and letting 
~

expd di i
τ τ= we may write

~
( )

( ) ( )

( )
~

(
~

)

d d
t t

t
d

t

t
BR d

d BR d

d BR d

i
t t
i

t
i i

t
i

t
i i

t
i

i i i

τ

τ τ

+ +
−

−

−

= = − +

= − +

= − +

∆ ∆
∆ ∆

∆ ∆

∆ ∆

1

1

 .

In the continuous time limit for large t and small ∆  this may be approximated by

~&
(
~

)d BR d di i i i
τ τ τ= −− ,

which is of course the same as the continuous time partial best-response dynamic.

The conclusion is that with an appropriate time normalization, discrete-time

fictitious play asymptotically is approximately the same as the continuous time best-

response dynamic.  More precisely, the set of limit points of discrete time fictitious play is

an invariant subset for the continuous time best- response dynamics, and the path of the

discrete-time fictitious play process starting from some large T remains close to that of the

corresponding continuous time best- response process until some time T T+ ′ , where ′T
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can be made arbitrarily large by taking T arbitrarily large (Hofbauer [1995]). However,

starting from the same initial condition the discrete and continuous time processes can tend

towards different long-run limits.  This sort of relationship between discrete-time and

continuous-time solutions is fairly typical, and recurs in the study of the replicator

dynamic, as we will see in the next chapter.  Subsequently, we will be considering

fictitious play type systems with noise.  The theory of stochastic approximation studies the

exact connection between discrete time stochastic dynamical systems and their continuous

time limits, and we will have much more to say on this subject in chapter 4.  

2.9. Generalizations of Fictitious Play

As one might expect, many of the results about the asymptotic behavior of fictitious

play continue to hold for processes that might prescribe different behavior in the early

periods but “asymptotically converge” to fictitious play.   Following Fudenberg and Kreps

[1993], we say that the player’s beliefs  are “asymptotically empirical” if

limt t
i

t
iD→∞

−− =γ 0  along every sequence of infinite histories.  It is easy to verify that

Proposition 2.1 continues to hold (strict equilibria are absorbing, and pure strategy steady

states are Nash) when fictitious play is generalized to allow any asymptotically empirical

forecasts.  If, in addition, γ t
i  are the product of marginal beliefs,   Fudenberg and Kreps

show that Propositions  2.2 (convergence of the marginal distributions of play implies

Nash) continues hold when fictitious play is generalized to allow any asymptotically

empirical beliefs.28  In a similar vein, Jordan [1993] shows that his example of non-

convergent empirical distributions converges to the same limit cycle for any beliefs that (i)

                                                
28 As the example in section 2.5 showed, in the multi-player case, if it is not a priori thought that opponents
play independently, this result can fail even  for fictitious play.
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satisfy a “uniform” version of asymptotic empiricism (that is, for any ε the distance

between the forecasts and the empirical distribution should become less than ε for all

histories of length at least some T( )ε ) and also (ii) depend on the history only through the

empirical distribution.

Milgrom and Roberts [1991] use a still weaker condition on forecasts: they say that

forecasts are  adaptive  if the forecasts assign very low probability to any opponent’s

strategy that has not been played for a long time.  Formally, a forecast rule is adaptive if for

every ε>0 and for every t, there is a there is T t( , )ε  such that for all t T t’ ( , )> ε  and all

histories of play up to date ′t , the forecast γ t
i  assigns probability no more than ε to the set

of pure strategies of i’s opponent that were not played between times t and ′t .  Since this

condition restricts only the support of the forecasts, but not the relative weights of

strategies in the support, it is clearly inappropriate for modeling situations where the

player’s forecasts converge to a mixed distribution. However, as Milgrom and Roberts

show, the condition is strong enough to preserve the second part of proposition 2.1: if

forecasts are adaptive, and play converges to a pure strategy profile, that profile must be a

Nash equilibrium.  

One example of a an adaptive forecasting rule is “exponentially weighted fictitious

play,” under which the forecast probability of strategy s j  at date t is
1 1

1

1−
1−

=
−

=

−∑β
β

β
τ

τ
ττ

τ
I s sj j( ) , where I  is the indicator function and β > 1.  With this rule, the

weight given to the most recent observation never vanishes, so that if the opponent’s play

is a fixed mixed strategy then the assessments do not converge.  (If the weight β is allowed

to shrink to 0 as t goes to infinity, perhaps to reflect the greater weight given a lengthier

past history, then the rule is asymptotically empirical.)  We will discuss the properties of

this type of exponential weighting scheme below in chapter 4, along with  some evidence

that exponential weights do a better job than standard fictitious play of describing learning
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behavior in the experimental play of games.  Since these experiments are not run for very

large horizons the implications of this for our purposes are not clear.

Finally, many asymptotic properties of fictitious play game are preserved if the

assumption that actions are chosen to maximize current payoffs given current forecasts is

weakened to only hold asymptotically.  Fudenberg and Kreps say that a behavior rule ρ i (a

map from histories to actions) is strongly asymptotically myopic with respect to forecast

rule γ i   if for some sequence of positive numbers { )ε t  converging to 0, for every t and

every time-t history, every pure strategy si  that has positive probability  under ρ i  is an ε t -

optimal response given forecast γ i .29  Propositions 2.1  holds for all behavior rules that are

strongly asymptotically myopic with respect to some asymptotically empirical forecast rule,

and Proposition 2.2 holds if beliefs are the product of independent marginals..

                                                
29 That is, each si in the support must satisfy u s u si i i

t s

i i i
i( , ) max ( ’ , )
’

γ ε γ+ ≥ .



63

Appendix: Dirichlet Priors and Multinomial Sampling

Our summary follows DeGroot [1970].

1)  The Multinomial Distribution:  Consider a sequence of n i.i.d. trials, where each period

one of k outcomes occurs, with  pz  denoting the probability of outcome z. Denote the

outcome of the n trials by the vector κ ,  where κ z  is the number of the outcomes of type z.

(Think of the outcomes as being the opponent’s choice of an action in a simultaneous-

move game.) Then the distribution of the κ ’s, called the multinomial distribution with

parameters n and p p pk= ( ,..., )1 , is given by  f
n

p p
k

k
k( )

!

! !
κ

κ κ
κ κ=

⋅ ⋅
⋅⋅⋅

1
1

1  for  κ  such

that κ z
z

k

n
=

∑ =
1

.

2)  The Dirichlet Distribution: Let Γ  denote the gamma function.  A random vector p has

the Dirichlet distribution with parameter vector α  (α z z> ∀0 )  if its density is given by

 f p p pk

k
k

ak( )
( ... )

( ) ( )
= + +

⋅⋅⋅
⋅⋅⋅− −Γ

Γ Γ
α α

α α
α1

1
1

1 11

for all p>0 such that pz
z

k

=
=

∑ 1
1

.  This is sometimes called the multivariate beta

distribution, because if p has a Dirichlet distribution, the marginal distribution of pz  is the

beta distribution with parameters α z  and α z
w z≠
∑   In particular, if p has the Dirichlet

distribution, the expected value of  pz  is α αz w
w

k

/
=

∑
1

.

3)  The Dirichlet Distributions are a Conjugate Family for Multinomial Sampling:  A 

family of distributions is said to be a conjugate family for a likelihood function if whenever

the prior distribution lies in the family, the posterior distribution will lie in the same family

for any sample drawn according to the specified form of  likelihood function.  One classic

example is the normal distribution: if samples are drawn according to a normal distribution
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with unknown mean, and the prior is itself a normal distribution, then the posterior

distribution will also be a normal distribution. Likewise, the Dirichlet distribution is a

conjugate family for multinomial sampling. 

To see this, suppose that the prior distribution over the probability vector p has a

Dirichlet distribution with parameter α , so that the density function f(p) at each p is

proportional to

 pz
z

k z

=

−

∏
1

1α

. 

For each value of p, the likelihood of the vector κ  of  outcomes is proportional to

pz
z

k
zκ

=
∏

1

.

 To compute the posterior distribution over p,  we use Bayes rule:

 f p
f p f p

f p f p dp
( | )

( | ) ( )

( | ) ( )
κ κ

κ
= ∝I pz

z

k z

=

−

∏
1

1α

pz
z

k
zκ

=
∏

1

= pz
z

k
z zα κ+ −

=
∏ 1

1

,

so that the posterior is Dirichlet with parameter α‘, where α α κz z z’= + . 

If player i’s date-t beliefs about -i’s mixed strategy have a Dirichlet distribution,

player  i’s  assessment of the probability that -i  plays s i−   in period t is

 γ σ µ σt
i i i i

t
i is s di( ) ( ) [ ]− − − −= −IΣ

,

which is simply the expected value of the component of σ −i  corresponding to s i− ; from

our remark above if z s i= − this is just α αz w
w

k

/
=

∑
1

.   Therefore, after observing sample κ ,

player i’s assessment  of  probability that the next observation is strategy z  is

α

α

α κ

α κ
z

w
w

k
z z

w w
w

k

’

’ ( )
= =

∑ ∑
= +

+
1 1

,

 which is the formula for fictitious play.
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3. The Replicator Dynamics and Related Deterministic 

Models of Evolution

3.1. Introduction

At this point we shift from models that are explicitly based on learning to models

based on the idea of evolution.  These models originated in the field of evolutionary

biology, but such models have become very popular among game theorists in the last few

years.30

There are three main reasons for this interest.  First, although the archetypal

evolutionary model,  that of the replicator dynamics, was originally motivated by a

(simplified version of) biological evolution, the process can also describe the result of

some types of “emulation” by economic agents.  Second, some of the properties of the

replicator dynamic extend to various classes of more general processes that may

correspond to other sorts of learning or emulation. Finally, the study of evolutionary

models has proved helpful (if controversial) in understanding animal behavior, and while

this does not imply that the models have economic interest, it is still an interesting use of

the theory of games.

Our discussion begins with the two concepts that have proven central to the study

of evolutionary models:  the replicator dynamic and the idea of an Evolutionary Stable

Strategy or ESS.  Section 3.2 begins with  the case of a homogeneous population.  The

replicator dynamic assumes that population playing a particular strategy grows in

proportion to how well that strategy is doing relative to the mean population payoff.  Every

                                                
30See for example the symposium issues in the Journal of Economic Theory [1992] and Games and Economic
Behavior [1993].
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Nash equilibrium is a steady state in the replicator dynamic, and every stable steady state is

a Nash equilibrium.  The major question posed in this literature is the extent to which the

stability of a steady state leads to a refinement of Nash equilibrium.  One major result is

that in a homogeneous population a stable steady state must be isolated and trembling hand

perfect.

Section 3.4 introduces the notion of an ESS, which  is a static concept that was

inspired by, but not derived from, considerations of evolutionary dynamics.  ESS requires

that the strategy be robust when it is invaded by a small population playing a different

strategy.  Every ESS is Nash, so that ESS is a refinement of Nash equilibrium.  One goal of

the literature on evolution is to establish more closely the connection between replicator

(and related) dynamics and the ESS concept.  In the homogeneous population case, an ESS

is stable in the replicator dynamic, but not every stable steady state is an ESS.

After examining the homogeneous case, we turn to the case of a heterogeneous

population and the asymmetric replicator dynamic in section 3.5.  One major result is that

in the asymmetric case mixed profiles cannot be asymptotically stable.

Our interest in this book is primarily about the consequences of learning by

individual players.  Evolutionary models are generally cast in terms of the behavior of an

entire population, and are vague about the individual behavior that leads to this population

dynamic.  However, the work discussed in section 3.6 shows that it is possible to give

stories of learning that lead to replicator-like dynamics.  One such story we consider is the

emulation dynamic in which new player asks an old player what strategy that player used

and how well it did.  This leads to a model in which it is the deviation from the median

rather than mean that determines how rapidly the population playing a strategy grow. 

There is also a reinforcement model of learning that leads to a dynamic closely related to

the replicator.  We introduce this model here, but postpone a discussion of its merits to
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chapter 4, so that we  can compare it to  variations on fictitious play.

The replicator dynamic is very specific and may not be a good description of many

economic situations.  Indeed, the learning models that lead to the replicator, can lead also

to other “replicator-like” dynamics, in addition to the replicator itself.  As a result, much

attention has focused on the extent to which results obtained for the replicator dynamic

extend to other dynamics with a more concrete economic foundation.  Section 3.8

discusses  the class of monotonic processes, which incorporate various versions of the idea

that strategies that do better grow faster.  A weak version of monotonicity is sufficient to

assure that strategies that are strictly dominated by pure strategies can be iteratively

eliminated; under the stronger condition of convex monotonicity, this conclusion extends

to all strictly dominated strategies.

  Section 3.8 discusses another generalization of the replicator dynamic called 

myopic adjustment. This class of processes, which includes the best response dynamic, also

is sufficiently strong to yield useful results.  In 2x2 symmetric games with a single

population if there is a unique mixed strategy equilibrium it is stable.  If there is a mixed

strategy equilibrium but there are also two pure strategy equilibria, the two pure strategy

equilibria are stable. 

In addition to point-valued equilibrium notions, it can also be interesting  to

consider set-valued stability notions such as strategic stability and their relationship to

components of steady states in the evolutionary dynamics.   One useful result is that

attractors in the myopic adjustment process (which may or may not exist) contain a

strategically stable set, a rather strong refinement. 

Section 3.9  examines the relationship between unmodeled “drift” or “mutation”

terms and the possibility that  equilibria (or equilibrium components) that do not satisfy

strong refinements may nevertheless persist.  Section 3.10 examines a set valued concept of
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stability due to Gilboa and Matsui [1991] that effectively incorporates the idea of drift, and

shows how it can be used to eliminate certain mixed strategy equilibria in cheap-talk

games.

Most of this chapter, like most of the evolutionary literature, considers continuous-

time dynamical systems.  Section 3.11 examines discrete-time versions of the replicator

dynamic.  Unlike the continuous time version, the discrete-time dynamic need not remove

dominant strategies.  In addition, where the continuous-time dynamic has a center, the

discrete-time dynamic instead cycles outward to the boundary.

3.2. The Replicator Dynamics in a Homogeneous Population

Much of the work on evolution has studied the case of a single homogenous

population playing a symmetric stage game, so we  begin our discussion with this case; we

consider models of asymmetric populations later on in this chapter.  The most basic

evolutionary model is the replicator dynamic.  Our goal in this section  is to define this

dynamic and  discuss how it might be interpreted; we will also see how the state states of

the dynamic relate to the set of Nash equilibria.

To define the replicator dynamic, suppose that all agents use pure strategies, and

specialize to a homogenous population.   Let  φ t k( )    be the measures of the set of players

using pure strategy s  at date t; let  θ φ
φt
t

ts

s
s

s
( )

( )

( )
=

′′∑
  be the fraction of players using pure

strategy s at date t, and let  the state variable θ t   be the vector of population fractions. 

Then the expected payoff to using pure strategy s at date t is u s s u s st ts
( ) ( ) ( , )≡ ′ ′′∑ θ , and

the average expected payoff in the population is u s u st t ts
= ∑ θ ( ) ( ) .

Suppose that each individual is genetically programmed to play some pure strategy,

and that this programming is inherited.  Finally, suppose that the net reproduction rate of
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each individual is proportional to its score in the stage game.  This leads to the following

continuous-time dynamic system:

(3.1)            & ( ) ( ) ( )φ φt t ts s u s= ,  which implies

(3.2)           & ( )
& ( ) ( ) ( ) & ( )

( )
( )[ ( ) ]θ

φ φ φ φ

φ
θt

t ts t ts

ts

t t ts
s s s s

s
s u s u=

′ − ′

′
= −′ ′

′

∑ ∑
∑3 82 .

Equation (3.1) says that strategies with negative scores have negative net growth rates; if

all payoffs are negative, the entire population is shrinking.  There is no problem with this

on the biological interpretation; in economic applications we tend to think of the number of

agents playing the game as being constant.  But note that even if payoffs are negative, the

sum of the population shares is always  1.  Note also that if the initial share of strategy s is

positive, then its share remains positive:  the share can shrink towards  0,  but  0  is not

reached in finite time.

Notice that the population share of strategies that are not best responses to the

current state can grow, provided that these strategies do better than the population average.

This is a key distinction between the replicator dynamic and the best-response dynamic,

and also distinguishes the replicator dynamic from fictitious play.  Despite this ability of

sub-optimal strategies to increase their share,  there is still a close connection between

steady states of the replicator dynamic and Nash equilibria.  First, every Nash equilibrium

is a steady state:  in (the state corresponding to a) Nash equilibrium, all strategies being

played have the same average payoff, so the population shares are constant.  Unfortunately,

steady states need not be Nash equilibria:  Any state where all agents use the same strategy

is a steady state, since the dynamic does not allow the “entry” of strategies that are

“extinct”.  However, if a profile is not Nash, it cannot be stable:  if a small fraction of an

improving deviation is introduced, it will grow.
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Proposition 3.1:  A  stable steady state of the replicator dynamics is a Nash equilibrium;

more generally, any steady state that is the limit of a path that originates in the interior is a

Nash equilibrium. Conversely, for any non-Nash steady state there is a δ > 0  such that all

interior paths eventually move out of a δ -neighborhood of the steady state.

Proof:  Suppose  θ *  is a steady state, but the corresponding strategy profile σ * is not a

Nash equilibrium.  Then, since payoffs are continuous, there exists a pure strategy 

s ∈support( *σ ) ,  a pure strategy  s’  and an  ε > 0  such that  u(s’,σ *) > u(s,σ *) + 2ε. 

Τhere is, moreover, a δ such that  u(s’, ′′s ) > u(s, ′′s ) + ε  for all ′′s  within  δ  of  σ *. 

Hence if there is a  path that remains in a δ -neighborhood of  σ * ,  the growth rate of

strategy  s’  exceeds that of strategy  s  by an amount that is bounded away from zero.  Thus

the share of strategy  s  must converge to  0,  which is a contradiction.

æ

Note that this argument does not rely on the special structure of the replicator dynamics; it

suffices that the growth rates are a strictly increasing function of the payoff differences. We

discuss below another property that the replicator dynamics shares with a broad range of

dynamic processes, namely the elimination of dominated and iterated elimination of

dominated strategies.

3.3. Stability in the Homogeneous-Population Replicator Dynamic

We have already seen that stable steady states of the replicator must be Nash.  We

now examine dynamic stability more closely with an eye to answering the following

questions:  does stability in the replicator dynamic refine Nash equilibrium?  This is, can

we narrow down the range of Nash equilibria through stability arguments?  Does the
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replicator dynamic necessarily converge to a steady state?  That is, are stable steady states

the only possible long-run outcomes with the replicator dynamic?  We shall see that while

it is possible to refine Nash equilibrium through stability arguments, it is also possible that

the replicator does not converge to a steady state at all.

We begin with an example of an asymptotically stable steady state.

Example 3.1:  Consider the game

A B

A 0,0 1,1

B 1,1 0,0

This game has two asymmetric Nash equilibria, (A,B) and (B,A), and the mixed

equilibrium where both players randomize  1/2-1/2.  Note that since a homogenous

population is assumed, there is no way to converge to the asymmetric equilibria, because

there are not separate populations of “player 1's” and “player 2's.”  So the only possible

steady state is the mixed equilibrium where all players randomize (1/2,1/2).  Moreover, this

mixed profile is a steady state even though no individual player uses a mixed strategy: 

when 1/2 of the population uses strategy A, and 1/2 uses strategy B, from an individual

player's viewpoint the distribution of opponents' play looks like a mixed strategy. 

Furthermore,  it is easy to check that the mixed strategy equilibrium is asymptotically

stable:  when fraction θ( )A  of  the population plays A,   the payoff to  A  is 

θ θ( ) ( )B A= −1  ,  while the payoff to B is θ( )A . Consequently the average payoff in the

population is  2 1θ θ( )( ( ))A A− .  Substituting into the replicator equation, we have the one-

dimensional system
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& ( ) ( )[( ( ) ( )( ( ))] ( )[ ( ) ( ) ]θ θ θ θ θ θ θ θt t t t t t t tA A A A A A A A= − − − = − +1 2 1 1 3 2 2 ;

this expression is positive for θ t A( ) / ,< 1 2  exactly 0 at 1/2., and negative at larger values,

so that the Nash equilibrium is asymptotically stable. (We will se below that the

equilibrium is a saddle when there are distinct populations of player 1’s and player 2’s.) .

Proposition 3.2 [Bomze 1986]:  An asymptotically stable steady state in the homogenous-

population replicator dynamic corresponds to a Nash equilibrium that is trembling-hand

perfect and isolated.

This result shows that asymptotic stability will be hard to satisfy in games with a

non-trivial extensive form, for such games typically have connected sets of equilibria that

differ only in their off-path play.  For this reason, evolutionary concepts need some

modification to be applied to extensive form games:  either a set-valued notion of stability

must be used, (as for example in Swinkels [1993]) or the model is perturbed with

“trembles” so that all information sets have positive probability of being reached.

As with most dynamical systems, there is no guarantee that the replicator dynamics

converge, and indeed, there are examples of games with no asymptotically stable steady

states.  In particular, even a totally mixed equilibrium need not be asymptotically stable. 

This is significant, because totally mixed equilibria satisfy the standard “equilibrium

refinements” based on trembles, including such strong notions as Kohlberg and Mertens

[1986] stability.  A simple example in which there is no asymptotically stable steady state

is the game “rock-scissors-paper:”

Example 3.2:
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R S P

R 0,0 1,-1 1,1

S -1,1 0,0 1,-1

P 1,-1 -1,1 0,0

This may be reduced to a two-dimensional system by substituting  θ θ θ( ) ( ) ( )P R S= − −1 .

 Making use of the fact that the average payoff is 0 at every state (because this is a zero-

sum game) the  resulting replicator dynamics are given by

& ( ) ( )[ ( ) ( ) ]
& ( ) ( )[ ( ) ( ) ]

θ θ θ θ
θ θ θ θ

t t t t

t t t t

R R S R

S S R S

= + −
= − − +

2 1

2 1

Linearizing at the equilibrium  (1/3,1/3)  we find that the Jacobian is

1 3 2 3

2 3 1 3

/ /

/ /− −
�
! 

"
$#

The eigenvalues of this matrix are the solutions of  (1-3λ)(-1-3λ) + 4 = 0,  or  9λ2 + 3 = 0, 

and hence have zero real part.  This means that the system is degenerate; it turns out that

the steady state is surrounded by closed orbits, so that it is a “center,” and hence is stable

but not asymptotically stable.31   .  The phase portrait for this system is illustrated below.

                                                
31 Because the system is degenerate, this cannot be proved by only examining the linearized system
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θ 1

θ 2

 

Figure 3.1

Since the 0 real part of the eigenvalue (which means the steady state is not “hyperbolic”) is

a knife-edge case,  we know that there are small changes to the system (that is, small

changes to the flow or vector field) that gives the eigenvalues a positive real part. It turns

out that such a change can be made simply by changing the payoffs slightly, so that each

strategy gets a small  ε > 0  when matched against itself.32  Then the unique Nash

equilibrium is still  (1/3,1/3,1/3),  but now the Nash equilibrium  is an unstable steady state,

and the trajectories of the replicator dynamics spiral outwards towards the boundary of the

simplex without reaching it, as shown by the dashed lines in the figure above.33

Conversely, the Nash equilibrium is an asymptotically stable steady state for small ε  < 0.

                                                
32 The fact that non-hyperbolic steady states are not robust to general perturbations of the dynamics does not
imply that they can be destroyed by small changes in the payoffs. Indeed, in  asymmetric-population models
of 2x2 games, there are centers for a range of payoff values, as we will see  in Section 3.5.
33 This was first shown by Zeeman [1980].  See Hofbauer and Sigmund [1988] and Gaunersdorfer and
Hofbauer [1995] for more discussion of variants of this game.  If the system is modified by a deterministic
flow of “mutants” or new entrants, so that the boundary becomes repelling, then for small ε > 0  there is a
cycle (closed orbit) from the Poincare-Bendixson theorem.   See Boylan [1994] for a discussion of the
properties of steady states that are robust (in the sense of an essential fixed point) to perturbations of the
dynamics corresponding to such deterministic mutations.
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3.4. Evolutionarily Stable Strategies

In applications, instead of working with explicit evolutionary dynamics,  analysts 

often use the static concept of an evolutionary stable strategy or ESS.  The idea of ESS is

to require that the equilibrium be able to “repel invaders.”  After defining the static notion

of ESS, and showing that it is a refinement of Nash equilibrium, our goal is to relate it to

the evolutionary dynamic.  We will find that while every ESS is stable in the replicator

dynamic, not every stable steady state needs to be an ESS.

To explain what is meant by “repelling invaders”, suppose that the population is

originally at some profile  σ ,  and then a small  ε   of "mutants" start playing  ′σ .  ESS

asks that the existing population gets a higher payoff against the resulting mixture 

( )1− + ′ε σ εσ   than the mutants do.  Specifically we require that

(3.3) u(σ,(1-ε)σ+εσ’) > u(σ’,(1-ε)σ+εσ’)

for all sufficiently small positive  ε.

Using linearity of expected utility in probabilities, (3.3) is equivalent to:

 (1-ε)u(σ,σ) + εu(σ,σ ′) > (1-ε)u(σ’,σ) + εu(σ’,σ’).

Since this need only hold for ε close to  0,  it is equivalent to requiring that for all  σ' ≠ σ,

either

(3.4) u(σ,σ) > u(σ’,σ)  or

(3.5) u(σ,σ) = u(σ’,σ)  and  u(σ,σ’) > u(σ’,σ’).

There is also a weaker notion of evolutionary stability:  Profile  σ  is a weak ESS if every 

σ' ≠ σ  either satisfies (3.4) or satisfies

(3.5') u(σ,σ) = u(σ’,σ)  and  u(σ,σ’) ≥ u(σ’,σ’).
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This is a weaker condition because it allows for the case where the invader does just as

well against the prevailing population as the population itself; then the invader is not

driven out, but it does not grow, either.

Notice first that, an ESS must be a Nash equilibrium; otherwise the first term on the

left-hand side of  (3.4) is smaller than the first term on the right.  Also, any strict Nash

equilibrium is an ESS.  This follows since strict equilibria by definition satisfy (3.4) for all

other strategies.  But many games fail to have strict equilibria, because, for example, mixed

strategy equilibria can never be strict.

While mixed strategy equilibria can never be strict, they can, however, be ESS. 

Consider, in particular, example 3.1 above.  In this example if both players play the same

strategy both get 0; if they play different strategies, both get 1.  The unique mixed

equilibrium is ½ - - ½  , and  if either player is playing this strategy, both players get an

expected utility of ½.  Examining (3.3), we see that if a player persists in playing ½-½ 

after an invasion, he gets ½.  On the other hand, if he plays the invading strategy ′σ  he

gets

u u u u( ,( ) ) ( ) ( , ) ( , ) ( )( / ) ( , )′ − + ′ = − ′ + ′ ′ = − + ′ ′σ ε σ εσ ε σ σ ε σ σ ε ε σ σ1 1 1 1 2

However, when both players play the same strategy,  unless they play ½-½ they always get

strictly less than ½.  So u( ,( ) )′ − + ′σ ε σ εσ1  is strictly less than ½ unless ′ =σ σ , so the

definition of an ESS is satisfied.

A more significant set of examples shows how ESS can reduce the equilibrium set:

 these are the  “cheap-talk” games introduced by Crawford and Sobel [1982].  In these

games players are allowed a period of costless and non-binding communication prior to the

actual play of the game.   Consider for example  the coordination game below:
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L R

L 2,2 -100,0

R 0,-100 1,1

In this game the outcome (L,L) is efficient, but  the strategy R  is risk dominant,  so there

are some grounds for expecting the outcome to be (R,R).34 Suppose next that players can

communicate.  In the simplest version, this means that there are two stages  of play.  In the

first stage  players simultaneously announce their “intended action” L or R; in the second

stage  they play the game.  Talk is cheap in the sense that announcing an action  has no

direct effect at all on the realized payoffs, which depend only on the second-stage choices. 

Nevertheless, the ability to communicate can make a difference, since players can now

signal their intention to play (L,L) by announcing this in the first stage round. Formally, the

two-stage game has a different extensive form than the original one, and so in principle

could lead to different conclusions.  However, standard equilibrium notions such as

subgame perfection, sequential equilibrium, or even Kohlberg-Mertens [1986] strategic

stability generate the same predictions with or without cheap talk, in the sense that the sets

of equilibrium payoffs and second-stage equilibrium outcomes of the two-stage game are

the same as in the one-stage game without communication.

ESS on the other hand does suggest a tendency for meaningful communication to

occur.  This point was made by Robson [1990], Warneryd [1991], Kim and Sobel [1991],

Blume, Kim and Sobel [1993] and Schlag [1993].35  The outcome (R,R) and a signal that is

not sent cannot be evolutionary stable, since mutants could invade the population using the

unused signal as a “secret handshake” to indicate to one another their intention to play the

                                                
34 See for example the stochastic perturbation results discussed in Chapter 5.
35 There are also other models of why cheap talk may have meaning, as in Farrell [1986] or Rabin [1990].
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L  equilibrium.  Such invaders would not suffer against the existing players, and would do

even better when matched against one another.36  Notice however, that no matter how

many messages there are, it is an ESS if every message is sent with positive probability and

all players play R regardless of the signal.    This is a kind of  “babbling” equilibrium; since

every signal is already being sent with positive probability there is no way for mutants to

send their secret handshake.37   We should also note that ESS arguments (and other

arguments we will consider below) are largely limited to pure coordination games; if

players disagree about which equilibrium they would like to be at, then an ESS may easily

fail to exist as  mutants may well enter and wish to move to an equilibrium more favorable

to them.

We turn next to the connection between ESS and the replicator dynamic.

Proposition 3.3 (Taylor and Jonker [1978]; Hofbauer et al [1979]; Zeeman [1980]):  Every

ESS is an asymptotically stable steady state of the replicator dynamics.

The example below shows that the converse need not be true.

Proof:  To see that ESS implies asymptotic stability, suppose that σ is an ESS, and let

σ ( )s  denote the weight that σ assigns to the pure strategy s. Following the proof of

Hofbauer and Sigmund [1988], we will show that the “entropy” function 

E s s
s

σ
σθ θ( ) ( )= ∏  is a strict local Lyapunov function at σ, that is, that E has a local

(actually global here) maximum at σ and that it is strictly increasing over time along

trajectories in some neighborhood of σ.

To see this, note that

                                                
36 Similar ideas have been used to explain why evolution might tend to select efficient equilibria in repeated
games; see for example Binmore and Samuelson [1992] and Fudenberg and Maskin [1990].
37 Farrell’s concept of “neologism-proofness” also supposes that a would-be deviator can always find a
previously unsent message by constructing a “neologism,” that is, a new message.
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Since σ is an ESS, it satisfies either inequality (3.4) or (3.5)  Inequality (3.5) implies

directly that the above expression is positive; (3.4) yields the same for  all θ σ≠  in some

neighborhood of σ  by the continuity of u in its second argument. Hence  E is an increasing

function of time in this neighborhood as well.  Finally, it is well known that E is

maximized at σ  (for example E is the likelihood function for multinomial sampling, and

the maximum likelihood estimate equals the sample probabilities38)  so that E is a strict

local Lyapunov function at σ, and hence σ is asymptotically stable.

æ

The following example from van Damme [1987] shows that not every

asymptotically stable steady state is an ESS.

Example 3.3:  The payoff matrix is

 

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , )

0 0 1 2 11

2 1 0 0 4 1

11 1 4 0 0

−
−

�

!
   

"

$
###

This game has a unique symmetric equilibrium, namely (1/3,1/3,1/3), with equilibrium

payoff 2/3.39  This equilibrium is not an ESS, since it can be invaded by the strategy

(0,1/2,1/2), which has payoff  2/3 when matched with  the equilibrium strategy, and payoff

 5/4 when matched with itself.  However, the Jacobian evaluated at the equilibrium is

                                                
38  A direct proof can be given by verifying that E is concave and using Jensen’ s inequality.
39 It also has asymmetric equilibria.
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− −

− −
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###

1 9 1 9 4 9

7 9 4 9 5 9

2 9 1 9 7 9

/ / /

/ / /

/ / /

.

A computation shows that eigenvalues are -1/3 (twice) and -2/3, so  that the equilibrium is

asymptotically stable.

The fact that asymptotically stable steady states need not be ESS’s is linked to the

fact that the replicator dynamics only allow for the inheritance of pure strategies. Bomze

shows that if the dynamics are modified so that mixed strategies can be inherited as well,

then ESS is equivalent to asymptotic stability under the replicator dynamics. (Since this

change in the dynamics does not change the definition of ESS, this statement is equivalent

to saying that the change in dynamics renders unstable the non-ESS’s that were stable

previously.) 

This raises the important issue of which replicator model, the pure or mixed

strategy model, is more interesting.  One of the drawbacks of the evolutionary approach is

that because it starts at the aggregate level instead of modeling individual behavior, it

cannot answer this question.  The answer we would give (see also the discussion in the

concluding section of this chapter) is that from an economic perspective,  neither replicator

model should be taken to be precisely correct.  Thus, a  primary motivation for our interest

in the use of evolutionary models in economics comes from the fact that  many of the

results discussed  later in this chapter, for example about the elimination of dominated

strategies, or set-valued notions of stability,  hold  for a wide range of “replicator-like” 

dynamics. From this perspective it is troubling that the ESS does not have this robustness

property: as noted by Friedman [1991], an ESS need not be asymptotically stable under the

sort of monotone dynamics discussed in section 3.6. (We discuss an example that shows

this in section 3.10) 
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3.5. Asymmetric Replicator Models

We now turn to the case where there are distinct populations of player 1’s, player

2’s and so forth.   We consider first how the replicator should be defined in this case, and

in particular what to do if the populations of different player types are not the same size. 

We then show that, in contrast to the symmetric case,  mixed equilibria are never

asymptotically stable.  However, they can satisfy  the weaker property of being a center.

How should replicator dynamics be defined if there are two populations that are not

the same size?  If there are three times as many player 1’s, for example, then under a

random-matching interpretation of the model each player 1 must on average be involved in

only 1/3 as many interactions as each player 2,  so that the population of player 1’s should

evolve more slowly.  Instead of examining the complications that stem from differential

rates of adjustment, we will follow standard practice and consider only the dynamics

& ( ) ( )[ ( ) ]θ θt
i i

t
i i

t
i i

t
is s u s u= − ,

where the superscript i’s refer to the various populations.40  This dynamics corresponds to

the random-matching model provided  that the two populations are always the same size.

Alternatively, this equation  can be viewed as describing a situation where agents know the

distribution of opponents’ strategies, and  the evolution of the state variable reflects the 

agents’ decisions /about revising their choices, as opposed to a hard-wired response to the

payoffs obtained from play.

The most striking fact about the asymmetric case (in contrast to the homogenous

case) is that interior points, that is, strictly mixed profiles, cannot be asymptotically stable.

Hofbauer and Sigmund [1988] gave a proof of this for two-player games based on the fact

                                                
40Hofbauer and Sigmund [1988, chapter 27] discuss an alternative due to Maynard Smith [1974], in
which the relative speeds of adjustment of the two populations are scaled by their average payoffs, which
may differ between the two populations,  instead of by the population sizes
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that the replicator dynamic “preserves volume,”  an observation of Akin’s developed in

Eshel and Akin [1983]; Ritzberger and Weibull  [1995]  extended this result  to n-player

games.  Rather than give a proof, we will settle for an example that suggests why interior

points are less likely to be stable in the asymmetric-population model. The appendix 

provides a brief summary of volume-preserving maps and Liouville’s formula.

Example 3.1 revisited:  Consider again the game in example 3.1, only now with distinct

populations of player 1 and player 2.  Recall that if both players agree they get 0; if they

disagree they get 1.  It is easy to see that the two asymmetric equilibrium in which the

players disagree are asymptotically stable.  The mixed equilibrium, which was

asymptotically stable in the homogenous-population model, is now a saddle: If  more than

1/2 of the player 1's play A, then the share of  player 2’s using B  grows, and if more than

1/2 of the 2’s use B, the share of 1’s using A grows, so starting from any point  where more

than half of the 1’s play A and more than half of the 2’s play B,  the system converges to

the state where all 1’s play A and all 2’s play B. Likewise, if more than half the 1’s play B

and more than half the 2’s play A, the system converges to the other pure strategy

equilibrium. 
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θ1

θ 2

Figure 3.2

Since any open neighborhood of the mixed equilibrium contains points that

converge to the two pure strategy, asymmetric equilibria, the mixed equilibria is not stable.

Note, though, that  the trajectories that starting from any point on the “diagonal”, where the

share of A is the same in each population, do converge to the mixed equilibrium.  This is a

consequence of the more general fact that, in symmetric games, trajectories that start from

symmetric initial positions remain symmetric, and so follow the “same” path as in the one-

population model.  The contrapositive of this is that a symmetric point that is not stable in

the homogenous-population model is not stable with asymmetric populations.

This difference in conclusion with the one-population model should not be

surprising:  in the first case there is no asymmetry between the players that could allow

them to coordinate on one of the pure strategy equilibria; in the second game players can

use their labels as a coordinating device.

Although the interior points cannot be asymptotically stable in asymmetric

populations, they can satisfy a weaker condition.  We say that a steady state is a center if it

is surrounded by a family of closed orbits and all points that start near the equilibrium
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remain near it.  From the viewpoint of general dynamical systems, being a center is a knife-

edge property, meaning that small changes in the dynamics lead to abrupt changes in the

asymptotic properties.  Examples of small changes that can have this effect are the drift

discussed in section 3.8, and the  small probability of meeting a player from the same

population as discussed in section 3.5. However, as usual with questions of robustness and

genericity, a property that is not robust to a broad class of perturbations can be robust to a

smaller one. In this case, centers are a robust property of the asymmetric-population

replicator dynamics, that is they can arise for a non-negligible set of strategic-form payoffs.

In particular,  in 2x2 games the steady state is a center whenever the game has no pure-

strategy equilibria. (Schuster and  Sigmund [1981].)41 Figure  3.3  depicts the center that

arises in the 2x2 game “matching pennies.42” 

θ1

θ 2

Figure 3.3

                                                
41 This shows that the sensitivity of the center in rock-scissors-paper to payoff perturbations is not completely
general–changing the payoff functions need not generate a sufficiently large range of perturbations for
structural stability arguments to apply.
42 To show that this figure is correct, one can note that the function
Q H H H H( , ) ( )( ( ))( ( )( ( ))θ θ θ θ θ θ1 2 1 1 2 21 1= − −  is a constant along any trajectory, and then plot the level

curves of Q.
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In 3x3 games the  asymmetric-population replicator dynamics only has a center for

a lower-dimensional set of strategic-form payoffs  (Hofbauer [1995]).43 Hofbauer [1996]

conjectures that this extends to larger action  spaces.44 

3.6. Interpretation of the Replicator Equation

3.6.1. Overview

Why should economists, or even game theorists more generally, be interested in the

replicator dynamics?  After all, we do not think that individuals  are genetically

programmed to play certain strategies.  For that matter, it is not clear that even monkeys are

programmed directly for certain behaviors.  And even behavior that we do think is

inherited probably is not coded by a single gene as this model suggests, but rather results

from a complex interaction of genetic factors.  Indeed,  even a strict biological story does

not lead directly  to the replicator dynamic in cases where reproduction is not asexual.

How then could we explain this system in economics?  Is there an underlying

model of learning that gives rise to this dynamic?    There are two types of learning stories

that have been proposed to explain the replicator dynamic.  One is a model of “asking

around” or social learning, in which players can learn only from other players in the

population. In order for the state of the resulting system to simply be the distribution of

strategies currently played, as opposed to some function of the entire history, either the

players must  not remember their own past experience, or the players must periodically be

replaced, so that only new players make choices.

                                                
43 The proof of this is somewhat subtle, since even for these generic payoffs there can be interior steady states
where the linearized system has purely imaginary eigenvalues.  Hofbauer uses a  second-order approximation
  to determine if the steady state is stable, unstable, or a center.  
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 Alternatively, replicator-like dynamics may be explained by models of aspiration

levels, in which players “satisfice” rather than “optimize.”  There are many ways of

formulating such models so that they generate a payoff monotone dynamic, that is, a system

in which the growth rates of strategies are ordered by their expected payoff against the

current population, so that  strategies that are “doing better”  grow faster.  The replicator is

the particular form of a payoff monotone dynamic in which the rates of growth are

proportional to payoff differences with the mean, and particular specifications of these

learning models  can give rise to precisely the replicator dynamic. However, since there is

typically not a compelling argument for that precise specification, we prefer to focus on the

conclusion that a range of learning processes can give rise to payoff monotone dynamics.

3.6.2. Social Learning

Let us first examine the idea that the evolutionary model describes a process  of

social learning.  The simplest such story is one in which each period, some fraction α   of

the agents leave the system .45  They are replaced by new agents, each of whom learns

something about the prevailing state; to make things concrete let us suppose that each new

agent observes the strategy and payoff of one exiting agent and of one other agent drawn

randomly from the same population.46  The new agents then make a once-and-for all choice

of strategy, which they do by adopting  the strategy with the higher observed payoff, or in

case of a tie, the strategy they “inherited” from the exiting agent 47 Moreover,  if the agent

                                                
45 This assumption serves to justify the agent’s lack of memory. Alternatively, we could suppose that agents
do not remember their past experience, or that agents revise their strategies so rarely that they consider their
past experience to be irrelevant to the current situation.
46 In other words the probability of sampling a strategy equals its share in the current population.  This sort of
“proportional” sampling is standard in the literature, but other sampling rules may be worth considering as
well, as noted by Banerjee and Fudenberg [1995] in the related context of “social learning.”  For purposes of
comparison with that paper, note that in process  described here, each agent’s  sample size is  2.
47  If we think that agents forget, instead of being replaced, then this assumption would be that they stick with
their own strategy unless they observe another one that does better.
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they sample is using the same strategy that they “inherited,” the agents do not switch, even

if that strategy is performing poorly. 

Intuitively, since a rule like “switch if the other strategy’s payoff is higher” depends

only on the ordinal rankings of the payoffs, and not on the size of the payoff difference,  we

would not expect it to lead to a dynamic like the replicator, where the speed of adjustment

depends on the size of the payoff differences.  Moreover, if agents observe the realized

payoff of the agent they sample, as opposed to its average payoff against the current

population, the resulting process need not even be payoff monotone .   The point is that the

rule “switch if the other strategy’s observed payoff is higher” favors strategies with a high

median  payoff when matched with the distribution of opponents’ play , as opposed to a

high average  payoff.48  

To see this, consider the following game, where player 2 is a “dummy” whose

payoffs are always 0:

( , ) ( , )

( , ) ( , )

9 0 0 0

2 0 2 0

�
! 

"
$#

if 1/3 of the player 2’s are playing L, then player 1’s best response is U, but D has a higher

median payoff.  Consequently, whenever a player 1 using U samples a player 1 using D, or

vice versa, fully 2/3 of them will choose the inferior response D.  We call such “median-

enhancing” dynamics  emulation dynamics. 

To explore the properties of emulation dynamics, we consider a family of simple

two-population models of play in the above game.  Suppose that there is a large

                                                
48  This is essentially the same fact as the well-known “probability matching” in the mathematical psychology
literature, see for example  Norman [1972].   More recently, it is noted in Schlag [1994] in the context of
learning in games, and  in Ellison and Fudenberg [1993] in the context of agents learning about a move by
Nature. Of course, the two cases are the same as far as the response of one population to the play of the
“opposing side;” the differences arise from the fact in a game, the distribution of strategies used by the player
2’s evolves over time in response to the distribution in the population of player 1’s, while the distribution
over Nature’s moves is usually supposed to be exogenous.
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(continuum) population of each player type, and that each period the agents are randomly

matched with agents from the other population to play the stage game.  Since player 2 is a

dummy, we will fix the distribution of player 2 strategies, and to lighten notation we will

let  θ 2 ( )L   denote the fraction of player 2’s playing L.  Under the simple emulation

dynamics described above, new agents who sample someone using the same strategy as

their “parent” do not switch; at date t,  fraction θ 1
t U( )  is using U,  so a  fraction θ 1

2t U( ) of

the active agents is composed of agents with U parents who sample another agent using U .

Agents with parents using U who sample someone using D stick with U if and only if their

own current payoff is 9; that is, if they were matched with strategy R last period; the

fraction of such agents is θ θ θ2 1 1( ) ( ) ( )L U Dt t .  Similarly, agents whose parents used D

switch to U if they meet a U-user whose last opponent played L;  this corresponds to

fraction  θ θ θ2 1 1( ) ( ) ( )L U Dt t .  Combining terms yields the difference equation

θ α θ α θ θ θ θ1
1

1 1
2

2 1 11 2t t t t tU U U L U D+ = − + +( ) ( ) ( ) ( ) ( ) ( ) ( )2 7 ;

substituting θ θ1 11t tD U( ) = − 1 6 , simplifying, and passing to continuous time yields the

equation

& ( )( ( ) )θ θ θ θ1 1 1 21 2 1t t t L= − − . 

Thus the system converges to θ 1 0t =  (all player 1’s using D) whenever  the fraction θ 1
t U( )

 playing L is less than ½, even though U  is a best response whenever θ 1 2 9t U( ) /> .49

In response to this, Schlag [1994] considers a discrete-time system in which agents

observe the realized payoff of the agent they sample, and then switch to the better strategy

with probability that grows linearly in the payoff difference.  In the particular case that

Schlag favors, this behavior rule has the following form: If the agent’s  parent’s payoff is u¸

                                                
49  More generally, Ellison and Fudenberg show that if the probability p  that U is better is i.i.d. instead of
constant, the system is ergodic, with the long-run average of θ1

t U( )  equal to the probability that θ1
t U( ) >1/2.
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and the agent samples an agent with payoff u’, the agent switches with probability

max{ , ( ’)}0 b u u− .50 One justification for this behavior is that there is a distribution of

switching costs in the population; another, due to Binmore and Samuelson [1993],  is that

there is a distribution of “aspiration levels,” and that agents only become active if their

current payoff is below their aspiration level.  Schlag then shows that  the trajectories of the

system  converge to those of the continuous-time replicator dynamics as the population

grows. 

For simplicity, we will present a large-population of his model for the particular

game described above.  As previously,  agents whose parents used U  and who are matched

with L  will not switch, and neither will agents whose parents used D  and who sample a U-

user who is matched with R.  However, of the  agents whose parents used D and sample a

U-user matched with L, only some fraction q will switch to U, while only a fraction r of the

agents who see D  get a higher payoff than U  switch from D  to U.   (In Schlag’s

specification the parameters q  and r  are determined by the payoff matrix of the game; we

can treat them as fixed so long as we  consider a single payoff matrix. Moreover, with a

more general payoff matrix where the payoff to D  depends on 2’s strategy, there would be

four switching parameters to consider instead of two.)  The equation of motion is now

θ

α θ α θ θ θ θ θ θ θ θ
1

1

1 1
2

2 2 1 1 2 1 11 1 1

t

t t t t t t

U

U U L L r U D L q U D

+ =

− + + + − − +

( )

( ) ( ) ( ) ( ( ) ( ( ))( ) ( ) ( ) ( ) ( ) ( )3 8

and the corresponding continuous-time limit is

& ( )( )θ θ θ1 1 11 2 1t t t z= − − ,

                                                
50 Schlag also considers the more general formulation where agents sometimes switch to a strategy with a
lower payoff.
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where z L q r r= + + −θ 2 1( )( ) ( ) .

Thus the system moves in the direction of increasing payoffs (is monotone) if and

only if  q  and r  are such that z > 1/2  whenever θ 2 ( )L >2/9.   There are many

combinations of q and r  that satisfy this condition in this particular game; Schlag’s result

shows that the “proportional” or linear imitation rate guarantees that the corresponding 

constraint is satisfied for any specification of the payoff matrix, and that a  particular

proportional scheme produces a discrete-time, stochastic system that converges to the

replicator dynamic in the limit of shorter and shorter  time periods, where the convergence

is in the same (somewhat subtle) sense as in the Borgers-Sarin model described later in this

section.

Instead of supposing that agents observe the realized payoffs of other players,

Bjornerstedt and Weibull [1995] assume that agents receive possibly noisy statistical

information directly about the current expected payoff of the strategy they sample. They

show that this assumption, together with the assumption that the support of the noise is

sufficiently large, leads to a resulting  process that is monotone. 

To see this, suppose that the distribution of noise is such that the difference

between any two noise terms has c.d.f. Φi . Then the probability that a player i who is

currently using si  and who samples a player using ~s i  will switch  is the probability that

the noise term is less than the payoff difference u s u st
i i

t
i i(~ ) ( )− .  This is equal to 

Φi t
i i

t
i iu s u s( (~ ) ( ))− .  Since, under proportional sampling, the fraction that uses si   and

samples ~s i  , namely θ θi i
t
i is s( ) (~ ) , equals the fraction that uses ~s i  and samples si ; the

population evolves according to the dynamic

& ( ) ( ) (~ ) ( ( ) (~ )) ( (~ ) ( ))~θ θ θt
i i

t
i i

t
i i

i t
i i

t
i i

i t
i i

t
i i

s
s s s u s u s u s u si= − − −∑ Φ Φ2 7 ,

which is payoff monotone whenever the Φi  are  strictly increasing over the range of all

payoff differences; this will be the case , whenever the support of the noise is big enough.
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If, moreover, the noise has a uniform distribution over a sufficiently large interval,

and the distribution is the same for the various players,  then Φ( ) ,u a bu b= + > 0 , so the

dynamic above simplifies to

& ( ) ( ) (~ ) ( ( ) (~ ))

( )( ( ) )

~θ θ θ

θ
t
i i

t
i i

t
i i

t
i i

t
i i

s

t
i i

t
i i

t
i

s s s b u s u s

b s u s u

i= − =

−

∑ 2

2

2 7

which is the replicator dynamics (up to a time rescaling).  

Bjornerstedt [1995] develops an alternative derivation of the replicator, based on

the idea that only “dissatisfied” agents change their strategy, with the probability of

dissatisfaction depending  on the agent’s own payoff and on some function of the current

state such as the current average payoff in the population, or the current lowest payoff.

(These functions describe the aggregate play of all agents currently using a given strategy;

in some cases they can be built up from behavior rules for individual agents in which each

agent only observes the payoff of one other strategy.)   Agents who are dissatisfied choose

another agent at random (under proportional sampling) and copy that agent’s choice

regardless of its current payoff.51 If agents with lower payoffs are more likely to be

dissatisfied,  the resulting dynamic is monotone;  moreover  Bjornerstedt shows that the

result is exactly the replicator dynamics in the special case where the probability of

dissatisfaction is a suitably scaled linear function of the  payoffs. (The  scaling must ensure

that the revision probabilities stay between 0 and 1,  and so depends on the payoff function

of the particular game.)

One use that has been made of the replicator dynamic is in the study of

experimental results, as in the Binmore and Samuelson [1995] paper discussed in section

                                                
51 Similar models of “switch when dissatisfied” have been studied by Binmore and Samuelson [1993] among
others.  In the Binmore and Samuelson paper, agents become dissatisfied if their payoff is less than some
exogenous aspiration level; dissatisfied agents  choose  what strategy to switch to according to a rule that, as
in the example above, leads to greater switching to strategies with higher current payoffs. 
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3.9.  However, the model of agents who forget and ask around does not really apply  in this

setting, since subjects are not permitted to “ask around” for information about the strategies

and realized payoffs of other players.  An alternative learning model that gives rise to

replicator dynamics is a stimulus-response model, which does not require that agents

communicate with or observe one another, or even that there be  many agents in each

player role.

3.6.3. The Stimulus Response Model

An alternative justification for the replicator dynamic is drawn from the

psychological stimulus-response model literature of learning.  Basically, it is a model of

“rote” learning, in which it is assumed that actions that do well are “reinforced” and so

more likely to be used again in the future.  Actions that do poorly receive “negative

reinforcement,” and are less likely to be used in the future.  One example of  how a

stimulus response type model can lead to replicator-like dynamics can be found in Borgers

and Sarin [1995].  In their paper, each agent observes only his own realized action and the

payoff that he receives.   For simplicity, we specialize to two-player games. Agents at each

date use a mixed strategy, and the state of the system  at date t, denoted ( , )θ θt t
1 2 is the

vector of mixed actions played at time t by the two players.  Payoffs are normalized to lie

between zero and one, so that they may be interpreted as probabilities.  The state evolves in

the following way:  if player i plays st  at date t, and the resulting payoff was ~ ( )u st
i

t , then

θ γ θ γt
i

t
i t

t
i

t t
i

t

t t

t t

s u s s E s s u s

E s s

E s s s s

+ = − +
=

= ≠

1 1

1

0

( ) ( ~ ( )) ( ) ( , ) ~ ( )

( , )

( , )
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Here the reinforcement is proportional to the realized payoff, which is always positive by

assumption.  This is similar to  the “stochastic learning theory” of Bush and Mosteller

[1955], in the case where all outcomes provide positive reinforcements; Chapter 4 

discusses related models of Borgers and Sarin [1996] and Er’ev and Roth [1996] that do

accord more closely with experimental evidence but do not yield the replicator dynamic in

the continuous-time limit.

A simple calculation shows that expected increase in the probability that player i

uses s equals the current probability multiplied by the difference between the strategy’s

expected payoff and the expected payoff of the player’s current mixed strategy.   In the

limit as γ → 0  Borgers and Sarin show that the trajectories of this stochastic process

converge in probability to the continuous time replicator dynamic.  Note, however, that this

does not imply that the replicator dynamic has the same asymptotic behavior as the

stochastic system:  for example in matching pennies, the stochastic reinforcement model

will eventually be absorbed by a pure strategy profile, while the continuous time replicator

cannot converge to a pure strategy profile.  This discontinuity in the asymptotic behavior of

discrete and continuous time systems is something we discuss in greater detail below.

3.7. Generalizations of the Replicator Dynamic and Iterated Strict

Dominance

 The replicator dynamic is very specific.  Both the asking around model and the

stimulus response model do however lead to dynamics which are payoff monotone,

meaning that  the number of people playing strategies that are doing well should grow. This

leads the question of which properties of the replicator extend to other dynamics that retain

this intuitive idea.  Here we consider monotonicity and some if its variations, and show
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how even relatively weak notions of monotonicity are sufficient to guarantee the iterated

elimination of strictly dominated strategies.

Following Samuelson and Zhang [1992], say that an adjustment process (that is, a

flow on the state space Θ Θ Σ Σ1 2 1 2× = × ) is regular if (i) it is Lipschitz continuous, (ii)

the sum of the flows in each population equals 0, and (iii) strategies with 0 shares have

non-negative growth rates. The process is payoff monotonic if strategies with higher current

payoffs have higher current growth rates: 52

Definition 3.1:  A  process is payoff monotone if at all interior points,

u s u s
s

s

s

st
i i

t
i i t

i i

t
i i

t
i i

t
i i

( ) ( ) ( ’)
& ( )

( )
( )

& ( ’)

( ’)
> = ⇒ > =θ

θ
θ
θ

.

Although this condition is quite weak in some respects, the requirement that growth

rates are strictly ordered by the corresponding payoffs does rule out the best response

dynamics, since under best response all strategies that are not best responses have identical

growth rates of -1.

Recall the definition of strict dominance from chapter 1:  a strategy σ i  is  strictly

dominated  if there is some other (possibly mixed) strategy $σ i  such that

u ui i i i i i( $ , ) ( , )σ σ σ σ− −>

for all profiles of opponents’ strategies σ −i .  Iterated strict dominance  is the process of

first removing all strictly dominated strategies for each player, then removing all strategies

that become strictly dominated once the dominated strategies are deleted, and so on until

no further deletions are possible.    Following Samuelson and Zhang, define the process of 

iterated pure-strategy strict dominance to be the analogous iterative process when only

                                                
52 Samuelson and Zhang simply called these processes “monotone.”
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dominance by pure strategies is considered.  Obviously this process deletes fewer

strategies, since a strictly dominated strategy may not be dominated by any pure strategy.

Proposition 3.4 (Samuelson and Zhang):  Under any regular, monotone dynamics, if

strategy s is eliminated by the process of iterated pure-strategy strict dominance, then the

share of strategy s converges to 0 asymptotically, irrespective of whether the state itself 

converges.53

Sketch of Proof:  The easiest case is that of a strategy s that is strictly dominated by some

other pure strategy $s .  Then the growth rate of s is always some fixed amount less than the

growth rate of $s , and so the share of s in the population must go to tend to 0

asymptotically. Once this is seen, it is not surprising that the result extends to iterative

deletion.  Intuitively, we expect the adjustment process to run through the iterative

deletion:  once the dominated strategies have shares close to 0, then strategies that are

removed at the second round of iterated pure-strategy dominance must have lower payoffs

than those of other strategies with non-negligible shares,  so their share starts to shrink to 0,

and so on. Since the iterative deletion process stops in a finite number of rounds (in stage

games with a finite number of actions), the adjustment process should eventually eliminate

all of the strategies in question.

To make this intuition more precise, we adapt an argument that Hofbauer and

Weibull [1995] used in their proof of proposition 3.5 below. Note first that the share of

each strategy that is strictly dominated by a pure strategy is bounded above by a function

that converges to 0 at an exponential rate. Since there are only a finite number of  such

                                                
53 Nachbar [1990] has a similar result that applies only to “dominance-solvable” games where the iterated
deletion process eliminates all but one strategy’s profile. Milgrom and Roberts [1990] obtain a similar result
for the class of supermodular games.
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dominated strategies, there is,  for any positive ε,  a finite time T such that at all t>T every

one of them has share less than ε.

Let ′s i  be a strategy for player i that is not strictly dominated by a pure strategy but

 is strictly dominated by some $si  once the first round of deletions is performed.   Since

payoff functions are continuous functions of the mixed strategies, $si  has a strictly higher

payoff than ′s i  once the shares of all of the “pure-strategy-strictly dominated” strategies

are  less than some sufficiently small ε;54  moreover by taking ε small enough we can

ensure that this is true for uniformly over all of the strategies removed at the second round

of the iteration.  Thus after some finite time ′T , the shares of all of the strategies that are

removed at the second round of iteration are bounded by a function that converges to 0 at

an exponential rate. Hence the shares of these strategies become negligible at some finite

time ′′T , and the argument continues on. Since the process of iteration ends in a finite

number of rounds in  finite games, only a finite number of iterations of the argument are

required, and we conclude that there is a finite time T after which the shares of all

strategies that are eliminated by iterated pure-strategy strict dominance converge to 0.

æ

An example due to Bjornerstedt [1995] shows that monotone dynamics need not

eliminate strategies that are strictly dominated by a mixed strategy.  This example uses  a

version of the “sample-if-dissatisfied” dynamic.

Example 3.3:  Consider the following variant of the  rock, scissors, paper game due to

Dekel and Scotchmer [1992]

                                                
54Note that this continuity argument does not apply to the concept of weak dominance.
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0 00 2 35 100 100 2 35 0 00 010 110
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Here, the upper 3x3 matrix is a non-zero sum version of rock, scissors paper, while the

fourth strategy is strictly dominated by an equal mixture of the first three strategies, but not

by any pure strategy.  However, the fourth strategy  is a better-than-average response

whenever it and one other strategy are scarce.  Now consider a “sample-if dissatisfied”

dynamic where each player’s propensity to sample depends on the current aggregate state

as well as on the player’s own payoff, and moreover this dependence takes the very special

form that players with the lowest possible payoff given the current state are certain to

sample.  Then since the fourth strategy is typically not the worst-performing one, it can

survive even in continuous time unless the system starts at exactly the Nash equilibrium.

Note, incidentally, that in this example the mixed Nash equilibrium is an ESS. 

Consequently, this example also shows that an ESS does not imply asymptotic stability for

general monotone dynamics.

In order to eliminate strategies that are strictly dominated by a mixed strategy,

Samuelson and Zhang introduce the condition of “aggregate monotonicity”:

Definition 3.2:  A system is  aggregate monotonic if at all interior points,

 u u s s
s

st
i i

t
i i i i

s
i i t

i i

t
i ii( ) ( $ ) ( ( ) $ ( ))
& ( )
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σ σ σ σ θ

θ
> ⇒ − >∑ 0 .

This says that, if mixed strategy σ i  has a higher current payoff than mixed strategy σ ’i ,

then the “growth rate” of σ i  is higher than that of $σ i .  It is easy to see that aggregate

monotonicity implies monotonicity. Samuelson and Zhang show that the replicator
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dynamics is aggregate monotonic, and that any aggregate monotonic system deletes all 

strategies deleted by iterated strict dominance.

Recently Hofbauer and Weibull [1995] have found a weaker sufficient condition

that they call convex monotonicity.

Definition 3.3:  A system is  convex monotonic if at all interior points,
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 In words, this says that if mixed strategy σ i  has a higher current payoff than pure strategy 

si , then the “growth rate” of σ i   is higher than that of si . 

A convex monotonic system is clearly monotonic, so that convex monotonicity

rules out the best-response dynamics.  However, there are approximations of the best

response dynamic that are convex monotonic. For example, Hofbauer and Weibull note

that the following dynamics is convex monotone for any positive λ:
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 As λ grows to infinity, this system converges to the best-response dynamics.

Proposition 3.5  (Hofbauer and Weibull):  Under any regular, convex monotone dynamics,

if pure strategy s is eliminated by the process of iterated strict dominance, then the share of

strategy s converges to 0 asymptotically, irrespective of whether the state converges.

Moreover, if mixed strategy σ is removed by iterated strict dominance, then for all ε > 0

there is a time T such that for all t>T the share of at least one of the pure strategies in the

support of σ is less than ε.
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Sketch of Proof:  As with the preceding proposition, the key step is showing that the

dominated strategies are removed.  To do this,  suppose that strategy si  of payer i is strictly

dominated by strategy σ i , and without loss of generality suppose that σ i  gives strictly

positive probability to every strategy but si . Now consider the function P defined by

P s si i i i i i s
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entropy function used in the proof of Proposition 3.3. Along any interior trajectory,
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which is strictly negative on the interior of the simplex from convex monotonicity and the

fact that  E i

i

σ θ( )  is bounded away from 0.  Thus P  must converge to 0, and so (again

using the fact that  E i

i

σ θ( )  is bounded away from 0) we conclude that θ i is( )  converges to

0 at an exponential rate.

To show that the process continues to iteratively delete the  dominated strategies,

we now simply paraphrase the analogous argument from the proof of proposition 3.4

(which was actually taken from Hofbauer and Weibull [1995]) replacing every dominating

pure strategy by the dominating mixture.

æ

As a final remark on results about iterative deletion,  we should note that even the

replicator dynamic need not eliminate a strategy that is weakly dominated, since Nash

equilibria in weakly dominated  strategies can be stable (but not asymptotically stable.) 

Section 3.9 gives an example of this, and has an extended discussion of one response to it.



102

3.8.   Myopic Adjustment Dynamics

Besides the aggregate and convex monotonicity discussed in the previous section,

there is another useful generalization of monotonicity,  called myopic adjustment.  This

class included not only the replicator dynamic, but also the best response dynamic, and

simply requires that utility increase along the adjustment path (holding fixed the play of

other players).  We consider two applications of this idea.  First, we give a complete

characterization of myopic adjustment in the case of 2x2 symmetric games with a single

population.  Second, we consider the set-valued notion of strategic stability, and how it is

connected to the property of being an attractor for a myopic adjustment process.

3.8.1. Replicator versus Best-Response

The notion of myopic adjustment is due to Swinkels [1993]. This generalization of

monotonicity includes as a special case not only the replicator dynamic, but also the best

response dynamic.

Swinkels’s condition of myopia is that holding other players’ play fixed, utility

should be non-decreasing along the adjustment path.  Formally

Definition 3.4:  A system is a myopic adjustment dynamic if

u s st
i i i

si ( ) & ( )θ ≥∑ 0

We next reconsider the monotonicity condition, that higher utilities imply weakly

higher growth rates.  One implication of this is that strategies whose share is expanding

must have higher utility than strategies whose shares are contracting.  Let ui  denote the

least utility of any strategy whose share is (weakly) expanding, and let u i  denote the

greatest utility of any strategy whose share is strictly declining.  Monotonicity implies

u ui i≥ .  Notice that
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This enables us to conclude

Proposition 3.6:  Every monotonic regular system is a myopic adjustment dynamic. 

As we mentioned above, the best response dynamic is also a myopic adjustment

dynamic.  That is, reinterpreting the state variable as beliefs rather than a population

distribution of play, the system

& ( )θ θ θi i j iBR= −

also increases utility holding the opponents strategy fixed.  Indeed in a certain sense, the

best-response dynamic increases utility holding the opponents strategy fixed as rapidly as

possible.  Consequently, results that apply to all myopic adjustment dynamics are

applicable to the best response dynamic, and by implication, continuous time fictitious

play, as well as to the replicator dynamic.55

                                                
55 Remember that the equivalence between the fictitious play and best response dynamic hold only in
continuous time, and that the continuous-time model can capture the asymptotic behavior of discrete-time
fictitious play, but not that of the discrete-time best response dynamic, for the latter dynamic is time
homogenous and does not “slow down” asymptotically.
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3.8.2. Two by Two Symmetric Games

The myopic adjustment dynamic is strong enough to yield results in the special case

of a symmetric 2x2 game with a symmetric initial condition (or equivalently, one

population).  In this case the state variable is one dimensional, so that in continuous time

models the system cannot cycle and must converge to a steady state.  Moreover, the only

possible steady states are Nash equilibria of which, generically, there are at most three. 

The stability properties of steady states is entirely determined by the direction of the flow at

each point, the rate of movement makes no difference. 

In a symmetric, one-population, 2x2 game, a myopic adjustment dynamic cannot

move the system in the direction that corresponds to utility going down holding opponents

strategy fixed.56  If we add to  the assumption of  myopic adjustment the assumptions that

(1) movement must be strictly positive in the utility improving direction (if there is one) ,

and that (2) every Nash equilibrium is a steady state, then direction of the flow is pinned

down everywhere except at non-Nash pure strategy points.  (Note that both of these

assumptions are satisfied in both the replicator and best-response cases.)  Consequently,

except for the issue of whether non-Nash pure strategy points are (unstable) steady states

(as they are in the replicator dynamics but not under best-response) the global properties of

all myopic dynamical systems are exactly the same.  In particular, if there is a unique Nash

equilibrium (either in the interior or on the boundary), it is an attractor from  all interior

initial conditions.   The other generic possibility is that there is a mixed equilibrium and

two strict pure equilibria, as for example in coordination games.   Here the two pure

equilibria are stable, and the mixed equilibrium is unstable, as illustrated below in Figure

3.4.  (If one of the pure equilibria were unstable, then the other strategy would need to be

                                                
56 This is true in all games, but considerably more useful in the 2x2 symmetric case.
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the best response to mixed strategies arbitrarily near unstable equilibrium, which would

contradict the assumption that the first equilibrium was strict.).

θ1

θ 2

mixed
equilibrium

Figure 3.4

3.8.3. Stable Attractors and Strategic Stability

 Swinkels [1993] proves a  general result about myopic adjustment dynamics: he

establishes a connection between stability of the dynamical system, and strategic stability

in the game theoretic sense of Kohlberg and Mertens [1986].  A set of mixed strategy Nash

equilibria is hyperstable if for every addition of redundant strategies to the game, and every

sufficiently small perturbation to payoffs generated by forcing opponents to tremble, the

perturbed game has a Nash equilibrium that is close to the original set, and if the set is a

minimal set with this property.  Kohlberg and Mertens show, for example, that every

hyperstable set must contain a subgame perfect equilibrium, and indeed a sequential

equilibrium. 

Swinkels’s result, stated below, restricts attention to asymptotically stable sets that

are convex. This effectively rules out limit cycles, focusing attention on sets of steady
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states, and thus on sets of Nash equilibria.  Now recall from chapter 1 that every Nash

equilibrium is locally isolated for generic strategic-form payoffs.  In fact more is true: For

generic payoffs, every Nash equilibrium is strict, and hence hyperstable.  This of course is

not surprising: The main motivation for looking at refinements of Nash equilibria such as

hyperstability comes from the consideration of the sort of non-generic strategic form

payoffs that arise when the strategies in the strategic form are complete contingent plans in

a non-trivial extensive form game. In effect, Swinkels is following the Kohlberg and

Mertens program of adopting a strategic-form approach to a problem that arises from

extensive form games.  Part 2 of the book will discuss learning in extensive form games

using models that explicitly reflect the extensive-form structure.

Proposition 3.7 (Swinkels):   If a set is asymptotically stable under a myopic adjustment

dynamic for which every Nash equilibrium is a steady state and has a neighborhood

contained in the basin of attraction which is homeomorphic to a convex set (and in

particular is connected), it contains a hyperstable set.  In particular it also contains a

sequential equilibrium.

Although the details of Swinkels’s proof are quite complex, the basic idea is not. 

Consider the special case of strictly myopic dynamics, in which the population’s utility

holding the opponents’ strategy fixed strictly increases except at steady states.  In this case,

steady states coincide with Nash equilibria.  The idea of the proof is that since the set in

question is asymptotically stable, it must remain so even when the game is perturbed.  In

other words, we may find a new myopic dynamic in the perturbed game which is close to

the old dynamic.   Since the original vector field pointed inwards on the boundary of a

neighborhood of the set, a small perturbation will not change this.  But then the flow maps

a set homeomorphic to a convex set to itself, so by the Brower fixed point theorem, the set

contains a fixed point of the flow, that is, a steady state, and by construction, this lies near
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the original set.  Since in the strictly myopic case a steady state is a Nash equilibrium, this

completes the proof.  Swinkels full proof is considerably more complicated because of the

need to remove steady states that are not Nash equilibria in the case of weak myopia, and

because the missing step of finding a new myopic dynamic in the perturbed game which is

close to the old dynamic requires some work.

We should point out however that the property of a set being asymptotically stable

is much stronger than that of a point being asymptotically stable.  If a steady state fails to

be asymptotically stable, then (generically) the set of initial conditions that lead to that

steady state in the long run has measure zero:  it must be a source or a saddle.  However,

this need not be true for a set, as the illustration below of a set that is not asymptotically

stable illustrates.

θ 1

θ 2

Here the solid line on the top represents a set of steady states.  Initial conditions on the

right of the line converge to the line, those near on the left come close but do not converge

to it.  None of the steady states are individually asymptotically stable, since a small

perturbation can lead to another nearby steady state.  Nor is the set asymptotically stable,

since a small perturbation away from the set on the left side of the line does not lead back
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to the line.  However, there is a very large (open set) of initial conditions for which there is

convergence  to the set.

3.9. Set Valued Limit Points and Drift

Expanding on the idea that there may be sets of equilibria that are not stable, but

may never-the-less be good asymptotic descriptions of the long-run behavior of the system,

Binmore and Samuelson [1995] argue that it is a mistake to take the deterministic learning

dynamics of this chapter and the last very seriously in the neighborhood of a set of steady

states, and that this has important implications near such sets.  The idea is that in addition

to the replicator, or other dynamic, there is ordinarily an additional tendency of the system

to move,  both randomly due to mutations and the like, and deterministically, due to

various non-modeled factors.  The latter deterministic movement of the system they refer to

as drift.  If the model without drift is to make sense, the drift should obviously be small. 

The smallness of drift is enough to guarantee that the asymptotic properties of isolated

steady states are not changed by its presence:  it is neither strong enough to escape from a

stable steady state, nor strong enough to force convergence to an unstable steady state.

Near a set of equilibria, however, Binmore and Samuelson argue, the situation is

quite different.  This is most easily seen in their example of the ultimatum mini-game

Y N

H 2,2 2,2

L 3,1 0,0

The story of this game is that the first player proposes either to split four dollars equally, or

to keep three for himself.  If an equal split is proposed it is accepted, but if the first player
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proposes an unequal split, the second player may choose to either accept the split, or reject

it, in which case neither player gets anything. 

The set of Nash equilibria and the replicator dynamic for this game is sketched in

Figure 3.5 below.

H

L

Y N

C

Figure 3.5

In this game there is a strict Nash equilibrium at (L,Y) and a component  C  of Nash

equilibria in which player 1 plays H and player 2  gives probability of 2/3 or more to the

weakly dominated strategy N.   Since the  equilibrium at (L,Y) is strict, it  is an attractor of

the replicator dynamic.  The component of  equilibria where 1 plays H is unstable:  a small

fraction of the population playing L causes the player 2’s to gradually move towards Y, so

that eventually more than a third of them are playing Y, and the system then moves off

towards (L,Y).

The key point of Binmore and Samuelson is that at points near the unstable

component C, the “force” or velocity of this drift is very slow, since the player 2’s are near

indifference.  Suppose that the drift is due to some people in the population occasionally
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choosing at random (50-50) from their two strategies, so that there is a weak tendency

ceteris paribus to move to the center.  Suppose moreover that the player 2’s, who have less

to lose, are more likely to choose randomly.  Then superimposed on the replicator dynamic

is a small drift dynamic of the sort illustrated below.

H

L

Y N

Figure 3.6

When we combine the two dynamics, putting most of the weight on the replicator, and very

little weight on the drift, the combined dynamic has the following appearance
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H

L

Y N

C

Figure 3.7

Now the tendency of player 2’s to randomize between Y and N overcomes their tendency

to move towards L when there is a very low probability of L, and the system has stable

steady states near the set of equilibria.

Binmore and Samuelson make several other useful observations.  First, they note

that whether or not drift is important depends both on the nature of the drift and on the

nature of the deterministic dynamic.  In particular, if both players drift at the same rate, the

flow diagram looks much like that without drift, and in particular the set of equilibria is

unstable.  Moreover, fixing the drift as in figure 3.2, and continuing to suppose that player

2 drifts more rapidly than player 1, we can modify the payoffs of the game, and thus

modify the corresponding deterministic dynamics.  For example, we can consider

Y N

H 2,2 2,2

L 3(1+a),1 0,0
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Figure 3.8

When a = 0 , this is the game originally studied.  As a increases to 1, the range of mixed

strategy equilibria is reduced until the probability of Y drops from 2/3 to 1/3 as illustrated

below

H

L

Y N

a = 0 a = 1

Figure 3.9

Under the proposed model of drift (see the figure 3.2 above) when a=1 the drift

does not make any difference, since to the right of player 1 randomizing 50-50 the system

is drifting left anyway.  Only when a<1/2, so the system drifts to the right near a portion of

the equilibrium set, can it begin to stabilize the set of equilibria.  Binmore and Samuelson

argue that this has important predictive consequences:  the bigger is a the more likely we

are to see the strict equilibrium at L,Y.  Note, however, that this analysis is based on

assuming the drift does not change when the payoffs do, while the argument about player 2

drifting faster than player 1 assumes that the drift is in part determined by players’ payoffs.

In this particular example, the same change in payoff that makes the set of equilibria

smaller (bigger a) also makes player 1 relatively less indifferent, and so by the argument
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should decrease the rate at which he drifts, thereby tending to reinforce the stability of the

set of equilibria.  However, this does not upset the basic conclusion, because once the

segment of equilibria lies entirely to the right of 1/2, regardless of its strength, any drift

towards 1/2, reinforces the instability of the segment.  This agrees with Binmore and

Samuelson’s basic conclusion that the shorter the segment the less likely it is to be stable,

but provides a cautionary note about treating the drift as fixed.

These ideas are important because many of the system we will examine, including

the smooth version of fictitious play, do exhibit drift.  However, as remarked above, all

steady states are locally isolated for generic strategic form payoffs, so this observation is

not too important in the case of one-shot simultaneous move games. As with Swinkels’s

result, Binmore and Samuelson’s analysis is most relevant for strategic forms arising from

nontrivial extensive forms. For example, the strategic form mini-ultimatum game is

derived the following extensive form mini-ultimatum game:

1

2

H L

NY

(2,2)

(3,1) (0,0)

Figure 3.10

Not only do Binmore and Samuelson have this extensive form in mind, they make

the stronger argument that learning together with the kind of drift described above can be a

theoretical explanation of the empirical phenomenon found in experimental play of
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extensive-form ultimatum games, namely that  the first mover does not get most of the

pie.57. 

There are two potential difficulties with  this argument. First, Binmore and

Samuelson study the replicator dynamic.   As we argued above,  the stimulus-response

rationale for this model is unconvincing, and  the asking- around model clearly does not

apply in an experimental setting.  Of course, the replicator here is used as a convenient way

of making things precise; Binmore and Samuelson  are motivated by the belief that their

result would also obtain in related payoff-monotone dynamics that are more readily

justified.  More fundamentally,  we find it unappealing to attribute the play of N  by player

2 to a short-run lack of “knowledge” that player 2 will eventually “learn”, since if player 2 

understands the rules of the game and her own payoff  function, she will understand that

playing N   is a mistake.  One might argue that, despite the experimental instructions,

player 2 does not in fact understand (or believe) that the experiment is being conducted

anonymously, and so adopts a rule (“do not be taken advantage of”) that is optimal in a

repeated bargaining setting. However, we find the standard explanation in the experimental

literature, namely  that the player 2’s payoffs depend on other things than the money they

receive, to be more convincing.

Note, incidentally, that playing N is weakly dominated in the strategic form game. 

Indeed one might want to argue that we should consider only rules that put positive weight

on strategies that are not weakly dominated, since it makes no sense to play a weakly

dominated strategy, and this does not require any learning to find this out (presuming that

players know the rules of the game from the outset.) .  This idea needs to be qualified, since

 when we examine extensive form games in more detail later in the book, we will find that

                                                
57 A good discussion of this experimental fact, along with many references can be found in Prasnikar and
Roth [1992] .
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it does sometimes make sense to play weakly dominated strategies for the information they

reveal about opponents’ play, but this information-gathering explanation does not apply to 

a decision at the “end” of the game tree, like strategy  N in this game.  We should also

emphasize that in general extensive form games, segments of equilibria essentially always

arise because of the possibility of off-the-path randomization, and they do not always

involve the use of weakly dominated strategies. 58

3.10. Cheap Talk and the Secret Handshake

One interesting set-valued notion of stability closely connected to the best-response

dynamic and to the idea of drift is the  idea of a “cyclically stable set” introduced by Gilboa

and Matsui [1991].  A strategy profile is said to be accessible from another profile if there

is a continuous time best-response dynamic path from to the other profile.  (Note that the

relative rates of adjustment of the players may differ or vary over time if necessary.)  A set

is cyclically stable   if  no point outside the set is accessible  from inside it, and every point

inside the set is accessible from every other point inside.

The idea that a set that is cyclically stable is relatively stable seem incontrovertible.

 More questionable is the notion that a set of equilibria that is not cyclically stable is

unstable; that is, merely because there is some best-response path that leads out, what

reason do we have to believe that this particular path will be followed in practice?  This is

where the idea of drift is important.  Multiple best-response paths occur when there is

indifference, and a small amount of drift will tend to move players from one point of

indifference to another anyway.  So if there are multiple best-response paths, only one of

                                                
58 This is a consequence of Kreps and Wilson’ s [1982] theorem that for generic extensive-form payoffs there
are finitely many Nash equilibrium “outcomes,” that is, probability distributions over terminal nodes.
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which leads out of a particular set, we can imagine than random drift will eventually cause

that particular path to occur.

One interesting class of games in which cyclically stable sets lead to interesting

conclusions are the “cheap-talk” games discussed above in the context of evolutionary

stability.  Consider again the coordination game example:

L R

L 2,2 -100,0

R 0,-100 1,1

Figure 3.11

In addition we allow players a pre-move in which they may send the message L or the

message R.  We previously  saw that ESS could not eliminate “babbling” equilibria of the

type “play R no matter what and send all messages with positive probability.”

Instead of ESS, Matsui [1991] uses the cyclically stable set idea.  Matsui shows that

when a round of cheap talk is added to any 2x2 game of common interest there is a unique

cyclically stable set59 and that it has a unique outcome which is the Pareto efficient

outcome.

The intuition behind this idea is closely connected to the idea of drift.  Suppose that

the outcome in the game above is (R,R).   If all players use a strategy that ignores first-

stage messages and always plays R in the second stage, it is a best response to say anything.

 Consequently, there is nothing to prevent the system from drifting to a state in which all

players are saying (R,R) as well as doing it; that is, there is a path of the continuous- time 

                                                
59  This is a two population model; it is not assumed that the two players always play the same way.
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best-response dynamics that leads from a “babbling  state, to a state in which only a single

signal is being sent.  Now, however, consider a  player 1 who says L , and then plays L if

and only if his opponent says L.  Since all player 2’s will play  R anyway, this strategy is

also a best response.  Moreover, it is also a best response for some of the player 2’s to drift

onto this strategy when all player 1’s play R, and moreover once the process of drift is

underway the new strategy becomes a strict  best response.   On the other hand, Matsui

shows that when all agents  are playing L the equilibrium does not unravel. It is true that

there is no disadvantage to saying R and doing R if the opponent says R , and so the system

may drift to this state, once it is reached  no player will ever wish to make use of the 

opportunity to induce R to be played.

We will return to this example in chapter 7, in the context of learning in extensive-

form games; for the moment we point out only that the continuous-time best response

dynamic on strategies  used to define cyclically stable sets implicitly supposes that players

observe the entire strategies of their opponents, and not just the realized action.

3.11. Discrete-Time Replicator Systems

While much of the literature on the replicator dynamics concerns the continuous

time system, it is also interesting to consider the extent to which, as in our earlier

discussion of the Borgers-Sarin stimulus-response model, discrete time systems give

similar or different conclusions.   To do so, the first step is of course to define what we

mean by the discrete-time replicator system.  While several alternatives are possible,

perhaps the most obvious discrete-time formulation of the asymmetric-population case

(again supposing that each population has the same size) is

φ φ φt
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where ∆  is the length of the time interval60 and payoffs correspond to the net reproduction

rate per unit of time  which leads to the population share equation61
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Note that as the period length ∆  goes to 0, this equation converges to the continuous-time

replicator dynamics; note also that the step size in this system depends on the absolute size

of the payoffs, so that for example adding 100 to all payoffs shrinks the step size.  This is

because an additional 1% in absolute growth rate leads to an additional 1%  population

share if the total population is constant, while it becomes insignificant is all strategies have

absolute growth rates that are large.

Alternatively, one can interpret the payoff function as giving the reproduction rate

per period, instead of per unit of time; with this interpretation the parameter ∆ disappears

from the equation of motion, and the way that one models shorter time periods is by

lowering all of the payoffs towards 0: in the limit of infinitesimal periods, the population is

almost constant from one period to the next.

As is typically the case, the convergence and stability properties of the discrete-time

replicator dynamics can be different from the continuous time version, with “long” time

periods causing more of a change than small ones do.  The most striking example of the

effect of long time periods is Dekel and Scotchmer [1992], who show that the discrete-time

replicator dynamics need not remove all strictly dominated strategies.   (We follow Dekel-

Scotchmer in discussing the one-population case; recall that this also describes the

evolution of the two-population system from a symmetric initial position.)

                                                
60 If we take the continuous time model more literally, we may wish to view ∆  as the exponential of the time
interval.
61 The alternative system mentioned in footnote 5 leads to a corresponding discrete-time alternative.
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Dekel and Scotchmer start with a nonzero-sum version of the rock-scissors-

paper game as in example 3.3,

100 100 2 35 0 00 0 00 2 35

0 00 2 35 100 100 2 35 0 00

2 35 0 00 0 00 2 35 100 100

. , . . , . . , .

. , . . , . . , .

. , . . , . . , .

�

!
   

"

$
###

In this game, the mixed equilibrium (1/3,1/3,1/3) is an ESS: the equilibrium payoff is

335 3. / ; the payoff of  any of the strategies  against this mixture is 1. Thus we know that

the mixed equilibrium is asymptotically stable in the continuous-time replicator

dynamic. However, computation reveals that the discrete-time replicator dynamics 

(with ∆=1, so that the “large “payoffs here implicitly correspond to a nonnegligible

period length) spiral outwards towards the boundary.   

Dekel and Scotchmer then add a fourth strategy to the game, resulting in the

game described in example 3.3.

100 100 2 35 0 00 0 00 2 35 010 110

0 00 2 35 100 100 2 35 0 00 010 110

2 35 0 00 0 00 2 35 100 100 010 110

110 010 110 010 110 010 0 00 0 00

. , . . , . . , . . , .

. , . . , . . , . . , .

. , . . , . . , . . , .

. , . . , . . , . . , .

�

!

    

"

$

####

Recall that this fourth strategy is strictly dominated by a mixture of the other three

strategies, but not by any one of the first three strategies alone, and it does very poorly

against itself. However, the fourth strategy is a better-than-average response against

states where it and one other strategy are scarce.  Since this new strategy is not a best

response to the equilibrium (1/3,1/3,13,0), that point is an ESS, and hence is

asymptotically stable in the continuous-time replicator dynamic.62   Moreover, as we

                                                
62 This was first noted by Cabrales and Sobel [1992].
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know from section 3.6, the continuous time replicator must eliminate the dominated

fourth strategy starting from any interior point.  However, a  proof by contradiction

shows that in discrete time, the share of this fourth strategy does not go to 0:   if its

share became small, the state would spiral out towards the boundary of the simplex

corresponding to the other three strategies, and at most points on this boundary  the

fourth strategy  has a positive growth rate.

The difference between the asymptotic behaviors of the discrete and continuous

time systems raises the question of the what can be said about the general relationship

between these behaviors.  Standard results on the structural stability of dynamical systems

(see for example, Hirsch and Smale [1974]) imply that:

1) If a steady state is hyperbolic and asymptotically stable under the continuous-time

dynamics then it is asymptotically stable for sufficiently small time periods, and

2) If a steady state is hyperbolic and unstable under the continuous-time dynamics then

it is unstable for sufficiently small time periods.

Because the steady state (1/3,1/3,1/3,0)  is hyperbolic and asymptotically stable

in the continuous-time replicator,  it is also asymptotically stable with sufficiently small

time periods. Consequently the issue in the Dekel-Scotchmer example is whether long

or short time periods are the better description of the situation.

More generally, facts (1) and (2) above show that in many situations the

discrepancy between the discrete and continuous time dynamics vanishes in the limit of

smaller time periods.  A notable exception is the case discussed at the end of section 3.5, 

where the continuous-time dynamics has a center.  If a steady state is  a center in the

continuous-time dynamics, it is unstable in the discrete-time dynamics even for arbitrarily

small period lengths.  This is easily seen in a diagram we copied from Borgers and Sarin
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[1995] on the replicator dynamics in the zero-sum game “matching pennies”  (See also

Akin and Losert [1984].)

θ1

θ 2

discrete time

continuous time

Figure 3.7

In continuous time, the system orbits around the center.  To a good approximation, in

discrete time, the system moves along tangents to the circle; as can be seen in Figure 3.7.

As a result the dynamical system moves points on continuous time orbits to points more

distant from the center.

While centers are not structurally stable to general perturbations of the dynamics,

they can arise for a “fat” set of payoffs under the replicator dynamics. In particular, as

noted in section 3.5 above, centers occur in all 2x2 games with a unique completely mixed

strategy equilibrium in the 2-population model. Thus if one considers the narrow question

of the relation between discrete and continuous time replicator dynamics, the conclusion is

that there are open sets of payoffs for which the two differ even in the limit of period

lengths that converge to 0. However, if one allows for other small perturbations of the

dynamics, and thus considers the discrete-to-continuous time limit in dynamics “near” the

replicator,  the answer changes, as such perturbations will (generically) make the centers

hyperbolic and either asymptotically stable or unstable, and in either case the asymptotic
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behavior of the system in the limit of very short discrete time periods will be the same as

the asymptotic behavior in  continuous time.
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Appendix: Liouville’s Theorem

The effect of a flow on volume63 has important consequences for the long-run

dynamics of the system.  For example, it is easy to see that in a one dimensional system, if

the volume of sets is reduced over time, then the system must converge to a unique

globally stable steady state.  More generally, fix an n-dimensional dynamical system, and a

 measurable set A in the interior of the system’s domain of definition.  The image of A  at

time t  is A t x t x x A( ) { ( , )| }= ∈0 0 .Consider what happens to this image under the flow. 

The change in the volume of such a set is determined entirely by the trace of the matrix

Df x( ) .  This is known as the divergence of the vector field; that is

div f tr Df
f

x
i

i
i

( ) ( )= = ∑ ∂
∂

Specifically, Liouville’s theorem says that if the divergence is 0 on an open domain X,  the

image A t( )   has the same Euclidean volume as the original set A  as long as the system

remains in the domain X.   If the divergence is negative the volume of the image strictly

decreases over time and if it is positive, the volume of the image strictly increases. 

As noted, in a one dimensional system volume contraction is a strong property

since it guarantees convergence to a unique globally stable steady state. Volume

contraction is also significant in dimension two, since it implies that the system cannot

have a non-trivial closed orbit or “cycle.”

A cycle separates the plane into interior and exterior regions, and so the closed set

composed of the cycle and its interior must be invariant. Then, however, the flow would be

volume-preserving instead of volume-contracting on this set. Volume contraction is less

                                                
63 By volume here we mean the ordinary Euclidean volume vol A dx

A

( ) = I .
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significant in higher dimensions, but it does imply that the system converges to a manifold

at least one dimension smaller than the original system.

The case of 0 divergence is of particular use in studying the replicator dynamic. 

Since asymptotically stable steady states contract volume, a system with 0 divergence

cannot have an asymptotically stable steady state.  The standard replicator dynamic does

not have divergence 0, but it can be transformed into such a system by a (smooth) change

of variables. One such transformation is given by Hofbauer [1995]:  First, normalize using

the size of the population playing one of the  strategies as a numeraire, that is set 

ζ θ θi i i i i is s s( ) ( ) / (~ )=  for some strategies ~s i .  Then set vi i= logζ .  Note that this

transformation is valid only on the interior of the strategy simplex.  The resulting system is

bipartite,  meaning that the terms governing the evolution of vi  depend only on the state

variables corresponding to player j i≠ .  It follows that the diagonal of the Jacobian matrix

Df  is zero, and so its trace (the divergence) is 0.

What does  the fact that this transformed system n has zero divergence reveal about

 the original system?  The  paths of the transformed system are transforms of the paths of

the original one, so that the steady states and their stability properties are unchanged.  In

particular, in the interior, the original system cannot have any asymptotically stable steady

states.64 However,  the transformation does change the divergence of the map, so the fact

that the transformed map preserves volume does not mean that the original one did. 

Indeed, since boundary steady states that are strict are certainly stable, volume must be

contracted near such steady states in the original system.  Note also that the transformed

map may have a different velocity than the old one, and in particular the sets of point that

are reached in finite time need not be preserved under transformations; Weibull [1995]

                                                
64 This conclusion cannot be extended to entire system, as (1) Liouville’s theorem only holds on open
domains, and (2) the transformation we used is badly behaved at the boundaries of the simplex. 
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gives an example where a similar transformation of the  replicator dynamic results in a

system that reached a boundary equilibrium in finite time.
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4. Stochastic Fictitious Play and Mixed Strategy Equilibria

4.1. Introduction

This chapter examines stochastic models in the spirit of fictitious play, in which

players randomize when they are nearly indifferent between several choices. One

motivation for the material in this chapter is to provide a more satisfactory explanation for

convergence to mixed strategy equilibria in fictitious play-like models.  Another

motivation for looking at stochastic models is to avoid the discontinuity inherent in

standard fictitious play, where a small change in the data can lead to an abrupt change in

behavior. Such discontinuous responses may not be descriptively realistic in many

situations, as psychological experiments show that choices between alternatives that are

perceived as similar tend to be relatively random. Moreover, a discontinuous response

creates the possibility that the infrequent switching condition described in the previous

chapter is violated, which opens the player to sorts of “mistakes” described in chapter 2,

where she persistently makes less than her reservation value.  In contrast, players can

ensure they will obtain at least their reservation value in time average by using the sorts of

stochastic rules we develop in this chapter.

The traditional process of fictitious play method is deterministic, except possibly

when the historical average is such that the player is indifferent between several actions. 

Of course, for generic strategic-form payoffs, and a generic prior, there is no sample that

makes any  player exactly indifferent,  so that typically players will use pure strategies in

every period.  The variations on fictitious play we discussed at the end of chapter 2 do

permit players to randomize.  Recall in particular the notion of asymptotically empirical

beliefs, which requires that beliefs in the limit converge to the  frequencies generated by
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fictitious play while allowing beliefs at any finite time t  to be arbitrary.   As we will see,

such procedures permit players to randomize  in every period, so potentially such a

procedure could converge to a mixed strategy equilibrium.  However,  the reason that

players randomize in this setup is not very satisfactory.

As we mentioned earlier, another motivation for looking at stochastic models is to

avoid the discontinuity inherent in standard fictitious play, which is troubling descriptively

and can lead to poor long-run performance.  These considerations lead us to consider

variations on fictitious play in which players randomize when they are nearly indifferent.   

In studying these stochastic fictitious play-like procedures in discrete time, we will argue

that the asymptotic properties of these systems can be understood by reference to a limiting

continuous time deterministic dynamical system.   Roughly speaking, in fictitious play-like

procedures, the averaging of observations over time causes the noise in the system to

decrease relative to the speed with which the system moves.  If the noise remains large

relative to the deterministic movement of the system, then the continuous time limit is less

useful, a situation considered in the next chapter.

4.2. Notions of Convergence

Our discussion of fictitious play in the chapter 2 followed the standard practice of

saying that play converged if the empirical frequencies of each player’s actions converged.

 As we noted there, this notion of convergence is very weak:  Because it requires

convergence only of the marginal distribution of individual players’ play, it allows the

possibility that joint distribution of play  is correlated, and this can  lead to payoffs that are

very different from Nash equilibrium payoffs,  as in the example of the coordination game

where players always fail to coordinate.  If we strengthen the notion of convergence to

require convergence of the joint distribution of  play, then from a frequency point of view,



133

play in the game does resemble a Nash equilibrium.  However, this response is not

completely satisfactory because it allows persistent cycles.  For example, in a game of

matching pennies, deterministic alternation between (H,H), (H,T),(T,H),(T,T) would be

viewed as a sequence that “converges” to a Nash equilibrium.

In this chapter, we will follow the approach adopted by Fudenberg and Kreps

[1993] and define convergence of the learning process to  mean  that players’ intended play

converges.   Note that it is not immediately obvious that this is a stronger condition than

convergence of either the marginal distribution of players play, or the joint distribution of

their play.  However Fudenberg and Kreps use  a variation on the strong law of large

numbers that leads to the conclusion65  that when the intended play converges the realized

joint empirical distribution over profiles converges almost surely to the product of the

intended marginals.  

Following Fudenberg and Kreps [1993] we say that a strategy profile is locally

stochastically stable  if for every ε > 0  there is some history of play such that the

subsequent probability that intended play converges to that profile is at least 1− ε .  This

stochastic version of local stability does not require that behavior converge almost surely,

since when behavior is stochastic there is always a small probability of unrepresentative

outcomes which would lead players away from the target strategy.   It also uses a very weak

notion of “local,” as it suffices that there be some history for which the convergence has

high probability, as opposed to requiring that convergence occur for every history in some

(suitably defined) neighborhood of the target profile. 

                                                
65 Although they show only that convergence of intended play implies the convergence of marginal
distributions of play to the intended play,  the same argument easily gives the stronger result mentioned here.
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4.3. Asymptotic Myopia and Asymptotic Empiricism

We next  investigate the extent to which procedures that are asymptotically like

fictitious play are locally stable.  Since we have now defined convergence to mean the 

convergence of intended play, behavior that follows a deterministic cycle does not

converge, and in particular cannot converge to a Nash equilibrium, even if the empirical

marginal frequencies converge to a  Nash equilibrium strategy profile.  Rather, the only

way that play can converge to a mixed equilibrium is if the distribution of play in each

period is mixed.  This in turn is possible only if players use some type of explicit

randomization, and requires us to ask why should the distribution of intended actions at a

given date should be random in the first place.

This question is familiar as a critique of mixed strategy equilibrium, so it is not

surprising that it reemerges here. One trivial defense is that players are willing to play a

mixed strategy so long as every action in the strategy’s support yields the same expected

payoff.  This is true by definition in a mixed-strategy equilibrium. To turn this into an ad-

hoc and unsatisfactory “learning” story one could suppose that players start off with the

assessment  that their opponent’s play exactly corresponds to the mixed equilibrium, and

that players maintain this assessment unless they get “overwhelming” statistical evidence

against it.66  Suppose moreover that so long as a player does maintain this belief, he

chooses his own actions according to his part of the mixed equilibrium. If each player

                                                
66  To be somewhat more precise, fix a mixed strategy equilibrium σ *  of a 2-player game, and let player i’s 

date-t  assessment be that µ σt
i i= −

*   so long as σ * / ( )− −− <i
t

id n t1 , with µ t
i

t
id= −  if the inequality is

violated.   By the strong law of large numbers, the sequence n t( ) may be  chosen to converge to infinity

slowly enough that there is probability 1 that the above inequality is always satisfied so long as player -i

follows σ *
−i .   Then the assessments are asymptotically empirical (since n t( ) → ∞ ) and if both players use

this assessment rule, and play their part of the mixed strategy when indifferent, there is probability 1 that they
play according to σ *  in every period.
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follows this rule, then by the law of large numbers, neither player will reject the hypothesis

that his opponent is following the mixed equilibrium, and play will indeed converge to the

mixed equilibrium we specified.   Of course, this “explanation” of the persistent mixing in

a mixed strategy equilibrium has the defect of building a weak preference for the  mixed

equilibrium directly into the players’ behavior.  But then, the story is based on an

explanation of equilibrium learning that has the same defect: players are supposed to

follow the mixed equilibrium for no positive reason at all.

More generally, we can consider  the stability properties of procedures that are

asymptotically similar to  fictitious play .   A  behavior rule ρ t
i  for player i specifies a

mixed strategy based on the history of play.  An assessment for player i is a map from

histories to distributions over the space Σ−i  of the opponent’s mixed strategies.  As in

chapter 2, assessments are asymptotically empirical if they converge to the empirical

average along every sequence of observations, and a behavior rule is asymptotically myopic

if the loss from player i’s choice of action at every history given his assessment goes to

zero as the history grows longer.67  Finally, a profile is unstable if for every positive ε , 

players’ behavior is almost surely more than ε  away from the profile infinitely often.

Proposition 4.1:  (Fudenberg and Kreps):  If σ  is not a Nash equilibrium, then it is

unstable with respect to any behavior rules that are asymptotically myopic with respect to

asymptotically empirical assessments.

                                                
67 Formally, behavior rule ρ t

i  is asymptotically myopic with respect to an assessment rule γ i
t  if for some

sequence  of positive numbers ε t → 0  , u u si
t
i

t
i

t s

i i
t
i

i( , ) max ( , )ρ γ ε γ+ ≥ .  Note that this definition is in terms

of player i’s expected utility, where the expectation is taken over any randomness in the play of  any player.
In particular  a strategy that incurs a large loss with a low probability regardless of the opponents’ play is
treated as having a small loss. Thus this definition  of asymptotic myopia is less restrictive than one that
requires that player i only assign positive probability to pure strategies that come close to maximizing his
expected payoff. Moreover, a strategy that is weakly dominated can still be a best response provided that the
player’s beliefs assign a sufficiently small probability (converging to 0) to opponents’ strategies  under which
the dominated strategy incurs a loss. 
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The intuition for this is the same as for the corresponding result in chapter 2: if play

converged to σ , players assessment would converge to σ  as well, but then since σ  is not

a Nash equilibrium, some player would choose to deviate.

Conversely, Fudenberg and Kreps show that any Nash equilibrium is locally

stochastically stable for some behavior rules that are asymptotically myopic with respect to

asymptotically empirical assessments. However, the proof of this relies on the construction,

 sketched above, in which players start out with a strong prior belief in the particular

equilibrium, and maintain that belief unless they receive overwhelming evidence to the

contrary.  Consequently, the stability result just cited does not do a great deal to lend

credence to the idea that mixed distributions  actually will arise as the result of learning. 68

4.4. Randomly Perturbed Payoffs and Smoothed Best Responses

To develop a sensible model of learning to play mixed strategies, one should start

with a sensible explanation for mixing in the equilibrium context. One such explanation is

Harsanyi’s [1973] purification theorem, which explains a mixed distribution over actions

as the result of unobserved payoff perturbations that sometimes lead players to have a 

strict preference for one action, and sometimes a strict preference for another.69  Fudenberg

and Kreps [1993] develop a model of fictitious play along these lines.  Before considering

the application to fictitious play, it is useful to see how in the static case random

preferences can provide a positive story of mixed strategy equilibrium.

                                                
68Fudenberg and Kreps provide a parallel, and no more satisfying,  result showing that any Nash equilibrium
is locally stochastically stable for behavior that is asymptotically myopic with respect to the exactly empirical
assessment rule. Here the players choose to use precisely the equilibrium mixed strategy so long as their
perceived loss from doing so is small.
69 See for example, Fudenberg and Tirole, [1991] chapter 6, or Myerson [1991] for a discussion of the
Harsanyi purification theorem and an explanation of the sorts of payoff perturbations it uses.
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Ordinarily, the payoff to player i to the strategy profile s would be u si ( ) .  Now

however, we assume that the payoff to player i is u s si i i( ) ( )+ η  where ηi  is a random

vector continuous with respect to Lesbesgue measure on a finite interval.  This simplifies

Harsanyi’s general formulation in that the realized shock to player i’s payoff depends on

the action he chose but not on the actions of the other players.   The basic assumption is

that the random payoff shock to each player ηi  is private information to that player. 

Consequently, the game is a Bayesian game of incomplete information, where each player

chooses a rule mapping his type to a strategy. 

Since each player’s type only influences his own payoff, the equilibria of this game

can be described in terms of the marginal distributions σi  over each player’s strategies. 

For each distribution σ−i  over the actions of i’s opponents, let player i’s best response

distribution BR
i i( )σ− be given by BR s s

i i i i i i( )( ) [ ]σ η σ− −= Prob  s. t.   is a best response to . 

Since ηi  is assumed to have a distribution that is absolutely continuous with respect to

Lesbesgue measure, there is a unique best response for almost every type.  Consequently,

unlike the usual best-response correspondence, the best- response distribution is actually a

function.  More strongly, the absolute continuity assumption implies that the best response

distribution is a continuous function.70  Looking ahead to the learning model,  this means

that if the player’s assessment converge his behavior will too, which is not the case with

standard fictitious play.

The notion of a Nash equilibrium in games with randomly perturbed payoffs  can

now be defined in terms of the best- response distribution.

Definition 4.1:  The profile σ  is a Nash distribution  if BR
i i i( )σ σ− =  for all i. 

This distribution may be very different from any Nash equilibria of the original

game if the payoff perturbations are large. However, Harsanyi’s purification theorem

                                                
70 This is lemma 7.2 in Fudenberg and Kreps [1993].
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shows that, for generic payoffs in the original strategic form, the Nash distributions of the

perturbed game approach the Nash equilibria of the original game as the support of the

payoff perturbations become concentrated about 0. Consequently,  for small supports, we

can identify a Nash distribution of the perturbed game with the corresponding, possibly

mixed, equilibrium of the original game.

The key feature here is that the function BR
i
 is both continuous and close to the

actual best response function.  For example, in the game of matching pennies, where player

1 wins if matches his opponent the best  response correspondence BR1 , and the smooth

counterpart BR
i
 are drawn.

σ1

σ2
BR1

BR
1

Notice that generally even if the opposing player is playing a pure strategy, the smoothed

best response BR
i
 will generally still be random, as illustrated in the figure. 

At this point we can note that there are other reasons why players may use a smooth

best response function such as BR
i
.   Here are two of them:

• Random behavior can prevent the player from being “manipulated” by a clever

opponent.  Thinking of the game of matching pennies, if a player plays a deterministic

rule, no matter how complex, an opponent clever enough to deduce what the

deterministic rule is can win all the time, despite the fact by a simple 50-50
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randomization the player can win nearly half the time.  By explicitly randomizing when

nearly indifferent, it is possible to prevent this type of manipulation.  We will examine

the performance of randomized rules in greater depth later in this chapter and also in

chapter 8 of the book.

• As mentioned in the discussion of the rote learning model in chapter 3, research in

psychology on threshold perception shows that when asked to discriminate between

two alternatives, behavior is random, becoming more reliable (that is, deterministic) as

the alternatives become more distinct.  In choosing between two different strategies,

one measure of the distinctness of the strategies is the difference in utility between the

strategies.  With this interpretation,  Thurstone’s [1927] law of comparative judgment

becomes similar to  the random utility model described above.  Indeed, the picture of

the smooth best response curve drawn above is very similar to behavior curves that

have been derived empirically in psychological experiments (including the fact that

behavior remains slightly random even far from indifference).  A good discussion of

psychological models, together with many references and some experimental results

can be found in Massaro and Friedman [1990].71 

The connection between a Nash distribution and Nash equilibrium may perhaps be

best seen in an example.  Consider the following coordination game

                                                
71 Note, though, that the link between threshold perception and utility maximization is not immediate, because
strategies may be perceptibly different even if the utility difference is quite small:    We  would not expect 
subjects in a decision problem to randomize when faced with a clear choice between $9.99 and $10.00.  On
the other hand, there is evidence that some subject do play strictly dominated strategies in games, at least in
the early rounds of experiments; we are uncertain how to explain this behavior. In any event, it seems that 
some choices between strategies yielding nearly the same utility are be relatively ambiguous, while others are
not.
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A B

A 2,2 0,0

B 0,0 1,1

The best responses and smooth best responses are shown in the figure below.

Nash
distribution

Nash
distribution

Nash
distribution

σ1

σ2

BR BR

Five  points deserve note here.  First, there are three Nash distributions

corresponding to the three Nash equilibria.  Second, none of these three distributions

exactly coincides with the corresponding Nash equilibrium of the unperturbed game. The

Nash distribution corresponding to the mixed equilibrium lies to the left of it and below, 

meaning that A is slightly less likely to be played than at the mixed equilibrium. Also, the

Nash distributions corresponding to the pure equilibria (A,A) (upper right corner) and

(B,B) (lower left corner) both involve some randomization.  This is typical:  if the best

responses involve randomization because, for example, some utility draws make A a best

response no matter what the other player does, then there cannot be any “pure” (that is,

degenerate) Nash distributions.  The third point is that the Nash distribution corresponding
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to the mixed equilibrium lies to the left and below the actual mixed equilibrium, meaning

that A is slightly less likely to be played than at the mixed equilibrium.  If the utility shocks

are symmetric around zero, this is necessarily the case for this payoff matrix.  The reason is

easy to see:  at the mixed equilibrium, players are indifferent between A and B.  Symmetric

utility shocks implies in this case that both players have an equal chance of playing A or B.

 In order to reduce the chance of playing A to approximately 1/3 as it is in the mixed

equilibrium, the probabilities must be  adjusted to lower the payoff from playing A.  This

will be the case only if the actual chance of playing A in the Nash distribution is smaller

than 1/3.

Fourth, from Harsanyi’s purification theorem we know that the distance between

the Nash distributions of the perturbed game and the corresponding Nash equilibria of the

original game goes to 0 with the magnitude of the payoff shocks. (Think of multiplying the

original payoff shocks ηi is( ) by some positive ε and then sending that ε to 0.)

Finally, note that the above diagram would apply to any situation where the player’s

behavior is described by the smooth best-response distributions pictured, whether or not

those distributions arose from unobserved payoff distributions.  When these distributions

are treated as exogenous and arbitrary functions,  there is no obvious reason for their

intersection to be called a “Nash distribution,” but since doing so will not lead to ambiguity

we will use that name anyway.

Corresponding to the static notion of a Nash distribution is the dynamic variation

on fictitious play in which, in place of best responses, players respond to an assessment

γ t
i
−1  with a smooth approximation BR

i

t
i( )γ −1  to the best response.  We refer to such a

learning rule as smooth fictitious play.
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4.5. Smooth Fictitious Play and Stochastic Approximation

As  we just mentioned, the basic idea of smooth fictitious play is that instead of

using the exact best response map BRi  as in fictitious play, players instead take an

independent draw from BR
i
 at each date.  For a fixed and smooth function BR

i
, we denote

the associated smooth fictitious play by BR
i

t
i( )γ , where γ t

i  is a sequence of assessment

rules of the kind used in standard fictitious play. One rationale for this type of smooth

fictitious play is the random utility model, in which players get an independent draw of ηi

every period.  A second rationale is that players might explicitly choose to  randomize.  

We examine that explanation in section 4.7 below

The first analysis of smooth fictitious play was done by Fudenberg and Kreps

[1993], who showed that the Nash distribution corresponding to the mixed equilibrium is

globally stable in 2x2 games with a unique equilibrium that is mixed, provided that the

degree of smoothing is sufficiently small.  This result shows that  smooth fictitious play

provides an explanation of how learning can lead agents’  play in each period  to

correspond to a  mixed strategy equilibrium.72 

To prove global convergence, Fudenberg and Kreps used the techniques of the

theory of stochastic approximation.  This  is based on the idea that the long-run behavior of

discrete-time time-averaging stochastic systems  can be determined by analyzing a related

deterministic system in continuous time. Benaim and Hirsch [1994] and  Kanivkoski and

Young [1995] use similar techniques to complete the study of smooth fictitious play in 2x2

games. Specifically, if the  2x2 game has a unique equilibrium that is strict,  the unique

intersection of smoothed best response functions is a global attractor for smooth fictitious

play.  In games with two strict equilibria and one mixed equilibrium, with probability one

                                                
72 Their result is only for the random-utility version of smooth fictitious play, but it extends to other
interpretations of the model.
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the system converges to one of the strict equilibria, with the relative probabilities

depending on the initial conditions.73

However, smooth fictitious play does not eliminate the possibility of cycling, even

in games with a unique Nash equilibrium.  Benaim and Hirsch [1994] show that smooth

fictitious play  converges to a cycle in  Jordan’s [1993]  3-player matching-pennies game.

Before giving a formal statement of the relevant theory of stochastic approximation,

let us first develop  a rough intuition.  In the case of exact fictitious play, we saw in chapter

2 that along paths where there is infrequent switching, asymptotically the dynamics

resemble those of the continuous-time best response dynamics after a rescaling of the

measure of time.  While smooth  fictitious play is random, the time average of many

independent random variables has very little randomness, and as a result, a similar result

obtains: asymptotically the dynamics resembles that of the continuous time “near best

response” dynamics

& ( )θ θ θi i iBR= − .74

Consequently, if the stochastic system eventually converges to a point or a cycle, the point

or cycle should be a closed orbit of the continuous-time dynamics.   Moreover, if a point or

cycle is an unstable orbit of the continuous time dynamics, then we might expect that the

noise would eventually “kick” the system off of the corresponding “knife edge,” so that the

stochastic system can only converge to stable orbits of the continuous-time system.

In the case of 2x2 games, it is easy to see that the mixed equilibrium is unstable

under the smooth best response dynamics in games with 2 strict equilibria; it is only

                                                
73 Foster and Kanivkoski [1995] also show that these conclusions extend to the case where players  forecast of
opponents’ play by a randomly-drawn finite-sized sample from the overall history of play, as in Young
[1993].
74 To be somewhat more precise, since the noise has a zero mean, its influence is through its variance, which
is of order 1 2/ t , while the deterministic drift corresponding to BRi  is of order 1/ t .
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slightly more complicated to show that the mixed equilibrium is  globally stable in this

dynamic in games like matching pennies with a unique mixed-strategy equilibrium. This

explains the basis of the results mentioned above.

Conditions that allow the asymptotic limit points of  stochastic discrete-time

systems to be inferred from the stability of the steady states of a corresponding

deterministic system in continuous time have been developed  by Kushner and Clark

[1978], Ljung and Soderstrom [1983], Arthur, Ermol’ev and Kanioskii [1983],  Pemantle

[1990],  and Benaim and Hirsch [1995] , among others.    Benaim and Hirsch [1995] also

show that similar results can be obtained for convergence to  closed orbits.  We present the

basic  results without proof, and shows how to use them to characterize the behavior of

smooth fictitious play in 2x2 games. The  appendix illustrates the techniques involved by

giving  a proof of a very simple  stochastic approximation result.

Consider a discrete-time stochastic processes defined on a compact set in ℜn  by

θ θ θ ηt t t tF t+ +− = + +1 1 1( ( ) ) / ( ) ,

 where the function F is smooth (C2 ), and the η t  are noise terms satisfying

E t t[ | ,... ]η θ θ+ =1 1 0 .75  In the applications to smooth fictitious play, the state space is the

empirical distribution of play and the map F is BR( )θ θ− .  The noise terms are then the

differences between the expected value of BR t( )θ  and its realized value, so that the noise

terms have a conditional expectation of zero, but are not in general i.i.d. or even

exchangeable.  The assumption that BR  is C2  is satisfied in the random utility case if the

distribution of payoffs is absolutely continuous with respect to the appropriate Lesbesgue

measure.76 

                                                
75  Here the step size at date t is 1/ t , as in fictitious play with no initial weights; the extension to positive and
unequal prior weights for different players is immediate but complicates the notation. The important thing is

that the steps sizes  ω t  be  a decreasing series of positive numbers satisfying  ω ωtt tt∑ ∑= +∞ < ∞, ( )
2

76 In the case of explicit randomization considered in below, BR  is C2 if  the  vi  are C3
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The idea of this literature is to find conditions under which  asymptotic limit points

of the sample paths of the { }θ t  are the stable ω-limits of the continuous-time process

& ( )θ θ= F . 

A first step is to show that almost surely the sample path lies in some invariant set

of the continuous-time process.

Proposition 4.2 :  (Benaim and Hirsch [1995,1996]) With probability one, the ω-limit set

of a any realization of the discrete- time process  is an invariant set of the continuous-time

process; the components of this set are  compact, connected, and contain no proper subsets

that are  attractors for the continuous time process.

With this result in hand, we can characterize the long-run behavior of smooth

fictitious play in 2x2 games with a unique equilibrium in mixed strategies.  If the smooth

fictitious play arise from utility perturbations, and the distribution of the perturbations is

absolutely continuous with respect to the appropriate Lebesgue measure, then the perturbed

game has a unique Nash distribution.77  Proposition 4.3 shows that  smooth fictitious play

converges to the Nash distribution in any game where the Nash distribution is a global

attractor for the continuous-time dynamics. One way to show this latter fact is by

constructing a strict Lyapunov function, and indeed  Fudenberg and Kreps construct such a

function in the course of providing a direct proof of global convergence.

Benaim and Hirsch [1996] use an alternative and shorter argument: They note first

that since the continuous-time smooth best-response process has the form

& ( ) ,θ θ θt
i i

t
i

iBR= −−  all of the diagonal entries of its Jacobian are -1, so that the process is

                                                
77 Fudenberg and Kreps [1993].
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volume contracting, and second  that a volume-contracting process on ℜ2  cannot have a

limit cycle, and so must converge to a steady state.78

Returning to the general stochastic approximation case, the next order of business is

to determine which of the  ω-limit sets will be selected when there is more than one of

them. Say that a steady state  is  linearly unstable  if at least one of its associated

eigenvalues has positive real part.  The next result says that discrete-time system has

probability 0 of converging to a steady state that is linearly unstable, provided that there is

a  non-negligible amount of noise in the evolution of every component of the state.

 Proposition 4.3:  (Pemantle (1990))79  Suppose that the distribution of  the noise term η t

is such that for every unit vector ei , E e ci t(max( , )0 0oη > > . Then if θ *  is linearly

unstable for the continuous time process, P t t{lim }*
→∞ = =θ θ 0 .

This result is almost enough to show that Nash distributions approximating the

mixed equilibrium will not occur in 2x2 games like battle of the sexes, with two strict

equilibria and one mixed one, since in these game the mixed equilibria is unstable under

the exact best response correspondence.  Of course, large perturbations of the best response

correspondence could introduce interior Nash distributions that are stable, but we would

expect that this cannot occur when the smoothed best responses are sufficiently close to the

original ones.  Benaim and Hirsch show that this is indeed true for smooth fictitious play

that arise from sufficiently small payoff perturbations.

To complete the analysis of these 2x2 games with three equilibria, we want to

verify that the process will end up at a Nash distribution approximating one of the pure

                                                
78 As we noted in the Appendix to chapter 3, the  closed orbit plus its  interior must be invariant, which would
contradict the flow being volume-contracting. .
79 There are many earlier and similar results; see the references cited at the beginning of this subsection.
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equilibria. That verification has three parts: first, as noted above smooth fictitious play

must converge to a steady state in 2x2 games. Second, if the payoff perturbations are small,

then there are asymptotically stable Nash distributions in the neighborhood of each pure

equilibrium, and these are the only asymptotically stable steady states . Finally, every

asymptotically stable steady state has positive probability of being the long-run outcome,

again provided that there is “enough noise” in the system.  This is a fairly general

observation, and not limited to smooth fictitious play, but to keep things simple we will

state the version that applies to fictitious play.

Proposition 4.4:  (Benaim and Hirsch [1996]) Consider a two-player smooth fictitious play

in which every strategy profile has positive probability at any state θ .  If θ *  is an

asymptotically stable equilibrium of the continuous time process, then regardless of the

initial conditions P t[ ]*θ θ→ > 0 .

4.6. Partial Sampling

Fictitious play requires players to track the entire past history.  A variant on

fictitious play has them randomly sample independently (of one another) from their

“recollection” of past observations.  There are two models, depending on whether players’

recollections go back to the beginning of the game, or only a finite length of time.

The model where observations are draw from the entire past is very much like a

smooth fictitious play, and has been studied by Kaniovski and Young [1995].  Here every

past period has an equal probability of being sampled.  Because all past observations get

equal weight, the effect of each successive period on subsequent play diminishes at rate 1/t,

just as in fictitious play, and once again the long-run behavior of the system can be

determined by stochastic approximation techniques, as noted above.  Moreover, the limit is

exactly the same type of smooth near  best-response dynamic discussed above.
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When players not only sample randomly but also have finite memory, a situation

examined by Canning [1991] and Young [1993], the situation is different, since the system

does not  “slow down” as data accumulates, and so  the effect of the noise terms need not

vanish asymptotically. Specifically, each player,  plays an exact best response to a

randomly chosen sample of   k  observations drawn without replacement from the 

outcomes in the m ≥ k  previous periods.  In the case  m = k,  we can interpret the bounded

memory as the result of players leaving the game and being replaced;  k < m  corresponds

to a situation where each period new individuals replace the old ones, and the new ones

conduct a random poll of recent players.

With this dynamic, strict Nash equilibria are absorbing in the following sense:  if a

strict equilibrium  s*  is played for  m  periods in a row, it is played forever afterwards,

since the only outcome anyone can remember is  s*.  Moreover, play cannot converge to a

non-Nash equilibrium.

Young [1993] considers the class of weakly acyclic games.  This means that

beginning at any pure strategy profile the alternating-move or Cournot best response

dynamic (considering pure best responses only) converges in a finite number of steps L to a

strict Nash equilibrium.   Young shows that if the sample size  k  is less than or equal to
m

L + 2
,  and the draws are without replacement, then in this class of  games the dynamics

converge almost surely to a strict equilibrium.  The method of proof has little to do with

stochastic approximation, and instead uses the sort of Markov chain methods discussed in

the next chapter. 

Rather than give a proof, we will use the following example from Young’s paper  to

illustrate this result.

A B
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A 0,0 1, 2

B 2 ,1 0,0

If the initial weights in the assessment are (1,1) for both players, then fictitious play cycles

between the outcomes (A,A) and (B,B) as in the Fudenberg-Kreps example we examined

above. 

In this example the path length L = 1, so Young’s result shows that if  k ≤ m/3,  play

eventually stops cycling, and is absorbed at one of the strict equilibria.  For simplicity,

suppose that k=1 and m = 3.  Then at any date t, there is probability 1/81 that both players

sample the date-t  outcomes at dates t+1  and  t+2.  This implies that every  time that play

at any date t  is either (A,B) or (B,A), there is probability 1/81 that play remains at that

profile at all subsequent dates. Thus to prove that there is probability 1 that play converges

to a Nash equilibrium, it suffices to show that there will almost surely be infinitely many

periods in which either (A,B) or (B,A) is played.  But no path can have a run of three or

more occurrences of (A,A) or of three or more occurrences of (B,B), and at any date t

where both (A,A) and (B,B) have been played in the last three periods, there is a

nonnegligible probability that one player will sample (A,A) and the other will sample

(B,B), so that there is a nonnegligible probability that the outcome in period t+1  will be

(A,B).

This example is special in that the length L  of the Cournot adjustment process is 1;

in the general case Young  shows that each step of the Cournot path has positive

probability at every date.  As in the example, the intuition is that the noise in the sampling

breaks up the “miscoordination” in the cycles. Of course, all of this relies on the restriction

to weakly acyclic games, so that the best response process itself does not cycle.
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Hurkens [1994] and Sanchirico [1995] use closely related models80 to study

convergence to CURB  (“Closed Under Best Reply”) sets in general games. (CURB sets are

sets of strategies E i  for each player such that, for each player i, every best response to

probability distributions on E Ei
j i

j−
≠≡ ×  is in E i .)   As in Young’s paper, agents in the

systems studied by  Hurkens and Sanchirico ignore all observations form the sufficiently

distant past.81  Thus if every “recent” observation has belonged to a particular CURB set,

the current period’s play will lie in that CURB set as well; that is, CURB sets are

absorbing. On its own, this result is not very interesting, since the whole strategy space is

always a CURB set, but it does help to give a hint of the behavior of these “partially

stochastic” systems.

The  more interesting result  of both Hurkens and Sanchirico gives conditions for

the system to be absorbed in a minimal CURB set, that is, one that has no strict subset that

is also a CURB set.  (Pure-strategy strict Nash equilibria are always singleton and hence

minimal CURB sets82; in Young’s weakly acyclic games, these are the only minimal

CURB sets.) This latter conclusion requires two additional assumptions. First of all, since

an action might only be a best response if the opponents assign positive probability to all of

their actions, the agents must have a long enough memory that the history can generate an

assessment that has this full-support property. Secondly, as in Young’s model, there must

be a source of randomness. Sanchirico arranges both this and the “long enough memory”

condition by requiring that there is a positive probability of the agent playing every strategy

that is a best response to any distribution of opponents’ play whose support is concentrated

                                                
80 Hurkens considers the case where the players’ samples from the recent history are drawn with replacement,
while Young considers sampling without replacement, but if k is large, this should not be an important
difference. Sanchirico’s model is similar but more general in many respects.
81 Sanchirico allows for positive but negligible weight even on observations from the distant past; the weight
is required to decline to 0 sufficiently quickly.
82 With Nash equilibria that are not strict it may be necessary to include non-Nash best responses to get a
minimal CURB set:   recall that CURB requires all best responses be included in the set.
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on strategies played in the last k periods, where k is the number of strategy profiles. An

example of a rule with this property would be for each player to first construct an

assessment over opponents’ play by sampling with replacement from the last k periods, and

then either playing a best response to that assessment or continuing to play the strategy he

used in the previous period.

4.7. Universal Consistency and Smooth Fictitious Play

In this section, we argue that there is a another explanation for smooth fictitious

play besides  the random utility model, namely that players may choose to randomize even

when not indifferent as a sort of protection from  mistakes in their model of opponents’

play. This randomization in a sense provides a “security level,” and is closely related to the

use of randomized maximin strategies in the theory of two-player zero-sum games. 

In our study of deterministic fictitious play, we saw that fictitious play was

approximately consistent for histories that satisfy the infrequent switching condition, but

that in the Fudenberg-Kreps example in which infrequent switching was not satisfied, both

players got considerably less than the  amount  they could have guaranteed themselves by 

randomizing 50-50 in every period. These observations lead to the two desiderata for a

learning rule studied in Fudenberg and Levine [1995a].  The first is safety, meaning that the

player’s realized average utility is almost surely at least his minmax payoff, regardless of

the opponents’ play.  The second is universal consistency, which requires, again regardless

of opponents play, that players almost surely get at least as much utility as they could have

gotten had they known the frequency but not the order of observations in advance.    Since

the utility of a best response to the actual frequency distribution must be at least the

minmax payoff, it follows that universal consistency implies safety, so we focus on the

latter criterion.
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Definition 4.2:  A rule ρi  is ε -universally consistent if  for any ρ−i

limsup max ( , ) ( ( ))T
i i

t
i i

t
i

tti u
T

u h→∞ −− ≤∑σ σ γ ρ ε1
1  almost surely.

Notice that specifying universal consistency as an objective  differs from the 

Bayesian approach of specifying a prior beliefs about strategies used by opponents and

playing a learning rule that is a best response to those beliefs.  However, any Bayesian

expects almost surely to be both safe and consistent.  These criteria ask for the procedure to

be safe and consistent against all alternatives, and not only for those that are regarded a

priori as having probability one. 

It is obvious that no deterministic decision procedure can be safe, or by implication,

universally consistent.  In the game of matching pennies in which a win counts 1 and a loss

-1, any deterministic decision rule can be perfectly defeated by an opponent who knows the

rule, resulting in a payoff of -1 for sure.  However, by randomizing with equal weights, the

minmax payoff of 0 can be guaranteed almost surely.  The issue is whether through an

explicitly randomized fictitious play procedure, it is possible to (nearly) attain universal

consistency.

The affirmative answer was originally given by Hannan [1957],  and by Blackwell

[1956a] who derived the result from his vector minmax theorem in Blackwell [1956b].    

A good exposition of these early results can be found in the Appendix of Luce and Raiffa

[1957].  The result has been lost and rediscovered several times since then  by many

authors, including  Banos [1968], Megiddo [1980], Auer et al  [1995], Foster and Vohra

[1995], and Fudenberg and Levine [1995a],   In the computer science literature the basic

problem is referred to as the “on-line decision problem,” and the result has many

applications, including  the problem of data compression.  Our exposition is based on

Fudenberg and Levine [1995b] who, using an argument from  Foster and Vohra [1995], 
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show that universal consistency can be accomplished by  a smooth fictitious play procedure

in which BR
i
 is derived from maximizing a function of the form u vi i i( ) ( )σ λ σ+ . 

Formally,  

Proposition 4.5:  Suppose that  vi  is a smooth, strictly differentiably concave function

satisfying the boundary condition that as σ i  approaches the boundary of the simplex the

slope of vi  becomes infinite.   Then for every ε  there exists a λ  such that the smooth

fictitious play procedure is ε -universally consistent.

Before proving this result, it is important to note that the function vi  is assumed to

be not just continuous, but smooth, and that it satisfies assumptions guaranteeing a unique

BR
i
. Moreover, the boundary condition implies strict interiority of the solution to the

maximization problem; so that  every strategy is played with strictly positive probability,

regardless of the frequency of opponents’ play.

It may also be useful to have an explicit example of a function that satisfies these

assumptions.  If we take v s si i i i i i

si( ) ( ) log ( )σ σ σ= −∑ , we can explicitly solve for BR
i

BR s
u s

u r

i i i

i i i

i i i

ri

( )[ ]
exp ( / ) ( , )

exp ( / ) ( , )
σ

λ σ
λ σ

−
−

−≡
∑

1

1

2 7
2 7 ,

a special case referred to as exponential fictitious play, since each strategy is played in

proportion to an exponential function of the utility it has historically yielded. This 

corresponds to the logit decision model that has been extensively used in empirical work. 

Notice that as λ → 0  the probability that any strategy that is not a best response  is played

goes to zero.  Note also that this function  has the property of convex monotonicity that we

discussed in chapter 3. 
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Finally, before proving the theorem, it is useful to define 
r
ui i( )σ −  to be the vector

of utilities that accrue to different actions for player i when opposing players play σ −i .   

Letting 
r r
u ut

i i
t
i= ( )γ , the objective function that BR

i
 maximizes may then be written as

u v u vi i i i
t
i i i( ) ( ) ( )σ λ σ σ λ σ+ = ⋅ +r

.

This is important, because it makes clear that to implement a cautious fictitious play, a

player need not base his decision on the historical frequencies γ t
i , but may base his

decision solely on the historical utilities 
r
ut

i  that would have been achieved by different

actions.83 

Proof of Proposition 4.5:  Set V u u vi
t
i i

t
i i i

i( ) max ( )
r

o
r= +σ σ λ σ  to be the maximized

value of the objective function, and denote realized utility by u u st
i i

t
= ≤∑ ( )ττ .  We then

define the cost to be the difference  c tV u ut
i i

t
i

t
i= −( )

r
 between the utility that could have

been received (according to the approximate function V i ) and the utility actually received.

Notice that the loss max ( ( ), ( ))σ σ ρi
i

t
i i

t
i

t
i

tt
u

T
u BR u h⋅ − −

−∑r r1
1  defining ε -universal

consistency is just the expected value of c v BR ut
i i i

t
i− λ ( ( ))
r

.  Consequently, to demonstrate

ε -universal consistency, we can show that for small λ  the cost is small.

The increment added to the cost in period t if the period-t outcome is s is

g s tV
t u u s

t
u s t V ut

i i t
i i i

i i
t
i( )

( ) ( )
( ) ( ) ( )= − +�

��
�
�� − − −−

−

−
1

11
1

r r
r

.

                                                
83 Suppose that, instead of having the same utility function in each period, player i has a sequence of time-

varying utility functions u s si i
t

i
τ ( , )−  that are uniformly bounded.    Define 

r
u s T u s st

i i i i
t

it
( ) ( / ) ( , )= −

=∑1
1 ττ ,

replace ui i
t
i( , )σ γ  in the definition of universal consistency with σ i

t
iu⋅ r , and define smooth fictitious play as

the solution to maximizing σ λ σi
t
i i iu v⋅ +r

( ) .  Then Proposition 4.5 still holds, and the proof requires only the

obvious notational change of subscripting period t utility.  This non-stationary version of the Proposition will
be used in chapter 9 when we study the choice of experts.
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In other words, c c g st
i

t
i

t
i

t− =−1 ( ) .  The first step of the proof is to show that if, for all

σ −i and  ht−1  , and all sufficiently large t, g ht
i i

t
i( ( ), )ρ σ ε−

− ≤ ′1 , then ρ i  is ′ +ε λ vi

universally consistent.  This is shown by a relatively routine application of the strong law

of large numbers:  the idea is that the realized increment to the costs gt
i  are, given the

history, independent random variables, so their average value must remain close to the

average of the conditional expectations g h ht
i i

t
i

t( ( ), ( ))ρ ρ−
−

−1 1 .  This then implies that the

average value of the cost ct
i  is almost surely asymptotically bounded by ′ε . 

The second step of the proof is to show for any σ −i  that

g BR u v B tt
i i

t
i i i( ( ), ) /
r

−
− −≤ +1

1σ λ λ , where B  is a constant that depends only on vi .    The

first term in the left-hand side of this inequality is the error introduced because BR i

maximizes V i   instead of ui ; the second term is  the approximation error  from replacing

the change in V i   with its first derivative times the change in player i’s assessment, which

is proportional to 1/ t . This upper bound yields the conclusion of the theorem:  we choose

λ  so that 2 2λ εvi ≤ / , and observe that for sufficiently large t , λ ε− ≤1 2B t/ /  as well.  

We now derive this upper bound. Let $ ( )σ t
i

t
iBR u− −=1 1

r
 be the mixed strategy that

player i  will choose at date t given assessment γ t
i
−1 .   From the definition of gt

i , we find

that its value at date t  when i’s opponent  plays an arbitrary σ −i is
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The term in square brackets is the difference  between the maximized payoff given the

assessments at dates t and  t-1 respectively.  Because we constructed V i  to be smooth, with

second derivative proportional to λ−1 , we may replace this discrete difference with its
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linear approximation, and introduce an error of order no more than λ−1 2
1/ t1 6 .84  Using the

envelope theorem to replace the derivative of V i  with realized utility at the optimum, and

noting that the change in player i’s assessment from t-1 to t is of order 1/ t ,  we find, for

some B that depends only on vi , that

g u s u s u V u
B
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where the second step follows from
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Moreover, in the problem max ( )σ σ λ σi

i
t
i i iu v⋅ +−
r

1 , $σ t
i
−1  is the argmax and V ui

t
i( )
r

−1  is the

maximized value.  It follows that

g v
B

tt
i

t
i i i( $ , )σ σ λ λ
−

−
−

≤ +1

1

.

æ

Notice that there is a tension here between the extent to which V i  approximates ui  and the

extent to which it is smooth.  The smaller is λ  the better the approximation V i  to ui , and

the smaller the approximation error 2λ vi  in the proof.  However, smaller λ  also

increases the second derivative of V i  near point at which player i will switch strategies by

a factor of λ−1 , increasing the loss due to “switching” λ−1B t/ .  Consequently, a smaller λ

implies that player i will have to wait longer before “consistency” becomes relevant.

                                                
84 This is the only step of the proof that uses the fact that V i  is smooth.  If vi ≡ 0 , the case of ordinary

fictitious play, V i  is linear except at points where i switches from one strategy to another; consequently, this
derivation remains valid except at switch points, which is why ordinary fictitious play is consistent when the
no switching condition is satisfied.
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4.8. Stimulus-Response and Fictitious Play as Learning Models

Fictitious play or smooth fictitious play are one type of learning model, giving rise

through stochastic approximation theory to dynamics that resemble the continuous time

best-response dynamic.   One interesting class of  alternative learning models  is based on

the idea of  “stimulus-response” or “reinforcement” learning. We discussed one such

model in chapter 3, the model of Borgers and Sarin [1995], and saw that it converged to the

same limit as the discrete-time replicator dynamic in the limit of smaller and  smaller time

periods. This section presents some related models that are intended to better match the

way human agents are thought to behave, and compares the models descriptive

performance with that of models in the spirit of fictitious play.

4.8.1. Stimulus Response with Negative Reinforcement

Recall the basic Borgers-Sarin [1995] model:  Agents at each date use a mixed

strategy, and the state of the system  at date t, denoted ( , )θ θt t
1 2 is the vector of mixed

actions played at time t by the two players.  Payoffs are normalized to lie between zero and

one, so that they have the same scale as probabilities.  The state evolves in the following

way:  if player i plays st
i  at date t, and the resulting payoff was ~ ( )u st

i
t
i , then

θ γ θ γt
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A striking and seemingly unrealistic aspect of this model is that if an action is

played, it is more likely to be used again in the future than if it had not been played, even if

the action resulted in the lowest possible payoff. 

In response, Borgers and Sarin [1996] consider a more general stimulus-response

model in which  reinforcements can be either positive or negative, depending on whether

the realized payoff is greater or less than the agent’s “aspiration level.” Formally, the

agent’s aspiration  level  in period t  is denoted ρ t
i , and we set r s u st

i i
t
i i

t
i( ) ~ ( )= − ρ  to be the

difference between realized utility in period t  and the aspiration level.  The system evolves

according to

θ θt
i i

t
i i

t
i i

t
i i

t
i i

t
i i

t
i is r s s E s s r s E s s r s+ = − + + −1 1 0 1 0( ) ( ( )) ( ) ( , ) max( ( ), ) ( ( , )) min( ( ), )

where as above E s st
i i( , )  is the indicator function that is 1 if s st

i i= . Thus, when the agent

is “pleased” with the outcome (r st
i i( ) > 0 ) the probability of the corresponding action is

increased, while the probability is decreased when the agent is “dissatisfied.”

Note that this model reduces to the previous one (with γ = 1) in the case ρ t
i ≡ 0 .

Much of Borgers-Sarin [1996] concerns the implications of the way that the aspiration

level might vary with the agent’ s observations, but the simple case of a constant but

nonzero aspiration level is very interesting.  Obviously if the aspiration level is greater than

1, so that all outcomes are disappointing, then the agent can never lock on to a pure action.

Less obviously, if there are only two strategies H and T, all payoff realizations are either 0

or 1, the probability that H yields 1 is p, and the probability that T yields 1 is 1-p,  ( as if the

agent is playing against an i.i.d. strategy in the game matching pennies) and the aspiration

level is constant at ½, and the payoff realizations then θ t
i is( )  converges to p. 

This strategy of randomizing with probability equal to the probability of success is

known as “probability matching.”  Although such a strategy is not  optimal,  at one time

psychologists believed it  was characteristic of human behavior   However, subsequent
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research has shown that moves subjects away from probability matching in the direction of

optimality if they are given enough repetitions of the choice (Edwards [1961]) or offered

monetary rewards,85 (Siegel and Goldstein [1959] and consequently the claim that

probability matching is prevalent has been discredited. (See, for example, the review of this

literature in Lee [1971].)  Thus the inability to lock on to the optimal strategy for constant

intermediate aspiration levels, even with an arbitrarily long horizon, is a drawback of the

stimulus response model.

Er’ev and Roth [1996] develop a closely related variation  on the stimulus-response

model and use it to study experimental data.   The equation  of motion they study is

θ γ θ
γ θt

i t
i t

t
i i

s t
i t

t
i i

s
v s E s s r s

v s E s s r s+
′

= − +
− ′ + ′∑1

1

1
( )

max{ ,( ) ( ) [ , ] ( )}

max{ ,( ) ( ) [ , ] ( )}
.

They assume that the aspiration level follows the dynamic equation

ρ
ρ
ρt
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w w u s
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%&'1

1

1
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This specification is designed to move the system away from probability matching in the

long-run; the parameter ν  is designed to keep the probability of strategies bounded away

from zero.  If we set ν = 0 , this reduces to

θ γ θ
γ θt

i t
i t

t
i i

t
i t

t
i i

s

s
s E s s r s

s E s s r s+
′

= − +
− ′ + ′∑1

1

1
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( ) ( ) [ , ] ( )

( ) ( ) [ , ] ( )

which like the Borgers-Sarin [1996] model increases the probability of an action when it is

positively reinforced, and decreases when it is negatively reinforced.

                                                
85 The use of monetary rewards is much less common in psychology experiments than in those run by
economists.
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4.8.2. Experimental Evidence

The stimulus- response model was developed largely in response to observations by

psychologists about human behavior and animal behavior.  One such observation is the

randomness and the smoothness of responses; this is of course also true of smooth

fictitious play.  There is not a great deal of evidence that enables us to distinguish between

the two types of models on empirical grounds:  Er’ev and Roth [1996] argue that their

variation on the stimulus response model fits the data better than a simple fictitious play. In

our view this is largely because they have many free parameters, and most learning models

with enough flexibility in functional form are going to fit this data relatively well, because

of its high degree of autocorrelation. Er’ev and Roth do show that their model does

considerably better than either the best-response dynamic or fictitious play in the two

experiments in which they examined individual play.   However, the very naïve model of

“always at the mixed Nash equilibrium” does marginally better than the Er’ev-Roth model

in one experiment, and marginally worse in the other, which suggests that any learning

model which converges to Nash equilibrium relatively quickly will do about as well as

their model does. 

Er’ev and Roth’s work does, however, point out an important difficulty with the

standard fictitious play model.  When agents  use the exact best response function the

model predicts a deterministic course of play with abrupt switching from one action to

another.  This counterfactual prediction is not, however, shared  by smooth fictitious play. 

In addition the version of fictitious play studied by Er’ev and Roth has zero prior weights, 

and so implies that the players will be very responsive to their first few observations, while

actual behavior is known to be more “sluggish” than that.  Further,  the type of exponential

weighting of past observations discussed above  also seems  likely to improve the extent to

which fictitious-play like models fit the data while not increasing the number of parameters
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beyond those used by the Er’ev and Roth model.  Cheung and Friedman [1994] have had

some  success in fitting modified fictitious play models  to experimental data, and report

that it does better than stimulus- response type models.   It is true that Majure [1994] finds

that replicator dynamics fit better than fictitious play, but he uses a less satisfactory method

of introducing randomness, and does not consider exponentially decreasing weights on past

observations.

Finally, Van Huyck, Battalio and Rankin [1996] explicitly consider exponential

fictitious play as a learning model and compare it to the replicator and other stimulus

response models.  They report on an experimental study based on  a simple 2x2

coordination game in which players receive nothing if they choose the same action and

receive a unit payoff if they choose opposite actions.  Four experimental designs are

considered: there can be either a single population (that is, the homogenous-population

case) , or two of them, and players may or may not have access to  a publicly observed

coordinating device, namely an assignment of the labels  “player 1” and “player 2.”  In the

two-population case, these labels are chosen once and for all at the start of the experiment;

in the one-population case labels are randomly assigned each period.

 Without the labels, the situation corresponds to the simple 2x2 game

A B

A 0,0 1,1

B 1,1 0,0

As we discussed in chapter 3,  the mixed-strategy Nash equilibrium (1/2,1/2) is

globally stable under the replicator dynamic in the homogeneous population treatment of

game 1, while with asymmetric populations it is unstable.  With one population and labels,
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the two stable points of the replicator dynamic are the efficient equilibria “A if labeled 1

and B if labeled 2” and “B if labeled 1 and A if labeled 2;” while the inefficient

equilibrium where players ignore their labels is not stable.

In the experiments, subjects  played between 30 and 75 times. The replicator

dynamic explains the basic qualitative features of the data, but in cases in which the

symmetric equilibrium is unstable due to labeling,  play often remained near the symmetric

equilibrium much more  than is predicted by the replicator. (This raises the question of

what would have happened over a somewhat longer horizon.)

Van Huyck, Battalio and Rankin examine several models of individual learning

behavior.  They report that they can reject the hypothesis that players are using historical

performance of strategies (as they would  in stimulus-response type models) in favor of the

hypothesis that they are using forecast performance of strategies (as they would in smooth

fictitious play type models).  Indeed, in their data the model of exponential fictitious play

fits the data quite well in all but one of 12 sessions.86 

4.8.3. Learning  Effectiveness

 Given the difficulty in distinguishing different learning models from experimental

data,  and given our prior belief that people are often reasonably good at the sort of learning

that is at issue in this book,  we think it  makes sense to ask which  learning models do a

reasonably good job of learning.87  For example, in the case of smooth fictitious play, we 

                                                
86 In the anomalous session two populations with labels played each other.  In a smooth fictitious play, if there
is little smoothing (so that play is nearly like ordinary fictitious play)  then when the system converges it
should converge (approximately to)  a Nash equilibrium.  In this particular trial, there is little randomness
observed in play, yet convergence is to a point some distance away from the Nash equilibrium.  We suspect
that the poor  fit results from the fact that the lack of randomness in observed play is not consistent with
convergence to a point some distance from any Nash equilibrium.
87 We realize that this belief is controversial among experimentalists.
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showed that regardless of opponents’ strategies, players do about as well in the time

average sense as if they had known the frequencies of opponents play in advance.  

The stimulus-response model also is known to have some desirable properties as a

learning model.  The equations
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of the simplest version of the positive reinforcement model studied by Borgers-Sarin

correspond to  what is called a learning automaton in the computer science literature.  

Narendra and  Thatcher [1974]  showed that against an i.i.d. opponent, as the reinforcement

parameter γ goes to zero, the time average utility converges to the maximum that could be

obtained against the distribution of opponents play.  However, this relatively weak property

is satisfied by many learning rules that are not consistent, including “pure” fictitious play,

and on its own does not seem strong enough to indicate that a rule is reasonable.  By

contrast smooth fictitious play retains its consistency property regardless of how opponents

play.

Indeed, while the “learning automaton” does well in the long run against an i.i.d.

opponent, it may do very poorly even if in the long-run opponents are approximately i.i.d.,

as would be the case if the system is converging to an equilibrium.  The reason for this is

that against an i.i.d. opponent the “learning automaton” eventually gets absorbed by a pure

strategy.  Consequently, if the distribution of opponent’s play is for a long time very

different from what it will be asymptotically, the system may be absorbed at the “wrong”

pure strategy before the opponent’s play shifts to its long run frequency; the probability of

this the reinforcement parameter and the length of time before the opponent’s play shifts.
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To avoid the prediction that play eventually locks  on to a pure strategy, the

stimulus-reponse model can be modified  so that the probability of each action remains

bounded away from zero, as in  Er’ev and Roth [1996].   In this case Friedman and Shenker

[1995] show that if opponents’ play is such that eventually one strategy remains optimal for

all time, then the “responsive learning automaton” will in the long-run converge to playing

the correct strategy with high probability.  This covers the case of a system that is

converging to equilibrium, but still falls considerably short of universal consistency.

4.8.4. Fictitious Play as a Stimulus-Response Model

One important property of the stimulus-response model is that it only uses

information about the learner’s realized payoffs in making choices.  This may be regarded

as a disadvantage or advantage:  on the one hand, unlike fictitious play, opponent’s play

need not actually be observed.  On the other hand, if this information is available (as it

typically is in experimental settings) it ought not be ignored.

It should be noted that there is a variation on smooth fictitious play that does use

only on payoff information.  Consider in particular the exponential fictitious play

BR s
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Notice that to compute the probability of playing a strategy it is necessary only to have an

estimate of the utility of each action u ri i i( , )σ − .  Indeed, we can view these utilities as

“propensities” to play strategies, much as in the stimulus response model, except that these

propensities are computed and used in a different way.  This suggests that players keep

track of the historic utility of each action; that is, that they compute an estimate
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Where κ t
is( )  is the number of times player i has played si .  We then set the probabilities

of playing strategies to

θ
λ

λt
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If opponents play is not converging, this variation on exponential fictitious play is

not asymptotically the same as fictitious play.  This is because strategies with low

probabilities are updated less frequently than those with high probabilities, while in actual

exponential fictitious play both are updated equally frequently (since data on opponent’s

play  is used).  However, if we set use the alternative weighting rule

u s
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then in a large sample, this gives essentially the same result as ordinary exponential

fictitious play, so is also universally consistent.   Notice that this rule can be interpreted as

a kind of stimulus-response model:  here an action receives positive reinforcement if it

does better than expected, and negative reinforcement if it does worse than expected, where

the “aspiration level” is simply average utility to date.  By making the probabilities a

simple function of the “aspiration level” this rule avoids the need to  directly combine 

probabilities and utilities as in traditional stimulus-response models.   This “exponential

fictitious play” rule strikes us as being at least as intuitive as way that aspiration levels

have been introduced into traditional stimulus-response models.

4.9. Learning About Strategy Spaces

The examples we have considered all involve relatively small strategy spaces. 

However, in many practical applications, especially those involving repeated play (even in

an experimental setting) the space of strategies can be quite large.  Both the stimulus-
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response models and the aspiration level variation on smooth fictitious play we just

discussed require a player to track the actual or potential performance of every strategy. 

This is impractical when the strategy spaces are very large, even in a one person game, so it

is natural to ask whether there are methods that involve tracking a smaller subset of

strategies.  An example of such a method is John Holland’s [1975] genetic algorithm, a

good discussion of which can be found in Goldberg [1989]. 

A genetic algorithm is somewhat similar to a stimulus-response method, or the

aspiration level variation of  smooth fictitious play.  There are two significant differences. 

 First, only the performance of a small subset of strategies is tracked at any given moment

of time, with randomization between these strategies based on their relative performance. 

Second, there are two methods by which strategies are added to or removed from the subset

of strategies actively under consideration.  Both of these methods are based upon coding

strategies as binary strings; that is each strategy in the strategy space is assigned a unique

binary string to identify it.  One method of introducing new strategies is through random

mutation: existing digits in existing strings are randomly changed to yield new strategies. 

Since this guarantees that eventually all strategies will be considered, appropriately

calibrated it guarantees consistency in a stationary problem.  A second method of

introducing new strategies is through “crossover” which consists of randomly splitting two

existing strings and mating the first half of one string with the second half of the other to

create two new strings.  The theoretical properties of this procedure are poorly understood,

and depend in large part on the way the strategies are “coded,” but it is known through

practical application that for some methods of coding strategies this results in rapid

convergence in relatively difficult combinatoric problems.

There are two problems with using this procedure as a model of learning in games. 

First, historical performance is used to rate strategies which is fine for stationary problems,
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but which our analysis of smooth fictitious play suggests is not so good in non-stationary

problems such as games.  That is, it would be better to use a weighted average of past

performance, with weights proportional to the inverse of the frequency with which

strategies have been used. 

Second, the actual application of genetic algorithms in economic models (primarily

in the context of macro-economic price-clearing models, and not in the context of games)

has been to assume that an entire population of players jointly implement a genetic

algorithm (rather than each individual player implementing a genetic algorithm).  This is

the case, for example, in Bullard and Duffy [1994], where the strategies currently under

consideration are identified with actual players in the game, and players inherit strategies

from previous rounds through mutation and cross-over.   It is not entirely clear why

individually self-interested players would wish to jointly implement a method that learns

well in stationary problems, and in addition, individual play of players makes little sense. 

While we can view this as a model of “asking around” much as in the case of replicator

dynamics, so that each player inherits strategies by asking other players what worked for

them, this makes sense only  if the new players cannot observe the historical performance

of strategies directly.  However, the algorithm requires players inheriting crossover

strategies to implement them based upon performance; that is to choose among the results

of crossover based upon their past performance, which contradicts the underlying idea that

players to not access to this information.
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Appendix: Stochastic Approximation Theory

In this Appendix we illustrate the methods of stochastic approximation by

examining  when the discrete time system converges almost surely to a particular state θ* .

Sufficient conditions are obtained by the study of the continuous-time system. One case

where global convergence obtains is when F admits a “quasi-strict” Lyapunov function V. 

This is a function that is strictly decreasing along all non-stationary trajectories of F.  If,

moreover, the minimum of this Lyapunov function is an isolated steady state, then Benaim

and Hirsch show that the system converges with probability one to that steady state.

To provide some intuition for the result, we give here a proof for the very simplest

case of a one-dimensional state space [ , ]−11 , F(0) = 0,  θ θF( ) < 0  for all θ ≠ 0 . In other

words, the   point 0 is globally stable in the continuous -time dynamics.

In the special case that F( )θ θ= −  we have

 θ θ θ η
t t

t t

t+ − = − +
+1 1

,

or

( )t t
t

tt t t t t t+ − = +
+

− + + =+1
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This enables us to conclude that θ ηt s
s

t

t+
=

+

= +∑1
1

1

1/ ( ) , and the convergence result reduces to

the strong law of large numbers.

For general functions F,  we can use the Lyapunov function V ( )θ θ= 2  to show that

the discrete-time system almost surely converges to 0. 

Because the point θ = 0  is a steady state in the continuous-time deterministic

dynamics, and the Lyapunov function V is positive and strictly decreasing at all other

points, it  is tempting to think that V should be a supermartingale in the stochastic
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dynamics. However,  consideration of the point θ = 0  shows that this is not quite the case,

as at this point E V Vt t t[ ( )| ] ( )θ θ θ+ > =1 0 .  Nevertheless, this intuition is “essentially”

correct, in that outside of any fixed neighborhood of 0 we eventually have

E V Vt t t[ ( )| ] ( )θ θ θ+ <1  for t sufficiently large. Intuitively, the “deterministic drift” of  the

system tends to reduce V,  but since V  is convex the stochastic jumps tend to increase it. 

However, the size of these jumps diminishes at rate 1/ t , so that the drift term eventually

dominates in any region where it is bounded away from zero.  For example, in the special

case of F( )θ θ= −   and the η t  have the binomial distribution on {-1,1} with probability 1/

2, we can take V ( )θ θ= 2 , and find that

E V V

t

t

t

t t

tt t t

t t
t

t[ ( )| ] ( )
( ) ( ) ( )

( )
θ θ θ

θ θ θ θ
+ − =

+
+

+ −
+

−
= − + +

+1

2 2 2
2

2

1
1

1
1

2

2

2 1 2

2 1

which is negative outside of the interval [-a, a] for all t
a

> −2
1 . This can be used to show

that { }θt  cannot converge to a limit other than 0. 

Instead of pursuing that line,  we will offer a direct proof of convergence.  Define

M E V Vt t t t( ) [ ( ) ( )| ]θ θ θ θ= −+1  to be the expected change in the Lyapunov function, which

may be either positive or negative, and let  M Mt t
+ =( ) max{ ( ),0}θ θ .  Also define

 V V Mt t s
s

t
*( ) ( ) ( )θ θ θ= − +

=

−

∑
1

1

,

so that

V V V V Mt t t t t
* *( ) ( ) ( ) ( ) max{ ( ),0}θ θ θ θ θ+ +− = − −1 1 .

By construction, this is a supermartingale:  
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E V V

E V V M

M M
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t t t t
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The next step is to check that the supermartingale V* is bounded below, so that we

can conclude it converges almost surely substitute V ( )θ θ= 2  and compute

M E
t F

t

F

t

F

tt
t t t

t t
t t t t( )

( ) ( )
|

( ) ( )
( )

θ θ θ η θ θ θ θ θ η= + + +
+

�
��

�
�� −

�
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"
$##

=
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+ +
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+ +1
1

2
1 1

1

2
2

2
1
2

2

Ε
,

so that

 M
F

tt
t t+ +≤ +

+
( )

( )

( )
θ θ η2

1
2

21

Ε

In the right-hand side of the equation for M,  the first term, which corresponds to the

deterministic drift of the system, is non-positive by assumption, and the second has a finite

sum, so M  is summable. M +  has only this second term, and so is summable as well, and

since V is bounded below (by 0) this implies that V +

 is bounded below as well.

 Thus V +  is a supermartingale and is bounded below, so it follows that  it

converges almost surely.    Since V V− * is a submartingale,  bounded above since V is

bounded above and V *  is bounded below, by the submartingale convergence theorem

V V− * converges almost surely.  Since V *  also converges almost surely, it follows that V

converges almost surely.

The last step is to argue that there cannot be positive probability that V has a strictly

positive limit. Intuitively, at such a point the “deterministic force”  will dominate the noise

term and push the system in towards 0. For a formal argument, suppose that there is
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positive  probability of the event that V is bounded away from 0; this implies that θ  is

bounded away from zero as well, and hence for some ε > 0  that sgn( ) ( )θ θ εt tF < − < 0 ,

and so  for some δ > 0 , sgn( ) ’( )θ θ δt tV < − < 0 . Since V is smooth, we have

M E V V E V t F V

E V
F

t
V E V

F

t
o

t

t t t t t t t t t

t
t t

t t t
t t

( ) [ ( ) ( )| ] ( / ( ))( ( ) ( )| )

( )

( )
( )| ’

( )

( )
( )

θ θ θ θ θ θ η θ θ

θ θ η θ θ θ θ η

= − = + + + − =
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1 1

1 1
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1 1

1 1

1
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1 6

Since ′V  and F  have opposite signs, and are bounded away from 0 whenever V is, we can

 conclude that along any path where V is bounded away from 0

M
tt( )θ λ< −

+
<

1
0

for sufficiently large t and some λ > 0 .

Define V V Mt t s
s

t

( ) ( ) ( )θ θ θ= −
=

−

∑
1

1

.  Note that V  is a martingale, and that on any

path V Vt t( ) ( )*θ θ≥ .  Since V*  has a finite limit almost surely, V  does not have positive

probability of converging to -∞.  If  V  remains bounded away from zero, the fact that the

upper bound above on M is negative and that V is bounded below (it is non-negative)

implies   that  V  converges to +∞. Thus if V has positive probability of remaining bounded

away from zero, we would have lim ( )t tEV→∞ = ∞θ  which contradicts the fact that V  is a

martingale. Since we already established that V converges, the fact that it cannot remain

bounded away from zero with positive probability implies that it converges to zero.

æ
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5. Adjustment Models with Persistent Randomness

5.1. Introduction

In the stochastic approximation processes discussed in the previous chapter, the

adjustment in the agents’ assessments in period t  is of order 1/ t , so that the effect of the

random terms eventually vanishes, and the long-run behavior of the system corresponds

to that of a deterministic system in continuous time.   In such models,  the sorts of

adjustment processes that make sense all have the property that strict equilibria are locally

stable, so that if the state converges to a strict Nash equilibrium it stays there.88  As with

the equilibrium refinements literature, these models offer little guidance in predicting

which of several strict equilibria is most likely to be observed.89 

This chapter considers  systems in which the step size and effects of random terms

both remain constant over time, so that the system is stochastic even in the limit.

Recently, Foster and Young [1990] suggested that such processes can be used  to select

between strict equilibria of a  game.  Foster and Young studied a continuous-time

stochastic system based on the replicator dynamic; we discuss their model  in section 5.8,

along with the related papers of  Cabrales [1993]  and Fudenberg and Harris [1992].  

Most of this chapter, though, discusses the much larger literature on discrete-time,

autonomous, finite-population “stochastic adjustment”  models that follow the papers

Kandori, Mailath, and Rob [1993] and Young [1993]. In light of the use of the term

“mutation” to motivate the study of the ESS concept and the  asymptotic stability of the

                                                
88 The foregoing rather loosely identifies Nash equilibria of a game with states of the dynamic process. A
more precise formulation would be “the states in which the aggregate (over players) distribution of play
corresponds to a strict equilibrium are locally stable steady states.”
89 This is a slight exaggeration, as one might believe that the likelihood of observing various equilibria is
correlated with the relative sizes of their basins of attraction.  However, this implicitly supposes  a more-or-
less uniform prior over possible initial positions.
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replicator dynamics, it may be worth emphasizing that the classical evolutionary games

literature considers only deterministic systems, and that the “mutations” considered there

are one-time events.90  If one thinks of  “mutations” as real and recurring, although

unlikely, phenomena, it might seem more appropriate to include them explicitly in the

model; this is the basic point of the stochastic adjustment literature.

The literature on these stochastic adjustment models is diverse and offers a variety

of results on different types of games and adjustment procedures.  However, there is one

important result on 2x2 games that obtains in many (but not all )91 such models, and as a

result deserves emphasis:  this is the selection of the risk-dominant equilibrium as the

unique long-run steady state.  Of particular importance is the connection (and lack of

connection) of risk dominance to Pareto efficiency.  In pure coordination games the two

concepts are the same.  However, in general games, risk dominant equilibria may fail to

be Pareto efficient.  The conclusion from the study of stochastic adjustment models is that

learning procedures tend to select equilibria that are relatively robust to mutations (risk

dominant equilibria), and this is a different criterion than Pareto efficiency.

5.2. Overview of Stochastic Adjustment Models

Before turning to the details of the individual papers, it is helpful to have in mind

an outline of the sort of procedure the papers generally follow. This procedure, described

just below, relies heavily on the idea of the ergodicity of a Markov process, so

                                                
90 Foster and Young [1990] and Fudenberg and Harris [1992] are exceptions that consider stochastic
differential equations models of evolution.
91 For example, the work of Ely [1995] shows that when location is endogenous there is a tendency towards
Pareto efficiency.  Binmore, Samuelson and Vaughn [1994] also challenge this result, but they use an
unusual form for the stage game that makes their results hard to compare with other work in the area.
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understanding just what ergodicity entails is crucial; for this reason the Appendix

provides a brief review of ergodicity in finite Markov chains. 

The procedure has several steps:

Step 0:  Specify a “state space.”  Typically this is either the number of agents of

each player population using each action (as in a model of anonymous random matching)

or the actions played by each individual agent. The latter case is relevant if different

agents of the same player population can behave differently, as in models of local

interaction where each agent only interacts with his “neighbors.” The state may also

include information about the actions played in previous periods.   For the time being, we

will specialize to the case of a finite state space and discrete time, which is  the simplest

case mathematically and also the one that has received the most attention in the

literature.92

Step 1: Specify an “intentional’ or “unperturbed” adjustment dynamic, such as the

best response dynamic or the replicator dynamic.  Most often, this process is

deterministic, although the unperturbed model may incorporate randomness from the

outcome of the random matching procedure, or because each agent’s opportunity to adjust

its action arrives randomly. However, the process should be “deterministic enough” that

the states corresponding to each of the strict Nash equilibrium  are steady states. 

Typically, the adjustment process also has the “converse” property that in one-shot,

simultaneous-move games, only Nash equilibria are steady states.93  Finally, for the

                                                
92 The approach described here has also been applied to continuous-time, continuous-state processes.
93  In chapter 7 we consider stochastic evolution when the extensive form is non-trivial.
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techniques described below, the unperturbed dynamic should be time-independent, which

rules out fictitious play.94  

 As in previous chapters, we will denote the state space by  Θ ;  the Markov

transition matrix of the intentional process will be denoted by  P. Then if θ ξ, ∈Θ , the

element  Pθξ of this matrix  is the probability that the state  is θ  at date t+1 conditional on

the state being ξ  at date t.  With this convention, probability distributions over states are

represented by column vectors ϕ , and ϕ ϕt tP+ =1 .95  

Step 2:   Introduce a “small noise” term; this might correspond to “mistakes”,

“mutations,” or the replacement of old players by new ones. Parameterizing the amount

of noise by  ε,  this gives us a new Markov operator Pε  on the same state space. Pε

should be a continuous function of ε and Pε  should converge to P as ε → 0 ; this

condition is usually quite natural.

However, the stochastic approximation arguments do not hold for all continuous

operators  Pε , since for example the “null” noise operator Pε =P is continuous in ε. What

is important is that there be “enough” noise in the system. More precisely, the Markov

system corresponding to  Pε  should be  ergodic.  In particular, this means that  it has a

unique invariant distribution;  that is, a unique distribution ϕε
*  such that ϕ ϕε

ε
ε

* *= P .    

With a finite state space there are very simple sufficient conditions for this;, some of

which are discussed in the Appendix to this chapter.  One important condition is that

P
nε  is strictly positive for some integer n.  Often, the mutation process is defined in

such a way that the ergodicity of Pε  is obvious.

                                                
94 The basic ideas could be transferred to fictitious play but require different analytical tools.  In addition,
there are variants on fictitious play that are time-independent.
95 This follows a standard convention in probability theory.  Frequently this literature adopts the opposite
convention, that probability distributions over states are row vectors, and the transition probability matrix is
the transpose of the matrix considered here.
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Step 3:  Verify that    lim * *
ε εϕ ϕ→ ≡0   exists, and determine what it is.96 Since by

definition  ϕ ϕε
ε

ε
* *= P , and  Pε → P,  a standard continuity argument shows that 

ϕ ϕ* *= P , that is, ϕ*   is an invariant distribution for  the unperturbed  process P.   

Calculating ϕ*  is ordinarily the hardest step.  As we will see,  there are various ways of

doing this that do not require the explicit calculation of the ϕε
*  .

Step 4:   Check whether   ϕ*   is a point mass.  If it is, then the corresponding

strategy profile is the  "stochastically stable equilibrium" in the terminology of Foster and

Young.  This terminology makes sense when  ϕ*  is a point mass, since the only point

masses that are invariant distributions of the unperturbed process P are steady states, and

we have supposed that only Nash equilibria are steady states of the unperturbed process. 

In other words, if ϕ*   is a point mass, it must correspond to a Nash equilibrium. 97  

Example 5.1: (variant of Canning [1992]):  The deterministic unperturbed process

corresponds to simultaneous-move Cournot adjustment: There are two populations,

player 1’s and player 2’s, with one agent in each population; each period each player

chooses a best response to the action his opponent played in the previous period. The

stage game is a  symmetric coordination game with payoffs

A B

                                                
96 Because the space of distributions over Θ is compact, we know that this sequence has at least one
accumulation point.  With arbitrary perturbed processes, the sequence might have several accumulation
points, so that the limit need  not exist, but the sorts of perturbed processes considered in the literature do
guarantee the existence of a limit.
97 However, if ϕ*   is not a point mass, it need not be a Nash equilibrium . For this reason Canning’s [1992]

use of the term “equilibrium distribution” to mean “invariant distribution” is unfortunate.
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A 2,2 0,0

B 0,0 1,1

 so that (A,A) and (B,B) are both equilibria.  The Markov matrix may be written as

                                states

P

A A

A B

B A

B B

=

�

!

    

"

$

####

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

,

,

,

,

 and the only steady states are (A,A) and (B,B). However,  (0,1/2,1/2,0)  is an invariant

distribution corresponding to the two-cycle between (A,B) and  (B,A).

Now we add noise in the form of a minimum probability  ε  for each action.  That

is, when player 1, say,  prefers to play A (because player 2  played A last period)  player 1

must play B with probability at least ε. Likewise, when player 1 played B last period,

there is probability ε that player 2 plays A, so that pr(BA|BA)=ε 2 ,  pr(AA|BA)=( )1− ε ε ,

and so on.   The perturbed system has the Markov matrix

  Pε

ε ε ε ε ε ε
ε ε ε ε ε ε
ε ε ε ε ε ε

ε ε ε ε ε ε

=

− − −
− − −
− − −

− − −

�

!

    

"

$

####

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1

1 1 1

1 1 1

1 1 1

2 2

2 2

2 2

2 2

This system is ergodic, with (unique) invariant  distribution (1/4, 1/4, 1/4, 1/4).  This

is not an equilibrium, and is not a description of play in any period, although it does

correspond to the asymptotic limit of the empirical joint distribution of strategy

profiles.  (That is, in the long run, each of the four strategy profiles will occur 1/4 of

the time.)
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This example raises the question of when is it reasonable to hope that limit

distribution is a point.  Friedlin and Wentzell’s [1982] basic insight is that limit

distribution is concentrated on a subset of the ω -limit sets of the deterministic process. 98

  If the deterministic process has stable cycles then there is no reason to expect that

adding noise will take them away.  For this reason, the stochastic adjustment approach

has been applied to classes of games where the deterministic dynamics have no stable

cycles. The leading and simplest such class is  a homogeneous population playing a

symmetric 2×2 game with two strict equilibria.99

5.3. Kandori-Mailath-Rob Model

In Kandori-Mailath-Rob, a single population of  N  players plays a symmetric  2×2

 game.  Denote the two actions by A and B.  We will focus on the most interesting case, 

in which there are strict equilibria at (A,A) and (B,B),  and a mixed equilibrium in which

the probability of strategy A is  α*. We will assume that α*  is less than ½,  so that the

best response to (1/2 A,1/2B) is to play A; this  means that the equilibrium at (A,A)  is

risk dominant.

Step 0: The State Space of the Process

The state of the system θ t  at date t is the number of players using strategy A. 

                                                
98 Recall from  chapter 1 that the ω-limit sets of a dynamic process are the  points that are reached infinitely
often from at least one initial condition. In the deterministic finite-state case we consider here, the only ω-
limits are steady states and cycles.
99 Asymmetric populations playing such games can cycle, as in the persistent miscoordination in the
example illustrated in Figure 2.3.
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Let  uA t( )θ   and uB t( )θ   denote the payoffs from playing strategies A and B,

respectively, against the mixed strategy ( / ,( ) / )θ θt tN N N−  corresponding to a

randomly drawn player from a population where  θ t   players are playing strategy A.

Step 1:  The Deterministic Process  P

Kandori-Mailath-Rob  take θ θt tP+ =1 ( ) ,  where  the only condition on the adjustment

dynamics is that sgn( ( ) ) sgn( ( ) ( ))P u ut t A t B tθ θ θ θ− = −   at all states where not all agents

are using the strategy with the highest current payoff.   They call such a dynamic

“Darwinian.”  In the two-action games they consider (but not more generally) Darwinian

dynamics are “aggregate monotonic” in the sense of the Samuelson and Zhang paper

discussed in chapter 4; two-action games also have the special property that all Darwinian

dynamics on a single population have the same basins of attraction for each steady state. 

The desired interpretation is that each period, some players observe the state of the

system and choose the strategy that is the best response to last period's state. There are

two small points that might cause concern about this interpretation at first sight, but

neither one turns out to matter: 

a) Players include themselves in computing the play of a randomly drawn

opponent.  (If players only look at their opponents, then for a given  θ t ,  the

distribution of opponents' play depends on which strategy the player is currently

using.)  However, for reasonably large N,  this should not matter, and at the cost of

a bit more notation it is easy to extend the conclusions below to this more realistic

case where agents do not count themselves in the sample.
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b)  The most obvious model that leads to the purely deterministic process

considered here is the one where all players adjust each period.  This yields the

best-response dynamic

θ θ θ
θ θ
θ θ
θ θ

t t t

A t B t

A t B t

A t B t

BR

N u u

u u

u u
+ = =

>
=
<

%
&K
'K

1

0

( )

( ) ( )

( ) ( )

( ) ( )

for

This is also the case where the results are easiest.  However, it is not the case on

which Kandori, Mailath and Rob want us to focus:  If all players adjust each period,

it is not obvious why players should choose their actions to maximize payoffs given

the previous period’s state.  Kandori, Mailath and Rob note that the myopic

response makes more sense if only a few players adjust each period, so that the

current state is more or less locked in for a while.  Indeed, if only 1 player adjusts

each period, and players are sufficiently impatient, then as in the alternating-move

Cournot model, myopic response is optimal and indeed consistent with a perfect-

foresight equilibrium.   On the other hand, if the one player who has the

opportunity to adjust his play is chosen at random from the population, then the

adjustment process will be stochastic:  Whether the state changes depends on

whether the player who gets to adjust is currently playing the best response.

However, the analysis of the model will show that this does not  matter, since only

the speed of this modified process is stochastic, and not its direction.

The more important interpretational issues are the same as in the alternating-move

Cournot process, namely the requirement of myopic responses, which requires a

combination of impatience and lock-in that may not be plausible in the desired

applications of the model.  We also question the authors’ view that the model describes an
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interesting process of learning:  since the players who adjust are perfectly informed of the

current state, and this is all they care about, it is not clear what they might be learning

about.  At best this model must be viewed as a rough approximation to a model in which

players are less perfectly informed.  As should be clear, our preference is for models that

have a stronger learning theoretic foundation.  

In our opinion, myopic best responses can be best viewed as the limit as the

“memory” shrinks of systems where players best respond to the empirical distribution of

play over the last few periods, and since for reasonably long memories such systems do

seem like learning systems, the distinction here is not hard and fast but rather turns on

how long a memory length is reasonable.  As we will see in discussing Young [1993]

such bounded-memory systems can be analyzed with the same techniques.  Moreover,

although the memory length can alter the stochastically stable set in some games, it does

not do so in the 2x2 games considered by Kandori, Mailath and Rob.

Step 2:  Add Noise to Get a Process  Pε , and verify that Pε  is ergodic.

Suppose that each period, after players have computed their intended adjustments, and

before the game is actually played, each player each period “mutates” or is replaced with

probability  2ε;  mutants are equally likely to initially adopt either strategy, and

henceforth follow the deterministic adjustment process. Note that all players have a

chance of mutating, and not just those who are “consciously adjusting” their play. For

example, even if only one player adjusts at a time there is a positive probability that the

entire population mutates at once.

Ergodicity follows from the fact that every state has a positive probability of

mutating into any other state..  Note that if only some players adjust each period, and only

these can mutate (so that mutations look like trembles) then the system is no longer
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strictly positive, but is still ergodic. (See the Appendix for sufficient conditions for

ergodicity.)

Step 3   Computing the Limiting Distribution

Let  N*  be the least integer greater than  Nα*;  if  θ t N≥ *  the best response is to

play action  A.  Recall that α * /< 1 2 .

Proposition 5.1:  Suppose that N  is large enough that  N* < N/2,  then the limit  ϕ*   of

the invariant distributions is a point mass on the state θ t N=  corresponding to all agents

using action  A.

This result is easiest to prove for the case of the best response dynamic, for then

the long-run behavior of the system can be determined by analyzing a two-state process: 

this has also been noted by Canning [1992].  The key idea is that each steady state has a

basin of attraction, and intentional play depends only on which of these two basins the

state is in, and not its location within the basin.  The only way to move from one basin to

the other is through simultaneous mutation by a number of players.  Moreover, it takes

more players to mutate to move from the basin of the risk-dominant equilibrium A to the

basin of B than vice versa.  As the probability of mutation ε  gets small, the probability of

M simultaneous mutations or more is of order ε M .  Since it takes fewer mutations to get

from A to B than vice versa, this means that the odds of moving from A to B become

infinitely greater than the odds of moving from B to A.  This in turn means that the

process must spend much more time in the A basin than the B basin, and that the

invariant distribution places far more weight on A than on B.
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Proof of Proposition 5.1:  Let  DA  = {θ 0  ≥ N*}  be the basin of attraction of state N  (all

agents use action  A) under the deterministic process  P,  and let  DB  be the basin of state

0 (all agents use action B).  All states θ 0  in DA  have the same value of  BR t( )θ  and

hence lead to the same probability distribution over states next period.  The same is true

for all states in DB .  Hence to compute the invariant distribution, it suffices to know the

distribution over the two basins.  This distribution in turn is determined by the relative

probabilities of transitions from one basin to the other.  We define

q prob B BBA t B t A= ∈ ∈+θ θ1 |1 6  and q prob B BAB t A t B= ∈ ∈+θ θ1 |1 6 .  Then we solve
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The last step then is to compute the limit of this ratio as  ε → 0.  If  θ t AB∈ ,  the

intended state is N.  In order for θ t+1 to be in  DB  there will need to be at least  N-N* 

mutations into strategy B.  Since each of the  N  players has a chance of mutating, the

probability of a transition with exactly  N-N*  transitions is, from the  binomial formula,

equal to

N

N *

�
��

�
�� ε εN N N− −* *( )1 .

There can also be transitions with more than N-N* simultaneous mutations, but these will

be much less likely as the probability of  ε  of mutation goes to  0.  For example transition

with N N− +* 1 mutations has probability that is of order N N− +* 1 in ε.

In a similar way, we may compute that any transition from DB  to DA  must

involve at least N* simultaneous mutations, and N* simultaneous mutations has

probability
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Substituting into the equation for 
ϕ
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, so that the ratio goes to 0  as ε  goes to  0.

æ

It is important to note that the same conclusion would follow if we supposed that

mutants are more likely to choose the action B than action A. That is, we could suppose

that the probability of mutation is ε εA B+ , with ε εB Ak=  for any positive k;  this would

change the ergodic distribution for any fixed value of ε A  but would not alter the

conclusion that the ergodic distribution converge to a point mass on “all A” in the limit as

the mutation probability goes to 0.  In order to change this conclusion, the ratio 
ε
ε

A

B

would need to go to 0 in the limit.  If we do not restrict the ratio  
ε
ε

A

B

 in the limit, and

allow the mutation rates to depend more generally on the state, then Bergin and Lipman

[1995] show that the limiting distribution may place any weights on the two Nash

equilibria.

5.4. Discussion of Other Dynamics

The best response dynamics are easy to analyze because it is transparent that only

two states need to be considered to compute the invariant distribution.  When the

deterministic process P evolves more slowly, then computation of the invariant

distribution for fixed  ε > 0  requires inverting the  N+1 × N+1  matrix  Pε .  This is

harder in practice than in theory.    Fortunately, the insight of Friedlin and Wentzell
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[1982] shows that the two-state calculation is sufficient to compute the limit of the

invariant distribution for any deterministic process whose  only steady states are  0  and 

N.

As we remarked earlier, Friedlin and Wentzell’s insight is that in the limit of very

infrequent perturbations, the stochastic system will spend most of its time in the ω-limit

sets of the deterministic process. Consequently, it suffices to consider the much smaller

Markov system whose states are the ω-limit sets of the original deterministic process. 

Intuitively, as the perturbations become rare, the time interval between perturbations

becomes very long, so that after each shock the system moves near an ω-limit before the

next shock arrives.  In 2x2 games with two strict equilibria, the only steady states of any

one-dimensional myopic adjustment process  are  0  and  N,100  so the general case

reduces to that of the best-response dynamic.101

Let us develop the general result, since it has proven useful in the more

complicated systems arising from other games.102.

Consider a 1-parameter family  Pε  → P  of ergodic Markov chains on a fixed

state space.  In order to determine the limit of the corresponding ergodic distributions

ϕε ,we need to know the relative sizes of the transitions probabilities Pθξ
ε  that are

converging to 0. In the example studied above, the elements of Pε  that converge to zero

have the form ε c , where c is the number of mutations required to move from one state to

another, so that the number of mutations corresponds to the order (in ε ) of the

corresponding transition.  We will generalize this by defining  the cost of a transition to

                                                
100 For simplicity it is supposed that there is no integer that exactly corresponds to the mixed equilibrium.
101  If there were an integer  z = α*N then there would also be a third steady state corresponding to the
mixed equilibrium.  It can be shown that this equilibrium would have zero weight under the limiting
distribution, but most papers in the literature suppose there is no such integer z  for simplicity.
102 Friedlin and Wentzell developed the basic ideas in what follows, but since their motivation for it was to
eventually characterize continuous-time systems they left some gaps concerning discrete-time systems.
These gaps have been filled in by Young [1993] and Kandori and Rob [1992].
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be its order in ε , so that probabilities proportional to ε  have cost 1, probabilities

proportional to ε 2  have cost 2, and so on. Formally, we define the cost c( | )θ ξ  of a

transition to state θ  given state ξ   as

c P( | ) lim log / logθ ξ εε θξ
ε≡ →03 8 .

Our basic assumption is that this limit exists for every pair θ ξ, .  Notice that since logε

is negative, the bigger the probability of transition, the smaller the cost.   Notice also that

if the transition has positive probability in the limit system ( Pθξ > 0 ), then its cost c( | )θ ξ

is  0.

We now consider moving from an ω- limit set ω ⊆ Θ  to another set A ⊆ Θ  which

need not be an ω- limit set.  This move may take place in several steps, so we consider a

path 
r

Kθ θ θ θ θ= ( , , , , )0 1 2 t  where θ ω0 ∈  and θ t A∈ , and where consecutive states in the

path are not required to be distinct. We look for paths that result in the highest probability

of transition; this is the same as looking for paths with the least cost. (Because every θ 0

is in the same limit set, it does not matter which one is used to begin the path, since

transitions within a limit set have a cost of 0.)  Since the probability of a path is the

product of the transition probabilities, the cost of the path is the sum of the transition

costs c
t

( | )θ θτ ττ −=∑ 11
.  This leads us to define

r
rc A c

t A

t
( | ) min ( | )

: ,
ω θ θθ θ ω θ τ ττ

≡ ∈ ∈ −=∑
0

11

Our goal is to analyze transition costs between ω -limit sets of the process P.  Let

 Ω  denote these ω-limit sets.  The direct application of Friedlin and Wentzell’s technique

that we will now present requires that one first determine every member of Ω.  Later we

will discuss  Ellison’s less general sufficient condition for stochastic stability that makes

do without this step.  
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 Given a finite set  Ω  and an ω ∈Ω , an ω − tree is a tree  on the set Ω  in the

sense normally used in game theory103 except  that the direction of motion is the reverse

of the usual one, so that the paths start at many initial nodes and converge at a single

“root” which is the unique terminal node of the tree , which is the ω  node in an ω − tree.

  Let  Hω  denote the set of all ω − trees, and for any ω − tree  h,  let h( )ω  denote the

successor  of ω , and  let D( )′ω  denote the basin of ′ω in the limit dynamic P. Note that
r
c D h( ( ( ))| )′ ′ω ω  = 

r
c h( ( )| )′ ′ω ω because the cost of  transitions within a basin of attraction

is 0.

Proposition 5.2  (Freidlin and Wentzell [1982], Young [1993], Kandori, Mailath and Rob

[1993]):  The limit ϕ *  of the invariant distributions ϕε  exists, and is concentrated on the

limit sets ω  that solve min min ( ( ( ))| )/ω ω ωω
ω ω∈ ∈ ′∈ ′ ′Ω ΩΣh H c D h

r
.104

Note also that the formula sums over all paths for a given ω − tree, as opposed to only

counting the cheapest such path. For example, in a simple 3-node ω − tree

                                                
103 That is, a directed graph that branches out. See for example Kreps [1990] or Fudenberg and
Tirole[1991] for a formal definition
104Freidlin and Wentzell give an explicit formula for the ergodic distribution of the perturbed dynamics,

which comes from solving the (complicated) linear equation Pε
ε εϕ ϕ* *= .  Young shows that the limit

distribution exists because this formula shows that the relative probabilities of any two states is a ratio of
polynomials in the transition probabilities,  and these probabilities themselves have been assumed to be
polynomial in ε, so that the relative probabilities are polynomial in ε. The formula given in the proposition
follows from the observation that the states with positive probability under the limit distribution are those

whose probability in the ϕ ε
*  is of the lowest order in ε. Kandori., Mailath and Rob [1993] give essentially

the same argument as Young, but assert that the uniqueness follows from the uniqueness of the ϕ ε
*  for each

ε.
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ω

′ω ′′ω

the formula sums 
r
c D( ( )| )ω ω′  and 

r
c D( ( )| )ω ω′′ .   Appendix 2 to this chapter gives some

intuition for this summation and for Proposition 5.2

In complex systems, the cost in Proposition 5.2 may be hard to compute, not least

because the computation may require identification of every ω-limit set, but in simple

examples it is not too hard.  For example, in the simple Kandori-Mailath-Rob case above,

the cost of moving from one state to another is just the number of mutations required to

get there, so the cost of moving from one steady state to the basin of another is the

minimum number of mutations required for the move.105   Specifically, the limit set

Ω = { , }0 N , consists of the two steady states.  The only 0 ω − tree is N → 0 ,  and 
r
c D N N N( ( )| ) *0 = − ;  the only  N  ω − tree is 0 → N ,  and 

r
c D N N( ( )| ) *0 = , so that the

problem is reduced to that of the best response dynamic.

5.5. Local Interaction

In the Kandori-Mailath-Rob model, when the mutation rate is close to 0, although

 the relative amount of time spent at the risk-dominant equilibrium is much larger than at

the other one,  However the system is likely to stay at the other equilibrium for a long

time if it begins near to it.   Indeed, Ellison [1992] argues that for plausible payoff values,

and  N = 50 or 100 players, the system changes basins so infrequently that for practical

                                                
105 We should mention that we write cost as we write transition probabilities, with the target state first, and
the state we condition on second.  This is the standard convention in probability theory.  Unfortunately, the
existing literature in this area uses the opposite convention.
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purposes its behavior (for the first 105 to 1020  periods, depending on the size of the

payoff differences) is determined by the initial condition.

An alternative is to consider a model where the players interact only with their

neighbors.  Here, a few players playing the risk dominant strategies can spread to the

entire population quite rapidly, so the ergodic distribution may be a much more

interesting description of actual play.  This is in fact shown by Ellison [1992], who, like

Kandori-Mailath-Rob, considers  2×2  games. Ellison uses this result to argue that “the

nature of the matching process is crucial to ... whether historical factors or risk dominance

will determine play.”   

In the Ellison model, the N players are evenly spaced along a circle, and each

player is matched against a randomly chosen opponent from his 2 nearest neighbors.106 

Each agent must select a single action to use against both opponents.  As in Kandori-

Mailath-Rob, players are perfectly informed of last period’s state, and hence of the last

period’s distribution of opponents' play.  Players are assumed to choose their actions to

maximize their expected payoff against this distribution, so that the unperturbed dynamic

is a “local” version of the best-response dynamic.    As before, both “all A” and “all B”

are steady states; the difference is in how these steady states respond to mutations.  As in

Kandori-Mailath-Rob, mutations are modeled as the replacement of a player with a

newcomer who is equally likely to choose either action.

The key observation is that in the case of local interactions, the steady state “all

B” can be upset by a small number of mutations. In this case, it is easy to see that any

cluster of two adjacent agents playing A will spread and eventually take over the entire

population: each of the two agents in the cluster assigns probability at least 1/2 to his next

                                                
106 Ellison also considers the case of interactions with the 2K nearest neighbors.  His strongest results in this
case are in his [1995] paper.
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opponent playing A, and so sticks with A; moreover, each of the two agents on the

boundary of a cluster of A’s assigns probability 1/2 to his next opponent playing A, and

so switches from B to A.  This means that random events that shift the process from the

state “all B” to the basin of the state “all A” have an arrival rate of order ε −2 , independent

of the total population size N.  In contrast, in the “uniform-matching” model of Kandori,

Mailath and Rob, the arrival rate is ε α− *N .  This insight is not quite a proof, but it does

suggest why the  convergence speed will be much faster in the local interaction model.

Before discussing speeds of convergence, we should first check that, as in

Kandori-Mailath-Rob, the limit of the ergodic distribution as the mutation rate goes to

zero is a point mass on "all A".  We again apply the process outlined above.

Step 0:  The State Space

 Because location of the agents matters, the state space here is the set Θ = { , }A B N  of N-

vectors whose components specify the actions of the individual agents.

Step  1: The Deterministic Process

We begin by examining the deterministic system in order to compute the ω-limit sets of

the intentional adjustment process, and characterize their basins of attraction.  Note that

under the unperturbed dynamic, the number of players playing A can never decrease, for

if  j  players play A at date  t,  all of their neighbors play A at  t+1.  Moreover, a cluster of

two adjacent A's leads to “All A.”  Notice that in addition to the steady states “All A” and

“All B”, when N is even there is one other ω -limit set, namely the two-cycle between the

states  “ABAB...”, “BABA...”.  We can see that the  steady states and basins of attraction

of this process  are:

ω1)  “all B;” the basin of this state is simply the state itself.
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ω2)  (which only exists if N is even) is the two-cycle just mentioned. Its basin includes at

least the two states in the cycle

ω3) “all A; ” the basin of this state includes at least all states with 2 adjacent A’s; and any

state with a string “ABBA”

Step 2:  Adding mutations, it is a simple observations that the system is ergodic.

Step 3:  Computing the Limiting Distribution

To compute  ϕ* ,  compute  min min ( ( ( ))| )ω ωω
ω ω∈ ∈ ′∈ ′ ′Ω ΩΣh H c D h

r
.   Ellison shows that for

N even, the minimum cost is 2 , and that it is given by the ω − tree ω ω ω1 2 3→ → ; for N

odd the minimum cost is 1. In the case of N even, the costs of both  ω 2  given ω1  and that

of from ω 3  given ω 2   are 1.  Given ω1  (all B) a single mutation leads to “ABB...”; the

deterministic process then goes to the two-cycle  ω2.  From either point in the two cycle 

ω2  a single mutation then leads to a state with 2 adjacent A’s; the deterministic process

then goes to ω 3 .

We must now check that 2 is actually the minimum cost.  First note that there are

two other ω − trees with root ω 3 , ω ω ω2 1 3→ →  and

ω1 ω 2

ω 3

In both cases, the cost of ω 3  given ω1   is greater than one: a single mutation leads to the

cycle not the steady state at “all A,” so two mutations adding adjacent A’s are needed to

get into the basin of ω 3 .  In the first case we must add in the cost of ω1  given ω 2 , which
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is N/2 (since the number of A’s cannot decrease).  In the second case we must add in the

cost of ω 3  given ω 2 , which we already noted is 1.  In both cases, the cost exceeds 2.

Finally we must consider ω − tree  with roots ω1  and ω 2 .  We claim that (if N>4)

these have cost higher than 2.   Any ω1-tree must have path from  ω3  to  ω1;  since the

deterministic process never decreases the number of A’s, this cost is at least  N.   For the

same reason, cost of any  ω2-tree  is  N/2.  Thus the stochastically stable set is “all A.”

In light of Kandori-Mailath-Rob, this conclusion is not surprising, but one should

note that this dynamic and the Kandori-Mailath-Rob dynamic need not have the same

stochastically stable sets in  3x3 (or larger) games.  The reason for this is simple:  In the

two-neighbor model, the stochastically stable set is determined by the best response to the

6 possible configurations of neighbors, while the stochastically stable set with uniform

matching and a large population depends on how players respond to every mixed strategy

that can be generated by some state of the aggregate population.  As a consequence, the

stochastically stable set with uniform  matching may depend on the details of the payoffs

that do not matter in the two-neighbor model.107

Returning to 2x2 games, the interesting observation is that the convergence times

are faster under local interaction.  This is most easily seen in simulations:  supposing the

system  starts in state “all B” , how long does it take to get to state “all A” ?  This depends

on the payoffs (which determine  α*  and hence how many mutations are needed in

Kandori-Mailath-Rob) and also on  N  and on the probability ε of mutation.  Note that

with only 2 neighbors, all agents want to play A if they have at least one neighbor playing

A, so that the speed of convergence is the same for all values of α∗(<1/2).With more than

                                                
107 Ellison gives an example of this, based on an example of Young [1993] used to show how the
equilibrium selected under uniform matching can depend on the details of the payoff matrix.
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two neighbors, this is no longer the case, and convergence can be faster in games where

α∗  is smaller.

We now compare rates of convergence between the global and local interaction

cases for α* = 1/3.  In the Kandori-Mailath-Rob global interaction case with the best-

response dynamic, the expected waiting time until everyone plays A can be computed

analytically. They are displayed in the table below, where the entries are the expected

waiting time for passage from the state “all B” to the state “all A.”

By way of contrast, in the two neighbor local interaction case, the expected waiting times

until 75% of the population plays A with 2 neighbors can be found numerically from a

simulation

With 12 neighbors, rather than 2, we find the expected waiting time for 75% A

ε = .025 ε = .05 ε = . 1

N=50 1014 109 105

N=100 1 0 2 7 1017 109

ε = .025 ε = .05 ε = .1

N=50 11 8 6

N=100 11 8 6

ε = .025 ε = .05 ε = .1

N=50 460 46 11
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Ellison confirms these simulations with an analytic result.  Finite state Markov

processes always converge at an exponential rate given by the second largest eigenvalue

of the transition probability matrix (the largest eigenvalue is always 1).  Ellison computes

this eigenvalue to determine how rapidly the system converges from the initial condition

to the ergodic distribution.  For the Kandori-Mailath-Rob model Ellison shows that the

exponential rate is εα*N , which is intuitive, as this is the probability of the required

number of mutations.  In contrast, with 2 neighbor matching the exponential rate for

small ε  is approximately independent of  N, and is of order  ε .

5.6. The Radius and Coradius of Basins of Attraction

So far we have characterized the stochastically stable set using Friedlin and

Wentzell’s technique of constructing “trees” that link the limit sets of the unperturbed

stochastic process, assigning a cost to each ω − tree, and then determining which ω − tree

has the lowest cost. This approach has the advantage that it can in principle always be

applied, but it has two related drawbacks. First, the method may require that one

determine all of the limit sets of the unperturbed process. This determination was

straightforward in the systems Kandori-Mailath-Rob and Young considered, but can be

difficult in systems with a large number of limit sets. Second,  determining the least-cost

ω − tree can be a complicated graph-theory problem.   Recently, Ellison [1995] has

provided an alternative and much simpler sufficient condition for a set to be stochastically

stable. This sufficient condition is not necessary, so the technique is not useful in all

cases, but when it does apply it is has the additional benefit of yielding the rate of

convergence as well as the identity of the limit set.
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Ellison’s condition is based on two concepts, the radius and coradius  of a limit

set, which are defined in terms of the costs of various transitions.  We continue to use

ω ∈Ω  for ω -limit sets of the limit dynamic P , and D( )ω  for the basin of ω .  The

radius of ω  is just the cost of leavingD( )ω .  Let us also denote ~ \D D≡ Θ .  Formally,

R c D( ) (~ ( )| )ω ω ω≡ r

In the Kandori-Mailath-Rob model the least cost path away from a steady state is

a direct jump, that is, the path considered has only two elements, the initial state in ω  and

the subsequent state which is not in D( )ω .  This is true more generally if (i) the shocks

take the form of i.i.d. mutations, and (ii) in the basin of each limit set ω ,

min ( | )( )θ ω θ θ∉D tc  is non-decreasing under the limit dynamic. The first condition says that

we may simply measure cost by the number of mutations required to reach a given point,

so that, for example, the  cost of a three-state sequence which has two mutations in the

first period and one in the second is the same as the cost of a three-mutation transition.

Condition (ii)  requires that the deterministic dynamic cannot decrease the cost of getting

out of the basin. 

When the least cost path is a direct jump, the way to show that the radius equals

some particular r is to first exhibit a direct jump out of the basin with cost r, and then

argue that any direct  jump of lower cost must remain in D( )ω .

Intuitively, the radius measures how easy it is for perturbations to push the system

out of D( )ω , and hence captures the expected time the system remains in D( )ω  each

time this basin is entered.  From this perspective, the other datum we need is a measure of

how quickly mutations return the system to D( )ω  from states outside of it. 

The simplest such measure is the coradius of a limit set.  The coradius of ω , 

denoted  CR(ω ), is defined by

CR c( ) max ( | )ω ω θθ= r
.
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This expression will be used to give a bound on the wait until the system returns to D(ω )

that is useful in some applications, but the bound is not tight;  Section 5.7 discusses the

tighter bound given by the “modified coradius.”

Proposition 5.3 (Ellison [1995]):   If  there is a limit set ω  such that R(ω )> CR( )ω , then

very stochastically stable state is contained in ω .

proof: This is a consequence of the more general proposition 4.5 below.

As one application of this result, consider extending the sort of “Darwinian

dynamics” studied by Kandori-Mailath-Rob to symmetric, 2-player, MxM games as

follows: Say that the deterministic dynamic P  is “best-response-respecting” if

[ ( )]P i iθ θ>  whenever the ith pure strategy is a best response to the mixed strategy

corresponding to θ. This is a very weak form of monotonicity; it reduces to KMR’s 

“Darwinian” condition in 2x2 games.108  A symmetric equilibrium (A,A) is “p-dominant”

(Morris, Rob and Shin [1993]) if A is a strict best response to any mixed strategy that

places probability at least p on A.109  In 2x2 games 1/2 dominance is equivalent to risk

dominance;  in NxN games it is more restrictive than the pairwise risk dominance

notion110 proposed by Harsanyi and Selten.

Proposition 5.4:  If (A,A) is a 1/2-dominant equilibrium, then for all sufficiently large

populations the stochastically stable set obtained by perturbing any best-response-

respecting  dynamic is a point mass on all agents playing A.

                                                
108 Small but obvious modifications of the definition and of proposition 5.4 are required to handle the case
where each player responds to the distribution corresponding to the play of  the other N-1 agents in the
population.
109 Note that  p-dominance  for a given  p implies ′p  dominance for all ′ ≤p p .
110 One strategy pairwise risk dominates another one if it risk dominates it in the 2x2 game formed by
deleting all other strategies.
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Proof:  Since A  is ½ dominant,  the radius of “all A” is at least N/2. .  The coradius of

“all A” is bounded by the number of mutations required to directly jump to a point in the

basin of all A.  Because A is 1/2- dominant it suffices that the fraction of A’s be slightly

less than 1/2, which suggests that the coradius should be less than  qN for some q < 1 2/ .

 Due to the finite population size the least integer greater than qN may actually be greater

than (N-1)/2, but this can be avoided by taking N sufficiently large.

æ

This proof is essentially the same as that for the 2x2 case studied in Kandori-

Mailath-Rob.  Although the hypothesis could be weakened using the notion of modified

coradius discussed below, it is sufficient to include several results from the literature. 

First,  Kandori and Rob [1995] show that in pure coordination games the Pareto-optimal

equilibrium is selected; in such games the Pareto-optimal equilibrium is 1/2 dominant. 

Second,  Kandori and Rob [1993] consider symmetric coordination games with

the “total bandwagon property” that the best responses to any distribution are in the

support of that distribution (so that action A cannot be a best response to a distribution in

which all agents use B  or C)  and the “monotone share property” which says that if S’ is

a strict subset of S, then the (unique) mixed strategy equilibrium m S*( )  with support S

gives each pure strategy in S’  a strictly smaller probability than does the (unique) mixed

strategy equilibrium with support S’.   For generic payoffs, the only ω-limit sets in these

games are the states where all agents choose the same action. Kandori and Rob show that

their assumptions on the payoff functions imply that  the cheapest path from one  ω-limit

set to another is a direct jump  to the corresponding basin, as opposed to a path that first

jumps to some third equilibrium., so that the modified coradius and the radius are the

same. This allows Kandori and Rob to determine the stochastically stable equilibrium in

the case of three actions by explicitly solving for the least-cost ω − tree, but the
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minimization is too complicated to be solved in general. Instead, Kandori and Rob show

that if, in addition to their assumptions, there is a single equilibrium that pairwise risk

dominates all of the others, then that equilibrium is stochastically stable.  It  is

straightforward to check that the equilibrium in question must be 1/2 dominant.

Moreover, pairwise risk dominance and the total bandwagon property are enough to

imply 1/2 dominance; the monotone share assumption is not needed.

Third, Ellison’s analysis extends immediately to I-player games played by a

single population of players, provided that ½- dominance is extended to mean that action

A is ½-  dominant if it is a best response to any mixed strategy profile in which each

opponent gives probability at least 1/2 to A. (We should point out that we have not seen a

definition of 1/2-dominance for I-player games in the literature.) Note that this reduces to

the original definition in two-player games, because the payoff to action A against a

mixed strategy of the opponent is linear in the opponent’s randomizing probabilities.) 

This extension of 1/2dominance reveals the structure behind Kim’s [1993] analysis of 

symmetric I-person coordination games in which each player has only two actions.  In

contrast to two-player, two-action games, I-player two-action games need not have a 1/2

dominant action.  However, Kim assumes that a player’s payoff depends only on  his own

action and the total number of opponents playing the same action, and that the payoff to

using an action is increasing in the number of opponents that use it; this implies that there

are only two pure Nash equilibria, the ones in which all players play the same action. 

Moreover, the action that is the best response when each opponent randomizes 1/2-1/2 is

also the best response to any profile in which each opponent gives the action probability

at least 1/2; in other words that action is 1/2 dominant. In particular, except in one knife

edge case, one of the two pure equilibria in a game of this type must be 1/2 dominant. 
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This explains why Kim finds that the long-run equilibrium is the one that is 1/2 dominant

in the sense defined above.111

5.7. The Modified Coradius

The coradius gives an upper bound on the expected time until a return to ω , but a

tighter bound called the modified coradius is available, which turns out to be useful in a

variety of settings.  The insight behind the idea of the modified coradius is that the most

probable path from one basin of attraction to another need not involve jumps due to

perturbations in consecutive periods, provided that the intermediate points are themselves

steady states.  In this case the system may simply remain at the intermediate steady state

for a while, before moving on to the next steady state, and this is far more likely to

happen than two jumps in consecutive periods. 

With this motivation, we now define the modified coradius of a limit set.  Let

ω θ ω θ ω θ1 2( ), ( ),... ( )
r r r

I  be the sequence of limit sets through which the path 
r
θ  passes,

with the convention that a limit set can appear on the list several times, but not

consecutively. The modified coradius is just

CR c RD

t

i
i

I

t

*
( ) | ,

( ) max min ( | ) ( ( ))ω θ θ ω θθ ω θ θ θ θ ω τ ττ= −∉ = ∈ −=
=

−

∑ ∑r

r

0
11

2

1

.

Note that by construction CR CR*( ) ( )ω ω≤ .

The definition of the modified coradius involves several subtleties, all of them

linked to the fact that the modified coradius is only useful in obtaining a bound on the

worst-case expected waiting time. First of all, while the modified coradius provides a

                                                
111 Kim also shows that for this class of models, other dynamic adjustment procedures, for example rational
expectations with lock-in, leads to a different conclusion about which equilibrium is selected in the very
long-run.
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correct upper bound on the worst-case waiting time, the bound need not be tight.

Moreover, the modified coradius at limit sets ′ω  that are not maximizers of the

expression above does not bound the corresponding waiting time, nor does the modified

coradius give a correct bound at every ω where the maximum waiting time is obtained. 

We will not explain all of these complications here, but the following example should at

least indicate why the modified coradius may provide a better bound than the unmodified

one in some simple cases:

A B C

ε

ε 5ε 2

Here P P PBA AB BC= = =ε ε ε2 5, , , and c B A c A B c B C( | ) , ( | ) , ( | )= = =1 2 5 .  Consequently,

the coradius of C is the sum of cost going from A to C, equal to 7.  According to this

calculation, the amount of time to get from A to C should be on the order of ε −7 .  The

modified coradius subtracts from this the radius of B, namely 1, resulting in a cost  of 6,

suggesting a waiting time of ε −6 .  How long does it actually take to get from A to C in

this example?  The system has probability of ε 2  of moving from A to B.  Once at B it is

likely to remain for quite some time.  However, it is more likely to return to A than move

on to C.  Indeed, the system must return to A ε −4  times on average, before moving on to

C.  Each trip from A to B back to A  takes roughly ε −2 periods, so the length of time

before hitting C is roughly ε ε ε− − −=4 2 6 .   This is the calculation made by the modified

coradius. 

Proposition 5.5 (Ellison [1995]):   If  there is a limit set ω  such that R(ω )> CR*( )ω ,

then
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(a)  Every stochastically stable state is contained in ω .

(b) For any θ ω∉ , the expected waiting time until ω  is reached, starting at θ ,  is

of order (at most) ε ω−CR*( )  as ε → 0 .

Sketch of proof:   Let ϕε  denote the unique invariant distribution corresponding to an ε

perturbation.  For part (a), it is enough to show that  
ϕ θ
ϕ ω

εε

ε

( )

( )
→ →0 0 as  for all θ ω∉ .

 As a first step towards this goal, we claim that

(*)
ϕ θ
ϕ ω

θ ω θ
ω θ ω

ε

ε

( )

( )

{#= E of times   occurs before reaching  | }

E{#of times   occurs before reaching  |  }

where the  expectation in the numerator is with respect to the ergodic distribution.  The

distribution in the denominator is more complicated, as it requires using an expectation

over states in ω conditional on the state having entered the set ω ; fortunately all that will

matter about this distribution is that it can be bounded below uniformly over all

distributions on ω  . 

To see why (*) is correct, consider the auxiliary two-state (non-Markov) process

formed by taking realizations of the original process and mapping state θ  to state 1 and

every state in ω  to state 2, and omitting all periods in which other states occur.  For

example, if the original process is in state θ  in periods 1 and 2, in some state ′θ  outside

of ω  in period 3, in ω  in periods 4 and 5, and in state θ  in period 6, then the first 5

realizations of the auxiliary process are (1,1,2,2,1...).  The relative frequency of 1’s and

2’s in the auxiliary process is the same as the relative frequency of θ  and ω   in the

original one, and moreover in the auxiliary process these relative frequencies are simply

the relative sizes of the run lengths.

Examining equation (*), the numerator of the RHS is at most the waiting time to

reach ω  from θ  and the denominator is bounded below by a non-vanishing constant
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times the minimum over states in ω  of the expected waiting time to reach a state outside

of D(ω ).  Thus the proof of both parts of the theorem boils down to showing that the

waiting time to leave D(ω ), starting in ω , is approximately  ε ω− R( ) , while the waiting

time to reach ω  is of order ε ω−CR*( ) . 

We will not prove these facts here, though the proof of the first is not hard. We

recommend instead that the reader check them in simple 2 or 3 state examples.

æ

As a final application, suppose that a game with a 1/2-dominant equilibrium is

played in a model of local interaction on a two-dimensional lattice.  Specially, consider an

N N1 2×  lattice on the surface of a torus, and suppose that the limit system P  is given by

each player choosing the strategy that is a best response to the distribution of strategies

used by his four immediate neighbors in the previous period.112  Unlike Ellison’s one-

dimensional model, this system has a large number of steady states. Define a vertical

stripe to be a location in the first dimension such that all players at that location play the

same strategy.   If there are only 2 actions, A and B, with A being 1/2 dominant, then any

state formed of  vertical stripes is a steady state provided that there are at least 2 adjoining

B-stripes between each A-stripe.  We can similarly form equilibria consisting of

horizontal stripes.  Yet another type of steady state is for all players play B except for 2x2

rectangles of players playing A surrounded by opponents playing B.

Now consider perturbing the dynamic with the now-familiar stochastic

replacements: each period each player being replaced with i.i.d. probability ε.  What is the

stochastically stable set?  This model, unlike the one-dimensional model of Ellison

[1993], does not have the “contagion” property, where a one-time occurrence of a few

                                                
112 As in previous papers on local interaction , for example, the Ellison [1993] paper discussed earlier, and
Blume [1993]  who studied the play of 2x2 games in an infinite two-dimensional lattice, this assumes that
players are constrained to use the same action when paired with each of their neighbors.
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mutations (only 2 in the 2-neighbor model) is enough to send the system from “all A” to

“all B.”  Instead, starting from “all B”, four simultaneous adjacent mutations sends the

system to a steady state with a 2x2 rectangle of A’s. Clearly, the program of first

determining all of the limit sets of this dynamic, and then finding the least cost ω − trees

that connect them, would require a great deal of computation.  However, Ellison shows

that the limit distribution is a point mass on all players using the 1/2-dominant action and

moreover the expected waiting time is of order ε−3 , where “3” is the modified coradius of

all A.

This shows that the fast convergence times of the one-dimensional model do not

require that model’s property of contagion. Instead, “fast convergence” obtains because

the system can move from all B to all A by a sequence of jumps from one steady state to

another, with each jump having  waiting time at most ε−3 .  This suggests that, ceteris

paribus, convergence times will be quicker in models with many intermediate steady

states than in models where direct jumps between pure strategy equilibria are the quickest

paths.

5.8. Uniform Random Matching with Heterogeneous Populations

 Kandori, Mailath, and Rob [1993] considered a single homogenous population of

agents playing a 2x2 symmetric game.  As we saw, in that model the stochastically stable

outcome is the risk-dominant equilibrium for any “Darwinian” adjustment dynamics.

However, KMR acknowledge that that this robustness to the specification of the

adjustment dynamics does not extend to the case where there are distinct populations of

player 1’s and player 2’s, a case analyzed by Hahn [1995].
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Hahn’s model follows Kandori-Mailath-Rob in every detail except that he

assumes there are two populations and  allows the game played to be asymmetric. Recall

in Kandori-Mailath-Rob the two actions are denoted A and B  Hahn defines the state

space so that the state θ θ θt t t= ( , )1 2  at time t  is now the number of agents in each of the

two populations who are playing A. .  Following Kandori-Mailath-Rob,  Hahn assumes

that the unperturbed dynamic has the following form:

θ θt
i

i tP+ =1 ( )   =θ θt
i i

t
if+ −( ) ,

where the f i  are monotone increasing and satisfy sgn( )f i =sgn ( , ) ( , )u A u Bi
t

i i
t

iθ θ− −−2 7 . 

We refer to a system satisfying this condition as monotone.

Continuing to follow Kandori-Mailath-Rob, suppose that the game has two strict

equilibria and an equilibrium in mixed strategies, denoted ( , )*1 *2α α .   Since there are

two populations, though,  the system has two dimensions, and not one, with two stable

steady states corresponding to the pure strategy equilibria and an unstable saddle at the

mixed equilibrium. One expects that this since this equilibrium is unstable it should have

probability 0 in the ergodic distribution; to simplify Hahn suppose that the equilibrium

mixing ratios cannot be attained in any state.113

As throughout this chapter, the long run behavior of the perturbed system with

very small mutation rates is determined by computing the number of mutations required

to jump in and out of two basins.  Moreover, for monotone systems, the  lowest-cost

transition is the immediate one:

Proposition 5.6: (Hahn [1995])  If the deterministic dynamics is monotone the lowest

cost  transition from one equilibrium to the basin of the other is to immediately jump to a

state in the basin of the “target” equilibrium.

                                                
113  Since there are only finitely many agents in each population, this assumption is satisfied for generic
payoffs. 
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In other words, to determine the stochastically stable outcome we need only

determine the basins of the two equilibria, and compute the minimum distance of each

state corresponding to a pure-strategy equilibrium to the basin of the other.  At this point 

the difference with the one-population model  emerges: in the one-dimensional system  d,

the basins of the two equilibria under any Darwinian dynamics are the sets θ θ α| *< N< A
and θ θ α| *> N< A . In contrast, even strengthening the  “Darwinian” assumption to the

monotone assumption does not pin down the location of the basins in the two-

dimensional case corresponding to two populations of players.114  This can easily be seen

by reference to the figure below

(1,1)

(N,N)

The Darwinian assumption implies that the lower left-hand region lies in the basin of

(0,0), where all players play B and that the upper right-hand region lies in the basin of

(N,N) where all players play A, but it does not pin down the eventual destinations of

paths that start in the other two regions.  In the upper left-hand box, for example, all

                                                
114In a similar paper, Romaldo [1995] notes that the Darwinian assumption does not determine the basins of
attraction  in one-population models with 3 or more actions per player.
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trajectories have θ1  increasing and θ2  decreasing, until the first time that either

θ αt N1 < *  or θ αt N2 > * , but which if these occurs first depends on the relative speeds of

adjustment of the two components of the state variable in this region.  Moreover, the

details of this specification can matter for the long-run outcome, as the shortest path from

(0,0) to the basin of (N,N) need not be along the diagonal  connecting the two equilibria 

As an example of the possibilities this generates, suppose that both populations adjust

faster towards strategy A when A is optimal than they do towards B when B is optimal:

θ θ β θ α
θ θ β θ α

t
i

t
i A

t
j j

t
i

t
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t
j j
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*
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with β βA B> .  Then if the game is symmetric (or nearly so) the stochastically stable

outcome is the state (N,N) where all agents play A.  This change in the basin when the

adjustment rates change is illustration below:

(1,1)

(N,N)
basin boundary
with slow
adjustment to A

basin boundary
with rapid
adjustment to A

Hahn’s focus is on asymmetric game like battle of the sexes, in which player 1 prefers the

equilibrium (A,A) and player 2 prefers (B,B). He gives an upper bound on the relative
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speeds of adjustment that is sufficient for the equilibrium selected to be invariant to other

 details of the dynamic.

5.9. Stochastic Replicator Dynamics

As we remarked in the introduction to this chapter, the evolutionary games

literature traditionally considers only deterministic systems, with “mutations” being an

unmodeled explanation for restricting attention to stable steady states. If one believes that

“mutations” are real and recurring, phenomenon, it might seem more appropriate to

include them explicitly in the model.  From this viewpoint, an obvious way to study the

effects of stochastic shocks is to introduce a stochastic term into the standard replicator

equations, and indeed the first paper to study a stochastic adjustment model, Foster and

Young [1990], did exactly that.

As noted by Fudenberg and Harris [1992],  there is an important   difference

between stochastic replicator dynamics and the finite-population models discussed earlier

in the chapter: If the noise has continuous sample paths, the evolutionary system will too.

Consequently, the “cost” of transitions between the basins of various equilibria, and thus

the nature of the long-run distribution, can depend on the “strength” or size of the “flows”

(that is, the deterministic part of the dynamics) and not just on the directions of

movement. This contrasts with  the finite-population  models discussed so far,  where the

transitions can occur by  “jumps”, and  the costs of transitions depended on the shapes of

the various basins but does not depend on the exact specification of the deterministic

process within  the basins.  In the analogy used by Fudenberg and Harris,  the various ω-

limit sets can be viewed as “ponds,” with the deterministic process corresponding to

various streams of water. In the models driven by many simultaneous individual
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mutations, the state moves from one pond to another by “jumping upstream” over  the

flow, so the strength or speed of the stream does not matter; in models with continuous

sample paths, the state must “swim” against the flow, and the identity of the

stochastically stable set is determined by comparing the relative size of expressions that

involve integrals of both the noise and deterministic forces.

Foster and Young [1990] start with the single-population replicator model, and

add a Wiener process with no cross-covariance and a general state-dependent variance to

arrive at the system of stochastic differential equations of the general form

d s s u s u s dW st t t t tθ θ σ θ( ) ( )[ ( ) ] ( | ) ( )= − +

where each W k( ) is a standard Wiener process, and, as in chapter 3, the arguments of the

variables denote the actions.

If the variance functions σ θ( | )s  do not shrink quickly enough as the boundary is

approached then solutions to this system have positive probability of hitting the boundary

of the state space in finite time, so that the boundary behavior of the system matters.  

Foster and Young specify that the system has instantaneous reflection at the boundary.115

They then give a general description of how to compute the limit of the long-run

distributions as the variances of the Wiener processes shrink to 0, and use it to argue that

in the case where the σ θ( | )s  are constant, the distributions in 2x2 coordination games

converge to a point mass on the Pareto-efficient and risk-dominant equilibrium.116

                                                
115 Roughly speaking, instantaneous reflection in a continuous time stochastic system means that when the
system hits the boundary, it continues to move with the same speed, but discontinuously reverses the
direction with which it hit the boundary.
116 In symmetric 2x2 coordination games, the risk dominant equilibrium must also be Pareto dominant. 
Unfortunately Foster and Young’s proof of the general result cites a chapter of Freidlin and Wentzell which
does not apply to their problem. In a private communication, Foster and Young have indicated that they are
preparing a new proof that relies on  another source.
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Instead of adding stochastic terms directly to the replicator equations for

population shares, Fudenberg and Harris [1992] take a different methodological

approach, and add the stochastic terms to the equations governing the absolute population

sizes, and then derive the corresponding equations for the evolution of population shares.

 That is, they start with the standard deterministic equations

& ( ) ( ) ( , )φ φ θt t ts s u s=

for the evolution of population size117, and then suppose that the payoff to strategy s at

date t is given by u s dW st t( , ) ( )θ σ+ , where the W  are independent standard Wiener

processes; for notational simplicity we set the variance coefficient to be the same for each

strategy.

The resulting stochastic differential equation then becomes

d s s u s dt s dW st t t t tφ φ θ φ σ( ) ( ) ( , ) ( ) ( )= + .

The formulation using payoff shocks  has the advantage of being consistent with a

nonnegligible amount of noise in models with continuum of agents, while i.i.d shocks to

individual agents might be expected to become almost deterministic in the aggregate as

the population becomes large, just as the transition and convergence times in Kandori,

Mailath and Rob [1993] grow exponentially with the population size.118 As we see below,

                                                
117 As we discussed in chapter 3, this formulation allows the possibility that payoffs and hence population
growth rates may be negative, but the growth rate in the replicator dynamics can be thought of as the net
difference between births and deaths.
118 While we emphasize that some form of correlation seems necessary to explain nonnegligible noise in a
model with a continuum of players,  Binmore, Samuelson and Vaughn [1993] note that a stochastic
differential equation can be used to approximate the limit of the long-run distribution of a discrete-time,
finite-population model in which only one agent moves at a time, so that the limiting sample paths are
continuous.  The stochastic differential equation arises when the limit is taken in the following order: first
time goes to infinity,  then period length goes to 0, then population size grows to infinity, and finally a
mutation rate goes to 0.  The resulting stochastic differential equation is then not used to model a situation
with nonnegligible noise, but only to compute the long-run limit of the system as the noise become
negligible. 
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this formulation, in which  variations in play are caused by variations in payoffs, can have

very different implications than the “mutations” of KMR;  it is not clear to us that either

source of noise should be expected to always overwhelm the other one.

The stochastic system for the evolution of population shares can be derived by

applying Ito’s lemma applied to the function

θ φ
φi

s

s
s

s
( )

( )
( )

=
′′∑

.

This yields, in the 2x2 case, the equations

 d stθ ( ) = θ θ σ θ θ σt t t t t t ts s u s u s dt s s dt dW( ) ( ’) ( ( ) ( ’)) ( ( ( ’) ( ))
~− + − +2 2 ,

where 
~

W  = ( ( ) ( ’)) /W s W s− 2σ  is another standard Wiener process.

Observe that the deterministic part of the system (the coefficient of dt) is not the

same as in the deterministic replicator dynamics, but includes an additional term

corresponding to the weighted difference of the variances. In addition, when the shocks to

the underlying payoff process have a constant variance, the shocks to the population

shares have variance that shrinks as the boundary is approached, and it is easily seen that

the boundary is never reached in finite time, so that the boundary behavior is irrelevant.

This should be intuitive: regardless of the realization of the payoff shocks, and of the

resulting absolute sizes of the population using each strategy, the share of each strategy is

by definition nonnegative.

Fudenberg and Harris solve for the long-run behavior of this system in 2x2

games.119  If the game has 2 strict equilibria, the system is not ergodic. Rather, the system

converges with probability 1 to one of the two pure equilibria, but the relative

                                                
119In contrast to most  of the papers discussed in this chapter,  the results in Fudenberg and Harris are not
based on the perturbation methods of Freidlin and Wentzell, but rather on an analysis of stochastic
differential equations by Gihman and Skohorod [1972]. Unfortunately that analysis becomes very difficult
in higher-dimensional systems, so it may not prove as useful in further work.
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probabilities depend on the initial condition.  Intuitively, because the replicator dynamics

says that the absolute growth rate of a small population must be small, the assumed

shocks to payoffs do not do very much to perturb the population shares in the

neighborhood of a point where almost everyone is using the same action.

 Fudenberg and Harris go on to consider a further modification of the replicator

dynamics intended to capture the effects of a deterministic flow of mutations (or more

generally an inflow of new players),  as in Boylan [1994].  This flow serves to keep the

system from approaching the boundaries, and  thus makes the system ergodic.  Moreover,

the ergodic distribution can be found by calculating an integral which depends on the

strength of the flow and the variance of the system  (see for example Skohorod [1989]).  

In 2x2 games with 2 strict equilibria, the limit of the ergodic distribution as the variances

of the payoffs and the flow of “mutations” both go to 0 is a point mass on the risk-

dominant strategy.  While this seems to demonstrate the robustness of the Kandori,

Mailath, and Rob result,  the degree of confirmation implied may be less than it appears

since the equilibrium selected depends on the strength of the flows of  the unperturbed

adjustment process at each state and not only on the direction of adjustment.   More

precisely, there are many “Darwinian” processes with the same basin of attraction as

replicator dynamic that select the risk-dominated  equilibrium; an easy but artificial

example is  a process with very rapid adjustment in the basin of the dominated

equilibrium and very slow adjustment in the basin of the dominant one.

Cabrales [1993] extends Fudenberg and Harris’ analysis to general n-player

games, and shows that even the stochastic replicator dynamics need not select the

equilibria with the largest basin of attraction in symmetric one-population models of

games with more than two players.   The proof follows from computing the integral

alluded to above. The technical reason that the answer here is different is that the payoff
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to a given strategy is a linear function of the population fractions in a two-player game,

but with more than two players its is a higher-order polynomial.  To obtain a  more

satisfactory explanation, we must relate this observation to the foundations of the models.

 The driving force in the models we discussed in previous sections is the probability that

enough players simultaneously “mutate” that the remaining players wish to switch as

well.  Since the fraction required depends only on the size of the basin, the size of the

basin determines the stochastically stable outcome. In contrast, the driving force in

models with shocks to payoffs  is the probability of a sufficiently large change in payoffs

that players choose to change their action. In a symmetric two-player game, these two

criteria are identical because payoffs are linear in the population fraction playing each 

action but in n-player games payoffs are polynomial in the population fraction playing

different actions.

To get an intuition about why the polynomial dependence of utility on population

fractions makes a difference, consider the “Stag-Hunt” game, where the two strategies are

“Hare,” which pays 1 regardless of opponents’ play, and “Stag,” which pays a > 1 if all

opponents play Stag, but pays 0 otherwise.120 If there are only two players, the Pareto-

dominant equilibrium “All Stag” is risk-dominant if and only if a > 2 ; but for any a > 2

“All Hare” is risk dominant if the number of players n is large enough that a n< −2 1 .  Now

consider the simple case where only the payoff to “all Stag” is stochastic, and where  the

fractions playing Stag and Hare are bounded below by ε εs H, >0 due to the inflow of new

players.  At the state “all Stag”, the payoff  to “Stag” is a H( )1− ε  and the payoff to Hare

is 1, so the payoffs would need to change by a H( )1 1− −ε  to make Hare the optimal

choice. At the state “all Hare,” the payoff to Hare is 1, and the payoff to Stag is  a Sε , so

                                                
120 In Rousseau’s story, all players must work together in order to catch the stag. This game is very similar
to the example of a team problem that Cabrales used in his paper
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payoffs would need to change by 1− a Sε to make Stag optimal. Thus, regardless of the

number of players, the change in payoffs required for a shift from Stag to Hare is larger

than that for the reverse shift  iff a aH S( ) ( )1 1 1 0− − − − >ε ε , e.g. if

a a H s− > −2 ( )ε ε ≈ 0 .  This highlights the differing effects of the sources of noise in the

two formulations.
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APPENDIX 1: REVIEW OF FINITE MARKOV CHAINS

We consider discrete-time, finite-state Markov processes with Markov transition

matrix P.   Then if θ ξ, ∈Θ , the element  Pθξ of this matrix  is the probability that the

state  is θ  at date t+1 conditional on the state being ξ  at date t.  With this convention,

probability distributions over states are represented by column vectors ϕ , and

ϕ ϕt tP+ =1 .  Note that this system is “autonomous” or “stationary” meaning that P does

not depend on the time t.   This rules out processes such as fictitious play where the step

size shrinks over time..

What can be said about the long-run behavior of the system?  Under certain

conditions developed below, this behavior is described by its “invariant distribution.”  We

say that ϕ  is an invariant distribution if Pϕ ϕ= .

Every finite Markov chain has at least one invariant distribution  (P  is a

continuous operator on the compact convex set  ∆(Θ ))  but in general this distribution

need not be unique.  Consider, for example, the deterministic process corresponding to

the Markov operator  P = I  (the identity matrix).  Here every probability distribution is

an invariant distribution.  Notice however, that only the point masses on a single state

make sense as descriptions of the long-run behavior of this system; the other invariant

distributions are rather descriptions of which beliefs would be “stable” (constant over

time) for an outside observer whose initial beliefs are exogenous and who cannot observe

the system itself.

This example shows that some conditions are needed in order to be able to

interpret the invariant distributions as sensible descriptions of long-run behavior. A

system is ergodic if it satisfies all of the following three conditions:

1)  The invariant distribution $ϕ  is unique.

2)  Convergence of time averages
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 lim ( / ) ( ) $ ( )T tt
T→∞ = =∑1 1 θ θ ϕ θ  almost surely

where the indicator function 1( )⋅  is equal to one if the condition is true, zero otherwise.

3)  Convergence of the date-t distributions:

∀ =→∞ϕ ϕ ϕ, lim $
t

tP .

Some examples will help clarify the implications of these conditions.  Looking

first at the uniqueness of an invariant distribution, suppose that

P =
�
! 

"
$#

0 1

1 0

This system cycles back and forth between the two states.  It also has the unique invariant

distribution $ / , /ϕ = 1 2 1 2 .  The sense in which this is a good description of long-run

behavior is given by properties (2) and (3).  Property (2), the convergence of the long-run

average, means that the system spends half of its time in each state.  This property is

satisfied by the example.  Property (3) would mean that even if the initial state is known

perfectly, beliefs about the state at a sufficiently far distant time are 50-50.  This property

is not satisfied by the example:  if the initial condition is known, then it is possible to

predict exactly where the system will be at each future time, since it is deterministic.

Two examples show how a system that is not ergodic may be perturbed

slightly so that it is.  The first is a perturbation of the identity map,
1

1

−
−

�
! 

"
$#

ε ε
ε ε

which can be described as a persistent state:  the system tends to remain in the current

state, but has a slight chance of moving to the other state.  The second is a perturbation of

a deterministic two-cycle

ε ε
ε ε

1

1

−
−

�
! 

"
$#
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which can be described as a near cycle.  This system cycles (switches to the other state)

with high probability, but with a small probability it instead remains in the current state. 

Although it may not be immediately obvious, both of these systems are ergodic.

Taking their ergodicity as given for the moment, notice that these examples show

that even if the system is ergodic, the beliefs of a  player who observes the system as it

evolves need not correspond to the ergodic distribution:  In particular, while condition (3)

says that knowing yesterday’s state does not help with forecasting the system’s long-run

behavior, knowing yesterday’s state can help forecast today’s, as it does in the two

examples here. Put differently, convergence to the invariant distribution does not imply

the convergence of the time-t distributions over outcomes conditional on history until that

point, but only the convergence of the unconditional  distributions.

The easiest sufficient condition for ergodicity is the “strict positivity” condition

that P > 0 .  The two examples above satisfy this condition, as do most of the models in

this chapter. A weaker sufficient condition is Pn > 0  for some n.  Another condition

weaker than strict positivity is that there is a state that can be reached from any other

state, and such that when this state is reached, there is a positive probability of remaining

there the next period.  That is,

(1)  there exists a state θ  such that for any ′θ  there exists a time n such that Pn2 7θθ ′
> 0 .

(2)  Pθθ > 0 . 

This condition may be understood in terms of the notion of a recurrent class,

which  is a stochastic analog of the  invariant sets of the deterministic theory: A subset of

states is recurrent if it has the property that once it is reached, the state must remain in the

set with probability one.  A recurrent class has the stronger property that it is a minimal

recurrent set.  Property (1) above implies that there is only one recurrent class, since
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recurrent classes must be disjoint, and all contain the special state θ .  Property (2)  says

that there is a positive probability of remaining in this state from one period to the next. 

This rules out deterministic cycles, and leads to the conclusion that the recurrent class is

“aperiodic.”

More generally, if there is a unique recurrent class, then there is a unique invariant

distribution and this is sufficient for the time averages to converge.  Consequently the

first two conditions for ergodicity are satisfied.  (In some treatments, ergodicity is defined

by the first two conditions alone.)  The addition of the condition that the recurrent class is

aperiodic assures that the distant future is not terribly sensitive to current conditions, a

condition known as mixing, and this leads to the final condition for ergodicity, the

convergence of the long run distribution.

An example shows how the weak condition may be satisfied even when the

transition matrix is not strictly positive. Consider two sequences of short-run players

playing a 2-player game; each individual plays only once, but knows play in past  K 

periods.  Each player i “intends” to choose the strategy  that maximizes his expected

payoff against the distribution corresponding to the last  K  periods of play.  The realized

strategy is the intended one with probability  1-ε,  and some fixed strategy $si  with

probability  ε.  Here the state is the realized strategy profiles in the last  K  periods, so that

not all transitions are possible in a single period: for example, the transition from a

history of both players always playing “1” to a history of both players always playing “2”

is impossible in a single period. Moreover, if  ( , )* *s s1 2  is a profile of strictly dominated

strategies, the state has probability 0 of being to “K observations of ( , )* *s s1 2 ”  in any

period after the first.  However the state “K observations of ( $ , $ )s s1 2 ” satisfies the 2-part

condition for ergodicity given above.
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Appendix 2: Stochastic Stability Analysis

The basis of proposition 5.2 is the following result of Freidlin and Wentzell,

which characterizes the invariant distribution of any finite-state irreducible Markov chain

in terms of the trees defined in the text, where here the trees include all states θ and not

just that are the ω-limit sets of some (as yet unspecified) deterministic system. Let

( ’, ")θ θ θ∈h  mean that the tree hθ  has a transition from θ ’ to θ" .

Lemma 3.1: (Freidlin and Wentzell [1982])  If Q is an irreducible finite-dimensional

matrix, the unique invariant distribution µ of Q  is given by

µθ
θ

θθ

=
∑

Z

Z ’’

, where

 Zθ =  Q
hh H θ θθ θ θθ θ " ’( ’, ")∈∈ ∏∑ , and Hθ  is the set of all tress with root θ.

The proof of this lemma is not very revealing, as it consists of simply verifying

that the distribution constructed is indeed invariant.  Intuitively, the reason that the

formula involves a sum over all the hθ -trees is that each ω − tree represents one way that

the state might arrive at θ; each path is then weighted by its probability. Of course, the

weight attached to a transition from θ ’ to θ depends on the probability of  θ ’ as well as

on the conditional probability of the transition, which is just another way of saying that

invariant distribution is a fixed point. A brute-force computation of the distribution would

involve inverting the matrix Q  ̧ and thus introducing a term corresponding to 
1

det( )Q
;

this corresponds to the summation in the denominator of the expression for µθ .

With lemma 3.1 in hand, we now turn to our case of  interest, where the perturbed

matrices Pε  play the role of the irreducible matrix Q,  so that the transition probabilities

Q ′θ θ  are approximately kθ θ" ’ ε θ θc( "| ’) , where the kθ θ" ’ are independent of ε. Inspecting the 
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formula µθ
θ

θθ

=
∑

Z

Z ’’

 shows that the support of the limit distribution will be concentrated

on the states θ for which Zθ  is the lowest order in ε. Furthermore, the order of

Zθ =  Q
hh H θ θθ θ θθ θ " ’( ’, ")∈∈ ∏∑ = ∑

∈∈ ∏∑ ∈k
hh H

c
h

θ θθ θ

θ θ

θθ θ

θ θ θε" ’( ’, ")

( "| ’)
( ’, ")

will be determined by the lowest-order elements in the summation,  so

o Z h H

c
h( ) arg min

( "| ’)
( ’, ")

θ

θ θ

θ θ

θ θ θε= ∑
∈

∈

Thus we conclude that the limit distribution is concentrated on the states whose trees

have the lowest cost.

This formula, while correct, requires one to consider all of the states of the

process; part of the appeal of Proposition 5.2 is that it shows that it is sufficient to build

trees whose elements are the ω-limit sets of the unperturbed process P. It is easy to see

that if state θ ’ is in the basin D( )θ  of state θ  under P,  then transitions from θ ’ to θ have

cost 0, and can be ignored in computing the minimum.  Therefore, if we construct a tree

on the ω-limit sets whose cost is min min ( ( ( ))| )/ω ω ωω
ω ω∈ ∈ ′∈ ′ ′Ω ΩΣh H c D h

r
, we can

construct a tree of the same cost over all the states adding an initial step in which every

state θ is  mapped to its ω-limit. The final step is to verify that no other tree on the whole

state space can have lower cost than min min ( ( ( ))| )/ω ω ωω
ω ω∈ ∈ ′∈ ′ ′Ω ΩΣh H c D h

r
; this done by

a straightforward but tedious “tree surgery” argument that we will omit.
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6. Extensive form games and self-confirming equilibrium

6.1. Introduction 

 So far, we have  limited attention to simultaneous-move games, where a player’s

strategy is simply a choice of a single uncontingent action.  In such games, it is natural to

assume, as we have done, that at the end of each play of the  game each player observes

the strategies used by each of his opponents.  We now wish to consider learning in  non-

trivial extensive form games.  The most natural assumption in many such contexts is that

agents  observe the terminal nodes (that is, outcomes) that are reached in their own plays

of the game,  but that agents do not observe  the parts of their opponents’ strategies that

specify how the opponents  would have played at information sets that were not reached

in that play of the game.121  The only setting we can imagine in which players observe

more information than the realized terminal node is if the players are forced to write

down and commit themselves to contingent plans, and even in that case the most natural

interpretation is that the game has been changed to one in which the “actions” are

commitments to strategies of the original game.  On the other hand, in many settings,

players will not even observe the realized terminal node, as several different terminal

nodes may be consistent with their observation. For example in a first-price sealed-bid

auction, players might observe the winning bid but not the losing ones.  We say more

about this possibility below.  In large population settings, we will also assume that agents

observe no signals at all  about the outcomes of matches they do not participate in. This is

the case in most game theory experiments, but it is less compelling as a description of

                                                
121 Recall that each terminal node is associated with a unique path through the tree, and so with a unique
sequence of actions.
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real-world games, as in many cases agents may receive information about  the outcomes

in other matches.

Given that players  do not observe play at unreached information sets, it is

possible for the observed outcome to converge while the players maintain incorrect

beliefs about off-path play.  As a result,  the learning process can converge to outcomes

that cannot be generated by any Nash equilibrium of the game.   We first illustrate this in

section 6.2 with an example.  After setting up the basic notation of an extensive form

game in section 6.3, we recapitulate the simple learning model of chapter 2  in the

extensive form setting in section 6.4.  Section 6.5 introduces a weakening of Nash

equilibrium, self-confirming equilibrium, that allows differences in beliefs off the

equilibrium path.  The stability of this concept of equilibrium in the basic learning model

is explored in section 6.6.  In section 6.7 we further weaken the notion of self-confirming

equilibrium to allow the possibility that when there is a large population of players who

share a single role different players who play the same role may have different beliefs off

the equilibrium path.

We also consider several possible ways of strengthening self-confirming equilibrium.  In

section 6.8 we consider the possibility that opposing players randomize (or “tremble). 

The resulting notion of consistent self-confirming equilibrium is relatively close to Nash

equilibrium; we consider the exact connection in section 6.9.  Finally, players may know

(or be fairly confident of) one another’s payoffs.  and use this knowledge to deduce 

restrictions on the likely play of their opponents; for example, that their opponents will

not play dominated strategies.  This leads to the notion of rationalizable self-confirming

equilibrium, a notion we explore in section 6.10.
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6.2. An Example

The possibility of non-Nash outcomes  persisting in the long run is illustrated in

the following example from Fudenberg and Kreps [1988].

Example 6.1 [Fudenberg and Kreps]:  In the three player game illustrated in Figure 6.1,

player 3 moves last, and cannot tell whether he has the move because player 1 played  D1,

 or because player 1 played  A1  and player 2 played  D2. 

1 2

3

A1

D1 D2

(1,1,1)

(3,0,0) (0,3,0) (3,0,0) (0,3,0)

L RL R

A2

Figure 6.1

 Suppose that player 1 expects player 3 to play  R  with probability exceeding 2/3, and

player 2 to play A2
 with high probability, while player 2 expects player 3 to play  L  with

at least this same 2/3 probability. and expects player 1 to play A1 .122 Given these beliefs,

                                                
122 For a more precise specification, suppose that players 1 and 2 form and update their beliefs as follows.
Player 1’s prior beliefs over the mixed strategies of players 2 and 3 are given by
Prob[ ( ) , ( ) ]π π2 2 3

100 100A p R q p q≤ ≤ = ; player 2’s beliefs are given by 

Prob[ ( ) , ( ) ]π π1 1 3
100 100A p L q p q≤ ≤ = . Given these beliefs, player 1 assigns marginal probability

100
100

101
100

0

1
q dq =I  that 3 chooses R, and assigns this same probability to player 2 choosing A2 ; player 2 
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it is myopically optimal for players 1 and 2 to play  A1  and  A2,  and the first-period

outcome will be  (A1,A2).   Moreover, provided that player 1’s initial beliefs about the

play of players 2 and 3  are independent (that is,  are a product distribution), the observed

outcome gives player 1 no reason to change his beliefs about the play of player 3–player 1

becomes all the more convinced that 2 plays A2.  Likewise, if player 2’s initial beliefs are

a product distribution, player 2’s beliefs about player 3 remain unchanged as well. 

Consequently, the outcome in the second and subsequent periods will also be (A1,A2) , so

 that this outcome is  a steady state.  However, it is not a Nash equilibrium outcome: 

Nash equilibrium requires players 1 and 2 to make the same (correct) forecast of player

3's play, and if both make the same forecast, at least one of the players must choose  D.

This example shows that learning can lead to non-Nash steady states unless there

is some mechanism that leads players to have correct beliefs about off-path play. In this

chapter  we will focus on settings without such mechanisms, so that Nash outcomes

cannot be expected.  In the next chapter  we examine  one important  reason why such

off-path learning might occur: players might not be myopic, and consequently might

choose to “experiment” with off-path actions that have a lower current period payoff in

order to gain information that can be used in future plays.   It is also possible that,  players

 learn about off-path play from on-path observations if they believe on-path and off-path

play are sufficiently correlated.  While we do not wish to rule out such correlation, we do

not wish to assume it, as we are not convinced that it is more reasonable than the opposite

                                                                                                                                                
assigns probability 100/101 to the event that 1 plays A1  and assigns this same probability to 3 playing L.

Consequently the myopic best responses for players 1 and 2 are A1  and A2 , and this is the first-period

outcome.  Moreover, given the product structure of the beliefs,  neither player 1 nor player 2 is led to
change their beliefs about player 3, so the outcome is a steady state.  Section 6.3 gives a more general
discussion of the extension of fictitious play to extensive form games.
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polar case of independent beliefs. We will discuss this point further when we revisit

example 6.1

6.3. Extensive Form Games

We will examine extensive form games with I players;  the game tree X, with

nodes x X∈ , is finite.  Terminal nodes are z Z∈ .  For notational convenience, we

represent nature by player 0, and suppose that Nature moves only at the initial node of the

tree.  Information sets, denoted by h Hi ∈  are a partition of X Z\ .  The information sets

where player i has the move are denoted by H Hi ⊂ .  The feasible actions at information

set h Hi ∈  are denoted A hi( ) .   We continue to  use −i  for all players except player i , so

that for example H i−  are information sets for all players other than i.  A pure strategy for

player i si, , is a map from information sets in H i  to actions satisfying s h A hi i i( ) ( )∈ ; S i

 is the set of all such strategies.;  mixed strategies are σ i i∈Σ . Each player except nature

receives a payoff that depends on the terminal node, denoted r zi ( ) .

In addition to mixed strategies, we define behavior strategies π i i∈Π .  These are

probability distribution over actions at each information set for player i.  For any given

mixed strategy  σ i  for player i, and any information set for that player, we can define a

behavior strategy by Kuhn's theorem–we denote this as $ ( )π σhi i .  For any given behavior

strategy π  it is also useful to define the induced distribution over terminal nodes $ ( )ρ π  . 

We will also use the shorthand notation $ ( ) $ ( $ ( ))ρ σ ρ π σ≡ .

We  assume that all players know the structure of the extensive form and their

own payoff function,  so that the only uncertainty each player faces concerns the

strategies opponents will use and that of nature.123  To avoid complications, we suppose

                                                
123 As usual, one way to model cases where players are uncertain of the structure of the extensive form is to
include a move by Nature in which the extensive form is chosen.  This permits a player who is consistently
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that the distribution of Nature’s moves is known; any unknown but exogenous

distributions can be represented as arising from the choice of a “dummy” player. To

model the “strategic uncertainty” about players’ strategies, we let µ i  be a probability

measure over Π−i , the set of other players' and Nature’s behavior strategies.  As

discussed in chapter 2, assuming that the support is Π−i  and not  ∆ Π( )−i   implies that

players are certain that opponents do not correlate their play and will maintain that belief

regardless of any evidence to the contrary.  That is, any correlating devices that may be

available to any subset of the players are explicitly included  in the description of the

extensive form.  We are somewhat concerned by this restriction, but we impose it anyway

to limit the number of complications that need to be addressed.

Again following chapter 2, the beliefs, which are distributions over strategies,

must be integrated to obtain the player’s predictions about expected play.  For example,

the probability that i assigns to terminal node z being reached when he plays π i  is

γ π µ ρ π π µ πi i i i i i iz z di( | , ) $ ( | , ) [ ]= − −
−IΠ . This allows us to compute the expected utility 

u r z zi i i i

Z

i i i( , ) ( ) ( | , )π µ µ π µ= ∑ .

For any mixed profile σ , we let H H( )σ ⊂   be the information sets that are

reached with positive probability when σ  is played. Note that this set is entirely

determined by the distribution over terminal nodes ρ , so we may equally well write

H H( ) ( $ ( ))ρ ρ σ= .  We also denote by H si( )  the set of information sets that can be

reached when player i plays si , that is the set h s s t h H s si i i i i| . . ( , )∃ ∈− −< A .  For  any subset

J H⊂  and any profile σ  we may define the subset of behavior strategies consistent with

players other than i playing σ−i  at the information sets in J  by

Π − − − −≡ = ∀ ∈ ∩i i i j j j j j iJ h h h H J( ) { ( ) $ ( ), }σ π π π σ . 

                                                                                                                                                
outguessed when he thinks  he is playing the simultaneous-move game “matching pennies” to eventually
infer that his opponent is somehow observing and responding to the player’s choice.
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6.4. A Simple Learning Model

We now consider an extensive-form analog of the  generalized version of

fictitious play  discussed in Chapter 2.  To keep things simple, at this point we will

suppose that there is only 1 agent in each player role, and that all agents are completely

myopic; both of these restrictions will be relaxed in Chapter 7.

Each play of the game results in a particular terminal node z being reached. We

assume that all players observe this terminal node, so at the start of round t all players

know the sequence ( , ,... )z z zt1 2 1− ; this is called the history at t  and is denoted  ht ;  h∞

denotes an infinite history of play, and when  a particular infinite sequence h∞   has been

fixed, ht  will mean the first  t observations in that sequence.   Note that hi  are

information sets, while ht  are histories.  A belief rule  for player  i  is a function from

histories to beliefs µ i ; in a slight abuse of notation we will denote this function by µ i  as

well, so that µ t
i

th( )  denotes  player i’s beliefs at date t given history ht .124

Our next step is to specify how  players update their beliefs and choose their

actions in the course of the dynamic learning process. 

6.4.1. Beliefs

To model beliefs, we will extend the strategic-form definition of asymptotic

empiricism (given in Chapter 2) to the current setting of extensive-form games.  (Recall

that that definition said that players’ beliefs corresponded to the empirical distribution.)

Following Fudenberg and Kreps [1995a], we suppose that player  i’ s estimates of play at

a given information set for player j converges to the empirical distribution of play at that

                                                
124 To model situation where players need not observe the terminal node at the end of each round,  we could

suppose that each player i  observed some element λi z( )  of  a partition of the z’s,  where each player’s

own payoff function is measurable with respect to his partition.  This sort of more general learning model is
implicit in the equilibrium concept proposed by Battigalli [1987].
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information set as the number of  observations of play at that information set converges to

infinity.

To make this more  precise, let 
)
H h( )   denote the information sets that  are

reached a positive fraction of the time along history h∞  , and let d h hj
t( | )  be the empirical

distribution of play at information set h j .

Definition 6.1:  Player i’s  belief rule is asymptotically empirical in the extensive form if

for every ε > 0 , infinite history h∞ , j i≠ , and information set h H h Hj j∈ ∞

)
I( ) ,

lim ( ) ( ) ( | )t t
i

t
i j j j

th h d h h→∞
− − < =µ π π εJ L4 9 1.

In one-shot simultaneous move games, this definition reduces to that of

asymptotic empiricism in the strategic form provided that the assessments are assumed to

be the product of independent marginals. To see this, suppose that player 1 and player 2

each have a single  information set, and those information sets are reached a positive

fraction of the time. Then the probability that any third player  assigns to the event (1 and

2 both play L) must converge to the product of the corresponding empirical marginal

distributions, even if the empirical joint  distribution is correlated.

6.4.2. Behavior Given Beliefs

For simplicity, we will assume here that players are completely myopic, and in

each period choose a strategy that is a best response to their current beliefs. More

precisely, we suppose that the strategy chosen by player i at date t is a maximizer of

u r z zi i
t
i i

Z t
i i i( , ) ( ) ( | , )π µ µ π µ= ∑ . We should emphasize that this is an ex-ante  notion of

maximization, as is the definition of asymptotic myopia in strategic-form games given in

chapter 4: with this notion of maximization, a maximizing strategy may prescribe an

action that is suboptimal at an information set that has probability 0 given  π µi
t
i, .  
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 Note also that this assumption here is more restrictive than it was in the case of

strategic-form games, for here myopia is not  an implication of large population models

with random matching.  Such models do imply that players should not sacrifice utility  in

the current match to influence play in future matches, but in the present setting there is an

additional reason that players might choose to sacrifice current utility, namely to gain

information that may be useful in future play.  That is, players might choose to

“experiment” to learn more about their opponents’ strategies.

To see this, consider the game in figure 6.2

1 2RL

u

d

(3,1)

(0,0)

(2,2)

Figure 6.2

Suppose that player 1’s beliefs µ1  are that with probability ½  player 2 plays u in every

period, and with probability ½ player 2 plays d in every period.  Then player 1’s current

assessment of 2’s play corresponds to the mixed strategy ( ½ u, ½ d), and the expected

payoff from R is 1.5, which is less than the payoff to L. Hence a myopic player 1 would

play L in the first period; since this results in no new information about player 2’ s play, 

player 1 would then play L in all subsequent periods as well.  However, if player 1 plays

R a single time, he will learn exactly how player 2 is playing, so that the decision rule

“play R in the first period, and play R thereafter if and only if 2 plays u”  has probability

½ of yielding 3 in every period, and probability ½ of yielding 0 in period 1, followed by 2

at all future dates, which will have a higher present value provided that player 1’s

discount factor is not too large.
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This shows that we should not expect players to behave myopically in the initial

periods of the game, as they may choose to “experiment” with strategies that do not

maximize their short-run expected payoff. However, the results we will present extend to

situations where players satisfy the much weaker condition of “asymptotic myopia,”

meaning that they eventually  stop experimenting and play to maximize their current

period’s payoff.  Fudenberg and Kreps [1995a,b] formulate several variants of this

condition, and use it in place of the exact myopia we assume here.125  From the literature

on the “bandit problem,” we would expect that players with any discount factor less than

1 would eventually stop experimenting, and be “asymptotically myopic” in this sense. 

Chapter 7 discusses the results of Fudenberg and Levine [1993b] who show that this is

true for Bayesian present-value maximizers in a closely related model of learning in

extensive form games

To summarize this section, then, we will be interested in fictitious-play-like

processes

in which the strategies chosen in each period are a best response to expected play in that

period, and where beliefs about opponents’ actions are asymptotically empirical in the

extensive form. 

6.4.3. Equilibrium Notions

A number of notions of “conjectural,”  “subjective” or “self-confirming”

equilibrium have been introduced to capture the relationship between steady states of a

learning process in an extensive form game and equilibria of the static game.  The notion

                                                
125 In fact, a major concern of that paper is formulating and investigating definitions of “asymptotic myopia”
that seem general enough to be plausible while still strong enough that the experimentation does not “show
up” in the long run outcome. Another issue that that paper addresses, and we will skip over, is the extent to
which very weak forms of asymptotic myopia may conflict in spirit with some strengthenings of asymptotic
empiricism that might otherwise seem natural, for example requiring beliefs to correspond to empirical
distribution at all information sets that are reached infinitely often but with vanishing frequency.
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originates in Hahn [1977] in the context of production economies,  and is discussed  in

Battigalli [1987] in the context of a game.126  Self-confirming equilibrium in which only

the terminal nodes of the game are observed is developed in Fudenberg and Levine

[1993a] and in Fudenberg and Kreps [1995a]. The notion of subjective equilibrium is

developed in the context of repeated games in Kalai and Lehrer [1993].  There are also

some related concepts that  include elements of rationalizability; we  discuss these later in

this chapter.   All of these definitions are intended to capture and generalize some version

of the point raised by example 6.1, namely that   each time the game is played players get

only incomplete information about the strategies used by their opponents, so that

incorrect beliefs about off-path play can persist.Our presentation follows Fudenberg and

Kreps [1995a] with the goal of  providing analogs of the results in chapter 2 on the

relationship between steady states of this learning process and equilibria of the underlying

game. 

 Nash equilibrium is usually defined as a strategy profile such that each player’s

strategy is a best response to his or her opponents.  For our purposes, though, it is

instructive to give an equivalent definition that parallels the way in which we will define

self-confirming equilibrium.

Definition 6.1:  A Nash equilibrium is a mixed profile σ  such that there exist beliefs µ i

and  for each si i∈supp( )σ

• u s u si i i i i i( ) ( )’µ µ≥  for all s Si i’ ∈ , and

• µ σi i i H( ( ))Π − − = 1 .

                                                
126 Battigalli’s concept allows more general “signals” that correspond to the partitions discussed in footnote
5 above.
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In this definition, the first condition requires that each player’s strategy be optimal given

his beliefs about the opponents’ strategies.  The second requires that each player’s beliefs

are correct at every information set. 

If, as we suppose, players observe only the terminal nodes that are reached, and

not how opponents would have played at unreached information sets, then even if player i

continually plays σ i , he will only observe opponents play at information sets in H ( )σ ,

and will not learn about his opponents’ play at other information sets. This leads  us to 

the following equilibrium concept:

Definition 6.2:  [Fudenberg and Levine 1993a] A unitary self-confirming equilibrium is a

mixed profile σ  such that there exist beliefs µ i   and for each si i∈supp( )σ

• u s u si i i i i i( ) ( )’µ µ≥  for all s Si i’ ∈ , and

• µ σ σi i i H( ( ( )))Π − − = 1.

6.5. Stability of Self-Confirming Equilibrium

We turn now to stability analysis in the simple learning model introduced above. 

As in Chapter 4, say that  a profile is unstable if for every positive ε ,  players’ behavior is

almost surely more than ε  away from the profile infinitely often.

Proposition 6.1:  [Fudenberg and Kreps 1995a]:  If σ  is not a self-confirming

equilibrium, then it is unstable with respect to any behavior rules that are myopic with

respect to asymptotically empirical assessments.

The intuition for this is simple: If play converges to σ , then from the strong law

of large numbers we expect that every information set in the support of σ  should be

reached a nonvanishing fraction of the time, and that the distribution of actions at such

information sets should converge to that generated by σ .  Asymptotic empiricism then
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implies that players’   assessments converge to σ  along the path of play, and a standard

continuity argument shows that some player eventually perceives a benefit to deviating

from σ .

This result only shows that strategy profiles  cannot converge to a limit that is not

a self-confirming equilibrium; it does not preclude a situation in which the strategy

profiles fail to converge while the outcome converges to a limit that cannot be generated

by any self-confirming equilibrium.  Since only outcomes are observed, it is of some

interest to know that the proposition can be extended: Say that an outcome ρ  is unstable

if there is an ε > 0  such that there is probability 0 that the distribution of outcomes

generated by the players’ strategies  is always within ε of ρ

Proposition 6.2:  (Fudenberg and Kreps 1995a):  If outcome ρ  is not generated by any 

self-confirming equilibrium, then it is unstable with respect to any behavior rules that are

myopic with respect to asymptotically empirical assessments.

Note that this result compares the probability law generating outcomes  to the

specified outcome distribution ρ , as opposed  to comparing the observed empirical

distribution to ρ ; but arguments in the spirit of the strong law of large numbers can be

combined with proposition 6.2 to show that there is probability 0 that the empirical

distribution of outcomes remains within ε of ρ . 

The discussion of example 6.1 already gives an example of a stable profile that is

not a Nash  equilibrium.  A more formal statement of this requires a definition  of local

stability that allows for randomness:

Definition 6.3: A strategy profile π  is locally stochastically stable under a given

behavior rule ( and initial condition) if there is positive probability that  the strategy

profile chosen by the players converges to π .



239

Proposition 6.3:  Every self-confirming strategy profile π  is locally stable for some

behavior rules that are myopic with respect to asymptotically empirical assessments.

The proof of  this parallels the construction in chapter 4 in which players start out

with a strong prior belief in the particular equilibrium, and maintain that belief unless

they receive overwhelming evidence to the contrary.

6.6. Heterogeneous Self-Confirming Equilibrium

In Chapter 7 we will discuss learning in the extensive form in a model where  

players are randomly matched with one another and observe only the results of their own

match, as in most game theory experiments.  In this case, there is no reason that two

subjects  assigned the same player role should have the same prior beliefs..  Moreover, 

given that players only observe the outcomes in their own matches, if two players have

always played different pure strategies, their beliefs may remain different.127  Fudenberg

and Levine [1993a] introduce the following weaker notion of self-confirming equilibrium

to capture this notion.

Definition 6.4: A heterogeneous self-confirming equilibrium is a mixed profile σ  such

that for si i∈supp( )σ  there exist beliefs µ i  such that

• u s u si i i i i i( ) ( )’µ µ≥  for all s Si i’ ∈ , and

• µ σ σi i i i iH s( ( ( , )))Π − − − = 1.

This definition allows different beliefs  be used to rationalize each pure strategy  in the

support of σ i , and allows the beliefs that rationalize a given strategy  to be mistaken at

                                                
127 On the other hand, we would expect all players to eventually have the same beliefs if they observe the
aggregate distribution of outcomes in the whole population.
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information sets that are not reached when the strategy  is played, but are reached under

reached under a different strategy that is  also in the support of σ i .  A simple example

from Fudenberg and Levine [1993a] shows how this allows outcomes that cannot arise

with unitary beliefs:

Consider again  the game in Figure 6.2.

1 2RL

u

d

(3,1)

(0,0)

(2,2)

The game has two types of Nash equilibria: the subgame perfect Ru and the equilibria in

which player 1 plays L and player 2 plays d at least 50% of the time.  However, there is

no Nash equilibrium in which player 1 randomizes between L and R, nor is there a unitary

self-confirming equilibrium of that form. This is a consequence of a more general

theorem that we present in section 6.z, which gives conditions for the outcomes  of

unitary SCE to coincide with the set of Nash outcomes, but the argument can be made

directly in this example: If a single player 1 randomizes between L  and R,   unitary SCE

requires that he know  how player 2 responds to R,  and since player 2 is reached a

positive fraction of the time, player 2’s will always play u.  

There is however a heterogeneous self confirming equilibrium in which player 1

does randomize:  player 2 plays U, and while those player 1’s that play R know this, those

that play L incorrectly believe that player 2 would play D. 

Note that in a one-shot simultaneous-move game, all information sets are on the

path of every profile, so the sets  H si i( , )σ   are all of  H,  and so even heterogeneous self-
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confirming equilibrium requires that beliefs be exactly correct.  Hence, in these games, all

self-confirming equilibria are Nash.

6.7. Consistent Self-Confirming Equilibrium

So far we have considered various ways of weakening the notion of equilibrium to

capture steady states of a learning process where the entire opponents strategy is not

observed.  We now wish to consider ways in which we can strengthen the notion of self-

confirming equilibrium to reflect additional information that may be available to players. 

Our first considerations is  what happens when a player faces an opponent whose hand

trembles, or a sequence of different opponents a small fraction of which have different

preferences.  In this case the player in question will learn not only what will happens on

the equilibrium path, but also what will happen at all information sets that are actually

reachable given his own strategy.

Definition 6.5:  A consistent unitary self-confirming equilibrium is a mixed profile σ

such that for each  si i∈supp( )σ  there exist beliefs µ i  such that

• u s u si i i i i i( ) ( )µ µ≥ ′ for all ′ ∈s Si i , and

• µ σ σi
i

i iH( ( | ( ))Π −
− = 1

 Consistent self-confirming equilibria have stronger properties and are more “Nash-like”

than inconsistent self-confirming equilibrium.   Although consistency may be a

reasonable condition to impose in some circumstances,  such as those mentioned above,

the main uses of the condition so far have been consequences of the fact that in some

classes of games, all self-confirming equilibria are necessarily consistent.
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Obviously Nash equilibrium requires consistency, that is, that two players agree

about the play of a third player.  This is also required by any sort of correlated

equilibrium.  However, not all inconsistent beliefs lead to departures from Nash

equilibrium. In particular, in order for inconsistent beliefs of players 1 and 2 about the

play of player 3 to support an outcome that cannot occur in a Nash equilibrium, both

player 1 and player 2 need to be able to unilaterally  deviate from the path of play and

cause the information set in question to be reached, which is only possible if player 3 is

unable to distinguish between deviations by the two players. Fudenberg and Levine

[1993a] define a class of games in which this cannot happen.

Definition 6.6: A game has observed deviators if for all players i, all strategy profiles s

and all deviations s si i’ ≠ , h H s s H si i i∈ ′ −( , ) \ ( )  implies that there is no s i’  with

h H s si i i∈ −( , )’ .

What this definition requires is that if a deviation by player i leads to a new information

set off the equilibrium path there is no deviation by i’ s opponents that leads to the same

information set.  Games of perfect information satisfy this condition, as do repeated

games with observed actions.  More generally, the conditions is satisfied by all multi-

stage games with observed actions, as defined by Fudenberg and Tirole [1991]. 

Moreover, Fudenberg and Levine establish that two person games of perfect recall satisfy

this condition:  with two players, both players must know whether it was their deviation

other opponents that led them to a particular information set.

Proposition 6.4 (Fudenberg and Levine [1993a]):  In games with observed deviators, self-

confirming equilibria are consistent self-confirming.

The idea is that with observed deviators, the information sets off the equilibrium path that

are reachable when a player’s opponents deviates (as described in the definition of
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consistency) cannot be reached when the player himself deviates, so that beliefs about

play at such information sets are irrelevant.

6.8. Consistent Self Confirming Equilibria and Nash Equilibria

Even consistent self-confirming equilibria, however, need not be Nash.  There are

two reasons for this difference.  First, consistent self-confirming equilibrium allows a

player’s uncertainty about his opponents’ strategies to be correlated, while Nash

equilibrium requires that the beliefs be a point mass on a behavior strategy profile.

Example 6.2 [Untested Correlation]:  In the game in Figure 6.3 player 1 can play A which

ends the game, or make any other of three moves, all leading to a simultaneous move

game by player 1’s opponents, player 2 and player 3, neither of whom observes player 1’s

move.  In this game it is verified in Fudenberg and Levine [1993a] that  A  is not a best

response for player 1 to any behavior strategy of his opponents, but it is a best response to

the correlated distribution with puts equal weight on ( , ),( , )L L R R2 3 2 3 .  Making use of this

observation, we see that in fact the only Nash equilibrium of this game has player 1

playing  R1  and players 2 and 3 giving both actions equal probability.  However, player 1

can play  A  in a consistent self-confirming equilibrium provided his beliefs are the

correlated distribution given above.
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(1,0,0)

L3 R3

L2 4,1,-1 0,-1,1

R2 0,-1,1 -4,1,-1

L3 R3

-4,1,-1 0,-1,1

0,-1,1 4,1,-1

L3 R3

0,1,-1 3,-1,1

3,-1,1 0,1,-1

R1M1
L1

A

Figure 6.3

The non-Nash outcome in this example arises because of player 1’s correlated

uncertainty about the play of players 2 and 3. Note well that the support of player 1’s

beliefs is  the (uncorrelated) mixed strategies of players 2 and 3, so that player 1 does not

believe that the actual play of his opponents is correlated. Rather, the correlation lies in

player 1’s subjective uncertainty about his opponents’ play.

Of course, this subjective correlation can only arise in games with three or more

players. There is a second way that consistent self-confirming equilibria can fail to be

Nash that arises even in two-player games.  This is because the heterogeneous self-

confirming concept allows each  si  that player i assigns positive probability to be a best

response to different beliefs.  The most immediate consequence of these differing beliefs

is a form of convexification, as in the following example.

Example 6.3 [Public Randomization]:  In the game in Figure 6.4, player 1 can end the

game by moving  L  or he can give player 2 the move by choosing  R. 

1 2

(3,1)

(1,0)

(2,2) RL

D

U
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Figure 6.4

Player 1 should play  L  if he believes 2 will play  D,  and should play  R  if he believes 2

will play  U.  If player 1 plays  R  with positive probability, player 2’s unique best

response is to play  U,  so there are two Nash equilibrium outcomes,  (L)  and  (R,U). 

The mixed profile ((1/2 L, 1/2 R), U)  is a self-confirming equilibrium whose outcome is

a convex combination of the  Nash outcomes:  Player 1 plays  L  when he expects player

2 to play  D,  and  R  when he expects 2 to play U,  and when he plays  L  his forecast of 

D  is not disconfirmed. (Moreover, this equilibrium is clearly independent.)

Although we are unaware of a formal proof, we believe that in all two person

games of perfect information the only possible heterogeneous self-confirming equilibria

are public randomizations over Nash equilibrium.  Absent the restriction to perfect

information, self-confirming equilibria in two player games can involve more than

convexification over Nash equilibria.  The idea is that by embedding a randomization

over equilibria as in Example 6.3 in the second stage of a two-stage game, we can induce

one player to randomize in the first stage even though such randomization cannot arise in

Nash equilibrium.  Moreover, this randomization may in turn cause the player’s opponent

to take an action that would not be a best response without it.

Both the off-path correlation of the first example and the “extra randomization” of

the second one can occur in the extensive-form correlated equilibria  defined by Forges

[1986].   These equilibria, which are defined only for games whose information sets are

ordered by precedence, are the Nash equilibria of an expanded game where an

“autonomous signaling device” is added at every information set. The joint distribution

over these signals is assumed to be independent of the actual play of the game,  and

common knowledge to the players, and the player on move at each information set  h  is
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told the outcome of the corresponding device before he chooses his move.  Extensive-

form correlated equilibrium includes Aumann’s [1974] correlated equilibrium as the

special case where the signals at information sets after stage 1 have one-point

distributions and so contain no new information.  The possibility of signals at later dates

allows the construction of extensive-form correlated equilibria that are not correlated

equilibria, as in Myerson [1986]. 

Proposition 6.5:  [Fudenberg and Levine, 1993a] For each consistent self-confirming

equilibrium of a game whose information sets are ordered by precedence, there is an

equivalent extensive-form correlated equilibrium.

 Here equivalent means they have the same distribution over terminal nodes, that

is, the same outcome.  Note that the converse is false in general:  even “ordinary”

correlated equilibria need not be self-confirming, as is easily seen by considering one-shot

simultaneous-move games, where self-confirming equilibrium reduces to Nash.

Corollary 6.1:  In two player games every self-confirming equilibrium outcome is the

outcome of an extensive form correlated equilibrium.

The discussion and examples above show that there are at least three possibilities that

allow non-Nash outcomes to occur in a self-confirming equilibrium: two players may

have different (i.e. inconsistent) beliefs about the play of a third one;  subjective

correlation in a players’ beliefs about the play of two or more opponents; and multiple

(heterogeneous) beliefs for a single player role.  The following result shows that these are

the only reasons that a non-Nash outcome can be self-confirming.  
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Proposition 6.6:  [Fudenberg and Levine, 1993a]  Every consistent self-confirming

equilibrium with independent, unitary beliefs is equivalent to a Nash equilibrium.

The idea, as in the proof of Proposition 6.3,  is simply to specify that each player’s off-

path actions are exactly those that the player’s opponents believe would be played.  The

consistency condition implies that all of player i’s opponents expect him to play in the

same way, and the independence condition enables us to conclude that we are looking not

merely at a correlated equilibrium, but actually a Nash equilibrium.

6.9. Rationalizable SCE and Prior Information on Opponents’

Payoffs

Because self-confirming equilibrium  allows beliefs about off-path play to be

completely arbitrary, it (like Nash equilibrium) corresponds to a situation in which

players have no prior information about the payoff functions of their opponents. This may

be a good approximation of some real-world situations; it is also the obvious assumption

for analyzing game theory experiments in which subjects are given no information about

opponents’ payoffs. In other cases, both in the real world and in the laboratory, it seems

plausible that players do have some prior information about their opponents’ payoffs. In

an effort to capture this idea, Dekel, Fudenberg and Levine [1996] introduce the notion of

 “rationalizable self confirming equilibrium”.

Consider in  particular the game in Example 6.3.

1 2RL

u

d

(3,1)

(1,0)

(2,2)
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Figure 6.5

Self-confirming equilibrium allows 2 to play d so long as 2’s information set is not

reached in the course of play. As noted by Selten [1965], 2 can thus “threaten” to play d,

and thus induce 1 to play L.  However, this threat is not “credible” if 1 knows 2’s payoff

function, for then player 1 should realize that player 2 would play u if ever her

information set is reached.  For this reason, in many settings the weak rationality

condition used by Nash and self-confirming equilibrium incorporates too little

information about opponents’ payoffs.  

Although Selten used this example to motivate subgame perfection, it is important

to note that the argument given in the last paragraph, taken on its own, only justifies  the

much weaker conclusion that a player should not use a strategy that is not a best response

at the information set in question.  In particular, this argument does not provide a

rationale for subgame perfection’s  requirement that expectations about play in an off-

path proper subgame should be a Nash equilibrium of that subgame.  Dekel, Fudenberg

and Levine [1996] propose that the appropriate use of information about opponents’

payoffs is through  a version of extensive-form  rationalizability.  The idea is that players

should exclude certain strategy profiles from consideration before they observe any

information about how the game is actually being played.

The key issue involved in modeling this idea is determining what sort of prior

information about payoffs should be considered, as this will determine which strategy

profiles are ruled out by the players. One possibility would be to consider predictions

consistent with  common certainty about payoffs.  However, it  is well known that

predictions of this type are not robust to even a small amount of uncertainty.  Since  we 

believe  that exact common certainty is  more prior information than is reasonable, we

focus instead on  the strongest  restrictions on players’ beliefs that are  robust to small
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amounts of payoff uncertainty.  Past work suggests that this assumption should be that

payoffs are almost common certainty in the sense of Monderer and Samet (1989).128 This

is captured by  a preliminary concept–rationalizability at reachable nodes–that

incorporates almost common certainty of the payoffs, and as a result is robust to the

introduction of a small amount of uncertainty.  In particular, players believe that their

opponents’ actions will maximize their presumed payoff functions so long as the

opponents have not been observed to deviate from anticipated play, but  once an opponent

has deviated this restriction is no longer imposed. 129

Before getting into the details, consider the following example, which illustrates

some of the  possibilities that occur when rationalizability is combined with self-

confirming equilibrium.  An example from Dekel., Fudenberg and Levine [1996]

illustrates the issues involved.

1 2r

u

3

3
a

d

D
U

D
U

(0,1,0)

(1,1,1)

(0,0,0)

(2,2,2)

(4,-4,10)

                                                
128 This can be seen, for example, by relating the results of Dekel and Fudenberg [1990] and Börgers
[1994].  More specifically, Dekel and Fudenberg applied the FKL notion of robustness to show, roughly
speaking, that the tightest robust solution concept that does not impose the common prior assumption is
given by deleting one round of weakly dominated strategies and then iteratively deleting strongly dominated
strategies.  Subsequently, Börgers [1994] showed that this solution concept is characterized by almost
common certainty of caution and of payoffs / rationality in the strategic form.
129 This assumes, in addition to almost common certainty of the payoffs, that the payoffs are determined
independently, so that the signal refers only to the deviator's payoffs
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Figure 6.6

In this example (u,U) is a Nash outcome (and so certainly self-confirming) since

2’s information set is off the equilibrium path, and so he may play d. Intuitively, however,

if this were the long-run outcome of as learning process, player 1 should realize that 2

knows that 3 is playing up,  and  player 1 can use this knowledge and his knowledge of

player 2’s payoffs to deduce that 2 will play a. 

6.9.1. Notation

In order to deal formally with rationalizability and self-confirming equilibrium, it

is necessary to introduce additional notation concerning beliefs in extensive form games. 

An assessment ai  for player i is a probability distribution over nodes at each of his

information sets.  A belief pair for player i is a pair b ai i i i= −( , ):π   consisting of i's

assessment over nodes ai  and i's expectations of opponents’ play π πi i i j
j i

: :( )−
≠= .  Notice

that we are now imposing the independence restriction that a player must belief that his

opponents play independently of one another.  The belief b ai i i i= −( , ):π  is consistent

(Kreps and Wilson [1982]) if the assessment ai  can be derived from full support

approximations to π i i:− ; . 

Given a consistent belief by player i, player i’s information sets give rise to a

decision tree in a perfectly natural way.  Moreover, each information set has associated

with it a well defined sub-tree  that follows after that information set.  Each behavior

strategy  induces a strategy  in that sub-tree in a natural way. A behavior strategy  is a

conditional best response at hi
  by a player i to consistent beliefs bi

i if  the restricted

strategy  is optimal in sub-tree that follows hi .  (This  implicitly supposes that the player

will play optimally at subsequent nodes, so a choice that will yield 1 given optimal future

play, and 0 otherwise, is just as good as a choice that  guarantees a payoff of 1. )
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6.9.2.  Belief-Closed Sets and Extensive-Form Rationalizability

The basic idea of rationalizability, due to Bernheim [1984] and Pearce [1984], is

that, based on his knowledge of the payoffs, each player should have a consistent

sequence of conjectures about how his opponent thinks he thinks he should play, and so

forth.  One method of formalizing this idea is to assign to each player a set of strategy-

belief pairs.  Each strategy should be a best response to the corresponding beliefs, and

each belief in this set should be “rationalized” by the existence of strategies that are in the

set of consistent strategy-belief pairs for other players.  It is convenient to separate out

this latter idea of “belief-closedness” in a separate definition.  When combined below

with the requirement that the strategies be best-responses to beliefs, we get a definition of

rationalizability. 

Definition 6.7: The sets of strategy-belief pairs SB SBn1, ,K   are belief-closed if

( ,( , )):π πi i i i ia SB− ∈  implies that π i j:  is in the convex hull of
~ |(~ , )π πj j j j jb SB b∈  for some < A .

In words, if i believes j can choose some behavior strategy then that strategy must be in j's

set of possible choices.  As we indicated above, the elements of the sets SB j  are better

viewed as “things that player i might think player j will do” than as “things j is likely to

do ex-ante.” For example, if j’s strategy specifies an action at some off-path information

set that is not optimal given j’s specified payoffs, the interpretation is that this is

something i plausibly thinks that j would do if that information set is reached. 

Using the idea of belief closed sets, Dekel., Fudenberg and Levine [1996] define

notion of rationalizability for extensive form games.130 

                                                
130 Related notions can be found in Basu [1985], Reny [1992], Rubinstein and Wolinsky [1994] or
Greenberg [1994].
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Definition 6.8: An n-tuple of strategy-belief pair sets SB SBn1, ,K  is rationalizable at

reachable nodes if for all i:

1’. If ( , )π i i ib SB∈  then π i  is a best response to bi  at information sets reachable under

π i
.

3.  SB SBn1, ,K   are belief closed.

For reasons of robustness that we discuss further below, this notion does  not

require rationalizability at all nodes.

It is useful to provide an equivalent definition of self-confirming equilibrium that

incorporates the notion of belief closedness; the point is that without the additional

requirement of rationalizability, the belief closedness itself has no force.

Proposition 6.7  Profile $π  is a self-confirming equilibrium iff and only if there are sets of

strategy-belief pairs, SB SBn1, ,K  such that, for all players i,

1.  If ( , )π i i ib SB∈  then π i  is a best response to bi  at information sets that are reached

with positive probability under ( , ):π πi i i− .

2.  Every ( , )π i i ib SB∈   has the distribution over outcomes induced by $π .

3.  SB SBn1, ,K  are belief closed.

If we now add the requirement that π i  is a best response at all reachable information sets,

rather than merely all information sets that are reached with positive probability, we then

get

Definition 6.9:  Profile $π  is a rationalizable self-confirming equilibrium iff and only if

there are sets of strategy-belief pairs, SB SBn1, ,K  such that, for all players i,
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1’.  If ( , )π i i ib SB∈  then π i  is a best response to bi  at information sets reachable under

( , ):π πi i i− .

2.  Every ( , )π i i ib SB∈   has the distribution over outcomes induced by $π .

3.  SB SBn1, ,K  are belief closed.

Turning back to the game of example 6.3

1 2RL

u

d

(3,1)

(1,0)

(2,2)

Figure 6.7

we see that the rationalizable self-confirming equilibrium  notion captures what we

wanted: L is not part of any  beliefs that are rationalizable at reachable nodes.  To see this,

observe that 2’s information set is always reachable, so condition 1'  implies that the only

strategy in SB2  is u.  From condition 3, player 1 must believe this, and so he plays R.

6.9.3. Robustness 

An important feature of rationalizable self-confirming equilibrium  is that a

strategy need not be optimal at information sets that the strategy itself precludes.   The

reason that we do not wish to impose optimality at such information sets is that  this

stronger requirement is not robust to the presence of a small amount of payoff

uncertainty.  To see this, consider the game in Figure 6.8.
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1 2 1’(1,1)

(2,2)

(0,0)
(0,1)

U

D

r

d

RL

Figure 6.8

In this game the outcome L occurs in the Nash equilibrium (LD,d), but not in any

subgame-perfect equilibrium.  However in the game of incomplete information in Figure

6.9,

1 2 1’(1,1)

(2,2)

(0,0)
(0,1)

U

D

r

d

RL

1 2 1’(1,1)

(2,2)

(4,0)
(4,1)

U

D

r

d

RL

N 2

ε

1− ε

Figure 6.9

where payoffs are very likely to be as in figure 6.8, the outcome L occurs in a sequential

equilibrium.  So requiring optimality at all information sets rules out the outcome L in

Figure 6.8 but not in 6.9; hence this requirement is not robust to small payoff
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uncertainties.131  It is easy to see that by construction rationalizable self confirming

equilibrium  achieves our objectives in Figure6.8: since player 1’s second information set

is not reachable when 1 plays L, the outcome L can occur in a rationalizable self

confirming equilibrium

6.9.4. Example 6.1 revisited

Ordinary self-confirming equilibrium allows two players to disagree about the

play of the third.  This example demonstrates the intuitive idea that the possibilities for

such disagreements are reduced when players must believe that opponent’s play is a best-

response at  reachable nodes.   Consider the following version of the extensive-form game

Fudenberg and Kreps [1988] used to show that mistakes about off-path play can lead to

non-Nash outcomes:

                                                
131 Just as in previous work related to this notion of robustness, one may be able to identify a smaller set of
robust predictions if one feels confident that certain forms of payoff uncertainty are much less likely than
others. We say more about this in the next section.  For more about the idea of robustness, see Fudenberg,
Kreps and Levine [1988] and Dekel and Fudenberg [1990].
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1 2

3

A

D d

(1,1,1)

(3,0,0) (0,3,x) (3,0,0) (0,3,y)

L RL R

a

Figure 6.10

Here the outcome (A,a) is self-confirming for any values of x  and y.  It is supported by

player 1 believing that player 3 will play R and player 2 believing that player 3 will play

L.  However, because 3’s information set is reachable, this outcome is not RSCE  if both

x and y  have the same sign: If x,y>0 then players 1 and 2 forecast that 3 will play R, and

so 2 plays d; if x,y <0 then 3 plays L so 1 plays D. However, if x  and y  have opposite

signs,  then (A,a) is a RSCE outcome, since 1 and 2 are not required to have the same

beliefs about player 3’s off-path assessment of the relative probability of the nodes w and

w', and player 1 can think that 3’s assessment makes R optimal, while player 2 can think

that 3’s assessment induces her to play R. This example shows that even a sequentially

RSCE  need not  be Nash.

6.9.5. Experimental Evidence

Perhaps the best motivation for rationalizable self-confirming equilibrium is a pair

of experiments by Prasnikar and Roth [1992] on the “best-shot” game, in which two

players sequentially decide how much to contribute to a public good.  The only
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rationalizable self-confirming equilibrium  of this game is its backwards-induction

solution, in which the first mover contribute nothing; there is also an imperfect Nash

equilibrium in which the first mover contributes and the second does not. Prasnikar and

Roth ran two treatments of this game. In the first one,  players were informed of the

function determining opponents’ monetary payoffs. Here, by the last few rounds of the

experiment the first movers had stopped contributing, which is the prediction made by

rationalizable self-confirming equilibrium.  In the second treatment, subjects were not

given any information about the payoffs of their opponents. In this treatment even in the

later rounds of the experiment many first movers contributed to the public good.  This is

not consistent with rationalizable self-confirming equilibrium, but it is consistent with an

(approximate, heterogeneous) self confirming equilibrium (Fudenberg and Levine

[1996]).  Thus these experiments provide evidence that information about other players’

payoffs makes a difference, and that this difference corresponds to the distinction

between self-confirming equilibrium  and rationalizable self-confirming equilibrium.
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7. Nash Equilibrium, Large Population Models, and Mutations

in Extensive Form Games

7.1. Introduction

As we have seen, there is no presumption that simple learning in extensive-form

games

leads to Nash equilibrium outcomes, even when the learning process converges. 

However, a convergent learning process will converge to a Nash equilibrium outcome if it

generates “enough” learning about off-path play.  This chapter explores the related issues

of just how much information is “enough,” and what sorts of forces might lead to

“enough” information being available.   While we discuss several explanations, our focus

is on the idea that players sometimes deliberately “experiment” with actions that do not

maximize the current period’s payoff  expected payoff in order to gain information about

how their opponents react to these little-played actions.

As the first step in this chapter, we address the question of how much information

about opponents’ play is “enough” to rule out all but Nash equilibrium outcomes. The

usual definition of Nash equilibrium implies that players know the entire strategy profile

used by their opponents, or equivalently the distribution of actions that would occur at

any  information set.  However, this is more knowledge than is necessary, as a given

player’s beliefs about play at some information sets may have no impact at all on how he

chooses to play.   Instead, it suffices that players have correct beliefs at those information

sets that are “relevant” to them. We formalize this idea in Section 7.2.

Section 7.3 develops  sufficient conditions on exogenously specified behavior (in

the spirit of fictitious play) that lead to Nash equilibrium.  Section 7.4 then examines
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these assumption, how they might be relaxed, and the connection between learning in

games and in multi-armed bandit problems.  Section 7.5 considers a model of fully

rational, Bayesian learning in which experimentation rates are endogenous.  In order to

avoid some of the problems discussed in section 7.4, this is done in the context of a

model of steady-state learning in large, heterogeneous populations.  This model also

provides a foundation for heterogeneous self-confirming equilibrium.

 One obvious question in this area that has so far been little explored is  the extent

to which it is possible to establish convergence to a refinement of Nash equilibrium. 

Section 7.6 discusses the work of Noldeke and Samuelson [1993] that relates the

stochastically stable outcomes of a particular learning process to the subgame-perfect

equilibria in  a special class of games.  

We conclude with a discussion of cheap talk games and return to the idea

(discussed in chapter 3) that  players can give a “secret hand-shake”, a signal that they

intend to carry out a particular action.  We give a critical overview of the literature on

evolutionary dynamics in this game, and suggest that future work on this topic should 

take account of the extensive-form nature of the game.

7.2. Relevant Information Sets and Nash equilibrium

Self-confirming equilibrium need not have be Nash because some players may

have incorrect beliefs about off-path play. However, to conclude that a particular self-

confirming equilibrium is Nash, it is not necessary to assume that every players’ beliefs

are correct at every information set.  In particular, since Nash equilibrium tests only for

unilateral deviations,  a player’s beliefs about what would happen if some other player

deviated are irrelevant.  To capture this, Fudenberg and Kreps [1995b] introduce  the

following definition:
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Definition 7.1: An information set h is relevant to player i  at profile π *  if there is some

π i  such that ( , )*π πi i−  assigns positive probability to h; the set of all such information

sets is denoted $ ( )*Hi π .

As in chapter 6, let  Π − − −≡ = ∀ ∈ ∩i i j j j j j j iJ h h h H J( ) { ( ) ( ), }* *π π π π σ  be the subset

of behavior strategies consistent with players other than i playing according toπ *  at the

information sets in J. 

Proposition 7.1  (Fudenberg and Kreps (1995b)):   A strategy profile π *  is a Nash

equilibrium if there exist beliefs µ i  such that

• u ui i i i i i( ) ( )*π µ π µ≥  for all π i , and

• µ π πi i iH( ( $ ( ))* *Π − = 1.

This shows that it’s sufficient for Nash equilibrium that beliefs be correct at relevant

information sets.   It is obvious that even this condition is not necessary. For example, if

player i  doesn’t get to move along the path of π *  his beliefs are irrelevant, and if the

payoff inequalities in the definition hold strictly they will continue to hold if the beliefs

are slightly incorrect at every information set. 

However, the result does show that it in order for a non-Nash profile to be

unstable in a learning model, it is sufficient that beliefs become approximately correct at

those information sets which are  relevant given the profile.

This in turn raises the question of when that will be the case.   Intuitively, beliefs

about play at an information set will be correct if that information is reached sufficiently

often, so that players have “enough” observations about play at the information set to

outweigh their possibly incorrect priors. Moreover, unless we are prepared to make

assumptions about the strength  of the players’ prior convictions (that is,  the size of the
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fictitious  initial sample in fictitious play) “enough” observations means infinitely many

of them. Of course, any assumption that implies a positive probability that a

(subjectively) suboptimal action will be played infinitely often is inconsistent with

optimal behavior in the discounted multi-armed bandit problem, for which the optimal

solution (with a full-support prior)  has probability 1 that experimentation ceases in finite

time, with a positive probability of “locking on” to the objectively “wrong” arm. (The

appendix reviews the classic multi-armed bandit problem.)

Consequently any assumptions that imply probability 1 of all relevant information

sets being reached infinitely often, regardless of the priors (and consequently  probability

0 of convergence to a non-Nash self-confirming outcome), are  not consistent with

optimal behavior in the discounted bandit problem.   The reason for interest in such

assumptions is that they do correspond to the limit of behavior in the bandit problem as

the discount factor goes to 1. Intuitively, as players become more patient, the value of

information increases, so they do more and more experiments, and the probability of

locking on to the wrong arm converges to 0.   As a result, the “sufficient

experimentation” conditions in the following section should be interpreted as an

idealization of the limit behavior as the discount factor tends to 1. 

7.3. Exogenous Experimentation

Fudenberg and Kreps [1995b] develop sufficient conditions for instability of non-

Nash equilibrium and local stability in Nash equilibrium in a model of boundedly rational

 behavior that is in the spirit of fictitious play.  Their assumptions imply that if the

strategies played converge, then all relevant information sets (given the limit profile) are

reached infinitely often, that beliefs at these information sets converge to the empirical
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distribution of play there, and that the empirical distribution resembles the limit profile to

which play is converging. The latter two conditions are imposed by strengthening the

asymptotic myopia and asymptotic empiricism conditions developed in Chapter 6; the

first condition, that all relevant information sets are reached infinitely often, is obtained

by imposing lower bounds on the probabilities that players “experiment” in various ways.

The reason that the experimentation condition on  its own is not sufficient is that

the definitions of asymptotic empiricism and myopia given in chapter 6 impose no

restrictions at all on beliefs or behavior at information sets that are reached infinitely

often but a vanishing fraction of the time.  It is easy to strengthen the empiricism

condition. Fix an infinite history h∞ , and let H hi
∞ ∞( )be the collection of player i

information sets that are reached infinitely often along h∞ :

Definition 7.2:  Player i’s  belief rule is strongly asymptotically empirical in the extensive

form if for every ε > 0 , infinite history h∞ , j i≠ , and information set h H hj j∈ ∞ ∞( ) ,

lim ( ) ( ) ( | )t t
i

t
i j j j

th h d h h→∞
− − < =µ π π εJ L4 9 1.

This condition is satisfied by Bayesian learners who believe that opponents’ play

corresponds to a fixed but unknown distribution (that is, exchangeable draws), and have a

non-doctrinaire prior over the set of all strategy profiles for the opponents.

In order for  Nash equilibrium  to be reached in the limit, players must engage in

“enough” experimentation to learn about off-path play; in particular the “rate” of

experimentation cannot decrease too quickly. At the same time, however, these

experiments  must vanish quickly enough  that they are a nonnegligible component of 

asymptotic play.  We first modify the definition of asymptotic myopia to include a limited

and asymptotically negligible amount of experimentation.   Let κ ( , )a ht  denote the
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number of time the action a has been played in the history ht , and κ ( , )h hi
t  the number

of time the information set hi  has occurred.

Definition 7.3: For a particular forecast rule γ i  a behavior rule ρ i  is strongly

asymptotically myopic with experience-time limitations on experimentation if it can be

decomposed into two rules, a “myopic” rule $ρ i  and an “experimentation” rule ~ρ i  such

that

(a) ρ ρ ρi
t

i i
t

i i
t

i i
t

i i
t

ih h a h h h h a h h h h( )( ) ( )( ) $ ( )( ) ( ( )( ))~ ( )( )= + −1  for some a h hi
t

i( )( ) [ , ]∈ 0 1

(b) $ρ i  is asymptotically myopic

(c) there is a non-negative sequence η t → 0  such that ( ( )( ))~ ( )( )( )1 0− >a h h h h ai
t

i i
t

iρ
only if κ κ ηκ( , ) / ( , )

( , )
a h h ht

i
t h hi

t
≤ .

In other words, the probability assigned to an “experimental” action must be zero unless

the action has been tried infrequently. 

The experience-time limitations on experimentation imply  that, asymptotically,

play is with high probability asymptotically myopic. In particular, the proportion of the

time that  i experiments at an information set must go to 0 as the number of times that the

information set is reached becomes large. On the other hand, to attain Nash equilibrium,

it is necessary also that there be “enough” experimentation.

Definition 7.4: For a given player i and information set hi  the behavior rule ρ i  satisfies

the minimal experience-time experimentation condition at hi  if there is a constant β > 0

and a non-negative sequence ν t → 0  with t tν  non-decreasing such that

ρ κ κ ν βκ
i

t
i

t
i

t h a h
h a A h a h h a h i

t
( ) ( ) ( , ) / ( ( ), )

( ( ), )
∈ ≤ ≥4 9 .
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In other words, actions that have been played infrequently, should be tried with at least

probability β .

The force of this condition can be seen from the following result:

Proposition 7.2: If  player i’ s behavior satisfies the minimal experience-time

experimentation condition at information set hi , then for every a A hi∈ ( ) ,

P h h h a ht
i

t t t{ |lim ( , ) lim ( , ) } .∞ →∞ →∞= ∞ < ∞ =κ κ and 2 7 0

Roughly speaking, this says that if hi  is reached infinitely often, then every action

that is feasible there must be taken infinitely often.  This is quite a strong conclusion, and

indeed it suggests that the so-called “minimal experience-time experimentation

condition” may require more experimentation than is plausible. We discuss this issues in

the next section.  For now we note the following corollary:  In a game of perfect

information, if minimal experience-time experimentation is satisfied at every  information

set, then with probability 1 every information set is reached infinitely often.

Surprisingly, these assumptions are not enough to preclude convergence to non-

Nash equilibrium in games of imperfect information.  The following example, from

Fudenberg and Kreps [1995b], illustrates the potential problem.



268

1 Across

down

across

(4,4,0)

(0,10,0)

(0,10,0)

(10,0,0)

down

y
x

y (10,0,0)
x

(3,3,0)across

2

3

Figure 7.1

The outcome (Across, across)  is not a Nash equilibrium, as for any strategy of player 3,

at least one of them would prefer to deviate.  Suppose that player 1 initially believes 3

will play y, so that Across is player 1’s short-run optimum, while 2 believes that 3 will

play x so that 2’s myopic best response is to play across. Suppose moreover that both

players choose to “experiment” with their other,  apparently sub-optimal, action at dates

1, 10, 100, 1000, and so forth.  The behavior rules satisfy the minimal experience-time

experimentation condition, yet player 3’s information set is never reached.  Fudenberg

and Kreps show that this problem can be avoided with either of two additional

assumptions. The following is the simpler but less palatable of the two:

Definition 7.5: The behavior rule ρ i  is uniformly non-experimental iff the probability

a h hi
t

i( )( )  of following the nonexperimental rule $ρ i  at information set hi  given history

ht is uniformly bounded below by some α > 0 .

This requires that there always be at least an α  chance a player does not experiment, so

that experimentation by the opposing player has a chance of revealing information about
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his non-experimental play.  However, this assumption is inconsistent with optimal play in

a bandit problem.   We discuss this in more detail below.  As an alternative, Fudenberg

and Kreps suggest that stability to be redefined so to exclude histories in which the

players somehow perfectly coordinate their experiments;  we say more about this in the

next section. The next section also explains why an analog of uniform non-

experimentation hold in models with anonymous random matching in a large population.

Proposition 7.3: (Fudenberg and Kreps [1995b]  If beliefs are strongly asymptotically

empirical, and behavior rules satisfy asymptotic myopia with experience time limitations

on experimentation,  the minimal experience-time experimentation condition at all

information sets, and are uniformly non-experimental then if π  is not a Nash profile  it is

unstable; if π  is a Nash profile, then it is weakly stable.

It is perhaps not surprising that with the “right” amount of experimentation only

Nash equilibria can be reached.  Intuitively, the combination of asymptotic myopia and

asymptotic empiricism implies that the limit point must be self-confirming equilibria, as

in chapter 6. Moreover, at least in  games of perfect information  the assumption of

minimal experience-time experimentation at all information sets implies that every

information set is reached infinitely often. Hence, in such games, if play converges,

players come to have correct beliefs about play at every information set, and so the limit

point must be a Nash equilibrium.  In more general games, minimal experience-time

experimentation need not imply that all information sets are reached, as in the example

above; this is why an additional assumption is needed.



270

7.4. Learning in Games Compared to the Bandit Problem

The assumptions that give local stability of Nash equilibria  and instability of non-

Nash equilibria are quite strong.  In particular, the uniform non-experimental condition is

inconsistent with Bayesian optimization in a multi-armed bandit problem.  In this section

we consider alternative assumptions giving the same result, and discuss more generally

the issue of how learning about an extensive form game differs from learning in a bandit

problem.

The classical bandit problem is a simple one-move one-person extensive form

game with random payoffs to each action, where the distributions of payoffs for some

actions are unknown, and the payoffs to the various actions are distributed independently,

so that observing the payoff to one action reveals no information about the distributions

governing the payoffs to other choices.132  It is well known that even in a bandit problem,

an impatient player may fail to optimize:  if it is believed a priori that a particular arm is

inferior, it may never be tried, even if, in fact, it is superior.  In fact, for any fixed

discount factor, experimentation in a bandit problem end in finite time with probability

one.133  However, in the limit as the discount factor goes to one, the amount of time

during which experimentation takes place goes to infinity, and the probability of a

suboptimal choice goes to zero.  In the previous section the basic assumption was that

experimentation continues forever. This should be viewed as an effort to capture the limit

of  optimal play in  discounted  bandit problems  as the discount factor tends towards 1. 

In the remainder of this section, we will use this limit as motivation for the types of rules

that we would like to allow.

                                                
132 There is a smaller literature on bandit problems with correlated payoffs. Moreover, one way thinking
about learning in extensive-form games is that it corresponds to a bandit problem with a particular and
potentially complex form of correlation.
133 A more detailed discussion of bandit problems can be found in the Appendix to this chapter.
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As we indicated, the uniform non-experimental condition is inconsistent with

optimal play in either the discounted or undiscounted bandit problem, since the optimal

solution  will typically involve playing an experimental action with probability 1 at some

histories.134   There are two answers to this problem.  One possibility, explored in more

detail below, is that the probability of non-experimentation represents a probability of

meeting an opponent who is not experimenting in a matching setting.  Another possibility

is to drop the assumption of uniform non-experimentation altogether.  An alternative,

proposed by Fudenberg and Kreps, is to  modify the definition of stability to include a

condition that observed play passes some simple “statistical tests” of exchangeability  and

independence.  The idea is that if the observed histories fail the tests then players should

realize that the environment is not after all asymptotically exchangeable and independent.

 Fudenberg and Kreps then verify that play can converge to Nash equilibrium and satisfy

the statistical tests, while play cannot both satisfy the tests and converge to a non-Nash

outcome, even when uniform non-experimentation is not required.  This formulation does

not address how players behave if some player’s statistical test fails.135

We next examine the minimal experience time condition, which requires

experimentation with all actions that have been tried infrequently.  This is certainly the

right strategy in a the classic bandit problem, where the payoffs to the various arms are

distributed independently.  However, there are several reasons why this might not be

optimal in a game. First of all, a player might have several actions each of which lead to

the same information sets of all opponents, and which thus yield the same information.

                                                
134 It is true that uniform non-experimentation is consistent with e-optimization in the undiscounted bandit
problem, but then so is any fixed and small amount of “trembling” onto other actions.  This brings us back
to the point made at the end of chapter 6: non-Nash self-confirming outcomes should be viewed as
descriptions of what will happen up to some time T for sufficiently small amounts of noise.
135 Chapter 8 discusses work which does specify how players behave if they detect certain sorts of
departures from the assumptions  of exchangeability and independence.
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Since the payoffs of these actions need not be equal, it makes sense to suppose (and the

optimum requires) that the player would experiment only with the action which involved

the smallest expected loss.136   The following example from Fudenberg and Levine

[1993] shows how this might happen

1

(15,-1) (0,-10) (5,0) (6,1)

2

RM

L(10,0)

l r l r

Figure 7.2

Suppose that player 1 assigns a low probability to player 2 playing  l.  In this case his

immediate expected payoff is maximized by playing L himself.  Suppose, however, that

player 1 is willing to conduct a costly experiment to obtain information about player 2’s

play.  Given player 1’s beliefs, the lowest-cost way of obtaining this information is by

playing R,  and indeed, it is quite possible that player 1 will never play M.137 

                                                
136 But note that such considerations suggest equilibrium refinements in the spirit of Myerson’s [1978]
properness, because out-of-equilibrium actions tend to be taken as cheaply as possible.
     137As an aside, we note that this example also shows why optimal experimentation  does not yield results
in the spirit of forward induction (Kohlberg and Mertens [1986]).  Forward induction interprets all
deviations from the path of play as attempts to gain in the current round.  Since  L  strictly dominates  R, 
forward induction argues that player 2 will believe that player 1 has played  M  whenever player 2's
information set is reached, and hence that player 2 will play  l;  this will lead player 1 to play  M.  In
contrast, in our model player 1 deviated from  L  to gain information that will help him in future rounds, and
the cheapest way to do this is to play  R.  When  R  is more likely than  M,  r  is optimal for player 2.
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There is no very easy modification of the minimal experience time requirement

that allows experimentation to be least cost.  However, our discussion below of  Bayesian

learning in a steady state setting takes account of the full optimization process, including

the requirement that experiments be chosen with an eye to costs as well as benefits. 

A second issue with the minimal experience-time experimentation condition is

that we have required  it to hold at all information sets.   The following  example from

Fudenberg and Kreps [1995b] shows why this is problematic:

1 2 3 (5,5,5)

(4,4,4) (3,3,3) (0,0,0)

D1 D2 D3

A1 A2 A3

Figure 7.2

Suppose that along some history, player 1 chooses A1  infinitely often but a vanishing

fraction of the time, and that player 2 starts out with the assessment that player 3 is more

likely to play D3  than A3 .  Then player 2, in periods when her information set is reached,

would see A2  as a costly but potentially worthwhile experiment.  However, the

experiment of playing A2  only pays off if, first of all, player 2 learns that player 3 usually

plays A3 , and  in addition  player 1 gives player 2 an opportunity to use that information

by playing A1   again in the not-too-distant future.  Since player 2 has few observations on

3’s play, she should assign a nonnegligible probability to the event that player 3 usually

plays A3 , and so she should expect that she may indeed have something to learn.

However, given that player 1 plays A1  with frequency going to 0, even a very patient,

optimizing  player 2 might not find it worthwhile to do any experiments with A2 .   For
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this reason  it is not sensible to require the minimal experience time condition at every

information set.

 For this reason, it is important to note that Nash equilibrium does not require that

the minimal experience-time experimentation condition be satisfied at every information

set. Instead, it is sufficient that the condition be satisfied at information sets that player i

feels are “empirically relevant,” where loosely speaking information set hi  is empirically

relevant given an infinite history if it is reached a “sufficiently large” proportion of the

times that it “might have been reached.”   Formally, Fudenberg and Kreps [1995b] define

Definition 7.4: The behavior rule ρ i  satisfies the modified minimal experience-time

experimentation condition  or MME if there is  a constant β > 0 , and a non-negative

sequence ν t → 0  with t tν  non-decreasing,  and a non-increasing  sequence  of strictly

positive numbers δ k → 0  such that for all t and ht  if  a ai i
1 2, ,K  is the unique sequence of

actions by player i that lead to hi  satisfies
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The force of this condition can be seen from the following result.

Proposition 7.4:  Suppose that player i’s behavior satisfies the modified minimum

experience-time experimentation condition, and that there is a profile π *  and ε > 0  such

that for all infinite histories h in some set Z, and all times t, at every partial history ht  the

behavior rules ρ i  assign probability at least ε  to every action a  for which π *( )a  is

positive.  Then almost surely on Z, every information set that is π * -relevant to player i

will be reached infinitely often.
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Roughly speaking, the conclusion of this proposition is that every information set

that “matters” to the player is reached infinitely often.  Note that the allows  there to be

probability 1 that player 3’s information set to be reached only finitely often in the

example of figure 7.2, since the limit profile assigns probability 0 to player 2’s

information set.  (Moreover, it is easy to construct behavior rules that satisfy MME for all

players, yet which imply  probability 1 that player 3’s information set is reached only

finitely often.)   In contrast, if every player’s behavior satisfies minimal experience time

experimentation, then as we noted following Proposition 7.2,  player 3’s information set

is reached infinitely often with probability 1.   However, we know from Proposition 7.1

that since player 2’ s information set is never reached in the limit profile,  player 2’s

beliefs about subsequent play are immaterial.

Fudenberg and Kreps show that the MME condition  can be used in place of

minimal experience time experimentation  to prove results in the spirit of proposition 7.3.

In particular, play cannot converge to a non-Nash outcome if beliefs are strongly

asymptotically empirical, behavior satisfies MME and is asymptotically myopic with

experience-time limitations on experimentation, and either players use  statistical tests of

independence and exchangeability or behavior play satisfies uniform non-

experimentation.

Finally, although we  noted that for any given discount factor, experimentation in

a classic bandit problem should stop in a finite amount of time, in the setting of

extensive-form games there can be histories along which players find it  optimal to

experiment in a positive fraction of the time, even in the long run.  The following

example illustrates the complications that may occur if certain unrepresentative samples

occur:
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1

3

(100,0,0)

(0,0,0)

(3,0,0)(4,0,0)(4,0,0)

L R

2

u

d

ewew

Figure 7.3

Suppose that player 1 has played both L and R many times, and  equally frequently. 

Suppose that it has just happened that when 1 played L, 2 played w half the time, but

when 1 played R, 2 has always played w.  Since player 1 knows that 2 has an information

set, he knows that the actual probability of 2 playing e is about 1/4.  Despite this, he has

never actually seen player 3 play, and does not know whether 3 is playing u, in which

case R would be best, or whether 3 is playing d, in which case L would be best.  A priori

1 may believe that 3 is likely playing d, in which case from a myopic point of view it

would be best to play L.  However, despite the large number of observations by player 1,

there is still good reason to experiment with R since if 3 is playing u it would be quite

lucrative for 1 to play R. This shows that the assumption of asymptotic myopia can be

inconsistent with certain  unrepresentative  samples. Intuitively, though, such samples

should have probability 0 in the long run;  Fudenberg and Levine [1993] verify this in a

closely related setting.
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7.5. Steady State Learning

We  consider the Bayesian model of learning in which players believe that they

face a stationary distribution of opponents’ strategies.  As we noted above, one possible

problem with this is that in the setting a fixed set of players playing a game the

assumption is not true, and, particularly if the system does not converge, players may be

able to discover this. An alternative explored by Fudenberg and Levine [1993] is to study

a model of a population of randomly matched players, with players entering and leaving

the population.  Because players enter and leave (taking their knowledge with them) this

model has a steady state in which the fraction of the population playing particular

strategies does in fact remain fixed over time.  The goal is to see what happens in this

steady state when players are Bayesian optimizers and live for a long time. 

The optimal amount of experimentation that takes place in the steady state is

complicated.  In practice some experiments are more revealing than others, and more

patient individuals will be more inclined to experiment than less patient individuals. 

Moreover, the incentive to experiment depends on how lucky the individual has been

with past experiments.  What Fudenberg and Levine [1993] show is that when players

have sufficiently long lives play resembles that of a self-confirming equilibrium, and if in

addition, players are patient enough, it resembles Nash equilibrium.

Specifically, corresponding to each player (except nature) in the stage game is a

population consisting of a continuum of players in the dynamic game.  In each

population, the total mass of players is one.  There is a doubly infinite sequence of

periods,  ..,-1,0,1,..,  and each individual player lives  T  periods.  We denote the age of a

player by τ .  Every period  1/T  new players enter the ith population, and we make the

steady state assumption that there are  1/T  players in each generation, with  1/T  players

of age T  exiting each period.
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Every period each player i is randomly and independently matched with one

player from each population  i’ ≠ i,  with the probability of meeting a player i’ of age τ

equal to its population fraction  1/T. 138  For example, if  T = 2,  each player is as likely to

be matched with a "new" player as an "old" one.  Each player i’s opponents are drawn

independently.

Over his lifetime, each player observes the terminal nodes that are reached in the

games he has played, but does not observe the outcomes in games played by others. 

Thus, each player will observe a sequence of private histories hi
τ . 

The state of the system at a moment of time t is specified by specifying the

fraction of the population with each possible type of history θ τt
i ih( ) .  Let ρ i  denote the

optimal strategy for a Bayesian player with a non-doctrinaire prior and discount factor δ .

  For any state θ , it is also useful to define the actual number of people playing the

strategy si

θ θ τρτ τ

i i i i
h h s

s hi i i i( ) ( )
| ( )

≡ =∑

With this background ,  the deterministic dynamic in this state space can be

described.  We let f hi i( )[ ]θ τ  denote the fraction of population i with private history hi
τ  at

time t +1 when the state at time t was θ ; the dynamic in other words is given by

θ θt tf+ =1 ( ) . New entrants to the population have no experience, so

     f h Ti i( )[ ] /θ 0 1= .

Of the existing population θ τ
i ih( )  with a particular history, the fraction having experience

 ( , ( ), )h h zi i i
τ τρ  is the fraction that met opponents playing strategies that led to the terminal

node z.  Let 
)
s s zi i− ( , )  be the pure strategies for i’ s opponents that lead to the outcome z.

                                                
     138Boylan [1990] has shown that this deterministic system is the limit of a stochastic finite-population
random matching model as the number of players goes to infinity.
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f h h z h si
i i i i i j

j is s s z
j

i i i( )[ , ( ), ] ( ) ( )
( , )

θ ρ θ θτ τ τ= ≠∈ ∏∑ −)

Finally, it is clear that

        f h h zi
i i i( )[ , ( ), ]θ ρτ τ = 0  if  s hi i i≠ ρ τ( ) .

As always, we denote by $θ  a steady state of the dynamical process f.  Unlike in

previous chapters, we will not examine the convergence of the dynamical process to the

steady state, but only the steady state itself.  (As in previous chapters, the existence of the

steady state is not at issue, since the dynamical process is a continuous map from a

compact state space to itself, the existence of steady states follows immediately from

Brower’s fixed point theorem.)

Observe first that steady states in this model need not bear any particular relation

to equilibrium of any kind.  If players live short lives, they have little opportunity to learn,

and basically play against their priors.  So the only interesting case is the limit as the

length of life T → ∞ .  Fudenberg and Levine [1993] prove  two different results

depending on whether or not players are patient:  generally with long life steady states

approximate heterogeneous self-confirming equilibrium; with patience they resemble

Nash equilibria.

The intuition for why long life leads to self-confirming equilibrium has three

parts.  First, any strategy si  that is played with positive probability in the steady state

must be played by a positive fraction of the population a positive fraction  of their life. 

Second, when the lifetime is large a player who plays a strategy a positive fraction of her

life should, by a result of Diaconis and Freedman [1990], have approximately correct

beliefs about its consequences.    Third, the strategy  si  should maximize the current

period expected payoff of most of the players who are playing it. That is, the bulk of

players using si  do so because it is myopically optimal, and not because they are
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experimenting This final fact is subtle, because as we saw in the previous section, the

optimal experimentation plan is relatively complicated.  Combined, these facts imply that

playing si  is an approximate best response to beliefs that are approximately correct along

the path of play, that is approximately a self-confirming equilibrium.

In showing that long-life plus patience leads to Nash equilibrium, the order of

limits turns out to be quite important:   the discount factor must go to one much more

slowly than the length of life goes to infinity.  It is not currently known whether the

conclusion holds for the other order of limits.  The intuition of the result is that patient

players  do enough experimentation to learn the true best responses to the steady state. 

Note that the fact that in the steady state players do not choose strategies based on

calendar time means that the type of incidental correlation of experiments discussed in

Fudenberg and Kreps [1995b] is not a problem; in effect in the steady state/random

matching model the uniform non-experimental condition is satisfied, providing most

players are not actually experimenting.

Note that the obvious argument is that if a player is very patient, and a strategy has

some probability of being the best response, the player ought to try it and see.  However,

we already saw that some strategies may never be tried even though they do have a

chance of being a best response, if there is some other strategy that provides the same

information at lower cost.   Instead,  the argument actually used by Fudenberg and Levine

[1993] uses the notion that an experiment has an option value: the option is to continue

with the experiment if it works. If  the steady-state distributions of strategies converge to

a limit that is not a Nash equilibrium then there is a strategy being played with

appreciable probability that is not optimal against the steady state. This implies that  the

option value for experimenting with this  strategy cannot be converging to zero.  On the
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other hand, it can be shown that Bayesian optimal play and random matching imply that

most option values become small.

7.6. Stochastic Adjustment and Backwards Induction in a Model of

“Fast Learning”

This section discusses a model of “fast learning” in extensive games that Noldeke

and Samuelson [1993] used to investigate the extent to which learning processes might

tend to converge to  refinements of Nash equilibrium.  Fudenberg and Kreps [1988]

identify several  factors that suggest that results along these lines may require quite strong

assumptions. First of all, beliefs must be correct at the larger class of  “sequentially

relevant” information sets, instead of the smaller class of relevant ones defined in Section

7.2, and this can require “more experimentation” than is required by MME. For example,

in games of perfect information, all information sets are sequentially relevant, and so

absent a priori  restrictions on the payoff functions every information set must be reached

infinitely often to ensure that only the backwards-induction solution is stable.  As shown

in the discussion of Figure 7.2,  this in turn requires that players experiment even at

information sets that are being reached a vanishing fraction of the time, and it is not

obvious that even patient players would choose to do this.139  Second, moving from

subgame perfection to sequential equilibrium requires that players come to have common

assessments about the relative probability of various nodes within an information set,

even if the information set in question is reached with vanishing frequency.

                                                
139 Which is not to say that we know that they would not. Indeed, a related and still open question is whether
this much experimentation occurs in the steady-state learning model discussed earlier in this chapter in the
limit of discount factors tending towards 1.  On the other hand, if there is a minimum probability of
experimentation as in the model of smooth fictitious play, then this assumption would be satisfied. The
issues raised by this possibility are discussed in greater detail at the end of this chapter.
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In Noldeke-Samuelson [1993] the Kandori-Mailath-Rob type of analysis is

applied to  games in which each player moves at most once on any path through the tree. 

In such games, a player’s deviation from expected play cannot signal that he is likely to

deviate at a subsequent information set, and so various sorts of refinements coincide. For

example,  trembling-hand perfection in the strategic form coincides with trembling-hand

perfection in the agent-strategic form, and the notion of “rationalizability at reachable

nodes” that we defined in Chapter 6, which does not restricts play at information sets that

the player was expected to preclude,  is equivalent to the stronger notion of sequential

rationalizability, which requires “rational”  play at every information set.

Noldeke and Samuelson  considers anonymous random matching in a finite

population with a steady inflow of “mutants” or “replacement players.”  The analysis will

first determine the behavior of the system without these stochastic shocks, and then

consider the system in which shocks are present but become vanishingly small. After we

have done so, we will explain why the system involves much faster learning than in the

models discussed earlier in this chapter.

7.6.1. The Model

Each agent in the model is described by a current strategy and a “conjecture”

about the play of the opposing population(s). These conjectures take the form of  a  single

behavior strategy for each population, and so implicitly impose the assumption of

independent beliefs we discussed in chapter 6.    Further, each agent’s strategy is

presumed to be a best response to his current conjecture, where agent’s goal is to

maximize his ex-ante  expected payoff given his conjecture. In particular, an agent’

strategy is allowed to prescribe conditionally dominated actions at information sets that

the player’s conjecture assigns probability 0.  Each period, all agents are randomly
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matched to play the game.  In particular, the probability that a given agent of player i is

matched with a given agent of player j  is some fixed number bounded away from 0.

At the end of period, each agent has probability µ of “learning.” A learning agent

observes the terminal nodes in every match this period, and resets his beliefs at the

corresponding information sets to equal  this period’s observation.  The agent then adjusts

his strategy so that it prescribes a best response to his conjectures at all of his information

sets, with the “inertia” assumption that if the agent does not change his actions at

information sets where that action is one (possibly of several) best responses to the new

conjecture.

This process of belief revision and strategy adjustment, in which players use only

their most recent observation and ignore all previous ones,  parallels that in the Kandori-

Mailath-Rob papers. A new feature here is the assumption that observing play at the

information sets that were reached this period has no effect on beliefs about play at the

unreached information sets. 140 From a Bayesian perspective, this amounts to supposing

that beliefs take the form of a product of independent distribution over play at each

information set, so that seeing player 2 shift his response to a given action does not signal

that 2 may have changed his response to others;  This is a stronger assumption than the

independence across players that is implicit in the formulation of conjectures as strategy

profiles. Note that all agents who learn end the period with the same (and correct) on-path

beliefs. Note also that if the agent does not get to “learn,” he does not change his beliefs

                                                
140 In this setting  it is somewhat trickier to justify the decision rules as  being approximately optimal  when
the system changes only slowly and the agent has a small discount factor, since the most recent observed
outcomes  need not be a sufficient statistic for the entire history of outcomes.  However, this is taken care of
by the combination of the assumption that learning players observe the outcome in all matches and the
independence assumption..   Note moreover that this sort of memoryless learning makes it very hard a
priori  for a mixed- strategy equilibrium to be stable. This did not matter very much in the 2x2 coordination
games considered by Kandori, Mailath and Rob, where the mixed equilibrium would clearly be unstable in
any sensible dynamic, but it becomes an issue when considering more general extensive-form games.
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even if they are inconsistent with the terminal node reached in his own match this period.

 This strikes us as an odd aspect of the model, but it does not seem important for the

results.141

The previous paragraph defines the “no mutations” adjustment process Γ( )0 .  The

state space of this process is the set Θ whose elements specify a strategy and conjecture

for each individual agent.  To extend this to a process with mutations or replacements,

suppose that following an i.i.d. process, each period with probability λ each agent is

replaced by another one with an arbitrary conjecture and a strategy that is a best response

to the conjecture. These mutations create an ergodic system, denoted Γ( )λ ; Samuelson

and Noldecke’s goal is to characterize the limit of its ergodic distribution µ λ   as λ → 0 . 

Two aspects of this system that deserve special emphasis. Note first that the set of

mutations or perturbations is somewhat smaller than that considered in Kandori, Mailath,

and Rob, since  mutants never adopt strictly dominated strategies.  For this reason, the

transition matrix of Γ( )λ  is not strictly positive, but since all undominated strategies have

strictly positive probability it is easy to see that the system is indeed ergodic.142

Second, the mutations will be a source of “experiments” with off-path actions. 

Moreover, since the probability of the event “all agents learn” will in the limit λ → 0  be

infinitely  larger than that of a mutation, the model will generate much more information

about off-path play than if each agent only observed the outcomes of their own matches.

Consequently, we should expect that “less” experimentation is required to rule out non-

Nash outcomes in this model than under the usual observation structure.  This effect is

                                                
141In a private communication, Larry Samuelson has  recently sketched an argument that all of the 
asymptotic results of the paper are unchanged if each agent learns the outcome in his own match in every 
period, provided that agents still set their conjectures about play at each information set equal to their most
recent observation there.  However, that assumption is less attractive when agents only observe their own
matches than if they observe all outcomes, since the agent is trying to learn the aggregate distribution of
opponents’ play, and he will typically play a different opponent each period. 
142 See the appendix to chapter 5.
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strengthened by the assumption that when players learn they revise their conjecture to

correspond to their most recent observation, so that a single experiment here can have as

much force as an infinite number of them in the model of fictitious play.  Indeed, we shall

see that the key events to consider in determining the long-run distribution are “a single

player i experiments, and then all player’s revise their conjectures to match the outcome

of the experiment before any other players change their actions.”   For this reason we

should expect that convergence to a non-Nash outcome will be less common in this

model than in those we discussed earlier in the chapter.  This is also why we call the

model one of (relatively) “fast learning.”

7.6.2. The Deterministic Dynamic

As usual, the method is to work out what happens without mutations first.   In this

case, the outcome generated by any  singleton limit set (steady state) must be the outcome

of an independent and unitary self-confirming equilibrium. To see this, note that since

each player has some chance of eventually learning, and a player who learns observes

play in all matches, if play is absorbed by a single outcome all players will eventually

learn what that outcome is,  and so all players must have correct conjectures at all

information sets on the corresponding path. Thus the outcome must correspond to a

unitary self-confirming equilibrium; the independence is imposed by assumption as we

noted above.  Conversely, any self confirming equilibrium corresponds to a singleton

limit set. 

Note that a given self-confirming outcome can correspond to many different

steady states, since actual play at unreached information sets is arbitrary, and there are

only weak restrictions on the conjectures about this off-path play.  In particular, if in a

steady state θ player i could deviate and send play to an unreached subgame, and no other



286

player’s deviation can cause this subgame to be reached, then  any different state θ ’ that

differs from θ  only in the conjectures of players  other than i about play in the subgame

also self-confirming, and consequently also a steady state. Moreover, there can be steady

states in which different agents of a given player, say player 1, disagree about precisely

which awful payoff they would get if they gave player 2 the move, so long as in the

steady state player 2’s information set is never actually reached.  Thus, even though the

outcome of the steady state must be a unitary self-confirming equilibrium, that outcome

can also correspond to a steady state without unitary beliefs. 

Due to this huge multiplicity of steady states, the brute-force approach of

enumerating all of the steady states of the unperturbed system and then computing 

minimal order trees is likely to be quite tedious. However, such calculations are not

needed, since,  as shown below,   the large number of steady states makes it so easy for

mutations to switch play from one steady state to another that we need only consider

transitions that can be caused by a single mutation.

7.6.3. Dynamic with Mutations

We turn now to the case with  mutations, so that λ > 0.   We will say that a state is

stochastically stable  if it is contained in the limit of the supports of the ergodic

distributions µ λ   as λ → 0 .

Proposition 7.5  (Noldeke-Samuelson): If state θ is stochastically stable  so is any other

steady state θ'  whose basin of attraction (in Γ( )0 ) can be reached with a single mutation.

Intuitively, if a single mutation suffices to jump away from θ, the expected time spent in

state θ is of order 1 / λ , and since θ’ is a steady state, it will take at least 1 mutation before

this state is left, so that the expected time spent in θ’ is at least as large as that spent in θ.
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Using this lemma about stable states,  Noldecke and Samuelson develop a 

necessary condition for there to be a stochastically stable outcome; that is, for the limit

distribution to be concentrated on states all of which induce the same distribution over

terminal nodes.  From our remarks above, we see that in order for there to be a stable

outcome, there must be a corresponding  set of states all of which lead to that outcome,

and such that no single mutation leads to a state with a different outcome.

 Proposition 7.6 (Noldeke-Samuelson): Consider an extensive-form game in which each

player moves at most once on any path of play.  Suppose that an outcome is stochastically

 stable, and that at some stochastically stable state with that outcome player i can deviate

and send play to some subgame. Then no self-confirming equilibrium of the subgame can

give player i a higher payoff he received in the stochastically  stable outcome.

Sketch of proof:  Let  z  be a stochastically stable outcome generated by the stochastically

stable set Θ*. The first step is to check that every state in  Θ* is a steady state and hence

self-confirming. (The idea is that non-singleton limit sets of Γ( )0  must contain states

with at least 2 different outcomes.)  Suppose that at e outcome z ,there is a player i who

can take an action a that sends play to a subgame  G(a) that has a self-confirming

equilibrium s that gives the player more than he’s getting in z.  Fix a stochastically stable

state θ’, and consider the state θ  where all players’ strategies and conjectures agree with

θ’ at all information sets outside of G(a),  in which player i has the same strategy and

conjecture as in θ’, and such that strategies and conjectures of all players who have an

information set in G(a) correspond to s. Since θ’ corresponds to an self-confirming

equilibrium, so does θ.

Now consider a mutation that makes one agent of player i  play into this subgame,

and then suppose that all player i’ s learn before any agent of any other player type, and

before any further mutations. This sends the system to a new state, whose outcome is



288

some z’  that is different than the outcome z  we started with.  Moreover, since play in

G(a) is a subgame self-confirming  equilibrium, the learning mechanism cannot further

adjust actions or conjectures in this subgame.  Since player i’s  payoff  in this subgame is

greater than it had been under the initial outcome z,  and since at  z player i can force play

into the subgame,  the learning process starting at z’  cannot lead back to z.  Since a single

mutation suffices to send the system away from z, and at least one mutation will be

required to return to z,  z cannot be the unique outcome in the support of the ergodic

distribution of the perturbed system.

æ

Corollary 7.1:  In a multistage game with observed actions in which each player moves at

most once on any path of play, any stochastically stable outcome must be a subgame-

perfect equilibrium.143

Proof: From  Proposition 6.4,   in multistage games, every unitary self-confirming

equilibrium with independent beliefs has the same outcome as a Nash equilibrium.  Thus

Proposition 7.6 and the fact that every stochastically stable outcome is self-confirming

implies that a stochastically stable implies that a stochastically stable outcome must  be a

Nash equilibrium outcome with the additional property that no player can deviate and

send play to a subgame in where that player gets a higher payoff in some self-confirming

                                                
143 Noldeke and Samuelson assert that this conclusion follows without the restriction  to multistage games,
but as Larry Samuelson has pointed out to us, their proof is incorrect. However, no couterexample has been
found, and  it remains an open question whether this restriction is really needed. To see why it might not be,
note that while the inconsistent self-confirming equilibrium ( , , )A A L1 2 3 in figure 6.1 is a steady state of the

unperturbed learning process, it is not locally stable: a single mutation by a player 1 onto D1   sends the

unperturbed dynamic to the Nash equilibrium ( , , )D A A1 2 3 .  This raises the yet-unproved conjecture that all

locally stable outcomes must correspond to Nash equilibria
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equilibrium. The conclusion then follows from the fact that every subgame-perfect

equilibrium of any subgame is self-confirming. 

æ

Three aspects of these results deserve emphasis.  First, on a technical level, the

proof is greatly simplified by the fact that a single mutation suffices to leave the basins of

many steady states.  Noldeke and Samuelson use the same proof technique in a

subsequent paper on learning dynamics in a “screening” model.  The reason that this

technique is useful in these papers is the assumption that in the “no-noise” learning

process, a player who learns observes play in all matches.  Thus, the key event in both

models is “a single mutation onto a previously unused action, followed by all agents of a

given player learning.”  The nature of the learning process means that the single mutation

onto a previously unplayed action can have dramatic consequences.

As of this writing, the technical argument has not been extended to other types of

learning processes. However, the more second and more general point made by these

papers is that dynamics in extensive form games should be expected to be more sensitive

to various forms of noise and perturbation than are dynamics in static games with strict

equilibria, and  we expect that point to hold quite generally.

Third, and relatedly, the sensitivity to perturbations suggests that many games will

not have a stochastically stable outcome. This can be seen in the strength of Proposition

6.5, and is illustrated in the following example, which is a  3 player “centipede” game in

which each player in succession chooses between G (Go) and S (Stop); if any player

chooses S the game ends, and in any case the game ends after player 3’s move.
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1 2 3G G

S S

G (0,3,1)

(1,1,1) (2,2,1) (1,1,2)

S

Figure 7.4

The unique subgame perfect equilibrium is (G,S,S); with outcome (G,S),  profile (G,S,G)

has the same outcome.  This would also need to be in the stochastically stable set if

(G,S,S ) is.  But, at the state corresponding to (G,S,G), where all player 3’s  play G,  if all

player 2’s learn simultaneously, while none of the player 1’s do, the state switches to

(G,G,G).  Suppose that in the following period, all player 1’s, learn, and no other players

do.   This sequence of events, which relies only on the “learn” draws, has positive

probability under the  unperturbed, no-mutations dynamics, and leads to the steady state

(S,G,G) with outcome S.

In contrast to this example, suppose the subgame perfect equilibrium gives all

players a higher payoff than any other outcome.  In this case  it is stochastically stable. 

Noldeke and Samuelson prove a slightly stronger theorem.  Consider the outcome of a

subgame perfect equilibrium in a game of perfect information.  This outcome is the

unique stochastically stable outcome if no player has an action that can send play to a

subgame in which some terminal node gives that player a higher payoff than he received

in equilibrium.

Because it is so unlikely to be satisfied the notion of a single point being

stochastically stable is not that useful.  One conclusion we can draw from this is to accept
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the idea that limit sets may fail to be single points, and conclude that standard refinements

are too strong.

7.7. Mutations and Fast Learning in Models of Cheap Talk

This section discusses the application of  fast-learning-with-mutations to the

cheap-talk 2x2 coordination game we discussed in chapter 3.  Recall  the structure of the

game:  There are two stages  of play.  In the first stage  players simultaneously announce

messages, which will be treated as signals of their “intended action” L or R; in the second

stage they play the coordination game with payoffs

L R

L 2,2 -100,0

R 0,-100 1,1

 Talk is cheap in the sense that announcing an action has no direct effect at all on the

realized payoffs, which depend only on the second-stage choices.

In chapter 3 we observed that ESS is sufficient to eliminate the (R,R) equilibrium

provided that there is no “babbling”, that is, some message is not sent in equilibrium.  By

way of contrast, we discussed an argument due to  Matsui [1991] based on cyclically

stable sets that eliminates the (R,R) equilibrium  even with a fixed finite message space. 

As we noted, Matsui’s argument  implicitly supposes that players observe and respond to

the strategy profile actually used by their opponent, including the parts of the profile that

relate to off-path play.   Once we recognize the extensive-form nature of a cheap talk

game, this is no longer a satisfactory assumption.
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In this section we will sketch an argument similar to that of Noldecke and

Samuelson that, unlike  Matsui , supposes that players can only observe what actually

happened in the course of play.   Moreover, we will see that the conclusions can depend

on whether agents observe only the outcomes in their own matches, or instead can

observe the outcomes in all of them, as  in Noldeke-Samuelson. Another advantage of

these arguments is that they each concern  long-run behavior under a single dynamic, and

thus sidestep some of the interpretational questions posed by the Gilboa and Matsui

[1991]  definition of a cyclically stable set.

We begin with an extension of the Noldeke-Samuelson model of the previous

section. Since each player moves twice along every path of play, instead of only once as

assumed by  Noldeke-Samuelson, their model is not immediately  applicable to this game.

To apply it we will extend their independence assumption to by adding the condition that

play by a given player at a given information set is treated as having no information about

that player’s actions at any other information sets, even those which are successors of the

information set in question. With this extension we can show that the limit of the long-

run distributions assigns probability 1 to all players choosing the Pareto-optimal action L.

Here is a sketch of the argument, which we have not seen given elsewhere.  We

will  argue first  that, starting from any state  in which all agents play R in the second

stage given the prevailing distribution of messages, the system can move to a state where

all agents play L at a “cost” of only 3 mutations. That is, the component in which all

agents play R has a modified coradius (see Chapter 5) of at most 3.   To see this, let θ *R

be the state in which agents believe that all opponents will play R regardless of the first-

period message, and all agents choose to both say and play R.  If the current outcome is

that all agents actually play R, given the prevailing distribution of messages, then all

agents must believe that regardless of the message they send their opponent is likely to
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play R. Consequently, the state can move to θ *R  by a series of single mutations: take each

player who is currently saying L, and replace his conjectures by those of θ *R . Since these

conjectures are consistent with the observed distribution, each such single mutation leads

to a new self-confirming equilibrium, and so to a new steady state of the unperturbed

adjustment process.  Thus the modified cost of this sequence of mutations is only 1, Next,

from the state θ *R  two mutations are sufficient to shift the state to the basin of the

equilibrium component in which all agents play L: suppose that a single agent on each

side mutates to the conjecture “all of my opponents will say play L if I said L and will

play R if I say R.”144 Suppose   moreover that these two mutants are immediately matched

with one another, so that they both end up saying L and then playing L, and that this is

followed by the event “all agents learn.”  (Recall that  both of these events have positive

probability in the unperturbed (no-mutations) dynamic.) Then with the assumption that

beliefs are updated separately at each information set, the learning players have the new

conjectures “everyone plays L if both messages were L, and plays R otherwise,” and so

all agents say and do L in the next period. Hence the modified coradius of “all play R” is

at most 3.

However, the modifed coradius of the component where all agents play L is

proportional to the number of players, and so is much larger if the population is large. In

order for  “learning” players to start choosing a message that leads to a significant chance

of playing R, it must be that both messages have a substantial probability of leading to the

opponent playing R. (Otherwise, the learning player would choose the message the made

it likely his opponent will play L.)  This is the key asymmetry between the strategies:  

plays shifts from R to L if either message is likely to result in (L,L), which can occur after

                                                
144 The conjectures about play following “mismatched” messages are unimportant, as will be clear from the
argument that follows.
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only a single mutation onto an unsent message; while to induce players to choose R, some

fraction of the population must mutate.

Note well that this asymmetry depends on the assumption that the event “all

players learn at once” is much (infinitely) more likely than any single mutation. This can

be seen by considering  modifying the model so that agents learn the distribution of

outcomes induced by their own chosen strategy, but otherwise keeping the model the

same. 145 Here  two mutations  are not enough to move from θ *R  to the basin of the

component where all agents play L, and agents will only choose to shift to sending L if a

substantial fraction of agents mutates at the same time.

7.8. Experimentation and The Length of the Horizon 

Basically the results of this chapter show that we should expect Nash rather than

self-confirming equilibrium if there is enough experimentation.  On the other hand, we

argued, especially in chapter 4, that there is good reason for players to use a rule such as

smooth fictitious play which is random, and that there are many  reasons to believe that

players actually do randomize, including the random utility model of Harsanyi and the

empirical research of psychologists.  This raises the question of whether and why self-

confirming equilibrium should be of  interest. 

To answer this question, we adopt Binmore and Samuelson’s [1993] typology of

the short, medium, long and ultra-long run.  The short run is a period so short that players

have no opportunity to learn, and simply use their priors.  In an experimental setting,

Stahl and Wilson [1994] have explored models of prior formation that give some

                                                
145 If players only observe their own matches, the assumption that conjectures equal their  most recent
observation is not very sensible. For example, in the coordination game without cheap talk, the no-mutation
process holds constant the numbers of agents playing L and playing R, so that every state is in the support
of the limit distribution!
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predictive power of play in the first round of an experiment, while falling far short of

equilibrium of any kind.  Nagel [1993] has examined how the transition from short to

medium-run takes place as people begin to best-respond to past play by opponents. 

In the medium run, players have an opportunity to learn.  In Binmore and

Samuelson [1995], the medium run is identified with remaining for a long time near a

component of steady states that is not dynamically stable, with the long run being long

enough for the system to move away from unstable components and arrive at a stable one.

  We would prefer to emphasize instead that while experimentation may lead to Nash

equilibrium in the long run, self-confirming equilibrium may be a good description of a

system in the medium run.  The point is that players accumulate data about the on-the-

path play of their opponents much more rapidly than they generate data about their off-

path play.  Consequently, we  expect in the medium run that outcomes that are not self-

confirming are  unstable, but it only makes sense to believe that players will move away

from self-confirming equilibrium to full Nash equilibrium (or one of its refinements) over

a much longer horizon , so that  experimentation will have  yielded a substantial amount

of data.146  Unfortunately, we do not know of a way to make a formal distinction between

these two horizon lengths. 

Finally, in the very long run, we might expect the type of Kandori, Mailath, Rob

and Young type of argument to become relevant, as the system spends most of its time

near the particular steady state that is stochastically stable. As pointed out by Binmore,  

Samuelson, and Vaughn  [1995], this distinction corresponds to two different orders of

limits in evaluating the average behavior of the system:  the case where  mutations are

very rare over the relevant horizon corresponds to the order lim limt→∞ →ε 0 , where ε is a

                                                
146 This same point has been emphasized by Er’ev and Roth [1994].
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measure of the size of the “noise,” while the ultra-long run  is long enough for the noise

to be nonnegligible, so that the appropriate order of limits is  lim limε→ →∞0 t .

In interpreting these results, it is important to think of the particular application. 

For example in studying what happens in an experimental setting, the short- and medium-

run seem most relevant, except for a few experiments running very simple games over 50

or more trials, where the long run may be relevant.  In talking about rules of thumb, social

norms, or customs in an economic setting, we imagine that these have evolved over a

very long period of time, and so the long or ultra-long run cases have greater relevance;

this is the point of view taken by Young [1993].
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Appendix:  Review of Bandit Problems

In a multi-armed bandit problem, a single player with discount factor δ  must

choose from a finite set of “arms” or actions a A∈ .  The action chosen gives rise to a

probability distribution over outcomes θ ∈Θ ;  these outcomes are independently drawn

each period from probability distributions σ ( ) ( )a ∈∆ Θ , which are unknown.  Utility

depends on the action and the outcome u a( , )θ .  Players beliefs are given by prior

distributions µ( )a  over each probability distributions σ ( ) ( )a ∈∆ Θ . These priors are

independent between actions so that learning the distribution corresponding to one action

conveys no information about the distributions corresponding to others; the only way to

learn about the distribution generated by a given action a  is to play that action.    After an

action a is chosen in period t , beliefs µ t a( )  for the corresponding action are updated

according to Bayes law.  For example, if µ t a( )  is a continuous density,  and a is chosen

at time t, with outcome θ  then

µ σ σ θ µ σ
σ θ µ σ σt

t

t

a
a

a d+ = ⋅
⋅I1( )[ ]

( ) ( )[ ]
( ) ( )[ ’] ’

.

Because of the assumed independence,  beliefs for actions not chosen are not updated at

all.

Our discussion in this Appendix follows Ross [1983].  The problem is ordinarily

analyzed by dynamic programming methods; that is, by postulating a value function

v( )µ , and using the Bellman relation

v E u a E va A a( ) max ( ) ( , ) ( ’)’,µ δ θ δ µµ µ= − +∈ 1

which says that the value of particular beliefs are equal to the greatest amount that can be

earned by choosing an action that maximizes current expected utility plus the expected

value of next period’s  beliefs.  It may easily be shown that v  is (weakly) convex in µ .
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In the case of a multi-armed bandit problem the solution of the dynamic

programming problem was shown by Gittens [1979] to have a particularly simply form. 

Consider first the simple one-armed bandit problem where the option is to play the one

arm, or to drop out and receive a fixed utility U .  Let v U( , )µ  be the value function

corresponding to this problem. This function may easily be shown to be continuous and

non-decreasing in U.  Let, moreover, U ( )µ  be the smallest value of U  for which it is

optimal to drop out.  This is called the Gittens index.  Then

U U v U U( ) min[ | ( , ) ]µ µ= =

The key fact in solving the multi-armed bandit problem is that the Gittens index

for each individual arm can be used to determine which arm to pull.  That is, the optimal

plan is to compute for the current beliefs, and  for each action a , the index U aa ( ( ))µ , and

use the action for which this Gittens index is largest.  Of course  this result depends very

heavily on the assumption that the arms are independent, which means that the Gittens

index is not very  useful for  analyzing extensive form games.

A basic feature of the multi-armed bandit is that there is positive probability of

stopping forever on the wrong arm.  This is easy to see:  Suppose there are two arms, one

with a favorable prior and one with an unfavorable prior.  Suppose moreover, that the

actual draw of σ  on the first arm is more favorable than expected, and that the actual

draw on the second arm is more favorable than the first arm.  Then the first arm will be

tried first, and since the only surprise will be that the first arm is more favorable than

expected, the second arm will never be tried.  That is, as long as the Gittens index on the

first arm does not drop below the prior Gittens index on the second arm, the second arm

will never be used.  But in this example, the second arm is actually more favorable.

On the other hand, we would not expect this phenomenon to be important if the

player is patient, that is, if δ  is near one.  To see that it is not, observe that the strategy of
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experimenting with all arms for T periods, then switching to the most favorable arm

forever, will, if δ  is near one, and T is sufficiently long, give nearly the same expected

present value as knowing in advance which is the best arm.  Consequently,  the optimal

policy must also yield approximately the full-information payoff. .  This means that for δ

near one there cannot be an appreciable chance of stopping on the wrong arm by mistake.
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8. Sophisticated Learning

8.1. Introduction

Throughout our discussion of both evolutionary and learning models, we have

emphasized our belief that people are relatively good at learning.  So far, however, one

deficiency of all the models we have examined is that they are unable to detect simple

cycles or other patterns in the data.  Either implicitly or explicitly, rules such as fictitious

play and its variations, best-response, and stimulus-response are designed to perform well

against an i.i.d opponent; none of them attempt to detect cycles or other regularities in the

data.   In this chapter, we examine learning rules that are more “sophisticated” in the

sense that they explicitly attempt to detect patterns.

We consider three ways of modeling the idea that players may attempt to detect

patterns in opponents’ play.  The most traditional starts from a set of opponent strategies,

possibly involving complex patterns of play over time, that are a priori viewed as

possible.  Supposing that players have prior beliefs over these strategies leads to a

Bayesian model of learning. Such a Bayesian model is equivalent to specifying

conditional probabilities over opponents’ play conditional on particular events.  A related

approach is to specify the events that are to be conditioned on,  and estimate the

conditional probabilities directly.  For example, rather than assuming that the probability

distributions governing opponents’ play are  independent of the history, as in fictitious

play, we can allow players to believe that the distributions are different in odd and even

periods, or that they depend on the actions  played in the last period. In this approach, the

primitive specification is not a set of opponent strategies that are viewed as possible, but
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rather a method of classifying histories into categories within which conditional

probabilities are assumed to be  constant. 

A third approach is to  treat as  primitive, not the opponents’ strategies that are

viewed as possible, but the set of the player’s own strategies that are viewed as potential

best responses.  In the computer science literature, these are referred to as experts and the

goal may be thought of as choosing the expert who makes the best recommendations for a

course of play.  

We begin in section 8.3 with the Bayesian learning model.  Following Kalai and

Lehrer [1993], we show that if these beliefs contain a “grain-of-truth” (or a weaker

absolute continuity assumption) then play must converge to a Nash equilibrium. 

However, the “grain-of-truth” assumption is difficult to justify because when opponents

act as Bayesian learners, they may well follow strategies that were not a priori viewed as

possible, in which case the grain of truth assumption will fail.  In section 8.4 we explore

some of the difficulties with the “grain-of-truth” assumption, including Nachbar’s [1995]

result  providing conditions that make the grain-of-truth impossible.   Our conclusion is

that it is important to use learning procedures that are robust  in the sense that, unlike

Bayesian learning, they continue to perform well, even if none of the alternatives viewed

as possible actually turn out to be true. 

The remainder of the chapter looks at learning procedures that are robust and that

attempt to detect at least some patterns. .  In section 8.5 we examine procedures proposed

in the computer science literature that make it possible to do asymptotically as well as the

best expert, even in the worst case.  In section 8.6, we show how to extend the fictitious

play idea, that players learn about frequencies, to the idea that they learn about

conditional frequencies.  The main result is that the conditional analog of smooth
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fictitious play does about as well asymptotically as if the conditional frequencies are

known in advance.

 In general we can say little about the relative performance of cautious fictitious

play against alternatives such as best response or stimulus response.  Despite the fact that

cautious fictitious play has better theoretical properties, it may be outperformed by the

other models in particular instances.  In section 8.7 we show that this is due to the fact

that the other procedures may inadvertently be conditioning on parts of the history that

are ignored by cautious fictitious play.  In fact, we show that given any other procedure

we can design a particular conditional cautious fictitious play learning rule by

conditioning on the same information used by the procedure in question that regardless of

whether the criterion is time average or discounted payoffs, and regardless of the discount

factor, never does much worse than the other procedure, and sometimes does

considerably better.

 In section 8.8 we ask whether sophisticated learning is potentially destabilizing.

Sonsino [1994] argues, for example, that sophisticated procedures may result in cycles,

where less sophisticated procedures would  have converged.  In section 8.9 we examine

the converse  question of  whether sophisticated learning procedures can lead to

convergence in cases where less sophisticated procedures cycle. Even if cycles can be

successfully detected, is it possible that this generates even more complicated cycles  that

players are  unable to detect, or is the system forced to convergence?  This depends in an

important way on players synchronizing the data they use from the past.   Allowing the

possibility that patterns more complicated than those contemplated in player’s behavior

rules may be generated, we observe one implication of this may be that opponent’s play

may appear to be correlated with the player’s own play.  Put differently, a player’s own

choice may contain predictive power about what his opponents are going to do.  In
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section 8.10, we examine the procedure developed by Foster and Vohra [1995] to take

account of this extra information.  If players do so, play in the long-run must come to

resemble a correlated equilibrium.  However, there is still the theoretical possibility that

the correlation, which is generated by a time dependence in behavior rules, is still too

complicated for players to anticipate; whether this is likely to happen in practice is

currently unknown.

One important issue is that once we allow players to condition on histories of

play, they may realize that opponents’ future play depends on their own current play.  If

players are not myopic, this raises an important set of issues:  first, players may try to

manipulate their opponents learning process.  This possibility is discussed in section 8.11.

  Second, players may not be able to correctly infer the causal connection between their

own play and their opponents.  This possibility was explored in previous chapters

examining extensive form games.  Finally, even if there is enough experimentation to

reveal opponents strategies, it is currently unknown whether or not there are analogs of

conditional cautious fictitious play and other robust methods that are applicable in a non-

myopic setting.

8.2. Three Paradigms for Conditional Learning

Through most of  this chapter we return to the simple setting of a fixed set of

myopic players playing a static simultaneous-move game; as usual this should be thought

of as a convenient simplification of a model of a larger  population.  In the stage game the

strategies are s Si i∈ , and  utilities ui .  This game is repeated over time, and a finite

history of play h s s st t= ( , , , )1 2 K  is a list of how all players have played through period t. 

The play of all players except for player i is denoted by ht
i− , an infinite history of play by

h, and so forth.  The set of all finite histories continues to be denoted by H.
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We examine three behavioral paradigms for detecting patterns.  The most

traditional is a set of opponents’ strategies, possibly involving complex patterns of play

over time, that are a priori viewed as plausible.  Adding a prior over these strategies will

lead to a Bayesian model of learning. Specifically, let a model for player i  be a map

m h Si
t

i− −∈( ) ( )∆ from histories to correlated strategies in the repeated game for player i’s

opponents. Bayesian beliefs are then specified by a set of plausible models M i , and a

prior over this plausible set.

Instead of focusing on models that are thought to be plausible, we can focus on

strategies that are thought to be potential best responses.  In the computer science

literature, these are referred to as experts and the goal may be thought of as choosing the

expert who makes the best recommendations for a course of play.  Specifically, we define

an expert for player i to be a map defined on histories e h Si
t

i( ) ( )∈∆ ; this is simply a

strategy in the repeated game.

 Given any model, we can consider the corresponding experts which are best

responses to the model; given any expert, we can consider the models for which the

expert would be a best response.  While this is not a one-to-one correspondence between

models and experts, nevertheless, there is a close link between the two.  In particular we

can think of a player’s beliefs about the possible dynamics of his opponents play either in

the form of a set M i  of plausible models, or as a set E i  of plausible experts.

Finally, Bayesian priors over models give rise to a set of conditional probabilities

of opponents play given the history of all players’ play.  The essential element is the

partitioning of histories into disjoint sets of events.   Specifically, we suppose that there is

a collection of categories Ψi  into which observations may be placed.   A classification

rule is a map $ :ψ i i iH S× → Ψ .147  The interpretation is that prior to observing st
i−  the

                                                
147 For notational simplicity we limit attention to deterministic classification rules.
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player knows h st t
i

−1, , and must choose a category $ ( , )ψ i
t t

ih s−1  based only on this

information. Instead of focusing on models, or on experts, we can instead attempt directly

to estimate the probability of opponents’ play conditional on particular categories.

 

8.3. The Bayesian Approach to Sophisticated Learning  

We begin by considering a learning rule ρ i  generated by playing a best response

to a particular prior Γ i  that puts positive probability on each of a countable or finite set of

plausible models M i .148  Our presentation is generally based upon the work of Kalai and

Lehrer [1993], although they consider the more general case where players can be either

patient or impatient 149

Given behavior rules ρ i  for each player, there is a well-defined probability

distribution D( )ρ  over histories, finite and infinite.   If there exists a map from histories

to Nash equilibria of the stage game $ ( )σ t th −1  such that | ( )( | ) $ ( )( )|D s h h st t t t tρ σ− −− →1 1 0

almost surely with respect to D( )ρ , we say that the rules converge to Nash equilibrium. 

Note that our criterion for convergence is the strong one that requires convergence in

every period; however, we do not require convergence to a single Nash equilibrium: we

allow deterministic movement between several Nash equilibria.  Since players are no

longer assumed to believe that the world is stationary, there is no reason that they cannot,

for example, engage in a cycle between different Nash equilibria.

One desirable feature of Bayesian learning is that if priors are consistent with the

true model, beliefs are consistent; that is, they converge to the true model.  In the current

                                                
148 Obviously there is no loss of generality in assuming positive weights; the set of plausible models is just
the support of the probability distribution.  We will comment on the case where the set of models is
uncountably infinite below.
149 We discuss the issue of patience below.
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context, this will imply convergence to Nash equilibrium.  To be more precise, let

Di i i( , )ρ Γ  be the probability distribution over histories induced by player i’s beliefs and

the player’s own behavioral rule.

Definition 8.1:  Beliefs Γ i  are absolutely continuous with respect to the play path if there

exists some plausible model m Mi i∈  such thatD m Di i i( , ) ( )ρ ρ= .

In other words, there should be some plausible model that is observationally equivalent to

opponents’ actual strategies in the sense that the probability distribution over histories is

the same.  However, the plausible model may generate different off-path play.  In the

current context of myopia, this is irrelevant, since players do not care about how their

deviation may effect opponents future play; in the context studied by Kalai and Lehrer of

patient players, this means that we may have only a self-confirming equilibrium, rather

than a Nash equilibrium, since beliefs need  be (asymptotically) correct only on the

equilibrium path.

Proposition 8.1 [Kalai and Lehrer]:  If ρ i  are best responses to beliefs Γ i  that are

absolutely continuous with respect to the play path, then they converge to Nash

equilibrium.

Proof:  This is essentially a result of Blackwell and Dubins [1962].  We will give a sketch

of how it follows from the Martingale convergence theorem. Let ω  denote the event that

mi  and ~ω  denote the event that it does not occurs.  We may write the posterior odds ratio

of the event ~ω  as perceived by player i
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which is the standard result that the odds ratio is a supermartingale.  Since it is also

nonnegative, it follow from the martingale convergence theorem (see, for example, Loeve

[1978]) that Lt  almost surely converges with respect to D m Di i i( , ) ( )ρ ρ= .  This in turn

implies that

D s h

D s h

i i i
t t

i i i
t t

( , )( | ~ , )

( , )( | , )

ρ ω
ρ ω

Γ
Γ

−

−

1

1

almost surely converges to 1 with respect to D( )ρ .   If the vector

D h D hi i i
t

i i i
t( , )( | ~ , ) ( , )( | , )ρ ω ρ ωΓ Γ⋅ − ⋅− −1 1  do not also converge almost surely to zero, then

this is impossible; since ω ω, ~   are complementary events, is must also be that

D h D h D h D hi i i
t

i i i
t

i i i
t t( , )( | ) ( , )( | , ) ( , )( | ) ( )( | )ρ ρ ω ρ ρΓ Γ Γ⋅ − ⋅ = ⋅ − ⋅− − − −1 1 1 1

almost surely converges to zero.  Since ρ i
th( )−1  is a best response to D hi i i

t( , )( | )ρ Γ ⋅ −1

(recall that players are myopic) it is a best response to D ht( )( | )ρ ⋅ −1 .  Consequently,

looking across players ρ i
th( )−1  form a Nash equilibrium.

æ

                                                
150 Since beliefs are absolutely continuous with respect to the play path, the denominator in these
expressions has positive probability.
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It will not escape the careful reader that the hypothesis reads a lot like a definition

of equilibrium:   The rules are assumed to be best responses to beliefs that are plausible

with respect to the play path generated by those rules.  This “fixed point” property makes

the hypothesis a difficult one.  Moreover, there is also a difficulty in understanding how

Bayesian players following deterministic rules can converge to a mixed strategy

equilibrium, for example if the game is matching pennies.  Before taking up these issues

in detail in the next section, we consider an example from Kalai and Lehrer that illustrates

some of the limitations of this result.

Example 8.1 [Kalai and Lehrer]:  Consider the following two player stage game of

“chicken”

Y I

Y 0,0 1,2

I 2,1 -1,-1

where the strategies are “yield” (Y) or “insist” (I).  This game has two pure strategy

equilibria one in which player one yields and two insists, and vice versa and a mixed

strategy  equilibrium. Following Kalai and Lehrer, we suppose that the plausible set

consists of strategies of the form “insist for the first n periods (possibly infinite), then

yield forever.”  In addition, we suppose that the prior puts exponentially declining

weights on these models, and that insisting forever has positive probability.

However, absolute continuity may not be satisfied in this game. The best response

to the prior beliefs is to insist for a finite period of time and then yield if the other player

has not done so already, since it becomes increasingly likely that the other player will
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never yield.  Whether such a path satisfies absolute continuity depends on how different

the beliefs of the two players are.  If one player is much more pessimistic about his

opponent yielding, his best response is to almost surely yield first, and absolute continuity

is satisfied.  However, if both players have the same beliefs (or nearly so) both will yield

at the same time.  When this occurs,  it is then optimal for both players to stop yielding, a

path that has zero probability according to the original beliefs, so  absolute continuity is

violated.151  This illustrates the problem in finding sets of plausible models that satisfy the

absolute continuity assumption.  It also raises the question of whether some more

complicated beliefs might satisfy the absolute continuity assumption, an issue which we

discuss more generally in the next section.

8.4. Interpreting the Grain of Truth Assumption

As we observed, the problem with interpreting the Kalai-Lehrer result as a

favorable result about Bayesian learning lies in the fact that the prior beliefs must satisfy

the absolute continuity assumption. However, since absolute continuity is endogenous,

finding beliefs in principle requires the same kind of fixed point solution that finding an

equilibrium does.  One solution to this problem is to interpret this result as a descriptive

                                                
151  The plausible sets in this example are reminiscent of  equilibrium play in a  “war of attrition” game, in
which once a player yields she must yield forever afterwards, so that the players’ strategy space reduces to
the choice of a time to yield if the “war” is still ongoing. This war of attrition has two  pure-strategy
equilibrium outcomes, “1 yields at the start and 2 insists” and vice versa.  These outcomes correspond to
equilibria of the repeated game in which one player always insists and the other always yields,  which is
why the associated asymmetric prior beliefs satisfy absolute continuity in the repeated game.  The war of
attrition also has symmetric equilibrium in mixed strategies, which corresponds symmetric priors in the
repeated game. However, this mixed equilibrium is not an equilibrium of the repeated game, for precisely
the same reason that the associated beliefs do not satisfy absolute continuity: if the opponent’s strategy is a
randomization over strategies all of which specify that the once the player yields she will continue to do so,
then a concession-time strategy will not be a best response.  Of course, by definition all three of these
equilibria of the war of attrition satisfy absolute continuity in the war of attrition itself, as noted by Kalai
and Lehrer, but the war of attrition is not a repeated game. 
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model, rather than an answer to the question of “how do we get to equilibrium.”  That is,

in this setup, the “equilibrium” allows that initially substantial disagreement exists among

players, even though ultimately it disappears.  In many ways this interpretation is similar

to the model (and result) of Jordan [1991], who examines a full Bayesian Nash

equilibrium of a repeated game, where players do not initially know what game they are

playing.  Ultimately, this too converges to Nash equilibrium of the stage game.

Our interest here, however, is in “learning models,” by which we mean that the

allowed priors are  exogenously specified, without reference to a fixed point problem.  

Ideally,  the priors would have the property t regardless of opponents strategies, the

absolute continuity assumption is satisfied, but  this  is  impossible:   The space H i−  is

uncountable, and so any probability distribution on this space must place probability zero

on some sequences h i−  of play, and if opponents were to actually play one such h i− , the

absolute continuity assumption would  be violated.

Instead, we will explore the  weaker possibility that it is possible  to specify a

class of priors with the property that if all players pick from this class, the absolute

continuity assumption is satisfied.  Even this weaker goal can be difficult to achieve. In

particular, the condition is less readily satisfied in the infinite horizon than in finite

truncations of the game, as the following example shows.

A B

A 1,1 0,0

B 0,0 1,1

 



313

We suppose that players’ beliefs are that the opponent’s play is independent of their own,

and that priors are “eventually equilibrium.”  By this, we mean that the plausible sets of

strategies are non-contingent strategies of the form ( , , , , , )s s s si i
t

i
t

i
1 2
− − − −K K  with an

arbitrary beginning, but in which the opponent’s play eventually converges to  a particular

pure strategy.  Moreover, all such sequences have positive probability, and only such

sequences have positive probability.

As an example of such beliefs, suppose that player 1 believes A is 90% likely in

period 1,  while player 2 believes B is 90% likely.  Moreover, both players beliefs are that

if your opponent played ( , , , )s s si i
t

i
1 2 1
− −

−
−K  in the past, there is only a (. )1 t  probability that

he will fail to play st
i

−
−

1  in period t.  Then each player always plays the way his opponent

did last period, but player 1 initially plays A and player 2 plays B.  So play alternates

deterministically between (A,B) and (B,A), an event that was thought a priori to have

probability zero.  And the two players never manage to coordinate.  However, t the

absolute continuity assumption is satisfied with respect to any finite truncation of the

game; the problem is that it is not satisfied asymptotically. 

Of course it may be argued that players should place positive a priori weight on

two- cycles.  But there is still no guarantee, that this will not result in three- cycles.  We

must check that when each player optimizes against his prior over the plausible set, the

resulting play lies with probability one in the set considered plausible by his opponent. 

The problem in the example above was that it did not. 

Further discussion of this problem is based on Nachbar [1995].  For simplicity, we

will limit the discussion to the game of matching pennies
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H T

H 1,-1 -1,1

T -1,1 1,-1

Recall that a model for player i is a map m h Si
t

i− −∈( ) ( )∆ from histories to strategies in

the repeated game for player i’s opponent and that the set of models viewed as plausible

by player i is denoted by M i .  If a model puts probability one on a single strategy for

player i’ ’s opponent, we refer to it (by analogy to a pure strategy) as a pure model.  For

any pure model m i-  we denote by ~ ( )m mi i− = BR mi i( )−  the pure model that yields a payoff

of 1 in every period against m i− .   Following Nachbar we assume that if a pure model

m Mi i- ¶  is viewed as plausible by player i, then the pure model ~ ( )m mi i-  is viewed

plausible by player -i, that is, ~ ( )m m Mi i i- -¶ .

 Suppose that there exist best-responses ρ  such that the resulting play with

probability 1 is plausible for each player i, and such that some pure model mi   has

positive probability.  Then, by assumption this means the model ~ ( )m mi i−  must be viewed

as plausible by player i and so has positive weight in his  prior.  By  Proposition 8.1, this

implies that eventually player i must learn player -i is playing ~ ( )m mi i− .  Once player i

learns this fact, he certainly will not any longer play according to mi , contradicting the

fact that r i  is a best-response to i’ s prior.

The difficulty in this line of argument is that it shows only that best responses

cannot be plausible if they put a positive weight on a pure model.  However, if the best

responses are sufficiently mixed (for example an independent 50-50 coin flip in each

period, which is an obvious way to play matching pennies), then they may not put

positive weight on any pure model.  Consequently the question of whether there exist

plausible sets  for all players such that the best responses lead to plausible outcomes
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remains incompletely answered.  Nachbar’s argument, which can be generalized to cover

many other games and approximate as well as exact optimization, does show that the

absolute continuity assumption is a difficult one.

8.5. Choosing Among Experts

The problem with the Bayesian approach is that the true process, which is

endogenously determined, may not turn out  to be in the set of processes initially

considered to be possible, and  Bayesian  updating can have odd consequences  when the

support of the prior does not contain the process generating the data.  Bayesian updating 

does minimize a certain measure of logarithmic distance to the “true model”, but this may

yield little utility, as it leads to a (generically unique) deterministic optimal rule that may 

yield less than the minmax payoff .

For these reasons, we are interested in learning rules that are robust.  Recognizing

 that even with a very diffuse prior, the process that occurs in the course of playing a

game against opponents may not be in the support of the prior, we seek rules that do

reasonably well,  even if the true process generating the data is different than those

initially contemplated.    Since our measure of success is the utility achieved by the

learning rule, it is convenient at this point to abandon the Bayesian point of view, and

instead focus on directly on strategies that are thought to be potential best responses. 

Adopting the computer science terminology, we will refer to these behavior rules as

experts, and the goal may be thought of as choosing the expert who makes the best

recommendations for a course of play.  Specifically, we define an expert for player i to be

a map defined on histories, with  e h Si
t

i( ) ( )∈∆ ; this is simply a strategy in the repeated
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game.   In place of a plausible set of models, we let E i  denote a set of plausible experts. 

For simplicity we will assume that this is a finite set.

Our goal is to demonstrate that a relatively simple procedure of rating experts by

their historical performance does about as well asymptotically as the best expert does.  In

other words, while none of the experts (or models) necessarily does as well as would be

possible if the “true” model or expert were considered a priori plausible, there is no need

to do worse than the expert who is closest to the “true” expert in the  sense of getting the

highest time average utility among all experts thought to be a priori plausible.

To demonstrate this fact, let us recall the  results in Chapter 4 about cautious

fictitious play; the results about experts can be derived as a corollary of this basic result.

We will employ the  version of the result for time-varying utility functions.  Define

 
r
u e T u e h st

i i i i
t t

it
( ) ( / ) ( ( ), )= −

−
=∑1 11τ

to be the utilities that would be realized if the expert ei  played on behalf of player i. 

Note that while the game played by choosing actions is stationary, the game played by

choosing experts is time and history dependent, as utility corresponding to choosing a

particular expert will depend upon the action that expert recommends given the history. 

By analogy with the constriction in Chapter 4, we define a rule BR ue
i

t
i( )
r

   mapping

histories to  probability distributions over experts by solving the optimization problem

max ( )ϑ ϑ λ ϑi

i
t
i i iu v⋅ +r

.

where ϑ ∈∆( )E i  is a probability distribution over the set of plausible experts, vi  is a

smooth function that becomes large at the boundaries of the simplex, and λ  is a small

positive real number . 
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We also can define a learning rule in the more ordinary sense by first applying

BR ue
i

t
i( )
r

 then letting the (randomly chosen) expert choose the action; denote this by

BR u
i

t
i( )
r

.

In this context, and with this notation, we may define an analog of universal

consistency

Definition 8.2:  A rule ρi  (mapping histories to mixed actions) is ε -universally expert if

 for any ρ−i

limsup max ( ) ( ( ))T e E t
i i i

t tti i u e
T

u h→∞ ∈ −− ≤∑r 1
1ρ ε  almost surely with respect to

( , )ρ ρi i− .152

This says that the best expert does no more than ε  better than the utility actually

received.

With this notation, we may restate Proposition 4.5 as

 Proposition 8.2: Suppose that  vi  is a smooth, strictly differentiably concave function

satisfying the boundary condition that as ϑ i  approaches the boundary of the simplex the

slope of vi  becomes infinite.   Then for every ε  there exists a λ  such that the BR
i

procedure is ε -universally expert.

Notice also that we may equally easily derive Proposition 4.5 from Proposition 8.2: we

suppose  that the plausible experts each recommend playing a fixed action in every

period, and every action is represented by  some expert.  Thus the best expert gets the

payoff of paying the action that is optimal against the time average of play, so a

universally expert rule is universally consistent.

                                                
152 Note that u hi

t t( ( ))ρ −1  does not need a time subscript, as the rule ρ t th( )−1  is still by definition a choice

of action, not a choice of expert.  Equivalently, we could define the learning rule to be a choice of expert, in
which case utility would depend on the history.  Naturally both ways of computing the utility actually
realized yield the same answer.
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In the case where  v s si i i i

s

i i
i( ) ( ) log( ( ))σ σ σ= −∑  (which is  the entropy defined

in chapter 3) the scheme for choosing among experts picks them with a frequency

proportional to the exponential of the historical utility.  This type of exponential

weighting scheme was introduced in computer science by Littlestone and Warmuth

[1994], Desantis, Markowski and Wegman [1992], Feder, Mehrav and Gutman [1992]

and Vovck [1990].  Vovk [1990] gives a proof of Proposition 8.2 in a special case while

the complete theorem is shown by Chung [1994] and Freund and Schapire [1995]. 

Freund and Schapire [1995] are especially attentive to the rate of convergence.  There  are

also various extensions, such as that of Kivinen and Warmuth [1993] to the case of

continuous outcomes.  A nice review of this literature can be found in Foster and Vohra

[1996].

8.6. Conditional Learning

An alternative way to  look  for robust rules, is to focus directly on robust methods

of estimating the set of conditional probabilities of opponents’ play given the history of

all players’ play.  In this view, universal consistency is a criterion for robustness where

the probabilities are unconditional.  Our discussion follows Fudenberg and Levine

[1995].

As we noted above, the essential element of conditioning is the partitioning of

histories into disjoint sets of events. We suppose that there is a collection of categories

Ψi  into which observations may be placed.   A classification rule is a

map $ :ψ i i iH S× → Ψ .  Prior to observing st
i−  the player knows h st t

i
−1, , and must choose a

category $ ( , )ψ i
t t

ih s−1  based only on this information.  For simplicity we focus on the case

where there are finitely many categories.  In the case of countable many categories, this



319

method type of classification is known in the non-parametric statistical literature as the

method of sieves

Fix a classification rule $ψ .  Given a history ht , we define nt
i ( )ψ  to be the total

number of times the category ψ  has been observed.  We define Dt
i− ( )ψ  to be  the vector

whose components are the frequency with which each strategy profile of i’s opponents

has appeared when  ψ  has been observed.  For example, the category might correspond

to the previous period’s play, so that the distribution D st
i ( )2  is simply the empirical

distribution of outcomes  conditional on the previous period’s play having been s2 .153 

Also, denote the average  utility received in the subsample ψ  by ut
i ( )ψ .  For each

subsample we can define the difference between the utility that might have been and the

utility that actually was as

c
n u s D u n

n
t
i t

i

s

i i
t

i
t
i

t
i

t
i

i( )
( ) max ( , ( )) ( ) ( )

( )
ψ ψ ψ ψ ψ

ψ
= − >

=

%&'
− 0

0 0

We define the total cost to bec ct
i

t
i

i=
∈∑ ( )ψ

ψ Ψ
.  Our analog to universal consistency 

relative to the rule $ψ  for choosing subsamples is that the time average cost c tt
i /  should

be small.

 Definition 8.3:  A behavior rule ρ1 1: H → Σ = ( ∆( )S1 )is ε -universally consistent

conditional on $ψ if for every behavior rule ρ2 2: H → Σ  limsup /t t
ic t→∞ ≤ ε  almost

surely with respect to the stochastic process induced by ρ . 

When the classification rule is fixed, we simply refer to a strategy being ε -universally

conditionally consistent.

                                                
153 The  rules considered by Ayoyagi and Sonisno correspond to categorization by the opponent’s play in
the “recent” past.
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We now restrict attention to rules of the form $ ( )ψ i
th −1 ; we discuss the more

general case below.  Let ρ i  be a learning rule.  Given any such rule, we create a

conditional analog ρ ψi ( $ ) in the following simple way.  For any history ht−1  we can define

another history ht−1( $ )ψ  to be the sub-history of observations in which the category ψ  to

which the observation was assigned is the same as $ ( )ψ ht −1 .  That is, if the history ht −1  is

assigned to the category ψ , we look only at those periods in which ψ  was the assigned

category.  We then define ρ ψ ρ ψi
t

i
th h( $ )( ) ( ( $ ))− −=1 1 , that  is, we apply the original rule to

the sub-history corresponding to the category ψ .  The essential feature of such a

conditional rule is that if the original rule is universally consistent, then the extended rule

is universally conditionally consistent.

Proposition 8.3:   If ρ i  is ε -universally consistent, then ρ ψi ( )
)

 is ε -conditionally

universally consistent.

Proof:  We examine the cost in the definition of conditional universal consistency

c t n u s D u tt
i

t
i

s

i i
t

i
t
i

ii/ ( ) max ( , ( )) ( ) /= −−
∈∑ ψ ψ ψ

ψ Ψ

If nt
i → ∞  then max ( , ( )) ( )

s

i i
t

i
t
i

i u s D u− − ≤ψ ψ ε  because ρ i  is  ε -universally consistent.

 On the other hand, if limnt
i < ∞  n tt

i / → 0 .  So clearly limsup /c tt
i ≤ ε .

æ

8.7. Discounting

So far our discussion of learning has been cast in terms of time averages of utility.

 This reflects the idea that a “good” learning rule ought to do well in the long run. 

However, economists generally regard people as impatient, and view discounting as a

better model of intertemporal preference.  In general we can say little about how well
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learning rules do in terms of the discounted present value of the players’ payoffs.   Early

in the game,  before there is any data to learn from, the player is essentially guessing what

the outcome will be.  Regardless of whether “learning” is effective or ineffective, a rule

that happens to guess well early on can  outperform a rule that guesses poorly.  

Moreover, in addition to guessing the outcome, the player must guess also which patterns

of data  are most likely.   With a small amount of data, only a relatively small number of

conditional probabilities can be estimated.  If other players switch strategies every other

period, a player who guesses this is likely to be the case will outperform a player who is

more focused on the possibility of two-cycles. 

As a result of these considerations, we cannot hope to compare two arbitrary

learning rules and determine that one rule is “better” from a discounted point of view. 

What we can hope to do is to compare classes of learning rules broad enough to

incorporate various possibilities of “guessing.”  What we will show in this section is that

the class of conditional smooth fictitious play rules has a kind of dominance property. 

Given an arbitrary rule ρ i  and any ε > 0 , we can design a conditional smooth fictitious

play rule that never does more than ε  worse than ρ i  regardless of the discount factor.

To illustrate this result, considering the example of the best-response learning rule

and the Jordan three-player matching pennies game.  In this game, player 1 wins if he

plays the same action as player 2, player 2 wins if he matches player 3, and player 3 wins

by not matching player 1.  If all players follow a fictitious play, play cycles.  However,

each player, in a certain sense, waits too long before switching:  For example, when

player 1 switches from H to T, player 3 does not switch from T to H until player 1 has

switched for a sufficiently long time that the average frequency with which he has played

H drops to  ½.  Smooth fictitious play performs similarly.  However, a player who plays

the best-response rule will switch one period after his opponent does, and as a  result will
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get a much higher payoff (even in the time average sense) than a player using a smooth

fictitious play.  The reason that the best response rule does better is that it guesses

correctly both that opponents’ last period play is a good predictor of this periods play, and

that the correlation is positive.   If in fact the correlation was negative, so for example the

opponents alternated deterministically between H and T, then best response would do

considerably worse than a smooth fictitious play. 

The basic idea we develop in this section  is that it is possible (with a small cost)

to have the best of both worlds:  use a conditional smooth fictitious play conditioning on

the opponents’ play last period, with a strongly held prior that this periods play is the

same as next period’s play.  In the short run such a rule does exactly the same thing as

best response.  In the long run, if the correlation is actually positive as it is in the Jordan 

example, the rule continues to behave like best response.  However, if the correlation is

negative, as is the case when the opponent alternates deterministically between heads and

tails, eventually the data overwhelms the prior, and the conditional smooth fictitious play

begins to match the opponents moves, beating both best-response and even ordinary

smooth fictitious play.

To establish the basic result, it is helpful to begin with a simple case.  We

consider an ordinary smooth fictitious play against  a particular guess σ −i  about how

opponents will play.  We first show that for any such guess, we  can design a smooth

fictitious play whose present value is  no more than ε  lower than that of the guess,

regardless of the discount factor.   Since the smooth fictitious play is universally

consistent, for discount factors close to one, its present value is not much below that of a

best response to the limiting value of the empirical distribution of opponents play, while a

particular guess may well be. 
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Lemma 8.1:  For any fixed strategy σ i  and any ε  there exists a smooth fictitious play ρ i

such that for any strictly decreasing positive weights β t  summing to one  and any ρ t
i−

 β σ ρ β ρ εtt

i i
t

i
tt

i
tu u=

∞ −
=

∞∑ ∑≤ +
1 1

( , ) ( ) .

 A proof can be found in Fudenberg and Levine [1995] and is along much the same lines

as the proof of Proposition 4.5.  The key observation is that careful use of the argument in

Proposition 4.5 makes it possible to bound the time average loss uniformly, regardless of

the length of the horizon.  Since the average present value can be written as a convex

combination of time averages over all different possible time horizons, this uniform

bound gives the desired result in the discounted case.

The rule that is being outperformed, that of guessing the opponent will always

play a single action, is not very  interesting.    However, let ρ i  be an arbitrary

deterministic learning rule,154 and let ε > 0  be given.   Take a set of  Ψ i iS=  to be

strategies for player i. Define the classification rule $ ( ) ( )ψ ρi
t

i
th h= , that is, classify

histories according to the way in which ρ i  is going to play.  For each si  choose a smooth

fictitious play BR s
i i( , )ε so that Lemma 8.1 is satisfied with respect to ε , and define a

rule

$ ( , )( ) ( , $ ( ))( ( $ ))ρ ρ ε ε ψ ψi i
t

i

t th BR h h=

by applying the appropriate smooth fictitious play to the sub-history of the chosen

category.  Since we showed that Lemma 8.1 held for even for non-stationary discounting

(corresponding to skipping periods when a rule is not used), we have the immediate

corollary

                                                
154 The extension to random rules is straightforward.
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Proposition 8.4: For any rule ρ i  and any ε  there exists a conditional smooth fictitious

play $ρ i  for any discount factor δ > 0  and any ρ t
i−

 ( ) ( , ) ( ) ( $ , )1 11
1

1
1

− ≤ − +−
=

∞ − −
=

∞ −∑ ∑δ δ ρ ρ δ δ ρ ρ εt

t

i
t
i

t
i t

t

i
t
i

t
iu u .

This shows that even when discounting is considered, the “extra cost” of using a

universally consistent rule can be made arbitrarily small, and moreover the loss can be

bounded uniformly over the discount factor. From a normative point of view, this result

provides an argument that rational agents “should” use universally consistent rules.

Whether this implies that real people will tend to use such rules is a more complicated

question, but the result certainly does not make that prediction less plausible.

8.8. Does Sophisticated Learning Lead to Complex Dynamics?

Sophisticated learning introduces two new possibilities.  One is that systems that

were unstable with respect to less sophisticated procedures may be stable when more

sophisticated procedures are introduced.  We discuss this possibility in the next section. 

Second, it may be that individual pursuit of more sophisticated procedures leads to less

stability in the aggregate.

 We consider Aoyagi’s [1994] model of conditional but exact fictitious play.  In

this model, histories are categorized according to the outcome during the most recent  L

periods of the history, where L is a fixed number.  That is, each category corresponds to a

sequence of L outcomes, and the rule for assigning histories to categories is to assign a

history to the category that corresponds to the most recent L outcomes of the history.  As

in conditional smooth fictitious play, a separate frequency of opponent’s play is tracked

for each category.  However, the Aoyagi model differs from conditional smooth fictitious

play in assuming that following each history, a player plays an exact best response to the
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frequency for the category, rather than a smoothed best-response.  (This is the only

difference with conditional smooth fictitious play.)  In this model, Aoyagi  shows  that

strict Nash equilibria are stable, and that in a zero-sum game with a unique equilibrium,

the marginal frequencies converge to that equilibrium. 

The analysis of mixed equilibria is a difficult one, since players are assumed to

use exact  fictitious play given the conditional frequencies, rather than a smooth fictitious

play.  Consequently, near a mixed equilibrium, players are not actually randomizing, but

varying their play over time.  If players are trying to detect such deterministic variation by

their opponent, yet more complicated patterns must be introduced to preserve the

equilibrium.  By way of contrast, we would expect a smooth conditional fictitious play to

be relatively robust:  near a mixed equilibrium that is stable with respect to unconditional

smooth fictitious play with an initial condition that all categories begin with near

equilibrium frequencies we would expect that play is actually random with about the

equilibrium probabilities, and so the frequencies in all categories would tend to remain

near the equilibrium level.  In other words, with a smooth conditional fictitious play, there

would be no patterns to detect.

Even if stability properties are preserved by sophisticated learning procedures, it is

possible that cycles will be introduced when without such sophisticated procedures there

were no cycles.  This is particularly true since play in the early period will tend to be

relatively random, and this may accidentally establish a pattern or cycle that will then take

hold.  Although this possibility should hold more generally, it has been studied in the

context of models in which players follow relatively unsophisticated procedures until a

cycle is detected (or thought to be detected), and then a more sophisticated procedure is

introduced.  In such a variation on conditional ordinary fictitious play, Aoyagi shows that



326

the stability of mixed equilibrium is reversed due to constant switching back and forth

between sophisticated and unsophisticated procedures.

The issue of convergence to a cycle that would not be possible without a

sophisticated procedure has been studied by Sonsino [1994]. Sonsino restricts attention to

games with generic payoffs,  and which satisfy the condition  that every “subgame” that is

 closed under the best response correspondence contains a pure strategy Nash

equilibrium.155 He assumes that players switch between unsophisticated and sophisticated

behavior depending on whether patterns have been identified in the past.  Patterns are

restricted to be sequences of pure Nash equilibria, which has the unfortunate implication

that players must know one another’s payoffs, but this assumption is probably not

essential.  Unsophisticated behavior is similar to that of Sanchiricco [1995] and Hurkens

[1994] in that players are assumed to have at least some chance of following the best-

response dynamic.  Sonsino makes a number of other highly specialized assumptions

about the learning procedure and shows that the system converges globally to a cycle

through the pure Nash equilibria.  If there is enough initial randomness, then there is

positive probability that a non-trivial cycle is established.

Unlike the methods discussed above using either experts or conditional smooth

fictitious play, Sonsino deals with the exact detection of cycles.  That is, either a cycle is

“detected” with probability one, or it is not detected at all  This creates some

complications that are worth noting.  One method of detecting cycles is to assume that a

cycle ABAC, for example, is detected if it is repeated a sufficient number of times. 

However, there may be no cycles early in the game, with cycles only emerging after play

                                                
155 Here a “subgame” of a strategic-form game is obtained by restricting each player to some subset of the
original strategies. A “subgame” is closed under the best-response correspondence if all best responses to
profiles in the set lie in the set;  which is the definition of a CURB set (see Chapter 4). however, not all
CURB sets are “subgames” in Sonsino’s sense, since a CURB set need not be a product set; for example a
set consisting of two strict Nash equilibria is a CURB set but not a subgame.
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has gone on for some time.  We would like players to be able to detect these cycles also. 

For this reason, it seems reasonable to  assume that a cycle is “detected” if it has occurred

 a sufficient number of times in the recent past.    There are complications with this as

well:  Suppose  in particular that the sequence of events ABABABAC  repeats three times

followed by ABABABA.  Let  the rule for cycle detection be  that if a pattern has

repeated three times at the end of the history, it is “recognized.”  In this example, the

pattern ABABABAC has repeated three times at the end of the history, so following

ABABABA, the player should expect C.  However, the pattern AB has also repeated

three times at the end of the history, so following the final A, the player should expect B. 

In this example, two patterns are “recognizable” and each leads to a different conclusion.

 Sonsino proposes restrictions on cycle recognition procedures that eliminate this

ambiguity.

Note that in conditional fictitious play, either the smooth type discussed in

Fudenberg and Levine [1995] or the exact type discussed in Aoyagi [1994], this type of

issue need  not arise, since  these models consider more general  rules for classifying 

histories. .  For example, if, following Aoyagi, we categorize histories according to the

final L outcomes, and simplify by setting  L = 1, then following A the frequency is 80%

B and 20% C, so in effect this is what is “expected” to happen next.  More generally, the

model of conditional  fictitious play allows for any arbitrary rules for assigning histories

to categories, and the play observed in a given category need not be the same each time

the category is observed.  Thus Sonsino’s paper can be viewed  as exploring the

difficulties that arise with a special sort of assignment rules.

 Another issue in exact pattern recognition arises when we have a sequence such

as  ABCAABCDABCADABCDCCAB in which AB is always followed by C, even

though there is not an ABC cycle per se.  In such a case, it seems sensible that this pattern
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might be recognized. Notice that a conditional (smooth or exact) fictitious play will pick

this up, provided that L ≥ 2 .

8.9. Does Sophisticated Learning Lead to Stability?

So far we have examined the possibility that sophisticated learning is

destabilizing,  We turn now to the question of whether it might be stabilizing, that is

whether sophisticated learning enables players to avoid confusion, or whether it simply

leads to dynamic processes too complex for them to comprehend. 

In this section we consider  categorization schemes that are independent of the

player’s own anticipated action; we consider endogenous categorization in the following

section.   First, a simple example shows that more sophisticated learning need not lead to

stability.  Consider  the Shapley game, a two player three action per player game with

payoffs of the form

A M B

A 0,0 0,1 1,0

M 1,0 0,0 0,1

B 0,1 1,0 0,0

Suppose first that both players use exponential fictitious play with a single

category.  We know that play can asymptote approximately to any stable best-response

cycle.  Recall that in this game, such a cycle begins at A,M.  Player 1 then wishes to

switch to B.  At B,M, player 2 wishes to switch to A, then from B,A to M,A to M,B to

A,B then back to the start at A,M.  It can be shown that this cycle is asymptotically stable

in both the best response and approximate fictitious play dynamic.  In the case of interest
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to us, approximate fictitious play, the cycles are of ever increasing length.  This suggests

that players might condition on the profile from last period.  Suppose that both players do

so.  Then it is easy to see that within each of the nine categories, play is simply an

approximate fictitious play, and (if the initial condition is the right one in each category),

play will simply follow the Shapley cycle within each category.  Of course, players might

notice this, and introduce even more sophisticated conditional cycle detection, but no

matter how complicated the categorization rule they use, as long as they both condition

on exactly the same histories, there will still be a Shapley cycle within each category. 

Suppose, however, the two players are not conditioning on exactly the same histories. 

This raises the possibility that the players may not be able to “accidentally” correlate their

play, as they do when they use exactly the same conditioning procedure.   To understand

this possibility better, let us consider the case where each player conditions only on his

opponent’s last action (but not his own) in the Shapley game.156  The resulting dynamical

system has 18 dimensions, since each player must keep track of the number of

occurrences of three outcomes for each of three categories corresponding to opponent’s

last period play.   Since it is difficult to analyze such a high dimensional system

analytically, Fudenberg and Levine [1995] used a simulation. Each player was assumed to

use a smoothing function of the form v s si i i i i i

si( ) ( / ) ( ) log ( )σ κ σ σ= − ∑1 , where

κ = 10 , so that within categories players use an exponential fictitious play.   The payoffs

are those for the Shapley game given above.  To initialize the system, each player was

endowed with 12 initial observations independent of category. Player 1 is endowed with

the initial sample (1,1,10), and player 2 (10,1,1).  Given these frequencies, it is optimum

                                                
156 Aoyagi [1994] also considers an example where two players classify observations using different
categories.  However, in his example players are using exact fictitious play within categories so the player
with a more refined category scheme can exploit the player with the less refined scheme.  This cannot
happen with exponential fictitious play.
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for player 1 to play to play A and player 2 to play M, which is an initial condition that

starts the Shapley cycle.  The graph below reports the time average of the joint

distribution of outcomes. 

Learning Conditional on Opponent’s Play
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Each line in the graph represents the time average frequency of a single outcome, for

example, the line that is nearly 1 for the first 6 periods corresponds to the outcome A,M. 

The horizontal line represents the common frequency in the unique Nash equilibrium of

1/9.  Note that the horizontal axis is measured in logarithmic units, since this is the time

scale over which the Shapley cycle occurs.  In this simulation the system does not cycle,

but has essentially converged to the Nash equilibrium after 1000 periods.

By way of contrast, Fudenberg and Levine also did a simulation in which players

did not condition on the history at all.  That is, each player uses a single category, and

play corresponds to ordinary exponential fictitious play.  All the other parameters

including the initial conditions were held fixed at the values given above.  The results of

the simulation are shown in the graph below.
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Exponential Fictitious Play
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As we expect, the system cycles settling into a relatively stable cycle after about 500

periods.  A significant feature is that the frequencies corresponding to the diagonal A,A,

M,M and B,B remain close to zero.  This is not the case when players condition on each

other’s previous actions.

In general we do not know to what extent the “noise” introduced by different

players conditioning on different histories ultimately causes correlation to break down.  If

it does, then in the long run learning will lead to Nash equilibrium.  Although we have

seen that this happens in a particular example, whether it is generally the case remains an

open question for future research.157

                                                
157  Recent papers by Sanchirico [1995] and Sonsino [1994] have stressed another implication of noise: it
can help insure that long-run play ends up in one of the “minimal curb sets” of the game (see chapter 4). 
This is an interesting fact, but rather different than what we are discussing here, as in the Shapley game the
minimal curb set is the entire game.
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8.10. Calibration and Correlated Equilibrium

A player may, if he wishes, condition also on his own choice of action.  Does this

make sense?  One implication of the Shapley cycle is that (holding fixed the play of the

opposing player) a player get less utility than if he conditioned on his own intended

action.  If both players condition on the same information, we must ask whether players

would continue to unsuccessfully introduce more and more complicated  “independent”

schemes for detecting cycles or if they would simply condition also on their own

anticipated action. 

Suppose that players condition on their own anticipated action in the sense that no

category can ever be assigned two observations in which the player’s own action is

different.  This has two implications.  First, the two players are not conditioning on

exactly the same histories since each player can anticipate his own action, but not his

opponents. This raises the possibility that players cannot “accidentally” correlate their

play leading to Nash equilibrium in much the same way that conditioning only on the

opponent’s previous action did in the discussion above.158  Second, the empirical joint

distribution of action profiles must come to approximate a correlated equilibrium.159  This

follows immediately since each player, conditional on his own action, is playing an

approximate best response to the distribution of opponents play. 

The resemblance of the empirical joint distribution of action profiles to a

correlated equilibrium is closely related to a point originally made by Foster and Vohra

[1993] who consider best responses to beliefs that are calibrated.  This means that if we

                                                
158  Foster and Vohra [1995] examine the case of conditioning only on a player’s own anticipated action and
give simulation results with convergence to Nash equilibrium very much like those described above in the
case where players condition on their opponent’s previous action.
159 However, unless the correlated equilibrium is actually a Nash equilibrium, the empirical joint
distribution cannot converge, and must shift from one correlated equilibrium to another.
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categorize periods according to forecasts of the opponent’s play, the frequency

distribution of actual play of the opponent converges to the forecast.  For example, we

would say that a weather forecaster is calibrated if on those occasions on which a 50%

chance of rain was announced, it actually rained 50% of the time. 160From our

perspective, the important feature of calibration of beliefs  is that it implies that actions

are calibrated.  By this we mean that each player conditional on his own action, is playing

an approximate best response to the distribution of opponents play, the condition that

leads directly to correlated equilibrium.

However, even the use of calibrated rules leaves open the possibility that

opponents “accidentally” correlate their play.  If they did not do so, then we would have

the stronger result that play would eventually come to resemble a Nash equilibrium. 

What we should point out is that calibration guarantees no such thing.  The easiest way to

make this point is to observe that calibration of actions does not actually require that

players condition only on their own actions; it is sufficient that no category can ever be

assigned two periods with more than two distinct values of the player’s own action. The

essential point is that if a joint distribution over two actions and all outcomes has the

property that the realized utility is at least that that can be obtained by playing a single

best response to the marginal distribution over outcomes, then each action must actually

be a best response conditional on that action.161  In particular, if each player has only two

actions, then his strategy is calibrated even if he uses only a single category, for example,

exponential fictitious play is calibrated in this case.

                                                
160  This notion of calibrated lumps together all histories in which the forecaster’s prediction was the same.
Refining this by conditioning on all  histories leads to a notion very close to the statistical concept of
consistency.  This connection is examined in detail in Kalai, Lehrer and Smorodinsky [1996]. 
161 More generally, it follows from straightforward algebra that if a joint distribution over all actions and all
outcomes has the property that the realized utility is at least that that can be obtained by playing a  best
response to the marginal distribution over outcomes, then no action that has positive probability is a worst
response to the distribution of outcomes conditional on that action.
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Consider, then, the three player, two action per player game of matching pennies

introduced by Jordan [1991].  In this game player 1 wishes to match player 2, who wishes

to match player 3, who wishes to avoid matching player 1.  Again we can apply the

results of Benaim and Hirsch [1994], and, supposing that player use exponential fictitious

play,162  focus on best-response cycles.  The key is that in every  pure strategy profile

exactly one player can gain by deviating.   Once he does so, one opponent wishes to

switch, and so on in a cyclic fashion.  Jordan also shows that this cycle is asymptotically

stable under exact fictitious play; Benaim and Hirsch extend this to stochastic smoothed

versions.  Moreover, since each player has only two actions, it follows that this cycle

takes place (approximately) through the set of correlated equilibria.   Despite the fact that

players are calibrated and play resembles a correlated equilibrium, this cycle is just as

disturbing as the Shapley cycle:  players observe long sequences of their opponent

repeatedly playing the same action, yet fail to anticipate it will happen again.  If they (all)

introduce schemes conditioning on last period’s play, then the cycle simply takes place

independently in each category and so forth and so on.  Consequently the issue in cycling

is not calibration per se, but rather, how the  players categorization rules fit together.

We  next present Foster and Vohra’s result that it is  possible to design learning

rules that condition on a  player’s own anticipated action.  For simplicity, we suppose that

this is the only part of the history to be conditioned on.  In other words, we take the

categories to be Ψ i iS= , the players own strategies, and the categorization scheme to be

$ ( , )ψ i
t t

i
t
ih s s− =1 . Formally, we refer to the notion of universal consistency in this case as

calibration.

                                                
162 Implicitly we assume that when there are more than two players, the profile of opponents’ actions is
treated  as a single outcome.  This means that each player tracks a joint distribution of opponents’ play. 
Jordan actually supposes that players do fictitious play  by keeping a separate distribution for each
opponent, assuming that opponents’  play is independent.  However, in this particular game, there is no
distinction between the two procedures, since each player cares only about the play of one opponent.
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 Definition 8.3:  A behavior rule ρ1 1: H → Σ  is ε -calibrated if for every behavior rule

ρ2 2: H → Σ  limsup ( ) max ( , ( )) ( ) /t t
i i

s
i i

t
i i

t
i in s u D s u s ti i→∞

−∑ − ≤σ σ ε  almost surely with

respect to the stochastic process induced by ρ . 

Instead of following Foster and Vohra’s  [1995] proof, we give a simplified

construction based on an arbitrary universally consistent rule.  Let ρ i  be any ε -

universally  consistent learning rule. Suppose that player i is contemplating playing si . 

Then he ought to try to apply ρ i  to h st
i( ) .  The only problem with this is that ρ i  does

not put probability one on playing si .  Suppose, however, that player i is contemplating

playing σ i .  Then with probability σ i is( )  he will play si , and should therefore play

ρ i
t

ih s( ( )) .  Consequently, he will actually wind up playing according to

σ ρi i i
t

i

s
s h si ( ) ( ( ))∑ .  If in fact

σ σ ρi i i i
t

i

s
s h si= ∑ ( ) ( ( )) ,

then his contemplated play and desired play wind up being the same.  Notice that

σ σ ρi i i i
t

i

s
s h si= ∑ ( ) ( ( ))  is a simple fixed point problem based on a linear map from the

non-negative orthant to itself.  So it may easily be solved by linear algebra.  Denote the

solution $ ( )ρ i
th . 

Proposition 8.5:   If ρ i  is ε -universally consistent, then $ρ i  is ε -calibrated.

Proof:  We examine the asymptotic average cost
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By the strong law of large numbers for orthogonal sequences, u s s ti i it
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where we have used the defining equation for $ρ i .  Again applying this strong law of large

numbers for orthogonal sequences, this almost surely the same limit as
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substituting back in the expression for average cost, we find
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However, since ρ i  is ε -universally consistent, either
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where µ > 0  is a “sufficiently” large constant that ρ i
t t

ih s( )[ ]− >1 0 .  Under this rule, the

player either plays the same action as last period, or plays another  action with probability

proportional to how much better that alternative would have done  conditional on the

history corresponding to the action played last period. Hart and Mas-Colell show using

Blackwell’s [1956] approachability  theorem that if all players use rules of this type, then

each rule is calibrated against a class of outcomes that are has probability 1  in this

environment.  

These rules are not universally calibrated; that is, they are not calibrated against

all opponents’ play.   For example, suppose the probability of playing the same action as

last period is bounded below by ¾, and that the game is matching pennies.  Clearly a

clever opponent will always play the opposite of what a player using this rule used last

period, since this wins at least ¾ of the time, and so in this case the Hart and Mas-Colell

rule loses ¾ of the time. However,  since these relatively simple rules work are calibrated

against each other, it may be plausible that the actual, rules that people use have this

property as well.

8.11. Manipulating Learning Procedures

The focus of attention in this book, as well as in the recent game theory literature,

has been on myopic learning procedures, not in the sense that players do not care about

the future but in the strategic sense of lacking concern about the consequences of current

play for opponents future action.  We have justified this by sometimes casual reference to

large populations.

This section discusses two related points. First, although the idea of extrapolation

between “similar”  games suggests that the relevant population may be  large even when

there are few people playing precisely the game in question, there are also situations of
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interest  in which the relevant population must be viewed as small, so it is of some

interest to consider the case of a small population.  This raises an important issue:  a

player may attempt to manipulate his opponent’s learning process, and  try to “teach” him

how to play the game. This issue has been studied extensively in models of “reputation

effects, which typically assume Nash equilibrium,  but not in the context of learning

theory.  A  second issue has been raised by Ellison [1994], who considers the possibility

of contagion effects in the type of large population anonymous random matching model

we have used to justify myopia.  Under certain conditions, Ellison shows that even in this

setting there is a scope for a more rational player to teach his opponents how to play.   In

particular this is true if the more rational player is sufficiently patient relative to the

population size, but not if the population size is large relative to  his patience (that is, the

order of limits matters).

A Model of Reputation: A simple setting in which to begin to understand teaching an

opponent to play the game is to imagine that one player is myopic and follows the type of

learning procedure we have discussed in this book, while another player is sophisticated

and has a reasonably good understanding that his opponent is using a learning procedure

of this type.  What happens in this case?  This has been studied extensively in the context

of equilibrium theory, where models of this type are called “reputational”, but not in the

context of learning theory.  However, much as Kalai and Lehrer [1993] show that the

results of Jordan [1991] on equilibrium learning carry over to the case of non-equilibrium

learning, so we expect that the lessons of the literature on reputation will carry over also

to the case of non-equilibrium learning.

In order to introduce learning into an equilibrium context, it is necessary, as is the

case in the Jordan model, to introduce uncertainty on the part of the players about the



339

game that is being played.  That is, while Nash equilibrium and its refinements suppose

that players know one another’s strategies, they are allowed to have doubts about their

opponents’ preferences, which in many ways is the same thing as having doubts about

their strategies.  Suppose, as in many papers on reputation effects, that there are two

players, a long-run player and a short-run player.  The short-run player is myopic and is

the “learner.”  The long-run player has many different types, the type remaining fixed as

the game is repeated, and each type corresponding to different preferences. 

Consequently, the short-run player wishes to learn the type of long-run player in order  to

play a  best response to the actions of that type.  Because of the fact that this is an

equilibrium theory, if the short-run player is to have relatively diffuse priors about the

strategy of the long-run player, it is important that in equilibrium different types of long-

run player really play different strategies.  To solve this problem Kreps and Wilson

[1982] and Milgrom and Roberts [1982] introduced the idea of committed types with

preferences that force them to play a particular strategy, regardless of the particular

equilibrium.

The second issue that must be addressed is the long-run consistency of the

learning procedure used by the short-run player.  Fudenberg and Levine [1992] show that

the beliefs of the short-run player converge to something observationally equivalent to the

truth at a uniform rate, using an  argument based on up-crossing numbers of

supermartingales.  Essentially, the reputational literature introduced the idea of

committed types, precisely so that Blackwell and Dubbins absolute continuity 

assumption would be satisfied.

If we now assume that the long-run player is relatively patient, then Fudenberg

and Levine [1989] show that he can get almost as much utility as he could get in the

Stackelberg equilibrium of the stage game.  The idea is that the long-run player can
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guarantee himself at least this much by playing the optimal precommitment strategy

forever.  The basic argument carries over in a straightforward way to the case of non-

equilibrium learning:163   If the long-run player plays the optimal precommitment strategy

forever, the short-run player will eventually learn this and begin to play a best response to

it.  Since the long-run player is very patient, this means that the average present value

received will be nearly that of playing the optimal precommitment strategy with the short-

run player playing a best response to it.  Moreover, since the short-run player is always

playing a best-response to some beliefs about the long-run players strategy, the long-run

player cannot really hope to do better than this.  The point is, that if your opponent is

playing myopically, rather than do the same, you should play as a Stackelberg leader and

“teach” him how to play against you.

Teaching in a Large Population: The key ingredient in the reputation model is

that the patient (or rational) player can change the behavior of his opponents in a

significant way through his own action.  It is natural to conjecture that this would not be

true in the type of large population, anonymous random  matching model we have been

using to justify myopic play.  However Ellison [1994] has pointed out that this need not

be true, due to contagion effects.

This point is best understood in the following example taken from Ellison.

Suppose that there is a homogeneous population of N agents playing the following 2x2

pure coordination game with anonymous random matching:

A B

                                                
163 Essentially this point is made in Watson [1993] and Watson and Battigalli  [1995], who weaken Nash
equilibrium to rationalizability.
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A 10,10 0,0

B 0,0 1,1

Note that there are two pure Nash equilibria in this game at (10,10) and (1,1).  One of

these, the Pareto efficient equilibrium at (10,10) is also the Stackelberg equilibrium.  In

other words, a player who can teach his opponents how to play, would like to teach them

to play A.

Suppose first that every player follows the behavior prescribed by exact fictitious

play, with prior weights (0,1). Then all players choose B in period 1, and the result is that

all players choose B in every period. Suppose next that for some reason, player N plays A

in period 1, and follows fictitious play in all future periods, while players 1 through N-1

continue to follow fictitious play in every period.  Then  whoever is matched with player

N in period 1 has weights (1,1) in period 2, and so must play A until at least  period 10;

call this player 1.  Then suppose that player 1 is not matched with player N in period 2,

but with some other player 2; this player 2 will also play A at least until period 10.  If

moreover 1 and 2 are matched with 2 new players 3 and 4 in period 3, and not with

themselves or with player N, then there will be 4 players who play A in period 4. At each

period until period 10, there is a positive probability that the number of A-players

doubles, so that if N is small enough there is a positive probability that every player plays

A in period 9, so that only A is played from that period on.

Now suppose that player N is rational and knows that all other players follow

fictitious play. Then  player N knows that by playing A in the first period only, and

following fictitious play thereafter, there is a nonzero probability that the entire

population will move permanently to the Pareto-preferred equilibrium (10,10) in 10
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periods.164  For a small  discount factor the short-run cost of inducing this shift might

exceed the expected present value of the benefit.  Indeed, for any fixed discount factor the

expected present value becomes small as the population size grows, since it must take at

least log(M) periods to change the play of M  other agents. However, changing the order

of limits changes this conclusion: for any fixed population there is some time T such that

there is a positive chance that all agents will be playing A from period T on if the rational

agent plays A in the first period.   Thus,  the benefit from playing A outweighs its  cost if

the rational player’s discount factor is sufficiently close to 1. Ellison computes that  this

simple but non-myopic strategy improves on the naïve one  in a population of 100 if the

discount factor exceeds .67, and that even in a population of 5000 the non-naïve play 

yields a higher payoff if the discount factor exceeds .94.165 

Note moreover that regardless of the discount factor, the rational player has no

incentive for non-naive play if naïve play would yield his preferred equilibrium. Ellison

shows that  the converse is not true: in general 2x2 coordination games, even when the

rational player would prefer  the other equilibrium, he cannot steer play in that direction

unless the “preferred” equilibrium is also risk-dominant: players defect from a risk-

dominated equilibrium too quickly for “contagion” to take hold.

It is also worth noting that the incentive to “teach” opponents in a large population

in the example is not robust to noisy play by the players.  If players randomize, then the

contagion is likely to occur even without the intervention of a rational “teacher,” and so

                                                
164If the shift does not occur in the first ten periods, players who have seen A only once will return to
playing B in period 11, but there is still a chance that the contagion will resume from the base of players
who
saw 2 or more A’s in the first 10 periods.
165  In some sense these calculations may overstate the case, since using a game with less extreme payoff
differences would yield less striking numbers. On the other hand, the incentive to “teach” opponents is even
greater than in the calculations if players  attach greater weight to more recent observations, as with
exponential weighting.
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the incentive to intervene is reduced.  The following example indicates the extent to

which contagion is likely to occur with even a “small” amount of noise.  Consider the

general coordination game (Ellison’s example corresponding to a=10)

A B

A a, a 0,0

B 0,0 1,1

Here we assume that a > 1, so that A,A is the Pareto preferred equilibrium.    Suppose

that players rather than using the usual deterministic fictitious play, use a smooth

fictitious play.  If the smoothing function is

v s si i i i i i

si( ) ( ) log ( )σ σ σ= −∑ ,

as we saw in chapter 4, the smoothed best response is

BR s
u s

u r

i i i

i i i

i i i
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 If players’ play converges to a symmetric deterministic steady state in which each player

plays A  with probability σ A , then by a standard extension of  the strong law of large

numbers, the empirical distributions will converge to the same limit with probability 1.166

  Asymptotic empiricism implies that the assessments converge to this limit value along

every path, so that at the steady state
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BR
a

a
= =

+
( )

exp(( / ) )
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This corresponds to the “quantal response equilibrium” of  McKelvey and Palfrey [1995].

 A calculation shows that for each a > 1 there is a sufficiently large λ  (that is, enough

                                                
166 See, for example, Fudenberg and Kreps [1993]. The only way that this differs from the standard form of
the strong law is that the distribution at each date t may depend on the history to that date.
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noise) that this equation has a unique solution,  and that this solution satisfies σ A > 0 5. ,

that is, the Pareto preferred action is more likely.  

To report on the quantitative significance of noise for the steady state, we measure

the  size of the noise by b BRA

i

A( ) ( )λ σ= = 0 , that is, the probability that the action A is

used when the assessment is that the probability of B is one.  (In the usual fictitious play,

this probability is zero).  For each a we can calculate the least value of bA( )λ  for which

there is a unique symmetric steady state, together with the steady state value of σ A .  This

is reported in the table below.

a bA( )λ σ A

1.1 10.0%   85%

1.3 8.3%   95%

1.5 6.3% 99%

2 4.7%   100%

3 2.9% 100%

4 2.2% 100%

6 1.5% 100%

7 1.2% 100%

10 1.0% 100%

In Ellison’s example, even 1% noise is enough to guarantee a unique steady state in

which (to the limit of computer precision) 100% of the time A is played.  However the

table indicates how remarkably strong the contagion effect is: when the Pareto preferred

equilibrium is only a 10% improvement (a=1.1), a 10% noise ratio leads to a unique

equilibrium in which A is played 85% of the time.  If the system is going to converge to a
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favorable steady state anyway, then there is little incentive for intervention by a rational

player.

This example shows several things. First of all, the incentive to “teach” opponents

is diminished in noisy environments, and it becomes more reasonable for players to

behave myopically. This is not to say that the outcome in a noisy model with one rational

player is the same as that in the standard fictitious play model without noise, where all

players  are myopic. Rather, the second point to be drawn from the example is that, once

again, small amounts of noise can serve to select between the long-run outcomes of the

noiseless model.
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