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P    R    O    G    R    A    M    M    I    N    G

  CHAPTER 1
Introduction to Mathematica
1.0  Remarks
1.1  Basics of Mathematica as a Programming Language

1.1.1   General Background
In and Out Numbering † General Naming, Spelling, and 
Capitalization Conventions for Symbols † Options and Option 
Settings † Messages † Add-On Packages

1.1.2   Elementary Syntax
Common Shortcuts † Parentheses, Braces, and Brackets † 
Comments Inside Code † Font Usage † Referring to Outputs † 
Functional Programming Style † “Ideal” Formatting

1.2  Introductory Examples
1.2.0   Remarks
1.2.1   Numerical Computations

Periodic Continued Fractions † Pisot Numbers † Fast Integer 
Arithmetic † Digit Sums † Numerical Integration † Numerical ODE 
Solving † Burridge–Knopoff Earthquake Model † Trajectories in a 
Random Two-Dimensional Potential † Numerical PDE Solving † 
Benney PDE † Sierpinski Triangle-Generating PDE † Monitoring 
Numerical Algorithms † Hilbert Matrices † Distances between Matrix 
Eigenvalues † Special Functions of Mathematical Physics † Sums 
and Products † Computing a High-Precision Value for Euler’s 
Constant g † Numerical Root-Finding † Roots of Polynomials † 
Jensen Disks † De Rham’s Function † Logistic Map † Built-in Pseudo-
Compiler † Forest Fire Model † Iterated Digit Sums † Modeling a 
Sinai Billiard

1.2.2   Graphics
Gibbs Phenomena † Fourier Series of Products of Discontinuous 
Functions † Dirichlet Function † Counting Digits † Apollonius Circles † 
Generalized Weierstrass Function † 3D Plots † Plotting Parametrized 
Surfaces † Plotting Implicitly Defined Surfaces † 
Graphics-Objects as  Mathematica  Expressions  † Kepler Tiling † 
Fractal Post Sign † Polyhedral Flowers † Gauss Map Animation † 
Random Polyehdra
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1.2.3   Symbolic Calculations
Differentiation † Integration † Symbolic Solutions of ODEs † 
Vandermonde Matrix † LU Decomposition of a Vandermonde 
Matrix † Redheffer Matrix † Symbolic Representations of Polynomial 
Roots † Solving Systems of Polynomials † Eliminating Variables from 
Polynomial Systems † Series Expansions † L’Hôspital’s Rule † 
Radical Expressions of Trigonometric Function Values † Prime 
Factorizations † Symbolic Summation † Proving Legendre’s Elliptic 
Integral Identity † Geometric Theorem Proofs Using Gröbner 
Bases † Medial Parallelograms † Inequality Solving † Symbolic 
Description of a Thickened Lissajous Curve † Simplifications under 
Assumptions † Numbers with Identical Digits in the Decimal and 
Continued Fraction Expansions † Conformal Map of a Square to the 
Unit Disk † Vortex Motion in a Rectangle † Magnetic Field of a 
Magnet with Air Gap † Localized Propagating Solution of the 
Maxwell Equation † Customized Notations † Schmidt Decomposition 
of a Two-Particle State

1.2.4   Programming 
Large Calculations † Partitioning Integers † Binary Splitting-Based 
Fast Factorial † Bolyai Expansion in Nested Radicals † Defining 
Pfaffians † Bead Sort Algorithm † Structure of Larger Programs † 
Making Platonic Solids from Tori † Equipotential Surfaces of a 
Charged Icosahedral Wireframe † Tube along a 3D Hilbert Curve

1.3  What Computer Algebra and Mathematica 5.1 Can and Cannot Do
What  Mathematica  Does Well  † 
What  Mathematica  Does Reasonably Well  † 
What  Mathematica  Cannot Do  † Package Proposals † 
What  Mathematica  Is and What  Mathematica  Not Is  † Impacts of 
Computer Algebra † Relevant Quotes † Computer Algebra and 
Human Creativity † New Opportunities Opened by Computer 
Algebra † Computer Mathematics—The Joy Now and the Joy to 
Come

@ @ Exercises
Computing Wishes and Proposals † Computer Algebra Systems

@ @ Solutions
100 Proposals for Problems to Tackle † Sources of Interesting and 
Challenging Problems † ISSAC Challenge Problems † 100$–100-
Digit Challenge
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  CHAPTER 2
Structure of Mathematica Expressions

2.0  Remarks
2.1  Expressions

Everything Is an Expression † Hierarchical Structure of Symbolic 
Expressions † Formatting Possibilities † Traditional Mathematics 
Notation versus Computer Mathematics Notation † Typeset Forms † 
Heads and Arguments † Symbols † Nested Heads † Input Form and 
the Formatting of Programs

2.2  Simple Expressions
2.2.1   Numbers and Strings

Formatting Fractions † Integers † Autosimplifications † Rational 
Numbers † Approximate Numbers † Real Numbers † Complex 
Numbers † Autonumericalization of Expressions † Strings † High-
Precision Numbers † Inputting Approximate Numbers † Inputting 
High-Precision Numbers † Approximate Zeros

2.2.2   Simplest Arithmetic Expressions and Functions
Basic Arithmetic Operations † Reordering Summands and Factors † 
Precedences of Simple Operators † Algebraic Numbers † Domains 
of Numeric Functions † Autoevaluations of Sums, Differences, 
Products, Quotients, and Powers

2.2.3   Elementary Transcendental Functions
Exponential and Logarithmic Functions † Trigonometric and 
Hyperbolic Functions † Exponential Singularities † Picard’s 
Theorem † Secants Iterations † Exact and Approximate Arguments † 
Postfix Notation † Infix Notation

2.2.4   Mathematical Constants
Imaginary Unit † p † Autoevaluations of Trigonometric Functions † 
Base of the Natural Logarithm † Golden Ratio † Euler’s Constant g † 
Directed and Undirected Infinities † Indeterminate Expressions

2.2.5   Inverse Trigonometric and Hyperbolic Functions
Multivalued Functions † Inverse Trigonometric Functions † Inverse 
Hyperbolic Functions † Complex Number Characteristics † Real and 
Imaginary Parts of Symbolic Expressions † Branch Points and 
Branch Cuts † Branch Cuts Not Found in Textbooks

2.2.6   Do Not Be Disappointed
Real versus Complex Arguments † Seemingly Missing 
Simplifications † Principal Sheets of Multivalued Functions

2.2.7   Exact and Approximate Numbers
Symbols and Constants † Numericalization to Any Number of 
Digits † Precision of Real Numbers † Precision of Complex Numbers

2.3  Nested Expressions
2.3.1   An Example

Constructing Nested Expressions † Canonical Order † Displaying 
Outlines of Expressions † Displaying Nested Expressions
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2.3.2   Analysis of a Nested Expression
A Large Expression † Parts of Expressions † Recursive Part 
Extraction † Depths of Expressions † Extracting Multiple Parts † 
Extracting Parts Hierarchically † Locating Subexpressions in 
Expressions † Level Specifications † Length of Expressions † Leaves 
of Expressions

2.4  Manipulating Numbers
2.4.1   Parts of Fractions and Complex Numbers

Rational Numbers as Raw Objects † Numerators and 
Denominators † Complex Numbers as Raw Objects † Real and 
Imaginary Parts

2.4.2   Digits of Numbers
Digits of Integers † Digits of Real Numbers † Writing Numbers in Any 
Base † Counting Digits of Numbers † Fibonacci Chain Map Animation

@ @ Overview
@ @ Exercises

Analyzing the Levels of an Expression † Branch Cuts of Nested 
Algebraic Functions † Analyzing the Branch Cut Structure of Inverse 
Hyperbolic Functions † “Strange” Analytic Functions

@ @ Solutions
Principal Roots † Analyzing a Large Expression † Levels Counted 

from Top and Bottom † Branch Cuts of  Iz4M1ê4
 † 

Branch Cuts of  z + 1 êz  z - 1 êz  † 
Riemann Surface of  arctanHtanHz ê2L ê2L  † Repeated Mappings of 
Singularities

@ @ References

  

CHAPTER 3
Definitions and Properties of Functions

3.0  Remarks
3.1  Defining and Clearing Simple Functions

3.1.1   Defining Functions
Immediate and Delayed Function Definitions † Expansion and 
Factorization of Polynomials † Expansion and Factorization of 
Trigonometric Expressions † Patterns † Nested Patterns † Patterns 
in Function Definitions † Recursive Definitions † Indefinite 
Integration † Matching Patterns † Definitions for Special Values † 
Functions with Several Arguments † Ordering of Definitions

3.1.2   Clearing Functions and Values
Clearing Symbol Values † Clearing Function Definitions † Clearing 
Specific Definitions † Removing Symbols † Matching Names by 
Name Fragments † Metacharacters in Strings
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3.1.3   Applying Functions
Univariate and Multivariate Functions † Prefix Notation † Postfix 
Notation † Infix Notation

3.2  Options and Defaults
Meaning and Usage of Options † Lists as Universal Containers † 
Options of Functions † Plotting Simple Functions † Extracting Option 
Values † Setting Option Values

3.3  Attributes of Functions
Meaning and Usage of Attributes † Assigning Attributes to 
Functions † Commutative Functions † Associative Functions † 
Functions Operating Naturally on Lists † Numerical Functions † 
Differentiation of Functions † Protected Functions † Preventing the 
Evaluation of Expressions † Forcing the Evaluation of Expressions

3.4  Downvalues and Upvalues
Function Definitions Associated with Heads † Function Definitions 
Associated with Specific Arguments † Downvalues and Upvalues † 
Timing for Adding and Removing Definitions † Caching † Values of 
Symbols † Numerical Values of Symbols

3.5  Functions that Remember Their Values
Caching Function Values † Multiple Assignments † Simplification of 
Expressions † Timings of Computations † Takeuchi Function

3.6  Functions in the l-Calculus
l-Calculus † Functions as Mappings † Functions without Named 
Arguments † Self-Reproducing Functions † Splicing of Arguments † 
Sequences of Arguments † Pure Functions with Attributes † Nested 
Pure Functions

3.7  Repeated Application of Functions
Applying Functions Repeatedly † Iterative Maps † Solving an ODE 
by Iterated Integration † Iterated Logarithm in the Complex Plane † 
Fixed Points of Maps † Fixed Point Iterations † Newton’s Method for 
Square Root Extraction † Basins of Attractions † Cantor Series

3.8  Functions of Functions
Compositions of Functions † Applying Lists of Heads † Inverse 
Functions † Differentiation of Inverse Functions

@ @ Overview
@ @ Exercises

Predicting Results of Inputs † Nice Polynomial Expansions † 
Laguerre Polynomials † Puzzles † Unexpected Outputs † Power 
Tower † Cayley Multiplication

@ @ Solutions
Matching Unevaluated Arguments † Equality of Pure Functions † 
Invalid Patterns † Counting Function Applications
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  CHAPTER 4
Meta-Mathematica 
4.0  Remarks
4.1  Information on Commands

4.1.1   Information on a Single Command
Built-in Function Definitions as Outputs † Information about 
Functions † Listing of All Built-in Commands † Messages † Printing 
Text and Cells † Warnings and Error Messages † Wrong and 
“Unexpected” Inputs † Suppressing Messages † Carrying out 
Multiple Calculations in One Input

4.1.2   A Program that Reports on Functions
Converting Strings to Expressions † Converting Expressions to 
Strings † String Form of Typeset Expressions

4.2  Control over Running Calculations and Resources
4.2.1   Intermezzo on Iterators

Do Loops † Multiple Iterators † Possible Iterator Constructions † 
Iterator Step Sizes

4.2.2   Control over Running Calculations and Resources
Aborting Calculations † Protecting Calculations from Aborts † 
Interrupting and Continuing Calculations † Collecting Data on the 
Fly † Time-Constrained Calculations † Memory-Constrained 
Calculations † Time and Memory Usage in a Session † Expressions 
Sharing Memory † Memory Usage of Expressions

4.3  The $-Commands
4.3.1   System-Related Commands

Mathematica  Versions  † The Date Function † Smallest and Largest 
Machine Real Numbers

4.3.2   Session-Related Commands
In and Out Numbering † Input History † Collecting Messages † 
Display of Graphics † Controlling Recursions and Iterations † Deep 
Recursions † Ackermann Function

4.4  Communication and Interaction with the Outside 
4.4.1   Writing to Files

Extracting Function Definitions † Writing Data and Definitions to 
Files † Reading Data and Definitions from Files † File Manipulations

4.4.2   Simple String Manipulations
Concatenating Strings † Replacing Substrings † General String 
Manipulations † Case Sensitivity and Metacharacters † A Program 
that Prints Itself

4.4.3   Importing and Exporting Data and Graphics
Importing and Exporting Files † Importing Web Pages † Importing 
From and To Strings † Making Low-Resolution JPEGs
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4.5  Debugging
Displaying Steps of Calculations † Evaluation Histories as 
Expressions † Recursion versus Iteration † Interactive Inputs

4.6  Localization of Variable Names
4.6.1   Localization of Variables in Iterator Constructions

Sums and Products † Scoping of Iterator Variables

4.6.2   Localization of Variables in Subprograms
Scoping Constructs † Lexical Scoping † Dynamic Scoping † Local 
Constants † Temporary Variables † Variable Scoping in Pure 
Functions † Creating Unique Variables † Nonlocal Program Flow

4.6.3   Comparison of Scoping Constructs
Delayed Assignments in Scoping Constructs † Temporarily 
Changing Built-in Functions † Variable Localization in Iterators † 
Scoping in Nested Pure Functions † Nesting Various Scoping 
Constructs † Timing Comparisons of Scoping Constructs

4.6.4   Localization of Variables in Contexts
Contexts † Variables in Contexts † Searching through Contexts † 
Manipulating Contexts † Beginning and Ending Contexts

4.6.5   Contexts and Packages
Loading Packages † General Structure of Packages † Private 
Contexts † Analyzing Context Changes

4.6.6   Special Contexts and Packages
Developer Functions † Special Simplifiers † Bit Operations † 
Experimental Functions † Standard Packages

4.7  The Process of Evaluation
Details of Evaluating an Expression † Analyzing Evaluation 
Examples † Standard Evaluation Order † Nonstandard Evaluations † 
Held Arguments

@ @ Overview
@ @ Exercises

Frequently Seen Messages † Unevaluated Arguments † Predicting 
Results of Inputs † Analyzing Context Changes † Evaluated versus 
Unevaluated Expressions

@ @ Solutions
Shortcuts for Functions † Functions with Zero Arguments † Small 
Expressions that Are Large † Localization of Iterator Variables † 
Dynamical Context Changes † Local Values
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CHAPTER 5
Restricted Patterns and Replacement Rules 

5.0  Remarks
5.1  Boolean and Related Functions

5.1.1   Boolean Functions for Numbers
Truth Values † Predicates † Functions Ending with  Q  † Numbers and 
Numeric Quantities † Integer and Real Numbers † Compound 
Numeric Quantities † Exact and Inexact Numbers † Primality † 
Gaussian Primes † Stating Symbolic and Verifying Numeric 
Inequalities † Comparisons of Numbers † Ordering Relations † 
Positivity

5.1.2   Boolean Functions for General Expressions
Testing Expressions for Being a Polynomial † Vectors and Matrices † 
Mathematical Equality † Equality and Equations † Structural 
Equality † Identity of Expressions † Equality versus Identity † 
Canonical Order † Membership Tests

5.1.3   Logical Operations
Boolean Operations † And, Or, Not, and Xor † Rewriting Logical 
Expressions † Precedences of Logical Operators

5.1.4   Control Structures
Branching Constructs † The If Statement † Undecidable Conditions † 
While and For Loops † Prime Numbers in Arithmetic Progression

5.1.5   Piecewise Functions
Piecewise Defined Functions † Canonicalization of Piecewise 
Functions † Composition of Piecewise Functions † Interpreting 
Functions as Piecewise Functions † Specifying Geometric Regions † 
Endpoint Distance Distribution of Random Flights

5.2  Patterns
5.2.1   Patterns for Arbitrary Variable Sequences

Simple Patterns † Patterns for Multiple Arguments † Testing 
Patterns † Named Patterns † Trace of Products of Gamma 
Matrices † Shortcuts for Patterns † Avoiding Evaluation in Patterns † 
Literal Patterns

5.2.2   Patterns with Special Properties
Optional Arguments † Default Values for Optional Arguments † 
Repeated Arguments † Excluding Certain Patterns † Alternative 
Arguments † Restricted Patterns † Pattern Tests † Conditional 
Patterns † Recursive Definitions † Pattern-Based Evaluation of 
Elliptic Integrals † Generating Tables † Selecting Elements from 
Lists † All Syntactically Correct Shortcuts
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5.2.3   Attributes of Functions and Pattern Matching
Pattern Matching in Commutative and Associative Functions † 
Arguments in Any Order † Nested Functions † Automatic Use of 
Defaults † Analyzing Matchings and Recursions in Pattern and 
Attribute Combinations

5.3  Replacement Rules
5.3.1   Replacement Rules for Patterns

Immediate and Delayed Rules † One-Time and Repeated 
Replacements † Unevaluated Replacements † Common Pattern 
Matching Pitfalls † Finding All Possible Replacements † Scoping in 
Rules † Replacements and Attributes † Modeling Function 
Definitions † Options and Rules † Replacing Position-Specified Parts 
of Expressions

5.3.2   Large Numbers of Replacement Rules
Optimized Rule Application † Complexity of Optimized Rule 
Application

5.3.3   Programming with Rules
Examples of Rule-Based Programs † Splitting Lists † Cycles of 
Permutations † Sorting of Complex Numbers † Cumulative Maxima † 
Dividing Lists † House of the Nikolaus † Polypaths † Rule-Based 
versus Other Programming Styles

5.4  String Patterns
Strings with Pattern Elements † Patterns for Character Sequences † 
String-Membership Tests † Shortest and Longest Possible 
Matches † Overlapping Matches † Counting Characters † Replacing 
Characters † All Possible Replacements † Analyzing the Online 
Documentation † Cumulative Letter Frequencies

@ @ Overview
@ @ Exercises

Rule-Based Expansion of Polynomials † All Possible Patterns from a 
Given Set of Shortcuts † Extending Built-in Functions † General 
Finite Difference Weights † Zeta Function Derivatives † Operator 
Products † q-Binomial Theorem  † q-Derivative  † Ordered 
Derivatives † Differentiating Parametrized Matrices † Ferrer 
Conjugates † Hermite Polynomial Recursions † Peakons † Puzzles † 
Catching Arguments and Their Head in Calculations † Nested 
Scoping

@ @ Solutions
Modeling Noncommutative Operations † Campbell–Baker–Hausdorff 
Formula † Counting Function Calls Using Side Effects † 
q-Deformed Pascal Triangle  † Ordered Derivative † Avoiding Infinite 
Recursions in Pattern Matchings † Dynamically Generated 
Definitions
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  CHAPTER 6
Operations on Lists, and Linear Algebra 

6.0  Remarks 
Prevalence of List Manipulations † Building Polyhedra by Reflecting 
Polygons Iteratively † Animating the Folding Process Based on 
Iterated Reflections

6.1  Creating Lists 
6.1.1   Creating General Lists 

Lists and Nested Lists as Arrays, Tables, Vectors, and Matrices † 
Timings of Creating Nested Lists † Changing Heads of 
Expressions † Summing Elements of Lists

6.1.2   Creating Special Lists 
Kronecker Symbol and Identity Matrix † Levi-Civita Symbol and 
Antisymmetric Tensors † Creating Multiple Iterators † Stirling 
Numbers † Subsets and Tuples

6.2  Representation of Lists 
2D Formatting of Tables and Matrices † Aligning Rows and 
Columns † Formatting Higher-Dimensional Tensors † Tensors and 
Arrays

6.3  Manipulations on Single Lists 
6.3.1   Shortening Lists 

Extracting Elements from Lists † Deleting Elements by Specifying 
Position, Pattern, or  Property † Prime Sieving

6.3.2   Extending Lists 
Prepending, Appending, and Inserting List Elements † Working with 
Named Lists

6.3.3   Sorting and Manipulating Elements 
Rotating Lists Cyclically † Sorting Lists † Sorting Criteria † Analyzing 
the Built-in Sorting Algorithm † Splitting Lists † Mapping Functions 
over Lists † Listable Functions † Mapping Functions to Expressions 
and Parts of Expressions † Extracting Common Subexpressions † 
Optimized Expressions

6.3.4   Arithmetical Properties of Lists
Average Value of a List † Sum of a List † Variance of a List † 
Quantiles of a List

6.4  Operations with Several Lists or with Nested Lists 
6.4.1   Simple Operations 

Hadamard Arithmetic on Lists † Transposing Tensors † 
Permutations † Using Side Effects for Monitoring List Algorithms † 
Joining Lists † Intersections and Complements of Lists † Finding 
Approximately Identical Elements
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6.4.2   List of All System Commands 
Working with Unevaluated Expressions † Options and Attributes of 
All Built-in Functions † Analyzing All Built-in Function Names † 
Dependencies of Definitions

6.4.3   More General Operations 
Contractions and Kronecker Products—Inner and Outer Products † 
Rotations in 3D † Cross Products † Threading Functions over Lists

6.4.4   Constructing a Crossword Puzzle 
A Large, List-Based Calculation † Example Construction † 
Manipulating Function Definitions through Downvalues † Crossword 
Array of All Built-in Functions † Crossword Array of All Package 
Functions † Crossword Array of All Named Characters

6.5  Mathematical Operations with Matrices 
6.5.1   Linear Algebra 

Inverse Matrices † Determinants † Timing Comparisons for Various 
Element Types † Traces of Matrices † Modeling Trace Calculations † 
Eigenvalues and Eigenvectors † Pauli Matrices † Properties of 
Eigenprojectors † Power Method for Finding the Largest 
Eigenvalue † Generalized Eigenvalue Problem † Solving Systems of 
Linear Equations † Siamese Sisters † Lorentz Transformations in 
Matrix Form † Moore–Penrose Inverse † Best Solutions to 
Overdetermined Linear Systems † Algorithms of Linear Algebra † 
Quantum Cellular Automata  † Extending Linear Algebra Functions

6.5.2   Constructing and Solving Magic Squares 
Underdetermined Linear Systems † Integer Solutions of Linear 
Systems † Decoding and Encoding Magic Squares † Finding All 
Solutions of a Magic Square

6.5.3   Powers and Exponents of Matrices 
Integer and Fractional Powers of Matrices † Exponential Function of 
a Matrix † Trigonometric Functions of Matrices † Fractional Powers 
and Matrix Spectral Decompositions † Matrix Evolution Equations † 
Time-Development of a Linear Chain † Cayley–Hamilton Theorem † 
Characteristic Polynomials

6.6  The Top Ten Built–in Commands 
Finding Filenames † Working with Unevaluated Expressions † 
Counting Function Uses † Reading Packages † Zipf’s Law † 
Analyzing Notebooks, Cell Types, References, Typeset Structures, 
and Text

@ @ Overview
@ @ Exercises

Benford’s Rule † Timing Comparisons for List Operations † Sum-
Free Sets † Generating an Index for This Book † Consistency of 
References † Line Length Distribution † Spacing Check † Moessner’s 
Process † Ducci’s Iterations † Stieltjes Iterations † Pseudorandom 
trees † Levi–Civita Tensor Contractions † Dirac Matrices Products † 
Determinants of Multidimensional Arrays † Mediants † d’Hondt 
Voting † Identifying Approximate Vectors Efficiently † Unsorted 
Complements † All Arithmetic Expressions † Ideal Formatting † 
Functions with Method Options † Functions with Level 
Specifications † Changing Formatting by Programs † Pattern 
Instances † Matrix Identities † Amitsur–Levitzky Identity † Frobenius 
Formula for Block Matrices † Iterative Matrix Square Root † 
Differential Matrix Identities † Matrix Derivatives † Autoloaded 
Functions † Precedences of All Operators † One-Liners † Changing 
$1 † Meissel Formula † Binary Bracketing † Kolakoski Sequence † 
Puzzles † Cloning Functions † Hash Values † Permutation Digit Sets
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@ @ Solutions
Chemical Element Data † Population Data of US Cities and 
Villages † Caching versus List-Lookup † Electronic Publication 
Growth † Statistics of Author Initials † Analyzing Bracket 
Frequencies † Word Neighbor Statistics † Weakly Decreasing 
Sequences † Finding All Built-in Symbols with Values † Automated 
Custom Code Formatting † Making Dynamically Formatted Inputs † 
Working with Symbolic Matrices † Downvalues and Autoloading † 
Determining Precedence Automatically † Permutation Polynomials † 
Working with Virtual Matrices

@ @ References
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G    R    A    P    H    I    C    S

 CHAPTER 1
Two–Dimensional Graphics

1.0  Remarks
Role of Visualization in and of Mathematics

1.1  Fundamentals
1.1.1   Graphics Primitives

Points, Lines, and Polygons † Text in Graphics † Creating and 
Displaying Graphics † Complex Cantor Sets † Dimension Transitions 
Animation † Tree of Pythagoras † Generalized Pythagoras 
Theorem † 2D Graphics Sampler with 100 Examples † Constructing 
a Caustic † Pedal Curve † Projection into 2D † Pentagon Tree † 
Meyer Quasicrystal † Poincaré Model of the Hyperbolic Plane † 
Böttcher Function of the Quadratic Map † Complex Continued 
Fractions † From Graphics to Animations † Phyllotaxis Spiral † Julia 
Sets † Farey Tree † Deposition Modeling † Rauzy Tessellations † 
Islamic Wicker

1.1.2   Directives for Graphics Primitives
Absolute and Relative Sizes of Points and Lines † Color Schemes 
and Color Values † Circles Rolling on Circles † An Optical Illusion: 
The Bezold Effect

1.1.3   Options for 2D Graphics
Max Bill’s Picture of Nested n-gons  † Influence of Each Options † 
Aspect Ratios † Adding Axes to Graphics † Labeling Axes † Fonts 
and Typeset Expressions in Graphics † Framing Graphics † Adding 
Labels to Graphics † Overlaying Graphics † Specifying Tick Marks † 
Repeatedly Displaying Graphics

1.1.4   A First Graphics Application: Voderberg Nonagon
Polygons that Enclose Each Other † Reinhardt’s Conjecture † 
Finding Matching Polygons

1.2  Plots of Functions
1.2.1   Plots of Functions Given Analytically

The Process of Making a Plot † Controlling Smoothness and 
Resolutions of Plots † Iterated Trigonometric Functions † Plotting 
Multiple Functions † Absolute Value Approximation † Distribution of 
Bend Angles † Fooling the Plotting Function † Visualizing High-Order 
Taylor Series † Plotting Parametrized Curves † Lissajous Figures † 
Hedgehogs of Curve Families † Astroid

1.2.2   Plots of Functions Defined Only at Discrete Points
Digit Distributions in Various Bases † Nowhere Differentiable 
Continuous Functions † Riemann’s Continuous Nondifferentiable 
Function † Minkowski’s Function † Periodic Continued Fractions 
Made Continuous
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1.3  Combining Several Images
1.3.1   Arrays of Graphics

Spirals † Arrays of Graphics † Inverting Graphics † Polyspirals † 
Inscribing Graphics into Rectangles † Graphing a Mouse † 
Manipulating Given Graphics † Puzzles Made from Subdivided 
Graphics † Clipping Polygons † Absolute Size of Text

1.3.2   Animations
Vibrating Linear Chain † Perron Tree Construction † Circles on 
Circles † Microscopic Moiré Pattern † Tangential Circles in Regular 
Polygons † Julia Set Evolution from Pullbacks of the Quadratic 
Map † Polygonal Radix Representation † Lattice Interpolations † 
Pólya’s Orchard Problem † Dragon Generation Animation

1.4  Packages
Graphics Packages † Visualizing Graphs † Hypercube Wireframe † 
Graphing Implicit Curves † Graphing Vector Fields

1.5  Graphics of Iterative Mappings
1.5.0   Remarks
1.5.1   Sierpinski Triangle

Iteratively Subdividing Triangles † Overlaying Graphics † Inverted 
Sierpinski Triangle † Applying Nonlinear Transformations

1.5.2   Peano Curves
Space-Filling Curves † Filling a Triangle with a Curve † Connecting 
Subdivided Triangles

1.5.3   Lebesgue’s Mapping of the Cantor Set
Curves Based on Digit Expansions † Filling Fractal Curves † General 
Digit Expansions

1.5.4   Subdivision of an L–Shaped Domain
Aperiodic Tilings † Applying Transformations to Graphics † Triangle 
Subdivisions

1.5.5   Penrose and Substitution Tilings
Tilings Using Rhombii † Coloring and Painting Tilings † Tilings Based 
on Kites and Darts † Manipulating Existing Graphics † Fractal 
Tilings † Cut-and-Project Method

1.5.6   Barnsley’s Fern, Mazes, and Other Random Images
Random Numbers † Random Number Generators † Generating 
Random Expressions † Law of the Iterated Logarithm † Random 
Sums † Random Replacements † Bak–Sneppen Model † Samples of 
2D Graphics that Contain Randomness † Eigenvalues of Random 
Matrices † Randomly Nested Radicals † Making  Concave Polygons 
Convex † Strange Nonchaotic Attractors † Random Circle Segment 
Patterns † Kaleidoscopes † Mazes † Square and Hexagonal Truchet 
Images † Randomly Bent Ropes † Iterated Function Systems † 
Barnsley’s Fern † Searching for Iterated Function Systems † Bahar 
Systems

1.5.7   Koch Curves
Koch Curve Generator † Random and Deterministic Koch Curves † 
Filling Koch Curves † Manipulating Koch Curves

1.5.8   Honeycombs and Escher Drawings
Constructing and Coloring Hexagon Lattices † Interlocking Lizards † 
Hyperbolic Triangles and Hyperbolic Tilings † Inversion on a Circle

1.5.9   Lindenmayer Systems, Monster Curves, Grasses, and Herbs
L-System Syntax: Axioms and Replacement Rules † Examples of L-
Systems † Space Filling Curves † Filled Gosper Curve † L-Systems 
with Branching † L-Systems that Model Plants † Random L-Systems
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1.6  Coloring Closed Curves
Coloring Plots † Finding Curve Intersections † Sorting 2D Line 
Segments † Loop Construction † Constructing the Clusters † 
Checkerboard Coloring † Some Examples † Checking if Polygons 
are Disjoint

@ @ Overview
@ @ Exercises

Game of Life † Langton’s Ant † Brillouin Zones † Maxwell–Helmholtz 
Color Triangle  † Conformal Maps † Cornet Isogons † Jarník 
Polygons † Light Ray Reflections in a Water Drop † Warped 
Patterns † Moiré Patterns † Triptych Fractal † Multiple Reflected 
Pentagons † Random Lissajous Figures † Walsh Function † Sorting 
Game † Ball Moves † Rectangle Packings † Smoothed L-Systems † 
Polygonal Billiards † Random Walk on a Sierpinski Fractal † Voronoi 
Tessellations † Lévy Flights † Random Supersymmetric Potential † 
Common Plotting Problems † Nomogram for Quadratic Equation † 
Clusters on Square Grids † Aperiodic Triangle Tilings

@ @ Solutions
Random Cluster Generation † Leath Clusters † Midsector Lines † 
Analyzing  Mathematica  Code  † Visualizing Piecewise Linear 
Approximations † Cartesian Ray † Kepler Cubes † Modulated Sin-
Curves † Superimposed Lattices † Triptych Fractals † Two 
Superimposed Bumps Forming Three Bumps † Repeatedly Mirrored 
Decagons † Smoothly Connected Curves † Randomly Deformed 
Graphics † Random Expressions

@ @ References

 CHAPTER 2
Three–Dimensional Graphics 

2.0  Remarks 
2.1  Fundamentals 

2.1.1   Graphics Primitives 
Points, Lines, and Polygons † Cuboids † Projecting a Hypercube into 
3D † Nonplanar and Nonconvex Polygons † Translating 3D Shapes † 
Escher’s Cube World

2.1.2   Directives for Three-Dimensional Graphics Primitives 
Absolute and Relative Sizes of Points and Lines † Constructing an 
Icosahedron from Quadrilaterals † Coloring Polygons in the 
Presence of Light Sources † Diffuse and Specular Reflection † 
Edges and Faces of Polygons † Rotating 3D Shapes † Random 
Rotations † Stacked Tubes † Text in 3D Graphics

2.1.3   Options for 3D Graphics
The 34 Options of 3D Graphics † Relative and Absolute Coordinate 
Systems † Space Curves versus Space Tubes

2.1.4   The Structure of Three-Dimensional Graphics 
Resolving Automatic Option Settings † Nested Primitives and 
Directives † Converting 3D Graphics to 2D Graphics
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2.1.5   Discussion of Selected Options 
Platonic Solids † Choosing the Viewpoint † Simple 3D Shapes † Light 
Sources and Colored Polygons † Cluster of Dodecahedra † Views on 
an Octant Filled with Cubes † Restricting the Plot Range † The 3D 
Graphics Enclosing Box † View Direction † Sizing Identical Graphics 
Independently of the Viewpoint † Rendering All versus Rendering 
Only Visible Polygons † Intersecting Polygons † Colliding Platonic 
Solids † A Scale with Platonic Solids † Diamond Faces † Rolled 
Checkered Paper † Woven Tubes † Smooth Dodecahedron–
Icosahedron Transition † Platonic Solid Metamorphosis † Slicing a 
Cube

2.2  Display of Functions 
2.2.1   Functions Given Analytically 

Graphing Functions of Two Variables † Special Plotting Options † 
Wireframes † Showing Multiple Plots † Parametrized Vector 
Functions † Cubed Torus † Klein Bottle † Parametrized Surfaces 
Samples † Using Symmetries to Construct Graphics † Constructing a 
Candelabra † Surfaces of Revolution † Emission of an Accelerated 
Point Charge † Borromaen Rings † Spiraling Spiral † Constructing a 
Birthday Bow

2.2.2   Functions Given at Data Points 
Visualizing 2D Arrays of Data † Visualizing Computation Timings † 
Time Evolution on a Torus † 3D Bar Charts † Randomized Geode

2.3  Some More Complicated Three-Dimensional Graphics 
2.3.0   Remarks 
2.3.1   3D Graphics of Iterative Mappings 

Rauzy Fractal From a 3D Projection † 3D Sierpinski Sponge † 
Exercising a Sierpinski Sponge † Kepler Tiling † 3D Iterated Function 
System † Random Clusters of Tetrahedra † Quaquaversal Tiling † 
3D Truchet Graphics † 3D Space Fillers

2.3.2   Tubular Curves 
Frenet Frame † Tangents, Normals, and Binormals of Space 
Curves † Tubes around Space Curves † Knots † Mapping Textures 
to Knots † Tubes around Piecewise Straight Curves † Biased 
Random Walk † Osculating Circles of Curves

2.3.3   Recursively Colored Easter Eggs 
Recursively Subdividing Surfaces † Deformed Spheres † Mapping 
Patterns to Spheres † Rough Surfaces

2.3.4   Klein Bottles 
Making Surfaces by Gluing the Edges of a Square † Spine Curves † 
Cross Sections of Klein Bottles † Slicing and Coloring Klein Bottles † 
Deformed Klein Bottles † Cubistic Klein Bottles

2.3.5   A Hypocycloidal Torus 
Triangulating Quadrilaterals † Rotating Curves to Sweep out 
Surfaces † Triangulations † Surfaces with Holes

2.3.6   The Penrose Tribar 
Constructing a Tribar † Coordinate System Transformations † 
Choosing the Right View Point † Calculating the Optimal Viewpoint † 
An Impossible Crate

2.3.7   Riemann Surfaces of Simple Functions 
Plotting Multivalued Functions † Riemann Surfaces of Algebraic 
Functions † Cutting Surfaces along Branch Cuts † Surfaces 
Subdivided Using Tilings † A Family of Polynomial Riemann 
Surfaces † Implicit Parametrizations † Riemann Surfaces of Nested 
Logarithms † Riemann Surfaces over the Riemann Sphere
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2.3.8   Interwoven Polygonal Frames 
Planes Intersecting Convex Bodies † Calculating All Intersections † 
Creating Frames † Interweaving Frames † Examples of Interwoven 
Frames

2.3.9   Selfintersecting Origami and 4D Hilbert Curves
Paper Folding Models † Goffinet Kite † Folding Animation † Hilbert 
Curves in Higher Dimensions

2.3.10   The Cover Image: Hyperbolic Platonic Bodies 
Triangulating Platonic Solids † Symmetry Considerations † Compact 
Code † Evolution of the Cover Graphics from Version 2 to Version 
5 † Nonplanar Contraction and Expansion of Polyhedra

2.4  Brillouin Zones of Cubic Lattices
Higher Degree Voronoi Regions † Simple Cubic Lattice † Bisector 
Planes † Intersection of Planes † Symmetry of a Cube † Forming 
Brillouin Zones from Polygons † Gluing Polygons Together † Body-
Centered Lattice † Face-Centered Lattice

@ @ Overview
@ @ Exercises

3D Surface Sampler † Warped, Twisted, and Interlocked Tori † 
Dodecahedra Iteratively Reflected on its Faces † Snail † Trinomial 
Theorem Visualization † Ball Blending Method † Loop Subdivision † 

3 -Subdivision Algorithm  † Averaging Closed Curves † Projective 
Plane Model † Counting Surfaces for a Given Genus † Lattice 
Pyramids † Fractal Mountains † Random Walk on a Sphere † 
Projecting onto Polyhedra † Alexander’s Horned Sphere † Polyhedral 
Caustic † Sliced Möbius Strip † Perspective Modeling † Displaying 
Hidden Edges † Generating Platonic Solid Clusters † A 4D Platonic 
Solid—The 120-Cell † Folding a Dodecahedron † Continuously 
Changing Polyhedra † Inscribing Five Cubes in a Dodecahedron † 
Interwoven Bands around a Dodecahedron † Knot Made from 
Knots † Knot with Escher Tiling † Gear Chain Animation † 3D Peano 
Polygon † Tetraview Riemann Surface Animation † Riemann Surface 
of Kepler Equation † Sierpinski Plant

@ @ Solutions
Cayley Cusp † Boy Surface † Möbius Strip † Steiner’s Cross Cap † 
Henneberg Surface † Flying Saucer Construction † Random 
Parametrized Surfaces † Dodecahedral Flowers † Extruded Platonic 
Solids † Smoothing through Graph Plotting † Staggered Trefoil 
Knots † Field Lines of Two Charged Spheres † Random Symmetric 
Polyhedra † Graphics of a Screw † Arranging Worn Stones Tightly † 
Random Cones † Broken Tube † Weaving a Torus † Constructing 
Double and Triple Tori from Torus Pieces † Massive Wireframes of 
Platonic Solids † Smoothing a Cube Wireframe † Smoothing a 
Stellated Icosahedron † Pyramids on Lattices † Closed Random 
Walks † Slicing and Coloring a Möbius Strip † Coordinate System 
Transformations † Kochen–Specker Theorem † Smooth Random 
Functions † Subdividing Concave Polygons
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@ @ References

 CHAPTER 3
Contour and Density Plots 

3.0  Remarks
3.1  Contour Plots

Contour Graphics † Converting Contour Graphics † Options of 
Contour Graphics † Cassini Curve † Various Sample Contour Plots † 
Functions Varying Strongly † Homogeneous Contour Line Density † 
Coloring Contour Plots † Contour Graphics in Nonrectangular 
Domains † Speckles and Scarlets from Superimposing 2D Waves † 
Smoothing Contour Lines † Superimposed 2D Waves in Symmetric 
Directions † Comparing Options and Option Settings of Plotting 
Functions † Algebraic Description of Polygons † Blaschke Products † 
Charged Goffinet Dragon † Square Well-Scattering Amplitude

3.2  Density Plots
Density Graphics † Converting Density Graphics † Arrays of Gray or 
Color Values † Lifting Color Value Arrays to 3D † Earth Graphics † 
Array Plots † Gauss Sums † Visualizing Difference Equation 
Solutions † Visualizing Matrices † Saunders Pictures † Making 
Photomosaics from Density Plots

3.3  Plots of Equipotential Surfaces
Visualizing Scalar Functions of Three Variables † Marching Cubes † 
Plots of Implicitly Defined Algebraic Surfaces † Implicit Descriptions 
of Riemann Surfaces † Gluing Implicitly Defined Surfaces Smoothly 
Together † Using Reflection and Rotation Symmetries to Visualize 
Algebraic Surfaces † Examples of Surfaces from Spheres, Tubes, 
and Tori Glued Together † An Algebraic Candelabra † Joining Three 
Cylinders Smoothly † Zero-Velocity Surfaces † Implicit Form of an 
Oloid † Isosurfaces of Data

@ @ Overview
@ @ Exercises

Clusters of Irreducible Fractions † Chladny Tone Figures in 
Rectangles and Triangles † Helmholtz Operator Eigenfunctions of a 
Tetrahedron † Liénard–Wiechert Potential of a Rotating Point 
Charge † Shallit–Stolfi–Barbé Plots † Random Fractals † Functions 
with the Symmetry of Cubes and Icosahedra † Icosahedron 
Equation † Belye Functions † Branch Cuts of Hyperelliptic Curves † 
Equipotential Plots of Charged Letters † Charged Random Polygon † 
Gauss–Bonnet Theorem † Interlocked Double and Triple Tori † 
Inverse Elliptic Nome † Contour Plots of Functions with Boundaries 
of Analyticity † Isophotes on a Supersphere † Structured Knots † 
Textures on a Double Torus
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@ @ Solutions
Visualizing Saddle Points † Outer Products † Repeatedly Mirrored 
Matrix † Halley Map † Generating Random Functions † Weierstrass 
ƒ Function Based Fractal † Contour Plots in Non-Cartesian 
Coordinate Systems † Spheres with Handles † Cmutov Surfaces † 
Random Surfaces with Dodecahedral Symmetry † Polynomials over 
the Riemann Sphere † Random Radial-Azimuthal Transition † 
Contour Lines in 3D Plots † Lines on Polygons † Slicing Surfaces † 
Euler–Poincaré Formula † Mapping Disks to Polygons † 
Statistics of n-gons in 3D Contour Plots

@ @ References
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N    U    M    E    R    I    C    S

 CHAPTER 1
Numerical Computations

1.0  Remarks
Summing Machine Numbers † Klein’s Modular Function and Chazy 
Equation † Discretizing the Rössler System † Modeling the Ludwig–
Soret Effect

1.1  Approximate Numbers
1.1.0   Remarks
1.1.1   Numbers with an Arbitrary Number of Digits

Machine Arithmetic versus High-Precision Arithmetic † Modified 
Logistic Map † Numerical Calculation of Weierstrass Functions † 
High-Precision Arithmetic System Parameters † Fixed-Precision 
Arithmetic † Random Fibonacci Recursion † Smart 
Numericalization † Precision and Accuracy of Real Numbers † 
Precision and Accuracy of Complex Numbers † Precision Loss and 
Gain in Calculations † Error Propagation in Numerical Calculations † 
Principles of Significance Arithmetic † Error Propagation for 
Multivariate Functions † Collapsing Numeric Expressions † Setting 
Precision and Accuracy of Numbers † Guard Digits in High-Precision 
Numbers † The Bits of a Number † Sum-Based Methods of 
Calculating p † Comparing High-Precision Numbers † Automatic 
Switching to High-Precision Arithmetic

1.1.2   Interval Arithmetic
Rigorous Arithmetic † Notion of an Interval † Joining and Intersecting 
Intervals † Modeling Error Propagation † Global Relative Attractor of 
Rationals Maps

1.1.3   Converting Approximate Numbers to Exact Numbers
Rational Numbers from Approximate Numbers † Continued 
Fractions † Liouville Constant † Periodic Continued Fractions † 
Numbers with Interesting Continued Fraction Expansions † 
Continued Fraction Convergents † Pseudoconvergents † Gauss–
Kusmin Distribution † Khinchin Constant † Khinchin–Lévy Theorem † 
Lochs’ Theorem † Canonical Continued Fractions † Minkowski 
Function † Generalized Expansions † Rounding Numbers † Frisch 
Function † Egyptian Fractions

1.1.4   When N Does Not Succeed
Using Extra Precision † Undecidable Numerical Comparisons † 
Caching High-Precision Results † Recursive Prime Number 
Definition † Sylvester Expansion
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1.1.5   Packed Arrays
Machine Numbers, Tensors, and Packed Arrays † Developer 
Functions for Packed Arrays † Invisibility of Packed Arrays † 
Controlling Automatic Packed Array Generation † Counting Sums 
and Products of Sets of Integers † Long-Range Correlations in 
Natural Texts † Analyzing Shakespeare’s “Hamlet” † Zipf’s Law † 
Mean Square Fluctuation of a Random Walk † Analyzing a Chapter 
of This Book † Analyzing a PostScript Graphic

1.2  Fitting and Interpolating Functions
Fitting Data † Least Squares and Pseudoinverses † Approximate 
Solution of the Helmholtz Equation by Plane Wave Expansion † 
Nonlinear Fits † File Size Distribution † Polynomial Interpolation of 
Data † Neville Algorithm † Convergence and Divergence of 
Polynomial Interpolations † Runge Phenomena † Newton–Cotes 
Weights † Interpolating Functions † Smoothness of Interpolating 
Functions † Curvature Driven Evolution † Dissecting an Interpolating 
Function † Splines

1.3  Compiled Programs
Compiling a Calculation † Compiled Functions † Julia Set of the 
Quadratic Map † Timing Comparisons for Compiled Procedural and 
Functional Programs † Randomized Fibonacci Iterations † Products 
of partial Sums of Random Variables † Hansen–Patrick Root-Finding 
Method † Distances in Truchet Images † Cycles in Iterated 
Exponentiation † Ikeda Map † 3D Period-Doubling Animation † 
Sandpiles † Identity Sandpile † Nonlocal Cellular Automata † 
Caustics from Refraction

1.4  Linear Algebra
Finite Resistor Network † Exact versus Approximate Solutions † 
Avoiding Numericalization of Indicies † Calculating Resistances 
Through Eigenvalues † Tagaki Function † Numerical Solution of a 
Functional Equation † Fixed-Precision Arithmetic in Linear Algebra † 
Modular Equation for Klein’s Modular Function † Null Spaces of 
Linear Systems † Bound State in a Waveguide Crossing † Sparse 
Matrices † Square Network with Random Resistance Values † 
Anderson Model

1.5  Fourier Transforms
Discretized Periodic Functions † Fourier Transform † Amplitude and 
Frequency Modulation † Approximating a Function † Uncertainty 
Relations † Strang’s Strange Figures † Timing Comparisons of 
Numerical Fourier Transforms † Inverse Fourier Transforms † 
Fourier Transforms of Arrays † Approximating the Gosper Curve † 
Fourier Transforms of Aperiodic Tilings † Fractional Fourier 
Transform † High-Precision Frequency Approximation of Data † 
Approximating the Continuous Fourier transform † List Convolutions 
and Correlations † Manipulating Bitmap Graphics † Visualizing 
Trigonometric Identities

1.6  Numerical Functions and Their Options
Common Options of Numerical Functions † Precision To Be Used in 
Calculations † Machine Precision versus High-Precision † Precision 
Goal for a Numerical Calculation † Accuracy Goal for a Numerical 
Calculation † Accuracy Goals for Independent and Dependent 
Variables † Monitoring Numerical Calculations † Evaluation Order in 
Numerical Function † Avoiding the Evaluation of the First Argument † 
Using Vector-Valued Variables † Dummy Variable-Free Function 
Calls
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1.7  Sums and Products
Numerical Products † Options of Numerical Product Calculations † 
Compensated Summation † Order Sensitivity in Floating Point 
Summations † Numerical Sums † Options of Numerical Summation † 
Verifying Convergence † Borel–Tanner Distribution † Sequence 
Transformations † Numerically Summing Divergent Series † 
Continuous Integer Spiral

1.8  Integration
Numerically Integrating a Function † Introductory Examples † 
Integrable Singularities † Dealing with Singularities along the 
Integration Path † Contour Integration † Constructing Integration 
Path Iterators † Monitoring Numerical Integration † Matrix Functions 
Defined through Integrals † Options of Numerical Integration † 
Accuracy and Precision of Results † Termination Conditions † 
Methods of Numerical Integration † Integrating Discontinuous 
Functions † Comparison of Basic Integration Methods † Visualization 
of the Sample Points † Gauss Linking Number † Area of a 
Supersphere † Comparing Multidimensional Integration Methods † 
Double Exponential Method † Monte-Carlo and Quasi Monte-Carlo 
Integration † Distribution of Monte Carlo Sample Points † van Der 
Corput Sequences † Integration of Piecewise Continuous 
Functions † Using Symmetries of the Integrands † Picard–Lindelöf 
Iteration

1.9  Solution of Equations
Numerical Solution of Polynomials, Polynomial Systems, and 
Arbitrary Functions † Sensitivity of Polynomial Roots to Changes in a 
Coefficient † Iterated Roots † Distances between Polynomial Roots † 
Hofstadter’s Butterfly † Schrödinger Equation for Periodic Potential 
and Applied Magnetic Field † Farey Sequences † Hofstadter Butterfly 
on a Finite Lattice † Kohmoto Model † Bézout and Bernstein Bounds 
for the Number of Roots of Polynomial Equations † Quadrature 
Weights † Root Finding of General Functions † Monitoring the 
Search Path † Adapative Precision Raising † Termination 
Conditions † Root-Finding Methods † Methods of Numerical 
Equation Solving † Calculating Jacobians † Multiple Roots and Roots 
of Noninteger Order † Variable-Free Minimization † Voderberg 
Spiral † Nested Touching Circles

1.10  Minimization
Finding the Minimum † Methods of Numerical Minimization † 
Visualizing Search Paths † Method Option Choices for Numerical 
Optimization † Minimizing Sums of Squares † Sliding Down a Spiral 
Slide † Finding Global Minima † 
Minimum Energy Configuration of  n  Electrons in a Disk  † Iterative 
Minimizations
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1.11  Solution of Differential Equations
1.11.1   Ordinary Differential Equations

Boundary and Initial Value Problems † Interpolating Functions as 
Solutions † Differential-Algebraic Equations † Pendulum ODE † 
Anharmonic Oscillator with Random Forcing † Squatting on a 
Swing † Newton Vector Field † Spiral Waves † 4D Chaotic Attractor † 
Energy Bands in a Random Complex Potential † Stiff and Nonstiff 
Systems † Precision Control † Nonlinear Differential Equation with 
Isochronous Solutions † Buchstab Function † Higher Order ODEs † 
Ablowitz–Ladik Chain † Particle Motion in a Wave Field † Chazy 
Equation † Boundaries of Analyticity † Generalized Airy Functions † 
Monitoring Numerical Differential Equation Solving † Stepsize 
Control † Coupled Pendulums † Restricting the Solutions † Stopping 
the Solution Process † Calculating and Visualizing Pursuits † Finding 
the Initial Slope for the Thomas–Fermi Equation † Forced Coupled 
Oscillators † Chaotic Scattering on a Four-Hill Potential † Events in 
Differential Equation Solving † Vector and Matrix Differential 
Equations † Method Option Choices † Integrated Brownian Motion † 
Modified Lorenz System † Calculating Contour Curves Through 
Differential Equations † Geodesics on a Triple-Periodic Surface † 
Using Homotopies to Solve Polynomial Systems † Modeling 
Newton’s Cradle † Trajectories in Central Force Fields † Three-Body 
Scattering † Interacting Vortices † Periodic Orbits of the Restricted 
Three-Body Problem † Combining Numerical Functions † Periodic 
Orbits of the Lorenz System † Bohm’s Quantum Trajectories † 
Continuous Time Random Walks on Graphs † Sparse Arrays in 
Differential Equations

1.11.2   Partial Differential Equations
Parabolic and Hyperbolic PDEs † 1D Schrödinger Equation with 
Dirichlet Boundary Conditions † Scattering on a Potential Wall † 1D 
Wave Equation † PDE-Specific Options † Singular Initial Conditions † 
Wave Function Shredding in an Infinite Well of Time-Dependent 
Width † Fokker–Planck Equation for a Damped Anharmonic 
Oscillator † Liouville Equation for an Anharmonic Oscillator † Klein–
Gordon Equation † Differential Equations with Mixed Derivatives † 
Nonlinear Schrödinger Equation † Complex Ginzburg–Landau 
Equation † Zakharov Equations † Prague Reaction-Diffusion Model

1.12  Two Applications  
1.12.0   Remarks
1.12.1   Visualizing Electric and Magnetic Field Lines

Differential Equations for Field Lines † Field Lines of 2D Charge 
Configurations † Reusing Programs † Stopping Criteria for Field 
Lines † Field Lines for 3D Charge Configurations † Field Lines as 
Tubes † Field Lines of Magnetic Fields † Biot–Savart Rule † 
Magnetic Field Lines of a Peano Curve-Shaped Wire † Nonclosed 
Magnetic Field Lines † Field Lines of a Ring Coil

1.12.2   Riemann Surfaces of Algebraic Functions
Algebraic Functions as Bivariate Polynomials † Faithful Riemann 
Surfaces † Implicit Parametrizations † Branch Cuts and Branch 
Points † Discriminant † First Order ODEs for Algebraic Functions † 
Sheets of Riemann Surfaces † Samples of Riemann Surfaces
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@ @ Overview
@ @ Exercises

Logistic Map † Randomly Perturbed Iterative Maps † Functions with 
Boundaries of Analyticity † q-Trigonometric Functions  † Franel 
Identity † Bloch Oscillations † Courtright Trick † Hannay Angle † 
Harmonic Nonlinear Oscillators † Orbits Interpolating Between 
Harmonic Oscillator and Kepler Potential † Shooting Method for 
Quartic Oscillator † Eigenvalues of Symmetric Tridiagonal Matrices † 
Optimized Harmonic Oscillator Expansion † Diagonalization in the 
Schwinger Representation † Möbius Potential † Bound States in the 
Continuum † Wynn’s Epsilon Algorithm † Aitken Transformation † 
Numerical Regularization † Scherk’s Fifth Surface † Clebsch 
Surface † Smoothed Dodecahedron Wireframe † Standard Map † 
Stochastic Webs † Forced Logistic Map † Web Map † Strange 
Attractors † Hénon Map † Triangle Map Basins † Trajectories in 2D 
Periodic Potentials † Egg Crate Potential † Pearcey Integral † 
Charged Square and Hexagonal Grids † Ruler on Two Fingers † 
Branched Flows in Random Potentials † Maxwell Line † Iterated 
Secant Method Steps † Unit Sphere Inside a Unit Cube † Ising-
Model Integral † Random Binary Trees † Random Matrices † Iterated 
Polynomial Roots † Weierstrass Root Finding Method † Animation of 
Newton Basins † Lagrange Remainder of Taylor Series † Nodal 
Lines † Bloch Equations † Branch Cuts of Hyperelliptic Curves † 
Strange 4D Attractors † Billiard with Gravity † Schwarz–Riemann 
Minimal Surface † Jorge–Meeks Trinoid † Random Minimal 
Surfaces † Precision Modeling † Infinite Resistor Networks † Auto-
Compiling Functions † Card Game Modeling † Charges With Cubical 
Symmetry on a Sphere † Tricky Questions † Very High-Precision 
Quartic Oscillator Ground State † 1D Ideal Gas † Odlyzko-Stanley 
Sequences † Tangent Products † Thompson’s Lamp † Parking 
Cars † Seceder Model † Avoided Patterns in Permutations † Cut 
Sequences † Exchange Shuffles † Frog Model † Second Arcsine 
Law † Average Brownian Excursion Shape † ABC-System † Vortices 
on a Sphere † Oscillations of a Triangular Spring Network † Lorenz 
System † Fourier Differentiation † Fourier Coefficients of Klein’s 
Function † Singular Moduli † Curve Thickening † Random Textures † 
Random Cluster Growth † First Digit Frequencies in Mandelbrot Set 
Calculation † Interesting Jerk Functions † Initial Value Problems for 
the Schrödinger Equation † Initial Value Problems for 1D, 2D, and 
3D Wave Equation † Continued Inverse Square Root Expansion † 
Lüroth Expansion † Lehner Expansion † Brjuno Function † Sum of 
Continued Fraction Convergents Errors † Average Scaled Continued 
Fraction Errors † Bolyai Expansion † Symmetric Continued Fraction 
Expansion

@ @ Solutions
Solving Polynomials Using Differential Equations † Stabilizing 
Chaotic Sequences † Oscillator Clustering † Transfer Matrices † 
Avoided Eigenvalue Crossings † Hellmann–Feynman Theorem † 
Scherk Surface Along a Knot † Time-Evolution of a Localized 
Density Under a Discrete Map † Automatic Selection of “Interesting” 
Graphic † Gradient Fields † Static and Kinematic Friction † 
Smoothing Functions † Eigenvalues of Random Binary Trees † 
Basins of Attraction Fractal Iterations † Calculating Contour Lines 
Through Differential Equations † Manipulating Downvalues at 
Runtime † Path of Steepest Descent † Fourier Series Arc Length † 
Poincaré Sections † Random Stirring † Heegner Numbers † 
Quantum Random Walk † Quantum Carpet † Coherent State in a 
Quantum Well
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 CHAPTER 2
Computations with Exact Numbers 

2.0  Remarks 
Using Approximate Numerics in Exact Calculations † Integer Part 
Map † Misleading Patterns † Primes in Quadratic Polynomials

2.1  Divisors and Multiples 
Factoring Integers † Number of Prime Factors † Divisors † Sum of 
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Function † Redheffer Matrix † Möbius Inversion † Calculating Fourier 
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Law

2.3  Combinatorial Functions 
Factorials † Digits of Factorials † Stirling’s Formula † Binomials and 
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Akiyama–Tanigawa Algorithm † Euler–Maclaurin Formula † Lidstone 
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Law for Divisors † Average Length of Continued Fractions of 
Rationals † Isenkrahe Algorithm † Prime Divisors † Kimberling 
Sequence † Cantor Function Integral † Cattle Problem of 
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Symbolic Computations  

1.0  Remarks 
1.1  Introduction

General Assumptions about Variables † Simplifying Expressions † 
Type Declarations for Simplifications † Evaluating Expressions 
Under Assumptions

1.2  Operations on Polynomials 
1.2.0   Remarks
1.2.1   Structural Manipulations on Polynomials

Expanding and Factoring Polynomials † Factors of Random 
Polynomials † Irreducible Polynomials † Constructing Irreducible 
Polynomials from Primes † Factorization over Extension Fields † 
Reordering Multivariate Polynomials † Indeterminates of 
Polynomials † Extracting Coefficients from Polynomials † 
Decomposing Polynomials

1.2.2   Polynomials in Equations
Polynomial Division † Resultants † Sylvester Matrix † Differential 
Equation for the Elliptic Nome † Gröbner Bases † Applications of 
Gröbner Bases † Equation Solving Using Gröbner Basis † 
Approximative Gröbner Bases † Monomial Orders † Showing 
Inconsistency of Equations Using Gröbner Bases † Finite-
Dimensional Representation of the Canonical Commutation 
Relations † Eliminating Variables Using Gröbner Bases † Geometric 
Theorem Proving † All Square Roots of Square Matrices † Bound 
States in Spherical Symmetric Potentials † Gröbner Walks † 
Reducing Polynomials

1.2.3   Polynomials in Inequalities
Cylindrical Algebraic Decompositions † Solving Inequalities † Locally 
Parametrizing a Squeezed Torus † Arnold Cat Map † Generic 
Cylindrical Algebraic Decomposition † Quantifier Elimination † 
Generally Proving Inequalities † Proving Triangle Inequalities † 
Deriving New Geometry Theorems † Restricting Polynomial Roots † 
Proving the Sendov–Iliev Conjecture for Quadratic Polynomials † 
Deriving Clauser–Horn Inequalities † Algebraic Blending † Minkowski 
Sums

1.3  Operations on Rational Functions
Numerators and Denominators † Expanding Parts of Nested 
Fractions † Partial Fraction Decomposition † Writing Rational 
Functions over Common Denominators † Gale–Robinson 
Sequence † The Power of “Togethering” † Mapping of the 
Fundamental Domain
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Expansion and Factorization of Trigonometric Expressions † 
Addition Theorems for Trigonometric Functions † Converting 
Trigonometric Functions to Exponential Form † Real and Imaginary 
Parts of Symbolic Expressions

1.5  Solution of Equations 
The Notion of Generic Solutions † Solving Univariate Polynomials in 
Radicals † Cubic Polynomials with Three Real Roots † Symbolic 
Roots as Solutions of Univariate Polynomials of Any Degree † Exact 
Operations on Polynomial Roots † Matrix Eigenvalues † 
Canonicalization of Symbol-Free Algebraic Expression † Hölder’s 
Theorem about Real Roots of Cubics † Solving Systems of 
Polynomials † Vieta Relations † Solving Systems of Algebraic 
Equations † Solving Nonpolynomial Equations † Using Inverse 
Functions † Solving Trigonometric Equations † Solving 
Transcendental Equations † Verifying Parametric Solutions † 
Superposition of Damped Oscillations † Finding Degenerate 
Solutions † Elimination of Variables † Universal Differential 
Equation † Guidelines for Solving Equations and Systems of 
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Multivariate Differentiation † Numericalization of Unevaluated 
Derivatives † Numerical Differentiation † Differentiating in the 
Complex Plane † Schwarz Theorem † Differential Algebraic 
Constants † High-Order Derivatives † Derivatives of Inverse 
Functions † Differentiation With Respect to Vectors † Derivatives of 
Pure Functions † Adding New Differentiation Rules † 
Differential Equations for  n -Nomials  † Generalized Taylor 
Expansion † Differentials † Metric Tensors, Christoffel Symbols, and 
Geodesics † Iterated Evolutes † Phase Integral Approximation

1.6.2   Integration 
Algorithms for Symbolic Integration † Assumptions on Variables 
Having Generic Values † Integrating Abstract Functions † Korteweg–
deVries Equation Hierarchy † Indefinite Integration Samples † 
Integrals and Special Functions † Integrating Rational Functions † 
Integrating Algebraic Functions † Assumptions of Parameter 
Variables † Assumptions in Indefinite Integrals † Generating 
Conditions for Convergence † Divergent and Hadamard-Regularized 
Integrals † Cauchy Principal Value Integrals † Multidimensional 
Integrals † Robbin’s Integral Identity † Definite Integrals from 
Indefinite Integrals † Piecewise Continuous Antiderivatives † 
Continuity of Indefinite Integrals † Weierstrass Parametrization of 
Minimal Surfaces † Infinite Resistor Network † Timings of Indefinite 
versus Definite Integration † d’Alembert Solution of the One-
Dimensional Wave Equation † Schrödinger Equation with a Time-
dependent Linear Potential † Definite Integrals and Branch Cuts

1.6.3   Limits 
Indeterminate Expressions and Limits † Limit Samples † Direction 
Dependence of Limits † Evaluating Limits Under Assumptions † 
Limits of Analytic Functions † Schwarz Derivative † Extracting 
Leading Terms † Limits of Iterative Function Applications † Multiple 
Limits
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1.6.4   Series Expansions 
Internal Structure of a Series-Object † Taylor Series † Continued 
Fraction with Three Limit Points † Laurent Series † Puiseux Series † 
Series Expansions at Branch Points and Branch Cuts † Series of 
Special Functions † Essential Singularities † Numerov–Mickens 
Scheme † Multivariate Series † Roots of Truncated Series † 
q -Taylor Series  † Arithmetic of Series † Change for $1 † Iterated 
Constant Terms † Inverse Series † Higher-Order Newton and 
Chebyshev Methods † Fractional Iterations † Cumulant Expansions † 
Laurent Series for Mandelbrot Set † Approximating Linear 
Functionals

1.6.5   Residues 
Symbolic Residues at Poles † Generalized Residues † Residues of 
Special Functions

1.6.6   Sums
Sum of Powers † Numericalization of Symbolic Expressions † 
Procedural versus Symbolic Finite Summations † Riemann Surface 
of the Square Root Function † Weierstrass’s Method of Analytic 
Continuation

1.7  Differential Equations 
1.7.0   Remarks
1.7.1   Ordinary Differential Equations 

Solutions as Rules † Pure Functions as Solutions † Degenerate 
Solutions † Differential Equation for Free Fall Including the Coriolis 
Force † Integration Constants † Linear Inhomogeneous ODE with 
Constant Coefficients † ODEs with Separated Variables † 
Homogeneous ODEs † Exact ODEs † Bernoulli ODE † Jacobi 
ODEs † Special Riccati ODEs † Abel ODEs of the First Kind † Abel 
ODEs of the Second Kind † Chini ODEs † Lagrange ODEs † Clairaut 
ODEs † ODEs with Shifted Argument † Cayley ODE † Second Order 
ODEs † Differential Equations of Special Functions † Schrödinger 
Equations for Various Smooth Potentials † Schrödinger Equations 
for Piecewise-Defined Potentials † Higher-Order Differential 
Equations † Implicit Solutions † Monitoring Differential Equation 
Solving † d-Expansion

1.7.2   Partial Differential Equations 
Hamilton–Jacobi Equation † Szebehely’s Equation † Solutions with 
Arbitrary Functions

1.7.3   Difference Equations 
Linear Difference Equations † Calculating Casoratians † Linear 
Difference Equations with Nonconstant Coefficients † Some 
Nonlinear Difference Equations † Difference Equations 
Corresponding to Differential Equations † Systems of Difference 
Equations

1.8  Integral Transforms and Generalized Functions 
Generalized Functions and Linear Functionals † Heaviside Theta 
Function and Dirac Delta Function † Integrals Containing 
Generalized Functions † Multivariate Heaviside Theta and Dirac 
Delta Function † Time Dilation † Derivatives of the Dirac Delta 
Function † Simplifying Generalized Functions † Sequence 
Representations of Generalized Functions † Green’s Function of 
Linear Differential Operators † Generalized Solutions of Differential 
Equations † Compactons † Fourier Transforms † Self-Fourier 
Transform † Principle Value Distribution † Sokhotsky–Plemelj 
Formula † Poincaré–Bertrand Identity † Laplace Transforms † Borel 
Summation of Divergent Sums † Adomian Decomposition
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1.9  Additional Symbolics Functions 
Variational Calculus † Symbolic Series Terms † Ramanujan’s Master 
Theorem

1.10  Three Applications 
1.10.0   Remarks 
1.10.1   Area of a Random Triangle in a Square 

A Quote from M. W. Crofton † Generalizations † Generic Cylindrical 
Algebraic Decompositions † Six-Dimensional Definite Integrals from 
Indefinite Integrals † Monte Carlo Modeling † Calculating the 
Probability Distribution of the Area

1.10.2   cosI 2 p
257 M à la Gauss 

The Morning of March 29 in 1796 † Gauss Periods † Primitive 
Roots † Splitting and Combining Periods † Thousands of Square 

Roots † cosJ 2 p

65537
N  † Fermat Primes

1.10.3   Implicitization of a Trefoil Knot 
Parametric versus Implicit Description of Surfaces † Envelope 
Surface of a Moving Ball † Polynomialization of Trigonometric 
Expressions † Calculating a Large Resultant † Smoothing the Trefoil 
Knot † Inflating a Trefoil Knot † Implicit Klein Bottle

THE MATHEMATICA GUIDEBOOKS to PROGRAMMING—GRAPHICS—NUMERICS—SYMBOLICS 31

©  2004, 2005   Springer Science+Business Media, Inc.



@ @ Overview
@ @ Exercises

Heron’s formula † Tetrahedron Volume † Apollonius Circles † 
Proving Trigonometric Identities † Icosahedron Inequalities † Two-
Point Taylor Expansion † Horner Form † Nested Exponentials and 
Logarithms † Minimal Distance between Polynomial Roots † 
Dynamical Determimants † Appell–Nielsen Polynomials † Scoping in 
Iterated Integrals † Rational Solution of Painlevé II † Differential 
Equation for Products and Quotients of Linear Second Order 
ODEs † Singular Points of First-Order ODEs † Fredholm Integral 
Equation † Inverse Sturm–Liouville Problem † Graeffe Method † 
Lagrange Interpolation in 2D Triangles † Finite Element Matrices † 
Hermite Interpolation-Based Finite Element Calculations † Hylleraas–
Undheim Helium Ground State Calculation † Variational 
Calculations † Hyperspherical Coordinates † Constant Negative 
Curvature Surfaces † Optimal Throw Angle † Jumping from a 
Swing † Normal Form of Sturm–Liouville Problems † Noncentral 
Collisions † Envelope of the Bernstein Polynomials † Eigensystem of 
the Bernstein Operator † A Sensitive Linear System † Bisector 
Surfaces † Smoothly Connecting Three Half-Infinite Cylinders † 
Nested Double Tori † Changing Variables in PDEs † Proving Matrix 
Identities † A Divergent Sum † Casimir Effect Limit † Generating 
Random Functions † Numerical Techniques Used in Symbolic 
Calculations † Series Solution of the Thomas–Fermi Equation † 
Majorana Form of the Thomas–Fermi Equation † Yoccoz Function † 
Lagrange–Bürmann Formula † Divisor Sum Identities † Eisenstein 
Series † Product Representation of exp † Multiple Differentiation of 
Vector Functions † Expressing Trigonometric Values in Radicals † 
First Order Modular Transformations † Forced Damped 
Oscillations † Series for Euler’s Constant † q-Logarithm  † 
Symmetrized Determinant † High Order WKB Approximation † 
Greenberger–Horne–Zeilinger State † Entangled Four Particle 
State † Integrating Polynomial Roots † Riemann Surface of a Cubic † 
Series Solution of the Kepler Equation † Short Time-Series Solution 
of Newton’s Equation † Lagrange Points of the Three-Body 
Problem † Implicitization of Lissajou Curves † Evolutes † Orthopodic 
Locus of Lissajous Curves † Cissoid of Lisssajou Curves † Multiple 
Light Ray Reflections † Hedgehog Envelope † Supercircle Normal 
Superpositions † Discriminant Surface † Periodic Surface † 27 Lines 
on the Clebsch Surface † 28 Bitangents of a Plane Quartic † 
Pentaellipse † Galilean Invariance of Maxwell Equations † 
Relativistic Field Transformations † X-Waves † Thomas Precession † 
Liénard–Wiechert Potential Expansion † Spherical Standing Wave † 
Ramanujan’s Factorial Expansion † q-Series to q-Products  † 

q-Binomial  † Multiplicative Series † gcd-Free Partitions † Single 
Differential Equations for Nonlinear Systems † Lattice Green’s 
Function Differential Equation † Puzzles † Newton–Leibniz Theorem 
in 2D † Square Root of Differential Operator † Polynomials with 
Identical Coefficients and Roots † Amoebas † Cartesian Leaf Area † 
Average Distance between Random Points † Series Solution for 
Duffing Equation † Secular Terms † Implicitization of Various 
Surfaces † Kronig–Penney Model Riemann Surface † Ellipse 
Secants Envelope † Lines Intersecting Four Lines † Shortest 
Triangle Billiard Path † Weak Measurement Identity † Logarithmic 
Residue † Geometry Puzzle † Differential Equations of Bivariate 
Polynomials † Graph Eigenvalues † Change of Variables in the Dirac 
Delta Function † Probability Distributions for Sums † Random 
Determinants † Integral Representation of Divided Differences † 
Fourier Transform and Fourier Series † Functional Differentiation † 
Operator Splitting Formula † Tetrahedron of Maximal Volume
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Dependent Schrödinger Equation with Calogera Potential

@ @ Solutions
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 CHAPTER 3 
Classical Special Functions  
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Potential † Ramanujan Theta Functions † Modular Identities
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Piecewise Constant Initial Conditions † Moshinsky Function † 
Harmonic Oscillator Green’s Function † Fresnel Diffraction on a Half-
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Oscillation of a Drum of General Shape † 2D Helmholtz Equation † 
Eigenvalues and Eigenfunctions of the Stadium Billiard † Free 
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Oscillator Approximations
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Gauss Hypergeometric Function and Generalized Hypergeometric 
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Taylor Series for Trigonometric Functions † Closed Form Padé 
Approximations of exp and sign † Generalized Fresnel Integrals † 
Generalized Exponential Functions † Point Charge Outside a 
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Hypergeometric Functions † Solutions of the Hypergeometric 
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Inverse Harmonic Oscillator † Bivariate Hypergeometric Functions
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3.8  Elliptic Integrals 
Integrals Containing Square Roots of Cubics and Quartics † 
Definitions † Complete and Incomplete Elliptic Integrals † Graphs † 
Deriving Differential Equations for Incomplete Elliptic Integrals † 
Green’s Function of the Zeilon Operator † Finding Modular 
Equations for Ratios of Elliptic Integrals

3.9  Elliptic Functions 
Inverting Elliptic Integrals † Definitions † Jacobi’s Amplitude 
Function † Minimal Surface in a Cube Wireframe † Applications of 
Elliptic Functions † Pendulum Oscillations † Current Flow through a 
Rectangular Conducting Plate † Arithmetic–Geometric Mean
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Definition † Solving Transcendental Equations † Riemann Surface of 
the Product Log Function

3.11  Mathieu Functions 
Differential Equation with Periodic Coefficients † Definition † 
Characteristic Values † Resonance Tongues † Branch Cuts and 
Branch Points † Oscillation of an Ellipsoidal Drum † Degenerate 
Eigenfunctions † Wannier Functions

3.12  Additional Special Functions 
Expressing Other Special Functions through Built-in Special 
Functions † More Elliptic Functions † Zeta Functions and Lerch 
Transcendents

3.13  Solution of Quintic Polynomials 
Solving Polynomials in Radicals † Klein’s Solution of the Quintic † 
Tschirnhaus Transformation † Principal Quintic † Belyi Function and 
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Numerical Root Calculation Based on Klein’s Formula
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Asymptotic Expansions of Bessel Functions † Carlitz Expansion † 
Meissel’s Formula † Rayleigh Sums † Gumbel Distribution † 
Generalized Bell Numbers † Borel Summation † Bound State in 
Continuum † ODEs for Incomplete Elliptic Integrals † Addition 
Formulas for Elliptic Integrals † Magnetic Field of a Helmholtz Coil † 
Identities, Expansions, ODEs, and Visualizations of the Weierstrass 
ƒ Function † Sutherland–Calogero Model † Weierstrass Zeta and 
Sigma Functions † Lamé Equation † Vortex Lattices † ODEs, 
Addition Formulas, Series Expansions for the Twelve Jacobi Elliptic 
Functions † Schrödinger Equations with Potentials that are Rational 
Functions of the Wave Functions † Periodic Solutions of Nonlinear 
Evolution Equations † Complex Pendulum † Harmonic Oscillator 
Eigenvalues † Contour Integral Representation of Bessel Functions † 
Large Order and Argument Expansion for Bessel Functions † 
Aperture Diffraction † Circular Andreev Billiard † Contour Integral 
Representation for Beta Functions † Beta Distribution † Euler’s 
Constant Limit † Time-Evolution in a Triple-Well Oscillator † 
Eigenvalues of a Singular Potential † Dependencies in the Numerical 
Calculation of Special Functions † Hidden Derivative Definitions † 
Perturbation Theory for a Square Well in an Electric Field † 
Oscillations of a Pendulum with Finite Mass Cord † Approximation 
and Asymptotics of Fermi–Dirac Integrals † Sum of All 9-Free 
Reciprocal Numbers † Green’s Function for 1D Heat Equation † 
Green’s Function for the Laplace Equation in a Rectangle † Addition 
Theorems for Theta Functions † Series Expansion of Theta 
Functions † Bose Gas in a 3D Box † Scattering on a Conducting 
Cylinder † Poincaré Waves † Scattering on a Dielectric Cylinder † 
Coulomb Scattering † Spiral Waves † Scattering on a Corrugated 
Wall † Random Helmholtz Equation Solutions † Toroidal 
Coordinates † Riemann-Siegel Expansion † Zeros of the Hurwitz 
Zeta Function † Zeta Zeta Function † Harmonic Polylogarithms † 
Riemann Surface of Gauss Hypergeometric Functions † Riemann 
Surface of the Ratio of Complete Elliptic Integrals † Riemann 
Surface of the Inverse Error Function † Kummer’s 24 Solutions of 
Gauss Hypergeometric Equation † Differential Equation for Appell 
Function † Gauss–Lucas Theorem † Roots of Differentiated 
Polynomials † Coinciding Bessel Zeros † Ramanujan p Formulas † 
Force-Free Magnetic Fields † Bessel Beams † Gauge 
Transformation for a Square † Riemann Surface of the Bootstrap 
Equation † Differential Equations for Powers of Airy Functions † 
Asymptotic Expansions for the Zeros of Airy Functions † Map-Airy 
Distribution † Dedekind h ODE † Darboux–Halphen System † 
Ramanujan Identities for j and l Functions † Generating Identities in 
Gamma Functions † Modular Equations for Dedekind h Function

@ @ Solutions
Truncation of Asymptotic Series † Contour Plots of the Gamma 
Function † Series of a Gamma Function Ratio † Partial Sums of 
Taylor Series for sin † Area and Volume of a Hypersphere † All 
Integrals of Three Compositions of Elementary Functions † Binomial 
at Negative Integers † Contour Lines of  zz † Weierstrass ƒ Function 
over the Riemann Sphere † Using Gröbner Bases to Derive ODEs † 
Riemann Surface of Inverse Weierstrass ƒ Function † Rocket with 
Discrete Propulsion † Monitoring All Internal Calculations † Machine 
versus High-Precision Evaluations of Special Functions † Checking 
Numerical Function Evaluation † Zeta Regularized Divergent 
Products † Fractional Derivatives † Identifying Algebraic Numbers
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A  P  P  E  N  D  I  C  E  S

 APPENDIX A

General References to Computer 
Algebra and to Mathematica 

A.0  Remarks
A.1  References and Other Sources of Information

A.1.1   General References on Algorithms for Computer Algebra
General Computer Algebra Books, References, and Websites † 
Sources of Algorithms † Computer Algebra Journals and 
Conferences

A.1.2   Comparison of Various Systems
Benchmarks and Timing Comparisons

A.1.3   References on Mathematica 
Books † Journals and Websites † Conferences † Package Libraries † 
Dedicated Newsgroups † Timing Comparisions

A.1.4   Applications of Computer Algebra Systems
Article Samples † Further Information Sources
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APPENDIX B (from http://www.mathematicaguidebooks.org) 

The Front End, the Help Browser, 
Notebooks, Stylesheets, Cells, 
Typesetting, Buttons, Boxes, and All That

B.0  Remarks
B.1  Notebooks and Cells as Expressions

B.1.1   The Structure of Notebook
B.1.2   The Appearance of Cells
B.1.3   Stylesheets
B.1.4   Selected Cell Options 

B.2  Front End Functions and Operations
B.2.1   Navigating and Manipulating Notebook
B.2.2   Performing Menu and Keyboard Operations Programmatically

B.3  Typesetting and Boxes
B.3.1   Two-Dimensional Formatting
B.3.2   Tweaking Formula Appearances
B.3.3   Creating Typesetting Rules

B.4  Buttons, Hyperlinks, and Palettes
B.4.1   General Buttons
B.4.2   Hyperlinks
B.4.3   Palettes

B.5  Dynamic Boxes
B.5.1   Automatic Numbering
B.5.2   Displaying Values Automatically

B.6  Special Notebooks
B.6.1   Help Browser Notebooks
B.6.2   The Message Notebook

B.7  MathLink-Related Operations
B.8  Three Applications

B.8.0   Remarks
B.8.1   Analyzing the Notebook Version of The Mathematica Book
B.8.2   Incorporating the GuideBooks into the Help Browser
B.8.3   Evaluating a Complete GuideBooks Chapter Programmatically
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A  D  D  I  T  I  O  N  S

 ADDITIONS FROM THE WEBSITE http://www.mathematicaguidebooks.org

Additional Exercises and Solutions
W.0  Remarks
W.7  Additions to Chapter 1 of the Graphics Volume

Repeated Breaking of a Stick † Animation of Rotating Tiles of an 
Aperiodic Tiling † Animation of Circles on Lissajou Figures

W.8  Additions to Chapter 2 of the Graphics Volume
Animation of Rotating Textured Möbius Bands † Animation Of 
Rotating Interlocked Tori † Klein Bottle with Hexagonal Massive 
Wireframe † Many Random Walkers in 3D † Bivariate Minkowski 
Function † Farey and Bary Addition † Projections from 4D

W.9  Additions to Chapter 3 of the Graphics Volume
Animation of Equal-Eigenvalue Chladny Figures † Animation of 
Moving Charged Regular Polygons † Graphics of Charged Truchet 
Patterns

W.10  Additions to Chapter 1 of the Numerics Volume
Random Walks with Variable Stepsize † Chaotic Scattering on Three 
Disks † Vibrating 2D Hilbert Curve † Optimal Projections of 
Hypercubes † Currents Through a Penrose Tiling † Numerical 
Solutions of Various Partial Differential Equations † Brain Growth 
Modeling † Step Bunching Modeling † Swift–Hohenberg Equation † 
Meinhardt Equations † Complex Ginzburg–Landau Equation 
Hierarchy † Splitting Localized Structures † Wave Equation with 
Piecewise-Constant Phase Velocities † Local Induction 
Approximation † Born–Infeld Wave Equation † Peakon Trains † 
Vibrations of a Square Koch Drum † Weyl–Berry Law † Diverging 
Gradients at Inner Corners † Classical and Quantum Mechanical 
Treatment of a Duffing Oscillator † Calculating Wigner Functions 
Through Fractional Fourier Transforms † Sub-Ñ Structures in the 
Wigner Function † Circular Aperture Diffraction Integral † Checking 
the Cauchy–Born Hypothesis † Schwarz–Christoffel Map for Some 
Symmetric Polygons † Normalized Banzhaf Indices for the European 
Union Countries † Wave Propagation on a Torus Surface

W.11  Additions to Chapter 2 of the Numerics Volume
A Special Infinite Product of Cosines † A Special p-Related 
Continued Fraction † Plots of the Argument of Cyclotomic 
Polynomials
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W.12  Additions to Chapter 1 of the Symbolics Volume
Convergence Radius of the Virial Series for the Bose Gas † Midpoint 
Quadrature Formula † MacMahon Master Theorem † Adler–Moser 
Polynomials † Differential Equation for Yablonskii–Vorob’ev 
Polynomials † Implicit Polynomial Description of A Hypocycloidal 
Torus † Calculating the Second Feigenbaum Constant † Green’s 
Function for a Sequence of Delta Function Potentials † Implicit Form 
of Poynting Vector Equisurfaces † Symmetrically Arranged Points on 
Spheres † The Isospectral Polygons Bilby and Hawk † Probability 
Distribution of a Quotient † Vibrations of Springs on a Gosper 
Curve † Probability Distribution for the Distance Between Two Points 
from the Unit Square † Animation of the Nodal Lines of a Dirichlet–
Neumann Boundary Conditions Transition † Checking Higher Order 
Generalized WKB Approximation for the Harmonic Oscillator † 
Evaluating an Iterated Integral † The Kobussen–Leubner–Lopez 
Lagrangian for the Harmonic Oscillator

W.13  Additions to Chapter 2 of the Symbolics Volume
Eigenfunctions of the Hénon–Heiles Potential

W.14  Additions to Chapter 3 of the Symbolics Volume
Rational Values of the Gauss Hypergeometric Function † 
Eigenfunctions of the Discrete Harmonic Oscillator † Average Length 
of Smallest Component of Multidimensional Unit Vectors † 
Differential Equation of the Jacobi Elliptic Function sn with Respect 
to the Modul † A Certain Sum of Zeta Functions † High-Order Series 
Expansion of Harmonic Numbers of a Given Size † Movement of a 
Sliding Spinning Disk † Identities of Jacobi Theta Function for 
Special Argument Values
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INTRODUCTION AND ORIENTATION

to The Mathematica GuideBooks
Language Concepts—Programming Examples—
Visualization Demos—Scientific Applications

0.1 Overview

à 0.1.1 Content Summaries
The Mathematica GuideBooks are published as four independent books: The Mathematica GuideBook to Programming,
The  Mathematica  GuideBook  to  Graphics,  The  Mathematica  GuideBook  to  Numerics,  and  The  Mathematica  GuideÖ
Book to Symbolics.

† The Programming volume deals with the structure of Mathematica expressions and with Mathematica as a program-
ming language. This volume includes the discussion of the hierarchical construction of all  Mathematica  objects out of
symbolic  expressions  (all  of  the  form head[argument]),  the  ultimate  building  blocks  of  expressions  (numbers,  sym-
bols,  and  strings),  the  definition  of  functions,  the  application  of  rules,  the  recognition  of  patterns  and  their  efficient
application,  the  order  of  evaluation,  program  flows  and  program  structure,  the  manipulation  of  lists  (the  universal
container for Mathematica expressions of all kinds), as well as a number of topics specific to the Mathematica program-
ming  language.  Various  programming  styles,  especially  Mathematica’s  powerful  functional  programming  constructs,
are covered in detail.

†  The  Graphics  volume  deals  with  Mathematica’s  two-dimensional  (2D)  and  three-dimensional  (3D)  graphics.  The
chapters  of  this  volume  give  a  detailed  treatment  on  how  to  create  images  from  graphics  primitives,  such  as  points,
lines,  and  polygons.  This  volume  also  covers  graphically  displaying  functions  given  either  analytically  or  in  discrete
form. A number of images from the Mathematica Graphics Gallery are also reconstructed. Also discussed is the genera-
tion of pleasing scientific visualizations of functions, formulas, and algorithms. A variety of such examples are given.

†  The Numerics  volume deals with Mathematica’s  numerical mathematics capabilities—the indispensable sledgeham-
mer  tools  for  dealing  with  virtually  any  “real  life”  problem.  The  arithmetic  types  (fast  machine,  exact  integer  and
rational,  verified  high-precision,  and  interval  arithmetic)  are  carefully  analyzed.  Fundamental  numerical  operations,
such  as  compilation  of  programs,  numerical  Fourier  transforms,  minimization,  numerical  solution  of  equations,  and
ordinary/partial differential equations are analyzed in detail and are applied to a large number of examples in the main
text and in the solutions to the exercises. 

† The Symbolics volume deals with Mathematica’s symbolic mathematical capabilities—the real heart of Mathematica
and the ingredient of the Mathematica software system that makes it so unique and powerful. Structural and mathemati-
cal operations on systems of polynomials are fundamental to many symbolic calculations and are covered in detail. The
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solution of equations and differential equations, as well as the classical calculus operations, are exhaustively treated. In
addition, this volume discusses and employs the classical orthogonal polynomials and special functions of mathematical
physics.  To  demonstrate  the  symbolic  mathematics  power,  a  variety  of  problems  from  mathematics  and  physics  are
discussed. 

The  four  GuideBooks  contain  about  25,000  Mathematica  inputs,  representing  more  than  75,000  lines  of  commented
Mathematica  code.  (For  the  reader  already  familiar  with  Mathematica,  here  is  a  more  precise  measure:  The  Leaf
Count  of  all  inputs  would  be  about  900,000  when  collected  in  a  list.)  The  GuideBooks  also  have  more  than  4,000
graphics,  150  animations,  11,000  references,  and  1,000  exercises.  More  than  10,000  hyperlinked  index  entries  and
hundreds of hyperlinks from the overview sections connect all parts in a convenient way. The evaluated notebooks of
all four volumes have a cumulative file size of about 20 GB. Although these numbers may sound large, the Mathemat-
ica GuideBooks  actually cover only a portion of Mathematica’s functionality and features and give only a glimpse into
the possibilities Mathematica  offers to generate graphics, solve problems, model systems, and discover new identities,
relations,  and  algorithms.  The  Mathematica  code  is  explained  in  detail  throughout  all  chapters.  More  than  13,000
comments are scattered throughout all inputs and code fragments.

à 0.1.2 Relation of the Four Volumes
The  four  volumes  of  the  GuideBooks  are  basically  independent,  in  the  sense  that  readers  familiar  with  Mathematica
programming can read any of the other three volumes. But a solid working knowledge of the main topics discussed in
The Mathematica GuideBook to Programming—symbolic expressions, pure functions, rules and replacements, and list
manipulations—is required for the Graphics, Numerics, and Symbolics volumes. Compared to these three volumes, the
Programming volume might appear to be a bit “dry”. But similar to learning a foreign language, before being rewarded
with the beauty of novels or a poem, one has to sweat and study. The whole suite of graphical capabilities and all of the
mathematical knowledge in Mathematica are accessed and applied through lists, patterns, rules, and pure functions, the
material discussed in the Programming volume. 

Naturally, graphics are the center of attention of the The Mathematica  GuideBook to Graphics. While in the Program-
ming  volume  some  plotting  and  graphics  for  visualization  are  used,  graphics  are  not  crucial  for  the  Programming
volume.  The reader  can safely skip the  corresponding  inputs  to  follow the main programming threads.  The Numerics
and  Symbolics  volumes,  on  the  other  hand,  make  heavy  use  of  the  graphics  knowledge  acquired  in  the  Graphics
volume.  Hence,  the  prerequisites  for  the  Numerics  and  Symbolics  volumes  are  a  good  knowledge  of  Mathematica’s
programming language and of its graphics system. 

The Programming volume contains only a few percent of all graphics, the Graphics volume contains about two-thirds,
and  the  Numerics  and  Symbolics  volume,  about  one-third  of  the  overall  4,000+  graphics.  The  Programming  and
Graphics volumes use some mathematical commands, but they restrict the use to a relatively small number (especially
Expand,  Factor,  Integrate,  Solve).  And  the  use  of  the  function  N  for  numericalization  is  unavoidable  for
virtually  any  “real  life”  application  of  Mathematica.  The  last  functions  allow  us  to  treat  some  mathematically  not
uninteresting  examples  in  the  Programming and Graphics  volumes.  In  addition  to  putting  these  functions  to work  for
nontrivial  problems, a detailed discussion of  the mathematics functions of Mathematica  takes place exclusively in the
Numerics and Symbolics volumes.

The Programming and Graphics volumes contain a moderate amount of mathematics in the examples and exercises, and
focus on programming and graphics issues. The Numerics and Symbolics volumes contain a substantially larger amount
of mathematics.

Although printed as four books, the fourteen individual chapters (six in the Programming volume, three in the Graphics
volume, two in the  Numerics volume, and three in the  Symbolics volume) of the Mathematica  GuideBooks  form one
organic  whole,  and  the  author  recommends a  strictly sequential  reading,  starting  from Chapter  1  of  the  Programming
volume and ending with Chapter 3 of the Symbolics volume for gaining the maximum benefit. The electronic compo-
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nent  of  each  book  contains  the  text  and  inputs  from  all  the  four  GuideBooks,  together  with  a  comprehensive  hyper-
linked index. The four volumes refer frequently to one another.

à 0.1.3 Chapter Structure
A rough outline of the content of a chapter is the following: 

†  The  main  body  discusses  the  Mathematica  functions  belonging  to  the  chapter  subject,  as  well  their  options  and
attributes. Generically, the author has attempted to introduce the functions in a “natural order”. But surely, one cannot
be axiomatic with respect  to the order.  (Such an order  of the functions is not unique,  and the author intentionally has
“spread  out”  the  introduction  of  various  Mathematica  functions  across  the  four  volumes.)  With  the  introduction  of  a
function,  some  small  examples  of  how  to  use  the  functions  and  comparisons  of  this  function  with  related  ones  are
given.  These  examples  typically  (with  the  exception  of  some  visualizations  in  the  Programming volume)  incorporate
functions  already  discussed.  The  last  section  of  a  chapter  often  gives  a  larger  example  that  makes  heavy  use  of  the
functions discussed in the chapter. 

†  A programmatically constructed overview of each chapter functions follows.  The functions listed in this section are
hyperlinked to their attributes and options, as well as to the corresponding reference guide entries of The Mathematica
Book. 

†  A set of exercises and potential solutions follow. Because learning Mathematica  through examples is very efficient,
the proposed solutions are quite detailed and form up to 50% of the material of a chapter.

† References end the chapter.

Note  that  the  first  few  chapters  of  the  Programming  volume  deviate  slightly  from  this  structure.  Chapter  1  of  the
Programming volume gives a general overview of the kind of problems dealt with in the four GuideBooks. The second,
third,  and  fourth  chapters  of  the  Programming volume introduce  the basics  of  programming in  Mathematica.  Starting
with  Chapters  5  of  the  Programming  volume  and  throughout  the  Graphics,  Numerics,  and  Symbolics  volumes,  the
above-described structure applies.

In  the  14  chapters  of  the  GuideBooks  the  author  has  chosen  a  “we”  style  for  the  discussions  of  how  to  proceed  in
constructing programs and carrying out calculations to include the reader intimately.
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à 0.1.4 Code Presentation Style
The typical style of a unit of the main part of a chapter is: Define a new function, discuss its arguments, options,  and
attributes, and then give examples of its usage. The examples are virtually always Mathematica inputs and outputs. The
majority of inputs is in InputForm are the notebooks. On occasion StandardForm is also used. Although Stan
dardForm  mimics classical  mathematics  notation  and  makes  short  inputs  more  readable,  for  “program-like”  inputs,
InputForm is typically more readable and easier and more natural to align. For the outputs, StandardForm is used
by default and occasionally the author has resorted to InputForm or FullForm to expose digits of numbers and to
TraditionalForm for some formulas. Outputs are mostly not programs, but nearly always “results” (often mathemat-
ical  expressions,  formulas,  identities,  or  lists  of  numbers  rather  than  program constructs).  The  world  of  Mathematica
users is divided into three groups, and each of them has a nearly religious opinion on how to format Mathematica code
[1÷], [2÷]. The author follows the InputForm  cult(ure) and hopes that the Mathematica  users who do everything in
either StandardForm or TraditionalForm will bear with him. If the reader really wants to see all code in either
StandardForm  or  TraditionalForm,  this  can  easily  be  done  with  the  Convert  To  item  from  the  Cell  menu.
(Note  that  the  relation  between  InputForm  and  StandardForm  is  not  symmetric.  The  InputForm  cells  of  this
book have been line-broken  and aligned by hand. Transforming them into StandardForm  or TraditionalForm
cells  works  well  because  one  typically  does  not  line-break  manually and  align  Mathematica  code  in  these  cell  types.
But  converting  StandardForm  or  TraditionalForm  cells  into InputForm  cells  results  in  much less  pleasing
results.) 

In  the  inputs,  special  typeset  symbols  for  Mathematica  functions  are  typically  avoided  because  they  are  not  mono-
spaced. But the author does occasionally compromise and use Greek, script, Gothic, and doublestruck characters. 

In a book about a programming language, two other issues come always up: indentation and placement of the code.

†  The  code  of  the  GuideBooks  is  largely  consistently  formatted  and  indented.  There  are  no  strict  guidelines  or  even
rules on how to format and indent Mathematica code. The author hopes the reader will find the book’s formatting style
readable.  It  is  a  compromise  between  readability  (mental  parsabililty)  and  space  conservation,  so  that  the  printed
version of the Mathematica GuideBook matches closely the electronic version.

†  Because of the large number of examples, a rather imposing amount of Mathematica  code is presented. Should this
code be present  only  on the disk,  or  also in the printed book?  If  it  is  in the printed book,  should it  be at  the position
where the code is used or at the end of the book in an appendix? Many authors of Mathematica articles and books have
strong  opinions  on  this  subject.  Because  the  main  emphasis  of  the  Mathematica  GuideBooks  is  on  solving  problems
with Mathematica and not on the actual problems, the GuideBooks give all of the code at the point where it is needed in
the printed book, rather than “hiding” it in packages and appendices. In addition to being more straightforward to read
and conveniently allowing us to refer to elements of the code pieces, this placement makes the correspondence between
the  printed  book  and  the  notebooks  close  to  1:1,  and  so  working  back  and  forth  between  the  printed  book  and  the
notebooks is as straightforward as possible.
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0.2 Requirements

à 0.2.1 Hardware and Software
Throughout the GuideBooks, it is assumed that the reader has access to a computer running a current version of Mathe-
matica (version 5.0/5.1 or newer). For readers without access to a licensed copy of Mathematica, it is possible to view
all  of  the  material  on  the  disk  using  a  trial  version  of  Mathematica.  (A  trial  version  is  downloadable  from
http://www.wolfram.com/products/mathematica/trial.cgi.)

The files of the GuideBooks are relatively large, altogether more than 20 GB. This is also the amount of hard disk space
needed  to  store  uncompressed  versions  of  the  notebooks.  To  view the  notebooks  comfortably,  the  reader’s  computer
needs 128 MB RAM; to evaluate the evaluation units of the notebooks 1 GB RAM or more is recommended.

In the GuideBooks, a large number of animations are generated. Although they need more memory than single pictures,
they are easy to create, to animate, and to store on typical year-2005 hardware, and they provide a lot of joy.

à 0.2.2 Reader Prerequisites
Although  prior  Mathematica  knowledge  is  not  needed  to  read  The  Mathematica  GuideBook  to  Programming,  it  is
assumed that the reader is familiar with basic actions in the Mathematica front end, including entering Greek characters
using the keyboard, copying and pasting cells, and so on. Freely available tutorials on these (and other) subjects can be
found at http://library.wolfram.com.

For a complete understanding of most of the GuideBooks  examples, it is desirable to have a background in mathemat-
ics,  science, or  engineering at about  the bachelor’s  level or above.  Familiarity with mechanics and electrodynamics is
assumed.  Some  examples  and  exercises  are  more  specialized,  for  instance,  from  quantum  mechanics,  finite  element
analysis,  statistical  mechanics,  solid  state  physics,  number  theory,  and  other  areas.  But  the  GuideBooks  avoid  very
advanced  (but  tempting)  topics  such  as  renormalization  groups  [6÷],  parquet  approximations  [27÷],  and  modular
moonshines [14÷]. (Although Mathematica can deal with such topics, they do not fit the character of the  Mathematica
GuideBooks  but  rather  the  one  of  a  Mathematica  Topographical  Atlas  [a  monumental  work  to  be  carried  out  by  the
Mathematica–Bourbakians of the 21st century]). 

Each  scientific  application  discussed  has  a  set  of  references.  The  references  should  easily  give  the  reader  both  an
overview of the subject and pointers to further references.

0.3 What the GuideBooks Are and What They Are Not

à 0.3.1 Doing Computer Mathematics
As  discussed  in  the  Preface,  the  main  goal  of  the  GuideBooks  is  to  demonstrate,  showcase,  teach,  and  exemplify
scientific problem solving with Mathematica. An important step in achieving this goal is the discussion of Mathematica
functions that allow readers to become fluent in programming when creating complicated graphics or solving scientific
problems.  This  again  means  that  the  reader  must  become  familiar  with  the  most  important  programming,  graphics,
numerics, and symbolics functions, their arguments, options, attributes, and a few of their time and space complexities.
And the reader must know which functions to use in each situation.
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The GuideBooks  treat only aspects of Mathematica that are ultimately related to “doing mathematics”. This means that
the GuideBooks focus on the functionalities of the kernel rather than on those of the front end. The knowledge required
to  use  the  front  end  to  work  with  the  notebooks  can  easily  be  gained  by  reading  the  corresponding  chapters  of  the
online  documentation  of  Mathematica.  Some  of  the  subjects  that  are  treated  either  lightly  or  not  at  all  in  the  Guide-
Books include the basic use of Mathematica (starting the program, features, and special properties of the notebook front
end [16÷]), typesetting, the preparation of packages,  external file operations,  the communication of Mathematica  with
other  programs  via  MathLink,  special  formatting  and  string  manipulations,  computer-  and  operating  system-specific
operations, audio generation, and commands available in various packages. “Packages” includes both, those distributed
with  Mathematica  as  well  as  those  available  from  the  Mathematica  Information  Center
(http://library.wolfram.com/infocenter)  and  commercial  sources,  such  as  MathTensor  for  doing  general  relativity
calculations  (http://smc.vnet.net/MathTensor.html)  or  FeynCalc  for  doing  high-energy  physics  calculations
(http://www.feyncalc.org).  This means, in  particular,  that  probability and statistical calculations are barely touched on
because most of the relevant commands are contained in the packages. The GuideBooks make little or no mention of the
machine-dependent  possibilities  offered  by  the  various  Mathematica  implementations.  For  this  information,  see  the
Mathematica documentation.

Mathematical  and  physical  remarks  introduce  certain  subjects  and  formulas  to  make  the  associated  Mathematica
implementations easier to understand. These remarks are not meant to provide a deep understanding of the (sometimes
complicated) physical model or underlying mathematics; some of these remarks intentionally oversimplify matters. 

The reader  should examine all Mathematica  inputs  and outputs  carefully.  Sometimes, the inputs and outputs illustrate
little-known or  seldom-used aspects  of  Mathematica  commands. Moreover,  for  the efficient  use of  Mathematica,  it  is
very  important  to  understand  the  possibilities  and  limits  of  the  built-in  commands.  Many commands in  Mathematica
allow  different  numbers  of  arguments.  When  a  given  command  is  called  with  fewer  than  the  maximum  number of
arguments, an internal (or user-defined) default value is used for the missing arguments. For most of the commands, the
maximum number of arguments and default values are discussed.

When solving problems, the GuideBooks  generically use a “straightforward” approach.  This means they are not using
particularly  clever  tricks  to  solve  problems,  but  rather  direct,  possibly  computationally  more  expensive,  approaches.
(From time to time, the GuideBooks  even make use of a “brute force” approach.) The motivation is that when solving
new “real life” problems a reader encounters in daily work, the “right mathematical trick” is seldom at hand. Neverthe-
less, the reader can more often than not rely on Mathematica being powerful enough to often succeed in using a straight-
forward approach. But attention is paid to Mathematica-specific issues to find time- and memory-efficient implementa-
tions—something that should be taken into account for any larger program.

As already mentioned, all larger pieces of code in this book have comments explaining the individual steps carried out
in  the  calculations.  Many smaller  pieces  of  code  have  comments when  needed  to  expedite  the  understanding  of  how
they work.  This  enables  the  reader  to easily change and adapt the code pieces.  Sometimes, when the translation from
traditional mathematics into Mathematica is trivial, or when the author wants to emphasize certain aspects of the code,
we let the code “speak for  itself”.  While  paying attention to efficiency, the GuideBooks  only occasionally go into the
computational  complexity  ([8÷],  [40÷],  and  [7÷])  of  the  given  implementations.  The  implementation  of  very  large,
complicated  suites  of  algorithms  is  not  the  purpose  of  the  GuideBooks.  The  Mathematica  packages  included  with
Mathematica and the ones at MathSource (http://library.wolfram.com/database/MathSource) offer a rich variety of self-
study  material  on  building  large  programs.  Most  general  guidelines  for  writing  code  for  scientific  calculations  (like
descriptive variable names and modularity of code; see, e.g., [19÷] for a review) apply also to Mathematica programs.

The  programs  given  in  a  chapter  typically  make  use  of  Mathematica  functions  discussed  in  earlier  chapters.  Using
commands from later chapters  would sometimes allow for  more efficient  techniques.  Also,  these programs emphasize
the use  of  commands from the  current  chapter.  So,  for  example,  instead of  list  operation,  from a complexity point of
view,  hashing  techniques  or  tailored  data  structures  might  be  preferable.  All  subsections  and  sections  are  “self-con-
tained”  (meaning  that  no  other  code  than  the  one  presented  is  needed  to  evaluate  the  subsections  and  sections).  The
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price for this “self-containedness” is that from time to time some code has to be repeated (such as manipulating poly-
gons  or  forming  random  permutations  of  lists)  instead  of  delegating  such  programming  constructs  to  a  package.
Because  this  repetition  could  be  construed  as  boring,  the  author  typically  uses  a  slightly  different  implementation to
achieve the same goal. 

à 0.3.2 Programming Paradigms
In the GuideBooks, the author wants to show the reader that Mathematica supports various programming paradigms and
also  show  that,  depending  on  the  problem  under  consideration  and  the  goal  (e.g.,  solution  of  a  problem,  test  of  an
algorithm,  development  of  a  program),  each  style  has  its  advantages  and  disadvantages.  (For  a  general  discussion
concerning  programming  styles,  see  [3÷],  [41÷],  [23÷],  [32÷],  [15÷],  and  [9÷].)  Mathematica  supports  a  functional
programming style. Thus, in addition to classical procedural programs (which are often less efficient and less elegant),
programs using the functional style are also presented. In the first volume of the Mathematica GuideBooks, the program-
ming style is usually dictated by the types of commands that have been discussed up to that point. A certain portion of
the  programs  involve  recursive,  rule-based  programming.  The  choice  of  programming  style  is,  of  course,  partially
(ultimately) a matter of personal preference. The GuideBooks’ main aim is to explain the operation, limits, and efficient
application of the various Mathematica commands. For certain commands, this dictates a certain style of programming.
However,  the  various  programming  styles,  with  their  advantages  and  disadvantages,  are  not  the  main  concern  of  the
GuideBooks.  In  working with  Mathematica,  the  reader  is likely to use  different  programming styles depending  if  one
wants  a  quick  one-time calculation or  a routine  that will be used repeatedly. So,  for  a given implementation, the pro-
gram structure may not always be the most elegant, fastest, or “prettiest”.

The  GuideBooks  are  not  a  substitute  for  the  study  of  The  Mathematica  Book  [45÷]
http://documents.wolfram.com/mathematica).  It  is  impossible to  acquire  a  deeper  (full)  understanding  of  Mathematica
without a thorough study of this book (reading it twice from the first to the last page is highly recommended). It defines
the  language  and  the  spirit  of  Mathematica.  The  reader  will  probably  from  time  to  time  need  to  refer  to  parts  of  it,
because not all commands are discussed in the GuideBooks. However, the story of what can be done with Mathematica
does  not  end  with  the  examples  shown  in  The  Mathematica  Book.  The  Mathematica  GuideBooks  go  beyond  The
Mathematica Book.  They present  larger  programs for  solving various  problems and creating complicated graphics.  In
addition,  the  GuideBooks  discuss  a  number of  commands that  are  not  or  are  only  fleetingly mentioned in the  manual
(e.g.,  some specialized  methods  of  mathematical functions  and  functions  from the  Developer`  and  Experimen
tal` contexts), but which the author deems important. In the notebooks, the author gives special emphasis to discus-
sions,  remarks, and applications relating to several commands that are typical for Mathematica  but not for most other
programming  languages,  e.g.,  Map,  MapAt,  MapIndexed,  Distribute,  Apply,  Replace,  ReplaceAll,
Inner,  Outer,  Fold,  Nest,  NestList,  FixedPoint,  FixedPointList,  and Function.  These  commands
allow to write exceptionally elegant, fast, and powerful programs. All of these commands are discussed in The Mathe-
matica  Book  and  others  that  deal  with  programming  in  Mathematica  (e.g.,  [33÷],  [34÷],  and  [42÷]).  However,  the
author’s experience suggests that a deeper understanding of these commands and their optimal applications comes only
after working with Mathematica in the solution of more complicated problems.

Both the printed book and the electronic component contain material that is meant to teach in detail how to use Mathe-
matica  to solve problems, rather than to present the underlying details of the various scientific examples. It cannot be
overemphasized that to master the use of Mathematica, its programming paradigms and individual functions, the reader
must experiment;  this is  especially important,  insightful,  easily verifiable,  and satisfying with graphics,  which involve
manipulating  expressions,  making  small  changes,  and  finding  different  approaches.  Because  the  results  can  easily  be
visually checked, generating and modifying graphics is an ideal method to learn programming in Mathematica.
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0.4 Exercises and Solutions

à 0.4.1 Exercises
Each chapter  includes  a  set  of  exercises  and  a  detailed  solution  proposal  for  each  exercise.  When  possible,  all  of  the
purely  Mathematica-programming  related  exercises  (these  are  most  of  the  exercises  of  the  Programming  volume)
should be solved by every reader. The exercises coming from mathematics, physics, and engineering should be solved
according  to  the  reader’s  interest.  The  most  important  Mathematica  functions  needed  to  solve  a  given  problem  are
generally those of the associated chapter. 

For  a  rough  orientation  about  the  content  of  an  exercise,  the  subject  is  included  in  its  title.  The  relative  degree of
difficulty  is  indicated  by  level  superscript  of  the  exercise  number  (L1  indicates  easy,  L2  indicates  medium,  and  L3

indicates difficult). The author’s aim was to present understandable interesting examples that illustrate the Mathematica
material discussed in the corresponding chapter.  Some exercises were inspired by recent research problems; the refer-
ences given allow the interested reader to dig deeper into the subject. 

The exercises are intentionally not hyperlinked to the corresponding solution. The independent solving of the exercises
is an important part of learning Mathematica.
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à 0.4.2 Solutions
The GuideBooks  contain solutions to each of the more than 1,000 exercises. Many of the techniques used in the solu-
tions are not just one-line calls to built-in functions. It might well be that with further enhancements, a future version of
Mathematica might be able to solve the problem more directly. (But due to different forms of some results returned by
Mathematica,  some  problems  might  also  become  more  challenging.)  The  author  encourages  the  reader  to  try  to  find
shorter, more clever, faster (in terms of runtime as well complexity), more general, and more elegant solutions. Doing
various  calculations  is  the  most  effective  way  to  learn  Mathematica.  A  proper  Mathematica  implementation  of  a
function  that  solves  a  given  problem  often  contains  many  different  elements.  The  function(s)  should  have  sensibly
named and sensibly behaving options; for various (machine numeric, high-precision numeric, symbolic) inputs different
steps might be required; shielding against inappropriate input might be needed; different parameter values might require
different solution strategies and algorithms, helpful error and warning messages should be available. The returned data
structure should be intuitive and easy to reuse;  to achieve a good computational complexity, nontrivial data structures
might be needed, etc. Most of the solutions do not deal with all of these issues, but only with selected ones and thereby
leave plenty of room for more detailed treatments; as far as limit, boundary, and degenerate cases are concerned,  they
represent  an  outline  of  how  to  tackle  the  problem.  Although  the  solutions  do  their  job  in  general,  they  often  allow
considerable refinement and extension by the reader. 

The  reader  should  consider  the  given  solution  to  a  given  exercise  as  a  proposal;  quite  different  approaches  are  often
possible and sometimes even more efficient. The routines presented in the solutions are not the most general possible,
because to make them foolproof for every possible input (sensible and nonsensical, evaluated and unevaluated, numeri-
cal and symbolical), the books would have had to go considerably beyond the mathematical and physical framework of
the GuideBooks. In addition, few warnings are implemented for improper or improperly used arguments. The graphics
provided in the solutions are mostly subject to a long list of refinements. Although the solutions do work, they are often
sketchy and can be considerably refined and extended by the reader. This also means that the provided solutions to the
exercises programs are not  always very suitable for  solving larger classes of  problems. To increase their  applicability
would  require  considerably  more  code.  Thus,  it  is  not  guaranteed  that  given  routines  will  work  correctly  on  related
problems.  To  guarantee  this  generality  and  scalability,  one  would  have  to  protect  the  variables  better,  implement
formulas  for  more  general  or  specialized  cases,  write  functions  to  accept  different  numbers  of  variables,  add  type-
checking and error-checking functions, and include corresponding error messages and warnings.

To simplify working through the solutions, the various steps of the solution are commented and are not always packed
in a Module or Block. In general, only functions that are used later are packed. For longer calculations, such as those
in some of the exercises, this was not feasible and intended. The arguments of the functions are not always checked for
their appropriateness as is desirable for robust code. But, this makes it easier for the user to test and modify the code.
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0.5 The Books Versus the Electronic Components

à 0.5.1 Working with the Notebooks
Each  volume  of  the  GuideBooks  comes  with  a  multiplatform DVD,  containing  fourteen  main  notebooks  tailored  for
Mathematica  4 and compatible with Mathematica  5.  Each notebook corresponds  to a chapter  from the printed books.
(To avoid large file sizes of the notebooks, all animations are located in the Animations directory and not directly in the
chapter notebooks.)  The chapters (and so the corresponding notebooks)  contain a detailed description and explanation
of the Mathematica commands needed and used in applications of Mathematica to the sciences. Discussions on Mathe-
matica  functions  are  supplemented by  a  variety  of  mathematics, physics,  and  graphics  examples.  The  notebooks  also
contain complete solutions to all exercises. Forming an electronic book, the notebooks also contain all text, as well as
fully typeset formulas, and reader-editable and reader-changeable input. (Readers can copy, paste, and use the inputs in
their notebooks.) In addition to the chapter notebooks, the DVD also includes a navigation palette and fully hyperlinked
table of contents and index notebooks. The Mathematica  notebooks corresponding to the printed book are fully evalu-
ated.  The  evaluated  chapter  notebooks  also  come with  hyperlinked  overviews;  these  overviews  are  not  in  the  printed
book.

When reading the printed books, it might seem that some parts are longer than needed. The reader should keep in mind
that  the  primary  tool  for  working  with  the  Mathematica  kernel  are  Mathematica  notebooks  and  that  on  a  computer
screen  and  there  “length  does  not  matter  much”.  The  GuideBooks  are  basically  a  printout  of  the  notebooks,  which
makes  going  back  and  forth  between  the  printed  books  and  the  notebooks  very  easy.  The  GuideBooks  give  large
examples to encourage the reader to investigate various Mathematica functions and to become familiar with Mathemat-
ica as a system for doing mathematics, as well as a programming language. Investigating Mathematica in the accompa-
nying notebooks is the best way to learn its details.

To start viewing the notebooks,  open the table of contents notebook TableOfContents.nb. Mathematica  notebooks can
contain  hyperlinks,  and  all  entries  of  the  table  of  contents  are  hyperlinked.  Navigating through  one of  the chapters  is
convenient when done using the navigator palette GuideBooksNavigator.nb. 

When opening a notebook, the front end minimizes the amount of memory needed to display the notebook by loading it
incrementally.  Depending  on  the  reader’s  hardware,  this  might  result  in  a  slow  scrolling  speed.  Clicking  the  “Load
notebook cache” button of the GuideBooksNavigator palette speeds this up by loading the complete notebook into the
front end.

For the vast majority of sections, subsections, and solutions of the exercises, the reader can just select such a structural
unit and evaluate it (at once) on a year-2005 computer (¥512 MB RAM) typically in a matter of minutes. Some sections
and solutions  containing  many graphics  may need hours  of  computation time. Also,  more than 50 pieces of  code run
hours, even days. The inputs that are very memory intensive or produce large outputs and graphics are in inactive cells
which  can  be  activated  by  clicking  the  adjacent  button.  Because  of  potentially  overlapping  variable  names  between
various sections and subsections, the author advises the reader not to evaluate an entire chapter at once.

Each  smallest  self-contained  structural  unit  (a  subsection,  a  section  without  subsections,  or  an  exercise)  should  be
evaluated within one Mathematica session starting with a freshly started kernel. At the end of each unit is an input cell.
After evaluating all input cells of a unit in consecutive order, the input of this cell generates a short summary about the
entire Mathematica  session. It  lists the number of evaluated inputs,  the kernel CPU time, the wall clock time, and the
maximal memory used  to evaluate  the inputs  (excluding the resources  needed to evaluate the Program  cells).  These
numbers serve as a guide for the reader about the to-be-expected running times and memory needs. These numbers can
deviate  from  run  to  run.  The  wall  clock  time  can  be  substantially  larger  than  the  CPU  time  due  to  other  processes
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running on the same computer and due to time needed to render graphics. The data shown in the evaluated notebooks
came from a 2.5  GHz Linux computer.  The CPU times are  generically proportional  to  the computer  clock speed,  but
can deviate within a small factor from operating system to operating system. In rare, randomly occurring cases slower
computers  can  achieve  smaller  CPU  and  wall  clock  times  than  faster  computers,  due  to  internal  time-constrained
simplification processes in various symbolic mathematics functions (such as Integrate, Sum, DSolve, …).

The Overview Section of  the  chapters  is  set  up for  a  front  end  and kernel  running  on the  same computer and having
access to the same file system. When using a remote kernel, the directory specification for the package Overview.m
must be changed accordingly.

References can be conveniently extracted from the main text by selecting the cell(s) that refer to them (or parts of a cell)
and then clicking the “Extract References” button. A new notebook with the extracted references will then appear.

The notebooks  contain  color  graphics.  (To rerender  the  pictures  with  a  greater  color  depth  or  at  a  larger  size,  choose
Rerender Graphics  from the Cell  menu.) With some of the colors used,  black-and-white printouts occasionally give
low-contrast results. For better black-and-white printouts of these graphics, the author recommends setting the Color
Output option of the relevant graphics function to GrayLevel. The notebooks with animations (in the printed book,
animations are typically printed as an array of about 10 to 20 individual graphics) typically contain between 60 and 120
frames.  Rerunning  the  corresponding  code  with  a  large  number  of  frames will  allow the  reader  to  generate  smoother
and longer-running animations.

Because many cell styles used in the notebooks are unique to the GuideBooks, when copying expressions and cells from
the  GuideBooks  notebooks  to  other  notebooks,  one  should  first  attach  the  style  sheet  notebook  GuideBooks-
Stylesheet.nb to the destination notebook, or define the needed styles in the style sheet of the destination notebook.

à 0.5.2 Reproducibility of the Results
The 14 chapter notebooks contained in the electronic version of the GuideBooks were run mostly with Mathematica 5.1
on a 2 GHz Intel Linux computer with 2 GB RAM. They need more than 100 hours of evaluation time. (This does not
include the evaluation of the currently unevaluatable parts of code after the Make Input buttons.) For most subsections
and  sections,  512  MB  RAM  are  recommended  for  a  fast  and  smooth  evaluation  “at  once”  (meaning  the  reader  can
select the section or  subsection,  and evaluate all  inputs  without running  out of  memory or  clearing variables)  and the
rendering  of  the  generated graphic  in  the front  end.  Some subsections  and sections need more memory when run.  To
reduce these memory requirements, the author recommends restarting the Mathematica  kernel inside these subsections
and sections, evaluating the necessary definitions, and then continuing. This will allow the reader to evaluate all inputs.

In general, regardless of the computer, with the same version of Mathematica, the reader should get the same results as
shown  in  the  notebooks.  (The  author  has  tested  the  code  on  Sun  and  Intel-based  Linux  computers,  but  this  does  not
mean that  some code might not  run  as displayed (because of  different  configurations,  stack size settings,  etc.,  but  the
disclaimer from the Preface applies everywhere). If an input does not work on a particular machine, please inform the
author. Some deviations from the results given may appear because of the following:
† Inputs involving the function Random[…] in some form. (Often SeedRandom to allow for some kind of reproduc-
ibility and randomness at the same time is employed.)
†  Mathematica  commands  operating  on  the  file  system of  the  computer,  or  make  use  of  the  type  of  computer  (such
inputs need to be edited using the appropriate directory specifications).
† Calculations showing some of the differences of floating-point numbers and the machine-dependent representation of
these on various computers.
† Pictures using various fonts and sizes because of their availability (or lack thereof) and shape on different computers.
† Calculations involving Timing because of different clock speeds, architectures, operating systems, and libraries.
† Formats of results depending on the actual window width and default font size. (Often, the corresponding inputs will
contain Short.) 
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Using  anything  other  than  Mathematica  Version  5.1  might  also  result  in  different  outputs.  Examples  of  results  that
change  form,  but  are  all  mathematically correct  and  equivalent,  are  the  parameter  variables  used  in  underdetermined
systems of linear equations, the form of the results of an integral, and the internal form of functions like Interpolat
ingFunction  and  CompiledFunction.  Some inputs  might  no  longer  evaluate  the  same way  because  functions
from a package were used and these functions are potentially built-in functions in a later Mathematica version. Mathe-
matica is a very large and complicated program that is constantly updated and improved. Some of these changes might
be  design  changes,  superseded  functionality,  or  potentially  regressions,  and  as  a  result,  some of  the  inputs  might  not
work at all or give unexpected results in future versions of Mathematica.

à 0.5.3 Earlier Versions of the Notebooks
The  first  printing  of  the  Programming volume and  the  Graphics  volumes of  the  Mathematica  GuideBooks  were  pub-
lished in October 2004. The electronic components of these two books contained the corresponding evaluated chapter
notebooks  as  well  as unevaluated versions of  preversions  of  the notebooks  belonging to the Numerics and Symbolics
volumes.  Similarly,  the  electronic  components  of  the  Numerics  and  Symbolics  volume  contain  the  corresponding
evaluated chapter notebooks and unevaluated copies of the notebooks of the Programming and Graphics volumes. This
allows the reader to follow cross-references and look up relevant concepts discussed in the other volumes. The author
has tried to keep the notebooks of the GuideBooks as up-to-date as possible. (Meaning with respect to the efficient and
appropriate use of the latest version of Mathematica, with respect to maintaining a list of references that contains new
publications, and examples, and with respect to incorporating corrections to known problems, errors, and mistakes). As
a result, the notebooks of all four volumes that come with later printings of the Programming and Graphics volumes, as
well with the Numerics and Symbolics volumes will be different and supersede the earlier notebooks originally distrib-
uted  with  the  Programming  and  Graphics  volumes.  The  notebooks  that  come with  the  Numerics  and  Symbolics  vol-
umes  are  genuine  Mathematica  Version  5.1  notebooks.  Because  most  advances  in  Mathematica  Version  5  and  5.1
compared with  Mathematica  Version  4  occurred  in  functions  carrying  out  numerical  and  symbolical calculations,  the
notebooks  associated  with  Numerics  and  Symbolics  volumes  contain  a  substantial  amount  of  changes  and  additions
compared with their originally distributed version.

0.6 Style and Design Elements

à 0.6.1 Text and Code Formatting
The  GuideBooks  are  divided  into  chapters.  Each  chapter  consists  of  several  sections,  which  frequently  are  further
subdivided into subsections. General remarks about a chapter or a section are presented in the sections and subsections
numbered 0. (These remarks usually discuss the structure of the following section and give teasers about the usefulness
of  the  functions  to  be  discussed.)  Also,  sometimes  these  sections  serve  to  refresh  the  discussion  of  some  functions
already introduced earlier.

Following the style of The Mathematica Book [45÷], the GuideBooks use the following fonts: For the main text, Times;
for  Mathematica  inputs  and  built-in  Mathematica  commands,  Courier  plain  (like  Plot);  and  for  user-supplied  argu-
ments, Times italic (like userArgument1). Built-in Mathematica functions are introduced in the following style:
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MathematicaFunctionToBeIntroduced[typeIndicatingUserSuppliedArgument(s)]

is a description of the built-in command MathematicaFunctionToBeIntroduced 
upon its first appearance. A definition of the command, along with its parameters is given. 
Here, typeIndicatingUserSuppliedArgument(s) is one (or more) user-supplied expression(s) 
and may be written in an abbreviated form or in a different way for emphasis.

The actual Mathematica inputs and outputs appear in the following manner (as mentioned above, virtually all inputs are
given in InputForm).

In[5]:= (* A comment. It will be/is ignored as Mathematica input:
   Return only one of the solutions *)  
Last[Solve[{x^2 - y == 1, x - y^2 == 1}, {x, y}]]

Out[6]= :x → −
1

3
+ 4

2
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2ê3

+
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2ê3

3 22ê3 31ê3
,

y → −2
2
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+
J 1
2
J9 + 177 NN

1ê3

32ê3
>

When referring in text to variables of Mathematica inputs and outputs, the following convention is used: Fixed, nonpat-
tern  variables  (including  local  variables)  are  printed  in  Courier  plain  (the  equations  solved  above  contained  the  vari-
ables  x  and  y).  User  supplied  arguments  to  built-in  or  defined  functions  with  pattern  variables  are  printed  in  Times
italic. The next input defines a function generating a pair of polynomial equations in x and y.

In[7]:= equationPair[x_, y_] := {x^2 - y == 1, x - y^2 == 1}

x and y  are pattern variables (usimng the same letters, but a different font from the actual code fragments x_ and y_)
that can stand for any argument. Here we call the function equationPair with the two arguments u + v and w -
z.

In[8]:= equationPair[u + v, w - z]

Out[8]= 9Hu + vL2 − w + z 1, u + v − Hw − zL2 1=

Occasionally, explanation about a mathematics or physics topic is given before the corresponding Mathematica imple-
mentation is discussed. These sections are marked as follows:

Mathematical Remark: Special Topic in Mathematics or Physics

A short summary or review of mathematical or physical ideas necessary for the following example(s).
1

From time to time, Mathematica  is used to analyze expressions,  algorithms, etc.  In some cases,  results  in the form of
English  sentences  are  produced  programmatically.  To  differentiate  such  automatically  generated  text  from  the  main
text,  in  most  instances  such  text  is  prefaced  by  “ë”  (structurally  the  corresponding  cells  are  of  type  "PrintText"
versus "Text" for author-written cells).

Code pieces that either run for quite long, or need a lot of memory, or are tangent to the current discussion are displayed
in the following manner.
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Make Input

mathematicaCodeWhichEitherRunsVeryLongOrThatIsVeryMemoryIntensive
OrThatProducesAVeryLargeGraphicOrThatIsASideTrackToTheSubjectUnder
Discussion
(* with some comments on how the code works *)

To run a code piece like this, click the Make Input button above it. This will generate the corresponding input cell that
can be evaluated if the reader’s computer has the necessary resources. 

The reader is encouraged to add new inputs and annotations to the electronic notebooks. There are two styles for reader-
added material: "ReaderInput" (a Mathematica  input style and simultaneously the default style for a new cell) and
"ReaderAnnotation"  (a  text-style  cell  type).  They  are  primarily  intended  to  be  used  in  the  Reading  environ-
ment. These two styles are indented more than the default input and text cells, have a green left bar and a dingbat. To
access the "ReaderInput" and "ReaderAnnotation" styles, press the system-dependent modifier key (such as
Control or Command) and 9 and 7, respectively.

à 0.6.2 References
Because  the  GuideBooks  are  concerned  with  the  solution  of  mathematical and  physical  problems  using  Mathematica
and are not mathematics or physics monographs, the author did not attempt to give complete references for each of the
applications discussed [38÷], [20÷]. The references cited in the text pertain mainly to the applications under discussion.
Most of the citations are from the more recent literature; references to older publications can be found in the cited ones.
Frequently  URLs  for  downloading  relevant  or  interesting  information  are  given.  (The  URL  addresses  worked  at  the
time of printing and, hopefully, will be still active when the reader tries them.) References for Mathematica,  for algo-
rithms used in computer algebra, and for applications of computer algebra are collected in the Appendix A. 

The references  are  listed at  the  end  of  each chapter  in  alphabetical  order.  In  the  notebooks,  the  references are  hyper-
linked to  all  their  occurrences  in the main text.  Multiple references for  a subject  are not  cited in numerical order,  but
rather in the order of their importance, relevance, and suggested reading order for the implementation given. 

In a few cases (e.g., pure functions in Chapter 3, some matrix operations in Chapter 6), references to the mathematical
background for some built-in commands are given—mainly for commands in which the mathematics required extends
beyond  the  familiarity  commonly  exhibited  by  non-mathematicians.  The  GuideBooks  do  not  discuss  the  algorithms
underlying such complicated functions, but sometimes use Mathematica to “monitor” the algorithms.

References of the form abbreviationOfAScientificField/yearMonthPreprintNumber  (such as quant-ph/0012147) refer to
the arXiv preprint  server [43÷],  [22÷],  [30÷] at http://arXiv.org.  When a paper  appeared as a preprint  and (later) in a
journal, typically only the more accessible preprint reference is given. For the convenience of the reader, at the end of
these references,  there is a Get Preprint  button.  Click the button to display a palette notebook with hyperlinks to the
corresponding preprint at the main preprint server and its mirror sites. (Some of the older journal articles can be down-
loaded  free  of  charge  from  some  of  the  digital  mathematics  library  servers,  such  as  http://gdz.sub.uni-goettingen.de,
http://www.emis.de, http://www.numdam.org, and http://dieper.aib.uni-linz.ac.at.)

As much as available, recent journal articles are hyperlinked through their digital object identifiers (http://www.doi.org).
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à 0.6.3 Variable Scoping, Input Numbering, and Warning Messages
Some of the Mathematica inputs intentionally cause error messages, infinite loops, and so on, to illustrate the operation
of  a  Mathematica  command.  These  messages  also  arise  in  the  user’s  practical  use  of  Mathematica.  So,  instead of
presenting polished and perfected code, the author prefers to illustrate the potential problems and limitations associated
with  the  use  of  Mathematica  applied  to  “real  life”  problems.  The  one  exception  are  the  spelling  warning  messages
General::spell  and  General::spell1  that  would  appear  relatively  frequently  because  “similar”  names  are
used eventually. For easier and less defocused reading, these messages are turned off in the initialization cells. (When
working with the notebooks, this means that the pop-up window asking the user “Do you want to automatically evalu-
ate all the initialization cells in the notebook?”  should be evaluated should always be answered with a “yes”.) For the
vast majority of graphics presented, the picture is the focus, not the returned Mathematica  expression representing the
picture. That is why the Graphics and Graphics3D output is suppressed in most situations. 

To improve the code’s readability, no attempt has been made to protect all variables that are used in the various exam-
ples.  This  protection  could  be  done  with  Clear,  Remove,  Block,  Module,  With,  and  others.  Not  protecting  the
variables allows the reader to modify, in a somewhat easier manner, the values and definitions of variables, and to see
the  effects  of  these  changes.  On  the  other  hand,  there  may be  some interference  between  variable  names  and  values
used  in  the  notebooks  and those  that  might be introduced  when experimenting with  the  code.  When  readers  examine
some of  the  code on a computer,  reevaluate sections,  and sometimes perform subsidiary calculations,  they may intro-
duce variables that might interfere with ones from the GuideBooks. To partially avoid this problem, and for the reader’s
convenience,  sometimes Clear[sequenceOfVariables]and Remove[sequenceOfVariables]  are sprinkled throughout
the notebooks. This makes experimenting with these functions easier.

The numbering of the Mathematica inputs and outputs typically does not contain all consecutive integers. Some pieces
of Mathematica  code consist of multiple inputs per cell; so, therefore, the line numbering is incremented by more than
just  1.  As  mentioned,  Mathematica  should  be  restarted  at  every  section,  or  subsection  or  solution  of  an  exercise,  to
make sure that no variables with values get reused. The author also explicitly asks the reader to restart Mathematica at
some special  positions  inside  sections.  This  removes  previously  introduced  variables,  eliminates all  existing contexts,
and returns Mathematica to the typical initial configuration to ensure reproduction of the results and to avoid using too
much memory inside one session. 

à 0.6.4 Graphics
In Mathematica 5.1, displayed graphics are side effects, not outputs. The actual output of an input producing a graphic
is  a  single  cell  with  the  text  Graphics  or  Graphics3D  or  GraphicsArray  and  so  on.  To  save  paper,
these output cells have been deleted in the printed version of the GuideBooks.

Most graphics use an appropriate number of plot points and polygons to show the relevant features and details. Chang-
ing  the  number  of  plot  points  and  polygons  to  a  higher  value  to  obtain  higher  resolution  graphics  can  be  done  by
changing the corresponding inputs.

The graphics  of  the printed book and the graphics in  the notebooks  are largely identical. Some printed book graphics
use a different color scheme and different point sizes and line and edge thicknesses to enhance contrast and visibility. In
addition, the font size has been reduced for the printed book in tick and axes labels.

The graphics shown in the notebooks are PostScript graphics.  This means they can be resized and rerendered without
loss  of  quality.  To reduce  file  sizes,  the  reader  can convert  them to  bitmap graphics  using  the  CellöConvert  Toö

Bitmap menu. The resulting bitmap graphics can no longer be resized or rerendered in the original resolution.

To reduce file sizes of the main content notebooks, the animations of the GuideBooks  are not part of the chapter note-
books. They are contained in a separate directory. 
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0.6.5 Notations and Symbols
The symbols  used  in  typeset  mathematical formulas  are  not  uniform and unique  throughout  the GuideBooks.  Various
mathematical and physical quantities (such as normals, rotation matrices, and field strengths) are used repeatedly in this
book.  Frequently  the  same notation  is  used  for  them, but  depending  on  the  context,  also  different  ones  are  used,  e.g.
sometimes  bold  is  used  for  a  vector  (such  as  r)  and  sometimes  an  arrow  (such  as  r”).  Matrices  appear  in  bold  or  as
doublestruck  letters.  Depending  on the  context  and emphasis placed,  different  notations are  used  in display equations
and in the Mathematica input form. For instance, for a time-dependent scalar quantity of one variable yHt; xL, we might
use one of many patterns, such as ψ[t][x] (for emphasizing a parametric t-dependence) or ψ[t, x] (to treat t and x
on an equal footing) or ψ[t, {x}] (to emphasize the one-dimensionality of the space variable x).

Mathematical  formulas  use  standard  notation.  To  avoid  confusion  with  Mathematica  notations,  the  use  of  square
brackets  is  minimized  throughout.  Following  the  conventions  of  mathematics  notation,  square  brackets  are  used  for
three  cases:  a)  Functionals,  such  as  t@ f HtLD HwL  for  the  Fourier  transform  of  a  function  f HtL.  b)  Power  series  coeffi-
cients, AxkE H f HxLL denotes the coefficient of xk  of the power series expansion of f HxL around x = 0. c) Closed intervals,

like @a, bD  (open intervals are denoted by Ha, bL).  Grouping is exclusively done using parentheses. Upper-case double-
struck  letters  denote  domains  of  numbers,    for  integers,    for  nonnegative  integers,    for  rational  numbers,    for
reals,  and    for  complex  numbers.  Points  in  n  (or  n)  with  explicitly  given  coordinates  are  indicated  using  curly
braces 8c1, …, cn<. The symbols fl and fi for And and Or are used in logical formulas.

For variable names in formula- and identity-like Mathematica  code, the symbol (or small variations of it) traditionally
used in mathematics or physics is used. In program-like Mathematica code, the author uses very descriptive, sometimes
abbreviated, but sometimes also slightly longish, variable names, such as buildBrillouinZone and Fibonacci
ChainMap.

à 0.6.6 Units
In  the  examples  involving  concepts  drawn  from physics,  the  author  tried  to  enhance  the  readability  of  the  code  (and
execution speed) by not choosing systems of units involving numerical or unit-dependent quantities. (For more on the
choice  and  treatment  of  units,  see  [39÷],  [4÷],  [5÷],  [10÷],  [13÷],  [11÷],  [12÷],  [36÷],  [35÷],  [31÷],  [37÷],  [44÷],
[21÷],  [25÷],  [18÷],  [26÷],  [24÷].)  Although  Mathematica  can  carry  units  along  with  the  symbols  representing  the
physical  quantities  in  a  calculation,  this  requires  more  programming  and  frequently  diverts  from  the  essence  of  the
problem. Choosing a system of units that allows the equations to be written without (unneeded in computations) units
often gives considerable insight into the importance of the various parts of the equations because the magnitudes of the
explicitly appearing coefficients are more easily compared.
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à 0.6.7 Cover Graphics
The cover graphics of the GuideBooks stem from the Mathematica GuideBooks themselves. The construction ideas and
their implementation are discussed in detail in the corresponding GuideBook. 

† The cover graphic of the Programming volume shows 42 tori, 12 of which are in the dodecahedron’s face planes and
30  which  are  in  the  planes  perpendicular  to  the  dodecahedron’s  edges.  Subsections  1.2.4  of  Chapter  1  discusses  the
implementation.

† The cover graphic of the Graphics volume first subdivides the faces of a dodecahedron into small triangles and then
rotates randomly selected triangles around the dodecahedron’s edges. The proposed solution of Exercise 1b of Chapter
2 discusses the implementation.

†  The cover graphic of the Numerics volume visualizes the electric field lines of a symmetric arrangement of positive
and negative charges. Subsection 1.11.1 discusses the implementation.

† The cover graphic of the Symbolics volume visualizes the derivative of the Weierstrass ƒ£  function over the Riemann
sphere.  The  “threefold  blossoms”  arise  from  the  poles  at  the  centers  of  the  periodic  array  of  period  parallelograms.
Exercise 3j of Chapter 2 discusses the implementation.

† The four spine graphics show the inverse elliptic nome function q-1, a function defined in the unit disk with a bound-
ary of analyticity mapped to a triangle, a square, a pentagon, and a hexagon. Exercise 16 of Chapter 2 of the Graphics
volume discusses the implementation.
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0.7 Production History
The original set of notebooks was developed in the 1991–1992 academic year on an Apple Macintosh IIfx with 20 MB
RAM using Mathematica Version 2.1. Over the years, the notebooks were updated to Mathematica Version 2.2, then to
Version  3,  and  finally  for  Version  4  for  the  first  printed  edition  of  the  Programming  and  Graphics  volume  of  the
Mathematica  GuideBooks  (published  autumn 2004).  For  the  Numerics and  Symbolics  volume,  the  GuideBooks  note-
books were updated to Mathematica  Version 5 in the second half of 2004. The electronic component. Historically, the
first  step  in  creating  the  book  was  the  translation  of  a  set  of  Macintosh  notebooks  used  for  lecturing  and  written  in
German into English by Larry Shumaker. This was done primarily by a translation program and afterward by manually
polishing the English version.  Then the notebooks were transformed into TEX  files using the program nb2tex  on a
NeXT computer. The resulting files were manually edited, equations prepared in the original German notebooks were
formatted with  TEX ,  and  macros  were  added  corresponding  to  the  design  of  the  book.  (The  translation  to  TEX  was
necessary because Mathematica  Version 2.2 did not allow for book-quality printouts.)  They were updated and refined
for  nearly  three  years,  and  then  Mathematica  3  notebooks  were  generated  from  the  TEX  files  using  a  preliminary
version of the program tex2nb.  Historically and technically, this was an important step because it transformed all of
the  material  of  the  GuideBooks  into Mathematica  expressions  and  allowed for  automated changes  and  updates  in  the
various  editing stages.  (Using  the  Mathematica  kernel  allowed one to process  and modify the  notebook  files of  these
books  in a uniform and time-efficient  manner.)  Then, the notebooks  were expanded in size and scope and updated to
Mathematica 4. In the second half of the year 2003, and first half of the year 2004, the Mathematica  programs of the
notebooks  were  revised  to  be  compatible  with  Mathematica  5.  In  October  2004,  the  Programming  and  the  Graphics
volumes were published. In the last quarter of 2004, all four volumes of the GuideBooks were updated to be tailored for
Mathematica  5.1 A special set of styles was created to generate the actual PostScript as printouts from the notebooks.
All inputs were evaluated with this style sheet, and the generated PostScript was directly used for the book production.
Using a little Mathematica program, the index was generated from the notebooks (which are Mathematica expressions),
containing all index entries as cell tags. 

0.8 Four General Suggestions
A reader new to Mathematica should take into account these four suggestions.

† There is usually more than one way to solve a given problem using Mathematica. If one approach does not work or
returns  the  wrong  answer  or  gives  an  error  message,  make every effort  to  understand  what  is  happening.  Even if  the
reader has succeeded with an alternative approach, it is important to try to understand why other attempts failed.

†  Mathematical  formulas,  algorithms,  and  so  on,  should  be  implemented as  directly  as  possible,  even  if  the  resulting
construction is somewhat “unusual” compared to that in other programming languages. In particular, the reader should
not simply translate C, Pascal, Fortran, or other programs line-by-line into Mathematica, although this is indeed possi-
ble. Instead, the reader should instead reformulate the problem in a clear mathematical way. For example, Do, While,
and For  loops are  frequently  unnecessary,  convergence  (for  instance,  of  sums) can be checked by Mathematica,  and
If tests can often be replaced by a corresponding pattern. The reader should start with an exact mathematical descrip-
tion of  the problem [28÷],  [29÷].  For example,  it  does  not suffice  to know which transformation formulas have to be
used on certain functions;  one also needs  to know how to apply them. “The power of mathematics is in its precision.
The precision of mathematics must be used precisely.” [17÷] 
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† If the exercises, examples, and calculation of the GuideBooks  or the listing of calculation proposals from Exercise 1
of Chapter 1 of the Programming volume are not challenging enough or do not cover the reader’s interests, consider the
following idea,  which provides  a source for all kinds of interesting and difficult  problems: The reader should select a
built-in command and try to reconstruct it using other built-in commands and make it behave as close to the original as
possible in its operation, speed, and domain of applicability, or even to surpass it. (Replicating the following functions
is  a  serious  challenge:  N,  Factor,  FactorInteger,  Integrate,  NIntegrate,  Solve,  DSolve,  NDSolve,
Series, Sum, Limit, Root, Prime, or PrimeQ.)

† If the reader tries to solve a smaller or larger problem in Mathematica  and does not succeed, keep this problem on a
“to do” list and periodically review this list and try again. Whenever the reader has a clear strategy to solve a problem,
this  strategy can be implemented in Mathematica.  The implementation of  the  algorithm might require  some program-
ming skills, and by reading through this book, the reader will become able to code more sophisticated procedures and
more efficient implementations. After the reader has acquired a certain amount of Mathematica programming familiar-
ity, implementing virtually all “procedures” which the reader can (algorithmically) carry out with paper and pencil will
become straightforward.
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P    R    O    G    R    A    M    M    I    N    G

CHAPTER  1

Introduction to Mathematica 

1.0 Remarks
In this first chapter, we give a general overview of the abilities and possible applications of Mathematica by examples,
along with some of its limitations. We present the most important syntactic differences between Mathematica and other
programming languages, including the use of symbols, parentheses (), braces {}, and brackets []. The preferred way
for  formatting  source  code  is  also  discussed.  A  short  tour  is  taken  through  the  numerical,  graphical,  symbolic,  and
programming capabilities of Mathematica. One important subject omitted (because the main focus of this book series is
the application of Mathematica to problems from the natural sciences and engineering) is the typesetting- and electronic
document-related feature set of Mathematica. See The Mathematica Book [1382÷] and [538÷] for details.

Some  of  the  inputs  shown  and  executed  in  this  chapter  represent  an  intermediate  to  advanced  use  of  Mathematica.
Readers new to Mathematica  will probably not understand how they work, neither should they. These inputs and code
pieces represent a cross section of the type of problems treated in this book. After reading the GuideBooks,  the reader
will have no problem understanding these programs.

All notebooks will have the following initialization cell. It will turn off possible spelling error messages, set the default
fonts  and font  sizes for  labels in graphics,  and reset the line numbering such that evaluating a section or a subsection
will start with In[n].

(* no spelling warnings, set fonts for tick labels, ... *)
Get[ToFileName[ReplacePart["FileName" /. 
 NotebookInformation[EvaluationNotebook[]], "Initialization.m", 2]]];

1.1 Basics of Mathematica as a Programming Language

à 1.1.1 General Background
Mathematica  is  an  interactive  programming  system.  To  begin  programming  in  Mathematica,  start  the  Mathematica
application.  (The  Mathematica  kernel  can  also  be  run  in  batch  mode.  On  a  UNIX  system,  type  (time math <
inputFileName) >! outputFileName & at the prompt to run the kernel in batch mode.)

The following example shows the first input and output lines of an initial Mathematica  session [611÷]. (In[n]:= and Out[n]=

are generated by Mathematica, and not input by the user.) 
1 + 1
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(-2) * (-2)

Everything done to this point in a given Mathematica session is saved in the values of the variables In and Out.

The following list provides the basic rules for the use of Mathematica as a programming language. 

† Almost all built-in commands (we will use the words “command” and “function” interchangeably in the GuideBooks)
begin with a capital letter and are nonabbreviated, standard English words. If a command consists of several words, the
first letter of each word comprising the command is also a capital letter. The complete word is written without spaces,
(e.g.,  AxesLabel,  ContourSmoothing,  and TeXForm).  If  the name of  a person is involved,  for example, in the
special  functions  of  mathematical  physics,  the  name  comes  first,  followed  immediately by  the  usual  symbol  for  this
function, represented by a capital letter (e.g., JacobiP, HermiteH, BesselJ, and RiemannSiegelZeta). 

Two classes of exceptions exist to this general rule. The first class concerns mathematical notation: Shorter symbols are

used—such as E for the number e, I for i = -1 , Det for determinant, Sin for sine, and LCM for the least common
multiple. The second class includes the abbreviation N for numerical operations (e.g., N for the computation of numeri-
cal values themselves, such as N[Sqrt[2]], which evaluates and prints as 1.41421); and NSolve for the numerical
solution  of  equations);  the  abbreviation  D  for  operations  involving  differentiation  (e.g.,  D  for  differentiation  and
DSolve  for  solving  differential  equations);  and  the  abbreviation  Q  (question)  for  functions  asking  questions  (e.g.,
EvenQ for testing if something is an even number). Mathematica knows about one thousand executable commands. 

† Symbols defined by the user usually begin with lowercase letters. Variable names can be arbitrarily long and include
both uppercase  and lowercase letters,  $,  and numbers (but  numbers  cannot  be used  as the first  character).  Only com-
plete, well-developed routines should be given names starting with capital letters (as mentioned in the preface, we will
not strictly follow this convention).  Names of the form name1_name2  are not allowed in Mathematica  (one can input
an  expression  of  the  form name1_name2,  but  Mathematica  does  not  interpret  this  as  one  name).  Users  should  never
introduce symbols of the form name$  or name$number  because Mathematica  produces  symbols in this form to make
names unique (see Chapter 4). 

† The operation of many Mathematica functions can be influenced by a variety of options of the form optionName ->
specialOptionSetting  (e.g., PlotPoints -> 25 and Method -> GaussKronrod). The possible settings for the
options of a command depend on the command and include numbers, lists, or such things as All, None, Automatic,
True, False, Bottom, Top, Left, GaussKronrod, and CofactorExpansion. Around 450 differently named
options  exist.  For  simple  options,  these  names  are  Mathematica  expressions,  for  more  specialized  options  they  are
typically strings. Options can sometimes contain suboption settings.

† About 120 commands work together with Mathematica  as a general programming (computer-dependent) system and
begin with $ (e.g., $MachineEpsilon and $MachineType). 

†  Mathematical functions  rarely  used,  or  used  only  for  special  purposes,  are  not  implemented in  the  kernel,  which  is
written in C. They are often available in external packages, which are written in Mathematica. To use these functions,
one  must  first  load  the  appropriate  package.  The  same  naming  conventions  apply.  For  operating  systems  allowing
arbitrarily long file names, these packages have names of the form Subject`SpecialTopic` (e.g., Algebra`Quater
nions`,  DiscreteMath`CombinatoricalFunctions`,  and  NumericalMath`BesselZeros`)  and  are
loaded using Needs["Subject`SpecialTopic`"] or Get["Subject`SpecialTopic`"]. 

†  Error  messages of the form command::nameOfTheError:RoughSpecificationOfTheError  result when syntactically
incorrect  source  code  is  input,  the  wrong  number  of  arguments  is  given,  the  wrong  type  of  argument  is  given  for  a
particular command, or errors arise in the calculation. For example, the input 
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Plot[Sin[x], {x, 0, soFarThatANicePictureComesOut}] 

produces the following message: 

Plot::plln: Limiting value soFarThatANicePictureComesOut in 
{x, 0, soFarThatANicePictureComesOut} is not a machine-size real number.

Σ (* session summary *) TMGBs`PrintSessionSummary[]

à 1.1.2 Elementary Syntax 
The algebraic operations addition, subtraction, multiplication, and division are denoted as usual by +, -, *, and /. The
*  for multiplication can be omitted by using a blank space instead. Parentheses ()  are used exclusively for grouping,
and brackets  []  are used for enclosing arguments in functions.  Braces {}  are  used to enclose components of vectors
and elements of sets (here, any number of elements of arbitrary type are allowed, which can be nested to any level).

Mathematical Expression Mathematica Form
Addition  c + b ö c + b
Subtraction  d - e ö d − e
Multiplication  3 x ö 3 x or 3∗x
Division  4 ê r ö 4êy H4êx y is H4êxL∗y L
Exponentiation  hl ö h^l

Grouping  H2 + 3L 4 ö H2 + 3L 4
Function with an argument  f HxL ö f@xD
Discrete iterator  i = 1, 2, 3, …, 9, 10 ö 8i, 1, 10, 1< or 8i, 10<
Continuous range  x = 0 … 1 ö 8x, 0, 1<
Vector  9ax, ay, az= ö 8ax, ay, az<
Decimal number  3.567 ö 3.567
Assignment  x = 3 ö x = 3
Mathematical equality  sinHp ê2L = 1 ö Sin@Piê2D == 1
Function definition  f HxL = sinHxL ö f@x_D := Sin@xD
String “hello world” ö "hello world"
“Collection” of items  8apple, apple, < ö 8apple, apple, <

The following list describes the syntax used in Mathematica: 

† The ith element of Iax, ay, azM: {ax, ay, az}[[i]] (i is a concrete positive integer number) 

† Prevent the display of (long) results by using a semicolon at the end of input: expression; 

† The last expression given by Mathematica: % 

† The next-to-last (penultimate) expression given by Mathematica: %% 

† The ith output of Mathematica: %i or Out[i]

† When an expression is too long to fit on one line, the symbol \ (or Ö) is displayed, indicating that the expression is
continued on the next line (if an expression is incomplete when the end of the line is reached, the expression is automati-
cally considered to be continued on the next line) 

† Comments can be written in the form, (* material to be ignored when sent to the Mathemat-
ica kernel *) (comments can be inserted anywhere in Mathematica source code) 

† Information on the command command: ?command 
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† More information on the command command: ??command 

† Metacharacter inside a string (standing for an arbitrary symbol): * 

† Options of functions are set in the form option -> value, for instance: PlotPoints -> 50.

†  “Ordinary”,  Greek,  Gothic,  Script,  and  doublestruck  letters  represent  different  letters  (B∫B∫∫ ∫),  and  symbol
names made from them are considered  different.  But plain, bold,  italic, bold-italic,  and underlined versions of a letter
are considered equal (B=B=B=B=B). (The Mathematica  inputs of the GuideBooks  will make use of “ordinary”, Greek,
Gothic, Script, and doublestruck letters, but all inputs will be in bold-nonitalic.) As the default output format, we will
use StandardForm. In StandardForm, some symbols appear in a slightly “doubled” version. Most frequently, we

will encounter  for e, the base of the natural logarithm,  for -1 , and  for the differential d in integrals.

†  Independent  inputs can either be placed on separate lines or they can be separated by semicolons: inputStatement1;

inputStatement2; …; inputStatementn.

The  use  of  parentheses  (someExpressions)  for  grouping  and  brackets  [argumentsOfAFunction]  for  arguments of
functions  is  essential  for  correct  syntax;  braces  {}  and  double  square  brackets  [[sequenceOfPositiveIntegersOr0]]
are short forms for the commands List and Part. 

Using a functional programming style, it is often possible to write Mathematica code without using auxiliary variables.
As a consequence,  a large number of brackets []  is often needed.  In order to make such parts of a program easier to
understand,  the convention used (if  space allows) in this book series is to align corresponding pairs of brackets  […]

and often pairs of ()  and {}  vertically or horizontally (but this is a matter of the user’s personal  taste). This process
usually means indenting the code appropriately. Thus, Mathematica  source code for programs should be printed using
families  of  monospaced  fonts  with  equally  sized  letters,  such  as  Courier.  It  is  common  to  include  blank  spaces
around relatively weak operators, such as +, _, or ->. This convention does not apply inside short forms of commands.
Sixty-five  commands in  Mathematica  have short  forms; around 50 of  these commands consist  of  two or  three ASCII
characters (e.g., -> [Rule] for replacement, != [Unequal] for inequality). No blank spaces are allowed between the
symbols  in  these  short  forms.  Relatively  short  Mathematica  inputs  representing  mathematical  expressions  often  look
better  in  StandardForm  notation  (in  StandardForm  no  additional  spaces  should  be  added).  Because  this  book
contains a lot of code and to maintain uniformity, we will use InputForm  throughout this book. In some rare cases,
we will use StandardForm, mainly for demonstration purposes. 

In  procedural  programs,  we  will  typically use  one  line  per  procedural  statement.  If  possible  and  appropriate,  we  will
carry out multiple assignments at once (for instance {one, two} = {1, 2} instead of one = 1; two = 2).

Below is an example of the general rules for Mathematica  source code. In addition to the formatting, note that named
temporary auxiliary variables can be largely dispensed with using Mathematica’s functional programming capabilities.
In  the  following  code  only,  the  variables  armed,  numberOfPoints,  and  rotation  in  the  function  definition
appear; no further user-defined variables exist. Starting from now, we will display user-changeable arguments in italic.
For the function RotatedBlackWhiteStrips below the three arguments armed, numberOfPoints, and rotation are
user-changeable arguments. The frequent appearance of # and & are parts of so-called pure functions; we discuss them
in detail in Chapter 3.

It  is  a  common  convention  in  Mathematica  that,  whenever  possible,  a  “typical”  mathematical  symbol  (character
sequence)  for  a  quantity should be used.  If  not,  a notation should be chosen to reflect the effect  of the corresponding
command or the contents of the corresponding list. 

Readers will probably not understand the following code initially. However, after reading this book and looking at this
code again, they will have no problem understanding how it works. 
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RotatedBlackWhiteStrips[
            armed_Integer?((# >= 4 && EvenQ[#])&),
            numberOfPoints_Integer?(# > 3&), rotation_?(Im[#] == 0&)] :=
Graphics[ (* black or white? *)
MapIndexed[{If[(-1)^Total[#2] == 1,
               GrayLevel[0], GrayLevel[0.8]],
       (* make polygons *)
       Polygon[Join[#1[[1]], Reverse[#1[[2]]]]]}&,
            Partition[
              Partition[(* calculate vertices *)
              Distribute[{N[{{+Cos[#], Sin[#]},
                             {-Sin[#], Cos[#]}}]& /@
                               Range[0, 2Pi, 2Pi/armed],
                          N[( 1 - (#/(2Pi)))*
                             {Cos[rotation #], Sin[rotation #]}
                            ]& /@ Range[0, 2Pi, 2Pi/numberOfPoints]
                          }, List, List, List, Dot],
            numberOfPoints + 1],
             {2, 2}, 1],
     {2}], (* options for a nice-looking graphic *)
          AspectRatio -> Automatic, PlotRange -> All]

We now look at three short examples of RotatedBlackWhiteStrips [762÷], [489÷].  

Show[GraphicsArray[{RotatedBlackWhiteStrips[ 4, 24,  1/4],
                    RotatedBlackWhiteStrips[12, 36, -1/8],
                    RotatedBlackWhiteStrips[72, 36,  1/4]}]]

In  the  programming  code,  we  will  try  adhere  to  the  aforementioned  formatting  conventions.  But  because  of  both
horizontal and vertical space limitations on the pages of the book, it will not always be possible to follow the conven-
tions exactly in every piece of code. Closing parentheses, brackets, and braces will not often be aligned vertically with
the  corresponding  opening  ones.  Successive  arguments  of  functions  will  either  be  written  in  one  line  or  sometimes
aligned vertically. This is in particular the case when a program uses many nested (pure) functions such as following.
Here  we  partition  a  regular  n-gon  (n  even)  into  rhombuses  (once  again,  we  make  no  use  of  temporary  auxiliary
variables).

GrayRhombusPartition[n_?(EvenQ[#] && # > 4&), opts___] :=
Graphics[ (* make gray colors *)
{MapIndexed[{GrayLevel[(#2[[1]] - 1)/(n/2 - 2)], #1}&,
            MapThread[Polygon[ (* make polygons *)
                          Join[#1, Reverse[#2]]]&, #]& /@
   ((Partition[#, 3, 2]& /@ #&) /@
      ({Drop[Drop[#[[1]], 1], -1], #[[2]]}& /@
          Partition[#, 2, 1]))],
(* make lines *)
{Thickness[0.15/n],
 MapIndexed[{GrayLevel[1 - (#2[[1]] - 1)/(n/2 - 1)], #1}&,
             Line /@ #]}}&[
(* the points calculated by iteration *)
Drop[Flatten[Transpose[{#1, Join[#2, {{}}]}], 1], -1]& @@ #& /@
NestList[{Last[#],
          2(Total[#]/2& /@ Partition[Last[#], 2, 1]) -
          Drop[Drop[First[#], 1], -1]}&,
         N[{Array[{0, 0}&, {n/2 + 1}],
            Array[{Cos[Pi/n(1 + 2#)], Sin[Pi/n(1 + 2#)]}&, n/2, 0]}],
         n/2 - 1]], AspectRatio -> Automatic, opts]

Here are two examples using GrayRhombusPartition. 
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Show[GraphicsArray[
{GrayRhombusPartition[ 8, Background -> Hue[0.12]],
 GrayRhombusPartition[28, Background -> Hue[0.12]]}]]

Obeying strictly the  above-formulated guidelines,  this  routine  is  quite  big and nearly “ununderstandable”  if  formatted
“properly” on paper.
GrayRhombusPartition[n_?(EvenQ[#] && # > 4&), opts___] :=
Graphics[
 Function[    (* º 100 lines deleted for brevity  *)
         ][   (* º another 120 lines deleted for brevity  *)
          ], Rule[AspectRatio, Automatic]
        ]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

1.2 Introductory Examples

à 1.2.0 Remarks
In  this  section,  we  will  give  a  short  overview  of  the  mathematical,  graphical,  and  numerical  possibilities  built  into
Mathematica.  The  examples  are  largely  unrelated  to  each  other.  We  discuss  all  graphics-related  commands  in  the
Graphics volume of the GuideBooks  [1283÷] and mathematics-related Mathematica  commands in detail in the Numer-
ics [1284÷] and Symbolics [1285÷] volumes. Mathematica also contains a fully developed programming language. We
will discuss programming-related features in detail in the next five chapters. The meaning of some of the inputs will be
clear to readers without prior Mathematica experience. Some of the inputs will use commands that are not immediately
recognizable;  others  will  use  “cryptic”  shortcuts.  In  the  following  chapters,  we  will  discuss  the  meaning  of  all  the
commands, as well as their aliases, in detail.

The division into programming, graphics,  numerics, and symbolics does not reflect the structure of Mathematica.  Just
the opposite: The harmonic and fluent connection between all functions makes Mathematica an integrated environment
where all parts can be used together in a smooth way. Also, the division into numerics and symbolics is not a strict one:
To  derive  efficient  numerical  methods,  one  needs  symbolic  techniques,  and  for  carrying  out  complicated  symbolic
calculations, one frequently needs validated numeric decision procedures.

The examples of this chapter form a “random” collection. By no means are they intended to give up a complete, coher-
ent, and logically built overview of Mathematica. Its capabilities are much too many and too diverse to even try to give
such an overview inside one chapter. 

à 1.2.1 Numerical Computations
sinHp ê3L gives an “exact number”. 

Sin[Pi/3]

We can compute this number to machine accuracy. Six digits are usually displayed. 

N[Sin[Pi/3]]

Here are 18 digits in the result. 

N[Sin[Pi/3], 18]

We can also compute and display a result with 180 digits. 
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N[Sin[Pi/3], 180]

This input calculates the first 1000 terms of the simple continued fraction expansion of 5
3

. (As mentioned above, the
semicolon at the end of an input avoids that the result is printed.)

cf = ContinuedFraction[5^(1/3), 1000];

This result shows the number of times various integers appear in the continued fraction expansion.

Map[(* count occurrences *) Function[digit, {digit, Count[cf, digit]}], 
     (* all occurring integers *) Union[cf]]

The next input counts the number of occurrences of the number 1 in the first million continued fraction digits of 5
3

.
This can be done in a few seconds.

Count[ContinuedFraction[5^(1/3), 1000000], 1] // Timing

Continued fractions of square roots are ultimately periodic. 

ContinuedFraction[66^(1/2), 20]

Is expIp 163 M - 744
3  the integer 640320? The answer is no, but it “almost” is [1249÷]. 

Element[(E^(Sqrt[163] Pi) - 744)^(1/3), Integers]

N[(E^(Sqrt[163] Pi) - 744)^(1/3) - 640320, 60]

To find out that expIp 163 M - 744
3  is less than 640320, one does not have to use explicitly a numerical approxima-

tion.  Just  evaluating  the comparison expIp 163 M - 744
3

< 640 320  causes Mathematica  to  carry  out  all  necessary

calculations to answer this question.
(E^(Sqrt[163] Pi) - 744)^(1/3) < 640320

For an explanation of why this number is almost an integer, see [294÷], [1338÷], and [1141÷]; for similar identities, see
[922÷]. 

Much more extreme cases exist of numbers that are almost integers. They are called Pisot numbers (see [138÷], [139÷],
[711÷], [408÷], [868÷], [185÷], and [887÷]). Consider 

2
3

27 + 3 69
3

+
27 + 3 69

3

3 2
3

27 369

.

The result is not an integer, but it nearly is. 
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N[(2^(1/3)/(27 + 3 Sqrt[69])^(1/3) +
  (27 + 3 Sqrt[69])^(1/3)/(3 2^(1/3)))^27369, 
  (* numericalize to 5030 digits *) 5030
  (* why 5030?
   $MaxExtraPrecision = Infinity;
   (* left of decimal point  3342 *) Floor[Log[10, Round[#]] - 
   (* right of decimal point 1671 *) Floor[Log[10, # - Round[#]]] + 
   (* some more non-9-digits 0017 *)]&[theRadical] *)] -
248872083860566242801488633985778816168566582615463984666186327177996889794
302876969944745816129045615885143011927101923791713997993058914014883941331
9658866585963617988675636547948407631504856110204145022057101449742807283745
349044713489229346181918805096874878013575556923353742673696224778320245988
540213301883484666470466149889402655143734621040204402439497074243583844435
8085722840358097062929679889933382659868624398785471672437476033581010058232
770325288671140498237982079089990431287680958041449065611648473793797460006
542685289106532890742345783983687027507936729079442473934078360160815378816
494153662235479538964578833871970301073249242325586046493271959208073441641
9408849950012979654395273385341095562256314722477722302818244400186545582913
013684116069229948450508385560502376379491505913877574694543067098950233734
875259586944931660657861461142958051706161345801562687419677892445722586732
5513485511448982113074128616447024942770432196754923847050903086833932583983
456210775092840495926289398412204946622896060874294857076651762085967637510
0775376705660134601877102706808623385083704763163416133841647181234902568523
014554906330744898465446950034570811433400237285702426141033340407021679373
889901563587912181986503488932240588333472792264516219643268144193209629883
6704587273618997970936633010894468362292302548038860927089257990505837606565
4372722673382421099596652032752423655970286505879088423573116299843248723992
370681856106228825253081951335763606805097314767756009989894248180226689216
887125546603079786776420339174335241777036123462355674280571688628682637154
744918786523022395903717847865060788592985252403020060537542636129564913749
579902728693786036767203892699418847034973900792486513050707875184722293046
6835523411784976227884753642738424032537593171006892800308328208350825894165
757110641854633899165463352000712509400393706057751324434941912458367864031
438044741715469307650984762987113625655095113341410659514797573216487308588
207929723616047980118369534484150697741703276041764283828990373663679698758
3830362244613565592323446457417387836546707590791148857442335097804365308142
758237796222541372347526347511124157083242577253654864546653468558226069365
215604513857702802435076942062477624009724087750511435288253440943800323682
814500906873898893269944000616164741243202139992999892419706344951703777826
055705878691043258271291941546764790768702904202815388755953467402952252786
242105372182173621873752243352251007748639891006060850310559871809504335746
4009505526256479756716140052888061921437953507269705531834507752244853777872
8480751496694305142481208434058663054256649588333816952893118732756129038115
625316839963397212327107969696245976920848255222591348999445674453161441801
1492624723899611977533345482296723851296876182987982763612903081830406428255
761789360866674785134042824865250319983289744838888137526494195021927158720
980424579870985098762439838255243931303193820158912431012986549938720840348
6505853704619531981994143584471102830065857739428507878016585984828808526342
8870383309534828233466065660553398382006320312599424684146205166069028788982
959050373271686613923208614965923844927939159262755102043035136468782747102
192779859301117801065439219569499299420368424993003990461640112615325982631
808971152916585811064172283699654029309129460623214205826005262694547534088

The last output has 1670 consecutive 9s.

StringLength[First[StringCases[ToString[%], "9" ..]]]

Infinitely many such numbers exists, whose high powers are almost integers.
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Arithmetic operations with integers always lead to exact results. 
111^111

Even 11111111  can be computed in a (nearly) vanishing amount of time. (We use Short to suppress printing the entire
number and give only some of its first and last digits.) 

Short[Timing[1111^1111] // OutputForm]

Mathematica can deal quickly with large integers. Here are two integers, both having more than one million digits.

int1 = 111111^222222;
int2 = 222222^333333;

N[{int1, int2}]

Multiplying these two integers can be done in a few seconds on a modern computer. (The actual calculation was carried
out on a 2 GHz computer.) 

Timing[int3 = int1 int2;]

The resulting number has more than 2.9 million digits.

N[int3]

Here is the total number of digits in base 2—nearly ten million digits.

Length[IntegerDigits[int3, 2]]

But  the  reader  should  keep  in  mind that  Mathematica  is  an  interpreted  language.  It  does  not  carry  out  any  meaning-
and/or result-changing optimization automatically. So the following simple loop takes a few seconds.

Do[1, {10^8}] // Timing

The following picture shows the distribution of the digitsums of 1000 random integers between 1 and 1010. Each color
represents the digitsum in base b, where 2 § b § 50.

With[{(* 1000 random numbers *)
      randomNumberList = Table[Random[Integer, {1, 10^10}], {1000}]},
     Show[Graphics[{PointSize[0.005],
                   (* different color for each base *)
                   MapIndexed[{Hue[#2[[1]]/60], #}&,
                    MapIndexed[Point[{#2[[2]], #1}]&,
                        (* digitsums of the random numbers *)
                        Table[Sort[Total[IntegerDigits[#, b]]& /@ 
                                                    randomNumberList],
                              {b, 2, 50}], {2}]]}], 
          PlotRange -> All, Frame -> True]]

Here is a simple numerical integration: Ÿ0
1x3 dx.

NIntegrate[x^3, {x, 0, 1}]

In the following numerical integration Ÿ0
11 ë x  dx, the function is integrable, but it has a singularity at x = 0. 

NIntegrate[1/Sqrt[x], {x, 0, 1}]

Here is a contour integral in the complex z-plane (by the Residue theorem, its value is 2 p i). 

‡
1

i 1

z
 dz + ‡

i

-1 1

z
 dz + ‡

-1

-i 1

z
 dz + ‡

-i

1 1

z
 dz
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NIntegrate[1/z, {z, 1, I, -1, -I, 1}]

The small, real part comes from the use of an approximating method and approximate numbers. Using Mathematica’s
high-precision arithmetic, we can get more correct digits.

NIntegrate[1/z, {z, 1, I, -1, -I, 1}, WorkingPrecision -> 50] 

Of course, Mathematica can carry out this integral also exactly.

Integrate[1/z, {z, 1, I, -1, -I, 1}]

Next,  we  numerically  solve  the  differential  equation:  x≥HtL + x£HtL3 ë 20 + xHtL ê5 = cosHe tL ê3,  with  initial  conditions

xH0L = 1 and x£H0L = 0 (a forced nonlinear oscillator with damping [703÷], [587÷]).

sol = NDSolve[{(* differential equation *)
               x''[t] + 1/20 x'[t]^3 + 1/5 x[t] ==  1/3 Cos[E t],
               (* initial conditions *)
               x[0] == 1, x'[0] == 0}, x[t], {t, 0, 360}]

The  result  is  an  approximate  solution  represented  in  Mathematica  as  an  InterpolatingFunction-object  that  is
embedded in a replacement rule {x -> solution}. We can now plot it. 

Plot[Evaluate[x[t] /. sol], {t, 0, 100}]

The next picture shows a phase-portrait of the oscillations.

ParametricPlot[Evaluate[{x[t] /. sol[[1]], D[x[t] /. sol[[1]], t]}], 
               {t, 0, 360}, 
               Frame -> True, Axes -> False, PlotPoints -> 3600]

Here  is  a  more  complicated system of  differential  equations—the  so-called  Burridge–Knopoff  model  for  earthquakes
[217÷],  [460÷],  [976÷],  [1080÷],  [372÷],  [1352÷],  [371÷],  [598÷],  [1397÷].  n  points  xiHtL  on  a  straight  line,  each of
mass m  interact with each other via springs of stiffness kc,  all masses are subject  to a force that is proportional  to the
distance of the masses from their equilibrium position and to a friction force HvL. (The equilibrium position of mass i
is i a.)

m xi
££HtL = kc Hxi-1HtL - 2 xiHtL + xi+1HtLL - kp HxiHtL - i a - t vL - f I xi

£HtLM

odeSystem[n_, {m_, kc_, kp_, v_, a_, f_, _}] := 
 Table[m x[i]''[t] ==  kc (x[i + 1][t] - 2 x[i][t] + x[i - 1][t]) 
                      -kp (x[i][t] - i a - v t) - f [  x[i]'[t]], 
       {i, n}] /. (* remove first and last masses *)
                 {x[0][t] :> x[1][t] - 1, x[n + 1][t] :> x[n][t] + 1}

We choose sgnHvL †v§1ê2 e-†v§ for HvL.
[v_?NumberQ] := Sign[v] Sqrt[Abs[v]] Exp[-Abs[v]];

The  function  solveODEsAndShowSolutions  solves  the  system of  equations  for  given  values  of  the  parameters
under certain initial conditions.
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solveODEsAndShowSolutions[{n_, T_}, 
                          {m_, kc_, kp_, v_, a_, f_, _}, opts___] := 
Module[{nsol}, 
(* solve differential equations *)
nsol = NDSolve[Flatten[{odeSystem[n, {m, kc, kp, v, a, f, }], 
(* initial conditions *)
Flatten[Table[{x[i][0] == i a + a Cos[i]/3, x[i]'[0] == 0}, {i, n}]]}],

Table[x[i], {i, n}], {t, 0, T}, opts, 
MaxSteps -> 10^5, PrecisionGoal -> 5, AccuracyGoal -> 5];

(* display solutions *)
Plot[Evaluate[Table[x[i][t] - v t, {i, n}] /. nsol], {t, 0, T}, 
     PlotRange -> All, PlotStyle -> {Thickness[0.002]},
     Frame -> True, Axes -> False, PlotPoints -> 500]]

Here is the solution for a numerical set of parameters shown. One clearly sees collective motions of the particles caused
by their nonlinear coupling.

solveODEsAndShowSolutions[{50, 50}, (* parameter values *)
              {-0.826801, -8.710866, -0.195864, -0.709007, 
               -9.852322,  1.596424, -3.359798}]

Next,  we consider  a  particle in  a  two-dimensional  potential  that has confining quadratic  part  and a random, smoothly
oscillating part:

V Hx, yL = x2 + y2 + ‚
i, j=0

o

ri, j cosIi x + ji, j
HxLM cosI j y + ji, j

HyLM.

Here the ri, j  are random variables from the interval @-1, 1D  and the ji, j
HxL, ji, j

HyL  random phases from the interval @0, 2 pD.
We assume frictionless motion and solve the equations of motions; four  coupled nonlinear  ordinary differential equa-
tions of first order, for a time T . Instead of explicitly specifying the 3 Ho + 1L2  random parameters, we seed the random
number generator using a 20-digit seed seed. 

The code for random2DPotentialParticlePath is longer than the above inputs because, in addition to solving
the equations of motions and plotting the particle path, we color the path according to the particle’s velocity (red being
slow and blue being fast),  show the zero-velocity contour as a guide for the eye of the reachable configuration space,
and show the potential itself as a contour plot underneath.
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random2DPotentialParticlePath[o_, seed_, T_, pp_, opts___] :=
Module[{V, x, y, vx0, vy0, nsol, pathData, path, xMin, xMax, 
        yMin, yMax, zeroVelocityContour, potentialLandscape},
 (* seed random number generator *) SeedRandom[seed];
 (* generate random potential *)
 V[x_, y_] = x^2 + y^2 + (* random part of the potential *)
             Sum[Random[Real, {-1, 1}]*
                 Cos[i x + 2Pi Random[]] Cos[j y + 2Pi Random[]], 
                 {i, 0, o - 1}, {j, 0, o - 1}];
 (* random initial velocity components *)
 {vx0, vy0} = Table[Random[Real, {-2, 2}], {2}];
 (* solve Newton's equations *)
 nsol = NDSolve[{x'[t] ==  vx[t], y'[t] == vy[t], 
                 vx'[t] == -D[V[x[t], y[t]], x[t]],
                 vy'[t] == -D[V[x[t], y[t]], y[t]],
                 (* initial conditions *)
                 x[0] == 0, y[0] == 0, vx[0] == vx0, vy[0] == vy0}, 
                 {x, y, vx, vy}, {t, 0, T}, MaxSteps -> 10^5];
 (* position and velocity data *)
 pathData = Table[Evaluate[{{x[t], y[t]}, {vx[t], vy[t]}} /. 
                                     nsol[[1]]], {t, 0, T, T/pp}];
 (* particle path; colored according to velocity *)            
 path = {Hue[0.5 ArcTan[Sqrt[#.#]&[(#1[[2]] + #2[[2]])/2]]], 
         Line[{#1[[1]], #2[[1]]}]}& @@@ Partition[pathData, 2, 1];
 (* maximal x,y-extensions *)        
 {{xMin, xMax}, {yMin, yMax}} = {#1 - #3/12, #2 + #3/12}&[
   Min[#], Max[#], Max[#] - Min[#]]& /@ Transpose[First /@ pathData];
(* zero-velocity contour and contour plot of the potential *)   
 {zeroVelocityContour,  potentialLandscape} = 
 ContourPlot[Evaluate[V[x, y]], {x, xMin, xMax}, {y, yMin, yMax},
             DisplayFunction -> Identity,  PlotPoints -> 240, ##]& @@@
  (* set options for contour plot *) 
  {{Contours -> {(vx0^2 + vy0^2)/2 + V[0, 0]}, ContourShading -> False, 
    ContourStyle -> {{GrayLevel[0], Thickness[0.002]}}},
   {Contours -> 100, ColorFunction -> (GrayLevel[1 - #]&),
    PlotRange -> All, ContourLines -> False}};
 (* show potential, zero-velocity contour, and particle path *)             
 Show[{potentialLandscape, zeroVelocityContour,
       Graphics[{Thickness[0.002], path}]}, opts,
       AspectRatio -> 1, PlotRange -> All, Frame -> False,
       DisplayFunction -> $DisplayFunction]]

Here are three example potentials and particle paths for o = 3, o = 12, and o = 10. The first two motions are pseudoperi-
odic.  The third motion is chaotic and the particle samples the accessible configuration space in a complicated manner
[704÷]. The potential used in the last graphic has 3 μ 112 = 363 random parameters. 

Show[GraphicsArray[
Block[{$DisplayFunction = Identity},
 random2DPotentialParticlePath[##, 10 #3]& @@@ 
                 (* pseudoperiodic motion *)
                 {{ 3, 21598974805925082378, 200}, 
                  {12, 60923097090049506424,  50},
                 (* chaotic motion *)
                  {10, 58211857412104937056, 200}}]]]

Mathematica  can  also  solve  partial  differential  equations.  Here  is  the  so-called  Benney  equation  in  1 + 1  dimensions
[1148÷], [1059÷], a nonlinear partial differential equation.
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∑ yHx, tL
∑ t

+ yHx, tL 
∑ yHx, tL

∑ x
+

∑2 yHx, tL
∑ x2

+ ¶ 
∑3 yHx, tL

∑ x3
+

∑4 yHx, tL
∑ x4

= 0

We will solve the Benney equation for ¶ = 0.001167, periodic boundary conditions, and the following initial condition

(a “random”, oscillating function of magnitude > 100):

yHx, 0L =
1

25
cos

p x

20
-

38

191
cos

p x

25
-
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116
cos

p x

40
-

21
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cos

p x
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50
+

7
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p x
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cos

3 p x
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cos
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200
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200
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7 p x

200
-

9

16
cos

9 p x

200
-

100

123
cos

11 p x

200
+

12

19
cos

13 p x

200
.

Solving  a  partial  differential  equation  is  more  time-consuming  than  solving  an  ordinary  differential  equation;  the
following inputs need longer than the above one to complete.

(* the differential equation *)
pde = D[ψ[x, t], t] + ψ[x, t] D[ψ[x, t], x] + D[ψ[x, t], {x, 2}] +
      ∂ D[ψ[x, t], {x, 3}] + D[ψ[x, t], {x, 4}];

(* the initial condition *)
ψ0[x_] = 1/25 Cos[Pi x/20] - 38/191 Cos[Pi x/25] - 
         11/116 Cos[Pi x/40] - 21/23 Cos[Pi x/50] + 
         79/140 Cos[3 Pi x/50] + 7/55 Cos[Pi x/100] - 
         4/131 Cos[3 Pi x/100] - 95/101 Cos[Pi x/200] - 
         115/166 Cos[3 Pi x/200] - 3/5 Cos[7 Pi x/200] - 
         9/16 Cos[9 Pi x/200] - 100/123 Cos[11 Pi x/200] + 
         12/19 Cos[13 Pi x/200];

(* system parameters *)
xM = 100; T = 80; ∂ = 0.001167;

(* solve the differential equation *)
nsol = NDSolve[{pde == 0, ψ[x, 0] == ψ0[x], ψ[xM, t] == ψ[-xM, t]}, 
               ψ[x, t], {x, -xM, xM}, {t, 0, T}, 
        (* set options for a solution appropriate for visualization *)     
        AccuracyGoal -> 2, PrecisionGoal -> 2, 
        Method -> {"MethodOfLines", "SpatialDiscretization" -> 
                   {"TensorProductGrid", "DifferenceOrder" -> 10, 
                    "MaxPoints" -> {1200}, "MinPoints" -> {1200}}}];

We visualize the solution as a density plot as well as a 3D plot. We see the “birth and death” processes for soliton-like
structures [781÷] typical for this equation.

Show[GraphicsArray[{
(* density plot *)
DensityPlot[Evaluate[ψ[x, t] /. nsol[[1]]], {x, -xM, xM}, {t, 0, T}, 
            Mesh -> False, PlotRange -> All, ColorFunction -> (Hue[0.78 #]&
            DisplayFunction -> Identity, PlotPoints -> 400],
(* 3D plot *)
Plot3D[Evaluate[ψ[x, t] /. nsol[[1]]], {x, -xM, xM}, {t, 0, T}, 
       Mesh -> False, PlotRange -> All, PlotPoints -> 400,
       DisplayFunction -> Identity]}]]

The  solution  of  the  last  partial  differential  equation  was  quite  complicated.  In  general,  solutions  of  nonlinear  partial
differential  equations  can  have  “any  possible”  shape  (see  [713÷]  for  some  examples).  One  solution  of  the  following
coupled  system of  two  partial  differential  equations  (of  reaction-diffusion  type)  has  a  conjectured  solution  exhibiting
the symmetry of a Sierpinski triangle [612÷], [613÷], [614÷], [615÷], [709÷].
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t
∑uHx, tL

∑ t
= Du

∑2 uHx, tL
∑ x2

+ f HuHx, tLL - vHx, tL

∑vHx, tL
∑ t

= Dv
∑2 vHx, tL

∑ x2
+ uHx, tL.

Here f HuL is the following nonlinear function: f HuL = 1 ê2 HtanhHHu - aL ê dL + tanhHa ê dLL - u.

The  initial  condition  is  uHx, 0L = expI-x2M,  vHx, 0L = 0,  periodic  spatial  boundary  conditions  are  imposed,  and  the

parameter  values  are  a = 0.1,  t = 0.34,  d = 0.05,  Du = 1,  and  Dv = 10  [612÷].  We  use  the  function  NDSolve  to
numerically  solve  the  system  and  show  a  density  plot  of  vHx, tL.  (A  magnified  view  of  the  solution  would  show  a
complicated fine structure [775÷], [1025÷].)

Module[{a = 0.1, τ = 0.34, δ = 0.05, Dv = 10, Du = 1,
        xM = 240, T = 130, pp = 700, nsol, pdeU, pdeV, u, v, x, t},
(* avoid use of high-precision arithmetic *)
Developer`SetSystemOptions["CatchMachineUnderflow" -> False];
(* nonlinear term *)
f[u_, a_, δ_] := 1/2(Tanh[(u - a)/δ] + Tanh[a/δ]) - u;
(* differential equations *)
pdeU = τ D[u[x, t], t] == Du D[u[x, t], {x, 2}] + 
                          f[u[x, t], a, δ] - v[x, t];
pdeV = 1 D[v[x, t], t] == Dv D[v[x, t], {x, 2}] + u[x, t];
(* initial conditions *)
u0[x_] := Exp[-x^2];
v0[x_] := 0;
(* solve differential equations numerically *)
nsol = NDSolve[{pdeU, pdeV, u[x, 0] == u0[x], v[x, 0] == v0[x], 
                u[+xM, t] == u[-xM, t], v[+xM, t] == v[-xM, t]}, 
               {u, v}, {x, -xM, xM}, {t, 0, T}, 
               (* set options appropriate for the specific problem 
                  and the visualization purpose *)
               MaxSteps -> 10^5, PrecisionGoal -> 2.8, AccuracyGoal -> 2.8, 
               Method -> "BDF", 
               Method -> {"MethodOfLines", "SpatialDiscretization" -> 
                    {"TensorProductGrid", "DifferenceOrder" -> 5, 
                    "MaxPoints" -> {2xM/pp}, "MinPoints" -> {2xM/pp}}}];
(* display density plot of v[x, t] *)
DensityPlot[Evaluate[v[x, t] /. nsol[[1]]], {x, -xM, xM}, {t, 0, T}, 
            Mesh -> False, PlotPoints -> 200, PlotRange -> All,
            ColorFunction -> (Hue[0.78 #]&)]]

Because of the unified underlying language of Mathematica, it is not only possible to perform calculations, but also to
monitor  the  methods  and  algorithms  used  to  perform  the  calculations.  We  solve  the  following  differential  equation
numerically. (This differential equation is related to the s-wave phase shift of a quantum mechanical scattering problem
[249÷], [258÷], [1196÷].)

d£HrL =
1

k r
 HsinHk rL cosHdHrLL + cosHk rL sinHdHrLLL2

For  small  k  (we  use  k = 10-4)  the  solution  dHrL  will  have  wide  flat  plateaus  and  short  steep  walls.  We  display  the
solution dHrL  as a solid line (with the corresponding ticks to  the left)  and the number of cumulative steps taken in the
numerical  solution  process  as  a  dashed  line  (with  the  corresponding  ticks  to  the  right).  The  correlation  between  the
steep increases of dHrL with the number of steps taken is obvious. (In this case, the r-values used in the solution process
are easily extractable from the solution itself; in more complicated situations one can use side effects to monitor details
of the algorithm and method; see Chapter 1 of the Numerics volume of the GuideBooks [1284÷] for more examples.)
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(* the differential equation *)
ode[k_] = δ'[r] == (Sin[k r] Cos[δ[r]] + Cos[k r] Sin[δ[r]])^2/(k r);

(* numerical solution of the differential equation *)
nsol = NDSolve[{ode[10^-4], δ[60] == 15.70789703}, δ, 
               {r, 1, 60}, MaxSteps -> 10^4, Method -> "BDF"];

Show[Graphics[{
 {GrayLevel[0], Dashing[{0.01, 0.01}], 
  (* extract and number r-points *)
  Line[MapIndexed[{#1, #2[[1]]/50}&, nsol[[1, 1, 2, 3, 1]]]]},
 {GrayLevel[0], Line[Table[{r, δ[r] /. nsol[[1]]}, {r, 1, 60, 1/10}]]}}],
     (* make left and right ticks *)                
     Frame -> True, Frame -> True,
     FrameTicks -> {Automatic, Automatic, False, 
                    Table[{2 k, 2 k 50}, {k, 0, 8}]}]

The command Table can be used to generate a matrix. Here is a Hilbert matrix aij = 1 ë Hi + j + 1L [280÷], [1139÷]. 

hilbert = Table[1/(i + j + 1), {i, 4}, {j, 4}]

Here, it is in the usual form. 

hilbert // MatrixForm

Next,  we  find  its  eigenvalues  exactly.  The use  of  Short  prevents  a  large  amount  of  output  from being  printed.  The
structure <<integer>> shows the number of terms left out. 

Eigenvalues[hilbert] // Short[#, 12]&

If we numerically evaluate the eigenvalues, they are, of course, much more compact. 

Eigenvalues[N[hilbert]]

We get the same result if we numerically evaluate the above exact formulas for the eigenvalues. 

N[%%]

Here  is  a  slightly  larger  example  from linear  algebra.  We  take  two  random  symmetric  12 μ 12  matrices  1  and  2,
form a = H1 - aL 0 + a 1, and calculate the minimal distance between the eigenvalues lkHaL of a  as a function of
the complex variable a. The peaks in the graphics are the branch points of the multivalued function lHaL.

(* two symmetric matrices *)
{ 0, 1} = With[{n = 12}, (* generate random symmetric matrix *)
    Table[Developer`ToPackedArray[(# + Transpose[#])&[
     Table[If[i > j, 0., 2 Random[] - 1], {i, n}, {j, n}]]], {2}]];

(* minimal distance between eigenvalues *)
minEigenvalueDistance =
Compile[{{ , _Complex, 2}},
        Module[{evs = Eigenvalues[ ], n = Length[ ]},
               (* distance between all pairs *)
               Min[Table[Min[Table[Abs[evs[[i]] - evs[[j]]], 
                             {j, i + 1, n}]], {i, 1, n - 1}]]],
               {{Eigenvalues[_], _Complex, 1}}];
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(* display eigenvalue distances over complex a-plane *)
ParametricPlot3D[{αr Cos[αϕ], αr Sin[αϕ], (* use logarithm *)
                  -Log[minEigenvalueDistance[(* the matrix *)
                       N[(1 - αr Exp[I αϕ]) 0 + αr Exp[I αϕ] 1]]],
                  {EdgeForm[]}}, {αr, 0, 2.5}, {αϕ, 0, 2Pi}, 
                 PlotPoints ->  6{30, 60}, Compiled -> False, 
                 BoxRatios -> {1, 1, 1/2}, PlotRange -> {-1, 5}]

Here is the numerical value of the Gamma function at 1/2. 

N[Gamma[1/2]]

Here is the numerical value of the Bessel function J3.3H6.7L. 
N[BesselJ[3.3, 6.7]]

We  can  also  evaluate  the  Bessel  function  for  a  complex  argument  and  a  complex  index,  for  instance,
I3.3+0.6 iH6.7 - 9.5 iL. 

N[BesselI[3.3 + 0.6 I, 6.7 - 9.5 I]]

Here is a 100-digit value of I3.3+0.6 iH6.7 - 9.5 iL (to get 100 digits, the input must have enough digits and one cannot use
machine numbers as input).

N[BesselI[33/10 + 6/10 I, 67/10 - 95/10 I], 100]

The  next  input  has  100-digit  arguments.  The  result  has  fewer  digits  now.  All  digits  displayed  are  guaranteed  to  be
correct.

BesselI[N[33/10 + 6/10 I, 100], N[67/10 - 95/10 I, 100]]

Special functions can be evaluated for all complex arguments. This makes it possible to numerically solve the differen-
tial  equation  z≥HtL = J2HzHtL, qL  where  J2Hz, qL  is  an  elliptic  theta  function.  The  left  picture  shows  a  solution curve of
this  differential  equation  in  the  complex  plane  and  the  right  picture  shows  the  corresponding  recurrence  plot  [427÷],
[242÷], [516÷], [908÷].
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Module[{q = -0.483069 - 0.482155 I, ζ0 = 0.514593 - 0.909303 I, 
        ζp0 = -0.784268 - 0.773652 I,  T = 300, pp, line, λ},
       (* solve differential equation numerically *)
       nsol = NDSolve[{z''[τ] == EllipticTheta[2, z[τ], q], 
                       z[0] == ζ0, z'[0] == ζp0}, 
                       {z}, {τ, 0, T}, MaxSteps -> 10^5];
       (* maximal solution time *)
       T = nsol[[1, 1, 2, 1, 1, 2]];
       pp = ParametricPlot[Evaluate[{Re @ z[τ], Im @ z[τ]} /. nsol[[1]]],
                           {τ, 0, T}, PlotPoints -> 9000, 
                           DisplayFunction -> Identity];
       (* extract curve *)
       line = pp[[1, 1, 1, 1]]; λ = Length[line];
       Show[GraphicsArray[
       (* solution curve in the complex plane *)
       {Graphics[MapIndexed[(* color curve *)
             {Hue[0.8 #2[[1]]/λ], Line[#1]}&, Partition[line, 2, 1]], 
                 Frame -> True],
        (* recurrence plot for t § 100 *)
        ContourPlot[Evaluate[Abs[z[t] - z[τ]] /. nsol[[1]]],
            {t, 0, 100}, {τ, 0, 100}, PlotPoints -> 300, 
            PlotRange -> All, ContourLines -> False,
            (* use red-blue coloring scheme *)
            ColorFunction -> (RGBColor[#, 1 - #, 0]&),
            DisplayFunction -> Identity]}]]]

Next, we interpolate the data 881, 2<, 82, 4<, 83, 9<, 84, 16<<. 
Interpolation[{{1, 2}, {2, 4}, {3, 9}, {4, 16}}]

This input gives the value of the approximating function at 5 ê2. 

%[5/2]

Here is an infinite sum: ⁄n=1
¶ n-2.

NSum[1/n^2, {n, 1, Infinity}]

Its exact value is p2 ë 6. 

Sum[1/n^2, {n, 1, Infinity}]

N[Pi^2/6]

The following example is a divergent infinite sum: ⁄n=1
¶ In2 - 1M ë Hn + 1L2.

NSum[(n^2 - 1)/(n + 1)^2, {n, 1, Infinity}]

Here is a more difficult example using NSum. Euler’s constant can be defined as g = limnØ¶ HHn - lnHnLL, where Hn  are
the harmonic numbers Hn = ⁄k=1

n 1 ê k. For finite n, we have Hn - lnHnL = g + OH1 ênL. Fortunately, Euler’s constant can

be expressed much more efficiently as the following limit (with error term OHexpH-4 nLL for finite n) [196÷]:

lim
nØ¶

⁄k=0
¶ J nk

k!
N
2

Hk

⁄k=0
¶ J nk

k!
N
2

- logHnL = g

(The argument of the limit can be evaluated in closed form, as K0H2 nL ê I0H2 nL + g, but this is not useful for the numeri-
cal evaluation of g). We define a function nSum that calls the built-in function NSum with options set appropriately for
the two sums at hand.
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nSum[args__] := NSum[args, (* set options appropriately *)
                     VerifyConvergence -> False, Method -> Fit,
                     PrecisionGoal -> 120, NSumTerms -> 150,
                     AccuracyGoal -> Infinity, Method -> Fit,
                     NSumExtraTerms -> 50, WorkingPrecision -> 200]

Now n = 60 yields already more than 100 correct digits for Euler’s constant.

γ[n_] := nSum[(n^k/k!)^2 HarmonicNumber[k], {k, 0, Infinity}]/
         nSum[(n^k/k!)^2, {k, 0, Infinity}] - Log[n]

γ[60]

% - EulerGamma

The infinite product ¤s=2
¶ I1 - s-2M has an exact value of 1 ê2. Here, we compute it numerically. 

NProduct[1 - 1/s^2, {s, 2, Infinity}]

Mathematica can also solve the following simple minimization problem.

min
x,y

IHx - 2.56L2 + Hy - 3.78L4 + 3.1M

FindMinimum[(x - 2.56)^2 + (y - 3.78)^4 + 3.1, {x, 1}, {y, 1}]

Here is  the  computation using more digits  (the detailed  meaning of  the  options  PrecisionGoal  and  Accuracy
Goal will be discussed in Chapter 1 of the Numerics volume of the GuideBooks [1284÷]). This time we use an objec-
tive function with exact numbers instead of machine numbers.

FindMinimum[(x - 256/100)^2 + (y - 378/100)^4 + 31/10, {x, 1}, {y, 1},
            PrecisionGoal -> 30, AccuracyGoal -> 30,
            WorkingPrecision -> 100] // (* shorten output *) N[#, 30]&

FindRoot solves implicit equations. Here, we solve the simple equation cosHxL = sinHxL. 
FindRoot[Sin[x] == Cos[x], {x, 1}]

The result compares well with the exact root. 

N[Pi/4]

Next, we look at a higher degree polynomial: x + 2 x2 + 3 x3 + 4 x4 + ∫ + 66 x66 = 0.

poly = Sum[i x^i, {i, 66}]

It has 66 zeros. (By the fundamental theorem of algebra, every polynomial of nth degree has exactly n possibly complex
zeros.) 

NSolve[poly == 0] // Short[#, 10]&

Length[%]

Here are  the Jensen  disks  (disks  whose  diameter is  the segment joining  complex conjugate  roots)  for  this  polynomial
and  all  of  its  derivatives.  (Jensen’s  theorem asserts  that  all  nonreal  roots  of  the  derivative  of  a  polynomial  with  real
coefficients lie inside the Jensen disks of the polynomial itself [645÷], [1341÷], [1108÷], [1090÷].)

JensenDisks[poly_, x_] := 
 Disk[{Re[#[[1]]], 0}, Abs[Im[#[[1]]]]]& /@ 
      (* pairs of complex conjugate roots *)
      Partition[Cases[x /. NSolve[poly == 0, x], _Complex], 2]

18 Printed from THE MATHEMATICA GUIDEBOOKS

©  2004, 2005   Springer Science+Business Media, Inc.



Show[Graphics[MapIndexed[{GrayLevel[Mod[#2[[1]], 2]], #}&, 
                (* form disks from roots *)
                JensenDisks[#, x]& /@ NestList[D[#, x]&, poly, 66]]],
                Frame -> True, AspectRatio -> Automatic]

Generally, a large amount of data, as in the last example, is better expressed graphically. Here, we compute all of the
zeros of all polynomials of degree less than or equal to maxDegree with nonzero integer coefficients between -maxIntÖ
Coeff and maxIntCoeff. (For the zeros of related polynomials, see [142÷], [1017÷], [179÷], and [1016÷].)

allRoots[maxDegree_, maxIntCoeff_] :=
Module[{x, allMonomials, allIntegers, allCoefficientLists},
 (* the monomials *)
 allMonomials = Table[x^i, {i, 0, maxDegree}];
 (* the coefficients *)
 allIntegers = Range[-maxIntCoeff, maxIntCoeff];
 (* all possible lists of coefficients *)
 allCoefficientLists = Flatten[Outer[List, 
  Sequence @@ Table[allIntegers, {maxDegree + 1}]], maxDegree];
 (* showing all roots in the complex plane *)
 Graphics[{PointSize[0.003], Point[{Re[#], Im[#]}]& /@
 (* solving all polynomials, taking roots *)
    Flatten[(Cases[NRoots[#, x], _Real | _Complex, {-1}])& /@
     DeleteCases[allMonomials.# == 0& /@ allCoefficientLists, False]]}, 
         PlotRange -> {{-3, 3}, {-2, 2}}, Frame -> True, 
         AspectRatio -> Automatic]]

For allRoots[2, 14], we have 24361 different polynomials and for allRoots[5, 2], we have 15621 different
polynomials with the following roots in the complex plane. 

Show[GraphicsArray[{allRoots[2, 14], allRoots[5, 2]}]]

Now,  we  solve  a  large  system  of  linear  equations.  The  de  Rham’s  function  jaHxL  fulfills  the  following  functional
equations [126÷], [691÷], [127÷], [367÷]:

jaK
x

2
O = a jaHxL

ja

x + 1

2
= a + H1 - aL jaHxL.

Discretizing  the  functional  equations  at  x = 0, 1
n , 2

n , …, n-1
n , 1  yields  2 n + 2  linear  equations  for  2 n + 1  unknowns

jaH0L, jaI 1
2 n M, …, jaI 2 n-1

2 n M, jaH1L. The function deRhamϕPoints solves the linear equations for a given a.

deRhamϕPoints[α_, n_] := 
Module[{ϕ, ϕs, eqs},
  (* avoid numericalization of arguments of j *)
  SetAttributes[ϕ, NHoldAll];
  (* the unknowns *)
  ϕs = Table[ϕ[x], {x, 0, 1 - 1/(2n), 1/(2n)}];
  (* the linear equations *)
  eqs = N[Flatten[Table[{ϕ[x/2] - α ϕ[x] == 0, 
                         ϕ[(x + 1)/2] - α - (1 - α) ϕ[x] == 0},
                       {x, 0, 1 - 1/n, 1/n}]]];
  (* 2n + 1 points of the de Rahm's function j *)
  Apply[{First[#1], #2}&, First[Solve[eqs, ϕs]], {1}]]                

The next graphic shows de Rahm’s functions for various values of a. Each curve has 401 points.
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Show[Graphics[Table[
      {Hue[0.8 α], Line[deRhamϕPoints[α, 200]]}, {α, 1/20, 19/20, 1/20}]],
     Frame -> True]

The  ability  to  calculate  with  numbers  of  arbitrary  precision  allows  for  straightforward  investigations  that  otherwise
would  be  very  difficult.  The  following  graphic  shows  how  two  orbits  of  the  logistic  map xn+1 = 1 - a xn

2  move  apart

with increasing iteration number. We choose x0 = 3 ê 7 and x0
£ = 3 ê7 + 10-300, follow 500 iterations for 200 values of a,

and use 500 digits in all calculations. The resulting contour plot shows that the distance between xn  and xn
£  is a sensitive

function  of  a.  (For  more  about  the  Liapunov  exponent  [1111÷],  [123÷]  of  the  logistic  map,  see  [100÷],  [312÷],
[1286÷], [435÷], and [820÷].)

Module[{∂ = 10^-6},
(* distance between two orbits *)
δList[a_, x0_, δx0_, n_, prec_] :=
        NestList[(1 - a #^2)&, N[x0 + δx0, prec], n] -
        NestList[(1 - a #^2)&, N[x0, prec], n];
(* data for different a *)
data = Table[Log[10, Abs[δList[a, 3/7, 10^-300, 500, 500]]],
             {a, ∂, 2, (2 - ∂)/200}];
(* visualize distance *)             
ListContourPlot[data, MeshRange -> {{1, 500}, {0, 2}},
                Contours -> 120, ContourLines -> False,
                PlotRange -> All, ColorFunction -> (Hue[Random[]]&),
                FrameLabel -> {None, "a"}]]

Next, we carry out a fast Fourier transform. How does one find a built-in function that does this? The question mark ?
stands for a request for information, whereas * after the letters replaces any sequence of lowercase or capital letters or
other  characters.  For  example,  we  can  find  out  what  Fourier  is  (of  course,  another  possibility  is  to  look  under
Fourier in on-line version of The Mathematica Book, in the Help Browser). 

?Four*

The following creates the values of two superimposed sine waves with different frequencies and different amplitudes.
The semicolon prevents the printing of the 1000 values generated. 

sinTable = Table[N[Sin[10 n 2Pi/1024] + 2 Sin[5 n 2Pi/1024]], {n, 1, 1024}]

Here is the Fourier transform (we visualize the result in the next subsection). 

fourierTable = Fourier[sinTable];

We display the first 20 elements of fourierTable.

Take[fourierTable, 20] // Chop

Here,  the  two-dimensional  (2D)  Fourier  transforms of  the  reciprocals  of  the  greatest  common divisor  of  two integers
gcdHi, jL and the least common multiple lcmHi, jL for 1 § i, j § 256 is shown.

Show[GraphicsArray[
Block[{$DisplayFunction = Identity},
(* display absolute value of 2D Fourier transform *)
 ListDensityPlot[Abs[Fourier[Table[1/#[i, j], {i, 256}, {j, 256}]]], 
                 Mesh -> False, ColorFunction -> (Hue[0.8 #]&)]& /@
                                                       {GCD, LCM}]]]

Starting  with  Mathematica  Version  4,  in  addition  to  the  ease  of  programming,  the  fact  that  computations  are  done
immediately,  and  the  ability  to  plot  numerical  functions,  Mathematica  provides  the  possibility  to  carry  out  larger
numerical  calculations  very  efficiently.  Larger,  compiled  (using  the  function  Compile)  numerical  calculations  in
Mathematica  can  within  a  small  factor  achieve  the  speed  of  corresponding  Fortran  programs,  such  as  those  in  NAG
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(http://www.nag.com), IMSL (http://www.imsl.com), and netlib (http://www.netlib.org) ([1093÷], [1240÷], [821÷], and
[400÷]) or can even be faster. (For a rough survey of these kinds of programs, see [1137÷] and [776÷]). 

Mathematica  has  a  built-in  (pseudo-)compiler.  It  generates  machine-independent  pseudo-code.  For  many  numerical
calculations, the use of the compiler will speed up calculations by a factor 2 to 20. Here is an example: the calculation
of  the  Fourier  spectrum  of  the  quantum-mechanical  energy  spectrum  of  a  2D  square  well  [1142÷],  [166÷],  [990÷].
According to the Gutzwiller–Maslov theory, the Fourier spectrum contains information about the length of the classical
periodic  orbits  [593÷],  [190÷],  [398÷],  [340÷],  [1378÷],  [1144÷],  [1157÷],  [1355÷],  [884÷],  [150÷],  [151÷],  and
[1143÷]).

This is the list of eigenvalues taken into account.
evList = Select[Sort[Flatten[Table[Sqrt[n^2 + m^2], {n, 60}, {m, 60}]]],
                # <= 60&];

The  function  to  be  calculated  is  plHlL = ⁄j=1
n expIi k j lM,  where  the  k j  are  the  elements of  the  list  evList  and  n  is  its

length. Here, for l = 2, the sum is calculated directly.

With[{l = 2.}, Abs[Total[Exp[I N[Pi evList] l]]]^2 ] // Timing

Compiling the function results in a considerable speed-up.

plCompiled = Compile[{{l, _Real}}, Evaluate[
                     Abs[Plus @@ Exp[I N[Pi evList] l]]^2]];

(* repeat calculation 10 times for a reliable timing result *)
Table[With[{l = 2.}, plCompiled[l]], {10}] // Timing

Here, a graphic of the absolute value of plHlL is shown. This calculation involves nearly 3000 sums, each of them with
about 3000 terms.

Plot[plCompiled[l], {l, 0, 20}, 
     PlotRange -> {0, 30000}, PlotPoints -> 80, Frame -> True, 
     FrameTicks -> {Automatic, None}, Compiled -> False]

By using compiled functions,  many numerical calculations can be carried out  quite fast.  Here is a  modeling problem:
the  forest  fire  (model)  [68÷],  [975÷],  [1177÷],  [889÷],  [1096÷].  We  consider  a  1D  array.  Each  element  represents
either  a  burning  tree,  a  nonburning  tree  or  an  empty  site.  At  each  time  step,  a  burning  tree  burns  down  creating  an
empty site and ignites trees that are direct neighbors and which have trees. All empty sites grow a tree with probability
p. The implementation of a compiled version of a time step of the forest fire model is straightforward. In the array with
the fires, trees, and empty sites, 1 stands for fire, -1 for a tree and 0 for an empty site (and ashes).

forestFireStepC = Compile[{{l, _Integer, 1}, p}, 
Module[(* use periodic boundary conditions *)
       {l1 = Append[Prepend[l, Last[l]], First[l]], l2}, l2 = l1;
       Do[(* burn trees and ignite neighbors *)
          l1[[k]] = Which[l2[[k]] == 1, 0,
                          l2[[k]] == -1 && (l2[[k - 1]] == 1 || 
                                            l2[[k + 1]] == 1), 1,
                          True, l2[[k]]], {k, 2, Length[l2] - 1}];
       (* grow new trees *)
       If[# == 0, If[Random[] < p, -1, 0], #]& /@ Take[l1, {2, -2}]]];

For visualizing the forest fire, we implement a function forestFirePlot. Fires are shown in red, trees in green, and
empty sites in white.
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forestFirePlot[data_] := 
ListDensityPlot[data, Mesh -> False, FrameTicks -> None,
         ColorFunctionScaling -> False, 
         (* red for fire; green for trees; white for empty *)
         ColorFunction -> (Which[# ==  1, RGBColor[1, 0, 0],
                                 # == -1, RGBColor[0, 1, 0],
                                 # ==  0, RGBColor[1, 1, 1]]&)]

For p = 0.22, p = 0.32, and p = 0.42 we show the resulting fires and trees over 500 time steps for an initial array length
of L = 500. (In average, we need p t 1 ê lnHLL to keep the fire burning.) On a year-2005 computer, the calculation takes
a fraction of a second for each p.

With[{L = 500, T = 500}, 
Show[GraphicsArray[
Block[{$DisplayFunction = Identity}, 
      (* start with same initial fires and trees *) 
      Function[p, SeedRandom[111];
      forestFirePlot[NestList[forestFireStepC[#, p]&,
                  Table[Random[Integer, {-1, 1}], {L}], T]]] /@
                                         {0.22, 0.32, 0.42}]]]]

Here is a more-complicated calculation within integer arithmetic. The sum sbHnL  of the digits of an integer n  in base b
can be calculated in Mathematica in the following way.

digitSum[n_Integer?Positive, base_Integer /; base > 2] := 
                             Total[IntegerDigits[n, base]]

If one iterates sbHnL until a fixed point is reached, one gets a new function yHnL. We call it IteratedDigitSum[n]. 

IteratedDigitSum[n_Integer?Positive, base_Integer /; base > 2] := 
                                FixedPoint[digitSum[#, base]&, n]

y  is  an  arithmetic  function  [56÷],  which  means  yHn + mL = yHyHnL + yHmLL  and  yHn mL = yHyHnL yHmLL.  Here,  this
property for two large integers is tested.

x = 9218359834598298562984567230456723624068502495865409134;
y = 3109579823049090378621220813796509245672098567203496722;
b = 13;

{{IteratedDigitSum[x + y, b],
  IteratedDigitSum[IteratedDigitSum[x, b] + IteratedDigitSum[y, b], b]}, 
 {IteratedDigitSum[x * y, b],
  IteratedDigitSum[IteratedDigitSum[x, b] * IteratedDigitSum[y, b], b]}}

The following pictures visualize the values of the function yHn mL in the n, m-plane for base 100 and base 26.

Show[GraphicsArray[
ListDensityPlot[Table[IteratedDigitSum[x y, #], {x, 100}, {y, 100}], 
                Mesh -> False, ColorFunction -> Hue,
                DisplayFunction -> Identity]& /@ 
                                 (* two integer bases *) {26, 100}]]          

As mentioned,  high-precision arithmetic is  a  very  useful  tool  for  scientific computations.  We will  end this subsection
with a slightly larger example. Let us deal with a simple mechanical system: a billiard ball bouncing between two types
of regularly arranged circular scatterers (or a light ray reflected by perfectly mirroring circles, also called a Sinai billiard
with finite horizon or a Lorentz gas [1259÷], [164÷], [1164÷]). Here are some of the scatterers shown. 
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With[{o = 3}, 
 Show[gr = Graphics[{Thickness[0.002],
 (* array of large and small circles *)
 Table[If[(-1)^(i + j) == 1, Circle[{i, j}, 5/8], Circle[{i, j}, 1/4]],
       {i, -o, o}, {j, -o, o}]}, AspectRatio -> Automatic]]]

The following functions implement the elastic scattering process of a point-shaped billiard ball between the scatterers.

(* nearest intersection (if any) of a ray with a circle *)
nearestIntersection[Ray[p_, d_], Circle[q_, r_]] := 
Module[{eqs = (p - q + t d).(p - q + t d) - r^2, sol},
  sol = Select[t /. Solve[eqs == 0, t], (Im[#] == 0 && # > 0)&];
  If[sol === {}, {}, p + t d /. t -> Min[sol]]]

(* reflection of a ray at the point s at a circle *)
reflect[Ray[_, d_], s_, Circle[q_, _]] := 
Module[{n = #/Sqrt[#.#]&[s - q]}, Ray[s, d - 2d.n n]]

(* the circle of next reflection for a ray *)
nextCircle[ray_, lastCircle_] := 
Module[{is}, circles = 
       If[(-1)^Total[lastCircle[[1]]] === 1, 
        (* big circles *)
          Join[Circle[lastCircle[[1]] + #, 5/8]& /@
                       {{2, 0}, {0, 2}, {-2, 0}, {0, -2},
                        {1, 1}, {-1, 1}, {1, -1}, {-1, -1},
                        {3, 1}, {1, 3}, {-3, 1}, {-1, 3},
                        {3, -1}, {1, -3}, {-3, -1}, {-1, -3}},
               Circle[lastCircle[[1]] + #, 1/4]& /@
                       {{1, 0}, {0, 1}, {-1, 0}, {0, -1},
                        {2, 1}, {1, 2}, {-2, 1}, {-1, 2},
                        {2, -1}, {1, -2}, {-2, -1}, {-1, -2}}],
          (* small circles *)
          Join[Circle[lastCircle[[1]] + #, 5/8]& /@
                       {{1, 0}, {0, 1}, {-1, 0}, {0, -1},
                        {2, 1}, {1, 2}, {-2, 1}, {-1, 2},
                        {2, -1}, {1, -2}, {-2, -1}, {-1, -2}},
               Circle[lastCircle[[1]] + #, 1/4]& /@
                       {{1, 1}, {-1, 1}, {1, -1}, {-1, -1}}]];
 is = DeleteCases[{nearestIntersection[ray, #], #}& /@ circles, {{}, _}];
 is[[Position[#, Min[#]]&[
           #.#& /@ ((First[#] - First[ray])& /@ is)][[1, 1]], 2]]]

The next function calculates o reflections of a billiard ball that starts at the angle f0 of the central scatterer in direction
8cosHj0L, sinHj0L<.

(* o reflections of a ray starting at {Cos[f0], Sin[f0]}
   with direction {Cos[j0], Sin[j0]};
   optional argument prec for high-precision *)
rayPath[φ0_, ϕ0_, o_, prec___] := 
Module[{startRay = Ray[5/8{Cos[φ0], Sin[φ0]}, 
                       N[{Cos[ϕ0], Sin[ϕ0]}, prec]],
        ray, lastCircle = Circle[{0, 0}, 5/8], nC, nI}, 
 Prepend[#, startRay]&[ray = startRay;  
   (* carry out sequence of reflections *)
   Table[nC = nextCircle[ray, lastCircle]; 
         nI = nearestIntersection[ray, nC];
         ray = reflect[ray, nI, nC]; lastCircle = nC; ray, {o}]]]

The  following  graphic  shows  that  the  machine-precision  generated  ray  (in  blue)  deviates  qualitatively from the  high-
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precision generated ray (in red) after less than 20 reflections (this is possible because of the exponential  instability of
the Sinai billiard [351÷], [394÷]). The high-precision calculation uses 100 digits of precision.

rayPathGraphic[rays_] := 
With[{λ = Length[rays]}, 
Graphics[{(* the circles *) gr[[1]],
          (* the reflected rays *)
          {Thickness[0.002], Table[{Hue[0.8 (k - 1)/λ], 
                       Line[First /@ rays[[k]]]}, {k, λ}]}}, 
          PlotRange -> 3.7 {{-1, 1}, {-1, 1}}, AspectRatio -> Automatic]]

Show[{(* high-precision path *)
      rayPathGraphic[{rayPath[127/426 Pi, 121/291 Pi, 25, 100]}],
      (* machine-precision path *)
      rayPathGraphic[{rayPath[127/426 Pi, 121/291 Pi, 25]}] /. 
      (* make blue path *) Hue[x_] :> Hue[x + 0.75]}]

The following  animation shows  the  extreme sensitivity  of  the  billiard  path  as  a  function  of  its  starting direction.  The
trajectory starts at the rightmost point of the central circle. We color the pieces of the trajectory from red to blue.

Show[GraphicsArray[
Function[ϕ0, rayPathGraphic[{rayPath[0, ϕ0, 30, 120]}] /. 
        Line[l_] :> (* color line segments *)
        MapIndexed[{Hue[0.78(#2[[1]] - 1)/30], Line[#]}&,
                   Partition[l, 2, 1]]] /@ {Pi/40, Pi/4, 3Pi/8}]]

Make Input     Show Animation

Do[Show[rayPathGraphic[{rayPath[0, ϕ0, 30, 120]}] /. 
        Line[l_] :> (* color line segments *)
        MapIndexed[{Hue[0.78(#2[[1]] - 1)/30], Line[#]}&,
                   Partition[l, 2, 1]]], {ϕ0, 0, Pi/2, Pi/2/90}];

By slightly changing the function rayPath, we can implement a function fixedFinalTimeRayPath that does not
carry out a fixed number of reflections, but calculates each path for a fixed time.

(* carry out reflections of a ray starting at {Cos[f0], Sin[f0]} 
   with direction {Cos[j0], Sin[j0]} until time T *)
fixedFinalTimeRayPath[φ0_, ϕ0_, T_, prec___] := 
Module[{ray = Ray[5/8 {Cos[φ0], Sin[φ0]}, 
                    N[{Cos[ϕ0], Sin[ϕ0]}, prec]], λ, Λ = 0, δL, 
        nC = Circle[{0, 0}, 5/8], nI, nIO, rayBag, finalPoint}, 
       rayBag = {{ray, Λ}}; nIO = ray[[1]];
       (* reflect until time T has gone by *)
       While[Λ < T,  nC = nextCircle[ray, nC]; 
                     nI = nearestIntersection[ray, nC];
                     ray = reflect[ray, nI, nC]; 
                     λ = Sqrt[#.#]&[nI - nIO]; Λ = Λ + λ; 
                     nIO = nI; rayBag = {rayBag, {ray, Λ}}]; 
       (* the flight segments *)
       rays = Partition[Flatten[rayBag], 2];
       (* cut last flight segment so that it end at time T *)
       δL = T - rays[[-2, 2]];
       finalPoint = rays[[-2, 1, 1]] + δL rays[[-2, 1, 2]];
       (* return list of flight segments *)
       Append[#[[1, 1]]& /@ Most[rays], finalPoint]]

We now follow 192 paths for the time 12 (we assume unit speed). The machine number calculation is about three times
faster than the high-precision calculation with 120 digits.
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 Module[{ppφ = 48, ppϕ = 3, T = 12, prec = 120, },
  (* calculate paths for machine precision 
     and high precision *)
   = Timing[Table[fixedFinalTimeRayPath[φ0, ϕ0, T, #],
                   {φ0, 0, 2Pi (1 - 1/ppφ), 2Pi/ppφ},
                   {ϕ0, φ0 - Pi/2, φ0 + Pi/2, Pi/ppϕ}]]& /@
                                {MachinePrecision, prec};
  (* make path segment assignments and return timings *)
  {pathData, pathDataHP} = Last /@ ; First /@ ]                          

We color the paths and display them. The left graphic shows the machine arithmetic results and the right graphic shows
high–precision results. The two graphic are qualitatively similar, but have different detailed paths.

Show[GraphicsArray[
 Graphics[{Thickness[0.002], 
           MapIndexed[{Hue[#2[[1]]/8], Line[#1]}&, #, {2}]},
          PlotRange -> All, AspectRatio -> Automatic,
          Frame -> True, FrameTicks -> None]& /@ 
          (* machine number and high-precision data *) 
                                   {pathData, pathDataHP}]]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

à 1.2.2 Graphics
We have already used various graphics types in the last subsection for visualizing some of the numerical results. In this
subsection, we will concentrate on the graphics. We begin with a simple plot in the plane. 

Plot[Sin[x], {x, 0, 10}]

The  Gibbs  phenomenon  (see  [768÷],  [681÷],  [1166÷],  [1205÷],  [850÷],  [480÷],  [1272÷],  [554÷],  [555÷],  [632÷],
[556÷], [548÷], [557÷], [300÷], and [1075÷]) involves the “overshoots” that occur in replacing a given function by the
partial  sums  of  its  Fourier  series.  It  is  L2-convergent,  which  means  that  the  integral  of  the  squared  difference  of  the
approximation  to  the  given function goes  to  zero,  but  in  general  no pointwise  convergence  to  the original  function  is
achieved. If the original function f HxL is of bounded variation, the series will converge pointwise to f HxL at every point

of continuity of f HxL.  Here,  we examine this phenomenon for the expansion of the function qIHp ê 2L2 - x2M (qHzL  is the

Heaviside function) in terms of 9H2 ê pL1ê2 sinHi xL=i=1,2,…. The series converge at x = 0 to 0 and at x = p ê2 to 1 ê2. We see

“overshoots” near x = 0 and x = p ê2. The left graphic shows the original step function and the first 18 partial sums over
the  interval  @0, pD.  The  right  graphic  shows  the  first  120  partial  sums,  colored  from  black  to  white  in  the  interval
@0, p ê2D near f HxL º 1.

partialSum[n_, x_] :=
Sum[Sqrt[2/Pi] (1 - Cos[i Pi/2])/i Sqrt[2/Pi] Sin[i x], {i, n}]
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Show[GraphicsArray[
Block[{opts = Sequence[DisplayFunction -> Identity,
                       Frame -> True, Axes -> False]},
{(* the left plot *)                
 Plot[Evaluate[Table[partialSum[j, x], {j, 18}]],
      {x, 0, Pi}, Evaluate[opts], PlotRange -> All,
      PlotStyle -> {{Thickness[0.002], GrayLevel[0]}},
      Prolog -> {Thickness[0.02], GrayLevel[1/2],
                 Line[{{0, 0}, {0, 1}, {Pi/2, 1}, 
                       {Pi/2, 0}, {Pi, 0}}]}],
  (* the right plot *)   
 Plot[Evaluate[Table[partialSum[j, x], {j, 10, 120}]],
      {x, 0, Pi/2}, Evaluate[opts], PlotPoints -> 1000, 
       PlotRange -> {0.88, 1.2}, 
       PlotStyle -> Table[{Thickness[0.002], GrayLevel[k/120]}, 
                          {k, 120}]]}]]]

A  related,  not  less  interesting,  but  much  less  known  phenomenon  happens  for  the  Fourier  series  description  of  the
product of two discontinuous functions, whose product is a continuous function [844÷], [1348÷], [252÷], [1349÷].

Here are two such functions f1 and f2. The left graphic shows the function f1 in red, the function f2 in blue, and the
right product shows the product of f1 and f2.

(* two functions with concurrent jumps *)
f1[x_] := (1 + x) UnitStep[x]  + (2 - x) UnitStep[-x]
f2[x_] := (2 + x) UnitStep[x]  + (1 - x) UnitStep[-x]

Show[GraphicsArray[
Block[{$DisplayFunction = Identity},
 {(* the two functions in red and blue *)
  Plot[{f1[x], f2[x]}, {x, -Pi, Pi}, AxesOrigin -> {0, 0},
       PlotStyle -> {RGBColor[1, 0, 0], RGBColor[0, 0, 1]}], 
  (* the product of the two functions in black *)
  Plot[f1[x] f2[x], {x, -Pi, Pi}, AxesOrigin -> {0, 0}]}]]]

The  partial  sums  of  the  two  functions  give  Gibbs  oscillations  near  the  origin.  The  Fourier  series  coefficients  of  the
product c12HkL is the convolution ⁄j=-o

o c1Hk - jL c2H jL of the Fourier series coefficients c1HkL and c2HkL of the two factors

(we  truncate  the  series  at  order  o).  But  although  the  product  is  a  continuous  function,  the  truncated  Fourier  series
exhibits  strong  oscillations  (next  left  graphic).  The  right  graphic  shows  Li’s  corrected  version  cè12HkL  in  which  the
Fourier  series  coefficient  c1Hk - jL  is  replaced  by  the  k, j  element  of  the  inverse  of  the  Toeplitz  matrix of  the  Fourier
series coefficients of the inverse of f1.

(* Fourier coefficients of f1 and f2 *)
c1[k_] = If[k == 0, (3 + Pi)/2, 
            ((2 - I k)(-1 + Cos[k Pi]) + k (3 + 2 Pi) Sin[k Pi])/(2 k^2 Pi)
c2[k_] = If[k == 0, (3 + Pi)/2, (Sin[(k Pi)/2] *
            (k (3 + 2 Pi) Cos[(k Pi)/2] + (-2 - I k) Sin[(k Pi)/2]))/(k^2 P
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(* classical convolution for product coefficient:
   Table[Sum[If[Abs[k - j] > o, 0, c1[k - j] c2[j]], {j, -o, o}], 
         {k, -o, o}] *)
(* calculated all coefficients at once *)
c12List[o_] := ListConvolve[Table[c1[j], {j, -o, o}], 
                            Table[c2[j], {j, -o, o}], o + 1, 0]
(* Fourier series coefficient for 1/f1 *)
c1Inv[k_] := c1Inv[k] = N @ 
           If[k == 0, Log[(1 + Pi) (2 + Pi)/2]/(2 Pi), (Gamma[0, -2 I k] + 
                  E^(3 I k)(Gamma[0, I k] - Gamma[0, I k (1 + Pi)]) - 
                  Gamma[0, (-I) k (2 + Pi)])/(E^(2 I k)(2 Pi))];
(* concurrent jump-corrected convolution for product coefficient *)
c12SmoothedList[o_] := 
Module[{c1InvToeplitz, invMat},
       (* form Toeplitz matrix *)
       c1InvToeplitz = Table[c1Inv[n - m], {n, -o, o}, {m, -o, o}];
       invMat = Inverse[c1InvToeplitz];
       (* Fourier series coefficients *)
       invMat.Table[c2[k], {k, -o, o}]]                  

Show[GraphicsArray[Function[fourierSeriesList, 
Plot[Evaluate[Flatten[{f1[x] f2[x], (Re @ fourierSeriesList)& /@ 
               {16, 32, 64, 128, 256}}]], {x, -Pi/16, Pi/16},
     PlotRange -> All, DisplayFunction -> Identity,
     PlotStyle -> (* product in black, approximations of degree 
                     16, 32, 64, 128, 256 from red to blue *)
     {{GrayLevel[0.8], Thickness[0.01]}, Sequence @@ ({#, Thickness[0.004]}
       {Hue[0], Hue[0.22], Hue[0.3], Hue[0.55], Hue[0.7]})}], {HoldAll}] @@
     (* classical Laurent convolution and Li's convolution *)
     {Hold[c12List[#].Table[Exp[I k x], {k, -#, #}]],
      Hold[c12SmoothedList[#].Table[Exp[I k x], {k, -#, #}]]}]]

The following two pictures are a visualization of the interesting limit [636÷], [485÷], [654÷].

f HxL = lim
nØ¶

1

n
 ‚
k=0

¶

HcosHk p xLL2 k =
0 if x is irrational
1
q if x =

p
q is rational, gcdHp, qL = 1

The left picture represents the right-hand side (with points at all rational x with denominator less than or equal 200), and
the right picture shows the convergence of the first 40 partial sums of the left-hand side.

With[{maxDenominator = 200, maxSeriesTerms = 40},
Show[GraphicsArray[
     (* left graphics *)
{Graphics[{PointSize[0.002],

Union[Flatten[Table[Point[{i/j, 1/j}],
                    {j, maxDenominator}, {i, 0, j}]]]},

          PlotRange -> All, Frame -> True],
 (* generate the right plot *)         

Plot[Evaluate[Table[1/n Sum[Cos[k Pi x]^(2k),
                    {k, 1, n}], {n, 1, maxSeriesTerms}]], {x, 0, 1}, 

PlotPoints -> 200, PlotRange -> All,
DisplayFunction -> Identity,

     (* different colors for n terms *)
     PlotStyle -> Table[{Thickness[0.002], Hue[0.8 i/maxSeriesTerms]}, 
                        {i, maxSeriesTerms}]]}]]]

We  consider  the  sum  ⁄k=0
n H-1Ls2Hl kL,  where  s2HnL  counts  the  1’s  in  the  binary  representation  of  the  integer  n.  This

function is called DigitCount in Mathematica and exhibits fractal properties for many integers l [541÷]. The follow-
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ing picture shows the behavior of such sums.
Show[Graphics3D[{Thickness[0.002],
     Table[{Hue[l/120], Line[
      MapIndexed[{#2[[1]] - 1, l, #1}&, (* the data *)
            FoldList[Plus, 0, Table[(-1)^DigitCount[l k, 2][[1]], 
                                    {k, 0, 250}]]]]}, {l, 0, 100}]}],
     BoxRatios -> {2, 1, 1}, ViewPoint -> {-0.6, -3.0, 0.8}, 
     Axes -> True]

The following plot shows a collection of half circles overlapping in a hierarchical structure. Here, we make direct use of
the graphics primitive Circle. 

(* upper circles *)
twoNewCircles[Circle[{x0_, y0_}, r_, {0, Pi}]] :=
    {Circle[{x0 - r, y0 - r/2}, r/2, {0, Pi}],
     Circle[{x0 + r, y0 - r/2}, r/2, {0, Pi}]};

(* lower circles *)
twoNewCircles[Circle[{x0_, y0_}, r_, {Pi, 2Pi}]] :=
   {Circle[{x0 - r, y0 + r/2}, r/2, {Pi, 2Pi}],
    Circle[{x0 + r, y0 + r/2}, r/2, {Pi, 2Pi}]};

Show[Graphics[{Thickness[0.002],
(* iterate generation *)
NestList[Flatten[twoNewCircles /@ #]&,
          {#}, 7]& /@ {Circle[{0, +1}, 1, {0, Pi}],
                       Circle[{0, -1}, 1, {Pi, 2Pi}]}}],
         AspectRatio -> 1, PlotRange -> All]

Here is a slightly more complicated example: the recursive filling of the area between three touching circles with circles
(per Apollonius). We use an iterative rather than a direct method to calculate the new circle data via the Soddy formula
[1223÷],  [319÷],  [128÷],  [1224÷],  [1255÷],  [467÷],  [907÷],  [565÷],  [566÷],  [567÷],  [568÷],  [519÷]  (for  touching
spheres, see [174÷], [78÷], [79÷], [1421÷]).  
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makeTouchingCircles[{p1_, p2_, p3_}, iter_, minRadius_:10^-3] :=
Module[{newton, newCircleData, rMax},
(* the derivative for the Newton method *)
newton[{{{x1_, y1_}, r1_}, {{x2_, y2_}, r2_},
        {{x3_, y3_}, r3_}}, {{xn_, yn_}, rn_}] :=
 {{#[[1]], #[[2]]}, #[[3]]}&[{xn, yn, rn} - 1/2*
 Inverse[{{(xn - x1), (yn - y1), -(rn + r1)},
          {(xn - x2), (yn - y2), -(rn + r2)},
          {(xn - x3), (yn - y3), -(rn + r3)}}].
             {(xn - x1)^2 + (yn - y1)^2 - (r1 + rn)^2,
              (xn - x2)^2 + (yn - y2)^2 - (r2 + rn)^2,
              (xn - x3)^2 + (yn - y3)^2 - (r3 + rn)^2}];
(* the next smaller circle *)
 newCircleData[{pp1_, pp2_, pp3_}] :=
{Circle @@ #, {{pp1, pp2, #[[1]]}, {pp1, pp3, #[[1]]},
  {pp2, pp3, #[[1]]}}}&[
Module[{r12, r23, r13, r1, r2, r3, startx, starty, startr, 
        ∂ = 10^-10},
 (* radii *) 
 {r12, r23, r13} = Sqrt[#.#]& /@ N[{pp1 - pp2, pp2 - pp3, pp1 - pp3}];
 r1 = ( r12 + r13 - r23)/2; 
 r2 = ( r12 - r13 + r23)/2;
 r3 = (-r12 + r13 + r23)/2;
 startr = Sqrt[#.#]&[N[pp1 - ({startx, starty} =
          N[(pp1 + pp2 + pp3)/3])]] - r1;
(* iterating the Newton method *)
 FixedPoint[newton[{{pp1, r1}, {pp2, r2}, {pp3, r3}}, #]&,
            {{startx, starty}, startr},
            SameTest -> (#.#&[Flatten[#1 - #2]] < ∂&)]]];
Join[Module[{r1, r2, r3}, (* the start circles *)
       {r12, r23, r13} = Sqrt[#.#]& /@ N[{p1 - p2, p2 - p3, p1 - p3}];
       r1 = ( r12 + r13 - r23)/2; r2 = (r12 - r13 + r23)/2;
       r3 = (-r12 + r13 + r23)/2; rMax = Max[r1, r2, r3];
       {Circle[p1, r1], Circle[p2, r2], Circle[p3, r3]}],
(* iterating the calculation of new circles *)
Map[First, NestList[newCircleData /@ Flatten[Map[Last,
    Select[#, (#[[1, 2]]/rMax > minRadius)&], {1}], 1]&,
        {newCircleData[{p1, p2, p3}]}, iter], {2}]]]

(* display calculated circles *)
Show[GraphicsArray[
  {#, (* color circles according to radius *) # /. 
    Circle[mp_, r_?(# < 0.2&)] :> {Hue[Log[10, r]], Disk[mp, r]}}&[
   Graphics[{Thickness[0.001],
       makeTouchingCircles[{{-1, 0}, {1, 0}, {0, -1}}, 9, 0.0005]},
     PlotRange -> {(Sqrt[2] - 1) {-1, 1}, {-Sqrt[2]/2, 0}},
     AspectRatio -> Automatic]]]]

Here is the distribution of the logarithms of the radii of the circles [184÷], [393÷] from the last picture shown.

ListPlot[Reverse[Log[10, Sort[#1[[2]]& /@ 
         (* extract all circles from the last picture *) 
         Cases[%[[1]], _Circle, Infinity]]]], PlotRange -> All]

Discrete data can also be displayed. For example, here is again a plot of a Fourier transform of a superposition of sin
functions. We clearly see the frequency and amplitude ratios according to the signal. 

fourierTable =
 Fourier[Table[(* the signal *)
               Sum[Sin[16. k n 2Pi/1024]/k, {k, 20}], {n, 1, 1024}]];
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ListPlot[(* add x-values *)
         Flatten[MapIndexed[{{#2[[1]], 0}, {#2[[1]], #1}, {#2[[1]], 0}}&,
                            Abs[Take[fourierTable, 512]]], 1], 
         PlotRange -> All, PlotJoined -> True]

The  next  picture  shows  the  first  30  partial  sums  of  the  generalized  Weierstrass  function  ⁄k=1
n k-2 expIi k3 zM  in  the

complex plane. In the limit n Ø ¶, the resulting curve is nowhere differentiable [261÷].

Module[{l = 10000, cf, lines},
(* fast calculation of the cumulative sums *)
cf = Compile[{{z, _Complex}},
             Rest[FoldList[Plus, 0, Table[Exp[I k^3 z]/k^2, {k, 30}]]]];
(* the lines *)
lines = Line /@ Transpose[Table[{Re[#], Im[#]}& /@ cf[ϑ],
                                {ϑ, 0., 2.Pi, 2.Pi/l}]];
(* the graphics *)
Show[Graphics[{Reverse[
MapIndexed[{Hue[3 #2[[1]]/40], (* smoother lines are thicker *)
            Thickness[0.002 #2[[1]]], #1}&, Reverse[lines]]]}],
      PlotRange -> All, Frame -> True, FrameTicks -> None, 
      AspectRatio -> Automatic, Background -> GrayLevel[0.8]]]

Here is a typical three-dimensional (3D) plot. By default, the surface is illuminated with three colored light sources. 

Plot3D[Sin[x^2 + y^2]/(x^2 + y^2), {x, -4, 4}, {y, -4, 4},
       PlotPoints -> 35, PlotRange -> All]

The coloring and many other details can be varied as desired. 

Plot3D[{Sin[x^2 + y^2]/(x^2 + y^2), Hue[Sqrt[x^2 + y^2]/Sqrt[32]]},
       {x, -4, 4}, {y, -4, 4}, PlotPoints -> 40, PlotRange -> All, 
       Axes -> None, Boxed -> False, Mesh -> False]

We now plot a sphere given in a parametric form analogous to the one for the circle above. 

ParametricPlot3D[{Cos[ϕ] Sin[ϑ], Sin[ϕ] Sin[ϑ], Cos[ϑ]},
                 {ϕ, 0, 2 Pi}, {ϑ, 0, Pi}]

Here is a more complicated surface. It is based on the parametrization of a torus. This time we do not show the edges of
the polygons.

torus[ϕ_, ϑ_, R_, r_, color_] := 
{R Cos[ϕ] + r Cos[ϕ] Cos[ϑ], R Sin[ϕ] + r Sin[ϕ] Cos[ϑ], r Sin[ϑ], color}

ParametricPlot3D[Evaluate[(* modify torus parametrization *)
   torus[ϕ + Sin[7 ϕ]/3, 4 ϕ + ϑ, 3 + Sin[ϕ]/3 + Sin[ϑ]/5, 1 + Sin[11 ϕ]/3,
          (* surface coloring *)
          {EdgeForm[], SurfaceColor[RGBColor[0.9, 0, 0.4],
                                    RGBColor[0.3, 0.4, 0], 2.3]}]],
         {ϕ, 0, 2 Pi}, {ϑ, 0, Pi},
    (* set options *) PlotPoints -> {300, 40}, Boxed -> False, 
    Axes -> False, ViewPoint -> {0, 0, 0.51}]

Next, we visualize a complicated closed surface with infinitely many holes. It is implicitly defined by 

cos
x + y

x2 + y2 + z2
+ cos

x + z

x2 + y2 + z2
+ cos

y + z

x2 + y2 + z2
+

sin
x - y

x2 + y2 + z2
- sin

x - z

x2 + y2 + z2
+ sin

y - z

x2 + y2 + z2
= 0.

Because  the  denominators  of  the  arguments  of  the  trigonometric  functions  vanish  faster  than  the  numerators  when

30 Printed from THE MATHEMATICA GUIDEBOOKS

©  2004, 2005   Springer Science+Business Media, Inc.



approaching the origin, the surface becomes quite complicated near the origin. The following code generates an approxi-
mation of this surface. We use the function ContourPlot3D from the package Graphics`ContourPlot3D`.

Needs["Graphics`ContourPlot3D`"]

Module[{n = 1, pp0 = 32, ppR = 22, cp, polys},
(* define 3D contour plot of function with 
   {x, y, z} --> {x, y, z}/(x^2 + y^2 + z^2) *)
cp[pp_] := cp[pp] = Cases[
ContourPlot3D[Cos[x + y] + Cos[x + z] + Cos[y + z] + 
              Sin[x - y] - Sin[x - z] + Sin[y - z], 
              {x, -Pi, Pi}, {y, -Pi, Pi}, {z, -Pi, Pi},

      MaxRecursion -> 0, PlotPoints -> pp, Contours -> {0},
      DisplayFunction -> Identity], _Polygon, Infinity];

(* the polygons *)
polys = Table[Map[# + 2.Pi{i, j, k}&, 
                   If[i == j == k == 0, cp[pp0], cp[ppR]], {-2}],
               {i, -n, n}, {j, -n, n}, {k, -n, n}] // Flatten;
(* display polygons *)
Show[Graphics3D[{EdgeForm[], SurfaceColor[Hue[0.22], Hue[0.02], 2.6],
                 polys} /. (* invert *) 
                           Polygon[l_] :> Polygon[#/#.#& /@ l]], 
     PlotRange -> All, Boxed -> False]]

Cutting the surface along the x,y-plane and removing the upper part shows its complicated structure near the origin.

Show[%, PlotRange -> {All, All, {-3/4, 0}}, ViewPoint -> {0, 0, 3}]

The results of such functions as Plot, Plot3D, and ParametricPlot3D are composed of graphics primitives that
can  be  further  manipulated  by  Mathematica.  In  the  following  plot,  we  use  ParametricPlot3D  to  subdivide  the
sides of a cube (leftmost image). These side faces are then pulled toward the center of the cube by an amount correspond-
ing to their distance to the center. The upper right image shows the resulting surface reflected in a sphere. To see inside
these surfaces, we have made holes in the polygons. 
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Show[GraphicsArray[Map[
Function[α, Graphics3D[{EdgeForm[Thickness[0.001]],
SurfaceColor[Hue[0.12], Hue[0], 2.2],
(* fit cube in unit cube *)
Function[polys, Module[{rMax = Max[
         Sqrt[#.#]& /@ Level[Cases[polys, _Polygon, Infinity], {-2}]]},
         Map[#/rMax&, polys, {-1}]]] @
(* making holed polygons on deformed surfaces *)
(Function[x, Module[{mp = Mean[x[[1]]]},
 {Polygon[(mp + 0.2 (# - mp))& /@ x[[1]]],
 MapThread[Polygon[Join[#1, Reverse[#2]]]&,
 {Partition[Append[#, First[#]]&[
            (mp + 0.8 (# - mp))& /@ x[[1]]], 2, 1],
  Partition[Append[#, First[#]]&[
            (mp + 0.5 (# - mp))& /@ x[[1]]], 2, 1]}]}]] /@
            Map[(* this deforms the faces *)
                (#/Sqrt[#.#] Sqrt[#.#]^α)&, Join @@
(* making a cube; every side has 6×6 polygons *)
Apply[ParametricPlot3D[##,
      PlotPoints -> 7, DisplayFunction -> Identity][[1]]&,
 {#[[1]], Flatten[Append[{#[[2, 1]]}, {-1, 1}]],
          Flatten[Append[{#[[2, 2]]}, {-1, 1}]]}& /@
      ({#, Cases[#, _Symbol]}& /@
       Select[Flatten[Outer[List, {x, 1, -1}, {y, 1, -1}, {z, 1, -1}], 2],
       Length[Cases[#, _Symbol]] == 2&]), {1}], {-2}])},
      Axes -> False, PlotRange -> {{-1, 1}, {-1, 1}, {-1, 1}}]],
    (* the values for the pure function parameter a *){-3, -1, 1, 2}], 
        GraphicsSpacing -> -0.05]]

Images can also be created directly from graphics primitives—such as points, lines, and polygons—rather than as plots
of  functions.  Here  is  a  problem  that  was  investigated  already  by  Kepler.  It  involves  the  recursive  subdivision  of  a
regular  pentagon  according  to  the  following  visualized  rule  [385÷],  [870÷].  (Here,  we  also  implement  the  routines
needed for the next two images.) The implementation itself is straightforward. For clarity, we do not enclose all pieces
of the code in scoping constructs but rather use global variables like fac and . We discuss similar graphics in detail
in Chapter 1 of the Graphics volume of the GuideBooks [1283÷]. 
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startPentagon = Polygon[Table[{Cos[x], Sin[x]},
                              {x, Pi/2, -11/10 Pi, -2Pi/5}]];
                                 
(* makes a vector, perpendicular to vec *)
perpendicular[vec_] := #/Sqrt[#.#]&[{vec[[2]], -vec[[1]]}] // N;
 
(* for the pentagon-specific constants *)
{fac, } = N[{1/(2 + 2 Sin[18 Degree]), Sin[72 Degree]}];

(* new points for making smaller pentagon *)
threeNewPoints[{p1_, p2_}] :=
{p1 + fac (p2 - p1), p2 + fac (p1 - p2),
 (p1 + p2)/2 +  fac Sqrt[(p2 - p1).(p2 - p1)] perpendicular[p2 - p1]};

sixNewPentagons[Polygon[l_]] :=
(* treating every side *)
Module[{p1, p2, p3, p4, p5, p6, p7, p8, p9, p10,
        p11, p12, p13, p14, p15, p16, p17, p18, p19, p20},
      (* the new points *)
      {p1, p2, p3, p4, p5} = l;
      {{p6, p7, p16}, {p8, p9, p17}, {p10, p11, p18},
       {p12, p13, p19}, {p14, p15, p20}} =
      threeNewPoints /@ Partition[Append[l, First[l]], 2, 1];
      (* the six new pentagons *) Polygon /@ 
      {{p1, p6, p16, p20, p15}, {p7, p2, p8, p17, p16},
       {p9, p3, p10, p18, p17}, {p11, p4, p12, p19, p18},
       {p13, p5, p14, p20, p19}, {p16, p17, p18, p19, p20}}]

Show[GraphicsArray[
{Graphics[startPentagon, AspectRatio -> Automatic],
 Graphics[sixNewPentagons[startPentagon],
          AspectRatio -> Automatic]}] /. 
                   Polygon[l_] :> Line[Append[l, First[l]]]]

If we repeat this subdivision four times, we get a figure consisting of 64 = 1296 pentagons in interesting positions. 

subdividedPentagons[0] =  {startPentagon};
subdividedPentagons[k_] := subdividedPentagons[k] = 
          Flatten[sixNewPentagons /@ subdividedPentagons[k - 1]]

Show[Graphics[{Thickness[0.001], 
               Line[Append[#, First[#]]]& @@@ subdividedPentagons[4]} // N]
     AspectRatio -> Automatic]

Now, we color the pentagons in each step with some color and stack them up. 

Show[Graphics[Table[{Hue[k/5], subdividedPentagons[k]} // N, 
                    {k, 0, 4}]], AspectRatio -> Automatic]

Here, we project Kepler’s recursive subdivision of a pentagon onto a sphere.

toSphere[{x_, y_}] := Function[{ϕ, ϑ}, 
       {Cos[ϕ] Sin[ϑ], Sin[ϕ] Sin[ϑ], Cos[ϑ]}][
                       ArcTan[x, y], Sqrt[x^2 + y^2] N[Pi]]

(* a function that cuts a hole in a polygon *)
makeHole[Polygon[l_], factor_] :=
Module[{mp = Mean[l], newl, nOld, nNew},
 (* inner points *) newl = (mp + factor(# - mp))& /@ l;
{nOld, nNew} = Partition[Append[#, First[#]], 2, 1]& /@ {l, newl};
{MapThread[Polygon[Join[#1, Reverse[#2]]]&, {nOld, nNew}]}]
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Show[Graphics3D[{EdgeForm[], Thickness[0.001],
     {SurfaceColor[Hue[Random[]], Hue[Random[]], 3 Random[]],
     makeHole[#, 0.8]}& /@ Map[toSphere, subdividedPentagons[4], {3}]}],
     Boxed -> False]

Several 3D figures can be directly constructed from polygons. Here is a fractal sign post. 

(* normalize a vector *)
normalize[a_List] = a/Sqrt[a.a];

(* make one elementary part of the sign post *)
post[α_, dir_, ortho_, size_] :=
Module[{dir1, orthoh, ortho1, bi1, p1, p2, p3, p4, p5, p6, p7, p8, p9,
        s1 = 1, s2 = 0.3, s3 = 0.2, s4 = 1.2, h1, h2, h3, h4, h5},
       (* direction the new sign will point to *) 
       dir1 = normalize[dir];
       (* first orthogonal direction *)
       ortho1 = normalize[normalize[ortho] + 
                normalize[Cross[dir, ortho]]];
       (* second orthogonal direction *)
       bi = normalize[Cross[dir1, ortho1]];
       h1 = s2 size ortho1; h2 = s2 size bi;
       h3 = s3 size ortho1; h4 = s3 size bi;
       h5 = s1 size dir1;
       p1 = α + h1; p2 = α + h2; p3 = α - h1; p4 = α - h2;
       p5 = α + h3 + h5; p6 = α + h4 + h5; p7 = α - h3 + h5;
       p8 = α - h4 + h5; p9 = α + s4 size dir1;
       (* polygons forming the next generation *) 
       Polygon /@ {{p1, p4, p8, p5}, {p4, p3, p7, p8}, {p3, p2, p6, p7},
                   {p2, p1, p5, p6}, {p5, p9, p8}, {p8, p7, p9},
                   {p6, p7, p9}, {p5, p6, p9}}]
                           
       (* the start part *)
       postHierarchy[0] = {post[{0., 0., 0.}, {0., 0., 1.}, {1., 0., 0.}, 1
       (* add new parts at the sides *)
       postHierarchy[i_] := postHierarchy[i] =
           (post @@ newData[#, 0.4^i])& /@ Flatten[(Take[#, 4]& /@ 
                                                postHierarchy[i - 1])];
       (* iterate the process *)
newData[poly_Polygon, size_] :=
       Module[{f = poly[[1]], ortho, dir},
              ortho = (f[[1]] + f[[2]])/2 - (f[[3]] + f[[4]])/2;
              p = (f[[3]] + f[[4]])/2 + 0.2 ortho;
              dir = -Cross[f[[1]] - f[[2]], f[[1]] - f[[4]]];
              {p, dir, ortho, size}]

Show[Graphics3D[{EdgeForm[Thickness[0.001]],
      SurfaceColor[Hue[0.11], Hue[0.10], 2],
      Table[postHierarchy[i], {i, 0, 4}]}],
     AspectRatio -> Automatic, Boxed -> False, PlotRange -> All]

With Mathematica’s symbolic, numerical, and graphical capabilities, much more complicated images with many more
points  and  polygons  can  be  created  and  displayed.  However,  this  often  requires  some  more  CPU  time  and  memory
resources.  Here  is  an  example of  such  an  image involving  a  flower  made out  of  a  dodecahedron.  It  consists  of  6300
polygons.
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Needs["Graphics`Polyhedra`"];

Module[{preCup, preBlossom, cup, blossom, allPolys, rotation, 
        mat, rotMat,  = {0.324919, 0.324919, 0.180513}},
(* the elementary parts, made with ParametricPlot3D *)
preCup =
ParametricPlot3D[{Sin[ϑ]^2/3 Cos[ϕ], Sin[ϑ]^2/3 Sin[ϕ], ϑ},
                 {ϕ, -Pi, Pi}, {ϑ, 0, Pi/2}, PlotPoints -> {26, 8},
                 DisplayFunction -> Identity];
preBlossom =
ParametricPlot3D[{(2 - 5/3 Sin[ϑ]) Cos[(Pi - ϑ)/(Pi/2) ϕ],
                  (2 - 5/3 Sin[ϑ]) Sin[(Pi - ϑ)/(Pi/2) ϕ],
                  Pi/2 + 2(ϑ - Pi/2)},
                 {ϕ, -Pi/5, Pi/5}, {ϑ, Pi/2, Pi},
                 PlotPoints -> {6, 15}, DisplayFunction -> Identity];
(* a rotation matrix *)
mat = {{Cos[#], Sin[#], 0}, {-Sin[#], Cos[#], 0}, {0, 0, 1}}&[Pi/5.];
(* the cup *)
cup = Map[  (mat.#)&, preCup[[1]], {-2}];
(* one part of the blossom *)
blossom[0] = Map[  (mat.#)&, preBlossom[[1]], {-2}];
(* rotation matrices for other five subparts of one part *)
Do[ [i] = {{ Cos[2Pi/5 i], Sin[2Pi/5 i], 0},
           {-Sin[2Pi/5 i], Cos[2Pi/5 i], 0}, {0, 0, 1}} // N, {i, 4}];
(* the blossom *)
Do[blossom[i] = Map[ [i].#&, blossom[0], {-2}], {i, 4}];
allPolys = Flatten[{cup, Table[blossom[i], {i, 0, 4}]}];
(* rotation matrices for other eleven parts *)
With[{aMat = Table[ [k, l][i], {k, 3}, {l, 3}]},
(* rotation matrices for other faces of dodecahedron *)
Do[rotation[i] = (aMat /. Solve[Flatten[Table[Thread[
    aMat.Polyhedron[Dodecahedron][[1, 1, 1, j]] ==
         Polyhedron[Dodecahedron][[1, i, 1, j]]], {j, 3}]],
                    Flatten[aMat]])[[1]], {i, 12}]];
(* display cup and blossoms *)                    
Show[Graphics3D[{EdgeForm[{Hue[0], Thickness[0.001]}],
                 SurfaceColor[RGBColor[0, 0.8, 0.2], 
                              RGBColor[0.1, 0.9, 0.4], 1],
                 Table[Map[rotation[i].#&, allPolys, {-2}], {i, 12}]}],
     Boxed -> False, PlotRange -> All, ViewPoint -> {2.1, -2.4, 2.3}]]

Mathematica  has  built-in  functions  for  many  kinds  of  graphics.  The  following  picture  shows  a  contour  plot  of  the
absolute value of the Gauss map zö1 ê z - d1 ê zt over the complex z-plane.

ContourPlot[Abs[1/(x + I y) - Floor[1/(x + I y)]],
        {x, -1.1, 1.1}, {y, -1.1, 1.1}, 
        PlotPoints -> 400, ColorFunction -> Hue, 

            ContourStyle -> {Thickness[0.001]}]

In the following, we use a sum of three Gauss maps to create an animation. Let 8z< denote the fractional part of z. We
will animate a contour plot of the function

f HzL =
1

Jz - 1N
a

 +
1

Ke2 i pí3 z - 1O
a

 +
1

Ke4 i pí3 z - 1O
a

as the parameter a varies from 1 ê2 to 3.
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fractionalPartContourPlot[α_, opts___] :=
Module[{r = 2.15, ring, color, cp},
(* cut out circular area *)
ring = {GrayLevel[1],
        Polygon[Join[Table[3.05 {Cos[ϕ], Sin[ϕ]}, {ϕ, 0, 2Pi, 2Pi/200}],
        Reverse[Table[r {Cos[ϕ], Sin[ϕ]}, {ϕ, 0, 2Pi, 2Pi/200}]]]]};
(* coloring for the contour lines *)
color[l_] := {Hue[α + 0.8 Sqrt[#.#&[Total[l]/2]]], Line[l]};
(* make the contour plot *)
cp = ContourPlot[Evaluate[Sum[
    Abs[FractionalPart[(Exp[I ϕ](zr + I zi) - 1)^-α]],
                                 {ϕ, 0, -4/3Pi, -2/3Pi}]],
          {zi, -r, r}, {zr, -r, r}, PlotPoints -> 301,
PlotRange -> All, DisplayFunction -> Identity, Frame -> False, 
Epilog -> ring, ColorFunctionScaling -> False, 
Contours -> Table[ξ, {ξ, 0, 9/2, 3/10}],
(* color contour zones alternatingly *)
ColorFunction :> (Which[# == 0, RGBColor[1, 0, 0],
                        # == 1, RGBColor[0, 0, 1]]&[
                                    Mod[Ceiling[# 10], 2]]&)];
(* display the contour plot with re-colored contour lines *)
Show[Graphics[cp] /. Line[l_] :> (color /@ Partition[l, 2, 1]),
     opts, DisplayFunction -> $DisplayFunction,
     PlotRange -> {{-r, r}, {-r, r}}]]

(* show 3×3-array of graphics for various a *)
Show[GraphicsArray[fractionalPartContourPlot[#,
                     DisplayFunction -> Identity]& /@ #,
                    GraphicsSpacing -> 0.2]]& /@
                       Partition[Table[α, {α, 1/2, 3, 5/2/8}], 3]

Make Input     Show Animation

(* generate frames of the animation *)
Do[fractionalPartContourPlot[α], {α, 1/2, 3, 5/2/75}];

Let us give a few more graphics examples. Here is an iterative construction of a fractal tree using n iteration levels. 
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FractalTree[n_] :=
With[{α = 0.65, β = 0.87, γ = 0.46, δ = 0.8},
     Graphics[Polygon[Join[{{1.35, -0.2}, {1.1, 0}},
     Map[{0.5, 0} + (* deform the pattern *)
          1/(1 - 0.4 Cos[2 ArcTan @@ (# - {0.5, 0})]^2)*
         (# - {0.5, 0})&, Flatten[MapIndexed[
            If[#2[[1]] == 1 || #2[[1]] == 5^n, #1, Drop[#1, -1]]&,
      {#[[1]], #[[1]] + γ(#[[4]] - #[[1]]) + δ(#[[2]] - #[[1]]),
       #[[4]]} & /@ (Function[p, Module[{mp}, mp = Mean[p];
                                        (mp + β(# - mp))& /@ p]] /@
      Nest[Flatten[(* just a "random" fancy form; 
                      many others are possible here *)
      Apply[{{#1, #5, #11, #6}, {#6, #2, #7, #12},
             {#12, #11, #10, #9}, {#9, #7, #3, #8},
             {#8, #10, #5, #4}}& @@
        {#1, #2, #3, #4, #4 + α(#1 - #4), #1 + α(#2 - #1),
         #2 + α(#3 - #2), #3 + α(#4 - #3), 
         #4 + (1 - α)(#1 + #3 - 2#4),
         (2α - 1)#1 + (1 - α)(#2 + #4), α(#1 + #3 - 2#4) + #4,
         (1 - α)#1 + α #3}&, #, {1}], 1]&,
           {{{1, 0}, {1, 1}, {0, 1}, {0, 0}}}, n]), {1}], 1]],
                                 {{-0.1, 0}, {-0.35, -0.2}}]],
         AspectRatio -> Automatic]]

These are the first three levels of growth.

Show[GraphicsArray[Table[FractalTree[k], {k, 4}], 
                   GraphicsSpacing -> -0.05]]

The  growth  of  this  tree  proceeds  deterministically.  We  show  the  fifth  level  separately  because  of  the  fine  details
involved. 

Show[FractalTree[5]]

The  next  graphic  is  a  fractal  based  on  the  iteration  of  the  function  z Ø 4 H1 + iL IH3 + i + 5 H1 + 2 iL z ê cL-1-ÂM2 Â
.  We

display the number of iterations carried out until the condition †z§ > 100 is fulfilled as a function of the complex parame-
ter c. 

DensityPlot[Function[c, (* iterate until |z| > 100 *)
             Module[{k = 1, z = 1.0 + 1.0 I, max = 100., maxk = 100},
                While[k < maxk && Abs[z] < max, k++; 
                      z = (1/4 + I/4)((3 + I + (1/5 + 2I/5)*
                           z/c)^(-1 - I))^(2I)]; k]][cx + I cy], 
            {cx, -2, 2.25}, {cy, -3.4, 1.5}, 
            ColorFunction -> (Hue[Pi #]&), Mesh -> False, 
            ColorFunctionScaling -> False, FrameTicks -> None,
            (* use many points *) PlotPoints -> 600, Compiled -> True]

We now iterate a random subdivision of two triangles. The thickness of the edges of the triangles decreases with each
iteration. 
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With[{level = 10},
Show[Graphics[Reverse[
 MapIndexed[{Hue[#2[[1]]/9], Thickness[0.03/#2[[1]]],
             Line[Append[#, First[#]]]& /@ #1}&,
             NestList[Flatten[((* iteration of the subdivision *)
 Apply[Function[{d1, d2, d3},
 (* divide longest side *)
 Which[# == 1, {{d1, #, d3}, {d2, #, d3}}&[
              d1 + Random[Real, {0.25, 0.75}] (d2 - d1)],
       # == 2, {{d1, #, d2}, {d3, #, d2}}&[
              d1 + Random[Real, {0.25, 0.75}] (d3 - d1)],
       # == 3, {{d2, #, d1}, {d3, #, d1}}&[
              d2 + Random[Real, {0.25, 0.75}] (d3 - d2)]]&[
 (* position of longest side *)             
 (Position[#, Max[#]]&[#.#& /@
 {#1 - #2, #1 - #3, #2 - #3}&[d1, d2, d3]])[[1, 1]]]], 
  #, {1}]), 1]&, (* start triangles *)
             {{{0, -1}, {0, 1}, {3, -1}},
              {{0, +1}, {3, 1}, {3, -1}}} // N, level], {1}]]],
      AspectRatio -> Automatic, PlotRange -> All]]

Lines can also be drawn in 3D space, as in this abstract branch. 

Module[{extend},
(* add some new hairs *)
extend[x_, ω_] :=
Module[{c = N[Cos[ω]], s = N[Sin[ω]], vOld, vm, vPerp, v, α, β},
 (* orthogonal directions *)
 {vOld, vm} = {x[[2]] - x[[1, 1]], x[[1, 2]] - x[[1, 1]]};
 vPerp = #/Sqrt[#.#]&[vOld - vm vm.vOld];
 v3 = #/Sqrt[#.#]&[Cross[vm, vPerp]]; {α, β} = x[[1]];
 (* the new hairs *)
 Function[f, {{β, β + #/Sqrt[#.#]&[c vm + s vPerp + f s v3]}, 
               α}] /@ {0, 1, -1}];
               
(* display iterated addition of hairs *)
Show[Graphics3D[Rest[
MapIndexed[{Hue[(#2[[1]] - 2)/8],
           (* color and add various thickness *)
            Thickness[2^(-#2[[1]] - 3)], Line /@ #1}&,
Map[First, (* iterate the process *)
FoldList[Flatten[Function[x, extend[x, #2]] /@ #1, 1]&,
         {{{{0, 0, 0}, {0, 0, 1}},
            {-Sin[28. Degree], 0, Cos[28. Degree]}}} // N,
        {30, 25, 20, 16, 11, 8, 5} Degree], {-3}]]]],
         PlotRange -> All, Boxed -> False]]

In the following construction,  the edges of Platonic solids are taken and rotated continuously outward until  they have
the position of an edge again. (See [438÷] for a description of the resulting surfaces.)

Needs["Graphics`Polyhedra`"]
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RotatedSideWireFrame[platonicSolid:
       (Cube | Tetrahedron | Octahedron | Dodecahedron | Icosahedron),
       steps_Integer?(# > 2&), opts___] :=
Module[{l = Length[Faces[platonicSolid][[1]]] - 1, makeLines, 
        combis, allLines, s = steps},
(* rotate edges outwards *)
makeLines[points_] :=
 Module[{l = Length[points]},
      Join @@ Table[{(1 + t) points[[1]],
         (1 - (l - 2) (t - (i - 2)/(l - 2))) (1 + t) points[[i]] +
         (l - 2) (t - (i - 2)/(l - 2)) (1 + t) points[[i + 1]]},
        {i, 2, l - 1}, {t, (i - 2)/(l - 2), (i - 1)/(l - 2), 1/(l - 2)/s}]]
(* all possible combinations of points to rotate about *)
combis = Join[Flatten[Table[RotateRight[#, i], {i, 0, l}]& /@
              Faces[platonicSolid], 1],
(* rotate in both directions *)        
Flatten[Table[RotateRight[#, i], {i, 0, l}]& /@
        (Reverse /@ Faces[platonicSolid]), 1]];
(* all lines *)
allLines = makeLines /@ Map[#/Sqrt[#.#]&[N[Vertices[platonicSolid][[#]]]]&,
                            combis, {2}];
(* display all rotated lines *)
Show[Graphics3D[{Thickness[0.001],
   MapIndexed[{Hue[(#2[[2]] - 1)/s 3/4], Line[#1]}&, allLines, {2}],
   MapIndexed[{Hue[(#2[[2]] - 1)/s 3/4], Line[#1]}&,
               Transpose[allLines, {1, 3, 2, 4}], {2}]}], opts,
      PlotRange -> {{-2, 2}, {-2, 2}, {-2, 2}}, 
      Boxed -> False, ViewPoint -> {2, 2, 2}]]

Show[GraphicsArray[ (* all five Platonic solids *)
Apply[RotatedSideWireFrame[##, DisplayFunction -> Identity]&, 
      {{Tetrahedron, 16}, {Octahedron, 15}, {Cube, 12},
       {Dodecahedron, 8}, {Icosahedron, 10}}, {1}],
      GraphicsSpacing -> -0.25]]

Our next example involves an iterated construction using equilateral triangles. Each new magnified or shrunken triangle
is attached to an old vertex. It is drawn in the plane formed by the normal to the old triangle and the line connecting the
center of the old triangle to the vertex. 

(* the new triangles at the correct position *)
newTriangle[x_, fac_] :=
Module[{mpo = Mean[x], mp2, mp3, dir1, dir2, poly2, poly3},
       (* midpoint *)
       mp2 = x[[2]] + fac (x[[2]] - mpo);
       (* orthogonal directions *)
       dir1 = mpo - x[[2]];
       dir2 = Cross[x[[2]] - x[[1]], x[[2]] - x[[3]]];
       dir2 = #/Sqrt[#.#]&[dir2];
       poly2 = Table[mp2 + fac (Cos[ϕ] dir1 + Sin[ϕ] dir2),
                     {ϕ, 0, 2 2Pi/3, 2Pi/3}] // N;
       mp3 = x[[3]] + fac (x[[3]] - mpo);
       dir1 = mpo - x[[3]];
       poly3 = Table[mp3 + fac Cos[ϕ] dir1 + fac Sin[ϕ] dir2,
                     {ϕ, 0, 2 2Pi/3, 2Pi/3}] // N; {poly2, poly3}];
(* make three new polygons *)
three[x_] := N[
{x, Map[({{-1, +Sqrt[3], 0}, {-Sqrt[3], -1, 0}, {0, 0, 1}}/2).#&, x, {-2}],
    Map[({{-1, -Sqrt[3], 0}, {+Sqrt[3], -1, 0}, {0, 0, 1}}/2).#&, x, {-2}]}
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Here is a visualization of the first two steps of attaching new triangles. 

Show[Graphics3D[
Join[{{Hue[0], {Polygon[{{2, 0, 0}, {-1, Sqrt[3], 0},
                         {-1, -Sqrt[3], 0}}/2.]}}},
MapIndexed[{Hue[#2[[1]]/10], (* add color *)
            Polygon /@ Flatten[#1, 1]}&,
  Transpose[three[FoldList[ (* iterate the construction *)
      Flatten[Function[x, newTriangle[x, #2]] /@ #1, 1]&,
            {{{-2, 2Sqrt[3], 0}, {-5, 5Sqrt[3], -2Sqrt[3]},
              {-5, 5Sqrt[3], 2Sqrt[3]}}/4 // N}, {1}]]]]]],
  PlotRange -> All, Lighting -> False, 
  Boxed -> True, ViewPoint -> {3, 3, 3}]

Now, this process is repeated eight times. 

Show[Graphics3D[
Join[{{Hue[0], {Polygon[{{1, 0, 0}, {-1/2, 3^(1/2)/2, 0},
                         {-1/2, -3^(1/2)/2, 0}}]}}},
MapIndexed[{Hue[#2[[1]]/4], (* color the triangles *)
            Polygon /@ Flatten[#1, 1]}&,
  Transpose[three[FoldList[ (* iterate the construction *)
      Flatten[Function[x, newTriangle[x, #2]] /@ #1, 1]&,
            {{{-1/2, 1/2 Sqrt[3], 0           },
              {-5/4, 5/4 Sqrt[3], -1/2 Sqrt[3]},
              {-5/4, 5/4 Sqrt[3], +1/2 Sqrt[3]}} // N},
 {1, 1, 1, 1, 1, 1, 1}]]]]]],
  PlotRange -> All, Lighting -> False, Boxed -> False,
  ViewPoint -> {3, 3, 3}]

Mathematica  also includes functions to manipulate a graphic as a whole without explicitly manipulating, removing, or
adding graphics primitives. The next image selects and shows only those triangles in the previous image whose centers
have x-coordinates § 0. 

Show[Graphics3D[
   {#[[1]], Select[#[[2]], (* the selection criteria *)
    (N[First[Total[#[[1]]]/3]] <= 0)&]}& /@ %[[1]]],
     PlotRange -> All, Lighting -> False,
     ViewPoint -> {3, 0, 1}, Boxed -> False]

In the next graphic, we manipulate directly the polygons of the above picture.

Show[DeleteCases[
Show[%% /. (* invert *)
           Polygon[l_] :> Polygon[#/#.#& /@ l], 
           (* split intersecting polygons *)
           PolygonIntersections -> False], _Line, Infinity] /.
           (* shrink resulting polygons *)
     Polygon[l_] :> With[{mp = Mean[l]},
       {EdgeForm[], Polygon[(mp + 0.7(# - mp))& /@ l]}],
     PlotRange -> All, Boxed -> False, 
     Lighting -> False, BoxRatios -> {1, 1, 1}]

3D graphics can be converted into 2D graphics and the resulting 2D polygons, lines, and points can be further manipu-
lated within Mathematica.  The following Christmas-themed input generates 413 random polyhedra, projects them into
2D, and places the resulting graphics on a grid in a random order.

(* load polyhedra package *)
Needs["Graphics`Polyhedra`"];
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manyRandomPolyhedra[{Lx_, Ly_, δ_}] := 
Module[{randomPolyhedra, randomProjectedPolyhedra,
        randomPermutation, frame, d = Min[Lx, Ly]/20, ∂ = 0.5},
(* a random polyhedron *)
randomPolyhedra[n_] :=
{SurfaceColor[Hue[Random[]], Hue[Random[]], 3 Random[]],
 (* iterate a random truncation/stellation *)
 Nest[(* random truncation or stellation *)
      If[Random[Integer] === 0, 
          Truncate[#, Random[Real, {0.1, 0.4}]], 
          Stellate[#, Random[Real, {1.3, 1.9}]]]&, 
     (* randomly select a Platonic solid *)
     Polyhedron[{Tetrahedron, Hexahedron, 
                 Octahedron, Dodecahedron, Icosahedron}[[
                             Random[Integer, {1, 5}]]]], n][[1]]};
(* project into 2D *)
randomProjectedPolyhedra[mp2D_] := Graphics[
Show[Graphics3D[randomPolyhedra[Random[Integer, {2, 3}]]],
      ViewPoint -> Table[Random[Real, {3/4, 4}], {3}], 
      Boxed -> False, DisplayFunction -> Identity,
      PlotRange -> All, SphericalRegion -> True] /.
      (* color each face differently *) p_Polygon :> 
      {SurfaceColor[Hue[Random[]], Hue[Random[]], 3 Random[]], p}] /.
   (* center approximately around origin and color lines *)
   (pl:(Polygon | Line))[l_] :> pl[(mp2D + # - {0.4, 0.4})& /@ l] /.
    Graphics[l_] :> Graphics[{Thickness[0.001], 
                              GrayLevel[Random[Real, {0.25, 1}]], l}];
(* random permutation of a list *)
randomPermutation[l_] :=
Module[{  = l, n = Length[l]}, Do[( [[{k, #}]] = [[{#, k}]])&[
          Random[Integer, {k, n}]], {k, n}]; ];
(* frame *)
frame[{lx_, ly_}, d_] := 
With[{  = {{-1, -1}, {1, -1}, {1, 1}, {-1, 1}, {-1, -1}}},
     Polygon[Join[{lx, ly} #& /@ , Reverse[{lx + d, ly + d} #& /@ ]]]];
(* centers of projected polyhedron a grid;
   use random order of centers *)
mps = randomPermutation[Flatten[Table[{x, y}, 
        {x, -Lx, Lx, δ}, {y, -Ly + δ/2 Mod[x/δ, 2], Ly, δ}], 1]];
(* display graphic *)
Show[{(* random projected polyhedra *)
      randomProjectedPolyhedra /@ mps,
      Graphics[{Hue[0], frame[{Lx, Ly}, d]}]},
     AspectRatio -> Automatic, AspectRatio -> Automatic,
     PlotRange -> {(Lx + ∂ d) {-1, 1}, (Ly + ∂ d) {-1, 1}}]]

SeedRandom[999];
manyRandomPolyhedra[{4, 3/2, 1/4}]

Because of its symbolic, numeric, pattern-matching, and graphical capabilities, constructing a variety of pictures is easy
with Mathematica. Here are two further variations of a polyhedral flower. 
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Needs["Graphics`Polyhedra`"];
Needs["Graphics`Shapes`"];

With[{pp = 30}, 
Show[GraphicsArray[{Graphics3D[{
             EdgeForm[{Hue[0.22], Thickness[0.001]}],
             SurfaceColor[Hue[0.3], Hue[0.45], 1.2],
  (* make polygons *)
   Map[MapThread[Polygon[Join[#1,
    Reverse[#2]]]&, #]&, Map[Partition[#, 2, 1]&, Map[
     Partition[#, 2, 1]&, Transpose[Map[First, Table[
    (* rotate faces outwards *)
      RotateShape[Map[Function[l,
   Module[{mp = Mean[l]}, 
          mp + 0.6(1 - p^2) (# - mp)& /@ l]],
    Map[(p - 1)#&, Line[Append[#, First[#]]]& /@ First /@
   Polyhedron[Dodecahedron][[1]], {-1}], {2}],
     p^2/2, -p^2/2, p^2/2], {p, -1, 1, 2/pp}], {2}]],
      {1}], {3}], {2}]}, Boxed -> False],
 (* form Graphics3D-object *)
 Graphics3D[{EdgeForm[{Hue[0.77], Thickness[0.001]}],
             SurfaceColor[Hue[0.22], Hue[0.85], 1.6],
 (* make polygons *)
  Map[MapThread[Polygon[Join[#1,
   Reverse[#2]]]&, #]&, Map[Partition[#, 2, 1]&, Map[
    Partition[#, 2, 1]&, Transpose[Map[First, Table[
    (* rotate faces outwards *)
     RotateShape[Map[Function[l,
  Module[{mp = Total[l]/3},
         mp + 0.5(1 - p^2) (# - mp)& /@ l]],
   Map[(p - 1)#&, Line[Append[#, First[#]]]& /@ First /@
  Polyhedron[Icosahedron][[1]], {-1}], {2}],
   p^3/2, Sin[Pi p]/2, p/4], {p, -1, 1, 2/pp}], {2}]],
    {1}], {3}], {2}]}, Boxed -> False]}]]]

It  is  possible  to  visualize  real  objects  by  using  points,  lines,  and  polygons  directly in  3D space.  Obtaining  “realistic”
images usually requires  generating a large number of polygons.  We could go on and display windmills, torsos, autos,
starfish, cathedrals, castles, gears, the Eiffel tower [511÷], the Sagrada Familia, and so on. 

We will use more graphics in the next two subsections for various visualizations.

Σ (* session summary *) TMGBs`PrintSessionSummary[]

à 1.2.3 Symbolic Calculations
D[f[x], x] differentiates f HxL once with respect to x. 

D[Sin[x], x]

Here is a slightly more complicated expression. 

f = Sin[Log[Tan[(ξ^2 + Exp[x])/(Cos[ξ^2 - 1] + Sqrt[ξ])]]]

The  resulting  manual  differentiation  is  somewhat  unpleasant.  The  result  of  differentiating  this  expression  twice  with
respect to x is quite big, so we use Short to force Mathematica to show only a part. 

D[f, {ξ, 2}] // Short[#, 4]&

Here is a simple integral. 
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Integrate[Sin[x], x]

The following integral is tedious to find by hand. 

Integrate[ξ^3 Sin[ξ]^4, ξ]

By differentiating and simplifying, we get x3 sinHxL4 again. 

D[%, ξ]

Simplify[%]

Here is the definite integral Ÿ-¶

¶ Ix4 + 4M-2
 dx.

Integrate[1/(x^4 + 4)^2, {x, -Infinity, Infinity}]

We now consider a function that is complicated for integration. 

g = t^(2/3) Exp[-2 t] (t - 1)^(4/5)

It can be integrated analytically over the domain 1 to ¶. 

Integrate[g, {t, 1, Infinity}]

Because  all  of  the  special  functions  are  numerically  implemented for  arbitrary  complex  arguments  (in  their  domains)
with arbitrary accuracy, we can also compute the numerical value with 50 digits. 

N[%, 50]

Here is the same integral calculated numerically to ten digits.

NIntegrate[Evaluate[g], {t, 1, Infinity}, 
           PrecisionGoal -> 10] // InputForm

Here, the function sinIx2M is integrated five times.

Integrate[Sin[x^2], x, x, x, x, x]

Differentiating the result five times brings us back to sinIx2M.
D[%, x, x, x, x, x] // Simplify

The next input calculates the even Bernoulli numbers through the integral representation [580÷]

B2 n = -H-1Lm 2-H2 m+1L ‡
-¶

¶ dm-1 sech2HxL
d xm-1

2

.

Table[-(-1)^n 2^-(2n + 1) Integrate[D[Sech[x]^2, {x, n - 1}]^2, 
                                     {x, -Infinity, Infinity}], 
      {n, 10}]

The Bernoulli numbers are built-in functions of Mathematica.

Table[BernoulliB[2n], {n, 10}]

Now let us consider a limit. The function e1êHx-1L  has two different limit values, one from the left and from the right at
the point x = 1. 

Limit[Exp[-1/(1 - x)], x -> 1, Direction -> +1]

Limit[Exp[-1/(1 - x)], x -> 1, Direction -> -1]

We now solve a differential equation describing a damped oscillation x££HtL + g x£HtL + w2 xHtL = 0.

DSolve[x''[t] + γ x'[t] + ω^2 x[t] == 0, x[t], t]
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Suppose we want to approximate a function f HxL with the following properties by a polynomial in x: 
f H0L = 1
f £H0L = 2
f H4L = 8
f £H4L = 45
f ≥H4L = 0.

InterpolatingPolynomial[{{0, {1, 2}}, {4, {8, 45, 0}}}, x]

Here is the same polynomial in a simpler, but less practical, form. 

Simplify[%]

We check that it interpolates. 

{% /. {x -> 0}, D[%, x] /. {x -> 0}, % /. {x -> 4},
 D[%, x] /. {x -> 4}, D[%, {x, 2}] /. {x -> 4}}

Here is the piecewise-continuous function pwHxL = qHxL qH1 - xL e5 x6 - 1u fracIx4 - 4M3 J¢ax2 + 2 x - 1q6¶N
1ê3

 defined.

pw[x_] = If[0 < x < 1, Floor[(5 x^6 - 1)] FractionalPart[x^4 - 4]^3*
                       Abs[Ceiling[x^2 + 2 x - 1]^6]^(1/3), 0]

Here is a canonical form of this function.

PiecewiseExpand[pw[x]]

The next input calculates Ÿ-¶

¶ pwHxL2 dx.

Integrate[pw[x]^2, {x, -Infinity, Infinity}] 

And here is a series expansion of this function at a point where a discontinuity occurs.

Series[pw[x], {x, Sqrt[3] - 1, 1}]

Next, we solve a well known-differential equation of mathematical physics describing (among other things) the behav-
ior of a quantum particle in a constant electric field. 

DSolve[ψ''[z] + e F z ψ[z] == ψ[z], ψ[z], z]

The Vandermonde matrix of the nth-order is easy to implement in the following way. 

VandermondMatrix[n_, x_] := Table[x[i]^j, {i, 0, n}, {j, 0, n}]

Here is the Vandermonde matrix of the third order. x[i] is a typical Mathematica equivalent for xi. 

MatrixForm[VandermondMatrix[3, x]]

Here is the value of its determinant. 

Det[VandermondMatrix[3, x]] 

This product can also be written as a product. 

Factor[%]

The  following  function  LUMatricesVandermonde  implements  the  LU-decomposition  of  the   nth-order  Vander-
monde matrix [1401÷].
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LUMatricesVandermonde[n_, x_] := 
Module[{X = Table[x[k], {k, 0, n}], e, h, b, L, U},
 (* recursive definitions for elementary and complete 
    symmetric polynomials *)
 e[0, _] := 1; e[_, {}] := 0; h[0, _] := 1; h[_, {}] := 0;
 e[r_, l_] := Factor[e[r, Most[l]] + Last[l] e[r - 1, Most[l]]];
 h[r_, l_] := Factor[h[r, Most[l]] + Last[l] h[r - 1, l]];
 b[r_, y_] := Factor[Sum[(-1)^(r - k) e[r - k, Take[X, r]] y^k, {k, 0, r}]]
 (* lower and upper triangular matrices *)
 L = Table[If[i < j, 0, h[i - j, Take[X, j + 1]]], {i, 0, n}, {j, 0, n}];
 U = Table[If[i > j, 0, b[i, X[[j + 1]]]], {i, 0, n}, {j, 0, n}];
 (* return matrices *) {L, U}]

Here is the decomposition for  the third order Vandermonde matrix.

{L, U} = LUMatricesVandermonde[3, x];
{L, U} // (MatrixForm /@ #)&

Multiplying the two matrices recovers the original matrix.

L.U // Expand

The last LU-decomposition is not unique. The next inputs use the function Solve to calculate the most general solu-
tion. 

(* general ansatz form for the matrices L and U *)
With[{n = 3}, MatrixForm /@ 
 {L = Table[If[i < j, 0, l[i, j]], {i, 0, n}, {j, 0, n}],
  U = Table[If[i > j, 0, u[i, j]], {i, 0, n}, {j, 0, n}]}]

Solve[(* the decomposition identity that must hold *)
      L.U == VandermondMatrix[3, x], 
      (* the 10 variables l[i, j] and the 10 variables u[i, j] *)
      Cases[{L, U}, _l | _u, Infinity]] // (Factor //@ #)&

Next, we calculate symbolically the eigenvalues of a 50 μ 50 Redheffer matrix. The matrix elements ai j  are 1 if j = 1 or

if i divides j, and 0 otherwise.

Redheffer[d_] := Table[If[j == 1 || IntegerQ[j/i], 1, 0], {i, d}, {j, d}];

A Redheffer  matrix of dimension n  has n - elog2HnLu - 1 eigenvalues 1 (see [1312÷] and [1313÷]).  The remaining six

(for n = 50) eigenvalues are the roots of an irreducible polynomial of degree 6. They are represented as Root-objects. 

Eigenvalues[Redheffer[50]]

The following example is a linear inhomogeneous system of equations with eight unknowns. (We show the equations in
abbreviated form.)

gls = Table[Sum[(i + j)^j x[i], {i, 8}] == j, {j, 8}];

Short /@ gls

We get its exact solution. 

Solve[gls, Table[x[i], {i, 8}]]

Here is a simple system of nonlinear equations and its solution. 

x2 + y2 = 1
x4 + y4 = 4

Solve[{x^2 + y^2 == 1, x^4 + y^4 == 4}, {x, y}]
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The function Eliminate eliminates variables from a system of polynomial equations.

Eliminate[{x^6 + y^6 == 6, x^8 + y^8 == 8}, {y}]

Mathematica can also solve higher order univariate polynomial equations.

Solve[x^7 - a x + 3 == 0, x]

The result contained again the Root function. Root-objects are symbolic representations of the roots of polynomials.
The first argument specifies the polynomial, and the second, the root number. (See Chapter 1 of the Symbolics volume
of the GuideBooks [1285÷] for details.) Like any other function in Mathematica, they can be manipulated, for instance,
differentiated.

D[Root[-3 + a #1 - #1^7 &, 1], {a, 2}]

Here is the numerical value of the root for a given value of a to 50 digits.

N[Root[-3 + a #1 - #1^7 &, 1] /. a -> 7, 50]

Backsubstitution shows that the equation gives zero to a good approximation.

x^7 - a x + 3 /. a -> 7 /. x -> %

Here is a plot of the root; the parameter a varies between -10 and 10.

Plot[Root[-3 + a #1 - #1^7 &, 1], {a, -10, 10}]

The following input solves a transcendental equation.

Solve[Log[2 x] + Log[3 x] + Log[5 x] == 1/2, x]

The following example is a simple power series expansion up to the ninth order. 

Series[Sqrt[1 + x], {x, 0, 9}]

The next one is not so simple. It is not a Taylor series because logarithms appear. 

Series[x^x, {x, 0, 4}]

What is the first nonvanishing term in the series expansion of sinHtanHxLL - tanHsinHxLL [1235÷]? 

Series[Sin[Tan[x]] - Tan[Sin[x]], {x, 0, 9}]

Here is a Laurent series.

Series[1/(Sin[x] - x - x^3/3 + x^5), {x, 0, 6}]

Here is a short program using l’Hôspital’s rule for determining the limit of sinHtanHxLL-tanHsinHxLL
arcsinHarctanHxLL-arctanHarcsinHxLL  as x Ø 0.

numerator = Sin[Tan[x]] - Tan[Sin[x]];
denominator = ArcSin[ArcTan[x]] - ArcTan[ArcSin[x]];

We differentiate the numerator and denominator until we get a determined quantity.

lHospitalList = Table[D[numerator, {x, i}]/D[denominator, {x, i}], {i, 7}];

If[(* zero denominator? *) (Denominator[#] /. x -> 0) == 0, 
    Indeterminate, # /. x -> 0]& /@ lHospitalList

Of course, Mathematica  can also calculate this limit directly. (Mathematica  can also compute limits in cases in which
l’Hôspital’s rule is not applicable [586÷], [163÷], [1131÷].)

Limit[(Sin[Tan[x]] - Tan[Sin[x]])/
      (ArcSin[ArcTan[x]] - ArcTan[ArcSin[x]]), x -> 0]

Here is an exact value for the Gauss hypergeometric function with numeric arguments. 

46 Printed from THE MATHEMATICA GUIDEBOOKS

©  2004, 2005   Springer Science+Business Media, Inc.



Hypergeometric2F1[3/2, 4, 1, z]

We can also evaluate a high-order Hermite polynomial. 

HermiteH[23, z]

The  command  FunctionExpand  rewrites  an  expression  using  a  simpler  function  than  the  original  one.  In  the
following, a trigonometric expression is converted to one involving square roots only.

FunctionExpand[Sin[1/(2^3 3 5) Pi]] 

Here is a similar example.

FunctionExpand[Tan[Pi/32]] 

The previous expression is an algebraic number. It is a root of the polynomial that is the first argument of the following
Root-object.

RootReduce[%]

Next, we find the prime factor decomposition of a relatively large number. 

FactorInteger[4951486756871515]

Here is an abbreviated list of all numbers dividing the number 4951486756871515. 

Divisors[4951486756871515] // Short[#, 6]&

This is the one-billionth prime number. 

Prime[10^9]

We now decompose a polynomial into smaller ones that, when plugged into each other, give again the starting polyno-
mial. (This specific example was already decomposed by Vieta in 1594 [232÷].) 

Decompose[45 x - 3795 x^3 + 95634 x^5 - 1138500 x^7 + 7811375 x^9 -
          34512075 x^11 + 105306075 x^13 - 232676280 x^15 +
          384942375 x^17 - 488494125 x^19 + 483841800 x^21 -
          378658800 x^23 + 236030652 x^25 - 117679100 x^27 +
          46955700 x^29 - 14945040 x^31 + 3764565 x^33 -
          740259 x^35 + 111150 x^37 - 12300 x^39 + 945 x^41 -
          45 x^43 + x^45, x]

Sums can also be computed symbolically. Here are the first few partial sums for ⁄k=1
n k j.

TableForm[Table[Sum[k^j, {k, n}], {j, 1, 8}]]

It is even possible to compute infinite sums analytically. 

Sum[1/k^6, {k, Infinity}]

Here are two more complicated sums. The summands and the result contain Riemann’s Zeta function.

Sum[(-1)^n/n^2 Gamma[n]^2/Gamma[2n], {n, Infinity}]

Sum[(Zeta[k] - 1) Exp[-k], {k, 2, Infinity}]

Here  is  a  complicated  finite  sum.  The  result  contains  the  Polygamma  function  and  a  sum  of  roots  of  a  quartic
polynomial.

Sum[(k^2 - 1)/(k^4  + 1), {k, 1, n}]

Mathematica’s functions Integrate, Sum, DSolve are very powerful and can integrate, sum, and solve differential
equations of quite complicated functions. However, for efficiency, the solution is typically not automatically simplified.
But Mathematica  provides a variety of functions allowing us to rewrite results from functions like Integrate, Sum,
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DSolve  in  various  ways.  For  instance,  here  is  a  more  explicit  form  of  the  last  result  (not  containing  the  function
RootSum any more). 

Normal[%] // Simplify

Using the function FullSimplify, we can further collapse the last result.

% // FullSimplify

A closed form for the partial sum of the first n Taylor coefficients of sinHxL.
Sum[(-1)^k/(2k + 1)! x^(2k + 1), {k, 0, n}] // FullSimplify

For a given value of n, we recover the first n Taylor coefficients of sinHxL.
Series[% /. n -> 12, {x, 0, 12}]

Here is a complicated finite sum that can be expressed in polylogarithmic and Lerch functions: 

‚
k=1

n

k-1ê2Hk wLi w x

k

m
x2 i p g k .

[{m_, ω_, γ_}, n_, x_] := 
   Sum[k^(-1/2) (k ω)^(I ω) (x/k)^m x^(I 2Pi γ k), {k, n}];
    
[{m, ω, γ}, n, x] // PowerExpand // TraditionalForm    

For  larger  n  the  last  sums  shows  a  complicated,  hierarchical  behavior  [537÷].  Here  is  an  example  for  the  parameter
values m = 0.2, w = 7, g = 1.007, and n = 100.

Plot[Evaluate[Im[ [{0.2, 7, 1.007}, 100, x]]], {x, 0, 1}, 
     PlotPoints -> 1000, Frame -> True, Axes -> False]

The following sum calculates the interaction energy of a point charge at position z0 between two flat, parallel, perfectly
conducting walls of distance a using mirror charges [1192÷].

Sum[1/(a n) - 1/(2n a - 2 z0) - 1/(2 (n - 1) a + 2 z0), 
    {n, Infinity}] // Normal // Simplify

A Green’s  function  approach  to  the  same problem yields  the  following  integral  and,  of  course,  evaluates  to  the  same
result [1192÷].

Integrate[Cosh[k a]/Sinh[k a] - 1 - Cosh[k(a - 2 z0)]/Sinh[k a],
          {k, 0, Infinity}, 
          Assumptions -> a > 0 && z0 > 0 && z0/a < 1]

A series expansion of the energy around z0 = 0 or z0 = a yields the force on the point charge.

{Series[%, {z0, 0, 6}], Series[%, {z0, a, 6}]} // FullSimplify

Next, we use Mathematica to prove a neat identity discovered by Ramanujan: 

cos
2 p

9
3 + cos

4 p

9
3 - cos

p

9
3 =

3 9
3

2
- 33 .

Cos[2Pi/9]^(1/3) + Cos[4Pi/9]^(1/3) -
(Cos[1Pi/9])^(1/3) - (3 9^(1/3)/2 - 3)^(1/3)

The last identity contains algebraic and trigonometric expressions. For algorithmic treatments, algebraic expressions are
always preferable. In algebraic form, the identity has the following form.

Together[TrigToExp[%]]
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The function RootReduce canonicalizes algebraic expressions. The identity can be simplified to 0.

RootReduce[%]

Here is more challenging example: A three-line proof  of  Legendre’s  celebrated identity for  complete elliptic integrals
[442÷]

EHmL KH1 - mL - KHmL KH1 - mL + EH1 - mL KHmL =
p

2
.

The integral

‡
0

p

2

‡
0

p

2 1 - m sin2HxL - H1 - mL sin2HyL

1 - m sin2HxL 1 - H1 - mL sin2HyL
 dx d y

is the left-hand side of Legendre’s identity.

integrand[x_, y_, m_] := (1  - m Sin[x]^2 - (1 - m) Sin[y]^2)/
          Sqrt[1 - m Sin[x]^2]/Sqrt[1 - (1 - m) Sin[y]^2]

Integrate[integrand[x, y, m], {y, 0, Pi/2}, {x, 0, Pi/2}, 
          GenerateConditions -> False] // FunctionExpand // Together

Differentiation shows that the last expression is independent of m.

D[%, m] // Together

This means EHmL KH1 - mL - KHmL KH1 - mL + EH1 - mL KHmL  equals a constant, and evaluating the above integrand for
m = 0 shows that the constant is p ê2.

Integrate[integrand[x, y, 0], {x, 0, Pi/2}, {y, 0, Pi/2}]

A  powerful  command  for  algebraic  computations  is  GroebnerBasis.  Given  a  set  of  polynomials,  the  function
GroebnerBasis can transform this set into triangular form, so that a numerical solution is easily possible. Groeb
nerBasis can also be used to eliminate certain variables from a set of polynomials. In the following example, we are
looking for an equation connecting the area A of a triangle with the radius of its circumscribed circle, with radius R and
the edge lengths l12, l13, and l23.

Clear[x1, y1, x2, y2, x3, y3, X, Y, R, A]; 
GroebnerBasis[{(* all equations of the problem *)
  (* defining equations for the circumscribed circle *)
  (X - x1)^2 + (Y - y1)^2 - R^2, 
  (X - x2)^2 + (Y - y2)^2 - R^2, 
  (X - x3)^2 + (Y - y3)^2 - R^2, 
  (* defining equations for the length of the edges *)
  (x2 - x1)^2 + (y2 - y1)^2 - l12^2, 
  (x3 - x2)^2 + (y3 - y2)^2 - l32^2, 
  (x1 - x3)^2 + (y1 - y3)^2 - l13^2, 
  (* defining equations for area *)
  (1/2(-x2 y1 + x3 y1 + x1 y2 - x3 y2 - x1 y3 + x2 y3))^2 - A^2}, 
  (* the variables to keep *) {R, l12, l23, l13, A}, 
  (* the variables to eliminate *) {x1, y1, x2, y2, x3, y3, X, Y}]

The last polynomial in the result means that the relation we were looking for is A = l12 l23  l13 ê H4 RL. The first polyno-
mial in the result expresses the area in the edge lengths only.

Let  us  use  GroebnerBasis  [288÷]  again  to  solve  a  slightly  more  complicated  example:  the  area  of  the  medial
parallelogram [28÷]  of  a  tetrahedron  expressed  through  the  edge  length  of  the  tetrahedron  [1404÷],  [65÷].  We  start
with a  generic tetrahedron.  From this tetrahedron,  we remove two nonincident edges.  The midpoints of the remaining
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four edges form a parallelogram, the medial parallelogram. We want to express the area of this parallelogram through
the six lengths of the edges of the original tetrahedron. Below is a sketch of the tetrahedron. The two red-colored edges
P1P2 and P3P4 are the removed edges.

P1

P2

P3

P4

The next input calculates the formula we are looking for.

Module[{(* coordinates of the four vertices *)
        p1 = {0, 0, 0}, p2 = {p2x, 0, 0},
        p3 = {p3x, p3y, 0}, p4 = {p4x, p4y, p4z},
        p13, p14, p23, p24},
  (* coordinates of the midpoints of the edges *)
  p13 = (p1 + p3)/2; p14 = (p1 - p4)/2; 
  p23 = (p2 + p3)/2; p24 = (p2 + p4)/2;
 GroebnerBasis[

{(* edge lengths expressed through coordinates of vertices *)
 l12^2 - (p1 - p2).(p1 - p2), l13^2 - (p1 - p3).(p1 - p3),

  l23^2 - (p2 - p3).(p2 - p3), l14^2 - (p1 - p4).(p1 - p4),
  l24^2 - (p2 - p4).(p2 - p4), l34^2 - (p3 - p4).(p3 - p4),
  (* medial parallelogram area A expressed 
     through coordinates of vertices *)

 A^2 - Cross[p14 - p13, p23 - p13].Cross[p14 - p13, p23 - p13]},
 (* the variables to keep *)
 {l12, l13, l14, l23, l24, l34, A},
 (* the variables to eliminate *)
 {p2x, p3x, p3y, p4x, p4y, p4z}, MonomialOrder -> EliminationOrder]]

In  the  last  subsection,  we  made  use  of  the  Polyhedra`  package.  Mathematica  comes  with  a  wide  set  of  standard
packages carrying out various numerical, graphical, and symbolic operations not built into the Mathematica kernel. Let
us  make  use  of  the  package  Algebra`InequalitySolve`  for  doing  some  symbolic  calculations.  The  package
implements the function InequalitySolve.

Needs["Algebra`InequalitySolve`"]

As the function name indicates, InequalitySolve “solves” inequalities. Solving an inequality here means describ-
ing  the  solution  sets  in  a  canonicalized  manner.  The  canonicalized  form  is  a  hierarchical  description  of  the  allowed
intervals for the variables.

?InequalitySolve

Next, we “solve” the inequality I-16 x6 + 24 x4 - 9 x2 - 4 y4 + 4 y2M2 - 1 ê8 < 0.

[x_, y_] = (24x^4 - 9x^2 - 16x^6 + 4y^2 - 4y^4)^2 - 1/8;

iSol = InequalitySolve[[x, y] < 0, {x, y}];

Because the result iSol is quite large and its structure is not immediately recognizable, we do not display the result. It
has 25 independent parts.

iSol // Length

50 Printed from THE MATHEMATICA GUIDEBOOKS

©  2004, 2005   Springer Science+Business Media, Inc.



Here is the first part.

First[iSol]

It is of the form x1 < x < x2 Ï Iy1HxL < y < y2HxL Í yè 1HxL < y < yè 2HxLM. This form is the canonicalized description of one

region where the above inequality holds. The regions are areas or lines extending along the y-direction over a fixed x-
interval.  (For  a  more  detailed  description,  see  Section  1.2.3  of  the  Symbolics  volume  [1285÷]  of  the  GuideBooks.)
Similar to the above Solve example, when “solving” inequalities, one often ends up with Root-objects. The x1, x2 are
algebraic numbers and y1HxL, y2HxL, yè 1HxL, and yè 2HxL are algebraic functions of x1  and x2, which means they are inverse

functions of polynomials that generically cannot be inverted using elementary functions.

It  is  straightforward  to  visualize  the  canonicalized  regions  where  the  inequality  holds.  We  just  form  polygons  by
traversing y1HxL from x1 to x2 and going back along y2HxL from x2 to x1 and similarly for yè 1HxL, yè 2HxL. The little function

makePolygon forms a polygon from a logical combination of inequalities.

makePolygon[Inequality[x1_, Less, x, Less, x2_] &&
            Inequality[y1_, Less, y, Less, y2_], 
            plotpoints:pp_Integer] := 
With[{(* avoid endpoints *) ∂ = 10.^-12}, Polygon[Join[
 (* bottom and top boundaries *)
 Table[{x, y1}, {x, x1 + ∂, x2 - ∂, (x2 - x1 - 2∂)/pp}],
 Table[{x, y2}, {x, x2 - ∂, x1 + ∂, (x1 - x2 + 2∂)/pp}]]]]

iSol contains 41 independent 2D regions. Here, we show them; each one has a randomly assigned color. (The regions
described by the inequality are “thickened” versions of the Lissajous curve 8x, y< = 8sinH2 JL, cosH3 JL<.  As a guide for
the eye, we display this curve in gray on top of the colored regions.)

Show[{Graphics[{Thickness[0.01],
     {Hue[Random[]], makePolygon[#, 20]}& /@ 
       (* ignore one-dimensional parts *)
       Apply[List, (DeleteCases[iSol, _Equal && _] /. 
                     a_ && b_Or :> ((a && #)& /@ b))]}],
      (* the Lissajous curve *)               
      ParametricPlot[{Sin[2ϑ], Cos[3ϑ]}, {ϑ, 0, 2Pi},
               PlotRange -> All, PlotPoints -> 200,
               DisplayFunction -> Identity,
               PlotStyle -> {{GrayLevel[0.5], Thickness[0.01]}}]}, 
      AspectRatio -> Automatic, Frame -> True,
      PlotRange -> {{-1.2, 1.2}, {-1.2, 1.2}}]

The next input finds the smallest value of R, such that all points 8x, h< with †8x, h<§ > R, the value of the left-hand side of
the  above  inequality  is  positive  (meaning the  maximal spatial  extension  of  the  set  defined  by the  inequality  from the
origin).

ForAll[{ξ, η}, {ξ, η, R} ∈ Reals && Norm[{ξ, η}] > R, [ξ, η] > 0] // 
                          (* write in quantifier-free form *) Resolve 

The  resulting  value  of  R  is  a  root  of  a  polynomial  of  degree  15  with  integer  coefficients.  Its  numerical  value  is
1.38143….

N[%]

The  next  input  proves  for  positive  a,  b,  c  the  so-called  Nesbitt  inequality  a ê Hb + cL + b ê Ha + cL + c ê Ha + bL ¥ 3 ê2
[1244÷]. We specify the inequality using the forall quantifier.

ForAll[{a, b, c}, Element[{a, b, c}, Reals] && a > 0 && b > 0 && c > 0,
       a/(b + c) + b/(a + c) + c/(a + b) >= 3/2] // Resolve
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In case the constant 3 ê2 were not known in advance, one could easily determine it, either through quantifier elimination
or minimization.

ForAll[{a, b, c}, Element[{a, b, c, R}, Reals] && a > 0 && b > 0 && c > 0,
       a/(b + c) + b/(a + c) + c/(a + b) >= R] // Resolve

Minimize[a/(b + c) + b/(a + c) + c/(a + b),
         a > 0 && b > 0 && c > 0, {a, b, c}]

While being inherently of algebraic nature, functions like Resultant  and GroebnerBasis  can often be fruitfully
used to deal with analysis problems (as we will do repeatedly in the GuideBooks). Here we use them to derive nonlinear
polynomial  differential  equations  for  the  function  HzL = tanHlnHzLL.  Differentiating  HzL  repeatedly  shows  powers of
the secHlnHzLL and HzL.

Table[Derivative[k][ ][z] - D[Tan[Log[z]], {z, k}], {k, 0, 3}] // 
                                            Together // Numerator

Eliminating secHlnHzLLn  and tanHlnHzLLm  yields  polynomial  differential  equations  such as z ≥HzL = £HzL H2 HzL - 1L  in
z, HzL, £HzL, ≥HzL and maybe higher derivatives of HzL.

GroebnerBasis[%, {}, {Tan[Log[z]], Sec[Log[z]]},
              MonomialOrder -> EliminationOrder] // Factor

Taking two such differential equations yields a z-free, nonlinear, third-order differential equation for HzL = tanHlnHzLL.
Resultant[%[[1, -1]], %[[2, -1]], z] // Simplify

Substituting tanHlnHzLL for HzL in the last differential equations gives zero.

% /. { [z] :> Tan[Log[z]],
      Derivative[k_][ ][z] :> D[Tan[Log[z]], {z, k}]} // Simplify

Next,  we examine a self-defined rule.  The function xp sinHxqL lnHxrL  cannot be integrated by Mathematica  with respect
to x (it is not possible to express this integral in named special functions).

Integrate[x^p Tan[x^q] Log[x^r], {x, 0, Pi}]

However,  we  can  create  a  new  symbol  XtoPowerαTimesSinOfXtoPowerβTimesLogOfXtoPowerγ[p, q,
r] for this integral. 

Unprotect[Integrate];

Integrate[x_^α_. Tan[x_^β_.] Log[x_^γ_.], {x_, 0, Pi}] :=
            XtoPowerαTimesTanOfXtoPowerβTimesLogOfXtoPowerγ[α, β, γ];

Protect[Integrate];

Mathematica can use this rule when it is possible. 

Integrate[z^I Tan[z^23] Log[z], {z, 0, Pi}]

Mathematica is good at matching patterns. For example, we can extract all elements from a list that are the product of x
with any factor, including the not explicitly written factor 1. 

Cases[{3, 2 + 7 I, 6 x, I x, u x, x, a x, u}, Optional[_] x]

Here  is  an  umbral  example [380÷].  When  one  interprets  the  even  powers  k  in  the  expanded  form of  H - iLn = 0  as
indexed  numbers  k ,  then  the  k  are  just  the  absolute  values  of  the  Euler  numbers  †Ek §  [439÷],  [479÷].  Here  is  an
example for n = 12. This is the expanded form.

Expand[(  - Sqrt[-1])^12]
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Using patterns and replacements is straightforward to go from the monomials k  to the indexed quantities k .

% /. ^k_. :> Subscript[ , k]

This checks the above statement about the Euler numbers.

% /. Subscript[ , k_] :> Abs[EulerE[k]]

The next input tests if the first four digits of p appear somewhere within the first 50000 digits of the decimal representa-
tion of 17-1000. (It turns out that within the periodic part of the decimal expansion of 17-1000, the first 1230 digits of p
appear many times [1251÷], [1252÷]; almost all real numbers are lexicons [226÷], [584÷].)

MatchQ[First[RealDigits[N[1/17^1000, 50000]]], {___, 3, 1, 4, 1, ___}]

The first four digits of p appear also in the (integer) digits of 171000.
MatchQ[IntegerDigits[17^1000], {___, 3, 1, 4, 1, ___}]

Mathematica can simplify expressions when it knows properties of the variables. In the next input, it is assumed that p
is an odd prime.

Simplify[Sin[p^2 Pi] + (-1)^p, Element[p, Primes] && p > 2]

The following expression does not automatically “simplify” to x + 1.

Sqrt[x^2 + 2 x + 1]

Actually, such a transformation would be mathematically wrong for many complex numbers.

{Sqrt[x^2 + 2 x + 1], x + 1} /. x -> -3 + 2I

Under the additional assumption that x is a positive real number, Mathematica can simplify x2 + 2 x + 1  to x + 1.

Simplify[Sqrt[x^2 + 2 x + 1], Element[x, Reals] && x > 0]

Many more functions in Mathematica  perform symbolic mathematics. The Numerics [1284÷] and Symbolics [1285÷]
volumes of the GuideBooks discuss many more details.

Mathematica  can carry out  complicated and never-before-carried  out  calculations in various  mathematical topics  with
great ease. The following short  code, for instance, searches for a number whose digits of its decimal expansion digits
agree with the terms of its (nonsimple) continued fraction expansion.

Make Input

(* difference between decimal expansion and continued fraction *)
δ[l_] := N[Abs[FromDigits[{l, 1}, 10] - 
            Fold[#2[[2]]/(#2[[1]] + #1)&, l[[-2]]/l[[-1]], 
                       Partition[Reverse[Drop[l, -2]], 2]]]];
                       
(* recursively add digit pair and keep a set of best lists  *)
Nest[First /@ Take[#, Min[43, Length[#]]]&[Sort[{#, δ[#]}& /@ 
          Flatten[Flatten[Table[Join[#, {i, j}],
                       {i, 0, 9}, {j, 9}], 1]& /@ #, 1], 
           (#1[[2]] < #2[[2]])&]]&, {{0}}, 72][[1]]                       

After running, the code above returns the following result.
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{0, 2, 7, 3, 9, 4, 4, 1, 9, 5, 7, 3, 9, 2, 7, 1, 6, 1, 
 7, 1, 7, 1, 4, 5, 9, 1, 5, 2, 7, 2, 4, 2, 8, 5, 9, 1, 
 9, 2, 7, 3, 7, 2, 5, 1, 8, 7, 7, 2, 9, 8, 8, 1, 9, 8, 
 6, 2, 9, 1, 9, 1, 7, 3, 8, 3, 7, 5, 5, 2, 8, 1, 7, 1, 
 7, 7, 4, 1, 8, 1, 9, 6, 9, 4, 6, 1, 9, 1, 7, 3, 8, 2, 
 8, 3, 6, 2, 5, 1, 6, 1, 5, 4, 8, 5, 9, 3, 6, 4, 7, 1, 
 9, 2, 5, 8, 9, 4, 9, 8, 9, 1, 5, 1, 7, 2, 7, 3, 9, 1, 
 9, 6, 7, 6, 9, 2, 8, 1, 9, 4, 5, 3, 5, 1, 6, 3, 8, 1, 6}; 

The next input forms the continued fraction corresponding to the last list.

With[{  = C /@ %},
DeleteCases[Hold[0 + #]& @@ {Fold[#2[[2]]/(#2[[1]] + #1)&, 
             [[-2]]/ [[-1]], Partition[Reverse[Drop[ , -2]], 2]]},
     C, Infinity, Heads -> True]] // InputForm

Collapsing the last expression into a fraction and then calculating a high-precision approximation of this fraction yields
a decimal number, showing that the first 100 digits agree with the continued fraction terms.

ReleaseHold[%]

N[%, 100]

Here is a short way to show the agreement of the first 100 digits using Mathematica.

RealDigits[%%, 10, 100, 0][[1]] == Take[%%%%, 100]

The code above can easily be adapted to calculate numbers with many identical decimal and continued fraction digits,
for the case of a simple continued fraction, and to deal with the case for a base different from 10.

Mathematica  also allows larger mathematical formulas and algorithms to be entered in a direct way. As a small exam-
ple,  let  us  implement  the  calculation  of  the  series  of  the  conformal  map w = f HzL  after  Szegö’s  method  (see  [346÷],
[509÷],  [1106÷],  [702÷],  and  [1180÷]),  which  maps  a  square  in  the  z-plane  onto  the  unit  disk  in  the  w-plane.  The
approximation of w = f HzL of order n is given by:

h jk =
1

l
 ‡

C
z j zê k  ds

HHnL = h jk j, k = 0, 1, …, n
dn = det HHnL

GHnLHxL =
h jk ,  j = 0, 1, …, n, k = 0, 1, …, n - 1 

x j,  j = 0, 1, …, n, k = n 

lnHxL = det GHnLHxL

pnHxL =
lnHxL

dn-1 dn

p0HxL = 1

knHa, bL = ‚
i=0

n

piHaL piHbL

wnHzL =
p

4 knH0, 0L
 ‡

0

z
knH0, xL2 dx

Here, l is the length of the boundary of the square, and the integration has to be carried out along the boundary of the

square.  The pnHxL  form orthogonal  polynomials.  HHnL  and GHnL  are  square  matrices of  dimension n  with  elements h j,k ,
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and g j,k  respectively.

Here, the above-described method is implemented. ord determines the order in z. 
ConformalMapSquareToUnitDisk[ord_, z_] :=
Module[{h, H, G, d, l, p, k, t, a, b, λ, integrand,
        edgeList = {-1 + I, 1 + I, 1 - I, -1 - I}},
 lineSegments = Partition[Append[edgeList, First[edgeList]], 2, 1];
 (* edge length *)
 λ = Total[Abs[#[[2]] - #[[1]]]& /@ lineSegments];
 (* the h-integrals *)
 integrand[j_, k_] = Plus @@ ((Abs[#[[2]] - #[[1]]]*
 (#[[1]] + t (#[[2]] - #[[1]]))^j*((#[[1]] + t (#[[2]] - #[[1]]))^k /.
                  c_Complex :> Conjugate[c]))& /@ lineSegments);
 (* scalar product *)
 h[j_, k_] := h[j, k] = 1/λ Integrate[integrand[j, k], {t, 0, 1}];
 (* Hankel-Hadamard-Gram determinants *)
 H[n_] := Array[h, {n + 1, n + 1}, 0];
 d[n_] := d[n] = Det[H[n]];
 G[n_, ξ_] := Array[If[#2 < n, h[#1, #2], ξ^#1]&, {n + 1, n + 1}, 0];
 l[n_, ξ_] := l[n, ξ] = Det[G[n, ξ]];
 (* Szegö polynomials *)
 p[0, ξ_] = 1;
 p[n_, ξ_] := p[n, x] = l[n, ξ]/Sqrt[d[n] d[n - 1]];
 (* Szegö kernel *)
 k[a_, b_] = Sum[p[i, a] p[i, b], {i, 0, ord}];
 Cancel[Pi/(4 k[0, 0]) Expand[Integrate[k[0, ξ]^2, {ξ, 0, z}]]]]

Here is an example (for ord = 8, the constant term deviates about 0.09 % from its exact value). 

ConformalMapSquareToUnitDisk[8, z]

Using Mathematica’s  graphics  capabilities,  we can easily visualize the conformal map generated by the  last  function.
The left picture shows a mesh in the square with the corners -1 + i, 1 + i, 1 - i, -1 - i, and the right picture shows the
mesh after mapping; the unit disk is shown underlying in gray. 

With[{pp = 15},
Module[{points, opts},
 (* points forming the grid *)
 points = Table[N[x + I y], {x, -1, 1, 1/pp}, {y, -1, 1, 1/pp}];
 (* common graphics options *)
 opts[label_] := Sequence[AspectRatio -> Automatic, PlotLabel -> label,
                          PlotRange -> {{-1.2, 1.2}, {-1.2, 1.2}}];
 Show[GraphicsArray[{
 (* the original square *)
 Graphics[{Thickness[0.001], Line /@ #, Line /@ Transpose[#]}&[
           Map[{Re[#], Im[#]}&, points, {-1}]], opts["z-plane"]],
 (* the mapped square *)          
 Graphics[{{GrayLevel[3/4], Disk[{0, 0}, 1]},
           Thickness[0.001], Line /@ #, Line /@ Transpose[#]}&[
           Map[{Re[#], Im[#]}&,
           Map[Function[z, Evaluate[N[%]]], points, {-1}], {-1}]],
          opts["w-plane"]]}]]]]

Mathematica  has  most  of  the  special  functions  of  mathematical  physics  (see  Chapter  3  of  the  Symbolics  volume
[1285÷] of the GuideBooks) [865÷]. Using elliptic functions, it is possible to find an exact formula for a conformal map
from a rectangle to the unit disk [1013÷]. The next graphic visualizes the exact map. To avoid repeating the last input,
we modify the last input in a programmatic way and then evaluate the new code.
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Module[{wExact, k = InverseEllipticNomeQ[Exp[-2. Pi]], K},
        K = EllipticK[k];
       (* the exact conformal map *)
        wExact[z_] := (1 + I JacobiSN[K (z + I), k])/
                      (1 - I JacobiSN[K (z + I), k]);
       (* or another map in elliptic functions:
         {g2, g3} = WeierstrassInvariants[{1., I}];
         wExact[z_] := (1 - I WeierstrassP[(z + (1 + I))/2, {g2, g3}])/
                       (1 + I WeierstrassP[(z + (1 + I))/2, {g2, g3}]); 
       *) 
       (* to obtain above symmetry, apply in addition:
          makeAboveSymmetry[z_] := 
             (3  - Sqrt[2] + I + (2 Sqrt[2] + 1 + (Sqrt[2] + 1) I) z)/
             (2 Sqrt[2] + 1 + (Sqrt[2] + 1) I + (3  - Sqrt[2] + I) z);
       *)
       (* reuse the above input *)
       Last[DownValues[In][[-2]] /. 
               (* make changes to last input *)
               HoldPattern[%] -> (* makeAboveSymmetry @ *) wExact[z]]]

The typesetting capabilities of  Mathematica  allow mathematical formulas and algorithms to be entered in a still  more
direct way. 

ConformalMapSquareToUnitDiskSF@ω_Integer?Positive, z_D :=

ModuleB8h, H, G, d, l, p, k, t, a, b, ρ,

= 8−1 + I, 1 + I, 1 − I, −1 − I<<,
ˆ

= Partition@Append@ , First@ DD, 2, 1D;
λ = TotalAAbsAApplyASubtract, ˆ

, 81<EEE;
ρj_,k_ = TotalBApplyBAbs@ 2 − 1D H 1 + t H 2 − 1LLj ∗

JH 1 + t H 2 − 1LLk ê. c_Complex Conjugate@cDN &, ˆ
, 81<FF;

hj_,k_ := hj,k =
1

λ
‡
0

1

ρj,k t;

Hn_ := Array@h &, 8n + 1, n + 1<, 0D;
dn_ := dn = Det@HnD;
Gn_@ξ_D := ArrayAIfA 2 < n, h 1, 2, ξ 1E &, 8n + 1, n + 1<, 0E;
ln_@ξ_D := ln@ξD = Det@Gn@ξDD;

p0@ξ_D = 1; pn_@ξ_D := pn@ξD =
ln@ξD

dn dn−1

;

k@a_, b_D = ‚
i=0

ω
pi@aD pi@bD;

CancelB
π

4 k@0, 0D
ExpandB‡

0

z

k@0, ξD2 ξFFF

ConformalMapSquareToUnitDiskSF yields the same result as ConformalMapSquareToUnitDisk.

ConformalMapSquareToUnitDiskSF[8, z]

While the availability of numerical values of special functions is an important part of Mathematica, in many instances
its problem-solving power arises from connecting numerics, symbolics, and graphics. Here is another simple example:
the path of a point vortex in an inviscid fluid in a rectangular region. The path of the vortex 8xHtL, yHtL< is given by the
following Hamiltonian system [1305÷], [1327÷] (for  spherical rectangles,  see [592÷]).  Here ƒHz; g2, g3L  is the Weier-
strass ƒ function and g2Hw1, w3L and g3Hw1, w3L are the invariants as a function of the half-periods.
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x£HtL =
∑ H

∑ yHtL
, y£HtL = -

∑ H

∑ xHtL
H = -G lnHƒH2 xHtL + 2 a; g2H2 a, 2 i bL, g3H2 a, 2 i bLL + ƒH2 yHtL + 2 b; g2H2 b, 2 i aL, g3H2 b, 2 i aLLL

H = -Γ Log[WeierstrassP[2 x[t] + 2 a, {g2, g3}] + 
           WeierstrassP[2 y[t] + 2 b, { 2, 3}]];

It is straightforward to get the explicit form of the equations of motions.

odes = {x'[t] == D[H, y[t]], y'[t] == - D[H, x[t]]};
odes // TraditionalForm

And it is straightforward to solve these equations numerically for different initial conditions. (We choose G = 1, a = 2,
and b = 1 in the following input).  The picture shows periodic, self-intersection-free trajectories that are ellipse-shaped
for initial conditions near the center and that approximate the rectangle for starting values near the edges.

Module[{odesN, T = 3, nsol},
 (* substitute values for G, a, and b *)
 odesN = odes /. {{g2, g3} -> WeierstrassInvariants[{2 a, 2 I b}],
                  { 2, 3} -> WeierstrassInvariants[{2 b, 2 I a}]} /.
                 {a -> 2, b -> 1., Γ -> 1};
Show[(* use different initial conditions of the form {x0, 0} *)
Table[(* solve equations of motion *)
nsol = NDSolve[Join[odesN, {x[0] == x0, y[0] == 0}],
               {x, y}, {t, 0, 2T/x0}, MaxSteps -> 10000];
(* plot the path *)
ParametricPlot[Evaluate[{x[t], y[t]} /. nsol], {t, 0, 2T/x0},
               Axes -> False, DisplayFunction -> Identity,
               PlotStyle -> {{Thickness[0.001], Hue[x0/2.6]}}],
               {x0, 0.1, 1.9, 0.1}],
     DisplayFunction -> $DisplayFunction, Frame -> True,
     FrameTicks -> False, FrameStyle -> {Thickness[0.02]}]]

The  penultimate  example  of  this  subsection  deals  with  a  slightly  more  complicated  example:  the  lines  of  magnetic
induction  (which  in  a  2D cylindrical  geometry are  also  the  lines  of  constant  vector  potential)  of  a  cylindrical  magnet
with an air gap. The z component Az  of the vector potential A (a is the inner radius, b is the outer radius of the magnet,
2 p - 2 a is the slit width, and the slit is pointing into the -x direction) is given by the following sums [1220÷]. We use
Mathematica’s typesetting capabilities for this example.

A@r_, θ_, 8a_, b_, α_<D =

WithB:θ =
Sin@n αD Cos@n θD

n2
>, Evaluate êê@ WhichB

r > b, α LogB
b

b
F + ‚

n=1

∞ a

r

n

 θ − ‚
n=1

∞ b

r

n

 θ ,

b > r > a, α LogB
b

r
F + ‚

n=1

∞ a

r

n

 θ − ‚
n=1

∞ r

b

n

θ ,

a > r, α LogB
b

a
F + ‚

n=1

∞ r

a

n

 θ − ‚
n=1

∞ r

b

n

θ FF

As the result  shows,  Mathematica  was  able  to  sum all  three of  the above  symbolic infinite  sums in  closed form. The
normal component of the field is everywhere differentiable.
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Plot@Evaluate@A@3ê 2, θ, 81, 2, 7 ê 8 π<DD,
8θ, 0, 2 π<, Frame → True, Axes → False,

PlotStyle → 88GrayLevel@0D, Thickness@0.003D<<,
Prolog → 8Hue@0D, Rectangle@80, 0.77<, 87 ê 8 π, 0.869<D,

Rectangle@89 π ê 8, 0.77<, 82 π, 0.869<D<D

The tangential component has a discontinuity in its first derivative at the magnet.

Plot@Evaluate@A@r, 0, 81, 2, 7 ê8 π<DD, 8r, 0, 3<, Frame → True, Axes → False,
PlotStyle → 88GrayLevel@0D, Thickness@0.003D<<,

Prolog → 8Hue@0D, Rectangle@81, −0.1<, 82, 2.<D<D

The field  lines  (for  a  cylindrical  geometry,  they are  the  equi-Az-potential  lines)  are  shown in  the  following  graphics.

The homogeneous field in the air gap is nicely visible (although running the following input will take a few minutes).

ContourPlotBEvaluateBReBAB x2 + y2 , ArcTan@x, yD, 81, 2, 7 ê 8 π<FFF,
8x, −3, 3<, 8y, −3, 3<, PlotPoints → 160,
Contours → Range@−0.1, 2.2, 0.1D, ContourShading → False,
Compiled → False, FrameTicks → None,

ContourStyle → 88Thickness@0.001D, GrayLevel@0D<<,
Prolog → 8Thickness@0.006D, Hue@0D, Disk@80, 0<, 2, 8− 7 ê 8 π, 7 ê8 π<D,

GrayLevel@1D, Disk@80, 0<, 1, 8−7 π, 7 π< ê 8D<F

Here is a 3D picture of the field strength.

ListPlot3D@H* take out data from last graphic *L First@%D,
PlotRange → All, Mesh → False, ViewPoint → 8−2, −2, 2<, Axes → FalseD

We continue with another, slightly larger application from electrodynamics. Localized [829÷], propagating solutions of
the free Maxwell equations can be derived from the simple vector potential A = curl 80, 0, yHx, y, z; tL< where the scalar
function yHx, y, z; tL is a simple rational function of x, y, z, and t [831÷]. Here is such a function; a and b are parameters
determining the shape of the field, and y0 is a normalization constant.

ψZiolkowski[{x_, y_, z_}, t_] = 
            a b ψ0/(x^2 + y^2 + (a - I (z + c t)) (b + I (z - c t)));

ΨLekner[{x_, y_, z_}, t_] = 
        (x + I y)/(b + I (z - c t)) ψZiolkowski[{x, y, z}, t]

Using E = -∑ ê A ∑ t and B = curl A, we can derive the following (complex-valued) electric and magnetic fields.

[{x_, y_, z_}, t_] = {-1/c D[ΨLekner[{x, y, z}, t], y, t], 
                         1/c D[ΨLekner[{x, y, z}, t], x, t], 0} // 
                                                          Together;

[{x_, y_, z_}, t_] = 
 { D[ΨLekner[{x, y, z}, t], x, z],  D[ΨLekner[{x, y, z}, t], y, z], 
  -D[ΨLekner[{x, y, z}, t], x, x] - D[ΨLekner[{x, y, z}, t], y, y]} // 
                                                              Together;

Here is a quick check of the Maxwell equations themselves using the just-derived fields.

(* the curl vector analysis operation *)
curl[{a_, b_, c_}, {x_, y_, z_}] := 
     {D[c, y] - D[b, z], D[a, z] - D[c, x], D[b, x] - D[a, y]}
     
(* the div vector analysis operation *)
div[{a_, b_, c_}, {x_, y_, z_}] := D[a, x] + D[b, y] + D[c, z]
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With[{  = [{x, y, z}, t],  = [{x, y, z}, t]}, 
     (* the four free-space Maxwell equation *)
     {div[ , {x, y, z}], div[ , {x, y, z}], 
      curl[ , {x, y, z}] + 1/c D[ , t], 
      curl[ , {x, y, z}] - 1/c D[ , t]} // Together]

We form real-valued fields by taking the real (or imaginary) part of  and .

{ [{x_, y_, z_}, t_], [{x_, y_, z_}, t_]} = Function[  v,
    ComplexExpand[Re[  v[{x, y, z}, t]], TargetFunctions -> {Re, Im}] // 
                                           Together // Factor] /@ { , };

Although  still  rational  functions  in  x,  y,  z,  and  t,  the  real-valued  fields  are  quite  large  expressions.  The  following
measures the number of independent subexpressions present in  and .

{LeafCount[ [{x, y, z}, t]], LeafCount[ [{x, y, z}, t]]}

By  expressing  the  fields  in  cylindrical  coordinates,  and  simplifying  the  results,  we  obtain  considerably  smaller
expressions.

(* change to polar coordinates and simplify resulting expressions;
   using some more specific functions the simplification could be 
   made faster *)
{LeafCount[ c[{r_, ϕ_, z_}, t_] = Simplify[ [{r Cos[ϕ], r Sin[ϕ], z}, t]]],
 LeafCount[ c[{r_, ϕ_, z_}, t_] = Simplify[ [{r Cos[ϕ], r Sin[ϕ], z}, t]]]}

The  function  ct  is  the  time-dependent  energy  density  and  of  the  localized  field  configuration  and  zt  is  the  time-
dependent  z-component  of  the  momentum density  of  the  field.  For  the  following  calculations  and  visualizations,  we
specialize the parameters to a = 2, b = 1 and assume that the speed of light c is 1.

fieldParameterRules =  {ψ0 -> 1, c -> 1, a -> 2, b -> 1};

ct[{r_, ϕ_, z_}, t_] = 1/(8 Pi) ( c[{r, ϕ, z}, t]. c[{r, ϕ, z}, t] + 
                                 c[{r, ϕ, z}, t]. c[{r, ϕ, z}, t]) /.
                                                   fieldParameterRules;

zct[{r_, ϕ_, z_}, t_]  = 
    1/(4 Pi c) Cross[ c[{r, ϕ, z}, t], c[{r, ϕ, z}, t]][[3]] /.
                                                   fieldParameterRules;

We obtain the total energy U  and the total momentum Pz  by integrating the energy and momentum densities. (Because
they are both conserved quantities, we can choose t = 0 [830÷].)

(* energy density at t = 0 *)
c0 = Simplify[Together[ ct[{r, ϕ, z}, 0]]]; 

(* z-component of the momentum density at t = 0 *)
zc0 = Simplify[Together[ zct[{r, ϕ, z}, 0]]]; 

(* total energy *)
Integrate[r c0, {z, -Infinity, Infinity}, {r, 0, Infinity}, {ϕ, 0, 2Pi}, 
          GenerateConditions -> False]

(* total momentum *)
Integrate[r zc0, {z , -Infinity, Infinity}, {r, 0, Infinity}, {ϕ, 0, 2Pi},
          GenerateConditions -> False]

Interestingly,  we have U > c  Pz  (this  means this  electromagnetic packet  cannot  be interpreted as  a  photon).  The next
graphics show lines of constant energy density in the x,y-plane and in the x,z-plane. The colors indicate increasing time,
from  red  to  blue.  We  see  the  propagation  along  the  z-axis  and  the  overall  spreading  of  the  field  packet  and  a  twist
around the z-axis.
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Show[GraphicsArray[
Block[{$DisplayFunction = Identity,
       (* common options for the next two plots *)
       copts = Sequence[PlotPoints -> 200, Contours -> 10, 
                        ContourShading -> False, ContourStyle -> Hue[t/4]]}
 {(* constant energy density in the x-y-plane *)
  Show[Table[ContourPlot[Evaluate[ ct[{Sqrt[x^2 + y^2], ArcTan[x, y], 0}, t
             {x, -5, 5}, {y, -5, 5}, Evaluate[copts]], {t, 0, 3}]],
  (* constant energy density in the x-z-plane *)
  Show[Table[ContourPlot[Evaluate[ ct[{Sqrt[x^2 + 0^2], ArcTan[x, 0], z}, t
            {x, -5, 5}, {z, -5, 5}, Evaluate[copts]], {t, 0, 3}]]}]]]      

The typesetting capabilities of Mathematica  allow to create new notations and to use them in programming. Here is a
simple example from quantum mechanics. For implementing more complicated notations, the notations package comes
handy. In general, in the GuideBooks, we will not resort to typeset input to guarantee a 1–1 correspondence between the
format  of  the  (printed)  inputs  and  their  meaning.  We  implement  abstract  quantum  mechanical  state  vectors  (kets
[388÷]) as †i\A = Ket@A, iD (the first letter A labels the particle and i its quantum state).

H* do not numericalize inside kets *L
SetAttributes@Ket, NHoldAllD

H* accept †y\A as input *L
MakeExpression@
SubscriptBox@RowBox@8RowBox@8"†", ψ_<D, "\"<D, A_D, form_D :=

MakeExpression@RowBox@8"Ket", "@", A, ",", ψ, "D"<D, formD

H* format Ket@A, yD in output as †y\A *L
MakeBoxes@Ket@A_, ψ_D, form_D :=

StyleBox@
SubscriptBox@RowBox@8RowBox@8"†", MakeBoxes@ψ, formD<D, "\"<D, AD,

AutoStyleOptions → 8"UnmatchedBracketStyle" → None<D

†ψ\AB is a nonseparable two-particle state from the tensor product of two four-dimensional spaces.

†ψ\AB = ‚
i=1

4

‚
j=1

4

CosB
i

j
+
j

i
F †i\A †j\B

The  following  short  program  writes  a  given  two-particle  state  (in  general  form  ⁄i, j=1
d ci j †i\A † j\B)  in  Schmidt  form

⁄j=1
d c j † j\A † j\B  (see  [510÷],  [1429÷],  [1185÷],  [207÷],  [1055÷],  [1328÷],  [857÷],  [426÷]  for  details  and  [1427÷],

[1428÷], [1182÷] for envariance applications). The function SchmidtDecomposition returns the Schmidt form of
the  input  state  and  how  the  new  vectors  † j\A  and  † j\B  are  expressed  through  the  original  vectors.  (A  singular  value

decomposition  is  at  the  heart  of  the  function  SchmidtDecomposition.)  Inside  the  program,  we  use  the  above-
defined †i\A.
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SchmidtDecomposition@ψ_, 8u_, v_<D :=

ModuleB8allKets, AKets, BKets, A, B, allKetΠs, M, U, Ω, V, d<,
H* kets occurring in the original state vector *L
allKets = Union@Cases@ψ, _Ket, ∞DD;
H* kets of the two subsystems *L
8AKets, BKets< = Split@allKets, 1P1T === 2P1T &D;
H* subsystem labels *L
8A, B< = 8AKetsP1, 1T, BKetsP1, 1T<;
H* coefficient matrix *L
allKetΠs = Outer@List, AKets, BKetsD;
M = Map@ψ ê. Thread@ → 81, 1<D ê. _Ket → 0 &, allKetΠs, 82<D;
H* singular value decomposition of coefficient matrix *L
8U, Ω, V< = SingularValues@N@M, $MachinePrecision + 1DD;

:H* Schmidt decomposed vector *L ‚
j=1

Length@ΩD
ΩPjT °uj]A °vj]B,

H* new basis vectors expressed through old vectors *L
Join@MapIndexed@†u 2P1T\A → .AKets &, UD,

MapIndexed@†v 2P1T\B → .BKets &, VDD>F

Here is the Schmidt form of the above state †ψ\AB.

†ψ\AB êê SchmidtDecomposition@ , 8u, v<D & êê Hsd = L & êê N êê
TraditionalForm

Expressing the new basis vectors °u j]A and °v j]B through the old ones allows for a quick check of the decompositions.

†ψ\AB − ReplaceAll @@ sd êê Expand

We  use  the  function  SchmidtDecomposition  for  one  more  calculation:  The  Schmidt  coefficients  of  a  state

⁄i=1
d ⁄j=1

d ci, j †i\A † j\B  where the ci, j  are random coefficients with normal distributions are in average slowly decreasing

functions of the index. The next graphic shows the Schmidt coefficients for 100 initial two-particle states and d = 12.

schmidtCoefficients =

TableBψ = ‚
i=1

12

‚
j=1

12

InverseErf@Random@Real, 8−1, 1<DD †i\A †j\B;

DeleteCasesAList @@ SchmidtDecomposition@ψ, 8u, v<DP1T, †_\_, ∞E,

8100<F;

Show@Graphics@MapIndexed@Point@8 2P2T, 1<D &, schmidtCoefficients, 82<DD,
PlotRange → All, Frame → True, Axes → FalseD

Σ (* session summary *) TMGBs`PrintSessionSummary[]
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à 1.2.4 Programming 
In addition to numeric and symbolic computations and generating graphics, Mathematica  provides a general program-
ming and development environment. Large (several pages or screens), and even very large, programs can be written in
Mathematica,  although  these  programs  typically  will  be  much  shorter  than  they  would  be  in  other  programming lan-
guages. Such programs may involve all of the capabilities of Mathematica, including numerical and symbolic calcula-
tions,  pattern  matching,  graphics,  variable  name  protection,  etc.  Two  examples  of  larger  programs  from  physics  are
FeynCalc  (for  doing  high-energy  physics  calculations),  http://www.mertig.com  and  MathTensor  (for  doing  general
relativity  calculations),  http://smc.vnet.net/MathTensor.html.  Also,  all  of  the  Mathematica  Application  Library  pack-
ages, http://store.wolfram.com/catalog/apps, are written in Mathematica.

Let us start with a (very) small program. Given a real number x  with 0 < x < 1, we want to extract the l first digits in
base b. The following code gives a recursive definition for extracting the digits.

realDigits[x_ /; 0 < x < 1, base_, l_] := 
Module[{rest, digit},
       (* recursion initial *)
       rest[1] = FractionalPart[x];
       (* recursion for remaining part and digit *)
       rest[n_] := rest[n] = FractionalPart[rest[n - 1] base];
       digit[n_] := digit[n] = Floor[rest[n] base];
       (* list of digits *) Table[digit[i], {i, l}]];

Here is a simple test for the above program.

realDigits[N[Pi - 3, 200], 10, 100]

Mathematica also has a built-in function for getting the digits of a real number. It returns the same result.

RealDigits[N[Pi - 3, 200], 10, 100][[1]]

Next, we carry out a highly recursive calculation. The number of ways pmHnL to decompose a positive integer n into m

positive integers k j, such that n = ⁄j=1
m k j  obeys the recursion pmHnL = ⁄k=1

minHn-m,mL pn-mHkL [36÷], [1362÷]. The function

pList returns a list of the nonvanishing pmHnL for a given n.

pList[n_Integer?Positive] := 
Block[{(* for larger n *) $RecursionLimit = Infinity, },
      [ν_, ν_] := [ν, ν] = 1; (* the case n = 1 + 1 + ... + 1 *)
      (* remember intermediate values of  *)
      [ν_, μ_] := [ν, μ] = Sum[ [ν - μ, k], {k, Min[ν - μ, μ]}];
      (* all nonzero values for 1 § m § n *) Table[ [n, μ], {μ, n}]]

Here are the values of p1H10L, p2H10L, …, p10H10L.
pList[10]

Calculating  all  nonzero  values  of  pmH1000L  takes  a  few  minutes  and  requires  the  calculation  of  more  than  250000
intermediate values of the pmHnL. The next graphic shows pmH1000L as a function of m.

ListPlot[pList[1000], PlotRange -> {{0, 400}, All}]

Every  introductory  chapter  on  Mathematica  should  include  a  definition  of  the  factorial  function  nön !, n œ .  The
obvious  one  [n_] := [n] = n [n -1]  with  the  initial  condition  [0] = 1  is  short,  but  suffers  from a
nonoptimal complexity for larger n  [175÷].  The following, slightly more complicated definition, is very efficient. It is
based on extracting all powers of 2 and carrying out the multiplication of the remaining odd numbers by binary splitting
[599÷].
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[n_] := 2^(n - DigitCount[n, 2, 1])*
              Product[ [n/2^k, n/2^(k - 1)]^k, {k, 1, Floor[Log[2, n]]}]

(* form recursively product of odd numbers between m and n *)
[m_, n_] := [m, Round[(m + n)/2]] [Round[(m + n)/2], n] /;  n - m > 5
                                               
[m_, n_] := Product[2j + 1, {j, Ceiling[Floor[m]/2], Floor[(n - 1)/2]}]

The built-in factorial function Factorial is, of course, faster than , but for n = 106, the difference is only
a factor of two.

{N[Timing[Factorial[1000000]]], N[Timing[[1000000]]]}

Here  is  another  small  programming  example.  The  Bolyai  expansion  of  a  real  number  x  is  a  nested  root  of  the  form
[1128÷], [906÷]

x = a0 - 1 + a1 + a2 + a3 + ∫mmm .

The  Bolyai  digits  ak  are  integers  0 § ak § 2m - 1.  The  following  concise  input  calculates  the  Bolyai  expansion  of  x
using n roots of order m.

BolyaiRoot[x_?((NumericQ[#] && Precision[#] === Infinity &&
                Not[IntegerQ[x]])&), 
           m_Integer?Positive, n_Integer?Positive] := 
Block[{$MaxExtraPrecision = 1000},
IntegerPart[x] - 1 + Fold[(#1 + #2)^(1/m)&, 0, 
        Reverse[IntegerPart[(1 + #)^m - 1]& /@ 
             NestList[FractionalPart[(1 + #)^m - 1]&, 
                               FractionalPart[x], n]]]]

Here are three examples: The outermost ten roots for p for m = 2, m = 10, and m = 99.

b2  = BolyaiRoot[Pi, 2, 10]

b10 = BolyaiRoot[Pi, 10, 10]

b99 = BolyaiRoot[Pi, 99, 10]

The difference between the nested roots and p is a decreasing function of m.

Block[{$MaxExtraPrecision = 1000}, N[{b2, b10, b99} - Pi, 22] // N]

Here is  a  straightforward  definition of  a  Pfaffian [223÷],  [874÷],  [360÷],  [770÷],  [600÷]  (the Æ  under  the element a j

indicates that this element is removed).

Pf Ha1, a2, …, a2 nL = ‚
k=2

2 n

Pf Ia1, a jM Pf a2, …, a j,
Æ

 …, a2 n

Pf Ha1, a2L = -Pf Ha2, a1L

Pf[as:{a1_, a2_, __}] := 
   Sum[(-1)^j Pf[{a1, as[[j]]}] Pf[Delete[as, {{1}, {j}}]], 
       {j, 2, Length[as]}] /; EvenQ[Length[as]]
   
Pf[{x_, y_}] := -Pf[{y, x}] /; Not[OrderedQ[{x, y}]]

The next input calculates the explicit expanded Pfaffian of Pf Ha1, a2, …, a6L.
Pf[Table[Subscript[a, j], {j, 6}]] // Expand

THE MATHEMATICA GUIDEBOOKS to PROGRAMMING—GRAPHICS—NUMERICS—SYMBOLICS 63

©  2004, 2005   Springer Science+Business Media, Inc.



determinantThroughPfaffian[m_?(MatrixQ[#] && Equal @@ Dimensions[m]&)] := 
With[{d = Length[m]}, 
 Pf[Join[Array[1, d], Reverse @ Array[2, d]]] /. 
                       Pf[{1[j_], 2[k_]}] :> m[[j, k]] /. _Pf -> 0]

The determinant of a matrix A = Iai, jM1§i, j§n can be expressed through the Pfaffian in the following form:

detHAL = Pf Ib1, b2, …, bn-1, bn, b
è

n, b
è

n-1, …, b
è

2, b
è

1M

and the rules Pf Ibi, b jM = Pf Ibè i, b
è

jM = 0, Pf Ibi, b
è

jM = ai, j.

Here is a symbolic 6 μ 6 matrix.

(A = Table[Subscript[a, i, j], {i, 6}, {j, 6}]) // TableForm

The next input checks the above determinant formula.

determinantThroughPfaffian[A] - Det[A] // Expand

Mathematica  is  frequently  also  an ideal  tool  to  prototype  and analyze algorithms.  Here  we will  give a  simple sorting
algorithm. The so-called bead-sort algorithm orders a list of k  positive integers increasingly [50÷], [51÷]. An integer n
is initially represented as a list of n 1’s, each 1 standing for a bead. The k  initial integers to be sorted are in the begin-
ning  represented  as  left-aligned  rows  of  beads.  In  each  step  of  the  sorting  process,  a  bead  slides  down  one  unit if
possible (like in an 90±-rotated abacus) until  each bead can no longer slide.  The following function beadSortStep
implements one  step  of  the  bead-sort  algorithm.  Using  functional  programming constructs,  we  can  deal  with  rows of
beads at once instead of explicitly looping over the rows and columns of beads.

(* the argument of beadSortStep is a rectangular array of
   0's and 1's; the ones are the beads *)
beadSortStep = With[{l = Length[First[#]]}, Transpose[Map[
(* bead slides down if possible *)
If[MatchQ[#, {0, 0, 0} | {0, 0, 1} | {0, 1, 0} | {1, 1, 0}], 0, 1]&, 
   (* rows and lower and upper neighbor rows *) Partition[#, 3, 1]& /@ 
   Transpose[Join[{Table[0, {l}]}, #, {Table[1, {l}]}]], {2}]]]&;

The function toBeads converts a list of integers into rows of beads (0 indicates the absence of a bead). The function
fromBeads converts from the beads to integers.

(* convert list of integers to lists of beads *)
toBeads[l_] := Join[Table[1, {#}], Table[0, {Max[l] - #}]]& /@ l
(* convert lists of beads to list of integers *)
fromBeads[l_] := Count[#, 1]& /@ l

To visualize the bead-sort steps, we define a function beadGraphics.

beadGraphics[beads_] := Graphics[
{(* rods on which the beads slide *)
 {GrayLevel[1/2], Table[Line[{{k, -1}, {k, -Length[beads] - 1/2}}], 
                        {k, Length[beads[[1]]]}]},
 (* the beads *)
 MapIndexed[If[#1 === 1, Disk[Reverse[#2 {-1, 1}], 0.4], {}]&, 
               beads, {2}]},
               AspectRatio -> Automatic, PlotRange -> All]

The  next  five  graphics  show  how the  bead-sort  algorithm orders  the  list  87, 2, 1, 4, 2<.  The  function  FixedPoint
List applies the step beadSortStep until the beads are sorted.
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(* the steps of the sorting process *)
sortHistory = Drop[FixedPointList[beadSortStep, 
                                  toBeads[{7, 2, 1, 4, 2}]], -1];
(* display the steps *)
Show[GraphicsArray[beadGraphics /@ sortHistory]]

In intermediate step, we can have rows exhibiting a number of beads not in the initial list of integers.

Map[fromBeads, sortHistory]

Using the just-implemented functions, we define a function BeadSort that sorts a list of nonnegative integers.

BeadSort[l_?(VectorQ[#, (IntegerQ[#] fl NonNegative[#])&]&)] := 
        fromBeads[FixedPoint[beadSortStep, toBeads[l]]]

Here is an example of BeadSort in action.

BeadSort[{12, 6, 1, 8, 3, 2, 7, 1, 5, 0, 2}]

The next input is an example of a slightly larger program. This is the typical appearance of a larger piece of Mathemat-
ica source code. In essence, it consists of the following parts: 

† Explanation of how to use it 

† Commands to load needed packages

† Definition of auxiliary functions 

† Definition of the actual (exportable) functions with a check for the appropriateness of its arguments 

† Implementation of warnings for inappropriate variables, error messages, etc.  

Such a program will usually have context declarations at the beginning and the end to provide protection for the local
variables, and will be deposited in the directory of the user’s packages (we discuss these issues in Chapter 4). Assuming
it  has  been  placed  in  a  special  directory  by  the  user,  it  can  be  loaded  using  the  function  Needs,  as  in
Needs["directory`ChainedPlatonicBody`"]. 

(* Information on the functions implemented below
   can be obtained with ?InPlaneTori and ?NormalPlaneTori *)

InPlaneTori::usage =
"InPlaneTori[platonicSolid, ϕ10:0, ϕ20:0, r1rel:0.68, r2rel:0.12, n1:Automa
 \n \n ϕ10 and ϕ20 vary in the ranges: -2 Pi/n1 <= ϕ10 <= 2 Pi/n1.";

NormalPlaneTori::usage =
"NormalPlaneTori[platonicSolid, ϕ10:0, ϕ20:0, r1rel:0.68, r2rel:0.12, n1:Au

(* Read in the necessary package *)
Needs["Graphics`Polyhedra`"]

(* Turn off the warnings *)
Off[General::spell]; Off[General::spell1];

(* Cancel other function definitions with the same names *)
Clear[center, normalize, faces, uniList, toPolygons, neighborList,
      InPlaneTori, NormalPlaneTori];

(* Definition of auxiliary functions and the two functions 
   InPlaneTori and NormalPlaneTori to be "exported" *)

(* center of gravity of a face *)
center /:
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center[face_List] := Mean[face];

(* normalize a vector to unit length *)
normalize /:
normalize[vector_?(VectorQ[#, NumericQ]&)] := N[vector]/Norm[vector];

(* faces of a Platonic solid *)
faces /:
faces[platonicSolid: (Cube | Tetrahedron | Octahedron |
                      Dodecahedron | Icosahedron)] :=
faces[platonicSolid] =  
If[With[{mp = Mean[#]}, Cross[#[[1]], #[[2]]].mp] < 0, 
   #, Reverse[#]]& /@ (First /@ N[First[Polyhedron[platonicSolid]]]);

(* make a single torus *)
uniList /:
uniList[ϕ10_, n1_, r1_, ϕ20_, n2_, r2_] :=
Module[{cϕ1tab, sϕ1tab, cϕ2tab, sϕ2tab, auxx, auxy, auxz, pi = N[Pi]},
       (* calculate points *)
       {cϕ1tab, sϕ1tab, cϕ2tab, sϕ2tab} = 
       Table[N @ #1[ϕ], {ϕ, #2, #2 + 2pi (1 - 1/#3), 2pi/#3}]& @@@
         {{Cos, ϕ10, n1}, {Sin, ϕ10, n1}, {Cos, ϕ20, n2}, {Sin, ϕ20, n2}};
       (* form polygons from points *)
       auxx = r1 Transpose[Table[cϕ1tab, {n2}]] +
              r2 Outer[Times, cϕ1tab, cϕ2tab];
       auxy = r1 Transpose[Table[sϕ1tab, {n2}]] +
              r2 Outer[Times, sϕ1tab, cϕ2tab];
       auxz = r2 N[Cos[pi/n1]] Table[sϕ2tab, {n1}];
       MapThread[List, {auxx, auxy, auxz}, 2]];

(* make polygons from list of points *)
toPolygons /: toPolygons[points:(p0_List)] :=
Module[{p1 = RotateLeft /@ p0, p2 = RotateLeft[p0], p3},
        p3 = RotateLeft /@ p2;
        Flatten[MapThread[Polygon[{#1, #2, #3, #4}]&,
                          {p0, p1, p3, p2}, 2]]];

(* the tori in the planes of the faces *)
InPlaneTori /:
InPlaneTori[platonicSolid:(Cube | Tetrahedron | Octahedron | 
                           Dodecahedron | Icosahedron),
            ϕ10_:0, ϕ20_:0, r1rel_:0.68, r2rel_:0.12,
            n1_:Automatic, n2_:Automatic] :=
 Module[{allFaces, oneFace, cen, dis, λ, num1, num2, 
         dirx, diry, dirz, uni, polys},
       (* data of the Platonic solid *)
       allFaces = faces[platonicSolid]; oneFace = allFaces[[1]]; 
       cen = center[oneFace]; λ =  Length[oneFace];
       {num1, num2} = If[# === Automatic, λ, #]& /@ {n1, n2};
       l = Sqrt[(oneFace[[1]] - cen).(oneFace[[1]] - cen)];
       r1 = l r1rel; r2 = l r2rel;
       (* make tori *)
       uni = uniList[ϕ10, num1, r1, ϕ20, num2, r2];
       polys = toPolygons[uni];
       Table[oneFace = allFaces[[i]];
             cen = center[oneFace];
             (* three orthogonal directions *)
             {dirx, diry} = normalize[oneFace[[#]] - cen]& /@ {1, 2};
             diry = normalize[diry - dirx (diry.dirx)];
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             dirz = normalize[cen];
             Map[(cen + #.{dirx, diry, dirz})&,
                  polys, {3}], {i, Length[allFaces]}]] /; 
      (* test arguments *)
      (NumberQ[N[ϕ10]]   && NumberQ[N[ϕ20]] &&
       NumberQ[N[r1rel]] && NumberQ[N[r2rel]] &&
       ((IntegerQ[n1] && n1 > 2) || n1 === Automatic) &&
       ((IntegerQ[n2] && n2 > 2) || n2 === Automatic));

(* neighboring faces *)
neighborList /:
neighborList[platonicSolid:(Cube | Tetrahedron | Octahedron |
                            Dodecahedron | Icosahedron)] :=
Module[{fc, allPairs, allPairTypes, where},
       (* data specific to the Platonic solid *)
       fc = faces[platonicSolid];
       allPairs = Table[Flatten[
        Table[{fc[[k]][[i]], fc[[k]][[j]]},
              {i, Length[fc[[k]]]}, {j, i - 1}], 1], {k, Length[fc]}];
       allPairTypes = Map[Sort, allPairs, {2}];
       where = Map[Position[allPairTypes, #]&, allPairTypes, {2}];
       where = Select[Flatten[where, 1], (Length[#] != 1)&];
       Union[Map[First[Transpose[#]]&, where]]];

(* the tori in the planes perpendicular to the faces *)
NormalPlaneTori /:
NormalPlaneTori[platonicSolid:(Cube | Tetrahedron | Octahedron |
                               Dodecahedron | Icosahedron),
                ϕ10_:0, ϕ20_:0, r1rel_:0.68, r2rel_:0.12,
                n1_:Automatic, n2_:Automatic] :=
 Module[{allFaces, nl, fa, fa1, fa2, λ, vert, cen1, cen2, l, 
         dirx, diry, dirz, num1, num2, polys, uni},
       (* data specific to the Platonic solid *)
       allFaces = faces[platonicSolid];
       fa = Faces[platonicSolid];
       vert = N[Vertices[platonicSolid]];
       nl = neighborList[platonicSolid];
       fa1 = allFaces[[1]]; λ = Length[fa1];
       {num1, num2} = If[# === Automatic, λ, #]& /@ {n1, n2};
       cen1 = center[fa1];
       l = Sqrt[(fa1[[1]] - cen1).(fa1[[1]] - cen1)];
       r1 = l r1rel; r2 = l r2rel;
       (* make tori *)
       uni = uniList[ϕ10, num1, r1, ϕ20, num2, r2];
       polys = toPolygons[uni];
       Table[{fa1, fa2} = allFaces[[nl[[i, {1, 2}]]]];
             {cen1, cen2} = {center[fa1], center[fa2]};
             aux = Intersection[fa[[nl[[i, 1]]]], fa[[nl[[i, 2]]]]];
             mp = (vert[[aux[[1]]]] + vert[[aux[[2]]]])/2;
             (* three orthogonal directions *)
             dirx = normalize[mp]; diry = mp - cen1;
             diry = normalize[diry - dirx (diry.dirx)];
             dirz = normalize[vert[[aux[[1]]]] - mp];
             Map[(mp + #.{dirx, diry, dirz})&, polys, {3}], 
             {i, Length[nl]}]] /; (* test arguments *)
              (NumberQ[N[ϕ10]]   && NumberQ[N[ϕ20]] &&
               NumberQ[N[r1rel]] && NumberQ[N[r2rel]] &&
              ((IntegerQ[n1] && n1 > 2) || n1 === Automatic) &&
              ((IntegerQ[n2] && n2 > 2) || n2 === Automatic))
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We can get  the syntax for  the two functions InPlaneTori  and NormalPlaneTori  defined  above by typing a ?
before the function name. 

?InPlaneTori

?NormalPlaneTori

The  program  is  fast,  taking  only  a  few  seconds,  but  the  graphical  display  may  take  a  bit  longer,  depending  on  the
computer used. Here is the measured time for the computation of 20 triangular tori on the faces of an icosahedron. 

Timing[ico = InPlaneTori[Icosahedron];]

We  now  give  a  few  examples  using  this  program.  The  functions  InPlaneTori  and  NormalPlaneTori  only
produce a list of polygons; they do not generate a graphic.

Short[ico // OutputForm, 10]

These  polygons  still  have  to  be  displayed using  Show[Graphics3D[…], optionsForThePlot].  We look  at  ico,
together with a few other examples. 

Show[GraphicsArray[{
 (* the icosahedron *)
 Graphics3D[ico, Boxed -> False],
 (* the cube *)
 Graphics3D[{InPlaneTori[Cube, 0, Pi/4, 0.65, 0.17],
             NormalPlaneTori[Cube, 0, Pi/4, 0.65, 0.17]},
            Boxed -> False],
 (* the octahedron *)           
 Graphics3D[{Hue[Random[]], #}& /@ (* add color *)
             InPlaneTori[Octahedron, 0, 0, 0.5, 0.2, 3, 4],
            Lighting -> False, Boxed -> False],
 (* another icosahedron *)           
 Graphics3D[{InPlaneTori[Icosahedron, 0, 0, 0.58, 0.1],
             NormalPlaneTori[Icosahedron, Pi/3, 0, 0.58, 0.1]},
            Boxed -> False]}, GraphicsSpacing -> -0.12]]

The functions InPlaneTori and NormalPlaneTori compute the polygons of the tori to be plotted. Mathematica
offers numerous of possibilities to determine the appearance (e.g., color, form of the edges, etc.). 

Show[Graphics3D[{EdgeForm[{Thickness[0.001], Hue[0.7]}],
                 SurfaceColor[Hue[0.2], Hue[0.1], 2],
                 {InPlaneTori[Dodecahedron, 0, 0, 0.64, 0.1],
                  NormalPlaneTori[Dodecahedron, 0, 0, 0.64, 0.1]}}],
      Boxed -> False, Prolog -> {GrayLevel[0], Disk[{1/2, 1/2}, 0.34]}]

Once  one  has  a  graphic  with  one  (or  more)  continuously  changeable  parameter,  it  is  straightforward  to  generate  an
animation. We can change the orientation of the tori. In addition, we will add some coloring.

SeedRandom[7777777];
colors[ϕ_] = (* j-dependent colors *)
Table[{EdgeForm[{Thickness[0.001], Hue[# + 1/2]}],
       SurfaceColor[Hue[#], Hue[Random[] + Random[]/3 Sin[ϕ]], 
                     3 Random[]]}&[Random[] + Random[]/3 Sin[ϕ]], {42}];

rotatingToriGraphics[ϕ_] := Graphics3D[Flatten /@ 
 (* add color to each torus *)
 Transpose[{colors[ϕ], Join[InPlaneTori[Dodecahedron, ϕ, ϕ, 0.64, 0.11],
                        NormalPlaneTori[Dodecahedron, ϕ, ϕ, 0.64, 0.11]]}],
  ViewPoint -> {2Cos[ϕ], 2Sin[ϕ], 1.5}, Background -> GrayLevel[0.8],
  Boxed -> False, SphericalRegion -> True, 
  PlotRange -> 1.5{{-1, 1}, {-1, 1}, {-1, 1}}]
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With[{frames = 6}, 
Show[GraphicsArray[#]]& /@ Partition[Table[rotatingToriGraphics[ϕ], 
                          {ϕ, 0, 2Pi (1 - 1/frames), 2Pi/frames}], 3]]

Make Input     Show Animation

With[{frames = 120}, Do[Show[rotatingToriGraphics[ϕ]], 
                        {ϕ, 0, 2Pi (1 - 1/frames), 2Pi/frames}]];

Let  us  implement  another  animation  example.  This  time  the  implementation  will  be  smaller,  but  the  computational
effort  per  graphic  will  be  considerably  larger.  We  will  visualize  the  equipotential  surfaces  of  a  charged  icosahedral
wireframe. We normalize the potential in such a way that the potential j at center has the value

jH80, 0, 0<L = j* = 15 II5 + 5 M ë 2M1ê2
lnK2 I5 - 2 5 M1ê2

- 5 + 4O º 33.33798… º 100 ê3.

(In our units, this corresponds to a unit charge of an icosahedron whose vertices have unit distances to the origin.) By
visualizing the surfaces jH8x, y, z<L = c as a function of the parameter c, we obtain an animation.

The following inputs generate a compiled function that can quickly calculate the potential jH8x, y, z<L.
Needs["Graphics`Polyhedra`"]

(* rotate and rescale standard icosahedron *)
γ = -ArcCos[Sqrt[1/3 + 2/(3 Sqrt[5.])]];
 = {{Sin[γ], 0, Cos[γ]}, {-Cos[γ], 0, Sin[γ]}, {0, -1, 0}} // N;
Inv = Inverse[ ];    
ico = Map[ .(#/Sqrt[#.#])&, Polyhedron[Icosahedron][[1]], {-2}];
(* edges of the rescaled icosahedron *)
edges = Union[Sort /@ Flatten[Partition[#[[1]], 2, 1]& /@ ico, 1]];

(* potential of a line segment *)
potentialϕ[{ 0:{x0_, y0_, z0_}, 1:{x1_, y1_, z1_}}, :{x_, y_, z_}] =  
With[{a = #.#&[ 0 - 1], b = 2(  - 0).( 0 - 1), c = #.#&[  - 0]},
     (Log[(2a + b + 2Sqrt[a(a + b + c)])/(b + 2Sqrt[a c])])/Sqrt[a]];
     
(* compiled form of the potential *)
icoϕC = Compile[{x, y, z}, Evaluate[
                Plus @@ (potentialϕ[#, {x, y, z}]& /@ edges)]];

Because of the symmetry of an icosahedron, we will calculate the 1/120th part of the equipotential surface directly and
will  generate  the  remaining  parts  using  rotations.  The  following  functions  implement  the  corresponding  change of
variables to a coordinate system adapted to cover a 1/120th of the full solid angle. 

(* definitions for symbols j, , 1, , , and toXYZ *)
Module[{xm, ym, zm}, 
       {xm, ym, zm} = {0.7946544722917661, 0.30353099910334297, 
                       0.5257311121191336}; 
       ϕ = ArcTan[ym/xm];  = ym/zm;
       1 = {xm, ym, 0.}; 2 = {xm, ym, zm};  = #/Sqrt[#.#]&[2 - 1];
(* map to symmetry unit *)
[s_, y_] := If[Chop[s] == 0., Pi/2., ArcTan[y/Sin[s]]]; 
toXYZ[{r_, ϕ_, s_}] = r {Cos[ϕ] Sin[#], Sin[ϕ] Sin[#], 
                         Cos[#]}&[[s ϕ, ym/zm]]];
                         
(* potential in the 1/120th part  *)
potentialϕ[r_?NumberQ, ϕ_?NumberQ, s_?NumberQ] := 
Module[{rn = N[r], ϕn = N[ϕ], sn = N[s], ϑn}, ϑn = [sn ϕn, ]; 
       icoϕC[rn Cos[ϕn] Sin[ϑn], rn Sin[ϕn] Sin[ϑn], rn Cos[ϑn]]]
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The next inputs generate an array of jH8x, y, z<L values that later will be used to construct the equipotential surface.

(* define functions r1, r2In, and r2Out *)
SetOptions[FindRoot, MaxIterations -> 50];
With[{∂ = 10^-6, δ = Sqrt[(5 + Sqrt[5])/10.]},
     (* make even contour surface value spacing *)
     (#1[c_] := r /. FindRoot[potentialϕ[r, #2, #3] == c, 
     {r, #4, #5}, Method -> Automatic])& @@@
     {{ρ1, 0, 0, 1/2, 2}, 
      {ρ2In, ϕ, 1, 1/2, 1 - ∂}, {ρ2Out, ϕ, 1, 1 + ∂, 2},
      {ρ3In, ϕ, 0, 1/2, δ - ∂}, {ρ3Out, ϕ, 0, δ + ∂, 2}}];
 
(* radial bounds for the equipotential surface *)
ϕMax = potentialϕ[0, 0, 0];
rBounds[c_] := If[c <= ϕMax, {ρ1[c], ρ2Out[c]}, 
                 {Min[ρ2In[c], ρ3In[c]], ρ2Out[c]}]
                 
(* 3×3×3 array of potential values *)
makeData[c_, pps_:{16, 16, 36}] := 
Module[{rMin, rMax}, {rMin, rMax} = rBounds[c];
       Table[potentialϕ[r, ϕ, s], {s, 0, 1, 1/pps[[1]]}, 
             {ϕ, 0, ϕ, ϕ/pps[[2]]}, 
             {r, rMin, rMax, (rMax - rMin)/
                             Ceiling[pps[[3]](rMax - rMin)/1.3]}]]

The calculation of the surface parts from the potential data and the coloring of the surface is carried out next. 

Needs["Graphics`ContourPlot3D`"]

(* various rotation matrices *)
(* inside a face of the icosahedron *)
Do[ [j] = {{1, 0, 0}, {0, Cos[j 2Pi/3], Sin[j 2Pi/3]}, 
           {0, -Sin[j 2Pi/3], Cos[j 2Pi/3]}} // N, {j, 0, 2}];

(* rotate into the position of other faces *)
With[{  = Table[C[k, l][i], {k, 3}, {l, 3}]},
Do[[i] = (  /. Solve[Table[ .ico[[3, 1, j]] == ico[[i, 1, j]], {j, 3}], 
               Flatten[ ]])[[1]], {i, 1, 20}]]
                                  
make120Parts[p_] := Table[Map[[j].#&, #, {-2}], {j, 20}]&[
                           Table[Map[ [j].#&, #, {-2}], {j, 0, 2}]&[
                                    {p, Map[{1, 1, -1} #&, p, {-2}]}]]
                                    
(* color according to smallest distance from the wireframe *)
distanceColor[Polygon[l_]] := 
Module[{mp = Mean[l], }, SurfaceColor[#, #, 2.6]& @
       Hue[2ArcTan[2.5 Sqrt[#.#]&[(# - #. )&[mp - 1]]]/Pi]]

(* make equipotential surface graphics for parameter c *)
equiϕGraphics[c_, opts___] := 
Module[{part120,  = rBounds[c], pr = 1.3 {{-1, 1}, {-1, 1}, {-1, 1}}},
(* j == c in transformed coordinates *)
part120 = ListContourPlot3D[makeData[c], 
               MeshRange -> { , {0, ϕ}, {0, 1}},
               Contours -> {c}, DisplayFunction -> Identity][[1]]; 
(* j == c in Cartesian coordinates; make all 120 parts *)
Graphics3D[{EdgeForm[], {distanceColor[#], 
            Map[ Inv.#&, make120Parts[#], {-2}]}& /@ 
                Map[toXYZ, part120, {-2}]}, 
           opts, SphericalRegion -> True, PlotRange -> pr]]
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Here  are  some  of  the  resulting  equipotential  surfaces.  For  small  values  of  c,  the  equipotential  surface  is  basically
spherical.  Increasing  c  leads  to  dips  in  the  faces  of  the  icosahedron  until  j*  is  reached.  A further  increase  leads  to  a
closed  surface  with  holes.  Finally,  for  high  values  of  c,  the  equipotential  surfaces  are  smooth  connections  of  tubes
around the charged wire pieces along the edges of the icosahedron. The four values of c used in the following graphics
are 24.1, 30.1, 33.338, and 34.31.

Show[GraphicsArray[equiϕGraphics /@ #]]& /@ 
                           {{24.1, 30.1}, {33.338, 34.31}}

For  an  animation, we do  not  use  equidistant  c-values,  but  calculate a  set  of  60 c-values  such  that  the  animation is  as
smooth as possible.

Make Input     Show Animation

(* analyze potential values and partition in 60 intervals *)
contourϕs = Module[{frames = 60, data},
data = Module[{pps = 30, ppϕ = 20, ppr = 20, R = 1.3, φ = potentialϕ, λ},
Table[φ[r, ϕ, s], {s, 0, 1, 1/pps}, {ϕ, 0, ϕ, ϕ/ppϕ}, 
                  {r, 0, R, R/ppr}]];
      λ = Select[Sort[Flatten[data]], 24 < # < 35&];
     (* equal spacing of j-values *) #[[Round[Length[λ]/(2 frames)]]]& /@ 
                             Partition[λ, Round[Length[λ]/frames]]];
                             
(* generate frames for the animation *)
Do[Show[equiϕGraphics[contourϕs[[k]]], (* rotate viewpoint *)
        ViewPoint -> 1.8 {{ Cos[k/60 2Pi/5], Sin[k/60 2Pi/5], 0}, 
                          {-Sin[k/60 2Pi/5], Cos[k/60 2Pi/5], 0}, 
                          {0, 0, 1}}.{0.5, -0.36, 0.79}, Boxed -> False], 
   {k, Length[contourϕs]}];

It is also possible to implement larger programs inside a notebook instead of in a package. The next code implements a
3D  Hilbert  curve  as  an  L-system.  See  [1335÷]  for  details.  This  time  for  the  implementation,  we  use  the  typesetting
capabilities  of  Mathematica.  "F"  moves forward,  "B"  moves  backward  and  the  other  strings  "Ω",  "",  " ",  " ",
"", and "∆" implement various forms of turns.

HilbertCurve3D@n_Integer?PositiveD :=

Module@8axiom = "X",
recursion = "X" → 8"", "", "X", "F", "", "", "X", "F", "X",

" ", "F", "", "∆", "∆", "X", "F", "X", "Ω", "F",
" ", "∆", "∆", "X", "F", "X", " ", "F", "∆", "X", " ", "∆"<,

= 80, 0, 0<, = IdentityMatrix@3D<,
Prepend@DeleteCases@Which@H*the movements*L

"F", = + HFirst ê@ L,
"B", = − HFirst ê@ L;,
"Ω", = .880, 0, 1<, 80, 1, 0<, 8−1, 0, 0<<;,
"", = .880, 0, −1<, 80, 1, 0<, 81, 0, 0<<;,
" ", = .880, −1, 0<, 81, 0, 0<, 80, 0, 1<<;,
" ", = .880, 1, 0<, 8−1, 0, 0<, 80, 0, 1<<;,
"", = .881, 0, 0<, 80, 0, 1<, 80, −1, 0<<;,
"∆", = .881, 0, 0<, 80, 0, −1<, 80, 1, 0<<;,

True, NullD & ê@ Flatten@Nest@ ê. recursion &,
Characters@axiomD, nDD, NullD, 80, 0, 0<DD

Here are the points of a Hilbert curve of order 2.

hilbert = HilbertCurve3D@2D
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Every point inside the cube with integer coordinates is touched exactly once by the Hilbert curve. Here is a quick check
for this statement.

Sort@Flatten@Table@8i, j, k<, 8i, 0, 3<, 8j, 0, 3<, 8k, 0, 3<D, 2DD
Sort@hilbertD

A graphic shows that the Hilbert curve winds through a cube.

hilbertLine = Line@HilbertCurve3D@2DD;

Show@Graphics3D@8Hue@0D, hilbertLine<D, PlotRange → All, Axes → TrueD

Using a  tube instead of  a  line shows more clearly, what  the Hilbert  curve  looks like.  The following code implements
some functions generating a tube along a given line. The auxiliary routine orthogonalDirections constructs two
orthogonal directions lying in the middle plane of the line segments p1-p2-p3. The auxiliary routine prolongate
prolongates the point p of the tube along the direction . Finally, the routine tubify generates a tube along the given
line with a specified cross section.

orthogonalDirections@8p1_, p2_, p3_<D :=

WithB: = í . &>, Module@8 <, If@Abs@ 1. 2D 1,

If@Abs@ P3TD < 1, = 8− P2T, P1T, 0<, = 80, P3T, − P2T<D,
= H 1 + 2L ê 2D; ê@ 8 , 1 <D &@ @p3 − p2D, @p1 − p2DDF;

prolongate@p_, q_, _, 8x_, y_<D :=

Module@8s, u, v<, First@p + s ê. Solve@Thread@p + s q + u x + v yD,
8s, u, v<DDD;

tubify@Line@points_D, startCrossSection_D :=

MapThread@Polygon@Join@ 1, Reverse@ 2DDD &, 1D & ê@

Map@Partition@ , 2, 1D &, Partition@Rest@FoldList@Function@8p, t<,
H* propagate orthogonal system along the curve *L

Module@8o = orthogonalDirections@tD<,
prolongate@ , tP2T, HtP2TL − tP1T, oD & ê@ pDD,

startCrossSection, Partition@points, 3, 1DDD, 2, 1D, 82<D;

startCrossSection@Line@l_D, r_, n_D :=

With@8 = HPosition@lP2T − lP1T, _?H =!= 0 &L, 81<, Heads → FalseDP1, 1TL<,
Table@lP1T + r Insert@8Cos@pD, Sin@pD<, 0, D, 8p, π ê 4, 9 π ê 4, 2 π ê n<DD

addEnds@Line@l_DD := Line@Append@Prepend@l, 2 lP1T − lP2TD, 2 lP−1T − lP−2TDD

hilbertLine = With@8m = Max@Transpose@hilbertLineP1TDP1TD<,
Map@ 1 − 8m, m, m< ê 2 &, hilbertLine, 82<DD;

Here is the above line “tubified”.

hilbertTube = tubify@N@addEnds@hilbertLineDD,
startCrossSection@hilbertLine, 0.25, 4DD;

Show@Graphics3D@hilbertTubeD, PlotRange → All, Axes → False, Boxed → FalseD

Successively coloring the tube segments gives an even better idea of the Hilbert curve.

With@8l = Length@hilbertTubeD<,
Show@Graphics3D@8EdgeForm@Thickness@0.001DD, MapIndexed@
8SurfaceColor@Hue@0.78 2P1T ê lD, Hue@0.78 2P1T ê lD, 2.1D, 1< &,
hilbertTubeD<D, PlotRange → All, Axes → False, Boxed → FalseDD
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 We make holes in the polygons to see through the long, dense tube spaghetti.

makeHole@Polygon@l_DD :=

Function@ , MapThread@Polygon@Join@ 1, Reverse@ 2DDD &,
8Partition@HAppend@ , First@ DD &L@lD, 2, 1D,
Partition@HAppend@ , First@ DD &L@H + 0.75 H − L &L ê@ lD, 2, 1D<DD@

Plus @@ l êLength@lDD;

Show@%% ê. p_Polygon makeHole@pDD

All of the above steps can be also made with a Hilbert curve of order 3.

hilbertLine = Line@HilbertCurve3D@3DD;

Here are the values of the x-, y- and z-coordinates along the curve.

Show@Graphics@
MapIndexed@

8Hue@First@ 2D ê 5D, Line@MapIndexed@8First@ 2D, 1< &, 1DD< &,
Transpose@hilbertLineP1TDDD, PlotRange → All, Frame → TrueD

Here is the Hilbert curve of order 3 in space.

Show@Graphics3D@8Hue@0D, hilbertLine<D, PlotRange → All, Axes → TrueD

hilbertLine = With@8m = Max@Transpose@hilbertLineP1TDP1TD<,
Map@ 1 − 8m, m, m< ê 2 &, hilbertLine, 82<DD;

Here is a more circular tube along the Hilbert curve of order 3.

hilbertTube = tubify@N@addEnds@hilbertLineDD,
startCrossSection@hilbertLine, 0.25, 8DD;

Show@Graphics3D@hilbertTubeD, PlotRange → All, Axes → False, Boxed → FalseD

Here is the colored Hilbert curve of order 3.

With@8l = Length@hilbertTubeD<,
Show@Graphics3D@8EdgeForm@Thickness@0.001DD, MapIndexed@

8SurfaceColor@Hue@0.78 2P1T ê lD, Hue@0.78 2P1T ê lD, 2.1D, 1< &,
hilbertTubeD<D, PlotRange → All, Axes → False, Boxed → FalseDD

The cube containing the Hilbert curve is deformed into a sphere in the picture below. 

toSphere@p_D :=

p í 3 Function@q, Max@8q. < & ê@ 881, 0, 0<, 8−1, 0, 0<, 80, 1, 0<,

80, −1, 0<, 80, 0, 1<, 80, 0, −1<<DDBp í p.p F

Show@Graphics3D@8EdgeForm@8Thickness@0.001D, Hue@0.71D<D,
SurfaceColor@Hue@0.04D, Hue@0.28D, 2.12D,

Map@toSphere, N@hilbertTubeD, 8−2<D<D,
PlotRange → All, Axes → False, Boxed → FalseD

Σ (* session summary *) TMGBs`PrintSessionSummary[]

1.3 What Computer Algebra and Mathematica 5.1 
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     Can and Cannot Do

What Mathematica 5.1 Does Well

(~ by way of comparison with other programs):

† Pattern matching 

† Symbolic integration 

† Numerical evaluation of the special functions of mathematical physics  

† Simplifying and calculating generalized hypergeometric functions 

† Solution of symbolic differential equations 

† Calculations with algebraic numbers

† Numerical solution of differential equations 

† Symbolic summation 

† Implementing l-calculus 

† Solving diophantine equations 

† Inequality solving

† Quantifier elimination

† Dealing with piecewise-defined functions

† Graph Plotting

† Allowing the development of large programs 

† Many other things

What Mathematica 5.1 Does Medium Well

Of course, Mathematica  is not a perfect system. Here are things to improve (~  by way of comparison with a [skilled]
human):

† Integration of orthogonal polynomials 

† Calculations with Delta, Heaviside, and principal value distributions

† Multidimensional symbolic integration

† Solving transcendental equations

† Series expansions at logarithmic and exponential singularities

…

Some more things to improve (~ by way of comparison with specialized programs):

† Numerical solution of high-order univariate polynomials

† Very large sparse eigenvalue problems

† Global optimization problems
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† Noncommutative algebra

† Calculating Schwarz-Christoffel mappings 

† Calculations within Clifford algebras

† Calculating multiresultants

…

But check if a newer version of Mathematica can do some of the mentioned issues better.

What Mathematica 5.1 Cannot Do

Some pieces of (constructive) mathematics are not covered at all in the Version 5.1 of Mathematica, such as:

† Analytically or numerically solving higher-order partial differential equations (especially elliptic ones) 

† Doing perturbation expansion of integrals, solutions of difference and differential equations

† Solving eigenvalue problems for ordinary differential equations and systems 

† Numerical solution of stochastic differential equations 

† Solving functional equations 

† Fractional integration and differentiation 

† Solving integral equations 

† Solving Pfaff forms 

† Recognizing Painlevé transcendentals as solutions of differential equations and calculating them numerically 

† Calculating arbitrary transcendental functions of matrices 

† Displaying three-dimensional text in 3D graphics 

† Ray tracing and shadows in 3D graphics 

† Interpolation of surfaces with given boundary data 

†  Calculating  zeros  of  the  special  functions  and  their  linear  combinations  (provided,  to  some  limited  extent,  in  the
package NumericalMath`BesselZeros`) 

† Calculating hypergeometric functions of several variables (to a limited extent with AppellF1)

†  q-versions  of  the  hypergeometric,  generalized  hypergeometric,  and  confluent  hypergeometric  functions  [55÷]
(however, see the package by C. Krattenthaler, MathSource 0206-705) 

…

(The mentioned functionalities are not built-in, but can be, of course, implemented in Mathematica.

Again, check if a newer version of Mathematica is more capable here.

Many  useful  features  can  be  added  by  packages,  available  in  the  standard  package  directory  or  from  MathSource,
http://www.mathsource.com.  Maybe the  reader  will  want  to  add  something to  these  packages  after  becoming familiar
with Mathematica as a language. Examples for notebooks still to be written include anholonomic constraints in classical
mechanics [255÷], [993÷], [1159÷], [1114÷], [1260÷], [590÷], [904÷], [310÷], [452÷], [1105÷], [838÷], visualization
of  the  Bloch-Floquet  theorem  [423÷],  [52÷],  [536÷],  [617÷],  [778÷],  [1347÷],  [313÷],  [550÷],  [1370÷],  [707÷],
[1054÷],  [1420÷],  [1415÷],  [1416÷],  [436÷],  [902÷],  solving  the  Kohn-Sham  equations  [1051÷],  [403÷],  [1271÷],
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[663÷],  [578÷],  [1344÷],  [694÷],  [752÷],  [689÷],  [693÷],  [991÷],  [1179÷],  [48÷],  [1099÷],  [57÷],  [1298÷],  [893÷],
[167÷],  computation  of  Bell-like  inequalities  of  higher  order  [59÷],  [257÷],  [107÷],  [661÷],  [1078÷],  [7÷],  [1365÷],
[710÷],  computation  of  Stokes  constants  for  the  asymptotics  of  linear  differential  equations  [947÷],  [337÷],  [189÷],
[938÷], [1424÷], [1048÷], [132÷], [658÷], [187÷], [336÷], [206÷], the recent renormalization group-based approach to
asymptotic  solution  of  differential  equations  [270÷],  [1035÷],  [1011÷],  [802÷],  [553÷],  [430÷],  [433÷],  [1400÷],
[1033÷],  [1046÷],  [803÷],  [552÷],  [434÷],  [806÷],  [804÷],  computation  of  all  special  points  and  lines  in  a  triangle
[748÷], curvature induced bound states in tubes [410÷], [450÷] etc.

Some functionality that users might wish to have, but is not available in the Version 5.1 of Mathematica:

† Programmatic access to possible option values

† Full-fledged debugger

† Inactivating built-in evaluation and transformation rules

† Automatic code formatting

What Mathematica Is and What Mathematica Is Not

Without  further  comment,  we  include  the  following  quotes  concerning  whether  Mathematica  (or  more  generally,
computer algebra) is a useful tool for solving concrete problems. It is obvious, however, that for many application areas
of  mathematics,  “experimental”  mathematics [181÷],  [180÷],  [176÷],  [71÷],  [177÷],  [1066÷],  [70÷],  [72÷],  [1414÷],
the applied sciences, engineering, finance, and other fields, computer algebra is a very useful tool. 

Two goals for PSEs [problem-solving environments, including computer algebra systems] are 
first, that they enable more people to solve more problems more rapidly, and second, that they 
enable many people to do things that they could not otherwise do.   from [513÷]  

The impact on mathematics of computer algebra and other forms of symbolic computing will 
be even larger than the impact of numeric computing has been.   from [295÷]  

The driving force in the ‘eye of the hurricane’ of technological and economic progress is and 
will be the finer and finer understanding of nature’s structure and the more and more efficient 
use of the scientific technology of thinking, whose essence is mathematics and, today, self-
automated mathematics.   from [209÷], [354÷]  

But on the other hand, Mathematica (or a computer algebra system in general) does not solve all problems. 

Computer algebra is no substitute for mathematical creativity and mathematical knowledge; 
consequently, it is surely no universal mathematical problem solver. However, it makes the use 
of mathematical knowledge easier.   from [1231÷]

… no computer algebra system can ever replace, in any significant way, mathematical 
thinking.   from [574÷]

Of course, just as with paper and pencil calculations, the course of the evaluation [with a 
computer algebra system] must be guided with ingenuity and cleverness by the human mind 
behind the calculation.   from [402÷]

And Mathematica needs some learning time to use it efficiently.
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A computer algebra system is a tool, and the skill of the user is measured by the ability to turn 
the impossible into the trivial. In reality, this skill is rather easy to obtain.   from [811÷]  

For the mathematically inclined reader, Mathematica gives a lot of new opportunities.

At a time when mathematicians are returning to computation, computers and symbolic 
computation programs are giving mathematicians an exciting opportunity to expand their 
research capabilities.   from [815÷]

They [computer algebra packages] provide extraordinary opportunities for research that most 
mathematicians are only beginning to appreciate and to digest. They also allow access to 
sophisticated mathematics to a very broad cross section of scientists and engineers.   from 
[178÷]

Nevertheless, of the time it takes to learn Mathematica, the following remark is relevant for the rest of this book. 

 … let us enjoy the present exciting transition era, where we can both enjoy the rich human 
heritage of the past, and at the same time witness the first crude harbingers of the marvelous 
computer-mathematics revolution of the late 21stcentury.   from [1409÷] (see also [1410÷], 
[1412÷], [1413÷], [1153÷], and [1411÷])

We only now are beginning to experience and comprehend the potential impact of computer 
mathematics tools on mathematical research. In ten more years, a new generation of computer-
literate mathematicians, armed with significantly improved software on powerful computer 
systems, are bound to make discoveries in mathematics that we can only dream of at the 
present time.   from [71÷]

However,  we  will  not  enter  into  a  discussion  about  the  relationship  between  mathematics  and  computations  made
possible by a computer. See [1061÷], [250÷] and references cited therein for this subject. Rather we will enjoy that “our
generous universe comes equipped with the ability to compute” [63÷].

Exercises

1.L? What You Always Wanted to Compute

Find a problem or lengthy calculation (or a few of them) that you have always wanted to solve or carry out. Make a list
of such problems, and as you read this book, try to find ways to solve your problems with Mathematica. 

2.L2 Mathematica or Axiom or Maple or MuPAD or REDUCE or Form?

Compare the mathematical capabilities, clarity and uniformity of the syntax, required computational times, and direct-
ness  with  which  mathematical  ideas  can  be  converted  to  programs  using  Mathematica  and  other  (general-purpose)
computer  algebra  systems.  Use  your  computer  if  you  have  the  technical  (and  financial)  means.  If  not,  page  through,
look at, read, and carefully study the corresponding handbooks and documentation. Here is some information on some
of the various systems (for a more detailed listing and additional references, see [564÷]). 

axiom:http://axiom.axiom-developer.org/

References: [679÷], [813÷] 
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Maple: http://www.maplesoft.com

References:  [266÷],  [267÷],  [1138÷],  [1001÷],  [268÷],  [535÷],  [618÷],  [777÷],  [443÷],  [444÷],  [639÷],  [515÷],
[1116÷], [824÷], [687÷], [375÷], [700÷], [306÷], [307÷], [152÷], [642÷], [170÷], [572÷], [858÷], [859÷], and [99÷],
as  well  as  the  Maple  newsletters  Maple  Tech  published  by  Birkhäuser  and  the  newsgroup  comp.soft-
sys.math.maple.

MuPAD: http://www.mupad.de

References: [502÷], [525÷], [910÷], [1229÷], [886÷]

Reduce: http://www.uni-koeln.de/REDUCE/

References: [1296÷], [1241÷], [1242÷], [620÷], [877÷], and [1115÷] 

Form: http://www.nikhef.nl/~form/

References: [1320÷], [1321÷]

For an overview of all general and special-purpose computer algebra systems and how to obtain them, see Computeralge-
bra-Report  from  Germany  [301÷],  http://SymbolicNet.mcs.kent.edu/systems/Systems.html ,  http://www.can.nl/-
Systems_and_Packages/Per_Purpose/General/index_table.html. 

For a standardized format (OpenMath) concerning the mutual exchange of data between computer algebra systems, see
[1232÷], http://www.openmath.org/. 

3.L1 Improvements?

We  refer  occasionally  to  some  inconsistencies,  restrictions,  or  bugs  in  Mathematica  Version  5.1.  If  the  reader  has  a
newer version, check if these inconsistencies, restrictions, or bugs are still there, or if they have been removed.

 

Solutions

1. What You Always Wanted to Compute 

A  generic  solution  cannot  be  given  for  this  exercise.  If  nothing  occurs  to  you,  here  are  a  few suggestions  that,  after
studying the references, can be more or less easily programmed in Mathematica. Some might look complicated at first
glance, but they are not so complicated after some thinking about the subject; but some are not easy either.

a)  Do  noninteger  derivatives  such  as  d 2  x2 expH-xL í dx 2  exist?  How  are  they  defined?  Are  they  unique?  (For

details, see [875÷], [1028÷], [1236÷], [1163÷], [228÷], [1408÷], [634÷], [389÷], [695÷], and [9÷].) A similar question
would  be:  Are  there  fractional  iterations,  like  f H f H… f HxLLL  (n  f ’s,  n œ )?  (See  [942÷],  [672÷],  [810÷],  [569÷],
[576÷], [23÷], [1387÷], [799÷], [1129÷], [1119÷], [24÷], [22÷], and [131÷].) Another similar one would be: Are there
fractional  finite  differences?  (See  [690÷],  [571÷],  [1257÷],  and  [981÷].)  For  fractional  differentials,  see  [314÷]  and
[271÷]. For fractional summation, see [974÷].

b) Is there a multivalued analytic function f HzL, where the value of the function on another sheet is just the derivative of
the  function  on  the  principal  sheet?  (See  [980÷],  [588÷],  [1345÷],  and  [125÷].)  Are  there  functions  f HzL  such  that

⁄0
¶ f HnL = Ÿ0

¶ f HzL dz? (See [162÷], [1084÷], and [1227÷].) Which differential equations have solutions that are succes-

sive derivatives of some function? (See [321÷] and [322÷])
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c) Is it possible to visualize the Banach-Tarski paradox? Loosely speaking, it is the creation of two oranges by slicing
one into nonmeasurable pieces. (For details on the Banach-Tarski paradox, see [1334÷], [492÷], [758÷], [1336÷], and
[335÷].) 

d) How fast should one run in rain (if caught without an umbrella) to keep as dry as possible? (For a solution based on
an  idealized  box-person  in  homogeneous  rain,  see  [347÷],  [350÷],  and  [1040÷];  for  the  properties  of  real  rain,  see
[863÷], [1133÷], [1134÷], [318÷], [1064÷], [1065÷], [381÷], and [1110÷]; and for single rain drops, see [603÷].) 

e) How does one calculate puns (plays on words)? (See [148÷], [149÷], [1250÷].)

f)  Why  are  falling  layers  of  water  on  fountains  and  waterfalls  often  wavy  in  the  vertical  direction?  (See  [243÷]  and
[244÷].) 

g)  What  is  the  position  of  a  regular-shaped  piece  of  wood  or  other  symmetric object  floating  in  water?  (See  [357÷],
[1120÷],  [1274÷],  [532÷],  [688÷],  [446÷],  [1353÷],  [1354÷],  [1145÷],  and  [93÷];  for  moving  floating  objects  see
[683÷] and [1233÷].) For the not unrelated problem of hanging pictures, see [160÷].

h)  Can one  approximate  locally  a  parametrically given  curve  better  than via  direct  Taylor  expansion  in  polynomials?
(See [1103÷], [1104÷], [1178÷], and [353÷].) 

i)  How  can  Newton’s  equation  of  motion  be  used  to  describe  the  movement  of  a  bicycle  (for  simplicity,  without  a
rider)?  The  problem  involves  a  mechanical  system  with  anholonomic  side  conditions.  (See  [158÷],  [601÷],  [484÷],
[211÷],  [67÷],  [471÷],  [157÷],  [1045÷],  [414÷],  [744÷],  [903÷],  [476÷],  [783÷],  [1044÷],  [993÷],  [842÷],  [1295÷],
[789÷],  [1256÷],  [1012÷],  [311÷],  [156÷],  [1030÷],  [517÷],  and  [841÷]  and  the  references  cited  therein.)  How  does
one express  the closed form solutions  of  the  equations  of  motions for  the simplest nonholonomic systems— a rolling
disk? (See [333÷], [785÷], [172÷], [1323÷], [171÷], [801÷], [1049÷], and [1324÷].) How does one describe the motion
of a human symplectically? (See [666÷].)

j)  Taking  into  account  air  resistance,  does  a  ball  thrown  straight  up  return  earlier  or  later  than  without  taking  into
account air resistance? (See [828÷], [349÷], [854÷], and [1094÷]; for a rotating ball see [499÷], [500÷], and [501÷].) 

k) What is the shape of a mylar balloon made from two circular sheets? (See [953÷], [1058÷], and [952÷]; for inflating
rubber balloons, see [973÷]; for larger balloons, see [64÷].) 

l)  What  model  would  be  used  for  a  falling  cat  that  always  lands  on  its  legs?  (For  a  model  cat  solution,  see  [701÷],
[961÷], [497÷], [853÷], [1091÷], [459÷], and [962÷].) At which position does a falling tower brake? (See [879÷] and
[1310÷].)

m) Why does sand in shallow sea water have ridges? What determines the wavelength and height of these ridges? (For
an appropriate model, see [1006÷], [878÷], and [338÷]. Concerning the outside-water behavior of sand, see [932÷].) 

n) How does one derive the scaling relation between the mass and the metabolic rate of an animal or plant? (See [406÷]
and [1366÷].) How many different animal species could exist? (See [1293÷].)

o)  Can  one  calculate  closed-form expressions  for  the  gravitational  potential  and  the  moment of  inertia  of  the  regular
polyhedra? (See [986÷], [1339÷], [786÷], [577÷], [596÷], [1340÷], [130÷], [847÷], [1276÷], [74÷], [1364÷], [1197÷],
[816÷], [585÷], and [253÷]. For polarizabilities of Platonic solids, see [1211÷].) 

p) Can one calculate how a piece of paper tears? (See [1026÷], [1161÷].) (For crumpling of paper, see [382÷], [1199÷],
[909÷], [544÷], [21÷], [383÷], [397÷], [1385÷], [1162÷], [845÷], and [1074÷]; for wrinkling, see [256÷].)

q)  Given  the  path  of  the  front  wheels  of  a  car,  what  is  the  path  of  the  rear  wheels?  (See  [490÷],  [1317÷],  [540÷],
[1275÷],  [220÷],  and [943÷].  For  four  steerable  wheels,  see [1402÷].  For  bicycle tracks,  see [469÷].  For  towing,  see
[1121÷].) 

r) Given a square with integer side lengths, is it possible to tile this square into triangles so that all triangle side lengths
again are an integer? (See [594÷].) And what is the largest square that can be inscribed in a unit cube? (See [325÷].)
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s) Can one model how a piece of paper (or a leaf) falls? (See [1063÷], [1263÷], [43÷], [465÷], [722÷], [882÷], [913÷],
and [475÷].) 

t) How high can a given kite at given wind and with given cord length fly? (See [1372÷].) 

u)  What  is  the  apparent  form of  a  train  moving with  relativistic  velocity?  (For  the  appearance  of  fast  moving simple
geometric  bodies,  see  [1361÷],  [10÷],  [161÷],  [633÷],  [604÷],  [646÷],  [1386÷],  [1270÷],  [198÷],  [1152÷],  [464÷],
[890÷],  [1113÷],  [791÷],  [463÷],  [60÷],  [995÷],  [1004÷],  [1360÷],  [141÷],  [1010÷],  and  [685÷].)  And  do  very  fast
large cars (v º 0.9…9 c, c the velocity of light) fit in short garages because of length contraction? (See [518÷], [1200÷],
and [324÷].) For submarines, see [911÷].

v) What is the probability that a thick coin will fall on its side if dropped randomly? (See [169÷], and [719÷].) 

w)  How  does  a  tippe  top  work?  (See  [183÷],  [1014÷],  [659÷],  [1228÷],  [293÷],  [1082÷],  [839÷],  [425÷],  [1036÷],
[807÷], [94÷], and [956÷].) For spinning cooked eggs, see [1167÷].

x) What is the form of the closed plane curve of greatest possible area that can be moved around a right-angled corner
in a hallway? (See [528÷].) 

y) Does a buttered slice of toast land with the buttered side down really more often? (See [915÷], [62÷], and [432÷].) 

z)  How  is  the  scale  of  a  sundial  determined?  (See  [1176÷],  [1160÷],  [650÷],  [1300÷],  [1175÷],  [1188÷],  [1351÷],
[1418÷], [1147÷], [504÷], [154÷], and http://www.mathsource.com/cgi-bin/MathSource/0209-001.) 

a£ )  How  can  the  growth  of  icicles  be  modeled?  (See  [1020÷],  [736÷],  [888÷],  and  [1019÷].  For  similar  patterns  on
water columns, see [1217÷]. For modeling snowflakes, see [846÷], [819÷], [1319÷], [676÷], and [677÷].)

b£) Mathematically, how does a queue of cars (on the freeway) form, and how long does one have to wait in line (as a
function  of  the  parameters  traffic  density,  average  speed,  etc.)?  (For  mathematical  models  of  traffic  flow,  see,  e.g.,
[1369÷], [1149÷], [1172÷], [623÷], [883÷], [283÷], [503÷], [323÷], [404÷], [405÷], [1380÷], [153÷], [800÷], [984÷],
[1170÷],  [985÷],  [493÷],  [1168÷],  [621÷],  [1169÷],  [482÷],  [526÷],  [1187÷],  [867÷],  [481÷],  [684÷],  and  the  refer-
ences  cited  therein.  For  modeling  the  driver’s  experience,  see  [1117÷].  For  pedestrian  traffic,  see  [218÷],  [649÷],
[1171÷], [219÷], [624÷], [755÷], [895÷]. For the modeling of the corrugation of roads, see [182÷].)

c£) How does one algorithmically measure k gallons given n jugs with given capacities? (See [168÷].)

d£) Which point of a hypercube in n dimensions maximizes the product of the distances to its vertices? (See [1371÷].)

e£) When leaves fall from the trees in the autumn, assume that all of the ground is covered by leaves. How many leaves
does one in average see inside a certain area? (See [320÷], [396÷], [558÷], and [790÷] for circular leaves.) A related,
but easier problem is: What is the average height children will pile rectangular blocks while building towers before they
collapse? (See [671÷].)

f£) How does one model a dripping tap? (See [1186÷], [498÷], [316÷], [712÷], [760÷], [657÷], [315÷], [31÷], [1127÷],
[1126÷], [387÷], and [208÷], [761÷].)

g£)  How  does  one  calculate  the  shape  of  a  water  drop  on  a  smooth  surface?  (See  [204÷],  [1015÷],  [1140÷],  [103÷],
[798÷], [1÷], [1267÷], [817÷], and [900÷]; for moving drops, see [30÷].)

h£)  How  does  one  describe  the  motion  of  a  curling  rock?  (See  [1201÷],  [680÷],  [365÷],  [1203÷],  [1204÷],  [1060÷],
[364÷], [1202÷], and [457÷].) How does one model stones skimming over water? (See [165÷]). How does one model
the  increasing  frequency  of  the  whirring  sound  of  a  coin  rotating  on  a  table?  (See  [954÷],  [955÷],  [730÷],  [1067÷],
[424÷], [146÷], and [1238÷].)

i£) How does one calculate the optimal form of the teeth of gears? (See [855÷], [1392÷], [193÷], [1346÷], and [1086÷].)

j£) How does one model a Levitron”? (See [135÷], [1212÷], [559÷], [415÷], [1213÷], [523÷], and [136÷]; for nonlin-
ear levitation, see [946÷].) How can one model the woodpecker toy? See [1069÷] and [826÷].
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k£) How does one model the shape of a human trail system on a meadow? (See [622÷].) (For modeling the flow going
out of a large hall, see [1261÷], [194÷], [664÷]; for modeling standing, see [407÷]; for ski slopes, see [429÷].)

l£)  Can  two  losing  games  yield  a  winning  game?  (See  [606÷],  [386÷],  [47÷],  [1265÷],  [1278÷],  [1316÷],  [265÷],
[948÷], [607÷], [936÷], [937÷], [472÷], [1112÷], [732÷], [717÷], [25÷], [945÷], and [1052÷].)

m£)  How does  a  grooved  cylinder  roll  down  an  inclined  plane?  (See  [931÷].)  How does  one  model  the  “Indian  rope
trick”? (See [4÷], [1038÷], [5÷], [652÷], [972÷], and [262÷].)

n£) How does one calculate the shape of the two pieces used to cover of baseball? (See [1273÷].)

o£) How does one model the learning of grammar? (See [1009÷].)

p£)  How  does  one  describe  the  path  of  a  single  air  bubble  rising  in  water?  (See  [1395÷],  [971÷],  [376÷],  [1308÷],
[641÷], [1089÷], and [848÷].)

q£)  Which  numbers  can be  expressed  in  a  closed form? (See  [281÷]  and [98÷].)  And what  numbers  are  computable?
(See [1359÷].)

r£) Can one use the logistic map to generate random numbers?  (See [33÷], [545÷], [546÷],  [1384÷],  [547÷], [1299÷],
and [453÷].)

s£) What are the side lengths of a rectangle with a given maximal area, such that the area/perimeter ratio is as large as
possible? (See [905÷].)

t£)  How  does  one  model  a  continuous  transition  from  Taylor  series  coefficients  to  Fourier  series  coefficients?  (See
[54÷], [1077÷], and [1076÷].)

u£) How does one model the waiting time for a web browser connection? (See [1374÷], [18÷], [19÷], [1262÷], [77÷],
[918÷], [648÷] and [836÷], [743÷] for the cables.)

v£) Is there a multidimensional version of Simpson’s rule? (See [644÷].)

w£) What is the (continuous) symmetry of the genetic code? (See [643÷], [92÷], [486÷], [91÷], [478÷], [487÷], [39÷],
[40÷], [417÷], [1193÷], [488÷], [1194÷], [686÷], [992÷], [491÷], and [727÷].)

x£)  Are  there functions  whose  reciprocal  is  equal  to  their  inverse?  (See  [272÷].)  How to  calculate the  Fourier  coeffi-
cients of the reciprocal function from the Fourier coefficients of a function? (See [413÷].)

y£) Is there a linkage that signs your name? (See [705÷], [749÷], [750÷], [751÷], [155÷], [531÷], [458÷], and [399÷].)

z£) How does one model bird and fish swarms? (See [334÷] and [957÷].)

a≥) How does one model the various gaits of a horse? (See [298÷], [299÷], [1303÷], [1304÷], [213÷], [929÷], [529÷],
and [1248÷]; for human gait modeling, see [1258÷], [419÷], [769÷], and [1318÷].) How to classify juggling patterns?
(See [210÷], [431÷], [1085÷], and [1237÷].)

b≥) How does one model the shape of a cracking whip? (See [551÷], [930÷], and [793÷].)

c≥) What is the probability of going to jail in the Monopoly ” game? (See [1393÷].)

d≥) How does one construct a computable bijection between the rational numbers and the integers (the classical diago-
nal method is not easy to compute for reduced fractions)? (See [1047÷] and [248÷].)

e≥) How does one model collapsing bridges? (See [927÷].)

f≥) How does one model the movement of a camphor scraping on water? (See [988÷], [989÷], [982÷], and [616÷].)

g≥) Given a rectangle, how many congruent rectangles can you position around it such that each one touches the given
rectangle, but does not intersect with any of the others? (See [723÷] and for polyhedra [1342÷].)
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h≥) What are the possible equilibrium shapes for closed elastic rods? (See [818÷], [1331÷], [914÷], [670÷], [998÷], and
[49÷].)

i≥)  How  does  one  model  the  movement  (and  potential  self-knotting)  of  a  moving  hanging  chain?  See  ([106÷]  and
[233÷]).

j≥) How many fingers form an “optimal” hand? (See [950÷], [756÷], [901÷], and [949÷].)

k≥) How many different ancestors do humans have on average in their genealogical tree? (See [368÷], [369÷], [370÷],
[359÷],  [1218÷],  [1024÷],  [1222÷],  [1266÷],  and  [987÷].)  (And  how  does  one  model  the  shape  of  the  phylogenetic
tree? See [912÷], [147÷], and [1243÷]. For the related problem: the distribution of family names, see [1407÷], [891÷],
[304÷], [1118÷], and [662÷].)

l≥) Are the magnetic field lines around a current-carrying wire really closed? (See [1219÷], [1279÷], [377÷], [1068÷],
[1158÷], problem 18 of [1297÷], and [1073÷].)

m≥) How does one calculate polynomials orthogonal over a regular polygon? (See [1422÷].)

n≥) On which day of the week should a teacher hold an exam to maximize the surprise when it happens? (See [282÷]
and [1221÷].)

o≥) How does one model river basins? (See [1135÷], [390÷], [391÷], [224÷], and [392÷].)

p≥) How does one model a ball rolling on a rough surface? (See [1311÷].)

q≥) What is the probability for a random walker in d dimensions to return to the origin? (See [108÷] and [109÷].)

r≥) How does one model the expansion of a popcorn kernel? (See [640÷] and [1102÷].)

s≥)  What  is  the  explicit  form  of  the  eigenfunctions  of  the  curl  operator?  (See  [1406÷],  [231÷],  [965÷],  [968÷],  and
[1071÷].) For the exponential of the curl operator, see [1088÷]; for the discretized version, see [285÷].

t≥) How does one model the bubbling of wine bottle labels? (See [200÷].)

u≥) How does one analytically map a polygon with a hole to an annulus? (See [780÷], [779÷], and [358÷].)

v≥) How does one construct and model a gravity-powered toy that can walk but not stand? (See [296÷] and [297÷].)

w≥)  How  does  one  represent  a  function  of  several  variables  as  a  superposition  of  functions  of  one  variable?  (See
[496÷], [15÷], and [534÷].)

x≥) Why can dolphins swim so fast? (See [852÷].)

y≥)  Can  a  band-limited  function  oscillate  faster  than  its  bandwidth?  (See  [11÷],  [725÷],  [726÷],  [225÷],  [1100÷],
[134÷], [133÷], [12÷], [13÷], and [724÷].) For the definition of an instantaneous frequency, see [1031÷].

z≥) How does one straighten out a chain of connected rods in three and four dimensions? (See [145÷] and [290÷].)

a£££) How does one model the generation and sound of canary songs? (See [520÷], [1277÷], and [753÷]; for the model-
ing of snoring, see [14÷].)

b£££) How does one model the sand flow in a hourglass? (See [462÷].)

c£££)  How  does  one  model  the  consequences  of  increasing  information  exchange  on  inter-personal  interactions?  (See
[1419÷].)

d£££) How does one cut out any planar straight-line figure from one sheet of paper with a single straight cut? (See [361÷]
and [1039÷].)

e£££)  If  integration  is  the  limit  of  a  sum,  what  is  the  corresponding  limit  for  a  product?  (See  [395÷],  [533÷],  [706÷],
[32÷], [602÷] and [1181÷] for matrices.)
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f£££) How densely can Platonic solids be packed on a lattice? (See [140÷].)

g£££) Given a polynomial with complex roots only, what is the “nearest” polynomial with a real root? (See [635÷].)

h£££) Are there nonlinear differential equations whose solutions obey a superposition principle? (See [1376÷], [1210÷],
[1291÷], [214÷], [215÷], [549÷], [978÷], [237÷], [129÷], [735÷], [236÷], [1062÷], and [235÷].)

i£££) How “quadratic” are the natural numbers? (See [1146÷].)

k£££) How does one mathematically discriminate between a novel and a poem? (See [44÷], [302÷], and [303÷].)

l£££) How does one calculate the ideal steak cooking time and flipping times? (See [925÷], [1154÷], [1032÷], and [81÷].)

m£££) How does one effectively fight a hydra that regrows its heads? (See [754÷], [609÷], and [869÷])

n£££) Can one eliminate all variables from a symbolic calculation? (See [1246÷], [332÷], and [1018÷].)

o£££) How does one model the noise of helicopter blades? (See [456÷], [455÷], [241÷], [605÷], [864÷], and [197÷]; for
the squeal of train wheels, see [619÷]; and the sound of rubbing hands, see [1403÷].)

p£££) How does one experimentally measure and mathematically model a Riemann surface? (See [1195÷].)

q£££) Given the first terms of a Taylor series, how does one recover the original function? (See [384÷] and [651÷].)

r£££) What is the probability to encounter a matrix difficult to invert? (See [362÷].)

s£££) How does one model folded proteins? (See [1377÷], [1264÷], [75÷], [201÷], and [27÷].)

t£££) How frequently does a given word or phrase statistically appear as a subsequence in a text? (See [470÷].)

u£££) How does one model the creation of aeolian sand ripples? (See [331÷], [1405÷], [1008÷], [628÷], [796÷], [797÷],
[418÷], [630÷], [1189÷], [1007÷], [941÷], [34÷], [35÷], [849÷], [958÷], and [629÷].)

v£££) How does one calculate all possible tie knots? (See [468÷].)

w£££) Can calculations exhibit phase transitions? (See [638÷], [665÷], [959÷], [939÷], [409÷], [260÷], [933÷], [1398÷],
[1399÷],  [1358÷],  [757÷],  [873÷],  [934÷],  [87÷],  [195÷],  [291÷],  and  [1357÷].)  (For  phase  transitions  in  the  World
Wide  Web,  see  [144÷];  for  phase  transitions  in  data  compression,  see  [977÷];  for  phase  transitions  in  parameter-
dependent wave functions, see [667÷].)

x£££) What is the expected average of the chord length of random lines intersecting a closed plane curve? (See [924÷].)

y£££) How does one dissect a polygon into polygonal pieces that are connected by flexible hinges and allow to form the
mirror image of the original polygon? (See [445÷].)

z£££) How does a prismatic cylinder roll down an inclined plane? (See [1254÷] and [2÷].)

aiv) How many zeros does a random trigonometric polynomial have in average? (See [454÷].)

A  host  of  other  suggestions,  both  large  and  small,  can  be  found  almost  daily  in  the  newsgroup  rec.puzzles
http://dejanews.com,  http://star.tau.ac.il/QUIZ,  http://problems.math.umr.edu  and  related  websites  (http://dmoz.org/-
Science/Math/Mathematical_Recreations   contains a  listing of such websites).  We also mention the American Journal
of  Physics,  http://www.amherst.edu/~ajp,  and  European  Journal  of  Physics,  and  Eric  Weisstein’s  MathWorld
http://mathworld.wolfram.com (Concise Encyclopedia of Mathematics [1363÷]), the Journal of Recreational MathematÖ
ics as well as http://www.seanet.com/~ksbrown. (See also [1247÷].)

For the more theoretical physics-interested reader, we mention a few more technical possibilities.

a ) How does one construct (pseudodifferential) cube roots from a differential operator (similar to gm ∑m +m is a square

root of ∑m ∑m +m2)? (See [729÷], [728÷], and [1083÷].) For square roots of the heat equation, see [1314÷].
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b )  How  does  one  construct  p + 1  orthonormal  bases  in  a  p-dimensional  vector  space  over  ,  such  that  all  possible
scalar products between vectors from different bases have the same magnitude? (See [46÷], [1388÷], [1389÷], [764÷],
[121÷], [1151÷], [1391÷], [763÷], [1125÷], [1079÷], [669÷], [441÷], [269÷], [45÷], [1330÷], [355÷], [76÷], [1379÷],
[122÷], [53÷], and [1390÷].)

g ) In how many different orthogonal coordinate systems is the wave equation separable? (See [696÷], [697÷], [124÷],
and [1337÷].)

d)  Is  there a potential V HxL,  such that  the eigenvalues of  the corresponding  one-dimensional Schrödinger  equation are
the  prime  numbers?  (See  [979÷]  and  [1381÷].)  (For  the  related  problem  of  a  potential  whose  eigenvalues  are  the
imaginary parts  of the nontrivial  zeros of the Riemann Zeta function,  see [246÷],  [822÷],  [1394÷],  [1309÷],  [1150÷];
for  the  Jost  function  having  the  zeros  of  the  Riemann  Zeta  function,  see  [737÷]  and  [738÷]  and  for  potentials  that
represent the prime numbers, see [366÷].)

e) Given two hermitean matrixes K  and L, what can be said about the spectrum of K + L? (See [771÷], [772÷], [773÷],
[774÷],  [339÷],  and [506÷].)  What about  the spectrum of K .L? (See [1350÷].) Given two polynomials pHxL  and qHxL,
what can be said about the factorization of pHxL + qHxL? (See [746÷].)

¶) How fast is the “ultimate laptop”? (See [860÷], [999÷], [1000÷], [861÷], [483÷], [1056÷], [227÷], [1234÷], [792÷],
and  [1041÷].)  (For  space-time  possibilities  to  speed  up  computations,  see  [422÷],  [447÷],  [1037÷],  and  [205÷];  for
superluminal methods, see [1225÷]; for limits on the hard drive capacities, see [104÷], [292÷].)

z) How does one generate Greechie diagrams efficiently? (See [926÷].)

h) Can one model a DLA cluster deterministically? (See [610÷], [840÷], [344÷], [345÷], [83÷], [84÷], [625÷], [85÷],
and [82÷].)

q)  Are  there  (sensible)  nonhermitian  Hamiltonians  with  real  spectra?  (See  [119÷],  [1425÷],  [970÷],  [767÷],  [969÷],
[1356÷],  [66÷],  [401÷],  [110÷],  [229÷],  [114÷],  [115÷],  [38÷],  [112÷],  [230÷],  [113÷],  [112÷],  [461÷],  [116÷],
[117÷], [940÷], [118÷], [111÷], and [120÷].)

J) How does one model the movement of an adiabatic movable piston between two gases in equilibrium? (See [278÷],
[583÷],  [581÷],  [731÷],  [935÷],  [823÷],  [892÷],  [222÷],  [327÷],  [582÷],  [276÷],  [328÷],  [1367÷],  [329÷],  [277÷],
[963÷], [279÷], [1070÷], [330÷], [199÷], and [994÷].)

i) Can knots be stable solutions of classical field theories? (See [96÷], [1002÷], [1023÷] and [1136÷].) And can knots
be formed by the zero lines of hydrogen wave functions? (See [137÷].)

k) How does one (numerically) calculate the length and the dimension of the path of a quantum particle? (See [795÷],
[543÷], and [794÷].)

¿) How does a rope or chain slide off the edge of a table? A little contemplation of the conservation of momentum law
shows  immediately  that  the  standard  solution  from  experimental  physics  books  is  wrong.  (For  details,  see  [1165÷],
[363÷], [1092÷], [102÷], [186÷], and [1333÷]; for folded chains, see [1245÷].) 

l) How does one “properly” discretize Maxwell’s equations? (See [1268÷], [916÷],  [708÷], [579÷], [917÷],  [1307÷],
and [745÷].) For superconsistent discretizations in general, see [507÷]. Are there oscillating charge distributions that do
not radiate? (See [514÷], [494÷], [539÷], [899÷], [637÷], [745÷], [374÷], [1005÷], and [245÷].)

m)  Can bend cylinders  support  bound  states  (in a  quantum-mechanical sense)?  (See [653÷],  [656÷],  [1029÷],  [862÷],
[410÷],  [37÷],  [542÷],  [411÷],  [570÷],  [238÷],  [239÷],  [240÷],  [1226÷],  [1087÷],  [881÷],  [951÷],  and  [508÷].)  For
additional linking,  see [747÷].  Can neutral multipole arrangements of charges support  bounds states? See [1097÷] for
the general case and [1292÷], [668÷], [1072÷], [1057÷], [1130÷] for dipols.

n)  Can  one  model  any  one-dimensional  contact  interaction  with  delta  function  potentials  (in  a  quantum-mechanical
sense)?  (See  [17÷],  [477÷],  [1207÷],  [20÷],  [317÷],  [275÷],  [682÷],  [1294÷],  [1050÷],  [1184÷],  [451÷],  [1396÷],
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[788÷], [1208÷], [1209÷], [808÷], [505÷], [983÷], [1287÷], [1343÷], [1288÷], [273÷], [26÷], [1289÷], and [274÷].)

x)  What  is  the  efficiency of  a  Carnot  machine that  uses  an ideal  Bose gas  or  Fermi gas?  (See  [1214÷],  [1215÷],  and
[1216÷].)

o)  How  does  one  construct  the  quantum  mechanical  hydrogen  wave  functions  from  classical  orbits?  (See  [716÷],
[714÷], and [715÷].)

v)  How  does  one  calculate  terms  of  the  Rayleigh–Schrödinger  perturbation  theory  when  the  integrals  in  Xi » V » j\
diverge?  (For instance V HxL ~ expIx4M  in  the harmonic oscillator basis?)  (See [765÷],  [373÷],  [573÷],  [352÷],  [766÷],

[608÷], [885÷], and [287÷].)

p) Can one observe the spin of a free electron in a Stern-Gerlach-type experiment? (See [95÷] and [521÷].)

r) How does one stabilize classical mechanics? (See [1325÷], [627÷], [1326÷], [97÷], and [420÷].) (For the dequantiza-
tion of quantum mechanics, see [660÷]. For the fundamental constants of classical mechanics, see [928÷].)

·)  What  is  the  connection  between  Huygens’  principle  with  the  wave  equation?  (Huygens’  principle  states  that  from
every  point  on  a  wave,  a  spherical  basic  wave  emerges  there.)  Is  it  possible  to  model  the  spreading  out  of  a  wave
directly  from  Huygens’  principle  numerically?  (See  [69÷],  [342÷],  [105÷],  [341÷],  [289÷],  [440÷],  [589÷],  [247÷],
[1021÷], [159÷], [655÷], [827÷], [1423÷], and [1375÷].) 

s)  Do  one-dimensional  lattices  show  Fourier’s  law  in  heat  conduction?  (See  [837÷],  [1095÷],  [647÷],  [41÷],  [42÷],
[428÷], [843÷], [378÷], [379÷], [522÷], and [530÷].)

V)  How does  one  formulate  classical  mechanics  using  a  Hilbert  space?  (See  [921÷],  [784÷],  [560÷],  [561÷],  [562÷],
[919÷], [8÷], [284÷], [192÷], and [191÷]. For a path integral formulation, see [920÷], [3÷], and [563÷]; for a Wigner
distribution, see [512÷]; and for a unifying approach, see [759÷].)

t)  What  is the relation between a d-dimensional Kepler  problem with a 2d - 2 dimensional harmonic oscillator prob-
lem? (See [1081÷], [1269÷], [1426÷], [814÷], [698÷], [343÷], [739÷], [309÷], [996÷], [305÷], [897÷], [254÷], [86÷],
[699÷], [1417÷], [88÷], [234÷], [896÷], and [740÷].)

u)  Are  there  stable  atoms  in  d  dimensions  and  how  does  the  corresponding  periodic  table  look  like?  (See  [216÷],
[894÷], [856÷], [1109÷], [631÷], [591÷], [1198÷], [58÷], [741÷], [742÷], [787÷], [809÷], and [692÷].)

f) How does one calculate the numerical value of the Boltzmann constant kB? (See [782÷], [437÷], and [825÷]. For the
experimental determination, see [474÷]; for the status as a constant, see [412÷].)

j)  How does  one  model  the  wave  function  of  a  photon  emitted from an  excited  atom? (See  [966÷],  [967÷],  [721÷],
[221÷], [264÷], [527÷], [251÷], [356÷], [832÷], [143÷], [6÷], [473÷], and [898÷]. For absorbing a photon, see [61÷].
For localizing photons, see [1156÷].)

c) How does one calculate higher-order Foldy–Wouthuysen transformations? (See [964÷], [1306÷], [1122÷], [1124÷],
[805÷], [421÷], [466÷], [89÷], [90÷], [734÷], [1123÷], and [1003÷].)

y) Is the charge distribution of a finite one-dimensional wire uniform? (See [674÷],  [575÷], [673÷],  [348÷], [1206÷],
[16÷], [720÷], [1301÷], and [718÷].)

z)  What  are  the  crystal  classes  in  4D?  (See  [216÷],  [1034÷],  [1368÷],  [202÷],  [212÷],  [997÷],  [1383÷];  [1322÷],
[1230÷], [1253÷] for 5D; and [1190÷], [1191÷], and [626÷], [1107÷] for nD.)

w)  How does  a  light  beam behave  in  a  water  vertex?  (See  [833÷],  [1329÷],  [835÷],  [73÷],  [1332÷],  [944÷],  [851÷],
[80÷], and [834÷].)

¸)  How  does  one  calculate  the  electromagnetic  field  of  a  charge  moving  above  a  conducting  surface?  (See  [188÷],
[1174÷],  [1043÷],  and  [1173÷];  for  a  corrugated  surface,  see  [1302÷]  and  [597÷];  for  an  array  of  half-planes,  see
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[812÷]; for moving current loops, see [1042÷].) What is the magnetic field around a magnet moving through a metallic
tube? See [1053÷].

º) How does one model physical systems with negative specific heat? (See [876÷].)

¹) Are there 2D potentials with two families of orthogonal trajectories? (See [1098÷].)

») What are the eigenvalues of a (grand) canonical density matrix? (See [263÷], [1027÷], [733÷], [495÷], [286÷], and
[1290÷].)

a£) What is the relativistic generalization of the Ampere–Maxwell law in integral form? (See [960÷], [524÷].)

b£) What is the relativistic generalization of the Fokker–Planck equation for Brownian motion? (See [416÷].)

g£) Is there a fluctuation theorem for a single anharmonic oscillator? (See [1183÷].)

d£) In how many different orders can k spacelike separated events in Minkowski space be observed? (See [1239÷].)

e£) What is the average shape of a random walk in many dimensions? (See [1155÷].)

¶£) What is the nature of entanglement in a free electron gas? (See [1022÷], [871÷], [872÷], and [1315÷].)

z£) How to quantify statistical properties of thermodynamic fluctuations? (See [880÷], [326÷], [1132÷], [678÷], [923÷],
[448÷], [449÷], and [866÷].)

(For  a  set  of  more  advanced  problems,  see  [595÷],  [1373÷],  [675÷],  [29÷],  [325÷],  [203÷],  [101÷],  and
http://www.math.princeton.edu/~aizenman/OpenProblems.iamp . For more advanced computational geometry problems,
see  http://www.cs.smith.edu/~orourke/TOPP/).  For  the  “big”  problems,  see  [1101÷]  and  http://boudin.fnal.gov/NNP/-
B1798866615/ .

2. Mathematica or axiom or Maple or MuPAD or REDUCE or Form ? 

This cannot be answered here. It depends largely on what you require from a computer algebra system. For the opinions
of several reviewers, see the references listed in the Appendix. You should make an informed decision yourself whether
Mathematica is the correct system for your special applications. Some of the things that can be done with Mathematica
will be shown in the following chapters of this book.

At  the  time this  book  was  written,  a  good  (objective)  indication  existed  that  Mathematica  is  the  right  choice  for  the
reader. It was the only system that was able to solve all of the ten (easy to state, but not so easy to solve) problems from
the  1997  ISSAC  [International  Symposium  on  Symbolic  and  Algebraic  Computation]  system  challenge  [1282÷],
http://www.wolfram.com/news/archive/issac. The summary of the challenge session states: “… there can really be only
one choice. Only one team correctly solved all problems. Only one team solved every problem in more than one way as
a check for their solution. … The team was Mathematica’s team.” [308÷].

A  more  recent,  and  more  hard-core  numerical  oriented,  problem  set  was  Nick  Trefethen’s  100$–100-digit  challenge
[1280÷],  [173÷].  Comparing  the  solutions  and  the  solution  techniques  employed  by  users  of  a  variety  of  programs
[1281÷]  shows  that  frequently  Mathematica  allowed  for  the  most  straightforward,  shortest,  most  elegant  solutions,
frequently  even  in  a  symbolic  form  using  the  special  functions  of  mathematical  physics  (which  are  discussed  in  the
Symbolics volume [1285÷] of the GuideBooks). (And again, the Mathematica team, among others, was be able to solve
all problems correctly. 
(See http://web.comlab.ox.ac.uk/oucl/work/nick.trefethen/hundred.html for details.)

And although we cannot ask David Hilbert directly anymore, G. J. Chaitin says “I think that Hilbert would have loved
Mathematica … because in a funny way it carries out Hilbert’s dream, as much as it was possible.” [259÷].

3. Improvements? 

Just try it! 
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P    R    O    G    R    A    M    M    I    N    G

CHAPTER  2

Structure of Mathematica 
Expressions

2.0 Remarks
This chapter starts the systematic discussion of the use of the Mathematica  programming system and the Mathematica
language. All Mathematica  expressions resemble each other because they are symbolic expressions. The whole power,
universality,  flexibility,  and  extensibility are  based  on the unifying fact  that  everything in Mathematica  is  a  symbolic
expression.  Depending  on  the  size  of  these  symbolic expressions,  we  can  classify  them as  elementary objects,  called
atoms,  or  as  objects  built  recursively  from  smaller  pieces.  Elementary  objects  include  strings,  symbols,  and  various
types of numbers. More complicated expressions can be decomposed and analyzed using a few basic commands, such
as Level, Depth, Part, and Position. 

Throughout the GuideBooks, the author has tried to present Mathematica step by step and to make use of functions and
programming constructs  used in earlier  chapters  only.  However,  to provide and discuss some examples, this principle
will be relaxed in the first few sections of this chapter.

In[1]:= (* no spelling warnings, set fonts for tick labels, ... *)
Get[ToFileName[ReplacePart["FileName" /. 
 NotebookInformation[EvaluationNotebook[]], "Initialization.m", 2]]];
TMGBs`TMGBsV51::notV51 :
The inputs of this notebook are tailored for Mathematica 5.1. Some

inputs might not work properly in earlier versions of Mathematica.
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2.1 Expressions
All functions,  results, syntactically correct inputs and outputs, error messages, and on-line information used in Mathe-
matica  are  expressions.  Every  expression  is  formed  hierarchically  from subexpressions,  and  every  atomic  expression
has a type. The type of the highest level of an expression is called its head. A detailed understanding of the structure of
expressions is absolutely essential to understanding the important commands in Mathematica that are generally used to
manipulate  results  of  larger  calculations,  graphics,  etc.  (e.g.,  Map,  Thread,  MapAt,  Inner,  Outer,  Flatten,
FlattenAt, Distribute, and MapThread). The most important commands for “visually” (meaning by looking at
the  expression,  not  carrying  out  a  program  on  the  expression)  determining  the  structure  of  a  simple  expression  are
FullForm,  TreeForm,  InputForm,  and  OutputForm.  For  formatted  (typeset)  input  and  output,  the  possible
built-in forms are StandardForm and TraditionalForm.

 

FullForm[expression] 

gives the internal form of expression in the long form of the Mathematica functions. 

FullForm is most convenient for investigating the structure of an expression because no grouping problems exist. 

 

TreeForm[expression]

gives a hierarchical display of the internal form of expression in the long form of the 
Mathematica commands. 

Because  of  the  large  amount  of  space  required  to  show  a  structure  in  TreeForm,  it  is  best  used  only  on  smaller
expressions. We give explicit examples in the following sections. 

A more compact way to view (and input) Mathematica expressions is InputForm.

 

InputForm[expression]

gives the input form of expression. 

In this form, the long form of many Mathematica commands is replaced by a shorter format. As the name suggests, this
form  represents  the  one  typically  used  as  Mathematica  input.  In  InputForm,  the  symbol  *  for  multiplication  is
explicitly  displayed.  Mathematica  can  return  the  result  of  calculations  in  various  forms.  A  terminal  adapted  one  is
OutputForm.

 

OutputForm[expression]

gives the typical mathematical form of expression as formatted by the Mathematica front end 
or in a terminal.  

Mathematica  input  and  output  can  be  two-dimensional  (2D),  meaning  it  includes  growing  roots,  braces,  brackets,
fraction bars, summation, and product signs, …. The two forms allowing this type of input and output are Standard
Form and TraditionalForm.
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StandardForm[expression]

gives the Mathematica form of expression as formatted by the Mathematica front end using 
typesetting symbols. 

TraditionalForm[expression]

gives the typical mathematical form of expression as formatted by the Mathematica front end 
using typesetting symbols. 

As mentioned, every expression has a type, called a head.

 

Head[expression]

gives the head of expression (that is the type of the outermost part of an expression). 

The most important heads  are those of numbers and strings, along with system-defined and user-defined symbols and
functions. Here is an example of each type. 

The following integer number has the head Integer. 

Head[3]

Here is the system function FullForm with an argument x. 

Head[FullForm[x]]

The head is  the symbol FullForm  (used here  for  the  first  time) itself;  the head of  every elementary user-defined or
system-defined symbol is Symbol. 

Head[x]

Head[Sin]

The head of “the function value” y[3] (of a function y that is not explicitly defined) is y.

Head[y[3]]

The head of  the  function  yaHxL  is  ya.  yaHxL  in  Mathematica  is  best  written  as  y[a][x]  (  =  (y[a])[x]).  For  these
kinds of composite expressions, the head is everything except for the last argument(s). 

Head[y[a][x]]

Head[y[a][3]]

Head[y[a][b][c]]

For contrast, here is a function y with two arguments. 

Head[y[a, x]]

The following expression has the head y[a][b], and its arguments are w1, w2, and w3. 

Head[y[a][b][w1, w2, w3]]

Here is a composition of functions. The function y[a] is applied to b[w1, w2, w3].

Head[y[a][b[w1, w2, w3]]]

If the function takes no argument, as functionWithNoArguments in the following example, it nevertheless has a
head. 

Head[functionWithNoArguments[]]
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Here is the composite head applied to an empty list of arguments.

Head[y[3][]]

Mathematica expressions can be nested arbitrarily deeply. Here is a more complicated example. 

a[b[c][d[e[f[g][h[i]]][j[k[l][m[n]]]]]]]

The next output is its TreeForm. 

TreeForm[%]

For  displaying results  of  Mathematica  calculations,  we  will  use  one  of  the  following  four  forms.  OutputForm  dis-
plays  with  alignments  typically  used  in  a  terminal  interface.  We  will  use  it  occasionally  for  short  versions  of  long,
structurally repeating output.

OutputForm[Sin[x]^2 + 1/y + α]

StandardForm displays expressions with square roots, fraction bars, superscripts (for powers), etc. and uses the full
names of most Mathematica  functions, with the exception of the ones having intuitive short cuts used in InputForm
and a few more. For the vast majority of all calculations, we will use StandardForm as the format to return results.
Results  in  StandardForm  are  usually  most  easy  to  read.  The  results  returned  by  Mathematica  are  interactively
editable and then again evaluatable. 

StandardForm[Sin[x]^2 + 1/y + α + Log[ArcSin[Sqrt[z^ξ]]]]

TraditionalForm  displays expressions with square roots,  fraction bars,  superscripts (for powers),  … and uses the
names  and  symbols  from traditional  mathematics.  We  will  occasionally  use  it  to  display  particularly  nice  results.  Be
aware  that  the  (visible)  order  of  the  expressions  in  a  sum  is  different  in  TraditionalForm  than  it  is  in
StandardForm.

TraditionalForm[Sin[x]^2 + 1/y + α + Log[ArcSin[Sqrt[z^ξ]]]]

InputForm finally uses shortcuts and is a strictly one-dimensional (1D) representation. We will use InputForm to
format outputs from time to time, especially in cases in which the other three forms OutputForm, StandardForm,
and TraditionalForm produce large outputs with a lot of white space.

InputForm[Sin[x]^2 + 1/y + α + Log[ArcSin[Sqrt[z^ξ]]]]

For the Mathematica programs in this book, InputForm is best suited because it allows us to align everything and has
a constant line height. We will use InputForm nearly exclusively throughout the rest of the book for inputs. Also, it
can take Greek letters and other special characters. We will make use of Greek and Gothic letters, but we will not use
other special characters (such as Ø or ã). The last sections of Chapter 1 and Chapter 2 of the Graphics volume [66÷]
will contain programs that use more abbreviations and symbols. 

Σ (* session summary *) TMGBs`PrintSessionSummary[]

2.2 Simple Expressions

à 2.2.1 Numbers and Strings
In this subsection, we look carefully at numbers in Mathematica. Here is the integer 3 in its FullForm, TreeForm,
InputForm, and OutputForm. 

3
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FullForm[3]

TreeForm[3]

InputForm[3]

OutputForm[3]

Note that the labels // FullForm = … , // TreeForm = … , // InputForm = … , and // Output
Form = …  in  the  output  do  not  belong  to  the  output  expressions,  but  are  simply different  formattings  of  the  same
expression, which (in this case) are all identical. If we recover one of these outputs using % or Out[…], the labels are
not included, as shown below.

%

%%%

Here is the head of the number 3. 

Head[3]

Thus,  it  is  an  integer  (it  is  at  the  same time an  odd  number  and  a  prime,  but  these  properties  are  not  reflected in  the
head). Negative integers also have the head Integer. 

Head[-3]

Next, we look at a rational number. Its OutputForm is different from its FullForm because the output is formatted
as a fraction. 

FullForm[343/561]

TreeForm[343/561]

InputForm[343/561]

OutputForm[343/561]

In StandardForm, a fraction also displays with a fraction bar.

StandardForm[343/561]

The same rule holds for TraditionalForm. In TraditionalForm, a serif typeface is used.

TraditionalForm[343/561]

Head[343/561]

Here is a real number that, in Mathematica, is a number with a decimal point and a finite number of digits. 

FullForm[3.987568]

TreeForm[3.987568]

InputForm[3.987568]

OutputForm[3.987568]

Head[3.987568]

Here is an exact complex number [54÷]. The imaginary unit is represented by I in Mathematica. (In Traditional
Form Â is used.)

FullForm[3 + 8 I]

OutputForm[3 + 8 I]
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Head[3 + 8 I]

Complex numbers with finite accuracy or whose real and imaginary parts are fractions also have the head Complex. 

Head[3.98 + 8.987 I]

Head[23/17 + 51/89 I]

Complex numbers with mixed real and imaginary parts, one being exact and one being approximate, also have the head
Complex. 

Head[23/17 + 2.222 I]

We now summarize the various number types [56÷]. 

 

Integer

is the head for a positive or negative integers and 0. 

The number 0 is an integer [33÷], [61÷]. 

Head[0]

Mathematica automatically simplifies sums and products containing the integers 0 or 1.

0 a b c

0 + a b

1 u

These  rules  are  automatically applied  nearly  independent  of  the  type  of  the  other  summands and  factors.  Sometimes,
these simplifications may result in unexpected results.

0 "I am a string"

0 IAmInfinityBelieveMe + 0 I IAmInfinityTooReally

Similarly, the following  behavior  of  Mathematica  is  probably  unexpected.  Syntactically, this  expression  is allowed in
Mathematica, although it does not make much sense semantically. 

0[0]

Head[0[0]]

 

Rational

is the head for negative and positive rational numbers that do not reduce to an integer. 

Integer numbers (head Integer) and rational numbers (head Rational) are exact, that is, they have no inaccuracy.
An exact input to Mathematica results in an exact result unless N or some numerical routine is used. 

The following input does not represent a rational number. 
-178432511014851389063559176/235465678754467654

Indeed, it simplifies to an integer. 

Head[%]

Canceling fractions to a minimal form is always done to ensure uniqueness of the expressions. This process can be done
quite quickly. 
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pseudoFraction := 
234557980113179085436275137081484342411764457054977003809596433288745224553
199671922967753082043474206860298513640692888615896400015369276214319672301
599943003302970200739397865907855820515217019871309285341082682533596245443
0281311926484731789208563757150662371917177308400982024330610776216772820633
4363949283739061026441387072101520115353550440009151571225915883337135032695
8098051364641400474137770449068676809090353794872805217888434388131185224703
576082463827170228159824441158973810988871110917641239744795184136997041072
0929889235138348389899273949779939968966728531518433/
166471242095939734163431609000343749050223177469820442732147929942331600109
2765592072162903350202088054366916349472625185350577714800349724729025353455
3583697681355359834914108345690956852485571468213692585813219890231343118833
944734700247319502427861160904944100207038843747408234516012120384440938299
373594697213560044459999082477041881856178171753665831882605811450470903668
715972417646657237341218626619494450609677345271313358260357302209452464492
017091883482732596280925792163927474087204479004713441976433771566357019923
9524406838281297650744694073655031915519324720737

pseudoFraction reduces to an integer.

pseudoFraction

Reducing  the  fraction  built  from  two  580-digit  numbers  to  an  integer  one  million  times  takes  a  few  seconds  on  a
year-2005 computer. (We repeat the cancellation very often to obtain a more reliable timing result.)

Do[pseudoFraction, {10^6}] // Timing

The third important class of numbers is the real numbers with finite accuracy. 

 

Real

is the head for floating-point numbers. These are numbers with a decimal point, and they have 
finite accuracy. 

Here is a real number. 

3.46675890

Head[%]

For a Real “zero” (the head is Real), we do not get the corresponding simplification 0.0 x  0.0, which we had
above for the Integer 0. 

0.0 arbitraryNumber

Given an exact real number—where the word “real” is now interpreted in the usual sense, meaning all of whose unspeci-
fied  digits  are  identically 0,  it  has  to  be input  as  an  integer.  If  we  want  Mathematica  to  treat  a  number  exactly in  all
future computations, we have to input them as integers or fractions.

We turn now to complex numbers in more detail. 

 

Complex

is the head for numbers involving the imaginary unit I. Their real and imaginary parts can 
have the head Integer, Rational, or Real. 

If  we input  a fraction of  the form Complex[…]/Complex[…],  Mathematica  will compute its real  and imaginary
parts and the result will be converted to a number of type Complex. 
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(3 + 5 I)/(45 + 67 I)

The next complex number has an exact real and an approximate imaginary part.

2 + 3. I

The real parts of the following fraction are both exact. The collapsed form has an inexact real part.

(356 + 78.67 I)/(345 + 89.99 I)

Expressions  containing  numbers  as  well  as  symbols or  symbolic expressions  (like  square  roots)  are  not  automatically
transformed into a normal form.

(Sqrt[2] + 78 I)/(3 + Sqrt[3] I)

(Sqrt[2] - I)/(-Sqrt[2] + I)

In the following two inputs the real (imaginary) part is approximative. As a result, the imaginary (real) part autonumeri-
calizes.

Sqrt[3] + 2. I

Sqrt[3.] + 2 I

But the following example collapses to one approximative number with the head Complex.

(Sqrt[2.] - I)/(-Sqrt[7] + 2 I)

If a complex number has real and imaginary parts such that one is exact and one has a finite accuracy, the “exactness”
of the two constituents remain unchanged. 

3 + 6.89789 I

However,  if any computations are performed with such a number, the result will generally involve approximate num-
bers only. 

(3 + 6.89789 I)/(4 + 8.9786 I)

On the other hand,  if  we apply an operation that works on the real and imaginary parts  separately, the “exactness” of
these parts (exact or approximate) will be maintained. 

3 (3 + 6.89789 I)

(3 + 6.89789 I) + (2 + 6 I)

Sometimes,  the  real  and  the  imaginary  parts  unavoidably  become  inexact  (see  Section  1.5  of  the  Symbolics  [67÷]
volume). Here is an example.

((* approximate 1 *) 1.0 + 2 I)/(19/3 - 1/6(1 - I Sqrt[3])*
 (1/2 (2963 + 3 I Sqrt[70131]))^(1/3) - (133 (1 + I Sqrt[3]))/
           (3 2^(2/3) (2963 + 3 I Sqrt[70131])^(1/3)))

In addition to the elementary (atomic) objects discussed above (numbers with head Integer,  Rational,  Real,  or
Complex, and symbols with head Symbol), one other type of elementary object exists: strings. 

 

String

is the head of a string. 

Strings can be recognized by their quotes. However, in OutputForm, the quotes are not visible. 

stri = "I am a true string"

InputForm[stri]
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OutputForm[stri]

FullForm[stri]

StandardForm, like OutputForm displays no quotes.

StandardForm[stri]

TraditionalForm also does not display the quotes.

TraditionalForm[stri]

For the current purpose  of discussing the most important heads of Mathematica  expressions,  we mainly want to point
out the existence of strings; we discuss them and their applications in more detail in Chapter 4. The following construc-
tions involving strings are syntactically correct Mathematica expressions but, for most purposes, semantically useless. 

(6.34 + 34I)["ams"]

FullForm[%]

Head[%]

"acm"[634 + 34.0I]

FullForm[%]

Head[%]

Approximative numbers can be input in various ways. Here is a short input for machine numbers.

5.12 10^-256

InputForm[%]

5.12*^-256

Here is a number with many digits explicitly written out.

2.56000000000000000000000000000000000000000000000000000

Here, we input this number in a shorter way.

2.56`53

InputForm  of  this  number  displays  the  number  of  certified  digits.  (The  precision  itself  is  a  real  number,  not  an
integer; we will discuss this in detail in Chapter 1 of the Numerics volume [66÷].)

InputForm[%]

Here is a high-precision number with known digits before and after the decimal point.

24623000000000000000000000000000000000000000000000\
000000000000000000000000000.000000000000000000

Here is the same number input in a shorter way.

2.4623`95*^76

In  general,  number`precision*^base10Exponent  represents  a  precision  digit  version  of  the  number
number μ 10base10Exponent . Here is another example.

-123.45`100*^-10

precision can be a machine floating-point number (or even a negative number; we discuss this case in Chapter 1 of the
Numerics volume [66÷].)
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-123.45`100.5*^-10

100.0`-2*^-10

We input a number with only four correct digits.

8.923`4*^-156

FullForm[%]

For 0, we cannot use this form of inputting because 0 does not have any nontrivial digits. So, the following output will
be an exact zero.

0.0`4*^-100

This is a machine zero.

0.000000000000

InputForm[%]

This input also gives a machine zero.

0.00000000000000000000000000000000000000000000000000000

InputForm[%]

A number that is known to be zero within ≤10-n  can be input in the form 0``n. Here is an example shown. In output,
such zeros display as 0. × 10−n. (Similar to the precision of a number, the accuracy too is internally a real number and
not an integer.)

0``100

InputForm[%]

FullForm[%]

High-precision real numbers (meaning numbers having more digits than machine real numbers) are shown in Input
Form  and  FullForm  in  the  form number`precision.  number  is  the  actual  real  number,  and  precision  is  a  floating-
point  approximation  of  its  precision.  Because  numbers  are  stored  internally  in  the  computer  in  binary  form,  a  small
difference may exist between the input and the internal number for numbers of type Real (and Complex). 

Σ (* session summary *) TMGBs`PrintSessionSummary[]

à 2.2.2 Simplest Arithmetic Expressions and Functions
We  now  examine  the  elementary  arithmetic  operations:  addition  +,  subtraction  -,  multiplication  *,  division  /,  and
exponentiation ^, as Mathematica expressions. We begin with +. Here is a simple sum of two summands. 

3 + x

It has the following FullForm. 

FullForm[3 + x]

This expression is too small to have an interesting TreeForm. 

TreeForm[3 + x]

The next example shows how the order of x and 3 in the input differs from the order in the output. Using commutativ-
ity, the sum is rearranged into a normalized form. (We discuss the meaning of this in Chapter 4.)

OutputForm[x + 3]
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StandardForm  will  give  the  same  result.  In  TraditionalForm,  the  two  summands  get  reordered  for  display.
(The internal order does not change.)

InputForm[3 + x]

StandardForm[3 + x]

TraditionalForm[3 + x]

FullForm[%]

The head of this expression is Plus. 

Head[3 + x]

The head of OutputForm[x + 3] is also Plus, because OutputForm acts only as a wrapper for the output. 

Head[%%]

Here is a product of two factors written in three different ways in the input. 

FullForm[4 y]

TreeForm[4 y]

FullForm[4*y]

OutputForm[y * 4]

The  multiplication sign  appears  in  the  InputForm  generated  by  Mathematica,  but  in  products  input  interactively,  a
space is usually used to improve appearance and readability and to make the input look more like usual mathematical
formulas. 

InputForm[%]

Head[4 y]

The order  of  the terms is changed for  multiplication because it  is  also commutative. An integer different from 4 does
not change the structure Times[integer, y]. 

FullForm[-4 y]

The following sum has three summands. 

FullForm[3 + x + y]

The following product has three factors. 

FullForm[3 x y]

The input -r is evaluated to (-1)*r. This expression has the head Times, which would not happen with -4 instead
of -r, because -4 is one number, not a product of -1 and 4. -4 is already parsed as one number.

FullForm[-r]

Similarly, 1/r is converted to r^- 1. 

FullForm[1/r]

The function Power represents all powers. 

FullForm[r^2]

OutputForm[r^12]

Expressions with a rational exponent lead to a nontrivial tree form. Note the parentheses in the exponents of the input. 
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FullForm[r^(1/2)]

TreeForm[r^(1/2)]

Because of the strong precedence of Power over Times, we have the product 1 ê2 r without the parentheses. 

TreeForm[r^1/2]

An alternative way to write r^(1/2) is Sqrt[r]. 

InputForm[Sqrt[r]]

In output, a square root is usually written as Sqrt as opposed to Power[…, 1/2].

OutputForm[r^(1/2)]

In StandardForm and TraditionalForm, a square root sign is used.

StandardForm[r^(1/2)]

TraditionalForm[r^(1/2)]

The use of Power in connection with 0 leads to the following results. 

0^number

0.0^number

0something  stays unevaluated because number could be zero (or negative or complex); in which case, the result would be
indefinite. When zero is used as the exponent, however, the result is 1 or 1.0 if number is nonzero. 

number^0

number^0.0

0^0  and 0.0^0.0  are  indefinite  (or  Indeterminate  in  Mathematica);  we come back to  Indeterminate  in  a
moment. 

0^0

0.0^0.0

From the point of view of the Mathematica language, 21ê2  is not a number because its head is not one of the following
four: Integer, Real, Rational, or Complex. Instead, it is a power, and its head is Power.

Head[Sqrt[2]]

2  could have been thought of as type AlgebraicNumber. However, Mathematica  considers 2  to be the result
of applying the function Power  to the integer 2.  The reason is that syntactically we apply the square root function to
the  argument  2.  (Mathematica  can  also  handle  algebraic  numbers;  they  are  Root-objects.  We  will  discuss  them  in
Chapter 1 of the Symbolics volume [67÷].) It is not an elementary expression and does not have its own number type.
Here  is  a  somewhat  more  complicated  expression  with  a  more  complicated  TreeForm:  3 + 4 x - x3.  The  individual
summands are 

3 ö 3
4 x ö Times@4, xD

-x3 ö Times@−1, Power@x, 3DD

FullForm[3 + 4 x - x^3]

OutputForm[3 + 4 x - x^3]

TreeForm[3 + 4 x - x^3]
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Here is a summary of the basic arithmetic operations. 

 

Plus[summand1, summand2, …, summandn]

or
summand1 + summand2 + ∫ + summandn 

gives the sum summand1 + summand2 + ∫ + summandn of the n summands summandi 
(i = 1, …, n). 

 

Times[ factor1, factor2, …, factorn]

or
factor1 * factor2 * ∫ * factorn

or
factor1 × factor2 × … × factorn

or
factor1 factor2 ∫ factorn 

gives the product factor1 factor2 ∫ factorn of the n factors factori (i = 1, …, n). 

 

Power[base, exponent]
or

base^exponent 

gives the base base raised to the exponent exponent: baseexponent. 

Sqrt is a special case of Power. 

 

Sqrt[expression]

gives the square root of expression. Sqrt[expression] is equivalent to expression^(1/2). 

To the extent  that  they are  defined mathematically, all  mathematical functions  are  implemented for  arbitrary complex
arguments. Thus, the exponent in Power can be a complex number. 

Power[2.3 + 5.6 I, 2.9 - 8.7 I]

Using high-precision numbers, we get a result with more certified digits.

Power[2.3`100 + 5.6`100 I, 2.9`100 - 8.7`100 I]

For a symbolic base z, the following product of three powers collapses into one power.

z^(1/2) z^(1/3) z^(1/4)

Next, we plot the real and imaginary parts and the absolute value of H-2Lx for -3 < x < 5 [58÷]. 

Needs["Graphics`Legend`"]
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Plot[(* the curves *)
     {Re[(-2)^x], Im[(-2)^x], Abs[(-2)^x]}, {x, -3, 5}, 
     PlotStyle -> {{AbsoluteThickness[0.5], AbsoluteDashing[{4, 4}]},
                   {AbsoluteThickness[0.5], AbsoluteDashing[{2, 2}]},
                   {AbsoluteThickness[0.5]}}, Axes -> None,
    (* the legend *)
    PlotLegend -> (StyleForm[#, FontFamily -> "Courier",
                     FontWeight -> "Plain", FontSize -> 10]& /@
                   {" Re[(-2)^x]", " Im[(-2)^x]", "Abs[(-2)^x]"}),
    (* further options *)
    LegendPosition -> {-0.5, -0.3}, LegendSize -> {0.92, 0.29},
    PlotRange -> All, Frame -> True, FrameLabel -> {"x", None}]

Here, we observe the behavior of Plus and Times when only one argument exists, or none at all. 

Plus[plus]

Plus[]

Times[times]

Times[]

(For  the  moment,  we  just  want  to  take  note  of  this  behavior;  Chapter 3  explains  why  Plus  and  Times  behave  this
way.)

We now discuss the head(s) of user-defined symbols and built-in functions. As noted previously, a user-defined symbol
x has the head Symbol. 

Head[x]

 

Symbol

is the head for a symbol. 

The system functions discussed above also have this head. 

Head[Plus]

Head[TreeForm]

Note that Mathematica also understands the following expressions but immediately rewrites them. 

 

Subtract[a, b] means a - b 

and becomes Plus[a, Times[-1, b]]. 

Divide[c, d] means c/d 

and becomes Times[c, Power[d, -1]]. 

Minus[expression] means -expression 

and becomes Times[-1, expression]. 

Here are three simple examples. 

Subtract[α, β]

Divide[α, β]

Minus[α]
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If  not  explicitly  entered  into  Mathematica,  Mathematica  will  never  generate  expressions  with  head  Subtract,
Divide, and Minus. 

Because the forms a-b,  a/b,  and -a  are immediately rewritten (through  evaluation) and stored in the rewritten form,
we cannot get them back using FullForm. (We discuss a way around this in Chapter 3.) 

FullForm[a - b]

FullForm[α/β]

FullForm[-α]

An analogous  assertion also holds  for  InputForm,  TreeForm,  OutputForm,  and almost every other  built-in and
user-defined function. If we input some “uncomputed” expression, the result of these formats does not return the input
expression,  but  rather the format of  the result computed by Mathematica.  This strategy of stepwise computation from
the inside out holds for every expression in Mathematica. We come back to this in detail in Chapter 4. So, the result of
the following is just 0 and not 1 - (-(-1)) and Plus[1, Times[-1, Times[-1, -1]]].

InputForm[1 - (-(-1))]

FullForm[1 - (-(-1))]

In Chapter 3, we discuss how to get the InputForm of such expressions and the functions that are exceptions to this
rule. 

Be aware that in TraditionalForm inputs, the Mathematica  precedences and groupings for operators still hold. So
¶ ê4 p is interpreted as Times[1/4,p,¶]. One has to add explicit parentheses in ¶ ê H4 pL to get Times[1/4,p-1,¶].

Note which expressions are simplified (or converted) and how they are simplified in the following examples. We will
discuss some of these examples in more detail shortly.

Sqrt[9/25]

Sqrt[2] + Sqrt[3]

(11^7)^(2/7)

(9999^888)^(1/444)

I^(1. I)

(8/27)^(1/3)

(Sqrt[12] - Sqrt[20])^2/4

(1 + Sqrt[2])^2

(2 + (-121)^(1/2))^(1/3)

(Sqrt[2] + Sqrt[7])^2

(Sqrt[2] + Sqrt[8])^2

Sqrt[18] (8.0)^(1/3)

Sqrt[z^2]

Sqrt[1 + x]/(1 + x)

(a^(1/3))^(1/2)

2 2^w

2^w1 2^w2
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(-2) (-a - b)

(-1) (-a - b)

8.0^(1/3)

8.0^(1.0/3.0)

(1 + 0.0)^(0 - 0.0)

(0.0 I)^(0.0 + 0.0 I + 1)

2 + ((Sqrt[2] + I)^2 - 2 - 2 Sqrt[2] I + 1) I + 0.0

2 + ((Sqrt[2] + I)^2 - 2 - 2 Sqrt[2] I + 1) I + 0.0 I

Σ (* session summary *) TMGBs`PrintSessionSummary[]

à 2.2.3 Elementary Transcendental Functions
The elementary transcendental functions are e x, ln x, and trigonometric and hyperbolic functions. (We will discuss the
inverses of the trigonometric and hyperbolic functions in Subsection 2.2.5.) (For a more mathematical definition of the
term “elementary function”, see [71÷].) Using Mathematica’s naming conventions,  the exponential function is written
Exp[x]. 

Exp[1.89]

Because all functions in Mathematica also work with complex arguments, we can evaluate the exponential function for
a complex argument. 

Exp[1.89 + 9.87 I]

We can also plot the exponential  function. The next plot shows values along the real axis. (We discuss Plot  and the
related graphics functions Plot3D and ContourPlot in detail in the Graphics volume [65÷].)

Plot[Exp[x], {x, -1, 2}, AxesLabel -> {"x", "Exp[x]"},
     PlotStyle -> Thickness[0.01]]

The function e1êz  is much more interesting than is ez, especially if we look at the real part of the function in a region of
the complex plane near the origin.

Plot3D[Re[Exp[1/(x + I y)]], {x, -2.001, 2}, {y, -2.001, 2}, 
       PlotPoints -> 60]

Magnifying the plot of e1êz  in the neighborhood of z = 0 is especially interesting because of the essential singularity at
z = 0. The height of the plotted points (the function value) is proportional to the real part, and the color is related to the
phase; we show only function values in the range -1 < ReIe1êzM < 8. (To avoid the generation of error messages caused

by too large numbers to be displayed, we turn off the corresponding message with Off[Plot3D::gval].) 

Off[Plot3D::gval];

Plot3D[{Re[Exp[1/(x + I y)]], Hue[Arg[Exp[1/(x + I y)]]]},
       {x, -0.02, 0.022}, {y, -0.04, 0.042},
       PlotRange -> {-1, 8}, PlotPoints -> 120, Mesh -> False]
       
Off[Plot3D::gval];

Next, we show the lines where the imaginary part is constant. (Here we use a random coloring; the details of this plot
will be discussed in Chapter 3 of the Graphics volume [65÷].) 
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Module[{cp, cls, L = 0.02},
      (* an initial contour plot *)
      cp = ContourPlot[Im[Exp[1/(x + I y)]], {x, -L, L}, {y, -L, L}, 
                       PlotPoints -> 400, DisplayFunction -> Identity] /.
      (* replace large high-precision numbers by biiig machine numbers *)
         z_?(Abs[#] > $MaxMachineNumber&) :> Sign[z] $MaxMachineNumber/2;
      (* homogeneously distributed contour lines *)                 
      cls = #[[100]]& /@ Partition[Sort[Flatten[cp[[1]]]], 800];   
      (* the final contour plot *)     
      ListContourPlot[cp[[1]], MeshRange -> {{-L, L}, {-L, L}},
                      Contours -> cls, ContourLines -> False,

                  ColorFunction -> (Hue[Random[]]&), 
                      AspectRatio -> Automatic, FrameTicks -> None]]       

The reason for this wild behavior of e1êz near z = 0 is explained by the Theorem of Picard. 

Mathematical Remark: Theorem of Picard

If f HzL is a one-to-one analytic function in the neighborhood of a point z = a, and if it has an essential singularity there,
f HzL takes on every arbitrary finite value, with at most one exception, in every neighborhood of a. See any textbook on
function theory, for example, [57÷], [13÷], [36÷], and [47÷]. 
1

We can use not only the exponential function in the complex plane, but also all mathematical functions. 

As long as they make sense (meaning an analytic continuation is possible), all functions in 
Mathematica are available for arbitrary complex numbers. 

Here is an important remark concerning the arguments of inverse trigonometric functions.

The arguments of trigonometric functions are always given in radians. To deal with arguments 
in degrees, see the next subsection. 

This fact means we have the following results. 

Sin[3.1415926535897932385]

Sin[3.1415926535897932385/3]

Mathematica  includes  the  following  elementary  transcendental  functions.  (The  inverse  trigonometric  and  hyperbolic
functions will be discussed in Subsection 2.2.5. Here we keep the exp-log pair together [12÷], [44÷].)

 

Exp[expression]

gives the exponential function eexpression. 

Log[expression]

gives the natural logarithm lnHexpressionL. 

Log[base, expression] 

gives the logarithm of expression to the base base. 
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Sin[expression]

gives the sine function sinHexpressionL. 

Cos[expression]

gives the cosine function cosHexpressionL. 

Tan[expression]

gives the tangent function tanHexpressionL. 

Cot[expression]

gives the cotangent function cotHexpressionL. 

Sec[expression]

gives the secant function secHexpressionL. (secHzL = 1 ê cosHzL) 

Csc[expression]

gives the cosecant function cscHexpressionL. (cscHzL = 1 ê sinHzL) 

 

Sinh[expression]

gives the hyperbolic sine function sinhHexpressionL. 

Cosh[expression]

gives the hyperbolic cosine function coshHexpressionL. 

Tanh[expression]

gives the hyperbolic tangent function tanhHexpressionL. 

Coth[expression]

gives the hyperbolic cotangent function cothHexpressionL. 

Sech[expression]

gives the hyperbolic secant function sechHexpressionL. (sechHzL = 1 ê coshHzL) 

Csch[expression]

gives the hyperbolic cosecant function cschHexpressionL. (cschHzL = 1 ê sinhHzL) 

We  stop  to  take  a  quick  look  at  the  somewhat  less  frequently  used  functions  sec,  csc,  sech,  and  csch.  Creating  the
following  plots  (axes,  labels,  width  of  lines,  removal  of  vertical  lines,  etc.)  is  discussed  in  detail  in  Chapter 1  of  the
Graphics volume [65÷]. 
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Module[{∂  = 10^-10, i},
Show[GraphicsArray[
Block[{$DisplayFunction = Identity},
(* left picture *)
Show[Table[(* for avoiding vertical lines *)
      Plot[#[[1]][x], {x, i Pi/2 + ∂, (i + 1) Pi/2 - ∂},
           PlotStyle -> Thickness[0.01]], {i, -4, 3}],
     (* setting options so that plot looks nice *)
      PlotRange -> {All, {-10, 10}},
      TextStyle -> {FontFamily -> "Times", FontSize -> 9},
      Ticks -> {{#[[1]], StyleForm[#[[2]], FontSize -> 9]}& /@
       {{-2Pi, "-2π"}, {-Pi, "-π"}, {0, "0"}, {Pi, "π"}, {2Pi, "2π"}},
       Automatic}, AxesLabel -> {StyleForm[TraditionalForm[x]], None},
      PlotLabel -> StyleForm[TraditionalForm[#[[1]][x]],
                             FontWeight -> "Bold", 
       FontSize -> 11]]& /@ {{Sec, "sec"}, {Csc, "csc"}}]]];
(* right picture *)
Show[GraphicsArray[
Block[{$DisplayFunction = Identity},
Show[{Plot[#[[1]][x], {x, -4, -∂}, PlotStyle -> Thickness[0.01]],
      Plot[#[[1]][x], {x,  ∂,  4}, PlotStyle -> Thickness[0.01]]},
      (* setting options so that plot looks nice *)    
      DisplayFunction -> Identity, PlotRange -> {All, #[[3]]},
      TextStyle -> {FontFamily -> "Times", FontSize -> 9},
      AxesLabel -> {StyleForm[TraditionalForm[x]], None}, 
      PlotLabel -> (* function label *)
       StyleForm[TraditionalForm[#[[1]][x]], FontWeight -> "Bold", 
      FontSize -> 11]]& /@
          {{Sech, "sech", {0, 1}}, {Csch, "csch", {-10, 10}}}]]]]

We  show  now  an  interesting  graphic  based  on  x Ø secHx + aL  iterations.  Here  a  is  a  parameter.  We  will  iterate  the
function  2000 times and  discard  the  first  200  iterations.  The  resulting  functions  are  in  general  wildly  oscillating as  a
function of a, but for certain a only a small number of different numerical values occur for the iterates. The following
graphic shows the parameter interval 1.026 § a § 1.040. We see many of the well-known bifurcations often shown for
the quadratic map.

With[{ppi = 500, pp = 2000},
Show[Graphics[{PointSize[0.002], Table[Point[{α, #}]& /@ 
      Drop[NestList[N[Sec[# + α]]&, -1/2., ppi], 200],
      (* small a-interval *) {α, 1.026, 1.040, 0.014/pp}]}], 
      Frame -> True, PlotRange -> {-2.25, -0.99}]]

When exact arguments lead to exact values for these transcendental functions, Mathematica  gives an exact result. The
same rule holds for arguments of type Integer, Rational, and Complex, as well as for algebraic and transcenden-
tal arguments. If the value is exact and Mathematica knows no special value, the input remains unchanged—this result
is still an exact representation of the expression. 

Exp[I Pi 2]

Log[1]

Log[8, 2]

Sin[2]

Numerical  values  (actually numerical  approximations)  of  an analytic expression  (an “exact” number)  can be obtained
using N. The function N (as well as any other one-argument function) can be applied in three different ways.
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N[expression]
or

expression // N
or

N @ expression

computes the numerical value of expression.

Here, we use all three approaches to compute a numerical value of sinH2L. 
N[Sin[2]]

Sin[2] // N

N @ Sin[2]

If a function is called with numerical variables, it will then, in general, “automatically” produce a numerical value. 

Sin[2.0]

Sin[N[2]]

Sin[N @ 2]

Sin[2 // N]

Note that these three ways of applying a function to an argument can be used for any function, built-in or user-defined,
explicitly computable or not explicitly computable. Here is an example using a user-defined symbol aa. 

aα @ argument

argument // aα

aα[argument]

If we apply N to 0, we get machine number 0. (for brevity Mathematica uses 0. instead of 0.0 in output form).

N[0]

Head[%]

There is no high-precision 0 with a finite number of correct digits. (We discuss the reason in detail in Chapter 1 of the
Numerics volume [66÷].)

N[0, 100]

Head[%]

Only “to which size” a number is zero can be indicated.

0``100

The head of an approximative 0.0 is Real, and the head of 0.0 + 0.0 I is Complex.

Head[0.0]

Head[0.0 + 0.0 I]

Σ (* session summary *) TMGBs`PrintSessionSummary[]
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à 2.2.4 Mathematical Constants
The  mathematical constants  e,  p,  g,  and  so  [26÷]  on  are  exact  numbers  in  the  mathematical sense.  However,  from a
programming standpoint, these constants are symbols (with head Symbol) in Mathematica. This is, in a certain sense,
analogous to the treatment of the algebraic numbers I21ê2, 51ê3 - 71ê4, …M discussed above. 

The fundamental rule for calculation with complex numbers is i2 = -1. (For historical and mathematical details about i,
see [46÷].)

I^2

I is a number with head Complex. 

Head[I]

FullForm[I]

The square root of -1 is i. (Note that in the following, the only root given is +i.)

(-1)^(1/2)

 

I 

represents the imaginary unit i, that is, i2 = -1. 

Next, we will discuss p. 

For certain simple rational fractions of p = Pi (more exactly, for integer multiples of p ê4 and 
p ê6) the trigonometric functions Sin, Cos, Tan, Cot, Sec, and Csc give exact values. 

Sin[Pi]

Sin[Pi/6]

Tan[45 Pi/4]

Head[Pi]

If the input contains an inexact number, the output will “collapse” to an inexact number whenever possible.

Sin[1.5 Pi]

 

Pi 

represents the exact irrational number p. 

For many details on the history, different representations, etc. of p, see [3÷], [9÷]. 

Here is a fraction that equals p to about 50 digits.

N[Pi - 23294267674065827396789607/7414795692066647773964845, 60]

Now, we can look at the values of the trigonometric functions for special fractions of p in more detail. (We discuss how
to produce this kind of table in Chapter 6. ∞ stands for ComplexInfinity, to be discussed shortly.)
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With[{functions = {Sin, Cos, Tan, Cot, Sec, Csc},
      args = {Pi/2, Pi/3, Pi/4, Pi/5, Pi/6, Pi/10, Pi/12}},
     TableForm[(* this forms all combinations of
                  functions and arguments *)
          Outer[#1[#2]&, functions, args] /.
          ComplexInfinity -> OverTilde[DirectedInfinity[1]],
          TableHeadings -> {functions, args}, TableSpacing -> 0.45,
          TableAlignments -> {Center, Center}]]

The last evaluation of trigonometricFunction[Pi/integer]  happens automatically for integer=1, 2, 3, 4, 5, 6, 10, and
12.  Using  the  function  FunctionExpand  (to  be  discussed  in  Chapter  3  of  the  Symbolics  volume  [67÷]),  more
expressions of the form trigonometricFunction[Pi/integer] can be expressed in nested radicals.

Sin[Pi/9] // FunctionExpand

Sin[Pi/256] // FunctionExpand

Cos[Pi/17] // FunctionExpand

A close relative of p is Degree.  

 

Degree 

stands for one degree (1 ê 360 of a full circle). 

With Degree,  we can input the argument of the trigonometric functions in degrees.  Degree  has precisely the value
2 p ê360. The use of N results in a numericalized version of the expression. 

Degree // N

2 Pi/360 // N

The expression 30 Degree is Times[30,Degree] in FullForm.

Sin[30 Degree] // N

Mathematica  does, of course, not differentiate between arguments of trigonometric functions someInteger  Degree  or
Pi/(180/someInteger).

Tan[30 Degree]

Tan[Pi/6]

When  possible,  trigonometric  functions  of  arguments  containing  general  variables  will  be  simplified.  Here  are  a  few
examples—observe the results only, not the programming. 

TableForm[Outer[#1[#2]&, {Cos, Sin, Tan, Cot, Sec, Csc},
                         {Pi/2 + x, Pi + x, 3/2 Pi + x}],
          (* table headers *)
          TableHeadings -> {{Cos, Sin, Tan, Cot, Sec, Csc},
                   {"Pi/2 + x \n", "Pi + x\n", "3/2 Pi + x\n"}},
          TableAlignments -> {Right, Center}]

Trigonometric functions that can be expanded into sums of several terms are not automatically converted.  (Of course,
Mathematica supplies functions to carry out such expansions, as discussed in Chapter 3.)

Cos[Pi/3 + x]

Sin[Pi/4 - x]

The famous Euler identity connects the numbers e [40÷], i, and p. 
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Exp[I Pi]

The following “related” construction pi e gives “almost” -1. 

Pi^(E I) // N

The number e itself is denoted in Mathematica by E. 

Exp[1]

Log[E]

 

E 

represents the exact irrational number e. 

It is well known that e can be defined as the limit value lim
nØ¶

H1 + 1 ênLn.

We can examine a plot of the convergence of this sequence by looking at the base 10 logarithm of the difference (for
bounds on the difference, see [49÷]). 

Plot[Log[10, E - (1 + 1/n)^n], {n, 1, 1000},
     AxesLabel -> {n, Log[E - (1 + 1/n)^n]}]

We now consider another mathematical constant. 

2 N[Cos[Pi/5]]

It is called the golden ratio or, in the Mathematica naming convention, GoldenRatio. 

GoldenRatio // N

The on-line explanation is given below. 

?GoldenRatio

 

GoldenRatio 

gives the exact golden ratio. 

Mathematical Remark: Golden Ratio

The golden ratio f arises by dividing a segment of length a into two parts so that the ratio of the length of the larger part
x to the full length a is equal to the ratio of the length of the smaller part a - x to the length of the larger part x, which
means x êa = Ha - xL ê x.

Solving  for  a ê x  gives  f = a ê x = I1 + 5 M ë 2.  For  a  detailed  discussion  of  the  golden  ratio,  with  many  interesting

graphics  applications,  see [70÷],  [14÷],  and  [68÷].  For  misconceptions  about  the  history  and  use  of  golden  ratio,  see
[41÷], [42÷], and [50÷]. 
1

The equality of the two numbers 2 Cos[Pi/5] and GoldenRatio is no accident: Many function values of sin, cos,
tan, and cot corresponding to small fractions (1 ê 5, 1 ê10, 1 ê12, …) of p can be represented in terms of the golden ratio
(e.g., sinHp ê 10L = I51ê2 - 1M ë 4 = Hf - 1L ê2). 
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Sin[Pi/10]

Another important mathematical constant is g. 

?EulerGamma

 

EulerGamma 

represents the exact Euler number g. 

Mathematical Remark: g

The Euler number g is defined as the following limit value [30÷]: 

lim
nØ¶

1

1
+

1

2
+

1

3
+ ∫ +

1

n
- lnHnL

This can also be expressed as the following sum:

g = ‚
k=1

¶ 1

k
- ln 1 +

1

k

The Euler number g arises frequently in computing definite integrals. 
1

Here  are  the  first  few  partial  sums  of  this  sequence  for  computing  g.  It  converges  extremely  slowly.  (For  a  simple
method to accelerate the convergence of this series, see [63÷].)

Do[Print[NSum[1/i, {i, 1, n}] - N[Log[n]]], {n, 1, 12}]

The following graphic shows log10I°g - IlnHnL - ⁄k=1
n 1 ê kM•M. For n = 104, the direct summation gives about four correct

digits for g.

ListPlot[Log[10, Abs[EulerGamma - MapIndexed[#1 - Log[#2[[1]]]&, 
                      Rest[FoldList[Plus, 0, 1./Range[10^4]]]]]],
        Frame -> True, Axes -> False]

Here is a much more efficient series representation for g  [34÷]. 

g = 1 - lim
nØ¶

‚
k=1

12 n+1 H-1Lk-1 nk+1

Hk - 1L ! Hk + 1L
 logHnL -

1

k + 1

By summing less than 1000 terms, we get about 34 digits if g.

γK[n_] := 1 - Sum[(-1)^(k - 1) n^(k + 1)/((k - 1)! (k + 1)) 
                  (Log[n] - 1/(k + 1)), {k, 12n + 1}]

γK[N[83, 80]]

% - EulerGamma // N

And here is a simple program that allows to calculate thousands of digits of g. It is based on the approximate summa-

tion of alternating series ⁄k=0
¶ H-1Lk  ak  [17÷]. We make use of the series ⁄k=1

¶ H-1Lk logHkL ê k = g logH2L - log2H2L ë 2.
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(* sum n terms of the alternating series
   Sum[(-1)^k summand[k], {k, 0, Infinity}] *)
sumAlternatingSeries[summand_, n_] := 
Module[{d = (3 + Sqrt[8])^n, b = -1, c = -d, s = 0},
       d = (d + 1/d)/2; b = -1; c = -d; s = 0;
      Do[c = b - c; s = Together //@ (s + c summand[k]);
         b = (k + n)(k - n) b/((k + 1/2) (k + 1)), {k, 0, n - 1}];
      s/d]

(* approximate EulerGamma using n series terms *)
γSumApproximation[n_, prec_] :=
Block[{$MaxExtraPrecision = prec, c2},
      c2 = sumAlternatingSeries[(* the shifted series terms *)
                         Function[k, N[-Log[k + 1]/(k + 1), prec]], n];
      c2/Log[2] + Log[2]/2]

Using 1300 terms gives us more than 1000 digits of g in seconds.

γSumApproximation[1300, 1010] - EulerGamma // Timing

By avoiding numericalization, we can even obtain symbolic approximations of g.

γSumApproximation[22, Infinity] // Simplify

Twenty series terms give about 19 correct digits.

N[% - EulerGamma, 20]

In Mathematica, ¶ is written as Infinity, and it can be considered to be a mathematical constant in a certain sense.
It can also be given as an argument of functions. 

Exp[Infinity]

Exp[-Infinity]

Infinity has an “interesting” internal form. 

FullForm[Infinity]

-Infinity evaluates to the corresponding expression DirectedInfinity[-1].

FullForm[-Infinity]

In outputs, the last expression formats as -∞.

%

Infinity in Mathematica comes in various “flavors”.

 

DirectedInfinity[z] 

represents a numerically infinite quantity in the direction of the complex number z. 

DirectedInfinity[]

or
ComplexInfinity

represents a numerically infinite quantity in an unknown direction in the complex plane. 

The value of 1 ê someFlavorOfInfinity is 0, independent of the direction in the complex plane. 

1/ComplexInfinity
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A variety of mathematical operations can be performed with Infinity [7÷]. For example, it can appear as the limit in
a summation or as the argument in various special functions. We will encounter such cases quite often throughout the
GuideBooks. 

DirectedInfinity[1 + I] DirectedInfinity[I]

For DirectedInfinity a difference exists between the OutputForm and the FullForm. 

DirectedInfinity[I]

FullForm[%]

OutputForm[%]

The following expression is so “badly undetermined” that it even generates an error message. 

1/0

If this 1 ê 0 occurs as the limit value of limtØt0 f HtL ê gHtL, it might be possible to determine the direction of the resulting

infinity in the complex plane. DirectedInfinity[1] is a “positive real infinite number”. 

 

Infinity

or
DirectedInfinity[1] 

represents a numerically infinite quantity in the direction of the positive real axis in the 
complex plane. 

Infinity possesses no numerical value of its own. 

N[Infinity]

Often, a calculation does not lead to a unique result. For example, in computing e¶ - e¶2  in Mathematica via Exp[In
finity]  -  Exp[Infinity^2],  first,  the  two  expressions  Exp[Infinity]  and  Exp[Infinity]^2  are
formed,  and  then  the  two  resulting  values  of  Infinity  are  subtracted.  Infinity - Infinity  is  not  uniquely
defined, because they could be of very “different sizes”, which at this point, Mathematica has already “forgotten”. Here
is an illustration. 

Exp[Infinity] - Exp[Infinity^2]

The following input gives the same result, of course. 

Exp[Infinity] - Exp[Infinity]

Infinity - Infinity

The use of  the function Limit,  discussed in Chapter  1 of  the Symbolics volume [67÷],  often allows the handling of
such expressions in a more sensible way. 

 

Indeterminate 

represents a numerically indefinite quantity. 

We should note the following in dealing with quantities that  can be infinite.  On the one hand,  we have the following
obvious result. 

Infinity - Infinity

On the other hand, to every symbolic quantity, an arbitrary value, including Infinity, can be assigned.
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arbitraryQuantity - arbitraryQuantity

Of  course,  we  cannot  do  without  x - x = 0,  because  then  hardly  any  expressions  could  be  simplified.  The  analogous
situation holds for functions of Infinity, in contrast to the example above. 

arbitraryFunction[Infinity] - arbitraryFunction[Infinity]

For many functions f, f[Infinity] will not be Infinity or Indeterminate and the last example makes sense.
Mathematica will always assume that a variable or a function value is a “generic” complex number; this means it is not
0 or not a flavor of infinity. (If we want the property @IndeterminateD = Indeterminate,  then we could give
the function  the attribute NumericFunction. This will be discussed in Chapter 3.)

SetAttributes[, NumericFunction];
[Indeterminate]

The product of nearly every Mathematica  expression and 0 is 0. Exceptions to this rule are flavors of DirectedIn
finity and Indeterminate.

(* use lower case infinity *)
0 infinity

0 DirectedInfinity[2]

0 Indeterminate

And 00 cannot be uniquely defined either [35÷].

0^0

The following expressions all evaluate to Indeterminate.

Infinity - Indeterminate

Indeterminate - Indeterminate

0^Indeterminate

Indeterminate^0

But  be  aware  that  DirectedInfinity  and  Indeterminate  have  to  occur  explicitly  inside  such  products.  The
product of 0 and a “hidden infinity” returns 0.

0 (* a hidden infinity of the form 1/0 *)*
((Pi - 1)^2 - (Pi^2 - 2Pi + 1))^-1

More mathematical constants are available in Mathematica, but for our purposes, we end here.

Σ (* session summary *) TMGBs`PrintSessionSummary[]

à 2.2.5 Inverse Trigonometric and Hyperbolic Functions
We now look at the inverse functions corresponding to the trigonometric and hyperbolic functions. Whenever possible,
we get exact results. 

ArcSin[0]

ArcTan[1]

With a real number as the argument given with a decimal point, the result also has a decimal point (the result can be real
or complex). 

ArcSin[0.78]
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When †argument§ > 1, the result for arcsin and arccos is complex. 

ArcSin[5.78]

If the input contains more certified digits such that Mathematica’s own high-precision arithmetic is used, a more precise
result will be returned.

ArcSin[5.780000000000000000000000000000000000000000000000000]

Because  the  trigonometric  functions  are  multivalued,  in  general,  arcsinHsinHxLL ∫ x.  Here  is  an  example  for  such  a
function.

ArcSin[Sin[5.78]]

The inverse functions for the trigonometric and hyperbolic functions only produce values on 
the principal branch. 

 

ArcSin[expression] 

gives the arcsine function arcsinHexpressionL. For real arguments satisfying †expression§ > 1, 
the result lies in the interval @-p ê 2, p ê2D. 

ArcCos[expression] 

gives the arccosine function arccosHexpressionL. For real arguments satisfying †expression§ > 1, 
the result lies in the interval @0, pD. 

ArcTan[expression] 

gives the arctangent function arctanHexpressionL. For real arguments expression, the result lies 
in the interval @-p ê2, p ê2D. (The endpoints are attained when the argument is ≤ ¶.) 

ArcTan[Infinity]

ArcTan[-Infinity]

ArcTan can also be called with two variables. 

 

ArcTan[coordinatex, coordinatey] 

gives the polar angle of a point P in the x,y-plane with the coordinates 
P = 9coordinatex, coordinatey=. The result lies in the interval H-p, pD for real 
coordinatex, coordinatey. (The right endpoint corresponds to points on the negative real axis.) 

We  now look  at  the  coordinates  of  a  point,  which  moves counterclockwise  around  the  origin  in  steps  of  45  degrees.
(The == represents mathematical equality; we will discuss it in detail in Chapter 5.)

Print[#, " == ", ToExpression[#]]& /@
{"ArcTan[ 1,  0]", "ArcTan[ 1/2,  1/2]",
 "ArcTan[ 0,  1]", "ArcTan[-1/2,  1/2]",
 "ArcTan[-1,  0]", "ArcTan[-1/2, -1/2]",
 "ArcTan[ 0, -1]", "ArcTan[ 1/2, -1/2]"};

Mathematica supports three more inverse trigonometric functions: ArcCot, ArcSec, and ArcCsc.
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ArcCot[expression] 

gives the arccotangent function arccotHexpressionL. For a real argument, the result lies in the 
interval @-p ê2, p ê2D. (The endpoints are attained for ≤ ¶ as the argument.) 

ArcSec[expression] 

gives the arcsecant function arcsecHexpressionL. For a real argument, the result lies in the 
interval @0, pD. (The endpoints are obtained for ≤1 as the argument.) 

ArcCsc[expression] 

gives the arccosecant function arccosHexpressionL. For a real argument, the result lies in the 
interval @-p ê2, p ê2D. (The endpoints are obtained for ≤1 as the argument.) 

Trigonometric functions of inverse trigonometric functions are simplified. Here are all possible combinations. (We are
only interested in the output, and not the input here. For space reasons, we use InputForm as the format type of the
output.)

Outer[(* forming all combinations of trig[inverseTrig] *)
      (ToString[#1] <> "[" <> ToString[#2] <> "[z]] == " <>
       ToString[InputForm[#1[#2[z]]]])&,
          {Sin, Cos, Tan, Cot, Sec, Csc},
          {ArcSin, ArcCos, ArcTan, ArcCot, ArcSec, ArcCsc}] // 
                                          Flatten // TableForm

Note that because of the multivaluedness of the inverse trigonometric functions expressions of the form inverseTrigonoÖ
metricFunction[trigonometricFunction[z]], do not “simplify” to z.

ArcSin[Sin[z]] 

ArcSin[Cos[z]] 

We also have inverse functions for the hyperbolic functions. 

ArcSinh[2.718]

For purely imaginary arguments, the hyperbolic functions reduce to known trigonometric functions. 

ArcTanh[I]

The hyperbolic function sinh is also multivalued (with a purely imaginary period). 

Sinh[3 + 2 Pi I]

Sinh[3 + 24 Pi I]

Here is a list of all inverse hyperbolic functions. 

 

ArcSinh[expression] 

gives the inverse hyperbolic sine function arcsinhHexpressionL. 

ArcCosh[expression] 

gives the inverse hyperbolic cosine function arccoshHexpressionL. 

ArcTanh[expression] 

gives the inverse hyperbolic tangent function arctanhHexpressionL. 
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ArcCoth[expression] 

gives the inverse hyperbolic cotangent function arccothHexpressionL. 

ArcSech[expression] 

gives the inverse hyperbolic secant function arcsechHexpressionL. 

ArcCsch[expression] 

gives the inverse hyperbolic cosecant function arccschHexpressionL. 

(For inverses of elementary functions in general, see [60÷].)

Here  are  the  results  of  applying  a  hyperbolic  function  to  an  inverse  hyperbolic  function  (similar  to  the  trigonometric
case above). 

Outer[(* forming all combinations of hyp[inverseHyp] *)
      (ToString[#1] <> "[" <> ToString[#2] <> "[z]] = " <>
       ToString[InputForm[#1[#2[z]]]])&,
          {Sinh, Cosh, Tanh, Coth, Sech, Csch},
          {ArcSinh, ArcCosh, ArcTanh, ArcCoth,
           ArcSech, ArcCsch}] // Flatten // TableForm

If  we  look  at  an  inverse  function  in  the  complex  plane,  that  is,  with  a  complex  argument,  its  absolute  value  is  not  a
smooth function. Because complex-valued functions of complex variables are hard to plot in two or three dimensions,
we first consider five other important operations on complex numbers: determining the real part, the imaginary part, the
absolute value, the phase, and the conjugation. 

 

Re[complexNumber] 

gives the real part of the complex number complexNumber (with head Complex). 

Im[complexNumber] 

gives the imaginary part of the complex number complexNumber (with head Complex). 

Abs[complexNumber] 

gives the absolute value of the complex number complexNumber (with head Complex). 

Arg[complexNumber] 

gives the argument (phase angle) of the complex number complexNumber (with head Com
plex). The result lies in H-p, pD (the value -p is never returned, real negative complexNumÖ
ber give p). If Mathematica cannot find the value of Arg[complexNumber] for complex 
numbers with rational (or exact symbolic irrational) real and imaginary parts, the result appears 
in the form ArcTan[realPart, imaginaryPart]. 

Conjugate[complexNumber] 

gives the complex conjugate a - i b of complexNumber = a + i (a, b œ ). 

Here are a few simple examples. 

z = 3.98 + 789 I

Re[z]

Im[z]

Abs[z]

30 Printed from THE MATHEMATICA GUIDEBOOKS

©  2004, 2005   Springer Science+Business Media, Inc.



Arg[z]

Conjugate[z]

With exact values for the argument, these functions produce exact results whenever possible. 

z = 3456/7891 + 7876/653 I

Re[z]

Im[z]

Abs[z]

Arg[z]

As soon as an approximate element is present, we get an approximate result. 

Arg[23/45 + 7.89 I]

Note, however, that if either the real or the imaginary part is an exact quantity and we apply the functions Re or Im, the
“exactness” stays unchanged. 

Re[23/45 + 7.89 I]

Im[23/45 + 7.89 I]

Also, note the jump in the phase angle of Arg at p. 

Arg[-1 + 10.0^-10 I]

Arg[-1 - 10.0^-10 I]

We look at this graphically (the vertical jump at arg = p is a result of Plot, which assumes a continuous curve). 

Plot[Arg[Exp[I ϕ]], {ϕ, 0, 2Pi},
     AxesLabel -> {StyleForm[StandardForm[ϕ]], 
                   StyleForm[StandardForm[Arg[Exp[I ϕ]]]]},
     PlotStyle -> Thickness[0.01]]

For real (head Real),  integer (head Integer),  and rational (head Rational) arguments x,  Re,  Im,  Abs,  and Arg
give the same result as Complex[x, 0]. 

Abs[3]

Re[-1]

Im[43/67]

Arg[12]

For symbolic arguments, Re, Im, Abs, and Arg do not “alter” the input. Mathematica does not make any assumptions
about the variables purelyReal and purelyImaginary. With the exceptions of a very few functions, every (non-
built-in) symbol is assumed to be a generic complex-valued variable.

Re[purelyReal + I  purelyImaginary]

Abs[real^2 + imaginary^2]

Using the function ComplexExpand (discussed in Chapter 1 of the Symbolics volume [67÷]), expressions containing
Re, Im, Abs, and Arg can be “simplified” under the assumptions that the involved variables are purely real.

ComplexExpand[%]

Here is a look at the shape of the absolute value of the arccos function on the complex plane. 
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Plot3D[Abs[ArcCos[x + I y]], {x, -Pi, Pi}, {y, -Pi, Pi},
       AxesLabel -> {x, I y, None}, PlotPoints -> 30]

It is clearly nondifferentiable across the negative real axis. If we look only at the negative part of the imaginary part, the
nondifferentiable is even more visible. (The vertical piece of the surface is a result of Plot3D; a more correct version
of the picture should not have these pieces.) 

Plot3D[-Im[ArcCos[x + I y]], {x, -Pi, Pi}, {y, -Pi, Pi},
       AxesLabel -> {x, I y, None}, PlotPoints -> 30]

The reason for this discontinuity is explained in the following section. 

Mathematical Remark: Branch Points and Branch Cuts of Analytic Functions

To  make  the  inverse  functions  corresponding  to  multivalued  complex  functions  unique,  we  need  several  copies
(2, 3, …, ¶,  depending  on  the  function)  of  the  complex  plane  that  are  suitably  cut  open  and  glued  together  along
branch cuts. The starting, and ending points of the branch cuts are (typically) the branch points. The resulting multival-
ued (multisheeted) surface is called a Riemann surface. (We come back to Riemann surfaces repeatedly throughout the
GuideBooks.)  For  the  numerical  computation  of  these  functions,  the  built-in  versions  of  the  Mathematica  functions
always stay on one branch (sheet) of the Riemann surface. If one moves along a path on such a sheet, all functions are
continuous  (assuming the  path  does  not  hit  a  pole  or  a  singularity).  But  when crossing a branch  cut,  the value of  the
function  jumps  discontinuously.  Function  values  on  higher  or  lower  branches  are  usually  different,  often  being  the
conjugates  of  each other  or  differ  by fixed values.  See any textbook on function theory  or  applied mathematics (e.g.,
[57÷], [1÷], [13÷], [32÷], [36÷], [39÷], [25÷], and [24÷]). For a detailed listing of the branch cuts of all Mathematica
functions see, http://functions.wolfram.com.
1

The branch cuts in the complex planes are different for the various functions (no mathematical 
theorem for how to make the cuts exists, but there are some conventions). The cuts for the 
functions introduced above are as follows: 

Sqrt@ z D H-¶, 0L 
 z^s H-¶, 0L for  ReHsL > 0 and  s not an integer

H-¶, 0D for  ReHsL < 0 and  s not an integer
ArcSin@ z D H-¶, -1L and  H1, ¶L 
ArcCos@ z D H-¶, -1L and  H1, ¶L 
ArcTan@ z D H-i ¶, -iL and  Hi, i ¶L 
ArcCot@ z D @-i, iD 
ArcSec@ z D H-1, 1L 
ArcCsc@ z D H-1, 1L 
ArcSinh@ z D H-i ¶, -iL and  Hi, i ¶L 
ArcCosh@ z D H-¶, 1L 
ArcTanh@ z D H-¶, -1D and @1, ¶L 
ArcCoth@ z D @-1, 1D 
ArcSech@ z D H-¶, -1D and H1, ¶L 
ArcCsch@ z D H-i, iL 
Arg@ z D H-¶, 0L 

(The discontinuity of Arg  as a function of a complex variable is of different nature because it is not an analytic func-
tion.) For most applications these choices of the branch cuts is convenient, but sometimes other branch cut positions are
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preferable [27÷].

The  branch  cuts  of  the  inverse  trigonometric  functions  follow  largely  [18÷]  from  the  branch  cuts  of  the  Log  and
Power. (And because of the identities za = ea lnHzL and lnHzL = limaØ0 a Hza - 1L, the branch cut of the logarithm function
and  the  power  function  should  coincide.)  Every  inverse  trigonometric  function  can  be  expressed  as  a  composition of
logarithms  and  square  roots  [18÷].  (The  function  TrigToExp  rewrites  inverse  trigonometric  functions  in  the  more
basic functions Log and Power.)

Map[# == TrigToExp[#]&, 
    {ArcSin[ξ], ArcCos[ξ], ArcTan[ξ], 
     ArcCot[ξ], ArcSec[ξ], ArcCsc[ξ]}] // TableForm

Also, the inverse hyperbolic function can be expressed using Log and Power.

Map[# == TrigToExp[#]&, 
    {ArcSinh[ξ], ArcCosh[ξ], ArcTanh[ξ], 
     ArcCoth[ξ], ArcSech[ξ], ArcCsch[ξ]}] // TableForm

Even the ordinary exponentiation is for noninteger powers not unique. Here, the cut is along H-¶, 0L. 
Plot3D[Im[(x + I y)^(1/3)], {x, -2, 2}, {y, -2, 2},
       PlotPoints -> 30,
       AxesLabel -> {StyleForm[StandardForm[x]], 
                     StyleForm[StandardForm[y]], None}]

If we follow Im[(x + I y)^(1/3)] = Im[z^(1/3)] = Im[†z§ ei argHzLê3] along the unit circle, after one cycle,
we do not get back to the original value. This happens only after the third cycle. We can clearly see in this picture that

when  starting  at  -1
3

 and  going  around  the  circle  of  radius  1,  the  value  -1
3

 is  not  -1  on  the  same sheet  of  the
Riemann surface. In the following picture, we show the real part of expH2 p i t ê3L as a function of t. 

Plot[Im[(Exp[I 2 Pi t/3])], {t, 0, 4}, AxesLabel -> 
     (StyleForm[StandardForm[#]]& /@ {t, "Im[Exp[2 I Pi t/3]]"})]

The logarithm is also not unique; again, we cut along the negative real axis. 

Plot3D[Im[Log[x + I y]], {x, -2, 2}, {y, -2, 2},
       PlotPoints -> 40, AxesLabel -> {StyleForm[StandardForm[x]], 
       StyleForm[StandardForm[y]], None}]

In addition to e0 = 1 Ø lnH1L = 0, we also have the following: ek 2 p i = 1, k œ . 

Exp[4 Pi I]

Be aware that composite functions have their branch cuts uniquely determined by their constituent functions. Take, for

example, the function f HzL = z2 - 1  in the complex z-plane. The two branch points are zbp = ≤1 and the branch cut

is typically chosen as the straight line connecting these two branch points. But the Sqrt function will have a branch cut
whenever its argument is negative. For the argument z2 - 1, this is the case for real z in the interval -1 < z < 1 and for
all z on the imaginary axis. This fact explains the look of the following picture.

Plot3D[Im[Sqrt[(x + I y)^2 - 1]], {x, -2, 2}, {y, -2, 2},
       PlotPoints -> 50]

In  the  last  picture,  the  “branch  cut”  along  the  imaginary  axis  does  not  connect  any  branch  points;  instead  it  forms  a
discontinuity in form of a closed loop running from i ¶ to -i ¶.

The process  of  building all  elementary and special  functions  from addition,  multiplication, and,  at  the end,  the power
function (or the logarithm function) yields consistent, but compared with textbook practice, sometimes unusual results
for numerical values of composite functions. Here is a simple example: The function lnH-expHi arccosHzLLL (this function
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can also be written as lnJ-z - i I1 - z2M1ê2N. On the branch cuts H-¶, -1D and @1, ¶L of arccos, the function values are of

the form p - i y  and i y  with  purely real  positive  y.  As a  result,  the function  values  of  expHi arccosHzLL  are  purely  real
positive  on  the  interval  @1, ¶L.  So  -expHi arccosHzLL  is  negative  on  @1, ¶L  and  continuous  from  below.  Because  this
expression is negative, it experiences the branch cut of the outer logarithm. With lnH-zL being continuous from above,
the  values  of  the  expression  lnH-expHi arccosHzLLL  do  not  agree  with  either  of  the  limits  from  below  or  above.  The
following two graphics show the real and imaginary parts of lnH-expHi arccosHzLLL. We use high-precision arithmetic to
calculate the function values.

Strange[z_] := Log[-Exp[I ArcCos[z]]]

(* high-precision function values *)
fValues = Table[{x, y, N[ Strange[x + I y], 22]}, 
                {x, -3, 3, 6/32}, {y, -3, 3, 6/32}];
                
(* form polygons from points *)                
polygons = Table[Polygon[{#[[i, j]], #[[i + 1, j]], 
                          #[[i + 1, j + 1]], #[[i, j + 1]]}], 
                 {i, Length[#] - 1}, {j, Length[#[[1]]] - 1}]&[fValues];   

(* show real and imaginary part *)
Show[GraphicsArray[Function[reIm,
Graphics3D[{EdgeForm[], Map[MapAt[reIm, #, 3]&, polygons, {4}]},
                  BoxRatios -> {1, 1, 0.6}, Axes -> True, 
                  AxesLabel -> {"x", "y", None}, 
                  PlotLabel -> reIm]] /@ {Re, Im}]]

The vertical wall along the interval @1, ¶L might seem strange in the first moment, but follows uniquely from a consis-
tent and fixed branch cut structure of all elementary functions. 

Another  sometimes  encountered  pair  of  functions  that  differ  only  on  a  line  segment  is  arccothHzL  and

lnIHz + 1L1ê2 ë Hz - 1L1ê2M.  (The last  form one typically obtains by solving cothHwL = z  with respect  to w  after  expressing

cothHwL through exponentials.) These two functions differ on the interval -1 < ReHzL < 0, ImHzL = 0 by i p.

By  composing  functions  with  branch  cuts,  one  can  obtain  quite  complicated branch  cut  structures.  For  a  preliminary
attempt to calculate them in a programmatic way, see [10÷], [22÷], and [6÷]. 

Σ (* session summary *) TMGBs`PrintSessionSummary[]

à 2.2.6 Do Not Be Disappointed
We discuss a few things for which Mathematica, as well as several other computer algebra systems, are frequently and
unfairly  criticized.  Mathematica  has  no  explicit  type  declaration  for  variables,  and  so  every  symbolic  quantity  is
considered to be able to assume a general complex value.  This assumption has the effect that a variety of expressions
that  could  be  simplified  for  real  numbers,  are  no  longer  simplified  with  complex  numbers.  (This  subsection  closely
follows [64÷]; see also [4÷], [53÷], [59÷], [43÷], [19÷], [11÷], [20÷], [21÷], [5÷], [16÷], and the early work [15÷].) 

Mathematica does not simplify a number of expressions that one initially thinks could be 
simplified. Known rules for positive real numbers often do not hold for arbitrary complex 
numbers and every variable is assumed to be a generic complex quantity.

Mathematica does not recognize the following simplifications, which are correct for positive real arguments. 

† u  v = u v : 
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Sqrt[u] Sqrt[v]

† u2 = u: 

Sqrt[u^2]

† 1 êu = 1 ë u : 

Sqrt[1/u]

† ex = exê2: 
Sqrt[Exp[x]]

† lnHu vL = ln u + ln v: 

Log[u v]

† lnIu2M = 2 ln u:  

Log[u^2]

† lnH1 êuL = -ln u: 

Log[1/u]

To its credit, Mathematica does not recognize the following “simplifications”. 

† u  v = u v : 

 u = -1 v = -1 Ø -1  -1 = i2 = -1 ∫ H-1L H-1L = 1 = 1

u = -1; v = -1;
{Sqrt[u] Sqrt[v], Sqrt[u v]}

† u2 = u: 

u = -1 Ø IH-1L2M = 1 ∫ -1

u = -1;
{Sqrt[u^2], u}

† 1
u = 1

u
: 

u = -1 Ø
1

-1
= -1 = i ∫

1

-1
=

1

i
= -i

u = -1;
{Sqrt[1/u], 1/Sqrt[u]}

† ex = exê2: 

x = 2 p i Ø e2 p i = 1 = 1 ∫ IeH2 p iLê2M = Hep iL = -1

x = 2 I Pi;
{Sqrt[Exp[x]], Exp[x/2]}

† lnHu vL = ln u + ln v: 
u = -1 v = -1 Ø lnHH-1L H-1LL = lnH1L = 0 ∫ lnH-1L + lnH-1L = p i + p i = 2 p i
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Note that lnH-1L = i p because ei p = -1. 

u = -1; v = -1;
{Log[u v], Log[u] + Log[v]}

† lnIu2M = 2 ln u: 

u = -1 Ø lnIH-1L2M = lnH1L = 0 ∫ 2 lnH-1L = 2 p i

u = -1;
{Log[u^2], 2 Log[u]}

† lnH1 êuL = -ln u: 

u = -1 Ø ln
1

-1
= lnH-1L = p i ∫ -lnH-1L = -p i

u = -1;
{Log[1/u], -Log[u]}

Sometimes,  we  would  nevertheless  wish  Mathematica  to  use  the  above-described  rules—this  can  be  forced  with  the
function PowerExpand, which is discussed in Chapter 1 of the Symbolics volume [67÷]. Also, by giving Mathemat-
ica  additional  information  about  the  domain  of  variables  more  simplifications  become possible.  Here  are  two  simple
examples (we will discuss the function Simplify in detail in Chapter 1 of the Symbolics volume [67÷]).

Simplify[Sqrt[] Sqrt[], And[ > 0,  > 0]]

Simplify[Sqrt[^2], Element[, Reals]]

Note  that  branch  cut  problems  are  not  affected  by  the  above  listing.  As  mentioned,  the  reader  might  get  something
different from x in inverseFunction@ function@xDD.

x = 3 Pi I; {Log[Exp[x]], x}

In  the  last  example,  only  the  main  branch  is  used  for  the  logarithm  (because  Exp[x]  is  computed  first,  and  then
Log[-1]). But as a multivalued function, we have lnHzL = lnHzLH + k 2 p i, with k an arbitrary integer; ln HzLH  means the
value on the main branch.

Σ (* session summary *) TMGBs`PrintSessionSummary[]

à 2.2.7 Exact and Approximate Numeric Quantities
Although mathematical constants such as e (E), p (Pi), the golden ratio (GoldenRatio), and degree (Degree) have
the  head  Symbol,  they  nevertheless  represent  numerical  quantities.  It  is  sometimes  necessary  to  convert  them  to
approximate numbers. This conversion can be done with the command N.  

 

N[toBeNumericalized, numberOfDigits] 

computes the numerical value of toBeNumericalized to numberOfDigits digits. If the second 
argument is left out, or is the symbol MachinePrecision, the computations are done with 
machine accuracy, usually 16 to 19 digits, depending on the hardware. 

The input expI10-100M stays unevaluated. Mathematica has no built-in rule to transform this expression.

Exp[10^-100]

Here  is  expI10-100M  computed  to  800  digits.  The  result  clearly  shows  the  contributions  of  the  first  few  terms  of  the

Taylor series expansion. 
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N[Exp[10^-100], 800]

The next two inputs calculate a machine number result for the difference of the last number to 1. 

N[% - 1]

N[%% - 1, MachinePrecision]

First, the difference is calculated, then N is applied to convert the result to a machine number. If we would first convert
the high-precision number to a machine number and then subtract the 1, the result would be 0. because after conversion
to a machine number we have only about 16 digits.

N[%%%] - 1

Because calculations with symbolic expressions are typically much slower and more memory-
intensive than with approximate numbers, whenever possible, N[… ] should be used (e.g., in 
self-constructed graphics). However, the loss of precision may generate misleading results, 
particularly with machine-precision computations. 

If  a  decimal number with n  digits  is  input,  Mathematica  assumes that  only these n  digits  are  correct.  If  n  is  less than
machine precision,  all remaining digits (up to machine precision) are interpreted as decimal zeros.  If  n  is greater than
machine  precision,  any  digits  not  given  explicitly  are  assumed  to  be  indefinite.  Given  a  number  with  n  (n  less  than
machine precision) digits, it is a bit more involved to get a new number with m digits with m > n. (We discuss how to
do this in great detail in Chapter 1 of the Numerics volume [66÷].) Thus, for example, the following, does not work. 

N[Sin[2.00], 40]

The inner Sin[2.00] evaluated to a machine precision. 

Sin[2.00]

FullForm[Sin[2.00]]

Moreover, trailing zeros are not displayed. 

InputForm[2.0]

To get a result with a lot of digits, we have to give input with that many digits. 

N[Sin[2.00000000000000000000000000000000000000000000000000\          
        00000000000000000000000000000000000000000000000000\       
        00000000000000000000000000000000000000000000000000\        
        00000000000000000000000000000000000000000000000000], 200]

In the last input, the 200 is not necessary. Mathematica will compute the expression to the precision that is justified by
the precision of the input. 

Sin[2.00000000000000000000000000000000000000000000000000\ 
      00000000000000000000000000000000000000000000000000\     
      00000000000000000000000000000000000000000000000000\   
      00000000000000000000000000000000000000000000000000]

Here are shorter forms of the last input. 

Sin[N[2, 200]]

Sin[2.`200]

A number that is zero to n digits can be input as 0``n. (This means »0``n … § 10-n-1.)

0``100
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Next, we calculate arccotHzeroL for three different zeros.

ArcCot[0]

ArcCot[0.0]

ArcCot[0``50]

% - Pi/2

N[expr, prec] calculates expression to precision prec. For most cases, this means that the result has prec digits. If the
result is a complex number with real and imaginary parts of very different size, the smaller (in magnitude) part might
have fewer digits. Here is an example.

expr = (100 Pi -
 19132026092227517122744933006259318953191397092415777/
  5555080271647593936029563103709759827268790222640350 I)^
                             (10 GoldenRatio + I EulerGamma)

N[expr, 50]  gives  the real  part  to  50 correct  digits.  But  not  a  single validated digit  of  the  imaginary part  could  be
found.

N[expr, 50]

N[expr, 100] gives just three validated digits for the imaginary part and shows that the imaginary part is more than
100 orders of magnitude smaller than the real part.

N[expr, 100]

The following input calculates 20 validated digits for the imaginary part.

$MaxExtraPrecision = 1000;
N[Im[expr], 20]

Here is a sum of 11 cosines.

cosSum10 = (6 - 15 Cos[1] + 27 Cos[2] + 9 Cos[3] - 
            6 Cos[4] + 45 Cos[5] + 16 Cos[6] + 20 Cos[7] - 
            5 Cos[8] + 6 Cos[9] + 24 Cos[10]);

Using machine precision, the sum evaluates to a small nonzero value in the order of 10-n+1 where n denotes the number

of digits used for machine arithmetic (the 1 in the exponents stems from the fact that the coefficients are of order 101). 

N[cosSum10]

Using high-precision arithmetic, we get the correct answer.

N[cosSum10, 20]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

2.3 Nested Expressions

à 2.3.1 An Example
The expression 

lnIx2 + 5 xM + sinI4 t2 y4M - t y2+expH-3 xL
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is nested a couple of times, as can be seen from the following. 

Log[x^2 + 5 x] + Sin[4 t^2 y^4] - (t y^(2 + Exp[-3 x]))

A mathematically insignificant, but technically very important, difference exists between the input and the output of the
last expression. 

Mathematica writes all expressions in a canonical ordered form, which makes it much easier to 
compare and sum various expressions. (Most expressions are not transformed in a canonical 
mathematical form; this would be too expensive.)

The FullForm and TreeForm of the above expression are both a bit complicated. 

FullForm[%]

TreeForm[%%]

Because we want to work with this expression later, we give it the name expression. 

expression = %%%

Here is its head. 

Head[expression]

Now, we get an overview of the structure of larger expressions. 

Short[expression^expression^expression]

Shallow[FullForm[expression^expression^expression]]

The two functions Short and Shallow work as follows. 

 

Short[expression] 

writes expression in a shorter form (that is typically one line long). 

Shallow[expression] 

writes expression in skeleton form. 

The result of Shallow[FullForm[expression]] involved a Skeleton. 

 

Skeleton[n] 

represents a sequence of n omitted elements in an expression printed out with Short or 
Shallow. The short form is displayed as << n >>. The input form of the expression 
containing << n >> stays unchanged.

Both Short and Shallow allow the input of a second argument. 

 

Short[expression, n] 

writes expression in shorter form, using at most n rows. 

Shallow[expression, n] 

writes expression in shorter form, where all partial expressions having a depth greater than n 
are written in skeleton form. 

We  will  come  back  to  the  precise  definition  of  the  word  “depth”  in  a  moment.  Here  is  a  larger  set  of  numbers  (the

THE MATHEMATICA GUIDEBOOKS to PROGRAMMING—GRAPHICS—NUMERICS—SYMBOLICS 39

©  2004, 2005   Springer Science+Business Media, Inc.



semicolon prevents any printing). 
table = Table[i, {i, 1000}];

Here is a short form consisting of three rows. 

Short[table  // OutputForm, 4]

For comparison, here is Shallow[table]. 

Shallow[table]

We now look at the effect of the second argument of Shallow on expression. 

Shallow[expression, 1]

Shallow[expression, 2]

Shallow[expression, 3]

Shallow[expression, 4]

Shallow[expression, 5]

Shallow[expression, 6]

Shallow[expression, 7]

And starting from n = 8, we recover the whole expression.

Shallow[expression, 8]

Shallow[expression, 9]

The next input uses a nested Shallow.

Shallow[Shallow[expression, 5], 4]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

à 2.3.2 Analysis of a Nested Expression
In  this  subsection,  we  discuss  the  most  important  tools  for  analyzing  the  structure  of  large  (often  extremely  large)
Mathematica  expressions.  In  solving  “real-life”  problems  with  Mathematica,  expressions  may  require  several  mega-
bytes or sometimes several tens or even hundreds of megabytes. It is immediately obvious that looking at a FullForm
and/or  TreeForm  taking  several  dozen  to  several  hundred  pages  (graphics,  matrices,  integrals  of  complicated  func-
tions, recursive functions, etc.) is of no use. Here is a really big expression. 

veryBigExpression = TreeForm[Nest[Function[x, 
              Sin[ξ x + Exp[1/Log[Sqrt[Tan[x^(2 )]]]]]], x, 10]];

Its tree form is amusing, but practically useless. The overall shape of the tree form is hard to grasp, and the details are
virtually invisible.  The next little program (to be made active using the Make Input  button)  will generate a notebook
with the tree form of veryBigExpression.
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Make Input

NotebookPut[Notebook[{Cell[BoxData[
    MakeBoxes[#, StandardForm]], CellHorizontalScrolling -> True, 
              FontColor -> RGBColor[1, 0, 0], FontSize -> 9]},
     ScrollingOptions  -> {"HorizontalScrollRange" -> 500000},
     WindowSize -> {500, 600}, WindowFrameElements -> {"CloseBox"}, 
     WindowMargins -> {{0, 0}, {Automatic, 10}},
     Background -> GrayLevel[0]]]&[(* the big expression *) veryBigExpression]

The  following  graphic  shows  an  outline  of  the  tree  form  of  veryBigExpression  (just  look  at  the  graphic,  the
details of the programming will be discussed later). The tree has more than 17000 roots,  and the deepest roots extend
over more than 80 levels.

ListPlot[-Length[First[#]]& /@ Cases[
         MapIndexed[C[#2]&, veryBigExpression, {-1}, Heads -> True], 
                      _C, {0, Infinity}, Heads -> True],
         Frame -> True, Axes -> False, PlotStyle -> {PointSize[0.002]}]

(Depending on the actual settings, TreeForm might not accept such expressions, but instead generates error messages
such as Format::lcont: ... or Format::toobig: .... In such cases, even Short and Shallow are of
limited use, because the structure of parts deep inside is not accessible. 

Here  is  a  rather  complicated  expression  (small  compared  with  veryBigExpression,  but  large  enough  for  the
following analysis; the example from Subsection 2.3.1, with two additional terms). 

lnIx2 + 5 xM + sinI4 t2 y4M - t y2+expH-3 xL + 45 t6 - 4

We call it expression2. 

expression2 = Log[x^2 + 5 x] + Sin[4 t^2 y^4] -
              (t y^(2 + Exp[-3 x])) + 45 t^6 - 4

Again, it is reordered into a canonical normal form. The FullForm of expression2 is quite big. 

FullForm[expression2]

The TreeForm is already hard to read (at least if the lines have to be broken). 

TreeForm[expression2]

Using the function Part, we can decompose expression2 (and every other expression). 

 

Part[expression, i] or expression[[i]] 

gives the ith part of expression. expression[[0]] gives the head of expression. 

The ith part (i > 0) of an expression expr  can be viewed as the ith argument of Head[expr]. We illustrate the forma-
tion of the various parts of an expression by looking at expression2. 

expression2[[0]]

expression2[[1]]

expression2[[2]]

expression2[[3]]

expression2[[4]]

expression2[[5]]
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Because expression2 has only five parts, the input expression2[[6]] gives a message. 

expression2[[6]]

If we want to further decompose the parts we already obtained, we can use Part on the already extracted parts again,
or more conveniently, one of the following alternatives. 

 

Part[expression, i, j, …]

or
expression[[i]][[j]][[…]]…[[…]]

or
expression[[i, j, …]]

gives the …  part of the …  parts of the jth part of the ith part of expression. This is equivalent 
to Part[…[Part[Part[expression, i], j]…], …]. 

Here is the second part of expression2 in detail. 

FullForm[expression2[[2]]]

Here are its two subparts. 

expression2[[2, 1]]

expression2[[2, 2]]

For long expressions, it may be more convenient to count from the end. 

 

Part[expression, -i] or expression[[-i]]

gives the ith part of expression, counting from the end of expression. 

We now extract the parts of expression2, starting at the end. 

expression2[[-1]]

expression2[[-2]]

expression2[[-3]]

Positive and negative indices can be arbitrarily mixed. Here, we take the minus second part of the (plus) second part.

expression2[[2, -2]]

This input extracts the same subexpression.

expression2[[-4, 1]]

If the second element of Part is a list, these parts are returned.

expression2[[{4, 5}]]

Besides explicit integers, the command All can be used to specify parts. The following input takes the fourth and fifth
elements of expression2.  The following input first takes the fourth and fifth element of expression2, and then
takes the second element of all of its subparts.

expression2[[{4, 5}, All, 2]]

How many indices are needed to completely decompose an expression? The answer to this question is provided by the
function Depth. (This is what we were referring to in Subsection 2.3.1 when we used the word depth.)
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Depth[expression] 

gives indices + 1, where indices is the number of indices needed to uniquely specify any part 
(obtained with Part with a nonleading zero) of expression (the +1 results from the head). 

For expression2, we require 7 - 1 = 6 indices. 

Depth[expression2]

If  we  analyze  the  third  part  of  expression2  further,  it  becomes  obvious  that  indeed  six  indices  are  needed  for  a
unique specification of its parts.

expression2[[3]]

expression2[[3, 3]]

expression2[[3, 3, 2]]

expression2[[3, 3, 2, 2]]

expression2[[3, 3, 2, 2, 2]]

And now six indices are needed. 

expression2[[3, 3, 2, 2, 2, 2]]

Be aware of the nonzero restriction for the part specification. Here is an expression with a more complicated head than
argument.

complicatedExpression = 
head1[subHead1[subSubHead1[0], subSubHead2[subSubSubHead1[Ψ]]]][
                                      argument1[subArgument1[2]]];

The depth of the expression is 4.

Depth[complicatedExpression]

We need 4 - 1 = 3 integers to specify the position of the 2 in complicatedExpression.

complicatedExpression[[1, 1, 1]]

The position of Ψ in complicatedExpression is specified by five integers. But Ψ appears in the head (leading 0),
so Depth does not take the head into account. 

complicatedExpression[[0, 1, 2, 1, 1]]

Let us deal now with some other examples using the functionality of Part. Λ is a nested Mathematica expression. The
li indicate the level i.

Λ = λ0[λ1[λ2[λ3[1, 1, 1], λ3[1, 1, 2], λ3[1, 1, 3]], 
          λ2[λ3[1, 2, 1], λ3[1, 2, 2], λ3[1, 2, 3]], 
          λ2[λ3[1, 3, 1], λ3[1, 3, 2], λ3[1, 3, 3]]], 
       λ1[λ2[λ3[2, 1, 1], λ3[2, 1, 2], λ3[2, 1, 3]], 
          λ2[λ3[2, 2, 1], λ3[2, 2, 2], λ3[2, 2, 3]], 
          λ2[λ3[2, 3, 1], λ3[2, 3, 2], λ3[2, 3, 3]]], 
       λ1[λ2[λ3[3, 1, 1], λ3[3, 1, 2], λ3[3, 1, 3]], 
          λ2[λ3[3, 2, 1], λ3[3, 2, 2], λ3[3, 2, 3]], 
          λ2[λ3[3, 3, 1], λ3[3, 3, 2], λ3[3, 3, 3]]]];

Here are its first, second, and third parts.

Λ[[1]]
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Λ[[2]]

Λ[[3]]

The next example keeps all parts at level 1. The head of the resulting expressions is the same as the head of the original
expression.

Λ[[{1, 2, 3}]]

Instead of explicitly specifying all parts, we can also use All.

Λ[[All]]

Now, the second element of all parts is extracted.

Λ[[All, 2]]

This input is an equivalent formulation.

Λ[[{1, 2, 3}, 2]]

Here, the third element of all elements at level three is selected.

Λ[[All, All, 3]]

Λ[[{1, 2, 3}, {1, 2, 3}, 3]]

The next input selects all first elements from all first elements from all elements of Λ.

Λ[[All, 1, 1]]

Now, we take the first element of all elements of the first element of all elements.

Λ[[All, 1, All, 1]]

This process selects all heads from all elements at level 1.

Λ[[All, 0]]

This process selects all heads from all elements at level 2.

Λ[[All, All, 0]]

Here is another example. poly is a polynomial in x.

poly = (x^2 c[2] + x^3 c[3] + x^4 c[4] + x^5 c[5])

This process extracts the powers of x. The head of the resulting expression is now Plus.

poly[[All, 1]]

This process extracts the constants c[i].

poly[[All, 2]]

The first parts of all terms of the form Power[x, n] are just x. After extraction, we have x + x + x + x, which
evaluates to 4 x.

poly[[All, 1, 1]]

The second part of the first part of all terms of the form Power[x, n] is just n. After extraction, we have 2 + 3 +
4 + 5, which evaluates to 14.

poly[[All, 1, 2]]

The zeroth part of the first part of all terms of the form Power[x, n] is the head Power. After extraction, we have
Power+Power+Power+Power, which evaluates to 4 Power.
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poly[[All, 1, 0]]

The  first  part  of  the  second  parts  of  all  terms  of  the  form  c[n]  is  n.  After  extraction,  we  have  2+3+4+5,  which
evaluates again to 14.

poly[[All, 2, 1]]

This input reproduces the original polynomial. In each step, we took all elements.

poly[[All, All, All]]

The  depth  of  poly  is  4,  which  means  all  elements  can  be  extracted  with  a  three-element  Part  specification.  As  a
result, the following input generates messages.

poly[[All, All, All, All]]

Using the head List in the second argument of Part, extracts the specified parts and applies the head of the original
expression to the result. In the next example, the second and third term of the polynomial poly is extracted.

poly[[{1, 2}]]

This yields the sum of three copies of the first summand.

poly[[{1, 1, 1}]]

Often, it is equally important to answer the reverse formulation of the question: which indices correspond to a certain
(prescribed)  part  of  an  expression?  The  answer  to  this  question  is  given  by  Position.  The  following  finds  the
position of x, y, and 2 in expression2 (x appears three times). 

Position[expression2, x]

{expression2[[3, 3, 2, 2, 2, 2]], 
 expression2[[4, 1, 1, 2]],
 expression2[[4, 1, 2, 1]]}

y appears twice. 

Position[expression2, y]

{expression2[[3, 3, 1]], expression2[[5, 1, 3, 1]]}

2 appears three times. 

Position[expression2, 2]

{expression2[[3, 3, 2, 1]], expression2[[4, 1, 2, 2]],
 expression2[[5, 1, 2, 2]]}

The composite expression t^2 appears only once. 

Position[expression2, t^2]

{expression2[[5, 1, 2]]}

 

Position[expression, subExpression] 

gives a list 8i1, i2, …, in< of the indices needed to extract subExpression from expression using 
Part, where expression[[i1, i2, …  in]] is exactly subExpression. If a subExpression 
appears more than once, all positions of subExpression in expression are included in a list of 
the type {position1, position2, …, positionn}, each positioni of the form 
9positionAtLevel1 j1

, positionAtLevel2 j2
, …, positionAtLeveln jn =. 
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Here are  two more examples. In the expression 1[1],  we have two “1”s. One as a head (position 0),  and one as the
first argument.

Position[1[1], 1, {0, Infinity}, Heads -> True]

When the expression one is looking for is the whole expression, the result of Position is {{}}.

Position[1, 1, {0, Infinity}, Heads -> True]

Position[1, 1, {0, Infinity}]

If a subExpression does not exist at the specified level, the result is the empty list {}.

Position[1, 1, {1, Infinity}]

The position of expr with expr is {} (zero indices are needed to describe the position of expression itself). So the next
input returns {{}}.

Position[1, 1]

Frequently, we are interested not only in a particular part of an expression, but also in all parts at a prescribed level. 

 

Level[expression, levelSpecification] 

gives all parts of expression, which have indices at level levelSpecification. 

Definition: Level 
Level n (n > 0, integer) of an expression is the set consisting of all subexpressions of the 
expression whose elements require exactly n indices to be identified or selected using Part. 
Level n (n < 0, integer) of an expression is the set of all subexpressions of the expression that 
have depth exactly n (as defined by Depth). Level 0 of an expression is the expression itself.

 

The level specifications of Level are as follows:

0

expression itself

i

levels 1 to i of expression

Infinity

all levels (if any exist), excluding expression itself

{0, Infinity}

all levels (if any exist), including expression itself

{i}

only level i of expression

{-1}

the lowest level (“root” of the TreeForm) of expression

{i1, i2}

levels i1 to i2 of expression (this means all levels that are not above i1 and not below i2)
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Here are all expressions at the first level of expression2. 

Level[expression2, 1]

Here are those at levels 0 and 1. (expression2 itself is included.)

Level[expression2, {0, 1}]

Here is expression2 itself.

Level[expression2, {0}]

Now, we show all expressions up to level 2 (starting from level 1 on). 

Level[expression2, 2]

Here are the ones exactly at level 2. 

Level[expression2, {2}]

By  the  definition  of  Level,  these  expressions  should  be  all  parts  of  expression2  that  can  be  extracted  using
expression2[[i, j]] (two arguments). 

{expression2[[2, 1]], expression2[[2, 2]], expression2[[3, 1]],
 expression2[[3, 2]], expression2[[3, 3]], expression2[[4, 1]],
 expression2[[5, 1]]}

Now, here is level {3}. 

Level[expression2, {3}]

These are just the terms that can be extracted with Part using three indices. 

{expression2[[2, 2, 1]], expression2[[2, 2, 2]], expression2[[3, 3, 1]],
 expression2[[3, 3, 2]], expression2[[4, 1, 1]], expression2[[4, 1, 2]],
 expression2[[5, 1, 1]], expression2[[5, 1, 2]], expression2[[5, 1, 3]]}

Now,  if  we  look  from  below  (at  the  leaves  of  the  tree,  if  the  expression  is  viewed  as  a  tree),  we  get  all  elementary
objects. 

Level[expression2, {-1}]

This is because they individually have depth 1. 

{Depth[-4], Depth[45], Depth[t], Depth[6], Depth[-1],
 Depth[t],  Depth[y],  Depth[2], Depth[E], Depth[-3],
 Depth[x],  Depth[5],  Depth[x], Depth[x], Depth[2],
 Depth[4],  Depth[t],  Depth[2], Depth[y], Depth[4]}

Here are the objects in expression2 with depth 2. 

Level[expression2, {-2}]

With negative indexed levels, we cannot determine anything about the indices needed in Part. Only their depth (using
Depth) is fixed. 

{Depth[t^6], Depth[-3x], Depth[5x], Depth[x^2], Depth[t^2], Depth[y^4]}

{expression2[[2, 2]],    expression2[[3, 3, 2, 2, 2]],
 expression2[[4, 1, 1]], expression2[[4, 1, 2]],
 expression2[[5, 1, 2]], expression2[[5, 1, 3]]}

At the level Infinity, expression2 has no structure, because it has a finite size and depth. 

Level[expression2, {Infinity}]
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For positive integers j and k, Level[expr, {k}] is identical to Level[Level[expr, {j}], {k + 1 - j}] as
long  as  k + 1 - j  is  also  a  positive  integer.  This  means  that  the  level  specification  can  be  defined  and  applied  recur-
sively. (The +1 in k + 1 - j  results from the enclosing {}  returned by Level[expr, {j}].)  The next inputs demon-
strate this property for the level {3} of expression2.

Level[expression2, {3}]

Level[Level[expression2, {1}], {3}]

Level[Level[expression2, {2}], {2}]

Level[Level[expression2, {3}], {1}]

The function Length answers the question: How many parts does an expression have? 

 

Length[expression] 

gives the number of parts of expression at level 1. 

Between  the  depth  of  an  expression  and  its  levels,  we  have  the  relation  Depth[expr]  Depth[Level[expr,
{k}]]+ k - 1 for all 0 § k <Depth[expr]. Here are the lengths of various subexpressions of expression2.

Length[expression2]

Length[expression2[[1]]]

Length[expression2[[2]]]

Length[expression2[[3]]]

Using the functions Part and Length, we can write the following structural identity for any Mathematica expression:
expr  expr[[0]][expr[[1]], expr[[2]], …, expr[[Length[expr]]]].

Now, we use Mathematica  to systematically study the lengths of all of the parts at all levels of expression2.  (We
later explain how to program such structural investigations.) Here, we give only the expressions for all levels. 

Do[CellPrint[Cell[TextData[(* ë means Mathematica generated text *)
 {"Î Length of the parts at level: " <> ToString[i]}], "PrintText"]];
   Print[TableForm["Length[" <> ToString[InputForm[#]] <> "] = " <>
         ToString[Length[#]]& /@ (* the various levels *)
           Level[expression2, {i}]]], {i, -7, 6, 1}]

To find out how big an expression is, or how many syntactically correct parts it involves, we can use LeafCount. 

 

LeafCount[expression] 

gives the number of indivisible leaves of expression obtained by splitting it into a hierarchical 
structure. 

The count for expression2 is 36. 

LeafCount[expression2]

Here are many of them. 

Level[expression2, {-1}]

There are 20 pieces. 

Length[%]
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The missing 16 pieces are in the heads. If we also want to include the Heads of the various levels in pure form (e.g.,
Sin) in the resulting list, we use an option in Level. (Options are discussed in Chapter 3.)

 

Heads 

is an option for the function Level. Level[expression, levelSpecification, Heads -> 
True] includes the heads in the list produced by Level. 

Now, 16 more leaves are present. 

Level[expression2, {-1}, Heads -> True]

Length[%]

These are all subexpressions of expression2 (excluding heads and excluding expression2 itself).

Level[expression2, Infinity]

Now, expression2 is also included. 

Level[expression2, {0, Infinity}]

Here are the corresponding levels with the option Heads -> True. 

Level[expression2, Infinity, Heads -> True]

Level[expression2, {0, Infinity}, Heads -> True]

Including all of the heads, we have 52 elements in the last list.

Length[%]

Using  the  function  Complement  (to  be  discussed  in  Chapter  6),  we  can  extract  all  heads  of  the  expression
expression2. (There are many other ways to extract these heads.)

Complement[Level[expression2, {-1}, Heads -> True],
           Level[expression2, {-1}, Heads -> False]]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

2.4 Manipulating Numbers

à 2.4.1 Parts of Fractions and Complex Numbers
Two exceptional  types of  expressions  exist  in which Part  cannot  be used  to extract  parts  of  the expression:  rational
and complex numbers. 

FullForm[3/5]

It might be expected that the 3 in 3/5 could be extracted with (3/5)[[1]] and the 5 with (3/5)[[2]]. However,
this does not work. 

(3/5)[[1]]

Similarly, we could try to extract the 3 in 3 + 5i  with (3 + 5I)[[1]]  and the 5 with (3/5)[[2]].  This also
fails. 

(3 + 5 I)[[2]]
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The following example works. (Here i is lowercase and not a number; it has head Symbol.)

(3 + 5 i)[[1]]

(3 + 5 i)[[2]]

Here is the reason it works. 

TreeForm[3 + 5 i]

A rational or complex number number cannot be decomposed using number[[1]] or 
number[[2]], even though in FullForm it has two arguments. They are called atomic, or 
raw expressions. 

For fractions (head Rational), we can get what we want using Numerator and Denominator. 

 

Numerator[fraction] 

gives the numerator of the fraction fraction. 

Denominator[fraction] 

gives the denominator of the fraction fraction. 

Numerator[3/7]

Denominator[3/7]

The  corresponding  commands  Re  and  Im  for  extracting  the  real  and  imaginary  parts  of  a  complex  function  have
already been discussed in Subsection 2.2.4. 

Re[3 + 7 I]

Im[3 + 7 I]

Note  that  Re  and  Im  only  work  with  expressions  that  have  numerical  values.  Thus,  this  yields  no  result,  because
nothing is known about the real and imaginary parts of the variable indefinite that could possibly take on complex
values. 

Re[(3.9 + 9.7 I) indefinite]

However, the appropriate rules are built in for mathematical constants. 

Re[Pi]

Im[Pi + I]

Abs[GoldenRatio]

The analogous statement holds for algebraic numbers. Simple expressions are typically simplified whereas larger ones
keep the Re or Im.

Im[Sqrt[2]]

Im[Sqrt[-2]]

Im[Sqrt[2 I] - (-3)^(1/4)]

Re[Sqrt[2 + Sqrt[5]] + Sqrt[3 + 2I]]

Here is a more complicated example. 
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Re[(4(-1)^(I + 3 (-1)^I)^(1/3) +
    (I + 3(-1)^I)^(1/3))^(1/4) - (-5)^(1/(1 + 7I))]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

à 2.4.2 Digits of Numbers
Sometimes, we need to extract the digits that make up a given integer or real number. The following two functions can
be used. 

 

IntegerDigits[integer, base] 

produces a list of the digits of the integer integer relative to the base base. If base is not 
present, it is taken to be 10. 

RealDigits[realNumber, base] 

produces a list consisting of the digits making up the real number realNumber (head Real) in 
the base base, along with the number of digits to the left of the decimal point. If base is not 
present, it is taken to be 10. 

Here are a few obvious examples to illustrate the effect of IntegerDigits.

IntegerDigits[123456789]

IntegerDigits[-123456789]

IntegerDigits[1024, 2]

IntegerDigits[6 222 + 45, 222]

If  the  first  argument  of  IntegerDigits  is  not  an  integer,  an  error  message is  generated  and  the  input  is  returned
unchanged. 

IntegerDigits[1/512, 2]

The digitsum of a positive integer is the sum of its digits. In the following plot, we show the digitsums associated with
numbers between 0 and 1000. (We discuss the effect of the command Apply in Chapter 6; ListPlot and the related
commands PlotStyle,  AxesLabel,  and PointSize  are  discussed  in  Chapter  1  of  the  Graphics  volume [65÷].)
(For some theoretical results on digitsums, see [2÷], [28÷], [29÷].)

ListPlot[Table[Apply[Plus, IntegerDigits[n]], {n, 0, 1000}],
         PlotStyle -> PointSize[0.005],
         AxesLabel -> (StyleForm[TraditionalForm[#]]& /@ 
                                         {n, digitsum[n]})]

Here, the number of ones in all binary representations of all numbers less than n - mainAsymptoticTerm are shown.

ListPlot[MapIndexed[# - #2[[1]]/2 Log[2, #2[[1]]]&,
                    Rest[FoldList[Plus, 0,
           Table[Count[IntegerDigits[n, 2], 1], {n, 2^12}]]]] // N,
         PlotStyle -> PointSize[0.002]]

The  digit  sums  of  the  numbers  nk  grow  in  average  proportional  to  k  with  increasing  k  [38÷],  [45÷].  The  following
graphic shows the digit sums divided by k for n = 2, …, 8 as a function of k.
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Show[Table[
  ListPlot[Table[Apply[Plus, IntegerDigits[n^k]]/k, {k, 1, 2500}],
           PlotStyle -> {PointSize[0.005], Hue[(n - 2)/8]},
           DisplayFunction -> Identity], {n, 2, 8}],
           DisplayFunction -> $DisplayFunction, PlotRange -> {0, 6},
           AxesLabel -> (StyleForm[TraditionalForm[#]]& /@ 
                                              {k, digitsum[n^k]/k})]

IntegerDigits  can  be  used  to  find  palindromic  numbers  in  bases  other  than  10  [23÷].  The  following  function
palindromicBases returns a list of sublists of the form {base, digits} for which a given integer n is palindromic.

palindromicBases[n_] := 
Module[{p}, Table[p = IntegerDigits[n, b];
                  If[p == Reverse[p], {b, p}, Sequence @@ {}],
                 {b, 2, n - 1}]]

The number 36960 is the smallest integer that is palindromic (and has at least two digits in each base) in 50 bases. Here
are these 50 bases and the corresponding digits.

palindromicBases[36960]

Next, we demonstrate the decomposition of a few real numbers [31÷]. 

RealDigits[0.003476]

RealDigits[30003476.645]

RealDigits[0.125, 2]

RealDigits[0.2, 5]

RealDigits[3.0 7.34^2 + 5.0 7.34^1, 7.34]

The real and imaginary parts of complex numbers have to be decomposed separately. 

RealDigits[2.34 + I 0.002345]

{RealDigits[2.34], RealDigits[0.002345]}

For rational numbers, RealDigits returns an exact answer.

 

RealDigits[rationalNumber, base] 

produces a list characterizing the digits of the rational number rationalNumber in base base 
containing two elements. The first list contains the nonrepeating digits and a list of the 
repeating digits. The second element is the number of digits to the left of the decimal point. If 
base is not present, it is taken to be 10. 

Here is a simple example.

RealDigits[12322/17]

We can compare the digits with a high-precision numerical approximation for 12322/17.

N[12322/17, 200]

To convert back from the result of RealDigits to a number, we can use the function FromDigits.

 

FromDigits[nestedList, base] 

produces the real or rational number x, such that RealDigits[x, base]=nestedList.
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Here, we convert back to the starting fraction 12 322 ê17.

FromDigits[%%]

FromDigits also works with symbolic input.

FromDigits[{{a1, a2, a3, a4, a5, {b1, b2, b3, b4, b5, b6}}, -2}]

Here is a plot of the length of the periodic part of the base b expansion of 1/12345.

ListPlot[Table[{b, Length[RealDigits[1/12345, b][[1, -1]]]}, 
               {b, 2, 1000}], PlotRange -> All]

If we just want to rewrite a given number in another base, we can use BaseForm. 

 

BaseForm[number, base] 

writes the number number in the base base. base must be an integer between 2 and 36. 

BaseForm[512, 2]

For bases greater than 10, the numbers 10 through 36 are represented by the letters a through z. 

BaseForm[32397578, 12]

BaseForm[
 10 36^36 + 11 36^35 + 12 36^34 + 13 36^33 + 14 36^32 + 15 36^31 +
 16 36^30 + 17 36^29 + 18 36^28 + 19 36^27 + 20 36^26 + 21 36^25 +
 22 36^24 + 23 36^23 + 24 36^22 + 25 36^21 + 26 36^20 + 27 36^19 +
 28 36^18 + 29 36^17 + 30 36^16 + 31 36^15 + 32 36^14 + 33 36^13 +
 34 36^12 + 35 36^11 +  9 36^10 +  8 36^09 +  7 36^08 +  6 36^07 +  
  5 36^06  + 4 36^05  + 3 36^04 +  2 36^03 +  1 36^02, 36]

The second argument of BaseForm must be an integer between 2 and 36. 

BaseForm[0.3, 0.3]

You can input integers in bases between 2 and 36 using the base^^exponent notation. 

BaseForm[2621871, 23] // InputForm

23^^98b69

Be aware that BaseForm as a formatting function is limited to the use of alphanumeric characters. Using RealDig
its or IntegerDigits allows the use of arbitrary bases. 

If we are not interested in the single digits, but rather in the statistics of digits in a number, the function DigitCount
comes in handy.

 

DigitCount[integer, base]

gives a list {s1
HbaseL, s2

HbaseL, …, sbase-1
HbaseL , s0

HbaseL} of the number of digits sk
HbaseL of the integer 

integer in base base.

Here is a self-explanatory example.

DigitCount[1223334444555556666667777777888888889999999990000000000, 10]
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DigitCount[integer, base, digit]

gives sdigit
HbaseL, counting how often the digit digit occurs in the base base representation of the 

integer integer.

Here is a picture of the digit count of all digits of the number 100 in all bases 2 § base § 200.

With[{n = 200},
Show[Graphics3D[{Thickness[0.002],
Table[{Hue[0.8 base/n], 
       Line[Table[{base, digit, DigitCount[100, base, digit]},
                  {digit, 0, base - 1}]]}, {base, 2, n}]}],
                   Axes -> True, PlotRange -> {0, 2},
     BoxRatios -> {2, 1, 1}, ViewPoint -> {0, -3, 1},
      AxesLabel -> {"base", "digit", "n"}]]

At the end of this subsection, let us mention the two functions IntegerPart and FractionalPart. 

 

IntegerPart[realNumber]

gives the integer part of the real number realNumber.

 

FractionalPart[realNumber]

gives the fractional part of the real number realNumber.

Here are some simple examples.

IntegerPart[11/2]

IntegerPart[-2.3]

Here the integer parts of n sinHnL for 1 § n § 10 000 are shown.

ListPlot[Table[IntegerPart[n Sin[n]], {n, 10^4}], 
         PlotStyle -> {PointSize[0.002]},
         Frame -> True, Axes -> False];

Fractional parts are in most cases rewritten in the form expr - IntegerPart[expr].

FractionalPart[Sin[3] + Exp[100]]

N[%, 100]

Here the fractional parts of n logHnL for 1 § n § 10 000 and of 109 ë n for 20 000 § n § 40 000 shown. The picture shows

characteristic “empty spaces”.
Show[GraphicsArray[
ListPlot[#, PlotStyle -> {PointSize[0.002]}, Axes -> False, 
            Frame -> True, DisplayFunction -> Identity]& /@
        N[{Table[FractionalPart[n Log[n]], {n, 10^4}], 
           Table[{n, FractionalPart[10^9/n]}, {n, 20000, 40000}]}]]]

The next four pictures show the sums f HnL = ⁄k=0
n HfracHk a pL - 1 ê2L as a function of n. We use rational numbers near 1

for a and let n run up to 105. Depending on the “rationality” [69÷], [52÷], [37÷] of a, we get curves that differ greatly
in appearance.
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fpsPlot[c_, n_] := With[{cn = N[c]},
ListPlot[FoldList[Plus, 0, Table[FractionalPart[k cn] - 1/2, 
                  {k, n}]], PlotStyle -> PointSize[0.002],
         DisplayFunction -> Identity]]

(* four pictures *)
Show[GraphicsArray[
  {fpsPlot[(1 - 84 10^-7) Pi, 10^5], fpsPlot[(1 - 41 10^-7) Pi, 10^5]}]]
  
Show[GraphicsArray[
  {fpsPlot[(1 -  0 10^-7) Pi, 10^5], fpsPlot[(1 + 67 10^-7) Pi, 10^5]}]]

The  fractional  part  function  is  a  very  useful  construct  for  many iterative  maps.  The  following  is  the  Fibonacci  chain
map [48÷]. fracHxL denotes again the fractional part of x, sgnHxL the sign of x, and f the golden ratio.

8xn+1, jn+1< = -
1

xn + ¶ + a sgnHfracHn Hf - 1LL - Hf - 1LL
, fracHjn + f - 1L

Being at the end of the first (nonintroductory)  chapter, we will relax a moment and animate the Fibonacci chain map.
For ¶ = 1 ê2, x0 = p, j0 = e we iterate the map 10000 times and display the resulting points 8tanhHxkL, jk<. We let a vary
from  0.258  to  0.268.  As  visible  from  the  graphics,  the  points  collapse  to  curve  segments.  (At  the  current  point,  the
reader should not analyze the following code; later we will use repeatedly similar constructions.)

f[α_, ∂_, n_, {x0_, ϕ0_}] := FoldList[{-1/(#1[[1]] + ∂ - 
              α Sign[FractionalPart[#2 (GoldenRatio - 1.)] -
                                       (GoldenRatio - 1.)]), 
      FractionalPart[#1[[2]] + GoldenRatio - 1.]}&, {x0, ϕ0}, Range[n]]

fibanacciChainMapGraphics[α_, ∂_, n_, {x0_, ϕ0_}] := 
Graphics[{PointSize[0.002], 
  MapIndexed[{Hue[0.8 #2[[1]]/10^4], Point[#]}&,
             (* the scaled iterated values *)
             Tanh /@ Rest[f[α, 1/2, 10^4, N @ {Pi, E}]]]},
   Axes -> False, Frame -> True, PlotRange -> {{0, 1}, {0, 1}},
   FrameTicks -> None]

Show[GraphicsArray[fibanacciChainMapGraphics[#, 
                    1/2, 10^4, N @ {Pi, E}]& /@ #]]& /@ 
                (* a-values *)
                Partition[Table[α, {α, 0.258, 0.268, 0.01/8}], 3]

Make Input     Show Animation

Do[Show[fibanacciChainMapGraphics[α, 1/2, 10^4, N @ {Pi, E}]], 
   {α, 0.258, 0.268, 0.01/100}];

Σ (* session summary *) TMGBs`PrintSessionSummary[]
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Overview

We  are  at  the  end  of  the  second  chapter,  and  now  it  is  time  to  give  an  overview  of  the  functions  discussed  in  this
chapter. The overview will be computed using the function ChapterOverview from the package `ChapterOver
view`.  This package contains a list  of  all  of the functions discussed in this book.  The following information will be
generated for each of the commands (in alphabetical order) found in every one of the sections: 

† The function. 

†  Whether  the function is an attribute.  (We discuss the function Attributes  in detail  in  Chapter 3; for  the sake of
uniformity, we use this form already here.) 

† Whether the function is an option. (Options are also treated in detail in Chapter 3.) If yes, the functions that have this
option are listed. 

† The section in which the function was introduced. The appearance of "—" means that this function is not discussed in
the GuideBooks. 

The  abbreviations  P,  G,  N,  and  S  stand  for  the  Programming,  Graphics,  Numerics,  and  Symbolics  volumes  of  the
GuideBooks.

To simplify reading  it,  we assume that  the  file  ChapterOverview.m  is  included  in  the  directory containing  pack-
ages (if it is placed in another directory, we would have to use the full path specification for the location of the file). We
now load it. (The slightly complicated-looking input makes sure that the file ChapterOverview.m is found indepen-
dent of the platform and independent of the location of the GuideBooks folder in the file system). 

Get[ToFileName[ReplacePart[
            "FileName" /. NotebookInformation[EvaluationNotebook[]],
            "ChapterOverview.m", 2]]];

Here is a description of ChapterOverview[subject, chapterNumber].

?ChapterOverview

Here is the overview of the functions discussed in this chapter. 

ChapterOverview["Programming", 2]

Exercises

  1.L1 What Is the Answer? 

Predict  the  results  of  the  following  Mathematica  inputs,  and  compare  each  prediction  with  the  actual  Mathematica
output. 

a) b + a + a 

b) 2 + 4 + u + 8 + i + u - i 

c) 2 + 0I 
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d) Head[2 + 0I ] 

e) 0.0I - 0.0I 

f) FullForm[0.0I - 0.0I ] 

g) Infinity^Infinity 

h) Infinity/Infinity 

i) Infinity - Infinity 

j) 1/Indeterminate 

k) FullForm[s + s^s/s - s] 

l) Times[Times, Times] 

m) Times[Times[], Times[]] 

n) Times[Times[Times], Times[Times]] 

  2.L1 FullForm[expression] with ()?

Try to find a Mathematica expression expression so that FullForm[expression] contains parentheses.

  3.L1 na38bvu94iwymmwpu1k5h6jhtye934 and ((1/2 + 1/4 I)^(7))^(1/7)

a)  What  could  the  input  be  if  the  output  is  na38bvu94iwymmwpu1k5h6jhtye934.  Give  at  least  two  possible
answers.

b)  Why is the result of inputting ((1/2 + 1/5 I)^(7))^(1/7)  just 1/2 + 1/5 I,  but the result of ((1/2
+ 1/4 I)^(7))^(1/7) is (-139/8192 - 29 I/16384)^(1/7) and not 1/2 + 1/4 I? 

c) Find a built-in function f, such that the input Head @ (Im[f[3]] // N) returns the output Complex.

  4.L2 Level, Depth, and Part   

Analyze the following expression as a Mathematica expression: 
expr = sinItanH1 + e-xL + xx - lnHlnHr t + a xLL + dHxL + xHxL arccosIarcsinIx2MM + hHhHhHiLLLM

What  is  its  depth?  Examine all  possible  levels.  Where  does  x  appear?  Investigate  all  sensible  values  of  Part[expr,
nonNegativeNumber]. 

  5.L2 Level[expr, {-2, 2}] versus Level[expr, {2, -2}]

What are the results of the following two inputs? 

Level[Sin[3 x + Cos[6/(t + Tan[r])]/Exp[-x^2]], {-2, 2}]

Level[Sin[3 x + Cos[6/(t + Tan[r])]/Exp[-x^2]], {2, -2}]

  6.L2 Branch Cuts

a)  Discuss  the  location  of  the  branch  cuts  of  the  function  f HzL = 1 ìIz4M
1
4  in  Mathematica  (meaning

1/(z^4)^(1/4)). What are the values of the function f HzL on the other sheets of the Riemann surface? 
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b) Theoretically, the location of branch cuts of an analytic function is not fixed. But by using the built-in functions of
Mathematica,  the  branch  cuts  of  nested  functions  built  from  the  built-in  functions  are  determined.  Determine  the

location in Mathematica of the branch cuts of the function f HzL = z + 1 ê z  z - 1 ê z .

c) Determine the branch points and the branch cuts of the following function wHzL: wHzL = arctanHtanHz ê2L ê2L.
d) Characterize the function Sqrt[z] - 1/Sqrt[1/z]. 

e) Characterize the function 1/(z + Sqrt[z^2]). 

f) Discuss the branch cut and branch point structure of the function gHzL = z + z - 1 z + 1  in Mathematica.

g) Describe the branch cut location of the function f HzL =1/Log[Exp[1/z]]].

h)  Discuss  the  branch  point  and  branch  cut  structure  of  the  functions  arccoth,  arccosh,  and  arcsech.  In  Mathematica
they are defined as 

ArcCoth[z] = Log[1 + 1/z]/2 - Log[1 - 1/z]/2
ArcCosh[z] = Log[z + Sqrt[z + 1] Sqrt[z - 1]]

ArcSech[z] = Log[Sqrt[1/z + 1] Sqrt[1/z - 1] + 1/z].

How many different sheets does one reach by encircling the origin and ≤1 (on the corresponding Riemann surface) at
various  radii?  What  happens  if  one  moves  around  the  eight-shaped  contour  82 cosHjL, sinHjL<?  Is  infinity  a  branch
point? What are the differences of the function values across the branch cuts?

  7.L2 “Strange” Analytic Functions

For all parts of this exercise, use only analytic functions like Exp, Log, Power, Sqrt, … as building blocks, do not
use functions like Abs, Re, ….

a) Construct a function f that is 1 on the unit circle †z§ = 1 and 0 everywhere else (with the possible exception of a finite
number of other points). 

b) Construct a function f that is 1 inside the unit circle and 0 everywhere else. 

c) Construct a function f that evaluates to 1 at x = 0 and to 0 at every other real x. 

d) Construct a function f that evaluates 1 in the open interval H0, 1L and to 0 at every other real x. 

e) Construct a function f that is equal to the staircase function dxt for real values x  (with the possible exception of the
points of discontinuity of dxt). (Here, dxt is equal to the smallest integer less than or equal to x.)

f) Construct a function f that is equal to the “castle rim function” x mod 2 (with the possible exception of the points of
discontinuity of x mod 2).

g)  Construct  a  function  f  that  is  equal  to  the  sawtooth  function  1 - 2 †@xD - x ê2§,  where  @xD  denotes  the  rounding  to
nearest integer to x. 

  8.L2  ArcTan[(x + 1)/y] - ArcTan[(x - 1)/y] Picture

Predict how a picture of tan-1HHx + 1L ê yL - tan-1HHx - 1L ê yL over the real x,y-plane will look. We get such a picture in
Mathematica by using the following code.

f[x_,y_] := ArcTan[(x + 1)/y]- ArcTan[(x - 1)/y]
∂ = 10^-14;
Plot3D[Evaluate[f[x,y]], {x, -Pi, Pi}, {y, ∂, Pi},
       PlotPoints -> 50, PlotRange -> All];
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  9.L2 ArcSin[ArcSin[z]] Picture

Predict how a 3D picture of ImIsin-1Isin-1Hx + i yLMM over the real x,y-plane will look. We get such a picture in Mathe-

matica by using the following code.

Plot3D[Im[ArcSin[ArcSin[x + I y]]], {x, -3, 3}, {y, -3, 3}, PlotPoints -> 40];

10.L2 Singularities of tanhHsinhHcotHzLLL, expJlni pHzLN Properties

a) At which points z does the function wHzL = tanhHsinhHcotHzLLL have singularities? What kind of singularities?

b)  Describe the branch cuts of the function f HzL = argIexpIlni pHzLMM  over  the complex z-plane.  Express  argH f HzLL  in an

explicit real way as a function of †z§ and argHzL and give a qualitative description of argH f HzLL over the complex z-plane.

11.L1 Exp[-1/Im[1/(-Log[Infinity] + 2)^2]]

Predict the result of evaluating Exp[-1/Im[1/(-Log[Infinity] + 2)^2]].

12.L1 Predict the Result

Predict the results of

N[(1 - 10^-21) Exp[I 2], 22]^Infinity

and

N[(1 - 10^-23) Exp[I 2], 22]^Infinity.

13.L1 tanHk êaL+ tanHa kL Picture

The  following  input  defines  a  function  tanPicture  that  displays  the  set  of  points  8k, tanHk aL + tanHk ê aL<  for
k = 1, …, 20 000. Find different real values of a such that tanPicture[a] looks “qualitatively different”.

tanPicture[α_] := 
ListPlot[Table[Tan[α k] + Tan[1/α k], {k, 20000}],
         PlotStyle -> {PointSize[0.001]}, PlotRange -> {-2, 2},
         Frame -> True, Axes -> False, FrameTicks -> None]

 

Solutions

  1. What Is the Answer? 

We let the inputs run, and comment only on possible problems and things that might not be obvious. 

a) a + a is simplified to 2a, and the expression is reordered. 

b + a + a

Σ (* session summary *) TMGBs`PrintSessionSummary[]

b) Simplifying and reordering gives the following expression. 
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2 + 4 + u + 8 + i + u - i

Σ (* session summary *) TMGBs`PrintSessionSummary[]

c) 0*I is identically 0. 

2 + 0 I

Σ (* session summary *) TMGBs`PrintSessionSummary[]

d) It is an integer. 

Head[%]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

e)  The two (0.01 I)s are treated as distinct approximate numbers with vanishing real parts. They could come from
distinct calculations, and they may differ for digits beyond the machine precision. Thus, the result is 0.0 I. 

0.0 I - 0.0 I

On the other hand, here is another example with two exact numbers. They cancel to 0.

Complex[0, 0] - Complex[0, 0]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

f) The FullForm of the complex number 0 + 0.0I is given. 

FullForm[0.0 I - 0.0 I]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

g) The result is ¶ in any case in magnitude, but because we do not know the direction e.g., lim
xØ¶

Hx + i ê xLexpHxL  for large

real x, is actually ComplexInfinity [35÷]. 

Infinity^Infinity

Similarly, 1^Infinity and Infinity^0 also evaluate to Indeterminate.

Σ (* session summary *) TMGBs`PrintSessionSummary[]

h) Depending on the nature of the two infinity results, any result is possible. Therefore, we get an indefinite result. (The
three expressions x ë x2, x2 ë x, x ê x yield different limit values.)

Infinity/Infinity

Σ (* session summary *) TMGBs`PrintSessionSummary[]

i) The difference is unknown in magnitude, so Indeterminate is returned.

Infinity - Infinity

Σ (* session summary *) TMGBs`PrintSessionSummary[]

j) The result of an arithmetic operation with something indeterminate remains indeterminate. 

1/Indeterminate

Σ (* session summary *) TMGBs`PrintSessionSummary[]

k) The first and last s cancel out so that s^s/s remains. (s^s)/s results from this. Now, the s in the denominator is
canceled, giving s^(s - 1), and after an alphabetical reordering, we get s^(-1 + s). 

FullForm[s + s^s/s - s]
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Σ (* session summary *) TMGBs`PrintSessionSummary[]

l)  Times[Times,  Times]  is  precisely  the  product  (because  of  head  Times)  of  the  two  symbols  Times  and
Times. 

Times[Times, Times]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

m) Because Times is called with no arguments, it is equal to 1. 

Times[]

Because 1ä1 = 1, it follows that we get this result. 

Times[Times[], Times[]]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

n) Because Times is called with one argument, the result is the argument itself. 

Times[Times]

We get Times2. 

Times[Times[Times], Times[Times]]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

  2. FullForm[expression] with ()? 

No FullForm[something] with parentheses exists if something is a string-free Mathematica expression. The order of
the  evaluation/structure  is  uniquely  determined by  the  brackets  [].  Of  course,  something  could  contain  a  string  with
parentheses. 

  3. na38bvu94iwymmwpu1k5h6jhtye934 and ((1/2 + 1/4 I)^(7))^(1/7)

a)  One  obvious  solution  would  be  just  to  use  a  variable  containing  the  displayed  sequence.  Another  solution  is  pro-
vided. 

BaseForm[23 36^29 + 10 36^28 +  3 36^27 +  8 36^26 +
         11 36^25 + 31 36^24 + 30 36^23 +  9 36^22 +
          4 36^21 + 18 36^20 + 32 36^19 + 34 36^18 +
         22 36^17 + 22 36^16 + 32 36^15 + 25 36^14 +
         30 36^13 +  1 36^12 + 20 36^11 +  5 36^10 +
         17 36^09 +  6 36^08 + 19 36^07 + 17 36^06 +
         29 36^05 + 34 36^04 + 14 36^03 +  9 36^02 +
          3 36^1 +   4 36^00, 36]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

b) Let us first confirm the claims made in the statement of the exercise. 

((1/2 + 1/5 I)^(7))^(1/7)

((1/2 + 1/4 I)^(7))^(1/7)

In fact, the second output was not evaluated to 1/2 + 1/4 I. The reason is not a bug in Mathematica or weakness;
rather it is the different argument of the complex number exponentiated. After taking the seventh power, these are the
arguments of the resulting quantities. 

7 Arg[N[1/2 + 1/5 I]]
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7 Arg[N[1/2 + 1/4 I]]

In  the  second  case,  the  result  is  larger  than  p.  But  the  argument  convention  in  Mathematica  is  that  the  argument of
every  complex  number  lies  in  the  range  -p < arg § p.  So  this  argument  must  be  reduced  modulo  p.  The  resulting
number has a negative argument. 

(1/2 + 1/4 I)^(7)

N[Arg[%]]

Now, taking this number to the power 1 ê7 means taking the seventh root of the absolute value and the seventh part of
the  argument,  which  does  not  give  1/2 + 1/4 I,  but  rather  gives  a  seventh  root  that  is  not  further  automatically
simplified. 

((1/2 + 1/4 I)^(7))^(1/7)

This quantity is clearly distinct from 1/2 + 1/4 I. 

N[% - (1/2 + 1/4 I)]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

c)  To  return  the  head  Complex,  we  need  a  numericalized  expression  that  is  complex  (potentially  with  a  vanishing
imaginary part). Because Im[x] will return a real number for an approximate number x, Im[f[3]] must autoevaluate
to an expression not having the head Im. This is, for instance, the case for f = ArcCos.

Im[ArcCos[3]]

Numericalizing the last expression means to numericalize the two factors i  and arccosH3L. The result is an approximate
number with an (approximately) vanishing imaginary part.

N[%]

So, the function f = ArcCos yields the head Complex for the original input.

f = ArcCos;
Head @ (Im[f[3]] // N)

Σ (* session summary *) TMGBs`PrintSessionSummary[]

  4. Level, Depth, and Part 

Here is the expression. 

big = Sin[Tan[1 + Exp[-x]] + x^x - Log[Log[r t + a x]] +
          d[x] + x[x] - ArcCos[ArcSin[x^2]] + h[h[h[i]]]]

Its depth is 8. 

Depth[big]

Here are its positive levels. First is the expression itself. 

Level[big, {0}]

Here is the level 1. 

Level[big, {1}]

Here is the level 2. 

Level[big, {2}]

Here is the level 3. 
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Level[big, {3}]

Here is the level 4. 

Level[big, {4}]

Here is the level 5. 

Level[big, {5}]

Here is the level 6. 

Level[big, {6}]

And here is the level 7. 

Level[big, {7}]

The level 8 does not exist. The depth is equal to the number of levels + 1. 

Level[big, {8}]

Here is an analysis of the expression from its roots. 

Level[big, {-1}]

Level[big, {-2}]

Level[big, {-3}]

Level[big, {-4}]

Level[big, {-5}]

Level[big, {-6}]

Level[big, {-7}]

Level[big, {-8}]

As with level 8, no level -9 exists for big. 

Level[big, {-9}]

 Now, we consider x. 

Position[big, x]

Length[%]

x appears exactly eight times. Here are these eight positions.

big[[1, 1, 1]]

big[[1, 1, 2]]

big[[1, 2, 2, 1, 1, 1]]

big[[1, 3, 1]]

big[[1, 5, 2, 1, 1, 2, 2]]

big[[1, 6, 1, 2, 2, 2]]

big[[1, 7, 0]]

big[[1, 7, 1]]

THE MATHEMATICA GUIDEBOOKS to PROGRAMMING—GRAPHICS—NUMERICS—SYMBOLICS 63

©  2004, 2005   Springer Science+Business Media, Inc.



The expression consists of exactly 60 parts (not including itself), each of which can be obtained using Part. 

allParts = Level[big, {1, Infinity}, Heads -> True]

Length[allParts]

Of the 60 parts, 40 are distinct. (The function Union is discussed in Chapter 6; it eliminates duplicate elements.) 

Length[Union[allParts]]

Here  are  all  60  parts.  To  save  space,  we  let  Mathematica  determine the  positions  of  the  individual  components.  The
way the program works will become clear in the course of studying this book; here, we are only interested in the result. 

MapIndexed[(* the subexpression *)
  (CellPrint[Cell[TextData[{"Î Part number ", 
    ToString[#2[[1]]], " is ",
      StyleBox[ToString[#, InputForm], "MR"],
   (* where does this subexpression occur? *)       
   " and occurs at the following positions: ",
             StyleBox[ToString[Position[big, #, Heads -> True],
                               InputForm], "MR"]}], "PrintText"]])&, 
             Take[allParts, 3], {1}];

Σ (* session summary *) TMGBs`PrintSessionSummary[]

  5. Level[expr, {-2, 2}] versus Level[expr, {2, -2}]

Here is the expression under consideration. 

expr = Sin[3 x + Cos[6/(t + Tan[r])]/Exp[-x^2]]

As discussed, Level[expr,{n1,n2}] gives all parts of expr that are at level n1 or below and that are at the same time
at level n2 or above. These are all the nonempty positive and negative levels. 

(* ë stands again for Mathematica generated text *)
Do[CellPrint[Cell[TextData[{"Î Elements of ", StyleBox["expr", "MR"],
                          " at level level "<> ToString[i] <>":"}], 
             "PrintText"]]; Print[Level[expr, {i}]], 
   {i, 0, 8}]

Now, we start from the roots.

(* ë stands again for Mathematica generated text *)
Do[CellPrint[Cell[TextData[{"Î Elements of ", StyleBox["expr", "MR"],
                          " at level level "<> ToString[i] <>":"}], 
             "PrintText"]]; Print[Level[expr, {i}]], 
  {i, 0, -9, -1}]

Level[expr, 2, -2]  is  the  intersection  of  all  levels  between the  positive  levels  2  and  8 and all  negative levels
between -8 and -2. 

Level[expr, {2, -2}]

In  Chapter  6,  we  will  discuss  the  following  construction,  which  explicitly  determines  this  intersection  of  the  levels
needed here. (The order of the elements is different from the last output.)

Intersection[Flatten @ Table[Level[expr, {i}], {i, 2, 8}],
             Flatten @ Table[Level[expr, {i}], {i, -2, -8, -1}] ]

Level[expr, -2, 2]  is  the  intersection  of  all  levels  between the  positive  levels  0  and  2 and all  negative levels
between -2 and -1. 
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Level[expr, {-2, 2}]

Here again, this intersection (we will discuss the function Intersection in Chapter 6) is determined explicitly. 

Intersection[Flatten @ Table[Level[expr, {i}], {i, -1, -2, -1}],
             Flatten @ Table[Level[expr, {i}], {i, 0, 2}] ] // Union

For most expressions, Level[expression, {-i, i}] is different from Level[expression, {i, -i}].

Σ (* session summary *) TMGBs`PrintSessionSummary[]

  6. Branch Cuts

a) The power function has a branch cut along the negative real axis, which means that 1 í Iz4M1ê4  has branch cuts when

z4  is  a  negative  real  number.  Using  the  representation  z = ei j,  we  get  the  following  four  possibilities:  e4 i j = ei p,

e4 i j = e3 i p, e4 i j = e5 i p, e4 i j = e7 i p. These relations mean that 1 í Iz4M1ê4  has branch cuts along the rays z = r ei pê4,

z = r e3 i pê4, z = r e5 i pê4, and z = r e7 i pê4. The function values of f HzL on one sheet of the Riemann surface of 1 í Iz4M1ê4

are immediately given, and the function values on the other three sheets are obtained by letting j  in z = ei j  vary over
the range H0, 8 pL, which means over four copies of the original z-plane. So, the other three function values are given by
ei pê2 f HzL, ei p f HzL, and e3 i pê2 f HzL. 

This graphic shows the imaginary part of the four sheets. 
Show[GraphicsArray[Table[Show[Table[
   ParametricPlot3D[{r Cos[ϕ], r Sin[ϕ],
                     Im[1/(Exp[2Pi i I/4] ((r Exp[I ϕ])^4)^(1/4))],
                     {(* no individual polygon edges *) EdgeForm[]}},
                    {r, 1/2, 2}, {ϕ, ϕ0 + 10^-8, ϕ0 - 10^-8 + Pi/2},
                    DisplayFunction -> Identity],
                 {ϕ0, Pi/4, 2Pi - Pi/4, Pi/2}],
            PlotRange -> {{-2, 2}, {-2, 2}, {-2, 2}}],
      {i, 0, 3}], GraphicsSpacing -> 0]]

The real part looks similar. 

Show[GraphicsArray[Table[Show[Table[
   ParametricPlot3D[{r Cos[ϕ], r Sin[ϕ],
                     Re[1/(Exp[2Pi i I/4] ((r Exp[I ϕ])^4)^(1/4))],
                     {(* no individual polygon edges *) EdgeForm[]}},
                    {r, 1/2, 2}, {ϕ, ϕ0 + 10^-8, ϕ0 - 10^-8 + Pi/2},
                    DisplayFunction -> Identity],
                 {ϕ0, Pi/4, 2Pi - Pi/4, Pi/2}],
           PlotRange -> {{-2, 2}, {-2, 2}, {-2, 2}}],
       {i, 0, 3}], GraphicsSpacing -> 0]]

Combining all sheets from the last four pictures in one picture, we get the complete Riemann surface of 1 í Iz4M1ê4. The

four sheets are not connected [8÷], [51÷].
Show[%[[1]], DisplayFunction -> $DisplayFunction]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

b) As a first orientation, take a look at a 3D graphic of the imaginary part of f HzL. 
Plot3D[Im[Sqrt[(x + I y) + 1/(x + I y)] Sqrt[(x + I y) - 1/(x + I y)]],
       {x, -2, 2}, {y, -2, 2}, PlotPoints -> 50]

This picture  indicates a  branch cut  along the left  half  of  the  unit  circle and along the real  line between -1 and 1.  Be
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aware that for a generic complex z we have

z +
1

z
 z -

1

z
∫ z +

1

z
 z -

1

z
.

Again, a picture shows this clearly. 

Plot3D[Im[Sqrt[((x + I y) + 1/(x + I y)) ((x + I y) - 1/(x + I y))]],
       {x, -2, 2}, {y, -2, 2}, PlotPoints -> 50]

Now let us analytically tackle the problem of the locations of the branch cuts of f HzL. The Sqrt function in Mathemat-
ica has a branch cut for negative arguments, which means that the branch cuts of f HzL are determined by the following
parametric representation (in dependence of negativeRealNumber):

z ≤
1

z
= negativeRealNumber.

Solving the first of these two equations gives 

z1,2 =
negativeRealNumber

2
¡

negativeRealNumber

2

2

- 1 .

For -2 § negativeRealNumber § 0, we have for z1 

ReHz1L =
negativeRealNumber

2

ImHz1L = - 1 -
negativeRealNumber

2

2

.

These formulas describe the part of the unit circle in the third quadrant. For § negativeRealNumber  § -2, we have for
z1 

ReHz1L =
negativeRealNumber

2
-

negativeRealNumber

2

2

- 1

ImHz1L = 0.

These  formulas  describe  all  points  on  the  real  line  that  are  to  the  left  of  -1.  A similar analysis  for  z2  shows  that  for
-2 § negativeRealNumber § 0,  the  part  of  the  unit  circle  in  the  second  quadrant  is  covered  and
§ negativeRealNumber § -2,  which  is  the  interval  H-1, 0L  of  the  real  line.  Again,  a  visualization  confirms  the  so-
located branch cuts. 

Plot3D[Im[Sqrt[((x + I y) + 1/(x + I y))]], {x, -2, 2}, {y, -2, 2},
       PlotPoints -> 50]

The second square root Hz - 1 ê zL1ê2  gives the following two parametric representations for possible branch cuts of the
function under consideration here. 

z1,2 =
negativeRealNumber

2
¡

negativeRealNumber

2

2

+ 1 .

This plot shows immediately that the branch cut of this part is H-¶, 1L, as it is also shown in the following picture. 

Plot3D[Im[Sqrt[((x + I y) - 1/(x + I y))]], {x, -2, 2}, {y, -2, 2},
       PlotPoints -> 50]
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Now,  we  have  all  possible  branch  cut  locations  collected.  Along  H-¶, 1L,  the  branch  cuts  of  Hz + 1 ê zL1ê2  and

Hz - 1 ê zL1ê2  coincide.  As  a  result,  the  corresponding  jumps may compensate each other  or  may add to each other.  To
determine when  which  situation  happens,  we  look  at  the  value  of  the  two  arguments  of  the  square  roots  for  x < 0,  ¶
small, which means just below and above the potential branch cut. 

x + i ¶ ≤
1

x + i ¶
= x ≤

1

x
 +i ¶ 1 ¡

1

x2
 +OI¶2M.

This  process  shows that  for  x < -1,  the  imaginary parts  of  x + i ¶ + 1 ê Hx + i ¶L  and x + i ¶ - 1 ê Hx + i ¶L  have the  same
sign, and the discontinuities in the product of the two square roots just cancel. So, no branch cut exists in the interval
H-¶, -1L. For -1 < x < 0, the imaginary parts of x + i ¶ + 1 ê Hx + i ¶L and x + i ¶ - 1 ê Hx + i ¶L  have opposite signs, and
as a result, in this interval, a branch cut occurs. 

To end this discussion, let us have a more detailed look at f HzL.  We see the branch cuts more clearly, when the steep
vertical walls are not shown. (Chapter 2 of the Graphics volume [65÷] discusses in detail how to make graphics similar
to the next two.) 

∂ = 10^-6;
Show[Apply[ParametricPlot3D[
{r Cos[ϕ], r Sin[ϕ], Im[Sqrt[r Exp[I ϕ] + 1/(r Exp[I ϕ])]*
                        Sqrt[r Exp[I ϕ] - 1/(r Exp[I ϕ])]],
 (* thin polygon edges *) EdgeForm[Thickness[0.001]]}, ##,
 DisplayFunction -> Identity]&,
   (* all parts divided by branch cuts *)
 {{{r, ∂, 1 - ∂}, {ϕ, ∂, Pi - ∂}, PlotPoints -> {12, 30}},
  {{r, ∂, 1 - ∂}, {ϕ, Pi + ∂, 2Pi - ∂}, PlotPoints -> {12, 30}},
  {{r, 1 + ∂, 2}, {ϕ, 0, 2Pi}, PlotPoints -> {12, 59}}}, {1}],
      DisplayFunction -> $DisplayFunction, PlotRange -> {-3, 3}]

Because f HzL has a branch, the last picture shows just one of two sheets of the Riemann surface of f HzL. Because of the
Sqrt in the function under consideration, it is easy to get the second sheet. Here, the whole Riemann surface is shown. 

Show[{%, (* the other sheet *)
Show[Apply[ParametricPlot3D[
{r Cos[ϕ], r Sin[ϕ]Sin[ϕ], Im[-Sqrt[r Exp[I ϕ] + 1/(r Exp[I ϕ])]*
 Sqrt[r Exp[I ϕ] - 1/(r Exp[I ϕ])]], EdgeForm[Thickness[0.001]]}, ##,
 DisplayFunction -> Identity]&,
  (* all parts divided by branch cuts *)
 {{{r, ∂, 1 - ∂}, {ϕ, ∂, Pi - ∂}, PlotPoints -> {12, 30}},
  {{r, ∂, 1 - ∂}, {ϕ, Pi + ∂, 2Pi - ∂}, PlotPoints -> {12, 30}},
  {{r, 1 + ∂, 2}, {ϕ, 0, 2Pi}, PlotPoints -> {12, 59}}}, {1}],
      DisplayFunction -> Identity,
      PlotRange -> {-3, 3}]}, Axes -> False, Boxed -> False,
      ViewPoint -> {1.55, -1.4, 1.5},
      DisplayFunction -> $DisplayFunction]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

c) Let us first have a look at the function under consideration. 

Plot3D[Re[ArcTan[Tan[(x + I y)/2]/2]], {x, 0, 6Pi}, {y, -3, 3}, 
       PlotPoints -> 30]

We see a couple of branch cuts parallel to the imaginary axis. The function ArcTan has two branch points at i and -i,
and the complex plane is cut along Hi, i ¶L and H-i, -i ¶L. Solving tan Hz ê2L ê2 = ≤ i for z, we get the following for the
location of the branch points of arctanHtanHz ê2L ê2L: 
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z = ≤2 arctanH2 iL
zk = ≤2 lnI 3 M i + H2 k + 1L p , k œ .

The second formula follows after simplification and takes the periodicity of tan into account. In Mathematica,  we can
get the this simplification by using ComplexExpand. 

2 ArcTan[2I] // ComplexExpand

Tan[I Log[Sqrt[3]] + Pi/2]/2

Tan[-I Log[Sqrt[3]] + Pi/2]/2

Now, let us determine the location of the branch cuts. tanHi t + p ê2L is purely imaginary for real t. 

Tan[I t/2 + Pi/2]/2

The absolute value of i ê2 cothHt ê2L is greater than 1 in the range -2 ln 3 < t < 2 ln 3 .

Plot[Im[Tan[I t/2 + Pi/2]/2], {t, -2Log[Sqrt[3]], 2Log[Sqrt[3]]},
     PlotRange -> {-4, 4}]

From  these  observations,  it  follows  that  the  branch  cuts  of  arctanHtanHz ê2L ê2L  are  the  intervals

A-2 ln 3  i + H2 k + 1L p, 2 ln 3  i + H2 k + 1L pE, k œ .

By excluding the branch cuts from the x,y-region covered in the above picture, we can make a more appropriate picture
of  the  function  arctanHtanHz ê2L ê2L.  Here  is  the  definition  for  one  sheet  of  the  Riemann  surface  of  this  function.  d
translates the picture vertically. 

sheet[δ_] :=
Block[{$DisplayFunction = Identity, ∂ = 10^-10},
{ (* 0 § Re(z) < p *)
 Plot3D[Re[ArcTan[Tan[(x + I y)/2]/2] + δ],
        {x, 0, Pi - ∂}, {y, -6 Log[Sqrt[3]], 6 Log[Sqrt[3]]},
        PlotPoints -> {15, 31}],
 (* p < Re(z) < 3p *)
 Plot3D[Re[ArcTan[Tan[(x + I y)/2]/2] + δ],
        {x, Pi + ∂, 3Pi - ∂}, {y, -6 Log[Sqrt[3]], 6 Log[Sqrt[3]]},
        PlotPoints -> {30, 31}],
 (* 3p < Re(z) < 5p *)
 Plot3D[Re[ArcTan[Tan[(x + I y)/2]/2] + δ],
        {x, 3Pi + ∂, 5Pi - ∂}, {y, -6 Log[Sqrt[3]], 6 Log[Sqrt[3]]},
        PlotPoints -> {30, 31}],
 (* 5p < Re(z) § p *)       
 Plot3D[Re[ArcTan[Tan[(x + I y)/2]/2] + δ],
        {x, 5Pi + ∂, 6Pi}, {y, -6 Log[Sqrt[3]], 6 Log[Sqrt[3]]},
        PlotPoints -> {15, 31}]}]

This picture shows the principal sheet of arctanHtanHz ê2L ê2L. 
Show[sheet[0], BoxRatios -> {2, 1, 1/2}];

Taking into account the H2 k + 1L p term of zk , we can display some sheets of the Riemann surface under consideration. 

Show[{sheet[0], sheet[Pi/2], sheet[-Pi/2]},
     ViewPoint -> {1, -2.4, 1.5}, BoxRatios -> Automatic,
     AxesLabel -> {x, I y, None}]

Here, only one half of the last picture is shown to provide a better view of the connections between the sheets. 

Show[%, PlotRange -> {All, {0, Pi}, All}, ViewPoint -> {-3, -2, 1}];
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For  a  discussion  of  a  general  method  to  determine  branch  cuts  of  functions  built  from functions  with  known  branch
cuts, see [22÷]. 

Σ (* session summary *) TMGBs`PrintSessionSummary[]

d) Here, the function under consideration is defined.

f[z_] := Sqrt[z] - 1/Sqrt[1/z]

At a first view, we may think that the function is identically zero. A plot also suggests this. (We multiply the function
values by 10machinePrecision.)

Plot3D[10^$MachinePrecision Abs[f[x + I y]], {x, -2, 2}, {y, -2, 2}];

 But Mathematica does not automatically simplify this function to zero.

f[z]

And this absence of “simplification” is not the case because of the single point z = 0. Indeed, f[z] is not zero every-
where in the complex z-plane (and, of course, undefined at z = 0).

f[-2]

Now let  us  determine where  f[z]  does  not  vanish.  The operation  zö1 ê z  maps the  whole  complex plane  onto  the
whole complex plane. The lower half-plane is mapped onto the upper half-plane and vice versa. The Sqrt function has
a  branch  cut  along  the  negative  real  axis  with  continuity  from  above,  which  means  that  f[z]  vanishes  everywhere
except along the negative real axis where the two terms Sqrt[z] and Sqrt[1/z] do not cancel but are the same.

Σ (* session summary *) TMGBs`PrintSessionSummary[]

e) Here is the function defined.

f[z_] := 1/(z + Sqrt[z^2])

A first view shows that the function is finite in the right half-plane. (We turn off some messages.)

Off[Power::infy]; Off[Plot3D::plnc]; Off[Plot3D::gval];
Plot3D[Abs[f[x + I y]], {x, -2, 2}, {y, -2, 2}, 
       PlotRange -> {-5, 5}, ClipFill -> None, PlotPoints -> 20]

In the left half-plane, the function is ComplexInfinity. (This is the reason for the turned off error messages in the
last input.) For the right half-plane, Mathematica can simplify the function f.

Simplify[f[z], Re[z] > 0]

It remains to investigate the behavior of f on the imaginary axis. A sample input shows that f HzL is finite on the posi-
tive imaginary axis.

f[2 I]

f[-2 I]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

f) We start by investigating the function under the square root.

f[z_] := z + Sqrt[z - 1] Sqrt[z + 1];

Here is a graphic of its real and imaginary parts.
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Show[GraphicsArray[{
      (* show real and imaginary parts *)
      Plot3D[Evaluate[Re[f[x + I y]]], {x, -2, 2}, {y, -2, 2}, 
             PlotPoints -> 40, DisplayFunction -> Identity],
      Plot3D[Evaluate[Im[f[x + I y]]], {x, -2, 2}, {y, -2, 2}, 
             PlotPoints -> 40, DisplayFunction -> Identity]}]]

z = ≤1 are branch points coming from z - 1  z + 1 . The branch cut connecting them is clearly visible. A graphics
of the absolute value of f HzL shows that nowhere we have f HzL = 0.

Plot3D[Evaluate[Abs[f[x + I y]]],
       {x, -2, 2}, {y, -2, 2}, PlotPoints -> 40]

Along the real axis, we have the following behavior: For †x§ > 1, the function is purely real, and for x < 1, the function
f HxL is negative.

Plot[Evaluate[{Re[f[x]], Im[f[x]]}], {x, -3, 3},
     PlotStyle -> {Hue[0], Hue[0.74]},
     Frame -> True, Axes -> False]

Now, let us look at the function gHzL.
g[z_] := Sqrt[z + Sqrt[z - 1] Sqrt[z + 1]]

In addition to the two branch points ≤1 and the branch cut joining them, we now see a branch cut to the left of z = -1
along the negative real axis.

Show[GraphicsArray[{
      (* show real and imaginary parts *)
      Plot3D[Evaluate[Re[g[x + I y]]], {x, -2, 2}, {y, -2, 2}, 
             PlotPoints -> 40, DisplayFunction -> Identity],
      Plot3D[Evaluate[Im[g[x + I y]]], {x, -2, 2}, {y, -2, 2}, 
             PlotPoints -> 40, DisplayFunction -> Identity]}]]

The branch  cut  along  the  negative  imaginary axis  is  not  related  to  the  branch  point  z = 1  from the  inner  square  root.
Interestingly,  at  z = -1,  one  immediately “jumps”  onto  the  branch  cut  of  the  outer  square  root  function  without  ever
passing the “corresponding branch point z = 0”. The branch cut of the square root function extends from -¶ to 0. The

argument  of  square  root  assumes  the  value  -¶  at  z = -¶  of  the  first  sheet  of  z + z - 1  z + 1  (this  is  the  sheet

chosen by Mathematica) and the value 0 at z = -¶ of the other sheet z - z - 1  z + 1 . So the branch cut visible in
the picture runs in a loop-like form from -¶ to -1 and then back to -¶.

We can get a better impression about this function by looking at all its four sheets. The other sheets of the two square

root functions are easily obtained as ≤ … .
sheetg[j_, k_, z_] := (-1)^j Sqrt[z + (-1)^k Sqrt[z - 1] Sqrt[z + 1]];

Here the four sheets in the neighborhood of the two branch points ≤1 are shown.

With[{∂ = 10^-12},
Show[GraphicsArray[Show[Table[(* use four sheets *)
  Plot3D[Evaluate[#[sheetg[j, k, x + I y]]], {x, -2, 2}, {y, ∂, 2},
         PlotPoints -> {30, 15}, DisplayFunction -> Identity,
         ViewPoint -> {1, -3, 0.4}], {j, 0, 1}, {k, 0, 1}],
           DisplayFunction -> Identity]& /@ {Re, Im}]]]

Using 1
z  instead of z makes the branch point from infinity visible at the origin.
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With[{∂ = 10^-12},
Show[GraphicsArray[Show[Table[(* use four sheets *)
  Plot3D[Evaluate[#[sheetg[j, k, 1/(x + I y)]]], 
         {x, -2, 2}, {y, ∂, 2},
         PlotPoints -> {31, 15}, DisplayFunction -> Identity,
         ViewPoint -> {1, -3, 0.4}], {j, 0, 1}, {k, 0, 1}],
           DisplayFunction -> Identity]& /@ {Re, Im}]]]

To get a unified view on the finite branch points as well as the one at infinity, we will construct a picture that does not
show  ImHgHzLL  or  ReHgHzLL  over  the  complex  z-plane,  but  rather  over  the  Riemann  sphere  to  cover  all  z-values  more
equally.  Given  the  Riemann  sphere  of  radius  R = 1 ê2  around  the  point  80, 0, 1 ê2<,  we  visualize  ImHgHx + i yLL  as  a
point in direction of the image of x + i y on the Riemann sphere and distance radius r = R + r arctanHImHgHx + i yLLL. We
use  the  arctan  in  the  last  formula  because  it  allows  us  to  uniquely  map the  interval  H-¶, ¶L  to  a  finite  interval.  The
function sphereSheetg calculates the projections of the sheets onto the Riemann sphere.

sphereSheetg[j_, k_, ϕ_, ϑ_] := 
Module[{x, y, dir},
       {x, y} = Cot[ϑ/2] {Cos[ϕ], Sin[ϕ]};
       dir = {Cos[ϕ] Sin[ϑ], Sin[ϕ] Sin[ϑ], Cos[ϑ]};
       {0, 0, 1/2} + 
       (* in radial direction *) dir (1/2 + 1/(2 Pi) *
                     ArcTan[Im[sheetg[j, k, x + I y]]])]

Here is one half of the resulting Riemann sphere surface. The branch point at infinity is now clearly visible at the north
pole. The two branch points ≤1 are now at the equator.

∂ = 10^-4;
Show[Graphics3D[
Table[{(* color sheets differently *)
       SurfaceColor[Hue[j/3 + k/2]], EdgeForm[{Thickness[0.001]}],
Cases[ParametricPlot3D[sphereSheetg[j, k, ϕ, ϑ],
                 {ϕ, ∂, Pi - ∂}, {ϑ, ∂, Pi - ∂},
                 PlotPoints -> 30, Compiled -> False,
                 DisplayFunction -> Infinity], 
       _Polygon, Infinity]}, {j, 0, 1}, {k, 0, 1}]],
     ViewPoint -> {-0.8, -3, 0.3}]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

g)  Without  branch  cuts,  the  function  f HzL  is  just  the  identity  function.  (The  function  PowerExpand  does  just  this,
ignoring branch cuts—we will discuss it in Chapter 1 of the Symbolics volume [67÷].)

1/Log[Exp[1/z]] // PowerExpand

But  a  plot  along  a  line  just  above  the  real  axis  shows  a  much  more  complicated  behavior.  The  outermost  constant
behavior is the one to be expected from f HzL = z.

Plot[Im[1/Log[Exp[1/(x + I 0.0015)]]], {x, -0.05, 0.05}, 
     PlotRange -> All, Axes -> False, Frame -> True]

Exp is a meromorphic function. So all branch cuts of f HzL are caused by the branch cut of the Log function. Thus, the
branch  cuts  of  f HzL  are  located  where  f HzL = negativeRealNumber.  The  function  1/Log[Exp[z]]  has  a  countable
infinite number of branch cuts parallel to the real axis at values ImHzL = H2 k + 1L p, k œ .  By the inversion principle,

z Ø 1
z  maps the straight  lines into circles with midpoints 1 ê H2 H2 k + 1L pL  and radius †1 ê H2 H2 k + 1L pL§.  The following

function graph visualizes this.
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graph[lx_, ly_] :=
Module[{pp = 100, cs = 80},
Show[GraphicsArray[{
(* 3D plot *)
Plot3D[Im[1/Log[Exp[1/(x + I y)]]], {x, -lx, lx}, {y, -ly, ly},
             ColorFunction -> Hue, BoxRatios -> {1, ly/lx, 0.6},
             PlotPoints -> pp, Mesh -> False, ViewPoint -> {0, -2, 1.6}, 
             Axes -> {True, True, False}, DisplayFunction -> Identity],
(* contourplot *)             
ContourPlot[Im[1/Log[Exp[1/(x + I y)]]], {x, -lx, lx}, {y, -ly, ly},
            ColorFunction -> (Hue[2 #]&), PlotPoints -> pp, 
            Contours -> cs, ContourStyle -> {Thickness[0.001]},
            AspectRatio -> ly/lx, DisplayFunction -> Identity],
(* pole location graphics *)             
Graphics[{Thickness[0.001], 
          Table[Circle[{0, 1/(2 k + 1)/Pi/2}, Abs[1/(2 k + 1)/Pi/2]], 
                {k, -Floor[1/ly] - 10, Floor[1/ly] + 10}]},
          PlotRange -> {{-lx, lx}, {-ly, ly}}, 
          AspectRatio -> ly/lx, Frame -> True]}]]]           

The left picture shows a 3D plot of the imaginary part of f HzL. The branch cuts appear as steep walls in this picture. The
middle graphic shows a contour plot of the imaginary part of f HzL.  This time the branch cuts are visible as clusters of
contour  lines.  And  the  right  picture  shows  circles  with  midpoints  1 ê H2 H2 k + 1L pL  and  radius  †1 ê H2 H2 k + 1L pL§  for
comparison.

graph[0.3, 0.5]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

h) The branch points and the branch cuts of ArcCoth follow uniquely from the branch points and branch cuts of the
Log function.

The function z Ø 1 - 1 ê z maps the branch points 0 and ¶ to 1 and 0. 1 - 1 ê z is negative for z œ H0, 1L. Similarly, the
function z Ø 1 + 1 ê z  maps the branch points 0 and ¶  to -1 and 0. 1 + 1 ê z  is negative for z œ H-1, 0L.  This means the
points  z = ≤1 will  surely be logarithmic branch points.  The two logarithmic branch points  that are  mapped to 0 basi-
cally cancel each other.  Because the two functions z Ø 1 ≤ 1 ê z  map the negative real line “from different  directions”,
the only surviving feature of the canceling branch points at z = 0 is a discontinuity for arccothHxL along the real axis at

x = 0.  As  a  result,  we  have  near  the  origin  arccoshHxL ∂ ≤ i p ê2 + x + OHxL3.  Because  the  branch  cut  along  H-1, 1L  is
solely caused from the logarithm, the absolute value of the jump size will be †p§ along the whole branch cut.

Here are pictures of ImHarccoshHzLL along the real line and over the complex z plane. The rightmost picture shows a part
of the Riemann surface of arccothHzL, by displaying ImHarccothHzLL.
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pictures[function_, continuedFunctions_, vp1_, vp2_] := 
Show[GraphicsArray[
Module[{regions, ∂ = 10^-($MachinePrecision - 2)},
regions =  (* subdivide z-plane to avoid branch cuts *)
 {{{0, 1 - ∂}, {∂, 3/2}}, {{0, -1 + ∂}, {∂, 3/2}}, 
  {{0, 1 - ∂}, {-∂, -3/2}}, {{0, -1 + ∂}, {-∂, -3/2}}, 
  {{1 + ∂, 2}, {∂, 3/2}}, {{-2, -1 - ∂}, {∂, 3/2}}, 
  {{1 + ∂, 2}, {-∂, -3/2}}, {{-2, -1 - ∂}, {-∂, -3/2}}};       
(* the three graphics *)
Block[{$DisplayFunction = Identity},
{(* imaginary part along the real axis *)
 Plot[Im[function[x]], {x, -2, 2}, PlotStyle -> {Thickness[0.01]}],
 (* imaginary part over the complex plane *)
 Show[Apply[Plot3D[Im[function[x + I y]], 
     Evaluate[{x, Sequence @@ #1}, {y, Sequence @@ #2}], 
       PlotPoints -> 20, Mesh -> False]&, regions, {1}],
      ViewPoint -> vp1],
(* some sheets of the Riemann surface *)
Show[Show[Function[f, Apply[Plot3D[f, 
    Evaluate[{x, Sequence @@ #1}, {y, Sequence @@ #2}], 
             PlotPoints -> 20, Mesh -> False]&,
    regions, {1}]] /@ continuedFunctions], Boxed -> True, 
    Axes -> False, BoxRatios -> {1, 1, 1.4}, ViewPoint -> vp2]}]],
   GraphicsSpacing -> -0.02]]

(* the three graphics for ArcCoth *)
pictures[ArcCoth, Flatten[Table[
  {Im[(Log[1 + 1/(x + I y)] + k1 2 I Pi - 
       Log[1 - 1/(x + I y)] + k2 2 I Pi)/2]}, 
   {k1, -1, 1}, {k2, -1, 1}]], {1, 3, 1.6}, {-1, 3, 1.2}]

The two sides of the two branch cuts form two (locally) disconnected pieces of the Riemann surface of arccothHzL in the
interval H-1, 1L. This means that encircling the origin with a radius < 1 yields after one round the same function value
as before. Using a radius > 1 we enclose the two logarithmic branch points and after one round we come back to the
starting  point  (such  a  contour  can  be  viewed  as  encircling  infinity  and  shows  that  infinity  is  not  a  branch  point of

arccoth—at z = ¶ we have the expansion arccothHzL ∂ z-1 + z-3 ë 3 + OIz-1M4). Moving around any of the two logarith-

mic branch points with a radius < 1 brings one to another sheet of the Riemann surface and the function value changes
by ≤ i p. Repeatedly encircling any of the two logarithmic branch points brings one to ever-new sheets of the Riemann
surface of arccothHzL. Moving along the eight-shaped contour 82 cosHjL, sinHjL< “skips” every second sheet and after one
round the function value has changed by ≤2 i p.  The picture above of the Riemann surface of arccothHzL  lets us easily
verify the above considerations.

The branch points and the branch cuts of ArcCosh follow from the branch points and branch cuts of the Sqrt and the
Log  function.  The arguments of the two Sqrt  functions taken separately generate the two branch points  ≤1 and the
branch  cuts  are  H-¶, -1D  and  H-¶, 1D.  This  means  that  in  the  interval  H-¶, -1D  two  branch  cuts  coincide.  In  this

interval,  they  actually  cancel  leaving  the  interval  @-1, 1D  as  the  branch  cut  of  z + z - 1 z + 1 .  Nowhere  in  the

complex plane does the argument of the logarithm z + z - 1 z + 1  assume the value 0. This means that this branch
point  of  the  Log  function  is  absent  in  the  principal  sheet  of  arccosh.  For  z Ø -¶,  the  argument  of  the  logarithm
approaches -¶ and we have a logarithmic branch point there. Although the argument 0 branch point is not present, the
branch cut of the logarithmic function is still there. For z < -1, the argument of the logarithm is negative real and as a
result, in the interval H-¶, -1D we have a branch cut caused by the logarithm function. This means that for z < -1 the
value  of  the  jump  height  is  » 2 p ».  In  the  interval  H-1, 1L  it  is
»2arccosHxL» . 
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Similar to the arccoth function, encircling the origin with a radius < 1 yields after one round the same function value as

before.  Around the origin, we have the expansion arccoshHzL = ≤ i p ê2 ≤ i z + OHzL2.  Using a radius greater than 1,  we
enclose  the  two square root  branch  points.  At  the  same time, such a  contour  encloses  the  logarithmic branch point  at
-¶  and  as  a  result,  the  value  changes  by  ≤2 p i.  (arccoshHzL  can  be  approximated  by

logI-4 z2M ë 2=p -z2 ì z - z-2 ë 4 + OIz-1M3  at  infinity.)  Moving  around  any  of  the  two  square  root  branch  points

brings  with  a  radius  < 1  brings  us  to  the  other  sheet  of  the  Riemann  surface  and  after  two  revolutions,  we  return.
Moving along the eight-shaped contour 82 cosHjL, sinHjL< also causes the function value to change by ≤2 i p.

The following pictures of the principal value of arccoshHzL and the Riemann surface of arccoshHzL lets us easily visualize
the above considerations.

(* the three graphics for ArcCosh *)
pictures[ArcCosh, Flatten[Table[
  {Im[Log[(x + I y) + k1 Sqrt[-1 + (x + I y)]*
           Sqrt[1 + (x + I y) ]] + k2 2 I Pi]}, 
   {k1, -1, 1, 2}, {k2, -1, 1}]], {1, -3, 1.6}, {-1, 3, 0.9}]

The branch points and the branch cuts of ArcSech follow from the branch points and branch cuts of the Sqrt and the
Log  function.  The  arguments  of  the  two  Sqrt  functions  generate  the  two  branch  points  ≤1  and  0.  The  function
z Ø 1 ê z - 1 is negative for z œ H-¶, 0L Í H1, ¶L and the function z Ø 1 ê z + 1 is negative for z œ H-1, 0L. This means in
the intervals  H-¶, -1L, H1, ¶L  we have  branch  cuts  due to the  Sqrt  function.  In  the interval  H-1, 0L,  the  two square

root  branch  cuts  cancel.  For  small  arguments,  the  argument  of  the  logarithm  1 ê z + 1 ê z - 1 1 ê z + 1  can  be
approximated  as  2 z-1 - z ê2 + OHzL3.  This  means  that  at  z = 0  we  have  the  “infinity  branch  point”  of  the  logarithm.
Nowhere does the argument of the logarithm vanish on the principal sheet and so the “zero branch point” of the logarith-
mic function does not exist on the principal sheet. In the interval @-1, 0D, the argument of the logarithm is negative real
and so we have a jump height of » 2 p » in this interval. In the intervals H-¶, 1D and @1, ¶L the branch cuts are the ones
of the square root functions and the jump height is » 2 arcsechHxL ».
Encircling the origin with a radius less than 1 yields after one round a function value change of ≤2 p i. Using a radius
greater  than  1  yields  the  same  function  value.  Infinity  is  not  a  branch  point  for  arcsechHzL.  (At  infinity,  we  have

arcsechHzL = i Jp ê2 - 1 ê z + OIz-1M3N.) Moving around any of the two square root branch points with a radius less than 1

brings  us  to  another  sheet  of  the  Riemann  surface  and  after  two  revolutions,  the  starting  function  value  is  obtained
again. Moving along the eight-shaped contour 82 cosHjL, sinHjL< is not possible here because the path would go through
the logarithmic branch point at the origin.

The  following  picture  of  the  principal  value  of  arcsechHzL  and  the  Riemann surface  of  arccoshHzL  lets  us  again  easily
verify the above considerations.

(* the three graphics for ArcSech *)
pictures[ArcSech, Flatten[Table[
  {Im[Log[k1 Sqrt[1/(x + I y) + 1] Sqrt[1/(x + I y) - 1] + 
                                    1/(x + I y)] + 2Pi I k2]}, 
              {k1, -1, 1, 2}, {k2, -1, 1}]], 
         {1, 3, 1.6}, {-2, 3, 0.5}]

Σ (* session summary *) TMGBs`PrintSessionSummary[]
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  7. “Strange” Analytic Functions 

a)  To  construct  a  discontinuous  function  that  is  1  on  a  1D  sub-manifold  of  the  complex  numbers  and  0  everywhere
from analytic  functions,  we  obviously  need  a  function  that  has  a  branch  cut.  Using  the  continuity  of  such  a  function
from one side,  we have to arrange that two branch cuts overlap  and have continuity from different  sides.  Here is one
possible choice for such a function.

f1[z_] = (Log[z] + Log[1/z])/(2 I Pi)

The function f1  is zero almost everywhere  in the complex z-plane.  It  is  1 along the negative real  axis.  Plots confirm

this fact. (We multiply the function values by 10machinePrecision.)
Plot3D[Evaluate[10^$MachinePrecision Abs[f1[x + I y]]], 
       {x, -3, 3}, {y, -3, 3}, PlotPoints -> 20]

Plot[Abs[f1[x]], {x, -3, 3}, 
     PlotRange -> All, Frame -> True, Axes -> False]

To get a function that is 1 on the unit circle, we map the negative real line onto the unit circle using z Ø logHzL ê i - 2 p.

f2[z_] = f1[Log[z]/I - 2Pi]

Here is a graphic of f2 over the complex z-plane. (We multiply the function values by 10machinePrecision.)

Plot3D[Evaluate[10^$MachinePrecision Abs[f2[x + I y]]], 
       {x, -3, 3}, {y, -3, 3}, PlotPoints -> 30]

On the unit circle, the function is 1. We use the function Simplify to show this property symbolically.

Table[f2[Exp[I ϕ]], {ϕ, 0, 2Pi, 2Pi/12}] // Simplify

Outside the unit circle, the function is 0. We use the function FullSimplify to show this property symbolically.

Table[f2[999/1000 Exp[I ϕ]], {ϕ, 0, 2Pi, 2Pi/12}] // FullSimplify

Table[f2[1001/1000 Exp[I ϕ]], {ϕ, 0, 2Pi, 2Pi/12}] // FullSimplify

At z = 0, the function f2 is not defined.

f2[0]

No other finite value z exists where f2[z] is undefined. For this to happen, -2 Pi - I Log[z] must vanish, which
is not possible.

Σ (* session summary *) TMGBs`PrintSessionSummary[]

b) As an initial step, it is straightforward to construct a function that vanishes in the whole left-side plane and is 1 in the
right-hand plane. Here is such a function.

f1[z_] = 1 + (Sqrt[z^2] - z)/(2z)

At z = 0, the function f1 is undefined.

f1[0]

Plot3D[Abs[f1[x + I y]], {x, -12, 12}, {y, -12, 12}, 
       PlotPoints -> 50, PlotRange -> All]

Using the conformal map z Ø 1 ê Hz + 1L - 1 ê2, we can map the right-hand plane onto the unit disk.

f2[z_] = f1[1/(z + 1) - 1/2]

The resulting function f2 has the desired property to vanish outside the unit circle and be 1 inside the unit circle. The
next graphic shows the real and the imaginary part of f2 over the complex z-plane. The imaginary part shows fluctua-
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tions caused by differences in the last digit of machine numbers of size 100.
Show[GraphicsArray[
Function[{reIm}, 
Plot3D[reIm[f2[x + I y]], {x, -3, 3}, {y, -3, 3}, 
       PlotPoints -> 120, PlotRange -> All, Mesh -> False,
       DisplayFunction -> Identity]] /@ 
       (* real and imaginary part *) {Re, Im}]]

On the unit circle, the function f2 has two undefined points, z = ≤1; it is 0 on the upper half of the unit circle and 1 on
the lower half. 

(* avoid messages *)
Off[Power::infy]; Off[Infinity::indet]; Off[N::meprec]
Table[f2[Exp[I ϕ]], {ϕ, 0, 2Pi, 2Pi/12}] // N[#, 22]&

Σ (* session summary *) TMGBs`PrintSessionSummary[]

c) Similarly to the last two problems, we will make use of the branch cuts of analytic functions. Let us start to build a
function that is 1 at z = 0 and 0 almost everywhere else. The following function is 1 on the negative real axis.

f1[x_] = (Sqrt[x] - 1/Sqrt[1/x])/(2 I Sqrt[-x]);

Plot[Abs[f1[x]], {x, -5, 5},
     PlotRange -> All, Frame -> True, Axes -> False,
     PlotStyle -> {Thickness[0.01]}]

It is zero everywhere else.

{f1[4], f1[0.1], f1[-N[3, 22] - I]}

The next function f2 does not vanish anywhere and is negative along the negative real axis.

f2[x_] = x + Sqrt[x - 2] Sqrt[x] - 1;

Plot[Re[f2[x]], {x, -5, 5}, 
     PlotRange -> All, Frame -> True, Axes -> False,
     PlotStyle -> {Thickness[0.01]}]

At the point where the real part of f2 vanishes, its imaginary part does not.

f2[1]

Using f1 and f2, we can build a function f3 that is 1 at z = 0, and 0 everywhere else on the real axis.

f3[z_] = f1[f2[z]] + f1[f2[-z]] - 1;

f3[0]

Plot[Abs[f3[x]], {x, -5, 5}, 
     PlotRange -> {-1, 1}, Frame -> True, Axes -> False,
     PlotStyle -> {Thickness[0.01]}]

Here is another possibility for a function with the required properties.

f4[x_] = f1[I x - 3]

f4[0]

Plot[Abs[f4[x]], {x, -5, 5}, 
     PlotRange -> {-1, 1}, Frame -> True, Axes -> False,
     PlotStyle -> {Thickness[0.01]}]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

d) The function f1 is 1 along negative real axis.
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f1[x_] = (Sqrt[x] - 1/Sqrt[1/x])/(2 I Sqrt[-x]);

Plot[Abs[f1[x]], {x, -3, 3},
     PlotRange -> All, Frame -> True, Axes -> False,
     PlotStyle -> {Thickness[0.01]}]

The function f2 is 1 everywhere on the real axis (with the exception of 0, a point we will exclude later).

f2[x_] = f1[-x^2];

Plot[Abs[f2[x]], {x, -3, 3},
     PlotRange -> {0, 2}, Frame -> True, Axes -> False,
     PlotStyle -> {Thickness[0.01]}]

Using  now  the  function  f3  which  does  not  vanish  anywhere,  we  can  construct  the  function  f4  with  the  required
property.

f3[x_] = x + Sqrt[x - 2] Sqrt[x] - 1;

f4[x_] = 1 - f2[f3[2x]];

{f4[0], f4[1]}

Plot[Abs[f4[x]], {x, -3, 3},
     PlotRange -> All, Frame -> True, Axes -> False]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

e) This is a graph of the function to be modeled.

Plot[Floor[x], {x, -4, 4}, PlotStyle -> {Thickness[0.01]}]

A function that is stepwise constant is, for instance, x - tanH-1LHtanHxLL.
Plot[x - ArcTan[Tan[x]], {x, -8, 8},
     PlotStyle -> {Thickness[0.01]}]

Adjusting  the  step  size  and  the  step  height  of  the  last  function  leads  to  the  function  x + tan-1HcotHp xLL ë p - 1 ê2.  Its

graph coincides with the graph of dxt.
f[x_] := x + ArcTan[Cot[Pi x]]/Pi - 1/2

Plot[f[x], {x, -4, 4}, PlotStyle -> {Thickness[0.01]}];

At integer values, the function f is ill defined.

{f[-2], f[-1], f[0], f[1], f[2]}

For similar expressions for dxt, see [62÷].

Σ (* session summary *) TMGBs`PrintSessionSummary[]

f) This is a graph of the function to be modeled.

Plot[IntegerPart[Mod[x, 2]], {x, -4, 4},
     PlotRange -> All, PlotStyle -> {Thickness[0.01]}]

A function that is stepwise constant is, for instance, sin2HxL ì sinHxL.

Plot[Sqrt[Sin[x]^2]/Sin[x], {x, -8, 8},
     PlotStyle -> {Thickness[0.01]}]

Adjusting the step size and the step height of the last function leads to the function J1 - Isin2Hp xLM1ê2 í sinHp xLN í 2. Its

graph coincides with the graph of x mod 2.
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f[x_] := (1 - Sqrt[Sin[Pi x]^2]/Sin[Pi x])/2

Plot[(1 - Sqrt[Sin[Pi x]^2]/Sin[Pi x])/2, {x, -4, 4},
     PlotRange -> All, PlotStyle -> {Thickness[0.01]}]

At integer values, the function f is ill-defined.

{f[-2], f[-1], f[0], f[1], f[2]}

Σ (* session summary *) TMGBs`PrintSessionSummary[]

g) This is a graph of the function to be modeled.

Plot[(1 - 2 Abs[Round[x/2] - x/2]), {x, -4, 4},
     PlotRange -> All, PlotStyle -> {Thickness[0.01]}]

A  sawtooth  function,  that  is,  for  instance,

sinH-1LHsinHxLL .
Plot[ArcSin[Sin[x]], {x, -8, 8},
     PlotStyle -> {Thickness[0.01]}]

Adjusting the step size and the step height of the last function leads to the function Isin-1HsinHp x + p ê2LL + p ê2M ë p. Its

graph coincides with the graph of x mod 2.

f[x_] := (ArcSin[Sin[Pi x + Pi/2]] + Pi/2)/Pi

Plot[f[x], {x, -4, 4},
     PlotRange -> All, PlotStyle -> {Thickness[0.01]}]

The two functions also agree at the nondifferentiable points.

{f[-2], f[-1], f[0], f[1], f[2]}

Σ (* session summary *) TMGBs`PrintSessionSummary[]

  8. ArcTan[(x + 1)/y]- ArcTan[(x - 1)/y] Picture 

Here is the function to be displayed.

f[x_, y_] := ArcTan[(x + 1)/y] - ArcTan[(x - 1)/y]

∂ = 10^-14;

Plot3D[Evaluate[f[x, y]], {x, -Pi, Pi}, {y, ∂, Pi},
       PlotPoints -> 50, PlotRange -> All]

ArcTan  is  a  smooth  function  for  real-valued  xy,  but  as  xy  ±Infinity,  it  approaches  the  different  limiting
values ±Pi.

Plot[ArcTan[xy], {xy, -5, 5}, PlotStyle -> {Thickness[0.01]}]

Plot[ArcTan[1/xy], {xy, -5, 5}, PlotStyle -> {Thickness[0.01]}]

Now, let us look at x/y. For small y in H-¶, ¶L, the argument becomes large and changes sign, so we have a jump at
y = 0.

Plot3D[ArcTan[x/y], {x, -Pi, Pi}, {y, -Pi, Pi},
       PlotPoints -> 30]

Show[Plot3D[ArcTan[x/y], {x, -Pi, Pi}, #,
            PlotPoints -> {60, 30}, DisplayFunction -> Identity]& /@
            {{y, ∂, Pi}, {y, -∂, -Pi}},
     PlotRange -> All, DisplayFunction -> $DisplayFunction]
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Now let us look at the difference ArcTan[(x + 1)/y] - ArcTan[(x - 1)/y]. Taking the above into account
means that for x > 1 and x < -1, the two jumps cancel, and for -1 < x < 1, they add. For y > 0, y Ø 0, they add to p,
and for y < 0, y Ø 0, they add to -p.

Show[Plot3D[Evaluate[f[x, y]], {x, -Pi, Pi}, #,
            PlotPoints -> {60, 30},
            DisplayFunction -> Identity]& /@
             {{y, 10^-14, Pi}, {y, -10^-14, -Pi}}, 
     PlotRange -> All, DisplayFunction -> $DisplayFunction]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

  9. ArcSin[ArcSin[z]] Picture

The function ArcSin has two branch points at +1 and -1.

Plot3D[Im[ArcSin[x + I y]],
       {x, -3, 3}, {y, -3, 3}, PlotPoints -> 40]

Plot3D[Re[ArcSin[x + I y]],
       {x, -3, 3}, {y, -3, 3}, PlotPoints -> 40]

This means the function ArcSin[ArcSin[z]]  will have branch points at +1 and -1 as well, and in addition at the
points where ArcSin[z]=±1. This is the case at z=±ArcSin[1].

{Sin[1], Sin[-1]} // N

Here, the resulting picture is shown.

Plot3D[Im[ArcSin[ArcSin[x + I y]]], {x, -3, 3}, {y, -3, 3}, 
       PlotPoints -> 40]

In this picture, the original branch points at ±1 are not easy to recognize. Zooming in a bit, we see them more clearly.

Plot3D[Im[ArcSin[ArcSin[x + I y]]], {x, 0.7, 1.2}, {y, -0.1, 0.1}, 
       PlotPoints -> 40]

Following the imaginary part just above the real axis, we see the original branch points quite pronounced.

Plot[Im[ArcSin[ArcSin[x + I 10^-12]]], {x, 0.7, 1.2}, 
     AxesOrigin -> {0.7, 0}, PlotStyle -> {Thickness[0.006]}]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

10. Singularities of tanhHsinhHcotHzLLL, expJlni pHzLN Properties

a)  The  following  picture  shows  a  coarse  contour  plot  of  the  real  part  of  the  function  wHzL.  The  periodicity
wHzL = wHz + pL caused by the innermost cot function is clearly visible.

w[z_] = Tanh[Sinh[Cot[z]]];

(* suppress messages arising from trying to calculate very small
   and very large numbers *)
Off[General::ovfl]; Off[General::unfl];
ContourPlot[Re[w[x + I y]], {x, -Pi, Pi}, {y, -1, 1}, 
            Contours -> 20, PlotPoints -> 120, ContourLines -> False,
            ColorFunction -> (Hue[0.8 #]&)]

The singularities of the innermost cot function are poles of order 1 at z = k p. (We will discuss the function Series in
Chapter 1 of the Symbolics volume [67÷].)
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Series[Cot[z], {z, 0, 2}]

Sinh  does  not  have  singularities  by  itself.  The  cot  poles  become essential  singularities.  (This  becomes  obvious  when
recalling  the  identity sinhHzL = Hez - e-zL ê2.)  In  a  contour  graphic,  essential  singularities  of  the  type  expH1 ê zL  show a
typical flower-like form.

ContourPlot[Re[Sinh[1/(x + I y)]], {x, -0.5, 0.5}, {y, -0.3, 0.3}, 
            Contours -> 50, PlotPoints -> 250, ContourLines -> False,
            ColorFunction -> (Hue[0.8 #]&), AspectRatio -> Automatic]

The outer function tanh has singularities at z = iHp ê2 + k pL, k œ . The singularities are again poles of order 1.

Series[Tanh[z], {z, I Pi/2, 2}]

In a contour plot, poles of order 1 are visible as nested eight-shaped regions.

ContourPlot[Re[Tanh[x + I y]], {x, -5, 5}, {y, -8, 8}, 
            PlotPoints -> 120, ContourLines -> False,
            ColorFunction -> (Hue[0.8 #]&), Contours -> 20]

The  essential  singularities  at  z = k p  stay  essential  singularities  under  the  mapping  z Ø tanhHzL.  In  addition,  the  men-
tioned first-order poles from tanh appear as singularities. They are located at sinhHcotHzLL = iHp ê2 + k pL, k œ . Solving
the last equation for the position of these poles by inversion, and taking into account the symmetry and periodicity of
sinh and cot,  gives z = arccotHarcsinhHiHp ê2 + k pL + i l pLL + m p, k, l, m œ .  The terms m p  represent the periodicity
along the real axis. The double infinite set of poles indexed by k  and l  lie along contours that form the flower-shaped
essential singularities and cluster at the essential singularities. The following graphic shows again a contour plot of wHzL
(this time we use the imaginary part) together with the location of some of the poles (indicated as crosses).

somePoles = Flatten[Table[ArcCot[ArcSinh[I(Pi/2 + k Pi)] + I l Pi],
                          {k, -10, 10}, {l, -10, 10}] // N, 1];

makeCross[z_] := (* a small cross *)
Module[{x = Re[z], y = Im[z], l = 0.01},
       {Line[{{x, y - l}, {x, y + l}}], 
        Line[{{x - l, y}, {x + l, y}}]}]

ContourPlot[Im[w[x + I y]], {x, 0, 0.5}, {y, 0.02, 0.5}, 
            Contours -> 50, ContourLines -> False,
            PlotPoints -> 120, ColorFunction -> (Hue[3 #]&),
            (* plot crosses on top *)
            Epilog -> {Thickness[0.001], GrayLevel[0],
                       makeCross /@ somePoles}]

Along the real axis, the function wHxL has the interesting property that the derivatives of all orders vanish when approach-
ing the singularities. As a result, the graph of the function is nearly parallel to the x-axis.

Plot[w[x], {x, 0, Pi}, Frame -> True, Axes -> False]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

b)  The branch cuts of the function f HzL  arise from the branch cuts of the functions ln and power. The inner logarithm
gives  rise  to  a  branch  cut  along  the  interval  H-¶, 0D.  The  function  gHzL = zi p = expHi p lnHzLL  again  has  a  branch  cut

along the interval H-¶, 0D. This means that lni pHzL has an additional branch cut along the interval @0, 1D.
Let z = †z§ ei j. Then we have the following identities for the absolute value and the argument of the functions ln, power,
and exp.

lnHzL = j2 + log2H†z§L  expHi arctanHlogH†z§L, jLL

80 Printed from THE MATHEMATICA GUIDEBOOKS

©  2004, 2005   Springer Science+Business Media, Inc.



zi p = e-p j expHi HcosHp logH†z§LL, sinHp logH†z§LLLL

expHzL = e†z§ cosHjL expHi arctanHcosH†z§ sinHjLL, sinH†z§ sinHjLLLL

Putting the last formulas together leads to the following expression for argIexpIlni pHzLMM.
argIexpIlni pHzLMM =

arctanKcosKe-p arctanHlogH†z§L,jL sinKarctanKcosKp logK j2 + log2H†z§L OO, sinKp logK j2 + log2H†z§L OOOOO,

sinKe-p arctanHlogH†z§L,jL sinKarctanKcosKp logK j2 + log2H†z§L OO, sinKp logK j2 + log2H†z§L OOOOOO

The dominating term of the last expression is expH-p arctanHlogH†z§L, jLL. For 0 d x d 1 and 0 d y d -p, this expression
takes on large values compared to the other expressions that are bounded by ≤1. Here this is visualized.

g[r_, ϕ_] = Exp[-Pi ArcTan[Log[r], ϕ]];

Show[GraphicsArray[{Show[#], Show[#, ViewPoint -> {4, 0.4, 1}]}&[
Plot3D[g[Sqrt[x^2 + y^2], ArcTan[x, y]], {x, -1/2, 3/2}, {y, 1, -1},
       PlotPoints -> 200, Mesh -> False, PlotRange -> All, 
       AspectRatio -> Automatic, DisplayFunction -> Identity]]]]

The  large  values  of  gHr, jL  in  arctanHcosHgHr, jL hHr, jLL, cosHgHr, jL hHr, jLLL  where  hHr, jL  is  the  following  bounded
function with an oscillating behavior near z = 1 causes most of the structure in argH f HzLL.

h[r_, ϕ_] := Sin[ArcTan[Cos[Pi Log[Sqrt[Log[r]^2 + ϕ^2]]], 
                        Sin[Pi Log[Sqrt[Log[r]^2 + ϕ^2]]]]]

Plot3D[h[Sqrt[x^2 + y^2], ArcTan[x, y]], {x, -2, 2}, {y, 1, 0},
       PlotPoints -> 200, Mesh -> False, PlotRange -> All, 
       AspectRatio -> Automatic]

(* definition for f(z) *)
f[z_] := Exp[Log[z]^(Pi I)]

(* for z == 1/2 I f[z] agrees with above definition *)
{Arg[f[-1/2I]], ArcTan[Cos[g[1/2, -Pi/2] h[1/2, -Pi/2]],
                       Sin[g[1/2, -Pi/2] h[1/2, -Pi/2]]]} // N

The large values of  gHr, jL  result  in  argIexpIlni pHzLMM  being a highly oscillating function inside the rectangle 0 d x d 1

and  0 d y d -1 ê2.  The  following  function  argPlot  shows  a  density  plot  of  argIexpIlni pHzLMM  in  the  square

8-L, L< μ 8-L, L<.
argPlot[L_, opts___] := 
DensityPlot[Arg[Exp[Log[x + I y]^(Pi I)]], {x, -L, L}, {y, -L, L},
            opts, PlotPoints -> 500, ColorFunction -> Hue,
            PlotRange -> {-Pi, Pi}, Mesh -> False,
            FrameTicks -> None]

Because  of  the  logarithmic  singularity  along  the  real  axis,  for  smaller  and  smaller  L  we  obtain  qualitatively  similar
pictures despite L varying over many orders of magnitude.

Show[GraphicsArray[argPlot[#, DisplayFunction -> Identity]& /@
     {1, 10^-3, 10^-6}]]

For an analysis of the near z º 0 especially smooth function wHzL = expIln2HzLM, see [55÷].

Σ (* session summary *) TMGBs`PrintSessionSummary[]
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11. Exp[-1/Im[1/(-Log[Infinity] + 2)^2]]

The evaluation starts with log(¶); the result is Indeterminate.

Log[Infinity]

The next operation is x Ø 1 ë Hx + 2L2, which results in 0.

1/(-Infinity + 2)^2

The imaginary part of 0 is again 0.

Im[0]

-1 ê0 gives ComplexInfinity (the direction in the complex plane is not known).

-1/0

Exp[ComplexInfinity] finally gives Indeterminate.

Exp[ComplexInfinity]

Here, all calculations are carried out at once.

Exp[-1/Im[1/(-Log[Infinity] + 2)^2]]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

12. Predict the Result 

Exp[I 2]  is  a  number  of  absolute  value  1.  This  number  gets  multiplied by the  rational  number  (1 - 10^-21).
The result is then calculated with 22 digits of precision. 

N[(1 - 10^-21) Exp[I 2], 22]

The result is a number that has an absolute value less than 1.

Abs[%]

Raising this number to the power ¶ gives 0.

N[(1 - 10^-21) Exp[I 2], 22]^Infinity

In the second example, we multiply Exp[I 2] by 1 - 10^-23 and calculate again a 22-digit approximation of this
number. (But this time, we would need at least 23 digits to recognize that the number has an absolute value less than 1.)

Abs[N[(1 - 10^-23) Exp[I 2], 22]]

Because, given the last number, it is not known if the number is slightly less, exactly equal to, or slightly larger than 1
in absolute value, the result of raising the number to power ¶ results in Indeterminate.

N[(1 - 10^-23) Exp[I 2], 22]^Infinity

Σ (* session summary *) TMGBs`PrintSessionSummary[]

13. tanHk êaL+ tanHa kL Picture

This is the definition of tanPicture.
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tanPicture[α_] := 
ListPlot[Table[Tan[α k] + Tan[1/α k], {k, 20000}],
         PlotStyle -> {PointSize[0.001]}, Frame -> True, 
         Axes -> False, FrameTicks -> None,
         PlotRange -> {-2, 2}, (* do not display single graphics *) 
         DisplayFunction -> Identity]

Here is a list of different values of values for a  that result in “qualitatively different” looking pictures. (The list is not
complete; it just represents a semi-random selection.)

αList = {(* first row *)
         2.1450489763149355 10^-15, 7.00444977688695 10^-13,
         2.868659950132477 10^-10, -2.9894725892552067 10^-6,
         (* second row *)
         -0.0000352291969801675, 0.00008138, 0.0001697076, 0.000468, 
         (* third row *)
         0.0011016, -0.00683519, -0.026557, 0.0296867, 
         (* fourth row *)
         0.03296462, -0.05, -0.09825684, 0.245933, 
         (* fifth row *)
         -0.8872561, 2.8614911, -3.28630, -35.7184, 
         (* sixth row *)
         -4375.253, -221.335, -794.232, 1707.33, 
         (* last row *)
         2405.25, 2701.76, -174277.21, -5.13315 10^8};

Here are the corresponding graphics.

Show[GraphicsArray[tanPicture /@ #]]& /@ Partition[αList, 4]

Be aware that these graphics are not always (mathematically) correct. Due to the use of machine arithmetic, some of the
values of tanHk aL + tanHk ê aL are wrong. The next graphic shows the second of the above graphics calculated using high-
precision arithmetic. 

Show[tanPicture[N[700444977688695 10^-27, 30]],
     DisplayFunction -> $DisplayFunction]

Σ (* session summary *) TMGBs`PrintSessionSummary[]
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P    R    O    G    R    A    M    M    I    N    G

CHAPTER  3

Definitions and Properties 
of Functions

3.0 Remarks
In this chapter, we discuss how to define simple functions in Mathematica. By simple, we mean simple in the form of
their arguments. (Much more wide-ranging possibilities for defining functions will be presented in Chapter 5.) Defini-
tions of recursive functions [46÷] and pure functions, along with attributes of functions, are important building blocks
for  the  use  of  Mathematica  to  model  arbitrary  mathematical  structures.  Their  applications  range  from  simple  to
extremely complex. 

(* no spelling warnings, set fonts for tick labels, ... *)
Get[ToFileName[ReplacePart["FileName" /. 
 NotebookInformation[EvaluationNotebook[]], "Initialization.m", 2]]];

3.1 Defining and Clearing Simple Functions

à 3.1.1 Defining Functions
It is essential to know when Mathematica  is to carry out a symbolic operation, that is, whether a function is evaluated
immediately when it is defined or only later when it is called. Indeed, if it is evaluated later, some of the values of the
variables and functions involved in the right-hand side of the definition may have changed. Moreover, the result of an
operation  can  depend  on  the  concrete  structure  of  the  argument.  Thus,  two  possibilities  for  defining  functions  exist:
Set  and  SetDelayed.  As  a  prerequisite  for  the  following  example,  we  introduce  the  commands  Expand  and
Factor. We will use Expand in the following examples to show the difference. 

 

Expand[expression]

multiplies out all products and (positive) integer powers appearing in the highest level of 
expression. 

Factor does the opposite of Expand. 
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Factor[expression]

factors the highest level of expression, when possible. 

Here is an example. 

Expand[((1 + x)^2 + (2 + y)^3)^2]

Here is a univariate polynomial of degree 12 with the interesting property that its expanded square has fewer terms than
the original polynomial [1÷], [15÷].

Expand[(1 + 2 x - 2 x^2 + 4 x^3 - 10 x^4 + 50 x^5 + 15 x^6 - 
        220 x^7 + 220 x^8 - 440 x^9 + 1100 x^10 - 5500 x^11 - 
        13750 x^12)^2]

Length[%]

Products  lying  at  deeper  levels  are  not  immediately multiplied  out.  (We  discuss  in  detail  how  we  can  reach  them in
Chapter 6.) 

Expand[((1 + x)^2)^(1/2)]

The same statement for Factor in the equivalent expression. 

Factor[Sqrt[x^2 + 2 x + 1]]

It also factors only the expression itself, not the parts of the expression. 

Factor[x^2 + 2 x + 1]

Factor  and  Expand  work  only  on  polynomials.  Other  expressions,  like  trigonometric  functions,  can  be  expanded
and factored using the specialized functions TrigExpand and TrigFactor. 

 

TrigFactor[expression]

converts all powers of trigonometric functions in the highest level of expression into 
trigonometric functions with multiple angles. 

Here are the powers of sinHxL and cosHyL rewritten as multiple angles.

TrigFactor[α Sin[x]^4 + β Cos[y]^6]

If  we  use  TrigFactor,  the  powers  of  Sin[y]  and  Cos[x]  are  converted  to  Sin[n  x],  Cos[n x].  But  the
resulting expression as a whole is not fully expanded.

TrigFactor[((1 + Sin[y])^2)^2 + ((2 + Cos[x])^3)^2]

Expanding the resulting expression yields a manifestly real result.

Expand[%]

Be aware that only explicitly occurring powers are always converted. If the powers are implicitly present (meaning only
after expanding an expression), TrigFactor will frequently not transform the trigonometric functions.

TrigFactor[((2 + Sin[y])^2)^2] + TrigFactor[((3 + Cos[x])^3)^2]

In the next input, TrigFactor generates a result that is a product of trigonometric functions with argument x ê2.

{TrigFactor[1 + Sin[x]], TrigFactor[1 + Cos[x]]}

TrigFactor operates also on hyperbolic functions.

TrigFactor[Expand[((1 + Sinh[y])^2)^2] + TrigFactor[((2 + Cosh[x])^3)^2]] /
           Expand
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The trigonometric equivalent of Expand is TrigExpand.

 

TrigExpand[expression]

converts all trigonometric functions with multiple angles in the highest level of expression into 
powers of trigonometric functions. 

Here are again two simple examples, one with trigonometric functions and one with hyperbolic functions.

TrigExpand[(2 + Cos[2 x] - 2 Cos[4 x] - 3 Cos[6 x])/32]

TrigExpand[1 + Cosh[3 x] + Tanh[5 x]]

We now explain  how to  define  a  function f HxL  depending  on  an  arbitrary variable  x  that  is  to  be  specified later.  The
explanation  is  based  on  patterns  standing  for  completely  arbitrary  expressions  or  whole  classes  of  expressions.  In
Mathematica, these patterns are represented with Blank and Pattern.  

 

Blank[] 

or 
_

is a pattern standing for an arbitrary Mathematica expression. 

Blank[head]
or 

_head

is a pattern standing for an arbitrary Mathematica expression with the head head. 

 

Pattern[x, Blank[]]
or

much shorter x_

is a pattern named x standing for an arbitrary Mathematica expression. 

Pattern[x, Blank[head]]
or

much shorter x:_head
or

still shorter x_head

is a pattern named x standing for an arbitrary Mathematica expression with the head head. 

We look at the output of the short forms shown by FullForm. 

FullForm[_]

FullForm[_Real]

FullForm[x_]

FullForm[x_Integer]

The colon in Pattern is typically not visible; however, it is needed in compound 
expressions. 
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Here, the colon is suppressed in the InputForm.

x:_h

FullForm[%]

InputForm[%%]

For patterns that do not contain Blank, the colon is needed. Here we input the (fixed) pattern fixedPatternWith
outBlank.

InputForm[name:fixedPatternWithoutBlank]

The colon is also needed for the following compound expression.

theWholeExpression:(summand1_ + summand2_)

And the following (currently,  semantically not  very useful)  expression does not  use a colon or _; instead, the Full
Form is used.

Pattern[pattern[1], Blank[value[1]]] // InputForm

Actually, such expressions using a colon would not be correct syntactically.

pattern[1]:Blank[value[1]]

Here is a more complicated expression using Pattern and Blank. Be aware that parentheses are needed for group-
ing. a, b, c, and d all represent the pattern e.

a:(b:(c:(d:e_))) // FullForm

Using InputForm, we also get the parentheses.

a:(b:(c:(d:e_))) // InputForm

For a function definition, the x in x_ must have the head Symbol (i.e., it cannot be a number, a 
product, or a composite expression). 

Pattern structures of the form x:_head with Blank along with more general and specialized forms will be discussed in
detail in Chapter 5. Now, we have everything we need to define our own function. Let us define a function that squares
its argument and multiplies out the result. The following x_ stands for an arbitrary x (remember the typeset convention
to use italic slant for user-supplied arguments); it is only called x in this definition of our function, and it represents a
pattern standing for one arbitrary expression. 

multiplyItOut[x_] = Expand[x^2]

Here, we use multiplyItOut with various arguments (not the x from the above definition). 

multiplyItOut[x]

multiplyItOut[ξ]

multiplyItOut[5]

multiplyItOut[i]

multiplyItOut[I]

No expansion happens in the following example.

multiplyItOut[2 + Sqrt[2] I]

In case the real or imaginary part are inexact numbers, the square autoevaluated to one complex number with approxi-
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mate real and imaginary parts.
multiplyItOut[2 + Sqrt[2.] I]

multiplyItOut[2. + Sqrt[2] I]

The x in the first of the examples above has nothing to do with the x_ on the left-hand side of multiplyItOut, or
with  the  x  on  the  right-hand  side  in  the  definition  of  multiplyItOut.  The x  on  the  right-hand  side  in  a  function
definition is only defined locally for the sake of defining the function. This x relates only to the x on the left-hand side
in  the  form  x_  (in  case  of  f[x_] = somethingContainingx.  The  right-hand  side  of  the  definition  is  immediately
evaluated, which means if x already has a value, this value is used). The x, 5, i, and I we gave were actual arguments
of the function multiplyItOut. 

The following uses of multiplyItOut show the importance of the word arbitrary in the above discussion. 

multiplyItOut["this is a string"]

multiplyItOut[Times]

multiplyItOut[hj[tz[ui[t]]]]

multiplyItOut[multiplyItOut[multiplyItOut[2]]]

multiplyItOut[garbage can]

multiplyItOut[Sqrt[2]]

Note that the x_  in our definition of multiplyItOut  stands for exactly one arbitrary argument, not for zero argu-
ments, or for two or more arguments. If we use multiplyItOut without a variable or with more than one variable, it
does not do anything, because now the pattern used in the definition of the function does not match. 

multiplyItOut[]

multiplyItOut[2, 3]

multiplyItOut[2, 3, h]

The following argument (1 + 2 x) (2 + 3 y)  is not expanded further because, at the time of the definition of
the function multiplyItOut, we already multiplied and Expand  is no longer present in the definition of multi
plyItOut. 

multiplyItOut[(1 + 2 x) (2 + 3 y)]

Using ??, we see the current definition associated with multiplyItOut. 

??multiplyItOut

We now define another function that squares its argument, and then multiplies the result out. In the following example,
we use := instead of = as above, which will make a big difference under certain circumstances.

multiplyItOutWithColon[x_] := Expand[x^2]

The next input gives the desired result. 

multiplyItOutWithColon[(1 + 2 x) (2 + 3 y)]

multiplyItOut[(1 + 2 x) (2 + 3 y)]

And, of course, explicit complex numbers get multiplied out too.

multiplyItOutWithColon[2 + Sqrt[5] I]

Next, we define a function making use of the possibility of specifying the head of the argument. 
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fxo[x_fxo] = x;

The definition is applied as often as possible. 

fxo[fxo[fxo[x]]]

If the argument does not have a head that is fxo, nothing is done. 

fxo[fx[fxo[x]]]

Here is another example, wherein the definition of the function is applied several times. 

recursivelyApply[0] = 0;
recursivelyApply[x_Integer] := recursivelyApply[(x - 1)/2];

The computation of the example is accomplished by computing in order. 

recursivelyApply[31]

The value of the last expression is 0 and follows directly from the above definition. Here is a sketch of the sequence of
evaluations:
recursivelyApply[31]  7
 recursivelyApply[ 7]  3
  recursivelyApply[ 3]  1
   recursivelyApply[ 1]  0
    recursivelyApply[ 0]  0

The examples above explain the difference between using  =  and  :=. 

 

Set[x, y] or x = y

immediately evaluates y and assigns the result to x. From then on, whatever y evaluated to, this 
value of y will be substituted for every further appearance of x. 

SetDelayed[x, y] or x := y

assigns the unevaluated value of y to x. When x is evaluated later, the value of y at this time 
will be substituted for x.

The definition of functions for arbitrary arguments involves a pattern on the left-hand side. 

 

f[x_] = functionOfx 

defines a function f for which any arbitrary argument can be given for x. The computation of 
functionOfx is carried out to the extent possible when f is defined. If y is later input to f[y], y 
will replace any instances of x in functionOfx and the resulting expression will be evaluated 
further, if possible. 

f[x_] := functionOfx 

defines a function f for which any arbitrary argument can be given for x. The computation of 
functionOfx is not carried out until f is called with some particular argument y. 

The  FullForm  of  f[x_]  =  functionOfx  is  as  follows:  Set[f[Pattern[x,  Blank[]]],
functionOfx]

The FullForm of f[x_] := functionOfxLater is as follows:

SetDelayed[f[Pattern[x, Blank[]]], functionOfxLater]

Their FullForm cannot be seen by using the following construction. 
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FullForm[f[x_] = functionOfx]

FullForm[f[x_] := functionOfxLater]

In  this  construction,  the  argument  of  FullForm,  that  is,  the  function  definition  itself,  is  evaluated  and  then  Full
Form applies. We will discuss later in this chapter how to generate the above FullForm programmatically.

Note  that  the  result  of  Set  is  the  right-hand  side  of  the  input  value,  whereas  the  result  of  SetDelayed  is  Null
(meaning “nothing”);  that  is,  we only have a function definition,  and no value has been returned.  The right-hand side
cannot be returned because it will not be evaluated.

Integrate is another command in which the difference between Set and SetDelayed is very important. 

 

Integrate[f, x]

computes the indefinite integral of f with respect to the variable x. 

Here is an example. 

Integrate[x Sin[x], x]

We now define our own integration program, which we call integrate. As a first try, we define it using the follow-
ing input. 

integrate[fu_, x_] = Integrate[fu, x]

??integrate

This time, we implemented a two-argument function; both arguments were specified using the construction var_.  The
right-hand side of the definition of integrate was evaluated immediately, and at this time fu did not depend on x.
The result of the integration is fu*x. (fu was considered to be an x-independent constant.)

From now on, integrate is associated with the function definition integrate[fu_, x_] = fu*x. 

??integrate

integrate[x^3, x]

The following definition is what we probably want. 

integrateNew[fu_, x_] := Integrate[fu, x]

integrateNew[x^3, x]

Note that in this example, the simplest solution would have been integrate = Integrate. 

When in doubt, it is often better to use := instead of =. However, the price of always using := 
is possibly a substantial loss of efficiency, depending on the complexity of the right-hand side, 
because the operations defining it may have to be carried out more often than is necessary. 

Note that with both Set and SetDelayed, variables on the right-hand side cannot be assigned any value if they also
appear on the left-hand side inside Pattern. The right-hand side in the following example consists of two parts to be
carried out for a given xyz. First, it is to be squared, and then the sin has to be taken. 

fq1[xyz_] = (xyz = xyz^2; Sin[xyz])

The large number appearing in the last error  message is a high power of 2.  We will discuss the reason for this in the
next chapter.

Log[2, %[[1, 2]]]
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Here is the equivalent construction using SetDelayed.

fq2[xyz_] := (xyz = xyz^2; Sin[xyz])
fq2[1]

In both cases, we get an error message (covered in Chapter 4). Note that we get different error messages with Set and
SetDelayed.  In  the  case  with  Set,  the  recursive  definition  is  carried  out  about  256  times,  and  then  Mathematica
stops this process. We will discuss the failure in the SetDelayed case in a moment. 

Here is a definition using SetDelayed. It too leads to a recursion error. 

(lhs : ff[x_]) := [lhs]

ff[3];

The  whole  left-hand  side  of  the  definition  is  named lhs  in  the  pattern.  When  ff  is  called  with  an  argument  arg,  it
evaluates to [ff[arg]], which again causes the ff[arg] to evaluate, and so on. 

Be aware of the following: After defining f[x_] = somethingHxL or f[x_] := somethingHxL, 
using f[argument] causes every occurrence of x in the right-hand side of the definition to be 
replaced by argument. This process may lead to unexpected results. 

Here, this process is demonstrated. 

noGo[x_] := (x = 11)

myNewVar = 1;

noGo[myNewVar]

myNewVar did not get the value 11 (although 11 was given as the output), because after substitution of 1 for x in the
right-hand side of the definition of noGo, we had Set[1, 11]. This assignment is impossible to do. 

myNewVar

1 = 11

For the same reason, the above SetDelayed construction, which had the variable xyz on the left- and the right-hand
side, failed. 

Note  that  head  in  name_Blank[head]  cannot  itself  contain  a  Blank.  We  can,  in  principle,  make  the  following
definition. 

h1[Pattern[x, Blank[Blank[h2]]]] := 2

??h1

However,  our definition of h1  does not match any head, as we might expect by analogy with the fact that argument_
matches any argument argument. 

h1[h2[h3][x]]

It just matches the special head Blank[h2]. 

h1[Blank[h2][xy]]

Of  course,  to  have  a  function  taking  any  argument  of  the  form  arbitraryHead[x],  we  could  define  this  or  related
constructions like head_[argument_] or _[_]. 

extractHead[head_[x]] := head

Now the following example would work. 
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extractHead[testHead[x]]

In case head[x] does not evaluate, we could have also made the following definition.

extractHead2[head_[x_]] := head[x][[0]]

extractHead2[Sin[Pi/E]]

Functions  can  be  defined  not  only  with  variable  arguments,  that  is,  with  patterns  that  can  stand  for  many  potential
arguments, but also for arbitrary special arguments and/or variable types. Such definitions are possible with both Set
and SetDelayed. 

Here is a somewhat exotic but, for our purposes,  useful construction. We use a pattern with _, define the function for
special  values,  and  use  one  nested  pattern.  We  define  a  function  mySpecialFunction  containing  a  different
definition for each of the following cases. 

(* four definitions that match classes of arguments *)
mySpecialFunction[x_Integer]       := x^2;
mySpecialFunction[x_Real]          := x^4;
mySpecialFunction[x_Rational]      := x^6;
mySpecialFunction[x_Complex]       := x^8;
(* four definitions for concrete arguments *)
mySpecialFunction[x]               := nowJustx;
mySpecialFunction[Infinity]        := nowInfinity;
mySpecialFunction["stringSpecial"] := nowASpecialString;
mySpecialFunction[3]               := specialValueFor3;
(* one definition for arguments with the head myHead *)
mySpecialFunction[_myHead]         := "WithMySpecialHead";

In the next input definition, a pattern appears inside of inside. inside is a fixed head, but the argument x is variable.

mySpecialFunction[inside[x_]] := withInsideFunction[x];

Here is the current definition of mySpecialFunction. 

?? mySpecialFunction

This  definition  of  mySpecialFunction  always  yields  the  correct  value  if  applied.  With  an  argument  x  of  type
Integer, we get the argument squared. 

mySpecialFunction[2]

With the argument equal to 3, we get specialValueFor3. 

mySpecialFunction[3]

With a rational argument, we get the sixth power of the argument. 

mySpecialFunction[2/9]

When we input 9/3, it is not treated as a rational argument because it is first simplified to 3. 

mySpecialFunction[9/3]

With a Real argument, we get the fourth power of the argument. 

mySpecialFunction[2.]

If we input 2 + I 0, the argument is simplified to 2. Then the argument has the head Integer before mySpecial
Function is evaluated, and we get 4. 

mySpecialFunction[2 + I 0]

With an argument of type Complex, we get the eighth power of the argument. 
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mySpecialFunction[2. + I 0.0]

Here, again, the argument is simplified to type Rational, and we get x^6. 

mySpecialFunction[2/3 + I 0]

Next,  we  input  an  argument  of  type  String.  We  have  not  given  a  definition  for  an  arbitrary  element  of  this  type.
Thus, nothing is computed, and the result remains in the form function[argument]. 

mySpecialFunction["string"]

However, for the special argument "stringSpecial" of type String, we did give a nontrivial definition. 

mySpecialFunction["stringSpecial"]

For the special variable x, we get nowx. 

mySpecialFunction[x]

No definition was given for a general arbitrary variable without the head specification; so,  if  the input is of this type,
nothing is computed. 

mySpecialFunction[y]

Here is a look at the special structure mySpecialFunction[inside[…]] with an arbitrary inside argument. 

mySpecialFunction[inside[arbitraryInsideArgument]]

The head of the actual argument inside inside does not matter.

mySpecialFunction[inside[3]]

When giving a definition  of  the form _head,  only  the head is  important.  It  does  not  matter how many arguments are
actually present. 

mySpecialFunction[myHead[1, 2, 3, 4, 5, 6, 7, 8, 9]]

mySpecialFunction[myHead[]]

Note that in the definition of mySpecialFunction, we have only used SetDelayed. In defining a function f, it is
possible to  mix Set  and SetDelayed  definitions arbitrarily,  so long as the left-hand  sides differ.  If  they are equal,
the last  definition  given applies.  (This  discussion supposes  that the Condition  command, which we will  discuss in
Chapter 5, is absent.)

It is possible to give short implementations of complex functions using the structure 
Blank[head], where the definition of the function depends on the type of its argument. 

Here is an example in which SetDelayed has to be used. Every symbol symbol can be written as symbol ê1 and thus
has the trivial denominator 1. 

ABC[arg_Rational] = Denominator[arg];

ABC[5/6]

??ABC

This  assignment  happened  the  moment Denominator[arg]  was  calculated  in  the  definition  of  abc1.  The  1  was
returned when ABC[5/6] was called. 

Now, the denominator is extracted only for concretely prescribed arguments. (Note that the denominator of an approxi-
mative number is the integer 1.)
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abc[arg_Rational] := Denominator[arg];
abc[arg_Real] = arg;
{abc[5/6], abc[32.8]}

Function  definitions  with  the  structure  arg_  are  also  possible  for  functions  with  several  arguments.  We  demonstrate
this, with the following function xyzxyz. 

xyzxyz[] := 222;
xyzxyz[_] := 333;
xyzxyz[x_] := 444;
xyzxyz[x_, y_] := 555;
xyzxyz[x_, y] := 666;
xyzxyz[x_, y_, z_] := 777;

Here is the result of xyzxyz called with a various numbers of arguments. 

{xyzxyz,
 xyzxyz[x_],
 xyzxyz[],
 xyzxyz[hhh],
 xyzxyz[1, 1],
 xyzxyz[1, y],
 xyzxyz[1, 2, 3]}

It is not possible to simultaneously assign a value to a symbol used as a variable and to define a function with the same
name. 

ppo = 6;
ppo[x_] := x^2

In reverse order, no problem would occur in defining the function. 

opp[x_] := x^2
opp = 6

But a call on the function will often not give a useful result. 

opp[6]

opp[6] // N

Using Set, we have the same problem. 

ppoSet = 6;
ppoSet[x_] = x^2

oppSet[x_] = x^2
oppSet = 6

oppSet[6]

Because a function can be defined to give different values for different types of arguments, many programming advan-
tages exist. This feature was implemented in Mathematica on purpose. In complicated calculations, it may happen from
time to time that the head of an expression is only determined during the course of a calculation, and that this current
head  has  to  be  used  to  match the  pattern  in  a  function  definition.  Here  is  a  function  definition  working  only  for  real
arguments.

uOnlyForRealArg[x_Real] := x^2;

If we call this function with 0 as an argument, it remains unevaluated because 0 has the head Integer. 

uOnlyForRealArg[0]

Applying N to the last expression converts the integer 0 into the real number 0.0 and the definition above for uOnly
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ForRealArg matches. 

uOnlyForRealArg[0.0]

For a complex approximate zero, the definition above does not fire.

uOnlyForRealArg[0.0 + 0.0 I]

The last  shown behavior  might be  unexpected,  but  remember that  the head of  0.0 + 0.0 I  is  Complex  and not
Real.

When several contradictory definitions are given for a function, the more specific ones are 
used before the more general ones. 

The typical structures from general to specific are f[x_] ï f[x_head] ï f[xSpecial]. For example, we first give a
definition. 

aFunction[r_] := 3r;
aFunction[2] := 2;
aFunction[i_Integer] := 2 i;

The rules have been reordered.

??aFunction

Here are two “equally specific” rules.

fpq1[p_, q] = 1;
fpq1[p, q_] = 2;

Here are the currently stored definitions for fpq1.

??fpq1

Then, if the first argument is p,  or the second one is q,  everything is unique. What happens in the case when the two
arguments are just p and q? Which definition is more general? 

{fpq1[p, 1], fpq1[1, q], fpq1[p, q]}

When several definitions are given for a function that are of equal “generality”, or if 
Mathematica cannot tell which is more general, the definitions are used in the order in which 
they were input. 

This  fact  means  that  the  values  of  functions  may  depend  explicitly  on  the  order  in  which  their  definition  is  input.
Suppose we define a function fpq2 in the same way as fpq1, but reverse the order of the input. 

fpq2[p, q_] = 2;
fpq2[p_, q] = 1;

{fpq2[p, 1], fpq2[1, q], fpq2[p, q]}

We should  emphasize once more that  function definitions go immediately into effect,  instead of later  when the func-
tions  are  applied  to  a  nonpattern  argument.  This  process  happens  even  if  they  act  inside  other  function  definitions,
because the arguments are evaluated and already-known definitions are used. 

To  illustrate  this  fact,  we  consider  the  following  incorrect  attempt  to  mimic  the  operation  of  the  built-in  function
Expand.  The  first  definition  multiplies  out  an  expression  of  the  form a (b + c)  to  give  a b + a c,  and  the
second definition expresses the desire that a multiple application of the following firstExpandAttempt should be
the same as one application. (In principle, this is superfluous and should happen by itself.) The third definition multi-
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plies  out  every  summand  individually.  (For  the  sake  of  simplicity,  we  do  not  attempt  to  program  the  evaluation of
powers, etc.)

firstExpandAttempt[a_ (b_ + c_)] := a b + a c

firstExpandAttempt[firstExpandAttempt[a_ (b_ + c_)]] :=
                          firstExpandAttempt[a (b  + c)]

firstExpandAttempt[a_ + b_] := firstExpandAttempt[a] + 
                               firstExpandAttempt[b]

With ?, we see that we have not defined what we wanted; and the argument firstExpandAttempt[ a_ (b_ +
c_)]  on  the  left-hand  side  of  the  second definition  for  firstExpandAttempt  is  computed according  to  the  first
function definition. 

?firstExpandAttempt

Thus, the following example fails. 

firstExpandAttempt[firstExpandAttempt[(a + b) (c + d)]]

Now,  we  change  the  order  in  which  the  definitions  are  input  so  that  the  equivalence  of  the  repeated  application of
secondExpandAttempt is programmed first. 

secondExpandAttempt[secondExpandAttempt[a_ (b_ + c_)]] :=
                            secondExpandAttempt[a (b + c)]

secondExpandAttempt[a_ (b_ + c_)] := a b + a c

secondExpandAttempt[a_ + b_] := secondExpandAttempt[a] + 
                                secondExpandAttempt[b]

Now, we have exactly what we wanted. 

?secondExpandAttempt

secondExpandAttempt[secondExpandAttempt[(a + b) (c + d)]]

The functions Set and SetDelayed introduced in this subsection are among the most important when working with
Mathematica.  Using  Set  or  SetDelayed,  Mathematica  can,  with  enough  available  memory,  work  quickly  with
many thousand (or even million) rules associated with fixed functions. 

Now  that  we  have  seen  the  importance  of  _  in  Mathematica,  we  can  understand  why  variable  names  of  the  form
name1_name2 are not possible. 

one_plot

The last input does not define a symbol one_plot, but rather is a pattern named one with the head plot.

FullForm[%]

With several _, we get a product of three terms.

one_especially_beautiful_plot

FullForm[%]

Using parentheses appropriately, we get a another expression. 

one_(especially_(beautiful_plot))

It is again a product.

FullForm[%]
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But its detailed content is of not much value. 

Σ (* session summary *) TMGBs`PrintSessionSummary[]

à 3.1.2 Clearing Functions and Values
Sometimes,  we  want  to  remove  values  that  have  been  assigned  to  functions  or  variables.  This  removal  can  be  done
using Clear. 

 

Clear[symbol1, symbol2, … , symboln]

removes all values and definitions (numeric and symbolic) that have been assigned to the 
symbols symbol1, symbol2,… , symboln. Attributes are not removed. 

Another possibility for removing values for symbols is Unset. 

 

Unset[leftHandSide] or leftHandSide =.

removes any values assigned to leftHandSide. 

If a new value is assigned to a quantity (not a function, which may have already been assigned something earlier), using
either Set or SetDelayed, it has the new value. 

(* use Set *)
κ = κκ;
κ = 11;
κ

(* use SetDelayed *)
ω := msdg;
ω := 11;
ω

For function definitions, the situation concerning Set and SetDelayed is somewhat different. If the left-hand sides
of the assignment agree exactly, the old value is overwritten. 

κ1[x_] := x^κ;
κ1[x_] = x^9;
κ1[2]

If  the  left-hand  sides  differ,  for  example,  in  the  naming  of  the  unimportant,  dummy  pattern  variables,  only  the  last
definition is stored. 

κ2[x_] := x^κ;
κ2[y_] = y^9;
??κ2

κ2[2]

In  the  following  example,  both  definitions  are  active  after  identifying  the  two  heads  myHead1  and  myHead2.
myHead2 inside y_myHead2 was not reevaluated after evaluating myHead1 = myHead2.

κ3[x_myHead1] := x^κ;
κ3[y_myHead2] = y^9;
myHead1 = myHead2;
??κ3

For  removing  definitions  with  identical  left-hand  sides,  it  does  not  matter  if  the  definitions  are  done  with  Set  or
SetDelayed.
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κ4[x_] := x;
κ4[y_] = y^2;
κ4[2]

Unset is a more precise tool than is Clear. Its use is recommended for the manipulation of definitions that consist of
many  parts.  With  Clear,  we  can  only  clear  all  definitions  for  a  symbol  (head  Symbol,  or  input  in  Clear  as  a
String). 

Clear[f];
f[x_] := x^2;
f[1] = 1;
??f

Clear[f];
f[x_] := x^2;
f[1] = 1;
(* clear definition of the form f[x_] := ... *)
f[x_] =.
??f

Now that we know how to remove values assigned to variables, we return to the question of local variables in function
definitions. Variables used as pattern names that appear on the left-  and right-hand sides of a function definition have
no effect outside the definition. If variables are used that have already been assigned values, these assigned values may
affect the definition. 

In the following example of Set, the right-hand side of the function definition is immediately computed. At this point,
x  has  the  value  assigned,  and  the  definition  of  testFunction  will  be  stored  as  testFunction[x_]  =
assigned. Thus, the value of the function is actually independent of its argument. 

x = assigned;
testFunction[x_] = x;

??testFunction

testFunction[x]

If a value is assigned to x  only after the definition of testFunction, this leads to a different definition for test
Function; namely, testFunction[x_] = x, where the x on the right-hand side is now associated with the x_
on the left-hand side. 

Clear[x];
testFunction[x_] = x;
x = assigned;
??testFunction

Calling testFunction  now with  the argument  x  (which has  the  value assigned),  according to  the  definition of
testFunction, evaluates to assigned. 

testFunction[x]

With SetDelayed,  the right-hand side is computed only after the function is called. At this point and already at the
time of making the definition in the following example, x has the value assigned. 

Clear[x, testFunction];
x = assigned;
testFunction[x_] := x;
??testFunction

testFunction[x]

If we clear the value of x  before the computation of the right-hand side, we get the current value of x, and because it
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has no assigned value, we just get x. 

Clear[x]

testFunction[x]

A symbol can be completely removed with the function Remove. 

 

Remove[symbol1, symbol2, … , symboln]

removes the symbols symbol1, symbol2, … , symboln along with their numeric and symbolic 
values, and any attributes assigned to them. 

To illustrate, we define a function fg of two variables. 

fg[x_, y_] := x y

With the arguments x and h, we get the following. 

fg[ξ, η]

To find out what information is associated with the symbol fg, we use ??. 

??fg

We now cancel this definition. 

Clear[fg]

The definition is gone, but the symbol fg itself is still available. 

??fg

(We  will  come  back  to  the  meaning  of  Global`  in  Chapter 4.)  To  get  rid  of  the  symbol  fg,  we  use  the  function
Remove. 

Remove[fg]

Now ?? gives a different result. 

??fg

What happens if a symbol is removed using Remove, but it appears in other functions that have not been removed? So
let us enter the following definitions.

storage = toSave[a, b, c]

Remove[a, b, c]

What is now in storage? 

storage

InputForm[%]

The symbol Removed has the following meaning.

 

Removed["symbol"]

identifies all symbols that were variables that have been removed using Remove. 

The reintroduction of the symbol a has no affect on the contents (arguments) of storage. 

a
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storage

Once something (a  function,  a  variable)  has  been removed,  the only way to recreate it  is to  enter the definition or  its
value again. 

Often, we want to cancel a whole class of symbols. This cancellation can be done using strings as arguments of Clear
and Remove. 

 

Clear[string1, string2, …, stringn]

clears all numeric and symbolic values and definitions of objects that are matched by the 
strings string1 or string2 or … or stringn. 

Remove[string1, string2, … , stringn]

removes all numeric and symbolic values and definitions, along with the symbols themselves, 
of those objects represented by the strings string1 or string2 or …or stringn. 

Here, we should mention that the string metacharacters (wild cards) * and @ could be used. Remember, a string has to
be enclosed in double quotes "characters".  

 

*

is used for any number, including none, of arbitrary characters.

@

is used for any number, including none, of arbitrary characters, excluding capital letters and $. 

These  metacharacters  can  also  be  used  in  other  functions  that  make  use  of  strings,  for  example,  in  ?.  Here,  ?? @
typically gives a list  of  all  user-defined symbols that are  global  in the current  session (as they will  generally not start
with a capital letter). 

?? @

Here are three assignments to symbols that all begin with f. 

f1 = 1;
f2 = 2;
f3 = 3;
{f1, f2, f3}

Next, we clear the definitions of all functions beginning with f.

Clear["f*"];
{f1, f2, f3}

When  symbols  have  been  assigned  values  in  a  Mathematica  session,  we  should  not  try  to  clear  their  values  using
Remove["*"] (and Remove["@*"] is dangerous because "@" matches the $ character). Such an input will lead to
a lot of error messages generated by attempts to clear built-in functions (see Section 3.2.2). Moreover, some important
built-in  functions  will  be lost.  (In  Chapters 4  and 6,  we discuss  how user-defined functions  can be separated from all
built-in functions.) Here is a list of all functions that would be removed.

wouldBeRemovedFunctions = 
Select[Names["System`*"], ((FreeQ[#, Locked] &&
              FreeQ[#, Protected])&[Attributes[#]])&];

Short[wouldBeRemovedFunctions, 4]
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Length[wouldBeRemovedFunctions]

To conclude this subsection, we now look at the following (somewhat) exotic construction. 

[x_] := (Remove[]; x^2)

[2]

[2]

What happened in the second call of [2]? [2] remained unevaluated because in the first call of [2], the f itself
(and its definition) was removed and the result is just [2].

Σ (* session summary *) TMGBs`PrintSessionSummary[]

à 3.1.3 Applying Functions
Several  different  syntactical  possibilities  exist  for  applying  a  function  of  one  variable  to  its  single  argument.  The
primary reason for this variety is to make programs easier to read and to emphasize and de-emphasize certain program-
ming constructs. Here are the possibilities (we are already familiar with these for N). 

Form Name Nesting
f @xD standard form f 1 @ f 2 @xDD

f @ x prefix form f 1 @ H f 2 @ xL
x êê f postfix form Hx êê  f 2 L êê  f 1 

 

Here are the three possible ways of computing sinHp ê4L  or,  more precisely, of applying the function Sin  to the argu-
ment Pi/4. 

Sin[Pi/4]

Sin @ (Pi/4)

Pi/4 // Sin

Using the prefix form, the explicit use of brackets is important; Sin @ Pi/4 is parsed as (Sin @ Pi)/4. 

Sin @ Pi/4

For functions with two or more variables, two ways to apply a function exist: standard form and infix form. 

Form Name
f @x1, x2, … , xnD standard form

x1 ~ f ~ x2 ~ f ~ ∫ ∼ f ~ xn infix form
 

Plus is a typical example of a function with several variables. 

Plus[1, 2, 3, 4]

1 ~ Plus ~ 2 ~ Plus ~ 3 ~ Plus ~ 4

Set also has two arguments. 

a ~ Set ~ 2

??a

But we will rarely use Set in this form. 

Be  careful  with  your  own  functions  for  which  no  rules  have  been  declared;  in  particular,  the  use  of  parentheses  can
produce results different from the expected ones. The infix form groups from the left.
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1 ~ sulP ~ 2 ~ sulP ~ 3 ~ sulP ~ 4

But in infix form, no parentheses are added. 

Infix[sulP[sulP[sulP[1, 2], 3], 4]]

Infix[sulp[1, 2, 3, 4]]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

3.2 Options and Defaults
Many functions in Mathematica allow the user to make a number of choices; these include accuracy level, method (e.g.,
numerical  integration  or  summation),  colors,  light  sources,  surface  properties,  line  widths,  labels  for  graphics,  etc.
Choices are realized in Mathematica  by setting options.  Options change details of the calculation process,  and maybe
the “value” of a result, but they do not change the “form” (shape) of the result, this means, for instance, that a function
that returns a list in case no options are explicitly specified will also return a list in case any of its options are set to any
possible value. If an option is not explicitly set, an appropriate default value will be used. We have already encountered
the setting of options, such as Heads -> True in Level. Here is how they appear in Mathematica.

Options are specified by optionName -> optionSetting. 

We will return to the exact structure of options (meaning the FullForm effect of ->) in Chapter 5. Before discussing
further  the  setting  of  options,  we  introduce  a  very  useful  function:  the  list  List  (table,  vector,  matrix,  tensor,  etc.).
List is the typical Mathematica container for storing and collecting data (which is covered in detail in Chapter 6). We
have already made some use of lists and will use them frequently later. Level for instance returned its result in form of
a List. Now, we introduce them “officially”. 

 

List[expression1, expression2, … , expressionn]

or
{expression1, expression2, …, expressionn}

is a list (sequence, ordered collection) of the expressions 
expression1, expression2, …, expressionn. 

The internal representation is List, and the input is usually accomplished in the form {… }. 

FullForm[{1, 2, 3, 4, 5, 6, 7, 8, 9}]

TreeForm[{1, 2, 3, 4, 5, 6, 7, 8, 9}]

The ith element of  this list,  which can be extracted using Part,  is i,  as we expect.  (We use the input form of Part,
expr[[integer]].)

{1, 2, 3, 4, 5, 6, 7, 8, 9}[[4]]

Now, we return to our discussion of options. 

 

Options[symbol]

gives a list of all possible options and their defaults for the symbol (function) symbol. Here, 
symbol is typically one of the functions in the system, or in some package. 
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Options[expression]

gives a list of the values of all options and their current settings for expression. Options with 
the default Automatic are also included. Here, expression is typically an expression created 
by the user with the help of system commands with options. 

Options[expression, optionName]

gives the current value of the option optionName in expression. Options whose values have 
been set with the default Automatic are not included. Here, expression is typically an 
expression created by the user with the help of system commands with options. 

An excellent example of  a Mathematica  function with options is Plot.  Among the functions with many options (we
show the 15 leading functions and how many options they have next), it is the simplest one. 

Take[Sort[{ToString[#], Length[Options[#]]}& /@ (* the functions *)
          (ToExpression[#, InputForm, Unevaluated]& /@ Names["*"]),
          Last[#1] > Last[#2]&], 15] // (* show as table *)
                TableForm[#, TableAlignments -> {Left}]&

The  functions  Notebook,  Cell,  and  StyleBox  used  in  Mathematica  notebooks  have  the  most  options.  From the
kernel functions, the 3D and 2D plotting and graphics functions have the most options.

 

Plot[functionHxL, {x, x0, x1}, options]

draws the graph of the function functionHxL in the interval x0 § x § x1 using the options 
options. 

Here  is  an  example  in  which  no  options  have  been  explicitly  set.  Plot  returns  a  Graphics-object  and  as  a  “side
effect” generates a “picture”.

plot0 = Plot[x^(Sin[x]^2), {x, Pi, 5 Pi}]

Now, we want to change a few options to remove the axes, increase the number of sample points, draw the curve with a
thicker line, change the height-width ratio, and draw a box around the plot. 

plot1 = Plot[x^(Sin[x]^2), {x, Pi, 5 Pi},
             (* options for different-looking plot *)
             AspectRatio -> 1/3, PlotPoints -> 250,
             Frame -> True, PlotRange -> All, FrameTicks -> None,
             PlotStyle -> {Thickness[0.016], RGBColor[0, 0, 1]}]

Here is a list of all options of Plot. (We discuss their influence on the plot and their possible settings in great detail in
Chapter 1 of the Graphics volume [62÷].)

Options[Plot]

Length[%]

Because we did not set any options via optionName -> optionValue in plot0, Options[plot0] and Options[
Plot]  are  essentially  the  same.  The  only  differences  are  options  that  have  already  been  used,  and  are  no  longer
changeable.  Such  options  are  PlotPoints,  MaxBend,  PlotDivision,  and  PlotStyle.  Once  a  graphic  is
produced, these options cannot be changed any more and so do not appear in the following list. Be aware: In compari-
son to the built-in function Plot, plot0 is a graphic or, to be more accurate, a Graphics-object. 

Options[plot0]

In plot1, AspectRatio and Frame are also different. Here, we filter out the options that are different. 

Complement[Options[plot1], Options[plot0]]
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Some functions,  especially numeric functions  that  carry out  complicated algorithms allow the specification of  options
specific to a certain algorithm. In such cases, options can occur in a nested manner such as Method -> {concreteÖ
Method,  {optionOfConcreteMethod1->  value1,  ...}}.  Here  is  an  example.  The  function

NMinimize[{function, constraints}, vars, options]  tries  to  find  the  global  minimum of  the  function  function
domain  of  variables  vars  obeying  the  constraints  constraints.  One  possible  method option  is  to  carry  out  a  random
search over  the domain. The number of search points to be used before other techniques are applied is specified with
the suboption "SearchPoints". Using a larger number of search points will frequently result in a smaller returned
minimum. Here are two examples.

NMinimize[{Cos[x/y] Cos[10 y/x], x^2 + y^2 < 1} , {x, y},
          Method -> {"RandomSearch", 
                     (* suboptions for the "RandomSearch" method option *)
                     {"SearchPoints" -> 10}}]

NMinimize[{Cos[x/y] Cos[10 y/x], x^2 + y^2 < 1} , {x, y},
          Method -> {"RandomSearch", {"SearchPoints" -> 1000}}]

Similarly, nested option can sometimes be used for built-in functions that call other functions (or itself recursively). In
such cases, the nested options can be used to set the options of these other functions.

Still more information can be obtained with AbsoluteOptions. 

 

AbsoluteOptions[expression]

gives a list of the values of all options of expression. Here, expression is typically an 
expression created by the user using system function with options. The values of the options 
with the default Automatic are also listed. 

AbsoluteOptions[expression, optionName]

lists the specified value of the option optionName in expression. Here, expression is typically 
an existing function in the system or from a package. 

Here,  we look at all the options of plot1.  Now, PlotRange,  FrameLabel,  and so on, have different values. (To
avoid  a  very  long  output,  we  use  the  postfix  function  (#  /.  (Ticks  ->  ticks_)  :>  (Ticks  ->

Short[ticks, 4]))& to shorten the right-hand side value of the Ticks option.)

AbsoluteOptions[plot1]  // (* abbreviate tick specifications *)
               (# /. (Ticks -> ticks_) :> (Ticks -> Short[ticks, 4]))&

Using optionName -> specialEffect, we can change the value of the option optionName  inside a function. Frequently,
we do not want to type this in repeatedly. We could change the options for a command with Options[function] =
listOfTheOptionsAndTheSettings, but this could be mean to type this repeatedly for each call of a function. It is easier to
use SetOptions. 

 

SetOptions[symbol, option1 -> specificValue1, option2 -> specificValue2, … ]

sets the options optioni of the symbol symbol to specificValuei for all i.

Without explicitly setting a value for the option PlotPoints of Plot3D, a three-dimensional (3D) plot of a function
uses exactly 15 sample points in each dimension. Plot3D returns a SurfaceGraphics-object. We will discuss it in
detail in Chapter 2 of the Graphics volume [62÷].

Plot3D[1/(2 + Sin[x y]), {x, -Pi, Pi}, {y, -Pi, Pi}]

In  plotting  repeatedly  functions  that  are  quite  oscillating,  we  may  want  to  alter  the  global  default  value  for  Plot
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Points.  Here,  we  use  SetOptions  to  change  the  value  of  PlotPoints  for  all  succeeding  uses  of  Plot3D.
SetOptions gives a list of all the options and their current settings. 

SetOptions[Plot3D, PlotPoints -> 35]

Here, we plot the same function, but 35 points are used, as specified in the last input. 

Plot3D[1/(2 + Sin[x y]), {x, -Pi, Pi}, {y, -Pi, Pi}]

The  output  of  Plot3D  is  a  list,  with  the  most  recent  valid  options  and  settings  of  Plot3D,  that  usually  causes  a
graphical image to be displayed on the screen (as a “side effect”). 

At  this  point,  we  should  mention  that  not  all  options  of  all  built-in  functions  are  always  user-settable  through  the
options of the function directly. Some less frequently used options are set through the system options Developer`
SystemOptions[]. We will occasionally make use of the possibility to influence the behavior of functions through
system options.

The following input returns the system options that influence single functions or groups of functions corresponding to
the system option names.

Select[First /@ Developer`SystemOptions[], 
       StringMatchQ[#, "*Options"]&]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

3.3 Attributes of Functions
Functions have a variety of properties from the standpoint of mathematical analysis. For example, they may be commuta-
tive, associative, etc. Mathematica also deals with such properties, along with others that are more specific to computer
algebra.  They  can  be  directly  associated  with  the  corresponding  symbol  (meaning  the  function  name).  The  attributes
associated with a symbol can be obtained by using Attributes. 

 

Attributes[symbol]

gives a list of the attributes that symbol carries. 

Here are some examples. 

Attributes[Plus]

Attributes[Times]

Attributes[Position]

Attributes[Sin]

Orderless is the Mathematica analog of commutativity. 

 

Orderless

is an attribute of a function with two or more variables, and it indicates that the variables 
should automatically be put in their canonical order. 

The sum of all letters, input in reverse alphabetical order, will automatically be reordered by an Orderless function,
such as Plus. 
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z + y + x + w + v + u + t + s + r + q + p + o + n +
m + l + k + j + i + h + g + f + e + d + c + b + a

The following products of indexed quantities is ordered to give sorted “indices”. 

a5 * a4 * a3 * a2 * a1 * a0

a[5] * a[4] * a[3] * a[2] * a[1] * a[0]

Attributes can be assigned by the user to both system- and user-defined functions. This process is done with SetAttri
butes. 

 

SetAttributes[symbol, attributes]

adds the attribute attributes to the list of attributes of symbol. 

Attributes should be set before any other definition or value assignment. 

For some definitions, attributes can also be set later, to avoid the use of the property expressed through the attribute. We
now define a commutative function commutativeFunction, which automatically puts its arguments into canonical
order. 

SetAttributes[commutativeFunction, Orderless]

commutativeFunction[y, x]

Attributes[commutativeFunction]

Note that numbers are ordered lexicographically even though we have not given any explicit function definition. 

commutativeFunction[12, 11]

Note also that the attributes (Orderless as well as other attributes) do not change anything in the lowest level of the
arguments if the head is a composite function. 

SetAttributes[cmf, Orderless]

cmf[2, 1][4, 3]

It is not possible to give composite heads attributes; the heads must be symbols. 

SetAttributes[compHead[1, 2], Orderless]

Flat is the Mathematica analog for associativity. 

 

Flat

is an attribute of a function with several variables causing 
f H f Ha, bL, cL = f Ha, f Hb, cLL = f Ha, b, cL to be automatically applied. 

We now define an associative function associativeFunction. 

SetAttributes[associativeFunction, Flat]

An  associative  function  or  operation  need  not  be  commutative  (matrix  multiplication  of  square  matrices  is  a  typical
example), and thus, Flat  and Orderless  have to be strictly distinguished. In associativeFunction[c, b,
a], the arguments are not reordered. 

associativeFunction[c, b, a]

In the next examples, the Flat attribute has an effect: The result is not nested.

THE MATHEMATICA GUIDEBOOKS to PROGRAMMING—GRAPHICS—NUMERICS—SYMBOLICS 23

©  2004, 2005   Springer Science+Business Media, Inc.



associativeFunction[a, associativeFunction[b, c]]

associativeFunction[associativeFunction[a, b], c]

In  the  process  of  evaluation,  the  properties  originating  from  attributes  are  used  as  often  as  possible  because
Mathematica’s evaluation procedure is applied as often as possible (see Chapter 4). 

associativeFunction[c,
        associativeFunction[a,
                associativeFunction[b1,
                          associativeFunction[b21, bb22]]]]

In particular, the following attribute is useful in simplifications using Flat (discussed in detail in Chapter 5). 

 

OneIdentity

is an attribute of a function representing the property x = f HxL = f H f HxLL = f H f H f HxLLL = 
…  for the purposes of pattern matching (see Chapter 5). 

Large  lists  of  numbers  or  symbols  are  often  built  up  during  calculations.  To  apply  functions  automatically  to  every
element, the functions must carry the Listable attribute. 

 

Listable

is an attribute of a function causing the automatic application of the property f[{a1, a2, 
…, an}] ö {f[a1], f[a2], … , f[an]}. 

Sin has the Listable attribute, as do all other built-in mathematical numerical functions. 

Attributes[Sin]

Thus, we get the following result. 

Sin[{Pi, Pi/2, Pi/3, Pi/4, Pi/5, Pi/6}]

We now define our own Listable function of three variables. The attribute Listable holds for all arguments, and
it is applied to the three arguments in parallel. 

SetAttributes[ourTripleSin, Listable];
ourTripleSin[{a, b, c}]

In cases with more arguments, corresponding ones are used together as arguments. 

ourTripleSin[{a, b, c}, {1, 2, 3}, {x, y, z}]

In the next example, only the first argument is a list.

ourTripleSin[{a, b, c}, 123, xyz]

If the list arguments are of unequal length, an error message is generated.

ourTripleSin[{a}, {1, 2}]

One extremely important attribute for numeric evaluations is NumericFunction.

 

NumericFunction

is an attribute of a function that for numeric arguments represents a numeric quantity. 

Here is a list of all built-in Mathematica functions that have the attribute NumericFunction.
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Select[Names["*"], MemberQ[Attributes[#], NumericFunction]&]

Length[%]

The NumericFunction attribute can be set also for user-defined functions.

SetAttributes[myNumericFunction, NumericFunction]; 

Now, Mathematica  considers every expression of the form myNumericFunction[numericArgument] as a numeric
quantity. (The function NumericQ tests if an expression is a numeric quantity—see Chapter 5.) It is the user’s responsi-
bility to give appropriate definitions for myNumericFunction that are semantically sensible.

NumericQ[myNumericFunction[Pi]] 

With the NumericFunction attribute, the function myNumericFunction evaluates nontrivially for the argument
Indeterminate.

myNumericFunction[Indeterminate]

Constant is an important attribute for doing calculus. 

 

Constant

is an attribute of a symbol ensuring that this symbol will identically vanish if a derivative, with 
respect to any variable, is applied. 

To make use this attribute, we must be able to differentiate. 

 

D[function, {x1, i1}, {x2, i2}, …, {xn, in}]

gives ∑i1 ∑i2∫ ∑in functionHx1,x2,…,xnL
∑x1

i1  ∑x2
i2  ∫ xn

in
, the i1th partial derivative with respect to x1, the i2th partial 

derivative with respect to x2,… , the inth partial derivative with respect to xn of function. The 
possibility to interchange the order of the derivatives is automatically assumed (i.e., it is 
assumed that the Lemma of Schwartz holds and all occurring functions are smooth enough). 
When there is just one dependent variable, this can be written in a shorter form. 

D[function, {x, i}] or function'' ∫ ''
n times

[x]

gives the ith derivative of function with respect to x. For i = 1, we can write D[function, x] 
instead of D[function, {x, 1}]. 

We illustrate the usage of the command D by computing a derivative of the following simple function of four variables. 

multiArgumentFunction[w_, x_, y_, z_] = Cos[w^2] Exp[x] Log[y] z^2

Here is one of its higher derivatives. 

D[multiArgumentFunction[w, x, y, z], {x, 1}, {y, 1}, {z, 2}]

Sometimes the function cannot be explicitly differentiated, which may be either because it is not explicitly defined, or
because Mathematica  does not know a rule for the differentiation; or if no such rule exists. (This is the case for some
special  functions  with  respect  to  some  of  their  parameters,  e.g.,  the  Theta  functions  in  Chapter  3  of  the  Symbolics
volume [64÷].)  When functions cannot  be differentiated,  an expression of the following form is returned.  The integer
appearing  in  the  ith  position  inside  the  parentheses  in  a  superscript  describes  how  many  times  to  differentiate  with
respect to the ith variable. 
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D[notExplicitlyDefinedFunction[x, y, z], (* differentiate 13 times *)
  {x, 2}, {y, 3}, {z, 4}, {x, 3}, {y, 1}]

The internal form of this object is somewhat complicated. (We cover this point in Chapter 1 of the Symbolics volume
[64÷].)

FullForm[%]

Here is a rational function containing two arbitrary functions pHxL and qHyL and four constants a0, a1, a2, and a3 [59÷],
[39÷], [60÷].

u[x_, y_] = -D[q[y], y] D[p[x], x]/
             (a0 + a1 p[x] + a2 q[y] + a3 p[x] q[y])^2;

pde is a function representing a nonlinear partial differential equation in u with respect to x and y.

pde[u_, {x_, y_}] := 
2 (a0 a3 - a1 a2) u^3 + D[u, x] D[u, y] - u D[u, x, y]

The following input shows that, for all pHxL and qHyL, the function uHx, yL is a solution of the differential equation pde.

pde[u[x, y], {x, y}] // Factor

We return now to our discussion of the attribute Constant. The following differentiation leads to the expected result. 

D[constantFunction[x, y], {x, 2}, {y, 2}]

We can declare constantFunction to be a constant with respect to differentiation. 

Remove[constantFunction];

SetAttributes[constantFunction, Constant]

Then, although x and y are explicitly available as arguments, we get the following. 

D[constantFunction[x, y], {x, 2}, {y, 2}]

The following “constants” in Mathematica have the attribute Constant (among them is our constantFunction.)
(They are mostly mathematical constants. (The symbol MachinePrecision shares the property that after applying N
it  becomes a number with the mathematical constant.)  While this does  not imply that constantHxL  is  independent  of x,
such a use of constant is not recommended.)

Select[Names["*"], MemberQ[Attributes[#], Constant]&]

A class of attributes exists for dictating how rules may be added to built-in functions.  Attempting to change a system
function directly fails. 

Sin[z] = siSiSinSinus[z]

This failure is because of the attribute Protected. 

 

Protected

is an attribute of a symbol preventing its definition, or its values, from being changed. The 
attributes of symbols can be changed, however, even if the symbol carries the attribute Pro
tected. 

However, still tighter restrictions than Protected still exist. For example, I has the following property. 

Attributes[I]
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Locked

is an attribute of a symbol preventing its definition, values, and attributes from ever being 
changed. 

If a symbol has certain attributes (but not the attribute Locked), it is also easy to remove them. This removal is done
with ClearAttributes. 

 

ClearAttributes[symbol, attributes]

removes the attributes attributes from the list of attributes of symbol. 

Attributes[constantFunction]

ClearAttributes[constantFunction, Constant]

Now, the list of attributes of constantFunction is empty. 

Attributes[constantFunction]

It is possible to change system functions because the attribute Protected can be removed. 

Attributes[Sin]

ClearAttributes[Sin, Protected]

Attributes[Sin]

This new rule will now be applied everywhere. 

Sin[z] = siSiSinSinus[z]

Sin[z]

Integrate[Cos[z], z]

Instead  of  using  ClearAttributes  to  change  system functions,  we  can  use  Unprotect.  This  allows  the  actual
definitions of the functions to be changed.

 

Unprotect[symbol]

removes the attribute Protected from the list of attributes of symbol. 

Protect[symbol]

adds the attribute Protected to the list of attributes of symbol. 

Calling  Unprotect  or  Protect  gives  the  function  unprotected  or  protected  outputs.  Using  these  functions,  we
modify the built-in function Cos. 

Attributes[Cos]

Unprotect[Cos]

Attributes[Cos]

Cos[z] = coCoCosCosinus[z]

Protect[Cos]

Attributes[Cos]

Cos[z]
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For later possible applications of Sin and Cos, we remove our modifications to them. 

Unprotect[Sin, Cos];
Clear[Sin, Cos];
Protect[Sin, Cos];
{Sin[z], Cos[z]}

Note a function Unlock does not exist, so locked symbols cannot be changed in any way. Users can lock function, but
not unlock them.

Sometimes, we want to prevent an expression from being immediately evaluated, for example, when we are interested
in the structure of an expression rather than the result. This “freeze” is possible with the function Hold, which is not an
attribute, but its most important property is caused by its attribute. 

 

Hold[expression]

prevents the evaluation of expression. 

Here is a sum computed to be 45 as soon as it is input or used in the argument of a function. 

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9

With Hold, it remains in its original form. 

Hold[1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9]

If something is enclosed in Hold, no reordering takes place. 

Hold[4 + 3 + 2 + 1]

With Hold, we can now take care of several things that were left unsettled in Chapter 2. 

FullForm[Hold[Divide[a, b]]]

However, / is not identical to Divide. 

FullForm[Hold[a/b]]

And - is not identical to Subtract. 

FullForm[Hold[a - b]]

The output can be kept in its original form without the explicit visible Hold by using HoldForm. 

 

HoldForm[expression]

prevents the immediate evaluation of expression and displays expression without Hold in 
OutputForm and StandardForm.

HoldForm[1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9]

Although this output does not show it, the HoldForm is still there, as can be seen with FullForm. 

FullForm[%]

Hold and HoldForm have the following attributes.

Attributes[Hold]

Attributes[HoldForm]

One function related to Part, which makes use of Hold, is HeldPart. 
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HeldPart[expression, position]

takes the part specified by position and wraps it before any further evaluation in Hold. 

So, we can extract 1 - 1 from the following expression without it resulting in a 0. 

HeldPart[Hold[Sin[1 - 1]], 1, 1]

If we want to pass an expression to another function without evaluating it, we can use Unevaluated. (It is also not an
attribute.)

 

Unevaluated[expression]

prevents the immediate evaluation of expression, but gives expression immediately as an 
argument to a function, without evaluating expression first if used as an argument in a 
function. 

Unevaluated has the following attributes. We will discuss the attribute HoldAllComplete in a moment.

Attributes[Unevaluated]

Here is the sum from above used as an argument of Unevaluated. 

Unevaluated[1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9]

The expression 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 has nine terms. The direct approach to determining
the number of summands in this simple sum will not work. 

Length[1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9]

Here is an argument of Length, using Unevaluated, that causes Length to measure the length of the unevaluated
sum of the nine terms. 

Length[Unevaluated[1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9]]

Because Hold[argument]  has length 1, independent  of the concrete structure of argument,  here is what we get with
Hold instead of Unevaluated. 

Length[Hold[1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9]]

Most built-in functions without Hold-like attributes (see below) evaluate their arguments, but some do not. A notable
exception  is  Times.  As  a  result,  we  get  the  following  unexpected  result  0  (instead  of  a  message  and  the  result
Indeterminate).

Times[0, Unevaluated[Infinity]]

It  is  also  possible  to  use  the  same attributes  making  Hold  and  Unevaluated  work  to  endow  other  functions  with
appropriate  attributes  to  prevent  their  immediate evaluation.  The  “magical”  attributes  avoiding  evaluation  are  Hold
All, HoldFirst, HoldRest, and HoldAllComplete.

 

HoldAll

is an attribute preventing the immediate evaluation of all arguments of a function. 

HoldFirst

is an attribute preventing the immediate evaluation of the first argument of a function. 

HoldRest

is an attribute preventing the immediate evaluation of all but the first argument.

THE MATHEMATICA GUIDEBOOKS to PROGRAMMING—GRAPHICS—NUMERICS—SYMBOLICS 29

©  2004, 2005   Springer Science+Business Media, Inc.



Here is an example. 

SetAttributes[holdFunction, HoldAll]

holdFunction[3 4, 5 + 8]

With the attribute HoldAll, we can nicely demonstrate the scope of activity of the attribute attached to a function. 

SetAttributes[hff, HoldAll]

Only the “direct” argument of hff is not evaluated. The following arguments are not in the scope of activity. 

hff[1 + 1][1 + 1]

But, on the other hand, be aware that attributes can be given only to symbols, not to constructions like hff1[1 + 1]. 

SetAttributes[hff1[1 + 1], HoldAll]

From  time  to  time,  the  attributes  HoldAll,  HoldFirst,  and  HoldRest  will  be  used  for  user-defined  functions,
especially when it is necessary to scope variables. They also play a very important role in the operation of replacement
rules  (see  Chapter 5),  for  graphics  functions,  and  in  many  other  functions  and  programming  constructs.  Altogether,
more than 120  built-in  symbols have  Hold-like  attributes.  We now compute lists  of  the  functions  having  these  attri-
butes. (We discuss the construction of the selection inputs in Chapter 5.)

Select[Names["System`*"], MemberQ[Attributes[#], HoldAll]&]

Length[%]

As we see,  among those  functions  having  the  HoldAll  attribute  are  Clear  and  Remove.  If  they did  not  have  this
attribute,  they  could  not  recognize  which  symbol  to  clear  or  remove  because  their  arguments  would  be  evaluated
prematurely. 

Select[Names["System`*"], MemberQ[Attributes[#], HoldFirst]&]

Length[%]

Select[Names["System`*"], MemberQ[Attributes[#], HoldRest]&]

Length[%]

The family of Hold-like functions has one more member not discussed so far: HoldAllComplete. This function is
primarily used for typesetting and expression formatting (an important difference between HoldAll  and HoldAll
Complete we will discuss shortly).

 

HoldAllComplete[expr]

is an attribute preventing any evaluation of expr. 

Currently five built-in functions have the HoldAllComplete attribute.

Select[Names["System`*"], MemberQ[Attributes[#], HoldAllComplete]&]

Length[%]

The effect of the Hold-like attributes HoldAll, HoldFirst, and HoldRest can be overridden with Evaluate. 

 

Evaluate[expression]

evaluates expression, even if it would otherwise not be evaluated, because it is an argument in 
a function with Hold-type attributes. 
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It is important to note that Evaluate operates only on the current argument, and not on the entire expression. Here is
an example. 

SetAttributes[holdingFunction, HoldAll];

{holdingFunction[1 + 1, a + a],
 holdingFunction[Evaluate[1 + 1], a + a],
 holdingFunction[Evaluate[1 + 1], Evaluate[a + a]],
 Evaluate[holdingFunction[1 + 1, a + a]]}

When  a  function  has  the  attribute  HoldAllComplete,  wrapping  Evaluate  around  the  arguments  will  have  no
effect.

SetAttributes[strongHoldingFunction, HoldAllComplete];

{strongHoldingFunction[1 + 1, a + a],
 strongHoldingFunction[Evaluate[1 + 1], a + a],
 strongHoldingFunction[Evaluate[1 + 1], Evaluate[a + a]],
 Evaluate[strongHoldingFunction[1 + 1, a + a]]}

The effect of Hold can be overridden with ReleaseHold. 

 

ReleaseHold[expression]

evaluates expression, even if expression has the head Hold or HoldForm. 

In  the  following  example,  the  Hold  is  not  overridden  because  the  head  of  holdingFunction  is  not  Hold  or
HoldForm, but rather the function holdingFunction carries the attribute HoldAll. 

{ReleaseHold[holdingFunction[1 + 1, a + a]],
 holdingFunction[ReleaseHold[1 + 1], a + a],
 holdingFunction[ReleaseHold[1 + 1], ReleaseHold[a + a]]}

Here is the right way to use it. 

ReleaseHold[Hold[1 + 1]]

ReleaseHold does not work on a Hold that lies “deeper” in the expression. 

ReleaseHold[holdingFunction[Hold[1 + 1]]]

It will work only at the part of the expression that ReleaseHold encloses. 

notAHoldingFunction[Hold[1 + 1], ReleaseHold[Hold[a + a]]]

It will work only in case the ReleaseHold will be evaluated.

holdingFunction[Hold[1 + 1], ReleaseHold[Hold[a + a]]]

ReleaseHold applies at the top level of an expression with nested Hold-objects. 

ReleaseHold[notAHoldingFunction[Hold[1 + 1 + Hold[a + a]]]]

ReleaseHold[notAHoldingFunction[Hold[1 + 1], Hold[a + a]]]

ReleaseHold does not act nontrivially on functions with the HoldAllComplete attribute.

SetAttributes[HAC, HoldAllComplete];

HAC[1 + 1] // ReleaseHold

Now that  we have discussed the attributes  of  functions,  we can explain the  differences in the way Set  and SetDe
layed work. 
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Attributes[Set]

Attributes[SetDelayed]

Both functions leave the left sides (the first argument) unevaluated initially because of their HoldFirst  and Hold
All  attribute,  which means that a symbol can be found to assign the definition. As this symbol might already have a
value,  its  evaluation  must  be  avoided.  However,  in  contrast  to  SetDelayed,  Set  also  computes  the  right  side  (the
second argument). 

Σ (* session summary *) TMGBs`PrintSessionSummary[]

3.4 Downvalues and Upvalues
For a function definition of the form function[insideFunction[x_], y_, z_] = something, Mathematica associates
the definition with the symbol function. The definition is a “downvalue” of the function. Especially with basic functions
like Plus and Times, which get used very often, we should not unprotect and add new rules to them. Frequently, in
order  to save program execution time, we want to associate this definition with the function (symbol) insideFunction.
This can be done with “upvalues”. 

 

UpSet[f[if[x]], result]
or

 f[if[x]] ^= result

immediately evaluates result, and associates it with if as a definition.

UpSetDelayed[f[if[x]], result]
or

 f[if[x]] ^:= result

associates result with if as a definition, but evaluates result only at the time f[if[x]] is called. 

Here is an example. ??D gives all properties of D. 

??D

Suppose that, in the future, we want to work with a function Φ that has to be differentiated frequently, and even though
we  know  its  derivatives,  Mathematica  does  not.  However,  because  many  other  functions  also  have  to  be  frequently
differentiated, we associate our derivative rule with func, and not with D, to prevent the rule from being tried unneces-
sarily every time D is used. 

D[Φ[x_], x_] ^:= derivativeOfΦ[x]

D knows nothing about this new rule. 

??D

Φ does know about the rule, however. 

??Φ

It will be applied every time Φ is called. 

D[Φ[newArgument], newArgument]

Although the definition is associated with Φ, the whole expression including its arguments has to fit. 
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DD[Φ[newArgument], newArgument]

A similar approach could be used with the integration of a function that is “transparent” to integration—that is, where
the integration can be moved inside to its argument. 

Ÿ x
transparentFunctionH f HxLL dx = transparentFunctionIŸ x f HxLM dx

Integrate[transparentFunction[f_], x_] ^:= 
              transparentFunction[Integrate[f, x]]

Integrate[transparentFunction[Sin[x]], x]

In a somewhat more striking example,  the function headAndArgument  is  supposed to give the enclosing head and
the enclosed argument. Note the blank after head on the left side. 

head_[headAndArgument[argument_]] ^:= {head, argument}

Here is how it works. 

testHead[headAndArgument[TestArgument]]

If an expression has several arguments at the first level, by using UpSet and UpSetDelayed 
in function definitions, Mathematica associates the corresponding information with each of 
these arguments. This correspondence (upvalues) works only for arguments at the first level. 

 

UpSet[f[if1[x], if2[x], …, ifn[x]], result]

or
 f[if 1[x], if 2[x], …, if n[x]]^= result

immediately evaluates result and associates it as a definition with if 1, if 2, …, and if n. 

UpSetDelayed[f[if1[x], if2[x], …, ifn[x]], result]

or
 f[if1[x], if2[x], …, ifn[x]]^:= result

associates result as a definition with if 1, if 2, …, and if n, but result is not evaluated until f is 
called. 

For functions with several arguments, the information can be associated with a certain prescribed argument rather than
with all arguments at the first level. This association is done with TagSet and TagSetDelayed. 

 

TagSet[associateWith, f[ f1[x], f2[x], …, fn[x]], result]
or

associateWith /:f [ f1[x], f2[x], …, fn[x]] = result

immediately evaluates result and associates it as a definition with 
associateWith œ 8 f , f1, f2,… , fn<. 

TagSetDelayed[associateWith, f[ f1[x], f2[x], …, fn [x]], result]
or

associateWith /:f [ f1[x], f2[x], …, fn[x]] := result

evaluates result later and associates it as a definition with associateWith œ 8 f , f1, f2, …, fn<. 

Here is an example in which the following rule is explicitly associated with x. 
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Remove[x, y, f]

x /: f[x, y_] = y;

??f

??x

If an expression has the form f[x, something], the rule above is applied. 

f[x, 3]

If x is not explicitly the first argument, nothing happens. 

f[3, x]

Here is an example showing the importance of the first level. 

outside /: outside[middle[inside[xFix]]] = xFixOutside

middle /: outside[middle[inside[xFix]]] = xFixMiddle

An attempt to associate the right-hand side with a symbol at level 2 (or deeper) will fail. 

inside /: outside[middle[inside[xFix]]] = xFixInside

xFix /:
outside[middle[inside[xFix]]] = xFixInside

Using  TagSet,  we  can  extend  the  definition  above  for  the  derivative  of  a  function  to  higher  derivatives.  (UpSet
would  not  have  worked  because  to  associate  the  rule  with  func  and  the  protected  symbol  List  from  the  second
argument of D would have failed in this case.)

Clear[func];

func /: D[func[x_], {x_, n_}] := derivOfFunc[x, n]

D has no new rules, but func has.

??D

??func

Here the new definition is used.

D[func[ye], {ye, 23}]

If both an upvalue and a downvalue are defined for a given symbol, the definition associated with the upvalue is used
before the downvalue definition. 

Clear[a, b, c, d];
a[b] = c;
a[b] ^= d;

??a

??b

a[b]

The order of evaluation of an expression in Mathematica will be discussed further at the end of Chapter 4. 

Once again, we compare the three functions Set, UpSet, and TagSet in a deeply nested example. We do not discuss
each of the outputs in detail because it will quickly become clear what is happening. 
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Clear[a, b, c, d, e];
a[b][c][d] = e

??a

??b

??c

??d

??e

Clear[a, b, c, d, e];
a[b][c][d] ^= e

??a

??b

??c

??d

??e

Clear[a, b, c, d, e];
b /: a[b][c][d] = e

Clear[a, b, c, d, e];
c /: a[b][c][d] = e

In addition to ??, DownValues and UpValues can also be used to find out the rules associated with a symbol. 

 

DownValues[function]

gives a list of the downvalues associated with function. 

UpValues[function]

gives a list of the upvalues associated with function. 

We now look at what we get for the symbols outside, middle, and inside defined above. The output will involve
HoldPattern  and  :>,  which we shall  discuss  later,  in  Chapter  5.  Roughly  speaking,  HoldPattern  prevents  the
evaluation of its argument, but at the same time allows pattern matching with this argument and :> represents a substitu-
tion. 

Attributes[HoldPattern]

Here are the current definition of outside, middle, and inside.

DownValues[outside]

UpValues[outside]

DownValues[middle]

UpValues[middle]

DownValues[inside]

UpValues[inside]

Function  definitions  can  also  be  input  directly  in  the  form  DownValues[… ] = … .  We  will  make  use  of  this
possibility from time to time, especially when the order of the definitions is nonstandard.
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Remove[v];
DownValues[v] = {HoldPattern[v[x_]] :> x};
??v

Here is a definition for the symbol .

DownValues[ ] = 
 {(* specific values *)
  HoldPattern[ [1]] :> 2, HoldPattern[ [-1]] :> -1, 
  (* generic case *)
  HoldPattern[ [x_]] :> x^2}

The  function  DownValues  has  the  option  Sort.  With  the  option  setting  True,  the  special  cases  are  sorted
canonically.

DownValues[ , Sort -> True]

With the option setting False, the special cases are returned as they were originally input.

DownValues[ , Sort -> False]

While for inspecting definitions it is nice to have the various cases sorted, the sorting does take some time. In case one
has  hundreds  of  thousands  or  even  million of  definitions,  for  programmatic work  on  down  values,  the  sorting  is  fre-
quently not needed and can be avoided to obtain faster algorithms.

At this point in our discussion about DownValues, let us make a slightly advanced remark. It will be very useful for
later  programming applications.  The  most  obvious  and  important  use  of  Set  and  SetDelayed  is  to  make variable
assignments and function definitions. In many instances, just a few dozens of them will exist. But it is also possible to
have thousands or tens of thousands or even more definitions. They are often for nonpattern ones. The important point
is that the time of adding such a definition (with Set or SetDelayed), the time of removing it (with Unset), or the
time of its application is basically independent of the number of already existing definitions. The next inputs compare
the timings for 100 definitions of 1 and 1000000 definitions for 2. In both cases, the timings are smaller than is the
granularity of the Timing function.

(* create 100 definitions for 1 *)
Do[1[i] = i^2, {i, 10^2}]

{(* add a new definition *)
 Timing[1[101] = 101^2],
 (* remove an existing definition *)
 Timing[1[100] =.],
 (* apply a definition *)
 Timing[1[99]]}

(* create 100000 definitions for 1 *)
Do[2[i] = i^2, {i, 10^5}]

{Timing[2[100001] = 100001^2],
 Timing[2[100000] =.],
 Timing[2[99999]]}

Internally, the definitions are stored in such a way that they can be quickly manipulated and applied. Getting a list of the
definitions itself via DownValues is an operation whose time increases slightly more than linearly with the number of
rules. To get a reliable timing for the construction of the list of downvalues of 1, we repeat this construction 100 times.

Timing[Do[DownValues[1], {100}]]

Timing[DownValues[2];]
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Let us give the following program as a little application of being able to change definitions in constant time (meaning
independent of the number of definitions). randomCrossArray[n] places “crosses” randomly on a square lattice of
size n μ n. Each cross occupies five lattice points. The program is carrying out the following process. First, we create a
randomly ordered list of all n2 lattice points. Then, we flag all n2 crosses as unused by evaluating Do[unusedSquare
Q[squares[[i]]] = True, {i, n^2}]. This step generates n2 definitions for the symbol unusedSquareQ.
Then, we try to put a cross on each of the reordered lattice points. If possible (this means all five lattice points needed
for the cross are inside the original n μ n square and none of the five lattice points is not already used for other crosses),
we put the new cross in a cross-collecting bag. The five crosses of the new cross are then flagged as used by the line
(unusedSquareQ[#] = False)& /@ newCross.  (Chapter  6  will  explain  many  of  the  input  forms  and  list-
manipulating  commands  used  in  this  program  in  more  detail.)  Finally,  crossGraphics  displays  the  crosses,  each
randomly colored.

The  next  functions  randomPermutation,  makeCross,  and  randomlyColoredCross  are  auxiliary  functions
needed below.

(* load the function RandomPermutation from the package
   "DiscreteMath`Combinatorica`"  *)
Needs["DiscreteMath`Combinatorica`"]

(* make a cross around the lattice point {i, j} *)
makeCross[{i_, j_}, n_] := 
Module[{preStar = {{i, j}, {i + 1, j}, 
                   {i - 1, j}, {i, j + 1}, {i, j - 1}}},
       (* inside the square lattice? *)            
       preStar = Select[preStar, Min[#] >= 1 && Max[#] <= n&];
       If[Length[preStar] === 5, cross @@ preStar, $Failed]]      

(* make graphics primitive for a colored cross *)
randomlyColoredCross[cross[l_, ___]] := 
{Hue[Random[]], Polygon[l + #& /@ 
 ({{1, 1}, {3, 1}, {3, -1}, {1, -1}, {1, -3}, {-1, -3}, {-1, -1}, 
   {-3, -1}, {-3, 1}, {-1, 1}, {-1, 3}, {1, 3}}/2.2)]}

(* display a set of crosses *)
CrossGraphics[crossBag_, n_] := 
Show[Graphics[randomlyColoredCross /@ crossBag],
     PlotRange -> {{1/2, n + 1/2}, {1/2, n + 1/2}}, 
     Frame -> True, FrameTicks -> False, AspectRatio -> Automatic]

The function randomCrossArray does the main work and generates the list of randomly placed crosses.
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randomCrossArray[n_] :=
Module[{squares = Flatten[Table[{i, j}, {i, n}, {j, n}], 1],
        randomlyOrderedSquares, unusedSquareQ, crossBag, newCross},
(* reorder squares *)        
randomlyOrderedSquares = squares[[RandomPermutation[n^2]]];
(* mark all squares as unused *)
Do[unusedSquareQ[squares[[i]]] = True, {i, n^2}];
(* a bag to collect crosses *)
crossBag = {};
Do[(* try to put a cross at {i, j} *)
   newCross = makeCross[randomlyOrderedSquares[[i]], n];
   If[(* did the cross still fit? *)
      Head[newCross] === cross,
      If[And @@ (unusedSquareQ /@ newCross),
         (* add cross to cross bag *)
         crossBag = {crossBag, newCross};
         (* mark used squares as used *)
         (unusedSquareQ[#] = False)& /@ newCross]], {i, n^2}];
(* return list of crosses *)         
Flatten[crossBag]]         

The  time  for  the  generation  of  a  random  cross  array  is  linear  in  the  number  of  lattice  points.  The  following  set of
n = 10, 50, 100, 200 shows this fact clearly.

CrossGraphics[randomCrossArray[ 10],  10] // Timing

CrossGraphics[randomCrossArray[ 50],  50] // Timing

CrossGraphics[randomCrossArray[100], 100] // Timing

CrossGraphics[randomCrossArray[200], 200] // Timing

By  using  packed  arrays  (to  be  discussed  in  Chapter  1  of  the  Numerics  volume  [63÷]),  the  absolute  timings  for  the
generation of such random arrays of crosses can be improved, but the complexity (~number of crosses) cannot. (For the
average density of the crosses, see [20÷].)

Upvalues can be used to define rules for any head and fixed arguments. Here is an example.

 /: _[ ] := "The upvalue did fire."

The definition goes into effect for the head .

Clear[ ];
[ ]

The definition goes also into effect for the head Hold.

Hold[ ]

But in  the following input,  the HoldAllComplete  attribute of HoldComplete  makes sure  that the definition for
 does not fire.

HoldComplete[ ]

In connection with UpValues and DownValues, the functions OwnValues and NValues are also of interest. 

 

OwnValues[symbol]

gives a list of the “direct” values of symbol. 
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NValues[nFunction]

gives a list of all numerical values associated with nFunction. 

The value assignment to a variable itself can be obtained with OwnValues. 

Remove[x];
x = 4;
{DownValues[x], UpValues[x], OwnValues[x], NValues[x]}

To  get  something  as  the  result  of  NValues[argument],  the  function  definition  must  have  either  the  form
N[f[args_]] := numericalValue or the form N[f[args_], digits] = numericalValue. 

Remove[f];
N[f[x_]] := 6.0;
{DownValues[f], UpValues[f], OwnValues[f], NValues[f]}

For this special construction, everything is associated with f and nothing is associated with N. 

??N

??f

Such a definition works  by finding its sole application when a numerical value (f  in our  example) is  to be computed
using N. 

{f[5], f[4] // N, N[f[5]], N @ f[6], f[7.0], N[f[4], 50], f[N[4, 50]]}

Here is a definition for  that hopefully only works if N explicitly gets a second argument. 

N[ [x_], digits_] := [N[x, digits]]

Again, this definition is stored as an numerical value through NValues. 

??

NValues[ ]

Here is the definition applied. 

N[ [1/6], 100]

Here it is (unexpectedly) too applied. 

N[ [1/6]]

By adding a Print-statement to the right-hand side, we see that internally the one-argument call to N expands into a
two-argument call with the second argument being the symbol MachinePrecision.

Clear[ ];

N[ [x_], digits_] := (Print[digits]; [N[x, digits]])

N[ [1/6]]

Restricting  the  definition  of   to  calls  to  N  with  the  second  argument  being  integer  avoids  that  N[ [1/6]]  evaluates
nontrivially.

Clear[ ];

N[ [x_], digits_Integer] := (Print[digits]; [N[x, digits]])

N[ [1/6]]
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Note that in defining a function with Set or SetDelayed, the difference between these two should be kept in mind.
When using Set,  the  right-hand  side  is  evaluated at  the  time the definition  is made.  When using SetDelayed,  the
right-hand side is evaluated when the definition is used.  From the standpoint  of evaluation of functions,  Mathematica
does not distinguish between the two. Here are two different function definitions. 

Clear[x, "rc*"];
rc1[x_]  = x^3 + Log[x];
rc2[x_] := x^3 + Log[x];

Using ??, we find out the following about their definitions. 

?rc1

??rc2

The internal rules used by Mathematica  to compute rc1  and rc2  have the same structure: HoldPattern[leftside]
:> rightSide (as already mentioned, HoldPattern and :> will be discussed in detail later). 

DownValues[rc1]

DownValues[rc2]

Using  UpValues  and  DownValues,  we  can  directly  intervene  in  the  internal  ordering  and  form  of  the  storage of
function definitions. One use of these functions is for the ordering of definitions. In the Chapters 1 and 2 of the Graph-
ics volume [62÷], we will use the function DownValues to directly add and delete rules.

If a function (a symbol) is given as a standalone (that means without arguments), only its OwnValues are checked for
definitions, not its DownValues. Here this is demonstrated.

Clear[f, h]
DownValues[f] = {HoldPattern[f] :> h}

f

{f[], f[1], f[f]}

Now f transforms into h, because we give a definition to the OwnValues. 

Clear[f];

OwnValues[f] = {HoldPattern[f] :> h}

f

{f[], f[1], f[f]}

SubValues is one further class of *Values. 

 

SubValues[function]

gives a list of the subvalues associated with function. 

SubValues  of function  are values given function  appears in outermost position within a compound head. Here is an
example. 

Clear[n, g, d]
n[g][d] = n g d

??n

{OwnValues[n], UpValues[n], SubValues[n]}
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(* no upvalues or downvalues for g *)
{OwnValues[g], UpValues[g], SubValues[g]}

(* no upvalues or downvalues for d *)
{OwnValues[d], UpValues[d], SubValues[d]}

A further  class  of  definitions  can  be  made concerning  the  formatting of  functions.  These  definitions are  stored in the
FormatValues. Because we will not discuss formatting, we will not go into detail here.

Σ (* session summary *) TMGBs`PrintSessionSummary[]

3.5 Functions that Remember Their Values
If a function is recursively defined, it often pays to save values that have already been computed. This process is called
dynamic programming or caching. 

 

 f[x_] := f[x] = result

saves computed values of f. This may involve a lot of values, for example, when the function is 
defined recursively. 

We can see how this works by looking at the FullForm. 

FullForm[Unevaluated[f[x_] := f[x] = something]]

Note  that  the  use  of  Unevaluated  (or  any  other  function  with  a  Hold-like  attribute))  is  needed  to  really  see  the
FullForm  of this construction (another function with a Hold-like attribute can be used instead of Unevaluated).
Without it, the definition of f would take place immediately because of SetDelayed. Just FullForm however, does
not reveal the process of the definition by itself, because it only displays the result of evaluating its argument.

FullForm[f[x_] := f[x] = something]

This result means that the implicit grouping used is f[x_] := (f[x] = something).  When f  is called with a
concrete value xConcrete, after checking the OwnValues of f to see if f evaluates to something, the upvalues of f are
checked  to  see  if  they  are  applicable.  If  an  upvalue  is  available,  it  is  used.  If  no  suitable  upvalue  is  available,  the
downvalue  (i.e.,  the  above  definition  for  f[x_])  goes  into  effect.  The  result  of  using  this  function  definition  is  the
assignment of a new downvalue to f, namely f[xConcrete]. The next time f[xConcrete] is evaluated the stored value
of  f[xConcrete]  will  be  used  and  no  reevaluation  of  the  general  definition  of  f  (as  defined  in  f[x_]:=…)  will  be
carried out.

We  now  simulate  the  recursive  integration  of  the  tangent  without  using  the  built-in  Integrate  function.  For  any
integer n ¥ 1, 

‡
x
tannHa xL dx =

tann-1Ha xL
Hn - 1L a

- ‡
x
tann-2Ha xL dx

‡
x
tanHa xL dx = -

lnHcosHa xLL
a

For comparison, we now define two functions TanPowerIntegrate  and FastTanPowerIntegrate  that carry
out the integration above. The second one remembers its values, but the first one does not. Here is our implementation
of  TanPowerIntegrate,  which  does  not  remember its  values.  Note  the three pattern variables  a_  (the prefactor),
x_ (the integration variable), and n_ (the power) and the necessity to define two initial values n = 0 and n = 1.

THE MATHEMATICA GUIDEBOOKS to PROGRAMMING—GRAPHICS—NUMERICS—SYMBOLICS 41

©  2004, 2005   Springer Science+Business Media, Inc.



TanPowerIntegrate[Tan[a_ x_]^n_, x_] := (* recursive call *)
                     1/(a (n - 1)) Tan[a x]^(n - 1) -
                     TanPowerIntegrate[Tan[a x]^(n - 2), x];

TanPowerIntegrate[Tan[a_ x_], x_] = -1/a Log[Cos[a x]];

TanPowerIntegrate[1, x_] = x;

Here is the result for the antiderivative of tan2Hb yL, where we set a = b, n = 2, and x = y. 

TanPowerIntegrate[Tan[b y]^2, y]

Differentiation of the last result does not give the original integrand immediately.

D[%, y]

For comparison, here is the result using the built-in function Integrate. 

Integrate[Tan[b y]^2, y]

Differentiating this result also does not appear to produce the original integrand. 

D[%, y]

However, we can apply Simplify to obtain the original integrand. 

 

Simplify[expression]

attempts to simplify expression by factoring and/or multiplying out. The criterion for 
simplifying an expression is to minimize LeafCount[expression]. 

Simplify[%]

Note that the LeafCount was reduced. 

{LeafCount[%], LeafCount[%%]}

Here  are  the  components  forming  the  parts  counted  by  LeafCount,  which  can  be  found  using  Level[…, {1,

Infinity}], of the following two expressions.

Level[Tan[b y]^2, {0, Infinity}]

Level[-1 + Sec[b y]^2, {0, Infinity}]

Caution should be exercised when using Simplify. For larger expressions, it can take a great 
deal of time. A careful application of replacement rules (see Chapter 5) “by hand” (i.e., by 
application of more specialized Mathematica functions like Expand, Factor, TrigEx
pand, TrigFactor) is often more effective. 

Starting from now, we will use Simplify from time to time until we discuss the more detailed functions in Chapter 1
of the Symbolics volume [64÷].

We can measure the time a computation takes with Timing. 

 

Timing[expression]

gives a list of the CPU time needed for the computation of expression, along with the result. 

Here is a value of 29 and the time needed to compute it. (We see that a limit to the accuracy of the timing measurement
exists.) 
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Timing[2^9]

In order to avoid looking at the following huge number, we use expression[[1]] to get just the time. 

Timing[199999^199999][[1]]

Another possibility is to see the huge number, having more than one million digits, and the time needed for its calcula-
tion. (The application of the function N happens after the timing, so it is not included.)

Timing[199999^199999] // N

Or we can use a semicolon to suppress the result of the calculation—then only the time is given (and the result Null).

Timing[199999^199999;]

We return now to our integration routine and use Timing to measure the time various computations need. 

Timing[(tanInt500 = TanPowerIntegrate[Tan[c z]^500, z])][[1]]

This time is reasonable considering the size of this expression. 

LeafCount[tanInt500]

Here is a part of the whole expression.

Short[tanInt500, 5]

The computation becomes much faster if we store the results of earlier computations. We achieve this speed-up with the
above-described SetDelayed[Set[…, …]] construction. 

FastTanPowerIntegrate[Tan[a_ x_]^n_, x_] := (* remember *)
FastTanPowerIntegrate[Tan[a x]^n, x] = (* recursive call *)
                1/(a (n - 1)) Tan[a x]^(n - 1) -
                FastTanPowerIntegrate[Tan[a x]^(n - 2), x];

FastTanPowerIntegrate[Tan[a_ x_], x_] = -1/a Log[Cos[a x]];

FastTanPowerIntegrate[1, x_] = x;

The  first  computation  takes  just  slightly  more  time  (because  of  the  additional  Set  statement  and  the  storing  of  all
calculated values) because it has to do the same work. Further integrations become much faster. 

Timing[FastTanPowerIntegrate[Tan[c z]^500, z]][[1]]

For comparison, here are the results for TanPowerIntegrate. 

Timing[TanPowerIntegrate[Tan[c z]^501, z]][[1]]

Timing[TanPowerIntegrate[Tan[c z]^502, z]][[1]]

Timing[TanPowerIntegrate[Tan[c z]^503, z]][[1]]

Because the recurrence formula always makes use of the expressions in the previous two steps, the first of the following
integrations  still  takes  a  relatively  long  time,  because  until  now  only  FastTanPowerIntegrate[Tan[c z]^i
with i = 1 …498 and i = 500 is already stored. The value for i = 499 (which is needed in the computation of FastTan
PowerIntegrate[Tan[c z]^501, z] still has to be calculated.

Timing[FastTanPowerIntegrate[Tan[c z]^501, z]][[1]]

Now  that  all  values  up  to  501  are  known,  FastTanPowerIntegrate[Tan[c z]^(n  +1), z]  will  compute
quickly. 

Timing[FastTanPowerIntegrate[Tan[c z]^502, z]][[1]]
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Timing[FastTanPowerIntegrate[Tan[c z]^503, z]][[1]]

Here are two more examples in which remembering function values pays off. First, we look at a recursive definition of
three functions related to each other by the following definitions. 

fn = 11 fn-1 + 21 gn-1 + 31 hn-1

gn = 12 fn-1 + 22 gn-1 + 32 hn-1

hn = 13 fn-1 + 23 gn-1 + 33 hn-1

Clear[f, g, h];
(* initial conditions *)
f[0] = 1; g[0] = 1; h[0] = 1;
(* the recursion *)
f[n_] := f[n] = 1^1 f[n - 1] + 2^1 g[n - 1] + 3^1 h[n - 1];
g[n_] := g[n] = 1^2 f[n - 1] + 2^2 g[n - 1] + 3^2 h[n - 1];
h[n_] := h[n] = 1^3 f[n - 1] + 2^3 g[n - 1] + 3^3 h[n - 1];

{f[200], g[200], h[200]} // Timing

Without remembering the values for f, g, and h from the interlaced definitions, we would have to wait much longer for
the values of f[200], g[200], and h[200]. 

Now, we look at the double recursive definition of the so-called Takeuchi function. (See [35÷], [49÷], [50÷], and [66÷]
for a detailed discussion of this function.) 

tHx, y, zL = ; y x § y
tHtHx - 1, y, zL, tHy - 1, z, xL, tHz - 1, x, yLL otherwise

(The meaning of the If  used in the following definition for Takeuchi  should be obvious;  we discuss If  further in
Chapter 5.) 

TakeuchiT[x_, y_, z_] := TakeuchiT[x, y, z] =
If[x <= y, y,
   TakeuchiT[TakeuchiT[x - 1, y, z], TakeuchiT[y - 1, z, x],
             TakeuchiT[z - 1, x, y]]]

TakeuchiT[14, 13, 0];

A whole set of values has been computed. 

Length[DownValues[TakeuchiT]] - 1

The  -1  in  the  last  input  accounts  for  the  general  definition  itself.  Here  are  some  of  the  currently  known  values of
TakeuchiT.

Short[DownValues[TakeuchiT], 8]

Sometimes we want to save only calculated function definitions because their computation may take a lot of time, but
not  special  function  values  (too  many  of  them  may  exist).  The  following  construction  accomplishes  this  task.  The
warning generated by Mathematica relates to the atypical appearance of name_ on the right-hand side of an assignment.
It is a warning message; nothing went really wrong in the following example.

Clear[saveSymbolDefinition, n, x];
saveSymbolDefinition[n_, x_Symbol] := 
           saveSymbolDefinition[n, x_] = D[Exp[x^2], {x, n}]

Note the  Pattern  construction  on  the  right-hand  side  of  SetDelayed  and  the  head specification  on  the  left-hand
side. If a function value is to be found immediately, this example fails. 

saveSymbolDefinition[2, 2]
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However, we can use an argument with head Symbol. 

saveSymbolDefinition[2, x]

Then, a corresponding definition for saveSymbolDefinition is available. 

??saveSymbolDefinition

The computation of a special value now proceeds without saving this value. In the next input, the definition for save
SymbolDefinition[2,x_] is used.

saveSymbolDefinition[2, 2]

No rules are stored for saveSymbolDefinition with the second argument being numeric.

??saveSymbolDefinition

The  discussed  SetDelayed[Set[… ,…]]  construction  by  no  means  requires  the  two  expressions  in  SetDe
layed and Set to be the same. Here, the last example is implemented with two different symbols. 

Clear[saveSymbolDefinition, concretSymbolDefinition, x];

saveSymbolDefinition[n_, x_Symbol] := 
          concretSymbolDefinition[n, x_] = D[Exp[x^2], {x, n}]

This expression again remains unevaluated because no definition for concretSymbolDefinition is available.

saveSymbolDefinition[2, 2]

A call to saveSymbolDefinition with a symbol as the second argument generates a definition for concretSym
bolDefinition. 

saveSymbolDefinition[2, z]; 
concretSymbolDefinition[2, 2];

??concretSymbolDefinition

For completeness, let us look at other possible constructions of the form a ~ SetOrSetDelayed ~  b ~ SetOrSetDeÖ
layed ~ c. In addition to the construction a := b = c, we also have the two variants a = b := c and a := b
:= c (and, of course, the trivial a = b = c). They are much less important, however. The first variant leads immedi-
ately to a SetDelayed assignment. The returned result of the assignment b:=c is Null, which is the value assigned
to a.

Clear[a, b, c]

a = b := c

??a

??b

The second variant a := b := c leads to the inside assignment b := c only when a is called. 

Clear[a, b, c]

a := b := c

(* make implicit grouping explicit visible *)
Unevaluated[a := b := c] // FullForm

??a

??b

THE MATHEMATICA GUIDEBOOKS to PROGRAMMING—GRAPHICS—NUMERICS—SYMBOLICS 45

©  2004, 2005   Springer Science+Business Media, Inc.



a

??b

Delayed and immediate assignments can be nested and used for ownvalues,  upvalues, downvalues etc. The next input
defines a function f that assigns an upvalue to the argument of f.

Clear[f, x, y];
f[x_] := (x /: f[x]  = x^2)

Calling now the function f with the argument y does not change the downvalues of f. But it creates an upvalue for y.

f[y]

DownValues[f]

UpValues[y]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

3.6 Functions in the l-Calculus
What is a function? According to [10÷], a function is a unique mapping of a set M1 into a set M2. Starting with this, A.
Church and S. Kleene developed a so-called Lambda Calculus around 1940. One central point in their development was
the  realization  that  the  name  x  in  a  function  definition  x Ø f HxL  is  arbitrary,  which  means  that  we  can  get  rid  of  it
altogether. The function itself is f  and f HxL is the value of the function for the argument x. (This was a very rough and
simplified  version  of  the  whole  story.  For  details  of  l-calculus,  see  [25÷],  [61÷],  [6÷],  [45÷],  [51÷],  [23÷],  [48÷],
[65÷], [54÷], [9÷], [37÷], [44÷], and [19÷].) In Mathematica, a “pure function” is represented via Function. 

 

Function[argument, map(argument)]

is the mapping (function) map : argument Ø mapHargumentL. An object with the head Func
tion is called a pure function. 

Here is an example. 

f = Function[x, Sin[x]^Exp[x]]

We now give the function f an argument. We use all three syntactic possibilities to call the function f with the argu-
ment 1.

{f[1], f @ 1, 1 // f}

The variables in the first argument of Function are local to Function; they have nothing to do with any variables
with the same names defined outside. The HoldAll attribute of Function makes this possible.

ξ = 1; Function[ξ, ξ^2]

Functions can be nested arbitrarily deep inside one another. Here, we compute sinHpL. The argument of the pure func-
tion Function[f, Function[x, f[x]]][Sin] is Sin, and it evaluates to Function[x, Sin[x]]. Then,
this pure function gets Pi as an argument, and the result is 0. 

Function[f, Function[x, f[x]]][Sin][Pi]

What we said earlier about Set and SetDelayed, concerning assignments to variables used in patterns, also applies
to the dummy variables  for  functions  with head Function,  which means that  no assignment is possible  to the local
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variable of a Function. 

Function[x, x = 4; x^2][3]

Because the name x contains no relevant information, we can drop the name of the function altogether. 

 

Function[x, f(x)]

or for several arguments

Function[{x1, x2, … , xn}, f(x1, x2, … , xn)]

or still shorter

 f(#)&

or for several arguments

 f(#1, #2, … , #n)& 

In this example, the argument is # and the mapping is arccosHlnH.LL.
pureFunction = ArcCos[Log[#]]&

pureFunction[1]

In the following example, the argument is also a pure function that first replaces the # in f[#[x]] and then evaluates
the resulting f[#^2&[x]] to f[x^2]. 

Clear[x, f];

f[#[x]]&[#^2&]

Here is an example of a function with two arguments. 

pureFunctionWith2Arguments = (#1^2 + #2^4)&

pureFunctionWith2Arguments[x, y]

Here is the same pure function with two named arguments.

Function[{x, y}, x^2 + y^4]

Applying it to the arguments y and x (the order matters) yields x2 + y2.

%[y, x]

The pure function Function[{f, arg}, f[arg]] applies f to arg.

Function[{f, arg}, f[arg]][Sin, Pi]

The next input generates a pure function when applied to the argument Function.

Function[function, function[#^2]][Function]

The pure function of the last output can now be applied to an argument.

%[2]

Here is the FullForm of the function pureFunction. 

FullForm[pureFunction]

# has been replaced by Slot. 
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Slot[i] or #i

represents the ith formal argument of a pure function. #0 is the entire pure function. 

SlotSequence[1] or ##1 or ##

represents a sequence of all arguments in a pure function definition. 

SlotSequence[n] or ##n

represents a sequence of arguments in a pure function definition, starting with the nth. 

Here is a function that is self-reproducing because of #0 (in addition it returns its argument).

reproduce = {#1, #0}&;
reproduce[1]

##  stands  for  any  possible  sequence  of  arguments.  The  function  wrapArgumentsInAList  places  all  of  its  argu-
ments in a list. 

wrapArgumentsInAList = {##}&

wrapArgumentsInAList[1]

wrapArgumentsInAList[1, 2]

wrapArgumentsInAList[1, 2, 3]

In the following example, the first argument should appear as a squared factor on the right-hand side. 

useFirstArgumentExtra = (#^2 sinsin[##])&

useFirstArgumentExtra[fac, rest1, rest2, rest3]

Here, we use the remaining arguments, starting with the second argument. 

useFirstArgumentAndRemainingArgumentsIndividually = 
                                     (#^2 sinsin[##2])&

useFirstArgumentAndRemainingArgumentsIndividually[
                               fac, rest1, rest2, rest3]

Here is still another example. 

(# + #3 + ## + ##2)&[1, 2, 3]

The next input explains the result from the last input.

1 + 3 + (1 + 2 + 3) + (2 + 3)

We can also extract the arguments of the functions. 

extractArguments = ##&

extractArguments[1, 2, 3]

The last result involved the function Sequence. 

 

Sequence[a1, a2, … , an]

represents a sequence of elements (arguments). The head Sequence vanishes as soon as 
Sequence[a1, a2, … , an] appears as an argument in a function unless the function 
has the HoldAllComplete or the SequenceHold attribute.

Here is such a sequence of arguments. 
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aSequence = Sequence[aa, bb, cc, dd, ee, ff]

List[Sequence[aa, bb, cc, dd, ee, ff]] causes Sequence to disappear. 

{aSequence}

Sequence also disappears in nearly any other function (whether specially defined or not). 

fufu[aSequence]

Plus[aSequence]

If it is nested inside itself, the inside Sequence vanishes. 

Sequence[Sequence[x1, x2], x3, Sequence[x4, x5]]

The tendency of Sequence  to pass on its argument is so dominant that even Hold, with its HoldAll  attribute, has
no effect. 

Hold[Sequence[a, b]]

One function strong enough to avoid Sequence-objects to disappear is HoldComplete.

HoldComplete[Sequence[1, 2]]

The attribute of HoldComplete responsible for this property is HoldAllComplete.

Attributes[HoldComplete]

Unevaluated is another function that has the HoldAllComplete attribute.

Unevaluated[Sequence[1, 2]]

Sequence  also  naturally  occurs  in  the  following  example.  We  take  all  arguments,  but  do  not  wrap  them  into  an
explicitly given function, so that they are returned as a sequence.

##&[1, 2, 3]

Sequence is a very useful function, but it can work in unexpected ways and thus must be 
used with caution. 

If a Sequence appears deep inside a held expression, it is not automatically flattened.

Remove[ ];
SetAttributes[ , HoldFirst];
[ [Sequence[]], [Sequence[]]]

Using pure functions, we can generate f[x] as follows. 

Clear[f, x];

#1[#2]&[f, x]

When using pure functions,  the ability to provide the argument at various stages in the evaluation of an expression is
often possible. All of the following inputs give the same result. 

Here, 1 + 1 is evaluated, and then {g[f[2]]} evaluates.

Clear[g]

{g[f[#]]}&[1 + 1]

Here, 1 + 1 is evaluated, substituted into g[f[…]], and then the outer List evaluates.

{g[f[#]]&[1 + 1]}
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Here, 1 + 1 is evaluated, substituted into f[…], and then the outer {g[…]} evaluates.

{g[f[#]&[1 + 1]]}

Here, 1 + 1 is evaluated, and then the outer {g[f[…]]} evaluates.

{g[f[#&[1 + 1]]]}

If the functions f and g would have definitions, the last four results could be different. Here is an example.

Remove[f, g];
SetAttributes[{f, g}, HoldAll]
g[f[2]] = gf;
g[_] = fgl;

{g[f[#]]&[1 + 1]}

{g[f[#&[1 + 1]]]}

We turn to the discussion of the attributes of Function. Function has the attribute HoldAll. 

Attributes[Function]

It is necessary for Function to have the attribute HoldAll. The reason is that the operations carried out in the body
of function might not be applicable for a symbol (which is required for the dummy variable of Function) or the result
might depend on the time in which the calculation is carried out. This HoldAll  has the following effect: Let func
tionsFunction be a function of one argument that produces a function. 

functionsFunction[a_] := Function[x, 2 a + x]

When given an argument, this output is what we get. 

functionsFunction[3]

Here 2 3 is not evaluated as 6. (The reason the x is renamed x$ in Function will be discussed at the end of the next
section in more detail.) Now, if the resulting function is given an argument, everything will be computed. 

functionsFunction[3][rst]

Often, a function will be applied repeatedly, so it would be advantageous not to have to recompute it every time. We
can accomplish this state with a function like this. 

Clear[functionsFunction]

functionsFunction[a_] := Function[x, Evaluate[2a + x]]
functionsFunction[3]

We can also accomplish this result with a pure function. 

{(2 3 #)&, Evaluate[2 3 #]&}

But here we must be careful. If the variable used inside Function has a value outside it, Evaluate does not allow
the variable to be screened inside Function and is different from the outside, identically named one. 

ξ = 3; 
Function[Evaluate[ξ], ξ^2]

Because  #  cannot  be  named,  the  form  Function[variable,  expression]  will  generically  be  needed  if  several
functions are to be nested. When functions with # are nested, some attention has to be paid to the brackets. Here is an
example in which a function remains in the resulting expression. 

(# + (#&))&[3]
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However, the entire expression does not have the head Function. 

%[3]

Head[%%]

This result is in contrast to the following example. 

# + #&[3]

The next  example is similar.  Every &  denotes a  pure  function,  and so no further  argument  can be inserted,  except by
applying the function. 

fq[#&, #]&[3]

To  assign  an  attribute  to  a  pure  function  (something  we  are  not  likely  to  do  often,  but  sometimes  in  the  following
chapters we will make use of Listable and HoldAll as an attribute of a Function), we can use Function with
a list of attributes. 

 

Function[{x1, x2,…, xn}, f Hx1, x2, …, xnL, 
         {attribute1, attribute2, … , attributem}] 

is the pure function f Hx1, x2, …, xnL with the arguments x1, x2, …, xn and the attributes 
attribute1, attribute2, …, attributem. 

In this example, the attribute Listable of Power is immediately applied by Power. 

Function[p, p^2][{1, 2, 3}]

Here, it is not immediately applied. 

Function[p, newPower[p]][{1, 2, 3}]

Here, it is again applied when we add the attribute Listable as a third argument to Function. 

Function[p, newPower[p], {Listable}][{1, 2, 3}]

Note that the following example does not work. 

Function[Slot[1], {Listable}][{1, 2, 3}]

Only pure functions with named variables allow attributes to be specified. 

The application of Function[x, f HxL] has a small, usually unimportant side effect: x is added to the list of variables
already used. 

Function[addMeToTheExistingSymbols, 
         addMeToTheExistingSymbols^3][3]

??addMe*

So  although  addMeToTheExistingSymbols  in  the  last  example  is  a  dummy  variable,  from  a  programming
language point of view the symbol must, of course, be present (in the parsing process). 

Using the fact that pure functions can be nested to arbitrary depths, we can efficiently construct very large expressions
that consist of several of the same subexpressions without the use of auxiliary variables. For example, suppose we want
to calculate the following expression to 100 digits:

H23 + 31L3

34 564 534
+ exp

H23 + 31L3

34 564 534
+ ln 

H23 + 31L3

34 564 534
+ exp

H23 + 31L3

34 564 534
.
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Here is the direct implementation, followed by a doubly nested pure function to compute this expression.

(23 + 31)^3/34564534 + Exp[(23 + 31)^3/34564534] +
     Log[(23 + 31)^3/34564534 +
              Exp[(23 + 31)^3/34564534]] // N[#, 100]& 

Here is a shorter and more efficient form of the last input.

(# + Log[#])&[(# + Exp[#])&[N[(23 + 31)^3/34564534, 100]]] 

Several repeating variables can be handled by using lists (or other functions that do not compute the arguments) in the

intermediate  steps.  Suppose  we  want  to  compute  I333 + 222M + I333 + 555M + I333 + 222M2 + I333 + 555M3.  Here  is  a  direct

approach. 
(3^33 + 2^22) + (3^33 + 5^55) + (3^33 + 2^22)^2 + (3^33 + 5^55)^3

Using pure functions, we can use the following input. 

(#[[1]] + #[[2]] + #[[1]]^2 + #[[2]]^3)&[
          {#1 + #2, #1 + #3}&[3^33, 2^22, 5^55]]

However, the following example does not work. 

(#1 + #2 + #1^2 + #2^3)&[(#1 + #2, #1 + #3)&[3^33, 2^22, 5^55]]

Neither does this example, because Sequence disappears before the relevant pure function is evaluated. 

(#1 + #2 + #1^2 + #2^3)&[
    Sequence[#1 + #2, #1 + #3]&[3^33, 2^22, 5^55]]

Using Unevaluated  in  this  form is also of  no help;  it  has only one argument and the outer  function sees only one
argument, namely Unevaluated[…], but expects three arguments.

(#1 + #2 + #1^2 + #2^3)&[
   Unevaluated[#1 + #2, #1 + #3]&[3^33, 2^22, 5^55]]

The  following  input  also  does  not  work.  Although  the  pure  function  now  has  the  attribute  HoldAllComplete,
Function itself does not have this attribute and so removes Sequence before going to work.

(#1 + #2 + #1^2 + #2^3)&[
    Function[{slot1, slot2, slot3},
       Sequence[slot1 + slot2, slot1 + slot3],
        {SequenceHold}]&[3^33, 2^22, 5^55]]

Giving Function itself the HoldAllComplete attribute makes things work.

SetAttributes[Function, HoldAllComplete];
(#1 + #2 + #1^2 + #2^3)&[
    Sequence[#1 + #2, #1 + #3]&[3^33, 2^22, 5^55]]

However,  it  is  certainly  possible  to  write  the  above  formulas  with  the  notation  #1, #2  instead  of  with  the  more
complicated  notation  #[[1]],  #[[2]].  The  next  input  uses  the  construction  ReleaseHold[Hold[Se
quence[…]]] to generate a sequence of arguments.

(#1 + #2 + #1^2 + #2^3)&[
     ReleaseHold[Hold[Sequence[#1 + #2, #1 + #3]]&[
                                   3^33, 2^22, 5^55]]]

Another possibility is the use of the command Apply (discussed in Chapter 6). 

Apply[(#1 + #2 + #1^2 + #2^3)&,
      {#1 + #2, #1 + #3}&[3^33, 2^22, 5^55]]

Σ (* session summary *) TMGBs`PrintSessionSummary[]
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3.7 Repeated Application of Functions
Sometimes a function must be applied repeatedly, e.g.,  in drawing a fractal.  The relevant Mathematica  operations are
discussed here. 

 

Nest[function, start, numberOfIterations]

applies the function function numberOfIterations times to start. 

Here we apply sin 12 times to p ê7. 

Nest[Sin, Pi/7, 12]

Note that the following inputs would have given the same result.

Nest[Sin[#]&, Pi/7, 12]

Nest[Function[x, Sin[x]], Pi/7, 12]

Nest[Function[Sin[#]], Pi/7, 12]

This process goes much faster numerically and yields, of course, a shorter result. 

Nest[N[Sin[#]]&, N[Pi/7], 45]

Here is a somewhat larger example (in terms of the output). 

Nest[Level[#, {0, Infinity}, Heads -> True]&, Sin[x^2], 2]

To collect all intermediate values, NestList can be used. 

 

NestList[function, start, numberOfIterations]

applies the function function numberOfIterations times to start, and puts all results in a list, 
that is, {function[start], function[function[start]], …}. 

To illustrate, here are the repeated integrals of the function f, starting with f HxL = 1. 

NestList[Integrate[#, x]&, 1, 10]

In the following example, the argument (a pure function) is reproduced at every step. 

NestList[(#&[#])&, #&, 3]

To iterate a function with several  arguments, we can proceed as follows.  It  is important that the result has a structure
permitting it to serve as an argument of the function. Here, we use a list and extract its element in each iteration step.

fz2[x_, y_] := {x^2 + 1, y^2 + 2}

Nest[fz2[#[[1]], #[[2]]]&, {s1, s2}, 6]

Using NestList, we also get all intermediate results. 

NestList[fz2[#[[1]], #[[2]]]&, {s1, s2}, 6]

Next, we give a little application of NestList. Suppose we are given the following iterative mapping [41÷]. 
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xn+1 = yn - signHxnL †b xn - c§
yn+1 = a - xn

Starting at the point 80, 0<, we want to iterate this mapping and look at the first 10000 points 8xn, yn<. We will discuss
the details of creating plots later. 

mapPicture[{a_, b_, c_}, {x0_, y0_}] :=
Show[Graphics[{PointSize[0.005], Point /@
NestList[Apply[{#2 - Sign[#1] Sqrt[Abs[b #1 - c]], a - #1}&, #]&,
         {x0, y0}, (* 10000 iterations *) 10000]}],
     PlotRange -> All, AspectRatio -> Automatic]

(* specific values a, b, and c; 
   other values give neat pictures too *)
mapPicture[{0.4, 1.0, 1.0}, {0.00, 0.00}]

Here is the result for different starting values 8x0, y0<.
mapPicture[{0.4, 1.0, 1.0}, {0.20, 0.40}]

Here is still another plot, this time we also change the values of the parameters a, b, and c  and we iterate 20000 times.

mapPicture[{1.4, 1.1, 2.2}, {0.20, 0.99}]

Here is an animation for a = cosHtL, b = sinHtL, c = p, and 8x0, y0< = 80, 0< as a function of t. The iterated points take on a
variety of shapes. We color the points in the order they were generated.

coloredMapPicture[{a_, b_, c_}, {x0_, y0_}, o_] :=
Graphics[{PointSize[0.005], 
MapIndexed[{(* color in order *) Hue[#2[[1]]/o], Point[#1]}&, 
NestList[Apply[{#2 - Sign[#1] Sqrt[Abs[b #1 - c]], a - #1}&, #]&,
         {x0, y0}, o]]}, PlotRange -> All, AspectRatio -> Automatic]

Show[GraphicsArray[(coloredMapPicture[#, {1, 1}, 12000]& /@ #)]]& /@
    Partition[Table[N[{Cos[t], Sin[t], Pi}], {t, 0, 2Pi, 2Pi/15}], 4]

The following animation shows the resulting point sets for 230 different values of t.
Make Input     Show Animation

Do[Show[coloredMapPicture[N[{Cos[t], Sin[t], Pi}], {1, 1}, 3000]], 
   {t, 0, 2Pi, 2Pi/229}]

For a  mathematical investigation of  such  iterated mappings,  see [24÷]  and [56÷].  (Several  other  interesting mappings
can be found there.)

If  the  first  argument  of  NestList  (Nest,  …)  is  a  pure  function  and  the  second  argument  is  a  (list  of)  machine
numbers  and  the  third  argument  is  greater  than  100,  Mathematica  will  often  be  able  to  use  internal  optimizations
techniques  to  carry  out  the  operation  in  question  very  quickly.  (It  will  use  compiled versions;  we  will  discuss  this  in
detail in Chapter 1 of the Numerics volume [63÷].) Here is an example. Producing a list with 250000 elements of the
map

xn+1 = + yn + k cotHxnL
yn+1 = -xn - k tanHynL

will be carried out in less than one second on a 2 GHz computer.

54 Printed from THE MATHEMATICA GUIDEBOOKS

©  2004, 2005   Springer Science+Business Media, Inc.



κ = -31/12;
(nl = NestList[{ #[[2]] + κ Cot[#[[1]]], -#[[1]] - κ Tan[#[[2]]]}&, 
               N[{51/31, 32/199}], 
              250000]); //  Timing

Here are points of the list nl shown.

Show[Graphics[Point /@ nl]]

Here  is  another  example  of  an  application  of  Nest.  We  compute  the  first  few  terms  in  the  solution  of  the  ordinary
differential equation y££HxL = - yHxL, yH0L = 1, y£H0L = 0.

We do this by iteration of the equivalent integral equation yHxL = 1 - Ÿ0
xdx£ Ÿ0

x£

yHx££L dx££ starting with the initial approxi-

mation y0HxL = 0 [28÷]. 

rightHandSide[y_] := 1 - Integrate[Integrate[y, {x, 0, ξ}], {ξ, 0, x}]

NestList[Expand[rightHandSide[#]]&, 0, 7]

For comparison, here is the result produced by calculating the first 12 series terms of cos. (The function Series will
be discussed in Chapter 1 of the Symbolics volume [64÷].) 

Series[Cos[x], {x, 0, 12}]

We could also check the result by substituting it into the original differential equation. 

D[%%[[-1]], {x, 2}] + %%[[-1]]

Here is the function zö zz  ([4÷], [42÷], [26÷], and [70÷]) iterated. (See also Chapter 1 of the Numerics volume [63÷]
for a more detailed discussion on this iteration.)

NestList[#^#&, N[1 - 2I], 40]

Another useful function performing repeated function evaluations is NestWhileList.

 

NestWhileList[function, start, test, compare, maxIterations]

repeatedly applies the function function to start until the test test no longer gives True and 
returns the list of all calculated elements. The test test is applied between the last generated 
element and the compare earlier elements. The function function is applied up to a maximum 
of maxIterations times.

If only the last result is of interest, the function NestWhile comes in handy.

 

NestWhile[function, start, test, compare, maxIterations]

repeatedly applies the function function to start until the test test no longer gives True and 
returns the last calculated element. The test test is applied between the last generated element 
and the compare earlier elements. The function function is applied up to a maximum of 
maxIterations times.

As an example of the use of NestWhileList,  let us look at the iterated application of the function xö1 + z lnHxL,
where  z  is  a  given  parameter.  We  will  iterate  until  a  previously  encountered  number  is  encountered  again.  We  limit
ourselves to applying the function at most 200 times. (The function UnsameQ[arg1, arg1, …, argn] gives true only

in case all the argi are different. We will discuss this function in Chapter 5.)

iteratedList[z_] := NestWhileList[Function[x, N[1 + z Log[x]]], 
                                  N[z], UnsameQ, All, 200]

THE MATHEMATICA GUIDEBOOKS to PROGRAMMING—GRAPHICS—NUMERICS—SYMBOLICS 55

©  2004, 2005   Springer Science+Business Media, Inc.



Depending  on  the  value  of  the  complex  parameter  z,  the  repeated  application  of  xö1 + z lnHxL  can  result  in  a  fixed
point.

iteratedList[3.]

Or it can result in periods of various length. Here is a period of length 3.

iteratedList[-2 - 2 I]

And here is a period of length 4.

Short[iteratedList[6/5 I], 12]

The  following  function  calculates  the  length  of  the  period  when  given  the  result  from  NestWhileList  as  the
argument.

period[list_] := If[Length[list] === 201, 201,
                    Position[Rest[Reverse[list]], 
                             _?(# == Last[list]&), {1}, 1][[1, 1]]]

Here we determine the periods 1, 3, and 4 from above.

period[iteratedList[3.]]

period[iteratedList[-2 - 2 I]]

period[iteratedList[6/5 I]]

In  the  complex  z-plane,  the  various  periods  form  an  interesting  pattern.  In  the  following  example,  we  calculate  this
pattern. To speed up the calculation, we use a compiled version of Nest. (We discuss the routine Compile in detail in
Chapter 1 of the Numerics volume [63÷].)

periodCompiled =
Compile[{{z, _Complex}}, 
       Module[{list, i = 1, last},
              list = NestList[N[1. + z Log[#]]&, z, 100];
              list = Reverse[list];
              last = list[[1]];
              i = 2;
              While[last != list[[i]] && i < 100, i = i + 1];
              i - 1]];

DensityPlot[periodCompiled[x + I y], {x, -3, 3}, {y, -3, 3},
            PlotPoints -> 300, Compiled -> False,
            Mesh -> False, ColorFunction -> Hue]

Here is another example of the use of NestWhileList. We apply the function 1/# - IntegerPart[1/#]& to
a complex number z  until  we find an already earlier encountered value.  (We visualized the map 1/# - Integer
Part[1/#]& in Subsection 1.2.2.) We use rational complex numbers as starting values and display the length of the
resulting lists (this means the sum of the length of the initial and the periodic part) as a density plot in @0, nD μ @0, nD.

cF[x_] := NestWhileList[1/# - IntegerPart[1/#]&, x, UnsameQ, All]

n = 500;
Off[Power::infy]; Off[Infinity::indet];
(* square array of data points *)
data = Table[Length[cF[i/n + I j/n]], {i, 0, n}, {j, 0, n}];

ListDensityPlot[data, Mesh -> False, FrameTicks -> None,
                      ColorFunction -> (GrayLevel[1 - #]&),
                      PlotRange -> All]

For situations in which the result approaches an asymptotic value, we can use FixedPointList. 
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FixedPointList[function, start, maxIterations]

repeatedly applies the function function to start until the result stops changing, up to a 
maximum of maxIterations times, and puts all of the results in a list. 

The detailed meaning of “the result stops changing” is specified with the option SameTest. 

Options[FixedPointList]

This  option  will  be  discussed  in  detail  in  Chapter  6.  Note  that  only  two  consecutive  values  are  compared!  With  the
default  setting used  above,  the result  “stops  changing” when successive results are  identical,  up to the last digits.  We
discuss the issue “ being identical” in Chapter 1 of the Numerics volume [63÷] in more detail. 

 

FixedPoint[function, start, maxIterations]

repeatedly applies the function function until the result stops changing, up to a maximum of 
maxIterations times, and outputs the unchanging result (the fixed point) satisfying 
functionHargL = functionH functionHargLL. 

We now use Newton’s method to find the square root of the number c. This goal involves solving f HxL = x2 - c  itera-
tively. The general Newton method is based on this iteration:

xi+1 = xi -
f HxiL
f £HxiL

.

For finding the square root, the iteration reduces to

xi+1 = xi -
xi

2 - c

2 xi
=

xi

2
+

c

2 xi
.

Amazing accuracy is obtained after just a few iterations. Here is the square root of c = 3. 

FixedPointList[Function[x, x/2 + 3/(2x)], N[1, 100]]

This result is quite precise. 

3 - %[[-1]]^2

For some interesting observations about the last iteration, see [16÷], [36÷]; xn  can be expressed in closed form through

the  starting  value  x0  by  xn = c K1 + IIx0 - c M ë Ix0 + c MM2
n

Oì K1 - IIx0 - c M ë Ix0 + c MM2
n

O  [69÷],  [14÷].  (For

optimal starting values of the Newton iterations, see [55÷].)

For higher order polynomials, the Newton iteration exhibits some very interesting features. One of them is the answer
to  the  question:  As  a  function  of  the  starting  value,  to  which  root  will  the  solution  converge?  The  following  picture
shows  the  convergence  to  the  roots  of  z5 = 1  as  a  function  of  the  complex  start  value.  (For  details  on  the  basins of
attractions  of  the  Newton  iteration,  see  [74÷],  [33÷],  [67÷],  [31÷],  [22÷],  [11÷],  and  [43÷];  for  a  choice  of  starting
values that reach all roots, see [30÷].)

newton5[z_] = z - (z^5 - 1)/D[z^5 - 1, z];

data = Table[FixedPoint[newton5, N[x + I y]], 
             {y, -2, 2, 4/299}, {x, -2, 2, 4/299}]; 

ListDensityPlot[Im[data], Mesh -> False, ColorFunction -> Hue, 
                MeshRange -> {{-2, 2}, {-2, 2}}]

Other  interesting  fractals  can  be  obtained  from  Newton  iterations.  The  next  graphic  shows  the  number  of  iterations
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needed until a fixed point is reached. 
lfpl[x_] := Length[FixedPointList[Function[z, (1/z^4 + 4z)/5], x]]

pp = 401;
data = Table[lfpl[x + I y], {y, -1., 1., 2/pp}, {x, -1., 1., 2/pp}];

ListDensityPlot[data, Mesh -> False, ColorFunction -> (Hue[3 #]&), 
                MeshRange -> {{-2, 2}, {-2, 2}}]

Here is another little application of FoldList. Given a univariate polynomial  and a complex number z, we form the
Cantor series [58÷] defined as (the square brackets in C@ D HzL indicate the functional dependence on the polynomial )

C@ D HzL = ‚
n=1

¶

‰
k=1

¶

ck

-1

ck = Hck-1L
c1 = z.

Here is a polynomial HzL.
[z_] := -10 + 6 z - 10 z^2 - 10 z^3 - 7 z^4 - 3 z^5 + 
         5 z^7 - 8 z^8 - 4 z^9 + 6 z^10 + z^11 - 4 z^12

The function step  updates the three-element list {term, product, sum}.  Here term stands for Hck-1L,  product  for

I¤k=1
¶ ckM-1 and sum for C@ D HzL.

step[{term_, product_, sum_}] :=
      {#, product/#, sum + product/#}&[ [term]]

As a function of the initial z, the function CantorSeries adds terms as long as they change the cumulative sum. (To
terminate the repeated application of step we use a numerical z.)

CantorSeries[z_] := 
FixedPoint[step, {z, 1/z, 0}, SameTest -> (#1[[3]] == #2[[3]]&)][[3]]

Here is a plot of C@ D HzL over the complex z-plane.

Plot3D[Re[CantorSeries[N[x + I y, 20]]], {x, -2, 2}, {y, -2, 2}, 
       PlotPoints -> 400, Mesh -> False, ClipFill -> None, 
       PlotRange -> {-0.1, 0.1}]

By using FixedPointList instead of FixedPoint we can easily count the number of terms needed in C@ D HzL. 
CantorSeriesList[startTerm_] := 
FixedPointList[step, {startTerm, 1/startTerm, 0},
               SameTest -> (#1[[3]] == #2[[3]]&)]

The  following  graphic  shows  the  number  of  terms  as  a  function  of  the  initial  z.  This  time  we  use  the  polynomial
HxL = x3 - x2 + x - 1.

[x_] := x^3 - x^2 + x - 1;

Plot3D[Length[CantorSeriesList[N[x + I y, 20]]],
       {x, -3, 3}, {y, -3, 3}, PlotPoints -> 400,
       Mesh -> False, ClipFill -> None, PlotRange -> All]

For a function of two arguments, the commands Fold and FoldList are useful for repeatedly applying the function. 
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FoldList[function, x, {a1, a2, … , an}]

forms the list {x, function[x, a1], function[f[x, a1], a2]…}. Here, function must be 
a function of two arguments. 

Fold[function, x, {a1, a2, … , an}]

gives the last element of FoldList[function, x, {a1, a2, … , an}]. 

Suppose we want to raise an expression to a series of different powers. This goal can be accomplished with FoldList
in pure function form. 

FoldList[Power[#1, #2]&, β, {exp1, exp2, exp3, exp4, exp5, exp6, exp7}]

In the next example, the imaginary unit i is successively raised to exponents that are multiples of i. 

FoldList[Power, I, {I, 2 I, 3 I, 4 I, 5 I, 6 I, 7 I}]

In the following examples, we clearly see how the use of numeric rather than symbolic variables saves time. In the first
example, N is applied only after all elements in the list have been symbolically computed. 

FoldList[Power, I, {I, 2 I, 3 I, 4 I, 5 I, 6 I, 7 I, 8 I,
                    9 I, 10 I, 11 I, 12 I, 13 I}] // N 

Here is what happens when numerical values are computed inside of FoldList. Clearly, it will result in a significant
savings in time. 

FoldList[N[Power[#1, #2]]&, I, 
         {I, 2I, 3I, 4I, 5I, 6I, 7I, 8I, 9I, 10I, 11I, 12I, 13I}] // N

FoldList and Nest can be used, along with appropriate pure functions, to construct short and fast expressions that

do complex work.  For  example,  we calculate the first  n  partial  products  of  the expansion  of z  around z = 1 [72÷],
[40÷]. The expansion coefficients can be calculated using the following recursion.

1 + z = ‰
k=1

¶ 2 akHzL + 2

akHzL + 1

a1HzL = z

akHzL =
ak-1

2 HzL
4 ak-1HzL + 4

sqrtApproximationList[z_, n_] :=
        Rest[FoldList[Times, 1, (2# + 2)/(# + 2)&[
             NestList[#^2/(4# + 4)&, z - 1, n]]]]

Here is one example. 

sqrtApproximationList[2, 7]

The product converges quickly. 

N[%]

Using high-precision arithmetic, we can see it calculate the difference to the exact value (the outer N prevents display of
all 500 digits; the Off used in the next input will be discussed in Chapter 4). 

Off[N::meprec];
N[N[%%% - Sqrt[2], 500]]

Fold is a very useful construction that allows for the use of “varying parameters” in the steps of an iterative calcula-
tion. In the following example, the third argument of FoldList controls the decreasing diameter of the rings. (Ignore
the details of the graphics construction for the moment.)
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(* calculating a new set of orthogonal directions *)
step[{mp_, n_, p_}, r_] :=
Module[{newn = Cross[n, p], b}, (* newn and b are new directions *)
        b = Cross[newn, p]; (* hexagon in plane of new directions *)
        Table[{mp + r #, newn, #}&[Cos[t] p + Sin[t] b],
               {t, 0.0, 2. Pi, 2. Pi/6}]]

Show[Graphics3D[
MapIndexed[{Thickness[0.015/#2[[1]]], Hue[#2[[1]]/7],
            (* color according to size *) Line[First /@ #1]}&,
             (* make many tori of different size using Fold *)
             FoldList[Function[{x, y}, Map[step[#, y]&, x, {-3}]],
                      (* rotation matrices *)
                      Table[{{Cos[t], Sin[t], 0},
                             {0     , 0     , 1},
                             {Cos[t], Sin[t], 0}},
                            {t, 2.Pi/6, 2.Pi, 2.Pi/6}],
     (* three different sizes *) {1/3, 1/6, 1/12}], {-4}]],
     PlotRange -> All, Boxed -> False, ViewPoint -> {1.3, -1.4, 1.8}]

If only one argument exists, but many functions (heads) should be applied one after another, we should use Compose
List. 

 

ComposeList[{ f1, f2, …, fn}, arg]

forms {arg, f1[arg], f2[ f1[arg]], …}. 

ComposeList is a generalization of NestList. Here is a simple example involving ComposeList. 

ComposeList[(* a list of seven (pure) functions *)
            {Sin, Sin[#]&, Times[#, #]&, Log[5 #]&, 6#&, 5 + #&,
             Function[x, x^2]}, aabbcc]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

3.8 Functions of Functions
Given functions f1, f2, … fn, we can combine them in many ways (and later apply them to arguments). One possibility
is to apply them one after another f1, f2, …, fn using Composition. 

 

Composition[ f1, f2, …, fn]

leads to the application of the fi, one after another. 

Composition can be regarded as ComposeList without an argument. It works as follows. 

co = Composition[# + 1&, # + 2&, # + 3&]

co @ 

Compositions are not immediately carried out. 

Composition[Sin, ArcSin]

Here are Plus and Times used with one argument. In this case, they evaluate just to their argument. 
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Composition[(#^2 + 2)&, Plus, Sqrt, Times, Sin]

When applied to an argument, the composition is actually carried out.

%[aaa]

We can make a function funcFunc acting only on the function func in func[arg] (i.e., on the head func) but not on the
argument arg. This result is accomplished with Operate. 

 

Operate[funcFunc, func[arg]]

gives (funcFunc[func])[arg]. 

Here is a simple example. 

Operate[fOuter, fInner[4]]

Here is a slightly more complicated example. 

Remove[a, c, f, x];
Operate[a, (c a)[f[x]]]

FullForm[%]

To apply a function of the type just obtained to an argument, we can use the command Through. 

 

Through[funcFunc[ f1, f2, …, fn][arg]]

gives (funcFunc[func])[arg]. 

If the head of a function is composite, the function is not immediately applied. 

(Sin + Cos + Tan + Cot)[Pi/4]

To make this sum operate on Pi/4, we need Through. 

Through[(Sin + Cos + Tan + Cot)[Pi/4]]

Here are the single terms of this sum. 

{Sin[Pi/4], Cos[Pi/4], Tan[Pi/4], Cot[Pi/4]}

In this case, we could get the same result with the following, slightly less convenient construction. 

Unprotect[Plus];
(Sin + Cos + Tan + Cot)[x_] := Sin[x] + Cos[x] + Tan[x] + Cot[x];

Protect[Plus];
(Sin + Cos + Tan + Cot)[Pi/4]

Unfortunately,  with  a  minus  sign,  we  get  another  useless  result,  which  is  explained  by  looking  at  the  FullForm of
expressions of the form -expr.

Through[(Sin + Cos + Tan - Cot)[Pi/4]]

FullForm[Sin + Cos + Tan - Cot]

After applying Through to the expression Operate[a, (c a)[f[x]]], we get the following result. 

Operate[a, (c a)[f[x]]] // Through

The inverse of a given function is an especially interesting new function, which can be obtained with InverseFunc
tion. 
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InverseFunction[function]

finds the inverse function for function, so that InverseFunction[function][x] = x. 

Whenever possible, the inverse function is given explicitly. 

InverseFunction[Sin]

InverseFunction[Tan[#]&]

If this is not possible, the result remains in symbolic form. 

InverseFunction[fufufu]

These are the functions that Mathematica  can invert. (We discuss the meaning of the individual commands used in the
next input in the next chapters.)

Drop[DeleteCases[(* select all built-in functions that have
                    a value for its inverse function *)
DeleteCases[First[#]& /@ DownValues[InverseFunction],
            HoldPattern | Literal | InverseFunction,
            {0, Infinity}, Heads -> True], _Integer], {-1}]

Pure functions are not “explicitly inverted”. 

InverseFunction[3 # + 7&]

InverseFunction[Sin[#]&]

InverseFunction[Function[x, Sin[x]]]

InverseFunction[(2 + 1)&]

Inverse functions can be differentiated and integrated.

D[InverseFunction[][x], x]

D[InverseFunction[][x], {x, 2}]

The  Hn = 5Lth  derivative  of  f H-1LHxL  is  proportional  to  f £I f H-1LHxLM9  [3÷],  [32÷].  This  means,  that  by  multiplying  with

f £I f H-1LHxLM9 we obtain a polynomial.

'[InverseFunction[][x]]^9 D[InverseFunction[][x], {x, 5}] //
                                                         Expand

Σ (* session summary *) TMGBs`PrintSessionSummary[]

Overview

In this chapter we have discussed attributes and options. Because of space limitations in this overview, we do not give
all commands that can carry a given attribute. (We come back to this issue in Chapter 6.) 

Get[ToFileName[ReplacePart[
           "FileName" /. NotebookInformation[EvaluationNotebook[]],
            "ChapterOverview.m", 2]]];

ChapterOverview["Programming", 3]
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Exercises

  1.L1 Predictions

What will be the results of the following Mathematica inputs? 
a) #^2&[1/#^3&[2]]
  Function[#, #^2][x]
  Function[Slot, Slot^2][x]
  Function[Slot, #^2&[Slot]][5]

b) sin[##]&[1, 2]
  #[[1]][#[[0]]]&[C[Print]]
  fun[SlotSequence[1 + 1]]&[1, 2]
  (Slot[Slot[1]])&[1]

c) fg[x_Integer] := {x, Integer}
  fg[x_Times] := {x, Times}
  fg[x_Rational] := {x, Rational}
  fg[x_Divide] := {x, Divide}
  fg[x_] := {x, arbitrary};
  {fg[3],
   fg[Unevaluated[3/1]],
   fg[Unevaluated[3]],
   fg[Divide[3, 1]],
   fg[Unevaluated[Divide[3, 1]]],
   fg[Unevaluated[Rational[3, 1]]]}

d) f[x_x] := x[[1]]
  f[x[3]]
  f[x[x]]
  f[x]
  Clear[f];
  f[Head_] := Head[Head]
  f[Sin[Cos]]

e) f[Symbol_Symbol] := Symbol
  f[Sin]

f) f[Integer_] := Integer
  f[3]
  f[x]

g) clock[Print[4]; #]&[Print[3]; #]&[Print[2]; #]&[Print[1]; #]&[hand]

h) #1&[]
  #2&[0]
  #0&[]
  ##&[]
  ##0&[]
  ###&[2, 3, 4]
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  xa&b&c&[d]
  (#&)&[2][3]
  (((#&)&)&)[1][2][3]

i) Evaluate[D[#, x]]&

j) f[x_Pattern] := x^2
 f[x_Integer] = f[x_Integer]
 f[3]

k) f[x_] := Evaluate[Expand[x]]
  f[(x + y)^3]

l) 2 // ((1 ~ #1 + #2& ~ #1)& @ #1)&

m) a = x_y; f[a] := x^2; f[a]

n) N[1[1]] N[1[1]]

o) f[x_Blank] := x^2;
  f[x_y[x]] := x^-2;
  f[x_(_y)] := x
  f[Pattern[x, Blank[Blank[y]]]] := x^-1
  f[_] + f[y[z]] + f[y[z][x]] + f[_head] +
  f[Blank[y]] + f[Blank[y][1]] + f[2 y[5]]

p) Flat[Flat[Flat, Flat]]

q) v := (Remove[a]; 1); a = 2;
  v + a
  Remove[a, v];
  v := (Remove[a]; 1); a = 2;
  a + v

r) Function[x, x] - Function[y, y]
  Function[Function, #^2&][Depth]

s) f[x_] := (f[Evaluate[Pattern[y, Blank[Head[x]]]]] := y + Head[x]; f[x^2])
  f[2]

t) f[x_][y_] := f[y][x]
  f[1][2]

u) Function[functionBody, Function[s, functionBody][3]][11 s + 111 s^11]

  Function[{functionArg, functionBody}, Function[functionArg,
                         functionBody][3]][s, 11 s + 111 s^11]

v) Function[f, (# f)&[3]][#]

w) # & & & & & & [1][2][3][4][5][6]

x) noGo[x_] := (x = 11)
  myNewVar = 1; noGo[Unevaluated[myNewVar]]

  Remove[noGo]
  SetAttributes[noGo, HoldFirst]
  noGo[x_] := (x = 11)
  myNewVar = 1; noGo[myNewVar]
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  myNewVar = 1; noGo[Unevaluated[myNewVar]]

  myNewVar = 1; noGo[Evaluate[myNewVar]]

y) Function[c, Slot[c] SlotSequence[c]&[1, 2, 3], Listable][{1, 2, 3}]

  Function[Slot, Slot[1]]&[C][1][1] - Function[Slot, Slot[1]][C]  

z) Slot[1/2 + 1/2]&[1, 2]

  k = 1;  = 2; (#1 - #k) + (#2 - # )

  2.L2 Ha + bL2 n+1, Laguerre Polynomials

a) Expressions of the form Ha + bL2 n+1 can be written in the following way, at least for the odd powers given here:

Ha + bL3 = a3 + b3 + 3 a b Ha + bL Ia2 + a b + b2M0

Ha + bL5 = a5 + b5 + 5 a b Ha + bL Ia2 + a b + b2M1

Ha + bL7 = a7 + b7 + 7 a b Ha + bL Ia2 + a b + b2M2,

Program a function that tries to write expressions of the form Hvar1 + var2Lexp  in this way, and determine whether this

can be done for Ha + bL9, Ha + bL11, …, etc. 

b) Use the symbolic formula [73÷], [17÷]

Ln
HaLHzL =

H-1Ln

n !
 exp -

∑

∑ z
 z 

∑

∑ z
+ a 

∑

∑ z
 zn

to derive explicit forms of the first few (n = 0, 1, …, 5) Laguerre polynomials Ln
HaLHzL.

  3.L1 d
d a x

 Ÿ a xf HyL dy

Given a function  of  the form f[x_] := notAnalyticallyIntegrable,  examine the  results  of D[Integrate[f[x],
x], x]  and  D[Integrate[f[a x], a x], a x].  How must  D  and/or  Integrate  be  modified to  get  the
desired results in the second case? 

  4.L1 Pattern[name, _]

a) Φ[Pattern[2, _]] = 2^2;
  ??Φ

  {Φ[2], Φ[3], Φ[Pattern[2, _]]}    

b) Φ[Pattern[I, _]] = I^2;
  ??Φ

  {Φ[2], Φ[I]}

c) Φ[Pattern[I, _]] := I^2;
  ??Φ

  {Φ[2], Φ[I]}

d) Φ[Pattern[a[2], _]] := a[2]^2;
  ??Φ

  {Φ[2], Φ[Pattern[a[2], _]]}
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d) FullForm[_[_]]

  5.L1 Puzzles

What could the input In[1] be to get the following two sets of inputs and outputs? 

a)

In[2] := b[c]
Out[2] = b[c]
In[3] :=  Head[b[c]]
Out[3] = d

b) 

In[2] := Remove[f, x]
In[3] := f[x_] := x^2
In[4] := f[2]
 Out[4] = 16

c)  Find  a  Mathematica  expression  expression  for  which  expression[[1,  1]]  and  expression[[1]][[1]]  are
different. 

d)  Given  the  definition  f[x_Real] := x^2,  can  one  give  any  argument  arg  that  is  not  a  real  number,  such  that
f[arg] evaluates to its square? 

e) What will the result of this input be? 

    FixedPoint[Head, arbitraryExpression]

f) What will the results of the following three inputs be? 

  Function[{s}, OIOI[s]][Unevaluated[κ]]

  Function[{s}, OIOI[s]][Unevaluated[Unevaluated[κ]]]

  Function[{s}, OIOI[s]][Unevaluated[Unevaluated[Unevaluated[κ]]]]

g) What will be the result of the following input? 

  DirectedInfinity[Infinity[[1]]]

h) What could have been the input In[1] to get the following inputs and outputs? 

In[2] :=  a^2
Out[2] =  b
In[3] := Clear[a]
Out[3] = a
In[4] := Remove[a]
Out[4] = a

i) Predict the result of the following input.

  f[_] := (f[_] := #0[# + 1]; # + 1)&[1]

  f[f[f[f[f[2]]]]]

  6.L2 Different Patterns

For the following function definitions, find realizations for which the corresponding pattern matches. 
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a) f[x_, a[b_, c_]_] := [x, a, b, c]

b) f[x_, a_[b_, c_]] := [x, a, b, c]

c) f[a_ b_ c_] := [a, b, c]

d) f[_ _] := 

  7.L1 Plot[numberFunction]

Define a function f HxL that gives 3 for integer arguments, 2 for rational arguments, and 1 for real arguments. Try to plot
this function using Plot[f[x], {x, -3, 3}]. What can one conclude from this attempt to make a Plot? 

  8.L1 Tower of Powers

What is the limit value of the following power tower? 

I 2 MJ 2 N 2
2

ÿÿÿ

Calculate numerical values for the first few iterations. 

  9.L1 Cayley Multiplication

Implement  the  (associative)  Cayley  multiplication   (short  for  aley imes).  This  operation  is  binary  with  the
following multiplication table. 

 a b c e 
 
 a e c b a 
 b c e a b 
 c b a e c 
 e a b c e 

Find the following result. 

[a, b, c, a, c, e, a, c, b, b, c, a, e, a, c, c, a, b, a, c,
   a, c, a, e, b, b, a, a, e, c, b, b, a, a, c, e, e, e, a, a,
   b, b, b, a, b, c, b, c, a, a, c, c, c, b, a, a, e, e, c]

How often are the various multiplication rules applied? 

 

Solutions

  1. Predictions  

We evaluate the various inputs and comment on the results. 

a)  First,  the  pure  function  x Ø 1 ë x3  is  applied  for  x = 2,  and  then  the  pure  function  x Ø x2  is  applied.  The  result  is

I1 ë 23M2 = 1 ê64. 

THE MATHEMATICA GUIDEBOOKS to PROGRAMMING—GRAPHICS—NUMERICS—SYMBOLICS 67

©  2004, 2005   Springer Science+Business Media, Inc.



#^2&[1/#^3&[2]]

This input does not work. 

Function[#, #^2][x]

It does not work because the first argument of Function must be a symbol or a list of symbols. But # is not a symbol. 

FullForm[#]

Head[#]

Now, it works because Slot without any arguments is, of course, a symbol. 

Function[Slot, Slot^2][x]

In the last input, Function[Slot, #^2&[Slot]][5], we get the result 5@1D2.

Function[Slot, #^2&[Slot]][5]

Using FullForm, we see all occurrences of Slot.

Hold[Function[Slot, #^2&[Slot]][5]] // FullForm

Because Slot is the dummy variable of Function, its name does not matter.

Function[slot, slot[1]^2&[slot]][5]

The evaluation proceeds by first substituting the 5 for Slot, which yields 5[1]^2&[5]. The pure function 5[1]^2&

gets applied to the argument 5 and finally yields 5@1D2.

5[1]^2&[5]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

b) sin[##]& is a pure function of one or several arguments. Because no general rules for sin exists, if we apply it to
the argument, we get sin[1, 2]. 

sin[##]&[1, 2]

#[[1]][#[[0]]]&[C[Print]]  is  a  slightly  more  complicated  example.  First,  the  #s  are  replaced  with
C[Print]. Then, Part comes into effect and we get Print[C], which prints C as a result. 

#[[1]][#[[0]]]&[C[Print]]

Because of  the attribute HoldAll  of  Function,  1 + 1  is  not  evaluated and SlotSequence[1 + 1]  is  not a
valid SlotSequence-object. Thus, it all remains unevaluated. 

fun[SlotSequence[1 + 1]]&[1, 2]

In (Slot[Slot[1]])&[1],  nearly the same thing happens.  Slot[Slot[1]]  is not an allowed Slot-object; its
argument must be an integer. The argument of Slot must be a nonnegative integer. 

(Slot[Slot[1]])&[1]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

c)  For  the  given  function  definition,  it  is  clear  that  fg[3]  is  {3, Integer}.  In  the  second  case,  fg  applies  to
Times[3, Power[1, -1]] (not to Divide[3, 1] and not to 3), and so, we get the result {3, Times}. The
third case is like the first one. In the fifth case, the Divide that appears explicitly in the construction Unevaluated[
Divide[…]] plays a role for the first time; in the fourth case, we divide first, and thus get 3. In the last case, Uneval
uated prevents the simplification in Rational[3, 1], and so the result is {3, Rational}. 
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fg[x_Integer] := {x, Integer}
fg[x_Times] := {x, Times}
fg[x_Rational] := {x, Rational}
fg[x_Divide] := {x, Divide}
fg[x_] := {x, Egal};
{fg[3],
 fg[Unevaluated[3/1]],
 fg[Unevaluated[3]],
 fg[Divide[3, 1]],
 fg[Unevaluated[Divide[3, 1]]],
 fg[Unevaluated[Rational[3, 1]]]}

Σ (* session summary *) TMGBs`PrintSessionSummary[]

d) The x is regarded as a pattern that stands for an arbitrary argument with head x. This is the reason for the extraction
of the first part in the first two examples. The x appearing on the right-hand side—that is, the x to the left of _ is the
first argument from Pattern. For an argument x of f with head Symbol, we have not defined anything, and f[x]
remains unevaluated. 

f[x_x] := x[[1]]

f[x[3]]

f[x[x]]

f[x]

In both appearances, Head on the right is regarded as a local variable, and not as the command Head. The functional
meaning of  Head  would  apply at  a  time when the  right-hand  side of  the definition would be evaluated.  At this time,
Head  is  already  replaced  by  the  actual  realization  of  the  pattern  called  Head,  which  is  the  reason  for  the  result
arg[arg]. 

Clear[f];
f[Head_] := Head[Head]

f[Sin[Cos]]

Evaluating now f[Head[Head]] yields Symbol[Symbol].

f[Head[Head]]

The message is generated because the function Symbol expects a string as its argument.

??Symbol

For comparison, we also have the following. 

Head[Head]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

e)  In  this  case,  Symbol  is  not  localized.  It  is  interpreted  as  the  built-in  command. This  behavior  could  not  be  easily
predicted.  This  is  an  unexpected  limitation.  The  lesson  here  is  that  no  built-in  commands  should  be  used  as  pattern
variables in function definitions. In addition to being dangerous, it also makes programs more difficult to read.

f[Symbol_Symbol] := Symbol

f[Sin]

f[x]

Σ (* session summary *) TMGBs`PrintSessionSummary[]
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f) Here, the localization works again. 

f[Integer_] := Integer

f[3]

f[x]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

g) We first look at the FullForm of such an expression. 

Hold[clock[#]&[#]&[#]&[#]&[hand]] // FullForm

The argument hand is passed from pure function to pure function. In the next input, each time the Print[i] is called
in addition, and so the numbers 1 to 4 are printed. 

clock[Print[4]; #]&[Print[3]; #]&[Print[2]; #]&[Print[1]; #]&[hand]

Just clock[#]&[#]&[#]&[#]&[hand] produces the same result.

clock[#]&[#]&[#]&[#]&[hand]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

h) Here no first argument exists. 

#1&[]

Here no second argument exists. 

#2&[0]

#0 reproduces the pure function itself, independent of the argument. 

#0&[]

Again, no argument is here. The “empty argument sequence”, meaning Sequence[], is returned.

##&[]

##0 is not a defined expression. It is parsed as SlotSequence[0], but no internal meaning has been defined for it.

##0&[] // Hold // FullForm

##0&[]

###&[2, 3, 4] gives the following result. 

###&[2, 3, 4]

To understand the result better, we look at the FullForm. 

FullForm[Hold[###&[2, 3, 4]]]

This  result  means  ###  is  interpreted  as  Times[SlotSequence[1],  Slot[1]]  and  that  the  result  is
H2ä3ä4Lä2 = 48. 

###&[2, 3, 4]

a&b&c&[d] yields the following result. 

a&b&c&[d]

This  result  is  because  a&b&c&  is  a  function  whose  second argument  is  a  product  of  another  function  Function[
Times[Function[a], b]], and because the variable c is to be replaced by d. 
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a&b&c& // FullForm

(#&)&[2][3]

The result of the first operation (which does not depend on its arguments) is a pure function giving the value 2 for the
argument 2. 

(#&)&[2]

(#&)&[#]

(#&)&["CompleteGarbage"]

Without the round brackets (parentheses), the above expression would not make sense syntactically. 

#&&[2]

Now, for the last example, evaluation proceeds from the inside out, and the inner Slot gives the 3. 

(((#&)&)&)[1][2][3] // Hold // FullForm

(((#&)&)&)[1][2][3]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

i) We first look at the result. 

Evaluate[D[#, x]]&

Evaluate forces the computation of the inner expression. 

D[#, x]

The  result  of  this  differentiation  of  Slot[1]  with  respect  to  x  is  0,  because  x  does  not  appear  at  all  in  Slot[1].
Hence, we get the following result. 

0&

Σ (* session summary *) TMGBs`PrintSessionSummary[]

j)  This  unusual  function  definition  is  tailored  for  arguments  that  are  typically  arguments  on  the  left-hand  sides of
function definitions, namely, those with head Pattern. 

f[x_Pattern] := x^2

Thus, the right-hand side is computed to be (x_Integer)^2. 

f[x_Integer]

Because Set (=) has the attribute HoldFirst, the left-hand side is not affected by the above function definition. 

f[x_Integer] = f[x_Integer]

At the moment, f is defined as follows. 

??f

Thus, f[3] is not an especially meaningful expression. 

f[3]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

k)  SetDelayed  has  the  attribute HoldAll.  The Evaluate  on  the  right-hand  side of  the  following input  disables
HoldAll at the time the second argument of SetDelayed is evaluated.
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Remove[f]
f[x_] := Evaluate[Expand[x]]

We now have the following definition of f. 

??f

Thus, nothing is multiplied out in the following input. 

f[(x + y)^3]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

l) First, we look at the result. 

2 // ((1 ~ #1 + #2& ~ #1)& @ #1)&

At first glance, this input appears somewhat cryptic because different forms of Mathematica  functions and pure func-
tions are mixed. Everything is a little clearer in the FullForm. 

FullForm[Hold[2 // ((1 ~ #1 + #2& ~ #1)& @ #1)&]]

We now look in detail  at  the steps of the calculation. The computation begins with the application of ((1 ~ #1 +
#2& ~ #1)& @ #1)& to the argument 2 in the postfix form. The result is (1 ~ #1 + #2& ~ #1)& @ 2. Next,
(1 ~ #1 + #2& ~ #1)& in the prefix form is applied, giving 1 ~ #1 + #2& ~ 2. Finally, #1 + #2& in the
infix form is applied to the two arguments 1 and 2, and we obtain the result 3. 

2 // ((1 ~ #1 + #2& ~ #1)& @ #1)&

Σ (* session summary *) TMGBs`PrintSessionSummary[]

m) The a (which has the value x_y) is computed as the argument on the left-hand side of the function definition of f,
resulting in the function definition f[x_y] := x^2. No definition exists for the symbol a. 

a = x_y; f[a] := x^2;

??f

Thus, f[a] remains unevaluated. 

f[a]

The definition matches an argument of the form y[arguments].

f[y[a, a]]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

n)  The  contents  of  this  input  are  not  particularly  mathematically  meaningful,  but  from  a  syntactic  standpoint,  it  is
allowed. N takes effect on all 1s, and gives 1.[1.] each time, and these two factors are combined to a square. 

N[1[1]] N[1[1]]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

o) Here are the inputs of the function definitions of f. 

f[x_Blank] := x^2;
f[x_y[x]] := x^-2;
f[x_(_y)] := x
f[Pattern[x, Blank[Blank[y]]]] := x^-1

We first look at the results of the individual summands. Here, the first definition of f applies. 

f[_]
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For y[z] as an argument, none of the above rules apply. 

f[y[z]]

However, for y[z][x], they do apply, because the second definition above requires an argument with Head y[x]. 

x_y[x] // FullForm

In this case, y is the head of y[z] and x is the required argument of the head. 

f[y[z][x]]

_head is Blank[head], that is, it has the head Blank, and the first of the above definitions applies. 

f[_head]

The next one is analogous to the last summand, but it is obvious that the first definition applies because the argument is
given in the FullForm. 

f[Blank[y]]

The fourth definition requires an argument with the head Blank[y], which is the case for Blank[y][1]. 

f[Blank[y][1]]

The third definition of f  applies to  the last summand. The argument has to be a product  of something and something
with head y.

f[2 y[5]]

This form be clear if we look at the FullForm of the pattern. 

x_(_y) // FullForm

It  requires  a  product  of  two  terms;  something  named  x  with  something  with  the  head  y.  Thus,  after  an  appropriate
reordering of the summands, we get the following result. 

f[_] + f[y[z]] + f[y[z][x]] + f[_head] +
f[Blank[y]] + f[Blank[y][1]] + f[2 y[5]]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

p)  This  expression  remains  completely  unchanged  (more  correctly  phrased:  it  undergoes  the  complete  evaluation
procedure, but returns unchanged). 

Flat[Flat[Flat, Flat]]

This result is because Flat does not have the attribute Flat. 

Attributes[Flat]

Here, Flat has the attribute Flat. 

SetAttributes[Flat, Flat]

Thus, the above expression would simplify to the following. 

Flat[Flat[Flat, Flat]]

ClearAttributes[Flat, Flat]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

q) In the evaluation of v + a, the computation of v erases the value of a. 

v := (Remove[a]; 1); a = 2;
v + a
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Here we use the value of a before it is erased in the evaluation of v. 

Remove[a, v];
v := (Remove[a]; 1); 
a = 2;
a + v

Using v + a instead of a + v gives a different result.

Remove[a, v];
v := (Remove[a]; 1); 
a = 2;
v + a

To understand the different results of the last two examples we observe that first, the arguments a and v are evaluated
and then the Orderless attribute of Plus goes into effect.

Σ (* session summary *) TMGBs`PrintSessionSummary[]

r)  The result is not 0 because Function[x, x]  is identical with Function[y, y]  from the standpoint of con-
tent, but not programming, because they have different variables. 

Function[x, x] - Function[y, y]

Function[x, x] - Function[x, x]

Now let us look at the second input.  The inner Function  is here the dummy variable of the outer Function.  The
dummy variable of the outer Function  appears in the body of the pure function in #^2&  (=Function[Power[
Slot[1], 2]]). 

Function[Function, #^2&][Depth]

Applying the outer pure function to the argument Depth yields Depth[Slot[1]^2]. Freezing the body of the pure
function after argument substitution, but before evaluation, shows this. 

Function[Function, Hold[#^2&]][Depth]

Depth[Slot[1]^2] then results in 3.

Depth[Slot[1]^2]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

s) During the evaluation of the definition of f with the initial argument 2, a definition for f corresponding to arguments
with the head Integer is generated. This new, specialized definition is then used later in the calculation of f[2]. 

f[x_] := (f[Evaluate[Pattern[y, Blank[Head[x]]]]] :=
                                     y + Head[x]; f[x^2])
f[2]

Here are all current definitions for f.

?f

To  understand  the  computation,  we  can  examine  (by  adding  a  Print  statement)  the  DownValues  of  f  on  the  fly
when f is called. 
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Remove[f, y] 

f[x_] := (Print["DownValues[f] beforehand:", DownValues[f]];           
          f[Evaluate[Pattern[y, Blank[Head[x]]]]] := y + Head[x];          
          Print["DownValues[f] subsequently:", DownValues[f]];           
          f[x^2]) 
f[2]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

t) This definition gives an infinite iteration because after the definition is applied, the result is again in a form in which
the definition matches. 

f[x_][y_] := f[y][x]

f[1][2]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

u) The result in both cases is 11 s + 111 s11; because s from the argument and s from Function are different and so
are treated independently (the s  from the Function  is  a dummy variable and will be screened).  The same indepen-
dence holds for the two functions functionArg and functionBody from the second example. 

Function[functionBody, Function[s,
                       functionBody][3]][11 s + 111 s^11]

Function[{functionArg, functionBody}, Function[functionArg,
                       functionBody][3]][s, 11 s + 111 s^11]

We can see inside the evaluation by wrapping the function Hold around the inner Function. 

Function[functionBody, Hold @ Function[s,
                       functionBody][3]][11 s + 111 s^11]

Function[{functionArg, functionBody}, Hold @ Function[functionArg,
                       functionBody][3]][s, 11 s + 111 s^11]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

v)  The result  is  the number 9.  The argument Slot  is substituted for  f  inside the outer  Function.  The result  is the
pure function # # & with argument 3. After its evaluation, we get 9. 

Function[f, (# f)&[3]][#]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

w) Looking at the FullForm, we clearly see the nesting of pure functions. 

FullForm[Hold[# & & & & & & [1][2][3][4][5][6]]]

In the five outer pure functions, no reference is made to their arguments via Slot; the given arguments 1, 2, 3, 4, and
5 are irrelevant, and only the last (innermost) pure function is of the form #&, which means this innermost function, just
gives its argument as the result of its application. The evaluation of the whole expression starts with evaluating the first
(outermost) pure function, and the result is # & & & & & [2][3][4][5][6]. Then, the second pure function is
evaluated, and so on. Finally, the last (innermost) pure function applied to 6 gives the result 6. 

# & & & & & & [1][2][3][4][5][6]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

x)  This  example  is  a  refined  remake  of  the  function  noGo  from  Subsection 3.1.1.  In  the  first  version,  because of
Unevaluated, the x on the right-hand side of the definition of noGo is replaced by myNewVar and not by the value
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of myNewVar. So, no error message is generated, and it evaluates. 

noGo[x_] := (x = 11)
myNewVar = 1;
noGo[Unevaluated[myNewVar]]

myNewVar

myNewVar  has  been  successfully  assigned  the  value  11.  The  HoldFirst  attribute  has  the  same result.  Again,  the
symbol myNewVar is plugged into x = 11, and Set can do the assignment. 

SetAttributes[noGo, HoldFirst]
noGo[x_] := (x = 11)
myNewVar = 1;
noGo[myNewVar]

myNewVar

One more Unevaluated does not change anything in this case.

myNewVar = 1;
noGo[Unevaluated[myNewVar]]

myNewVar

But Evaluate  wrapped around myNewVar  forces myNewVar  to evaluate to 11,  despite the HoldFirst  attribute,
and no assignment can take place. 

myNewVar = 1;
noGo[Evaluate[myNewVar]]

myNewVar

Σ (* session summary *) TMGBs`PrintSessionSummary[]

y) Here, the first expression is calculated. 

Function[c, Slot[c] SlotSequence[c]&[1, 2, 3], Listable][{1, 2, 3}]

Because of the Listable attribute, the above expression is equivalent to the following expression. 

{Slot[1] SlotSequence[1]&[1, 2, 3],
 Slot[2] SlotSequence[2]&[1, 2, 3],
 Slot[3] SlotSequence[3]&[1, 2, 3]}

Taking into account the meaning of #i and ##i, these reduce to the following products. 

{1 1 2 3, 2 2 3, 3 3}

In  the  second  input  Function[Slot,  Slot[1]][C]  obviously  evaluates  to  C[1].  Function[Slot,
Slot[1]]&[C] evaluates to Function[Slot,C]. This pure function gets applied to the argument 1 and we get C.
Finally, C gets applied to the argument 1 and the two C[1] cancel to yield 0.

Function[Slot, Slot[1]]&[C][1][1] - Function[Slot, Slot[1]][C]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

z) Here, the expression is evaluated. 

Slot[1/2 + 1/2]&[1, 2]

Function  has  the  attribute  HoldAll,  so  the  argument  of  Slot[1/2 + 1/2]  is  not  evaluated  to  1.  But  Slot
needs a nonnegative  integer as its argument, so an error  message is generated and the expression remains unchanged.
Forcing the evaluation of 1/2 + 1/2 with Evaluate gives the result 1. 
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Evaluate[Slot[1/2 + 1/2]]&[1, 2]

An Evaluate inside the Slot has, of course, no effect.

Slot[Evaluate[1/2 + 1/2]]&[1, 2]

The  second  expression  gives  -2 #1  + #2  #1  and  #2  parses  as  Slot[1]  and  Slot[2].  #k  and  #  parse  as
Times[k, Slot[1]] and Times[k, Slot[2]]. Afterwards, the variables k and  evaluate to their values 1 and
2. This means the first expression (#1 - #k) evaluates to 0 and the second (#2 - # ) evaluates to -2 #1 + #2
#1, which is the result returned.

k = 1;  = 2; (#1 - #k) + (#2 - # )

Σ (* session summary *) TMGBs`PrintSessionSummary[]

  2. Ha + bL2 n+1, Laguerre Polynomials

a) Here is the implementation of the notation. Note the input of the pattern, as well as the order of the factorization and
multiplication. 

niceForm[(a_Symbol + b_Symbol)^n_Integer] :=
                a^n + b^n + Factor[Expand[(a + b)^n] - a^n - b^n]

Now, we test if we still get the nice form for higher integers. 

niceForm[(a + b)^3]

niceForm[(a + b)^5]

niceForm[(a + b)^7]

niceForm[(a + b)^9]

As we see, the pattern does not continue. 

Σ (* session summary *) TMGBs`PrintSessionSummary[]

b) Using the series representation for the exponential function, we have the following identities:

exp -
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∑

∑ z
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The  last  formula  is  straightforward  to  implement.  We  use  a  pure  function  for  the  differential  operator
H-∑ ê ∑ z Hz ∑ . ê ∑ zL + a ∑ . ê ∑ zL and use Nest to realize it powers.

laguerreL[n_, a_, z_] := Factor[(-1)^n 1/n! *
          Sum[1/k! Nest[(-D[z D[#, z], z] + a D[#, z])&, z^n, k], 
              {k, 0, n}]]

Here are the first few Laguerre polynomials. To evaluate the first five polynomials at once, we give laguerreL  the
attribute Listable.

SetAttributes[laguerreL, Listable]

laguerreL[{1, 2, 3, 4, 5}, a, z]

The so-calculated polynomials agree with the corresponding built-in ones.

LaguerreL[{1, 2, 3, 4, 5}, a, z]

Σ (* session summary *) TMGBs`PrintSessionSummary[]
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  3. d
d a x

 Ÿ a xf HyL dy

We look at an example. 

f[x_] := Integrate[x^x, x]

D[f[s], s]

So far, everything is as expected. But now we try the following example. 

D[f[s ], s ]

To get the desired result, we need a modified version of Integrate. 

Unprotect[Integrate];
Integrate /: D[Integrate[int_, a_], a_] := int;
Protect[Integrate];

This input works as desired. 

D[f[s ], s ]

As  expected,  the  error  message Integrate::ilim  is  generated  because  the  iterator  (i.e.,  the  integration  variable)
does  not  have the form of  a  single variable,  as  required  by Integrate,  but  is  instead the  product  of  two variables.
Even if Mathematica could find the integral, the rule would not work because no integration is performed in the case of
a product integration variable. 

Integrate[Sin[y ], y ]

D[%, y ]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

  4. Pattern[name, _] 

a) Here, the requirement that the x in Pattern[x, _] must be a symbol is not fulfilled. 

Φ[Pattern[2, _]] = 2^2;

??Φ

The function definition from above applies to the third item in the following list because in this case, we have a suitable
pattern, namely, Pattern[2, _] literally.

{Φ[2], Φ[3], Φ[Pattern[2, 2]], Φ[Pattern[2, _]]}

Σ (* session summary *) TMGBs`PrintSessionSummary[]

b) I is indeed a symbol, and syntactically everything is correct. However, in this case, I should not be used on the left. 

Φ[Pattern[I, _]] = I^2;

??Φ

{Φ[2], Φ[I]}

Because of the HoldFirst attribute of Pattern, the variable I does not evaluate to Complex[0, 1].

Pattern[I, _] // FullForm

pattern[I, _] // FullForm

Σ (* session summary *) TMGBs`PrintSessionSummary[]
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c) Here, even the desired definition works, but this is not the right way to program. We should not use built-in symbols
as names for a pattern. 

Φ[Pattern[I, _]] := I^2;

??Φ

{Φ[2], Φ[I], Φ[Pattern[I, _]]}

Σ (* session summary *) TMGBs`PrintSessionSummary[]

d) a[2] has the head a, and it is not a Symbol. 

Φ[Pattern[a[2], _]] := a[2]^2;

??Φ

{Φ[2], Φ[Pattern[a[2], _]]}

Σ (* session summary *) TMGBs`PrintSessionSummary[]

e) The FullForm of _ is the following. 

FullForm[_]

Therefore, we naturally have the following for the FullForm of _[_] (Blank[] with argument Blank[]). 

FullForm[_[_]]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

  5. Puzzles 

a) The trick is to use UpSetDelayed to associate the result d with Head. 

Head[b[c]] ^= d

b[c]

Head[b[c]]

We remove this special definition for b.

Clear[b]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

b)  We simply modify the  rule  for  the  computation of  22  and  restart  to  reproduce  exactly  what  was  sought.  (To have
only one input for unprotecting Power and adding the new rule to it, we enclose both statements in parentheses.) 

(Unprotect[Power]; Power[2, 2] = 2^4;)

Remove[f, x]

f[x_] := x^2

f[2]

We remove this rule to not interfere with later computations.

Power[2, 2] =.

Protect[Power];

2^2
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Σ (* session summary *) TMGBs`PrintSessionSummary[]

c) We get a different result when the result of expr[[1]] evaluates nontrivially, say, for example, in Hold[1 + 1]. 

Hold[1 + 1][[1, 1]]

Hold[1 + 1][[1]][[1]]

We  also  get  different  results  in  case  expr  in  expr[[1, 1]]  is  a  symbol  and  does  not  have  a  value,  when  it  is  not
possible to extract the first part of the first part of expr because expr has depth 0. 

iAmANewSymbolWithoutAValue[[1, 1]]

But taking the first part of the expression Part[iAmANewSymbolWithoutAValue, 1] (which has depth 1) just
gives iAmANewSymbolWithoutAValue. 

iAmANewSymbolWithoutAValue[[1]][[1]]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

d) This is the definition. 

f[x_Real] := x^2

We can “fake” the head Real by wrapping Real around an arbitrary argument. 

f[Real["1"]]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

e) For every ordinary Mathematica expression, this ends up with Symbol. 

FixedPoint[Head, waikaki[2]]

FixedPoint[Head, 4.5]

FixedPoint[Head, "x[2]"]

Without a second argument in FixedPoint, we have another result. We can simulate this case of no second argument
by using Sequence[].

FixedPoint[Head, Sequence[]]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

f) Let us run the three examples. 

Function[{s}, OIOI[s]][Unevaluated[κ]]

Function[{s}, OIOI[s]][Unevaluated[Unevaluated[κ]]]

Function[{s}, OIOI[s]][Unevaluated[
                         Unevaluated[Unevaluated[κ]]]]

Wrapping Unevaluated around an expression gives the expression in unevaluated form to the outer function, which
means that in the first example k is given to OIOI and OIOI[κ] is returned from the Function. 

In  the  second  case,  Unevaluated[k]  is  substituted  for  s  inside  the  function.  As  a  result,  OIOI  is  called  with  an
argument with head Unevaluated, and κ is passed unevaluated to OIOI. The result is again OIOI[k]. 

In  the  third  example,  Unevaluated[Unevaluated[k]]  is  given  to  OIOI,  the  outer  Unevaluated  is  stripped
away, and the result is OIOI[Unevaluated[k]]. 

Σ (* session summary *) TMGBs`PrintSessionSummary[]
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g) If Infinity is input, it is converted to DirectedInfinity[1], as we can see in FullForm. 

Infinity // FullForm

Extracting the first element of DirectedInfinity[1] gives 1. 

Infinity[[1]]

This 1 is used as an argument of DirectedInfinity, which in this case has the output form Infinity. 

DirectedInfinity[1] // OutputForm

Because the output form and the internal form differ from each other, we can extract the first part.

%[[1]]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

h)  The  output  of  the  three  inputs  a^2,  Clear[a],  and  Remove[a]  shows  that  some  additional  rules  have  been
given. Two possible ways to achieve the outputs shown are to give additional rules to Power, Clear, and Remove or
to  use  upvalues  on  a.  Here,  both  ways  are  demonstrated.  First,  the  built-in  functions  are  unprotected  and overloaded
(we wrap parentheses around all pieces of the first input to avoid incrementing the In counter). 

(Unprotect[{Power, Clear, Remove}];
 a^2 = b;
 Clear[a] = a;
 Remove[a] = a;)

a^2

The definition a^2 = b is stored as a downvalue for Power.

{UpValues[a], DownValues[Power]}

Clear[a]

Remove[a]

Using Remove with the argument "a" removes all of the above definitions.

Remove["a"]

Clear[Power]

??a

Now, we use upvalues on a. 

(a /: Clear[a] = a; 
 a /: Remove[a] = a; 
 a /: a^2 = b;)

a^2

Now the definition is stored as an upvalue for a.

{UpValues[a], DownValues[Power]}

Clear[a]

Remove[a]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

i) The result of evaluating the input will be 6.
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f[_] := (f[_] := #0[# + 1]; # + 1)&[1]
f[f[f[f[f[2]]]]]

To  see  why  the  result  is  6,  let  us  analyze  the  first  application  of  f  to  the  argument  2.  When  f  gets  called  with  an
arbitrary argument (the _ in the left-hand side of the definition of f), the right-hand side will be evaluated. The right-
hand has the structure of a pure function that is applied to the argument 1. The body of the pure function is (f[_] :=
#0[# + 1]; # + 1).  This means that by evaluating the body a new definition for f,  namely the old one with a
new argument  for  the  pure  function,  is  generated.  The result  of  evaluating of  f[_]  will  be the  argument of  the  pure
function on the right-hand side + 1.

f[_] := (f[_] := #0[# + 1]; # + 1)&[1]
f[2]

Here is the current definition of f. We see that the argument of the pure function is now 1 + 1.

DownValues[f]

In the next application of f, the above procedure is carried out again and we end up with the argument 2 + 1 of the
pure function. (The above 1 + 1 was evaluated in the argument, but the 2 + 1 stays unevaluated because it is on the right-
hand side of a SetDelayed statement.)

f[2]

DownValues[f]

So after applying f five times to the 2, we have the result 6.

Σ (* session summary *) TMGBs`PrintSessionSummary[]

  6. Different Patterns 

a) By looking at the FullForm of the left-hand sides of the function definitions, we recognize the coded pattern. 

f[x_, a[b_, c_]_] // FullForm

f[x_, a[b_, c_]_] := [x, a, b, c]

An arbitrary function with two arguments as a second argument was not coded. 

f[x, a[y, z]]

Instead,  the  second  argument  of  f  must  be  a  product  of  a[twoArguments]  and  something.  Here  are  two  inputs  that
match this pattern.

f[x, a[y, z] b]

f[x_, a[b_, c_]_]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

b) Now, the second argument of f is an arbitrary function of two arbitrary arguments. 

f[x_, a_[b_, c_]] // FullForm

f[x_, a_[b_, c_]] := [x, a, b, c]

Now, f[x, a[y, z]] evaluates nontrivially.

f[x, a[y, z]]

The pattern also matches the following two inputs.

f[x, a[[, ], [, ]]]
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f[x, Plus[y, z]]

Here, the second argument of f is not an object with two arguments at the time the definition of f goes into effect, but
it is evaluated before to 3. 

f[x, Plus[1, 2]]

Avoiding the evaluation of Plus[1, 2] yields a nontrivial result.

f[x, Unevaluated[Plus[1, 2]]]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

c) f is now a function of one argument that is a product of three arbitrary expressions. 

f[a_ b_ c_] // FullForm

f[a_ b_ c_] := [a, b, c]

f[b c a]

In principle, all three expressions can be the same. But in the following case, a a a is combined to a^3, and the result
is only one argument with head Power. 

f[a a a]

Analogous to case b), this does not work. 

f[1 2 3]

Unevaluated avoids that the arguments of f are evaluated before f deals with them.

f[Unevaluated[1 2 3]]

What if we had given f the attribute HoldAll (or HoldFirst or HoldRest)? 

Remove[f, , x, y, z, a, b, c]

SetAttributes[f, HoldAll]

f[a_ b_ c_] := [a, b, c]

Then, a a a would not have been replaced by a^3, and the definition of f would have been applied. 

f[a a a]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

d) Here, the pattern _ _ on the left-hand side is evaluated to _^2 before the actual definition of the function is carried
out. 

f[_ _] // FullForm

f[_ _] := 

Thus, the resulting function definition of f only fits an argument that is a square. 

f[a b]

f[a a]

To encode a product of two distinct factors in this case, we would for instance have had to use the following input. 

Remove[f, a, b]

f[a_ b_] // FullForm
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f[a_ b_] := 

f[a b]

The function definition no longer fits for a^2 now; we have only one argument with head Power. 

f[a a]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

  7. Plot[numberFunction] 

Here are the function definitions. 

f1[x_Integer] = 3;
f1[x_Rational] = 2;
f1[x_Real] = 1;

Here is an attempt to plot f1. 

Plot[f1[x], {x, -3, 3}];

It fails because Plot used only machine numbers for plotting. Functions are first compiled to speed up the computation
of their function values before plotting. (We return to the issue of compilation in great detail in Chapter 1 of the Numer-
ics  volume  [63÷].)  Plot  supplies  real  values  (head  Real)  to  the  functions,  and  the  two  definitions  for  f2  do  not
match.

f2[x_Integer] = 3;
f2[x_Rational] = 2;
Plot[f2[x], {x, -3, 3}];

Σ (* session summary *) TMGBs`PrintSessionSummary[]

  8. Tower of Powers 

Here is the program for this power tower. 

powerTower[number_, n_] := number^powerTower[number, n - 1];
powerTower[number_, 1] = number;

Here are the lowest levels. 

powerTower[z, 2]

powerTower[z, 4]

powerTower[z, 8]

TreeForm[powerTower[z, 4]]

For z = 2 , we get the following numerical results. 
Table[powerTower[Sqrt[2.], n], {n, 1, 30}]

Based on these numerical result we conjecture that 2 is the solution. Physicists will recognize a Dyson equation in the

power tower of the form: x = numberx.  For number = 2 , the solution for x  is obviously 2. (For general number  the
solution is, modulo branch cuts, x = -W H-lnHnumberLL ê lnHnumberL. Here W HzL is the ProductLog function; it will be
discussed in the Symbolics volume [64÷].)

Here is a similar example: 2 2 + ∫ + 2 . 
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FixedPointList[N[Sqrt[2 + #]]&, Sqrt[2]]

Using high-precision numbers, we can see the difference to 2.

N[2 - FixedPointList[Sqrt[2 + #]&, N[Sqrt[2], 30], 30]]

For more details on power towers, see [34÷], [38÷], [71÷], [2÷], [12÷], [7÷], [27÷], [18÷], [47÷], [8÷], [13÷], [52÷],
[21÷], [53÷], and [5÷]; for generalizations, see [29÷], [57÷], [68÷].

Σ (* session summary *) TMGBs`PrintSessionSummary[]

  9. Cayley Multiplication  

We  want  to  find  a  multiple  product,  but  at  each  step  know  only  the  binary  result  in  view  of  the  associativity  of  the
operation, thus we apply the attribute Flat at each step. Here are the implementations of the individual rules. 

SetAttributes[ , Flat]

[e, a] = a; [a, e] = a; [e, b] = b; [b, e] = b;
[e, c] = c; [c, e] = c; [a, b] = c; [b, a] = c;
[a, c] = b; [c, a] = b; [b, c] = a; [c, b] = a;
[a, a] = e; [e, e] = e; [b, b] = e; [c, c] = e;

The desired expression turns out to be the e. 

[a, b, c, a, c, e, a, c, b, b, c, a, e, a, c, c, a, b, a, c,
   a, c, a, e, b, b, a, a, e, c, b, b, a, a, c, e, e, e, a, a,
   b, b, b, a, b, c, b, c, a, a, c, c, c, b, a, a, e, e, c]

The same result can be obtained by applying  to two arguments repeatedly. To achieve this, we have to remove the
attribute Flat from . 

ClearAttributes[ , Flat]

Because of the associativity, we can group things in many different ways, for example, as in the following. 

[ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [
[ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [
[ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [
[ [ [ [ [ [ [ [ [ [ [a, b], c], a], c],

e], a], c], b], b], c], a], e], a], c], c], a], b], a], c], a], c],
a], e], b], b], a], a], e], c], b], b], a], a], c], e], e], e], a],
a], e], b], b], b], a], b], c], b], c], a], a], c], c], c], b], a],
a], e], e], c]

Here is another example. 

[ [ [ [ [ [a, b], [c, a]], [ [c, e], [a, c]]],
[ [ [b, b], [c, a]], [ [e, a], [c, c]]]], [ [
[ [a, b], [a, c]], [ [a, c], [a, e]]], [ [ [b, b],
[a, a]], [ [e, c], [b, b]]]]], [ [ [ [ [ [a, a],
[c, e]], [ [e, e], [a, a]]], [ [ [e, b], [b, b]], 
[ [a, b], [c, b]]]], [ [ [c, a], [a, c]], [ [c, c],
[b, a]]]], [ [a, e], [e, c]]]]

If we want to know how often various rules were applied, we can count each application by incrementing a counter. 
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Remove[ ];

SetAttributes[ , Flat]

initializeCounter := 
(count[ 1] = 0; count[ 2] = 0; count[ 3] = 0; 
 count[ 4] = 0; count[ 5] = 0; count[ 6] = 0; 
 count[ 7] = 0; count[ 8] = 0; count[ 9] = 0; 
 count[10] = 0; count[11] = 0; count[12] = 0; 
 count[13] = 0; count[14] = 0; count[15] = 0;
 count[16] = 0;)

[e, a] := (count[ 1] = count[ 1] + 1; a);
[a, e] := (count[ 2] = count[ 2] + 1; a);
[e, b] := (count[ 3] = count[ 3] + 1; b);
[b, e] := (count[ 4] = count[ 4] + 1; b);
[e, c] := (count[ 5] = count[ 5] + 1; c);
[c, e] := (count[ 6] = count[ 6] + 1; c);
[a, b] := (count[ 7] = count[ 7] + 1; c);
[b, a] := (count[ 8] = count[ 8] + 1; c);
[a, c] := (count[ 9] = count[ 9] + 1; b);
[c, a] := (count[10] = count[10] + 1; b);
[b, c] := (count[11] = count[11] + 1; a);
[c, b] := (count[12] = count[12] + 1; a);
[a, a] := (count[13] = count[13] + 1; e);
[e, e] := (count[14] = count[14] + 1; e);
[b, b] := (count[15] = count[15] + 1; e);
[c, c] := (count[16] = count[16] + 1; e);

initializeCounter

[a, b, c, a, c, e, a, c, b, b, c, a, e, a, c, c, a, b, a, c,
   a, c, a, e, b, b, a, a, e, c, b, b, a, a, c, e, e, e, a, a,
   b, b, b, a, b, c, b, c, a, a, c, c, c, b, a, a, e, e, c]

Here is the number of applications for each of the rules. 

??count

initializeCounter

[ [ [ [ [ [a, b], [c, a]], [ [c, e], [a, c]]],
[ [ [b, b], [c, a]], [ [e, a], [c, c]]]], [ [
[ [a, b], [a, c]], [ [a, c], [a, e]]], [ [ [b, b],
[a, a]], [ [e, c], [b, b]]]]], [ [ [ [ [ [a, a],
[c, e]], [ [e, e], [a, a]]], [ [ [e, b], [b, b]], [
[a, b], [c, b]]]], [ [ [c, a], [a, c]], [ [c, c],
[b, a]]]], [ [a, e], [e, c]]]]

Carrying out the multiplication in a different order results in a different result for the counters.

??count

Σ (* session summary *) TMGBs`PrintSessionSummary[]

86 Printed from THE MATHEMATICA GUIDEBOOKS

©  2004, 2005   Springer Science+Business Media, Inc.



References

÷1  J. Abott. Math. Comput. 71, 407 (2002).    fi1    ftp://cocoa.dima.unige.it/papers/Abbott00.dvi 

÷2  E. J. Allen. Math. Gaz. 69, 261 (1985). fi1

÷3  T. M. Apostol. Am. Math. Monthly 107, 738 (2000). fi1

÷4  J. M. Ash. Math. Mag. 69, 207 (1996). fi1

÷5  E. Barbeau. Coll. J. Math. 25, 130 (1995). fi1

÷6  F. C. Bauer (eds.). Logic, Algebra and Computation, NATO ASI F 79, Springer-Verlag, New York, 1991.     fi1    

BookLink

÷7  B. C. Berndt. Ramanujan’s Notebooks I, Springer-Verlag, New York, 1985.    fi1    BookLink

÷8  B. C. Berndt, Y.-S. Choi, S.-Y. Kang in B. C. Berndt, F. Gesztesy (eds.). Continued Fractions: From Analytic 
Number Theory to Constructive Approximation, American Mathematical Society, Providence, 1999.   fi1    

BookLink

÷9  M. Bezem, J. F. Groote (eds.). Typed Lambda Calculi and Applications, Springer-Verlag, Berlin, 1993.    fi1    

BookLink

÷10  I. N. Bronshtein, K. A. Semandyayev. Handbook of Mathematics, Van Nostrand, New York, 1985.    fi1    

BookLink (2)

÷11  X. Buff, C. Henriksen. Nonlinearity 16, 989 (2003).   fi1    DOI-Link

÷12  A. P. Bulanov. Izvestiya RAN 62, 901 (1998). fi1

÷13  A. P. Bulanov. Sbornik Math. 192, 1589 (2001).    fi1    DOI-Link

÷14  H. Canary, C. Edquist, S. Lachterman, B. Younger. arXiv:math.CO/0407115 (2004).  fi1    Get Preprint

÷15  D. Coppersmith, J. Davenport. Acta Arithm. 58, 79 (1991). fi1

÷16  R. M. Corless. Math. Mag. 71, 34 (1998). fi1

÷17  G. Dattoli, H. M. Srivastava, C. Cesarano. Appl. Math. Comput. 124, 117 (2001).    fi1    DOI-Link

÷18  S. M. Didukh, E. L. Pekarev. MPS: Pure mathematics/0205011 (2000).     fi1    

http://www.mathpreprints.com/math/Preprint/Pekarev/20020520/1/ 

÷19  T. Ehrhard, L. Regnier. Theor. Comput. Sc. 309, 1 (2003).    fi1    DOI-Link

÷20  E. Eisenberg, A. Baram. J. Phys. A 33, 1729 (2000).     fi1    DOI-Link

÷21  L. Gerber. Proc. Am. Math. Soc. 41, 205 (1973). fi1

THE MATHEMATICA GUIDEBOOKS to PROGRAMMING—GRAPHICS—NUMERICS—SYMBOLICS 87

©  2004, 2005   Springer Science+Business Media, Inc.



÷22  W. J. Gilbert. Fractals 9, 251 (2001).    fi1    DOI-Link

÷23  J. W. Gray. Categorial Semantics of Programming Languages, Addison-Wesley, Redwood City, 1991. fi1

÷24  I. Gumowski, C. Mira. Recurrences and Discrete Dynamic Systems, Springer-Verlag, Berlin, 1980.    fi1    

BookLink

÷25  C. Hankin. Lambda Calculi, Clarendon Press, Oxford, 1994.    fi1    BookLink (2)

÷26  N. D. Hayes. Quart. J. Math. Oxford 3, 81 (1952). fi1

÷27  A. Herschfeld. Am. Math. Monthly 42, 419 (1935). fi1

÷28  H. Hirayama in P. Schiavone, C. Constanda, A. Mioduchowski (eds.). Integral Methods in Science and EngineerÖ
ing, Birkhäuser, Boston, 2002.   fi1    BookLink

÷29  C. Horowitz. Israel J. Math. 29, 42 (1978). fi1

÷30  J. Hubbard, D. Schleicher, S. Sutherland. Invent. Math. 146, 1 (2001).    fi1    DOI-Link

÷31  M. Jeong, G. O. Kim, S.-A Kim. Comput. Graphics 26, 271 (2002).    fi1    DOI-Link

÷32  W. P. Johnson. Am. Math. Monthly 109, 273 (2002). fi1

÷33  K. Kneisl. Chaos 11, 359 (2001).    fi1    DOI-Link

÷34  R. A. Knoebel. Am. Math. Monthly 88, 235 (1981). fi1

÷35  D. E. Knuth in V. Lifschitz (ed.). Artificial Intelligence and Mathematical Theory of Computation, Academic 
Press, Boston, 1991.    fi1    BookLink

÷36  T. Komatsu. Fibon. Quart. 39, 336 (2001). fi1

÷37  J. L. Krivine. Lambda Calculus, Types and Models, Ellis Horwood, Masson, 1993.    fi1    BookLink

÷38  D. Laugwitz. Elem. Math. 45, 89 (1990). fi1

÷39  S. Lou, C. Chen, X. Tang. J. Math. Phys. 43, 4078 (2002).   fi1    DOI-Link

÷40  Y. Y. Lu. Appl. Num. Math. 27, 141 (1998).    fi1    DOI-Link

÷41  B. Martin in J. Landsdown, R. A. Earnshaw (eds.). Computers in Art, Design and Animation, Springer-Verlag, 
New York, 1989.    fi1    BookLink

÷42  M. D. Meyerson. Math. Mag. 69, 198 (1996). fi1

÷43  J. W. Neuberger. Math. Intell. 21, n3, 18 (1999). fi1

÷44  A. Oberschelp. Rekursionstheorie, BI, Mannheim, 1993.   fi1    BookLink

÷45  P. Odifreddi. Classical Recursion Theory, North Holland, Amsterdam, 1992.    fi1    BookLink (3)

÷46  P. Odifreddi in C. S. Calude, M. J. Dinneen, S. Sburlan (eds.). Combinatorics, Computability and Logic, Springer-

88 Printed from THE MATHEMATICA GUIDEBOOKS

©  2004, 2005   Springer Science+Business Media, Inc.



Verlag, London, 2001.   fi1    BookLink

÷47  C. S. Ogilvy. Am. Math. Monthly 77, 388 (1970). fi1

÷48  B. J. Pierce in A. B. Tucker, Jr. (ed.). The Computer Science and Engineering Handbook, CRC Presss, Boca 
Raton, 1997.    fi1    BookLink (2)

÷49  T. Prellberg. arXiv:math.CO/0005008 (2000).   fi1    Get Preprint

÷50  T. Prellberg in F. Garvan, M. Ismail (eds.). Symbolic Computation, Number Theory, Special Functions, Physics 
and Combinatorics, Kluwer, Dordrecht, 2001.    fi1    BookLink

÷51  G. E. Revesz. Lambda-Calculus, Combinators and Functional Programming, Cambridge University Press, 
Cambridge, 1986.    fi1    BookLink

÷52  G. Schuske, W. J. Thron. Proc. Am. Math. Soc. 112, 527 (1962). fi1

÷53  L. D. Servi. Am. Math. Monthly 110, 326 (2003). fi1

÷54  H. Simmons. Derivation and Computation, Cambridge University Press, Cambridge, 2000.   fi1    BookLink

÷55  P. H. Sterbenz, C. T. Fike. Math. Comput. 23, 313 (1969). fi1

÷56  I. Stewart. Sci. Am. n12, 144 (1992). fi1

÷57  G. Szekeres. J. Austral. Math. Soc. 2, 301 (1962). fi1

÷58  J. Tamura in J. Akiyama, Y. Ito, S. Kanemitsu, T. Kano, T. Mitsui, I. Shiokawa (eds.). Number Theory and 
Combinatorics, World Scientific, Singapore, 1985.   fi1    BookLink

÷59  X. Tang, S. Lou, Y. Zhang. Phys. Rev. E 66, 046601 (2002).   fi1    DOI-Link

÷60  X. Tang, S. Lou. arXiv:nlin.SI/0210009 (2002).  fi1    Get Preprint

÷61  B. A. Trakhtenbrot in R. Herken (ed.). The Universal Turing Machine: A Half Century Later, Kammerer & 
Unverzagt, Hamburg, 1988.    fi1    BookLink

÷62  M. Trott. The Mathematica GuideBook for Graphics, Springer-Verlag, New York, 2004.    fi1  fi2  fi3    BookLink

÷63  M. Trott. The Mathematica GuideBook for Numerics, Springer-Verlag, New York, 2005.    fi1  fi2  fi3  fi4  fi5  

fi6    BookLink

÷64  M. Trott. The Mathematica GuideBook for Symbolics, Springer-Verlag, New York, 2005.    fi1  fi2  fi3  fi4  fi5    

BookLink

÷65  J. van Benthem. Language in Action, North Holland, Amsterdam, 1991.    fi1    BookLink (2)

÷66  I. Vardi. Computational Recreations in Mathematica, Addison-Wesley, Reading, 1991.    fi1    BookLink

÷67  J. L. Varona. Math. Intell. 24, n1, 37 (2002). fi1

÷68  P. Walker. Math. Comput. 57, 723 (1991). fi1

THE MATHEMATICA GUIDEBOOKS to PROGRAMMING—GRAPHICS—NUMERICS—SYMBOLICS 89

©  2004, 2005   Springer Science+Business Media, Inc.



÷69  G. Walz. Asymptotics and Extrapolation, Akademie Verlag, Berlin, 1996.    fi1    BookLink (2)

÷70  S. R. Wassell. Math. Mag. 73, 111 (2000). fi1

÷71  R. O. Weber, J. Roumeliotis. Austral. Math. Soc. Gaz. 22, 183 (1995). fi1

÷72  E. Wingler. Am. Math. Monthly 97, 836 (1990). fi1

÷73  A. Wünsche. J. Comput. Appl. Math. 133, 665 (2001).   fi1    DOI-Link

÷74  L. Yau, A. Ben-Israel. Am. Math. Monthly 105, 806 (1998). fi1

90 Printed from THE MATHEMATICA GUIDEBOOKS

©  2004, 2005   Springer Science+Business Media, Inc.



P    R    O    G    R    A    M    M    I    N    G

CHAPTER  4

Meta-Mathematica

4.0 Remarks
The  title  of  this  chapter  calls  for  some  explanation.  This  chapter  largely  discusses  functions  and  functionalities of
Mathematica  that  are  either  unrelated  or  only  indirectly  related  to  mathematics  and  together  with  the  former,  the
Mathematica  purpose-defining  tagline  Mathematica–A  System  for  Doing  Mathematics  by  Computer  this  explains  the
title. This chapter does not deal with any “meta-mathematical” (in the sense of Gödel-Turing-Chaitin [3÷], [4÷], [5÷],
[13÷], [12÷], [15÷], [7÷], [14÷], [6÷]) issues.

We begin this chapter with a discussion about on-line help within the Mathematica  kernel (the use of the help browser
within the front end should not need much explanation).  We will discuss the storage and input of data and definitions
and quickly go over debugging. Although important, we will not use debugging much in this book because all programs
presented  should  work  properly.  Then,  we  go  on  to  programming  techniques  (subprograms,  variable  protection,  and
contexts) and discuss the order in which transformations are performed on any Mathematica input. Despite its nonmathe-
matical character, a knowledge of the material in Sections 4.6 and 4.7 is essential for the efficient use of Mathematica. 

(* no spelling warnings, set fonts for tick labels, ... *)
Get[ToFileName[ReplacePart["FileName" /. 
 NotebookInformation[EvaluationNotebook[]], "Initialization.m", 2]]];

4.1 Information on Commands

à 4.1.1 Information on a Single Command
It  is  often useful  to  make a  list  of  the names of  all  symbols that have already been introduced,  for  example, during a
long  Mathematica  session.  This  can  be  accomplished  with  ?*,  but  the  resulting  list  cannot  be  further  manipulated
because it is not accessible through the output history Out[]. 

 

Information[whatWeAmInterestedIn]
or

?whatWeAreInterestedIn

gives the most important information on the built-in Mathematica function whatWeAreInterestÖ
edIn. The output is not in the form Out[i] = info. The usual string metacharacters * and @ 
can be used to specify whatWeAreInterestedIn. 
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Here is the use of Information. 

Information[Information]

The  following  two  inputs  show  the  different  behaviors  of  Information  and  ?  on  short  forms  of  Mathematica
operators. 

Information[Plus]

? +

If we use a construction of the form f[arg1][arg2] = something, Information of the definition is associated with

f, not with f[arg1]. (In the following case as a subvalue for myNestedFunction.)

myNestedFunction[parameter][argument_] := parameter argument

??(myNestedFunction[parameter])

??myNestedFunction

Here are all commands beginning with Ac (to avoid a long output, we use the two starting letters).

?Ac*

To get a list (head List) of these symbols using Mathematica, we can use Names. 

 

Names["functionNameLetters"]

gives a list (head List) of the names of already existing symbols that match functionNameLetÖ
ters, taking into account metacharacters in functionNameLetters. (All names from all visible 
contexts, which are the ones in $Path, are listed.) 

Using  this  command,  it  is  possible  to  find  out  how  many  commands,  attributes,  and  options  are  in  Mathematica
(provided  we  have  not  yet  introduced  any  symbols  of  our  own,  which  is  the  case  in  the  present  session).  This  list
includes user-defined and internal variables and, if used in the form Names["*`*],  all names from all contexts (see
below).  Here,  we  create  a  list  that  could  be  further  manipulated  in  Mathematica,  containing  only  those  commands
beginning with A. 

Names["Ac*"]

Here is the total number of currently visible built-in commands. 

Length[Names["*"]] - 
(* subtract myNestedFunction, parameter, argument *) 3

Of these commands, about 125 begin with $ rather than an uppercase letter, as is usual in Mathematica. 

Length[Names["@*"]] - 3

Length[Names["$*"]]

We  discuss  some  of  these  $name  commands  later  in  this  chapter.  Typically,  some  information  and  messages  are
associated with every command in Mathematica: 

† how to use the function (for a more detailed description, see the on-line Mathematica book in the help browser)

† warning and error messages 

The messages can be obtained using Messages. 
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Messages[symbol]

gives a list of all messages associated with the symbol. 

Here  are  two  examples  of  messages  generated  because  of  “incorrect”  use  of  functions  or  because  of  “unexpected”
arguments. Here, Part is called with a noninteger second argument. 

Part[12.34 a^34, -23.56]

The  following  example  is  an  incorrect  attempt  to  plot  the  function  f HxL = x2.  Although  we  discuss  the  details  for
graphics  in  Chapter  1  of  the Graphics  volume [27÷],  it  is  immediately clear  that  a  direct  use of  the English syntax is
inappropriate because it will be interpreted as a product. 

Plot[y(x) = x^2, between x = -1 and x = 1,
     (* some naive option settings *)
     blue background, red line,  thick green frame, 
     big bold black label "The Quadratic" on top]

Because they need quite a bit of memory, messages are not automatically present in a Mathematica session. We can still
get all messages by explicitly reading in the appropriate file. (In the following inputs, we will use a certain number of
commands that have not yet been discussed; for now, the emphasis here is on the Mathematica output.) 

The following reads in the file of all usage messages.

Get[ToFileName[
{$TopDirectory, "SystemFiles", "Kernel", "TextResources",

                $Language}, #]]& /@ 
  {(* usage messages *) "Usage.m", 
   (* warning and error messages *) "Messages.m"};

Every message has its own name; we can get the message using MessageName. 

 

MessageName[symbol, "message"]
or

symbol ::"message"

gives the message message for the symbol symbol. 

For example, here is the usage message of SetAttributes. 

SetAttributes::"usage"

The most important symbol in connection with messages is General. 

 

General

is the symbol associated with general system information and system messages. 

Here are some of the general system messages. 

Messages[General] // Short[#, 12]&

The total number of messages belonging to General is more than 200. 

Length[%]

We  now  collect  all  messages  in  the  list  allMessages.  (We  concentrate  on  the  result,  not  the  programming  of  the
following input.)
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systemCommands = Names["System`*"];

(* clear the ReadProtected attribute *)
If[MemberQ[Attributes[#], ReadProtected],
   ClearAttributes[#, ReadProtected]]& /@ 
     Apply[Unevaluated, ToHeldExpression /@ 
              DeleteCases[systemCommands, "I"], {1}];
              
(* make list of all messages *)
allMessages = (Messages @@ #)& /@ (ToHeldExpression[#]& /@
                               DeleteCases[systemCommands, "I"]);

Because of space limitations, we do not look at the list. allMessages contains nearly 3000 messages.

 = Length[Flatten[allMessages]]

Here are five entries from the beginning, the middle, and the end of the list allMessages.

Take[Flatten[allMessages], {1, 5}]

Take[Flatten[allMessages], {  - 5, }]

These entries take up a total of about 600 kB. 

ByteCount[allMessages]

The following  gives  some idea  of  how many messages  are  associated  with  the  various  commands. (Look  only  at  the
result, not the programming.)

With[{  = CellPrint[Cell[StringJoin[##], "PrintText"]]&},
Apply[
Which[(* write the various cases;
         ë stands again for Mathematica-generated text *)
      #1 === "1" && #2 === "1", [ (* 1 command, 1 message *)
          "Î There is 1 system command with 1 message."],
      #1 === "1" && #2 =!= "1", [ (* 1 command, n messages *)
          "Î There is 1 system command with ", #2, " messages."],
      #1 =!= "1" && #2 === "1", [ (* n commands, 1 message *)
          "Î There are ", #1, " system commands with 1 message."],
      True,                     [ (* n commands, n messages *)
          "Î There are ", #1, " system commands with ", #2, 
                                                  " messages."]]&,
 (* the count *)
 Map[ToString, (Function[p, {Count[#, p], p}] /@ Union[#])&[
                         Length /@ allMessages], {-1}], {1}]];

Here (and earlier in the last two chapters), we have made use of CellPrint. 

 

CellPrint[cellExpression]

prints the cell (head Cell) cellExpression as a cell into the currently selected notebook. 

A simpler version of CellPrint that does not allow styling is Print.

 

Print[expression1, expression2, …, expressionn]

prints expression1 up to expressionn joined together. 

Using one (or more) explicit newline characters as the arguments to Print, we can write a sequence of expressions to
different lines.

4 Printed from THE MATHEMATICA GUIDEBOOKS

©  2004, 2005   Springer Science+Business Media, Inc.



Print[1, "\n", 2, "\n\n", "    and an indented 3."]

The  messages  have  names,  which  are  not  complete  words,  as  opposed  to  the  Mathematica  naming  convention  for
commands (when programming our own messages, we can of course use longer, more descriptive namings). Here is a
part of the complete list shown.

Union[(((Hold @@ #[[1]]) /. {MessageName -> List})[[1, 2]])& /@
               Flatten[allMessages]] // OutputForm // Short[#, 6]&

This is the total number of such abbreviations. 

Length[%]

Thus,  some  messages  are  used  several  times  by  different  commands.  Each  function  typically  has  messages  of  the
following type:

† for their usage

† warning messages for “wrong” input or “inappropriate” usage

Most of the messages generated by Mathematica in “real calculations” relate to spelling 
warnings and potential “errors” in the input or in the computation. 

Some words about “errors” are in order here.  As a symbolic programming language, in Mathematica  everything is an
expression.  (We discussed this point of view in detail in Chapter 2.) Expressions are characterized by their tree struc-
ture in a purely syntactic way. For many applications (but not all), it is not the syntactic but rather the semantic meaning
that  is  of  interest.  The  ability  of  Mathematica  to  return  a  closed  form  for  Integrate[func, var],  the  ability  to
calculate a larger determinant, and so on is often more important than it is to have a logarithm with five arguments, like
Log[1, 2, 3, 4, 5]. At a syntactic level, the only thing that can go wrong is a sequence of characters that is not
parsable. Here is an example of an unparsable expression.

1 @@ # ,, . :: ; " '' `` ~ ! 7 & '' // # * )) ]{}

The message generated in the last example indicates that Mathematica was not be able to construct an expression from
the input. (In some sense this is the only “real error” that can happen. Any nonsysntax error could be considered a valid
operation inside Mathematica.  But for most purposes,  a $Failed  returned in case a file cannot be found will not be
considered a successful operation.)

Once an expression  has  been  parsed,  it  is  an  expression.  Here  is a  syntactically correct  input  (although for  most pur-
poses it does not have much semantic meaning). 

Sin[1, 2, 3] + 1[[-17]] + GCD[1.2, 9.6] - Cos["1"] Tan[Det[1, 2, 3]]/
        Function[1, 2] - Depth[] + 1[1]^2[I] + (1 < I)^Pi

The last input generated a couple of messages because the functions Sin, Det, and so on have a semantic meaning in
Mathematica. As such, most functions expect a certain number of arguments of a specific type. It is largely a matter of
opinion  to  call  these  messages  “error”  messages  (in  the  same  sense,  it  is  an  error  to  call  Sin  with  more  than  one
argument) or warning messages (from a syntactic point of view, everything is ok, but maybe the user intends to use the
function Sin in a semantic way and not the expression Sin[1, 2, 3] in a purely syntactic way). 

The phrasing  of  some of  the  last  messages,  like  “is  expected  ”,  “must be”,  “invalid” are  not  to  be taken too literally.
Surely, a computer program does not have expectations and no legal action will be caused by defining a non-rule to be
an option. These messages are hints for potential mistakes of users in the sense that these messages take for granted that
functions that are doing mathematics are only called for this purpose and not as generic expressions to be manipulated
in  a  structural  way.  A  more  technical  (but  for  beginning  users  less  helpful)  phrasing  of  the  messages  would  be  “No
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built-in  rule  exists  for  the  arguments  …”.  (But  this  statement  is  trivially  true  for  almost  all  arguments  of  almost  all
functions.)

Sometimes messages even make statements about  nonexisting  objects;  they are  phrased  to  direct  the user  to  potential
mistakes. The following input "1 is not a Mathematica expression, and so surely does not have a head. But the message
anyway speaks about a string that misses something, implicitly assuming the user’s intention to enter a string.

"1

In  general,  it  is  not  a  good  idea  to  use  a  built-in  function  with  an  “inappropriate”  number  or  type  of  arguments.  In
addition  to  the  annoying messages,  one cannot  be sure  that  later  versions of  Mathematica  will  behave the  same way;
extended versions of these functions might accept more and different arguments.

It is difficult to know—without knowing the intention of a piece of code—what exactly is an “error” in Mathematica.
As said, a message typically “only” indicates that the “typical” use of a function with certain arguments is not possible.
In most cases, the function returns unevaluated in such situations. Sometimes, the result will be $Failed. $Failed
indicates that the intended operation did not work.

0 := 0

(Another example of an operation that returns $Failed is the attempt to open a nonexistent file.) 

But at the same time, many instances exist in which one might expect Mathematica to give a message and Mathematica
does not give one. The generic assumption about the type of a variable (any user created symbol) in Mathematica is that
of  a finite complex number (some functions make more specialized assumptions about the nature of their  arguments).
But  nevertheless,  inputs  like  x + 5 I < y + 2 + 3 I  will  not  generate  an  error  message  (one  could  argue
complex  numbers  cannot  be  compared).  (The  use  of  a < b  the  function  Less[a, b]  should  be  obvious;  we  will
come back to this function in the next chapter.)

x + 5 I < y + 2 + 3 I

Similarly,  the  use  of  pHi eL  as  an  integration  variable  in  the  following  definite  integral  will  not  produce  messages,
although one might argue that pHi eL is not a “real” (or not “really” an) integration variable.

Integrate[1[2]^Pi[I E], {Pi[I E], 2, 4}]

Sometimes Mathematica functions are called with symbolic input and only later, the symbolic parameters are specified
as  numeric  quantities.  Some  Mathematica  commands  issue  messages  in  this  case.  Here  is  an  attempt  to  generate  a
“symbolic” table. A message is generated.

Table[1, {n}, {n}]

After specifying a positive integer value for n, the last result evaluates just fine.

n = 2; %

Here is the scalar product between two “symbolic vectors”. Although the two “symbolic vectors” are not actual vectors
(they  do  not  have  the  head  List),  no  message  is  generated  this  time.  (a.b  is  the  shortform  for  Dot[a, b]  and
represents the scalar product of a and b.)

symbolicVector1.symbolicVector2

As a rule of thumb, messages are not generated for “symbolic” input if the function they appear in is used in classical
mathematics. A scalar product is used in classical mathematics, so no message was produced in the last case. A table (a
list) is not, so Mathematica produced a message.

Let us come back to the messages. We now check to see if a usage message is available for all system commands. The
following program generates a list of all built-in commands not documented with an associated symbol ::usage. 
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builtInFunctionsWithoutUsageMessage = 
First /@ DeleteCases[{#, MessageName[#, "usage"]&[
       Unevaluated @@ ToHeldExpression[#]]}& /@
       (* the built-in commands *) systemCommands, {_, _String}];

Quite a few of these undocumented commands exist.

Length[builtInFunctionsWithoutUsageMessage]

Here is the first dozen.

Take[builtInFunctionsWithoutUsageMessage,  12]

And here is the last dozen.

Take[builtInFunctionsWithoutUsageMessage, -12]

The reader should, when possible, avoid using undocumented built-in functions (e.g., any of the functions from built
InFunctionsWithoutUsageMessage);  or  functions  explicitly  declared  in  their  usage  messages  as  internal
functions  in  your  programs;  or  functions  explicitly declared in their  usage messages as internal functions,  because no
guarantee  exists  that  they  will  be  included  in  later  versions  of  Mathematica.  Also,  their  behavior  and  syntax  may
change in the next version.

For the sake of compatibility, several Mathematica  commands from earlier versions have been included in the current
one. Using them generates a message saying that they are “obsolete”. We now create a list of all messages involving the
word obsolete (again, look at the result, not the programming). 

((* turn off some messages *)
 Off[Part::partw]; Off[$$Media::obsym];
 Off[StringMatchQ::string]; Off[StringMatchQ::strs];)
 
(* find the obsolete symbols *)
Print[Cases[#[[1, 1, 1, 1]]& /@ Select[allMessages,
       StringMatchQ[#[[1, 2]], "*obsolet*"]&], _Symbol]];
       
((* turn on the above messages *)
 On[Part::partw]; On[$$Media::obsym];
 On[StringMatchQ::string]; On[StringMatchQ::strs];)

Messages generated more than three times in one evaluation are usually only printed three 
times if the message General:stop is enabled. 

In the following example, the error message is printed three times, although the error occurs six times. 

{Sin[x, y, 1], Sin[x, y, 2], Sin[x, y, 3],
 Sin[x, y, 4], Sin[x, y, 5], Sin[x, y, 6]}

Every particular message that would normally be generated more than three times because the corresponding problem
happens more often is actually printed only three times while General::stop is on. 

The On and Off commands can be used to “turn on” and “turn off” the printing of messages. 

 

On[symbol::message]

allows the message message for the symbol symbol to be printed, provided it is generated 
during the computation of an expression. 
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Off[symbol::message]

prevents the printing of the message message for the symbol symbol, even if it is generated 
during the computation of an expression. 

(The  internal  undocumented  function  Internal`DeactivateMessages  allows  to  temporarily  turn  off  all  mes-
sages generates while evaluating the expression expr in Internal`DeactivateMessages[expr].)

A spelling warning  is  generated if  a  symbol is  introduced that  is  similar to  an already existing symbol and the corre-
sponding  warning  messages are  on.  (The  messages General::spell  and  General::spell1  have  been  turned
off  globally  in  the  notebooks  of  the  GuideBooks  to  avoid  having  many spelling  warnings  scattered through  the  note-
books.) These messages give warnings when a symbol is used for the first time, and this variable name is similar to the
name of an already-used variable.

On[General::spell1]

aNewSymbol

aNewSimbol

Note  that  two  spelling-related  messages  exist,  General::spell  and  General::spell1.  We  now  turn  off  this
warning. 

Off[General::spell1]

aNewSymbola; aNewSymbolb; aNewSymbolc; aNewSymbold;
aNewSymbole; aNewSymbolf; aNewSymbolg; aNewSymbolh;

If  a  turned-off  message is  evaluated  again,  it  is  enclosed  in  $Off[].  (Otherwise,  it  would  return  the  string  with  the
explicit message.) This result means that the current message is turned off. 

General::spell1

The following example produces a message.

1[[2]]

But  Part::partd  does  not  return  the  message  content  "Part  specification  …  is  longer  than
depth of object".

Part::partd

The  reason  that  Part::partd  did  not  evaluate  to  the  corresponding  string  is  that  this  special  message  is  not  a
message of Part.

Messages[Part]

It is a message associated with General. 

General::partd

User-defined  messages  can,  in  complete  analogy  to  built-in  messages,  be  created  using  MessageName.  Here  is  a
simple example for the user-defined function myMsg.

myMsg::toymess = "Now printing a MMeessaaggeee";

Here is the FullForm of the last expression.

Hold[myMsg::toymess = "Now printing a MMeessaaggeee"] // FullForm

Messages associated with General are typically used by many functions, and to avoid repetition, they are present only
once. 
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A user-defined message can be printed at the appropriate time using Message. 

 

Message[symbol::name]

prints the message name associated with the symbol symbol. 

a = 1; b = 2; Message[myMsg::toymess]; a b

We currently have no definition made for myMsg.

??myMsg

One message is currently associated with myMsg through Messages.

Messages[myMsg]

In connection with our earlier discussion, we still need to explain the meanings of HoldPattern in the last result. It
has appeared several times in connection with upvalues and downvalues.

 

HoldPattern[expression]

is equivalent to expression as a pattern, but does not evaluate expression. 

No expressions inside HoldPattern are evaluated, because of the HoldAll attribute of HoldPattern attributes. 

Attributes[HoldPattern]

HoldPattern  is  necessary  here  to  create  the  correspondence  between  the  name  of  a  message  and  the  message,
because  “the  result”  of  the  calculation  of  symbol::message  is  just  the  contents  of  the  message,  as  in  the  following
second example. 

HoldPattern[myMsg::"toymess"]

myMsg::"toymess"

The function HoldPattern is used by internal (and user-defined) functions to prevent evaluation while still allowing
pattern  matching.  We  see  that  HoldPattern  is  necessary  if  we  look  at  the  result  of  the  above  constructions  with
HoldPattern  dropped  from  HoldPattern[myMsg::"toymess"].  The  left-hand  side  evaluates  to  the  right-
hand side myMsg::"toymess" disappeared. We come back to HoldPattern in the next chapter when we discuss
patterns in detail. 

Next, we look at the meaning of the semicolons in ; … ; … ;. We encountered such structures already repeatedly,
so it is time to discuss them. We cannot get at the FullForm of “;” directly. 

FullForm[a; b; c]

But here is the result with Unevaluated. 

FullForm[Unevaluated[a; b; c]]

Any function with a Hold-like attribute makes it possible to see the head CompoundExpression.

FullForm[Hold[a; b; c]]

 

CompoundExpression[expression1, expression2, …, expressionn]

or
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expression1; expression2; …; expressionn

represents one compound expression whose individual components are 
expression1, expression2, …, expressionn. All the n expressions will be evaluated, but only the 
result of expressionn will be returned. Side effect outputs (like carrying out Print statements 
and displaying graphics) will be generated.

Note the difference between a; b and a; b;. The latter is understood as a; b; Null. 

{FullForm[Hold[a; b]], FullForm[Hold[a; b; ]]}

Although nothing is returned by Null, the line number of the Mathematica inputs nevertheless increases in the follow-
ing inputs. 

Null

Null

A Null is always inserted between two commas. (Because it is relatively seldom that we want Null as an argument,
Mathematica gives a warning message here.)

functionWithThreeNullArguments[ , , ] // FullForm

Σ (* session summary *) TMGBs`PrintSessionSummary[]

à 4.1.2 A Program that Reports on Functions
Let us go on and discuss how to get information on more than one command at one time. To do this we use attributes,
as discussed in the last chapter. The command Attributes also carries the attribute Listable. 

Attributes[Attributes]

Here are the current attributes of the functions Information, Messages, and Options.

Attributes[Information]

Attributes[Messages]

Attributes[Options]

We now add Listable to the attributes of these three commands. 

SetAttributes[Information, Listable];
SetAttributes[Messages   , Listable];
SetAttributes[Options    , Listable];

This input makes them listable; that is, they automatically apply to lists of elements. 

Attributes[{Information, Messages, Options}]

We now introduce an expression nameList[Fi], which evaluates the list of all names beginning with Fi. 

nameList[Fi] = Names["Fi*"];
Length[nameList[Fi]]

Next,  we define a  command allAttributes  that  finds  all  of  the attributes of  the  elements in  its  argument,  which
should be a list. 

allAttributes[list_] := Attributes[Evaluate[ToExpression[list]]]

Before we use this function, we briefly elaborate on its implementation. Here, we have linked Evaluate and ToEx
pression, which ensures that we get the attributes for list, and not those of ToExpression[list], because Attri
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butes  has  the  attribute  HoldAll.  We  have  used  ToExpression  because  Names  gives  a  String  and  not  an
expression, as we can see in the following example. 

Names["Plo*"][[1]]

Head[%]

FullForm[%%]

The  head  String  was  mentioned  already  in  Chapter 2;  we  now  discuss  its  relation  to  expressions  in  more  detail.
Strings, like numbers, are fundamental objects. It is not possible to assign any values to them. 

"iam11" = 11

 

ToExpression["expression"]

converts the String "expression" into the symbol expression, which can be manipulated. 

Here, we convert "1 + 2 + 3" into the Mathematica expression 1 + 2 + 3, which is then evaluated as 6. 

ToExpression["1 + 2 + 3"]

Head[%]

The following input returns #1^2,  not 4.  The reason is that at the time the pure function substitutes 2  for its dummy
variable, no explicit Slot[1] is present. The Slot[1] appears at this time only inside a string and not as a Mathemat-
ica  expression.  Then  the  pure  function  gets  evaluated,  meaning  the  string  "#1^2"  gets  converted  to  the  expression
#1^2.

ToExpression["#1^2"]&[2]

Often, we want to prevent the immediate computation of a string that has been converted to a Mathematica expression.
This action is possible with ToHeldExpression. 

 

ToHeldExpression["expression"]

converts the String "expression" into the expression expression without doing any further 
evaluation, and resulting in Hold[expression]. 

In the following, the expression 1 + 2 + 3 is not evaluated. 

ToHeldExpression["3 + 2 + 1"]

When "expression" is not a syntactically correct expression, $Failed is returned.

ToHeldExpression["+ 1 +"]

Another, and in general more flexible and powerful, way to convert a string to an unevaluated expression is the follow-
ing command.

 

ToExpression["expression", form, function]

converts the string "expression" into the expression expression by using the interpretation of 
the format type form. The function function is applied to the resulting expression before any 
further evaluation.

Here,  the  three-argument  version  of  ToExpression  converts  the  string  "3  +  2  +  1"  into  an  unevaluated
expression.

ToExpression["3 + 2 + 1", InputForm, Hold]

THE MATHEMATICA GUIDEBOOKS to PROGRAMMING—GRAPHICS—NUMERICS—SYMBOLICS 11

©  2004, 2005   Springer Science+Business Media, Inc.



Any other function with a Hold-like attribute will result in an unevaluated expression.

ToExpression["3 + 2 + 1", InputForm, Unevaluated]

A Sequence disappears inside Hold.

ToExpression["Sequence[1, 2, 3]", InputForm, Hold]

Inside HoldComplete, a Sequence can survive.

ToExpression["Sequence[1, 2, 3]", InputForm, HoldComplete]

Be aware that the expression is neither computed nor reordered into the canonical normal form. But ToHeldExpres
sion  does  not  convert  every  expression  in  the  form  "expression"  into  Hold[expression].  In  view  of  the  way  in
which the HoldAll attribute of Hold works, as we have discussed in Chapter 3, evaluation happens in the following
example. 

ToHeldExpression["Evaluate[1 + 1]"]

Hold  often  affects  the  appearance  of  an  expression  somewhat.  With  the  command  HoldForm,  we  can  make  the
enclosing “holder” invisible.

ToExpression["1 + 1", InputForm, HoldForm]

FullForm[%]

The reverse, that is, the conversion of a Mathematica expression into a String, is accomplished by ToString. 

 

ToString[expression]

converts the Symbol expression into the String expression. 

Note that in the conversion of a Mathematica  expression into a String,  it  is best to start with the InputForm; the
formatted OutputForm frequently does not give what we want. 

testExpression = Integrate[x^2 Exp[-4/5x^2], x]

If testExpression is formatted by Mathematica, it appears in the usual way. 

ToString[testExpression]

In the FullForm, we see, however, that it contains în for new lines and that the expression is enclosed in quotes. 

FullForm[%]

The same statement holds for the TreeForm. 

FullForm[ToString[TreeForm[testExpression]]]

StandardForm uses an efficient box notation.

FullForm[ToString[StandardForm[testExpression]]]

TraditionalForm also uses an efficient box notation.

FullForm[ToString[TraditionalForm[testExpression]]]

The following form is often more appropriate for most applications. It is short, readable, and one-dimensional (1D), and
it uses only ASCII characters.

FullForm[ToString[InputForm[testExpression]]]

We can, of course, also produce a string of the full form of testExpression.
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ToString[FullForm[testExpression]]

After the last side steps, we now discuss the function allAttributes defined above. Here is what it does. 

allAttributes[list_] := Attributes[Evaluate[ToExpression[list]]]

allAttributes[nameList[Fi]]

This input shows that ToExpression and Evaluate are both necessary. 

Attributes[nameList[Fi]]

Attributes[ToExpression[nameList[Fi]]]

It  might happen that a  command evaluates something other  than itself.  (See the examples below.)  We discuss how to
treat this case appropriately in Chapter 6. 

We can now get all options in an analogous way. 
Options[Evaluate[ToExpression[nameList[Fi]]]]

Because  Information  does  not  give  an  Out[i],  we  indeed  get  all  information  (i.e.,  a  short  description  of  the
command, its attributes, and its options), but we cannot immediately operate further on this text with Mathematica. (To
save space we use only the first six commands from nameList[Fi].)

Information[Evaluate[ToExpression[nameList[Fi][[{1, 2, 3, 4, 5, 6}]]]]];

Moreover,  the  formatting  leaves  something  to  be  desired;  at  least,  some  blank  lines  should  be  between  the  different
commands.  (We  come back  to  this  in  Chapter 6  after  our  discussion  of  the  ways  in  which  lists  can  be  manipulated.)
Meanwhile, the reader can use the following code fragment. (Warning: this produces a huge output.) 

Make Input

(* read relevant files *)
Get[ToFileName[{$TopDirectory, "SystemFiles", "Kernel", "TextResources", 
                $Language}, #]]& /@ {"Messages.m", "Usage.m"};

(* allow to extract all information *)
ClearAttributes[#, {Protected, ReadProtected}]& /@
             ((Unevaluated @@ #)& /@ (ToHeldExpression /@ Names["*`*"]));

Information /@ Names["*`*"]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

4.2 Control over Running Calculations and Resources

à 4.2.1 Intermezzo on Iterators
In  this  subsection,  we  present  the  Do  command  for  iterative  calculations  and  discuss  the  general  iterator  notation of
Mathematica. 
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Do[loopBody, iterator1, iterator2, …, iteratorn]

repeats the calculation of the expression loopBody as often as described by iterator1, iterator2, 
… , iteratorn. The order of the iteration is from right to left, which means the rightmost iterator 
is the innermost one. 

Iterators work from left to right, which means the leftmost iterator variable is localized first, then the second leftmost is
localized,  then  the  third  leftmost,  and  so  on.  The current  value  of  the  leftmost  iterator  can  influence  the  limits of  the
other iterators. Here is a first simple example.

Do[Print["Now printing ", i, " and ", j], {i, 3}, {j, 2}]

In the next example, the starting value of the inner iterator is 12.

Do[Print["Now printing ", i, " and ", j], {i, 3}, {j, 12, 12 + i}]

The next input uses the same iterator variable for the inner and the outer loops. The inner one overwrites the value of
the outer one.

Do[Print[{i, i}], {i, 2}, {i, 3}];

The next input uses again the same iterator variables for the inner and the outer loops. In addition, the upper limit of the
inner loop is depending on the value of outer loop variable.  (This use of iterator variables is confusing and should be
avoided.)

Do[Print[{i, i}], {i, 2}, {i, i}];

 

The following constructions can serve as iterators: 

8nmax< repeats nmax times
8n, nmax< n runs from 1 to nmax in steps of size 1

8n, nmin, nmax< n runs from nmin to nmax in steps of size 1
8n, nmin, nmax, nstep< n runs from nmin to nmax in steps of size nstep

Because Do  does not result in a printed or a returned expression (it  actually returns Null,  which is not given as out-
put), we still need Print to see what actually happens.

Do[j = i, {i, 2, 5}]

FullForm[%]

In the next input, the argument of Print is computed (i.e., the expression j = i is evaluated) for every value of i. 

Do[Print[j = i], {i, 2, 5}]

The current value of j is 5.

j

Do[Print[j = i], {i, -2, -5, -1}]

Now, the current value of j is -5.

j

Here, there is nothing to do, because -2 > -5 and we cannot step from -2 to -5 in steps of size +1.

Do[Print[j = i], {i, -2, -9, 1}]

Null was the result, which is always suppressed in the output.

FullForm[%]
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The number  of  steps to  be carried out  is  calculated as  eHnmax - nminL ë nstepu  before  the  first  loop is  started and,  at  this

point, must be equal to a positive integer. Thus, for example, the following constructions are all possible. 
Do[Print[j], {j, i - 1, i + 1}]

Do[Print[j], {j, -E, Pi}]

Do[Print[j], {j, 0.3, 1.2, 0.456789}]

The evaluation of eHnmax - nminL ë nstepu will be carried out purely numerically, and in a purely numerical calculation, it

is  not  possible  to  decide  if  d6 − 2 Sqrt@2D − HSqrt@2D − 1L^2t  is  equal  to  2  or  3.  In  such  cases,  a  warning
message is issued.

Do[Print[j], {j, (Sqrt[2] - 1)^2, (2 - 2 Sqrt[2] + 1) + 3}]

The “correct” number of iterations is carried out in the last example. By changing the last input slightly, we can get the
wrong number of iterations (but, again, Mathematica gives a warning about a potentially wrong number of steps).

Do[Print[j], (* use 3 - 2 Sqrt[2] written in different forms *)
   {j, (Sqrt[2] - 1)^2, (2 - 2 Sqrt[2] + 1) + 3 - 10^-500}]

In the next case, just one value will be assumed for j.

Do[Print[j], {j, 0, 0}]

In  our  next  example,  I  = i = -1 ,  but  the  difference  between  the  upper  and  lower  limits is  a  positive  real  number
> 1 (head Integer). So, it is an allowed iterator construction. 

Do[Print[j], {j, I, I + 3}]

Here, the imaginary part cancels completely.

Do[Print[j], {j, 1.0 + I, 3.0 + I}]

A tiny imaginary part is ignored.

Do[Print[j], {j, 1.0 + 1.0 I, 3.0 + 1.0 I, 1/2}]

Do[Print[j], {j, 1 + (N[1, 20] + 10^-20) I, 3 + 1 I, 1/2}]

The following construction leads to an error message. At first glance, the difference between the upper and lower limits
appears to be a positive number, but Mathematica  evaluates the upper limit to be Infinity, before the difference is
computed (but returns the original input). 

Do[Print[j], {j, Infinity, Infinity + 3}]

Here, the difference between the upper and lower limits is not a positive integer. 

Do[Print[j], {j, 2, 4 I}]

In all of these cases, the input is returned unchanged, even if Mathematica has done some intermediate computations. 

FullForm[%]

The  reason  that  Mathematica  can  return  the  original  expression,  including  its  unevaluated  arguments,  is  the  attribute
HoldAll of Do, which allows Do to keep a copy of its original, unevaluated arguments.

Attributes[Do]

Note the behavior of Do when the step size is explicitly 0. 

Do[Print[i], {i, 1, 1, 0}]

Do[Print[i], {i, 0, 0, 0}]
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Here is a comparison with step size 1. 

Do[Print[i], {i, 0, 0}]

Do[Print[i], {i, 1, 1}]

The  iterator  in  Do  is  computed  at  the  beginning,  and  then  the  first  argument  of  Do  is  operated  on.  Later  (meaning
carried out at runtime in the body of Do) changes have no effect on the iterator. 

Here is an unsuccessful attempt to alter the step size during the computation. The number of iterations and the values of
the  iterator  variables  are  calculated  before  the  iterations  are  actually  carried  out.  Because  iterators  use  a  Block-like
scoping  (see  below),  it  is  nevertheless  possible  to  change  the  value  of  the  iterator  variable  inside  the  loop  for  each
iteration.

j = 1; Do[j = 5i; i = i - 1; Print["i = ", i, ", j = ", j], {i, 0, 5, j}]

We make sure that the first argument of Do is assigned a concrete value of the running (dummy) variable j. 

j

Also,  built-in symbols can be used as iterator variables (but this is not a good programming style and so,  we will not
make much use of this possibility). In the following input, we use Pi as the iterator variable.

Do[Print[Pi^2], {Pi, 2, 4}]

Everything we have stated about the behavior of Do for various forms of the iterators also holds for similar commands
with the same iterator notation (e.g., Sum, Product, and Table). 

Σ (* session summary *) TMGBs`PrintSessionSummary[]

à 4.2.2 Control over Running Calculations and Resources
After this brief detour involving Do and iterators, we now come back to the main theme of this subsection. A calcula-
tion can be stopped interactively with Quit, which kills the Mathematica kernel, or more smoothly with Abort. 

 

Abort[]

stops the running calculation “as soon as possible” after Abort[] appears. 

In the following example,  will not be printed. 

Do[Print[]; Print[]; Abort[]; Print[]; {4}]

Abort[] can be overridden with AbortProtect. 

 

AbortProtect[expression]

prevents the aborting of the computation of expression if Abort[] is encountered in 
computing expression. 

Now  is printed out, but the result of the entire calculation is still $Aborted. 

AbortProtect[Print[]; Print[]; Abort[]; 
             (* restore state here *) Print[]]

A common use of AbortProtect is inside a user-defined function, in which system functions (like $Recursion
Limit,  $IterationLimit,  $MaxExtraPrecision)  are  set  to  nonstandard  values  or  large  expressions  are
generated. In such cases, we do not want these values of system functions globally visible after aborting a calculation.
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Such restoring  of  original  values  of  system variables  and removing temporary variables  is  also the reason that,  under
some circumstances, aborting (using Abort[]) might take a substantial time.

CheckAbort can be used to check to see if an abort will be encountered. 

 

CheckAbort[expression, anAbortOccurred]

gives the result of the computation of expression if no abort was encountered; otherwise, it 
gives anAbortOccurred. If an Abort command is encountered, the computation stops at that 
point. 

This result is what we get for the above example. 

CheckAbort[Print[]; Print[]; Abort[]; Print[],
           (* restore a proper Mathematica state here *) 
           Print["An abort has occurred!"]]

To interrupt a calculation and to continue at another point, we can use the pair of functions Throw and Catch.

 

Throw[expression, throwTag]

sends the expression expression to the nearest enclosing Catch whose second argument 
matches throwTag. In case throwTag is omitted, the nearest enclosing Catch receives expresÖ
sion. 

 

Catch[expression, catchTag]

returns the first argument of the Throw inside expression whose tag matches catchTag. If 
catchTag is omitted, the first argument of any executed Throw in expression is returned.

Here  is  a  simple  example  that  uses  the  one-argument  forms  of  Throw  and  Catch.  Throw[a]  returns  the  current
value of a to the outer Catch. The assignment a = 3 is never executed.

Catch[a = 1; a = 2; Throw[a]; a = 3]

In the next example, again the Throw after the assignment a = 2 is executed. But the outer Catch has the tag ais3
which does not match the throw tag ais2. As a result the whole Throw is returned in Hold.

Catch[a = 1; a = 2; Throw[a, ais2]; a = 3; 
                    Throw[a, ais3]; a = 5,
      ais3]

To  allow Catch  to  compare  the  thrown  tag  with  its  second  argument,  it  must  have  the  attribute  HoldFirst.  This
allows to second argument to be evaluated before the first.

Attributes[Catch]

Another pair of functions that similarly to Throw and Catch cooperate in a nested manner is the pair of functions Sow
and Reap.

 

Sow[expression, sowTag]

indicates the expression expression to be collected by the next enclosing Reap whose second 
argument matches sowTag. If sowTag is omitted, the nearest enclosing Reap will collect 
expression. 
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Reap[expression, reapTag]

returns a list of the value of expression and the first arguments of all occurrences of Sow inside 
expression whose tags match sowTag. If reapTag is omitted, the first arguments of any Sow 
evaluated in expression are returned.

Here is again a simple example. The result of Reap[…] is the a list of two elements. The first element is the value 3
which  comes  from  the  last  Sow[a]  and  the  second  element  contains  the  three  values  of  a  that  were  sown  while
evaluating the first argument of Reap. 

Reap[a = 1; Sow[a]; a = 2; Sow[a]; a = 3; Sow[a]]

In  the  next example,  we use Sow  with a  second argument.  The outer  Reap  is  used  without a  second argument.  As a
result, the returned second element is a list whose elements are the sown expressions for each sow tag.

Reap[a = 1; Sow[a, 1]; a = 2; Sow[a, 2]; a = 3; Sow[a, 3]]

If we only want to reap the sown expressions for a special tag, we use a second argument in Reap.

Reap[a = 1; Sow[a, 1]; a = 2; Sow[a, 2]; a = 3; Sow[a, 3], 1]

Often, we want to limit the time and memory resources to be used in the computation of an expression. (Some built-in
functions do this, for instance, Simplify.)

 

TimeConstrained[expression, seconds]

stops the computation of expression after seconds seconds, provided it is still running. 

MemoryConstrained[expression, bytes]

stops the computation of expression if more than bytes bytes are used. 

The abort will not always happen exactly after the prescribed amount of time, or if the prescribed amount of memory is
exceeded,  but  “as  soon  after  as  possible”.  Here,  we  abort  two  extensive,  although  elementary,  calculations.
3 333 333333 333 cannot be calculated by using only 100 bytes.

MemoryConstrained[333333^333333, 100]

Already, the result needs nearly 1 MB storage space.

ByteCount[3333333^333333]

If the reader does not have a quantum computer, the next calculation should abort.

TimeConstrained[
        Nest[Integrate[#, x]&, 
             Sin[x^12 + Exp[x + Sqrt[x]]] Tan[x], 12345], 1]

Frequently, we want to know whether messages have been generated during a computation. 

 

Check[expression, messageOccurred]

gives the result of the computation of expression, if during its computation no message was 
generated; otherwise, it gives messageOccurred. 

In the following example, a message is generated. 

Check[Do[i = j, {j, 1, 2, 3, 4, two}],
      Print["Was there a typo in the iterator?"]]

Here, everything works fine. 
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Check[Print[Do[i = j, {j, 1, 4, 2}]],
      Print["There was no typo in the iterator."]]

The following command provides an overview of the resources used in a Mathematica session. 

 

MemoryInUse[]

gives the current amount of memory in bytes currently used by the Mathematica kernel. 

MaxMemoryUsed[]

gives the maximum amount of memory in bytes used by the Mathematica kernel in a session. 

TimeUsed[]

gives the total CPU time in seconds used by the Mathematica kernel for calculations (not 
including PostScript interpreter times or times used by other subprocesses). 

So far, we have used the following amounts of memory and CPU time. 

MemoryInUse[]

MaxMemoryUsed[]

TimeUsed[]

To reduce the amount of memory currently needed to store all expressions, we use Share. 

 

Share[]

usually reduces the amount of memory needed and returns the size of freed memory.

Share works as follows: All symbols in the symbol table are checked, and those with the same values are coupled with
cross  references.  An  automatic  function  similar  to  Share[]  is  built  into  the  Mathematica  kernel,  although  it  is  not
always  called.  Thus,  it  is  sometimes a  good  idea  to  call  Share  manually  from  time to  time.  In  this  connection,  the
following command is of interest. 

 

ByteCount[expression]

gives the number of bytes of memory required to store expression. 

For example, to store the antiderivative of x66 cosHxL66 requires around 1 MB. 
ByteCount[cosInt1 = Integrate[x^66 Cos[x]^66, x]]

Here is its size measured in Mathematica subexpressions.

LeafCount[cosInt2 = Integrate[x^66 Cos[x]^66, x]]

Now, we have two expressions that have exactly the same value, cosInt1 and cosInt2. If we now run Share, we
can considerably reduce the memory currently used. 

MemoryInUse[]

Share[]

MemoryInUse[]

The small difference between the value returned by Share[] and the explicit difference is caused by the state changes
of the second MemoryInUse[] call.)
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%%% - %

Σ (* session summary *) TMGBs`PrintSessionSummary[]

4.3 The $-Commands

à 4.3.1 System-Related Commands
The following commands give information on the version of Mathematica being used. 

 

$VersionNumber

gives the version number of the Mathematica implementation. 

$VersionNumber

In programs, we sometimes use constructions like 
If[$VersionNumber <= 5.1, doSomethingThatCanNotBeDoneInEarlierVersions,giveAMessage].

 

$Version

gives the version of the Mathematica kernel being used. 

$Version

 

$CreationDate

gives the date when the version of Mathematica being used was created in the form of a list 
{year, month, day, hour, minute, second}. 

$CreationDate

The output of the date is in the typical form. 

 

Date[]

gives the current date in the form of a list {year, month, day, hour, minute, second}. 

Date[]

Mathematica has a software-implemented high-precision arithmetic. Whenever possible, it will use machine arithmetic.
Various properties of the machine arithmetic can be inferred from the following commands.

 

$MachineEpsilon

gives number of the type Real that, when added to the machine real number 1.0, gives a result 
larger than 1.0. 

For the computer in use here, this input shows the number. 

$MachineEpsilon

Here is a test of the defining property of $MachineEpsilon. 

20 Printed from THE MATHEMATICA GUIDEBOOKS

©  2004, 2005   Springer Science+Business Media, Inc.



a1 = (1.0 + $MachineEpsilon);
a2 = (1.0 + $MachineEpsilon/2);
{a1 - 1.0, a2 - 1.0}

Here is the number of digits used in working with machine accuracy. 

 

$MachinePrecision

gives the number of digits to be carried in a calculation with machine numbers. 

$MachinePrecision

The use of N[expr, $MachinePrecision + 1] will result in carrying out a numerical evaluation of expr  using
Mathematica’s high-precision arithmetic. In distinction to a machine number, for a high-precision number all digits are
explicitly displayed.

N[Sqrt[2], $MachinePrecision]

N[Sqrt[2], $MachinePrecision + 1]

An related command to $MachineEpsilon produces the largest machine number. 

 

$MaxMachineNumber

gives the largest number that can be used with machine arithmetic. 

Here is this number. 

$MaxMachineNumber

Multiplying the last number by 2 results in a high-precision number. (High-precision numbers are used by Mathematica
if either a number has more digits or is larger in size so that it cannot be represented as a machine number.) And a high-
precision number displays all its digits.

2 %

Dividing the last result by 2 yields a number identical to the original one in size, but now it is a high-precision number
(all its significant digits are displayed).

%/2

Mathematica also computes with larger numbers, but not directly via hardware arithmetic. Here is an example. 

11111111111111111111^121 2^222222 1.189731495357231766 10^4932

The  use  of  high-precision  arithmetic  results  in  a  loss  of  speed.  Here  are  the  computational  times  required  for  the

computation of I2.0 μ 1010 expM0.2
 as a function of the exponents. We clearly see that the average growth of the time has a

(first) big increase at the exponent exp of around the switching to high-precision arithmetic. 

Log[10, $MaxMachineNumber]/10

The reader  should look primarily at  the result,  and not at the program. (The thin vertical line marks the exponent  exp
whose computation leads to a number greater than $MachinePrecision.) 
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ListPlot[Table[{exp, (* the timing *)
                Timing[Do[(2.0 10^(10 exp))^0.2, {1000}]][[1, 1]]/10},
               {exp, 0, 300}],
         AxesLabel -> {"exp", "time/seconds"}, AxesOrigin -> {0, 0}, 
         PlotRange -> All, PlotStyle -> {PointSize[0.01]},
         (* vertical line at the largest machine number *)
         GridLines -> {{Log[10, $MaxMachineNumber]/10}, None}]

The smallest machine number can be obtained with $MinMachineNumber. 

 

$MinMachineNumber

gives the smallest number that can be used with machine arithmetic. 

Here is the current value. 

$MinMachineNumber

Squaring the last number again creates a high-precision number.

%^2

Taking the square root of the last number yields again a high-precision number.

Sqrt[%]

In addition to the largest machine real number, sometimes we need to know the largest machine integer. The function
$MaxMachineInteger from the context Developer` is returning this number. (We will discuss the meaning of a
context in Subsection 4.6.5.)

Developer`$MaxMachineInteger

Log[2, %] // N[#, 22]&

Most Mathematica  iterators require the number of steps to be a machine integer. So the following Do loop generates a
message.

sum = 0;
Do[sum = sum + k, 
   Evaluate[{k, 10^100,
             10^100 + Developer`$MaxMachineInteger + 1}]]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

à 4.3.2 Session-Related Commands
We have already seen at least one of the commands to be treated in this subsection (as a result of Abort). 

 

$Aborted

is the result of breaking off a computation either with Abort[] or interactively. 

$Line is another session-related function.

 

$Line

gives the number of the current input line. 

$Line  can also be set by the user,  but then all information contained in the previously used inputs and outputs is no
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longer available. Symbols, function definitions, and so on, remain in effect, however. 
?In

We get all definitions attached to In (which means all previous inputs) with DownValues (or with ?In). 

DownValues[In]

So, we can use In like any other function definition. Like many other built-in commands, In has attributes. 

Attributes[In]

Calling an already-stored In[n] results in the reevaluation of the corresponding input.

In[3]

To start the line numbering again from 1, we input the following. 

$Line = 1

2 + 2

Be  aware  that  when  resetting  the  line  number,  we  do  not  change  the  state  of  the  whole  Mathematica,  so  variables
declared before this change are still available. 

In this connection, note the difference in the display of In[number]:= and Out[number]=. The inputs are associated
with In via SetDelayed, whereas the outputs are associated with Out via Set. Thus, by inputting In[number], we
reevaluate the input (which may have been evaluated earlier) corresponding to the current values of the parameters or
global variables. (Also Out[number] reevaluates of course.)

a = 1; b = 2;

a + b

b = 3

In[$Line - 2]

Both inputs via In  and outputs via Out  are stored as RuleDelayed-objects (to be discussed in the next chapter) in
the DownValues of In, respectively, Out.

DownValues[In] // First

DownValues[Out] // First

So In is a symbol like any other one in Mathematica. As such, we can define values for certain arguments. Here we set
the value of In[1111] to be the current input line number.

Unprotect[In];

In[1111] := $Line

In[1111]

In[1111]

A $-command that is important not for In, but for Out is $HistoryLength.

 

$HistoryLength

gives the number of last outputs that should be stored with Out. 

Currently, all outputs are stored in the DownValues of Out.
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$HistoryLength

We can reset the value to, say, 2.

$HistoryLength = 2

Now, only the last two outputs can be retrieved and the %%% stays unevaluated.

{%, %%, %%%}

The  use  of  a  small  $HistoryLength  (typically  0)  value  is  especially  recommended  in  case  of  large  outputs,  like
graphics. The actual graphic is a “side effect”, and Out still contains the Mathematica  description of the graphics. We
will reset the value of $HistoryLength a few times in the Graphics volume [27÷]. For now, we reset $History
Length to its default value.

$HistoryLength = Infinity

To collect the messages generated by inputs, we have $MessageList. 

 

$MessageList

gives a list of the messages originating during the evaluation of the current input. 

$MessageList gives the messages in a form allowing them to be further manipulated. 

Here are some simple functions with the “wrong” number of arguments. 
meLi = (Sin[1, 2, Log[1, 2, 3, 4], Log[5, 6, 7, 8], 4]; $MessageList)

The names of the messages are included in Hold. 

FullForm[%]

For operations connected with graphics, the following command is important. 

 

$DisplayFunction

gives the system information needed to draw an image (where and how to plot it). 

Here, its current value is shown. (For details about the command $DisplayFunction, see Chapter 1 of the Graphics
volume [27÷].)

$DisplayFunction

Next,  we  discuss  two  $  commands  that  are  important  in  connection  with  recurrence  and  iteration:  $Recursion
Limit and $IterationLimit. Here is a simple recurrence formula to compute a function caf. 

caf[1] = 1;
caf[n_] := caf[n - 1] n^2 - 2n 

Unfortunately,  although  it  is  algorithmically completely correct,  the  formula  produces  error  messages when we try to
calculate caf@298D. 

caf[298];

Here is the reason for these error messages. 
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$RecursionLimit

gives the maximum number of recurrence steps to be carried out for recursive function 
definitions. $RecursionLimit can be set to Infinity, which allows an arbitrary number 
of iterations.

The default value of $RecursionLimit is 256.

$RecursionLimit

If we make $RecursionLimit sufficiently big, we can compute caf[298] without an error message. 

$RecursionLimit = 500

caf[298]

On the other hand, the following still does not work. 

caf[550];

If the reader is not working on a Unix-running computer, he should exercise some care in dealing with very recursive
calculations,  because  they  make  heavy  use  of  the  stack.  Such  calculations  can  easily  crash  Mathematica.  Here  is  an
example (we do not run it here, of course) involving the so-called Ackermann function ([1÷], [11÷], [2÷], [23÷], [30÷],
[17÷], [19÷], [21÷], [20÷], [25÷], [22÷], [8÷], [9÷], [24÷], [18÷], and  [10÷]). 

Make Input

[a_, 0] = 0;
[a_, 1] = 1;
[a_, i_] := i;
[a_, b_, 0] = a + b;
[a_, 0, i_] := [a, i - 1];
[a_, b_, i_] := [a, [a, b - 1, i], i - 1]

(* calculate an example *)
$RecursionLimit = Infinity;
[a, 2, 2]

We  now  move  from  recursion  to  iteration.  The  following  flawed  function  definition  leads  to  an  overstepping  of  the
iteration limit. 

f[x_] = f[x]

The number of iterations can be limited using $IterationLimit.

 

$IterationLimit

gives the number of iteration steps to be carried out in iterative computations. 
($IterationLimit can be set to Infinity, which allows an arbitrary number of 
iterations.) 

In the above example, increasing $IterationLimit does not help; this function definition simply goes on forever.
We do not go into a discussion about the difference between iteration and recursion here, but will come back to it soon. 

Σ (* session summary *) TMGBs`PrintSessionSummary[]
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4.4 Communication and Interaction with the Outside

à 4.4.1 Writing to Files
The  exchange  of  data  and  commands between  Mathematica  and  other  programs  is  accomplished using  the  MathLink
standards  (which  we  do  not  treat  here;  see  [32÷]).  InterCall  (http://analytica.com.au/Products/InterCall.html)  can
communicate with external Fortran and has been designed to interface with numeric libraries, such as NAG and IMSL.

In this subsection, we will discuss how to save definitions on a file and how to load them in again. Definition and
FullDefinition are useful Mathematica commands for working with other programs. 

 

Definition[symbol1, symbol2, …, symboln]

gives the definition of the user-defined symbols symbol1, symbol2,…, symboln (more precisely, 
all such symbols that do not carry the attribute ReadProtected). 

FullDefinition[symbol1, symbol2, …, symboln]

gives the complete recursive definition of the user-defined symbols symbol1, symbol2,…, 
symboln along with all other symbols contained in them (more precisely, all such symbols that 
do not carry the attribute ReadProtected or Protected). 

Here is a little example showing the difference between Definition and FullDefinition. Here, f is defined via
g, g via h, and h is defined recursively. 

f[x_] := g[x]^2;
g[y_] := h[y]^2;
h[z_] := h[z] = h[z - 2] + h[z - 1];
h[0] = 0;
h[1] = 1;

Now, we calculate f[4]. 

f[4]

Here is the immediate definition of f. 

Definition[f]

Here is the complete definition of f (including the special values for h). 

FullDefinition[f]

For later reuse, in Mathematica or in another program, the InputForm is more useful (a mimic of the “conventional”
mathematical notation is not employed, only ASCII characters are used). 

InputForm[FullDefinition[f]]

Giving g the attribute Protected avoids the definitions for g from being given. 

SetAttributes[g, Protected]

FullDefinition[f]

Definition  also  produces  a  result  for  the  two  arguments  In  and  Out.  Indeed,  unless  $Line  has  been  explicitly
manipulated, we get both the inputs and the outputs for the current session. Here is an example. 
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Definition[In]

Definition[Out]

FullForm[%]

The last output contains Definition[f] and FullDefinition[f]. Definition and FullDefinition do
not return the function definition(s) explicitly via Out, but instead act as a formatting device. Here is a definition for .

[ _] := [ ]^2;
[ _] := 4;

FullDefinition[ ]

The fullform has the head FullDefinition.

FullForm[%]

And the depth of the last expression is just 2.

Depth[%]

Similar to functions like TreeForm that only act as a formatting device, FullDefinition[ ] also is a formatting
device. When used as an argument in other functions it allows us to obtain the inputform as a string.

InputForm[FullDefinition[ ]] // ToString // InputForm

Changing the definition of  and reevaluating the above output gives prints the current definition of .

[ _] := 6;
%%%%%

Because Out contains all of the results obtained up to the current time in a given Mathematica  session, the amount of
stored information can be huge, especially if a (large) number of plots have been created. This space can be freed using
these commands. 
Unprotect[Out]; Clear[Out]; Protect[Out];

Unprotect[Out]; DownValues[Out] = {}; Protect[Out];

But, of course,  the associated information is lost. %,  %%, Out[n],  will no longer work as before.  To avoid building a
large list if outputs, we can set the value of $HistoryLength to a small value.

To write to external files, we can use Put. 

 

Put[expression1, expression2, …, expressionn, "fileName"]

or, if n = 1,

expression >> "fileName" 

writes expression1, expression2, … , expressionn to the file fileName. 

Here is a test. 

Put[InputForm[FullDefinition[f]], 
    "PutTestFileWithAUniqueFileNameHopefully"]

To read files, we use Get. 
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Get["fileName"] or << "fileName"

reads the file fileName. This form is also used to read Mathematica packages. 

To see whether this function works, we erase the symbols for f, g, and h along with their values. 

Unprotect[g];
Remove[f, g, h];
Print[FullDefinition[f]]

Now, we read the definitions back in. 

<< "PutTestFileWithAUniqueFileNameHopefully";
FullDefinition[f]

To delete files from within Mathematica, we have DeleteFile. 

 

DeleteFile["fileName"]

deletes the file fileName. 

Mathematica  also has the functions RenameFile and DeleteDirectory to rename files and to delete directories.
In  addition,  the  functions  CopyFile,  CopyDirectory  to  copy  files  and  directories  exist.  We  will  occasionally
make use of these functions.

We now delete the file PutTestFileWithAUniqueFileNameHopefully. 

DeleteFile["PutTestFileWithAUniqueFileNameHopefully"]

If we want to write out some temporary files in the default directory for temporary files of the computer system, we can
use the function OpenTemporary. Here we write a trigonometric identity (as a string) to a temporary file.

tempFileStream = OpenTemporary[]

WriteString[tempFileStream,
  "Cos[Pi/17] == Sqrt[(15 + Sqrt[17] + Sqrt[34 - 2*Sqrt[17]] + 
   Sqrt[2*(34 + 6*Sqrt[17] - Sqrt[34 - 2*Sqrt[17]] + 
   Sqrt[34*(17 - Sqrt[17])] - 8*Sqrt[2*(17 + Sqrt[17])])])/2]/4"]
   
Close[tempFileStream]

Reading  the  identity  back  into  the  kernel  gives  a  $MaxExtraPrecision::meprec  message  (see  Chapter  5)
because the identity cannot numerically disproved.

Get[tempFileStream[[1]]]

If we try to read a nonexistent file (e.g., with <<"PutTestFileWithAUniqueFileNameHopefully") after the
above deletion, we get an error message of the form Get::noopen: Can't open PutTest. 

The  effect  of  Put[InputForm[FullDefinition[expression]],  "fileName"]  can  also  be  obtained  in  the
following shorter way. 

 

Save[expression1, expression2, …, expressionn, "fileName"]

appends

InputForm[FullDefinition[expression1, expression2, …, expressionn], "fileName"]

to the file fileName. 
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Put overwrites existing files. To append to existing files, we can use PutAppend. 

 

PutAppend[expression1, expression2, …, expressionn, "fileName"]

or, if n = 1,

expression >>> "fileName"

adds expression1, expression2, …, expressionn at the end of the file fileName. 

Σ (* session summary *) TMGBs`PrintSessionSummary[]

à 4.4.2 Simple String Manipulations
The following string operations are often very useful, especially in connection with other programs because they allow
us to create arbitrary formatted input for these other programs. String operations are also very useful inside Mathemat-
ica (for instance, for file name manipulations and creation of special symbol names) and for the program-based creation
of variable names within Mathematica.

 

StringJoin["string1", "string2", …, "stringn"]

or
"string1" <> "string2" <> … <> "stringn"

combines the strings "string1", …, "stringn" into a single string. 

StringLength["string"]

gives the number of string characters in string. 

StringReplace["string", {"stringOld1" -> "stringNew1",

                       "stringOld2" -> "stringNew2", …, 

                       "stringOldn" -> "stringNewn"}] 

replaces the substrings "stringOldi" in the string "string" by "stringNewi". For only one 
replacement, the outside pair of braces can be dropped. 

StringTake["string", {n}]

gives the first n characters of "string". 

StringReverse["string"]

reverses the order of the characters in "string". 

StringPosition["string", {"subString"}]

gives the position of the substring in "string". The result is a list containing lists of the 
beginning and end locations of the desired "subString". 

Two of these String commands also have options. 

Options[StringReplace]

Options[StringPosition]

Here, we discuss only one of these options, namely, IgnoreCase. 
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IgnoreCase

is an option for several string manipulation functions. 

Default:

False (differentiate between lowercase and uppercase letters)

Admissible:

True (uppercase and lowercase letters are treated the same)

Here is a little example involving a string manipulation command. First, we input six strings. 

s1 = " Once";
s2 = " there";
s3 = " was";
s4 = " a";
s5 = " Mathematica";
s6 = " session, in which ...";

Then, we join them into one string. 

StringJoin[s1, s2, s3, s4, s5, s6]

Here, the constructed string is backward. 

StringReverse[%]

This string consists of 51 individual characters. 

StringLength[%]

Next, we find the places where an "e" appears. 

StringPosition[%%%, "e"]

Here are the places where an "er" appears. 

StringPosition[%%%%, "er"]

Next, we replace all a’s by e’s, and vice versa. (The meaning of "e" -> "a" should be obvious; we treat the Full
Form of -> in the next chapter.) 

StringReplace[%%%%%, {"m" -> "o", "e" -> "a"}, IgnoreCase -> True]

Here, just the lowercase letters are replaced. 

StringReplace[%%%%%%, {"m" -> "o", "e" -> "a"}, IgnoreCase -> False]

An important application of String operations is to format data and/or commands to be 
passed back and forth between Mathematica and other programs (e.g., line length, first position 
in a line, etc.). 

To  end  this  subsection,  we  give  an  example  of  what  can  be  done  with  the  ToString  command.  We create  a  short
program that does nothing other than print itself—a “classical” problem for any computer language. 

Print[ToString[#0][]] & []

How  does  it  work?  The  pure  function  Print[ToString[#0][]]  is  called  with  zero  arguments.  Then,  the  pure
function  is  evaluated.  #0  represents  the  function  itself,  so  the  argument  of  Print[ToString[#0][]],
ToString[#0][]  is  printed.  The  result  of  this  evaluation  is  Null,  because  it  is  a  Print  statement.  ToString
comes into play in a twofold way. First, the quotes are not printed in StandardForm, so a String printed looks the
same  as  the  corresponding  symbol.  Second,  without  ToString,  the  result  of  the  evaluation  of  the  pure  function
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Print[#0[]] would be Print[#0[]], which is itself, and again, this would be evaluated and so on, which means
we would have an infinite recursion. Using InputForm, we see the quotes from the string. 

Print[InputForm[ToString[#0][]]] & []

An obvious generalization would be a program that prints itself more than once, for instance, two times. 

Do[Print[ToString[#0][]], {2}] & []

We discussed strings,  but  which characters are  allowed in a string? In addition to the ASCII characters,  Mathematica
supports  many more characters,  like  Greek  letters  and  many special  mathematical symbols.  Their  InputForm  looks
like the character.

{InputForm[α], InputForm[ℜ], InputForm[…]}

Their FullForm shows their names. Character names have the form \[name].

FullForm[%]

The result of the following calculation returns all named characters in Mathematica.

allNamedCharacters = 
  Drop[Select[FromCharacterCode /@ Range[10^5],
              Characters[ToString[FullForm[#]]][[-2]] === "]"&], 2];

Mathematica has more than 1100 special characters.

Length[allNamedCharacters]

Here  are  the  first  50.  (Not  all  may  display  on  every  computer.  To  see  all  of  them,  the  corresponding  fonts  must  be
installed.)

{#, FullForm[#]}& /@  Take[allNamedCharacters, 50]

Here are the last 50.

{#, FullForm[#]}& /@  Take[allNamedCharacters, -50]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

à 4.4.3 Importing and Exporting Data and Graphics
Mathematica can import and export data and graphics from and to a variety of file formats. Here is a list of the currently
supported formats for import and export.

$ImportFormats

$ExportFormats

The actual import and export of files is carried out using the functions Import and Export.

 

Import["fileName", "format"] 

imports the file fileName and returns the corresponding Mathematica expression. 

 

Export["fileName", toBeExportedExpression, "format"]

exports the expression toBeExportedExpression to the file fileName using the file format 
format.

Because the GuideBooks  do  not  come with GIFs,  we use the GIFs that come with Mathematica.  The following input
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find and imports all files with the extension gif from the Mathematica installation directory.
importedGifsThatComeWithMathematica = 
    Import /@ FileNames["*.gif", $InstallationDirectory, Infinity];
    
Length[importedGifsThatComeWithMathematica]    

We display them.

(* group graphics into o in one row and fill last row *)
groupGraphicsAndShow[l_] := Show[GraphicsArray[#]]& /@ 
With[{o = 3}, 
 Module[{λ = Length[l], μ = Mod[Length[l], o], P = Partition[l, o]},
        Which[μ == 0, P, 
              λ <= o, l,
              True, Append[P, Join[Take[l, -μ], Table[{}, {o - μ}]]]]]]

groupGraphicsAndShow @ importedGifsThatComeWithMathematica

Here the same is done with files with the extension .JPG.

importedJpgsThatComeWithMathematica = 
    Import /@ FileNames["*.jpg", $InstallationDirectory, Infinity]

groupGraphicsAndShow @ importedJpgsThatComeWithMathematica

Next,  we import a  webpage. The page to be imported contains todays papers deposited at the Arxiv  preprint  server in
quantum physics.

newInQuantumPhysics = Import["http://arxiv.org/list/quant-ph/new", "Text"];

Short[newInQuantumPhysics, 12]

The next input extracts the titles of the papers and prints them.

CellPrint[Cell["Î " <> StringReplace[#, "\n "->" "], "PrintText"]]&/@
      (StringTake[#, {11, -4}]& /@ StringCases[newInQuantumPhysics,
                             ShortestMatch["Title:</B>" ~~ __ ~~ "<BR"]]);

Sometimes one wants to carry out conversions completely within Mathematica, without reading from or writing to files.
The two functions ImportString and ExportString come in handy here.

 

ImportString["string", "format"] 

imports the string string and returns the corresponding Mathematica expression. 

 

ExportString[ toBeExportedExpression, "format"]

exports the expression toBeExportedExpression to a string using the file format format.

Here is a simple parametrized surface.

pp3d = ParametricPlot3D[{Sin[x], Cos[y], Sin[2 x + y]},
                        {x, 0, 2Pi}, {y, 0, 2Pi}, 
                        Boxed -> False, Axes -> False]

We generate the string corresponding to this graphics in EPS format.

pp3dEPS = ExportString[pp3d, "EPS"];

Here are the first few lines of the resulting string.

Short[pp3dEPS, 8]
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Importing the string yields a Mathematica Graphics expression. (Be aware that we started with a genuine 3D graph-
ics of head Graphics3D, but now have a 2D graphics expression of head Graphics.)

ImportString[pp3dEPS, "EPS"]

Visually the imported graphic looks identical to the original one.

Show[%]

The conversion details from and to the various file formats are regulated through the option ConversionOptions.
For a detailed listing of the possible suboption settings, see the help browser pages for Import and Export Import
and Export. The next example exports the above 3D graphic is a low-quality JPEG. The file is quite small, about 6 kB.

pp3dJPEG = ExportString[pp3d, "JPEG", 
                        ConversionOptions -> {"Quality" -> 2}];
ByteCount[pp3dJPEG]

Importing and displaying the graphic shows now clear differences to the original graphic.

Show[ImportString[pp3dJPEG, "JPEG"]]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

4.5 Debugging
Because programming errors are bound to occur in writing longer programs, it is important to have a way to find them
[33÷].  In  Mathematica,  the  currently  two  most  important  “tools”  for  debugging  are  On  and  Trace  (in  addition  to
sprinkling Print statements throughout the code to be debugged).

 

On[]

shows every step in the computation of an expression explicitly (except for “very internal” 
ones). This output is not in a form that can be immediately processed, because it is not attached 
to the form Out[… ], but instead appears “between the lines”. 

Off[]

cancels the effect of On[]. 

Here is what this looks like for the computation of x = p
4  followed by sinHp + H2 + 3L p + xL.

On[];
ξ = Pi/4;
Sin[Pi + (2 + 3) Pi + ξ]
Off[]

Note the --> arrow inside the individual steps of the calculation. This arrow is not a Mathematica command. 

Debugging with On[] can lead to exceptionally large printed output. Moreover, the (wall 
clock) runtime increases dramatically. 

We  can  use  On[]  to  give  a  detailed  look  at  what  is  going  on  with  respect  to  variable  renaming  when  calculating
Function[x, Function[y, x^2 y][2]][3]. In the first step, 3 is substituted for x inside the inner function,
and the y of the inner function is renamed (to make sure that it does not interfere with any other variable). The resulting
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expression 32 inside the inner function is not evaluated (HoldAll is an attribute of Function). In the second step, 2
is substituted for y$ (we come back to this renaming issue soon again) and the resulting expression 2 μ 32 is evaluated. 

On[]

Function[x, Function[y, x^2 y][2]][3]

Off[]

In the next example, the occurrences of the two semicolons ; results in the evaluation of a CompoundExpression. 

On[]; one = 1; two = 2;

Off[]

No Out[] appears in either line, because of Null. We have already encountered Null, but not yet discussed it. 

 

Null

is a symbol returned by functions that work by side effects (e.g., Print, Do, etc.), or as a 
filler in certain expressions that take multiple subexpressions, when a subexpression was not 
given (e.g., argument lists and in CompoundExpression). 

When Null  is the final result  of a computation, it  is not displayed as an output—this enables one to suppress output
one wants to hide (e.g., by creating a CompoundExpression with an implicit trailing Null by applying a semico-
lon to your input). Here are some examples of the appearance of Null in the output.

Print[3; ]

myFunction[a, b, , d, e]

Here, we see where “Null prevents itself from being printed as output”: No associated Out-result is visible.

Null

%

FullForm[%]

Often, Trace is much more appropriate than is On[]. 

 

Trace[expression]

gives a list (with head List) of all intermediate results in the computation of expression. The 
result of Trace is output via Out[… ] as a nested list and can be further manipulated and 
analyzed with Mathematica. 

Although Trace returns a result that can be further manipulated (in contrast to the printing generated by On[… ]), it
may be  very  deeply  nested  (we  quickly  get  to  several  hundred  levels  of  braces  of  the  form {firstEvaluated{secondÖ
Evaluated{thirdEvaluated{fourthEvaluated{…}}}}}).  But  the  list  returned  by  Trace  is  a  syntactically  correct
Mathematica  expression and can be analyzed by Mathematica.  This “machine analysis” is particularly useful in larger
calculations. 

Trace[ξ = Pi/4; Sin[Pi + (2 + 3) Pi + ξ]]

The  individual  subexpressions  are  enclosed  in  HoldForm  to  prevent  their  further  evaluation  and  do  not  possess  a
visible Hold.

FullForm[%]
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The computation of the integral Ÿ xx2 sin4HxL cos3HxL lnHxL dx involves a lot of intermediate steps. 

tr = Trace[int = Integrate[x^2 Sin[x]^4 Cos[x]^3 Log[x], x]];

We do not look at the complete Trace result. 

Short[tr, 5]

Instead, we analyze its structure. 

{Depth[tr], ByteCount[tr], LeafCount[int],
 StringLength[ToString[FullForm[tr]]]}

Here is the same analysis done for a definite integral.

tr = Trace[
 int = Integrate[x^2 Sin[x]^4 Cos[x]^3 Log[x], {x, 0, Pi}]]

We do not look at the complete Trace result. 

Short[tr, 5]

Instead, we analyze its structure. 

{Depth[tr], Length[tr], ByteCount[tr], LeafCount[int],
 StringLength[ToString[FullForm[tr]]]}

Trace also has options.

 

Trace has nine options.
TraceAbove  TraceBackward  TraceDepth
TraceForward  TraceInternal  TraceOff
TraceOn  TraceOriginal  MatchLocalNames

Along with the following, these Trace options greatly simplify the debugging problem.
TraceAction  TraceDialog  TraceLevel
TracePrint  TraceScan  

We  do  not  consider  all  options  of  Trace  and  related  commands  here,  but  instead  look  only  at  two  examples  using
some of the Trace commands. 

TracePrint[expression] prints all expressions originating from the computation of expression. 

TracePrint[3 + t + 5 + 2 5]

By setting the  option TraceInternal -> True,  we usually  get  as  detailed  a  protocol  as  with  the  use  of  On[].
(Integration may be mentioned as an exception, for instance, On[]; Integrate[Exp[x^3], x] leads to a much
longer result than does Trace[Integrate[Exp[x^3], x]]). Here is the result of Trace.

Trace[Integrate[Exp[x^3], x]]

Now, we use On[] to follow the calculation. To avoid getting a large amount of printouts, we temporarily suppress the
printouts and collect the single steps in the list bag. (How the following program works will be discussed in Chapter 6.)
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(* keep where messages are sent to *)
old$Messages = $Messages;
(* a bag for collecting the steps *)
bag = {};
(* as a side effect, collect all steps *)
$MessagePrePrint = AppendTo[bag, #]&;
(* redirect messages *)
$Messages = nowhere;
On[];
(* do the integration *)
Integrate[Exp[x^3], x];
Off[];
(* restore where messages are sent to *)
$Messages = old$Messages;
$MessagePrePrint = Short;

Inside bag, we collected a lot of information about the more than 6000 steps that were carried out.

{Depth[bag], Length[bag], ByteCount[bag], LeafCount[bag],
 StringLength[ToString[FullForm[bag]]]}

Here are the last recorded steps of the evaluation of Ÿ ex3
 dx that used On[].

Take[bag, -12]

With  Trace,  it  is  easy  to  see  the  difference  between  iteration  and  recursion.  Recursion  determines  the  depth  (as
measured by Depth) of results of Trace; iteration determines their length (as measured by Length). We begin with
a  recursive  definition.  (We will  reset  $RecursionLimit  and $IterationLimit  to  prevent  large printouts.  We
save the current value for later use.) These are the current values for $RecursionLimit and $IterationLimit. 

oldValues = {$RecursionLimit, $IterationLimit}

We  now  change  them  temporarily  and  do  a  very  recursive  and  a  very  iterative  calculation.  Using  Trace,  we  can
monitor how the calculation performs. Then, we look at the length and depth of the list generated by Trace. 

Clear[f];
$RecursionLimit = 100;
$IterationLimit = 200;
f[1] = 0;
f[n_] := f[n - 1] + n;
recursiveTrace = Trace[f[50]];
{Depth[recursiveTrace], Length[recursiveTrace]}

Next, we give a failed iterative definition. 

Clear[g];
$RecursionLimit = 200;
$IterationLimit = 100;
i = 1;
g[n_] := g[n];
iterativeTrace = Trace[g[50]];
{Depth[iterativeTrace], Length[iterativeTrace]}

Now, the depth is greater than the length of this list. Here is an iterative calculation with FixedPoint. 

tr1 = Trace[FixedPoint[(100 # + 1/#)/101&, 10.]];
{Depth[tr1], Length[tr1]}

Nest is another function carrying out a purely iterative calculation.

Function[tr, {Depth[tr], Length[tr]}][
                   Trace[NestList[Sin, 1``12, 1000]]]
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We reset $RecursionLimit and $IterationLimit to their old values. 

{$RecursionLimit, $IterationLimit} = oldValues

A general computation contains both recursive and iterative elements. 

Input, InputString, and Interrupt are also often very useful for interactive debugging. 

 

Input[]

reads in a Mathematica expression interactively. 

InputString[]

reads in a String interactively. 

Interrupt[]

stops the program and displays a menu of choices to proceed interactively. 

Because all three commands are partially machine dependent (and require further interactive input), we do not illustrate
them here. 

Σ (* session summary *) TMGBs`PrintSessionSummary[]

4.6 Localization of Variable Names

à 4.6.1 Localization of Variables in Iterator Constructions
Sum and Product are two other typical constructions, in addition to Do, that involve iterator variables. Their syntax is
nearly self-explanatory. 

 

Sum[term, iterator]

forms the sum of the summation terms term corresponding to the running variables in iterator. 
Here, iterator is used in the usual iterator notation. 

Product[term, iterator]

forms the product of the factors term corresponding to the running variables in iterator. Here, 
iterator is used in the usual iterator notation. 

We now define a function for computing the sum of the first n powers x i  (i = 1, …, n). (The following is the classical
example in Mathematica in which the iterator variables and the independent variables will coincide.)

PowerSum[x_, n_] := Sum[x^i, {i, n}]

Here it works as expected. 

PowerSum[x, 7]

Here it does not. 

Clear[i];
PowerSum[i, 3]

The  last  result  is  largely  caused  by  the  behavior  of  the  function  SetDelayed.  As  discussed  in  the  last  chapter,  an
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instance of a pattern variable will be substituted in the right-hand side, which leads to the expression Sum[i^i, {i,
3}] that evaluates to 32.

Sum[i^i, {i, 3}]

Often,  termi  is defined first  outside of  Sum[termi, iterator]  in the form termi = somethingHiL  and then “inserted” in
Sum, Do, or Product. This behavior is exemplified below.

term = k^3 + k^2 + k + 1;
Sum[term, {k, 1, 4}]

The result 144 can be easily understood if we look at the following sum. 

(1^3 + 1^2 + 1 + 1) + (2^3 + 2^2 + 2 + 1) +
(3^3 + 3^2 + 3 + 1) + (4^3 + 4^2 + 4 + 1) 

Here is an example concerning the order of localization of the iteration variables and the assignment of their limits. At
every stage (where the first  stage in the following is in the Table,  then in Sum,  and last in Product),  the iteration
variable is localized, and then the upper limit is computed. 

i = 3;
Table[Sum[Product[i^i, {i, i}],
          {i, i}],
      {i, i}]

Here is the same result in a somewhat more understandable iterator notation. 

l = 3;
Table[Sum[Product[i^i, {i, j}],
          {j, k}],
      {k, l}]

Here is the detailed calculation for comparison. 

{1^1, 1^1 + 1^1 2^2, 1^1 + 1^1 2^2 + 1^1 2^2 3^3}

As we shall see in the following subsections, variables can also be protected in other ways.

Σ (* session summary *) TMGBs`PrintSessionSummary[]

à 4.6.2 Localization of Variables in Subprograms
Often,  it  is  convenient  to  use  the  same variable  names in  subprograms as in  the main program without  worrying  that
variables  interfere  with  each  other  in  some  way.  This  scoping  can  be  accomplished  in  Mathematica  using  Block,
Module, and With. 

 

Block[{x1, x2, …, xn}, program]
or

Block[{x1 = x01, x2 = x02, …, xn = x0n}, program]

creates a local environment in which to run the program program. Before the call of Block, 
values assigned to the symbols xi are temporarily erased (if necessary, the values x0i are 
assigned). After the computations in Block are finished, the xi are reset to their old values. 

Module[{x1, x2, …, xn}, program]
or
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Module[{x1 = x01, x2 = x02, …, xn = x0n}, program]

creates a local environment in which to run the program program. When the module is called, 
the symbols xi are temporarily replaced by new variables with the internal form 
xi$uniqueNumber. If necessary, they are initialized to the values x0i. After completion of the 
commands in the module, these variables are removed, unless they have been exported to the 
outside. 

With[{x1 = x01, x2 = x02, …, xn = x0n}, program]

creates a local environment in which to run the program program. When With is called, all 
instances of the symbols xi in program are replaced by the local constants x0i. The xi cannot be 
assigned any further new values inside program. 

Block is a dynamic scoping construct. This means the values of variables are local to Block. Here is a simple exam-
ple. The Print statement inside Block prints ψ because no valued was assigned to ψ inside Block.

ψ = 1;
Block[{ψ}, Print[ψ]];
ψ

The next input uses Block to define the highly recursive function [26÷]

VrHxL =
1

2
 Vr-1HxL2 +

Vr-1Ix2M
1 - ⁄k=0

r-1 VkHxL
V0HxL = x.

Each  time the  function  [n, x]  is  called,  the  local  definitions  for  V  are  evaluated.  The  definitions  contain  a  Set
Delayed[Set[...]]  construction  to  cache  intermediate  values.  Then  V[n,  x]  is  evaluated  and  returned.  After
leaving the Block, all definitions made for V are no longer existent.

[n_Integer, x_] := 
Block[{V},
      V[0, z_] := z;
      V[r_, z_] := V[r, z] = 
      1/2 (V[r - 1, z]^2 + V[r - 1, z^2])/
                      (1 - Sum[V[k, z], {k, 0, r - 1}]);
      (* calculate value with actual n and V *)
      V[n, x]]

Calculating V[10, x] yields 55 cached values for V. The next input calculates [10, 2] using machine-arithmetic,
high-precision arithmetic, and exact arithmetic. Due to the complicated iterative nature of the rational function [10,

x], the machine-precision result suffers from cancellation errors.

{ [10, 2.], [10, N[2, 100]], [10, 2] // N}

No definition for the earlier cached values of V exists anymore.

?V

Avoiding too many cached values is sometimes of importance for memory reasons. Without the above Block[{...},
localDefinitionsWithCaching],  the  following  graphic  displaying  the  phase  of  [6,  z]  over  the  complex  z-plane
would accumulate more than three million cached values.

ContourPlot[Arg[ [6, x + I y]]^2/Pi^2, {y, -2, 2}, {x, -2, 2}, 
       PlotPoints -> 400, ColorFunction -> (Hue[0.8 #]&),
       PlotRange -> All, Contours -> 20, Compiled -> False,
       ColorFunctionScaling -> False, ContourLines -> False]
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In the definitions above,  program  is either a single expression or an expression with head CompoundExpression.
We now demonstrate the use of Module by looking again at the PowerSum example discussed above. In the follow-
ing construction, the iterator variable is localized, preventing any interference with other variables. 

ModulePowerSum[x_, n_] := Module[{i}, Sum[x^i, {i, n}]]

The summation now works even with i as the index. (Note the result for the third call, in which the upper limit on the
exponents continues to be called n, but the local summation variable is renamed.)

{ModulePowerSum[x, 5], ModulePowerSum[i, 5], ModulePowerSum[n, n]}

If we had also used i on the left-hand side, no assignment would have been possible for nonsymbols inside Sum. 

ModulePowerSumWithi[x_, i_, n_] := Module[{i}, Sum[x^i, {i, n}]]

Here, the iterator variable is a symbol.

ModulePowerSumWithi[x, , 4]

In the next two cases, the iterator variable is not a symbol and the creation of a local variable inside Module fails.

Clear[i, j, x];
ModulePowerSumWithi[x, j[2], 4]

ModulePowerSumWithi[x, 3, 4]

The following input does not give the “intended” result, because the summation variable k is localized to k$integer and
has nothing to do any longer with the k from term. 

term = k^3 + k^2 + k + 1;
Module[{k}, Sum[term, {k, 1, 10}]]

An amusing example of constructing an exceptionally long name can be added based on a) Nest and b) the property of
Module to create new variable names.

Nest[Module[{#}, #]&, x, 100]

By looking at their attributes, we can verify that the variables created in Module are only temporary in existence.

Module[{x}, Print[Attributes[x]]];

Because no x was explicitly exported from the Module, x now has no attributes. 

Attributes[x]

 

Temporary

is an attribute to identify variables created inside of Module and other scoping constructs. 
This attribute results in the removal of these variables when they are no longer needed (i.e., 
when the computations in the Module are complete), provided they have not been explicitly 
exported. 

In the following example, we use the variable temp inside of Module. Inside the Module, we print a list of all names
matching "temp*".

Module[{temp}, Print[Names["temp*"]]; temp = 2^2]

After  completion  of  Module,  the  temporary  version  of  temp  has  vanished  (the  variable  temp  was  created  when
parsing the whole Module). 

Print[Names["temp*"]]

The  attribute  Temporary  does  not  cause  variables  of  the  form  name$number  to  be  removed  if  they  have  been
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exported, this is shown in the following example. 
Remove["x*", z]

Module[{x1, x2}, z = {x1 + x2}]

Names["x*"]

Now, we remove the variable z. 

Remove[z]

??z

This process did not remove the variables x1, x2 and their local copies from Module.

Names["x*"]

They still carry the attribute Temporary. (They carry the attribute independent of their environment.)

Function[argument, Attributes[argument], {Listable}][%]

When we also clear the content of Out, they no longer exists. 

Unprotect[Out]; Clear[Out]; Protect[Out];
Names["x*"]

The attribute Temporary works only for variables inside Module. And inside Module, the attribute is automatically
given. So the following attempt to use a variable x with attribute Temporary inside Block fails.

Remove[x]

Block[{x}, SetAttributes[x, Temporary]; x; 1]

??x

While  the  first  arguments  of  Block,  Module,  and  With  contain  syntactically  Set  or  SetDelayed  statements,
because of the variable localization to be achieved, no real assignments as discussed in the last chapter are carried out.
The following input demonstrates this by temporarily disabling Set. Although Set is disabled, the local variable a has
the value 1.

Function[scoper, Block[{Set}, Print @ scoper[{a = 1}, b = a]],
         Listable] @ {Block, Module, With};

The variables listOfVariables appearing in the first argument of Function[listOfVariables, function] are also local.
Concerning renaming of variables, we recall a remark from Chapter 3.

Function uses a construction in some sense similar to Module internally to protect its 
“dummy” variables. 

Here is a function definition for  that is nested. 

 = Function[y, Function[x, x^2 + y^2]]

Two arguments can be given to the function . We get a function if we give only one argument (this function can then
get a further argument). Then, the remaining one carries the typical $ inside of Function. 

[x]

If the variables inside Function end with a $, things can go wrong.

 = Function[y, Function[x$, x$^2 + y^2]]

Now, the dummy variable x$ of the inner Function is no longer properly renamed.
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[x$]

Now, the dummy variable x$ of the inner Function is no longer different from the supplied argument.

 = Function[y, Function[$, $^2 + y^2]]

[$]

For pure functions that use # no renaming can happen.

Function[y, Function[#^2 + y^2]][#]

The last example shows that user  symbols should never  end with $.  An analogous construction for manually creating
“new” variables exists.

 

Unique[{x1, x2, …, xn}]

creates a list of new variables of the form {x1$number, x2$number, …, xn$number}, so 
that no overlap exists with already existing variables. With only one variable, the braces {} 
are not needed. 

Here three new variables are formed from the “old” newVar, x, and y. 

Unique[{newVar, x, y}]

We now give two simple examples of the use of With  (we come back to its use in the next subsection).  Here is one
typical application of With. With constructs “local constants”.

Clear[a, b, x, y]; 
x = 1;

With[{x = 9, y = (a + b)^9 // Expand}, (y - x)^x]

All  symbols  appearing  in  the  first  argument  (head  Symbol)  are  localized.  Essentially,  it  does  not  matter  how  the
variables are named. 

With[{Hold = 33, Exit = 44, Quit = 55, I = 66, NotebookOpen = 77},
     Hold Exit Quit[] I Symbol NotebookOpen[]]

Note  that  Goto  commands  also  belong  to  the  subject  of  subprograms  and  program  structure.  Mathematica  includes
Goto and Label, as well as Catch and Throw. If possible, the use of the two commands Goto and Label should
be avoided, because code containing Goto is typically is difficult to read. We have not used them in any of the exam-
ples implemented in this book, and so, we do not bother to discuss them here. If the reader decides that he needs to use
them, remember that their behavior is different from that in other programming languages. The reader should make sure
to read the documentation carefully.

Σ (* session summary *) TMGBs`PrintSessionSummary[]

à 4.6.3 Comparison of Scoping Constructs
We  present  a  detailed  comparison  of  the  various  possibilities  for  creating  subprograms  using  Module,  Block,  and
With in this subsection. This comparison is very important for practical applications. 

Block  initializes  only  the  values  of  the  variables,  not  the  variables  themselves.  Module  initializes  the  variables
themselves by creating new variables of the form var$. With  introduces local constants and replaces all literal occur-
rences of the variables in its body.

To illustrate this difference, we give the variable testVar the value 1111. 
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testVar = 1111

In the following Block, we make testVar a local variable; the result of Block is 2222, and afterward the variable
again has the same value as beforehand. 

Block[{testVar}, 
      testVar = 2222; 
      Print["The current value of testvar inside Block is: ", testVar]; 
      testVar]

testVar

With no value assignment, we get the value 1111. 

Block[{testVar}, testVar]

With Print, we can see that testVar is assigned the value 1111 only after the Block has been completed (the line
Block::trace:  Block[{testVar},  Print[testVar];  testVar]  -->  testVar  from  tracing  is
relevant here.)

Block[{testVar}, Print[testVar]; testVar]

Using On[] also shows that inside Block testVar has no value.

On[];
Block[{testVar}, Print[testVar]; testVar]
Off[];

The following input shows that the variable name in Block remains unchanged, and no $ is appended.

Block[{testVar}, Hold[testVar]]

For comparison, we now perform the same operations with Module. 

Module[{testVar}, testVar = 2222; Print[testVar]; testVar]

testVar

Module[{testVar}, Print[testVar]; testVar]

Module[{testVar}, Hold[testVar]]

This  example  indicates  that  every  call  of  Module  results  in  the  creation  of  a  new variable  var$number.  Even  if  the
variables are not explicitly exported, the number in var$number is incremented. 

Do[Module[{a}, Print[ToString[a]];], {5}]

In order to avoid double use (one from the user and one from Module) of variable names, the 
user should not introduce variables with names of the form var$number. 

The three scoping constructs Block, Module, and With allow also for delayed assignments in their first arguments.
This is especially relevant if the result of the right-hand side of the assignment can change. Here is a simple example.

Block[{ := Date[]}, {, Pause[5]; }]

When  using  Module  with  initializations  in  the  first  argument,  be  aware  that  these  initializations  cannot  depend  on
other  variables  declared as local  variables in  the same initialization part  of Module.  Thus,  in  the following example,
var2 will not have the value of the just-initialized var1, because the initialized symbol is actually var$number. 

Module[{var1 = 2 2, var2 = var1}, {var1, var2}]

Also,  multiple  assignments  8var1, var2, …, varn< = 8value1, value2, …, valuen<  do  not  work  inside  Block,
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Module, or With. Each local variable must be a symbol.

Module[{{x, y} = {1, 2}, z[2] = 2}, {x, y, z[2]}]

The  values  of  system  variables  such  as  $IterationLimit  or  $RecursionLimit  can  also  be  initialized  in
Block. The current (default) value of $RecursionLimit is 256. 

$RecursionLimit = 256;

We now look at defining a function inside of a Block or a Module. (Note that not only “arguments” but also “heads”
get the $ symbol.) 

Module[{x, f}, f[x]]

To compute f[258] in the following procedure, f has to be called more than 256 times. 

Module[{x, f}, f[0] = 0; f[x_] := f[x - 1] + x; f[258]]

If we make $RecursionLimit a local variable inside a Block, we can give it a larger value locally, and thus avoid
the  error  message  $RecursionLimit::reclim.  (Very  recursive  calculations  should  generally  be  put  inside  a
Block with appropriately changed $RecursionLimit.) 

Block[{x, f}, f[0] = 0; f[x_] := f[x - 1] + x; f[258]]

Block[{x, f, $RecursionLimit = 300},
      f[0] = 0; f[x_] := f[x - 1] + x; f[258]]

After Block is finished, $RecursionLimit has its old value. 

$RecursionLimit

The analogous construction does not work with Module, because the local variable $RecursionLimit$number  is
assigned the value 300, not $RecursionLimit. 

Module[{x, f, $RecursionLimit = 300},
       f[0] = 0; f[x_] := f[x - 1] + x; f[258]]

The following nested version of Block and Module does of course also work.

Block[{$RecursionLimit = 300},
Module[{x, f}, f[0] = 0; f[x_] := f[x - 1] + x; f[258]]]

In the next input, the Sin function is redefined inside the Block. 

Block[{Sin = Cos}, Sin[Pi]]

Because attributes are not related to “values”, they work also when the attributes are localized inside Block. Here is an
example.

Block[{Orderless, , }, 
      SetAttributes[, Orderless]; SetAttributes[, Flat];
      {[2, 1], [[1]]}]

The two functions  and , however, were local to the Block and do not have attributes outside of Block.

{Attributes[], Attributes[]}

If  a local variable inside a Module  appears  at the same time as a local dummy variable in a scoping construct,  these
occurrences are not replaced with the renamed variables. This is demonstrated here. The second element in the follow-
ing list shows a way to circumvent the nonuse of x$number. We will discuss the meaning of -> in the next chapter.

Module[{t, set}, {Hold[Set[c[t_], t^2]],
                  Hold[set[c[t_], t^2]],
                  Hold[set[c[t_], t^2]] /. set -> Set}]
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Using Set instead of SetDelayed yields a similar result.

Module[{t, set}, {Hold[SetDelayed[c[t_], t^2]],
                  Hold[setDelayed[c[t_], t^2]],
                  Hold[setDelayed[c[t_], t^2]] /. 
                         setDelayed -> SetDelayed}]

Because Block does not rename the local variables, nothing can go wrong.

Block[{t, set}, {Hold[Set[c[t_], t^2]]}]

The same behavior holds for With. 

With[{t = Unique["t"], set = Unique["set"]},
     {Hold[Set[c[t_], t^2]],
      Hold[set[c[t_], t^2]] /. set -> Set} ]

Here is the renaming of Pattern[x,_] within Block, Module, and With.

Block[{x = 1}, x_]

Module[{x = 1}, x_]

With[{x = 1}, x_]

The  following  “iterative”  assignment  of  values  to  variables  further  illustrates  the  differences  between  Block  on  the
one  hand,  and  Module  and  With  on  the  other.  To  better  observe  the  internal  variables,  we  print  them  out  using
Print[Hold[…]]. 

Clear[x, y, z];

Block[{x = y, y = z, z = 3},
      Print[{Hold[x], Hold[y], Hold[z]}]; {x, y, z}]

Module[{x = y, y = z, z = 3},
       Print[{Hold[x], Hold[y], Hold[z]}]; {x, y, z}]

With[{x = y, y = z, z = 3},
     Print[{Hold[x], Hold[y], Hold[z]}]; {x, y, z}]

For their iteration variables, Do, Sum, Product, and Table use a construction analogous to that of Block. 

i = 3333;
Do[i = i + 1; Print[i], {i, 0, 4}];

i

It  might  appear  that  a  construction  like  Module  would  be  better,  but  often  a  named  lengthy  expression  has  to  be
computed before  using Do,  Sum,  Product,  or  Table.  (In  addition,  Do,  Sum,  Product,  or  Table  allow nonsym-
bols as iterator variable and try to handle their scoping in a similar manner.)

Clear[i];
expression = i^0 + i^1 + i^2 + i^3 + i^4 + i^5 + i^6 + i^7 + i^8 

If we insert expression in Sum, we usually get “what we want”. 

Sum[expression, {i, 1, 10}]

If the iteration variables were renamed, we would get the trivial result of 10 times the expression to be summed. 

Module[{i}, Sum[expression, {i, 1, 10}]]

We could again look at this in more detail using On[]. 

Module[{i}, Sum[expression, {i, 1, 2}]]
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When dealing with nested pure functions,  it is often necessary to rename the variables. This is done in a conservative
way  following  the  principle  “rather  one  too  many,  than  one  too  few”.  The  following  function  fufufu  is  nested
threefold. 

fufufu = Function[{x}, Function[{y}, Function[{z}, x + y + z]]]

If we apply it to a variable a, we are left with a function containing within its body another function with head Func
tion. 

fufufu[a]

The  renaming  of  y  to  y$  and  z  to  z$  would  have  been  necessary  if  we  had  asked  for  fufufu[y]  instead of
fufufu[a]. 

fufufu[y]

We now give a “second” and a “third” argument to fufufu.

fufufu[y][z]

fufufu[y][z][x]

Here,  the  renaming for  an evaluated argument  and  an unevaluated  body of  Function  inside  Block,  Module,  and
With is shown.

Block[{x = y}, Function[Evaluate[x], x]]

Module[{x = y}, Function[Evaluate[x], x]]

With[{x = y}, Function[Evaluate[x], x]]

Be aware of  a  slightly different  scoping behavior  of  the one-argument pure function compared with its  two-argument
form. The Slot in # will not get renamed.

Function[Module[{Slot = 1}, Slot[1]]][2]

Function[Slot, Module[{Slot = 1}, Slot[1]]][2]

Here is another example involving Module. First, the local variable x$number inside the first argument of Module is
assigned the value x^2/2 (without $), and it is then output as the evaluation result of the body of Module.

Clear[x];
Module[{x = Integrate[x, x]}, x]

We  turn  now  to  With:  With  “only”  replaces  quantities,  and  it  does  not  create  new  variables  that  can  be  assigned
values. Hence, the following construction using With does not work. 

(* comparison with Module *)
Module[{x = 1}, x = 2]

With[{x = 1}, x = 2]

Every appearance of the local variable is immediately replaced. 

With[{x = t + b}, x^2]

Even  using  Hold,  ToString,  Unevaluated,  HoldPattern,  or  HoldComplete,  it  is  not  possible  to  get  the
“variable” x. 

With[{x = t + b}, 
     {Print[Hold[x]], ToString[x], Unevaluated[x], 
      HoldPattern[x], HoldComplete[x]}] // InputForm

Here is the only possible way to get x in “pure” form.
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With[{x = t + b}, ToHeldExpression["x"]]

It works, in this case, because the variable x is not present in the body of the With, only the string "x" is. However, if
a function definition with Blank appears inside a With, the variables used are of course bound to the function defini-
tion. 

Clear[f, g, x, y]
With[{x = y}, f[x_] := x; g[x_] = x; ]

??f

??g

Of course, the fact that Module creates new variables has an effect on speed of computations compared with Block.
Here is a long list of variables. 

Clear["x*"];

localVars = Table[ToExpression["x" <> ToString[i]], {i, 100}];

Short[localVars, 5]

Now, we use this variable list in Block  and Module, respectively. Evaluate[localVars]  is necessary because
Block and Module both carry the attribute HoldAll. The squaring (i.e., Power) is Listable. (To have a measur-
able timing for evaluation, we use a Do loop.)

Timing[Do[Block[Evaluate[localVars], localVars^2], {2000}]]

Timing[Do[Module[Evaluate[localVars], localVars^2], {2000}]]

If  possible,  variables  should  be assigned values  in  the first  argument of Block.  First,  these assignments improve the
readability  of  the  program,  and  second,  this  is  slightly  faster  than  is  a  value  assignment  in  the  second  argument.
Because  we  cannot  measure  very  small  time intervals  with  Timing,  we  use  Do[…, {100}]  to  get  a  larger  time
interval. 

Timing[Do[
Block[{x1 = 1, x2 = 2, x3 = 3, x4 = 4, x5 = 5, x6 = 6,
       x7 = 7, x8 = 8, x9 = 9, x10 = 10, x11 = 11, x12 = 12,
       x13 = 13, x14 = 14, x15 = 15, x16 = 16, x17 = 17,
       x18 = 18, x19 = 19, x20 = 20}, Null], {10^4}]]

The last input is easier to read and faster than is what follows. 

Timing[Do[
Block[{x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, 
       x11, x12, x13, x14, x15, x16, x17, x18, x19, x20},
      x1 = 1; x2 = 2; x3 = 3; x4 = 4; x5 = 5; x6 = 6;
      x7 = 7; x8 = 8; x9 = 9; x10 = 10; x11 = 11; x12 = 12;
      x13 = 13; x14 = 14; x15 = 15; x16 = 16; x17 = 17;
      x18 = 18; x19 = 19; x20 = 20; Null], {10^4}]]

With  protects  just  as well  as Module,  but  it  is  clearly faster  because no new variables have to be created.  It  is  also
faster than is Block.

Timing[Do[
Module[{x1 = 1, x2 = 2, x3 = 3, x4 = 4, x5 = 5, x6 = 6,
        x7 = 7, x8 = 8, x9 = 9, x10 = 10, x11 = 11, x12 = 12,
        x13 = 13, x14 = 14, x15 = 15, x16 = 16, x17 = 17,
        x18 = 18, x19 = 19, x20 = 20}, Null], {10^4}]]
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Timing[Do[
With[{x1 = 1, x2 = 2, x3 = 3, x4 = 4, x5 = 5, x6 = 6,
      x7 = 7, x8 = 8, x9 = 9, x10 = 10, x11 = 11, x12 = 12,
      x13 = 13, x14 = 14, x15 = 15, x16 = 16, x17 = 17,
      x18 = 18, x19 = 19, x20 = 20}, Null], {10^4}]]

In  addition to  faster  execution,  another  reason exists  for  using With  instead of  Module  when possible:  Because the
corresponding variables are assigned values at the outset (values that stay fixed within the scope of With), the readabil-
ity of the program is improved. 

Note again that the variables in the first argument of Block, Module, and With must have the head Symbol; that is,
composite quantities are not allowed. 

Clear[x];

Block[{x[1] = 1}, x[1]^2]

Similar  messages  would  be  the  result  of  Module[x[1] = 1, x[1]^2]  and  With[x[1] = 1, x[1]^2].
Now, we give a few examples involving local variables. 

In the next input, the unbound in (Function) variable gets the local variable from Module.

Module[{x}, Function[y, x + y]]

The bound in (Function) variable is not replaced by y$number.

Module[{y}, Function[y, x + y]]

The following result  does  not  contain z,  because  the inner  local  variable x  is  not  replaced with the  value z  from the
enclosing With. 

With[{x = z}, Module[{x}, x + y]]

Patterns of the form var_ restrict var locally to the inside of the associated Set or SetDelayed in Module. 

Remove[f, x, y, a];
Module[{x = y}, f[x_] = {x}; Print[Definition[f]]; {f[x], f[a]}]

Without Module, the result looks different. 

Remove[f, x, y, a];
x = y; f[x_] = {x}; {f[x], f[a]}

For comparison, we give a few similar constructions with Block and With. Here is Block. 

Clear[f, g, x, y, a, b];
Block[{f, g, x, y}, f[x_] = x^2; g[y_] := y^3;
      Print["The definition of f:", Definition[f]]; 
      Print["The definition of g:", Definition[g]];
          {f[a], g[b]}]

Here is Module, first without an assignment of values to the local variables. 

Module[{f, g, x, y}, f[x_] = x^2; g[y_] := y^3;
       Print["The definition of f:", Definition[f]]; 
       Print["The definition of g:", Definition[g]];
       {f[a], g[b]}]

And here is Module with an assignment of values to the local variables. 
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Module[{f, g, x = 1, y = 1}, f[x_] = x^2; g[y_] := y^3;
       Print["The definition of f:", Definition[f]]; 
       Print["The definition of g:", Definition[g]];
       {f[a], g[b]}]

In  the  following  construction,  x  in  the  right-hand  side  of  the  definition  of  f  is  not  a  variable  local  to  Set,  and  the
definition x = 1 goes inside of Module. 

x = 1; y = 1;
Module[{f, g}, f[x_] = x^2; g[y_] := y^3;
       Print["The definition of f:", Definition[f]]; 
       Print["The definition of g:", Definition[g]];
       {f[a], g[b]}]

Next, we also assign values to the functions in the first argument of Module. 

Clear[f, , g, , x, y, a, b];
Module[{f = , g = , x = x1, y = y1},
       f[x_] = x^2; g[y_] := y^3;
       Print["The definition of f:", Definition[f]]; 
       Print["The definition of g:", Definition[g]];
       {f[a], g[b]}]

We  now  define  a  function  of  two  variables  in  Module,  the  first  argument  as  a  pattern,  and  the  second  argument
directly as a specific fixed symbol. Without assigning a value to the local argument in Module, we have the following
result. The right-hand side of the definition of f is bound to the pattern variable x_.

Remove[, x, y, a];

Module[{x}, [x_, x] := {x, x};
       Print[Definition[]];
       {[y, y], [y, x]}]

Here is an example with a value assignment to the local arguments in Module. 

Remove[, x, y, z, a];

Module[{x = z}, [x_, x] := {x, x};
       Print[Definition[]];
       {[y, y], [y, x], [x, z], [y, z]}]

In pure functions, the variables are also “internally” localized. 

Module[{l}, Function[l, l^2]]

With[{l = p}, Function[l, l^2]]

The following two examples show how safe the renaming of variables is, in general. However, variables should not be
given the same names as system variables, as is done in the following example. 

quitFunc[Exit_] := Exit^2

quitFunc[5]

When we avoid the evaluation of the argument of quitFunc (say, by calling it with an unevaluated argument), we can
call quitFunc in a safe way with the argument Exit.

quitFunc[Unevaluated[Exit]]

The following example also works (although it is not the most recommended use of Exit). 

quitModule[Exit_] := Module[{I = Exit}, Print[I^3]]
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quitModule[3]

Inside Block, variables have local values. For instance, they can be cleared inside Block.

x = 1;
Block[{x = 2}, Clear[x]; ; Print[{ToExpression["x"], x}]]

Here, the same is done in Module.

Module[{x = 2}, Clear[x]; Print[{ToExpression["x"], x}]]

With does not allow us to “clear” local constants.

With[{x = 2}, Clear[x]; Print[{ToExpression["x"], x}]]

When x has a symbolic value, we can remove the corresponding value.

With[{x = ZΖ}, Remove[x]; Print[{ToExpression["x"], x}]];

To conclude this subsection, we give two examples involving the protection of variables and the interaction of Block,
Module,  and With.  Here is a multiple nesting of the three commands. We encourage the reader to think about what
the result might be, and note that the variables have been assigned values in the beginning. 

k = 3; x = 4; l = 5; i = 9;
Do[sum =
   Sum[Module[{x = 1/With[{k = 1/Block[{l = 1/i}, 1/l k]
                       }, 1/k]}, i x k]^2, {i, 2}],
   {100}] // Timing

The value of sum is 2.

sum

The evaluation of this input requires a considerable number of renamings, evaluations, and variable protections during
its calculation. Using Trace, we can monitor them.

Trace[Sum[Module[
 {x = 1/With[{k = 1/ Block[{l = 1/i}, 1/l k]}, 1/k]}, 
                i x k]^2, {i, 2}]] 

Σ (* session summary *) TMGBs`PrintSessionSummary[]

à 4.6.4 Localization of Variables in Contexts
Every  user-defined  or  system-defined  symbol  is  in  a  context.  A  context  is  identified  by  contextName`  (the  name
contextName  and  the  backquote  `  are  needed).  The  system symbols  are  in  the  context  System`,  whereas  the  user-
defined  symbols  are  typically  in  the  context  Global`  (the  Global`  and  System`  are  normally  not  explicitly
written  in  interactive  Mathematica  sessions).  Symbols  with  the  same  names  from  different  contexts  are  completely
independent of each other. 

 

Context[symbol]

gives the Context in which symbol is defined. 

The built-in symbol Sin is in the context System`. 

Context[Sin]

The variable newVar will now be created in the Gobal` context.

Context[newVar]
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We now create x in two different contexts and give them values. 

cont1`x = 5; cont2`x = 7;

Here are the different versions of x. 

{x, Global`x, cont1`x, cont2`x}

Here  is  a  list  of  all  x  that  have  so  far  appeared  in  any  context.  Most  of  them come from packages  in  the  StartUp
directory, which are read at the beginning of a Mathematica session.

??*`x

Variables  can  be introduced  in  any context,  including the  context  System`.  Here,  Amy  is  introduced  into the  Sys
tem` context.

System`Amy

Names["System`Am*"]

Contexts can be nested arbitrarily. (The reader might make use of this property in very large programs.)

cont1`cont11`cont111`x

Function[{x}, Context[x], {Listable}][
          {cont111`x, cont11`cont111`x, cont1`cont11`cont111`x,
           cont1`cont11`cont111`cont1111`x}]

Using the command Contexts in the following example, we can see that a context has to be the form symbol`, where
symbol has the head Symbol. 

Hold[s`α] // FullForm

Hold[(s`)α] // FullForm

Hold[s[1]`α] // FullForm

Hold[(s[1]`)α] // FullForm

The current context can be determined with $Context. 

 

$Context

gives the current context. 

$Context

The current context need not be given explicitly in the form currentContext`symbol. As mentioned in the beginning of
this subsection, it suffices to write `symbol or just symbol. It is relatively rare that several symbols with the same names
but coming from different contexts need to be used simultaneously. Here are all of the symbols appearing in the current
context `Global. 

??Global`*

The contexts Global` and System` currently contain many different symbols. 

Length[Names["Global`*"]]

Length[Names["System`*"]]

Currently no name exists simultaneously in both contexts.  (We will discuss the function Intersection  in Chapter
6.)
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Intersection[Names["Global`*"], Names["System`*"]]

Altogether (meaning in all available contexts), many more symbols exist, of course. 

Length[Names["*`*"]]

Some variables have nested contexts.

{Length[Names["*`*`*"]], Length[Names["*`*`*`*"]],
 Length[Names["*`*`*`*`*"]], Length[Names["*`*`*`*`*`*"]]}

Symbols in the context Global` take precedence over symbols with the same name in the (now to-be-created) context
Symbol`.  We  make  two  definitions  for  the  function  asd;  one  in  the  Global`  context  and  one  in  the  System`
context.

Clear[r, x];

Global`asd[x_] = x;
Symbol`asd[x_] = x^2;
asd[r]

If we want to use the definition of asd from the context Symbol`, we have to explicitly specify the context.

Symbol`asd[r]

The following input calculates how many symbols are presently available in all currently available contexts.

contextsAndVariables[] := 
{First[#], Length[#]}& /@ Sort[Split[Sort[
 Flatten[Table[Context /@ Names[StringJoin[Table["*`", {k}]] <> "*"], 
               {k, 0, 6}]]]], Length[#1] > Length[#2]&]

theCurrentContextsAndVariables = contextsAndVariables[]

The contexts present in a Mathematica session depend crucially from the calculations carried out. For efficiency, many
contexts and function definitions are loaded only when needed. So trying to evaluate the following integral adds more
than 15 context and nearly 5000 symbols from these contexts.

Integrate[HypergeometricPFQ[{a, b}, {c, d, e}, z]^z, {z, 0, 1}]

Select[contextsAndVariables[],
       FreeQ[theCurrentContextsAndVariables, #[[1]], {-1}]&]

At the beginning of a Mathematica session, all of the built-in system commands (context System`) are available along
with some other,  platform-dependent  commands. In general,  this means without  `,  all  symbols from the contexts  that
are in the $ContextPath are available. The context path can be obtained with $ContextPath. 

 

$ContextPath

gives a list of the contexts that have been read in, and in which new symbols have been 
officially introduced. If a symbol appears in multiple contexts, and this symbol name is entered 
without explicit context specification, Mathematica chooses the symbol coming from the 
context that comes first in $ContextPath. 

Contexts[]

gives a list of all contexts that have been read in. 

Mathematica packages create their own contexts to help protect the auxiliary variables they 
employ. Commands defined there, which are not exported, generally remain invisible. 
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So  far  in  this  Mathematica  session,  we  have  gone  through  the  following  contexts  (primarily  in  the  start-up  process).
These are the official contexts that were used. 

$ContextPath

This is a list of all contexts in use until now. 

Contexts[]

Here are the symbols from the context Internal`.

Names["Internal`*"]

Some  of  the  functions  from  undocumented  contexts  have  self-explanatory  names  and  have  some  occasionally  useful
functionality. Here is an example from the last output.

(* this will issue no messages *)
Internal`DeactivateMessages[0^0 + 0/0 - Sin[1, 2, 3] - 1[2][[3, 4, 5]]]

But in general, it is not recommended to use undocumented functions.

We save the number of symbols in the currently visible contexts, which allows us to monitor any changes in the follow-
ing example, in which we will add new contexts.

nBefore = Length[Names["*"]]

Next, we load an external package. 

Needs["NumberTheory`PrimitiveElement`"]

We have now loaded the new contexts in which new variables have been introduced. Here is the new $ContextPath.

$ContextPath

In fact, we have read in some other contexts to help implement commands exported from NumberTheory`Primi
tiveElement`, but they are not included in $ContextPath. 

Contexts[]

Just one new variable exists, PrimitiveElement. 

Length[Names["*"]] - nBefore

In principle, it is also possible to get to the “hidden symbols”. We have to explicitly specify the context.

Length[Names["NumberTheory`PrimitiveElement`Private`*"]]

Here is a concrete example. 

Names["NumberTheory`PrimitiveElement`Private`*"][[21]]

Often,  the  information we get with ??commandFromAPackage  is  hard  to understand.  First,  the individual  definitions
are given, and second, all symbols are given with their usually lengthy context specifications. 

?? NumberTheory`PrimitiveElement`Private`primel

If, in addition to using some variables from other contexts, we want to change the current context, we can use Begin. 

 

Begin["newContext`"]

changes the current context to newContext`. 

End[]

resets the current context to what it was before the last Begin["newContext`"]. 
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In the following example, the current context is changed from Global` to the newly created context co`. 

Context[]

Begin["co`"]

varia = 1

This context contains the variable varia. 

Names["*`varia"]

Now, we end the context co`. 

End[]

We are back in the context Global`.

Context[]

Inside the Global` context, other contexts are explicitly shown (with the exception of the System` context).

Names["*`varia"]

The possibility to change the current context with Begin is quite useful for looking at some definitions exported from
packages.  In  the  ??NumberTheory`PrimitiveElement`Private`primel  example,  all  variable  names
contained the context information, which made them hard to read.  By switching the context temporarily to Number
Theory`PrimitiveElement`Private`, the names are given in much shorter form because the context informa-
tion is not given for the current context and for symbols from the contexts System` and Global`. 

Begin["NumberTheory`PrimitiveElement`Private`"]

NumberTheory`PrimitiveElement`Private`primel

??primel

End[]

Commands that change the context should always stand alone, never inside other commands. This makes the resulting
program easier to read. And it makes sure that all contexts and variables get properly created.

In the following thread, we will shortly discuss the creation of new variables in contexts. In the next input, we start with
assigning the value 4 to the variable (living in the context Global`) aNewVariable. Then, we change the context
to nc1` and assign the value 3 to aNewVariable. Because the context Global` is in the current context path, no
new  variable  nc1`aNewVariable  is  created,  but  instead  the  value  of  the  variable  Global`aNewVariable  is
changed. To monitor the values and contexts of the variable aNewVariable, we use Print statements.

(aNewVariable = 4;
 (* new context *)
 Begin["nc1`"];
 (* assign value to a symbol *)
 aNewVariable = 3;
 (* print status *)
 Print["The current value of aNewVariable is: ", aNewVariable];
 Print["The current $ContextPath is: ", $ContextPath];
 Print["The list of all variables matching *`aNewVariable is: ", 
       Names["*`aNewVariable"]];
 Print["The context of aNewVariable is: ", Context[aNewVariable]];
 Print["The current context is: ", Context[]];
 End[]);
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Next,  we  basically  repeat  the  program  above,  but  this  time we  do  not  create  a  variable  bNewVariable  before  the
context nc2`  is  created. Again,  we assign the value 3 to bNewVariable.  Because the whole input is parsed in the
context Global`, the variable bNewVariable was created in the Global`  context and no new variable nc2`b
NewVariable is created, but instead the value of the variable Global`bNewVariable gets its the value 3.

((* new context *)
 Begin["nc2`"];
 (* assign value to a symbol *)
 bNewVariable = 3;
 (* print status *)
 Print["The current value of bNewVariable is: ", bNewVariable];
 Print["The current $ContextPath is: ", $ContextPath];
 Print["The list of all variables matching *`bNewVariable is: ", 
       Names["*`bNewVariable"]];
 Print["The context of bNewVariable is: ", Context[bNewVariable]];
 Print["The current context is: ", Context[]];
 End[]);

We repeat the last program once more with minor modifications. This time we do not use parentheses around the whole
input.  We  do  not  create  a  variable  cNewVariable  before  the  context  nc3`  is  created.  We  assign  the  value  3  to
cNewVariable. Now, the variable bNewVariable will be created in the nc3` context.

(* new context *)
Begin["nc3`"];

(* assign value to a symbol *)
cNewVariable = 3;

(* print status *)
Print["The current value of cNewVariable is: ", cNewVariable]

Print["The current $ContextPath is: ", $ContextPath]

Print["The list of all variables matching *`cNewVariable is: ", 
       Names["*`cNewVariable"]]
       
Print["The context of cNewVariable is: ", Context[cNewVariable]]

Print["The current context is: ", Context[]]

End[];

In the next input, we explicitly remove the Global` context from the context path. As a result, when the assignment
dNewVariable = 3  gets carried out,  Mathematica  cannot find a variable of the name dNewVariable,  and so it
creates one in the context nc4`.
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dNewVariable = 4;
(* new context *)
Begin["nc4`"];
(* remove the Global` context from the $ContextPath *)
$ContextPath = DeleteCases[$ContextPath, "Global`"];
(* repeat steps from above *)
(* assign value to a symbol *)
dNewVariable = 3;
(* print status *)
Print["The current value of dNewVariable is: ", dNewVariable];
Print["The current $ContextPath is: ", $ContextPath];
Print["The list of all variables matching *`dNewVariable is: ", 
      Names["*`dNewVariable"]];
Print["The context of dNewVariable is: ", Context[dNewVariable]];
Print["The current context is: ", Context[]];
End[];
$ContextPath = AppendTo[$ContextPath, "Global`"]

Now, we have two variables named dNewVariable, one in the Global` and in the nc4` context.

dNewVariable

nc4`dNewVariable

Σ (* session summary *) TMGBs`PrintSessionSummary[]

à 4.6.5 Contexts and Packages
As already  mentioned,  packages  serve  to  implement various  routines  unavailable  in  the  Mathematica  kernel.  A large
number of packages are in the standard packages directory. Of course, the user can write and add (or delete) packages.
They  are  written  in  the  Mathematica  programming language  and  have  a  special  structure.  We  will  not  describe  it  in
much  detail,  but  instead  concentrate  on  the  contexts  involved.  If  the  reader  needs  more  advice  in  writing  your  own
package, see [16÷]. 

We discussed earlier that Get[file] reads in the file file. A second, somewhat safer way exists to read in a Mathemat-
ica package. We will discuss this Needs command shortly. 

Mathematica packages are typically loaded as follows: <<AreaOfMathematics`SpecialSubÖ
ject` or Needs["AreaOfMathematics`SpecialSubject`"] 

Here are some examples. 
<<"Calculus`VectorAnalysis`"
<<"Graphics`Graphics3D`"

Note  the  following  exception:  A  more  precise  path  may  be  necessary  in  case  the  package  to  be  loaded  is  not  in  its
default directory. 

In this subsection, we want to examine exactly how the contexts, the context paths, and the protection of variable names
change as we run through a package. To this end, we look at the most rudimentary structure of a package. 
•••
General Remarks (author, history, ...) in form of Mathematica comments

BeginPackage[" name `"];
•••
Information on the functions defined
in the package which are to be exported using
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function1::usage = " someText1"
function2::usage = " someText2"

…
Begin["`Private`"];
•••
Definition of the functions functioni to be exported and
definition of auxiliary functions

End[];
•••
EndPackage[];
•••

The naming `Private`  is not necessary, but it  is a general rule to use it. Also, for example, the context System`
has this subcontext of the same name with the following variables. 

Names["System`Private`*"] // Short[#, 12]&

Now, at each of the places marked with ••• in our sample package, we will carry out these steps: 

† Write where we are. 

† Write the current context. 

† Write the current context path. To reduce the number of contexts printed, we look only for the new ones here. 

† Assign a value for the variable xHere. 

† Write the definition of the variables context`xHere. 

† Write the functions that are currently directly accessible (i.e., without giving their explicit context). 

We  give  our  imaginary package  the  name WhatsGoingOnWithContexts.  We  first  define  three  functions,  Con
textTester,  VariablesTester,  and  FunctionDefinitionsTester  to  help  us  examine  the  current
context, variables, and function definitions (the function Complement[a, b] gives all elements of a that are not in
b.  To  avoid  introducing  variable  form  contexts  that  are  only  to  be  defined  later,  we  use  constructions  of  the  form
Names["*`varName"] instead of explicitly listing the various variables as symbols. 

All printed statements have attached a small circle ë in the beginning to make them easier to recognize as such.

contextsBefore = Contexts[];

ContextTester[where_] :=
((* print data about the current context state *)
 CellPrint[Cell[TextData[StyleBox["Î We are currently here: " <> where,
                   FontWeight -> "Bold"]], "PrintText"]];
 CellPrint[Cell[TextData[{"Î The value of ", 
                 StyleBox["$Context", "MR"], " is: ",
                 StyleBox[ToString[InputForm[$Context]], "MR"]}], 
                "PrintText"]];                                 
 CellPrint[Cell[TextData[{"Î The value of ", 
                            StyleBox["$ContextPath", "MR"], " is: ",
                 StyleBox[ToString[InputForm[$ContextPath]], "MR"]}], 
                "PrintText"]];  
 CellPrint[Cell[TextData[{"Î The new contexts are: ",
                 StyleBox[ToString[InputForm[
                   Complement[Contexts[], Global`contextsBefore]]], "MR"]}]
                "PrintText"]];)
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VariablesTester :=
((* print data about the current state of variables *)
 CellPrint[Cell[TextData[{"Î The current names of the form ", 
                StyleBox["xHere*", "MR"], " are: ",
                StyleBox[ToString[InputForm[Names["xHere*"]]], "MR"]}], 
              "PrintText"]];
CellPrint[Cell[TextData[{"Î The current names of the form ", 
                StyleBox["*`xHere*", "MR"], " are: ",
                StyleBox[ToString[InputForm[Names["*`xHere*"]]], "MR"]}], 
              "PrintText"]];
CellPrint[Cell[TextData[{"Î The definition of all ", 
                 StyleBox["*`xHere*", "MR"], ": "}], "PrintText"]];        
(CellPrint[Cell[TextData[{"Î The definition of ", 
               StyleBox[#, "MR"], " from context ", 
               StyleBox[Context[#], "MR"], " is: "}], "PrintText"]];
 Print[Definition[#]])& /@ Names["*`xHere"];)

FunctionDefinitionsTester :=
 ((* print data about the current state of functions *)
  CellPrint[Cell[TextData[{"Î The current names of the form ", 
              StyleBox["our*", "MR"], " are: ",
              StyleBox[ToString[InputForm[Names["our**"]]], "MR"]}], 
            "PrintText"]];
  CellPrint[Cell[TextData[{"Î The current names of the form ", 
              StyleBox["*`our*", "MR"], " are: ",
              StyleBox[ToString[InputForm[Names["*`our**"]]], "MR"]}], 
            "PrintText"]];
  CellPrint[Cell[TextData[{"Î The definition of all ", 
                  StyleBox["`our*", "MR"], " : "}], 
                "PrintText"]];              
  (CellPrint[Cell[TextData[{"Î The definition of ", 
                   StyleBox[#, "MR"], " from context ", 
                   StyleBox[Context[#], "MR"], " is: "}], 
                "PrintText"]];
 Print[Definition[#]])& /@ Names["*`our*"];)

Here is the outline of our (toy-)package and the information about context changes and variable assignments during its
evaluation.  Note  the  introduction  of  the function  names ContextTester,  VariablesTester,  and Function
DefinitionsTest  using  the  context  Global`.  (Inside  the  current  context,  only  commands  from that  context  or
from the context System` can be used without explicitly giving the context specification.) The various commands are
all “single”, that is, no semicolons exists. 

This is the state of the contexts, before any change, related to imitating a package. 
Global`ContextTester["Before BeginPackage"]

xHere = beforeBeginPackage

Global`VariablesTester

Global`FunctionDefinitionsTester

The BeginPackage  changes  the  context  to  WhatsGoingOnWithContexts`.  This  current  context  is  not  in  the
list of the contexts returned by Contexts[]. 

BeginPackage["WhatsGoingOnWithContexts`"]

Global`ContextTester["After BeginPackage"]

Note that the context WhatsGoingOnWithContexts`  is not in the list of the contexts returned by Contexts[]
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(because we are just walking through it).
Contexts[]

Now, we define a xHere in the current context. The commands to be exported from a package are also introduced at
this point (see below), and the names used in the context Global` are still visible. So using the name xHere at this
point results in a warning message. 

xHere = afterBeginPackage

Global`VariablesTester

We  do  not  define  the  function  ourFunction  explicitly  at  this  point,  but  introduce  its  symbol  and  give  a  usage
message here. 

ourFunction ::usage = "ourFunction forms twice the square of a number"

Global`FunctionDefinitionsTester

Now, we switch to the subcontext `Private` of the context WhatsGoingOnWithContexts`. 

Begin["`Private`"]

Now, after we left the context WhatsGoingOnWithContexts`, it appears in the result of Contexts. 

Global`ContextTester["After BeginPrivate"]

Again, we define a variable xHere. Because a variable with the name xHere already exists in the available contexts
(in WhatsGoingOnWithContexts`),  the  value of  WhatsGoingOnWithContexts`xHere  is  overwritten  and
no new variable WhatsGoingOnWithContexts`Private`xHere is created. 

xHere = afterBeginPrivate

Global`VariablesTester

Inside this  innermost context  of  a  typical package,  we define the function to be exported (here,  ourFunction)  and
some auxiliary functions that are needed to define it. 

ourAuxiliaryFunction[x_] := x^2

ourFunction[x_] := 2 ourAuxiliaryFunction[x]

At  this  point,  both  functions  ourFunction  and  ourAuxiliaryFunction  are  visible  and  match  the  pattern
"our*" without giving explicit context specifications in the variable name. 

Global`FunctionDefinitionsTester

The functions exported from a package are typically protected. 

Protect[ourFunction]

The next End[] ends the context `Private`, and after this, we are back in the context WhatsGoingOnWithCon
texts`. 

End[]

Global`ContextTester["After End"]

Again, we define a variable xHere. (In a typical package, nothing is defined at this place.) 

xHere = afterPrivate

Global`VariablesTester

Global`FunctionDefinitionsTester
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The EndPackage[] now ends the context WhatsGoingOnWithContexts`. 

EndPackage[]

Now,  we  have  gone  through  our  whole  package  and  we  are  back  in  the  context  Global`,  and  the  package  context
WhatsGoingOnWithContexts`  is  now  part  of  the  context  path.  The  subcontext  WhatsGoingOnWith
Contexts`Private is not in the context path. 

Global`ContextTester["After EndPackage"]

Again, we give the variable xHere a value. 

xHere = afterPackage

Global`VariablesTester

The function ourFunction is available now also in the current context. 

Global`FunctionDefinitionsTester

Now, we are finished going through all the steps of context changes in a package. The function ourFunction is now
available for use.

ourFunction[abc]

But the function ourAuxiliaryFunction is not known in the current context. 

ourAuxiliaryFunction[abc]

We can access the definition of ourAuxiliaryFunction by calling ourAuxiliaryFunction with its context
specification.

WhatsGoingOnWithContexts`Private`ourAuxiliaryFunction[abc]

We note the following concerning the changes in the contexts:

†  After  BeginPackage,  $ContextPath  contains  only  the  newly  created  context  WhatsGoingOnWithCon
texts and System. 

† Begin["`Private`"] does not change the $ContextPath. 

†  In Begin["`Private`"],  the `Private`  has  a `  on the left;  that is,  it  is  a subcontext  of WhatsGoingOn
WithContexts. 

†  After  End[],  the  context  WhatsGoingOnWithContexts`Private`  is  not  in  $ContextPath.  Thus,  com-
mands defined there cannot be called without giving the explicit context. 

† The function exported lives in the context specified by BeginPackage[context].

Context[ourFunction]

†  The function ourFunction  is  also directly accessible inside of the context WhatsGoingOnWithContexts`
Private`, which allows us to implement rules for it at this place.

The  exported  functions  of  a  package  often  carry  the  attribute  Protected,  which  necessarily  causes  problems  if  a
package is read in more than once,  because functions that  were already named are defined again.  Here is an example
from the standard packages exhibiting the problem.

<< NumericalMath`Approximations`

<< NumericalMath`Approximations`

This problem can be avoided with Needs, which looks at the $ContextPath if the package was already loaded. 
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$ContextPath

Needs["NumericalMath`Approximations`"]

 

Needs["context`string"]

reads in the file that is associated with the context context`string (as a string), provided this 
package has not yet been read. 

Here, we read in the package NumberTheory`NumberTheoryFunctions`. 

Needs["NumberTheory`NumberTheoryFunctions`"]

It includes, for example, the function SumOfSquaresR, which counts the number of ways to represent an integer n as
a sum of d squares.

?SumOfSquaresR

Table[SumOfSquaresR[d, 2], {d, 12}]

Table[SumOfSquaresR[2, n], {n, 12}]

The following command does not read in the package again. 

Needs["NumberTheory`NumberTheoryFunctions`"]

In addition to the problem caused by loading a package more than once, another problem can also arise: A package may
contain a function with the same name as one we have already used, but with a different definition. Here, we define a
very naive function ContourPlot3D in the current context Global`. 

The same function is contained in the package Graphics`ContourPlot3D`. 

ContourPlot3D[func_, xIter_, yIter_, zIter_] := 
    Show[Table[Graphics3D[(* 2D contour plot *)
               Graphics[ContourPlot[func, xIter, yIter,
                           ContourShading -> False, 
                           ColorFunctionScaling -> False,
                           Contours -> Table[c, {c, 0, 1, 1/15}],
                           ContourStyle -> Table[{Thickness[0.001],
                                        Hue[h]}, {h, 0, 0.8, 0.8/15}],
                           DisplayFunction -> Identity]][[1]]] /.
     (* lift lines into 3D *)
     Line[l_] :> Line[Append[#, z]& /@ l],
     Evaluate[Append[zIter, (zIter[[3]] - zIter[[2]]) /15]]],
                   DisplayFunction -> $DisplayFunction]

ContourPlot3D[x^2 + y^2 + z^2 - 1, {x, -1, 1}, {y, -1, 1}, {z, -1, 0}]

The same function is contained in the package Graphics`ContourPlo3D`. 

Needs["Graphics`ContourPlot3D`"]

Because the function ContourPlot3D is intended to be exported from the context Graphics`ContourPlot3D`,
a conflict  may appear  with the command with the same name that was already defined in the context Global`.  The
definition that was made first and that appears first in $ContextPath remains in effect; that is, the command which
has been read in is not recognized. 

?ContourPlot3D

To get the latter definition, we have to specify its context explicitly. 
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?Graphics`ContourPlot3D`ContourPlot3D

Using Graphics`ContourPlot3D`ContourPlot3D, we obtain a different graphic.

Graphics`ContourPlot3D`ContourPlot3D[
     x^2 + y^2 + z^2 - 1, {x, -1, 1}, {y, -1, 1}, {z, -1, 0}]

For further details on contexts and packages, see [16÷], Chapters 1 and 2. As mentioned already in the preface, we will
not further discuss the design of packages here. See also MathSource 0204-961. 

Σ (* session summary *) TMGBs`PrintSessionSummary[]

à 4.6.6 Special Contexts and Packages
In  a  typical  Mathematica  session,  variables  exist  in  many  contexts.  Many  Mathematica  functions  are  written  in  the
Mathematica  language, and the code for supporting these functions exists in certain specialized contexts. Many of the
built-in  functions  reside  in  the  start-up  packages;  many  other  functions  reside  in  the  standard  packages.  Here  is  the
current list of the contexts.

Contexts[]

In  the  last  result,  we see the context  Integrate`,  where  most of  the  code for  indefinite  and definite integration of
special functions exists. We also see the context SymbolicSum`, where the code for symbolic summation exists. And
we see many more contexts. Among all of the contexts from the list above, besides the contexts Global`  and Sys
tem`, three other contexts are especially important. The first one is the context Developer`, which contains more
advanced mathematical and programming functions. These functions are typically not needed by a beginning Mathemat-
ica user, but by experienced users. Here is a complete list of the function names from the Developer` context.

Names["Developer`*"]

We will not go through these functions at this point in detail here, but just having a short glance at what exists in this
context  might  be  useful.  (We  will  discuss  some  of  them  in  the  following  chapters.  At  the  place,  where  they  belong
according to their functionality.) One group of functions are specialized simplifiers. 

Names["Developer`*Simplify"]

Although  all  of  Mathematica’s  simplification  power  is  available  in  just  two  functions  (Simplify  and  FullSim
plify), sometimes we want to simplify only certain classes of functions and this as fast as possible. In such a situa-
tion,  these  self-explanatory  simplifiers  come  in  handy.  Their  naming  is  obvious,  Developer`GammaSimplify
simplifies  only  Gamma  functions,  Developer`PseudoFunctionsSimplify  simplifies  only  pseudofunctions
(DiracDelta, UnitStep, …), and so on.

A second set of functions operate at the binary representations of numbers. They are called bit operations.
Names["Developer`Bit*"]

A  third  set  of  functions  is  related  to  packed  arrays.  (Roughly  speaking,  packed  arrays  are  rectangular  d-dimensional
arrays  of  machine numbers  that  allow us  to  carry  out  purely  numerical  calculation  at  a  faster  speed  by bypassing the
standard Mathematica evaluation process.)

Names["Developer`*Packed*"]

As we have already seen, many functions in Mathematica allow for options to tune their behavior for special purposes.
We could imagine that some of Mathematica’s function could have more options for further fine-tuning. Such options
probably would not be used too often, so having them always around is a bit of ballast. Many of such options influence
more than one Mathematica function in their behavior and are collected in the so-called system options. Here is a list of
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the  system options  and  their  current  settings.  (In  analogy  to  SetOptions,  the  function  Developer`SystemOp
tions allows to set system options.)

Developer`SystemOptions[]

Note that these system options are not symbols within the Developer` context, but they are strings. The string quotes
are invisible in ordinary StandardForm output.

InputForm[%] // Short[#, 4]&

Many of the system options are related to compilation and autocompilation. Invisible to the user,  many functions (see
Chapter 1 of the Numerics volume [28÷]) compile or autocompile their arguments. Here, we select all system options
related to this hidden as well to explicitly invoked compilation.

Select[First /@ Developer`SystemOptions[], StringMatchQ[#, "*Compile*"]&]

The  current  settings  of  the  system options  can  be  changed  by  the  user.  The  function  that  changes  a  system option  is
Developer`SetSystemOptions[].

The next most important context after System` and Global` and Developer` is the Experimental` context.
Similar  to  the  Developer`  context,  this  context  contains  many  functions  for  advanced  work.  Sometimes  using
experimental functions will be very useful, but we must be aware that no guarantee exists that the interface and syntax
of these functions will not change in later versions of Mathematica.

Names["Experimental`*"]

A first group of functions from the Developer` context is related to importing and exporting data.

Join[Names["Experimental`*Import*"],
     Names["Experimental`*Export*"]]

A  second  group  of  functions  is  related  to  quantifier  elimination  and  cylindrical  algebraic  decomposition.  Here,  such
functions as Experimental`CylindricalAlgebraicDecomposition, Experimental`GenericCylin
dricalAlgebraicDecomposition,  Experimental`ImpliesQ,  Experimental`ImpliesRealQ,  and
others belong. (We will discuss many of these functions in Chapter 1 of the Symbolics volume [29÷].)

A further context of interest is the context FrontEnd`. 

Names["FrontEnd`*"]

Because this book does not deal with front end programming, we will not discuss these functions.

The  last  context  to  be  mentioned  here  is  the  context  Internal`.  The  advanced  user  might  find  it  interesting  to
experiment  with  some  of  the  functions  from  this  context,  but  similar  to  the  functions  from  the  Experimental`
context,  no  guarantee  exists  that  the  behavior  and  syntax of  these  functions  will  still  be  available  in  later  versions of
Mathematica.

Names["Internal`*"]

To be efficient in the memory usage, Mathematica  has only some standard as well as the currently necessary special-
ized code in memory, and the use of further specialized functions will result in loading relevant code. If this Mathemat-
ica  session was started at  the beginning  of this subsection,  about 3000 “official” symbols (in all contexts) are present
and about 1 MB of memory is in use.

allCurrentOfficialNames = 
Join[Names["System`*"], Names["Developer`*"], Names["Experimental`*"]];
     (* if you want to experiment
        for the brave only œ)  add : Names["System`*"] *)

(* number of official names and number of all names *)
{Length[allCurrentOfficialNames], Length[Names["*`*"]]}
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(* memory usage and context number *)
{MemoryInUse[], Length[Contexts[]]}

We force the autoloading of all functions by converting the string "symbolName[]" into an expression for all currently
available symbols symbolName.

(* force autoloading by use of function[] *)
((* watch progress: Print[#]; *)
  Block[{(* avoid printed messages *) $Messages = {}}, 
       ToExpression[# <> "[]"]])& /@ 
(* delete some "dangerous" functions
  (functions when one called with zero arguments 
   expect some additional input) *)
DeleteCases[allCurrentOfficialNames, 
            "Abort" | "Break" | "Continue" | "Dialog" | "Exit" | 
            "Quit" | "ExitDialog" | "Edit" | "EditDefinition" | 
            "EditIn" |  "Print" | "ConsolePrint" | "On" |
            "Input" | "InputString" | "$Inspector" | 
            "FileBrowse" | "Experimental`FileBrowse" |
            "Experimental`FindTimesCrossoverDigits" |
            "Internal`FromDistributedTermsList" | 
            "InputString" | "NotebookCreate" | "Interrupt" | 
            "NotebookOpen" | "NotebookPut" | "ConsoleMessage" |
            "NotebookGet" | "NotebookSave"];

Now many more symbols from many more contexts are now present (and considerably more memory are in use).

(* number of official names and number of all names *)
{Length[allCurrentOfficialNames], Length[Names["*`*"]]}

(* memory usage and context number *)
{MemoryInUse[], Length[Contexts[]]}

At this point, we should say something about the contents of packages. Over 200 packages are distributed with Mathe-
matica. The easiest way to maintain an overview of what has been implemented in these packages is with the use of the
help  browser.  Here,  we  will  look  into  a  more program-oriented  approach  for  getting  such  an  overview.  The package
Utilities`Package` is available on all machines. It contains some metapackage commands. 

Needs["Utilities`Package`"]

Here, we are interested only in the command Annotation. 

?Annotation

Using the command Annotation, we can implement the command PackageContents, which gives either a short
(if the second argument of PackageContents is short) or a detailed (if the argument is long) description of the
package. 
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SetAttributes[PackageContents, Listable]

PackageContents[package_, length_:short] :=
((* print a header line *)
 CellPrint[Cell[TextData[{"Î An Overview over the package ",
         StyleBox[package, "MR", FontWeight -> "Bold"], ":"}], 
                  "PrintText"]];
 (* print the information *)
 If[length === short,
   Print[package, Annotation[package,
                 {"Name", "Title", "Summary", "Limitations"}]],
   Print[package, Annotation[package,
         {"Copyright", "Mathematica Version", "Package Version", 
          "Name", "Title", "Author", "Keywords", "Requirements", 
          "Warnings", "Sources", "Summary", "Limitations",
          "Examples"}]]];)

Here is an example. We use the standard package Algebra`AlgebraicInequalities`.

PackageContents["Algebra`AlgebraicInequalities`", Long]

We can now analyze the package ChapterOverview, which we have been using at the end of every chapter. 

AppendTo[$Path, StringDrop[
  ToFileName["FileName" /. NotebookInformation[SelectedNotebook[]]], -5]];

PackageContents["ChapterOverview`", long]

Because  we  have  given  PackageContents  the  attribute  Listable,  we  can  get  all  available  information  on  all
available packages with the following few lines. (Because of space limitations, we do not execute the next input here.)

Make Input

PackageContents[
  FileNames["*.m", {directorySpecificationForMathematicaPackages}, Infinity], long]

The  various  packages  contain  a  great  many commands  (more  than  the  number  of  built-in  commands).  If  we  need  to
work  with  a  large  number of  these  commands at  one  time, we can read  in  the  so-called  master packages  through  the
context of the mathematical subject. They cover one entire mathematical or application subject and contain all Mathemat-
ica  commands  from  the  corresponding  directory  of  packages.  When  a  command  listed  in  the  master  package  (with
attribute Stub) is used for the first time, the appropriate package is loaded using Needs. If the command is only used
as  a  string,  no  package  is  loaded,  but  as  soon  as  it  is  used  explicitly (meaning evaluated),  for  example,  in  ToHeld
Expression["packageCommand"],  it  is  loaded.  This  process  saves  us  from  having  to  read  in  the  individual
packages  and,  moreover,  saves  memory because  only  the  necessary packages  are  loaded at  any given point.  We now
look at the commands in the master packages. Because we will count symbols in the following inputs, we recommend
restarting Mathematica here. 

Off[DeclarePackage::aldec] prevents the printing of messages in case some of the following master packages
were already loaded in the start-up process. 

Off[DeclarePackage::aldec];
before = Names["*"];

Now, we look at the various subjects.  (Complement[a, b]  gives a list of everything that is in a,  but not in b;  see
Chapter 6 for details.) 

Here is one for algebra. 
Needs["Algebra`"]
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newAlgebra = Complement[Names["*"], before];
before = Names["*"]; newAlgebra

We only determine how many new commands are defined in the packages. It would be straightforward to list them all,
but they would occupy several pages. The first set of commands is for calculus. 

Needs["Calculus`"]

newCalculus = Complement[Names["*"], before];
before = Names["*"]; newCalculus // Length

More than 300 commands are in the discrete mathematics package. 

Needs["DiscreteMath`"]

newDiscrete = Complement[Names["*"], before];
before = Names["*"]; newDiscrete // Length

Here is a package for geometry. 

Needs["Geometry`"]

newGeometry = Complement[Names["*"], before];
before = Names["*"]; newGeometry // Length

The graphics package has about 450 additional commands. 

Needs["Graphics`"]

newGraphics = Complement[Names["*"], before];
before = Names["*"]; newGraphics // Length

Here is a package for linear algebra. 

Needs["LinearAlgebra`"]

newLinear = Complement[Names["*"], before];
before = Names["*"]; newLinear // Length

About 750 commands are in the Miscellaneous` package. 

Needs["Miscellaneous`"]

newMisc = Complement[Names["*"], before];
before = Names["*"]; newMisc // Length

This package is about number theory. 

Needs["NumberTheory`"]

newNumber = Complement[Names["*"], before];
before = Names["*"]; newNumber // Length

Here is one for numerical mathematics. 

Needs["NumericalMath`"]

newNumeric = Complement[Names["*"], before];
before = Names["*"]; newNumeric // Length

This package is for statistics. 

Needs["Statistics`"]

newStat = Complement[Names["*"], before];
before = Names["*"]; newStat // Length
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Here is a utilities package. 

Needs["Utilities`"]

newUtilities = Complement[Names["*"], before];
before = Names["*"]; newUtilities // Length

On[DeclarePackage::aldec];

Adding all numbers, we have more than 2100 additional commands at our disposal. (Join combines the separate lists
into one new one; Sort[…, StringLength[#1] < StringLength[#2]&] sorts them by length.) 

allExportedPackageCommands =
   Sort[(* form list of all package functions *)
        Join[newAlgebra, newDiscrete, newCalculus,
             newGeometry, newGraphics, newLinear,
             newMisc, newNumber, newNumeric,
             newStat, newUtilities],
              StringLength[#1] < StringLength[#2]&];

Length[allExportedPackageCommands]

Here are the 10 longest exported function names.

Take[allExportedPackageCommands, -10]

Here is the definition of the function with the longest name.

Information[Evaluate[%[[-1]]]]

The functions defined in the packages contain many useful functions. The following code measures the size in kB of the
full  definition  of  all  functions  from the  list  allExportedPackageCommands.  The graphic  shows  the  cumulative
number of functions versus the size of its defining Mathematica code.

Make Input

(* delete "dangerous" items *)
allExportedPackageCommands = 
DeleteCases[allExportedPackageCommands, 
 "FindIons" | "AtomicData" | "AirWavelength" | 
 "DampingConstant" | "VacuumWavelength" | "RelativeStrength" |
 "OscillatorStrength" | "ElementAbsorptionMap" |
 "TransitionProbability" | "UpperStatisticalWeight" |
 "LowerStatisticalWeight" | "LowerTermFineStructureEnergy"];
 
(* unprotect all functions to allow for sub-definitions *)
Unprotect /@ allExportedPackageCommands;

Module[{definitionSizes, function},
definitionSizes = 
Table[function = allExportedPackageCommands[[k]];
      ToExpression["Hold[" <> function <> "[]]"];
      (* determine size of definition *)
      ByteCount[ToString[FullDefinition[Evaluate[function]]]], 
       {k, Length[allExportedPackageCommands]}];
(* show graphics of logarithm of byte size of definitions *)      
ListPlot[Reverse /@ MapIndexed[{#2[[1]], Log[10, #1/1000]}&, 
                                 Sort[definitionSizes]],

     PlotRange -> All, Axes -> False, Frame -> True, 
     FrameLabel -> {"10^size kB", "number of functions"}]]

Σ (* session summary *) TMGBs`PrintSessionSummary[]
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4.7 The Process of Evaluation
In this section, we discuss the standard procedure used for the computation of a Mathematica expression. Knowledge of
this procedure is essential for analyzing situations in which things do not go as expected. Here is an example. 

First, we define a new head; the head head8. 

head[i_] := ToExpression["head" <> ToString[i]];

SetAttributes[head8, {Orderless, Listable}];

We also define a special head. 

head8[x_, y_] := headache[x, y];

Next, we make a small change to Sin. 

Unprotect[Sin];
Sin[x_] = mySin[x];
Protect[Sin];

mySin[x_] := {Sin, x};

Here is a list of what we have defined. 

Definition[head8]

Definition[Sin]

Note that with FullDefinition[symbol], only the definitions of the symbols that appear recursively in the defini-
tion of symbol without the attribute Protected are displayed. Compare the following inputs. 

FullDefinition[Sin]

Unprotect[Sin]

FullDefinition[Sin]

Protect[Sin];

Here is the expression to be computed. 

head[3 + 5][{Sin[Pi/6], 1}, {2, Cos[Pi/6]}]

In view of the following behavior of a command with the attribute Listable, the appearance of three elements in the
result  of  head[3 + 5][{Sin[Pi/6], 1}, {2, Cos[Pi/6]}]  is  at  first  glance  rather  surprising.  Note,  on
the other hand, the following behavior. 

SetAttributes[listableFunction, Listable];
listableFunction[{var1pp1, var1pp2}, {var2pp1, var2pp2}]

listableFunction[{{v11, v12}, v2}, {v31, v32}]

The  form  of  the  results  can  now  be  accounted  for  if  we  understand  the  standard  procedure  for  the  calculation  of  an
expression (an apostrophe £ on a symbol means that its value was possibly changed during the computation). 

The standard procedure for the evaluation of a Mathematica expression of the form 
head@element1, element2, …D is as follows:

• Compute head with the result head`. 
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• Compute element1, element2,… in the order of their appearance, provided head does not carry 
a Hold attribute like Hold. 

• If head` has one of the attributes Flat, Listable, or Orderless, carry out the resulting 
transformation. 

• If the resulting object has the form head'[subHead1[element1
£, element2

£, …], 

subHead2[…], … ], apply the user-defined rules for the entire expression 
subHead1[element1

£, element2
£, …], subHead2[… ], …. Then apply the system 

rules for the entire expression subHead1
£[element1

££, element2
££, …], subHead2

£[… ], 

…. 
• Apply the user-defined rules for the entire expression head'[element1

£££, element2
£££, …]. 

Then, apply the system rules for the entire expression head≥[element1
££££, element2

££££, …]. 
• Repeat the above steps for any symbol that changed.

With this knowledge of the order in which calculations are carried out, and with the help of Trace[toBeCalculated],
we  can  now  explain  what  happens  for  the  above  example  head[3  +  5][{Sin[Pi/6],  1},  {2,  Cos[
Pi/6]}]. The key point is that first the arguments {Sin[Pi/6], 1} and {2, Cos[Pi/6]} are computed to be
{{Sin, Pi/6}, 1} and {2, Sqrt[3]/2}, and then the attribute Listable of head[8] goes into effect for
these arguments. 

Trace[head[3 + 5][{Sin[Pi/6], 1}, {2, Cos[Pi/6]}]]

Here is a syntactically correct,  but semantically not very sensible,  expression that shows when the head and when the
arguments are calculated. 

(((Print[a]; a)[(Print[b]; b)])[(Print[c]; c)])[(Print[d]; d)]

The following example clearly demonstrates that the Listable attribute goes into effect before the actual definitions
for  are matched.

SetAttributes[ , Listable]

[x_List] := "a list argument"
[x_] := "any argument"

[{1, 2, 3}]

We now present  a  somewhat  artificial  but  very  useful  example to  help  understand  the  process  of  a  computation.  We
begin with a definition and look at how it works. 

Clear[a, f];

a /: f_[a, b_] := g[f, a, b]

f[a, b]

Here is the example program … /; OrderedQ[{b, c}] restricts the applicability of the definition of z to those
cases in which b and c are in canonical order; we discuss this construction in detail in the next chapter. 

Clear[f, h, y, z, hi, p, q];

z /: f_[b_, c_, z] := f[hi[b, c], z] /; OrderedQ[{b, c}];
p := b; q := c;
hi[ξ_, η_] := [ξ, η];
SetAttributes[h, Orderless]
h[z, p, q]
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The  order  of  evaluation  of  the  last  expression  is  as  follows.  First,  the  arguments  of  h  are  evaluated  and  the  result  is
h[z, b, c].  Because  of  the  Orderless  attribute  of  h,  the  arguments  in  h[z, b, c]  become  reordered  to
h[b, c, z]. Now, the upvalue definition for z comes into play and the result is h[hi[b, c], z]. hi[b, c]
evaluates  to  [b, c].  Now  again  the  Orderless  attribute  of  h  reorders  the  arguments  of  h  to  h[z, [b,

c]]. No further definition applies, and the result is output. 

Here is a somewhat different definition. 
Clear[f, h, y, z, hi, p, q];
ClearAttributes[h, Orderless];

z /: f_[b_Integer, c_Rational, z] := f[hi[b, c], z]
p := 31/11; q := 2;
hi[ξ_, η_] := [ξ, η];
SetAttributes[h, Orderless]
h[z, p, q]

Reversing p and q gives the same result. 

h[z, q, p]

With  On[],  we  can  clearly  follow  the  order  of  the  calculation.  First,  the  arguments  of  h,  that  is,  z,  p,  and  q,  are
computed. Then, the attribute Orderless is applied, and the first hi in h[hi[… ], … ] is evaluated. 

On[];  h[z, p, q];  Off[];

Off[]

In  the  case  p <  q,  we  get  a  trivial  result  despite  the  attribute  Orderless  of  h,  which  might  be  an  unexpected
behavior.

p := 2/3; q := 3;
{h[z, p, q], h[z, q, p]}

We now look at a few additional examples to illustrate the order in which Mathematica commands are carried out. Here
is a structure with a threefold Set. 

Clear[x, y, z];
On[];
x = y = z = 2

Off[];

The order of this computation can be understood if we examine the FullForm of the expression. 

FullForm[Hold[x = y = z = 2]]

It is interesting to look at the same thing with SetDelayed. 

Clear[x, y, z];
x := y := z := 2;
FullForm[Hold[x := y := z := 2]]

FullDefinition[x]

Because x has not yet been called, the right-hand side of the definition of x has not been carried out and no definition
has been given for y. 

??y

The result for the evaluation of the variables x, y, and z appears rather puzzling at first glance. 

{x, y, z}
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Using On[], here is what happens. 

??x

FullDefinition[x]

FullDefinition[y]

FullDefinition[z]

On[];
y

Off[];

z is assigned the value 2, and the variable y is assigned the result of the assignment SetDelayed[z, 2], which is
Null. The same reason also holds for the result Null of x. 

The  separate  steps  of  the  computation  are  carried  out  completely  for  every  substep.  The  following  simple  example
makes this process clear. First, the first argument of Level is evaluated and then the second one is evaluated, with the
side  effect  that  an  assignment  to  a  exists.  Then,  the  actual  command is  executed,  and  finally,  a  (which  now has  the
value 2) is evaluated. 

Clear[a, b, c];

Level[Print["The first argument is being evaluated."];
      {a, b, c},
      Print["The second argument is being evaluated."];
      a = 2; {1}]

Using On[] we see clearly that the value for a was substituted after Level was evaluated.

Clear[a, b, c];
On[];
Level[{a, b, c}, a = 2; {1}]
Off[]

In the next example, we get an empty list as the result, because when Level goes into effect, a has no nontrivial tree
structure. 

Clear[a, b, c, d];

Level[Print["1st argument is being evaluated "];
      a,
      Print["2nd argument is being evaluated "];
      a = b[c, d]; {1}]

Here is a comparison. 

{Clear[a]; Level[a, {1}], Level[b[c, d], {1}]}

In  the  next  input,  ArcTan  has  only  two  remaining  arguments  at  the  time  it  is  called,  and  thus  no  error  message  is
generated. 

ArcTan[1, 2, Sequence[]]

Arguments  are  evaluated  before  the  application  of  Flat,  Orderless,  or  OneIdentity.  Thus,  the  expression
flat[flat[x],  flat[x,  flat[x]]]  in  the  following  is  not  reduced  to  alsoFlat[x,  x,  x],  but  to
alsoFlat[alsoFlat[x], alsoFlat[x, alsoFlat[x]]] (the pattern x___ stands for an arbitrary number
of arguments; see the next chapter). 

Remove[flat, x]
SetAttributes[flat, Flat]
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flat[x___] := alsoFlat[x]

flat[flat[x], flat[x, flat[x]]]

However, the following is reduced. 

Remove[flat, x]
SetAttributes[flat, Flat]

flat[flat[x], flat[x, flat[x]]]

While in principle expressions should be evaluated until nothing changes anymore, in practice there are certain limita-
tions  and  optimizations to  this  rule  to  avoid  infinite  recursions.  So  in  the  following  example,  the  first  argument  T of
Part is not reevaluated after it got a value when evaluating the second argument of Part.

Τ[[Τ = {1}; 1]]

A next complete pass through evaluation gives the expected result 1.

%

In the following, similar example, the outer Set functions causes a reevaluation.

{[ = Sin; 1.], 
 Clear[];  (* now with outer Set *)
  = [ = Sin; 1.]}

Not  everything  in  Mathematica  is  computed according  to  the  above  standard  procedure.  Here  are  the  most important
exceptions, allowed primarily to speed up computations and to allow for scoping. 

Deviations from the standard procedures for evaluations follow:
 • Logical operations are computed only up to the point where their truth value can be uniquely 

determined.
 • Iteration constructions first find the iteration limits and then localize the iteration variables. 

Values assigned to these variables outside the iteration construction are temporarily ignored. 
 • Function definitions with set or SetDelayed calculate the arguments on the left-hand 

side of the function definition, provided they do not have the head Symbol.
 • User intervention in the standard calculation procedures is possible using constructions with 
Evaluate and Unevaluated, in which the arguments are either computed or not 
computed, respectively. 

 • Debugging done with Trace. 

For a complete discussion of the process of the evaluation of Mathematica  expressions, including the possible appear-
ances of Evaluate, Unequal, Sequence, or composite heads, see  [31÷] and [32÷]. 

We now look at a graphics example to see the effect of the Hold attribute. The following works. 

Plot[{x, x^2, x^3, x^4}, {x, 0, 1}]

Now, we first calculate the functions to be plotted and then draw them. 

Clear[x];
preComp = {x, x^2, x^3, x^4}

Because preComp cannot be plotted in “an unprocessed state”, we get an error message (preComp gives {x, x^2,
x^3, x^4} for every inserted value of x that is a list, but at the time x is inserted in preComp, Mathematica expects
to get a number). At the beginning,  the symbol preComp  is interpreted as one function to be plotted, but later this is
not the case. 
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Plot[preComp, {x, 0, 1}];

In this case, we have to make sure “by hand” that preComp is an object that can be plotted. 

Plot[Evaluate[preComp], {x, 0, 1}];

Here is another example of the meaning of the Hold attribute. Set possesses the following attributes. 

Attributes[Set]

Why does Set carry the attribute HoldFirst? We examine the following construction in detail. 

Clear[f];
f[x_] = x^2;
f[x_] = x^3;
??f

At  the  end  of  this  input,  only  the  second  definition  is  in  effect.  If  f[x_]  =  x^3  (i.e.,  Set[f[Pattern[x,
Blank[]]], Power[x, 3]]  had  not  been  carried  out  with  the  attribute  HoldFirst  from  Set),  all  elements
would be computed (i.e., the first argument would be set to x^2 and the second to x^3). Then, the assignment by Set
would have catastrophic consequences. 

x^2 = x^3

The following is analogous. 

2 = 3

We now look at this fact in Set with an evaluated left-hand side.

x = 2

Evaluate[x] = 3

This  sequence  shows  clearly,  at  which  time  the  attributes  become  effective.  Hold  prevents  the  computation  of  its
argument because of the HoldAll attribute it carries. 

Hold[ReleaseHold[Hold[1 + 1]]]

But with Evaluate, we can disable an attribute like Hold for the arguments. 

Hold[Evaluate[ReleaseHold[Hold[1 + 1]]]]

We return  to  Set.  Set  computes  the  arguments  on  the  left-hand  side  before  it  carries  out  the  assignment.  Thus,  the
following definition for f is associated with f[2]. 

Remove[f];
f[1 + 1] := {1, 1};
??f

f[1 + 1]

Here the argument cannot be further evaluated. 

Remove[f, x, y];
f[x_ + y_] := {x, y};
??f

But in applying this function, the argument (in this case 1 + 2) is first computed, and then the rules for f are applied.
For this pattern, we do not have anything suitable defined for f. 

f[1 + 2]

For a general argument that is the sum of two parts, the pattern fits because x + y cannot be further evaluated. 
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Remove[ξ, η];
f[ξ + η]

Because of the Flat attribute of Plus, sums with more than two terms are also matched by the definition of f.

f[ξ + η + ω + τ]

If we give f a Hold attribute, the example f[1 + 2] also works. 

Remove[f];
SetAttributes[f, HoldFirst];
f[x_ + y_] := {x, y}

f[1 + 2]

The  following  behavior  also  comes  up  frequently.  A  recursive  definition  of  a  symbol  does  not  lead  to  a  recursive
application of the definition. 

my$RecursionLimit = $RecursionLimit;
Clear[x];
$RecursionLimit = 20;
x := x;
x

However, if we carry out an additional (in this case, trivial) operation on the right-hand side, we then get into an infinite
loop. 

Clear[x];
$RecursionLimit = 20;
x := CompoundExpression[x];
x

The difference between the two inputs can best be seen in the FullForm. 

(Clear[x];
 $RecursionLimit = 20;
 x := x;
 x) // Hold // FullForm

(Clear[x];
 $RecursionLimit = 20;
 x := CompoundExpression[x];
 x) // Hold // FullForm

In the last case, a CompoundExpression is in the right-hand side of the definition. Of course, the following exam-
ple does not work either. 

Clear[x];
$RecursionLimit = 20;
x := (x; );
x

$RecursionLimit = my$RecursionLimit;

Σ (* session summary *) TMGBs`PrintSessionSummary[]
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Overview

Get[ToFileName[ReplacePart[
           "FileName" /. NotebookInformation[EvaluationNotebook[]],
            "ChapterOverview.m", 2]]];

ChapterOverview["Programming", 4]

Exercises

  1.L1 Explain the Errors

Why do the following inputs generate messages? 

a) a + b = 5

b) a = 3; a[x_] = x

c) (3 + 5)[[1]]

d) f[x_] = x_

e) expression = TreeForm[6 + u^(Sin[r + 78 z^z])]; expression[[2]]

f) x = With[{x = x}, x^12]

g) Set[##]&[1, 2]

h) f[1]([1], [1])

i) Remove[f]; f[x_] := (f[y_] = f[y]); f[1]

j) Remove[f]; f[x_] := x[f[x[f]]]; Short[f[1], 12]

k) Remove[f]; f[x_] := (f[y_] = f[x][y]); f[1]

l) Length[Sin[1, 2, 3, 4]]

m) headOnly = a1b2c3[1][2][3]; headOnly[[2]]

n) (#2. + #1.)&[1, 2]

o) Remove[f]; f[x_] = Function[x, x^2]; f[1]

p) Remove[x, f1, f2]; x /: f1_[_, f2_[x], _] := f1 f2 x

q) Remove[p]; p = 1; p /: Hold[p] = 0; 1/Hold[p]

r) mySet = Set; myVar = 1; #1[#2, #3]&[mySet, myVar, 2]

s) Module[{Slot}, (#1^2&[3])[[1, 1]]][[2]]

t) (f1[x_] = Block[{x = x}, x^2];

  f2[x_] := Block[{x = x}, x^2];
  
  {f1[2], f2[2]})

THE MATHEMATICA GUIDEBOOKS to PROGRAMMING—GRAPHICS—NUMERICS—SYMBOLICS 75

©  2004, 2005   Springer Science+Business Media, Inc.



u) Function[a, Block[{a}, a], {HoldAll}] @ 
        (Function[ , Function[a,  + a]][x][[1]])

v) Function[Slot[Slot[1]]][2]

  Block[{ν = 1}, Slot[ν]&[Pi][[1]] - (Evaluate[Slot[ν]]&[Pi])]

w) Module[Evaluate[{a = 1}], a^2]

  Module[Unevaluated[Unevaluated[{a = 1}]], a^2]

  2.L1 Unevaluated and Evaluate

a)  The  standard  procedure  for  the  computation of  a  Mathematica  expression  is  altered  for  expressions  containing  an
Unevaluated. Examine the following, and draw some conclusions. 

Plus[Unevaluated[1], Unevaluated[2]]

plus[Unevaluated[1], Unevaluated[2]].

b) Explain the result of Nest[Set[Evaluate[Unique[x]], #]&, 1, 4]. What happens in this construction
without the Evaluate? 

  3.L1 Alias[]

Using  Information,  ?,  or  ??  we  can  get  some  information  on  Mathematica  commands.  Alias[]  provides  an
overview of those Mathematica commands for which an abbreviation exists. Examine them. 

  4.L1 Built-in builtInCommand[]

Examine how built-in commands react to the wrong number of arguments, for example, to none at all. 

  5.L1 Explain the Problem, Puzzle

a)  The following simple implementation of  an alternative to the function plus  for  adding two integers  has problems
with plus[[3], [4]]. Use Trace to see what happens. 

Remove[plus];

SetAttributes[plus, {Flat, Orderless}]

plus[[i_], [j_]] := plus[[i + 1], [j - 1]]

plus[[i_], [0]] = [i];

b)  Find  an  expression  expr  that  has  zero  length  (meaning  Length[expr]  gives  0),  small  depth  (meaning
Depth[expr]  is  less  or  equal  to  2)  and  is  big  (meaning  ByteCount[expr]  is  ¥  106).  (Do  not  use  any  tricks  like
unprotecting Length and/or Depth and/or ByteCount.)

  6.L1 Predictions

a) Predict the result of the following inputs.

globalVar = True;

f[x_Symbol, n_Integer] := 
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Module[{sum = 0}, globalVar = False;
       CheckAbort[Do[sum = sum + If[globalVar, 0, x[i]],
                     {i, n}]; globalVar = True; sum,
                  Print[Length[sum]];
                  globalVar = True; Abort[]]]

b) Does the following input evaluate to 0?

Module[{x = ξ}, Function[x, x] - Function[x + 0, x] +
                Function[x, x + 0] - Function[Evaluate[x], x]]

c) Will the following input issue messages? If yes, what kind of messages are to be expected?

Block[{Message, C, Do}, 
      C[Sin[1, 1], 0/0, 0^0, Do[k, {k, I, 2I}]]]

d) Predict the results of the following two inputs.

Table[ξ[1][1], {ξ[1][1], 3, 4}, {ξ[1], 1, 2}]

Table[ξ[1][1], {ξ[1], 1, 2}, {ξ[1][1], 3, 4}]

e) Predict the result of the following inputs.

f[SetAttributes[f, HoldAll], 1 + 1]

CompoundExpression[SetAttributes[g, HoldAll], g][1 + 1]

f) Predict the result of the following input.

Exp[2 I Pi] - (Exp := 2)/(I := Pi)

g) Will the following two inputs give the same result?

Sum[1/((k + 1/2)^2 + 1), {k, -Infinity, Infinity}]
Sum[1/(k^2 + 1), {k, -Infinity + 1/2, Infinity + 1/2}]

  7.L2 Contexts

Predict the result of the following inputs. 

a) 

BeginPackage["question1`"]
f1::usage = " ... is the question here ..."
Begin["`Private`"]
f1[x_String] := (ToExpression[x]; xAx1 + xAx2)
End[]
EndPackage[]

f1["xAx1 = 1; xAx2 = 2; "]

f1["question1`Private`xAx1 = 1;
    question1`Private`xAx2 = 2; "]

b) 

BeginPackage["question2`"]
f2::usage = " ... is also the question here ..."
Begin["`Private`"]
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f2[x_String] := Module[{x1 = x, x2}, ToExpression[x]; x1 + x2]
End[]
EndPackage[]

f2["x1 = 1; x2 = 2; "]

c) 

BeginPackage["question3`"]
f3::usage = " ... is still the question here ..."
Begin["`Private`"]
f3[x_String] := Module[{x = x}, ToExpression[x]; x]
End[]
EndPackage[]

f3["x"]

d) 

xa = 5; xb = 6;
f4[x_String] := (Begin["context4`"]; ToExpression[x];
                 Print[ToExpression["xa + xb"]]; End[]; )
               
f4["xa = 1; xb = 2"];

f4["context4`xa = 1; context4`xb = 2"];

f4["xa = 11; xb = 22"];

e) 

A`[x_Real] := x

B`[x_Integer] := x^2

$ContextPath = {"Global`", "System`", "A`", "B`"};

[2] // N

  8.L1 2 + I versus Complex[2, I]

What happens to the input of 2 + I as compared with the input Complex[2, 1]? 

  9.L1 Local Values in Block

Block allows local values of variables. Which values (downvalues, ownvalues, …) are local? When attributes are set
inside  a  Block  for  a  local  variable,  are  they  local  too?  What  will  be  the  result  of  evaluating  (a  =  1;

Block[{a}, Remove[a]]; a)?

10.L2 Remove[f]

What will be the result of the following inputs? 

a) (Remove[f]; f[x_] := x + 1; f[1] + f[1, 1])
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b) Remove[f]
  f[x_] := x + 1
  f[1] + f[1, 1]

 

Solutions

  1. Explain the Errors    

a)  The  left-hand  side  has  the  head  Plus  that  has  the  attribute  Protected,  and  thus  no  rule  (without  using
Unprotect[Plus]) can be identified with it. 

a + b = 5

Σ (* session summary *) TMGBs`PrintSessionSummary[]

b) First a is computed to be 3. In the computation of a[x], this value of a is substituted, leading to 3[x_]. The head
of this object is the head of the number 3 and is thus Integer. Because the symbol Integer also carries the attribute
Protected, no rule can be associated with it. 

a = 3; a[x_] = x

After unprotecting the integers, we can associate a definition with them.

Unprotect[Integer];

3[x_] := x^2

3[y]

We restore the old behavior with respect to integers.

3[x_] = .

Protect[Integer];

Σ (* session summary *) TMGBs`PrintSessionSummary[]

c)  First  3+5 is  calculated to  be 8.  This number has  length 0 (no nontrivial  TreeForm),  and thus  no first  part  can be
extracted. 

(3 + 5)[[1]]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

d)  Here,  no real  “error” message is generated; only a warning message results.  In almost all cases, we do not want to
use a function to generate a pattern. 

f[x_] = x_

The definition for f is applied to any argument.

f[y]

f[4]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

e) Indeed, 6 + u^(Sin[r + 78 z^z]) has a second part,  namely, u^(Sin[r + 78 z^z]), but the Tree
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Form  of an arbitrary expression possesses only one argument, namely, the expression itself. For the expression under
consideration, the TreeForm is as follows.
TreeForm[Plus[6, Power[u, Sin[Plus[r, Times[78, Power[z, z]]]]]]]

So, we get a Part::partw message.

expression = TreeForm[6 + u^(Sin[r + 78 z^z])];
expression[[2]]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

f) We first look at the result. 

x = With[{x = x}, x^12]

Here is the calculation of the right-hand side alone. 

Remove[x]
With[{x = x}, x^12]

After the With is computed, the result is assigned to x, and then the x in x^12 is calculated with this definition. This
happens often. 

Log[12, %%%[[2]]]

The pure statement x = x^12 would give a similar result. 

x = x^12

Using a function that does not evaluate its arguments, we can avoid the above recursion.

x := With[{x = Hold[x]}, Hold[x]]

x

Σ (* session summary *) TMGBs`PrintSessionSummary[]

g) The input generates an error message. 

Set[##]&[1, 2]

After evaluation of the pure function,  Set[##]&[1, 2]  leads to Set[1, 2]  (which is just  1 = 2),  which then
generates the error message Set::setraw, because the integer 1 cannot be assigned the value 2. 

Also, unprotecting integers does not allow us to make assignments to the ownvalues of raw types.

Unprotect[Integer]

1 = 2

But DownValues and SubValues can now be associated with integers (identifying 1 with Integer[1]).

1[2] = 3;
SubValues[Integer]

1[2][3] = 4;
SubValues[Integer]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

h) Arguments must always be enclosed in square brackets, so the following is not allowed syntax in Mathematica. 

f[1]([1], [1])

Σ (* session summary *) TMGBs`PrintSessionSummary[]
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i) This recursive function definition clearly leads to an infinite loop. 

f[x_] := (f[y_] = f[y]); f[1]

Here is the current definition of f. 

??f

Σ (* session summary *) TMGBs`PrintSessionSummary[]

j) This definition is also obviously recursive. To avoid writing out the long result, we apply Short. 

f[x_] := x[f[x[f]]]; Short[f[1], 4]

Indeed, the result consists of nearly 100000 characters. 

Characters[ToString[%]] // Length

According to the standard setting of $RecursionLimit, the above function was iterated about 256 times.

Depth[%%]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

k) Here is still one more recursive definition of this type. Because of the use of a named pattern variable on the right-
hand side, the variable y$ appears here. To avoid a long output, we apply Short.

f[x_] := (f[y_] = f[x][y]); Short[f[1], 4]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

l) Mathematica tries to find Sin[1, 2, 3, 4]. However, because the built-in function Sin expects one argument,
we get the “error” message Sin::argx. The result of the computation is Sin[1, 2, 3, 4]. Applying Length to
this expression gives the number of arguments, that is, 4. 

Length[Sin[1, 2, 3, 4]]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

m) a1b2c3[1][2][3] has no second part. 

headOnly = a1b2c3[1][2][3]; headOnly[[2]]

TreeForm[headOnly]

It has only a first part, namely, 3. The head is a1b2c3[1][2]. 

Head[headOnly]

We get the 2 in headOnly as follows. 

headOnly[[0, 1]]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

n) This “ expression” is not syntactically correct. 

(#2. + #1.)&[1, 2]

It is correct without the decimal points. 

(#2 + #1)&[1, 2]

And it is also correct with a digit after the points. 

(#2.0 + #1.0)&[1, 2]
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But note the FullForm in this case. 

#2.0 + #1.0& // FullForm

#2.0 + #1.0&[1, 2]

Because the argument of Slot must be a nonnegative integer, no short inputform exists for other arguments.

Slot[1.0] // InputForm

Σ (* session summary *) TMGBs`PrintSessionSummary[]

o) The function definition associated with f is Function[x, x^2]. If f is called with an argument arg, every x in
Function[x, x^2] is replaced by arg. Thus, we get for f[1] the result Function[1, 1^2]. However, 1 is not
allowed as a variable in the first argument of Function, and so the error message Function::flpar is generated. 

f[x_] = Function[x, x^2]
f[1]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

p) The x with which the definition is to be associated is too deeply nested to make the association. 

x /: f1_[_, f2_[x], _] := f1 f2 x

This can be seen in the TreeForm of the left-hand side of the function definition. 

f1_[_, f2_[x], _] // TreeForm

Σ (* session summary *) TMGBs`PrintSessionSummary[]

q) Here is what happens. 

p = 1;
p /: Hold[p] = 0;
1/Hold[p]

The standard evaluation procedure is going on, and the Hold causes the p inside Hold[p] not to be evaluated. Then,
the  upvalues  for  p  are  tested  and  the  upvalue  for  Hold[p]  is  used,  with  the  result  1/0,  which  yields  the  message
Power::infy. 

Σ (* session summary *) TMGBs`PrintSessionSummary[]

r) The assignment myVar = 2 cannot be done this way. 

mySet = Set; myVar = 1;
#1[#2, #3]&[mySet, myVar, 2]

The reason is that first all arguments of the pure function #1[#2, #3]& are evaluated, which yields the three values
Set, 1, 2, and then Set[1, 2] results in the error message Set::setraw. The same problem occurs here. 

mySet[1, 2]

Using a pure function with an attribute, we can avoid the problem of evaluation. 

mySet = Set; myVar = 1;
Function[{x1, x2, x3}, x1[x2, x3], {HoldAll}][mySet, myVar, 2]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

s) The Module creates a local variable for Slot. This local variable does not act “properly” inside Function. As a

result, we get Slot$ number@1D2.

Module[{Slot}, (#1^2&[3])]
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Extracting two times, the first part inside the Module yields just 1.

Module[{Slot}, (#1^2&[3])[[1, 1]]]

1 is an atom, and one cannot extract its second element. So, we end up with a Part::partd message.

Module[{Slot}, (#1^2&[3])[[1, 1]]][[2]]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

t)  The assignment with Set  works fine.  It  is the assignment using SetDelayed  that later on generates the message
when f2[2]  is  evaluated.  In  evaluating the variable  initialization, the expression  2=2  is  encountered  because 2 gets
substituted for each of the three occurrences of x on the right-hand side of f2.

(f1[x_]  = Block[{x = x}, x^2];
 f2[x_] := Block[{x = x}, x^2];
 {f1[2], f2[2]})

Σ (* session summary *) TMGBs`PrintSessionSummary[]

u)  The argument  of  the outer  pure  function  is  Function[ , Function[a,  + a]][x][[1]].  If  evaluated,
this  expression  gives  a$.  But  the  HoldAll  attribute  of  the  outer  pure  function  avoids  this  evaluation  and sticks  the
unevaluated expression into Block[{a}, a] for a. Because of the HoldAll attribute of Block, there it also does
not get evaluated. But the elements of the first argument of Block must be symbols. So, we get the Block::lvsym
message.

Function[a, Block[{a}, a], {HoldAll}] @ 
        (Function[ , Function[a,  + a]][x][[1]])

Using an outer pure function without the HoldAll attribute gives a$.

Function[a, Block[{a}, a], {}] @ 
        (Function[ , Function[a,  + a]][x][[1]])

Σ (* session summary *) TMGBs`PrintSessionSummary[]

v) Here, we evaluate the first input.

Function[Slot[Slot[1]]][2]

The first input gives Function::slot messages and evaluates to 0. Slot[ν]&[Pi] gives the message because n
is  not  a  nonnegative  integer.  But  nevertheless,  the  Part  command  then  extracts  the  Pi  from  the  unchanged
Slot[ν]&[Pi] expression.

Block[{ν = 1}, Slot[ν]&[Pi][[1]] - (Evaluate[Slot[ν]]&[Pi])]

The second input will not evaluate nontrivially. The reason is the low precedence of &. The body of Block is parsed as
((Slot[ν]&)[π][[1]]- Evaluate[Slot[ν]]&)[π].  The  body  of  the  last  pure  function  does  not  contain
and valid Slot-object and so stays unchanged.

Block[{ν = 1}, Slot[ν]&[Pi][[1]] - Evaluate[Slot[ν]]&[Pi]]

FullForm[%]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

w) The first input gives an error message because the Evaluate forces the first argument of Module to evaluate to 1
which is not a symbol.

Module[Evaluate[{a = 1}], a^2]

The second input the outer Unevaluated  is stripped out and the resulting expression Unevaluated[{a = 1}]
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does not have the head List as required for the first argument of Module.

Module[Unevaluated[Unevaluated[{a = 1}]], a^2]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

  2. Unevaluated and Evaluate   

a) We first look at what happens. The following input evaluates to 3.

Plus[Unevaluated[1], Unevaluated[2]]

plus[Unevaluated[1], Unevaluated[2]]

Now, we make our definition of plus. 

plus[a_, b_] = pluplu[a, b]

This input leads to a different result. 

plus[Unevaluated[1], Unevaluated[2]]

Here is what happened: We find that in f[Unevaluated[x], … ] Mathematica removes Unevaluated, while
retaining a copy of the original expression. Now, if Mathematica finds an applicable rule (in this case, for Plus), it is
applied, and the result is output. If Mathematica  cannot find a rule, the original expression is returned. We look at this
process again in detail. 

Clear[plus];
On[];
plus[Unevaluated[1], Unevaluated[2]]

Off[];

Σ (* session summary *) TMGBs`PrintSessionSummary[]

b) Let us first look at the immediate result. 

Nest[Set[Evaluate[Unique[x]], #]&, 1, 4]

But we have a side effect. 

Names["x*"]

Function[var, Definition[var], {Listable}][%]

Now  let  us  explain  what  is  happening.  The  first  step  after  the  arguments  in  Nest[func, start, iter]  have  been
evaluated  is  the  calculation  of  func[start],  which  in  this  case  is  Set[Evaluate[Unique[x]],  #]&[1]  or
rewritten Evaluate[Unique[x]] = 1. The Evaluate of the left-hand side creates a unique variable beginning
with lowercase x. Then, the value 1 is attached to this variable. The result of this assignment is the value 1. Then, Nest
again takes the function from its first argument and calls it with the result from the first function evaluation. This again
is a new variable, and it gets the value 1, and so on. 

Without the Evaluate command, the above construction would not work. Because of its HoldFirst attribute, Set
does not evaluate its first argument, which means no variables x$number are ever created in this situation. As a result,
Set  tries  to  associate  the  value  1  with  Unique[x]  and  not  with  x$number.  But  the  head  of  Unique[x],  that  is,
Unique,  has  the  attribute  Protected  and  nothing  can  be  associated  with  it.  That  is  why  in  this  case  we  only  get
three error messages, and no assignments occur. 

Remove["x*"]

Nest[Set[Unique[x], #]&, 1, 4]
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Names["x*"]

Function[var, Definition[var], {Listable}][%]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

  3. Alias[]   

Here, the input is executed. 

Alias[]

For better readability, we format the result as a table.

Module[{l = List @@ Alias[], λ}, λ = Length[l];
TableForm[{Take[l, {1, Ceiling[λ/2]}],
     (* equal column length *)
     If[OddQ[λ], Append[#, " "], #]&[Take[l, {Ceiling[λ/2] + 1, λ}]]},
     TableDirections -> {Row, Column}, TableSpacing -> {2, 0.1}]]

We are already familiar with some of  these short  forms; most of the others  will be discussed.  Note that no command
SetAlias exists. Its obvious effect can be partially realized with $Pre  and MakeExpression; we do not go into
this  in  detail  here  because  in  the  current  version  of  Mathematica,  it  is  not  possible  (without  writing a  new parser)  to
introduce arbitrary shortcuts from the user. 

When  using  StandardForm  for  inputting  expressions,  the  reader  can  add  many  more  rules  to  interpret  arbitrary
structures.  (But because of  the predefined grouping  and precedence rules for  operators,  the spacings might not  be the
desired ones.)

Σ (* session summary *) TMGBs`PrintSessionSummary[]

  4. Built-in builtInCommand[] 

We  cannot  answer  this  question  completely  here  because  too  many  possibilities  exist  for  calling  a  function  with  an
incorrect  number of  arguments.  As an example, we look at the case where there is no argument: builtInCommand[].
The following program would provide an overview of the problem (if it were to be executed, which we do not do here
because  it  generates  too  many  messages).  We  use  count  to  count  how  many  built-in  commands  generate  an  error
message  when  called  without  an  argument;  those  commands  that  produce  a  nontrivial  result  are  collected  in  the  list
bag. (The details of the programming of the following code will only become clear later.) We do not let the program
run  because  it  generates  hundreds  of  error  messages.  systemCommands  is  a  list  of  the  names  of  all  Mathematica
commands visible in a fresh Mathematica session. 

We  now  remove  some  of  the  commands  in  systemCommands;  they  would  either  quit  the  Mathematica  session  or
cause the program to hang. 
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Make Input

systemCommands = Names["System`*"];

systemCommands =
DeleteCases[systemCommands,
            (* remove dangerous functions *)
            "Abort" | "Break" | "Continue" | "Dialog" | "Exit" | "Quit" | 
            "ExitDialog" | "Edit" | "EditDefinition" | "EditIn" | 
            "System`Dump`EditString" | "Goto" | "Throw" | "On[]" |
            "System`Convert`HTMLDump`BlankGIFFile" | "TraceDialog" |
            "FileBrowse" | "Experimental`FileBrowse" | "NotebookRead" |
            "Experimental`FindTimesCrossoverDigits" | "ConsoleMessage" | 
            "Print" | "Internal`FromDistributedTermsList" |
            "System`Private`GetInputHeld" | "Input" | "InputString"| 
            "NotebookCreate" | "Interrupt" | "FrontEnd`NotebookPut"|
            "NotebookOpen" | "NotebookPut" | "FrontEnd`PageCellTags" | 
            "$Inspector" | "FrontEnd`DoHTMLSave" | "FrontEnd`DoTeXSave"];

Here is the actual “program”. 
Make Input

(* initialize counter and bag *)
bag = {};
count = 0;
(* test all  functions from systemCommands *)
Do[temp = systemCommands[[i]];
   check = Check[expr = ToExpression[StringJoin[temp, "[]"]], "Error"];
  (* put in bag *)                  
  If[check == "Error", count = count + 1,
     If[ToString[expr] != StringJoin[temp, "[]"],
        AppendTo[bag, temp]]], {i, Length[systemCommands]}];

Here is the result for count. 
411

And here is the result for bag. 
{AbsoluteTime, BitAnd, BitOr, BitXor, Context, Directory, 
 DiscreteDelta, GCD, HomeDirectory, InString, KroneckerDelta, 
 MaxMemoryUsed, MemoryInUse, Multinomial, Out, ParentDirectory, Plus, 
 Power, Random, SessionTime, Share, StringJoin, Times, TimeUsed, 
 TimeZone, TraceLevel, UnitStep}

Here, we print their values. Note that most are system and session specific. 
Make Input

Print[StringJoin[#, "[] = "], ToExpression[StringJoin[#, "[]"]]]& /@ bag

AbsoluteTime@D = dependentOnTheComputer
BitAnd[] = -1
BitOr[] = 0
BitXor[] = 0
Context[] = "Global`"
Directory[] = dependentOnTheComputer
GCD[] = 0
HomeDirectory[] = dependentOnTheComputer
InString[] = bag
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MaxMemoryUsed[] = about2519248
MemoryInUse[] = about2343324
Multinomial[] = 1
Out[] = dependentOnTheInputHistory
ParentDirectory[] = dependentOnTheComputer
Plus[] = 0
Power[] = 1
Random[] = dependentOnTheComputer
SessionTime[] = dependentOnTheComputer
Times[] = 1
TimeUsed[] = dependentOnTheComputer
TimeZone[] = dependentOnTheComputer
TraceLevel[] = 0
UnitStep[] = 1

  5. Explain the Problem, Puzzle 

a) Here is the definition for plus. 

SetAttributes[plus, {Flat, Orderless}]
plus[[i_], [j_]] := plus[[i + 1], [j - 1]]
plus[[i_], [0]] = [i];

To reduce execution time, we reduce $IterationLimit. 

$IterationLimit = 20

Here is the shortened result of Trace[plus[[3], [4]]]. 

plus[[3], [4]] // Trace // Short[#, 20]&

The problems arise from the Orderless  attribute.  By the definition above,  plus[[3], [4]]  is  computed to
be  plus[[4], [3]].  However,  because  of  the  Orderless  attribute,  this  intermediate  result  is  changed  to
plus[[3], [4]], which is the starting point, and so on. 

Σ (* session summary *) TMGBs`PrintSessionSummary[]

b) The two functions Length and Depth care about the arguments of an expression. They do not analyze the struc-
ture of the head. This means that using a large expression as the head and using zero arguments is a natural solution of
the problem. Here is an explicit example.

expr = Nest[C, C, 10^5][];
{Length[expr], Depth[expr], ByteCount[expr]}

Σ (* session summary *) TMGBs`PrintSessionSummary[]

  6. Predictions

a) We run the code under consideration.

globalVar = True;

f[x_Symbol, n_Integer] := 
Module[{sum = 0}, globalVar = False;
       CheckAbort[Do[sum = sum + If[globalVar, 0, x[i]],
                     {i, n}]; globalVar = True; sum,
                  Print[Length[sum]];
                  globalVar = True; Abort[]]]

The 100 kB are surely not enough to add (on computers that cannot form superpositions) about 231  x[i]. As a result,
the  MemoryConstrained  will  induce  an  abort  inside  the  Do  loop.  The  CheckAbort  will  catch  this  abort  and
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evaluate  the  second  argument  of  CheckAbort.  This  evaluation  resets  the  value  of  globalVar  to  True,  and  the
result of the next input globalVar is True.

MemoryConstrained[f[x, 
          Developer`$MaxMachineInteger - 1], 10^5];
          
globalVar        

In the next input, the 100 kB memory limit is surely enough to add the 10 x[i]. No abort gets generated in this case.

MemoryConstrained[f[x, 10^1], 10^5]

globalVar

Σ (* session summary *) TMGBs`PrintSessionSummary[]

b) No, the expression does not evaluate to 0. Actually, all four terms are different.

Module[{x = ξ}, 
{Function[x, x], Function[x + 0, x],
 Function[x, x + 0], Function[Evaluate[x], x]}]

The first expression Function just stays as it is. The first argument of the second function is not a symbol, so Mathe-
matica  does  not  know which symbol to  keep local  to Function.  As a  result,  the x$number  variable from Module
slips in. But because of the HoldAll attribute of Function, these x$number do not evaluate to x. The third Func
tion is similar to the first one. But again, because of the HoldAll attribute, x + 0 does not evaluate to 0. The last
Function  again does not have a symbol as its first argument. But this time the Evaluate  forces the x$number  to
evaluate to x.

Σ (* session summary *) TMGBs`PrintSessionSummary[]

c)  If  not  embedded  in  other  constructs  and  if  messages  are  not  shut  off,  all  of  the  four  arguments  of  C  will  issue
messages.

C[Sin[1, 1], 0/0, 0^0, Do[k, {k, I, 2I}]]

A  message  is  issued  when  Message[MessageName[symbol, "tag"]]  is  evaluated.  If  Message  is  a  variable
local to Block, the built-in rules for the symbol Message  are temporarily disabled and no messages will be printed.
But in addition, Do  is a local variable in the Block.  Inside the Block,  Do  will not generate a Do::"iterb"  mes-
sage call at all. But after the evaluation of Block the result C[Sin[1,1],Indeterminate,Indeterminate,
Do[k,{k, ,2 }]] is re-evaluated and now the built-in rules for Do generate a Do::"iterb" message call. The
following shows this.

Block[{Message, C, Do, res}, 
      (Print["Evaluation of Block finished"]; #)&[
          C[Sin[1, 1], 0/0, 0^0, Do[k, {k, I, 2I}]]]]

This is exactly the message we obtain from directly evaluating the input under consideration.

Block[{Message, C, Do}, 
      C[Sin[1, 1], 0/0, 0^0, Do[k, {k, I, 2I}]]]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

d)  In the first  input, the outer iterator {ξ[1][1], 3, 4}  localizes the body. Because of the Block-like nature of
the variable localization in Table, the names of the variables do not change. Then the inner iterator {ξ[1], 1, 2}

localizes  the  ξ[1]  in  (the  already  localized)  ξ[1][1].  Consequently,  the  outer  iterator  simply  causes  the  inner
iterator  to  be  carried  out  twice.  The  inner  iterator  variable  takes  on  the  values  1  and  2  and  the  body  of  the  Table
evaluates to 1[1] and 2[1]. As a result, the first input returns {{1[1],2[1]},{1[1],2[1]}}.

88 Printed from THE MATHEMATICA GUIDEBOOKS

©  2004, 2005   Springer Science+Business Media, Inc.



Table[ξ[1][1], {ξ[1][1], 3, 4}, {ξ[1], 1, 2}]

In  the  second input,  the outer  iterator {ξ[1], 1, 2}  localizes the ξ[1].  ξ[1]  appears  in  the body of  Table  as
well in the inner iterator. In carrying out the inner iterator {ξ[1][1], 3, 4} for localized ξ[1] assignments of the
form 1[1] = 3,  1[1] = 4,  2[1] = 3,  and 2[1] = 4  are  created.  These assignments lead to Set::write
messages.  Because  these  assignments  fail,  the  inner  iterator  only  causes  the  creation  of  a  list  with  two  identical  ele-
ments. The elements themselves are solely determined by the outer iterator. The first value of the outer iterator produces
1[1] and the second 2[1]. As the result, the list {{1[1],1[1]},{2[1],2[1]}} is returned.

Table[ξ[1][1], {ξ[1], 1, 2}, {ξ[1][1], 3, 4}]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

e)  At  the  time the  head f  gets  evaluated f  does  not  have  an  attribute.  According  to the  general  evaluation order,  the
arguments  are  evaluated  next.  The  first  argument  adds  the  HoldAll  attribute  to  f.  Then  immediately  the  second
argument gets evaluated. So the result is f[Null,2].

f[SetAttributes[f, HoldAll], 1 + 1]

If inside the second argument there would be again a function f, the HoldAll attribute would go into effect.

Remove[f];
f[SetAttributes[f, HoldAll], f[1 + 1]]

In  the  second  input,  the  head  of  (SetAttributes[g,HoldAll];g)[1+1]  is  evaluated  first.  This  sets  the
HoldAll attribute for g. Consequently, the argument 1 + 1 will not be evaluated and the result is g[1+1].

CompoundExpression[SetAttributes[g, HoldAll], g][1 + 1]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

f)  The  result  is  0.  Exp[2I Pi]  evaluates  to  1.  The  (attempted)  two  SetDelayed  assignments  to  the  protected
symbols Exp and I  both fail, generate warning messages, and evaluate to $Failed.  The ratio $Failed/$Failed
evaluates to 1 and the difference evaluates to 0.

Exp[2 I Pi]  - (Exp := 2)/(I := Pi)

Σ (* session summary *) TMGBs`PrintSessionSummary[]

g)  We  start  with  the  sum ⁄k=-¶
¶ 1 ë Ik2 + 1M.  Its  value  is  p cothHpL.  With  the  lower  bound  -Infinity,  Mathematica

effectively calculates the sum starting from the integer 0 to -¶ in steps of -1.

Sum[1/(k^2 + 1), {k, -Infinity, Infinity}]

Shifting k to k + 1 ê2 in each summand gives a sum with value p tanhHpL.
Sum[1/((k + 1/2)^2 + 1), {k, -Infinity, Infinity}]

But shifting the iterator limits by 1 ê 2 gives again p cothHpL.
Sum[1/(k^2 + 1), {k, -Infinity + 1/2, Infinity + 1/2}]

The last result can be understood by taking into account the evaluation order of Mathematica  expressions and the fact
that infinite quantities (here DirectedInfinity[-1] and DirectedInfinity[1]) “absorb” any finite (real or
complex)  quantity.  So,  before  the  actual  summation  process  happens,  the  iterator  evaluates  to  {k, -Infinity,
Infinity}.

{-Infinity + 1/2, Infinity + 1/2}

Σ (* session summary *) TMGBs`PrintSessionSummary[]
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  7. Contexts 

a) Here is the evaluation of the first two inputs. 

BeginPackage["question1`"]
f1::usage = " ... is the question here..."
Begin["`Private`"]
f1[x_String] := (ToExpression[x]; xAx1 + xAx2)
End[]
EndPackage[]

f1["xAx1 = 1; xAx2 = 2; "]

At the time of evaluation of f1["xAx1 = 1; xAx2 = 2; "], the context was Global` (at the time of making
the definition for f1,  it was question1a`Private`).  This can be clearly seen if we write out the current context
during the computation. Here is a copy of the inputs from above (we rename the function f1 to f1a).

BeginPackage["question1a`"]
f1a::usage = " ...  is the question here ..."
Begin["`Private`"]
CellPrint[Cell[TextData[{"Î The current context is ",
               StyleBox[Context[], "MR"], "."}], "PrintText"]];
f1a[x_String] := (ToExpression[x];
   CellPrint[Cell[TextData[{"Î Now, the context is ",
                            StyleBox[Context[], "MR"], "."}],
                   "PrintText"]];
                 xAx1 + xAx2)
End[]
EndPackage[]

f1a["xAx1 = 1; xAx2 = 2; "]

However,  the  sum is  formed with xAx1  and xAx2  from the context  question1`Private`.  This  can be seen by
looking at the definition of f1. 

??f1

These variables have not yet been assigned any values. 

Names["*`xAx*"]

If we assign explicit values to these variables, we get a numerical result. 

f1["question1`Private`xAx1 = 1;
    question1`Private`xAx2 = 2; "]

Now, of course, f1["xAx1 = 1; xAx2 = 2; "] also evaluates to 3.

f1["xAx1 = 1; xAx2 = 2; "]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

b) We again look at the result of these two inputs.

BeginPackage["question2`"]
f2::usage = " ... is also the question here ..."
Begin["`Private`"]
f2[x_String] := Module[{x1 = x, x2}, ToExpression[x]; x1 + x2]
End[]
EndPackage[]

f2["x1 = 1; x2 = 2; "] // FullForm
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The local x1$n from the context question2`Private` is assigned the value of the string "x1 = 1; x2 = 2;
". The local x2$n in the context question2`Private` remains uncomputed, because no value was assigned to it
at the beginning of Module. At the time of the evaluation of the Module, the context will be Global`.

By adding another CellPrint, we see the context of the local version of the variable x1. 

BeginPackage["question2`"]
f2a::usage = " ... is also the question here ..."
Begin["`Private`"]
f2a[x_String] := Module[{x1 = x, x2}, 
  CellPrint[Cell[TextData[{"Î The current context is ",
                 StyleBox[Context[], "MR"], "."}], "PrintText"]];
                     ToExpression[x]; x1 + x2]
End[]
EndPackage[]

f2a["x1 = 1; x2 = 2; "]

ToExpression creates the symbol, but the result remains unused. 

??x1

x2 never got assigned a value.

??x2

Using Block instead of Module gives in a similar result. This time, no x2$number is created.

BeginPackage["question2`"]
f2b::usage = " ... is also the question here ..."
Begin["`Private`"]
f2b[x_String] := Block[{x1 = x, x2}, 
  CellPrint[Cell[TextData[{"Î The current context is ",
                 StyleBox[Context[], "MR"], "."}], "PrintText"]];
                     ToExpression[x]; x1 + x2]
End[]
EndPackage[]

f2b["x1 = 1; x2 = 2; "]

Inside Module, a ToExpression call will generate a variable without automatically appending a $number.

Module[{x3 = 2}, ToExpression["x3 = 3"]; x3]

Inside Block, on the other hand, a ToExpression can easily influence the value of a variable.

Block[{x3 = 2}, ToExpression["x3 = 3"]; x3]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

c) In this example, problems occur with the double use of variables. 

BeginPackage["question3`"]
f3::usage = " ...  is still the question here ..."
Begin["`Private`"]
f3[x_String] := Module[{x = x}, ToExpression[x]; x]
End[]
EndPackage[]

f3["x"]

We look at the FullForm of the results to better identify the strings. 

FullForm[%]
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The problems with the assignment of the local variables are not due to context issues, but stem from the double use of
the variables in the left-hand side of the function definition and in Module. 

generateLocalAssignmentProblem[x_] := Module[{x = x}, x^2];
generateLocalAssignmentProblem["x"] // InputForm

The x on the left in the local variables of Module causes the problems. 

generateLocalAssignmentProblem[x_] := Module[{x = y}, y^2];
generateLocalAssignmentProblem["x"] // InputForm

This error message stems from the replacement of all x on the right-hand side of the function definition of generate
LocalAssignmentProblem corresponding to the DownValues associated with generateLocalAssignment
Problem. 

DownValues[generateLocalAssignmentProblem]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

d) In f4["xa = 1; xb = 2"], the “string-values” of the arguments xa and xb are used to compute the sum. 

xa = 5; xb = 6;

f4[x_String] :=
(Begin["context4`"]; ToExpression[x];
 Print[ToExpression["xa + xb"]]; End[]; )

f4["xa = 1; xb = 2"]

Here is what happens: During the evaluation of f4, the current context is changed. We can see this here. 

f4a[x_String] :=
(Begin["context4`"]; ToExpression[x]; 
 CellPrint[Cell[TextData[{"Î The current context is ",
                    StyleBox[Context[], "MR"], "."}], "PrintText"]];
 Print[ToExpression["xa + xb"]]; End[]; )

f4a["xa = 1; xb = 2"]

In  evaluating  f4["xa  =  1;  xb  =  2"],  the  symbols  xa  and  xb  appear.  They  do  not  exist  in  the  context
context4`. 

Names["*`xa"]

They are not created immediately, however, but only after it is verified whether symbols with the same names in some
context of $ContextPath already exist, which includes the context Global`. 

(Begin["context5`"];
CellPrint[Cell[TextData[{"Î The current context path is: ",
                 StyleBox[ToString[InputForm[$ContextPath]], "MR"]}], 
               "PrintText"]];
 End[]);

This  is  the  case  here,  because  the  symbols  xa  and  xb  are  present  in  the  context  Global`.  Thus,  their  values  will
consequently be changed. 

{xa, xb, Global`xa, Global`xb}

So, we get the result 3. Now, consider the following example. 

f4["context4`xa = 11; context4`xb = 22"];

In  the  evaluation  of  f4["context4`xa  =  1;  context4`xb  =  2"],  the  symbols  context4`xa  and
context4`xb are generated in the current context context4`. However, the context does not have to be explicitly
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written  in  the  current  context.  Thus,  in  the  following  call  on  xa  and  xb  from  the  current  context,  we  use
xa(=context4`xa)  and xb(=context4`xb). Mathematica  first looks in the current context; if the symbols do
not appear there, we search through the contexts in $ContextPath. Currently, we have the following xas. 

Names["*`xa"]

Here are the xa values. 

xa

context4`xa

And here are the xb values.

xb

context4`xb

Here again, context4`xa and context4`xb are used, whose values are not changed. 

f4["nothingButJustxaAndxb"]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

e)  The  result  is  2..  After  making  the  definition  and  changing  the  context  path,  [2]  is  evaluated.  The  context  A`
contains the symbol ,  so Mathematica  tries  to  use the definitions from this context.  But for  the argument 2,  none of
them matches. So it  returns  [2].  The definitions  for    from the  context  B`  are  not  tried.  Numericalization of  the 2
(with N) yields an argument so that the definition for   from the context A`  matches and [2.]  evaluates to the real
number 2..

A`[x_Real] := x
B`[x_Integer] := x^2
$ContextPath = {"Global`", "System`", "A`", "B`"};
[2] // N

Σ (* session summary *) TMGBs`PrintSessionSummary[]

  8. 2 + I versus Complex[2, I] 

2 + I leads to the addition of the integer 2 and the complex number I (which evaluates to Complex[0, 1]), and
the result is the complex number Complex[2, 1].

On[]; 2 + I; Off[]

Here,  we  compare  the  unevaluated  with  the  evaluated  form  of  I.  (Because  I  is  a  symbol  and  not  a  number,  it  was
discussed in the Subsection 2.2.4 about constants and not in Subsection 2.2.1 about numbers.)

Head[Unevaluated[I]]

Head[I]

In contrast, for the input Complex[2, 1], nothing is computed; it is already in the form of a raw object. 

On[]; Complex[2, 1]; Off[]

We see the difference between the two forms 2 + I and Complex[2, 1] clearly in the following. 

{FullForm[Hold[2 + I]], FullForm[Hold[Complex[2, 1]]]}

Σ (* session summary *) TMGBs`PrintSessionSummary[]
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  9. Local Values in Block

Here is a Block construct. For the local variables fo, fd, fu, fn, fs, and ff we set all possible values. (This means
we give an ownvalue, upvalue, a downvalue, a formatvalue, a subvalue and a numeric value).

Block[{fo, fd, fu, fn, fs, ff},
      fo = 1; fd[x_] := x; fu /: [fu] := 2;
      N[fn] = 1.; fs[1][y_] := y^2;
      Format[ff[z_]] := Subscript[ff, z];
      {OwnValues[fo], DownValues[fd], UpValues[fu], 
       NValues[fn], SubValues[fs], FormatValues[ff]}]

Outside the Block, none of the values exists anymore.

{OwnValues[fo], DownValues[fd], UpValues[fu], 
 NValues[fn], SubValues[fs], FormatValues[ff]}

Also, attributes are kept local.

Block[{fa}, SetAttributes[fa, Listable]; fa[{1, 2}]]

fa[{1, 2}]

??fa

Block[{fa1}, SetAttributes[fa1, Protected]]

??fa1

Only the  attribute  Locked  can  “escape”.  This  is  to  be expected.  A locked  variable  cannot  be modified anymore.  So
Mathematica’s attempts to clear the attribute when leaving the Block must fail.

Block[{fa2}, SetAttributes[fa2, Locked]]

??fa2

Now let us evaluate (a = 1; Block[{a}, Remove[a]]; a). The result will be Removed[a]. Because of the
parentheses,  (a  =  1;  Block[{a},  Remove[a]];  a)  is  parsed  as  one  expression.  When  evaluating  this
expression the symbol a will be removed inside the Block. After the removal, a is again used. But at this time, it is a
removed variable and Removed[a] will be returned.

Messages are bound to variables. They do not represent values of variables. So the message associated with fa3 in the
following Block is available outside of Block.

Block[{fa3}, fa3::aMessage = "fa3 lives in a Block"];

fa3::amessage

Σ (* session summary *) TMGBs`PrintSessionSummary[]

 10. Remove[f] 

Let us first look at the results of the two inputs. 

(Remove[f]; f[x_] := x + 1; f[1] + f[1, 1])

Remove[f]
f[x_] := x + 1
f[1] + f[1, 1]

The result of the second example is probably the expected one. To understand the result of the first example, we look at
its FullForm. 
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FullForm[Hold[(Remove[f]; f[x_] := x + 1; f[1] + f[1, 1])]]

The head of the expression is CompoundExpression, so in distinction to the second example, this is one Mathemat-
ica expression. To see how this expression is evaluated in more detail, we use On[]. 

On[]

(Remove[f]; f[x_] := x + 1; f[1] + f[1, 1])

Here  we see  what  is  going  on:  The Remove[f]  removes the  f.  Because  f  is  still  needed  in  the  other  pieces  of  the
CompoundExpression, the result of removing f is Removed[f]. Then, the Set statement f[x_] := x + 1 is
carried out. But the definition is not stored as a definition of f, but rather as a definition for Removed[f]. We can see
this more clearly if we change the above code slightly. 

Off[]

(Remove[f]; f[x_] := x + 1; DownValues[f])

Finally,  the  definition  for  Removed["f"][x_]]  is  used  to  calculate  the  value  2  for  f[1].  No  definition  matches
f[1,1]. As a result, we obtain 2 + Removed["f"][1,1].

The symbol Removed cannot be removed.

 = Removed; 
Unprotect[Removed]; Remove[Removed]
 // InputForm

Σ (* session summary *) TMGBs`PrintSessionSummary[]
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P    R    O    G    R    A    M    M    I    N    G

CHAPTER  5

Restricted Patterns and 
Replacement Rules

5.0 Remarks
The main topics of this chapter are replacement rules and patterns. No other available programming system comes close
to Mathematica’s ability to match patterns in arbitrary structures (expressions). The ability to select subexpressions on
the basis of their form and/or contents and to manipulate them permits the construction of very elegant, short, and direct
programs.  However,  the  use  of  pattern  matching  in  very  large  expressions  may  require  a  lot  of  time  because  of  the
potential  combinatorial  explosion  of  all  possible  pattern  realizations.  But  a  thoughtful,  appropriate  use  of  patterns
allows us to write programs that are quite elegant, fast, natural, and easy to read and to maintain. We begin this chapter
with a discussion of Boolean variables and functions because the determination of truth values is an important part of
constructing special patterns. 

(* no spelling warnings, set fonts for tick labels, ... *)
Get[ToFileName[ReplacePart["FileName" /. 
 NotebookInformation[EvaluationNotebook[]], "Initialization.m", 2]]];

5.1 Boolean and Related Functions

à 5.1.1 Boolean Functions for Numbers
Boolean functions find the truth value for a statement. A statement can be true, false, or indeterminate. 

 

True

represents the truth value true. 

False

represents the truth value false. 

Mathematica  expressions  can have a truth value or  they may have no truth value at all, for  example, when a variable
var  is  not  explicitly defined or the arithmetic expression 1 + 1 also does  not have an obvious  truth value.  Here are a
few examples (the meaning of < is obvious; we discuss it further in a moment). 
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{True, False, 1 < 2, symbol, 2, E < Pi}

Mathematica has many commands that return truth values. 

Most of the commands for tests that determine the truth value of an expression end in the letter 
Q (Question); they are also called predicates. They return either True or False, but usually 
do not return unevaluated. (They can return unevaluated—when they are called with an 
inappropriate number of arguments.)

Here are the commands ending in Q. 

?? *Q

There are about 40 such commands. Not all of them are predicates; for instance, we discuss PartitionsQ in Chapter
2 of the Numerics volume [139÷] and HypergeometricPFQ again in Chapter 3 of the Symbolics volume [140÷].

Length[Names["*Q"]]

If we count in all contexts, we find about 70 functions ending with Q.

Length[Names["*`*Q"]]

The truth value of a statement can be checked with TrueQ. 

 

TrueQ[expression] 

gives True if expression has the truth value true, and False if the expression has the truth 
value false or when it cannot be determined (this means it has no truth value). 

Here are a few examples of the different cases. 

Function[isItTrue, TrueQ[isItTrue], {Listable}][
    {True, False, 1 < 2, Equal, 2, E < Pi, 2 + 2 I}]

Here is a more complicated example. The left-hand side of the following inequality is the radical expression of the right-
hand  side.  Because  Mathematica  uses  numerical  techniques  to  determine  the  truth  value  of  the  inequality,  it  cannot
decide  if  the  left-hand  side  is  smaller  than  is  the  right-hand  side  (within  the  precision  used  to  calculate  numerical
approximations of the left-hand side and right-hand side expressions). As a result, a message is issued (we will discuss
this  particular  message  in  detail  in  Chapter  1  of  the  Numerics  volume  [139÷]),  and  the  inequality  is  returned
unevaluated.

Sqrt[(5 + Sqrt[5])/32] - Sqrt[3/64](Sqrt[5] - 1) < Sin[Pi/15]

Applying TrueQ to the last result, gives False, not because the inequality is false, but because the expression is not
True.

TrueQ[%]

Whether an expression is a number can be determined with NumberQ. 

 

NumberQ[expression] 

gives True if expression is a number; that is, the head is Integer, Real, Rational, or 
Complex; otherwise, it gives False. 

3 is a number, but p or sinH1L or 2  are not numbers. They are numeric quantities and typically have a nontrivial tree
form. If an expression is a numeric quantity, it can be checked using the function NumericQ.
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NumericQ[expression]

gives True if expression is a numeric quantity, that is generically after applying N, expression 
evaluates to a number.

Integers and their properties to be even or odd can be checked with the following commands.

 

IntegerQ[expression] 

gives True if expression is a positive or negative integer or 0, that is, if it has the head Inte
ger; otherwise, it gives False. 

EvenQ[expression] 

gives True if expression is an even integer H…, -8, -6, -4, -2, 0, 2, 4, 6, 8, …L; otherwise, 
it gives False. 

OddQ[expression] 

gives True if expression is an odd integer H…, -9, -7, -5, -3, -1, 1, 3, 5, 7, 9, …L; 
otherwise, it gives False. 

Here  is  a  simple example encompassing all  of  these  possibilities.  To compare several  “numbers”  at  once,  we use  the
attribute Listable. 

Attributes[NumberQ]

SetAttributes[{NumberQ, NumericQ, IntegerQ, EvenQ, OddQ}, Listable];

Here are the objects to be tested. 

testTruthValues =
{-3, -2, -1, 0, 1, 2, 3, I, 3.3, nAn, Pi, E, 3 + 6 I, 6/7, 
 0.0, Sqrt[2], N[4, 20], 0``50, 1.0 - I Sqrt[2], 
 HoldPattern[2], Hold[2], Unevaluated[2], HoldPattern[2],
 Infinity, Indeterminate}

To put the result in an easily readable form, we generate a tabular display. (We give a detailed discussion of creating
and formatting tables in the next chapter.)

TableForm[Transpose[{NumberQ[testTruthValues],
                     NumericQ[testTruthValues],
                     IntegerQ[testTruthValues],
                     EvenQ[testTruthValues],
                     OddQ[testTruthValues]}],
          (* the table headings *)
          TableHeadings -> {testTruthValues,
             (* in bold *) StyleForm[#, FontWeight -> "Bold"]& /@ 
             {"NumberQ", "NumericQ", "IntegerQ", "EvenQ", "OddQ"}},
           TableSpacing -> {1, 1}]

An  expression  is  NumericQ  when  it  is  built  from  numbers,  constants  (such  as  Pi,  E,  GoldenRatio,  …),  and
functions that have the NumericFunction attribute. Here is an example.

Sin[Pi/27 + GoldenRatio^Log[EulerGamma + I/3] - 
    Tan[Tan[Tan[Tan[11^11]]]]] // NumericQ

Be aware that the function NumericQ will not check if an expression represents a finite number. So an expression expr
that is infinity or indeterminate might still give the result True for NumericQ[expr].

(* (Pi - 1)^2 - (Pi^2 - 2 Pi + 1) is mathematically identical to 0 *)
Csc[(Pi - 1)^2 - (Pi^2 - 2 Pi + 1)] // NumericQ
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Csc[(Pi - 1)^2 - (Pi^2 - 2 Pi + 1)] // N[#, 22]&

Another special property of NumericQ is the possibility to give this property to individual expressions. The following
input generates two identical expressions αN and βN. We make αN a numeric expressions through an upvalue.

αN = g[Pi, Pi]; βN = g[Pi, Pi];

NumericQ[α] ^= True

While αN and βN are identical expressions (in the sense of SameQ), NumericQ returns different values when applied
to them.

{αN === βN, NumericQ[α], NumericQ[β]}

But the two symbols ComplexInfinity and Indeterminate are not considered to be numeric quantities.

{NumericQ[ComplexInfinity], NumericQ[Indeterminate]}

Sometimes we want to restrict the domain of a function to exact numbers and sometimes to inexact numbers. The two
functions ExactNumberQ and InexactNumberQ are very useful in this respect.

 

ExactNumberQ[number]

gives True if number is an exact number. 

InexactNumberQ[number]

gives True if number is an approximative number. 

In the following, Pi and Sqrt[2] are not numbers. 

{ExactNumberQ[2], ExactNumberQ[2/9], 
 ExactNumberQ[Pi], ExactNumberQ[Sqrt[2]], 
 ExactNumberQ[N[3, 200]], ExactNumberQ[2 + 3.4 I]}

If a complex number has an exact real part and an approximative imaginary part, it counts as an inexact number.

{InexactNumberQ[2], InexactNumberQ[2/9], 
 InexactNumberQ[Pi], InexactNumberQ[Sqrt[2]], 
 InexactNumberQ[N[3, 200]], InexactNumberQ[2 + 3.4 I]}

This is also an inexact number.

InexactNumberQ[0``100]

Infinity is not a number at all.

{ExactNumberQ[Infinity], InexactNumberQ[Infinity]}

Calling ExactNumberQ with two arguments gives a message, and it returns unevaluated. 

ExactNumberQ[1, 2]

The following input returns False because the unevaluated form of 1 + 2 has the head Plus.

ExactNumberQ[Unevaluated[1 + 2]]

And the  unevaluated form of  I  has  the  head symbol; only  after  evaluation,  the expression  I  becomes Complex[0,
1].

ExactNumberQ[Unevaluated[I]]

A special command checks whether a number is prime. 
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PrimeQ[expression] 

gives True if expression is a (positive or negative) prime number; otherwise, it gives False. 

Here, we test the first integers and some expressions. 

SetAttributes[PrimeQ, Listable];
PrimeQ[{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
        14, 15, 16, 17, 18, 19, 20, Infinity, 0.0, 3.0}]

The product of -1 with a positive prime number also has the truth value True. 

{PrimeQ[-2], PrimeQ[-3], PrimeQ[-5]}

The function PrimeQ also has an option. 

Options[PrimeQ]

Mathematical Remark: Gaussian Prime Numbers

Prime  numbers  that  cannot  be  written  as  the  product  of  complex  numbers  with  integer  real  and  imaginary  parts  are
called Gaussian prime numbers. Not all ordinary primes are Gaussian primes, because, for example, 2 can be factored
into the product of H1 + iL H1 - iL. 

 

PrimeQ[expression, GaussianIntegers -> True] 

gives True if expression is a Gaussian prime number; otherwise, it gives False. 

Here is a test on the first nine integers. 

Table[PrimeQ[k], {k, 9}]

Table[PrimeQ[k, GaussianIntegers -> True], {k, 9}]

Here are the factorizations of the first five prime numbers, which are not Gaussian primes. 

{(1 + I) (1 - I), (1 + 2I) (2 + I) (-I), (2 + 3I) (3 + 2I) (-I),
 (1 + 4I) (4 + I) (-I), (2 + 5I) (5 + 2I) (-I)}

Note that these factorizations can, of course, be calculated with Mathematica. The relevant command is FactorInte
ger, which we discuss in Chapter 2 of the Numerics volume [139÷]. Mathematica chooses a slightly different form for
the factorization, for instance, 2 = -i H1 + iL2 = H1 - iL H1 + iL.

FactorInteger[{2, 5, 13, 17, 29}, GaussianIntegers -> True]

Now, we discuss <  and >  (which were used above).  For integers,  rationals, and real numbers, we can define a partial
order relation with <, §, >, and ¥ in a “natural way”. 
Two remarks are in order here:
1) Less, Greater,  … are not real predicates in the sense that they end with Q.  But for numbers as arguments, they
behave as predicates and return True  or False.  That is why they are discussed in this subsection.  For symbolic (or
even sometimes exact numeric) arguments they can stay unevaluated.
2) In connection to < and >, = (Equal or ã in Mathematica) should also be mentioned here. Because of its extraordi-
nary importance for representing equations, it will be discussed in detail in the next subsection. While Less, Greater
and Equal can all stay unevaluated, in typical uses Less and Greater will more frequently evaluate nontrivial.
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Less[expression1, expression2, …, expressionn]

or
expression1 < expression2 < ∫ < expressionn

gives True if Mathematica can determine that expression1 < expression2 < … < expressionn. 
If it can be checked that this does not hold, it gives False. If neither case can be established, 
the entire expression remains unevaluated. If the overall expression contains variables, and 
neither the truth value True nor False can be determined, Mathematica considers it a chain 
of inequalities.

LessEqual[expression1, expression2, …, expressionn]

or
expression1 <= expression2 <= ∫ <= expressionn

gives True if Mathematica can determine that expression1 § expression2 § … § expressionn. 
If it can be checked that this does not hold, it gives False. If neither case can be established, 
the entire expression remains unevaluated. If the overall expression contains variables, and 
neither the truth value True nor False can be determined, Mathematica considers it as a 
chain of inequalities.

 

Greater[expression1, expression2, …, expressionn]

or
expression1 > expression2 > ∫ > expressionn

gives True if Mathematica can determine that expression1>expression2> … > expressionn. If 
it can be checked that this does not hold, it gives False. If neither case can be established, the 
entire expression remains unevaluated. If the overall expression contains variables, and neither 
the truth value True nor False can be determined, Mathematica considers it as a chain of 
inequalities.

GreaterEqual[expression1, expression2, …, expressionn]

or
expression1 >= expression2 >= ∫ >= expressionn

gives True if Mathematica can determine that expression1 ¥ expression2 ¥ … ¥ expressionn. 
If it can be checked that this does not hold, it gives False. If neither case can be established, 
the entire expression remains unevaluated. If the overall expression contains variables, and 
neither the truth value True nor False can be determined, Mathematica considers it as a 
chain of inequalities.

When  the  truth  value  of  an  inequality  cannot  be  determined,  Mathematica  considers  the  inequality  as  an  imperative
statement,  a  condition  on  the  variables.  Inequalities  are  used  in  this  sense,  e.g.,  in  ConstrainedMax  or  Con
strainedMin  [74÷],  or  in  the  package  Algebra`InequalitySolve  (or  in  the  experimental  function
Experimental`Resolve).

Here are a few simple examples. 

1 < 2 < 3 < 4 < 5

2 > 1 > -6 > -9.89 > -56782/675

-Infinity < Infinity
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Infinity <= Infinity

DirectedInfinity[I] <= Indeterminate

α <= α

The following example, regarded as a condition on aVar, can be passed to functions that use inequalities. 

aVar < 23

Mathematica can also compare algebraic or irrational symbolic expressions using numerical techniques. 

Sqrt[2] < Sqrt[3]

Pi > -2

I^I < E

The reason for the message generation in the last input was the internal use of numerical calculations. Inside a numeri-
cal  calculation,  we  do  not  get  an  identically  zero  imaginary  part  for  the  ii = e-pê2  expression  [95÷],  but  instead  get
0.0I. 0.0I is a complex number (head Complex), and it cannot be compared with a real number. 

N[I^I, 50]

When two numbers cannot be compared because of the presence of small imaginary parts in internal numerical calcula-
tions, an error message is generated and the input is returned unchanged. 

So the following example also generates a message.

I < 3 I

Often,  Mathematica  is  presented  with  a  chain  of  inequalities  with  several  of  the  signs  <,  §,  >,  and  ¥.  Here  is  one
inequality representation. 

FullForm[a < b > c]

 

Inequality[expression1, relation1, expression2, relation2,…, relationn, expressionn+1]

or
expression1 > relation1 > expression2 > relation2 > ∫ > relationn > expressionn+1

gives True if Mathematica can determine whether expressioni relationi expressioni+1 holds 
for all i = 1, … n. If the contrary can be established, it gives False. 

Thus, we have three sets of comparisons for the following results. 

{1 < 2 > 1, 2 <= 2 >= 2, 1 > 3 < 2}

Be aware that sometimes inequalities must be input as such directly.

Inequality[a1, Less, a2, Less, a3] // FullForm

InputForm[%]

Inputting the same inequality with “<” yields an expression with head Less.

a1 < a2 < a3

FullForm[%]

InputForm[%]

For some relations, expressions with head Inequality can evaluate to a logical combination of simpler inequalities.
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Inequality[a1, Less, a2, Greater, a3]

FullForm[%]

If possible, an Inequality simplifies automatically.

1 < 2 < Z

The following example is also an Inequality.

1 <= 2 >= 5 // Hold // FullForm

Here are three further important commands that do not end with Q and which give truth values when its arguments are
numbers. 

 

Positive[expression]

gives True if expression is a positive number; otherwise, it gives False. If the truth value 
cannot be explicitly determined, Positive[expression] is returned unevaluated. 

Negative[expression]

gives True if expression is a negative number; otherwise, it gives False. If the truth value 
cannot be explicitly determined, Negative[expression] is returned unevaluated. 

NonNegative[expression]

gives True if expression is not a negative number; otherwise, it gives False. If the truth 
value cannot be explicitly determined, NonNegative[expression] is returned unevaluated. 

Here  is  a  test.  In  comparison  to  the  predicates  ending  with  Q,  some of  the  following  expressions  remain unevaluated
because Mathematica cannot determine their truth value uniquely.

testList = {2, -0.8, 0, 0.0, Pi, -E, -Sqrt[5], NaN, Infinity,
            0. I, 0``100, 3 + 0.I};

TableForm[Function[t, {Positive[t], Negative[t], NonNegative[t]},
                   Listable][testList],
          TableHeadings -> {testList, 
          (* in bold *) StyleForm[#, FontWeight -> "Bold"]& /@ 
                            {"Positive", "Negative", "NonNegative"}},
          TableSpacing -> {1, 1}]

Note that 0 is neither positive nor negative. One purpose of Positive and Negative is not to determine whether a
given number is positive or negative, but rather their use for the abstract definitions of properties with certain parame-
ters. Here, for example, we want to make it known that a is positive. 

Clear[a];
a /: Positive[a] = True;

??a

This information can now be used, for example, to define a case distinction in some routine. 

Σ (* session summary *) TMGBs`PrintSessionSummary[]

à 5.1.2 Boolean Functions for General Expressions
The following functions can be used to determine whether an expression matches a more general form. 
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PolynomialQ[expression, {x1, x2, …, xn}]

gives True if expression is a polynomial in the variables x1, x2, …, xn. If only one variable 
exists, the braces {} can be dropped. 

Here is a simple example.

PolynomialQ[x^2 - 2 x + 3, x]

Here, it is important to note that this test can be applied to several variables. 

polyYesNo = x^2 y^3 + 34 x^2 + 7 - Sin[z^3] x^34

In z, polyYesNo is not a polynomial. 

PolynomialQ[polyYesNo, {x, y, z}]

However, in x and y, it is a polynomial. 

PolynomialQ[polyYesNo, {x, y}]

In variables that are not present in an expression, the expression is considered to be a polynomial (the term variable0).
PolynomialQ[polyYesNo, notPresentVariable]

In Mathematica, vectors are represented as lists. 

vec = {111, 112, 113}

VectorQ determines whether an expression is a vector. 

 

VectorQ[expression] 

gives True if expression is a vector (whose elements are not lists). 

We get the expected value True for vec. 

VectorQ[vec]

For the following structure, we get False because the elements themselves have the head List. 

VectorQ[{{1, 1}, {2, 2}, {3, 3}}]

However, despite the fact that the elements of the vector {list[1, 1], list[2, 2], list[3, 3]} are entries
of list with more than one argument in the following expression, list is not List. List is a very special head in
Mathematica.

VectorQ[{list[1, 1], list[2, 2], list[3, 3]}]

On the other hand, as soon as one List appears, we again get False as the truth value. 

VectorQ[{list[1, 1], list[2, 2], List[3, 3]}]

Matrices  in  Mathematica  are  represented  as  vectors  whose  elements  are  vectors.  The inner  vectors  correspond  to  the
rows of the matrix (although Mathematica does not distinguish between row and column vectors; we return to this point
in the next chapter). 

mat = {{a11, a12, a13}, 
       {a21, a22, a23}, 
       {a31, a32, a33}}
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MatrixQ[expression]

gives True if expression is a matrix, that is, a list of lists with the same length whose elements 
are not again lists.

The above mat is indeed a matrix. 

MatrixQ[mat]

This example is also a matrix, although now the elements have depths 1

{{a[1, 1], a[1, 2], a[1, 3]}, 
 {a[2, 1], a[2, 2], a[2, 3]}, 
 {a[3, 1], a[3, 2], a[3, 3]}} // MatrixQ

If the elements have the head List, that is, the resulting object is a tensor of higher order, MatrixQ gives False. 

{{{1, 1}, {1, 2}, {1, 3}},
 {{2, 1}, {2, 2}, {2, 3}},
 {{3, 1}, {3, 2}, {3, 3}}} // MatrixQ

However, when the elements of a matrix have multiple arguments and the head of the elements is not List, MatrixQ
gives True. 

{{list[1, 1], list[1, 2], list[1, 3]},
 {list[2, 1], list[2, 2], list[2, 3]},
 {list[3, 1], list[3, 2], list[3, 3]}} // MatrixQ

VectorQ and MatrixQ can also perform more general tests. 

 

VectorQ[expression, elementTest] 

gives True if expression is a vector such that the test elementTest is satisfied for each of its 
elements. 

MatrixQ[expression, elementTest] 

gives True if expression is a matrix such that the test elementTest is satisfied for each of its 
elements. 

elementTest  in  the last  two commands is a  function that  is  applied to each element of  expression.  Only when the test
returns  true  for  all  elements  of  the  vector/matrix,  True  is  returned.  Thus,  we  could  test  for  our  vec  and  mat  as
follows. 

{VectorQ[vec, NumberQ], VectorQ[vec, IntegerQ], VectorQ[vec, EvenQ]}

{MatrixQ[mat, NumberQ], MatrixQ[mat, IntegerQ], MatrixQ[mat, EvenQ]}

The test can be (and usually is) expressed in the form of a pure function. 

{VectorQ[vec, (# > 0)&], VectorQ[vec, PrimeQ[#^2 - 1]&]}

It is also possible to test two or more expressions for “equality” or “nonequality”. 

 

Equal[expression1, expression2, …, expressionn] 

or
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expression1 == expression2 == ∫ == expressionn

gives True if Mathematica can determine that all of the expressions 
expression1, …, expressionn are identical. If it can be determined that this does not hold, it 
gives False. This explicit determination of the truth value is only possible when dealing with 
numeric expressions, strings, and identical symbols (lists are compared according to their list 
structure). If no truth value can be determined, Mathematica considers the above expression as 
a mathematical identity (in the sense of a condition on the variables of the corresponding 
routine, e.g., Solve, DSolve, and FindRoot), and returns the input. 

To check whether two (or more) expressions are unequal, we use Unequal. 

 

Unequal[expression1, expression2, …, expressionn] 

or
expression1 != expression2 != ∫ != expressionn

gives True if Mathematica can determine that no two of the expressions 
expression1, …, expressionn are identical. If it can be determined that this does not hold, it 
gives False. This explicit determination of the truth value is only possible when dealing with 
numeric expressions, strings, and identical symbols. If no truth value can be determined, the 
input is returned. 

Equal  and  Unequal  are  not  predicates  ending  with  Q.  But  for  numbers,  strings,  numeric  expressions,  and  (nested)
lists, they generically evaluate to True or False.

Equal does not assign values as do Set and SetDelayed. Mathematical equalities are 
expressed with Equal. 

We now test whether a has the value 2. Because we have not assigned any value to a, no decision can be made. 

Remove[a];
a == 2

Performing this test does not change a,  but if we had not used a  so far in this Mathematica  session, it would now be
added to the list of symbols used. 

??a

Once a has been assigned a numeric value, Equal and Unequal both deliver a result. 

a = 2

{a == 2, a == 3, a != 2, a != 3}

The string "b" and the variable b are different objects.

Clear[b];
b == "b"
??b

(* assign value to b *)
b = "b";
{b == "b", b == "c", b != "b", b != "c"}

When comparing approximate numbers, only the significant digits are compared. 
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Clear[d, d1];
d = 5.85934859;
d1 = d + $MachineEpsilon;
d == d1

((1.0 + $MachineEpsilon/4)) == ((1.0 + $MachineEpsilon/3))

The difference between the last two numbers is identically zero.

((1.0 + $MachineEpsilon/4) - 1.0) - 
((1.0 + $MachineEpsilon/3) - 1.0) // FullForm

Actually, the difference between two machine numbers (of size 1) can be around $MachineEpsilon so that Equal
returns True. This behavior allows identification of numbers that arise from different calculations, but are “equal” (we
discuss the much more stringent SameQ soon). 

1.0 == 1.0 + 10 $MachineEpsilon

1.0 == 1.0 + 200 $MachineEpsilon

Depending  on  the  absolute  size  of  the  number,  smaller  or  larger  deviations  influence  the  result  of  comparisons  with
Equal. Adding something to a machine zero is often recognizable within machine arithmetic.

0.0 == 0.0 + 1/100 $MachineEpsilon

0.0 == 0.0 + 1/10^100 $MachineEpsilon

In  the  next  input,  the  second part  on  the  right-hand  side  becomes a  high-precision  number.  Adding  it  to  the  machine
number 0.0 results in the machine number 0.0, which is identical to the left-hand side.

0.0 == 0.0 + $MinMachineNumber/10

By adding a small quantity to a much larger quantity, the size of their ratio determines if they are still considered equal.

100.0 == 100.0 + 1000 $MachineEpsilon

100.0 == 100.0 + 10000 $MachineEpsilon

Here is a similar example for a high-precision number. e1 has 35 digits after the decimal point. Roughly speaking, for
high-precision numbers, Equal does not take into account the last two digits.

Clear[e1, e2, e3];
e1 = 23.86784923634784599263894500083564995;
e2 = e1 + 10^-32; 
e3 = e1 + 10^-33;
{e1 == e2, e1 == e3, e2 == e3}

The following four zeros are equal (in the sense of Equal) in spite of their different heads. 

0 == 0.0 == 0.0 + 0.0 I == 0.0 I

In the following inequality (head Inequality), all elements must be different from each other. 

1 != 2 != 3 != 4 != 1 != 5

Here, 1., is an approximative number and 1 is an integer, but they are not considered to be different when comparing
them with Unequal. 

1 != 2 != 3 != 4 != 1. != 5

1 != 1.

Now, we compare “explicitly identical” objects with one another. (Note the brackets and that, in the third element of the
list of examples, Equal compares Null with Null.) 
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Clear[a, b, c, d, r];
a == a

b + c^d == b + c^d

(4;) == (5;)

(a = r; b = r) == (c = r; d = r)

Clear[a, b];
a + b == b + a

Hold[a + b] == Hold[a + b]

Here are some examples that do not evaluate to True or False. Inside Hold, no reordering takes place.

Hold[a + b] == Hold[b + a]

a + b == HoldPattern[a + b]

Indeterminate == Infinity

We repeat that only definitely comparable objects lead to True or False. 

1 == 2

Integer == Symbol

"1" != 1

"a" == "aa"

In addition to comparing raw expressions like strings and numbers, there is one more case where Equal will not stay
unevaluated,  namely for  nested Lists.  When the lengths or  the depths of  two lists do not  agree,  False  is returned.
Here is an example.

List[ , ] == List[ , , ]

The last result happens although there exists a value for  such that the last comparison becomes an identity.

List[ , ] == (  = Sequence[]; List[ , , ])

For heads other than List, no similar evaluation happens.

 =.
list[ , ] == list[ , , ]

True  and  False,  although  symbols,  are  exceptions  to  the  described  rules  about  numbers,  numeric  quantities  and
strings.

True == False

Equal  carries  out  numerical approximations.  It  is  easy to  verify within  Mathematica’s  high-precision  arithmetic that
the following two expressions are not the same.

(Sqrt[2] - 1)^2 == 3 + 2 Sqrt[2]

The following two expressions are (mathematically) the same. But using only numerical techniques, it is impossible to
verify  the  equality.  Mathematica  issues  a  message and  leaves  the  expression  unevaluated.  (We encountered  the  same
message already in the last subsection.)

(Sqrt[2] - 1)^2 == 3 - 2 Sqrt[2]

For symbolic, nonnumeric expressions, Equal does not make any effort to prove (mathematical) equality.

a^2 + 2 a + 1 - (a + 1)^2 == 0
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With only one argument in Equal or Unequal, the result (by definition) is True. 

{Equal[onlyOneArg], Unequal[onlyOneArg], Equal[False], Equal[{}]}

An Equal structure can be given as the value of a variable via Set or SetDelayed. 

immediateComparisonWithEqual = a1a == 2;
laterComparisonWithEqual := a1a == 2;

Here is the suppressed grouping. 

FullForm[Hold[immediateComparisonWithEqual = a1a == 2]]

We now have the following values. 

{immediateComparisonWithEqual, laterComparisonWithEqual}

Equal can produce a result after a value is assigned to a1a. (Note that in this case, Set and SetDelayed give the
same result  because,  despite  Set,  the  value  of  immediateComparisonWithEqual  is  not  evaluated  because  no
comparison can be made at the time immediateComparisonWithEqual is defined.) 

a1a = 2

{immediateComparisonWithEqual, laterComparisonWithEqual}

To definitively decide if two quantities are identical, we use SameQ. As a …Q function, it is a predicate.

 

SameQ[expression1, expression2, …, expressionn] 

or
expression1 === expression2 === ∫ === expressionn

gives True if Mathematica can determine that all of the expressions 
expression1, …, expressionn are identical. Otherwise, it gives False. SameQ also produces 
either True or False, even if the expressioni are not numbers or strings, that is, they do not 
remain unevaluated. 

While in general two expressions that are identical (in the sense of SameQ) are also equal (in the same of Equal), this is
not the case for the symbol Indeterminate.

Indeterminate == Indeterminate

Indeterminate === Indeterminate

The  reason  for  this  potentially  unexpected  behavior  is  the  fact  the  Equal  expresses  mathematical equality,  and  in  a
mathematical sense, one does not want 00 to be equal with 0 ê0.

I similar remark hold for the quantity ComplexInfinity.

ComplexInfinity == ComplexInfinity

ComplexInfinity === ComplexInfinity

Thus,  SameQ[arg]  is  essentially equivalent  to  TrueQ[Equal[arg]]  (some small differences exist  in the case that
arg  is  an  approximate  number;  we  come  back  to  this  difference  between  Equal  and  SameQ  in  Chapter  1  of  the
Numerics volume [139÷]). A closely related test is UnsameQ. 

 

UnsameQ[expression1, expression2, …, expressionn] 

or
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expression1 =!= expression2 =!= ∫ =!= expressionn

gives True if Mathematica can determine that no two of the expressions 
expression1, …, expressionn are identical. Otherwise, it gives False. UnsameQ also 
produces either True or False, even if the expressioni are not numbers or strings; that is, 
they do not remain unevaluated. 

Now,  we  give  some examples.  Let  us  start  by  testing  two  machine  numbers.  In  comparison  to  Equal,  now the  two
machine numbers must agree with each other roughly within $MachineEpsilon. 

1.0 === 1.0 + 2 $MachineEpsilon

1.0 === 1.0 + 0.5 $MachineEpsilon

And  here  two  high-precision  numbers  are  compared.  Now,  they  must  agree  basically  within  all  but  the  last  of  their
digits.

N[1, 30] === N[1, 30] + 2 10^-30

N[1, 30] === N[1, 30] + 5 10^-30

Like  in  Unequal,  all  arguments  have  to  be  pairwise  different  to  give  True  when  the  comparison  is  done  with
UnsameQ. 

1 =!= 2 =!= 3 != 4 =!= 1. =!= 5

SameQ  tests  the  structure  of  its  arguments  (taking  into  account  the  precision  for  numbers).  It  does  not  analyze  their
mathematical content; it is a purely structural operation.

Exp[-Pi/2] === I^I

a^2 + 2a b + b^2 === (a + b)^2

Similarly, a dummy integration variable makes a difference for SameQ. The following integral cannot be integrated in
elementary functions. 

Clear[x, ξ, y];
Integrate[x^x, {x, 0, y}]

Thus,  the  following  unevaluated  integrals  are  not  considered  the  same  because  of  the  different  dummy  integration
variable. 

Integrate[x^x, {x, 0, y}] === Integrate[ξ^ξ, {ξ, 0, y}]

The following two pure functions act the same, but from a programming language standpoint they are different because
they use different variables. 

Function[x, x^2] === Function[ξ, ξ^2]

However, the following two expressions are identical after parsing; whether we input an expression in FullForm or in
InputForm, or whatever, it has no effect on the internal representation. 

Hold[1 + 1] === Hold[Plus[1, 1]]

The following example gives False because the internal form of Hold[1 - 1] is Hold[Plus[1, - 1]]. 

Hold[Subtract[1, 1]] === Hold[1 - 1]

1-I and Complex[1, 1]  are not the same expressions. 1-I is Plus[1, Times[-1, I]], which evaluates to
the complex number (head Complex) 1-I.

Hold[1 - I] === Hold[Complex[1, -1]]
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Hold[1 - I] // FullForm

If we clear the value of a in the example considered above for Equal, we now get False. 

Clear[a];
a === 2

But  Set  and  SetDelayed  work  differently  with  SameQ  than  when  compared  with  the  corresponding  examples,
which use Equal. 

Clear[a1a];
immediateComparisonWithSameQ = a1a === 2;
laterComparisonWithSameQ := a1a === 2;

Both now give False because a1a is not 2. 

{immediateComparisonWithSameQ, laterComparisonWithSameQ}

But  after  assigning  the  value  2  to  a1a,  the  value  of  immediateComparisonWithSameQ  remains  the  same  as
before, whereas laterComparisonWithSameQ is recomputed. 

a1a = 2;
{immediateComparisonWithSameQ, laterComparisonWithSameQ}

Equal is used for stating equality (in the sense of mathematical identities or conditions) in 
equations and for comparing numbers and strings. SameQ is used to test arbitrary expressions 
for equality. 

In  the  next  example,  we  first  define  a  function  Ui
kHzL  iteratively.  Then  we  use  FixedPoint  to  calculate  the  limit

limkØ¶ Ui
kHzL for given starting values of i and z. We do this making use of a two-element list in FixedPoint with the

first  element  being  k  and  the  second  element  being  Ui
kHzL  and  we increase  k  at  each  step.  We end  the  iteration  when

Ui
kHzL agrees with Ui

k-1HzL to all relevant digits.

Υ[i_Integer, 0, z_] := (1 + z/2^i)^(2^i)

Υ[i_Integer, k_, z_] := Υ[i, k, z] =
      (2^k Υ[i + 1, k - 1, z] - Υ[i, k - 1, z])/(2^k - 1)

[i_][z_] := FixedPoint[{#[[1]] + 1, Υ[i, #[[1]] + 1, z]}&, 
                          {0, Υ[i, 0, z]}, 
                          SameTest :> (#1[[2]] === #2[[2]]&)]

For all i and z, the limit of the above iteration is the exponential function expHzL [146÷].

{ [-10][N[1 + I, 21]], [+10][N[1 + I, 21]], Exp[N[1 + I, 20]]}

We now present several other important structural Boolean functions. 

 

OrderedQ[expression[subExpression1, subExpression2, …, subExpressionn]]

gives True if the expressions subExpression1, …, subExpressionn are in canonical order.

Here are two simple examples with lists. 

{OrderedQ[{1, 2, 3, aaa, bbb, ccc}],
 OrderedQ[{1, 2, 3, aaa, bbb, ccc, 4}]}

Functions  with  the  attribute  Orderless  will  reorder  their  arguments.  If  two  arguments  are  ordered  is  tested  with
OrderedQ.
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SetAttributes[orderlessFunction, Orderless];
orderlessFunction[1, 2, 3, aaa, bbb, ccc, 4]

To test whether a given object is contained in another, we use MemberQ.  

 

MemberQ[expression, subExpression, level]

gives True if object appears in subExpression at the level level, and it otherwise gives 
False. If level does not appear, it is taken to be 1. The usual level specifications hold (see 
Chapter 2). 

Here is a somewhat more detailed example (to review Level). We define the expression object2. 

object2 = Sin[Log[3 σ x/2] 56 Cos[r^2]]

The entire argument of Sin appears in level 1. 

MemberQ[object2, Log[3 σ x/2] 56 Cos[r^2]]

But r appears in the root in level {-1}. 

{MemberQ[object2, r], MemberQ[object2, r, -1]}

Note that 3 does not appear at all in object2. 

MemberQ[object2, 3, Infinity]

Together 3 and 2 in 3/2 form one rational number (see Subsection 2.3.3). 

MemberQ[object2, 3/2, Infinity]

Analogous to some commands from Chapter 2 (like Level and Position), MemberQ has the option Heads. 

Options[MemberQ]

MemberQ[Sin[Sin[3]], Sin, {0, Infinity}]

To see the Sin in Sin[Sin[3]], we must use the option setting Heads -> True.

MemberQ[Sin[Sin[3]], Sin, {0, Infinity}, Heads -> True]

The opposite of MemberQ is accomplished with FreeQ.  

 

FreeQ[expression, subExpression, level]

gives True if subExpression does not appear in expression at the level level, and it gives 
False otherwise. If level does not appear, it is taken to be Infinity. The usual level 
specifications hold. 

The integer 3 is not contained in object2. 

FreeQ[object2, 3]

r appears in object2 but not at level 1. 

FreeQ[object2, r]

An expression itself is also recognized by FreeQ. 

FreeQ[r, r]

FreeQ[r, r, {1}]
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Note the difference in the default values for the levels in the third arguments of MemberQ and 
FreeQ.  
MemberQ : 1  
FreeQ   : Infinity 

The second argument of FreeQ  is considered purely from the standpoint of structure and not (mathematical) content.
We give examples with definite integration and pure functions to illustrate this fact. 

Clear[p, Σ, ];

{FreeQ[Function[p, p^2], p],
 FreeQ[Integrate[Σ[], {, 0, p}], ]}

Finally, we present the last two tests to be treated here, ValueQ and AtomQ. 

 

ValueQ[expression]

gives True if expression has a value, and it gives False otherwise. 

AtomQ[expression]

gives True if expression is an atomic object (i.e., if it does not contain any subexpressions, 
like a number, symbol, or string). Otherwise, it gives False. 

The following exotic variable surely has not yet been assigned a value. 

ValueQ[abcdefghijklmnopqrstuvwxyz]

Now, we assign it an equally exotic value. 

abcdefghijklmnopqrstuvwxyz = zyxwvutsrqponmlkjihgfedcba

Now, ValueQ gives True. 

ValueQ[abcdefghijklmnopqrstuvwxyz]

Here is the ownvalue of abcdefghijklmnopqrstuvwxyz.

OwnValues[abcdefghijklmnopqrstuvwxyz]

The following atomQ performs like AtomQ. 

Remove[atomQ];
atomQ[x_] := Level[x, {0, Infinity}, Heads -> True] === {x};

{AtomQ[1], AtomQ[-t], AtomQ[2 + 3 I], AtomQ[1/r],
 AtomQ[Hold[1 + 1]], AtomQ[C[]]}

{atomQ[1], atomQ[-t], atomQ[2 + 3 I], atomQ[1/r],
 atomQ[Hold[1 + 1]], atomQ[C[]]}

Note that atomQ is a rough approximation to the built-in AtomQ, but it might not work properly if its argument has the
head Unevaluated because, in this case, Level evaluates its argument. 

{AtomQ[Unevaluated[1 + 1]], atomQ[Unevaluated[1 + 1]]}

Σ (* session summary *) TMGBs`PrintSessionSummary[]

à 5.1.3 Logical Operations
The commands for the classical logical operations are given as follows. 
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Not[expression]
or

!expression

gives True if expression is a false statement, and it gives False if expression is a true 
statement. If the truth value cannot be determined explicitly, the statement is interpreted as a 
statement that should hold.

Or[expression1, expression2, …, expressionn]

or
expression1 || expression2 || ∫ || expressionn

gives True if Mathematica can determine that at least one of the expressioni is true. It gives 
False if they are all false. If neither truth value can be computed, Mathematica interprets 
expression1 || expression2 || … || expressionn as a statement that should hold.

And[expression1, expression2, …, expressionn]

or
expression1 && expression2 && ∫ && expressionn

gives True if Mathematica can determine that all expressioni are true. It gives False if at 
least one of them is explicitly false. If no truth value can be determined, Mathematica 
interprets expression1 && expression2 && … && expressionn as a statement that should 
hold.

Xor[expression1, expression2, …, expressionn] 

gives True if Mathematica can determine whether an odd number of the expression j are true, 

and it gives False if it can determine that an even number are true. If neither of these two 
truth values can be determined, Mathematica treats Xor[expression1, expression2, …, 
expressionn] as a statement that should hold.

(Be  aware  that  in  !expression  in  the  beginning  of  an  Mathematica  input,  the  !  is  interpreted  as  a  shell  escape  and
expression will be sent to the operating system; this can be avoided by using (!expression).) 

Here are some examples. Is 4 < 5 and 567876 an integer or is 3 < 0 and 456 a prime? 

((4 < 5) && IntegerQ[567876]) || (3 < 0 && PrimeQ[456])

Is 2 < 5 and 3 ê5 not an integer and -2 < 0? 

(2 < 5) && (!IntegerQ[3/5]) && (-2 > 0)

In Chapter 4, we mentioned that the computation of the arguments of logical functions proceeds in a nonstandard way.
Calculations  are  carried  only  far  enough  to  make  a  decision.  Thus,  for  example,  the  meaningless  statements  in  the
second and third arguments of the following Or expression remain untouched, and no error message is generated. 

1 < 2 || I < 2 I || Sin[1, 2, 3, 4, 5, 6, 7, 8]

Because And and Or have the attributes HoldAll, some of the arguments of And and Or might never be evaluated.

Attributes[And]

Attributes[Or]

For multiple nested logical expressions, the LogicalExpand command is important. 
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LogicalExpand[expression]

applies the logical distributive laws to simplify nested expressions in expression so that the 
result contains only expressions at a single level. 

Here, we simplify an expression consisting of three parts combined with “or”, each of which contains several subexpres-
sions. 

LogicalExpand[(!IntegerQ[ν] && EvenQ[τ]) || 
              (ε < ω && ρ >= ∆) || (!ζ && β < σ)]

To help interpret the result, consider the following example. 

{!IntegerQ[ν], EvenQ[τ]}

In the larger result above, && and || appear next to each other. Here is the grouping used in such expressions. 

FullForm[ ||  && ]

And has higher grouping precedence than Or. 

Thus, a difference exists between False && False || True and False && (False || True). 

t = True; f = False;
{f && f  || t, f && (f || t), (t && t) || t, f && (t || t)}

The same grouping applies in the more general infix form. 

a ~ And ~ b ~ Or ~ c // FullForm

Σ (* session summary *) TMGBs`PrintSessionSummary[]

à 5.1.4 Control Structures
In addition to the logical functions introduced in the last subsection, some other functions depend on truth values. The
best known of these are the control structures used in all programming languages. Let us start with If. 

 

If[test, then, else, neither]

gives the result then if Mathematica can determine that the test test is true. It gives the result 
else if the test test is false. If the test test cannot be established to be either true or false, it gives 
the result neither. The last or the last two arguments can be dropped. 

If the last argument in If[test, then, else, neither] is not present, and Mathematica is not 
able to find the truth value of test, the entire If expression is returned unchanged. 

Thus, the 5 is not substituted in the last argument of the following expression. 

she = 5;
If[she > he, who, she]

But the she in the first argument of If gets evaluated. The reason is the HoldRest attribute of If.

Attributes[If]

This means that the first  argument of If  gets evaluated in any case.  All  other  arguments will not  be evaluated in the
beginning. Only when the first argument is explicitly True or False will the second or third argument be evaluated.
If is a programming construct. If should not be used to model a step function.

HeavisideTheta[x_] = (* bad idea *) If[x > 0, 1, 0];
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To check, we plot it. 

Plot[HeavisideTheta[x], {x, -2, 2},
     Axes -> True, AxesOrigin -> {-2.2, -0.2},
     PlotStyle -> {Thickness[0.02]}]

The built-in function UnitStep (discussed in Chapter 1 of the Symbolics volume [140÷]) is much more suited for the
construction of piecewise functions.

Like If, the related command Which also depends on the calculation of truth values. It is the obvious generalization of
If. 

 

Which[test1, then1, test2, then2, …, testn, thenn]

gives the result theni, where the test testi is the first one that can be determined to be true. If 
one of the tests testi is indefinite, this expression remains unevaluated. If all of the tests testi 
are determined to be false, Null is returned. 

When we want to look for some elements from an expression (from a set) for which a special criterion is true, we can
use Select. 

 

Select[expression, criterion, howMany]

gives the first howMany parts of the first level of expression for which the criterion criterion is 
true. If the integer howMany is not present, all subexpressions are found. The head of the 
resulting expression is the same as that of expression. If the last argument is absent, all 
subexpressions that fulfill criterion will be returned.

Here are a few simple examples of Which and Select. 

Which[1 > 3, 1, 2 > 3, 2, 3 > 3, 3, 4 > 3, 4, 5 > 3, 5]

Which[False, 1, False, 2, True, 3, False, 4]

Now, no case matches and the result is Null.

Which[5 == 6, m] // FullForm

The truth  value  of  the  first  argument  cannot  be  determined.  As  a  result,  the  whole  Which  returns  unevaluated.  (The
same happens if the truth value of any evaluated odd numbered argument cannot be determined.)

Which[undecided, 1, Print["I got evaluated!"]; False, 2, True, 3]

Select[{3, i, 8 p + Sin[3], 689 h, , 33 I, 4r}, NumberQ]

Here, the head of the first argument of Select is Plus.

Select[3 + i + 8 p + Sin[3] + 689 h -  + 33 I + 4r, NumberQ]

The following example leads to an error message because Sin  should have just one argument. However,  it illustrates
the effect  of  Select.  After  the expression,  Sin[0.0, 3 E, Pi, False, ]  has  generated an error  message
and  remains  unevaluated  because  no  built-in  rules  exist  for  Sin  with  multiple  arguments.  Then,  Select  goes  into
effect giving Sin[0.0], which evaluates to the result 0.0. 

Select[Sin[0.0, 3 E, Pi, False, ], NumberQ]

As in other programming languages, a calculation can be repeated based on a test using While and For. 
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While[test, toDo]

repeats the computation of the test test and evaluates the expression toDo as long as the test 
test gives True. 

For[start, test, step, toDo]

begins with evaluating the expression start, and then repeats the computation of the test test, 
followed by the evaluation of evaluates the expressions toDo and step as long as the test test 
gives True. 

Here is a list of different things. 

testList = {1, 2, 3, 4, 5, 6, α, β, γ, δ, 1, 2, 3, 4, Pi, I};

Using While, we print out the entries that are smaller than 5 until we find one which is not smaller than 5. 

i = 0;
While[i = i + 1; testList[[i]] < 5, Print[testList[[i]]]]

Here is a similar example using For. 

For[i = 1, testList[[i]] < 5, i = i + 1, Print[testList[[i]]]]

Now,  we  give  a  more  interesting  example  involving  While:  how  many  successive  terms  of  the  sequence
ak = 4 180 566 390 k + 8 297 644 387  are  prime  numbers  (see  [59÷],  [44÷],  [104÷],  [150÷],  [151÷],  [114÷],  and
[147÷])? 

k = -1;
While[k = k + 1; PrimeQ[4180566390 k + 8297644387],
      CellPrint[Cell[TextData[{"Î For ", 
                      Cell[BoxData[FormBox["k = " <> ToString[k], 
                                           TraditionalForm]]],
                      ", the resulting number ", 
                      ToString[4180566390 k + 8297644387],
                      " is prime."}], "PrintText"]]]

We  make  one  remark  concerning  the  use  of  While  and  For.  Constructions  that  use  For,  While,  and  Do  in  other
programming languages can often be implemented in Mathematica in a cleaner, more elegant, and faster-executing way
using  list  operations  like  Map,  Thread,  (all  to  be  discussed  in  the  next  chapter)  and  so  on  and  Fold,  FoldList,
Nest, NestList, FixedPointList, and FixedPoint from Chapter 3. We will encounter many such examples
in the following chapters. 

Σ (* session summary *) TMGBs`PrintSessionSummary[]

à 5.1.5 Piecewise Functions
In Chapter 2, we discussed the elementary functions like trigonometric functions and their inverses. In Chapter 3 of the
Symbolics volume, we will  discuss  the  special functions,  like  Gamma and Bessel  functions.  A class of  functions  that
are useful for many practical (modeling) problems are piecewise defined functions. In the last subsection, we discussed
the programming construct If  and used it in a very simple (and not recommended) example to build up a piecewise-
defined function.

 

Piecewise[{{value1, condition1}, {value2, condition2}, …}, defaultValue]

is a piecewise defined function with value value1 when the condition condition1 holds, with 
value value2 … and with value defaultValue in case none of the conditions is fulfilled.
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Observe that, in distinction to functions like If, that the order is the value and then the condition to follow more closely
the traditional notation used for piecewise defined functions.

Here is a simple piecewise defined function.

pw1[x_] = Piecewise[{{1 - (x + 2)^2, x < -2}, {1, x < 0}, {2 - x, 0 < x < 2

Piecewise functions have a characteristic formatting in TraditionalForm.

pw1[x] // TraditionalForm

Here this function is shown.

Plot[pw1[x], {x, -3, 3}, PlotRange -> All, Frame -> True, Axes -> False,
     PlotStyle -> {Hue[0]}]

In  many  respects,  piecewise-defined  functions  behave  like  any  other  built-in  mathematical  function.  For  instance,  a
piecewise-defined function can be differentiated.

D[pw1[x], x]

Be aware that the value of the derivative at points where the functions is discontinuous is Indeterminate. But at the
point  x = -2,  the  function  is  continuous,  its  left-  and  right-sided  derivatives  exists  and  are  identical.  As  a  result,  the
derivative has a value there. (This last remark holds only for univariate functions; in the multivariate case, no detailed
analysis of the degree of continuity at region boundaries is carried out.)

Piecewise functions can also be integrated.

Integrate[pw1[x], x]

Integrate[pw1[x], {x, -3, y}, Assumptions -> Element[y, Reals]]

The following integral fails because it extends over an infinite domain.

Integrate[FractionalPart[x] Exp[-x], {x, 0, Infinity}]

A powerful function to canonicalize piecewise-defined functions is PiecewiseExpand.

 

PiecewiseExpand[expression] 

combines expression containing arithmetic operations of piecewise functions into one 
piecewise function. 

Here  is  a  rational  function  of  the  above  piecewise  function  pw1[x]  and  a  version  of  it  with  a  translated  argument.
Contrary to Mathematica’s overall assumption that all occurring variables in an expression are generic complex values,
the implicit assumption that a  is real is made. This happens because the conditions of the piecewise functions contain
comparison functions.

PiecewiseExpand[(2 pw1[x] + pw1[x]^2)(1 + pw1[x - α]^3)]

Here the resulting piecewise function is shown over the x,a-plane.

Plot3D[Evaluate[%], {x, -3, 3}, {α, -3, 3}, PlotPoints -> 60]

Also,  compositions  of  piecewise  -defined  functions  are  written  as  one  piecewise  function  by  applying  the  function
PiecewiseExpand.

PiecewiseExpand[pw1[pw1[x] + Sin[pw1[x]]]] // 
                (* avoid long lines *) InputForm

Here is another piecewise-defined function. This time, we have complex arguments in mind.
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pw2[z_] = Piecewise[{{-1, Im[z] < 0}}, 1]

No inference that the arguments are real is made this time.

pw2[z] pw2[z - w] pw2[z] pw2[z + w] // PiecewiseExpand

We  can  give  additional  assumptions  using  the  Assumptions  option.  We  will  discuss  this  in  more  detail  in  the
beginning of Chapter 1 of the Symbolics volume.

PiecewiseExpand[%, Assumptions -> Element[w, Reals]]

In  addition  to  Piecewise  itself,  many  other  functions  are  rewritten  as  piecewise  functions  (head  Piecewise)  by
PiecewiseExpand. The following table shows the function on the left-hand side and its piecewise equivalent on the
right hand side. We assume -2 < x < 2 and 1 < y < 2.

{#, (* use assumptions and rewrite through Piecewise *)
    Assuming[-2 < x < 2 && 1 < y < 2, PiecewiseExpand[#]]}& /@
(* list of functions to be rewritten through Piecewise *)
{Abs[x], Boole[x], Ceiling[x], Floor[x], 
 FractionalPart[x], If[x > 1, 2, 1], IntegerPart[x], 
 Max[x, y], Min[x, y], Mod[x, y], Quotient[x, y], Round[x], Sign[x], 
 Switch[x < 0, -1, x > 1, 2, True], UnitStep[x, y], 
 Which[x < 0, -1, x > 1, 2, True, 0]} // TableForm

Above, we discussed Boolean functions. Mathematica has the built-in function Boole too.

 

Boole[expression]

represents the value 1 if expression evaluates to True and 0 else.

In the next input, Boole evaluates to 1.

Boole[True]

For symbolic x and y, we can use the expression Boole[x^2 + y^2 < 1] to represent a unit disk. The expression
does not evaluate nontrivially.

Boole[x^2 + y^2 < 1]

But we can use such-type expression in other functions to specify geometric domains. The next input calculates the area
of the unit disk.

Integrate[Boole[x^2 + y^2 < 1], 
          {x, -Infinity, Infinity}, {y, -Infinity, Infinity}]

And here is the area of a unit sphere.

Integrate[Boole[x^2 + y^2 + z^2 < 1], 
          {x, -Infinity, Infinity}, {y, -Infinity, Infinity}, 
          {z, -Infinity, Infinity}]

The function PiecewiseExpand convert the function Boole into a Piecewise function.

PiecewiseExpand[Boole[x^2 + y^2 < 1]]

We end with a small application of piecewise functions.
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Mathematical Remark: Endpoint Distance Distribution of Random Flights

Consider a random stepwise flight of a particle in 3. The particle starts at the origin and each flight step has unit length
and  is  taken  in  a  randomly chosen  direction.  The  probability  pnHrL  that  the  particle  is  found  at  a  distance  r  from the
origin after n steps is given by the following integral [26÷]

pnHrL =
1

2 p2 r
 ‡

0

¶

sinHr rL
sinHrL

r

n

r d r.

1

This is the probability definition through a definite integral.

p[n_][r_] := Integrate[Sin[ρ r] (Sin[ρ]/ρ)^n ρ, {ρ, 0, Infinity}, 
                       Assumptions -> r > 0]/(2 Pi^2 r)

Mathematica  cannot  carry  out  the  integral  for  symbolic n,  but  returns  values  for  the  integrals  for  concrete  n > 1  that
return the absolute value and the signum function.

p[n][r]

Table[p[n][r], {n, 2, 6}]

A more easily readable result is obtained by writing the integration results as a piecewise function.

Table[PiecewiseExpand[p[n][r], r > 0], {n, 2, 6}]

We see that, with the exception of p2HrL, all higher pnHrL  are well behaved at the origin. Obviously, after one step, the
distance of the particle from the origin is 1 and we have p1HrL = dHr - 1L. This Dirac delta function cannot be the result
of a classically convergent integral. So evaluating p[1][r] generates a message and stays unevaluated. (p[1][r] is
effectively a Fourier sin transform that results in a generalized function.)

p[1][r]

Piecewise defined functions can largely be used as any named function (like Sin). They can be integrated and differenti-
ated; they can appear in equations and inequations, and so on. Next, we check the normalization of the resulting probabil
ity distributions. We have Ÿ3 pH†r§L d3r = 1.

Table[4 Pi Integrate[p[n][r] r^2, {r, 0, Infinity}], {n, 2, 8}]

And here is the average distance of the particle after the n flight steps.

Table[4 Pi Integrate[r p[n][r] r^2, {r, 0, Infinity}], {n, 2, 8}]

N[%]

We end with plots showing the resulting distributions. p2HrL has a jump at r = 2 and p3HrL has a kink at r = 1. All other
distributions seem to be smooth functions.

Plot[Evaluate[Table[p[n][r], {n, 2, 10}]], {r, 0, 10},
     PlotRange -> {0, 0.05}, Frame -> True, Axes -> False,
     PlotStyle -> Table[Hue[k/10], {k, 0, 9}]]

We see the piecewise character of the resulting distributions by plotting the first few derivatives with respect to r. We
see that each derivative reveals a jump discontinuity at one more of the pnHrL.
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With[{ps = Table[PiecewiseExpand[p[n][r], r > 0], {n, 2, 10}]},
Show[GraphicsArray[
 (* make table of plots of derivatives *)
 Table[Plot[Evaluate[D[ps, {r, k}]], {r, 0, 10}, 
        PlotRange -> {-0.05, 0.05}, Frame -> True, 
        FrameTicks -> False, DisplayFunction -> Identity, 
        Axes -> False, PlotStyle -> Table[Hue[k/10], {k, 0, 9}]], 
       {k, 5}]]]]

Using the function Reduce (to be discussed in the Symbolics volume), we can also easily calculate the position of the
inflection  points  of  the  distribution  curves.  Most  of  these  points  are  solutions  of  irreducible  polynomials,  which  are
returned as Root-objects (see Chapter 1 of the Symbolics volume [140÷]).

Table[{n, Reduce[D[PiecewiseExpand[p[n][r], r > 0], {r, 2}] == 0 &&
                 0 < r < n, r]}, {n, 5, 10}]

N[%]

For  large n,  we have pnHrL º H2 p n ê3L-3ê2 expI-3 r2 ë H2 nLM.  The following  graphics  shows  this  asymptotic expression

and the exact curve for n = 100. We start with calculating p100HrL. It is a quite large expression.

p100[r_] = PiecewiseExpand[p[100][r], r > 0];

{ByteCount[p100[r]], LeafCount[p100[r]]}

Here is a glimpse on the first r-interval 0 § r < 2.

(* shortened form of the exact expression *)
Short[p100[r][[1, 1]], 12]

(* low precision numericalization *)
N[Expand[p100[r][[1, 1]]], 2]

Here is a plot  of  p100HrL  and the asymptotic expression for  n = 100.  We use high-precision  arithmetic to calculate the
values of p100HrL  because the large powers of r  in the resulting expression would cause an excessive loss of precision
for machine numbers and no correct curve could be plotted. The right plot shows the difference between the exact curve
and the large n approximation.

p100HP[r_?InexactNumberQ] := N[p100[Rationalize[r, 0]], 20]

With[{n = 100}, 
 Show[GraphicsArray[
   Plot[(* asymptotic value and exact expression *)
        Evaluate[# @@ {1/(2Pi n/3)^(3/2) Exp[-3 r^2/(2n)], 
                      p100HP[r]}], {r, 0, 30},
        PlotRange -> All, Frame -> True, 
        Axes -> False, DisplayFunction -> Identity, 
        PlotStyle -> {{Thickness[0.02], GrayLevel[0.8]}, Hue[0]}]& /@
        (* show both curves and their difference *) {List, Subtract}]]]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

26 Printed from THE MATHEMATICA GUIDEBOOKS

©  2004, 2005   Springer Science+Business Media, Inc.



5.2 Patterns

à 5.2.1 Patterns for Arbitrary Variable Sequences
Before discussing more complicated pattern recognition in Mathematica,  for  self-containedness,  we recall the patterns
already discussed in Subsection 3.1.1. 

 

Blank[] or _
is a pattern for an arbitrary Mathematica expression. 

Blank[head] or _head

is a pattern for some arbitrary Mathematica expression with head head. 

Pattern[x, Blank[]] or x_

is a pattern for some arbitrary Mathematica expression named x.

Pattern[x, Blank[head]] or x_head

is a pattern for some arbitrary Mathematica expression named x with head head.

We have already used patterns in functions. The patterns above allow the definition of functions for a fixed number of
arguments. Here is a simple example.

f[x_] := x^x;
f[3]

But nothing happens in the next two inputs. The pattern does not match. 

f[]

f[1, 2, 3]

To match the last input, we would need a pattern like f[x_,y_,z_].

Often, it is not known how many arguments a function (e.g., Plus) will be given, or we may want to define a function
only for  certain classes of  arguments, which may differ  in other  ways than by just  their heads.  We now discuss these
possibilities. 

We already defined the following factorial function. 
fac[1] = 1; fac[n_] := fac[n - 1] n

For noninteger arguments, this definition leads to an infinite loop. 

fac[38/11] // Shallow[#, 4]&

This problem can be avoided by using a construction that takes into account different patterns.

Clear[fac];
fac[1] = 1;
fac[n_Integer] := fac[n - 1] n

Because fac was defined only for integers, fac[38/11] now remains unevaluated. 

fac[38/11]
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For negative integers, this definition still fails. (We will discuss how to test for this case in a moment.) By testing the
head only, it is impossible to distinguish between positive and negative exact integers.

fac[-2]

Blank stands for one occurrence of any expression, but some expression must exist in that position for the pattern to
match. The function fSomething evaluates nontrivially if called with two arguments.

fSomething[_, _] := 555

With only one argument, no definition is matched. 

fSomething[t]

For two arbitrary arguments, we always get 555. 

fSomething[t, τ]

fSomething[-38/11, 0]

Now, we try fSomething with three arguments; we gave no definition for this pattern. 

fSomething[t, τ, ]

For functions with more than one argument, we can use BlankSequence[]. 

 

BlankSequence[]

or
__

is a pattern standing for a sequence of arbitrary Mathematica expressions with at least length 1. 

Here is a definition of an analog of fSomething, which works for one or more than one argument.

Clear[];

[__] := 555;

{[], [t], [t, t], [t, t, t], [t, t, t, t]}

The analogous construction that takes into account heads is BlankSequence[head]. 

FullForm[argument__headOfArgument]

 

BlankSequence[head]
or

__head

is a pattern standing for a sequence of arbitrary Mathematica expressions with at least one 
element, each of which has the head head. 

All patterns discussed until now required at least one argument. The case of no argument or some arguments is covered
by BlankNullSequence.

 

BlankNullSequence[]

or
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___

is a pattern standing for a sequence of arbitrary Mathematica expressions, including those of 
length 0, that is, for no expression. 

BlankNullSequence[head]
or

___head 

is a pattern standing for a sequence of arbitrary Mathematica expressions, including those of 
length 0 (i.e., no expression), each of which has the head head. If no expression is present, it 
automatically has the head head. 

Here is a definition for our function from above that also gives 555 without an argument. 

[___] := 555

{[], [t], [t, t], [t, t, t], [t, t, t, t]}

Now,  we  define  yet  another  function,  this  time  requiring  the  arguments  to  have  the  head  Symbol.  (Note  that  all
arguments must have this head, and “no argument” is assumed to automatically have this head.) 

[___Symbol] := 555;

{[], [t], [t, t], [t, t, t], [t, t, t, t]}

{[], [1], [1t], FFF[1t, 1t], 
 [1, t, t], [1, 2, t, t]}

We can determine if a pattern matches a certain expression using the function MatchQ.

 

MatchQ[expression, pattern]

returns True if the pattern pattern matches the expression expression and False otherwise.

Here are four patterns that match a four-argument function f.

MatchQ[f[1, 2, 3, {4, 5}], f[_, _, _, _]]

MatchQ[f[1, 2, 3, {4, 5}], f[_, _, _, _List]]

MatchQ[f[1, 2, 3, {4, 5}], f[_, __]]

MatchQ[f[1, 2, 3, {4, 5}], f[___]]

But not each of the four arguments has the head List in the following input.

MatchQ[f[1, 2, 3, {4, 5}], f[___List]]

The associated named patterns can be constructed using Pattern. 

 

Pattern[name, pattern]
or

name:pattern

represents the pattern pattern, and the pattern is named name. If no confusion is possible, the 
colon can be left out.

In the following example, the function  gets called with three arguments. All arguments together match the pattern x.

[ξ:x___] := [ξ]
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[1, 2, 3]

The use of the colon allows the hierarchical grouping of patterns and the naming of more complex patterns. Here, the
colon  allows  grouping  of  the  entire  expression  {b_, c_},  which  already  contains  two  patterns,  to  form a  new one
called a. 

Υ[a:{b_, c_}] := {a, b, c}

The pattern realization for the following input is given by b Ø {2}, c Ø {1} and a Ø {1, 2}. 

Υ[{1, 2}]

The whole left-hand side of an assignment (or a rule) can be a pattern, as in the next example, in which pat (=pat) is
the whole expression. 

Clear[p, pat, x, y, u];

u/: pat:p_[u, x_] := {p, x, Hold[pat]}

p[u, y]

We have the following typical possibilities for patterns in a sequence of arguments. 

† Pattern[x, Blank[]] or x_ stands for an object named x.

† Pattern[x, Blank[head]] or x_head stands for an object with head head named x.

† Pattern[x, BlankSequence[]] or x__ stands for at least an object named x.

† Pattern[x, BlankSequence[head]] or x__head stands for at least one object named x, all with head head.

† Pattern[x, BlankNullSequence[]] or x___ stands for zero or more objects named x.

† Pattern[x, BlankNullSequence[head]]  or  x___head  stands  for  zero  or  more objects  named x,  all  with
head head.

All of these patterns can be used for function definitions with Set and SetDelayed, for 
replacement patterns with Rule and RuleDelayed, and also for commands such as Cases, 
DeleteCases, and MatchQ (see below). 

Note that BlankNullSequence is not a more “general” pattern (in the order of the rules associated with a Symbol)
than is BlankSequence or Blank. We can demonstrate this in the following example. In the following two inputs,
the rules are not reordered.

Clear[s];
s[_] = 1;
s[__] = 2;
s[___] = 3;
s[1]

??s

Clear[s];
s[___] = 3;
s[__] = 2;
s[_] = 1;
s[1]

??s
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The ordering of the downvalues for s shows the degree of generality that can be determined, or else new rules are just
added at the end of the list of downvalues. 

DownValues[s]

Clear[s]

We now turn to some applications. Here is a function that has an arbitrary number of arguments (but at least three), in
which the first and last arguments play a special role in the sense that they must definitively be present. 

functionWithManyArguments[x_, y__, z_] := {{x}, {y}, {z}}

functionWithManyArguments[x, y, z]

First, the Blanks are matched and then the BlankSequences are matched. For six arguments, we get the following
result. 

functionWithManyArguments[x, y1, y2, y3, y4, z]

For  two  arguments,  functionWithManyArguments  is  not  defined  because  __  (BlankNullSequence[])
assumes at least one argument. 

functionWithManyArguments[x, z]

Patterns on the left-hand side of a definition with the same names only match identical 
arguments. 

We should also note that Pattern has exactly two arguments: the name of the pattern and the pattern itself. Thus, the
following construction,  which tries to group by using bracketing to name a sequence of patterns, fails.  It results in an
expression with head Pattern and three arguments. No built-in rules exist for this construction.

a:Sequence[b_, c_]

The following construction also does not work. Pattern needs two arguments. 

f[Pattern[a, b_, c_]] := {a, b, c}

The following definition, which also generates error messages, makes little sense. The pattern x is used for two different
instances.

Clear[f]
f[x_, x__] := something

With  _,  __,  and  ___,  it  is  possible  to  model  significantly  more  complicated  structures.  Note  that  in  the  following
example, the correspondence with q and p is determined by the o, which appears twice. 

complFunc[o_, p_, q___, o_, s__] := {{o}, {p}, {q}, {s}}

complFunc[1, 2, 3, 4, 3, 2, 1, 5, 4, 5]

Warning: When using BlankSequence or BlankNullSequence, frequently several 
ways exist in which a pattern may be matched. Mathematica chooses the first one it finds. 

Here is a function definition and a set of arguments in which more than one way exists to match the variables. 

notUnique[a_, b__, c__, d_] := {{a}, {b}, {c}, {d}}
notUnique[a1, b1, b2, c1, c2, c3, d1]

But the matches aö(a1), bö(b1, b2), cö(c1, c2, c3), and dö(d1) (and others) are also possible. 

Warning: It is easy to get into an infinite loop using BlankNullSequence.
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Here is such a situation. Because the right-hand side of the pattern matches the left-hand side without y,  we get in an
infinite loop. 

p[x_, y___] := 2 p[x]
p[3]

We can see in detail how this happened using Trace. (To reduce the size of the output we use a smaller $Recursion
Limit value.)

oldRecursionLimitValue = $RecursionLimit;
$RecursionLimit = 20;
Trace[p[3]] // Short[#, 8]&

(* restore original value of $RecursionLimit *)
$RecursionLimit = oldRecursionLimitValue;

We  now  give  a  slightly  more  complicated  example  from  physics  using  BlankNullSequence.  In  quantum  field
theoretical calculations, one frequently has to deal with expressions of the form [144÷]

GnHdL = ‚
m1=1

d

∫ ‚
mn=1

d

gm1 .gm2 .∫ .gmn .gm1 .gm2 . … .gmn

Here the gm and gm are noncommutative quantities (gamma matrices). They obey the following two simple rules

gm.gn + gn.gm = 2 dn
m 1d

‚
m=1

d

gm.gm = d 1d .

Here dn
m is the Kronecker symbol and 1d  denotes the d-dimensional identity matrix.

GnHdL  has  the form GnHdL = fnHdL 1d .  We will  calculate the function fnHdL  for  small positive integers n.  We will  write
γ[l[i]] for gmi  and γ[u[i]] for gmi  (l and u standing for lower and upper). Later we use [d] for 1d . Suppressing

the  implicitly  understood  summation,  it  is  straightforward  to  implement  the  above  rules  (the  third  rule  expresses  the
property of  the Kronecker  symbol).  We use a___,  b___,  and c___  to denote chains of gm  and/or gm  of unspecified

length. The noncommutative multiplication we denote by .

Clear[γ, , l, u]

[a___, γ[l[i_]], γ[u[j_]], b___] := 
       2 [a, δ[i, j], b] - [a, γ[u[j]], γ[l[i]], b]

[a___, γ[l[i_]], γ[u[i_]], b___] := d [a, b]

[a___, γ[l[j_]], b___, δ[i_, j_], c___] := [a, γ[l[i]], b, c]

[] := [d]

G2HdL is now easily calculated.

[γ[l[1]], γ[l[2]], γ[u[1]], γ[u[2]]]

In the result for G3HdL, one nicely sees how the rules were applied recursively.

[γ[l[1]], γ[l[2]], γ[l[3]], γ[u[1]], γ[u[2]], γ[u[3]]]

Factoring the last output gives a much shorter result.

Factor[%]
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Calculating G10HdL using the above rules takes about a minute and requires 353791 applications of the first, 843533 of
the second, of the 671531 third, and 353792 of the fourth of the above definitions.

(γ10 = [γ[l[1]], γ[l[2]], γ[l[3]], γ[l[4]], γ[l[5]], 
         γ[l[6]], γ[l[7]], γ[l[8]], γ[l[9]], γ[l[10]],
         γ[u[1]], γ[u[2]], γ[u[3]], γ[u[4]], γ[u[5]], 
         γ[u[6]], γ[u[7]], γ[u[8]], γ[u[9]], γ[u[10]]];) // Timing

γ10 is a very large expression. 

{LeafCount[γ10], ByteCount[γ10]}

After factorization, γ10 becomes much more manageable.

Factor[γ10]

For d = 4, we could use the familiar form of the gm  and gm  to verify the last results. We will discuss the matrix opera-

tions that are used in the next inputs in the next chapter.
Make Input  

d = 4;
γ4[u[0]] = {{0, 0, 0, -I}, {0, 0, -I, 0}, {0, I, 0, 0}, {I, 0, 0, 0}};
γ4[u[1]] = {{0, 0, 0, -I}, {0, 0, I, 0}, {0, I, 0, 0}, {-I, 0, 0, 0}};
γ4[u[2]] = {{0, 0, 1, 0}, {0, 0, 0, -1}, {-1, 0, 0, 0}, {0, 1, 0, 0}};
γ4[u[3]] = {{I, 0, 0, 0}, {0, I, 0, 0}, {0, 0, -I, 0}, {0, 0, 0, -I}};

(* use metric with g[0, 0] == 1 *)
{γ4[l[0]],  γ4[l[1]],  γ4[l[2]],  γ4[l[3]]} = 
{γ4[u[0]], -γ4[u[1]], -γ4[u[2]], -γ4[u[3]]};

(* check commutation relations *)
Table[γ4[u[i]].γ4[l[j]] + γ4[l[j]].γ4[u[i]] == 
      2 KroneckerDelta[i, j] IdentityMatrix[d], 
      {i, 0, d - 1}, {j, 0, d - 1}]
      
(* check sum relation *)
Sum[γ4[u[i]].γ4[l[i]], {i, 0, 3}] == d IdentityMatrix[d] 

(* carry out the direct summation *)
(Table[{n, Sum[Evaluate[Dot @@ Join[Table[γ4[l[μ[j]]], {j, n}], 
                                   Table[γ4[u[μ[j]]], {j, n}]]],
              Evaluate[Sequence @@ Table[{μ[j], 0, d - 1}, {j, n}]]]}, 
      {n, 1, 8}]) ===
(* symbolic computation *)
(Table[{n, Factor[  @@ Join[Table[γ[l[μ[j]]], {j, n}], 
                            Table[γ[u[μ[j]]], {j, n}]]]}, 
       {n, 1, 8}] /. [d] -> IdentityMatrix[d])

In conjunction with the command BlankNullSequence, we now discuss again the function Sequence, introduced
in  Section  3.5.  If  x  stands  for  several  arguments  in  the  following  example,  they  must  be  extracted  in  one  piece  and
enclosed in something. This something is Sequence. 

Clear[f];
f[x___] := x
f[1, 2, 3, 4, 5]

An analogous but  invisible application of Sequence  takes place in this function definition (Times  has the attribute
Flat and so we have Times[Sequence[1, 2, 3], Sequence[1, 2, 3]] ö 1×2×3×1×2×3 = 36).
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Clear[times, x];
times[x___] := x*x;
times[1, 2, 3]

Using Set instead of SetDelayed in this example would have led to a different result, because Sequence[1, 2,
3] would have been substituted into Power[x, 2] as the first argument. As a result, Power[1, 2, 3, 1, 2,
3] evaluates to 1.

Clear[times, x];
times[x___] = x*x;
times[1, 2, 3]

We make one further remark concerning the use of the colon in named patterns. In the following simple case, the colon
is superfluous. 

Clear[f1, w];
f1[s_] := s^2;
f2[s:_] := s^2
{f1[w], f2[w]}

Next,  we  give  several  slightly  more  complicated  constructions  in  which  the  colon  (if  it  appears)  plays  a  role.  The
difference in the various constructions is simply the amount of space between the letters inside the patterns and the use
of the colon. 

Clear[r, s, t];
¤1[s:_ t_]  := {s, t};  
¤2[s:_t_]   := {s, t};
¤3[s_ t_]   := {s, t};  
¤4[s_t _]   := {s, t};
¤5[s__:t]   := {s, t};  
¤6[s _ t _] := {s, t};

Here are the results of these six functions for the argument 6r. 

{¤1[6r], ¤2[6r], ¤3[6r], ¤4[6r], ¤5[6r], ¤6[6r]}

We now examine these six cases in detail. To do this, we look at the full form and the input form of the various pattern
expressions.  (Using _,  :,  spaces,  and symbols, many other patterns can be formed; we come back to this in the exer-
cises at the end of this chapter.) In ¤1, the pattern s is the product of something and the pattern t. 

{InputForm[s:_ t_], FullForm[s:_ t_]}

Thus, the identification sö6r, tör is possible. 

¤1[6 r]

In ¤2, s is the product of something and an object with the head t. In contrast to ¤1, no space is between _ and t. 

{InputForm[s:_t_], FullForm[s:_t_]}

Thus, 6r does not fit the pattern, but for instance 56 t[45] does. 

¤2[6 r]

¤2[56 t[45]]

In the definition of ¤3, the argument is the product of the pattern s and the pattern t, and so a correspondence with 6r
in the form sö6, tör is possible. 

{InputForm[s_ t_], FullForm[s_ t_]}

¤3[6 r]
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¤4 is defined for arguments of the type something times the pattern s with head t. 

{InputForm[s_t _], FullForm[s_t _]}

Here, the pattern is again not matched by 6r, but by 56 t[45]. 

¤4[6 r]

¤4[56 t[45]]

¤5 involves a structure we have not yet encountered; we discuss it at the beginning of the next subsection. Here, 6r fits
the pattern via the correspondence sö6r and töt. 

{s__:t, FullForm[s__:t_]}

¤5[6 r]

The argument in ¤6 should have the structure of a product of s, t, and something squared. 

{InputForm[s _ t _], FullForm[s _ t _]}

Thus, s t u^2 is, for instance, a suitable argument; but 6 r is not. 

¤6[6 r]

¤6[s t u^2]

We now reexamine the command HoldPattern.

 

HoldPattern[expression]

is equivalent to expression as a pattern for pattern-matching purposes, but it does not evaluate 
expression. 

This command is important if the pattern itself has to stay unevaluated, but we need to recognize it in its current form.
Suppose, for example, that we want to define the function aPlusaPlusb for the argument a + a + b. 

aPlusaPlusb[a_ + a_ + b_] := {a, a, b}

But using ??, we see that this result is not what we intended. 

?? aPlusaPlusb

With HoldPattern, we can get what we want. 

aPlusaPlusbHoldPatterned[HoldPattern[a_ + a_ + b_]] := {a, a, b}

?? aPlusaPlusbHoldPatterned

Still, applying this function fails in the next input because the argument is evaluated before testing the pattern (see the
standard order for computations discussed in Chapter 4). 

aPlusaPlusbHoldPatterned[a + a + b]

If we give this function the attribute HoldAll, this evaluation does not take place, and we get the desired result. 

SetAttributes[aPlusaPlusbHeld, HoldAll];
aPlusaPlusbHeld[a_ + a_ + b_] := {a, a, b}
aPlusaPlusbHeld[a + a + b]

Without the attribute HoldAll, we can use Unevaluated to avoid the evaluation of the arguments. 

aPlusaPlusbHoldPatterned[Unevaluated[a + a + b]]
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Be aware that several functions behave differently when patterns are arguments. The following input with Integrate
and a pattern argument does not evaluate to Times[x_, y_]. 

Integrate[y_, x_]

Integrate[HoldPattern[y_], x_]

Other  functions  do not  differentiate between patterns  and non-patterns.  (In a  strict sense,  f[1],  f[x]  is  a pattern;  it
can be used in definitions like g[f[1]] := …. Here, we mean pattern in the sense of Blank… related.)

HoldPattern[x_] HoldPattern[x_] 

D[HoldPattern[x_]^3, HoldPattern[x_]]

We  saw  the  function  HoldPattern  in  Chapter  3  when  discussing  downvalues.  Left-hand  sides  of  definitions  are
automatically wrapped in HoldPattern.

[x + y] := x^y;
DownValues[]

Inner occurrences of HoldPattern stay unchanged.

[HoldPattern[x + y]] := x^y;
DownValues[]

In  the  next  chapters,  we  will  need  to  use  HoldPattern  in  patterns  repeatedly.  HoldPattern  is  an  important
function for writing large, rule-based programs. For efficiency, one often wants to avoid any evaluation in the left-hand
sides of the rules. The following inputs list the standard packages that make use of HoldPattern.

files = Flatten[FileNames["*.m", #, Infinity]& /@
               Select[$Path, StringMatchQ[#, "*StandardPackages*"]&]];

Cases[Table[{files[[k]], 
        Count[ReadList[Flatten[files][[k]], Hold[Expression]],
        HoldPattern, {-1}, Heads -> True]}, {k, Length[files]}],
        {_, _?(# =!= 0&)}]

Because  left-hand  sides  of  definitions  are  wrapped  in  HoldPattern,  the  function  HoldPattern  is  a  very  fre-
quently encountered function in Mathematica calculations. The following input counts the number of times the function
HoldPattern is encountered when evaluating the integral Ÿ sinIx3M dx.

((* keep where messages are sent to and processing function *)
 old$Messages = $Messages;
 old$MessagePrePrint = $MessagePrePrint;
 (* a bag for collecting the steps *)
 bag = {};
 (* as a side effect, collect all steps *)
 $MessagePrePrint = ((bag = {#, bag})&);
 (* redirect messages *)
 $Messages = nowwhere;
 On[];
 (* do the integration *)
 Integrate[Sin[x^3], x];
 Off[];
 (* restore where messages are sent to and old preprocessing *)
 $Messages = old$Messages;
 $MessagePrePrint = old$MessagePrePrint;
 Count[bag, HoldPattern, {-1}, Heads -> True]) // Timing

Sometimes we need to match patterns literally, for instance, when writing programs that autogenerate programs, which
can be done with the function Verbatim.
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Verbatim[pattern]

is used to match expression as a pattern.

The following function matchThePattern has a special definition for the pattern “x_” itself.

matchThePattern[Verbatim[x_]] := thePatternItselfWasThere

matchThePattern[x_] := someOtherArgumentWasThere

According to the general rule, special definitions come first.

?matchThePattern

The Verbatim pattern matches only if the argument of matchPattern is x_.

matchThePattern[__]

matchThePattern[y_]

matchThePattern[x_]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

à 5.2.2 Patterns with Special Properties
Frequently, we want to be able to change certain parameters in a function, but we do not want to have to write out all of
the  parameters  explicitly.  One  possibility  would  be  to  use  the  command  Options  discussed  in  Chapter 3,  but  it  is
somewhat  unusual  to  use  it  in  relation  to  “parameters”  and  requires  more  typing  than  needed.  Another  possibility  is
Optional. 

 

Optional[pattern, default]
or

pattern:default 

represents a pattern pattern that may not appear explicitly, in which case, the default default is 
used. 

Note the order of _ and : in the following expressions. The interesting structure here is x_:y. 

{FullForm[x_:y], FullForm[x:_y], FullForm[x:y], FullForm[x_:_y]}

Here is a definition of a function with optional argument y. 

defaultFunc[x_, y_:yDefault] := x + y

If y is given explicitly, it is used. 

defaultFunc[ξ, η]

If not, the default value is used. 

defaultFunc[ξ]

In the next example, we use the colon : twice, one time as the shorthand for Pattern and one time as the shorthand
for Optional. 

Clear[f, x, y]

f[y:(x_):1] := {x, y}
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Using FullForm, we see the double meaning. 

x:(x_):1 // FullForm

Note that brackets were needed in the last input. 

y:x_:1 // FullForm

y:(x_:1) // FullForm

The two pattern variables x and y represent the same pattern, so we have the following example (here, we make use of
the optionality of the argument). 

f[]

If an argument is explicitly given, it is used. 

f[3]

A possible  choice  for  optional  arguments  is  Automatic.  Automatic  is  also  often  used  in  possible  option  values.
Using  Automatic  makes  it  possible  to  distinguish  among  various  cases  in  a  natural  way.  Here  is  an  example  of  a
function optFunc with two optional arguments, both of which have the default value Automatic. 

optFunc[x_, o1_:Automatic, o2_:Automatic] :=
If[o1 === Automatic,
    If[o2 === Automatic, {x, Automatic, Automatic},
                         {x, Automatic, notAutomatic}],
    If[o2 === Automatic, {x, notAutomatic, Automatic},
                         {x, notAutomatic, notAutomatic}]]

Here is what we get with various second and third arguments, or without them. 

optFunc[1, Automatic, Automatic]

optFunc[1, 2, Automatic]

optFunc[1, Automatic, 3]

optFunc[1]

optFunc[2]

optFunc[1, 2]

optFunc[1, 3]

Be aware that the pattern in Optional cannot be an arbitrary complex pattern; in most cases, var_ is used. Optional
values must match the corresponding pattern. Here, the pattern describes an integer, but the optional value is real, so it
does not work properly. 

doesNotWork[pattVar_Integer: -2.5] = pattVar

doesNotWork[-3.4]

doesNotWork[4]

doesNotWork[]

Here, it works well. 

doesWork[pattVar_Integer: -5] = pattVar;

doesWork[5]

doesWork[]
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Without any type restrictions on the pattern, we, of course, always get a nontrivial result.

doesAlsoWork[pattVar_: -2.5] = pattVar

doesAlsoWork[-3]

doesAlsoWork[]

It  is  also  possible  to  assign  an  optional  value  to  a  function  for  certain  arguments  outside  of  the  function  definition
(using Default; we come back to this function later in the chapter). Then, the structure simplifies to Optional[x_]
or x_. (the period belongs to the Mathematica expression). 

 

Optional[pattern]
or

pattern_. 

represents a pattern pattern that may not appear explicitly, in which case, the previously 
defined default value is used. 

Among the system functions, Plus, Times, and Power have such predefined optional arguments. 

 

Plus, Times, and Power have internally defined optional values:

x_ + y_.

default for y_. is 0

x_ y_.

default for y_. is 1

x_^y_.

default for y_. is 1

Thus, x becomes x + 0 with Plus, and x becomes x*1 with Times. 

{Plus[x], Times[x]}

The following function defaultTest makes use of all three of the default possibilities shown above. 

Remove[a, b, c, x, defaultTest];
defaultTest[(a_. + b_. x)^c_.] := {a, b, c, x}

For an arbitrary argument, defaultTest gives the expected result. 

defaultTest[(12 x + 34)^w]

In the following case, defaultTest uses the default values. 

defaultTest[only x]

defaultTest[onlyC + x]

defaultTest[(1 + x)^2]

defaultTest[x]

But using a symbol other than x does (of course) not match the pattern. 

defaultTest[a + b y]

It  sometimes happens  that  the  arguments  in  functions  repeat  (and  in  defining  the  function,  we  know  how  often  they
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appear). For such cases, an appropriate pattern is Repeated. 

 

Repeated[pattern]
or

pattern.. 

represents one or more appearances of the pattern pattern. 

RepeatedNull[pattern]
or

pattern… 

represents zero or more appearances of the pattern pattern. 

The following function repeat gives the repeated variable and the number of times it appears. Note the braces around
b because of the Sequence enclosing it. The pattern b matches more than one argument.

repeat[b:((a:_)..)] := {a, Length[{b}]}

Here is the FullForm of the inside expression. 

FullForm[b:((a:_)..)]

This function does the expected. 

repeat[a, a, a, a]

repeat[{γ, γ}, {γ, γ}, {γ, γ}, {γ, γ}, {γ, γ}]

In the following call on repeat, the pattern is not matched because only the repeated pattern can appear. 

repeat[a, a, a, a, 1]

When called with no arguments the current definition for repeat does not match.

repeat[]

The following function is defined to accept the previous input where the last argument was different. 

repeat2[b:((a:_)..), x_] := {{a, Length[{b}]}, x}
repeat2[a, a, a, a, ]

When several ways exist to match the patterns, the blanks (head Blank) are first matched (if possible), as usual. 

repeat3[b:((a:_)..), x__] := {{a, Length[{b}]}, x}
repeat3[a, a, a, a, ]

Using ... instead of .. makes the definition match the zero-argument case.

repeat4[b:((a:_)...)] := zeroArguments
repeat4[]

Sometimes it is convenient to specify a pattern that should not be matched (instead of specifying all patterns that should
be matched). This can be done with the function Except.

 

Except[pattern]

represents a pattern that matches anything with the exception of pattern.

Here is a function that is defined for any argument other than expressions with the head Real.

notDefinedForReals[x:Except[_Real]] := x^2
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The function evaluates for integers, symbols, complex numbers, but not real numbers.

{notDefinedForReals[2], notDefinedForReals[2 + 2 I], 
 notDefinedForReals[αβγ], 
 notDefinedForReals[3.14]}

Often, we want to define functions under very restrictive conditions, much more restrictive than simply matching head
specifications.  In  principle,  this  is  possible  by  using  If[…]  in  the  corresponding  function  definition.  However,  a
faster  and more elegant  and understandable  approach  is to  test  the pattern itself (on  the left-hand side of  the function
definition) to see which possible definition to use. A first extension in this direction is to allow the possibility of several
patterns. 

 

Alternatives[pattern1, pattern2, …, patternn]

or
pattern1 | pattern2 | ∫ | patternn 

represents the various possibilities patterni of a pattern. 

The  following  function  ORA  (shortcut  for  only  real  arguments)  is  defined  only  for  real-valued arguments;  that  is,  the
head of the argument must be Integer, Rational, or Real. It is not defined for complex or symbolic arguments. 

ORA[x_Integer | x_Rational | x_Real] := x

For complex or symbolic arguments, it remains unevaluated. 

{ORA[1], ORA[2.6], ORA[56/67], ORA[1 + 10^-23 I], ORA[], ORA["abc"]}

The following notation is also possible. 

ORB[x:(_Integer | _Rational | _Real)] := x

{ORB[1], ORB[2.6], ORB[56/67], ORB[1 + 10^-23 I], ORB[], ORB["abc"]}

But not this notation. 

ORC[x:(_(Integer | Rational | Real))] := x

{ORC[1], ORC[2.6], ORC[56/67], ORC[1 + 10^-23 I], ORC[], ORC["abc"]}

The pattern test for  the head in ORA  refers  to the “real” head of the variables,  so the following two arguments do not
match. Despite iAmReallyAnIntegerBelieveMe’s attempts to hide its real nature the following does not work.

iAmReallyAnIntegerBelieveMe/: 
              IntegerQ[iAmReallyAnIntegerBelieveMe] = True
ORA[iAmReallyAnIntegerBelieveMe]

iAmReallyAnIntegerBelieveMe/: 
              Head[iAmReallyAnIntegerBelieveMe] = Integer
ORA[iAmReallyAnIntegerBelieveMe]

In  this  example,  a  very special  type of  argument is required,  namely, the product  of  something with the sin or cos of
something. 

Clear[g, t, r];
g[a_ (b:(Sin | Cos))[x_]] := {a, b, x}

Here, 13 Cos[t^2 + r] has this form. 

g[13 Cos[t^2 + r]]

However, 13 soC[t^2 + r] does not.
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g[13 soC[t^2 + r]]

To test values of the arguments as well as patterns, we can use PatternTest. 

 

PatternTest[pattern, test]
or

pattern?test

represents the pattern pattern if the test test is applied to the actual argument evaluates to 
True. Here, test must be a (pure) function. 

The following function is defined only for rational arguments larger than 45 ê91. 

rationalOnly[x_Rational?((# > 45/91)&)] := x

{rationalOnly[45/91], rationalOnly[46/91],
 rationalOnly[5], rationalOnly[tgh]}

Be sure to note the use of parentheses after the ?. The pure function’s & binds very weakly.

FullForm[x_?f[#]&]

Here is what we wanted. 

FullForm[x_?(f[#]&)]

This input is shorter.

FullForm[x_?f]

A previously defined function can also be used in PatternTest. 

[x_] := If[x > 3, True, False]

1[x_? ] := {x}

2[x_?( [#]&)] := {x}

{1[2], 1[4], 2[2], 2[4]}

Note that the symbols inside of PatternTests  lie below level 2 of the expression,  and rules cannot be attached to
them. So the following attempt to set up a rule for x,  which should fire whenever x  appears somewhere in an expres-
sion, fails. 

Clear[x, y]

x /: y_?(MemberQ[#, x, {0, Infinity}, Heads -> True]&) := Print[y]

y_?(MemberQ[#, x, {0, Infinity}, Heads -> True]&) // TreeForm

Position[y_?(MemberQ[#, x, {0, Infinity}, Heads -> True]&), x]

Much more complicated structures can be built using these various patterns and tests. In the following complicated
Function,  the  first  argument  must  be  an  even  number,  the  second  a  product,  the  third  real-valued  or  rational,  the
fourth an integer, the fifth must be present, and at least one or more arguments with head List must follow. 

complicatedFunction[(u_)?(EvenQ[#]&), v_Times,
                    w_Real | w_Rational,
                    x_Integer, y__, z__List] :=
(Print["u = ", {u}]; Print["v = ", {v}]; Print["w = ", {w}];
 Print["x = ", {x}]; Print["y = ", {y}]; Print["z = ", {z}])
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Here, we apply it to some arguments. Note that the last Sequence disappears before the pattern matching process.

Clear[e, r];
complicatedFunction[4, e r, N[Pi], 12321223, 2, e r, 
                    {8, 9}, 3, {2, 1}, {Null, r}, {4}, Sequence[]]

In the following example, the pattern is not matched because the first argument is not an even number. (This time we do
not explicitly write the Null element.)

complicatedFunction[5, e r, N[Pi], 12321223, 2, e r, 
                    {8, 9}, 3, {2, 1}, {, r}, {4}]

Using PatternTest together with BlankSequence and BlankNullSequence can sometimes lead to misunder-
standings. For example, consider the following definition. 

Remove[f]
f[x__?((Length[{#}] > 1)&)] := {x, y}

f[1, 2, 3]

It does not produce the “expected” {1, 2, 3}. To see why, we include Print in the PatternTest. 

Remove[f]
f[x__?((Print[{#}]; Length[{#}] > 1)&)] := {x, y}

f[1, 2, 3]

Thus,  the  test  is  performed  for  every  argument,  and  because  it  fails  on  the  first  argument,  the  evaluation  stopped,
because  it  is  now clear  that  the  pattern  does  not  match.  Sometimes it  is  difficult,  and  even  impossible,  to  restrict  the
applicability of  definitions  and patterns  using PatternTest,  especially if  multiple arguments of  a  function have to
fulfill some cross-relations. As an alternative to PatternTest, we have Condition. 

 

Condition[expression, condition]
or

expression /; condition

restricts the applicability of expression to the cases in which condition is True. 

The big advantage of Condition compared with PatternTest is that it allows the use of named variables. Condi
tion can be used for patterns as well as for Mathematica expressions. 

Condition can be used in conjunction with Pattern, SetDelayed, RuleDelayed, 
Block, With, and Module. For the sake of efficiency and understandability, Condition 
should be used in Pattern if possible, and not after the entire expression. 

Here are two ways to specify the same restriction that do exactly the same thing, although the first is preferred. Here is
the first possibility. 

cond1[x_ /; 1 < x < 2] := x

Here, grouping is used to specify the restriction. 

FullForm[x_ /; 1 < x < 2]

The second possibility is to put Condition on the right-hand side of the SetDelayed definition. 

cond2[x_] := x /; 1 < x < 2

Here, we write it out. 

THE MATHEMATICA GUIDEBOOKS to PROGRAMMING—GRAPHICS—NUMERICS—SYMBOLICS 43

©  2004, 2005   Springer Science+Business Media, Inc.



FullForm[Hold[cond2[x_] := x /; 1 < x < 2]]

cond1 and cond2 code the same patterns. 

{cond1[0], cond1[3/2], cond2[0], cond2[3/2]}

Note  that  in  this  case  we  also  could  have  used  a  pure  function  inside  the  pattern  using  PatternTest:
cond[x_?(1<#<2&)]:=x. 

A Condition  condition  can  also  be  given  “in  one  piece”  on  the  left-hand  side  of  a  definition  instead of  inside  the
pattern on the right-hand side (as in the example before the last one), or on the right-hand side of an assignment (as in
the last example). 

(cond3[x_, y_] /; x < y) = {x, y}

We write this expression out again to better identify the structure. 

FullForm[Hold[f[x_, y_] /; x < y = {x, y}]]

This construction also works as expected. 

{cond3[1, 2], cond3[2, 1]}

Inside  the  condition  appearing  in  Condition[pattern, condition],  we  can  also  test  variables  that  are  not  pattern
variables. As a side effect in the pattern test in the function cond4, we change the value of a.

Clear[cond4, a, x];
a = 0;
cond4[x_ /; (a = a + 1; a > 2)] := {a, x}

??cond4

Reevaluating cond4 five times, give different results.

Do[Print[a, "  ", cond4[i]], {i, 1, 5}]

a has now the value 5.

a

One  can  also  have  a  compound  expression  on  the  right-hand  side  of  a  set  or  set  delayed  definition  that  ends  with  a
condition head Condition). In this case, the first elements of the compound expression are evaluated, but the whole
function returns unevaluated. Here is an example of this situation.

fABC[x_] := ((setA = 1); (setB = 2); (setC = 3) /; False)

Hold[fABC[x_] := ((setA = 1); (setB = 2); (setC = 3) /; False)] // FullForm

fABC[1]

{setA, setB, setC}

As stated earlier, one of the big advantages of Condition  is that the variable names themselves can be used, which
allows relationships between variables to be used as restrictions on the definition of a function, outside of the pattern.
Here, the use of Condition is much more difficult to avoid. 

Clear[f];
f[x_, y_] := {x, y} /; x > y
{f[1, 2], f[2, 1]}

The following example also works. 
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Clear[f];
(f[x_, y_] /; x > y) := {x, y}
{f[1, 2], f[2, 1]}

So does this example. 

Clear[f];
f[x_, y_] := ({x, y} /; x > y)
{f[1, 2], f[2, 1]}

But this example does not work, because it is syntactically not allowed. 

Clear[f];
f[(x_, y_) /; x > y] := {x, y}

{f[1, 2], f[2, 1]}

Inside  Module,  local  variables  can  be  used  in  Condition  as  well  as  in  expressions.  Here,  the  function  f[x]  is
defined only under certain conditions; whether these conditions are satisfied is tested inside Module.  Note that if the
test  carried  out  by  Condition  is  not  satisfied  inside  Module,  the  function  remains  unevaluated.  In  the  following
example nothing is printed.

Clear[f];
f[x_] := Module[{y = x}, (Print[{x, y}]; y^2) /; y^3 < 0]

f[1]

Now, the condition is fulfilled.

f[-1]

The local variable must have a value from the beginning for this construction to work.

Clear[f];
f[x_] := Module[{y}, (y = x; Print[{x, y}]; y^2) /; y^3 < 0]

f[-1]

And the Condition must be literally present in the beginning of the evaluation process.

Clear[f];
f[x_] := Module[{condition = Condition, y = x}, 
                condition[y = x; Print[{x, y}]; y^2, y^3 < 0]]

f[-1]

Analogous constructions are also possible with Block  and With.  Such constructions are very valuable when the test
of  the  applicability  of  a  rule  is  very  expensive.  The  calculations  carried  out  in  the  test  have  a  large  overlap  with  the
calculations needed for generating the result. Here is an example. 

Clear[];
[trueFalse_] :=
 Module[{testAndResult = resultOfALongCalculation[res, trueFalse]},
        testAndResult[[1]] /; testAndResult[[2]]]

[True]

[False]

Note the different behavior of PatternTest and Condition when used with BlankSequence and BlankNull
Sequence. PatternTest tests each element individually. Here is a definition for a function f that never applies. 

Clear[f];
f[x__?((Print[#]; False)&)] := {x}
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FullForm[x__?((Print[Hold[#]]; False)&)]

Next, we call f  with four arguments. The first element is tested by itself, and because the result is False, no further
tests are carried out. 

f[1, 2, 3, 4]

Here is an analogous construction with Condition. Now, x is replaced by the combination of all arguments. 

Clear[f, g];
f[x__ /; (Print[Unevaluated[x]]; False)] := {x}

FullForm[x__ /; (Print[Unevaluated[x]]; False)]

f[1, 2, 3, 4]

Here is one more similar example. 

g[a___ /; Length[{a}] > 2] := {a}

{g[1, 2], g[1, 2, 3]}

PatternTest  and  Condition  are  two  general  constructs  to  restrict  patterns.  Because  they  carry  out  a  larger
amount of work than simply checking a type using Blank[type], carrying them out needs more time. The next input
compares three possibilities to restrict an argument to be an integer. Clearly, the first is the fastest and shortest.

1[k_Integer] = k;
2[k_?(Head[#] === Integer&)] = k;
3[k_ /; Head[k] === Integer] = k;

Timing[Do[1[k], {k, 10^5}]]

Timing[Do[2[k], {k, 10^5}]]

Timing[Do[3[k], {k, 10^5}]]

Using PatternTest and Condition, it is possible to program very specific patterns. Consider the game Sorry with
a  “typical”  die  with  one  player.  (The  case  of  several  players  without  elimination  is  trivial,  whereas  the  case  with
elimination  can  be  recursively  programmed  in  a  similar  way.)  Then,  we  find  the  number  of  possible  configurations
(without expropriation) in one game with m players and n squares (this is just the content of the following definition of
φ). (φ[m][n] represents the number of different ways for fmHnL to represent the positive integer n as a sum of positive
integers < m taking into account order.)

φ[m_][n_?(# < 0&)] = 0;
φ[1][n_] = 1;
φ[m_][n_] := (φ[m][n] = φ[m][m]) /; m > n
φ[m_][m_] := φ[m][m] = 1 + φ[m - 1][m];
φ[m_][n_] := (φ[m][n] = 2 φ[m][n - m] +
              Sum[φ[m][i] φ[m][m] φ[m][n - m - i], {i, n - m - 1}]) /; n > m

φ[6][46]

N[%]

Note  that  Condition  is  sometimes  only  used  on  the  right-hand  side  in  SetDelayed  and  RuleDelayed.  The
following is in most cases not the wanted definition of f.

Clear[f, x];
f[x_] = x^2 /; x > 0;
f[1]

The  possibility  of  specifying  well-defined  patterns  that  are  applied  only  in  relevant  situations  is  very  important  for
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building  and  using  complicated  sets  of  rules  (e.g.,  equations,  definitions).  A  practical,  more  useful,  and  a  bit  more
complicated example is the calculation of 

‡
0

p coscHJL sinsHJL

I1 - k2 sin2HJLMn 1 - k2 sin2HJL
 dJ

in complete elliptic integrals for nonnegative integers c, s, and n and 0 § k < 1 ([93÷]). 

Let  SC[n, s, c, k]  be  the  above  integral.  For  odd  c,  the  integral  is  always  zero  by  symmetry  of  the  integrand
around J = p ê 2. 

The following recursive relations exist for the boundaries of the n,s,c-parameter space. The special conditions of their
applicability are encoded in the appropriate PatternTest on the left-hand side of the definitions. (We do not prove
them here, but just use them; see the cited reference for details.) 

(* clear all variable to be used *)
Clear[SC, n, s, c, k, l, writeNicely, myIntegrate]

SC[n_Integer?(# >= 0&), s_Integer?(# >= 0&), c_Integer?OddQ, k_] = 0;

SC[0, s_Integer?(# >= 4&), 0, k_] :=
  ((s - 2)(1 + k^2))/((s - 1) k^2) SC[0, s - 2, 0, k] -
   (s - 3)/((s - 1) k^2) SC[0, s - 4, 0, k]

SC[0, 0, c_Integer?(# >= 4 && EvenQ[#]&), k_] :=
  ((c - 2)(2k^2 - 1))/((c - 1) k^2) SC[0, 0, c - 2, k] -
   ((c - 3)( k^2 - 1))/((c - 1) k^2) SC[0, 0, c - 4, k]

SC[n_Integer?(# >= 0&), s_Integer?(# >= 2&), 0, k_] :=
  1/k^2(SC[n, s - 2, 0, k] - SC[n - 1, s - 2, 0, k])

SC[n_Integer?(# >= 0&), 0, c_Integer?(# >= 2 && EvenQ[#]&), k_] :=
  1/k^2(SC[n - 1, 0, c - 2, k] - (1 - k^2)SC[n, 0, c - 2, k])

SC[0, s_Integer?(# >= 4&), 2, k_] := (
  (s + (s - 2)k^2)/((s + 1)k^2) SC[0, s - 2, 2, k] -
  (s - 3)/((s + 1) k^2) SC[0, s - 4, 2, k])

SC[0, s_Integer?(# >= 0&), c_Integer?(# >= 4 && EvenQ[#]&), k_] := 
  (((s + c - 2)(2k^2 - 1) - s k^2)/((s + c - 1) k^2)SC[0, s, c - 2, k] +
   ((c - 3)(1 - k^2))/((s + c - 1) k^2) SC[0, s, c - 4, k])

SC[1, 1, c_Integer?(# >= 4 && EvenQ[#]&), k_] :=
  ((c - 1)(2k^2 - 1) - 3k^2)/((c - 2)k^2) SC[1, 1, c - 2, k] +
   ((c - 3)(1 - k^2))/((c - 2) k^2) SC[1, 1, c - 4, k]

The following two relations are more general and apply to the inner points of the n,s,c-space. 

SC[n_Integer?(# >= 1&), s_Integer?(# >= 2&), 
   c_Integer?(# >= 2 && EvenQ[#]&), k_] :=
1/k^2(SC[n, s - 2, c, k] - SC[n - 1, s - 2, c, k])

SC[n_Integer?(# >= 2&), s_Integer?(# >= 0&), 
   c_?(# >= 0 && EvenQ[#]&), k_] :=
(s - c - (2 - k^2)(s - 2n + 2))/((2n - 1)(1 - k^2)) SC[n - 1, s, c, k] +
(s + c - 2n + 3)/((2n - 1)(1 - k^2)) SC[n - 2, s, c, k]

(If  we  knew  that  we  would  have  to  calculate  a  lot  of  integrals  of  the  type  above,  a  SetDelayed[SC[n_, s_,
c_, k_], Set[SC[n_, s_, c_, k_], …]]  construction  would  be  more  appropriate  because  this  would
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allow us to remember the already-calculated values.) 

These  recursive  relations  have  to  be  supplemented  by  starting  values  near  the  80, 0, 0<  corner  of  the  n, s, c-lattice
(EllipticE and EllipticK are complete elliptic integrals, which we discuss in Chapter 3 of the Symbolics volume
[140÷]). 

SC[0, 0, 0, k_] = 2 EllipticK[k^2];
SC[1, 0, 0, k_] = 2 EllipticE[k^2]/(1 - k^2);
SC[0, 0, 2, k_] = 2/k^2 (EllipticE[k^2] + (k^2 - 1) EllipticK[k^2]);
SC[0, 2, 0, k_] = 2/k^2 (EllipticK[k^2] - EllipticE[k^2]);
SC[0, 2, 2, k_] = 2/3 ((2 - k^2)/k^4 EllipticE[k^2] +
                  2(k^2 - 1)/k^4 EllipticK[k^2]);
SC[0, 3, 2, k_] = 1/(8 k^4) (2(3 - k^2) -
                  (3 + k^2)(1 - k^2) SC[0, 1, 0, k]);
SC[0, 1, 0, k_] = 1/k Log[(1 + k)/(1 - k)];
SC[1, 1, 0, k_] = 2/(1 - k^2);
SC[0, 1, 2, k_] = 1/(2k^2) (2 - (1 - k^2)SC[0, 1, 0, k]);
SC[1, 1, 2, k_] = 1/(k^2)  (SC[0, 1, 0, k] - 2);
SC[0, 3, 0, k_] = 1/(2k^2)((1 + k^2)SC[0, 1, 0, k] - 2);

Let us look at what we have implemented. 

FullDefinition[SC]

We see that Mathematica has reordered the rules to apply the special ones before the more general ones. 

We  further  define  a  function  writeNicely  simplifying  the  large  expressions  from the  recursive  calculation.  (This
function uses some commands we discuss in Chapter 1 of the Symbolics volume [140÷].) The function writeNicely
writes the expression as a sum of prefactors times elliptic integrals or logarithms. In addition, it transforms expressions
of the form Sqrt[k^2] to k because of the given above restrictions, which apply for k. 

writeNicely[expr_, h_] :=
Module[{mainTerms, collected, elTerms, rest},
       expr1 = PowerExpand[expr, Level[h, {-1}]];
       (* select elliptic functions *)
       mainTerms = Cases[expr1, _EllipticE | _EllipticK | _Log,
                         {0, Infinity}] // Union;
       collected = Collect[expr1, mainTerms];
       (* write as sum of summands of the form
          rational * elliptic function *)
       elTerms = Cases[collected, _ _EllipticE | _ _EllipticK | _ _Log];
       (* factor the rational part *)
       (rest = Total[Factor /@ elTerms]) + Factor[Expand[expr1 - rest]]]

So, we can finally define a function myIntegrate calculating these integrals here and writing them in an appropriate
form. (We could,  of  course,  also  use Unprotect  the  function Integrate  and  associate  this  rule  with the  built-in
command Integrate.) We also use the pattern (1 + h_ Sin[t_]^2)^v_  to match numeric quantities, which
would  not  have  the  structure  Plus[1, Times[-1, number, Power[Sin[t], 2]]],  but  rather  Plus[1,
Times[-number, Power[Sin[t], 2]]] and not only symbolic values for h. 
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myIntegrate[Sin[t_]^s_. Cos[t_]^c_. *
            (1 + h_ Sin[t_]^2)^v_, {t_, 0, Pi}] :=
If[Evaluate[0 <= -h < 1], Evaluate[
   writeNicely[SC[-v - 1/2, s, c, Sqrt[-h]], h]], hereNotDone] /;
    (IntegerQ[-v - 1/2] && - v - 1/2 >= 0 s >= 0 && c >= 0 &&
     Head[s] == Integer && Head[c] == Integer)

myIntegrate[Sin[t_]^s_.(1 + h_ Sin[t_]^2)^v_, {t_, 0, Pi}] :=
If[Evaluate[0 <= -h < 1], Evaluate[
   writeNicely[SC[-v - 1/2, s, 0, Sqrt[-h]], h]], hereNotDone] /;
   (IntegerQ[-v - 1/2] && - v - 1/2 >= 0 s >= 0 && Head[s] == Integer)

myIntegrate[Cos[t_]^c_. (1 + h_ Sin[t_]^2)^v_, {t_, 0, Pi}] :=
If[Evaluate[0 <= -h < 1], Evaluate[
   writeNicely[SC[-v - 1/2, 0, c, Sqrt[-h]], h]], hereNotDone] /;
   (IntegerQ[-v - 1/2] && - v - 1/2 >= 0 && c >= 0 && Head[c] == Integer)

myIntegrate[(1 + h_ Sin[t_]^2)^v_, {t_, 0, Pi}] :=
If[Evaluate[0 <= -h < 1], Evaluate[
   writeNicely[SC[-v - 1/2, 0, 0, Sqrt[-h]], h]],
   hereNotDone] /; (IntegerQ[-v - 1/2] && - v - 1/2 >= 0)

Let us try some examples. 

myIntegrate[Sin[t]^4 Cos[t]^6/(1 - k Sin[t]^2)^(5/2), {t, 0, Pi}]

This result agrees with the result of the built-in function Integrate.

(Integrate[Sin[t]^4 Cos[t]^6/(1 - k Sin[t]^2)^(5/2),
            {t, 0, Pi}, Assumptions -> 0 < k < 1] /.
   (* use only EllipticK[k] and EllipticE[k] *)           
   {EllipticE[k/(k - 1)] -> EllipticE[k]/Sqrt[1 - k], 
    EllipticK[k/(k - 1)] -> Sqrt[1 - k] EllipticK[k]} // Simplify) /.
   (* factor prefactors *) p_Plus?(PolynomialQ[#, k]&) :> Factor[p]

(* use indefinite integral and substitute limits *)
Collect[(# /. t -> Pi) - (# /. t -> 0), 
        (* write as sum of two elliptic integrals *)
        _EllipticK | _EllipticE, Factor]& @
        Integrate[Sin[t]^4 Cos[t]^6/(1 - k Sin[t]^2)^(5/2), t] 

Here are some more examples.

myIntegrate[Sin[s]^6 Cos[s]^4/(1 - k Sin[s]^2)^(3/2),
            {s, 0, Pi}]

myIntegrate[Sin[s]^6 Cos[s]^5/(1 - k Sin[s]^2)^(3/2),
            {s, 0, Pi}]

For some parameters, the integral contains only Log functions and no elliptic integrals. 

myIntegrate[Sin[t]^7/(1 - l^2 Sin[t]^2)^(5/2), {t, 0, Pi}]

Sometimes, even Log can be absent. 

myIntegrate[Sin[t]^3 Cos[t]^4/(1 - k^2 Sin[t]^2)^(7 + 1/2),
            {t, 0, Pi}]

For more examples of integrals that can be carried out recursively, see [10÷].

Patterns  frequently  allow for  many possible  realizations.  In  the  next  input,  there  are  two possible  realizations  for  the
patterns Α and Β. Mathematica  chooses the “second” one (although the expression as well as the pattern are already in
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canonical order).
(a1 + a2 a3) (b1 + b2 b3) /. 
     (Α:(α_)) (Β:(β1_ + β2_)) :> {"Α"  Α, "Β"  Β}

As a rule of thumb, patterns with more complicated (deeply specified) subpatterns are matched before simple patterns
are matched and patterns with Blank[] are matched before patterns with BlankSequence[] and BlankNullSe
quence[] are matched. Here are three examples.

(a1 + a2 a3) (b1 + b2 b3) (c1 + c2 c3) /. 
   (* three equal simple patterns *)
   (Α:(_)) (Β:(_)) (Γ:(_)) :> {"Α"  Α, "Β"  Β, "Γ"  Γ}

(a1 + a2 a3) (b1 + b2 b3) (c1 + c2 c3) /. 
   (* three increasingly complicated patterns *)
   (Α:(α_)) (Β:(β1_ + β2_)) (Γ:(γ1_ + γ2_ γ3_)) :> 
                      {"Α"  Α, "Β"  Β, "Γ"  Γ}

(a1 + a2 a3) (b1 + b2 b3) (c1 + c2 c3) /. 
   (* three increasingly less restrictive patterns *)
   (Α:(α_)) (Β:(β__)) (Γ:(γ___)) :> 
                      {"Α"  Α, "Β"  Β, "Γ"  Γ}

n the next pattern that includes pattern tests, the three factors are matched in their original order.

(a1 + a2 a3) (b1 + b2 b3) (c1 + c2 c3) /. 
   (Α:(_?(True&))) (Β:(_?(True&))) (Γ:(_?(True&))) :> 
                        {"Α"  Α, "Β"  Β, "Γ"  Γ}

In  general,  one  should  not  rely  on  a  certain  chosen  pattern  match,  which  might  be  Mathematica  version  specific.  In
ambiguous cases (meaning multiple possible matches exist) where the matches matter, it is always best to use additional
pattern tests to force a unique pattern match.

We make a short remark about possible exceptional situations. As discussed in the last chapter, the evaluation process
of  a  Mathematica  expression  proceeds  recursively  until  no  changes  occur  anymore.  While  correct  as  an  idealized
theoretical concept, in practice various shortcuts are in place to speed up the infinite recursive evaluation. As a result, in
some situation  the  recursive  evaluation  is  not  carried  out  as  far  as  it  should.  These  rare  situations  happen  frequently
when Condition is used.

Here is a definition for the value [β] that applies when the value of Equal1Q is True.

[β] := 1 /; Equal1Q

In the next inputs, the definition does not apply. We store the value of [β] using the symbol iEvaluateLazily.

Equal1Q = False;
iEvaluateLazily = [β]

Setting the value of Equal1Q to True result in [β] evaluating to 1.

Equal1Q = True;
[β]

Now iEvaluateLazily  has  the  stored value  [β]  (as  we can see by looking at OwnValues[iEvaluateLa
zily]) that in turn should evaluate to 1. But it does not.

iEvaluateLazily

In  such  cases,  we  can  force  evaluation  using  the  function  Update[].  In  a  sense,  it  does  tell  Mathematica  to  avoid
stored shortcuts.

Update[]; iEvaluateLazily
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Using the command Condition, it is possible to send a message to the user when a function is applied to a variable of
the  “incorrect”  type.  We  now  give  an  example  involving  a  function  makeTable  requiring  a  positive  integer  for  its
second argument to match the pattern. If it is called with something else as a second argument, a message is sent to the
user (between the In and Out lines), and the input is returned unevaluated. First, we need a new command that permits
working on an expression with a changing parameter and puts the result for each value of the parameter in a list. 

 

Table[expression, iterator]

produces a list of expression according to the iterator iterator. 

iterator  is  an  iterator,  as  discussed  in  detail  regarding  the  command  Do  in  Subsection 4.2.1.  The  following  function
makeTable issues a message when its second argument is not a positive integer.

makeTable::makeAll =
"The second argument must be a positive integer.";

makeTable[x_, y_] := makeTableAux[x, y] /;
                              (makeTableAux[x, y] =!= "failed")

makeTableAux[x_, y_] := If[(* is y a sensible argument? *)
                           Head[y] =!= Integer || y <= 0,
                           Message[makeTable::makeAll]; "failed",
                           Table[x, {i, y}]]

makeTable[, 3]

makeTable[, 3.0]

The  following  implementation would  have  given  the  same result,  and  it  does  not  make  use  of  an  auxiliary  function.
However,  it  severely  overloads  PatternTest  and  thus  is  more  difficult  to  understand.  The  message  takes  effect
during  the  check  of  the  truth  value  for  (If[Head[#] === Integer &&  #  > 0, True, Message[make
Table::makeAll]; False]&). 

Remove[makeTable];

makeTable::makeAll =
"The second argument must be a positive integer ";

makeTable[x_, y_?(If[Head[#] === Integer && # > 0, True,
               Message[makeTable::makeAll];
               False]&)] := Table[x, {i, y}]

makeTable[, 3]

The message makeTable is printed out. 

makeTable[, 3.0]

The following command for patterns is analogous to Select. 

 

Cases[expression, pattern, levelSpecification, n]

creates a list (head List) of the first n parts of the level(s) levelSpecification of expression 
which match the pattern pattern. If n is not given, all parts are returned. If the level is not 
specified explicitly, it is taken to be 1. 

Here, we are looking for all integers and occurrences of Sin  in the levels 1 to ¶. (Note that Sin[5 i]  has the head
Sin.)
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Clear[i, e, u];

Cases[e + Sin[5 i] + u 897 + Log[5678] - Exp[5/6] + 55,
      _Integer | _Sin, Infinity]

As with Level and Position, Cases also has the option Heads. 

Options[Cases]

Note  the  difference  between  Select  and  Cases.  Select  picks  the  arguments  according  to  the  truth  value,  and  it
delivers the result with the same head as the selected expression. Cases chooses according to patterns, and it gives a
result  in  the  form of  a  list.  The  optional  third  argument  in  the  two  functions  also  has  a  completely different  role.  In
Select, it defines the number of objects to be selected, whereas in Cases, it gives the level specification at which the
first argument is to be tested. 

Although arbitrary patterns can be used in function definitions with Set and SetDelayed, this does not work in pure
functions.  In the short form with Slot,  no opportunity exists, and in the long form with Function[arg, f HargL],
the first argument must be a symbol. One of the big advantages of pure functions is that no name is needed, so what do
we get if the function is not applicable? 

Clear[f];
f = Function[x_Integer, x^2]

The type can be “distinguished” in such cases as follows, e.g., here using the named function f. 

Clear[f];
f = Function[x, Which[Head[x] === Integer,  {x, "int"},
                      Head[x] === Rational, {x, "rat"},
                      Head[x] === Complex,  {x, "com"},
                      Head[x] === Symbol,   {x, "sym"}]];

Now, if the function is not applicable, we get the result Null (coming from Which). 

{f[2], f[5I], f[o], f[3.9]}

In the following example, we want to find all products of squares in the list {p^2 q^2, 2 2}. This does not work,
because the second argument is computed to be Power[_, 2]^2  before the comparison, but this structure does not
appear in {p^2 q^2, 2 2}. 

Cases[{p^2 q^2, 2 2}, Power[_, 2] Power[_, 2]]

Cases does not have a Hold-like attribute. 

Attributes[Cases]

In such situations, we have to use HoldPattern to get the desired result. 

Cases[{p^2 q^2, 2^2 2^2}, HoldPattern[Power[_, 2] Power[_, 2]]]

(The first argument is, of course, again evaluated before any pattern matching happens. In this situation, we could have
also  used  the  pattern  a_^2  and  avoided  the  use  of  HoldPattern.)  At  this  point,  we  introduce  the  Switch  com-
mand. It is related to Which, but works for patterns. 

 

Switch[expression, pattern1, then1, pattern2, then2, …, patternn, thenn]

gives the result theni corresponding to the first pattern matching expression. If none of them 
do, the expression remains unevaluated. 

Here are two simple examples. 
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Switch[3 5/7, _Integer, "int", _Real, "rea", _Rational, "rat"]

Switch[λ + κ, _Subtract, "sub", _, 2]

To conclude this section on more complicated patterns, we look at a function generating such patterns from the abbrevia-
tions  of  the  Mathematica  commands used  typically  in  patterns.  It  serves  only  to  illustrate the  multiplicity of  possible
patterns and allowed syntax; most of the generated patterns are not likely to be used.

AllSyntacticallyCorrectExpressions[
         symbolsUsed_?(VectorQ[#, StringQ]&)] :=
TableForm[(* format output nicely *)
{StringDrop[StringDrop[ToString[InputForm[#]], 5], -1],
 StringDrop[StringDrop[ToString[FullForm[#]], 5], -1]}& /@
Union[Flatten[Union[ (* test syntax *)
  If[SyntaxQ[#], ToHeldExpression[#], {}]& /@
      StringJoin /@ (* all combinations *)
Permutations[Join[#, Table[" ", {Length[#] - 1}]]]]& /@
DeleteCases[Sort[Distribute[{{}, {#}}& /@
    symbolsUsed, List, List, List, Join]], {}]]],
             TableDirections -> {Column, Row},
             TableSpacing -> {1, 3}]

Only the results are of interest here, not the details of the program. The argument is a list of Strings appearing in the
pattern. AllSyntacticallyCorrectExpressions  generates patterns in which not all symbols are related, and
it  inserts  at  most  one  white  space  character  between  any  two  symbols  of  the  argument.  The  output  of  the  patterns
associated with given symbols is in the form InputForm[pattern] and OutputForm[pattern]. 

We now look at a few examples. (The period .  is not only important in the commands Optional,  Repeated,  and
RepeatedNull, but also as a matrix product in the form Dot; we come back to this in the next chapter.)

AllSyntacticallyCorrectExpressions[{"x", ":", "_", "."}]

Here is another example: We add "&" to the list.

AllSyntacticallyCorrectExpressions[{"x", ":", "_", ".", "&"}]

Some care  should  be  taken  when  experimenting with  this  function;  the  computational  time grows  essentially  like  the
factorial of (2 numberOfSymbols), but it is highly informative to experiment with this function. 

Finally,  we would  like  to make a remark about  the possibility of  writing so-called generic  programs in Mathematica.
We can give several independent function definitions on the right-hand side for a function f HargumentsL corresponding
to  different  types  of  arguments  (which  can  be  distinguished  with  Blank[head],  PatternTest,  or  Condition),
which makes it possible to recursively program very complex relationships using very few function definitions (which
themselves may include functions depending on the argument types). For details, see [21÷] and [22÷]. 

Σ (* session summary *) TMGBs`PrintSessionSummary[]

à 5.2.3 Attributes of Functions and Pattern Matching
The attributes Orderless,  Flat,  and OneIdentity,  which  we discussed  extensively in Chapter 3,  have a major
influence on the applicability of patterns. We begin with a discussion of the attribute Orderless. 
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Orderless

Mathematica will take into account the attribute Orderless in matching patterns. 

We now define a function orderlessFunction  with the attribute Orderless.  Note that the second argument is
z, not z_. 

Remove[orderlessFunction];
SetAttributes[orderlessFunction, Orderless];
(* variable a and fixed z *)
orderlessFunction[a_, z] := {a, z};

In the definition of orderlessFunction, the “variable” variable (with Blank) a appears before the “fixed” z. 

Definition[orderlessFunction]

Nevertheless,  the  definition  can  also  be  applied  to  arguments  in  the  reverse  order  so  long  as  exactly  two  arguments
exist, one of which is z. 

{orderlessFunction[a, z], orderlessFunction[z, a], 
 (* no match for three-argument calls *)
 orderlessFunction[a, b, z]}

Be aware that the attributes are attached to a function that is used as a head and has or has not downvalues. The follow-
ing  upvalue  for  x  does  not  result  in  a  matching.  In  Chapter  4,  we  discussed  the  evaluation  sequence.  The  attribute
Orderless is taken into account before the upvalue of x.

Remove[x, y, z, f];
x /: f_[z, x, y] := "matched"

??x

SetAttributes[f, Orderless];
{f[x, y, z], f[x, z, y], f[y, x, z], 
 f[y, z, x], f[z, x, y], f[z, y, x]}

Flat

If  a  function  has  the  attribute  Flat,  the  function  is  associative;  Mathematica  takes  this  condition  into  account  when
matching patterns. Now, we introduce a function flatFunction with the attribute Flat. 

Remove[flatFunction, a, b, c, g];
SetAttributes[flatFunction, Flat];
flatFunction[a_, b_] := g[a, b]

Although  it  seems  that,  according  to  the  definition,  flatFunction  only  works  for  exactly  two  arguments,  it  also
works for more than two arguments. 

flatFunction[a, b, c]

This is because the properties of flatFunction are applied as often as possible. 
flatFunction[a, b, c]
= flatFunction[flatFunction[a], flatFunction[flatFunction[b], flatFunction[c]]]
(* the definition goes into effect *)
=  g[flatFunction[a], g[flatFunction[b], flatFunction[c]]]

Using On[], we can see some of the steps. As discussed in Chapter 4, attributes are taken into account before function
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definitions, so the first step is not visible here.
On[];
flatFunction[a, b, c]
Off[];

Called  with  two  arguments,  the  function  flatFunction  first  gets  wrapped  around  the  arguments  and  then  the
definition with g on the right-hand side is applied.

flatFunction[b, a]

Thus,  attributes  are  applied  in  “both  directions”.  For  the  purpose  of  matching patterns,  the  expression  is  transformed
into an appropriate form in the example above by the insertion of flatFunction. If no explicit definition for flat
Function had been given, the appearances of flatFunction  on the inside would have vanished in the following
example. 

Remove[flatFunction, a, b, c];
SetAttributes[flatFunction, Flat];
flatFunction[flatFunction[flatFunction[a]], 
             flatFunction[flatFunction[b], flatFunction[c]]]

Here, we also make use of the attribute Flat of flatFunction. The Verbatim is needed to avoid the evaluation
of flatFunction[flatFunction[x]] to flatFunction[x].

Cases[{flatFunction[x]}, Verbatim[flatFunction[flatFunction[x]]]]

But in some cases, recursion problems with Flat might occur, so some caution is in order. For instance, in the follow-
ing example, x is replaced by f[x] during pattern matching, so the function definition involves an infinite loop. 

Remove[f]
SetAttributes[f, Flat]
f[x_f] := x;
f[x]

A pattern of the form x_ in a function definition with the attribute Flat matches more than one argument.

Remove[f, x, y]
SetAttributes[f, {Flat}];
f[x_] := Matched[Hold[x]]
{f[], f[x], f[x, x], f[x, y], f[x, y, x]}

We now turn to the attribute OneIdentity. 

OneIdentity

We examine the  previous  example to  illustrate the  two attributes Flat  and OneIdentity.  flatOneIdentity
Function[x] is identical to x with respect to matching of patterns (again, we give no explicit definition for flatOne
IdentityFunction). 

Remove[flatOneIdentityFunction, a, b, c, g];
SetAttributes[flatOneIdentityFunction, {Flat, OneIdentity}];
flatOneIdentityFunction[a_, b_] := g[a, b]

flatOneIdentityFunction[a, b, c]

In  comparison  with  the  flatFunction  example,  the  inner  flatOneIdentityFunction  appearances  are
missing; however, g appears on the inside. OneIdentity is very important for the application of default values (the
command Default was still missing in our discussion of Optional). First, we show how these default values can be
defined. 
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Default[function] = value

assigns the default value value to the function function. It is used for definitions of the form 
function[…, variable_.]. Default[function] should be defined before the definition of 
function, and after the assignment of attributes. 

Just two built-in functions have a predefined default value. 

Select[Names["*"], (Head[Default[#]] =!= Default)&] 

These two default values cause Plus and Times with one argument to evaluate to the argument.

{Default[Plus], Default[Times]}

{Plus[Z], Times[Z]}

First, we give a simple example for the use of Default, without specifying any attributes. 

Remove[f];
Default[f] = a[l][w][a][y][s];
f[x_, y_.] := {x, y};
{f[x, y], f[x]}

Here, the first argument is optional. 

Remove[f];
Default[f] = a[l][w][a][y][s];
f[x_., y_] := {x, y};
{f[x, y], f[x]}

Here  is  a  somewhat  more  complicated  one.  We  define   as  a  function  with  the  attribute  OneIdentity,  and  the
default value 123456789. 

Remove[ ];
SetAttributes[ , OneIdentity];
Default[ ] = 123456789;

We  now  define  a  function  functionWithDefaultValue  containing  def.  We  associate  the  definition  with
funcWithDef. 

Remove[functionWithDefaulValue];
functionWithDefaultValue[ [x_, y_.]] := [x, y]

Next,  we give some examples to  illustrate the  behavior  of  the  function  functionWithDefaultValue.  With  two
arguments, we do not get the default value, and the attribute OneIdentity plays no role. 

functionWithDefaultValue[ [4, 4]]

With one argument, the default value is used for the second argument. 

functionWithDefaultValue[ [a]]

Next, we call functionWithDefaultValue with a as a direct argument, without [a]. For the purposes of the
pattern  recognition,  a  is  equivalent  to  [a],  which  in  view  of  the  default  value  of   is  equivalent  to  [a,

123456789] (because of the OneIdentity attribute). Therefore, the result is [a, 123456789]. 

functionWithDefaultValue[a]

For comparison, let us use the same definitions without the OneIdentity attribute of def. 
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Remove[ , functionWithDefaultValue];
Default[ ] = 123456789;
functionWithDefaultValue[ [x_, y_.]] := [x, y];
functionWithDefaultValue[a]

Nothing happened.  To summarize: Orderless  and Flat  can cause expressions  to evaluate differently.  OneIden
tity  has  only effects when used in pattern-matching situations. In two instances,  the OneIdentity  attribute mat-
ters: a) in connection with the Flat attribute and b) in connection with default values (Default and Optional).  

OneIdentity and Flat

Because of the importance of the attribute combination Flat and OneIdentity, we will discuss this duo separately.
The  effect  of  the  attribute  OneIdentity  is  often  expressed  as  “a,  f[a],  f[f[a]]  are  equivalent  for  pattern  match-
ing”. But this sentence is not to be interpreted literally!

Remove[f]
SetAttributes[f, OneIdentity];
{MatchQ[x, f[x]], MatchQ[f[x], f[f[x]]]}

Here is case a) demonstrated.

Remove[f]
SetAttributes[f, Flat];
f[__, _String, __] := "yes"
f["a", "b", "c", "d"]

Remove[f]
SetAttributes[f, {Flat, OneIdentity}];
f[__, _String, __] := "yes"
f["a", "b", "c", "d"]

Let us use a side effect to see what happens. If a function f has the Flat and OneIdentity attribute, single elements
will not be wrapped in f before trying to match.

Remove[f]
SetAttributes[f, Flat];
f[a__, b_, c__] /; 
         (Print[{{a}, {b}, {c}}]; Head[b] === String) := yes
f["a", "b", "c", "d"]

Remove[f]
SetAttributes[f, {Flat, OneIdentity}];
f[a__, b_, c__] /; 
         (Print[{{a}, {b}, {c}}]; Head[b] === String) := yes
f["a", "b", "c", "d"]

And here is an example of case b). In this case, the Flat attribute has no effect.

Remove[f, ];
f[[_:0]] := "yes";
f[1]

Remove[f, ];
SetAttributes[, {OneIdentity}];
f[[_:0]] := "yes";
f[1]
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Remove[f, ];
SetAttributes[, {Flat, OneIdentity}];
f[[_:0]] := "yes";
f[1]

We now look at these three combinations using an example of a function with all three attributes: Orderless, Flat,
and OneIdentity. 

Flat, OneIdentity, and Orderless

If a function has the attributes Orderless, Flat,  and OneIdentity,  Mathematica  takes into account all three of
these attributes when matching patterns. Consider the following function hAV (short for has various attributes) with the
attributes Orderless, Flat, and OneIdentity. To better compare the effect of the individual attributes when all
three  are  assigned,  in  the  following  example  all  possible  variants  of  the  assignment  of  attributes  are  presented  (i.e.,
Orderless,  Flat,  and  OneIdentity  by  themselves,  in  pairs,  and  all  three  together).  We  recommend  that  the
reader goes carefully through all inputs and outputs and try, in all cases, to understand what happened.

Remove[hAV, a, b, c, d];
SetAttributes[hAV, {Orderless}];
hAV[x_, x_] := Z[x];
{hAV[a], hAV[a, a], hAV[a, b, c, d, a]}

{hAV[a], Z[a], hAV[a, a, b, c, d]}

Remove[hAV, a, b, c, d];
SetAttributes[hAV, {OneIdentity}];
hAV[x_, x_] := Z[x];
{hAV[a], hAV[a, a], hAV[a, b, c, d, a]}

{hAV[a], Z[a], hAV[a, b, c, d, a]}

Remove[hAV, a, b, c, d];
SetAttributes[hAV, {Flat}];
hAV[x_, x_] := Z[x];
{hAV[a], hAV[a, a], hAV[a, b, c, d, a]}

{hAV[a], Z[hAV[a]], hAV[a, b, c, d, a]}

Remove[hAV, a, b, c, d];
SetAttributes[hAV, {Orderless, Flat}];
hAV[x_, x_] := Z[x];
{hAV[a], hAV[a, a], hAV[a, b, c, d, a]}

{hAV[a], Z[hAV[a]], hAV[b, c, d, Z[hAV[a]]]}

Remove[hAV, a, b, c, d];
SetAttributes[hAV, {OneIdentity, Flat}];
hAV[x_, x_] := Z[x];
{hAV[a], hAV[a, a], hAV[a, b, c, d, a]}

{hAV[a], Z[a], hAV[a, b, c, d, a]}

Remove[hAV, a, b, c, d];
SetAttributes[hAV, {Orderless, OneIdentity}];
hAV[x_, x_] := Z[x];
{hAV[a], hAV[a, a], hAV[a, b, c, d, a]}

{hAV[a], Z[a], hAV[a, a, b, c, d]}

Here is the most interesting case with all three attributes present. 
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Remove[hAV, a, b, c, d];
SetAttributes[hAV, {Orderless, OneIdentity, Flat}];
hAV[x_, x_] := Z[x];
{hAV[a], hAV[a, a], hAV[a, b, c, d, a]}

Here  is  what  happened  with  hAV[a, b, c, d, a]  in  the  last  input.  Because  of  the  Orderless  attribute,  it  is
converted  to  hAV[a, a, b, c, d].  Then,  the  attribute  Flat  gives  hAV[hAV[hAV[a],hAV[a]], b, c,
d].
With the OneIdentity and Flat attribute, this becomes hAV[hAV[a, a], b, c, d]. Then, by the definition
of  hAV,  we  get  hAV[Z[a], b, c, d].  Another  application  of  the  Orderless  attribute  leads  to  hAV[b, c,
d, Z[a]]. 
On does not give us much information about the use of attributes. 

On[]; hAV[a, b, c, d, a]; Off[]

The same remark goes for Trace. 

Trace[hAV[a, b, c, d, a]]

But we can associate a rule with a that every function containing a is printed together with its arguments. 

Remove[hAV, a, b, c, d];
a /: :(f_[___, a, ___]) := Null /; (Print[HoldForm[]]; False);
SetAttributes[hAV, {Orderless, OneIdentity, Flat}];
hAV[x_, x_] := Z[x];
{hAV[a], hAV[a, a], hAV[a, b, c, d, a]}

{hAV[a], Z[a], hAV[b, c, d, Z[a]]}

For later use of the variable a, we remove the rule attached to a. 

Remove[a]

This example shows that if a function has several attributes, the matching of patterns can be very complicated. 

We now give an “automated” example to illustrate the way in which the attributes of functions (Orderless,  Flat,
and  OneIdentity)  work  together  with  Blank,  BlankSequence,  or  BlankNullSequence  in  matching  pat-
terns.  To  save  some  writing,  we  define  a  function  patternsAndAttributes.  Its  first  argument  contains  the
attributes,  and  its  second  contains  the  blanks  for  a  function  to  be  generated  in  the  form  g[x_,  Pattern[y,
blanks]].  We  call  this  function  g  with  three  arguments  g[x, y, z],  and  look  at  the  interpretation  of  x  and  y
selected  by  Mathematica.  To  get  all  possible  interpretations  of  x  and  y,  we  define  g  under  a  condition  that  is  never
satisfied (False), and in addition, write out the three arguments. We apply Block to override $RecursionLimit
locally  in  case  something  goes  wrong.  To  avoid  a  reevaluation  of  the  matched  variables  in  the  right-hand  side,  we
enclose them in a Hold.

Remove[PatternsAndAttributes, x, y];

PatternsAndAttributes[attris_, blanks_] :=
Block[{g, nothing, $RecursionLimit = 20},
  SetAttributes[g, attris];
  (* the function definition is generated here *)
  SetDelayed[Evaluate[g[x_, Pattern[y, blanks]]], Condition[nothing,
                Print["x  ", Hold[x], "  y  ", Hold[y]]; False]];
  g[x, y, z]; ]

Here is one example. 

PatternsAndAttributes[{Orderless}, __]
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To avoid a large amount of output, we will not look at all of the tried pattern matchings, but only at the number of tried
patterns. The next version of the function patternsAndAttributes returns the numbers of matchings.

Remove[PatternsAndAttributes, x, y];

PatternsAndAttributes[attris_, blanks_] :=
Block[{g, nothing, bag = {}, $RecursionLimit = 20},
      SetAttributes[g, attris];
     (* the function definition is generated here *)
       SetDelayed[Evaluate[g[x_, Pattern[y, blanks]]],
            Condition[Null, 
             (* collect matchings *)
             AppendTo[bag, {"x ", HoldForm[x], 
                            "y ", HoldForm[y]}]; False]];
      g[x, y, z]; Length[bag]]

For a given list of attributes attris, we will test all three patterns.

numberOfTrials[attris_] := 
{PatternsAndAttributes[attris, _], 
 PatternsAndAttributes[attris, __],
 PatternsAndAttributes[attris, ___]}

numberOfTrials[{Orderless}]

numberOfTrials[{Flat}]

numberOfTrials[{OneIdentity}]

numberOfTrials[{Orderless, Flat}]

numberOfTrials[{Orderless, OneIdentity}]

numberOfTrials[{Orderless, Flat, OneIdentity}]

In this subsection, we discussed the interaction of pattern matching with the attributes Orderless, Flat, and One
Identity.  These  three  attributes  are  most  important  with  respect  to  pattern  matching.  But  other  attributes  (such  as
Hold-like  ones)  are  sometimes  of  relevance  too.  The  following  example  shows  a  function  with  the  two  attributes
Orderless and HoldAll at work.

Remove[];
SetAttributes[, {Orderless, HoldAll}];
[x_ + x_, x_] := x
[2 + 2, 2 + 2 + 2 + 2]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

5.3 Replacement Rules

à 5.3.1 Replacement Rules for Patterns
Mathematica  includes several ways to replace certain parts of expressions by others. This feature is very important for
“manual manipulation and simplification” of expressions. The simplest is Rule. 

 

Rule[beforehand, afterward]
or
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beforehand -> afterward

represents the replacement rule, which replaces the expression beforehand with the expression 
afterward when it is applied to an expression. beforehand can contain patterns.

At the point when this command is executed, both the left- and right-hand sides of the input are evaluated to the furthest
extent possible using this rule. 

{1 2 3 -> t t z, 2 x_ 3 -> 3^(3 4z_)}

Analogous to Set and SetDelayed, it may be necessary to compute only at the time when making the replacement.
(Recall  the  example  of  SetDelayed  involving  Expand  in  Subsection 3.1.1.)  The  equivalent  to  SetDelayed  for
rules is RuleDelayed.

 

RuleDelayed[beforehand, afterward]
or

beforehand :> afterward

represents the replacement rule, which when applied to an expression, replaces the expression 
beforehand with the expression afterward (afterward is then evaluated at the time of the 
application of the rule). beforehand can contain patterns.

The  fact  that  afterward  is  computed at  a  later  point  can  be  seen  by  looking  at  the  attributes  of  Rule  and  RuleDe
layed. 

Attributes[Rule]

Attributes[RuleDelayed]

Using a similar example as above, we see that the right-hand sides remain unevaluated. 

{1 2 3 :> t t z, 2 x_ 3 :> 3^(3 4z_)}

The  application  of  the  replacement  rules  is  accomplished  with  one  of  the  following  three  commands:  Replace,
ReplaceAll, and ReplaceRepeated (or with the command StringReplace discussed in Section 4.4). 

 

Replace[expression, rules]

carries out the replacement rules rules on the expression, in which rules is applied only to the 
entire expression. Here, rules is of type Rule or RuleDelayed, or it is a (possibly nested) 
list of such expressions. 

ReplaceAll[expression, rules]
or

expression /. rules

carries out the replacement rules rules on expression, in which each rule in rules is applied just 
once to each subexpression of expression. Here, rules is a rule of type Rule or RuleDe
layed, or it is a (possibly nested) list of such expressions. 

ReplaceRepeated[expression, rules]
or

expression //. rules

carries out the replacement rules rules on expression, in which rules is applied to all 
subexpressions until expression no longer changes. Here, rules is of type Rule or RuleDe
layed, or it is a (possibly nested) list of such expressions. 
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The  following  example  illustrates  the  differences  between  the  three  commands.  We  start  with  an  expression  called
expression.

Remove[expression, xu, yu, xo, yo, f, exp, f, add];

expression = (xu^xu + yu^yu)^(xo^xo + yo^yo) + 1

Because Replace  only manipulates the entire expression,  nothing happens with the replacement rule b_^exp_ ->
f[b, exp] (expression has the structure 1 + b_^c_, not b_^c_.). 

Replace[expression, b_^exp_ -> f[b, exp]]

Replace works with the rule b_^exp_ + add_. 

Replace[expression, b_^exp_ + add_ -> f[b, exp, add]]

ReplaceAll manipulates every subexpression just once. Note that the rule is not applied to subsubparts of a subex-
pression that successfully would have matched the pattern.

ReplaceAll[expression, b_^exp_ -> f[b, exp]]

ReplaceRepeated is applied as often as possible. 

ReplaceRepeated[expression, b_^exp_ -> f[b, exp]]

By adding  a  print  statement on  the  right-hand  side  of  the  rule  and  making sure  that  the rule  never  applies,  we see in
which order the various parts of expression are tried in the pattern-matching process and replacing process. 

rule = part_ :> (Null /; (Print["Trying : ", InputForm[part]]; False))

expression /. rule

Here is a more complicated example of the application of ReplaceRepeated. All Ms in the summand of the follow-
ing expression should be collected in MContainers. We count how often a rule is used by counter. 

(* initialize counter  *)
counter = 0;

(2 a M[1] M[2] M[] + 3 b  M[1, 3] M[2] M["s"] +
 Log[f[M[1] M[1.2] M[3.4] M[M]]]) //. (* the rules *)
           {m1_M m2_M :> (counter = counter + 1; MContainer[m1, m2]),
            MContainer[m1__] m2_M :> (counter = counter + 1;
                                      MContainer[m1, m2]),
            MContainer[m1__] MContainer[m2__] :>
                (counter = counter + 1; MContainer[m1, m2])}

Print[counter]; Remove[counter]

Note  the  behavior  of  the  pattern  BlankNullSequence;  it  gives  Sequence[]  in  the  following  example.  The
“empty” argument(s) of {} is extracted.

{} /. {a___} -> a

The replacement rules inside of Replace,  ReplaceAll,  and ReplaceRepeated  must be given in the form of a
list when several components exist. 

f[a, b, c, d] /. {a -> 1, b -> 2, c -> 3, d -> 4}

If the list is empty, nothing happens. 

f[a, b, c, d] /. {}

Note  that  replacements  using  Replace,  ReplaceRepeated,  or  ReplaceAll  also  take  place  inside  functions
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carrying attributes like Hold. So the result of the following input is not {ζ[0],ζ[1],ζ[2],ζ[3],ζ[4],ζ[5]}.

SetAttributes[ζ, HoldAll]
Table[ζ[i], {i, 0, 5}]

By using a replacement rule to substitute the values of the iterator variable, we can go inside tz. 

Table[ζ[k] /. k -> i, {i, 0, 5}]

Here are some similar examples. 

({#1, #2}&) /. #2 -> #1

(x :> 5) /. (x :> 6)

Hold[2 + 2] /. {2 -> 3}

SetAttributes[ , HoldAllComplete];
[2 + 2] /. {2 -> 3}

Note that the 1 + 1 in the following example gets replaced and that the 2 + 2 was never evaluated.

Hold[1 + 1] /. {HoldPattern[1 + 1] :> 2 + 2}

In the last input example, the curly braces are needed as a container for the rules because the decimal point binds more
strongly. If we use appropriate formatting with white space around low-binding operators, this problem does not exist. 

Hold[2 + 2] /.2 -> 3

FullForm makes clear what happened. 

DownValues[In][[-2]] // FullForm

Alternatively, we could follow our formatting conventions. 

Hold[2 + 2] /. 2 -> 3

Attributes[HoldPattern]

HoldPattern[x_ + y_] /. y -> z

Here, the use of HoldPattern to get the desired replacement is unavoidable. 

HoldForm[1 + (2 3) + 4 Sin[3 + 6 Nis[5 6]]] /. {5 6 -> 6 5}

HoldForm[1 + (2 3) + 4 Sin[3 + 6 Nis[5 6]]] /.
                    {HoldPattern[5 6] -> HoldForm[6 5]}

This example is similar. Because of  the HoldForm  enclosing Nis,  we do not need an additional  HoldForm  on the
right-hand side of a delayed rule.

HoldForm[1 + (2 3) + 4 Sin[3 + 6 Nis[5 6]]] /.
                              {HoldPattern[5 6] :> 6 5}

But with Unevaluated  instead of HoldForm,  we get a somewhat different result. Unevaluated  has the Hold
All  attribute.  This  attribute  avoids  that  the  arguments  are  getting  evaluated  before  they  are  passed  to  the  enclosing
function. And ReplaceAll will respect the Unevaluated fully and not evaluate its argument; else the pattern 5 6
would have been not  present anymore. The next input shows that 5 6  was really replaced and after  the replacement,
the products evaluated.

Unevaluated[1 + (2 3) + 4 Sin[3 + 6 Nis[5 6]]] /.
                              {HoldPattern[5 6] :> 6 7}

If  we  have  an  expression  of  the  form  expression  /.  rule  (the  FullForm  would  be  ReplaceAll[expression,
rule]),  by the  order  of  calculation  discussed  in  Chapter 4,  the first  expression  is  computed,  and then the  replacement
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rule is carried out. Thus, the result of (2 - 1 - 1) /. {-1 -> 11} is 0, and not 24. 

(2 - 1 - 1) /. {-1 -> 11}

Avoiding standard evaluation, we can produce the result 24. 

Unevaluated[2 - 1 - 1] /. {-1 -> 11}

There are two -1 present in the unevaluated form of 2 - 1 - 1.

Unevaluated[2 - 1 - 1] // FullForm

For first time users of replacement rules, we often do not get the desired replacement. Here is an example. We start with
a simple fraction.

Clear[a, b, c];

a/b^2

We want to substitute c^2 for b^2. 

% /. {b^2 -> c^2}

This is another example. 

a + (2 + I) b

We want to substitute -I for I. 

% /. {I -> -I}

Neither  substitution works,  because  the subexpressions  that  are  to  be replaced do not  appear  in  the form given in the
replacement rule. We can see the structure of an expression best with FullForm. 

FullForm[a/b^2]

FullForm[a + (2 + I) b]

In these two cases, this rule would have been suitable. 

a/b^2 /. {b^-2 -> c^-2}

a + (2 + I) b /. {2 + I -> 2 - I}

Similarly, x + 1 + (x^2 - 1)/(x - 1) //. {1 + x -> y} does not give 2y, because (x^2 - 1)/(x
- 1) is not simplified to x + 1 in any step of the calculation. 

Here is another frequently occurring situation of a nonmatching pattern. The following integral returns an If (the first
element of If describes the range of the parameters that guarantee convergence).

Integrate[x^-α + x^α, {x, 0, Infinity}]

But the following replacement does not work.

% /. (0 < Re[α] < 1) -> True

The reason is that inside the If statement, we have an expression with head Inequality, but 0 < Re[α] < 1 is
parsed as an expression with head Less.

{%%[[1]], 0 < Re[α] < 1} // FullForm

Using Inequality in the replacement the If evaluates to its first argument.

%%% /. (Inequality[0, Less, Re[α], Less, 1]) -> True

Because OutputForm, StandardForm, and especially TraditionalForm often differ 
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considerably from the FullForm, it can be very useful to examine the FullForm of the 
expression when applying replacement rules. 

Similarly, a replacement often fails because the replacement rule is not applied to the desired part of the expression. For
example, suppose we want to replace all f[something] expressions, except for the outermost one, by h[something] in
f[f[x, f[x]], f[x, f[x]]]. The following example does not accomplish this goal. 

Clear[f, h, x];
f[f[x, f[x]], f[x, f[x]]] /. f[x__] -> h[x]

ReplaceRepeated replaces all f appearing in the expression, including the outermost one. 

f[f[x, f[x]], f[x, f[x]]] //. f[x__] -> h[x]

But the next input does work (see the next section). The idea is to map the replacement rule inside the expression. 

(# //. f[x__] -> h[x])& /@ f[f[x, f[x]], f[x, f[x]]]

Sometimes, we want all possible matchings for a certain pattern. The function ReplaceList gives such a list.

 

ReplaceList[expression, replacementRules]

returns a list of all possible results of applying the replacement rules replacementRules to 
expression.

No matches are found in the following example. {1, 2, 3, 4, 5, 6} has length six and the pattern {a_, b_,
c_} specifies a list of length three.

ReplaceList[{1, 2, 3, 4, 5, 6}, 
            {a_, b_, c_} :> {{a}, {b}, {c}}]

Now, we have 10 matchings.

ReplaceList[{1, 2, 3, 4, 5, 6}, 
            {a__, b__, c__} :> {{a}, {b}, {c}}]

Length[%]

Using BlankNullSequences instead of BlankSequences results in 28 matchings.

ReplaceList[{1, 2, 3, 4, 5, 6}, 
            {a___, b___, c___} :> {{a}, {b}, {c}}]

Length[%]

In  the  example  above,  for  a  growing  number  of  list  elements  and  a  fixed  pattern,  the  number  of  possible  matchings
grows relatively slowly.

Table[Length[ReplaceList[Range[i], 
              {a___, b___, c___} :> {{a}, {b}, {c}}]], 
      {i, 20}]

Fixing the list and changing the replacement rules is done in the following. Because BlankSequence requires at least
one element to match, we get the following first growing and then decreasing number of matches. (We will discuss the
shortcuts @@ and /@ in the next chapter.)

Table[Length[ReplaceList[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, 
(* make patterns *)
(RuleDelayed @@ {Pattern[#, BlankSequence[]]& /@ #, #})&[
             Take[{a1, a2, a3, a4, a5, a6, a7, a8, a9, a10}, i]]]], 
      {i, 10}]
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In the following example, the attributes of Times result in six possible replacements.

ReplaceList[  , α_ β_ :> {α, β}]

If  we use BlankNullSequence  instead,  we get  an exponential  growth  in the  number of  possible  matchings.  (It  is
wise to have this exponential growth in mind when writing complicated pattern-matching based programs.)

Table[Length[ReplaceList[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, 
(* make patterns *)
(RuleDelayed @@ {Pattern[#, BlankNullSequence[]]& /@ #, #})&[
             Take[{a1, a2, a3, a4, a5, a6, a7, a8, a9, a10}, i]]]], 
      {i, 10}]

The  way  in  which  Mathematica  applies  replacement  rules  can  be  seen  in  detail  in  the  following  example,  which
includes  three  Print  statements.  The  first  Print  takes  effect  when  the  parts  to  be  replaced  are  encountered;  the
second  Print  takes  effect  when  PatternTest  is  applied  to  the  rule;  and  the  third  Print  takes  effect  when  the
condition (implemented with Condition) is checked for the applicability of the rule. The condition is never satisfied,
and  so  all  possible  replacements  are  investigated.  First,  in  the  pattern-matching  process,  the  whole  expression  is
checked, then the enclosing list, and so on. 

(* body *)
{Unevaluated[Print["Argument 1 evaluated"]; 1],
 Unevaluated[Print["Argument 2 evaluated"]; 2],
 Unevaluated[Print["Argument 3 evaluated"]; 3]} /.
 (* replacement rules *)
  {i_?((* lhs pattern test *)
       NumberQ[Print["PatternTest of: ", #]; #]&) :> (i /;
                        (* condition on pattern *)
                        (Print["Test of ", i]; False))}

Similarly  to  the  functions  Set  and  SetDelayed,  the  two  functions  Rule  and  RuleDelayed  respect  the  local
binding of variables in named patterns. Here this is demonstrated.

Block[{x = }, x[x_, _x, x, x_x] -> x]

Module[{x = }, x[x_, _x, x, x_x] -> x]

With[{x = }, x[x_, _x, x, x_x] -> x]

Function[x, x[x_, _x, x, x_x] -> x][]

Note that nested rules scope pattern variables through the outermost rule. So all y_ in the following input are bound by
the Rule with C on the left-hand side.

With[{a = }, Hold[C[y_, y_ -> y, y_ -> (y_ -> y), 
                     (y_ -> y) -> y]] -> a] 

The outer With was needed to force a renaming.

Hold[C[y_, y_ -> y, y_ -> (y_ -> y), (y_ -> y) -> y]] -> a

Now, we come to the relationship between rule application and attributes.

Attributes are taken into account when applying replacement rules to functions. 

This use of attributes in replacement rules is analogous to the interaction of function definitions, attributes, and patterns
discussed earlier. It should suffice to give a few examples. We do not discuss these examples in great detail. The way
the results arise should become obvious after a short study.
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Attribute Orderless

Remove[f, a, b, c, d];

SetAttributes[f, Orderless];

f[a, b] /. {f[b, a] -> d}

Attribute Flat

Remove[f, a, b, c, d];
SetAttributes[f, Flat];

Here, f[a] has to be interpreted as f[f[a], f[]] to match the pattern. 

{f[a] /. {f[] -> {d}}, 
 f[a] /. {f[d_] -> {d}}, 
 f[a] /. {f[d__] -> {d}}}

{f[a, b] /. {f[] -> {d}}, 
 f[a, b] /. {f[d_] -> {d}}, 
 f[a, b] /. {f[d__] -> {d}}}

{f[a, b, c] /. {f[] -> {d}}, 
 f[a, b, c] /. {f[d_] -> {d}}, 
 f[a, b, c] /. {f[d__] -> {d}}}

Replace[f[f[a], a, a, f[a]], f[a___] -> b]

Attribute OneIdentity

Remove[f, a, b, c];
SetAttributes[f, {OneIdentity}];

{f[f[a]] /. {f[a] -> {d}}, 
 f[a] /.  {f[f[a]] -> {d}}, 
 a /. {f[a] -> {d}},
 f[a_:1] /. {1 -> {d}},
 1 /. {f[a_:2] -> {d}}}

Attributes Flat and OneIdentity

Remove[f, a, b, c];
SetAttributes[f, {Flat, OneIdentity}];

{f[f[a]] /. {f[a] -> {d}}, 
 f[a] /. {f[f[a]] -> {d}}, 
 a /. {f[a] -> {d}}}

{f[a] /. {f[] -> {d}}, 
 f[a] /. {f[d_] -> {d}}, 
 f[a] /. {f[d__] -> {d}}, 
 f[f[f[a]], f[a], a] /. {f[a] -> {d}}}
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{f[a, b] /. {f[] -> {d}}, 
 f[a, b] /. {f[d_] -> {d}}, 
 f[a, b] /. {f[d__] -> {d}}}

{f[a, b, c] /. {f[] -> {d}}, 
 f[a, b, c] /. {f[d_] -> {d}}, 
 f[a, b, c] /. {f[d__] -> {d}}}

However, take note of the following rule in connection with matching patterns. 

Attributes of the function f affect the matching of patterns only if f appears as a head in the 
rule. 

The following example works. 

Remove[f, a, b, g];
SetAttributes[f, Orderless];
g[f[a, b]] /. {_[f[b, a]] -> "O.K."}

But the next input does not, even though _ is a “special case” of f. 

Remove[f];
SetAttributes[f, Orderless];
g[f[a, b]] /. {_[_[b, a]] -> " works"}

Here is an analogous example for the attribute Flat. 

Remove[f];
SetAttributes[f, Flat];
{f[a] /. {f[f[a]] -> " O.K. "}, 
 f[a] /. {_[f[a]] -> " works"},
 f[a] /. {f[_[a]] -> " works"}, 
 f[a] /. {_[_[a]] -> " works"}}

It is easy to get into infinite loops using ReplaceRepeated. It involves iterations (not 
recursions), and it is applied 4096 times. (This amount is considerably more than with 
recurrences, and it can take a long time until it is reached.) 

Currently, here are the values for $RecursionLimit and $IterationLimit. 

{$RecursionLimit, $IterationLimit}

Here is an example. The following construction leads to an infinite loop. 

Clear[i];
(1 + i) //. i -> i + 1

We can avoid the infinite loop by constraining the applicability of the rule: Starting with 1 + i, we replace all sums
(head  Plus)  by  themselves  plus  1  as  long  as  the  numerical  part  is  smaller  than  5.  (Note  the  completely  different
meaning of i in (i + 1) and in i_Plus?(Select[#, NumberQ] < 5&) :> i + 1.) 

(1 + i) //. i_Plus?(Select[#, NumberQ] < 5&) :> i + 1

For a better understanding of the last input, it is useful to look at the FullForm. 

FullForm[Hold[(1 + i) //. i_Plus?((Select[#, NumberQ] < 5)&) :> (i + 1)]]

If the replacement rules are in a nested List, the result of applying the rules will have an 
equivalent List structure. 

Here is the simplest form of a replacement rule. 
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Clear[f, a, g, b];
f /. f -> a

If  we had several  replacement rules,  they would have to be collected in a list.  In this case,  no additional  brackets  are
around the resulting a. 

f /. {f -> a}

Now, List is applied to this result once. 

f /. {{f -> a}}

The same result happens in this case. 

f /. {{f -> a, g -> b}}

The next substitution even leads to two pairs of braces. 

f /. {{{f -> a}}}

However,  if  the  individual  replacement  rules  have  multiple  brackets,  the  overall  structure  of  the  replacement  list  is
applied to the expression in which the replacement is to take place. The replacement increases the length of the result by
a corresponding amount even when no replacements in the expression are possible using the given rules. 

f /. {f -> a, g -> b}

f /. {{f -> a}, {g -> b}}

f /. {{{f -> a}, {g -> b}}}

f /. {{{f -> a}}, {{g -> b}}}

The next input contains rules inside lists of different depths. Be aware that the nonmatching rules caused additional lists
around the f.

f /. {{f -> a}, {{g -> b}}, {{{h -> c}}}}

Now that  we are  acquainted with the  commands RuleDelayed  and HoldPattern,  we come back to  DownVal
ues, which was mentioned in Chapter 3. In contrast to Definition, it produces the internal form used by Mathemat-
ica in the definition of functions. 

Clear[f, x];
f[x_Integer] = {x^2};
f[x_Rational] := {Numerator[x], Denominator[x]}

??f

Definition[f]

DownValues[f]

Now,  we  can  understand  the  way  in  which  function  definitions  work.  Internally,  no  difference  exists  in  function
definitions using Set  or  SetDelayed.  Both sides of  the internal function definition are stored completely unevalu-
ated. The HoldAll  attribute of RuleDelayed  prevents the calculation on the right-hand side, and HoldPattern
prevents it on the left-hand side. HoldPattern is necessary to suppress the computation of the arguments of f on the
left-hand side. We can model 

f[x_] = functionOfx

f[specialValue]

as follows: ReleaseHold[Hold[functionOfx] /. x -> specialValue]. 
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Now, for example, we can in detail understand why the following construction does not work. 

Remove[f, g, x];

f[x_] := Module[{g}, g[x_] = x^2; g[x]];

DownValues[f]

f[1]

The x on the left-hand side is associated with the x on the right-hand side, and it is not applied locally in the function
definitions of g. 

Trace[f[1]]

But if the argument of f is a symbol, all works fine. 

Clear[y];
f[y]

The same result would have happened with g[x_] := Block[h, h[x_] = x^2; h[x]]. 

Finally, we complete the discussion of the operation and application of options. The selection of special options using
->  is  just  the  application  of  a  Rule-object  to  an  expression.  We  first  define  a  function  testFunctionWithOp
tions with the two options who and time. 

Remove[testFunctionWithOptions];
Options[testFunctionWithOptions] = {who -> myself, time -> now}

To later use other special settings of the two options, who and time, the following construction is necessary. 

testFunctionWithOptions[x_, opts___] :=
   {x, who, time} /. {opts} /. Options[testFunctionWithOptions]

Note the grouping to give multiple replacement rules. 

FullForm[Unevaluated[a /. b /. c]]

A number of interesting details are in this construction. 

†  The  last  argument  of  testFunctionWithOptions  has  the  form  Pattern[opts,  BlankNullSe

quence[]].  BlankNullSequence  covers  the  case  in  which  no  special  values  are  given  for  the  settings  and  the
case in which several are prescribed. 

† To put into effect the given settings in Settings inside of testFunctionWithOptions[argument, optionsAndÖ
Settings], we need the construction expression /. {optionsAndSettings} /. Options[command]. Note that first
optionsAndSettings  goes  into  effect  in  expression  /.  {optionsAndSettings},  and  then  if  options  still  exist  in  the
transformed  expression,  the  global  default  takes  effect  via  the  afterward-applied  set  of  options  from
Options[command].  Moreover,  optionsAndSettings  must  be  included  in  a  list;  a  direct  extraction  would  have  the
head  Sequence,  but  multiple  replacement  rules  must  be  input  into  lists.  If  no  optionsAndSettings  is  given,  {Se
quence[]} ( = {}) and Options[command] go into effect on the unchanged expression. 

To make testFunctionWithOptions  a  bit  safer  with respect  to  possible  given arguments,  we could restrict  the
head of opts via opts___Rule | x___RuleDelayed. 

We now show that the construction above works correctly. 
testFunctionWithOptions["discussion"]

testFunctionWithOptions["discussion", time -> "5 pm"]
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testFunctionWithOptions["discussion", who -> "Amy"]

testFunctionWithOptions["discussion", who -> "Amy", time -> "17.00"]

In the next input, the option who is set twice. The first option "Amy" takes precedence.

testFunctionWithOptions["discussion", who -> "Amy", who -> "Roger"]

We  discuss  ReplacePart  as  the  last  subject  of  the  discussion  of  replacing  elements.  Often,  it  is  useful  to  replace
single elements in a larger expression (e.g., elements in a matrix). This procedure is done with ReplacePart. 

 

ReplacePart[expression, newExpression, {position}]

replaces the element expression[[position]] by newExpression. 

Here is an expression. 

expr = 3 + Sin[5]^3 + u^3 + Log[6]

The exponent 3 in u^3 is to be replaced by new3Exp. 

ReplacePart[expr, , {2, 2}]

Of course, in this case, we could have also used these alternatives. 

ReplaceAll[expr, u^3 -> u^ ]

ReplaceAll[expr, (_Symbol)^3 :> u^ ]

Note that it is also possible to use Set directly to manipulate a part of an expression and the expression itself. 

expr[[2, 2]] = ;
expr

We discuss this issue in detail in Subsection 6.3.3. ReplacePart replaces more than one subexpression. In this case,
ReplacePart has to be called with four arguments.

 

ReplacePart[expression, newExpressionList, positionList, newExpressionPositionList]

replaces the element expression[[positionList[[i]]]] by the new expression newExpressionÖ
List[[newExpressionPositionList[[i]]]] for all i.

Here, the first, third, and sixth elements are replaced.

ReplacePart[{1, 2, 3, 4, 5, 6}, {11, 33, 66}, 
            {{1}, {3}, {6}}, {{1}, {2}, {3}}]

Look at the differences among the following three replacements. In the first case, nothing happens because the expres-
sion  a + b + c + d  does  not  match  Plus[].  In  the  second  case,  because  of  the  Flat  and  OneIdentity
attribute  of  Plus,  a  “virtual”  Plus[]  is  formed  via  Plus[a, b, c, d]  Plus[Plus[], Plus[a, b,

c, d]] that then allows us to apply the transformation rule and gives a + b + c + d + e as the result. In the
last case, this rewriting happens repeatedly until the MaxIterations limit is exceeded.

Replace[a + b + c + d, HoldPattern[Plus[]] :> e]

a + b + c + d /. HoldPattern[Plus[]] :> e

a + b + c + d //. HoldPattern[Plus[]] :> e

The above was a practical introduction into patterns. Theoretical considerations concerning rules and rule applications,
variable screening in rule applications, and its relation to the l-calculus can be found in [29÷].
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Σ (* session summary *) TMGBs`PrintSessionSummary[]

à 5.3.2 Large Numbers of Replacement Rules
To apply a large number of replacement rules in the most efficient way, we use Dispatch. 

 

Dispatch[rules]

produces an optimized list of the replacement rules in rules. 

Here is a “larger” (but not more difficult) example that involves a long list. 

table = Table[{i, j}, {i, 1, 25}]

The following replacement list is to be used on the individual elements. 

ruleTab = Table[{i, j} -> i, {i, 1, 25}]

Here is the result of applying ruleTab to table (with a time measurement). 

Timing[Do[table /. ruleTab, {10000}]]

Next, we look at an optimized form of the replacement rules. 

ruleTabDispatch = Dispatch[ruleTab]

It is clearly faster. 

Timing[Do[table /. ruleTabDispatch, {10000}]]

Doubling the length of the list shows the timing difference more pronounced.

table2 = Table[{i, j}, {i, 1, 2 25}];
{Timing[Do[table2 /. ruleTab, {10000/2}]],
 Timing[Do[table2 /. ruleTabDispatch, {10000/2}]]}

We do not discuss FullForm, the construction, and the operation of objects generated with Dispatch; see [67÷]. In
Section 1.9.2 of the Symbolics volume [140÷] we will discuss a programming example which will make heavy use of
Dispatch. 

Be aware that only rules without  explicit  patterns (with Blank[],  …) can be dispatched and that otherwise  no mes-
sage is generated

Dispatch[Table[_ -> i, {i, 20}]]

For  nondispatched  rules,  the  time for  applying  them is  proportional  to  the  number  of  rules.  The  application  time for
dispatched rules is basically independent of the number of rules. The following inputs demonstrate this.

(* a list of numbers *)
tab = Table[If[EvenQ[j], I, j], {j, 2000}];

rules = Table[(_?(# === &) -> 2j) /.  -> j, {j, 10^3}];
rulesD = Dispatch[Table[j -> 2j, {j, 10^3}]];

{Timing[tab /. rules;], Timing[Do[tab /. rulesD, {1000}]]}

(* double the number of rules *)
rules = Table[(_?(# === &) -> 2j) /.  -> j, {j, 2 10^3}];
rulesD = Dispatch[Table[j -> 2j, {j, 2 10^3}]];

{Timing[tab /. rules;], Timing[Do[tab /. rulesD, {1000}]]}

Σ (* session summary *) TMGBs`PrintSessionSummary[]
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5.3.3 Programming with Rules
In this subsection, we give a few typical examples of the efficient application of patterns and replacement rules. Some
of  the  examples  were  winners  in  the  programming  contests  held  at  Mathematica  conferences.  Most  of  the  following
implementations  with  patterns  are  very  short  and  clear;  but  these  program  structures  are  generally  not  optimal  with
respect  to  speed,  because  the  pattern  matching requires  a  lot  of  work,  as  many more patterns  than  necessary  may be
tested to find the desired one (often pattern matching has exponential complexity). Thus, when efficiency is important,
assign  corresponding  attributes  to  program the  search  for  the  desired  structures,  or  use  Map  and  similar  functions  to
simultaneously process a larger number of expressions at once rather than one after another. (You should not draw the
conclusion  from  these  examples  that  programs  with  ReplaceRepeatedBlankNullSequence  combination
always win the programming contests at Mathematica conferences; using FoldList also has a good chance to win.) 

RunEncode

The first example involves the so-called RunEncode problem [143÷]. Suppose we are given a list of positive integers:
{1, 1, 2, 3, 4, 4, 5, 3, 2, 2, 7, 7, 8, 8, 9, 9, 1, 1, 1}. 

Starting  with  this  list,  we  want  to  compute  a  new  list  containing  lists  of  the  form  {numberi, numberOfNumberi}  as

elements.  Here,  numberOfNumberi  gives  the  number  of  times that  numberi  appears  in  a  row.  For  the  above  list,  this

result would be {{1, 2}, {2, 1},  {3, 1}, {4, 2}, {5, 1}, {3, 1}, {2, 2}, {7, 2}, {8,
2}, {9, 2}, {1, 3}}. 

In the first step, we convert every element of the given list to the form {element, 1}. Note the use of ReplaceAll. 

{1, 1, 2, 3, 4, 4, 5, 3, 2, 2, 7, 7, 8, 8, 9, 9, 1, 1, 1} /.
                                         {a_Integer -> {a, 1}}

In the second step, we make use of the fact that …, {{element1, number1}, {element1, number2}, …} has to
be replaced by …,{element1, number1 + number2}, …. 

Using //.,  we do  this  until  nothing  more changes.  The a___  at  the  beginning  and the  c___  at  the  end  are  needed
because something may be there. 

% //. {a___, {b_, i_}, {b_, j_}, c___} -> {a, {b, i + j}, c}

We now combine these processes. 

RunEncode[list_List] := ((list /. {a_Integer -> {a, 1}}) //.
       {a___, {b_, i_}, {b_, j_}, c___} -> {a, {b, i + j}, c})

As the next example shows, this procedure works. 
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RunEncode[{1,
           2, 2,
           3, 3, 3,
           4, 4, 4, 4,
           5, 5, 5, 5, 5,
           6, 6, 6, 6, 6, 6,
           7, 7, 7, 7, 7, 7, 7,
           8, 8, 8, 8, 8, 8, 8, 8,
           9, 9, 9, 9, 9, 9, 9, 9, 9,
           8, 8, 8, 8, 8, 8, 8, 8,
           7, 7, 7, 7, 7, 7, 7,
           6, 6, 6, 6, 6, 6,
           5, 5, 5, 5, 5,
           4, 4, 4, 4,
           3, 3, 3,
           2, 2,
           1}]

To see in detail how Mathematica  tries to match the pattern, we insert a Print command on the right-hand side with
the new expression. Here, we do this process only in the second step because the first one is trivial. 

(* auxiliary functions for formatting the print statements *)
toString[] = "_";
toString[s_] := ToString[s];
toString[s__] := StringJoin[ToString /@ {s}];

(({1, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4} /.
                       {a_Integer -> {a, 1}}) //.
 ({a___, {b_, i_}, {b_, j_}, c___}) :>
               (Print[" a  " <> toString[a] <> 
                      " b  " <> toString[b] <>
                      " c  " <> toString[c] <>
                      " i  " <> toString[i] <>
                      " j  " <> toString[j]]; {a, {b, i + j}, c}))

Although our implementation is already short, it can be made even shorter; see [149÷]. Using the function Split (to
be discussed in the next chapter), we could implement the function RunEncode shortly and efficiently in the following
manner.

RunEncode[list_List] := {First[#], Length[#]}& /@ Split[list]

RunEncode[{1, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4}]

RulesToCycles

The  so-called  RulesToCycles  problem  [83÷]  involves  reordering  a  list  of  permutations  into  separate  cycles.  For
example, consider the list {1 -> 1, 2 -> 5, 5 -> 3, 3 -> 2, 4 -> 4, 7 -> 8, 9 -> 9, 8 ->
7}. 

Then the result should be {{1}, {2, 5, 3}, {4}, {7, 8}, {9}}.

In the first step, we rewrite all rules in lists. 

{1 -> 1, 2 -> 5, 5 -> 3, 3 -> 2, 4 -> 4, 7 -> 8, 9 -> 9, 8 -> 7} /.
                                                (a_ -> b_) -> {a, b}

In the second step, we join all of the resulting sublists that belong together into larger sublists (here, we have to work
with ReplaceRepeated, to find all possibilities). Note that new elements can be added at the beginning as well as at
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the end of the resulting lists. 
% //. {{a___, {b__, c_}, d___, {c_, e__}, f___} -> {a, {b, c, e}, d, f},
       {a___, {b_, c__}, d___, {e__, b_}, f___} -> {a, {b, c}, d, f}}

In the third and last step, we remove each of the last arguments, because they now appear twice. 

% /. {a_, b___, a_} -> {a, b}

Again, we combine the substitutions all into one routine. 

RulesToCycles[l_List] := l /. (a_ -> b_) -> {a, b} //.
{{a___, {b__, c_}, d___, {c_, e___}, f___} -> {a, {b, c, e}, d, f},
 {a___, {b_, c__}, d___, {e__, b_}, f___} -> {a, {b, c}, d, f}} /.
                                             {a_, b___, a_} -> {a, b}

It works as expected. 

RulesToCycles[{1 -> 2, 2 -> 3, 11 -> 11, 3 -> 4, 4 -> 1,
               9 -> 8, 8 -> 7, 7 -> 6, 6 -> 9}]

We could now go on and add a check for sensible input to RulesToCycles. A possibility of such a check is Rules
ToCycles[l:{__Rule}  /;  Sort[Map[First,  l]]  ===  Sort[Map[Last,  l]]]  :=…;  we  will
discuss the functions Sort and Map in the next chapter.

SortComplexNumbers

Next,  we  look  at  a  sorting  problem.  (It  could  be  easily  solved  with  the  command  Sort  to  be  discussed  in  the  next
chapter,  but  here  we  want  to  solve  it  using  pattern-matching  techniques.)  The  problem  is  to  sort  a  list  of  complex
numbers in increasing order according to their real parts, and for numbers with the same real part, in decreasing order
according  to  their  imaginary  parts.  Thus,  {2 + 5 I, 5,  -8  I, -4 I, 4, 2  + 10 I}  should  become
{-4I, -8 I, 2 + 10 I, 2 + 5 I, 4, 5}. 

In the first step, we sort according to increasing real parts. 
{2 + 5 I, 5, -8 I, -4 I, 4, 2 + 10 I} //.
     {a___, b_, c___, d_, e___} :> {a, d, c, b, e} /; Re[d] < Re[b]

In the second step, we sort according to decreasing imaginary parts for numbers with the same real part. 

% //. {a___, b_, c___, d_, e___} :>
      {a, d, c, b, e} /; (Re[b] == Re[d] && Im[d] > Im[b])

Note the parentheses used the replacement rules around Condition[...]. 

Clear[beforehand, afterward, condition];
FullForm[beforehand :> afterward /; condition]

Thus,  the  condition  is  first  checked  for  the  right-hand  side  of  the  replacement  rule.  We  again  combine  and  test  the
resulting function. 

SortComplexNumbers[l_List] := l //.
{a___, b_, c___, d_, e___} :> {a, d, c, b, e} /; Re[d] < Re[b] //.
{a___, b_, c___, d_, e___} :> {a, d, c, b, e} /; 
                                       (Re[b] == Re[d] && Im[d] > Im[b])

SortComplexNumbers[{11 + I, 11 - I, 10, 9, 8, 7, 6 + I,
                     6 + 2 I, 6 + 3 I, 6 + 4 I}]

With a similar trick as above, we can again learn something about the “comparison strategy” used by Mathematica. On
the  right-hand  side  of  RuleDelayed,  we  create  lists  lre  and  lim  in  which  we store  the  pairs  being  compared by
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Mathematica.  The  command AppendTo  is  discussed  in  the  next  chapter;  it  appends  its  second  argument  to  its  first,
which is a symbol set to a list. 

SortComplexNumbersWithInfo[l_List] :=
(lre = {}; lim = {}; l //.
{a___, b_, c___, d_, e___} :> {a, d, c, b, e} /;
                   (AppendTo[lre, {b, d}]; Re[d] < Re[b]) //.
    {a___, b_, c___, d_, e___} :> {a, d, c, b, e} /;
                   (AppendTo[lim, {b, d}]; 
                    Re[b] == Re[d] && Im[d] > Im[b]))

Note that  in an expression of  the form expr1; expr2; …; exprn,  only the last  expression exprn  is the result  that is

returned.
SortComplexNumbersWithInfo[{9, 8, 7, 6 + I, 6 + 2 I, 6 + 3 I}]

To sort the above five numbers into the desired order, a large number of comparisons are required. 

lre // Short[#, 8]&

Length[%]

lim

Length[%]

Maxima

Here is the so-called maxima problem (proposed by R. Gaylord).  Given a list  of positive integers,  make a new list of
those  numbers  in  the  original  list  (in  their  original  order)  that  are  greater  than  all  of  their  predecessors.  Thus,  for
example, starting with the list {3, 2, 8, 1, 10}, Maxima[{3, 2, 8, 1, 10}] should give the result {3,
8, 10}. 

The solution of this problem is very simple if we use ReplaceRepeated along with BlankNullSequence. 

Maxima[l_List] := l //. ({a___, x_, y_, c___} /; y <= x) -> {a, x, c}

Here is an example. 

Maxima[{1, 2, 3, 2, 1, 5, 3, 2, 8, 0, 0, 1, 23}]

Observe again the use of Condition in the first argument of Rule. 

Unevaluated[({a___, x_, y_, c___} /; y <= x) -> {a, x, c}] // FullForm

Alternatively, the following code also works. 

Maxima[l_List] := l //. {a___, x_, y_, c___} :> ({a, x, c} /; y <= x)

Maxima[{1, 2, 3, 2, 1, 5, 3, 2, 8, 0, 0, 1, 23}]
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Splitting

The split problem [103÷] involves dividing a given list of objects into smaller lists whose lengths are prescribed by a
second list. For example, given the list of objects {a, b, c, 1, 2, 3, {}, {{}}} and the list of lengths {3,
0, 3, 2},  the  result  of  Splitting[{a, b, c, 1, 2, 3, {}, {{}}}, {3, 0, 3, 2}]  should  be
{{a, b, c}, {}, {1, 2, 3}, {{}, {{}}}}. That is, a 0 in the list of lengths corresponds to an empty set.
First, we program the construction of one step in the computation of the new list. For this reason, we combine the list to
be  constructed,  the  list  to  be  divided,  and  the  list  of  lengths  together  into  one  new list,  and  then  apply  the  following
replacement rule. 

{{a1___}, {a2___, b2___}, {a3_, b3___}} :>
         {{a1, {a2}}, {b2}, {b3}} /; Length[{a2}] == a3

Applying this rule takes a3 elements from the list {a2…} to be divided, and adds them at the end of the list {a1…}

to be constructed. In addition, these elements are removed from the second list along with the corresponding number in
the third list. We now look at two steps of how this process works in our example. 

{{}, {a, b, c, 1, 2, 3, {}, {{}}}, {3, 0, 3, 2}} /.
        {{a1___}, {a2___, b2___}, {a3_, b3___}} :>
                  {{a1, {a2}}, {b2}, {b3}} /; Length[{a2}] == a3

% /. {{a1___}, {a2___, b2___}, {a3_, b3___}} :>
          {{a1, {a2}}, {b2}, {b3}} /; Length[{a2}] == a3

Using ReplaceRepeated, we repeat this process until it stops naturally. 

{{}, {a, b, c, 1, 2, 3, {}, {{}}}, {3, 0, 3, 2}} //.
      {{a1___}, {a2___, b2___}, {a3_, b3___}} :>
            {{a1, {a2}}, {b2}, {b3}} /; Length[{a2}] == a3

It remains only to remove the empty lists in the second and third places. (Here, we could of course use Part[…, 1]

instead of applying a rule for doing this job.)
% /. {l_, {}, {}} -> l

Combining the above steps, we get the following program. 

Splitting[list_, s_] := ({{}, list, s} //. {{a1___}, {a2___, b2___},
                          {a3_, b3___}} :> {{a1, {a2}}, {b2}, {b3}} /;
                              Length[{a2}] == a3) /. {l_, {}, {}} -> l

We give one final example. 

Splitting[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, E^E},
          {0, 0, 0, 1, 2, 2, 3, 3, 4, 1, 0, 0}]

House of the Nikolaus

How many possibilities exist to draw the little house below in one stroke starting from the point A and not traversing
any  line  twice?  (The  graphic  comes  from  the  German  children’s  rhyme  “Das—ist—das—Haus—vom—Ni—ko—
laus”.)
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Our drawing stroke will be of the form Line[ stroke1, stroke2, …]. The used strokes and the unused strokes we will
collect in a list {alreadyDrawn, stillNotDrawn}. The next stroke to be drawn must start at the ending point of the last
stroke.  The following  rules  implement this  property.  By using the  pattern {u___, y_, v___},  we can use unori-
ented stillNotDrawn line segments.

addLineRule = {Line[begin___, {x__, y_}], 
               {α___, Line[{u___, y_, v___}], γ___}} :>
               {Line[begin, {x, y}, {y, u, v}] , {α, γ}};

We have three possibilities to  start from the point A. Either the stroke AB or the stroke AC or the stroke AD. Let us
have a look at the house starting with the stroke AD.

startConfiguration1 = {Line[{a, d}],
 {Line[{a, b}], Line[{a, c}], Line[{d, c}], Line[{b, c}], 
  Line[{b, d}], Line[{d, e}], Line[{e, c}]}};

Applying the rule addLineRule one time results in the double stroke ADC. 

startConfiguration1 /. addLineRule

Because we are interested in all possible ways to draw the little house, we use ReplaceList. For the second stroke
(starting from the point D), we have three possibilities.

 ReplaceList[startConfiguration1, addLineRule]

Now,  we  just  repeat  the  application  of  the  rule  addLineRule  with  a  ReplaceList  until  all  line  segments  are
drawn. The following Nest implements this process.

Nest[(# /. {Line[a___], b_} :>
     ReplaceList[{Line[a], b}, addLineRule])&, startConfiguration1, 
     (* use all remaining seven line segments *) 7]

Removing the unnecessary list brackets from the last results gives the following 16 possibilities to draw the house when
starting with the stroke AD.

res1 = Level[%, {-3}] //. (* remove {{}} *) {{}} :> Sequence[]

Length[res1]

In a similar way, we can now calculate the 12 possible ways to start with the stroke AB.

startConfiguration2 =
{Line[{a, b}],
 {Line[{a, d}], Line[{a, c}], Line[{d, c}], Line[{b, c}], 
  Line[{b, d}], Line[{d, e}], Line[{e, c}]}};

res2 = Nest[(# /. {Line[a___], b_} :>
                  ReplaceList[{Line[a], b}, addLineRule])&,
            startConfiguration2, 7] // Level[#, {-3}]&

And finally, we have again 16 possibilities to start with the stroke AC.
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startConfiguration3 =
{Line[{a, c}],
 {Line[{a, d}], Line[{a, b}], Line[{d, c}], Line[{b, c}], 
  Line[{b, d}], Line[{d, e}], Line[{e, c}]}};

res3 = (Nest[(# /. {Line[a___], b_} :>
                   ReplaceList[{Line[a], b}, addLineRule])&,
             startConfiguration3, 7] // Level[#, {-3}]&) //. 
                                          {{}} :> Sequence[]

So, we end up with 44 different possibilities.

allPossibilities = 
(* unite the three lists *)
First[{{}, {res1, res2, res3}} //.
        {{l___}, {α___, {a___, b_Line, c___}, β___}} :>
        {{l, b}, {α, {a, c}, β}}] (* eliminate doubles *) //. 
   {α___, l_, β___, l_, γ___} :> {α, l, β, γ};

Length[allPossibilities]

Interestingly, the last stroke always ends at the point B.

allPossibilities[[All, -1, -1]]

To see the 44 different possible ways to draw the house of the Nikolaus, we color the stroke continuously as it goes on
(we start with red and end with red). The function drawColoredHouse implements this process.

drawColoredHouse[Line[l__]] := 
Block[{a = {0, 0}, b = {1, 0}, c = {1, 1}, 
       d = {0, 1}, e = {1/2, 3/2}, n = 30},
     MapIndexed[{Hue[#2[[1]]/(8n)], Line[#1]}&,
    Partition[ Flatten[Table[#[[1]] + k/n(#[[2]] - #[[1]]), 
              {k, 0, n}]& /@ {l}, 1], 2, 1]]]            

Here are the 44 different houses.

Show[GraphicsArray[Partition[
Graphics[drawColoredHouse[#], PlotRange -> All,  
         AspectRatio -> Automatic]& /@ allPossibilities, 11]]]

At the end of this subsection, let us once again stress that the use of patterns and replacement rules is a very convenient
way to treat complicated patterns. For simple iterative problems, Nest-like constructions are typically much faster. Let
us study one example,  so-called polypaths [27÷],  [45÷].  The idea is to take a trapezoidal  quadrilateral  and repeatedly
fold  it  along  its  diagonal.  A  polypath  is  then  the  set  of  the  edges  of  the  quadrilateral  depending  on  the  number of
foldings.  We describe the  coordinates  of  the polygon  vertices 8x, y<  and use complex numbers of  the form x + i y  for
compact notation. 

Let this be our starting quadrilateral. 
start = {0.45965 I, 1.00624 + 0.53158 I, 
         1.00624 - 0.53158 I, -0.45965 I};

The process of folding means to transform Hp, q, r, sL into q, r, s, Hs - qL Hp - qL ê Hs - qL + q (see [27÷] for details). Here
is a replacement rule that does this procedure repeatedly. 

pointRule = {a___, b:{p_, q_, r_, s_}} :>
({a, b, {q, r, s, Conjugate[(p - q)/(s - q)](s - q) + q}} /;
                                          Length[{a}] < 1000);

Now let us do 1000 foldings and measure the time used by ReplaceRepeated. 
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({start} //. pointRule); // Timing

The next approach we use is a recursive function definition. 

Clear[f]

f[{a___, b:{p_, q_, r_, s_}}] :=
      (f[{a, b, {q, r, s, Conjugate[(p - q)/(s - q)](s - q) + q}}] /;
                                                  Length[{a}] < 1000);

f[l_?(Length[#] > 1000&)] = l;

The last stopping rule is only applied when the first rule does not match. We see this fact by looking at the ordering of
the above two definitions in DownValues. 

??f

Here again is the time needed to do 1000 foldings. 

f[{start}]; // Timing

The next  approach  we study here is  the  definition of  a function f  that  just  folds one time, and this  definition is used
repeatedly by NestList. Now, we can use an easier pattern; exactly one element has to be matched every time. 

f[{p_, q_, r_, s_}] := {q, r, s, Conjugate[(p - q)/(s - q)](s - q) + q};

This approach is much faster. 

NestList[f, start, 1000]; // Timing

The last method of folding is conceptually the same as the others, but now we use a pure function instead of f. 

NestList[{#2, #3, #4, Conjugate[(#1 - #2)/(#4 - #2)]
          (#4 - #2) + #2}&[Sequence @@ #]&, start,
         1000]; // Timing

Using the command Apply (to be discussed in the next chapter), the last variant can be slightly shortened. 

NestList[{#2, #3, #4, Conjugate[(#1 - #2)/(#4 - #2)]
          (#4 - #2) + #2}& @@ #&, start, 1000]; // Timing

Using compilation (to be discussed in detail in Chapter 1 of the Numerics volume [139÷]), the last variant can still be
made faster by about a factor of 10.

cf = Compile[{{s, _Complex, 1}, {n, _Integer}},
             NestList[{#[[2]], #[[3]], #[[4]], 
                       Conjugate[(#[[1]] - #[[2]])/(#[[4]] - #[[2]])]
             (#[[4]] - #[[2]]) + #[[2]]}&, s, n]] 

Timing[(* do 100 times *) Do[cf[start, 1000], {100}]]

Here is an example of how the folding looks after 10000 turns. 

Show[Graphics[{PointSize[0.004], Map[Point[{Re[#], Im[#]}]&,
     cf[start, 10000], {2}]}], AspectRatio -> Automatic]

Depending on the starting polygon, polypaths can show an unexpected variety of shapes. The following graphics show
some of the possible shapes.
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With[{o = 2 10^4},
Show[GraphicsArray[Apply[Graphics[{PointSize[0.004], 
       MapIndexed[{Hue[#2[[1]]/o], #1}&, Map[Point[{Re[#], Im[#]}]&,
                  cf[{#1, #2, Conjugate[#2], -#1}, o], {2}]]}, 
             AspectRatio -> 1, PlotRange -> All]&, #, {1}]]]& /@ 
 Partition[(* polygon data *)
{{0.827238 I, 0.904941 + 0.605458 I}, {0.684092 I, 0.336662 + 0.054269 I},
 {0.240041 I, 0.362625 + 0.983340 I}, {0.354225 I, 0.808103 + 0.310474 I},
 {0.807148 I, 0.802408 + 0.163400 I}, {0.245298 I, 0.924847 + 0.198034 I},
 {0.252427 I, 0.866921 + 0.743293 I}, {0.263133 I, 0.942035 + 0.209090 I},
 {0.379324 I, 0.966640 + 0.411363 I}}, 3]]

After having discussed patterns and replacement rules, we will relax for a minute and enjoy a little animation. We take
a parametrized polygon with vertices 9A, x B, x B, A= and visualize the polypath as a function of x. The lengths of the x-

ranges of the animations are between 0.15 and 0.016.

picture[x_, color_, points_:1000] := 
Graphics[{PointSize[0.003], color, Map[Point[{Re[#], Im[#]}]&,
          cf[{0.25649382714 I, x (0.4429289741158 + 0.1591829440563 I), 
              x (0.44292897411 - 0.1591829440563 I), -0.256493827140 I}, 
             points], {2}]}, AspectRatio -> 1, PlotRange -> All]

With[{frames = 5},
Do[Show[GraphicsArray[
     {{picture[0.840 + k/frames 0.1500, Hue[0.00], 10000],
       picture[0.862 + k/frames 0.0060, Hue[0.12], 10000],
       picture[0.949 + k/frames 0.0020, Hue[0.22], 10000],
       picture[0.962 + k/frames 0.0016, Hue[0.76], 10000]}}]], 
   {k, 0, frames}]]

Make Input     Show Animation

With[{frames = 90},
Do[Show[GraphicsArray[
     {{picture[0.840 + k/frames 0.1500, Hue[0.00], 10000],
       picture[0.862 + k/frames 0.0060, Hue[0.12], 10000]},
      {picture[0.949 + k/frames 0.0020, Hue[0.22], 10000],
       picture[0.962 + k/frames 0.0016, Hue[0.76], 10000]}}]], 
   {k, 0, frames}]]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

5.4 String Patterns
In  the  last  sections,  we  discussed  in  detail  pattern-matching  related  issues  for  expressions.  Frequently  one  has  to
analyze,  transform,  and  build  strings  whose  elements  do  not  correspond  to  Mathematica  expressions.  Most  of  the
pattern  matching  related  functions  discussed  in  this  chapter  have  an  equivalent  for  strings.  We  will  discuss  the  most
important  string  matching  functions  here;  for  a  complete  discussion,  see  the  Advanced  Documentation  in  the  help
browser.

A string in Mathematica is enclosed in quotes. Patterns are not part of a string, but of a StringExpression. 
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StringExpression[stringsAndPatterns]

represents a string for pattern matching purposes.

Here is a simple example. The first element of the string expression se1 is the string "1" and the second is the integer
2.  In  output,  string  expressions  are  displayed  in  infix  form  using  ~~.  This  means  a  string  expression  is  a  symbolic
concatenation of explicit strings and patterns representing strings (that potentially have restrictions on their form).

se1 = StringExpression["1", 2]

If consecutive elements in a string expression are strings, then they are automatically concatenated to one string. Here is
an example of this situation.

StringExpression["1", "2", 3] // InputForm

In  analogy  to  the  meaning of  Blank*[]  for  expression  patterns,  the patterns  _,  __,  and ___  in  a  string  expression
stand for one characters, a sequence of one or more characters, and a sequence of zero or more characters. Also, their
names equivalents  like  x:_,  repetitions  pattern..,  and  pattern...  are  recognized  in  string  expressions  as  the  corre-
sponding patterns.

We now have a look at all built-in functions having the name String… and having nonstring analog. Here is a list of
these functions.

stringFunctions = ToExpression /@ 
 Select[Names["String*"], MemberQ[Names["*"], StringDrop[#, 6]]&]

To find out if a given string matches a given pattern, the function StringMatchQ can be used.

 

StringMatchQ[string, stringExpressionOrString]

gives True if the string expression matches the pattern represented by stringExpressionOrÖ
String and False otherwise.

Here are two examples. The string "123456789" starts with "1", ends with "9", and has one or more characters in
between.

StringMatchQ["123456789", "1" ~~ __ ~~ "9"]

The same string does not match the pattern "1" ~~ _ ~~ _ ~~ "9" because it allows for two in-between charac-
ters only.

StringMatchQ["123456789", "1" ~~ _ ~~ _ ~~ "9"]

Here are some possibilities to match any string of length two or larger.

StringMatchQ["abc", StringExpression[__]]

StringMatchQ["abc", StringExpression[_ ..]]

StringMatchQ["abc", StringExpression[_ | __]]

StringMatchQ["abc", StringExpression[_ | __]]

The second *Q function that operates on strings is StringFreeQ.

 

StringFreeQ[string, stringExpressionOrString]

gives True if the string expression does not contain the pattern represented by stringExpresÖ
sionOrString and False otherwise.
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The substring "ab" does not appear in the following string.

StringFreeQ["this string is free of what?", "ab"]

The position of a given substring can be determined with the function StringPosition.

 

StringPosition[string, stringExpressionOrString]

returns the character positions of realizations of the string pattern stringExpressionOrString in 
the string string.

The function StringPosition returns a list of lists. The sublist indicates the character positions of the first and the
last characters that match.

StringPosition["12345678987654321", "7"]

The next input determines the string position of a substring that begins with the substring "1" and is followed by at least
one more character. 

StringPosition["12345678987654321", "12" ~~ __]

The  last  call  to  StringPosition  returned  the  whole  string—the  longest  possible  match.  To  obtain  the  shortest
possible match, we can use the function ShortestMatch.

 

ShortestMatch[stringExpressionOrString]

represents in string matching functions the shortest match for the string pattern stringExpresÖ
sionOrString (in the string).

LongestMatch[stringExpressionOrString]

represents in string matching functions the longest match for the string pattern stringExpressionÖ
OrString (in the string).

Now, we obtain the positions of the first three characters—the shortest possible match.

StringPosition["12345678987654321", ShortestMatch["12" ~~ __]]

Many of the string-analyzing and -manipulating functions have options. Here are all of the options.

Union[Flatten[(First /@ Options[#])& /@ stringFunctions]]

For  many  string-matching  operations,  the  most  important  of  these  options  is  Overlaps.  This  option  can  be  set  to
True, False, and All. In the first case, one overlap between successive matches is possible, in the second none, and
for the All option setting all possible string pattern realizations are taken into account.

This  means,  that  for  the  following  example  of  a  character  followed  by  one  or  more  character,  followed  by  another
character, we have 5, 15, and 120 possible matches.

StringPosition["12345678987654321", ShortestMatch[_ ~~ __ ~~ _], 
               Overlaps -> False]

StringPosition["12345678987654321", ShortestMatch[_ ~~ __ ~~ _], 
               Overlaps -> True]

StringPosition["12345678987654321", ShortestMatch[_ ~~ __ ~~ _], 
               Overlaps -> All]

Next, we use the function Import to load the Amazon web pages for this book from Amazon Germany and Amazon
France (in the URL, the book is identified by the ISBN number).

THE MATHEMATICA GUIDEBOOKS to PROGRAMMING—GRAPHICS—NUMERICS—SYMBOLICS 83

©  2004, 2005   Springer Science+Business Media, Inc.



(* import German page *)
imD = Import["http://www.amazon.de/exec/obidos/ASIN/0387942823", "Text"]; 

(* import French page *)
imF = Import["http://www.amazon.fr/exec/obidos/ASIN/0387942823", "Text"]; 

(*
(* import British page *)
 imGB = Import["http://www.amazon.co.uk/exec/obidos/ASIN/0387942823", "Text"]; 
*)

We locate for the shortest phrases of the form "Preis … EUR" and "Notre prix … EUR" or similar.

{(* German phrase *)
 Select[StringPosition[imD, ShortestMatch["EUR"]],
        (Abs[Subtract @@ #] < 50)&, 1],
 (* French phrase *)
 Select[StringPosition[imF, ShortestMatch["EUR"]],
        (Abs[Subtract @@ #] < 50)&, 1]}

Here are the extracted phrases. We see some HTML formatting and the price of the book.

{StringTake[imD, %[[1, 1]] + {-6, 6}], 
 StringTake[imF, %[[2, 1]] + {-6, 6}]}

We can count substrings using the function StringCount.

 

StringCount[string, stringExpressionOrString]

returns the number of occurrences of realizations of the string pattern stringExpressionOrÖ
String in the string string.

Here is a long string of the digits 1 to 9.

longString[n_] := longString[n] =
  StringJoin @ Table[ToString[IntegerPart[(9 Abs[Sin[k]])] + 1], {k, n}];

Here are the first and last digits of this string for n = 104.
Short[longString[10^4], 12]

Here we count how often the digits 1 to 9 occur in the string longString.

Function[n, {n, StringCount[longString[10^4], n]}, {Listable}][
                         {"1", "2", "3", "4", "5", "6", "7", "8", "9"}]

Function[n, {n, StringCount[longString[10^4], n ~~ __ ~~ n,
                            Overlaps -> All]}, {Listable}][
                         {"1", "2", "3", "4", "5", "6", "7", "8", "9"}]

The equivalent function to Replace for strings is StringReplace.

 

StringReplace[string, replacementRule]

replaces the substrings matching the first argument of replacementRule with its second 
argument in the string string.

In the next input,  we replace all occurrences of any character followed by the character "1"  with two copies of these
two characters.
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StringReplace["a1b1c1d1e1f1", ξ:(_ ~~ "1") :> (ξ <> ξ)]
              

In the next input, the first character must be "a" or "f".

StringReplace["a1b1c1d1e1f1", ξ:(("a" | "f") ~~ "1") :> (ξ <> ξ)]

The next input imports the web page with additional materials from the GuideBook’s home page.

guideBookAdditionPage = 
     Import["http://mathematicaguidebooks.org/additions.shtml", "Text"];
     
Short[guideBookAdditionPage, 16]     

And the next input extracts the titles of all downloadable notebooks.

(* remove the html formatting *)
Function[s, StringReplace[s, {"title\"> " -> "", "\n" -> ""}], 
       {Listable}][(* extract text lines with titles *)
                   StringCases[guideBookAdditionPage, 
                               ShortestMatch["title\">" ~~ __ ~~ "\n"]]]

StringReplace does carry out one possible replacement and returns the new string. A list of all strings that one can
obtain through a specified replacement is returned by StringReplaceList.

 

StringReplaceList[string, replacementRule]

gives a list of all strings that can be obtained by applying the rule to the string string.

There are 55 possibilities to replace one or more consecutive characters in the 9-character string "123456789".

StringReplaceList["123456789", x:___ :> "X"]

Using  a  longer  string  and  carrying  out  the  same  replacement  as  in  the  last  input,  gives  (of  course)  more  potential
matches.

StringReplaceList[longString[100], x:___ :> "X"] // Length

We end with a small application. The following input generates a list of all the main chapter notebooks of The Mathe-
matica Book (excluding the reference guide and the index) that are visible in the help browser.

(* all files in the Mathematica directory *)
allMathematicaBookFiles = 
   Select[FileNames["*", $InstallationDirectory, Infinity],  
          (StringMatchQ[#, "*MainBook*"] && 
           MatchQ[StringTake[#, {-7, -6}], "0_" | "1_" | "2_" | "3_"])&];
           
(* number of files *)
λ = Length[allMathematicaBookFiles]

By  removing  all  formatting  information  (for  font  changes),  deleting  all  graphics,  and  by  replacing  all  mathematical
typesetting by the string " ", we obtain one string of the whole book.
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mathematicaBookText = 
Module[{nb, text}, 
StringJoin @ Flatten[Table[
  nb = Get[allMathematicaBookFiles[[k]]];
  text = Flatten[
  Flatten[nb[[1]] //. Cell[CellGroupData[l__, _], ___] :> l] //.
                 StyleBox[c_, _] :> c //. 
                 Cell[TextData[l_], ___] :> l //. 
                 BoxData[f_] :> " " //. ButtonBox[c_, __] :> c //.
                 OutputFormData[c_] :> c //.
                 _GraphicsData :> {} //. Cell[c_, __] :> c], {k, λ}]]];

The resulting string has more than one million characters.

μ = StringLength[mathematicaBookText]

The next input counts the number of occurrences of three strings.

Function[word, {word, StringCount[mathematicaBookText, word]},
         Listable][{"The " | " the ", "Mathematica ", " set up "}]

We convert all upper-case letters and to lower case letters.

mathematicaBookTextLC = ToLowerCase[mathematicaBookText];

Next, we determine the positions pkHletterL Hk = 1, 2, …, qHletterLL of the of the 26 letters "a", "b", …, "z".

allLCLetters = Characters["abcdefghijklmnopqrstuvwxyz"]

letterPositions =
Function[letter, (First /@ #)& @ 
             StringPosition[mathematicaBookTextLC, letter],
          {Listable}] @ allLCLetters;

The next graphic shows pkHletterL ê m - k êqHletterL  as a function of pkHletterL.  We see quite visible deviations from the
average value 1.

Show[Graphics[{Thickness[0.002],
       Table[{Hue[(k - 1)/32], 
              Line[MapIndexed[{#1, #1/μ -
                               #2[[1]]/Length[letterPositions[[k]]]}&,
                             letterPositions[[k]]]]}, {k, 26}]}],
     PlotRange -> All, Frame -> True];

We end with determining the frequency of all pairs of letters.

doubleLetterCounts = 
Map[StringCount[mathematicaBookTextLC, #]&, 
    Outer[StringJoin, allLCLetters, allLCLetters], {2}];

Here are the resulting counts of letter pairs.

ListPlot3D[doubleLetterCounts, 
           Ticks -> {MapIndexed[{#2[[1]], #1}&, allLCLetters],  
                     MapIndexed[{#2[[1]], #1}&, allLCLetters], Automatic},
           PlotRange -> All]

Σ (* session summary *) TMGBs`PrintSessionSummary[]
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Overview

Get[ToFileName[ReplacePart[
            "FileName" /. NotebookInformation[EvaluationNotebook[]],
            "ChapterOverview.m", 2]]];

ChapterOverview["Programming", 5]

Exercises

  1.L1 myExpand

Write a function myExpand using Rule, which multiplies out polynomials and products. 

  2.L1 ReplaceAll versus ReplaceRepeated

Discuss the following replacements: 

replacement = {x + 1 -> px};

1 + x + 1/(1 + x) + (1 + x)^(1 + x) + f[1 + x] /. replacement

Plus[1 + x, 1/(1 + x), (1 + x)^(1 + x), f[1 + x]] /. replacement

1 + x + 1/(1 + x) + (1 + x)^(1 + x) + f[1 + x] //. replacement

plus[1 + x, 1/(1 + x), (1 + x)^(1 + x), f[1 + x]] /. replacement

Here, the function plus should have the same attributes as the function Plus. 

  3.L1 All Other Patterns with s, t, _, _, : 

Examine all  of  the  ways  of  creating  a  syntactically correct  Mathematica  expression  from s, t, _, _,  or  s, t,
_, _, :  using  at  most  two  blanks.  From  the  1440  possible  combinations,  about  two-thirds  as  many  syntactically
correct expressions exists, which reduce to about 8% different ones. An implementation of a program producing them is
given in the solution (its operation will become clear after the discussion in Chapter 6). 

  4.L1 cosHxLn Æ f HsinHxLL
Consider the following sum: 

cos HxL2 + cos HxL4 + cos HxL6 + cos HxL8 + cos HxL10 + cos HxL12 + cos HxL14 + cos HxL16

Express this sum using only sin HxLi. Use a rule-based approach.

  5.L1 a[a]

Examine the results of the following Mathematica inputs, and explain what happens. 
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a) Clear[a]; a = a

b) Clear[a]; a := a; a

c) Clear[a]; a[a_] = a; a[a]

d) Clear[a]; a[a_] := a; a[a]

e) Clear[a]; a = a == a; a

f) Clear[a]; a := a == a; a

g) Clear[a]; a := a == a; Unevaluated[a]

h) Clear[a]; a := a == a; Hold[a]

i) Clear[a]; a := Unevaluated[a] == Unevaluated[a]; a

j) Clear[a]; a := Unevaluated[a] == a; a

k) Remove[a, x, y, z, Aah]
  a/: b[x_][a] := Null /; (Clear[a]; b[y_][a][z_] = Aah[y, z]; False)
  b[a][a][a]

  6.L1 Extended Equal

Modify the built-in function Equal so that equations can be added, multiplied, and raised to given powers. In addition,
make it possible to add something to both sides or multiply both sides of an equation by a constant. 

  7.L2 Weights for Finite Differences

Finite difference methods [73÷] of  higher  order  provide an important alternative to the finite element method. To use
them,  we  need  corresponding  weights.  For  the  one-dimensional  case,  the  following  recurrence  formulas  hold  for  the
weights ci, j

k  of the nodes x j H j = 0, 1, …, nL in the approximation of a kth derivative with a total of i + 1 nodes. Here, x0

is the point at which the derivative is to be approximated: 

fHiL
HkLHxL•x=x0

º ‚
j=0

i+1

ci, j
k  f Ix jM

ci, j
k =

1

xi - x j
 Ixi ci-1, j

k - k ci-1, j
k-1 M , j = 0, 1, …, i - 1

ci,i
k =

wi-2Hxi-1L
wi-1HxiL

 Ik ci-1,i-1
k-1 - xi-1 ci-1,i-1

k M

wiHxL = ‰
j=0

i

Ix - x jM

(The order of the other nodes x j is arbitrary.)

Find the associated initial conditions for these recurrence formulas, and implement the computation of the ci, j
k . (For the

derivation of these recurrence formulas, see [49÷], [50÷], [133÷], [51÷], [134÷], [11÷], [125÷], [148÷], and [34÷].)

Use this finite difference approximation to calculate reliable values for the first 20 derivatives of z
`H1 ê2L.  Here, z

`HsL is
z
`HsL = s Hs - 1L p-sê2 GHs ê2L zHsL ê2  [92÷],  [18÷],  [107÷]  and  fulfills  the  functional  equation  z

`HsL = z
`H1 - sL.  In  the  last
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equation, GHsL is the Gamma function (in Mathematica Gamma[s]) and zHsL is the Riemann Zeta function (in Mathemat-
ica Zeta[s]). What is remarkable about these derivatives?

  8.L3 Operator Product, q-, h-Binomial Theorem, Ordered Derivative

a)  Define  a  function  operatorProduct  describing  the  noncommutative,  associative  multiplication  of  operators.
Suppose  the  operators  are  given  in  the  form  [operatorIndex].  All  quantities  that  do  not  depend  on  the  operators
(numbers, constants, variables) should be factored out (before computing the operator product). Implement the additiv-
ity and associativity and a way to multiply out positive integer powers of sums of operators. If the reader has an appropri-
ate application of such operator products, implement it also. 

b) The famous binomial theorem Hx + yLn = ‚
k=0

n

 
n
k  yk  xn-k  has two very interesting generalizations for noncommuting

x and y. In the case of x y = q y x Hq œ L [68÷], [17÷], the binomial theorem becomes the q-binomial theorem [131÷],
[46÷], [6÷], [130÷], [77÷], [79÷], [14÷], [122÷], [89÷], [3÷], [135÷], [31÷]

Hx + yLn = ‚
k=0

n n

k
q

 yk  xn-k

n

k q
= 

Hq; qLn

Hq; qLk  Hq; qLn-k

Ha; qLn = ‰
k=0

n-1

I1 - a qkM, a œ , n œ .

How often do the transformation rules in the transformation of Hx + yL10 to expanded form get applied?

In  the  case  of  x y = y x + h y2  Hh œ L,  the  generalization  of  the  binomial  theorem  is  the  h-binomial  theorem [12÷],
[63÷]

Hx + yLn = ‚
k=0

n

 
n
k  hk 1

h k
 yk  xn-k

HaLn = ‰
k=0

n-1

Ha + kL, a œ , n œ .

For 1 § n § 8, verify explicitly the q-binomial theorem and the h-binomial theorem by straightforward calculation.
(For the q-h-binomial theorem, see [13÷], and for other generalizations, see [97÷].)

The q-binomial coefficients A n
k E

q
 appear, for instance, when q-differentiating q-functions. If 

dq  f HxL
dq  x  is the q-derivative of

a function f HxL defined by [78÷], [42÷], [69÷], [41÷], [20÷], [82÷]
dq f HxL

dq x
=

f HxL - f Hq xL
H1 - qL x

(this derivative can be interpreted as a discrete derivative approximation after a change of variables [40÷]) and 
dq

n  f HxL
dq  xn

the nth q-derivative (
dq

1  f HxL
dq  x1 =

dq  f HxL
dq  x )
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dq
n f HxL
dq xn

=

dq 
dq

n-1  f HxL
dq  xn-1

dq x

then the following two identities hold:

dq
n f HxL gHxL

dq xn
= ‚

k=0

n n

k q
 
dq

n-k  f Iqk  xM
dq xn-k

 
dq

k  gHxL
dq xk

dq
n f HxL
dq xn

=
1

H1 - qLn xn
 ‚
k=0

n

H-1Lk n

k q
 q- Hk-1L kê2-Hn-kL k  f Ix qkM

Check these two identities for 0 § n § 10.

c) In [118÷] an “ordered derivative” of an operator product x` a1  x` a2  … x` an  with respect to a sequence of corresponding

classical  symbol  xb1  … xbm  has  been  defined.  The  x̀a  are  assumed to  be  noncommuting and  the  xa  to  be  commuting.

The “ordered derivative” d operatorProduct ê d classicalSymbols is defined in the following way:

d x̀a

d xb
=

1 if a = b
0 else

d x` a

d Ixb1  ∫ xbm M
= ‰

k=1

m d x` a

d xbk

d Ix` a1  ∫ x` an M
d Ixb1  ∫ xbm M

= ‚
k=0

m d Ix` a1  ∫ x` al M
d Ixb1  ∫ xbk M

 
d Ix` al+1  ∫ x` an M
d Ixbk+1  ∫ xbm M

where l in the last definition is an arbitrary integer between 1 and n - 1 (the results of the “ordered derivative” does not
depend on l). Implement a function that carries out the “ordered derivative”.

The  in the “ordered derivative” of

d Ix` a1  ∫ x` an M
d Ixb1  ∫ xbm M

=  productOfThexas

(productOfThex  is  proportional  to  the “ordinary  derivative” ∑ Ixa1 ∫ xan M ë ∑ Ixb1  ∫ xbm M  with all  products  of  the  same

symbol collapsed) counts how many possibilities exist to delete the string of xb1  ∫ xbm  from the string xa1  ∫ xan . (The

xb1  must appear in order, but not contiguously in xa1  ∫ xan .) Check this statement for

d Jx̀1 x̀2
2

 x̀3
3

 x̀4
4

 x̀5
5

 x̀6
4

 x̀7
3

 x̀8
2

 x̀9N
d Hx1 x2 x3 x4 x5 x6 x7 x8 x9L

.

d)  Let  AHtL  be  a  parametrized, nonsingular  n μ n  matrix.  Using ∑ IAHtL.AHtLH-1L - 1M ë ∑ t = 0  (0  being the n-dimensional

matrix  with  all  elements  being  0  and  1  being  the  n-dimensional  identity  matrix)  can  derive  the  expression

∑AHtLH-1L ë ∑ t = -AHtLH-1L. H∑AHtL ê ∑ tL.AHtLH-1L  for  the  derivative  of  the  inverse  matrix AHtLH-1L  (here  differentiation  with

respect  to  t  is  understood  componentwise).  Calculate the explicit  form of ∑5 IAHtLH-1LM5 í ∑ t5.  Simplify the result  when

all occurring matrices commute. Count how often the needed definitions are applied during the calculation.
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  9.L2 Patterns and Replacements

Program solutions to the following problems; base the programs on pattern matching and the use of replacement rules. 

a)  Given  a  list  of  elements  (some  of  which  may  appear  more  than  once),  construct  a  list  containing  all  (different)
permutations of the elements. 

b) Given a list of the form {integer, nZeros}, for example, {23, 0, 0, 0, 0, 0}, construct all lists of integers

ai Hi = 1, …, n + 1L (i.e., of the same length as the original list) with ⁄i=1
n+1 ai = integer (i.e., which have the same sum as

the original list). Put the ai in increasing order: ai § ai+1, Hi = 1, …, n - 1L.

c)  Given  lists  of  the  form  {0,  …,  0,  number1,  0,  …0,  number2,  …,  numbern,  0,  …0}  and
8newNumber1, …, newNumbern<, construct a new list from the first list by replacing numberi  by newNumberi  (i = 1, n)
8a1, a2, …, an-1, an<. (This problem was proposed by R. Gaylord.).

d) Given a list of positive integers, construct a list containing all pairs of numbers with no common factor.

e) Given a list of positive integers in decreasing order, construct the Ferrer conjugate of this list. The Ferrer conjugate is
defined in the following way [142÷], [33÷], [56÷], and [4÷]: Associate with the list {n1, n2, …, nk}  an array of
dots; n1 in the first row, n2 in the second, and so on. Then, the list of the lengths of the columns, starting from the left, is
the Ferrer conjugate. An example: the Ferrer conjugate of {5, 3, 2, 1} is {4, 3, 2, 1, 1} as can be seen by 

• • • • •
• • •
• •
•

10.L1 Hermite Polynomials, Peakons

a) The Hermite polynomials HnHxL satisfy the following identity: x HnHxL = Hn+1HxL ê2 + n Hn-1HxL, n œ .

Program  the  repeated  use  of  this  identity  in  terms  of  the  form  xm HnHxL  to  write  them  as  linear  combinations  of  the
Hermite polynomials without x-dependent prefactors. Make the program work for user-defined objects H[n, z]. (Do
not modify the built-in function HermiteH.)

b) Show that yHx, tL = c expH-†x - c t§L is a solution of the nonlinear Camasso–Holm partial differential equation [24÷],
[25÷], [86÷], [87÷], [64÷], [48÷], [85÷], [60÷], [36÷], [2÷], [37÷], [88÷]

∑ yHx, tL
∑ t

-
∑3 yHx, tL

∑ x3
+ 3 yHx, tL

∑ yHx, tL
∑ x

= 2
∑ yHx, tL

∑ x

∑2 yHx, tL
∑ x2

+
∑3 yHx, tL

∑ x2 ∑ t
+ yHx, tL

∑3 yHx, tL
∑ x3

.

11.L1 f[x___] := … 

What outputs correspond to the following inputs? 

a) f[x___] := x + 1
  f[]
  f[1, 2, 3]

b) f[x___] := x - 1
  f[]
  f[1, 2, 3]

c) f[x___] := Subtract[x, 1]
  f[]
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  f[1, 2, 3]

d) f /: HoldPattern[HoldPattern[Verbatim[HoldPattern[f]]]] := 4
  HoldPattern[f]

12.L1 Result and Error Messages

Predict the output and warning/ messages generated when evaluating the following:

{1, 2} //. {{x___, y___} :> ({x, Unique[c], y} /;
                               (Head[{x}[[-1]]] =!= Symbol &&
                                Head[{y}[[ 1]]] =!= Symbol))}

13.L1 Patterns 

a) Construct at least five different patterns that match integers greater than 1 and less than 9. 

b) To obtain the result {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}, identify which arguments must be given to
f, defined by 

f[Condition[Condition_, Condition; True],
  Optional[Blank_, Optional],
  Pattern[Pattern, Blank[Integer]],
  Four:(4 | 4.),
  PatternTest[Pattern[PatternTest, Blank[]], PatternTest; True&],
  Alternatives:Alternatives[Alternatives, 6],
  Flat_Flat,
  Stub:Blank[Orderless[OneIdentity]],
  HoldPattern_HoldPattern?(# === #&),
  HoldPattern[Set[3, 4]]] :=
      {Condition, Blank, Pattern, Four, PatternTest,
       Alternatives, Flat[[1]], Stub[[1]], 9, HoldPattern[[1]]}

c) What are the results of the following inputs? 

Remove[a]

SetAttributes[a, HoldAll]

f:a[a_] := Function[#, Hold[#], {HoldAll}][f]&[Unique[a]]

{a[a], a[b], a[2a], a[a + a]}

Remove[a]

SetAttributes[a, HoldAll]

f:a[a_] := Function[#, Hold[#], {HoldAll}][f]&[Unique["a"]]

{a[a], a[b], a[2a], a[a + a]}

d) What are the results of the following inputs? 

SetAttributes[AtomQ, HoldAll]
{AtomQ[1/2], AtomQ[1 + I]}
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e) What is the result of the following input? 

blank[Pattern[Blank, Blank[Blank]]] = Blank

blank[Blank[Blank]]

f) Predict the results and side effects of the following three inputs.

f1[x0_] := Block[{x = x0}, Print[C1]; x = x + 1; Print[C2] /; Positive[x]]

f1[-2]

f2[x0_] := Block[{x = x0}, ToExpression[
                 "Print[C1]; x = x + 1; Print[C2] /; Positive[x]"]]
                 
f2[-2]

f3[x0_] := Block[{x = x0}, (Print[C1]; x = x + 1; 
                            condition[Print[C2], Positive[x]]) /. 
                                                 condition -> Condition]
                                                 
f3[-2]

14.L1 Replacements

Explain what happens when evaluating the following expressions:
a) {1, 2, 3, 4, 5} //. {a__, b_, c_, d___} :>
                          If[b > 2, {b, c, d}, {a, b, c, d}]

b) {1, 2, 3, 4, 5} //. {a___, b_, c_, d___} :>
                          If[b > 2, {b, c, d}, {a, b, c, d}]

c) {1, 2, 3, 4, 5} //. {a__, b_, c_, d___} :> {b, c, d} /; b > 2

d) {1, 2, 3, 4, 5} //. {a___, b_, c_, d___} :> {b, c, d} /; b > 2

e) {1, 2, 3, 4, 5} //. (({a__, b_, c_, d___} /; b > 2) :> {b, c, d}/; b > 2)

f) {1, 2, 3, 4, 5} //. (({a___, b_, c_, d___} /; b > 2) :> {b, c, d}/; b > 2)

15.L1 Puzzles

a) What might have been the In[1] in the following example? 

In[2]:= a
Out[2]= True

In[3]:= And[a, a]
Out[3]= False

Give at least three different possibilities for In[1]. Find some solutions that do not involve unprotecting built-in functions.

b) Predict the result of the following input:

(Im[3 I] == 0) // Function[{x}, Block[{I}, x], {HoldAll}]

c) Predict the result of the following input:

Hold[With[{z = Abort[]}, z^2]] /. z_?Quit :> Quit[] 
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d) Have a look at:

On[]; 2/3 === Unevaluated[2/3]

We see there the line:

              2     2

SameQ::trace: - === - --> False.

              3     3

Explain this “surprising” printout! 

e) For which built-in symbols builtInSymbol does builtInSymbol == builtInSymbol not yield True? Why?

f) What will be the result of the following input?

([_?(# === _?#0&), C_ /; MatchQ[C, _ /; MatchQ[C, _]]] := ;
 [_?(# === _?#0&), C_ /; MatchQ[C, _ /; MatchQ[C, _]]])

g)  For many cases, IntegerQ[x] will return True or False.  Find three different values for x such that something
else is returned.

h) Evaluating f[a, b] after making the function definition

SetAttributes[f, {Flat, OneIdentity}]

f[ξ_] := ξ

leads to iteration errors. How can one change the definition f[ξ_] := ξ to prevent this problem?

i)  Let g,  h,  and i  in  the following  be all  possible  combinations of  HoldPattern  and Verbatim.  For  which of  the
eight possible combinations of g, h, and i does the input

f[g[h][x_]] := x; f[i[1]] 

return 1?

j) After defining f by

With[{a = x}, HoldPattern[f[y_, g[y_] = y^2]] := a]

find arguments, such that the definition for f will be used.

k) Predict the result of the following input.

Block[{Function}, (#&[2]) /. Function -> Print]

l) Predict the side effects of evaluating the following:

SetAttributes[{ , TagUnset, ToString}, HoldAllComplete]

[e_] := (e /: HoldPattern[ : _[___, e, ___]] := 
         (Print["Found: ", , " ", HoldForm[ ]]; 
          ToExpression[# <> " /: HoldPattern[ : _[___, " <> 
                       # <> ", ___]] =."]&[ToString[e]];
          [ , ]; ))
          
[ _, e_] := (  /: HoldPattern[ : _[___, e, ___]] := 

              (Print["Found: ", HoldForm[ ]]; 
               TagUnset @@ { , UpValues[ ][[1, 1, 1]]}; [ , ]; ))
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[x];

α[1, β[y], a[b[c[2, d[f[x], 1]]]]]

m)  A  bivariate  function  f Hx, yL  can  be  written  in  separated  form  f Hx, yL = jHxL fHyL  in  a  neighborhood  of  a  point
8x0, y0< if f Hx0, y0L ∫ 0 and [123÷], [94÷], [145÷], [120÷], [98÷]

f Hx, yL 
∑2 f Hx, yL

∑ x ∑ y
=

∑ f Hx, yL
∑ x

 
∑ f Hx, yL

∑ y
.

What  is  “wrong”  with  the  following  function  separableVariablesQ  that  checks  if  a  function  f  of  the  two vari-
ables x and y can be written in separated form?

separableVariablesQ[f_, {x_, y_}, {x0_, y0_}] := 
 (Simplify[f /. {x -> x0, y -> y0}] =!= 0) &&
  Simplify[f D[f, x, y] - D[f, x] D[f, y]] === 0

n) Predict the result of the following input.

SetAttributes[PrimeQ, HoldAll]

PrimeQ[2 + 3 I, {GaussianIntegers -> True}]

o) What might have been the In[1] in the following example? (No unprotecting of built-in symbols was involved.)

In[2]:={NumericQ[%], NumberQ[%], MemberQ[%, _?InexactNumberQ],
        StringLength[StringDrop[ToString[
                                DownValues[In][[$Line - 1]]], 22]],
        Context /@ Cases[%, _Symbol, {-1}, Heads -> True]}
Out[2]= {True, False, True, 9, {System`}}

p)  Construct  an  example  of  expressions  a  and  b  such  that  FreeQ[a, b]  yields  False  and  Position[a, b]
yields {}.

16.L1 Evaluation Sequence

Discuss the evaluation sequence in the following four examples:

(f[x_] := g) /; c

(f[x_] /; c) := g

(f[x_] := g /; c)

(f[x_ /; c] := g)

17.L1 Nested Scoping

Predict the results of the following inputs.

a) Clear[f]; f[x_] := Function[x, x]; f[y]

b) With[{x = z},Function[x, x]]

c) Function[x, x] /. x -> z

d) Clear[f]; Function[x, f[x_] := x^2][y]; DownValues[f]

e) Clear[f]; With[{x = y}, f[x_] := x^2]; DownValues[f]
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f) Function[y, Function[x, x + y]][x]

g) Clear[f]; f[y_] := Function[x, x + y]; f[x]

h) Clear[f]; 
  Module[{x, y, z = a}, f[x, y_, z] := Function[x, x + y + z]];
  DownValues[f]

i) Clear[f]; 
  With[{z = a},
  Module[{x, y}, f[x, y_, z] := Function[x, x + y + z]]];
  DownValues[f]

18.L1 Why {b,b}?

Explain why it might be possible to get the following behavior. (For reproducing this behavior, the reader might have to
redo the Table[a, {10000}] // Union line a few times until one get the result shown here.)

In[1]:=  a := b /; EvenQ[Last[Date[]]]

In[2]:=  Table[a, {10000}] // Union
Out[2]=  {b, b}

 

Solutions

  1. myExpand 

Here is a possible solution. 

myExpand[expression_?PolynomialQ] :=
expression //. {(* expand powers *)
                (a_ + b_)^c_Integer?(# > 1&) ->
                 a (a + b)^(c - 1) + b(a + b)^(c - 1),
                (* expand products *)
                (a_ + b_.)(c_ + d_) -> a c + b c + a d + b d}

Note the use of only one blank in the patterns. Because Plus has the attribute Flat, expressions of the form (a + b
+ c + d + … + p)^c are nevertheless recognized. Here is a simple example.

myExpand[(1 + 2x) (3x + 4x)^2 (1 - (2 x + 3)^2)^2]

Here are four more examples. 

myExpand[(3 + 5u) (6 + 9r)] == Expand[(3 + 5u) (6 + 9r)]

myExpand[(2 + 4x + 6x^2)^3] == Expand[(2 + 4x + 6x^2)^3]

(* or shorter, in one line: 
   myExpand[#] == Expand[#]&[((3 + 5u) (6 + 9r))^3 (a + h)^4] *)
myExpand[((3 + 5u) (6 + 9r))^3 (a + h)^4] ==
  Expand[((3 + 5u) (6 + 9r))^3 (a + h)^4]

myExpand[1 + (1 + (1 + (1 + ξ^2)^2)^2)^2] ==
  Expand[1 + (1 + (1 + (1 + ξ^2)^2)^2)^2]
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Σ (* session summary *) TMGBs`PrintSessionSummary[]

  2. ReplaceAll versus ReplaceRepeated  

Here is the replacement rule. 

replacement = {x + 1 -> px}

Despite ReplaceAll, “only” the first summand is replaced (we might expect five instances of px in the result). 

1 + x + 1/(1 + x) + (1 + x)^(1 + x) + f[1 + x] /. replacement

Here is the same thing written out. 

Plus[1 + x, 1/(1 + x), (1 + x)^(1 + x), f[1 + x]] /. replacement

Here is another plus, without attributes. Now, everything is replaced with ReplaceAll. 

plus[1 + x, 1/(1 + x), (1 + x)^(1 + x), f[1 + x]] /. replacement

Even with the attributes of Plus, the two functions plus and Plus do not behave in the same way. 

Attributes[Plus]

SetAttributes[plus, {Flat, Listable, NumericFunction, 
                     OneIdentity, Orderless}];
plus[1 + x, 1/(1 + x), (1 + x)^(1 + x), f[1 + x]] /. replacement

The reason that the replacement did not work is the internal structure of the following structure. 

1 + x + 1/(1 + x) + (1 + x)^(1 + x) + f[1 + x] // FullForm

The first x and the first 1 do not “belong together”. Combining them and replacing them is the job of ReplaceAll. In
f[Plus[1, x]], the subexpression 1 + x  forms one unit from the beginning. With ReplaceRepeated, every-
thing is replaced. 

1 + x + 1/(1 + x) + (1 + x)^(1 + x) + f[1 + x] //. replacement

Σ (* session summary *) TMGBs`PrintSessionSummary[]

  3. All Other Patterns with s, t, _, _, : 

If this code is evaluated, we get a list of lists, each with three elements. In the inner lists, the first component contains
(in a list) the different orderings of s, t, _, _, :, the second component contains the Mathematica expression, and its
FullForm  is  in  the  third  component.  Most  of  the  following  constructions  do not  make much sense,  but  they are  all
syntactically correct. 

allPatterns = 
Module[{allInputStrings, syntacticallyCorrectInputs, fullForms},
(* form all permutations *)
allInputStrings = StringJoin @@@ Union[
   Permutations[{"s", " ", "_", "t", " ", "_"}],
   Permutations[{"s", " ", ":", "_", "t", " ", "_"}]];
(* select syntactically correct inputs *)   
syntacticallyCorrectInputs = Select[allInputStrings, SyntaxQ];
(* generate full form of inputs *)
fullForms = Sort[{ToString[FullForm[ToExpression[#]]], #}& /@ 
                                     syntacticallyCorrectInputs];
(* group equivalent inputs *)
{#[[1, 1]], Last /@ #}& /@ Split[fullForms, #1[[1]] === #2[[1]]&]];

Short[allPatterns, 16]
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Thus, we see that the 936 different inputs that make sense reduce to 117 different ones. 

{Length[allPatterns], 
 allPatterns /. {_, l_List} :> Length[l] /. List -> Plus}

For a mathematical analysis of all programs of a given size, see [23÷].

Σ (* session summary *) TMGBs`PrintSessionSummary[]

  4. cosHxLn Æ f HsinHxLL 
This transformation can be implemented, for instance, using replacements. 

Sum[Cos[x]^i, {i, 0, 16, 2}] /. 
         {Cos[x]^i_?EvenQ :> Expand[(1 - Sin[x]^2)^(i/2)]}

Σ (* session summary *) TMGBs`PrintSessionSummary[]

  5. a[a] 

a) Here, a is immediately assigned the value a via Set. The result of this assignment is, of course, a. 

Clear[a]; a = a

Σ (* session summary *) TMGBs`PrintSessionSummary[]

b) Here, a is assigned the value a via SetDelayed. The result of the later computation “of a as a” is, of course, a. 

Clear[a]; a := a;  a

Σ (* session summary *) TMGBs`PrintSessionSummary[]

c)  This assignment is uncommon, but correct.  The function a[something]  is immediately assigned its argument as its
value. A later call of the function a[a] returns its argument, namely, a. 

Clear[a]; a[a_] = a; a[a]

a[x]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

d) This example is the analogous construction with SetDelayed. The function a[something] is assigned the value of
its  argument.  A  later  computation  of  the  function  a[a]  returns  its  argument  as  a.  This  case  is  very  similar  to  the
analogous Set construction. 

Clear[a]; a[a_] := a; a[a]

The a in a_ is a pattern, so we can call a with any argument and it will evaluate to the argument.

a[x]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

e) The variable a is immediately assigned the value of the expression Equal[a, a], that is, True. A later call on the
variable a returns the value of a, namely, True. 

Clear[a]; a = a == a; a

Σ (* session summary *) TMGBs`PrintSessionSummary[]

f) This is the analogous construction with SetDelayed. The truth value of Equal[a, a] is first computed with the
call of a. Now, the problems start. With the call of a, a is replaced by a == a. Then, the following attempt to deter-
mine the truth value of this assertion causes the $RecursionLimit to be exceeded, because to compute a, it must be
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replaced by a == a,  and to  compute these as,  and so on.  We constrain the  running  time of  the following recursive
calculation.

TimeConstrained[Clear[a]; a := a == a; a, 2]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

g) This case is especially tricky. In spite of Unevaluated, $IterationLimit is exceeded. To see why, we look at
the same input, but with Unevaluated[a] as a separate input. 

Clear[a];
a := a == a;
Unevaluated[a]

We now recognize the problem. Unevaluated is an argument in 
CompoundExpression[Clear[a], a := a == a, Unevaluated[a]]}.

(See also Exercise 2 in Chapter 4). Unevaluated vanishes, and the computation of a leads to the same problems as
before. Again, the following code has to be aborted. 

TimeConstrained[Clear[a]; a := a == a; Unevaluated[a]; , 2]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

h) Hold is safe in this regard. It definitely prevents the computation. 

Clear[a]; a := a == a; Hold[a]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

i) Here, we do not get an infinite loop. The two occurrences of Unevaluated in Equal prevent the recursive compu-
tation of a, and Equal immediately takes effect. 

Clear[a]; a := Unevaluated[a] == Unevaluated[a]; a

Σ (* session summary *) TMGBs`PrintSessionSummary[]

j)  One Unevaluated  does not suffice; Mathematica  attempts to compute the a  on the right,  which again causes an
infinite loop.  But here we do not need to intervene manually. We apply Short  to avoid getting Unevaluated  255
times. 

Clear[a];
Short[a := Unevaluated[a] == a; a, 8]

Count[%, Unevaluated, {-1}, Heads -> True]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

k) In the first step, a definition is made for the pattern of the b[something][a]. 

a /: b[x_][a] := Null /; (Clear[a]; b[y_][a][z_] = Aah[y, z]; False)

??a

When  this  expression  is  encountered,  Mathematica  evaluates  the  right-hand  side.  The  right-hand  side  contains  a
condition  (which  always  returns  False)  to  be  tested.  In  the  process  of  testing  the  condition,  the  definition  for  a  is
cleared and a  definition  for  b,  for  a  pattern  of  the  form b[something1[a][something2],  is  installed.  So  in  the  input

b[a][a][a],  the  head  b[a][a]  triggers  the  rule  for  a,  which  installs  the  rule  for  b  and  returns  the  input
b[a][a][a] unevaluated because the Condition returns False. The rule for b matches the input b[a][a][a],
which evaluates to Aah[a, a]. 

b[a][a][a]
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a has no definition at the moment. 

??a

But b does have a definition. 

??b

Using Trace, we see the intermediate steps. 

Remove[a, b, x, y, z, Aah]

a/: b[x_][a] := Null /; (Clear[a]; b[y_][a][z_] = Aah[y, z]; False)

Trace[b[a][a][a]]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

  6. Extended Equal 

Here is a possible modification of the built-in function Equal. The first of the two new rules relates to the manipula-
tion of two equations, whereas the second rule applies to one equation. Note that we associate all rules with Equal via
TagSet. 

Unprotect[Equal];

(* add, multiply, … two equations *)
f_[u_ == v_, x_ == y_] ^= (f[u, x] == f[v, y]);

(* apply a function (with possible parameters) to an equation *)
f_[param1___, x_ == y_, param2___] ^=
          f[param1, x, param2] == f[param1, y, param2];

Protect[Equal];

Here are a few examples of the operation of our “new” Equal. 

(a1 == a2)^(b1 == b2)

(a1 == a2) * (b1 == b2)

(a1 == a2) + (b1 == b2)

σ + (a1 == a2)

σ  (a1 == a2)

Sin[a1 == a2]

[a1 == a2]

[x, z11 == z12, y]

These extensions to Equal are often useful, especially for working interactively. We will not need them further. 

Unprotect[Equal];
Clear[Equal];
Protect[Equal];

See also [117÷] for extending the capabilities of Equal. 

Here is another possibility. The function ApplyOperationsToEquations applies each of the operations from the
list operations to the list of equations equations. (We use the construction Flatten[{equations}] to allow equations
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to  be  a  single  equation  instead  of  a  List.  And  we  use  HoldPattern[Equal[args___]]  to  avoid  that
Equal[args___] evaluates to True.)

ApplyOperationsToEquations[operations_, equations_] :=
 Flatten[Function[eq, 
   Function[op, eq /. HoldPattern[Equal[args___]] :> 
               (Equal @@ (op /@ {args}))] /@ Flatten[{operations}]] /@ 
                                                 Flatten[{equations}]]

Here is an example.

ApplyOperationsToEquations[{Re, Im, Abs}, 
                           {a + I b == c + I d == e + I f,
                            Sin[α + I β] == Cosh[γ + I δ]}] //
         (* separate real and imaginary parts *) ComplexExpand

Σ (* session summary *) TMGBs`PrintSessionSummary[]

  7. Weights for Finite Differences 

The missing initial conditions are c0,0
0 = 1, ci, j

k = 0 for k < 0, and ci, j
k = 0 for i < k.

This  recursion  leads  to  the  implementation  below.  (We  encapsulate  the  computation  somewhat  and,  for  the  sake of
efficiency, save some of the intermediate values.)

FiniteDifferenceWeights[ord_Integer?(# >= 0&), node_List] :=
Module[{x, y, c, ω},
       Evaluate[Table[x[i], {i, 0, Length[node] - 1}]] = node;
       (* the function w *)
       ω[i_, y_] := ω[i, y] = Product[y - x[j], {j, 0, i}];
       (* initial condition for c *)
       c[0, 0, 0] = 1;
       (* recursion for c *)
       c[k_?(# >= 0&), i_, j_] := (c[k, i, j] = 0) /; i < k;
       c[k_?(# <  0&), i_, j_] = 0;
       c[k_?(# >= 0&), i_, i_] := (c[k, i, i] =
                      ω[i - 2, x[i - 1]]/ω[i - 1, x[i]] *
                      (k c[k - 1, i - 1, i - 1] -
                      x[i - 1] c[k, i - 1, i - 1])) /; i >= k;
       c[k_?(# >= 0&), i_, j_] := (c[k, i, j] = 1/(x[i] - x[j])*
                      (x[i] c[k, i - 1, j] - k c[k - 1, i - 1, j])) /;
                                                   (i >= k && j <= i);
       (* the weights *)
       Table[c[ord, Length[node] - 1, j],
                     {j, 0, Length[node] - 1}]] /; ord < Length[node]

We now look  at  a  few of  the  resulting  weights.  Here  are  symmetric approximations  for  the  second  derivatives  using
2 iMax + 1 nodes with a spacing of 1. 

Table[FiniteDifferenceWeights[2, Table[i, {i, -iMax - 1, iMax + 1, 1}]],
      {iMax, 0, 3}]

Here is a visualization of the weights for the node numbers 3, 5, …, 41. The central nodes are always weighted most.
The  left  graphic  shows  the  weights  directly  and  the  right  graphic  shows  the  logarithm  of  the  absolute  values  of  the
weights.
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Show[GraphicsArray[
Block[{n = 20, $DisplayFunction = Identity}, 
Function[f, Graphics[Reverse[
MapIndexed[{Hue[#2[[1]]/26], Line[#1]}&,
           MapIndexed[{#2[[2]] - #2[[1]] - 1, f[#1]}&, 
  (* the finite differences *)         
  Table[FiniteDifferenceWeights[2, Range[-iMax - 1, iMax + 1]],
      {iMax, 0, n}], {2}]]], PlotRange -> All, Frame -> True]] /@
 (* show weights and log(abs(weights)) *) {Identity, Log[Abs[#]]&}]]]

For the first derivative and equidistant nodes, we get coefficients that can be expressed through factorials [57÷], [58÷],
[109÷].

Table[FiniteDifferenceWeights[1, Table[i, {i, -iMax - 1, iMax + 1, 1}]],
      {iMax, 0, 5}]

Table[Table[If[k === 0, 0, (-1)^(k - 1) n!^2/(k (n + k)! (n - k)!)], 
            {k, -n, n}], {n, 6}]

Here are some left-sided approximations for first derivatives using iMax + 1 nodes with a spacing of 1. 

Table[FiniteDifferenceWeights[1, Table[i, {i, 0, iMax}]],
      {iMax, 1, 8}]

The corresponding expressions are also computed for symbolic arguments. 

FiniteDifferenceWeights[4, {x0, x1, x2, x3, x4}] // Simplify

We now examine the  quality  of  these  approximations  of  the  second derivative  of  cosHxL  at  x = 0  as  a  function  of  the
number of nodes, where the nodal coordinates are 

8-0.1, 0, +0.1<
8-0.2, -0.1, 0, +0.1, +0.2<

8-0.3, -0.2, -0.1, 0, +0.1, +0.2, +0.3<
8-0.4, -0.3, -0.2, -0.1, 0, +0.1, +0.2, +0.3, +0.4<

8-0.5, -0.4, -0.3, -0.2, -0.1, 0, +0.1, +0.2, +0.3, +0.4, +0.5<
. . .

In  the  following  application,  we  use  the  fact  that  Cos  has  the  attribute  Listable.  (The  command  .  (Dot)  is  dis-
cussed in the next chapter.) 

Table[1 + (Cos[Table[i/10, {i, -iMax - 1, iMax + 1, 1}]]).
      FiniteDifferenceWeights[2, 
        Table[i/10, {i, -iMax - 1, iMax + 1, 1}]], 
                    {iMax, 0, 12}] // N[#, 30]& // N

For a compact one-liner  to  derive these finite difference weights, see [52÷]; for  the derivation for  higher dimensional
finite difference formulas in Mathematica, see [61÷]; for the calculation of general finite difference formulas, see [1÷].
For the perfect discretizations of differential operators in general, see [62÷], [72÷], [28÷], [65÷], and [5÷].

Now, we will deal with the second part of the question, which is the function z
`HsL = s Hs - 1L p-sê2 GHs ê2L zHsL ê 2.

ζ[s_] := s (s - 1) Pi^(-s/2) Gamma[s/2] Zeta[s]/2

Because of the functional equation z
`HsL = z

`H1 - sL,  all odd derivatives vanish identically. A plot shows the form of the

function near z
`H1 ê2L.
Plot[ζ[s] - ζ[1/2], {s, 0.4999, 0.5001}, PlotRange -> All]

Using the function FiniteDifferenceWeights,  we calculate a function dApprox  that gives  the approximative
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value of  z
`HoLH1 ê2L.  To calculate this  approximation,  we use 2 n + 3 symmetric s-values  around s = 1 ê2.  To make sure

that we can control rounding errors, we carry out all calculations with precision prec.
dApprox[o_, {n_, δ_}, prec_] := 
Module[{t = Table[i δ, {i, -n - 1, n + 1, 1}], fdws, ζValues, sum},
       (* the finite difference weights *)
       fdws = FiniteDifferenceWeights[o, t];
       (* the function values *)
       ζValues = N[ζ[1/2 + t], prec];
       (* the approximation for the derivative *)
       sum = 0;
       Do[sum = sum + fdws[[k]] ζValues[[k]], {k, 2n + 3}];
       sum]

As expected, the odd-order derivatives vanish.

dApprox[1, {3, 1/100}, 30]

dApprox[3, {3, 1/100}, 30]

For the second derivative, the value approaches 0.022971….

Table[dApprox[2, {n, 1/100}, 30], {n, 3, 5}]

To get reliable values for the higher derivatives, we implement an increasing number of s-values around s = 1 ê 2 until
we  have  about  five  reliable  digits.  The  function  gooddApprox  returns  the  value  of  the  derivative  as  well  as  the
number of s-values needed to achieve the required precision.

gooddApprox[o_, d_, δ_, prec_] :=
Module[{n = 2 o + 1, oldDerivative = 10, newDerivative},
(* until the approximation is precise enough *)
While[newDerivative = dApprox[o, {n, δ}, prec];
      Abs[Abs[(oldDerivative - newDerivative)/newDerivative]] > 10^-d,
      n = n + 1;
      oldDerivative = newDerivative];
      {newDerivative, n}]

Do[Print[{2o, Date[], gooddApprox[2o, 5, 1/1000, 100] // N}], {o, 10}]

The interesting fact about these derivatives is that they seem to be all positive. The statement that they are all positive
[105÷],  [106÷] is equivalent to the famous Riemann hypothesis [39÷], [43÷], [138÷],  [66÷],  [70÷].  The similar state-
ment  that  for  all  positive  integer  n  the  quantities  ∑n Isn-1 logHzHsLLM ë ∑sn »s=1  are  positive  [84÷],  [91÷],  [30÷]  is  also

equivalent to the Riemann hypothesis.

Σ (* session summary *) TMGBs`PrintSessionSummary[]

  8. Operator Product, q-, h-Binomial Theorem, Ordered Derivative

a) Here is an implementation of the various properties. The head  indicates an operator product.
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(* Associativity *)
[a___, [b___], c___] := [a, b, c]

(* Additivity *)
[a___, b1_ + b2_, c___] := [a, b1, c] + [a, b2, c]

(* [i] - independent expressions are not operators *)
[x_?(FreeQ[#, [_]]&)] := x

(* factor out [i] - independent factors *)
[a___, x_?(FreeQ[#, [_]]&), b___] := x [a, b]
[a___, x__?(FreeQ[#, [_]]&) y_, b___] := x [a, y, b]

(* multiply out powers of sums *)
[a___, b_Plus^n_Integer?(# > 1&), c___] :=

                   [a, Table[b, {n}] /. List -> Sequence, c]
(* to reduce the notation, write products of
   operators as powers (this may not always be desirable) *)

[a___, [index_]^n1_., [index_]^n2_., c___] :=
[a, [index]^(n1 + n2), c]

(* single operators are not operator products *)
[op[index_]] = [index];

We now look at a few examples of how this definition works. 

† Use additivity  
[1 + [t] + [z]^2]

† Remove factors  

[2, [t], [z]^2, r, [t]]

[2 [t], [z]^2, r [t], 67 z [g]]

† Multiply out powers  

[(s + [k])^2]

[2 + [t], [z]^3, op[z], l]

† Use associativity  

[ [[1], [2]^2], [[2]^3, [3]]]

Now,  we  sketch  an  application:  the  Campbell-Baker-Hausdorff  formula  (see  [116÷],  [115÷],  [112÷],  [137÷],  [96÷],
[136÷], [141÷], [54÷], [38÷], [35÷], [132÷], [75÷], [126÷], [100÷], [80÷], [128÷], [111÷], [19÷], [81÷], [8÷], [113÷],
[71÷], [9÷] and [119÷] for details). Let l and m be two noncommuting operators. Then, for s in 

el em = es

s = lnIe l e mM = l + ‡
0

1
YHexpHAdHlLL expHt AdHmLLL m dt

YHzL =
z

z - 1
 lnHzL,

and in the superoperator AdHzL 
AdHzL h = @z, hD ª zh - zh.

Expanding YHzL and the arguments in series around z = 1, we can get a series expansion for s - l. 

Here is the operator product of the argument of YHzL, AdHlL Ø [λ], AdHmL Ø [μ]. 

o1 = [1 + [λ] +  [λ]^2/2,
        1 + t [μ] + t^2 [μ]^2/2] // Expand
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This expression is the series expansion (we discuss series expansions in Chapter 1 of the Symbolics volume [140÷]) of
YHzL around z = 1. 

ser = Series[z Log[z]/(z - 1), {z, 1, 2}] // Normal

Now, we replace the individual terms in the series. 

(a1 = ser /. {(-1 + z) -> o1 - 1, (-1 + z)^n_ :> [(o1 - 1)^n]} //
                                              Expand) // Short[#, 10]&

Next, we carry out (by pattern matching) the t-integration. 

a2 = a1 /. {t^n_. -> 1/(n + 1)};

We keep only terms up to order 3. 

DeleteCases[
Which[FreeQ[#, [_]], #,
      Length[Cases[{#}, f_. [_]]] == 1, #,
      Length[Cases[{#}, f_. [_]]] == 1,
       If[Total[(List @@ #[[2]]) /. {[_]^n_. -> n}] < 4, 
          #, Null]]& /@ a2, (* these terms will be dropped *)
           _ Null | f_. [μ] | f_. [a___, [μ]^n_.]]

Taking into account @m, mD = 0 and the definition above AdHzL h = @z, hD, this gives:

s - l = m +
1

2
@l, mD +

1

12
@l, @l, mDD -

1

12
@m, @l, mDD + ∫

For the convergence of this expansion, see [16÷]. For some related operator calculations in Mathematica, see [15÷]; for
time-ordered generalizations, see [53÷]; for q-versions, see [129÷], [110÷].

Σ (* session summary *) TMGBs`PrintSessionSummary[]

b) We start by implementing the necessary operations between the noncommuting variables x and y. The noncommuta-
tive multiplication is this time denoted by .

(*  goes through  *) 
[a___, [xy__], b___] := [a, xy, b];

(* factor out numerical factors *)
[a___, f_ c_, b___] := Expand[f [a, c, b]] /; 
              FreeQ[f, x | y, {0, Infinity}, Heads -> True];    
[a___, f_, b___] := Expand[f [a, b]] /; 
              FreeQ[f, x | y, {0, Infinity}, Heads -> True];               
(* pure powers are neighbors *)
[a___, x^ex_., y^ey_., b___] := [a, x^(ex - 1), x, y, y^(ey - 1), b];

(* powers of sums *)
[a___, (p_Plus)^e_, b___] := [a, p^(e - 1), p, b];

(* the fundamental commutation rule *)
[a___, x, y, b___] := q [a, y, x, b]

(* multiply out neighboring Plus terms *)
[a___, p1_Plus, p2_Plus, b___] := [a, Sum[ [p1[[i]], p2[[j]]],

        {i, Length[p1]}, {j, Length[p2]}], b];
(* collect powers of y and powers of x *)
[a___, x^e1_., x^e2_., x1___] := [a, x^(e1  + e2), x1] /; 
                         FreeQ[{x1}, y] && FreeQ[{a}, x];
[y1___, y^e1_., y^e2_., b___] := [y1, y^(e1 + e2), b] /; 
                         FreeQ[{b}, y] && FreeQ[{y1}, x];                  
(* additivity *)
[a___, p_Plus, b___] := Sum[ [a, p[[i]], b], {i, Length[p]}];

The function  helps to format the result nicely.
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[f_] := 
Module[{res = [f]}, 
       (res //. (* or shorter:
           Collect[res, Cases[res, _ , Infinity], Factor] *)
         HoldPattern[a_. [xy__] + b_. [xy__]] :> (a + b) [xy]) //.
              HoldPattern[a_ [xy__]] :> Factor[a] [xy]]

Here are two examples of the canonicalized form of the right-hand side of the q-binomial theorem.

[(x + y)^3]

[(x + y)^4]

We implement the right-hand side of the q-binomial theorem.

qBinomial[n_, k_, q_] := 
 qFactorial[n, q]/(qFactorial[k, q] qFactorial[n - k, q])
 
qFactorial[k_, q_] := Product[1 - q q^i, {i, 0, k - 1}]

qBinomialTheoremRhs[n_, q_] :=
  Sum[qBinomial[n, k, q] [y^k, x^(n - k)], {k, 0, n}]

For n = 1, the theorem holds.

[(x + y)^1] - qBinomialTheoremRhs[1, q]

For n = 2, we have to cancel common factors in rational functions in q.

[(x + y)^2] - qBinomialTheoremRhs[2, q]

Simplify[%]

In a similar way, we can show the correctness of the theorem for higher n.

Table[Simplify[ [(x + y)^n] - qBinomialTheoremRhs[n, q]], {n, 1, 8}]

All  rules  for   are  stored  as  down  values  for   in  the  form HoldPattern[ […] :> […]].  We  add  a  counting
function count on the right-hand side of the RuleDelayed.

(* keep a copy of the original definitions *)
old DownValues = DownValues[ ];

SetAttributes[count, HoldAll];
(* count increments the counter c by 1 *)
count[c_] := (c = c + 1);

The  function  addCounter  actually  splices  the  counter  function  count  into  the  right-hand  side  of  the
RuleDelayed.

addCounter[rhs_ :> lhs_, k_, l_] := rhs :> (count[k]; lhs);

addCounter[rhs_ :> Verbatim[Condition][lhs_, cond_], k_, l_] := 
            rhs :> (Condition[count[k]; lhs, count[l]; cond])

Here are the new definitions counting how often the individual rules of  are applied. The counter for the kth rule is just
counter[k].

DownValues[ ] = 
 Table[addCounter[DownValues[ ][[i]], counter[i], conditionCounter[i]],
       {i, Length[DownValues[ ]]}]

We initialize all counters to 0.
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Do[counter[i] = conditionCounter[i] = 0, {i, Length[DownValues[ ]]}];

Now, we calculate [(x + y)^10].

[(x + y)^10]

Here is the number of times the rules were applied.

??counter

conditionCounter shows the number of times the conditions were tested.

??conditionCounter

We restore the original definitions for .

DownValues[ ] = old DownValues;

Now let us deal with the two q-differentiation formulas. qD is the q-version of D. 

We use the qD[f_, n_, x_, q_] := qD[f, n, x, q]=…  construction to avoid the repeated evaluation of
qD[f(x), n, x, q].

(* q-derivative; syntax similar to D *)
qD[f_, x_, q_] := (f - (f /. x -> q x))/((1 - q) x)

qD[f_, n_, x_, q_] := qD[f, n, x, q] = Nest[Factor[qD[#, x, q]]&, f, n]

The check of the two identities is straightforward for small n. We use Factor to show that all of the sums of nested
fractions all.

Table[(* Together or *) Factor[qD[f[x] g[x], n, x, q] -
       Sum[qBinomial[n, k, q] (qD[f[x], n - k, x, q] /. x -> q^k x)*
           qD[g[x], k, x, q], {k, 0, n}]], {n, 0, 10}]

Table[(* Together or *) Factor[qD[f[x], n, x, q] - 1/(1 - q)^n 1/x^n*
      Sum[qBinomial[n, k, q] (-1)^k q^(-k(n - k) -k(k - 1)/2) f[x q^k],
          {k, 0, n}]], {n, 0, 10}]

For  generalizations  of  the  q-derivative,  see  [76÷],  [55÷],  [99÷],  [102÷].  For  differential  operator  representations of
dq  f HxL

dq  x , see [101÷].

For dealing with the h-binomial theorem, we have to change just one definition of , namely, the commutation relation.

[a___, x, y, b___] := Expand[ [a, y, x, b] + [a, h y^2, b]]

[(x + y)^6]

Proceeding like above, it is straightforward to verify the first 10 instances of the h-binomial theorem.

(* the right-hand side of the h-binomial theorem *)
hBinomialTheoremRhs[n_, h_] :=
  Sum[Binomial[n, k] h^k Pochhammer[1/h, k] [y^k, x^(n - k)], 
      {k, 0, n}]

[(x + y)^1] - hBinomialTheoremRhs[1, h] // Simplify

[(x + y)^2] - hBinomialTheoremRhs[2, h] // Simplify

Table[Simplify[ [(x + y)^n] - hBinomialTheoremRhs[n, h]],
      {n, 2, 8}]

As  a  small  side  track,  to  make  things  more  interesting  for  the  not  q-diseased  readers,  let  us  carry  out  an  animation
showing arguments of the entries of the q-Pascal triangle as q varies over the unit circle.
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(* define q-Binomial *)
qBinomial[n_, k_, q_] := 
 qFactorial[n, q]/(qFactorial[k, q] qFactorial[n - k, q])
 
(qFactorial[k_, q_] := qFactorial[k, q] = #[k, q])&[
        Compile[{{k, _Integer}, {q, _Complex}},
                Product[1 - q^(i + 1), {i, 0, k - 1}]]]

(* q-Pascal triangle graphic *)
qBinomialArgPicture[nMax_, ϕq_, opts___] := 
Show[Graphics[(* color with phase *) 
   Table[{Hue[(1 + Arg[qBinomial[n, k, Exp[1. I ϕq]]]/Pi)/2],
          Rectangle[{k - n/2, -n} - 1/2, {k - n/2, -n} + 1/2]},
        {n, 0, nMax}, {k, 0, n}]], 
        opts, PlotRange -> All, Frame -> True,
        FrameTicks -> None, AspectRatio -> Automatic]

nMax = 120; frames = 17;
Show[GraphicsArray[qBinomialArgPicture[nMax, #, 
                    DisplayFunction -> Identity]& /@ #]]& /@
Partition[Table[ϕq, {ϕq, 2Pi/frames, 2Pi(1 - 1/frames), 2Pi/frames}], 4]

Make Input     Show Animation

nMax = 120; frames = 113;
Do[qBinomialArgPicture[nMax, ϕq], 
   {ϕq, 2Pi/frames, 2Pi(1 - 1/frames), 2Pi/frames}];

For related generalizations of the multinomial coefficients, see [121÷] and [47÷].

Σ (* session summary *) TMGBs`PrintSessionSummary[]

c)  The  implementation  of  the  “ordered  derivative”  is  straightforward.  [xa1 ,…,  xan]  represents  the  operator  product

x` a1  x` a2  … x` an  and [xa1 ,…, xan] the string of classical symbols.

δ[ [l___], []] := Times[l]

δ[ [l_], [x___]] := D[l, x]

δ[ [f_, g__], x_ ] := With[{n = Length[x]},
         Sum[δ[ [f], x[[Table[j, {j, k}]]]] *
             δ[ [g], x[[Table[j, {j, k + 1, n}]]]], {k, 0, n}]] 
           
δ[ [l___], [x_]] := Product[D[{l}[[k]], x], {k, Length[{l}]}]

Here are some examples showing δ at work for two symbols x and p.

δ[ [x^2, p, x], [x, p]]

δ[ [x^4, p, x^2, p, x, p], [x, p]]

Now let us deal with the example given in the exercise text.

δ[ [x1 x2^2 x3^3 x4^4 x5^5 x6^4 x7^3 x8^2 x9], 
  [x1, x2, x3, x4, x5, x6, x7, x8, x9]]

ReplaceList  conforms that  there are  exactly 2880 possibilities to  delete the symbols x1x2x3x4x5x6x7x8x9  from the
string x1x2x2x3x3x3x4x4x4x4x5x5x5x5x5x6x6x6x6x7x7x7x8x8x9 .
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ReplaceList[{x1, x2, x2, x3, x3, x3, x4, x4, x4, x4,
             x5, x5, x5, x5, x5, x6, x6, x6, x6,
             x7, x7, x7, x8, x8, x9},
  {___, x1, ___, x2, ___, x3, ___, x4, ___, x5, 
   ___, x6, ___, x7, ___, x8, ___, x9, ___} :> 1] // Length

Σ (* session summary *) TMGBs`PrintSessionSummary[]

d)  We  model  the  noncommutative  matrix  multiplication with  the  head   and  differentiation  with  respect  to  t  with  .
Both operations  are  linear  and  for  the  differentiation,  we implement the  Leibniz  formula  for  products.  We insert  rule
application counters on the right-hand side of each definition. We denote the inverse of a matrix A by [A].

(* general properties of a noncommutative product  *)
[a___, [b___], c___] := ( 1 =  1 + 1; [a, b, c])
[a___, f_?NumericQ [b___], c___] := ( 2 =  2 + 1; f [a, b, c])
[a___, b_ + c_, d___] := ( 3 =  3 + 1; [a, b, d] + [a, c, d])

(* general properties of differentiation *)
[ [a_, b__]] := ( 1 =  1 + 1; [ [a], b] + [a, [ [b]]])
[ [a_]] := ( 2 =  2 + 1; [a])
[a_ + b_] := ( 3 =  3 + 1; [a] + [b])
[f_?NumericQ a_] := ( 4 =  4 + 1; f [a])

(* differentiation of an inverse function *)
[ [a_]] := ( 5 =  5 + 1; - [ [a], [a], [a]])

To count the rule applications we implement a counter initializing function initializeCounters and to view the
number of rule applications, a function ruleUsage.

initializeCounters := ( 1 =  2 =  3 =  1 =  2 =  3 =  4 =  5 = 0);
ruleUsage := { 1,  2,  3,  1,  2,  3,  4,  5}   

We start by calculating ∑2 AHtLH-1L ë ∑ t2.

initializeCounters; [ [ [A]]]

Here are the counts for the various rule applications.

ruleUsage

Next, we look at ∑3 AHtLH-1L ë ∑ t3. The result is getting larger.

initializeCounters; Nest[ , [A], 3] // Expand

ruleUsage

For  a  nicer-looking  result,  we  implement a  function  shorten  that  forms  powers  of  matrices  and  unites  derivatives.
We also implement some typesetting rules for inverses and matrix products.

(* unite powers *)
shorten[expr_] :=  expr //. 
   { [a___, B:((b_)..), c___] :> [a, b^Length[{B}], c] /;
         Length[{B}] > 1 && If[{a} =!= {}, Last[ {a}] =!= b, True] && 
                            If[{c} =!= {}, First[{c}] =!= b, True],
    [ [a_]] :> Subscript[ , 2][a],
    [Subscript[ , k_][a_]] :> Subscript[ , k + 1][a],
    Subscript[ , k_][Subscript[ , l_][a_]] :> Subscript[ , k + l][a],
    Subscript[ , k_][ [a_]] :> Subscript[ , k + 1][a]}
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(* typeset definitions *)
With[{sf = StandardForm, sb = SuperscriptBox, s = Subscript},
MakeBoxes[ [args__], sf] := RowBox[{Sequence @@ 
       Drop[Flatten[Table[{MakeBoxes[#]&[{args}[[k]]],
                            "."}, {k, Length[{args}]}]], -1]}];
MakeBoxes[ [a_], sf] := sb[MakeBoxes[a],
                           RowBox[{"(", RowBox[{"-", "1"}], ")"}]];
MakeBoxes[ [a_], sf] := sb[MakeBoxes[a], " "];
MakeBoxes[s[ , k_][a_], sf] := MakeBoxes[#]&[Derivative[k][a]]]

Now, we will calculate ∑5 IAHtLH-1LM5 í ∑ t5.

initializeCounters; 
 = Nest[ , [ [A], [A], [A], [A], [A]], 5] // Expand;

The result has 681 terms and 110636 rule applications were carried out in the calculation.

{Length[ ], ruleUsage}

Here are the first and last four terms of the 681 terms of the last result. (We could refine the function shorten to not
only form powers of single matrices, but also of identical sequences of matrices.)

shorten @ [[{1, 2, 3, 4}]]

shorten @ [[{-1, -2, -3, -4}]]

Assuming commutativity means that the head  can be replaced with Times. Here is the commutative version of .

makeCommutativeRules = 
  {  -> Times, Subscript[ , k_][a_] :> D[a[t], {t, k}], 
   [a_] :> D[a[t], t], [a_]^n_. :> a[t]^-n};

shorten[ ] //. makeCommutativeRules

Of course, it agrees with the direct derivative of ∑5 AHtL-5 ë ∑ t5.

% - D[A[t]^-5, {t, 5}]

For closed forms for derivatives of matrix inverses, see [127÷].

Σ (* session summary *) TMGBs`PrintSessionSummary[]

  9. Patterns and Replacements  

a)  We  simply  permute  two  arbitrary  elements  of  the  last  constructed  list,  and  append  this  new  list  to  the  lists  in  the
already-constructed  list  of  permutations,  provided  that  it  has  not  already  been  constructed,  and  has  not  remained
unchanged during the exchange of the two elements. Because the tests are to be applied later, we should use RuleDe
layed.  The  construction  {a___, b_, c___, d_, e___}  makes  sure  that  all  possible  orders  are  taken  into
account. 

allPermutations[li_List] :=
       {li} //. {{A___List, B:{a___, b_, c___, d_, e___}} :>
             ({A, B, {a, d, c, b, e}} /; (* avoid doubling *)
                  FreeQ[{A}, {a, d, c, b, e}] && B =!= {a, d, c, b, e})}

Here are a few examples. 

allPermutations[{a, b, c}]

allPermutations[{1, 2, 3, 4}]

Length[%]
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When we have repeated elements, fewer lists are generated. 

allPermutations[{a, a, c}]

This  implementation for  generating  permutations  is,  of  course,  not  the  most  effective  one;  actually,  Mathematica  has
the built-in command Permutations, which we will discuss in the next chapter (for algorithms to generate permuta-
tions, see [124÷]).

Σ (* session summary *) TMGBs`PrintSessionSummary[]

b) Starting with an initial list with only one number ∫ 0 in the first place, we keep “pushing” a 1 to the right as long as
the resulting list has not already been constructed, and as long as the list remains in descending order. 

Again, we apply RuleDelayed. 

allOrderedSplittings[li_List] :=
       {li} //. {{A___List, B:{a___, b_, c___, d_, e___}, C___List} :>
              ({A, B, {a, b - 1, c, d + 1, e}, C} /; b - 1 >= d + 1 &&
                     FreeQ[{A, C}, {a, b - 1, c, d + 1, e}] &&
                     OrderedQ[-{a, b - 1, c, d + 1, e}])}

Here again are two examples. 

allOrderedSplittings[{5, 0, 0, 0, 0, 0}]

allOrderedSplittings[{13, 0, 0}]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

c)  We proceed in two steps.  Starting with a list  of the form {oldList, stillEmptyList, newElements},  we search for
the first nonzero element, and replace it by the corresponding new element, whereas at the same time adding the same
number of zeros in the new list to be constructed. The second replacement rule inside of the first group deals with the
case in which no nonzero element is present. Then, the remaining (now empty) first and third lists are cut off. 

replacementList[oldList_List, newElements_List] :=
({oldList, {}, newElements} //.
 {{{a___?(# == 0&), b_?(# != 0&), c___}, {d___}, {e_, f___}} ->
  {{c}, {d, a, e}, {f}},
  {{a___?(# == 0&)}, {d___}, {}} -> {{}, {d, a}, {}}}) /.
                                (* remove by now empty working lists *)
                                        {{}, a_, {}} -> a

Here again are two examples. 

replacementList[{0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 4},
                {a,       b,          c,          d}]

replacementList[{1, 0, 0, 2, 0, 0, 3, 3, 0, 4, 0, 0, 5, 0, 0, -1, 0, 0},
                {M,       A,       B, C,    D,       E,        N      }]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

d) Again, we proceed in two steps. First, we generate a list containing the list of the starting numbers in the first place
and  the  pairs  of  numbers  with  no  common  factors  in  the  second  place  without  taking  into  account  their  order  (we
identify these by the fact that the corresponding fraction cannot be reduced). In the second step, we remove the initial
list. 
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pairGenerator[li_List?(VectorQ[#, Head[#] == Integer && # > 0 &]&)] :=
          (({li, {}} //.  (* first step *)
                   {{l:{a___, b_, c___, d_, e___}, {___}} :>
                ({l, {, {b, d}}} /; (* first condition *)
                   (FreeQ[{}, {b, d}] &&
                    {b, d} == {Numerator[b/d], Denominator[b/d]}))}) //.
                          (* second step *)
                      {{l:{a___, b_, c___, d_, e___}, {__}} :>
                 ({l, {, {d, b}}} /; (* second condition *)
                   (FreeQ[{}, {d, b}] &&
                    {b, d} == {Numerator[b/d], Denominator[b/d]}))}) /.
                           (* remove by now empty working list *)
                 {{_, l_} -> l}

Here are some relative prime pairs. 

pairGenerator[{4, 2, 5, 3, 4, 4}]

In the following input, all numbers have the common divisor 2. 

pairGenerator[{36, 30, 34, 18}]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

e) The idea is to remove successive columns from the left, and measure the remaining number of rows to determine the
length of each column. We implement the deletion of a column by subtracting 1 from each number. If a number reaches
0, it means the corresponding row is empty, and we delete it. Here, the first column is removed. 

{{5, 3, 2, 1}} /. ({l___List, r_List} :> {l, r, r - 1 //.
                       {posInts___, Repeated[0]} -> {posInts}})

If we iterate this process, it ends naturally after n1 steps. 

{{5, 2, 1}} //. ({all___List, last:{__}} :> {all, last, last - 1 //.
                       {posInts___, Repeated[0]} -> {posInts}}) /.
                        {l__List, {}} -> {l}

Now, every sublist represents one constellation in the process of throwing away columns from the left, and the length of
every sublist gives the length of the column. 

% //. {{alreadyComputedLengths___Integer,
        subList_List, rest___List} :>
      {alreadyComputedLengths, Length[subList], rest}}

We put it all together and define. 

FerrerConjugate[li:{_Integer..}] :=
(({li} //. ({all___List, last:{__}} :> {all, last, last - 1 //.
    {posInts___, Repeated[0]} -> {posInts}}) /.
         {l__List, {}} -> {l}) //.
           {{alreadyComputedLengths___Integer,
             subList_List, rest___List} :>
             {alreadyComputedLengths, Length[subList], rest}}) /;
                                                   OrderedQ[-nuli]

Here are two examples. 

FerrerConjugate[{6, 3, 2}]

FerrerConjugate[{2, 2, 2, 2, 2, 1}]

The last two results are easily verified with the following pictures. 
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To generate the last two arrays of points programmatically, we could use the following.
Make Input

Show[GraphicsArray[#, GraphicsSpacing -> -0.2]]& @
(Graphics[{{AbsolutePointSize[8], Point[#]}& /@ Flatten[
 MapIndexed[Transpose[{Range[#], Table[-#2[[1]], {#1}]}]&, #], 1]},
           AspectRatio -> Automatic, PlotRange -> All]& /@
           {{6, 3, 2}, {2, 2, 2, 2, 2, 1}})

Σ (* session summary *) TMGBs`PrintSessionSummary[]

10. Hermite Polynomials, Peakons   

a) Here is a possible implementation. Note the use of TagSet (because of the product structure on the left-hand side),
and the application of Expand. Both are needed to apply the rule a multiple number of times. 

H /: x_^m_Integer?Positive H[n_, x_] :=
                 Expand[(n H[n - 1, x] + 1/2 H[n + 1, x])x^(m - 1)]

H /: x_ H[n_, x_] := (n H[n - 1, x] + 1/2 H[n + 1, x])

Here is the result of the program. 

Table[Expand[x^n H[m, x]], {n, 0, 4}]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

b) It is straightforward to define of the Camasso–Holm differential operator. But the solution does not give immediately
the result 0.

CamassaHolmOperator[ψ_, {x_, t_}] := D[ψ, t] - D[ψ, x, x, t] + 
      3 ψ D[ψ, x] - 2 D[ψ, x] D[ψ, x, x] - ψ D[ψ, x, x, x]

ψ[x_, t_] := c Exp[-Abs[x - c t]]

CamassaHolmOperator[ψ[x, t], {x, t}] // Simplify

The last result contains unevaluated derivatives of the function Abs. While the absolute value function is differentiable
along the real axis, it is not differentiable as a function of a complex variable, Mathematica’s default domain. If instead

of Abs, we use the on-the-real-axis-equivalent function Ix2M1ê2, we get the expected result.

abs[x_] = Sqrt[x^2]; 

ψ[x_, t_] := c Exp[-abs[x - c t]]

CamassaHolmOperator[ψ[x, t], {x, t}] // Simplify

The function yHx, tL is not differentiable at x = c t  where it has a cusp (the solution is a so-called peakon [24÷], [86÷],
[87÷], [64÷], [48÷], [85÷], [108÷], [90÷]). There the derivative of the function abs is undefined.

D[abs[x], x]
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We remedy this  shortcoming by using a differentiable approximation †x§a  of  †x§,  such that limaØ¶ †x§a = †x§,  and show
that for all a the function yHx, tL fulfills the differential equation at x = c t.

abs[x_, α_] = -x + Log[1 + Exp[2 α x]]/α;

ψ[x_, t_] := c Exp[-abs[x - c t, α]]

CamassaHolmOperator[ψ[x, t], {x, t}] /. x -> c t

Here is system of two partial differential equations in two spatial and one temporal variables.

BroerKaupEquations = 
{D[H[x, y, t], t, y] == D[H[x, y, t], x, x, y] - 
                        2 D[H[x, y, t] D[H[x, y, t], x], y] -
                        2 D[G[x, y, t], x, x],
 D[G[x, y, t], t] == -D[G[x, y, t], x, x] - 
                      2 D[G[x, y, t] H[x, y, t], x]};

And here is a solution that contains arbitrary functions pHx, tL and qHyL that allow to build 2D peakons [7÷].

HSol[x_, y_, t_] := (c1 + C q[y]) D[p[x, t], x]/
                    (1 + c1 p[x, t] + c2 q[y] + C p[x, t] q[y]) -
                    (D[p[x, t], t] + D[p[x, t], x, x])/(2 D[p[x, t], x]);
                 
GSol[x_, y_, t_] := (C - c1 c2) D[p[x, t], x] D[q[y], y]/
                 (1 + c1 p[x, t] + c2 q[y] + C p[x, t] q[y])^2

We quickly check that these two functions are solutions.

Simplify[BroerKaupEquations /. {H -> HSol, G -> GSol}]

For discrete peakons, see [32÷].

Σ (* session summary *) TMGBs`PrintSessionSummary[]

11. f[x___] := …   

a) Here is our first function definition. 

f[x___] := x + 1

Here, the argument is Sequence[], so that the right-hand side of the function definition gives Plus[1] = 1. 

f[]

Here the argument is Sequence[1, 2, 3],  so  that  the right-hand side of  the function definition gives Plus[1,
2, 3, 1] = 7. 

f[1, 2, 3]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

b) Here is our second function definition. 

f[x___] := x - 1

This expression is the internal form of the function definition. 

DownValues[f] // FullForm

It differs from the first function definition only in that the last 1 is replaced by -1. 

f[]
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f[1, 2, 3] evaluates to Plus[1, 3, 2, -1].

f[1, 2, 3]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

c)  The  function  definition  is  different  in  the  third  example.  The  Subtract[x, 1]  is  not  rewritten  as  Plus[x,
-1]. 

f[x___] := Subtract[x, 1]

DownValues[f] // FullForm

Because Subtract needs exactly two arguments, we get an error message. 

f[]

f[1, 2, 3]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

d) Let us analyze the pattern on the left-hand side. The outer two occurrences of HoldPattern have no influence on
later pattern matchings. They just avoid any evaluation of the pattern (in this case nothing would have been nontrivially
evaluated  anyway).  The HoldPattern  inside  the  Verbatim  is  of  relevance.  The Verbatim  makes the  left-hand
side a definition for HoldPattern[f]. So the result of evaluating HoldPattern[f] is 4.

f /: HoldPattern[HoldPattern[Verbatim[HoldPattern[f]]]] := 4
HoldPattern[f]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

12. Result and Error Messages  

We examine what happens in the evaluation, and interpret the generated error messages and the result. 

{1, 2} //. {{x___, y___} :> ({x, Unique[c], y} /;
                              (Head[{x}[[-1]]] =!= Symbol &&
                               Head[{y}[[ 1]]] =!= Symbol))}

We begin with the result. According to the replacement rule, a c$n is to be inserted between any two non-Symbols,
that is, in this case, between all numbers. To understand the origin of the error messages, we look at the interpretation x
and y selected by Mathematica each time a replacement is attempted. 

{1, 2} //. {{x___, y___} :> ({x, Unique[c], y} /;
                              (Print["x = ", x, "  and y = ", y];
                               Head[{x}[[-1]]] =!= Symbol &&
                               Head[{y}[[ 1]]] =!= Symbol))}

We  can  now  see  the  problem.  Because  of  the  BlankNullSequence  in  the  pattern,  an  interpretation  of  x  as
Sequence[]  is  possible.  Using  this  result  as  an  argument  in  Sequence[][[-1]]  or  Sequence[][[1]]
leads to the following error. 

{Sequence[]}[[-1]]

{Sequence[]}[[ 1]]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

13. Patterns  

a) This method is probably the most common way to define such a pattern, by the use of PatternTest. 
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f0[i_Integer?(2 <= # <= 8&)] := s[i];

{f0[1], f0[2], f0[3], f0[4], f0[5], f0[6], f0[7], f0[8], f0[9]}

We  can  also  give  a  Condition.  In  the  following  definition  of  f1,  the  second  argument  of  SetDelayed  has  the
form Condition[expr, test]. 

f1[i_Integer] := s[i] /; 2 <= i <= 8;

{f1[1], f1[2], f1[3], f1[4], f1[5], f1[6], f1[7], f1[8], f1[9]}

But the Condition can also appear in the first argument of SetDelayed. 

f2[i_Integer /; 2 <= i <= 8] := s[i];

{f2[1], f2[2], f2[3], f2[4], f2[5], f2[6], f2[7], f2[8], f2[9]}

Next, we could think of various mixtures of Condition and PatternTest, like in this example. 

(f3[i_Integer?(# >= 2&)] /; i <= 8) := s[i];

{f3[1], f3[2], f3[3], f3[4], f3[5], f3[6], f3[7], f3[8], f3[9]}

In the case of interest here, the number of all possible arguments could also be given explicitly in an Alternatives-
construction. 

f4[i:(2 | 3 | 4 | 5 | 6 | 7 | 8)] := s[i];

{f4[1], f4[2], f4[3], f4[4], f4[5], f4[6], f4[7], f4[8], f4[9]}

A  variety  of  further  possibilities  exist,  like  this  one,  in  which  a  second  pattern  only  matches  in  the  case  when  it  is
absent; that is, the length of all of its pieces is 0. 

f5[i:(2 | 3)  | i_Integer?(# >= 4&), j___?(Length[{#}] === 0&)] :=
                                                      s[i] /; i < 9

{f5[1], f5[2], f5[3], f5[4], f5[5], f5[6], f5[7], f5[8], f5[9]}

Σ (* session summary *) TMGBs`PrintSessionSummary[]

b) This is the function f. 

f[Condition[Condition_, Condition; True],
  Optional[Blank_, Optional],
  Pattern[Pattern, Blank[Integer]],
  Four:(4 | 4.),
  PatternTest[Pattern[PatternTest, Blank[]], PatternTest; True&],
  Alternatives:Alternatives[Alternatives, 6],
  Flat_Flat,
  Stub:Blank[Orderless[OneIdentity]],
  HoldPattern_HoldPattern?(# === #&),
  HoldPattern[Set[3, 4]]] :=
      {Condition, Blank, Pattern, Four, PatternTest,
       Alternatives, Flat[[1]], Stub[[1]], 9, HoldPattern[[1]], 11}

The  first  argument  has  the  form Condition[Condition_, Condition; True].  It  is  a  Condition  that  is
always fulfilled, and the pattern variable is again Condition. So the first argument has to be 1. 

f1[Condition[Condition_, Condition; True]] := Condition

f1[1]

The third argument is Optional[Blank_, Optional].  This argument is optional.  To get  the value 2 for it, we
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should have for the pattern variable Blank the value 2. 

f2[Optional[Blank_, Optional]] := Blank

f2[2]

The second pattern is of the form Pattern[Pattern, Blank[Integer]]. Here, Pattern has to be an integer;
this is the case for 3. 

f3[Pattern[Pattern, Blank[Integer]]] := Pattern

f3[3]

The fourth variable has to be 4 or 4.0. We use the 4. 

f4[Four:(4 | 4.)] := Four

f4[4]

The fifth argument is represented by the pattern PatternTest[Pattern[PatternTest, Blank[]], Pat
ternTest; True&]. Again, this argument is always True giving PatternTest. The pattern variable is this time
PatternTest, and we can use just 5 as the fifth argument. 

f5[PatternTest[Pattern[PatternTest, Blank[]], PatternTest; True&]] := Patte

f5[5]

The  sixth  pattern  is  Alternatives:Alternatives[Alternatives,  6].  Now,  Alternatives  is  the
pattern variable used for either Alternatives or 6. We use the 6. 

f6[Alternatives:Alternatives[Alternatives, 6]] := Alternatives

f6[6]

The seventh pattern is Flat_Flat,  which means the  argument has  to  have the head Flat  to  match the pattern.  To
simultaneously get our 7,  we use Flat[7]  as the argument, because fortunately the right-hand side of the definition
for f specifies that the first element has to be taken. 

f7[Flat_Flat] := Flat[[1]]

f7[Flat[7]]

The  eighth  pattern  is  Stub:Blank[Orderless[OneIdentity]],  which  means  that  the  head  of  the  argument
must have the compound head Orderless[OneIdentity]. Again, the first part is extracted on the right-hand side,
and we use Orderless[OneIdentity][8] as the eighth argument. 

f8[Stub:Blank[Orderless[OneIdentity]]] := Stub[[1]]

f8[Orderless[OneIdentity][8]]

The ninth argument in the definition of f is HoldPattern_HoldPattern?(# === #&). Because the Pattern
Test always yields True for this tautological test, we have to use an argument in which the head is HoldPattern
and whose first argument is 1. 

f9[HoldPattern_HoldPattern?(# === #&)] := HoldPattern[[1]]

f9[HoldPattern[10]]

The last argument must match the pattern HoldPattern[Set[3, 4]].  Because f  has no attribute like Hold, we
must avoid the evaluation of the argument, which can be achieved with Unevaluated. 
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f10[HoldPattern[Set[3, 4]]] := matches

f10[Unevaluated[Set[3, 4]]]

So, we finally have this result. 

f[1, 2, 3, 4, 5, 6, Flat[7], Orderless[OneIdentity][8],
  HoldPattern[10], Unevaluated[Set[3, 4]]]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

c) In the first example, the a from Pattern[a, Blank[]] on the left-hand side of the definition of a  is the local
variable, which is fed into Unique when calling a[argument].  Then, a new variable is created, which is used as the
variable in Function[#, Hold[#], HoldAll].  This pure function,  having the attribute HoldAll,  returns the
whole left-hand side (the pattern f) enclosed in Hold. For the inputs a[a] and a[b], this works fine, but in case of
the arguments 2a or a + a, the argument does not have the head Symbol or String, but instead Times or Plus.
So Unique cannot create a new variable, an error message is created, and the construction Unique[2a] (in the case
of a + a, the addition is carried out inside Unique, because at this time no attributes prevent the evaluation) cannot
be  used  as  a  variable  inside  Function,  so  that  the  result  is  Function[Unique[2a], Hold[Unique[2a]],
HoldAll][a[2 a]]. Here, we see the calculation carried out. 

SetAttributes[a, HoldAll]

f:a[a_] := Function[#, Hold[#], {HoldAll}][f]&[Unique[a]]

{a[a], a[b], a[2a], a[a + a]}

In the second example, the unique variable created by Unique  is created completely independent  of the argument of
the left-hand side, because now the argument of Unique is a string. So the calculation can be done for all four argu-
ments. Also, the last case remains completely unevaluated. 

Remove[a]

SetAttributes[a, HoldAll]

f:a[a_] := Function[#, Hold[#], {HoldAll}][f]&[Unique["a"]]

{a[a], a[b], a[2a], a[a + a]}

Σ (* session summary *) TMGBs`PrintSessionSummary[]

d) Here the calculation is carried out. 

SetAttributes[AtomQ, HoldAll]

{AtomQ[1/2], AtomQ[1 + I]}

Because of the HoldAll attribute, the arguments are not evaluated before they are passed to AtomQ. But in an unevalu-
ated form, 1/2 is not Rational[1,2] but rather Times[1, Power[2, -1]], which is not an atom. Similarly,
the unevaluated form of 1 + I is not in Complex[1, 1], but Plus[1, I], which again is not an atom. 

FullForm[Hold[1/2]]

FullForm[Hold[1 + I]]

Using  Unevaluated,  we  can  directly  pass  the  arguments  to  AtomQ,  without  giving  AtomQ  explicitly  the  attribute
HoldAll. 
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ClearAttributes[AtomQ, HoldAll]

{AtomQ[Unevaluated[1/2]], AtomQ[Unevaluated[1 + I]]}

Σ (* session summary *) TMGBs`PrintSessionSummary[]

e) Let us run the input under consideration. 

blank[Pattern[Blank, Blank[Blank]]] = Blank;

blank[Blank[Blank]]

We use blank[Pattern[Blank, Blank[Blank]]] = Blank  to  make a definition for the function blank.
The first  argument  in  Pattern  is  the  name of  the local  pattern variable;  here  it  is  Blank.  The second argument of
Pattern is the pattern-object. Any actual argument of blank given later must match this pattern-object. In the case
under consideration, it is Blank[Blank] (or shorter _Blank); this is a pattern standing for any expression (the outer
Blank  in Blank[Blank]  with  the head Blank  (the inner  Blank  in  Blank[Blank]).  The argument Blank[
Blank]  in  blank[Blank[Blank]]  matches the  pattern in the definition (it  has head Blank).  The definition for
blank defines the result of blank[x] in case x has head Blank to be just x; here this is Blank[Blank]. This is
the result we obtained above in its output form _Blank. 

Σ (* session summary *) TMGBs`PrintSessionSummary[]

f) The first definition works as expected. For an argument less than -1, f1 prints C1 and C2 and returns Null. For an
argument greater than -1, the function f1 prints just C1 and returns the input.

f1[x0_] := Block[{x = x0}, Print[C1]; x = x + 1; Print[C2] /; Positive[x]]
f1[-2]

The definition of f1 shows nothing unexpected.

DownValues[f1] // FullForm

But  how  can  the  definition  act  this  way?  How  does  Mathematica  know  that  a  construction  of  the  form  f[x_] :=
Block[{localVars},  body  /;  condition]  means  a  condition  of  the  applicability  of  f  rather  than  returning  an
expression with head Condition? We see the magic behind this evaluation by using Trace.

Trace[f1[-2]]

The expression that was evaluated was not
f1[x0_] := Block[{x = x0}, Print[C1]; x = x + 1; Print[C2] /; Positive[x]]

but rather
Block[{x = -2},Print[C1]; x = x + 1; RuleCondition[Print[C2], Positive[x]]].

When  a  Condition  in  the  last  argument  of  the  CompoundExpression  that  forms  Block’s  body  is  explicitly
present  Mathematica  introduces,  from  the  beginning  of  the  evaluation,  a  new  function,  namely  RuleCondition.
RuleCondition gets always formed when a condition is explicitly present at the end of Block, Module, or With.
Because it is typically not explicitly input, it is considered to be an internal symbol.

??RuleCondition

In the definition of f2, the function Condition is not explicitly present in the body of the Block. Only at runtime, it
gets  created.  But  at  this  time,  no  RuleCondition  statement  can  be  created  anymore.  Because  of  the  HoldAll
attribute  of  Condition  and  the  nonuse  of  Condition  in  a  definition  here,  the  value  of  x  gets  not  used  in
Positive[x] and Null /; Positive[x] is returned. Because there are no restrictions in the evaluation of the
body of the Block, C1, and C2 are printed.
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f2[x0_] := Block[{x = x0}, ToExpression[
                 "Print[C1]; x = x + 1; Print[C2] /; Positive[x]"]]
f2[-2]

In the definition of f3, the function Condition is present in the body of Block, but not in such a way that a Rule
Condition  is  formed.  Condition  is  present  as  a  symbol,  not  as  a  function  with  arguments.  Evaluating  the  body
starts  with  evaluating  the  compound  expression.  Its  result  is  condition[Null,  False].  As  side  effects,  the
variables  C1  and C2  are  printed out.  Then the replacement condition -> Condition  is  carried out  and Null
/; False is the result.

f3[x0_] := Block[{x = x0}, (Print[C1]; x = x + 1; 
                            condition[Print[C2], Positive[x]]) /. 
                                           condition -> Condition]
f3[-2]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

14. Replacements   

a) The list {1, 2, 3, 4, 5} matches the pattern. The condition b > 2 is not satisfied for the pattern realization
b = 2,  so the result of the application of the RuleDelayed  is again {1, 2, 3, 4, 5}.  Therefore,  no change
occurred and ReplaceRepeated ends the substitution. 

{1, 2, 3, 4, 5} //. {a__, b_, c_, d___} :>
                    If[b > 2, {b, c, d}, {a, b, c, d}]

Using a Print statement on the right-hand side of the RuleDelayed, the matching pattern can be seen. 

{1, 2, 3, 4, 5} //. {a__, b_, c_, d___} :>
                    (Print[{{a}, {b}, {c}, {d}}];
                     If[b > 2, {b, c, d}, {a, b, c, d}])

Σ (* session summary *) TMGBs`PrintSessionSummary[]

b) In this case, the pattern matches again (although with another realization). The condition b > 2 is again not satis-
fied, and the result of the application of the rule is the original expression. 

{1, 2, 3, 4, 5} //. {a___, b_, c_, d___} :>
                If[b > 2, {b, c, d}, {a, b, c, d}]

Again, using Print, we see the pattern realizations tried. 

{1, 2, 3, 4, 5} //. {a___, b_, c_, d___} :>
                (Print[{{a}, {b}, {c}, {d}}];
                        If[b > 2, {b, c, d}, {a, b, c, d}])

Σ (* session summary *) TMGBs`PrintSessionSummary[]

c)  Now, the condition b > 2  is implemented via Condition.  The first  matching pattern found (a = {1, 2},  b
= {3}, c = {4}, d = {5}) is applied. Using ReplaceAll we see this first result. 

{1, 2, 3, 4, 5} /. {a__, b_, c_, d___} :> {b, c, d} /; b > 2

Then, the rule is applied again (with the matching a = {3}, b = {4}, c = {5}, d={}). The result is again the list
{4, 5}, which does not match the pattern {a__, b_, c_, d___}, so the application of the rule stops here. 

{1, 2, 3, 4, 5} //. {a__, b_, c_, d___} :> {b, c, d} /; b > 2

Using Print again, we see all tried patterns. 

{1, 2, 3, 4, 5} //. {a__, b_, c_, d___} :>
             {b, c, d} /; (Print[{{a}, {b}, {c}, {d}}]; b > 2)
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Σ (* session summary *) TMGBs`PrintSessionSummary[]

d) Again, the condition b > 2 is implemented via Condition. The first matching pattern found (a = {1, 2}, b
= {3}, c = {4}, d = {5}) is applied. Using ReplaceAll, we see this result. 

{1, 2, 3, 4, 5} /. {a___, b_, c_, d___} :> {b, c, d} /; b > 2

Then, the rule is applied again (with the matching a = {}, b = {3}, c = {4}, d = {5}). The result is again the
list {3, 4, 5}, so the application of the rule stops here. 

{1, 2, 3, 4, 5} //. {a___, b_, c_, d___} :> {b, c, d} /; b > 2

Again, using Print, we see all matching trials. 

{1, 2, 3, 4, 5} //. {a___, b_, c_, d___} :>
             {b, c, d} /; (Print[{{a}, {b}, {c}, {d}}]; b > 2)

Σ (* session summary *) TMGBs`PrintSessionSummary[]

e) In this example, two conditions are present. Let us first look at the structure of the rule itself. 

FullForm[Hold[thePattern /; cond1 :> res /; cond2]]

{1, 2, 3, 4, 5} //. (({a__, b_, c_, d___} /; b > 2) :> {b, c, d} /; b > 2)

The condition on the left-hand side does not add a new condition, so this example is equivalent to the one from part c)
and the result is again the list {4, 5}. 

To see all intermediate steps, we use now two Print statements, one on the left-hand side of the rule and one on the
right-hand side of the rule. 

{1, 2, 3, 4, 5} //. (({a__, b_, c_, d___} /;
   (Print[{lhs, {{a}, {b}, {c}, {d}}}]; b > 2)) :>
          {b, c, d} /; (Print[{rhs, {{a}, {b}, {c}, {d}}}]; b > 2))

Σ (* session summary *) TMGBs`PrintSessionSummary[]

f) Again, the condition on the left-hand side does not add a new condition, so this example is equivalent to the one from
part d) and the result is again the list {3, 4, 5}. 

{1, 2, 3, 4, 5} //. (({a___, b_, c_, d___} /; b > 2) :> {b, c, d} /; b > 2)

We again use two Print statements, one on the left-hand side of the rule and one on the right-hand side of the rule. 

{1, 2, 3, 4, 5} //. (({a___, b_, c_, d___} /;
    (Print[{lhs, {{a}, {b}, {c}, {d}}}]; b > 2)) :>
        {b, c, d} /; (Print[{rhs, {{a}, {b}, {c}, {d}}}]; b > 2))

Σ (* session summary *) TMGBs`PrintSessionSummary[]

15. Puzzles

a) Here are two possible solutions. The first possibility is to give a the property that a call to a changes its truth value
from True to False. 

(aWasCalled = False; a := (aWasCalled = Not[aWasCalled]))

a

And[a, a]

A  second  possibility  is  to  add  a  special  rule  to  And.  (Because  True  has  the  attribute  Locked,  we  cannot  give  an
upvalue for True.) 
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Remove[a]; $Line = 0;

(Unprotect[And]; And[True, True] = False; a = True;)

a

And[True, True]

Another possibility would be to use an upvalue for a. Because And is HoldAll, this is easily possible.

(a /: And[a, a] = False); a = True;

a

And[a, a]

In the next possible And[a, a]-fake, we manipulate the result with $Post.

Remove[a]; $Line = 0;

$Post = If[$Line > 2, False, True]&;

a

And[a, a]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

b) Here, the input is carried out. We restart Mathematica here.

(Im[3 I] =!= 3) // Function[{x}, Block[{I}, x], {HoldAll}]

We got an error message. The error was generated because a locked symbol cannot be localized with Block.

Block[{I}, x]

Block[{Symbol}, x]

But I  was considered as a symbol; before its evaluation, it is the symbol I,  and after its evaluation, it is the complex
number Complex[0, 1].

Hold[I] // FullForm

I // FullForm

The localization would have worked inside a Module or a With.

Module[{I}, Im[3 I] =!= 3]

With[{I = 1}, Im[3 I] =!= 3]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

c) We evaluate the input under consideration.

Hold[With[{z = Abort[]}, z^2]] /. z_?Quit :> Quit[] 

Let us discuss in detail what is happening. The head of the whole expression is ReplaceAll.

Hold[Hold[With[{z = Abort[]}, z^2]] /. z_?Quit :> Quit[]] // FullForm

ReplaceAll  evaluates  its  first  and  second  argument.  The  first  one  is  a  Hold,  and  the  second  one  is  a  RuleDe
layed, so nothing dangerous happens.

Hold[With[{z = Abort[]}, z^2]]

z_?Quit :> Quit[] 
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Now, the replacement happens. Here, we look at the elements matched to z_.

Remove[z];

Hold[With[{z = abort[]}, z^2]] /. z_?(Print[{#, z}]&) :> Quit[]

Abort[]^2

The third call is the one causing the abort to happen.

Σ (* session summary *) TMGBs`PrintSessionSummary[]

d) Here is the complete calculation monitored with On[]. 

On[]; 2/3 === Unevaluated[2/3]

Off[]

The seeming paradox that things look the same, but are not, is easy to explain: Using On[], all intermediate steps are
given  in  OutputForm;  Rational[2, 3]  (the  result  of  the  left-hand  side)  and  Times[2, Power[3, -1]]
look the same in an ordinary call to OutputForm. 

Unevaluated[2/3] // OutputForm

FullForm[%]

Rational[2, 3] // OutputForm

Using  Trace  and  looking  at  the  result  in  FullForm  also  shows  that  SameQ  gets  Rational[2,  3]  and
Times[2, Power[3, -1]] as arguments. 

FullForm /@ Trace[2/3 === Unevaluated[2/3] ]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

e) The following simple program searches for all such symbols.

allBuiltInSymbols = Names["*"];

Do[temp = ToExpression[allBuiltInSymbols[[i]]];
   If[Not[TrueQ[temp == temp]], Print[allBuiltInSymbols[[i]]]], 
   {i, Length[allBuiltInSymbols]}]

Only two symbols have this property, namely, Indeterminate and ComplexInfinity.

{Indeterminate == Indeterminate, 
 ComplexInfinity == ComplexInfinity}

The reason for this behavior  is to avoid a misleading True  for  equations (head Equal) of the form a == b,  where
both a and b evaluate to Indeterminate or ComplexInfinity.

{(1 - 1)/(2 - 2) == (1 - 1)^(2 - 2), 1/0 == I/0}

SameQ  gives  True.  It  tests  if  two  expressions  are  equal  as  Mathematica  expressions,  whereas  Equal  cares  about
mathematical equality.

{Indeterminate === Indeterminate, 
 ComplexInfinity === ComplexInfinity}

Σ (* session summary *) TMGBs`PrintSessionSummary[]

f) The result will be . 

([_?(# === _?#0&), C_ /; MatchQ[C, _ /; MatchQ[C, _]]] := ;
 [_?(# === _?#0&), C_ /; MatchQ[C, _ /; MatchQ[C, _]]])
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The two patterns in the definition both have the property that they match themselves. The first one represents a pattern
in which the pattern test must reproduce the whole pattern by using #0.

MatchQ[_?(# === _?#0&), _?(# === _?#0&)]

The second argument in the definition has the condition on the pattern that it is itself a condition.

MatchQ[C_ /; MatchQ[C, _ /; MatchQ[C, _]],  
       C_ /; MatchQ[C, _ /; MatchQ[C, _]]]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

g)  IntegerQ  returns True  or False  when it is called with one argument. With zero, or two, or more arguments it
stays unevaluated. x can evaluate to zero, or two, or more arguments when it has head Sequence.

x := Sequence[];
IntegerQ[x]

x := Sequence[1, 2, 3];
IntegerQ[x]

Another possibility for IntegerQ[x] is having x be a compound expression that sets up or modifies existing defini-
tions. For instance, we could make a new upvalue for, say, j and then call IntegerQ with the argument j.

x := (j /: f_[j] := f; j);
IntegerQ[x]

Or  we  could  actually  manipulate  the  definition  of  IntegerQ  itself  inside  the  argument  of  IntegerQ.  Because
IntegerQ  does not have a Hold-like attribute,  its argument gets evaluated and the new rule goes into effect before
the outer IntegerQ evaluates with its argument.

x := (Unprotect[IntegerQ]; IntegerQ[_] := IntegerQ);
IntegerQ[x]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

h) Here is the mentioned iteration limit problem shown.

$IterationLimit = 20;

SetAttributes[f, {Flat, OneIdentity}]
f[b_] := b
f[a, b]

The problem is  caused by f[a, b]  matching the pattern of  the definition f[ξ_] := ξ  because of  the Flat  and
OneIdentity attribute. ξ evaluates to itself and this leads to the iteration problem. The following input demonstrates
this by keeping the argument unevaluated inside the function g (we give g the HoldAll attribute).

Remove[f, a, b]
SetAttributes[f, {Flat, OneIdentity}]
SetAttributes[g, HoldAll]
f[b_] := g[b]
f[a, b]

To avoid the iteration we must restrict the application of the definition to the case where f is called with genuinely one
argument.  This  can  be  done  by  using  either  Condition  or  PatternTest  or  inside  Block.  In  addition  to  make
f[ξ]  evaluate to ξ  we have to extract the ξ  carefully from the unevaluated one-argument form of f  when not using
Block. Here are three possibilities shown. All three make the one-argument form of f work, avoid the iteration problem
in the two-argument version, and at the same time keep all the properties related to the Flat attribute alive.
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Remove[f, a, b]
SetAttributes[f, {Flat, OneIdentity}]
F:_f := Block[{f}, First[F] /; Length[F] === 1]

{f[a], f[a, b], f[f[a], f[b, c]]}

Remove[f, a, b]
SetAttributes[f, {Flat, OneIdentity}]
F:_f := Hold[F][[1, 1]] /; Length[Unevaluated[F]] === 1

{f[a], f[a, b], f[f[a], f[b, c]]}

Remove[f, a, b]
SetAttributes[f, {Flat, OneIdentity}]
F:_f?(Function[f, Length[Unevaluated[f]] === 1, {HoldAll}]) := 
                                               Unevaluated[F][[1]]

{f[a], f[a, b], f[f[a], f[b, c]]}

Σ (* session summary *) TMGBs`PrintSessionSummary[]

i) We start with the definition f[HoldPattern[HoldPattern][x_]] = x. To match this pattern the innermost
HoldPattern must be present.

f1[HoldPattern[HoldPattern][x_]] = x; 
{f1[HoldPattern[1]], f1[Verbatim[1]], f[1]}

Now let  us  consider  the definition  f[HoldPattern[Verbatim][x_]] = x.  To match this  pattern Verbatim
must be present. The additional HoldPattern around the Verbatim in the function definition has no influence.

f2[HoldPattern[Verbatim][x_]] = x; 
{f2[HoldPattern[1]], f2[Verbatim[1]], f[1]}

The  third  definition  is  f[Verbatim[HoldPattern][x_]]  =  x.  Verbatim[HoldPattern]  means  that
HoldPattern must occur verbatim in the argument.

f3[Verbatim[HoldPattern][x_]] = x; 
{f3[HoldPattern[1]], f3[Verbatim[1]], f[1]}

The  last  definition  is  f[Verbatim[Verbatim][x_]]  =  x.  Verbatim[Verbatim]  means  that  Verbatim
must occur verbatim in the argument.

f4[Verbatim[Verbatim][x_]] = x; 
{f4[HoldPattern[1]], f4[Verbatim[1]], f[1]}

Σ (* session summary *) TMGBs`PrintSessionSummary[]

j)  For  the definition  of  f  to  go  into effect,  the  first  argument  can be arbitrary and the  second must be an assignment
with Set.  The left-hand side of this assignment must have head g  and the argument of g  must coincide with the first
argument of f. The right-hand side of the assignment for g must be y^2 verbatim.

With[{a = x}, HoldPattern[f[y_, g[y_] = y^2]] := a]

??f

??g

To have the Set in the second argument we must use Unevaluated.

f[z, Unevaluated[g[z] = y^2]]

The assignment for g was never evaluated.

This means any expression that evaluates to itself, not just a symbol, can be used for y$.
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f[a nonsymbol, Unevaluated[g[a nonsymbol] = y^2]]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

k) The next input evaluates the expression under consideration.

Block[{Function}, (#&[2]) /. Function -> Print]

Block  has  the  local  variable  Function.  This  means  that  the  typical  properties  of  Function  will  not  be  active
inside Block.  So #&[2]  does  not  evaluate to  2,  but  rather  stays unchanged.  Then the  replacement Function ->
Print  is  carried out.  The argument of Function  was #1,  and so Slot[1]  is  printed.  The result  of the evaluated
Print statement is Null and the Block statement returns Null[2]. Using a local variable other than Function,
the pure function in the body evaluates to 2 and Function is no longer present anymore to be replaced.

Block[{function}, (#&[2]) /. function -> Print]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

l) Here is what happens when evaluating the inputs. 

First, two definitions are set up for the one- and two-argument form of . Then [x] is evaluated. This generates an
upvalue  for  x.  This  upvalue  matches  any  expression  of  the  form  : _[___,x,  ___],  meaning  any  expression
containing x at level 1. (If such an expression is found, the right-hand side of the upvalue evaluates. When doing this, 
is printed and the original upvalue definition for x is destroyed, [ , ]  is evaluated and  is returned.) Then α[1,
β[y], a[b[c[d[f[x]]]]]]  is  evaluated.  The three arguments of  α  are  evaluated in order  and when evaluating
the  third  argument  the  subexpression  f[x]  is  found.  This  causes  the  upvalue  for  x  to  go  into  effect,  and  as  a  result
[f, x],  will  be  evaluated.  The  two-argument  form  of   works  similarly  to  the  one-argument  form.  [ , ]

creates an upvalue definition for : _[___, e, ___]. (When the right-hand side of this definition is evaluated,  is
printed and the original upvalue definition for  is destroyed, [ , ] is evaluated and  is returned.) So after evaluat-
ing  f[x]  an  upvalue  for  f  of  the  form  f /:  : _[___, f[x], ___]  is  in  effect.  When  d[f[x], 1]  is
evaluated this upvalue definition fires, d[f[x], 1] is printed, and a new upvalue definition for d is generated. This
process continues with the heads c, b, a, and finally α. 

Here we carry out the inputs under consideration.
SetAttributes[{ , TagUnset, ToString}, HoldAllComplete]

[e_] := (e /: HoldPattern[ : _[___, e, ___]] := 
         (Print["Found: ", , " ", HoldForm[ ]]; 
          ToExpression[# <> " /: HoldPattern[ : _[___, " <> 
                       # <> ", ___]] =."]&[ToString[e]];
          [ , ]; ))

[ _, e_] := (  /: HoldPattern[ : _[___, e, ___]] := 
              (Print["Found: ", HoldForm[ ]]; 
               TagUnset @@ { , UpValues[ ][[1, 1, 1]]}; [ , ]; ))

[x];
α[1, β[y], a[b[c[2, d[f[x], 1]]]]]

ClearAttributes[{TagUnset, ToString}, HoldAllComplete]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

m) The function does indeed implement the condition for separability in a straightforward way. And whenever separa
bleVariablesQ will return True for a function f, it will be surely separable. Here is an example.
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separableVariablesQ[f_, {x_, y_}, {x0_, y0_}] := 
 (Simplify[f /. {x -> x0, y -> y0}] =!= 0) &&
  Simplify[f D[f, x, y] - D[f, x] D[f, y]] === 0

separableVariablesQ[(Cos[x - y] - Cos[x + y])/2, {x, y}, {1, 2}]

The  problem  with  the  function  separableVariablesQ  is  when  it  returns  False.  As  a  function  ending  in  Q,  it
must (for the correct number of arguments) return True of False. The construct And[UnsameQ[…], SameQ[…]]
guarantee this.  But it might happen that Simplify  does not succeed showing that f D[f, x, y] - D[f, x]
D[f, y] is zero. And indeed, we can always make a function structurally inseparable by a term of the form x + zero y.
If  zero  is  a  sufficiently  complicated  zero  (and  some  theorems  guarantee  that  we  can  always  find  such  zeros),  then
Simplify  cannot  resolve this zero and we will get  the answer false from False  from separableVariablesQ,
although the function was separable. Here is an example of this situation. 

zero = Sqrt[2 + Sqrt[2 + Sqrt[2]]]/2 - Cos[Pi/16];

separableVariablesQ[(Cos[x - y] - Cos[x + y (1 + zero x)])/2, 
                    {x, y}, {1, 2}]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

n) We start by observing that 2 + 3 i is a Gaussian prime.

PrimeQ[2 + 3 I, GaussianIntegers -> True]

And that PrimeQ has, by default, the attribute Listable.

Attributes[PrimeQ]

To  predict  the  result  of  the  input  under  consideration,  we  must  remember  the  evaluation  order  discussed  in  the  last
chapter.  After  the  evaluation  of  the  SetAttributes-input,  the  function  PrimeQ  has  the  attribute  HoldAll.  This
means  its  two  arguments  2 + 3 I  and  are  not  immediately  {GaussianIntegers -> True}  evaluated.  The
Listable attribute results in {PrimeQ[2 + 3 I, GaussianIntegers -> True]}. Now PrimeQ goes to
work.  Its  first  argument  is  still  Plus[2,Times[3,I]],  meaning  an  expression  with  head  Plus,  not  a  number.
Because being a number is mandatory for being a prime number, the PrimeQ[…] evaluates to False and the result
returned is {False}.

SetAttributes[PrimeQ, HoldAll]
PrimeQ[2 + 3 I, {GaussianIntegers -> True}]

If we force the evaluation of the first argument of PrimeQ, we obtain the result {True}.

PrimeQ[Evaluate[2 + 3 I], {GaussianIntegers -> True}]

Without the HoldAll attribute, but again with an unevaluated argument, we get again the result {False}.

ClearAttributes[PrimeQ, {HoldAll}];
PrimeQ[Unevaluated[2 + 3 I], {GaussianIntegers -> True}]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

o) The five elements of the output characterize the result as “unusual”.

The result  of In[2]  shows that In[1]  was a  relatively short  numeric expression (the fourth test basically measures
the length of the input in characters) that was not a number but contained inexact numbers. The shortness of the input
and  the  absence  of  user  symbols  from  the  Global`  context  indicate  that  the  input  could  not  contain  any  Set
Attributes-  or  TagSet-operation  to  associate  an  artificial  property  with  a  user  symbol.  (Also,  faking  a  built-in
symbol using, say, Symbol`a gives already a too long input.) In addition, the context analysis of the input shows only
built-in symbols. So the input must have been a short input using a built-in function (there is hardly room for using two
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functions)  with  the  NumericFunction  attribute,  that,  for  approximate  numbers  does  not  evaluate  to  a  number.
While  there  are  built-in  functions  with  the  NumericFunction  attribute,  that  do  not  evaluate  to  numbers  for  all
arguments because of restricted domains of definitions (such as UnitStep[I] or DedekindEta[-I]), and they all
have  longer  names  than  needed  here.  The  shortest  built-in  functions  with  the  NumericFunction  attribute  are  the
two-letter functions Re and Im. When the argument is a single approximate number, they surely evaluate to a number.
But  for  two  arguments,  no  built-in  rules  exist  and  the  expression  stays  unevaluated.  But  the  NumericFunction
attribute still  makes them a numeric expression (in the sense of NumericQ).  And indeed,  the following input  has all
the  properties  we  were  looking  for.  (When  evaluated,  we  get  an  additional  message  because  Mathematica  does  not
expect Re to be called with two arguments.)

Re[1., 1]

{NumericQ[%], NumberQ[%], MemberQ[%, _?InexactNumberQ],
 StringLength[StringDrop[ToString[
                         DownValues[In][[$Line - 1]]], 22]],
 Context /@ Cases[%, _Symbol, {-1}, Heads -> True]}

There are plenty of modifications of this input that yield identical results for the In[2] from above.

Im[2., E]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

p) If a subexpression b explicitly literal in the tree form of a, then Position  will surely find its position (assuming
the  option  setting  for  the  Heads  option  is  identical  for  FreeQ  and  Position).  So,  we  must  rely  on  the  nonliteral
presence  of  b  in  a.  In  this  case,  it  is  obviously  impossible  for  Position  to  return  a  result  other  than  {}.  Because
FreeQ  allows  patterns  as  its  second  argument  and  takes  attributes  of  functions  into  account,  we  can  construct  the
following example where b is not literally present, but is present after taking the attributes into account. 

SetAttributes[f, {Flat, Orderless}];
a = f[x, y, z]; b = f[x, z];
{FreeQ[a, b], Position[a, b]}

Σ (* session summary *) TMGBs`PrintSessionSummary[]

16. Evaluation Sequence  

In  the  first  definition,  the  Condition  does  not  matter  at  all  for  the  function  definition  because  it  is  not  part  of  a
definition, but rather wrapped around a complete definition.

(f[x_] := g) /; c

?f

Clear[f, c]

(f[x_] := g) /; (Print[c]; c)

In the second definition, we have the condition on the left-hand side of the definition.

Clear[f]

(f[x_] /; c) := g

?f

We can see the order of evaluation by adding additional Print statements.
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Clear[f, c]

(f[x_?((Print[#]; True)&)] /; (Print[c]; c = True)) := (Print[g]; g)

f[x]

We see that first the pattern, then the condition, and then the right-hand side become evaluated.

Using Print statements again, we see that the same evaluation sequence happens for the third and fourth definitions.

Clear[f];

(f[x_] := g /; c)

?f

Clear[f, c]

f[x_?((Print[#]; True)&)] := (Print[g]; g) /; (Print[c]; c = True)

f[x]

Clear[f];

f[x_ /; c] := g

?f

Clear[f, c]

f[(x_?((Print[#]; True)&)) /; (Print[c]; c = True)] := (Print[g]; g)

f[x]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

17. Nested Scoping  

a) Applying the function f to the argument y just replaces all instances of x in the definition of f by y.

Clear[f]; f[x_] := Function[x, x]; f[y]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

b) With replaces every nonscoped instance of the local variables in the body by the corresponding value, which means
the two xs in the Function will be replaced by z.

With[{x = z}, Function[x, x]]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

c) The replacement rule again replaces the two “x”s in the Function with z.

Function[x, x] /. x -> z

Σ (* session summary *) TMGBs`PrintSessionSummary[]

d)  The  function  definition  with  SetDelayed  inside  the  Function  keeps  the  x  local,  and  the  resulting  definition
contains x, not y.

Function[x, f[x_] := x^2][y]; DownValues[f]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

e) With does not replace scoped variables, which means the two “x”s in the function definition will be not replaced by
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y.

With[{x = y}, f[x_] := x^2]; DownValues[f]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

f) A literal replacement of y by the outer x would mostly not do what we want, so the scoped x in the inner functions
gets renamed to x$.

Function[y, Function[x, x + y]][x]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

g) The same renaming happens in the following application of f.

f[y_] := Function[x, x + y]; f[x]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

h) The x and the z in the left-hand side of the SetDelayed definition are not pattern variables, so they just get their
local  values  inside  the  Module.  The  x  on  the  left-hand  side  of  the  SetDelayed  is  local  to  Function  and  gets
renamed.

Module[{x, y, z = a}, f[x, y_, z] := Function[x, x + y + z]];
DownValues[f]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

i) In this last example, first the z gets substituted everywhere. The rest is similar to the last example.

With[{z = a}, Module[{x, y}, f[x, y_, z] := Function[x, x + y + z]]];
DownValues[f]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

18. Why {b,b}?

After  the  Table  has  been  evaluated,  the  Union  goes  to  work.  The  list  to  Union  has  only  as  or  only  bs  or  both.
Assume as and bs occur. Then, Union unions them to {a, b}. After Union has finished its job, the Date[] might
have advanced and the a in {a, b} is now evaluated to b.

a := b /; EvenQ[Last[Date[]]]

We carry out the Table command 20 times; sometimes the result is {b} and sometimes {b, b}.

Table[Union[Table[a, {10000}]], {20}]

Σ (* session summary *) TMGBs`PrintSessionSummary[]
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P    R    O    G    R    A    M    M    I    N    G

CHAPTER  6

Operations on Lists, and 
Linear Algebra

6.0 Remarks 
This chapter on lists is the last chapter on the structure of Mathematica expressions and programming in Mathematica.
We start presenting somewhat larger programs, especially in Sections 6.3.4, 6.4.4, 6.5.2, and 6.6. These programs deal
mostly  with  mathematical,  physical,  and  scientific/engineering  applications  of  Mathematica,  although  some  of  them
serve primarily to illustrate Mathematica as a programming language. At the outset, we do not place too much value on
elegance, and we intentionally present classical procedural  program segments. As we get deeper into the material, we
will also make use of more elegant functional programming techniques. However, functional programming should not
be overdone. From the standpoint of readability (for an example, see Subsection 2.3.10 of the Graphics volume [301÷]),
it is sometimes better to introduce auxiliary variables, even when they make the program longer and are not needed. In
addition, functional programs are often relatively complicated for the newcomer, although they can be much faster than
a corresponding using procedural routine. 

To  save  time  and  space  and  to  improve  readability,  we  will  not  always  conduct  the  most  desirable  tests  needed  to
determine  if  the  variables  passed  to  a  procedure  are  appropriate.  This  testing  can  be  done  using  _head,  Pattern
Test,  and  Condition.  Leaving  out  such  tests  has  one  advantage  in  the  framework  of  the  GuideBooks:  It  is  fre-
quently  very  instructive  to  call  a  given  program  segment  with  “inappropriate”  arguments,  say,  symbolical  instead of
numerical  and  to  study what  happens  in  such  situations.  Moreover,  we do not  protect  all  programs and program seg-
ments  from  other  programs  in  the  chapter  as  well  as  we  could  have  (using  the  constructions  Block,  Module,  and
With discussed in Chapter 4). 

Usually,  we restrict ourselves to generic cases. We do not try to make most programs work with a wider set of prob-
lems. Various  special  cases would  have to be programmed to  avoid,  such as division by zero.  Numeric and symbolic
arguments would have to be treated separately for speed reasons, and so on. 

The lists to be discussed in this chapter are very important objects in Mathematica. They represent sets, vectors, matri-
ces, tensors, etc. Almost all larger data sets (they arise, for example, in images, in finding roots of larger polynomials, in
solving  equations,  etc.)  are  collected in  lists.  Lists  are  “containers”  for  (potentially  very  large)  data  sets.  Lists  can be
nested in a completely arbitrary way, independent of their size, depth, and content. Mathematica implements a large set
of effective commands for manipulating lists. For nested lists (tensors) of machine integers, real numbers and complex
numbers, Mathematica carries out appropriate optimizations by generating packed arrays (see Chapter 1 of the Numer-
ics volume [302÷] of the GuideBooks  for  details).  These commands include sorting,  reordering,  combining, and split-
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ting lists, as well as various set theory operations. Because the basic objects of linear algebra, vectors, and matrices are
also  represented  in  Mathematica  as  lists,  we  discuss  various  mathematical  operations,  such  as  matrix  multiplication,
solution of systems of linear equations, eigenvalues.

List operations are useful and fast in Mathematica  when dealing with large amounts of data. A typical example is the
generation  of  a  graphics  image.  Here  is  a  routine  GluedPolygons  that  recursively  glues  regular  polygons  to  each
other  with  a  given  angle  between  these  normals  (the argument  form  determines if  the  resulting  faces  should  be ren-
dered  as  holed  polygons  or  as  lines  along  the  boundaries)  and  displays  the  resulting  polygons  (for  details  of  the  3D
graphics generation, see Chapter 2 of the Graphics volume [301÷]).

In[45]:= (* no spelling warnings, set fonts for tick labels, ... *)
Get[ToFileName[ReplacePart["FileName" /. 
 NotebookInformation[EvaluationNotebook[]], "Initialization.m", 2]]];

GluedPolygons[n_Integer?(# >= 3&), angle:α_?(Im[N[#]] === 0&),
              iter__Integer?(# >= 0&), faceShape:(Polygon | Line),
              opts___Rule] :=
Module[{c = N[Cos[α]], s = N[Sin[α]], myUnion, , , allm, argch, 
        makeHole, makeLine,  = #/Sqrt[#.#]&, ∂ = 10^-6},
(* a completely transitive Union  *)
myUnion[l_] := Union[l, SameTest -> ((Plus @@ (#.#& /@ (#1 - #2))) < ∂&)];
(* construction of next layer *)
(* rotate a point *)
[point_, rotPoint_, {dir1_, dir2_, dir3_}] :=
 Module[{δ = point - rotPoint, parallel, normal},
        parallel = δ.dir1 dir1;
        normal = Sqrt[#.#]&[δ - parallel];
        rotPoint + c normal dir2 + s normal dir3 + parallel];
(* rotate points *) 
[l_] := Module[{dir1, dir2, dir3},
       (* three orthogonal directions *)
       dir1 = [Subtract @@ Take[l, 2]];
       dir2 = [(Plus @@ l)/Length[l] - (Plus @@ Take[l, 2])/2];
       dir3 = -Cross[dir1, dir2];
       Map[N[ [#, l[[1]], {dir1, dir2, dir3}]]&, l, {-2}]];
(* prepare lists *)       
allm[l_] := Table[RotateLeft[l, i], {i, Length[l] - 1}];
argch[l_] := Join[Reverse[Take[l, 2]], Reverse[Drop[l, 2]]];
(* make a hole in a polygon *)
makeHole[l_] := 
 With[{mp = (Plus @@ l)/Length[l], h = Append[#, First[#]]&[l]},
       MapThread[Polygon[Join[#1, Reverse[#2]]]&,
      {Partition[h, 2, 1], Partition[mp + 0.8(# - mp)& /@ h, 2, 1]}]];
(* wireframe or polygons *)
makeLine[l_] := Line[Append[l, First[l]]];
(* show graphics *)
Show[Graphics3D[If[faceShape === Polygon, makeHole[#], makeLine[#]]& /@ 
 Join[{Table[N[{Cos[ϕ], Sin[ϕ], 0}], {ϕ, 0, 2Pi - 2Pi/n, 2Pi/n}]},
(* build layer on layer *)
If[iter > 0, Flatten[NestList[myUnion[argch /@ (  /@
 Flatten[Join[allm /@ #], 1])]&, Join[argch /@ (  /@ #)]&[(* one face *)
    Table[Table[N[{Cos[ϕ], Sin[ϕ], 0}],
                 {ϕ, ϕ0, ϕ0 + 2Pi - 2Pi/n, 2Pi/n}],
          {ϕ0, 0, 2Pi - 2Pi/n, 2Pi/n}]], iter - 1], 1], {}]]], opts]]

First,  let  us  see  how  often  we  have  typical  list  operations  (dealing  with  expressions  with  head  List),  such  as  Map,
Dot,  Join,  Apply,  Table,  Flatten,  Reverse,  Partition,  Take,  Drop,  MapThread,  Part,  and  List
itself (all of these functions we will discuss in this chapter) in the source code of GluedPolygons.
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MapThread[{#, Count[#2, #1]}&,
(* the commands to be counted *)
{{List, Map, Dot, Join, Apply, Table, Flatten, Reverse,
  Partition, Take, Drop, MapThread, Part},
 Table[#, {13}]&[ (* the code to be analyzed *)
 Level[DownValues[GluedPolygons], {-1}, Heads -> True]]}]

When actually running the code,  these operations are  carried out more frequently because of loops.  With Trace,  we
can look at how often the commands listed above appear in the history of the function evaluation. (Because it is a very
simple graphic, we suppress its rendering and have a look at a slightly more complicated example in a moment.) 

glueTrace =
Trace[GluedPolygons[5, 3Pi/4, 1, Polygon, DisplayFunction -> Identity],
      (* the commands to be counted *)
      Part | Map | Dot | Apply | Flatten | Table | Reverse |
      Partition | Take  | Join | Drop  | MapThread | List];

Function[arg, {#, Count[arg, #]}& /@
(* count how often they appear in glueTrace *)
{List, Reverse, Join, Dot, Map, Partition, Apply, Take,
 MapThread, Drop, Table, Part, Flatten}][
     Level[glueTrace, {-1}, Heads -> True]]

(These numbers are not the actual function calls because inside Trace they appear hierarchically nested.) glueTrace
is quite a big object—again, a List structure. 

{ByteCount[glueTrace], Depth[glueTrace], LeafCount[glueTrace]}

Now,  having  “established”  the  importance  of  List  operations,  we  show  two  pictures  generated  with  GluedPoly
gons. 

Show[GraphicsArray[{
 GluedPolygons[4, 3Pi/4, 4, Line, DisplayFunction -> Identity],
 GluedPolygons[6, 3Pi/4, 2, Polygon, DisplayFunction -> Identity]}]]

For certain angles and certain polygons, we just get the regular polyhedra (we do not see the “top” polygons because for
the given number of iterations it was not generated). 

Show[GraphicsArray[{
 GluedPolygons[4, Pi/2, 1, Polygon,
               DisplayFunction -> Identity, Boxed -> False],
 GluedPolygons[5, 2.0344, 2, Polygon,
               DisplayFunction -> Identity, Boxed -> False]}]]

In addition to the tetrahedron, the octahedron, and the icosahedron, with triangles, we can form the following polyhe-
dron [280÷], [202÷], [203÷], [48÷].

GluedPolygons[3, 0.729729, 4, Polygon, Boxed -> False,
              SphericalRegion -> True, ViewPoint -> {1, 1, 1}]

For  certain  initial  polygons  and  certain  angles,  many  edges  coincide  and  we  get  interesting  polyhedra.  Here,  two
examples for a heptagon and an octagon are shown.

Show[GraphicsArray[{
GluedPolygons[7, 53/120 Pi, 2, Polygon, DisplayFunction -> Identity],
GluedPolygons[8, Pi/2, 2, Polygon, DisplayFunction -> Identity]}]]

Using  an  animation  (to  be  discussed  in  the  next  chapter),  we  can  see  how  a  dodecahedron  forms.  In  addition  to  the
dodecahedron, we see a second nice polyhedron made from regular pentagons at j º 1.1074.

THE MATHEMATICA GUIDEBOOKS to PROGRAMMING—GRAPHICS—NUMERICS—SYMBOLICS 3

©  2004, 2005   Springer Science+Business Media, Inc.



Show[GraphicsArray[#]]& /@ Partition[
Table[GluedPolygons[5, N[ϕ], 2, Polygon, Boxed -> False,
              SphericalRegion -> True, DisplayFunction -> Identity], 
      {ϕ, Pi, 0, -Pi/34}], 5]

Make Input    Show Animation

Do[GluedPolygons[5, N[ϕ], 2, Polygon, Boxed -> False,
                 SphericalRegion -> True], {ϕ, Pi, 0, -Pi/59}]

Next,  we  will  fold  four  rings  of  regular  hexagons.  To avoid  many intersecting polygons  and to  better  view the  inner
hexagons  we display lines instead of  hexagons.  For  the three folding angles  p ê2,  p ê2 ≤ 4 p ê37 many hexagon edges
coincide. The following graphics display the folded hexagons at these angles and at 1% different angles.

foldedHexagons[ϕ_, opts___] :=
Module[{c = 0}, 
 Show[GluedPolygons[6, N[ϕ], 3, Line, PlotLabel -> N[ϕ],
              DisplayFunction -> Identity] /. (* colored edges *)
     l_Line :> {Thickness[0.001], Hue[(c = c + 1)/230], l}, opts]]

Function[ϕ, Show[GraphicsArray[foldedHexagons[#]& /@ 
    {0.99 ϕ, ϕ, 1.01 ϕ}]]] /@ {Pi/2 - 4/37 Pi, Pi/2, Pi/2 + 4/37 Pi}

The following animation shows the dynamics of the folding process.
Make Input    Show Animation

Do[foldedHexagons[ϕ, DisplayFunction -> $DisplayFunction], 
   {ϕ, Pi, 0, -Pi/300}];

With  slight  adaptation  of  the  implementation  of  GluedPolygons,  it  is  possible  to  mirror  on  vertices  and  to  treat
concave polygons (like a pentagram).

Now, we go on to the detailed discussion of the function List. 

Σ (* session summary *) TMGBs`PrintSessionSummary[]

6.1 Creating Lists 

à 6.1.1 Creating General Lists
In this subsection,  we discuss several ways to create lists. For completeness, we again mention the command Table,
introduced in Subsection 5.2.2. Note that with Table, as with all constructions using analogous iterators (Sum, Prod
uct, Do, etc.), the lower and upper limits of the running variables do not have to be numbers; only the difference of the
two limits has to be a positive real number greater than the current value of the increment (see Section 4.2).

Table[f[i], {i, l[5], l[5] + 6, 1}]

Array is a somewhat simpler construction. 

 

Array[function, {i1, i2, …, in}]

produces a “rectangular” list of size i1 ä i2 ä∫ä in with the elements of the form function[ j1, 
j2, …, jn], where 1 § jk § ik . 
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Array[function, {i1, i2, …, in}, {i01, i02, …, i0n}, head]

produces a “rectangular” object with the head head (instead of a List), which at each level 
has the size i1 ä i2 ä∫ä in and contains the elements function[ j1, j2, …, jn]. The jth 
variable runs from i0 j to i j + i0 j-1. 

For a one-dimensional (1D) list  (i.e.,  a vector that does not necessarily have exactly three components),  we also have
the following construct. 

 

Range[imin, imax, istep]

produces a list of the numbers (or more general expressions) between imin and imax with step 
istep. 

Before presenting a few examples, we take note of a recurring theme in this chapter. 

Many operations that can be typically carried out on lists (head List) or with lists, also work 
for expressions with other heads. 

The following example shows a triply-nested list with individual elements having different lengths, so that the list is not
rectangular. 

Table[fgh[i, j, k], {i, 3}, {j, i}, {k, j}]

(TreeForm can be used to “see better” the nonrectangular form of smaller examples.) Array produces a rectangular-
shaped object. 

Array[fu, {3, 3, 3}]

The first argument of Array can be any function, including a symbol or pure function, of course. 

Array[Times[#1, #2, #3]&, {3, 3, 3}]

Here is the same thing with a shorter input. 

Array[Times[##]&, {3, 3, 3}]

This input is still shorter. 

Array[Times, {3, 3, 3}]

If a fourth argument appears in Array, every pair of braces {} is replaced by that argument. In the following example,
the fourth argument is H. 

Array[fu, {3, 3, 3}, 1, H]

In  addition  to  giving  objects  of  rectangular  form,  Array  has  another  distinguishing  feature  when  compared  with
Table: The step size of the dummy variable in Array is always 1. The advantage of Array compared with Table is
that an auxiliary variable is not needed, and so localization of variables (as discussed in Subsections 4.6.1 and 4.6.3) is
automatically  avoided.  Note  that  Array,  in  contrast  to  Table,  always  needs  an  integer  second  argument.  Another
difference is obvious if we look at the attributes of Array and Table. 

{Attributes[Table], Attributes[Array]}

Thus,  Table  recomputes  its  first  argument  for  every  call,  whereas  Array  does  this  at  the  beginning,  to  the  extent
possible. We now illustrate these differences and at the same time show that they have a natural effect on the computa-
tion times required when using Table compared with Array. Note the generation of the i in ai. 
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Remove[a, i, j];
a = 0;
Table[a = a + 1; ToExpression[StringJoin["a" <> ToString[a]]][i, j],
      {i, 3}, {j, 3}] 

a = 0;
Array[a = a + 1; ToExpression[StringJoin["a" <> ToString[a]]], {3, 3}] 

The preevaluation of the first argument makes Array much faster than Table.

Do[a = 0;
Table[a = a + 1; ToExpression[StringJoin["a" <> ToString[a]]][i, j],
      {i, 3}, {j, 3}], {1000}] // Timing

Do[a = 0;
Array[a = a + 1; ToExpression[ StringJoin["a" <> ToString[a]]], 
                                         {3, 3}], {1000}] // Timing

For efficiency, expressions (especially large ones) should be at least partially computed whenever the computed expres-
sion  is  “simpler”  than  the  beginning  expression.  This  evaluation  can  be  done  via  Table[Evaluate[preComputÖ
able], iterators]. We will discuss an application of this kind shortly. Care should be taken not to perform this precom-
putation when the symbolic result differs from the result after substitution of the dummy variable. Care should also be
taken if the symbolic expression evaluates (such as in cases of nested tables, sums, and so on) to large expressions. 

Range  works  almost  exclusively  with  numbers  (imax  and  imin  have  to  differ  by  a  numeric  constant);  the  prescribed
limits are never exceeded. 

Range[-3, 4, 0.98]

This input generates the reversed list.

Range[4, -3, -0.98]

Now, the result is the empty list.

Range[4, -3, 0.98]

In the next example, the difference between the upper and lower limits is a real number greater than the step size 3 ê2.

Range[-3 + chevy, 4 + chevy, 3/2]

Here steps along a direction in the complex plane are taken and the endpoint is not in the resulting list.

Range[6 + 4 I, -3 - 3 I, -(9 + 7 I)/(12/10)]

Note that in all iterator-carrying functions,  the generated iterator value depends on the type of limits. In the following
examples they are either of type Real, Integer, or Complex. 

Table[abcd[i], {i, 1, 5, 1}]

Table[abcd[i], {i, 1.0, 5.0, 1.0}]

Table[abcd[i], {i, 1.0, 5.0 + I 0.0, 1.0}]

Table[abcd[i], {i, 1.0 + I 0.0, 5.0, 1.0}]

In  the  following  input,  be  sure  to  note  the  first  term,  whose  argument  has  the  head  Integer;  the  arguments  of  the
other terms have the head Real. 

Table[abcd[i], {i, 1, 5.0, 1.0}]

The iterator steps are calculated in such a way that the last element in the following Table has the argument 5 (head
Real).
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Table[abcd[i], {i, 1., 5, 1.0}]

For  a  square  matrix,  the  computation  times  and  the  required  memory  grow  quadratically  with  its  size,  assuming  all
matrix elements are about the same size and are equally difficult  to compute. We now illustrate this for nän  matrices
with  Null  entries.  The  gray  lines  in  the  graphic  represent  quadratic  approximations  of  the  construction  time  and
memory use, respectively. (We discuss the command Fit in Chapter 2 of the Numerics volume [302÷].) The measured
timings clearly show the finite resolution of the Timing command.

Module[{datat, datam, approxt, approxm, n = 300},
(* times *)
datat = Array[{#, Timing[Array[Null&, {#, #}];][[1, 1]]}&, {n}];
(* fit to times used *)
approxt = Fit[datat, {1, x^2}, x];
(* memory used *)
datam = Array[{#, ByteCount[Array[Null&, {#, #}]]/1024}&, {n}];
(* fit to memories used *)
approxm = Fit[datam, {1, x^2}, x];
(* the picture *)
Show[GraphicsArray[
ListPlot[#[[1]], #[[3]], PlotRange -> All,
         (* data points as black points *)
         PlotStyle -> {GrayLevel[0], PointSize[0.006]},
         (* fit as underlying gray curve *) 
         Prolog -> {GrayLevel[1/2], Thickness[0.01],
                    Line[Table[{x, #[[2]]}, {x, 0, n, 1}]]},
         DisplayFunction -> Identity]& /@
{{datat, approxt, AxesLabel -> {"dim", "t in s"}},
 {datam, approxm, AxesLabel -> {"dim", "Mem. in kByte"}}}]]]

So far,  we  discussed  functions  to  generate  lists  “from scratch”.  Often  one  has  already a  Mathematica  expression  and
one wants to convert  it or parts of it into (nested) lists. Here is an example: Starting with an object with several argu-
ments, we want to use it to make a list, or starting with a list, we want to use its elements as arguments for a function.
This transformation of the heads can be accomplished as follows. 

makeNewHead[oldHead_[arguments__], newHead_] := newHead[arguments]

Here is how it works. 

makeNewHead[funcManyArgs[x1, x2, x3, x4, x5, x6, x7, x8], List]

Here it is in reverse. 

makeNewHead[%, funcManyArgs]

This process can be done more easily with Apply. 

 

Apply[newHead, expression, levelSpecification]
or

if levelSpecification is equal to {0}, newHead @@ expression

if levelSpecification is equal to {1}, newHead @@@ expression

replaces the head of expression at the level levelSpecification by newHead. If levelSpecificaÖ
tion is not present, it is assumed to be {0}. 

Only the head will be replaced; the inner lists remain unchanged. 

newHead @@ Array[[##]&, {3, 4}]
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Now, we apply newHead to various levels. 

Apply[newHead, Array[, {2, 2}, {2, 4}], {-2}]

Apply[newHead, Array[, {2, 2}, {2, 4}], 3]

Apply[newHead, Array[, {2, 2}, {2, 4}], Infinity]

In the next input, all List heads are placed by newHead heads.

Apply[newHead, Array[, {2, 2}, {2, 4}], {0, Infinity}]

The head of raw expressions does not get changed by Apply.

Apply[HeadNew, Array[, {2, 2}, {2, 4}], {-1}]

Apply is a very efficient function and should be used often, especially when manipulating 
larger expressions. 

Next, we generate a long list of machine numbers using Range. 

longList = Range[1, 1000000, 1];

We compute its  sum. Let  us  compare the  timings of  various  ways to  sum the  term of  longList.  Because  all  sum-
mands are machine integers Mathematica can use internal optimizations to carry out the Do loop quickly.

Timing[sum = 0;
       Do[sum = sum + longList[[i]], {i, 100000}];
       sum]

Timing[Apply[Plus, longList]]

Now let us sum another list of integers, but not machine integers. Do has the attribute HoldAll; that is, for every call,
the  ith  element  of  longList  is  looked  up  and  added  to  sum.  In  contrast,  Apply  works  “only  once”  on  the  entire
object longList. This time the Apply version is many times faster. This is not unexpected. Apply[Plus, long
List] can deal with all 105 summands at once, while the Do loop has to deal with all summands individually.

longList = 10^100 Range[1, 10^5];

Timing[sum = 0;
       Do[sum = sum + longList[[i]], {i, 10^5}];
       sum // N]

Timing[Apply[Plus, longList] // N]

Next, we use a list with symbolic entries. In this example, the timings are nearly the same.

(* x is a symbol without a value *)
longList = ξ Range[1, 100000, 1];
{Timing[sum = 0;
        Do[sum = sum + longList[[i]], {i, 10000}];
        sum],
Timing[Apply[Plus, longList]]}

For more complicated symbolic list entries, the timing difference might be much larger. (In the following example, the
timing difference is caused by repeated reordering of sum into canonical form after each call to Plus in sum = sum
+ longList[[i]].)
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Clear[ξ];
longList = Table[ξ^i + ξ^(i + 1), {i, 1000}];
{Timing[sum = 0;
        Do[sum = sum + longList[[i]], {i, 1000}];
        sum;],
Timing[Apply[Plus, longList];]}

A time ratio on the order of 10 between procedural and functional programs is typical. Of 
course, the savings depends on the concrete implementation and the size of the objects 
involved, but we will see about one order of magnitude ratios in similar computations below. 

Using  the  function  Apply,  we  can  implement a  function  Arguments.  Arguments[expr]  returns  the  sequence of
arguments of expr. This means expr equals Head[expr][Arguments[expr]].

Arguments[expr_] := Apply[Sequence, Unevaluated[expr]]

The head Sequence of the result allows for a straightforward application of Head[expr] to the arguments. Here is a
simple example.

expr = C[3, 4];
Arguments[expr]

Head[expr][Arguments[expr]]

The Unevaluated on the right-hand side is needed when Arguments is called with an unevaluated argument.

Arguments[Unevaluated[Plus[1, 1]]]

For functions having the attribute SequenceHold, the input Head[expr][Arguments[expr]] will not evaluate to
expr. Here is an example.

expr =  C -> 1;
Head[expr][Arguments[expr]]

Evaluating the arguments before applying the head yields the original expression.

#1[##2]&[Head[expr], Arguments[expr]]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

à 6.1.2 Creating Special Lists
The  identity  matrix  (Kronecker  symbol  dij)  and  the  Levi-Civita  tensor  ¶ijk  fall  into  the  category  of  special  matrices

(tensors [73÷]). In Mathematica, the identity matrix is IdentityMatrix. 

 

IdentityMatrix[dim]

creates a dim-dimensional identity matrix. 

Here is the identity matrix of dimension 6. 

IdentityMatrix[6]

An obvious generalization of the identity matrix is the diagonal matrix. 

 

DiagonalMatrix[mainDiagonal]

creates a square matrix with the values contained in the list mainDiagonal on the main 
diagonal and zeros everywhere else. 
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Here is a diagonal matrix of dimension 8. 

DiagonalMatrix[Range[8]]

The representation of Levi-Civita tensors can be accomplished with the help of Signature. It is not a matrix, but it
can easily be used to construct one.

 

Signature[listOfNumbers]

gives 1 if the numbers in listOfNumbers are an even permutation of {1, 2, 3, 4, 5, 
… , Length[listOfNumbers}]. It gives -1 if they are an odd permutation, and it gives 0 
otherwise. (If the elements of listOfNumbers are not numbers, the canonical order determines 
the sign.

Here are the Levi-Civita tensors of dimensions 2 through 4. 

Table[Signature[{a, b}], {a, 2}, {b, 2}]

Table[Signature[{a, b, c}], {a, 3}, {b, 3}, {c, 3}]

Table[Signature[{a, b, c, d}], {a, 4}, {b, 4}, {c, 4}, {d, 4}]

A Levi-Civita tensor of dimension 6 has 66 = 46 656 entries; 2 μ 360 of these entries are ≤1.

{Count[#, 1, {-1}], Count[#, -1, {-1}], Count[#, 0, {-1}]}&[
   Table[Signature[{a, b, c, d, e, f}], 
         {a, 6}, {b, 6}, {c, 6}, {d, 6}, {e, 6}, {f, 6}]]

If the arguments are not computed to be numbers, their order is determined by the canonical order and so it is decided
whether the permutation is even or odd (this canonical sorting, of course, also is the case if the arguments are numbers).
If two arguments of Signature[{…}] are identical, the result is 0. 

Clear[asdf, ];

{Signature[{1, asdf, [t]}], Signature[{asdf, 1, [t]}],
 Signature[{asdf, 1, [t], [t]}]}

For comparison, the arguments in their canonical order are shown here. 

SetAttributes[orderlessFunction, Orderless]

{orderlessFunction[1, asdf, [t]],
 orderlessFunction[asdf, 1, [t]],
 orderlessFunction[asdf, 1, [t], [t]]}

The  Levi-Civita  tensor  is  a  very  important  object.  It  permits  a  “correct”  (also  valid  for  left-hand  coordinate  systems)
notation for the cross product HaμbLi = ¶i j k  a j bk  of two three-element vectors a and b, where the right-hand side is to

be summed over values of j and k, each ranging from 1 to 3, and ci is the ith component of the vector c.

Table[Sum[Signature[{i, j, k}] a[j] b[k], {j, 3}, {k, 3}], {i, 3}]

The  last  result  agrees  with  the  known  result  ([i],  [j],  and  [k]  represent  unit  vectors  in  the  following;  the
function Collect collects with respect to the [ijk] terms; we will discuss it in Chapter 1 of the Symbolics volume
[303÷]). The command Det gives the determinant; we discuss it soon. 

Remove[a, b, i, j, k];
Det[{{[i], [j], [k]},
     {a[1], a[2], a[3]},
     {b[1], b[2], b[3]}}] // (* rewrite result *) Collect[#, _]&

Assuming that we want to also look at higher dimensional Levi-Civita tensors, we would need to generate the iterator

10 Printed from THE MATHEMATICA GUIDEBOOKS

©  2004, 2005   Springer Science+Business Media, Inc.



sequence {a, dim}, {b, dim}, {c, dim}, {d, dim}, …, automatically [56÷]. 

iteratorList[var_String, iMax_Integer] :=
  Table[{ToExpression[var <> ToString[i]], iMax}, {i, iMax}]

iteratorList["arg", 4]

In the following example, we will use a construction of the form Table[func, ##]& @@ {listOfSingleIterators} to
“put  in”  the  different  {argi, j}  without  the  outermost  brackets  in  the  Table.  We  now  look  at  the  result  of  our
iterator construction. 

Table[{arg1, arg2, arg3}, ##]& @@ iteratorList["arg", 3]

Another  possibility  would  be  to  use  Sequence  to  get  rid  of  the  outer  brackets:  Table[  func, Evaluate[Se
quence @@ listOfSingleIterators]].

Table[{arg1, arg2, arg3}, Evaluate[Sequence @@ iteratorList["arg", 3]]]

The argument of Signature can be constructed analogously to String. 

signArg[var_String, iMax_Integer] :=
   Table[ToExpression[var <> ToString[i]], {i, iMax}];

signArg["arg", 6]

We can now write a routine that creates several Levi-Civita tensors at once and prints them (using Print). 

moreLeviCivitaTensors[dimMin_, dimMax_] :=
Module[{iter, siar},
Do[siar = signArg["argu", j];
   iter = iteratorList["argu", j];
   CellPrint[Cell["Î Levi-Civita tensor of "<> ToString[j] <>
                  ToString[Which[j === 2, "nd", j === 3, "rd",
                                 j >= 4, "th"]] <> " order:", "PrintText"]]
   Print[Table[Signature[siar], ##]& @@ iter], {j, dimMin, dimMax}]]

Here are the first three Levi-Civita tensors. (The fifth tensor already has 55 = 3125 elements.) 

moreLeviCivitaTensors[2, 4]

Instead of the symbols ai we could, of course, also use nonatomic expressions, such as a[i], for the iterators.

Let us give one more example of using multiple iterators. The Stirling numbers of the second kind n
HkL  (to be discussed

in Chapter 2 of the Numerics volume [302÷]) have the following multiple sum representation [59÷], [213÷].

n
HkL =

n !

k !
 ‚
r1=1

n

∫ ‚
rk =1

n dn,⁄j=1
k r j

¤j=1
k r j !

Using  an  Evaluate[Sequence @@ listOfSingleIterators]  construction,  we  can  directly  implement stirling
S2[n, k].

stirlingS2[n_Integer?Positive, k_Integer?Positive] := 
Module[{r},
n!/k! Sum[KroneckerDelta[n, Sum[r[j], {j, k}]]*
          1/Product[r[j]!, {j, k}], 
          (* the iterator *)
          Evaluate[Sequence @@ Table[{r[i], n}, {i, k}]]]]

Here is an example.

stirlingS2[8, 5] // Timing
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stirlingS2[n, k]  works,  although  slowly.  The  dn,⁄j=1
k r j

 term  results  in  most  summands  being  zero.  Instead of

summing all 32768 summands in the above example, it is much more efficient to restrict the summation to the (56 in the
last example) values of the iterators to such values that the summand is nonvanishing.  As a first step in this direction,
we use the condition n = ⁄j=1

k r j to restrict the iterator limits.

n
HkL =

n !

k !
 ‚
r1=1

n

‚
r2=1

n-r1

∫ ‚
rk =1

n-r1-∫-rk-1 dn,⁄j=1
k r j

¤j=1
k r j !

The iterators can contain functions of the iterator variables, and so, we can implement the upper limits in the last sum
n - r1 - ∫ - r j in the following manner. 

stirlingS2Fast[n_Integer?Positive, k_Integer?Positive] := 
Module[{r},
       n!/k! Sum[KroneckerDelta[n, Sum[r[j], {j, k}]]*
                 1/ Product[r[j]!, {j, k}], 
                            Evaluate[Sequence @@ 
                 Table[{r[i], n - Sum[r[j], {j, i - 1}]}, {i, k}]]]]

stirlingS2Fast is of course much faster. 

stirlingS2Fast[8, 5] // Timing

Using the identity n = ⁄j=1
k r j forced by the arguments of the Kronecker symbol we can eliminate the last iterator rk .

stirlingS2Fastest[n_Integer?Positive, k_Integer?Positive] := 
Module[{r},
       n!/k! Sum[If[(r[k] = n - Sum[r[j], {j, k - 1}]) > 0,
                 1/ Product[r[j]!, {j, k}], 0], 
                            Evaluate[Sequence @@ 
                 Table[{r[i], n - Sum[r[j], {j, i - 1}]}, {i, k - 1}]]]]

stirlingS2Fastest[8, 5] // Timing

This yields another slight timing improvement for larger k and n.

stirlingS2Fast[16, 8] // Timing

stirlingS2Fastest[16, 8] // Timing

All here implemented Stirling number calculating functions stirlingS2, stirlingS2Fast, and stirlingS2
Fastest agree with the built-in StirlingS2.

StirlingS2[8, 5] // Timing

Sometimes we need an “indexed version” of  a  unit  tensor.  While  Signature  generates  a  completely antisymmetric
tensor containing 0s and 1s, the function KroneckerDelta generates a unit diagonal tensor.

 

KroneckerDelta[sequenceOfNumbers]

gives 1 if the numbers in sequenceOfNumbers are all identical and 0 else.

Here are the values of KroneckerDelta for 1, 2, and 3 arguments. 

Table[KroneckerDelta[i], {i, -2, 2}] // TableForm

Table[KroneckerDelta[i, j], {i, -2, 2}, {j, -2, 2}] // 
              TableForm[#, TableSpacing -> {1, 1}]&
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Table[KroneckerDelta[i, j, k], {i, -2, 2}, {j, -2, 2}, {k, -2, 2}] // 
              TableForm[#, TableSpacing -> {1, 1}]&

KroneckerDelta uses Equal for comparison. So the following input returns 1.

KroneckerDelta[0.9999999999999999999, 1]

The following two low-precision numbers are equal.

KroneckerDelta[4.`0*^-20, -2.`0*^-20]

The equality of Hp + 1L2  and p2 + 2 p + 1 cannot be established numerically. So the following input does not evaluate to
1.

KroneckerDelta[(Pi + 1)^2, Expand[(Pi + 1)^2]]

For symbolic arguments, KroneckerDelta stays unevaluated.

KroneckerDelta[αβγ, ]

Often,  the  function  KroneckerDelta  is  used  inside  Sum.  In  the  following  infinite  sum,  the  1000th  element  is
selected.

Sum[KroneckerDelta[k, 1000] φ[k], {k, Infinity}]

Two  further  special  sets  of  new  (nested)  lists  that  one  occasionally  wants  to  create  from a  given  list  are  subsets  and
tuples.

 

Subsets[list, {length}]

gives a list of all length length subsets of the elements from the list list. If the second argument 
is absent, all subsets are returned.

Here are all the subsets of the list 81, 2, 3, 4, 5< shown.

With[{ = {1, 2, 3, 4, 5}},
Do[CellPrint[Cell[TextData[{"Î The length " <> ToString[k] <> 
                  " subsets of " <>  ToString[] <> " are: ", 
                  Cell[BoxData[FormBox[StyleBox[
                   MakeBoxes[#, StandardForm]& @ Subsets[, {k}], "MR"],
                                StandardForm]]]}]]], {k, 0, Length[] + 1}]]

In general, a list of length k has 2k  subsets (including the empty set and the whole list).

Table[{k, Length[Subsets[Range[k]]]}, {k, 12}]

In the subsets, each list elements occurs exactly once. If we allow for repetitions, we get tuples.

 

Tuples[list, {length}]

gives a list of all length length subsets of the elements from the list list. If the second argument 
is absent, all subsets are returned.

Here are all 1, 2, 3, and 4-tuples formed from the list 81, 2, 3<.
With[{ = {1, 2, 3}},
Do[CellPrint[Cell[TextData[{"Î The length " <> ToString[k] <> 
                  " tuples of " <>  ToString[] <> " are: ", 
                  Cell[BoxData[FormBox[StyleBox[
                   MakeBoxes[#, StandardForm]& @ Tuples[, {k}], "MR"],
                                StandardForm]]]}]]], {k, 0, Length[] + 1}]]
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The number of k-tuples formed from a list of length j is jk .

Table[{k, Length[Tuples[Range[j], k]]}, {j, 6}, {k, 6}]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

6.2 Representation of Lists 
Lists are represented with {…}  or internally via List[…].  If  the depths of the list structure are two, they are often
easier to view as two-dimensional (2D) matrices. 

 

MatrixForm[matrix, options]

formats the “rectangular” object matrix, using the options options. 

TableForm[list, options]

formats the list list “in tabular form”, using the options options. Here, list does not have to be 
an object of “rectangular form”. 

The possible options for these two commands are the following. 

Options[MatrixForm]

Options[TableForm]

Here  are  the  options  listed  individually  (the  meanings  of  the  concepts  of  Column,  Row,  Center,  Left,  Right,
Bottom, and Top should be obvious). 

 

TableDirections

defines the direction (horizontal or vertical) in the consecutive dimensions.

Default: 

Automatic (={Row, Column, … })

Admissible: 

{rowOrColumn1, rowOrColumn2, … } with 

rowOrColumni  =  Column or rowOrColumni =Row 

TableDepth

defines the maximum number of directions for the table to be printed.

Default: 

Infinity

Admissible: 

1, 2, 3, … , Infinity 

TableHeadings

defines the labels for the directions to be printed.

Default: 

None

Admissible: 

14 Printed from THE MATHEMATICA GUIDEBOOKS

©  2004, 2005   Springer Science+Business Media, Inc.



{heading1, heading2, …, headingn} 

TableSpacing

defines the amount of space between rows and columns in the directions to be printed.

Default: 

Automatic (={1, 1, 1, … })

Admissible: 

{integer1, integer2, …, integern} 

TableAlignments

defines the centering of the ith dimension.

Default: 

Automatic

Admissible: 

{lbrct, lbrct, … } with lbrct œ {Left, Bottom, Right, Center, Top} 

The following example creates a triply-nested list ttt. 

ttt = Table[f[a, b, c], {a, 3}, {b, 2}, {c, 3}]

Here is a somewhat more readable display of ttt produced using TableForm[…]. The first “dimension” should be
regarded as a column, the second “dimension” as a row, and the third “dimension” again as a column. 

TableForm[ttt, TableDirections -> {Column, Row, Column},
               TableSpacing -> {4, 3, 2},
               TableAlignments -> {Center, Bottom, Right},
               TableHeadings -> 
                ({{"OuterColumn[1]", "OuterColumn[2]", "OuterColumn[3]"},
                  {"MiddleRow[1]", "MiddleRow[2]"},
                  {"InnerColumn[1]", "InnerColumn[2]", "InnerColumn[3]"}} /
                  (* headers in bold *)
                  (Map[StyleForm[#, FontWeight -> "Bold"]&, #, {-1}]&))]

The headings are not shown in MatrixForm.

MatrixForm[%]

We give no additional explicit examples here; we will make frequent use of TableForm along with its options in this
and later chapters. 

Lists  can  be  arbitrarily  deeply  nested.  A  very  important  special  case  of  a  nested  list  is  a  tensor.  A  tensor  is  a
“rectangular” array of n1 μ n2 μ∫μ nk  expressions. Here, k  is called the tensor rank. It can be determined by using the
function TensorRank.

 

TensorRank[nestedList]

gives the maximal depths such that nestedList is a tensor.

Here are four simple examples.

TensorRank[2]

TensorRank[{2}]

TensorRank[{{2, 2}, {2, 2}}]
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TensorRank[{{{{{2}}}}}]

In the next input, one element is missing in the 83, 3< element and so the resulting tensor rank is 2.

{{{ 1,  2,  3}, { 2,  4,  6}, { 3,  6,  9}}, 
 {{ 2,  4,  6}, { 4,  8, 12}, { 6, 12, 18}}, 
 {{ 3,  6,  9}, { 6, 12, 18}, { 9, 18    }}} // TensorRank

In the next input, one element is a list. But the whole expression is still a tensor of rank 3.

{{{ 1,  2,  3}, { 2,  4,  6}, { 3,  6,  9}}, 
 {{ 2,  4,  6}, { 4,  8, 12}, { 6, 12, 18}}, 
 {{ 3,  6,  9}, { 6, 12, 18}, { 9, 18, {1, 1}}}} // TensorRank

Σ (* session summary *) TMGBs`PrintSessionSummary[]

6.3 Manipulations on Single Lists

à 6.3.1 Shortening Lists 
A variety of operations can be performed on (potentially nested) lists. One useful command is Take. 

 

Take[list, n]

extracts the first n elements of the list list.

Take[list, -n]

extracts the last n elements of the list list.

Take[list, {n, m}]

extracts the nth to mth elements of the list list.

Take[list, {n, m, step}]

extracts the nth to mth elements in steps steps of the list list.

 

Select[list, criterion, levelSpecification, n] 

extracts the first n elements of the list list which satisfy criterion from level(s) levelSpecificaÖ
tion. Satisfy means that criterion[element] yields True.

Cases[list, pattern, levelSpecification] 

extracts those elements of the list list from level(s) levelSpecification, which match the pattern 
pattern. 

We have already used Part[list, n] or Part[list, partList] or Part[list, All] to extract elements from a list
list.  The  main difference  from the  command Take  is  that  with  the  exception  of  All,  the  second  argument  of  Part
needs a complete listing of all elements to be taken, whereas Take will allow a much more concise way for taking out
many elements. (A further command for extracting parts is Extract. Because its functionality is basically the same as
the one of Part, we will not use it later.) Here, we take out various parts from the list {1, 2, 3, 4, 5, 6}.

Table[Take[{1, 2, 3, 4, 5, 6}, i], {i, -3, 3}]

Take[{1, 2, 3, 4, 5, 6}, All]
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Here is a 5 μ 5 matrix.

mat = Array[, {5, 5}]

This input takes out all odd-numbered rows and columns.

Take[mat, {1, 5, 2}, {1, 5, 2}] // MatrixForm

And this example takes out all even-numbered rows and columns.

Take[mat, {2, 5, 2}, {2, 5, 2}] // MatrixForm

Here are some simple examples for Select and Cases. 

Select[{1, 2, 3, 4, 5, 6}, 2 < # < 5&]

Cases[{1, 2, 3, 4, 5, 6}, _?(2 < # < 5&)]

Sometimes one has a list and wants to extract elements according to elements of another list.

 

Pick[list, selectList, pattern]

gives the elements of list that occur at the positions of the list selectList that match the pattern 
pattern.

Here is a simple example. The elements returned occur at positions such that the second element has even numbers at
these positions.

Pick[{1, 2, 3, 4, 5, 6, 7, 8, 9},
     {9, 8, 7, 6, 5, 4, 3, 2, 1}, _?EvenQ]

We  also  have  the  following  commands  First  and  Last,  which  give  pieces  of  a  list  (but  only  the  elements  not
wrapped in List). 

 

First[list]

gives the first element of the first level of list. First[expression] is identical to 
expression[[1]], and it is applicable to expressions whose head is not List. 

Last[list]

gives the last element of the first level of list. Last[expression] is identical to 
expression[[-1]], and it is applicable to expressions whose head is not List. 

Here is a very simple example. 

First[{1, 2, 3}]

Here is another simple example. 

Last[{1, 2, 3}]

Frequently one has to drop the first or last element of a list. (For instance in the results of FoldList[Plus, 0, ...]
and FixedPointList[f, ...].) The functions Most and Rest do this operation.

 

Most[list]

deletes the last element of the first level of list. Most is also applicable to expressions whose 
head is not List. 
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Rest[list]

deletes the first element of the first level of list. Rest is also applicable to expressions whose 
head is not List. 

Here are two simple examples.

Most[{1, 2, 3, 4, 5}]

Rest[{1, 2, 3, 4, 5}]

A single command does not exist with respect to the last element. But the function Drop allows us to eliminate the last
element easily, although only in a two-argument call.

 

Drop[list, H-L n]
gives the list list with the first (or last) n elements removed. Here, the head of list need not be 
List.

Drop[list, {n, m}]

gives a list list with the elements n through m removed. Here, the head of list need not be 
List.

Delete[list, H-L n]
gives a list list with the nth term (counting from the end) removed. The head of list need not be 
List, and n can also be a list of positions in the sense of Position. 

DeleteCases[list, pattern, levelSpecification]

gives a list list with all elements matching the pattern pattern at the level level removed. If the 
third argument is not explicitly given, levelSpecification is assumed to be {1}, else it acts at 
the level(s) levelSpecification. The head of list need not be List.

DeleteCases[list, pattern, levelSpecification, Heads -> True]

also removes heads. 

Union[list]

gives a list list with all elements that appear more than once removed. The head of list need not 
be List. 

The following examples illustrate the effect of Delete and Union.

Delete[{1, 2, 3, 4, 5, 6, 7, 8, 9}, 4]

Union[{1, 2, 2, 3, 3, 3, 4, 4, 4, 4}]

DeleteCases is also a very important command in a lot of applications. Here, all products of I with anything or with
I are deleted from a list. Note that 8I is a complex number and not a product. 

DeleteCases[{2, 4, I, E, 8 I, i t, It, I t, I I}, _. I]

If nothing remains after the deletion process, the result is Sequence[]. 

DeleteCases[1, 1, {0}]

With a third argument in DeleteCases, we can operate also on inside expressions. 

DeleteCases[[2, 4, I, E, 8 I, Null, [I, 4I,  I], i t, It, I t],
            _.I, {2}]
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With  the  option  Heads -> True,  we  can  also  work  on  heads,  in  which  case,  only  Sequence-objects  remain  in
general. 

(* here nothing is deleted; List only appears as a head *)
DeleteCases[Array[1&, {2, 2, 2, 2}], List, {0, Infinity}]

(* now all heads disappear *)
DeleteCases[Array[1&, {2, 2, 2, 2}], List, {0, Infinity}, Heads -> True]

(* again all heads disappear *)
DeleteCases[Array[1&, {2, 2, 2, 2}], List, {-1}, Heads -> True]

For an empty list {}, First, Last, Take, and Part generate an error message. 

First[{}]

Last[{}]

Rest[{}]

Take[{}, 1]

Part[{}, 1]

With an empty list as an argument, Union produces the same empty list. Here, no message is generated.

Union[{}]

Here is an interesting application of  repeatedly shortening  a list.  We start  with the  list  81, 2, …, n<.  We delete  every
second  element  of  this  list.  From the  resulting  list,  we  delete  very  third  element,  from the  resulting  list  every  fourth
element, …. The function delete deletes every kth element from the list l. 

delete[l_, k_] := Delete[l, Table[{j}, {j, k, Length[l], k}]]

Using the function FixedPointList, we iterate the process of eliminating elements. Here, we start with the first 20
integers.

FixedPointList[{(* increment counter for the elements to be taken out *)
                #[[1]] + 1, (* take out the elements *)
                delete[#[[2]], #[[1]]]}&,
               {2, Range[20]}, SameTest ->  (#1[[2]] === #2[[2]]&)];

Last[Transpose[%]] // (TableForm[#, TableSpacing -> 0.6,
                                  TableAlignments -> Right]&)

Only some of  the  primes remain.  The next  graphic  shows the process  of  taking out.  This  time, we start  with the first
20000 integers.

FixedPointList[{#[[1]] + 1, delete[#[[2]], #[[1]]]}&, {2, Range[20000]},
               SameTest -> (#1[[2]] === #2[[2]]&)];

Show[Graphics[{PointSize[0.002], MapIndexed[Point[{#1, #2[[1]]}]&, 
               Last /@ %, {2}]}]];

When  we  start  with  the  first  n  integers,  for  large  n,  we  are  left  with  2 ë p1ê2 n  integers  [12÷].  Here,  we  start  with

100000 integers and show the integers that are left after applying the described deletion process.  The red curve is the

function f HnL =2 ë p1ê2 n .
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ListPlot[MapIndexed[{#1, #2[[1]]}&, 
         FixedPoint[{#[[1]] + 1, delete[#[[2]], #[[1]]]}&,
                      {2, Range[100000]},
                      SameTest -> (#1[[2]] === #2[[2]]&)][[2]]],
         Prolog -> {Thickness[0.01], Hue[0], 
                    Line[Table[{x, 2/Sqrt[Pi] Sqrt[x]}, 
                         {x, 0, 10^6, 10^3}] // N]}, 
         PlotStyle -> {GrayLevel[0], PointSize[0.001]}]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

à 6.3.2 Extending Lists 
Prepend adds terms to a given list. 

 

Prepend[list, newFirstElement]

adds the expression newFirstElement to the beginning of the list list. The head of list need not 
be List. 

Append[list, newLastElement]

adds the expression newLastElement to the end of the list list. The head of list need not be 
List. 

Insert[list, middleElement, n]

puts the expression middleElement into the list list at the nth position. The head of list need not 
be List, and n can also be a list of positions in the sense of Position. 

Insert[list, middleElement, -n]

puts the expression middleElement into the list list at the nth position counting from the end. 

Here is an example of Insert. 

Insert[list[78, 45], 89, 1]

To add something to a named list, we proceed as follows. 

myList = {1, 2, 3, e, r, t, {8, 9}, 0}

myList = Append[Prepend[myList, BEGINNING], END]

The addition of elements to named lists can be done more easily with PrependTo. 

 

PrependTo[symbolWithListValue, newFirstElement]

puts the expression newFirstElement at the beginning of the evaluated form of symbolWithListÖ
Value and names the resulting object again symbolWithListValue. The head of the evaluated 
form of symbolWithListValue need not be List. 

AppendTo[symbolWithListValue, newLastElement]

adds the expression newLastElement at the end of the evaluated form of symbolWithListValue 
and names the resulting object again symbolWithListValue. The head of the evaluated form of 
symbolWithListValue need not be List. 

Now, we add the element NEWEND to the list myList.
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AppendTo[myList, NEWEND];

myList

List operating commands are typical commands in which the infix form of operations can be (and is) used. The follow-
ing operation is an example. 

myList ~ AppendTo ~ ALLNEWEND

The operations Append, Prepend, AppendTo, PrependTo, and Insert require that the object to be manipulated
is a list or an expression with arguments. 

Append[5, 4]

Append[trfhcn, 4]

This input works. 

Prepend[list[78, 45, 56], 89]

AppendTo and PrependTo need a named list-like object or they cannot add anything.

Remove[l];
AppendTo[l, 34]

Note that the following example does not work because the first argument of PrependTo is not the name of a list (or
other container). 

PrependTo[AppendTo[myList, NEWEND1], NEWBEGIN];
myList

The inner AppendTo added NEWEND1 to myList. But the result of this operation was the new value of myList and
PrependTo expects a symbol in its first argument that evaluates to a list. (To accomplish this feature, AppendTo and
PrependTo have the attribute HoldFirst.) 

Attributes[AppendTo]

Append does not have the HoldFirst attribute.

Attributes[Append]

The first  element of AppendTo  and PrependTo  has  to be an expression that evaluates to an expression with depth
greater than zero.

[1] = {1, 2, 3}; AppendTo[[1], 4]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

à 6.3.3 Sorting and Manipulating Elements 
A list can be quickly reversed or its elements can be rotated cyclically. 

 

Reverse[list]

gives list in reverse order. The head of list need not be List. 

Reverse[headNotList[4, 5, 6, 7, 8, 9]]
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RotateRight[list, n]

cyclically rotates the elements in the list list n times to the right. The head of list need not be 
List.

RotateRight[list, {n1, n2, …, ni}]

cyclically rotates the elements in the nested list list by n1 in level 1, n2 in level 2, …  to the 
right. 

RotateLeft[list, n]

cyclically rotates the elements in the list list n times to the left. The head of list need not be 
List.

RotateLeft[list, {n1, n2, …, ni}]

cyclically rotates the elements in the nested list list by n1 in level 1, n2 in level 2, …  to the left. 

Here are two small examples. 

RotateRight[{"3", "r", "o", "t", "a", "t", "e", " ",
                  "r", "i", "g", "h", "t"}, 3]

RotateLeft[NL["1", "r", "o", "t", "a", "t", "e", " ",
                   "l", "e", "f", "t"], 1]

This is a somewhat more complicated example. As long as the argument of f is not in the canonical order, the argument
is cyclically rotated to the right. 

f[x_?(!OrderedQ[#]&)] := f[RotateRight[x, 1]];
f[x_?OrderedQ] := x

f[{3, 4, 1, 2}]

We can follow the steps using Trace. 

Trace[f[{3, 4, 1, 2}]]

For  the  starting  list  {1, 3, 2, 4},  a  problem  exists  because  the  cyclical  rotation  never  stops.  None  of  the  four
possible orders represents a list that is ordered according to OrderedQ.

f[{1, 3, 2, 4}]

Sorting in the usual sense can be accomplished with Sort. 

 

Sort[list, sortOrder]

sorts a list according to the comparison function sortOrder. If no sortOrder is explicitly 
prescribed, the canonical order (numbers before symbols) is used. The head of list need not be 
List. Here, sortOrder must be a (pure) function of two arguments, which gives True or 
False. 

Sort is a very important and also quite interesting function. So, we will discuss it in greater detail. Numbers are sorted
by size, and letters are sorted alphabetically.

Sort[{3, 78, 9, u io, , {89}}]

Complex numbers are sorted first by ascending order of real parts, and then by ascending order of absolute values of the
imaginary parts.  This  sort  order  means  that  complex conjugate  numbers  come in  pairs.  The sort  order  prescription  is
applied until sortOrder produces True for all neighboring pairs of elements. 
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Sort[{1 - I, 1 + I, 1 + I/2, 1 - I/2, 2 + I, 2 - I, 0.8 + 0.9 I,
      0.8 - 0.9I, 1 - I/4, 1 + I/4}]

A real number is treated as an imaginary number with a vanishing imaginary part.

Sort[{1 - I, 1 + I, 1 + I/2, 1 - I/2, 2 + I, 2 - I, 0.8 + 0.9 I,
      0.8 - 0.9I, 1 - I/4, 1 + I/4, -0.9, 1.7, 1}]

Here,  we  sort  the  numbers  1  to  10  in  descending  order  using  sortOrder  as  a  pure  function.  (Just  GreaterEqual
would, of course, give the same result.)

Sort[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, (#1 >= #2)&]

Note that numeric expressions (meaning NumberQ would return True) are not sorted by size.

Sort[{Sqrt[2], Pi, 3, -10 - E}]

Using an explicitly specified ordering function allows us to order by size.

Sort[{Sqrt[2], Pi, 3, -10 - E}, Less]

In the next example, the sorting is alphabetical and not by size, because Unevaluated is used. First, the variables a,
b, and c are sorted, and then they evaluate to 3, 2, and 1. 

a = 3; b = 2; c = 1;
Sort[Unevaluated[{b, a, c}]]

Sort[{1, 2, 3}]

This process can be nicely observed with On[]. 

On[]; Sort[Unevaluated[{b, a, c}]]; Off[];

If no pair of neighboring elements in the second argument of Sort gives a value of True, the list remains unchanged.
No messages are generated.

Sort[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, false]

Here, all comparisons return False. 

Sort[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, False&]

Sort compares only neighboring elements at every stage. Thus, the following code, which sorts the numbers 1, 2, 3, 4,
5 so that the absolute value of the difference between any two neighbors is greater than 1, does not work as desired. 

Sort[{1, 2, 3, 4, 5}, Abs[#1 - #2] > 1&]

The following sequence of numbers is already in the “right order”, and Sort leaves them in their given order. 

Sort[{1, 3, 5, 2, 4}, Abs[#1 - #2] > 1&]

To understand the strategy of Sort, we can collect the pairs being compared in each step into a list collection by
appending the just-compared numbers in the form of a list at the end of collection. 

collection = {};
Sort[{9, 9, 8, 7, 6, 5, 4, 3, 2, 1, 5}, 
     (AppendTo[collection, {##}]; Greater[##])&]

Here is the current value of collection. 

collection

To conclude  our  discussion  of  Sort,  we  first  present  a  plot  of  the  number  of  pairs  that  are  compared,  assuming the
case in which the test always has the truth value False. 
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sortLong[i_] :=
Module[{counter = 0},
       Sort[Table[j, {j, i, 0, -1}], (* count comparisons *)
            Function[{x, y}, counter = counter + 1; #]&[
                                            False]]; counter]

Here, the normal ordering is investigated. 

sortShort[i_] :=
Module[{counter = 0},
       Sort[Table[j, {j, 0, i}], (* count comparisons *)
                   Function[{x, y}, counter = counter + 1; #]&[
                                                Less]]; counter]

The case in which the elements are already in the correct order (right-hand plot) requires considerably fewer compari-
sons. 

Show[GraphicsArray[{
(* using sortLong *)
ListPlot[Table[sortLong[i], {i, 2, 70}],
         DisplayFunction -> Identity, PlotLabel -> "unordered list"],
(* using sortShort *)
ListPlot[Table[sortShort[i], {i, 2, 70}],
         DisplayFunction -> Identity, PlotLabel -> "ordered list"]}]]

Note that sortLong does not produce the worst case scenario. 

{sortLong[12], sortShort[12],
Module[{i = 0}, Sort[Range[12], (i = i + 1; OddQ[i])&]; i]}

We  can  also  monitor  the  elements  that  Sort  compares.  In  the  following  example,  we  start  with  the  list
3i mod 257, 1 § i § 256  and  display  the  difference  of  the  compared  elements  as  a  function  of  the  number  of  the
comparison.

Module[{bag = {}, p = 257},
       Sort[Array[PowerMod[3, #, p]&, p - 1, 0],
            (AppendTo[bag, {##}]; Greater[##])&];
        ListPlot[Apply[Subtract, bag, {1}],
                 Frame -> True, PlotRange -> All, Axes -> False,
                 PlotStyle -> {PointSize[0.001]}]]

By watching which elements are compared by Sort, we can infer its algorithm. Here is a nearly “anti-ordered” list of
100 integers.

data = RotateRight[Range[100], 90];

We sort the list and keep track of the compared elements.

bag = {};
Sort[data, (AppendTo[bag, {##}]; Greater[##])&];

The hierarchical structure of the compared elements shows that a mergesort algorithm [271÷] was used.

Show[Graphics[
MapIndexed[Rectangle[{#2[[1]], #1} - 1/2, 
                     {#2[[1]], #1} + 1/2]&, bag, {2}]], 
              Frame -> True, PlotRange -> All, AspectRatio -> 1/2]

Here, we show the superposition of the compared elements of 100 unordered lists. We use one color per list.
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Module[{bag}, 
Show[Graphics[Table[bag = {};
  Sort[(* the list to be sorted *) 
       RotateRight[Range[100], k], 
        (AppendTo[bag, {##}]; Greater[##])&];
  {Hue[k/120], MapIndexed[Rectangle[{#2[[1]], #1} - 1/2, 
                                    {#2[[1]], #1} + 1/2]&, 
                          bag, {2}]}, {k, 0, 100}]], 
     Frame -> True, PlotRange -> All, AspectRatio -> 1/2]]

We  could  go  on  and  investigate  the  complexity  of  the  search  algorithm.  Overall,  we  expect  an  n logHnL  complexity
(more  precisely,  we  have  the  complexity n dlogHnLt + 2 n - 2dlogHnLt+1  [271÷]).  Next,  we  take  5000 lists  of  length  100,
each  being  a  random  permutation  of  the  integers  1  to  100.  The  number  of  comparisons  for  the  list  is  highly  peaked
around 564 with a small deviation only. (We will discuss the use of Compile in randomPermutation in Chapter 1
of the Numerics volume [302÷].)

(* fast code to generate a random permutation *)
randomPermutation =
Compile[{{l, _Integer, 1}},
Module[{lTemp = l, λ = Length[l], tmp1, tmp2},
       Do[tmp1 = lTemp[[i]];
          j = Random[Integer, {i, λ}];

  {lTemp[[i]], lTemp[[j]]} = {lTemp[[j]], tmp1}, 
  {i, Length[l]}];

   lTemp]];

Module[{k}, (* make graphics *)
ListPlot[{#[[1]], Length[#]}& /@ Split[Sort[Table[k = 0;
          Sort[randomPermutation[Range[100]], 
              (k = k + 1; Greater[##])&]; k, {5000}]]],
         PlotRange -> All, PlotStyle -> {PointSize[0.01]},
         Frame -> True, Axes -> False]]

For  more on  sorting,  see  [165÷];  for  a  detailed  analysis  of  mergesort,  see  [196÷];  for  achieving  the  minimal number
alog2 n !q of comparisons, see [238÷].

The following commands are closely related to Sort. 

 

Max[list]

gives the largest element of the list list. 

Min[list]

gives the smallest element of the list list. 

Here is a simple example. 

Max[{1, 2, 3, 445689}]

Max and Min use numerical techniques to determine the largest and smallest elements. When the numerical techniques
are unable to make a decision, a message is generated and all possible candidates are kept. We will discuss the message
N::meprec in detail in Chapter 1 of the Numerics volume [302÷].

Max[{Sqrt[(2 - Sqrt[2 + Sqrt[2]])/(2 + Sqrt[2 + Sqrt[2]])], 
     Tan[Pi/16], notANumericQuantity}]

Complex numbers cannot be compared. 

Min[{I, -I}]
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By definition, we have the following behavior for empty lists. 

{Min[{}], Max[{}]}

Another operation closely related to sorting lists is splitting a list into sublists.

 

Split[list, comparisonFunction]

splits the list list into sublists of consecutive “equal” elements. Two elements element1 and 
element2 are considered equal when the function comparisonFunction[element1, element2] 
yields True. When comparisonFunction is not present, equality is determined using SameQ. 
The head of list need not be List. 

Here is a straightforward example for Split.

Split[{1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5}]

Split does not sort its argument.

Split[{1, 2, 1, 2, 1, 2, 1, 2}]

The  function  Split  can  be  used  to  efficiently  count  elements  of  lists.  The  function  countDifferent
Elements[l] returns a list of sublists of length two. Each sublist has the form {element, elementCount}. 

countDifferentElements[l_List] := 
                       Apply[{#, Length[{##}]}&, Split[Sort[l]], {1}]

countDifferentElements[{1, 3, 4, 2, 5, 4, 3, 3, 3, 2, 4, 2, 1, 2, 3}]

Here is a longer list of “random” integers.

longList = Table[IntegerPart[100. Sin[k]], {k, 10^5}];

Because countDifferentElements  traverses  the  list  only three times (one time for  Sort,  one time for  Split
and one time for Apply; for the already shorter list of sublists of identical elements) it is much faster than counting the
frequency of each number separately.

Timing[1 = countDifferentElements[longList];]

Timing[2 = Table[{j, Length[Cases[longList, j]]}, 
                  {j, -100, 100}] /. {_, 0, n___} -> n;]

The two calculated list are identical.

1 === 2

To apply a function that does not carry the attribute Listable (e.g., the pure function #^2&) to a list, or if we want to
apply any function to a particular level of a list, we use Map. 

 

Map[function, list, levelSpecification]
or

Map[function, list]

if levelSpecification = {1}

or
function /@ list

if levelSpecification = {1} applies the function function to all elements in the list list according 
to levelSpecification. The head of list need not be List. 
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Here, every element of the list is to be squared. 

#^2& /@ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

Because of the attribute Listable of Power, the example above could also have been done more easily with Range. 

Attributes[Power]

Range[11]^2

Next, we raise all arguments in  to a power. 

#^(1/nm)& /@ [1, 2, 3, 4, 5, a, b, c, d, e]

Compare the last result with the pure application of Power.

[1, 2, 3, 4, 5, a, b, c, d, e]^(1/nm)

Map is one of the most important Mathematica commands. We will make heavy use of it 
starting now. 

For  the  sake  of  readability,  it  is  often  convenient  to  use  nested  Heads.  The following  example uses  a  two-argument
function.

[x_, y_] := x + y

[1, #]& /@ {1, 2, 3}

Next, we use a function that has a nested head.

[x_][y_] := x + y

[1][#]& /@ {1, 2, 3}

The # can be eliminated by mapping just the head [1].

[1] /@ {1, 2, 3}

Note that for symbols, we could use the attribute Listable, but [1] cannot have attributes.

SetAttributes[[1], Listable]

Using a pure function with an attribute, we can mimic Map, but only at level {1}.

Function[x, [1], {Listable}][{1, 2, 3}]

Frequently, the elements of lists are subjected to certain transformations, and then the head List is to be changed. For
example, the elements in the following list are to be squared and then summed. 

myList = {1, 5, 9};
Apply[Plus, Map[Function[argu, argu^2], myList]]

In writing the last input in the short form of Mathematica commands, note the following rule. 

Apply and Map group from the right.

This rule means that parentheses have to be used. 

Plus @@ (#^2& /@ myList)

Here is a comparison of various groupings. 

{Plus @@ #^2& /@ myList, (Plus @@ #^2)& /@ myList, Plus @@ (#^2& /@ myList)

Map and Apply have the same precedences. The rightmost elements are grouped together.
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Hold[a @@ b /@ c] // FullForm

Hold[a /@ b @@ c] // FullForm

Also, if only Apply and Map are nested they group from the right.

Hold[a @@ b @@ c @@ d] // FullForm

Hold[a /@ b /@ c /@ d] // FullForm

Once in a while, we need to perform some operation on the individual elements of a list, but the operation may not give
a (wanted) result for some elements, in which case, that element is to be removed from the list. In such a situation, we
could make the result of the operation Null, and then remove occurrences of Null using DeleteCases, or pick out
elements other than Null using Select or Cases. This process can also be done directly by inserting Sequence[]
at the corresponding places, although the following function does not immediately work. 

Sequence[]&

Thus we take the following approach (based on the HoldAll attributes of Function). 

(Sequence @@ {})&

It leads to the following program. 

If[# > 0, #, Sequence @@ {}]& /@ {0, -1, 1, -2, 2, -3, 3, -4, 4, -5, 5}

Giving Function the HoldAllComplete attribute results in the following behavior.

SetAttributes[Function, HoldAllComplete];
If[# > 0, #, Sequence[]]& /@ {0, -1, 1, -2, 2, -3, 3, -4, 4, -5, 5}

Giving If the HoldAllComplete attribute also does not give the intended result.

SetAttributes[If, HoldAllComplete];
If[# > 0, #, Sequence[]]& /@ {0, -1, 1, -2, 2, -3, 3, -4, 4, -5, 5}

We remove the attribute HoldAllComplete from Function and from If.

ClearAttributes[Function, HoldAllComplete];
ClearAttributes[If, HoldAllComplete];

In graphics applications, we are often given a list of elements with the following structure. 

Clear[a, b, c, d, f]
graphicsList = Table[
  ToExpression["f[g" <> ToString[k] <> "[i" <> ToString[k] <> 
                ", j" <> ToString[k] <> "]]"], {k, 12}]

Clear[f, g, i, j, k]
graphicsList = Table[f[Subscript[g, k][
                           Subscript[i, k], Subscript[j, k]]], {k, 12}]

Now, we apply a function (e.g., k) to all the g i. This process can be done with Map. 

Map[κ, graphicsList, {2}]

Here are all the expressions from level {2}. 

Level[graphicsList, {2}]

Mapping a function to the level {0} changes the head. 

Clear[f, a, b, c, d];
Map[f, {{a, b}, {c, d}}, {0}]

Mapping a function to an atom does return the atom. (Map by default maps to level {1}. The level {1} of an atom is
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the empty list {}. Mapping the function to the empty list results in the empty list. So the atom returns.)

Map[Sin, 1]

Mapping at level {0} means function application.

Map[Sin, 1, {0}]

To work on all levels simultaneously, we can use MapAll. 

 

MapAll[function, list]
or

function //@ list

applies the function function to all elements at all levels of the list list. The head of list need 
not be List. 

In the next example,  is applied to every element at every level. 

 //@ {{1, 2, 3}, {4, 5, 6}, {2}, {{w}}, j}

The application of  occurred a total of 15 times. 

Length[Position[%, [_]]]

The two commands Map and MapAll have the option Heads, as do most commands involving Level specifications. 

{Options[Map], Options[MapAll]}

Here is a comparison between Heads -> False (default) and Heads -> True. 

MapAll[nis, {Sin[Sin[y]], Sin[Sin[y]]}]

MapAll[nis, {Sin[Sin[y]], Sin[Sin[y]]}, Heads -> True]

Using the option setting Heads -> True, we can also map on heads. 

Nest[MapAll[#, #, Heads -> False]&, [1], 2]

Nest[MapAll[#, #, Heads -> True]&, [1], 2]

The  following  somewhat  unusual  example  does  a  good  job  of  illustrating  the  operation  of  MapAll.  The  program
exchanges the heads and arguments. 

Clear[x, g, a, b, c, , Υ];

MapAll[# /. {p1___[p2___] :> (* head[args] ö args[head] *) p2[p1]}&,
       Exp[Sin[x^2 + g[a, b, c]^3] + [Υ]^2 + 3]]

To understand this result better, we look at the following simpler case. 

MapAll[# /. {p1__[p2__] :> p2[p1]}&, Exp[a + b]]

Here is another example with MapAll. It shows nicely the order of evaluations, as already discussed in Chapter 4. 

Clear["f*"]

(Print["Now evaluating  ", #, "."]; #)& //@
          f3[f21[f211, f212], f21[f221, f222]]

Here, we have Heads -> True. f3 and f21 are now also printed.

MapAll[(Print["Now evaluating  ", #, "."]; #)&,
       f3[f21[f211, f212], f21[f221, f222]], Heads -> True]
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If a function is to be applied only to particular elements rather than all elements, we use MapAt. 

 

MapAt[function, list, positionSpecification]

applies function to the elements in list in the positions specified by positionSpecification. The 
head of list need not be List. 

Here is a matrix. 

mat = Table[{i, j}, {i, 4}, {j, 4}]

Here are some selected elements enclosed with usl. 

MapAt[usl, mat, {{1, 2}, {4, 4}, {3, 3}}]

Let  us  discuss  how  to  manipulate  parts  of  expressions.  One  possibility  is  the  MapAt  command.  Mathematica  also
allows the direct manipulation of a part of an expression expr in the form expr[[part]] = newValue. This method of
changing parts is very fast. Here is an example with a list of 10000 elements. 

Remove[testList, testList1];

testList = Range[10000];

This input changes the first 1000 elements of testList. 

Do[testList[[i]] = i + 1, {i, 1000}] // Timing

The corresponding MapAt version is much slower. 

testList1 = Range[10000];
testList1 = MapAt[(# + 1)&, testList1, List /@ Range[1000]]; // Timing

Here is another slow version. 

testList2 = Range[10000];
Do[testList2 = ReplacePart[testList2, i + 1, i], {i, 1000}]; // Timing

Calling ReplacePart with four arguments is still slower.

testList3 = Range[10000];
testList3 = ReplacePart[testList3, Range[2, 1001], 
            List /@ Range[1000], List /@ Range[1000]]; // Timing

All four lists testListi are identical.

testList === testList1 === testList2 === testList3

The construction expr[[part]] = newValue is so fast because it does not evaluate the whole expression expr after the
replacement.  We  can  see  this  behavior  by  replacing  smallList,  the  first  element  in  the  following  list,  by  a
Sequence. 

smallList = {1, 2}

smallList[[1]] = Sequence[3, 4]

The Sequence command did not disappear. 

??smallList

If we evaluate smallList, Sequence disappears. 

smallList

But in the list of downvalues, it is still there.
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??smallList

Using a list inside the right-hand side allows us to set more than one element at a time. 

a = {1, 2, 3, 4, 5, 6}

a[[{2, 4, 6}]] = {1, 3, 5}

a

Another function in the Map family is MapIndexed. 

 

MapIndexed[function, expression, levelSpecifications]

applies the function function to the elements of expression at level levelSpecifications, where 
function gives the description of the position of the elements as its second argument. The usual 
level specifications are used for levelSpecifications. The head of expression need not be List.

In the following example, we use a function that evaluates to nothing but itself to improve readability. 

mytab = Table[[i, j, k], {i, 2}, {j, 2}, {k, 2}]

Here, we apply  to each  along with the position specification of each . 

MapIndexed[, mytab, {3}]

MapIndexed  also  carries  the  option  Heads.  We  now  give  an  example  with  a  somewhat  more  complicated  result.
Note that when the function is applied to heads, zeros appear in the second argument of each . 

MapIndexed[, mytab, {3}, Heads -> True]

This input maps the function  to every possible position.

MapIndexed[, mytab, {0, Infinity}, Heads -> True]

MapIndexed  is  often a very useful function to color  graphics objects  according to order.  For  example, consider  the
map 8q, p< Ø 8q£, p£< (a, b fixed) 

8q£, p£< =

;
q

a
, p a?  0 § q § a

81 - p, q<  a < q < b
q - b

1 - b
, pH1 - bL +b  b § q § 1.

and apply it iteratively to the point 80.16, 0.5<. 
With[{a = 0.33, b = 0.66},
points =
NestList[Which[0 <= #[[1]] <= a, {#[[1]]/a, #[[2]] a},
               a <  #[[1]] <  b, {1 - #[[2]], #[[1]]},
               b <= #[[1]] <= 1, {(#[[1]] - b)/(1 - b),
                                  #[[2]](1 - b) + b}]&,
        {0.16, 0.5}, 50000]];

We can color the points with hues between red and blue, allowing us to see the order in which they were created. (The
details of graphics displays are discussed in the next chapter.)
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color[x_] := Hue[0.78 x[[1]]/20001];

Show[Graphics[{PointSize[0.005],
              (* color points according to position *)
               MapIndexed[{color[#2], #1}&, Point /@ points]}],
     AspectRatio -> Automatic, PlotRange -> All,
     Frame -> True, FrameTicks -> None]

We see an ordered arrangement of regions of completely different structures in this map; a detailed explanation is not
possible here; see [181÷]. 

WriteRecursive 

We  now  use  the  above-described  possibilities  of  manipulating  lists  to  program  a  function  WriteRecursive  that
shortens  a  long  Mathematica  expression  by  recursively  replacing  all  subexpressions  appearing  more  than  once  with
temporary symbols. 

First, we look at all elementary expressions in the expressions to be manipulated, and replace all elementary “types” by
new expressions.  Then, we look at all expressions that have depth two, and again replace these with new expressions.
We repeat  this  process  until  the  entire  expression  consists  only of  one temporary symbol.  All  this is  done in the pro-
gram WriteRecursive. 

We  construct  the  replacement  rule  temporarySymbol fl expression  in  the  form  RuleDelayed[temporarySymbol,
expression].  This form has two advantages. First, the HoldRest  attribute of RuleDelayed  prevents an immediate
calculation,  and  second,  the  result  can  later  be  easily  expanded  using  ReplaceRepeated.  The  temporary  symbols
used have the form userDefinedNameIncreasingInteger. The values of variables with the same name may be erased in
the process. It is possible to get the behavior of WriteRecursive in a somewhat more elegant way, but here we are
focusing on other aspects. We also barely test the variables for their type, and WriteRecursive  is not fully devel-
oped in other  ways (see below).  To make WriteRecursive  a  robust  program would still  require  some work.  (Be-
cause this is the first larger program discussed in detail in this book, we do not want to overdo it.) 

We use one of the four zeros of the polynomial 12 x4 + 78 x3 + 56 x2 + 89 x + 44 = 0 of degree 4 as our test expression.
This is a very long expression; we return to the question of how to compute it using Solve in detail in Chapter 1 of the
Symbolics volume [303÷]. 

(largeTestExpression = #[[1, 2]]& /@
      Solve[12 x^4 + 78 x^3 + 56 x^2 + 89 x + 44 == 0, x]) // InputForm

LeafCount[largeTestExpression]

Here  is  our  program  for  WriteRecursive.  Because  it  is  the  first  larger  program  presented,  we  give  extensive
comments in the code. 

WriteRecursive[expression_(* expression to be simplified *),
               recv_Symbol(* auxiliary variable for the
                             recursive definition *)] :=
 Module[(* definition of the local variables *)
         {expressionNew, index, depth, low, replacementList, 
         invertedReplacementList, temp, invertedTemp},
 (* clearing global variables might be dangerous;
    a “production code” should be refined here *)
 Clear[Evaluate[StringJoin[ToString[recv] <> "*"]]];
 expressionNew = expression;
 (* variables on the left in patterns cannot be given values 
    temporarily on the right; 

32 Printed from THE MATHEMATICA GUIDEBOOKS

©  2004, 2005   Springer Science+Business Media, Inc.



    so, we make a copy of the original expression *)
 (* analyze the depth of the expression,
    assign index variables, and
    define a "working" expression *)
 depth = Depth[expressionNew];
 index = 0;
 (* check the current status of the messages
    General::spell1 and General::spell1 *)
 generalSpellWasOn  = If[Head[General::spell ] === String, True, False];
 generalSpell1WasOn = If[Head[General::spell1] === String, True, False];
 (* turn off the warning about similar-named variables,
    because in using the replacement, a lot of similar-named
    variables of the form recvnumber will appear *)
 Off[General::spell1]; Off[General::spell];
 (* find the leaves *)
 low = Union[Level[expression, {-1}]];
 (* replace equal leaves by the same symbol,
    and increase index *)
 replacementList = ToExpression[
     ToString[recv] <> ToString[index = index + 1]] :> #& /@ low;
 (* "invert" the replacement list obtained
     (i.e., form recvnumber -> subexpression *)
 invertedReplacementList = Reverse /@ replacementList;
 (* insert the temporary variables just created
    into the initial expression *)
 expressionNew = expressionNew //. invertedReplacementList;
 (* start a loop that continues until all levels
    of expression have been run through *)
Do[(* find all subexpressions of depth 2 *)
   low = Union[Level[expressionNew, {-2}]];
   (* replace the same expressions at the depth 2 by
      the same symbol *)
   temp = ToExpression[ToString[recv] <> ToString[
                         index = index + 1]] :> #& /@ low;
   (* "invert" the replacement list obtained.
      The command Flatten is discussed in the next section.
      It removes inner pairs of braces {} *)
   replacementList = Flatten[AppendTo[replacementList, temp]];
   (* insert the temporary variables in the initial expression *)
   invertedTemp = Reverse /@ temp;
   expressionNew = expressionNew //. invertedTemp, {depth}];
   (* turn on the warning again in case
      they were turned on before *)
   If[generalSpellWasOn, On[General::spell]];
   If[generalSpell1WasOn, On[General::spell1]];
   (* print out the resulting replacement list *)
  replacementList]

Here is the result for the example above with four zeros. It has clearly been shortened. 

WriteRecursive[largeTestExpression, ]

LeafCount[%]

To check this result, we insert everything and compare it with the initial expression. 

(First[Last[%%]] //. %%) == largeTestExpression

Here is another example. 
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Nest[1 + 1/(1 + Sin[Sqrt[#]])&, x, 4]

WriteRecursive[%, Υ]

%[[-1, 1]] //. %

As mentioned, our WriteRecursive is still not completely refined. Because we always pick out the level {-2}, all
sums and products of atoms are pulled out at once. This also happens when they contain many common terms. 

WriteRecursive[[x1 + x2 + x3 + 4, x1 + x2 + x3 + 5], λ]

For some details about rewriting a given expression in terms of common subexpressions, see [58÷], and [105÷]. 

Also, if the expression to be written recursively has Hold-like parts, they will not be correctly handled in the implemen-
tation above. 

Hold[1 + 1]

WriteRecursive[Hold[1 + 1], tr]

tr4 //. %

With  some extra  work,  we could  take  account  of  such  special  cases  using  methods similar to  those  in  Section 6.6.  A
possible  purpose  of  WriteRecursive  is  to  shorten  large  arithmetic  expressions  (and  to  speed  up  their  numerical
evaluation), which arise, for example, in the exact solution of large equations and systems of equations; we will make
use of it later again. A very elaborate function that rewrites expressions in such a form so that its numerical evaluation
is more efficient can be found in the context Experimental`.  In the above implementation, we did not care about
the runtime of WriteRecursive  as a function of the size of its first argument. The function OptimizeExpres
sion does care about this complexity.

??Experimental`OptimizeExpression

Here is our example from above, rewritten.

Experimental`OptimizeExpression[largeTestExpression]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

à 6.3.4 Arithmetical Properties of Lists
In this short subsection, we will discuss a few built-in functions that easily allow determining some arithmetic proper-
ties of a single list. We already discussed the function Length, which gives the length of a list. The functions Min and
Max allow obtaining the smallest and largest element of a list. The average value of a list can be obtained through the
function Mean.

 

Mean[list]

gives the average value of the list list.

The sum of all elements is obtained through the function Total.

 

Total[list]

gives the sum of the elements of the list list.

The square root of the sum of the absolute values of a list can be obtained through Norm.
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Norm[list]

gives the (2) norm of the list list.

In  addition  to  mean,  the  most  important  statistical  property  of  a  list  is  its  variance  1 ê Hn - 1L ⁄k=1
n Ilk - l

êM2  where

l
ê

= ⁄k=1
n lk  is the mean of a list with elements l1, l2, …, ln.

 

Variance[list]

gives the variance of the list list.

Here is a series of simple example for these three functions. We use a list with symbolic elements. This allows to easily
recognize the functional form of the results.

L = {a, b, c, d};

Total[L]

Norm[L]

Mean[L]

Variance[L]

Here  is  the  mean  of  a  list  with  five  elements.  But  three  of  the  list  elements  disappear  because  they  have  the  head
Sequence.

Mean[Unevaluated[{a, Sequence[], Sequence[], Sequence[], e}]]

For approximative numeric arguments, these quantities collapse to numbers.

cosList = Table[N[Cos[k]], {k, 10^6}];

#[cosList]& /@ {Mean, Total, Variance}

Sometimes one needs to “approximately partition” a list.

 

Quantile[list, quantile]

gives the quantile of the list list.

The quantile Quantile[l, q] is defined through Sort[l, Less][[Ceiling[q Length[l]]]]. The quantile
q must be in the range @0, 1D.

Here is a list of length 100 and the quantile 0.1 and 0.4 are determined.

Quantile[Range[100], {0.1, 0.4}]

Because of the use of Ceiling in the definition of Quantile, the following gives the result 51.

Quantile[Range[100], 1/2 + 10^-100]

For lists with symbolic elements, the quantile cannot be determined.

Quantile[{a, b, c, d, e}, 1/2]

Σ (* session summary *) TMGBs`PrintSessionSummary[]
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6.4 Operations with Several Lists or with Nested Lists

à 6.4.1 Simple Operations 
If the sizes of two or more lists are equal, the elements of these lists can be added, subtracted, multiplied, divided, and
raised  to  powers  elementwise.  We  now  look  at  this  elementwise  application  of  +,  -,  *,  /,  and  ^  for  two  example
matrices. 

mat1 = {{a11, a12}, {a21, a22}};
mat2 = {{b11, b12}, {b21, b22}};

Here is their sum. The elements are added because of the Listable attribute of Plus.

mat1 + mat2

This is their product. The elements are multiplied because the Listable attribute of Times. This gives the Hadamard
product [192÷].

mat1 mat2

Here is their quotient. 

mat1/mat2

We raise one matrix to the power of the other. 

mat1^mat2

The transpose of a matrix can be found with Transpose. 

 

Transpose[list, {i1,i2, …, in}]

“transposes” the levels of the nested list list as follows: level1ö leveli1 , level2ö leveli2 ,… , 
levelnö levelin . Here, list must be a rectangular matrix. The head of list need not be List. If 
the list {i1, i2, …, in} does not appear, only the first two levels are exchanged; that is, in 
this case the second argument is {2, 1, 3, … }. 

Thus, if M is a matrix with elements mi j, the elements of the transposed matrix MT are M ji. 

(M = {{a11, a12}, {a21, a22}}) // TableForm

Transpose[M] // TableForm

Here is an example with three levels. 

threeMat = Table[a[i, j, k], {i, 3}, {j, 3}, {k, 2}]

We  want  to  look  at  all  possible  applications  of  Transpose  to  threeMat  with  all  possible  second  arguments.  To
automatically generate all possible cases, we need one other list command. 

 

Permutations[list]

gives a list of all possible permutations of the elements in the list list. The head of list need not 
be List. 

For example, here are all permutations of the list {1, 2, 3}. 
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Permutations[{1, 2, 3}]

Again, the head need not be List. 

Permutations[[a, b, c]]

Now, we can transpose threeMat in “different ways”. 

(CellPrint[Cell[TextData[{"Î ",
                StyleBox["Transpose[threeMat, " <> 
                          ToString[{##}] <> "]", "MR"],
                          " yields the following:"}], "PrintText"]];
 Print[TableForm[Transpose[threeMat, #]]])& /@ Permutations[{1, 2, 3}];

Let us also look at what happens when two or three of the permutation indices coincide. Here is a list of all permuta-
tions. 

perms = Union[Flatten[Permutations /@
            Flatten[Outer[List, #, #, #]&[{1, 2, 3}], 2], 1]]

These are the second arguments of Transpose, which are treated without generating a message. 

DeleteCases[Check[Transpose[threeMat, #]; #, {}]& /@ perms, {}]

We need two or more identical indices. 

Select[%, Length[Union[#]] < 3&]

These are the matrices after the application of Transpose. 

Transpose[threeMat, #]& /@ %

When identical integers appear in the second argument list of Transpose, we have the following behavior.

Transpose[Table[A[i, j, k], {i, 3}, {j, 3}, {k, 3}], {1, 1, 1}]

Transpose[Table[A[i, j, k], {i, 3}, {j, 3}, {k, 3}], {1, 1, 1}]

We see that the corresponding diagonal elements were picked out. 

In  addition  to  the  exchange  of  levels  of  lists,  it  is  also  possible  to  remove  inner  brackets.  To  do  that,  the  Flatten
command is useful. (Of course, one could use Apply[List, expressions, levels], but this is not very convenient.)

 

Flatten[list, n]

removes the inner brackets in the top n levels of the (maybe nested) list list. If the second 
argument is not present, all inner brackets are removed. The head of list need not be List. 

Here is a fourfold nested list. 

 = Table[i + j + k + l, {i, 5}, {j, 3}, {k, 4}, {l, 2}]

Now, we remove the pairs of brackets, starting at the top. 

Flatten[, 1]

Flatten[, 2]

Flatten[, 3]

To remove all lists from all sublevels, the second argument need not be given explicitly. 

 = Flatten[]

Other heads, here those with f, can also be removed. 
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Flatten[f[f[a, b], f[f[a, b], f[a, b]]]]

This removal is carried out if the heads are continuously present, starting at the top level. 

Flatten[f[f[{{f[f[ζ]]}}]]]

Using MapAll, we can flatten all nested identical heads. But Flatten[atom] will not evaluate to atom.

MapAll[Flatten, f[f[{{f[f[ζ]]}}]]]

Now  that  we  have  introduced  the  command Flatten,  we  return  for  a  short  time to  the  command AppendTo.  For
recursive  construction  of  long  lists,  AppendTo  is  not  appropriate  because  it  is  very  slow.  Suppose  we  want  to  con-
struct a list containing 5000 elements. In the following two approaches, we add one element at a time.

Timing[li = {}; Do[AppendTo[li, i], {i, 5000}]; Length[li]]

Timing[li = {}; Do[li = Append[li, i], {i, 5000}]; Length[li]]

We now form a new list consisting of the old list together with the element to be appended, and then remove the inner
brackets around the old list. The following approach is even slower. 

Timing[li = {}; Do[li = Flatten[{li, i}], {i, 5000}]; Length[li]]

A much more efficient approach is to nest the lists 50000 times (ten times more elements than in the last example), and
then remove all inner brackets at one time. (Note that the difference in the computed time is again roughly an order of
magnitude.) 

Timing[li = {}; Do[li = {li, i}, {i, 50000}]; Length[Flatten[li]]]

Another  fast  method to construct  lists of a priori  unknown length is the use of Sow  and Reap.  The next input builds
again a list of length 50000. The time needed to this is approximately equal to the one from the last example.

Timing[Length[Reap[Do[Sow[i], {i, 50000}]][[2, 1]]]]

Here, the timings of the same approaches are graphically shown for variable list size (for a detailed comparison of these
approaches, see [326÷]). 

(* common options for the next three graphics *)
opts[label_] := Sequence[PlotRange -> All, DisplayFunction -> Identity,
  AxesLabel -> {"list length", "t/s"},
  PlotLabel -> StyleForm[label, FontFamily -> "Courier", FontSize -> 10]]

With[{(* different sizes for good graphics and minimal timings *)
      n1 = 1500, n2 = 200, n3 = 2000},
Show[GraphicsArray[{ (* Append *)
ListPlot[Array[Timing[Nest[Append[#, 1]&, {}, #]][[1, 1]]&, n1],
         Evaluate[opts["Append"]], 
         Ticks -> {{500, 1000, 1500}, Automatic}],
Module[{l = {}},     (* AppendTo *)
ListPlot[Array[Timing[Nest[AppendTo[l, 1]&, 1, #]][[1, 1]]&, n2],
         Evaluate[opts["AppendTo"]],
         Ticks -> {{100, 200}, Automatic}]],
                     (* Flatten *)
ListPlot[Array[Timing[Flatten[Nest[{#, 1}&, 1, #]]][[1, 1]]&, n3],
         Evaluate[opts["Flatten"]], 
         Ticks -> {{1000, 2000}, Automatic}]}]]]

Here is an application for the just-discussed method of collecting data: In the following calculation, we put all functions
that have a real  argument in realBag.  We achieve this result by putting the function in the bag realBag  as a side
effect of testing if the rule is applicable (the test # =!= real& serves to avoid recursion). 
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Unprotect[Real];

realBag = real[];

Real /: f_?(# =!= real&)[___, x_Real, ___] :=
             (Null /; (realBag = real[realBag, x]; False))

Now, we calculate a numerical value of a hypergeometric function (see Chapter 3 of the Symbolics volume [303÷]). 

HypergeometricPFQ[{1.3, 4.5, 2.3}, {2.1, 2.3, 2}, 2.34]

We then look at realBag to see what has been collected in it. 

{Depth[realBag], Length[realBag],
 Depth[Flatten[realBag]], Length[Flatten[realBag]]}

Here are the smallest and largest numbers encountered in calculating 3F3H1.3, 4.5, 2.3; 2.1, 2.3, 2; 2.34L.
{Min[#], Max[#]}&[Abs[Cases[realBag, _, {-1}]]]

Here, the same is done for the head Integer and for heads (symbols). This time, we also collect the function names.

Unprotect[Integer];

integerBag = integer[];
headBag = head[];

Integer /: f_?(# =!= integer && # =!= F&)[___, x_Integer, ___] :=
             (Null /; (integerBag = integer[integerBag, x]; 
                      headBag = F[headBag, f]; False))

Again, we evaluate a generalized hypergeometric function.

HypergeometricPFQ[{9, 6, -5}, {4, 6, 7}, 12]

{Depth[integerBag], Length[integerBag],
 Depth[Flatten[integerBag]], Length[Flatten[integerBag]]}

These heads (functions) were used in the calculation.

Cases[Union[Flatten[headBag]], _Symbol]

The method above of assigning rules that are never applicable is a useful additional tool for debugging to find out with
which arguments, how often, and so on various functions are called. We will make use of this technique in later chap-
ters. 

Now, we destroy the definition above because it slows down all calculations considerably. 
Unprotect[Real];
UpValues[Real] = {};
Protect[Real];

Unprotect[Integer];
UpValues[Integer] = {};
Protect[Integer];

After this little excursion,  let us come back to flattening lists. The FlattenAt  command is somewhat more specific
than Flatten. 

 

FlattenAt[list, positionsList]

removes the inner brackets around the elements in list at the positions defined by positionsList. 
The head of list need not be List. 
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MA1 = {1, {2, {3, 4}}}

Here again all inner brackets vanish. 

Flatten[MA1]

Now, we remove only the inner brackets around 3 and 4. 

FlattenAt[MA1, {2, 2}]

The converse of Flatten can be obtained with Partition. 

 

Partition[list, {i1, i2, …, in}, {offset1, offset2, …, offsetn}]

partitions list into ik  parts with offsets of offsetk  elements in the kth step. Here, ik , offsetk > 0 
must be integers. The head of list need not be List. 

 = Table[i + j + k + l, {i, 5}, {j, 3}, {k, 4}, {l, 2}]

Because we created  using Table[i + j + k + l, {i, 5}, {j, 3}, {k, 4}, {l, 2}], we can get
back the original matrix as follows (the last level arises automatically in the partition). 



Partition[Partition[Partition[, 2], 4], 3]

Here is a somewhat more elegant solution. 

Fold[Partition, , {2, 4, 3}]

An explicit comparison verifies the results. 

 == % == %%

We now consider lists with lengths 1 through 6 with different offsets in Partition. We display a condensed version
of the result. We have six possible resulting lists for the 42 possibilities. The first elements of each list are the values of
the 8i, j<-pair that generate the second element.

{First /@ #, #[[1, 2]]}& /@ 
Split[Sort[Flatten[
Table[{{i, j}, Partition[{1, 2, 3, 4, 5}, i, j]},
      {i, 6}, {j, 7}], 1], #1[[2]] === #2[[2]]&], #1[[2]] === #2[[2]]&] 

The following input produces a more readable, although much larger, output.
Make Input

Do[CellPrint[Cell[TextData[{
  StyleBox["Î Partition[{1, 2, 3, 4, 5}, " <> 
            ToString[i] <>", " <> ToString[j] <>"]", "MR"],
             " yields  ", StyleBox[ToString[(* the partition *)
                Partition[{1, 2, 3, 4, 5}, i, j]], "MR"], "." }], 
                  "PrintText"]], {i, 6}, {j, 7}]

Note the case offset = j > i in the last example. Here is another example to show that, in this case, some elements in the
list do not appear in the result at all. 

Partition[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}, 3, 4]

If we consider lists as sets of elements, it is possible to define the following operations: forming the union, intersection,
and  the  complement.  First,  we  consider  the  conjunction  of  elements  (which  is  not  too  meaningful  from  a  set  theory
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standpoint because equal element are kept, but it is very useful in programming). 

 

Join[list1, list2, …, listn]

gives a list of all elements in the given lists listi. The elements appear in the same order as in 
the lists listi. The head of listi need not be List. 

Here is a simple example that joins two lists.

Join[{1, 2}, {3, {4}}]

Here, we apply Join to two objects with head hh. 

Join[[5, 6], [7, 8, 5, 6]]

Although the arguments do not necessarily have the head List, they must all have the same head to be joined. 

Join[{1, 2}, list[3, 4]]

The next command forms the set theoretic union. (The above-mentioned application of Union is just that, in the sense
that in a set, every element can occur only once, which is a special case of the following.) 

 

Union[list1, list2, …, listn]

gives a list of all elements of all given lists listi, sorted according to the canonical order. 
Elements that appear more than once in the listi are included just once in the result. The head 
of listi need not be List. 

To get the intersection, we use Intersection. 

 

Intersection[list1, list2, …, listn]

gives a list of all elements that appear at least once in each of the lists listi. Elements appearing 
more than once are included just once in the result. The head of listi need not be List. 

Finally, we look at forming the complement. 

 

Complement[relativeTo, list1, list2, …, listn]

gives a list of all elements appearing in relativeTo, but not in any of the listi (i = 1, …, n). The 
head of listi need not be List. 

Here are three self-explanatory examples. 

Complement[{1, 2, 3, 4, 5, 6, 7, 8, 9}, {1}, {2}, {3}, {4}]

Intersection[{1, 1, 2, 3, 4, 5, 6, 7, 8, 9}, {1, 1},
             {1, 1, 2}, {1, 1, 3}, {1, 1, 4}]

Union[{1, 2, 3, 4, 5, 6, 7, 8, 9}, {1}, {2}, {3}, {4}]

The three  commands Union,  Complement,  and  Intersection  possess  one  option  (just  like  FixedPoint  and
FixedPointList discussed in Chapter 3). 

Options /@ {Union, Complement, Intersection}
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SameTest

is an option for the commands Union, Complement, and Intersection. It defines when 
two elements are to be treated as identical.

Default: 

Automatic

Admissible: 

Equal, SameQ, or an arbitrary (pure) function of two variables 

By using the default SameTest in Union, we get three elements in the following example. 

Union[{1.0, 2.0}, 2{1, 1}]

But the following input gives two elements. 

Union[{1.0, 2.0}, 2 {1, 1}, SameTest -> Equal]

We use a less restrictive test for comparison. It also returns a list with two elements. 

Union[{1.0, 2.0}, 2 {1, 1}, SameTest -> (Abs[#1 - #2] < 10^-15&)]

At this  point,  let  us  make a  remark about  a  potential  pitfall  when  working  with  Union.  Union[list]  works  by first
sorting list and then comparing adjacent elements, which has the advantage that it can be done fast, having a complexity
OHl logHlLL, where l is the length of list. The disadvantage of this presorting is that elements that might be considered the
same are not sorted adjacent to each other and as a result are kept. Here is an example: numberList  is a list of 162
numbers, all are closely centered around 1. + 1. i and 1. - 1. i.

numberList = 
Flatten[{(* near 1 + I *)
         Table[1.0 +  1.0 I + (j + I k) $MachineEpsilon,

       {j, -2, 2, 1/2}, {k, -2, 2, 1/2}],
  (* near 1 - I *)     
 Table[1.0 - 1.0 I + (j + I k) $MachineEpsilon,
       {j, -2, 2, 1/2}, {k, -2, 2, 1/2}]}];

Just applying Union to this list leaves many elements in this list.

(unionedNumberList = Union[numberList]) // Length

The minimal distance between two numbers in the list unionedNumberList is smaller than $MachineEpsilon.

Min[Table[Abs[unionedNumberList[[i]] - unionedNumberList[[j]]],
          {i, Length[unionedNumberList]}, 
          {j, i + 1, Length[unionedNumberList]}]]/$MachineEpsilon

Using an explicit setting for SameTest forces Mathematica to use a slower algorithm, which has quadratic complex-
ity. Now, only two elements remain after applying Union. 

Union[numberList, SameTest -> (#1 == #2&)] // Length

Union[numberList, 
      SameTest -> (Abs[#1 - #2] < 6 $MachineEpsilon&)] // Length

The use of any  SameTest  forces the use of an algorithm with quadratic complexity versus an OHn lnHnLL  complexity.
The following two inputs clearly show this change in complexity.

Table[list = Range[10^k];
      Timing[Union[list]][[1]], {k, 3, 6}]

Table[list = Range[10^k];
      Timing[Union[list, SameTest -> Equal]][[1]], {k, 1, 4 (* ! *)}]
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Σ (* session summary *) TMGBs`PrintSessionSummary[]

à 6.4.2 List of All System Commands
Now  that  we  are  able  to  manipulate  lists,  we  take  another  look  at  “meta-Mathematica  things”,  similar  to  issues  that
were discussed in Chapter 4. The following considerations and examples are not of practical use, but they are given as
examples of the use of larger lists and how to manipulate them. Here we will make heavy use of Map and Apply (this
means the input forms /@ and @@ will appear frequently in this subsection). We want to investigate some properties of
all  built-in  commands.  An  essential  step  is  the  following  construction,  which  converts  strings  into  the  corresponding
nonevaluated expressions. (We need this because Names["*"] gives a list with the names of all built-in commands in
the form of strings.) 

x = 1; y = 2; z = 3;
Apply[Unevaluated, #]& /@ (ToHeldExpression /@ {"x", "y", "z"})

Another  possibility  to  achieve  the  same  output  is  the  use  of  ToExpression[expr,  InputForm,

Unevaluated].

x = 1; y = 2; z = 3;
ToExpression[#, InputForm, Unevaluated]& /@ {"x", "y", "z"}

If we apply a Mathematica command to this, the argument of Unevaluated is not immediately evaluated. We did not
use this construction in this form in Chapter 4. It was not needed for the commands dealt with there. Here is an excel-
lent example of the operation of Unevaluated. 

Head[Unevaluated[Print["AmIPrintedNow?"]]]

To  be  sure  that  we  get  only  the  system  commands,  we  could  restart  Mathematica  here  and  begin  again  with
Names["*"]  (this  gives  us  the  list  of  all  built-in  Mathematica  commands),  or  we  can  use  Remove  to  get  rid of
introduced symbols. 

Remove[x, y, z]
Names["System`*"];

We call this list allCommands. 

allCommands = DeleteCases[%, "$Epilog"];

This input gives the number of commands. 

Length[allCommands]

If we simply convert the strings containing the names of the commands to commands, we get many nontrivial evalua-
tions. 

allCommandsEvaluated = ToExpression /@ allCommands;

The following commands were executed (now having a different value than they had in unevaluated form). 

Complement[allCommands, ToString /@ allCommandsEvaluated]

Length[%]

Thus, we use the variant tested above. 

allCommandsUnevaluated =
Apply[Unevaluated, #]& /@ (ToHeldExpression /@ allCommands);

Here are the first dozen elements of the resulting list. 

Take[allCommandsUnevaluated, 12]
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It has the desired structure. Now, for example, we can sort out all commands with options. To do this, we first generate
a list auxList of all options of these commands selected and then measure its length. If it is not the empty list {}, the
corresponding command has options, and otherwise it does not. 

Here the list of all functions that have options. 

auxList = Options /@ allCommandsUnevaluated;

commandsWithOptions = {};

Do[If[auxList[[i]] != {},
      AppendTo[commandsWithOptions, allCommandsUnevaluated[[i]]]],
   {i, Length[allCommandsUnevaluated]}];

 commandsWithOptions // Short[#, 12]&

(Another (and shorter) possible input to determine the functions with options would have been:
Select[allCommandsUnevaluated, Options[#] =!= {}&].)
This is a total of about 200 functions. 

Length[%]

Notebook is the command with the most options. 

allCommands[[Position[#, Max[#]]&[Length /@ auxList][[1]]]]

It has about 200 options. (In most cases only a small fraction of these options are explicitly set to nondefault values.)

Length[Options[Notebook]]

The set of all possible options can be obtained as follows: First, remove all {} from auxList (using Flatten); then
extract the first part, which is necessary because all options are in the form option -> actualDefault; and finally, use
Union to eliminate all options that appear more than once. 

Union[Flatten[If[Length[#] > 0, First[#], {}]& /@ 
                  Flatten[auxList]]] // Short[#, 12]&

Here is the total number of options. 

Length[%]

We turn now to the attributes by first counting the number of system commands having at least one attribute. 

withAttributes = Select[allCommandsUnevaluated, 
                        (Length[Attributes[#]] > 0)&];

Length[%]

Because these are nearly all built-in commands, we look instead at the set complementary to withAttributes. The
following commands have no attributes. 

ToString /@ Complement[allCommandsUnevaluated,
                       withAttributes] // Short[#, 12]&

Most commands have Protected as an attribute. The following commands have other nontrivial attributes. 

withNotOnlyProtectedAttributes =
ToString /@ Select[withAttributes,
               Attributes[#] != {Protected}&] // Short[#, 12]&

This is the length of the list. 

Length[%]
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We find the attributes possessed by the built-in commands. 

theAttributes = Union[Flatten[Attributes /@ allCommandsUnevaluated]]

It might happen that an existing attribute is not carried by any built-in command. Thus, we look at all usage messages to
find those  in which the word  "attribute"  appears.  (The command StringMatchQ  was discussed in Chapter 5;
StringMatchQ["string", "stringPattern"]  gives  True  if  the  string  in  the  second  argument  appears  in  the  first
argument, and otherwise gives False.) 

(* load all usage messages *)
Get[ToFileName[{$TopDirectory, "SystemFiles", "Kernel", 
                "TextResources", $Language}, "Usage.m"]]

Off[StringMatchQ::string]; Off[StringMatchQ::strs];

theAttributesInTheUsageMessages = 
ToString[#]& /@ Select[allCommandsUnevaluated,
                       StringMatchQ[MessageName[#, "usage"], "*attribute*"]

On[StringMatchQ::string]; On[StringMatchQ::strs];

Complement[ToExpression /@ theAttributesInTheUsageMessages, theAttributes]

Indeed,  such  other  attributes  exist:  Stub  and  Temporary.  As  expected,  no  built-in  function  has  the  Temporary
attribute. And the Stub attribute has the following meaning.

??Stub

Here is the number of commands with the corresponding listed attributes. 

Do[CellPrint[Cell[TextData[{"Î The attribute ",
            StyleBox[ToString[theAttributes[[i]]], "MR"],
                        " is carried by " <> 
             ToString[(* how many *)  = Length[
     Select[allCommandsUnevaluated,
            Function[x, MemberQ[Attributes[x],
                                theAttributes[[i]]]]]]] <> 
                     (* singular or plural? *)          
                     If[  === 1, " command.", " commands."]}], 
                      "PrintText"]], {i, Length[theAttributes]}]

Here is a list of all the symbols carrying the Locked attribute.

ToString /@ Select[allCommandsUnevaluated,
                MemberQ[Attributes[#], Locked]&]

Length[%]

It is also interesting to see which commands carry the attributes Flat, Orderless, and OneIdentity. 

ToString /@ Select[allCommandsUnevaluated,
                   MemberQ[Attributes[#], Flat]&]

ToString /@ Select[allCommandsUnevaluated,
                   MemberQ[Attributes[#], Orderless]&]

ToString /@ Select[allCommandsUnevaluated,
                   MemberQ[Attributes[#], OneIdentity]&]

These functions carry the three attributes Orderless, Flat, and OneIdentity.
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ToString /@ Select[allCommandsUnevaluated,
                   (MemberQ[Attributes[#], Flat] && 
                    MemberQ[Attributes[#], Orderless] &&
                    MemberQ[Attributes[#], OneIdentity])&]

Options  are  given  as  rules,  in  most  cases  with  Rule,  but  in  some  cases  with  RuleDelayed.  Let  us  search  for  all
default values of options that are realized with delayed rules. 

Union[Flatten[Cases[#, _RuleDelayed]& /@
       Options /@ Apply[Unevaluated,
           ToHeldExpression /@ Names["*"], {1}]]]

Do any functions have more than one option and at the same time have the attribute Listable? This would mean that
we could give a list of different options and obtain a list as the results. We first select the commands with the attribute
Listable and then look at which ones have more than one option. (Here, it is safe to use ToExpression because
none of these functions will evaluate to anything else.)

Select[Select[Names["*"], MemberQ[Attributes[#], Listable]&],
      Options[ToExpression[#]] =!= {}&]

PrimeQ is one such function. Calling PrimeQ with a list as its second argument results in an output with head List.

PrimeQ[17, {GaussianIntegers -> False, GaussianIntegers -> True}]

Next, we examine the names of the commands in more detail. For this procedure we need another string command. 

 

Characters[string]

gives a list of the individual strings in the string string. 

Here, the characters are a longer string. 

Characters[" I consist of the following individual characters."]

Here is the list of the length of all command names. 

lengthCommands = StringLength /@ allCommands;

The longest commands have 36 letters. 

Max[%]

Here is the longest named function from the current contexts.

allCommands[[#[[1]]]]& /@ Position[lengthCommands, 36]

The shortest commands have one, two, or three letters. 

allCommands[[#]]& /@ Flatten[Position[lengthCommands, 1]]

allCommands[[#]]& /@ Flatten[Position[lengthCommands, 2]]

allCommands[[#]]& /@ Flatten[Position[lengthCommands, 3]]

The next command that we need to count various things is Count. 

 

Count[list, toCount]

gives the number of elements in the list list that have the pattern toCount. The head of list need 
not be List. 

We can look at the distribution of the lengths of names in more detail. (For getting the count, we could also have used
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StringLength.) 

Table[{k, Count[lengthCommands, k]}, {k, 36}]

The average length of a Mathematica built-in symbol is about 12 characters.

Plus @@ lengthCommands/Length[lengthCommands] // N

Now, we can get the distribution of the starting letters. First,  we “compute” a list auxList,  in which the commands
are replaced by a list of their letters. Then, we create a list of all starting letters. Finally, we simply count the number of
commands starting with each letter using Union[First[#]& /@ auxList].

auxList = Characters[#]& /@ allCommands;

{#, Count[auxList, {#, ___}]}& /@ Union[First[#]& /@ auxList]

Mathematica commands start with capital letters, and each subword is also capitalized. To conclude, we also count how
many capital letters are contained in the various Mathematica  commands. (Here, we use the command UpperCaseQ,
which we do not formally introduce because it is not used again; it gives True when its argument is a capital letter in
the form of a string). 

CellPrint[Cell[TextData["Î There are " <> ToString[#[[2]]] <> 
                                        " commands with "  <>
               ToString[#[[1]]] <> " capital letter" <> 
          If[#[[1]] == 1, ".", "s."]], "PrintText"]]& /@ 
               (* count *)   Function[r, {#, Count[r, #]}& /@ Union[r]][
            Length[Select[#, UpperCaseQ]]& /@ Characters /@ allCommands];

Here are the Mathematica commands with six uppercase letters. They nearly form little sentences.

StringJoin /@
Select[Characters /@ Names["System`*"],
       Count[UpperCaseQ /@ #, True] === 6&]

We could go on and investigate the symbols from other contexts, such as Developer` and Experimental`.

We can do similar investigations, for instance, to determine whether any nontrivial (meaning of length > 1) palindromic
names are built-in Mathematica commands. 

Select[Names["System`*"], (# === StringReverse[#] && StringLength[#] > 1)&]

The  chances  for  finding  such  a  palindrome  were  small,  because  Mathematica  built-in  commands  always  start  with  a
capital letter, but end typically with a lowercase letter. This output occurs if we do not differentiate between lowercase
and uppercase letters. 

Select[Map[ToLowerCase, Names["System`*"]],
       (# === StringReverse[#] && StringLength[#] > 1)&]

But do at least some names exist with letters that could be used to make another built-in name? 

Function[ca,
 Function[lca,
          Do[Function[cai, If[# =!= {}, Print[
            (* the commands with equal letters *)
             Names["System`*"][[#]]& /@
               Flatten[Position[ca, #[[1]]]]]]&[
                    Select[Take[ca, {i + 1, lca}], (* the same? *)
          (# === cai)&]]][ca[[i]]], {i, 1, lca - 1}]][Length[ca]]][
                       Sort /@ Characters /@ Names["System`*"]]

Yes,  fortunately,  Mathematica  has  the  Jacobi’s  elliptic  functions  (which  we  discuss  in  Chapter  3  of  the  Symbolics
volume [303÷]) and some more from the front end area. 
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Next, we could investigate the average ratio of uppercase to lowercase letters in the Mathematica commands, and so on.
We end here; the reader can continue this investigation if interested. 

Next,  we  look  at  how many built-in  commands have  already some DownValues,  before  we  give  any definitions  to
them. 

Off[General::readp];

DeleteCases[DownValues /@
    (Unevaluated @@ #& /@ (ToHeldExpression /@ Names["System`*"])),
            {} | $Failed] // Length

Here is the number of built-in commands that have OwnValues. 

DeleteCases[OwnValues /@
    (Unevaluated @@ #& /@ (ToHeldExpression /@ Names["System`*"])),
            {} | $Failed] // Length

After studying the built-in names, we could go on to investigate Mathematica  messages, then analyze the structure of
programs,  etc.  Which  message,  for  instance,  is  the  longest  one?  To get  information on  all  messages,  we first  have to
remove the attribute ReadProtected from all commands. 

Off[Protect::locked]; Unprotect["*"];
Off[Attributes::locked]; Off[ClearAttributes::sym];

(* make all accessible *)
ClearAttributes[#, ReadProtected]& /@
  ((Unevaluated @@ #)& /@ (ToHeldExpression /@ Names["System`*"]));

Here is the longest message. 

Function[messageContent,
 messageContent[[#]]& /@ Flatten[Position[#, Max[
          Cases[#, _Integer]]]&[(* count number of strings *)
         StringLength /@ messageContent]]][Cases[#, _String]& @
              Flatten[Map[Last, (Messages /@
                ((Unevaluated @@ #)& /@ (ToHeldExpression /@
                                       Names["System`*"]))), {2}]]]

After  having  “finished”  our  investigations  on  built-in  things  (still  a  lot  are  possible),  we  go  on  with  such  “system
investigations”  by  studying  the  internal  dependency  structure  of  packages.  Which  command  from  a  package  calls
(potentially)  which  other  command?  Here  is  a  possible  implementation  of  this  question.  The  program  checks  in  the
right-hand side  of  the  definitions  in which other  commands appear  and does  this repeatedly,  but not  in  infinite recur-
sion.  The  arrow  ï  in  the  result  indicates  dependencies.  We  take  only  definitions  into  account  that  are  stored  with
DownValues. Extensions to include OwnValues, UpValues, SubValues, …, are straightforward to implement.

SetAttributes[symbolsUsed, HoldAll];

(* input is a string *)
symbolsUsed[expr_String] := symbolsUsed @@ {ToHeldExpression[expr]}

(* input is in the form Hold[symbol] *)
symbolsUsed[Hold[symbol_]] := 
Select[DeleteCases[
   Union[Level[Map[(* make inert *) Hold, 
                     Last /@ (MapAt[Hold, #, 2]& /@ 
                   (* the definition of symbol *) DownValues[symbol]), 
           {-1}, Heads -> True], {-2}, Heads -> True]] /.
                  f_[] :> f, Hold[_?NumberQ] | Hold[_String]],
             ((Context @@ #) =!= "System`")&]
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SetAttributes[calledFunctionsLevel1, HoldAll];

(* the functions symbol depends on *)
calledFunctionsLevel1[symbol_] :=
        symbol  Select[symbolsUsed[symbol], (symbolsUsed[#] =!= {})&]

SetAttributes[dependencies, HoldAll];

(* a list of recursive dependencies *)
dependencies[symbol_] :=
Module[{dependentLevel, functionBag, i, newFunctions},
        dependentLevel[1] = {calledFunctionsLevel1[symbol]};
 (* all functions already encountered *)
 functionBag = Last /@ dependentLevel[1];
 i = 1;
 While[(* the functions of the next level *)
       dependentLevel[i + 1] = calledFunctionsLevel1 /@ 
                      Union[Flatten[Last /@ dependentLevel[i]]];
       (* new encountered functions *)
       newFunctions = Union[Flatten[Last /@ dependentLevel[i + 1]]];
       (* still newly encountered functions? *)
       Complement[newFunctions, functionBag] =!= {} && i < 4,
       (* the functions of the next level *)
       dependentLevel[i + 1] = Complement[dependentLevel[i + 1],
                       Flatten[Table[dependentLevel[k], {k, i}]]];
       i = i + 1;
       (* update  functionBag *)
       functionBag = Union[Flatten[{functionBag, dependentLevel[i + 1]}]]];
       (* remove empty lists *)
       DeleteCases[DeleteCases[
         Table[dependentLevel[k], {k, i + 1}],
                  (* format output *) (_  {}) | (a_  {a_}), 
                       Infinity], {}, Infinity] /. Hold -> HoldForm]

Here is a simple example of how the function dependencies works.

Clear["f*", "g*", x];
f1[x_] := f2[x] + f3[x^3 + f4[x]];
f2[x_] := g2[x] + f3[x + x^3];
f3[x_] := g2[x + f4[-x]];
f4[x_] := -Log[x] + g2[Tan[x]];
g2[x_] := x

dependencies["f1"]

Here is a recursive definition (to make it useful, it should be supplemented with initial conditions).

Clear["*"];
1[x_] := 2[x]
2[x_] := 1[x - 1]

In this case, Dependencies continues to analyze the dependencies until it finds a “closed loop”.

dependencies["1"]

Let us have a look at two examples, the commands ContourPlot3D from the Mathematica packages and the Chap
terOverview from the package generating the chapter overviews.

(* turn off messages caused by usage message names *)
Off[Context::"notfound"]
Off[DownValues::"sym"]
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Needs["Graphics`ContourPlot3D`"]

dependencies["ContourPlot3D"]

To make the last output more easily readable, we remove the long context specifications.

removeContexts[HoldForm[f_]] :=
Module[{fString = ToString[f], pos},
       (* rightmost position of context marker ` *)
       pos = Max[StringPosition[fString, "`"]];

If[pos > 0, StringTake[fString, {pos + 1,
            StringLength[fString]}], fString]]

%% /. HoldForm[f_] :> removeContexts[HoldForm[f]]

Here is another example, the function PolynomialContinuedFraction from the package Algebra`Polyno
mialContinuedFractions`. This time, we change the context to get a short output.

Needs["Algebra`PolynomialContinuedFractions`"]

ClearAttributes[PolynomialContinuedFraction, ReadProtected]

Begin["Algebra`PolynomialContinuedFractions`Private`"];
dependencies["PolynomialContinuedFraction"]
End[];

Finally,  let  us  apply  our  function  dependencies  to  the  ChapterOverview  from  the  package  generating  the
chapter overviews.

Get[ToFileName[ReplacePart[
            "FileName" /. NotebookInformation[EvaluationNotebook[]],
            "ChapterOverview.m", 2]]];

dependencies["ChapterOverview"]

A  more  detailed  treatment  of  dependencies  can  be  found  in  [314÷].  We  end  such  investigations  here  and  invite  the
reader to continue in this direction. For some other similar investigations, see [195÷]. 

Σ (* session summary *) TMGBs`PrintSessionSummary[]

à 6.4.3 More General Operations 
The more general operations include matrix multiplication and the computation of inner and outer products.  Although
these operations belong with the mathematical operations in Subsection 6.5.1, we discuss them here because they can
be used to perform more general operations on nested lists (and we will use them from time to time for programming
issues; and not only in the mathematical sense). We begin with matrix multiplication. 

 

Dot[list1, list2, … , listn]

or 
list1.list2.∫.listn

gives the result of matrix multiplication of the lists listi. For deeply nested lists, the last index 
of the left argument is paired with the first index of the right argument. Multiplication is 
carried out from the right to the left.

This definition of matrix multiplication (pairing the last index of the left list with the first index 
of the right list) makes it unnecessary to differentiate between row and column vectors. 

Here is the result of multiplying three matrices mata, matb, and matc together. 
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mata = Array[a, {3, 4}]

matb = Array[b, {4, 2}]

matc = Array[c, 2]

mata.matb.matc

Here, we group the factors in two different ways.

mata.Identity[matb.matc] - Identity[mata.matb].matc // Expand

Here is the scalar product of two vectors. 

{ax, ay, az}.{bx, by, bz}

Their length does not have to be 3, of course. 

{ax1, ax2, ax3, ax4}.{bx1, bx2, bx3, bx4}

Here are three rotation matrices. x rotates around the x-axis, y rotates around the y-axis, and z rotates around the z-
axis.

x[ϕ_] = {{1, 0, 0}, {0, Cos[ϕ], Sin[ϕ]}, {0, -Sin[ϕ], Cos[ϕ]}};
y[ϕ_] = {{Cos[ϕ], 0, Sin[ϕ]}, {0, 1, 0}, {-Sin[ϕ], 0, Cos[ϕ]}};
z[ϕ_] = {{Cos[ϕ], Sin[ϕ], 0}, {-Sin[ϕ], Cos[ϕ], 0}, {0, 0, 1}};

This is the result of applying three rotations to the vector {ξ, η, ζ}.

vec1 = ( x[ϕx]. y[ϕy]. z[ϕz]).{ξ, η, ζ}

The order of the rotation matters. We see this, for instance, by giving specialized values for the parameters involved.

vec1 - ( y[ϕy]. x[ϕx]. z[ϕz]).{ξ, η, ζ} /.
          {ξ -> 1, η -> 0, ζ -> 0, ϕx -> Pi/2, ϕy -> -Pi/2, ϕz -> Pi}

The norm of a vector is an invariant under rotations. 

vec1.vec1 // Simplify

Dot represents the scalar product, and the vector product is calculated in Mathematica using Cross.

 

Cross[list1, list2, … , listn]

or 
list1 list2 ∫ listn

gives the vector product of the lists listi. To be well-defined, the length of the lists listi must be 
n+1.

Here is the cross product between two symbolic vectors in 3.

Cross[{ax, ay, az}, {bx, by, bz}]

A useful  application,  especially for  graphics,  is  the  following representation of  rotating the point  point  by an angle ϕ
around an axis through the origin with components dir [253÷], [233÷].

rotation[point_, dir_, ϕ_] :=
Cos[ϕ] point + (1 - Cos[ϕ]) point.dir dir + Sin[ϕ] Cross[dir, point]

A rotation does not change distances between points. (Here we use Simplify with a second argument; see Chapter 1
of the Symbolics volume [303÷] for details.)

THE MATHEMATICA GUIDEBOOKS to PROGRAMMING—GRAPHICS—NUMERICS—SYMBOLICS 51

©  2004, 2005   Springer Science+Business Media, Inc.



Module[{P1, P2, x1, y1, z1, x2, y2, z2, x, y, z, ϕ},
(* original points *)
{P1, P2} = {{x1, y1, z1}, {x2, y2, z2}};
(* rotated points *)
P1a = rotation[P1, { x, y, z}, ϕ];
P2a = rotation[P2, { x, y, z}, ϕ];
(* simplified difference of distances *)
Simplify[(P1a - P2a).(P1a - P2a) - (P1 - P2).(P1 - P2),
         (* dir is a unit vector *) { x, y, z}.{ x, y, z} == 1]]

The ordinary  cross  product  in  three  dimensions,  typically  viewed as  the  “upper  half”  of  an  antisymmetrical tensor of
rank 2, can be generalized to n dimensions [47÷], [158÷], [273÷], [125÷], [106÷], [315÷], [278÷], [244÷], and [74÷].
In n, the cross product is a function of n - 1 vectors. Here are some examples for n = 2 and n = 4.

Cross[{a1, a2}]

Cross[{a1, a2, a3, a4}, {b1, b2, b3, b4}, {c1, c2, c3, c4}]

The cross product Cross for the n - 1 n-dimensional vectors a1, a2, …, an-1 has the following properties:

è a1 äa2 ä∫äan-1 is a vector in n

è  a1 äa2 ä∫äan-1 is orthogonal to each of the ai, i = 1, … n - 1

è  a1 äa2 ä∫äan-1=0 if and only if the ai, i = 1, … n - 1 are linear dependent

è  †a1 äa2 ä∫äan-1§ is the volume of the parallelotope formed by the ai, i = 1, … n - 1

è  a1 äa2 ä∫äan-1 is completely antisymmetric

For another possible generalization between the cross product of two tensors in n, see [102÷].

A very useful generalization of the inner product (Dot or scalar product) is Inner. 

 

Inner[timesSynonym, list1, list2, plusSynonym]

gives the scalar product of list1 with list2, but with multiplication replaced by timesSynonym, 
and addition replaced by plusSynonym. The head of list1 and list2 need not be List. If list1 
and list2 contain nested expressions with the same head, the last index of list1 is paired with the 
first index of list2. 

The usual scalar product is obtained as follows. 

Inner[Times, Array[a, 6], Array[b, 6], Plus]

The usual matrix multiplication can also be done with Inner. 

Inner[Times, {{a, b}, {c, d}}, {x, y}, Plus]

The second and third arguments of Inner do not have to have the head List, but they must have the same head. 

Inner[Plus, nis[1, 2, 3, 4, 5], nis[1, 2, 3, 4, 5], soc]

Inner[Plus, nis[1, 2, 3, 4, 5], nies[1, 2, 3, 4, 5], soc]

A very useful generalization of the outer product that is known from matrix theory is Outer. 
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Outer[timesSynonym, list1, list2, …, listn]

gives the outer (Kronecker) product of the lists list1 with list2… , but with multiplication 
replaced by timesSynonym. The head of list1 and list2 need not be List.

Outer[timesSynonym, list1, list2, …, listn, maxLevel]

results in outer multiplication down to level maxLevel. 

The usual outer product arises if we choose Times for timesSynonym. (It essentially amounts to replacing each element
of Array[a, 3] by that element times a copy of Array[b, 3].) 

Outer[Times, Array[a, 3], Array[b, 3]]

In the following generalization, we replace Times by . 

Outer[, Array[a, 3], Array[b, 2]]

If higher dimensional objects are multiplied together using Outer, the resulting brackets may not be as expected. 

Outer[List, Array[a, {2, 2}], Array[b, {2, 2}]]

With nested Lists  as arguments in Outer,  we often want the outer product  to be calculated only on the first level.
This result can be achieved by using the optional fourth argument of Outer. 

Outer[CFD, {{1, 1}, {2, 2}}, {{2, 2}, {3, 3}}, 1]

To apply a function to elements with the same indices in several lists, we can use Thread. 

 

Thread[function[list1, list2, …, listn]]

evaluates to
 {function[list1[[1]], list2[[1]], …, listn[[1]]], …,
   function[list1[[2]], list2[[2]], …, listn[[2]]], …  } 

The head of listi need not be List, but in this case, the corresponding head should be inserted 
as the second argument as in Thread[function[head1, head2, …, headn], head]. 
Thread[expr] combines only the first level of the list expr. 

Here is a simple example in which Thread causes f to operate on groups of arguments with the same index. 

f[Table[a[i], {i, 4}], Table[b[i], {i, 4}], Table[c[i], {i, 4}]]

Thread[%]

If the argument of Thread is a matrix, the result Thread[m] is the transposed matrix. 

With a head other than List, a second argument is needed in Thread. 

Thread[f[list[a[1], a[2], a[3], a[4]],
         list[b[1], b[2], b[3], b[4]],
         list[c[1], c[2], c[3], c[4]]]]

Thread[f[list[a[1], a[2], a[3], a[4]],
         list[b[1], b[2], b[3], b[4]],
         list[c[1], c[2], c[3], c[4]]], list]

In the next example, f has only one argument, which consists of three sublists. 

Thread[f[{Table[a[i], {i, 4}], Table[b[i], {i, 4}], Table[c[i], {i, 4}]}]]

The expression remains unchanged.  If the function function  has the attribute Listable,  the operation carried out by
Thread automatically takes place for arguments with depth 1. 
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In  the  following  example,  we  attempt  to  provide  the  function  triangle  with  three  vertices  taken  from  three  lists
containing the coordinates of the first, second, and third vertices of five triangles. 

triangle[Table[vertex1[i], {i, 5}],
         Table[vertex2[i], {i, 5}],
         Table[vertex3[i], {i, 5}]]

Now, we create five triangles, each with three vertices. 

Thread[%]

If the lists have more depth, a difference between Thread and using the attribute Listable exists.

Remove[fg];
SetAttributes[fg, Listable];
fg[{{1, 11}, {2, 22}}, {{a1, a2}, {b1, b2}}]

The attribute Listable works for arbitrary depth, whereas Thread works only at level 1. 

Remove[fg];
Thread[fg[{{1, 11}, {2, 22}}, {{a1, a2}, {b1, b2}}]]

The following command is closely related to the command Thread. 

 

MapThread[function, {list1, list2, …, listn}, levelSpecification]

applies function to corresponding elements in the lists listi at level levelSpecification. The head 
of listi need not be List. 

In the next two examples, MapThread gives the same results as Thread. 

MapThread[f, {Array[a, {4}], Array[b, {4}], Array[c, {4}]}]

Clear[f, a, b, c];
MapThread[f, {{Array[a, {4}], Array[b, {4}], Array[c, {4}]}}]

But the following example would not be possible using Thread. 

MapThread[Υ, {{{1, 11}, {2, 22}}, {{a1, a2}, {b1, b2}}}, 2]

We could have gotten the same result in the last example by assigning the attribute Listable to f; however, not all of
the following examples could be done this way because we could not control the level specification in this case. We use
all four sensible level specifications.

MapThread[Υ, {Array[a, {3, 3, 3}]}, 0]

MapThread[Υ, {Array[a, {3, 3, 3}]}, 1]

MapThread[Υ, {Array[a, {3, 3, 3}]}, 2]

MapThread[Υ, {Array[a, {3, 3, 3}]}, 3]

Here is a somewhat different example of the application of MapThread. Suppose we are given two matrices: a matrix
whose elements are operators and a matrix whose elements are the associated arguments. This is a matrix of functions. 

operatorMatrix = Table[Evaluate[i + j + #]&, {i, 3}, {j, 2}]

And this is a matrix of arguments. 

argumentMatrix = Table[i + j, {i, 3}, {j, 2}]

Now, each operator is to be applied to “its” argument. The following input does not work, of course. 

operatorMatrix[argumentMatrix]
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But this input does. 

MapThread[#1[#2]&, {operatorMatrix, argumentMatrix}, 2]

Distribute is one more important command that belongs in this section. 

 

Distribute[expression, whatOver, what, whatOverNew, whatNew]

applies the distributive law for whatOver to what in expression, and then replaces the head 
what by the head whatNew and the head whatOver by the head whatOverNew. The third, 
fourth, and fifth arguments need not appear; in this case, the heads are not changed. 

Here are two examples of this relatively abstract command. 

Distribute[wo[wa[a1, a2, a3, a4], wa[b1, b2, b3, b4]], wa]

Distribute[wo[wa[a1, a2, a3, a4], wa[b1, b2, b3, b4]],
           wa, wo, WA, WO]

Here are the fourth and fifth arguments in Distribute symbols.

Distribute[wo[wa[a1, a2, a3, a4], wa[b1, b2, b3, b4]], 
           wa, wo, WA[1], WO]

In the next input, the fourth and fifth arguments in Distribute are pure functions.

Distribute[wo[wa[a1, a2, a3, a4], wa[b1, b2, b3, b4]], 
           wa, wo, WA[##]&, WO[#]&]

We will make considerable use of the commands Thread, Apply, Map,  Inner, and Distribute later in dealing
with graphics (we have already used Distribute in the beginning graphic in the first chapter). 

Let  us  finish  this  subsection  by  reiterating  the  importance  of  the  list-manipulating  functions  discussed  so  far  in  this
chapter.

Whenever possible, manipulations on lists should always be done on the entire list(s) (i.e., 
using the commands Map, MapThread, Thread, Apply, Inner, Outer, Distribute, 
etc.), rather than on one element at a time, which leads to a great savings in computational 
time. 

Σ (* session summary *) TMGBs`PrintSessionSummary[]

à 6.4.4 Constructing a Crossword Puzzle 
In this subsection, we examine a problem that extensively involves lists. Suppose we are given a list of words (which,
without loss of generality, we can assume are in the form of lists of their letters, i.e., strings). The aim is to insert them
in a rectangular  grid in  such a way that each word is either horizontal  (reading from left to right)  or vertical (reading
from top to bottom), and such that words are connected at subrectangles containing a common letter. (A subrectangle is
the space occupied by one letter.) Here is an example. 
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              D
              u
 H        Salzmann               I
 ö            p       G          n  B
 r     F      l   Eisbein      Eisenach
 s     r   Schiller   r   F A W  e  c
 e     i      n   f   m   o u a  l  h
 l    Rennsteig   u Bratwurst r  s
 b     d      s   r   n   e o t  b   
Tenneberg         t   y   s b b Weimar          
 r     i                  t a u  r 
 g     c                   Thuringia        
       h                    n g  
       r
      Gotha
       d
      Walterhausen

For better readability, we assume that any two horizontal words and any two vertical words are separated by at least one
blank space. In addition, no horizontal word should begin or end in a subrectangle, which is next to one occupied by a
letter in a vertical word, and no vertical word should begin or end in a subrectangle, which is next to one occupied by a
letter  in  a  horizontal  word.  However,  we  do  allow  a  word  to  begin  or  end  in  a  subrectangle,  which  is  occupied  by
another letter.

In  the  following  code,  we  do  not  protect  all  variables  which  arise,  but  instead  use  the  following  variables  globally
throughout this section: (v always indicates vertical and h always indicates horizontal.)

† placed: This is a list of the words that have already been placed in the puzzle in the form 8coordinates, stringOfLetÖ
ters<. 

† w: ω[i] contains the positions of those letters of the ith placed word where another word can be joined. 

†  closed:  closed["h"]  and  closed["v"]  contain  the  coordinates  of  those  cells  that  cannot  be  occupied  by
letters of words to be placed horizontally or vertically, respectively. 

†  startClosed  and endClosed:  The lists startClosed["h"],  startClosed["v"],  endClosed["h"],
and endClosed["v"] contain the coordinates of those cells that cannot be used for the starting or ending letters of
words to be placed horizontally or vertically, respectively. 

† words: This list contains the words that have not yet been used. 

The idea of the implementation is as follows. We choose an initial word and an initial direction. Then, we take the next
word and check to see if it can be attached to any of the previously placed words. If not, we check the next word, and so
on, at each step making sure that none of its letters fall in a closed cell, and that it also fits with the other words. 

We  begin  by  initializing  the  lists  placed,  closed["h"],  closed["v"],  startClosed["h"],  start
Closed["v"],  endClosed["h"],  and  endClosed["h"],  as  well  as  ω[1].  This  initialization  is  done  by  the
function initialization; its argument is a list of the letters of the first word and its orientation ("h" for horizontal
or "v" for vertical). 

For the sake of efficiency, we do not bother to carry out tests on the arguments for correctness in the following auxil-
iary routines, although we do include tests in the final function crossWordConstruction. 
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initialization[start_] :=
Module[{data, wt},
(* is the first word aligned horizontally? *)
wt = (start[[2]] === "h");
(* set the letters of the first words *)
placed = MapThread[List, {data =
If[wt, Table[{i, 1}, {i, Length[start[[1]]]}],
       Table[{1, i}, {i, 1, -Length[start[[1]]] + 2, -1}]], start[[1]]}];
(* vertical and horizontal letters to be set *)
Clear[ω];
ω[1] = {placed, start[[2]]};
closed["h"] =
 If[wt, Union[{First[#] + {-1, 0}}, {Last[#] + {+1, 0}},
              # + {0, 1}& /@ #, # + {0, -1}& /@ #],
(* w[1][[2]] === "v" *)
{First[#] + {0, 1}, Last[#] + {0, -1}}]&[data];
closed["v"] =
 If[wt, {First[#] + {-1, 0}, Last[#] + {+1, 0}},
(* w[1][[2]] === "v" *)
     Union[{First[#] + {0, 1}}, {Last[#] + {0, -1}},
            # + {1, 0}& /@ #, # + {-1, 0}& /@ #]]&[data];
(* the spaces which cannot be occupied any more *)
startClosed["v"] = If[ wt, # + { 0, -1}& /@ data, {}];
endClosed[  "v"] = If[ wt, # + { 0,  1}& /@ data, {}];
startClosed["h"] = If[!wt, # + { 1,  0}& /@ data, {}];
endClosed[  "h"] = If[!wt, # + {-1,  0}& /@ data, {}]; ]

We now look at an example. 

initialization[{{"A", "b", "o", "r", "t"}, "h"}]

The various lists have the following values. The list placed contains the letters of the first word, which is horizontal
and starts at 80, 0<. 

placed

The letters of other horizontal words cannot be placed in the cells immediately over, under, and next to the letters of this
first word. 

closed["h"]

No word written vertically can pass through the cells directly to the left of A and directly to the right of t. 

closed["v"]

A word written horizontally has no influence (except via closed["h"]) on the positions of the first and last letters of
other words written horizontally. 

startClosed["h"]; endClosed["h"];

Vertical words may not begin directly below letters of horizontal words. 

startClosed["v"]

They may not end directly above them. 

endClosed["v"]

The next word can be attached to the first word at any matching letter of w. 

??ω
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Next, we discuss “attaching” a word. The function attach takes two arguments and generates a list of lists of the form
{i, j}. Each such element indicates that the ith letter of the word old matches the jth letter of the word new (where we
distinguish between lowercase and uppercase letters). This list is calculated by looking at the letters that are contained
in old as well as in new. 

attach[old_, new_] :=
Sort[Flatten[Flatten[Outer[List, Sequence @@ #], 1]& /@
    (({Flatten[Position[old, #]], 
       Flatten[Position[new, #]]}& /@ #)&[(* the common letters *)
                      Intersection[old, new]]), 1]]
(*  to get different word orders, we could
    randomly permute this list, e.g. with
    //  Function[y, Nest[Function[x, Function[b,
         {DeleteCases[x[[1]], Evaluate[b]],
          Flatten[{x[[2]], {b}}, 1]}][
            x[[1, Random[Integer, {1, Length[x[[1]]]}]]]]], 
                                  {y, {}}, Length[y]][[2]]]
*)

We again look at an example of joined items (from http://specialfunctions.com).

attach[Characters["Mathematica"], Characters["SpecialFunctions"]]

When the two words do not have a common letter, attach returns an empty list. 

attach[Characters["Abort"], Characters["Sech"]]

attach[{}, Characters["Sech"]]

Suppose that attach has found a cell in old to which the word new may be attached. Now, we have to check whether
all of the letters contained in the new word fit in the allowed space available (i.e., that none of them would fall in a cell
in  the  closed  lists,  or  would  intersect  some other  word  without  matching letters).  We  accomplish this  result  with  the
function fits¿. Its first argument is ω[i] (i.e., a list of those letters of a word that have already been placed where the
new word can be attached, along with its orientation "h"  or "v").  Its second argument is the new word new,  and its
third argument combi is one of the possibilities in the output of attach that lists the ways of attaching the new word
to the old (i.e., which letter of the first word can be attached to which letter of the old one). The cells needed to place
the word  are contained  in cellsNeeded.  Depending  on  the  orientation of  the old word  (horizontal  or  vertical),  the
new word is attached correspondingly (vertical or horizontal). 
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fits¿[oldω_, new_, combi_] :=
Module[{wt, cellsNeeded, lettersNeeded, occupiedCells, h1, wt1},
(* was old word aligned horizontally or vertically? *)
wt = oldω[[2]] === "h"; wt1 = If[wt, "v", "h"];
(* which cells with which letters are needed *)
 If[wt, h1 = oldω[[1, combi[[1]], 1]] (* Starting point *);
   cellsNeeded = Table[h1 + {0, j},
         {j, combi[[2]] - 1, -(Length[new] - combi[[2]]), -1}],
     (* oldw[[2]] === "v" *)
   h1 = oldω[[1, combi[[1]], 1]];
   cellsNeeded = Table[{j, 0} + h1,
         {j, -combi[[2]] + 1, Length[new] - combi[[2]]}]; ];
  (* test if the new word would have any letters in cells
     that are already occupied or are closed *)
   yesNo =
   And[Intersection[{First[cellsNeeded]}, startClosed[wt1]] === {},
       Intersection[{Last[cellsNeeded]}, endClosed[wt1]] === {},
       Intersection[cellsNeeded, closed[wt1]] === {},
       (* could use hashing instead of list operations *)
       occupiedCells = Cases[placed, Evaluate[Alternatives @@ ({#, _}& /@ 
                                                           cellsNeeded)]];
      (* check if the letters fits also into other already
         placed words if they overlap *)
       lettersNeeded = MapThread[List, {cellsNeeded, new}];
       Complement[occupiedCells, lettersNeeded] === {}
       (* Here, additional conditions on the directions
          of growth and restrictions on the domain
          could be implemented. *)];

{yesNo, If[yesNo, {lettersNeeded, occupiedCells}, Null]}]

If it is possible to attach new to oldw, fits¿ produces a list of the form {True, {lettersNeeded,occupiedCells}},
and if it is not possible, it gives {False, Null}. (Because fits¿ does not only give True or False as a result,
we do not let it end with Q, but rather with ¿.) Here, two places exist where the new word fits the current ω[1]. 

ω[1]

fits¿[ω[1], {"$", "A", "b", "o", "r", "t", "e", "d"}, {1, 2}]

fits¿[ω[1], {"$", "A", "b", "o", "r", "t", "e", "d"}, {2, 3}]

Next, we repeatedly apply fits¿ to the results of attach until some suitable fit is found (if any exists). This process
is  accomplished  with  combiSearch.  The  arguments  for  combiSearch  (except  for  the  third  one,  which  is  not
needed here) are the same as those for fits¿. 

combiSearch[oldω_, new_] :=
Module[{combinations, tempData, i},
combinations = attach[Last /@ oldω[[1]], new];
(* try other combination to fit new *)
If[combinations =!= {},
For[i = 1, (* until it fits *)
     ((i <= Length[combinations]) &&
     !(tempData = fits¿[oldω, new, combinations[[i]]])[[1]]),
     i = i + 1,
     Null];
If[tempData[[1]] === True,
    (* the new cells to be occupied and their content *)
   {tempData[[2, 1]], tempData[[2, 2]], oldω[[2]]}, $Failed],
    (* impossible to continue *) $Failed]]
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We again look at the example above. The first fit is returned in the form {lettersNeeded, occupiedCells}. 

combiSearch[ω[1], {"$", "A", "b", "o", "r", "t", "e", "d"}]

If no fit can be found, for example, if oldω and new do not have any common letters (or if all cells are already occu-
pied), combiSearch returns $Failed. 

combiSearch[ω[1], {"T", "Z", "u", "i"}]

Once we have found a possible configuration for attaching a word, we now have to carry out the attachment; that is, the
letters of the new word have to be put into the list placed,  and the lists closed["h"], closed["v"],  start
Closed["h"],  startClosed["v"],  endClosed["h"],  and  endClosed["h"]  have  to  be  updated.  In
addition,  a  new definition  is  needed for  v,  and  the  attachment cell  along  with  its  immediate neighbors  (important  for
efficiency) have to be removed from the list of allowable attachment points for previously placed words. To avoid the
tiresome process of looking through all relevant words, this is done by attachAndUpdate by immediately changing
the  definition  of  all  ws  via  DownValues[ω]  =  DeleteCases[DownValues[ω],  Evaluate[remove],
{4}].
The arguments of attachAndUpdate are simply the values produced by combiSearch. 

attachAndUpdate[{newLetters_, common_, oldHOrV_}] :=
Module[{remove, letterCells},
 (* all placed letters *)
 placed = Join[placed, Complement[newLetters, common]];
 letterCells = First /@ newLetters;
(* keep all global lists updated *)
 If[oldHOrV === "h",
    startClosed["h"] =
     Union[startClosed["h"], # + {1, 0}& /@ letterCells];
   endClosed["h"] =
    Union[endClosed["h"], # + {-1, 0}& /@ letterCells];
   closed["h"] = Union[closed["h"],
            Union[{First[letterCells] + {0, 1}},
                  {Last[letterCells] + {0, -1}}]];
   closed["v"] = Union[closed["v"],
    Union[{First[letterCells] + {0, 1}}, {Last[letterCells] + {0, -1}},
          {-1, 0} + #& /@ letterCells, {+1, 0} + #& /@ letterCells]],
    (* oldHOrV === "v" *)
   startClosed["v"] = Union[startClosed["v"], # + {0, -1}& /@ letterCells];
   endClosed["v"] = Union[endClosed["v"], # + {0, 1}& /@ letterCells];
   closed["v"] = Union[closed["v"],
        Union[{First[letterCells] + {-1, 0}}, {Last[letterCells] + {1, 0}}]
   closed["h"] = Union[closed["h"],
        Union[{First[letterCells] + {-1, 0}}, {Last[letterCells] + {1, 0}},
              {0, 1} + #& /@ letterCells, {0, -1} + #& /@ letterCells]]];
(* look at DownValues of v and manipulate them directly *)
ω[Length[DownValues[ω]] + 1] = {newLetters, If[oldHOrV === "h", "v", "h"]};
(* no longer possible positions to join a word *)
remove = Alternatives @@ ({#, _}& /@
      Join[#, {0, 1} + #& /@ #, {0, -1} + #& /@ #,
              {1, 0} + #& /@ #, {-1, 0} + #& /@ #]&[First /@ common]);
(* the new DownValues for v *)
DownValues[ω] = DeleteCases[DownValues[ω],
                   Evaluate[remove], {4}]; ]

We now look at how the values of the global quantities are modified. We start the process anew. 

initialization[{{"A", "b", "o", "r", "t"}, "h"}];
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Here, the new word $Aborted is attached. 

combiSearch[ω[1], {"$", "A", "b", "o", "r", "t", "e", "d"}]

attachAndUpdate[%]

Now, we use placed. 

placed

These are the positions where further words can be attached. 

??ω

In the following cells, no letter can ever be placed. 

??closed

??startClosed

??endClosed

When combiSearch cannot find a fit for a given first argument, the first argument has to be changed and the search
repeated. This process is done by the function next. Its argument is just the word new, which is to be attached. If a fit
is found, it returns the result of the associated combiSearch call, and if no fit can be found, it returns $Failed. 

next[newOne_] :=
Module[{maxi, res, j},
 (* how long to try *) maxi = Length[DownValues[ω]];
 For[j = 1, (* try until it fits *)
     j <= maxi && ((res = combiSearch[ω[j], newOne]) === $Failed),
     j = j + 1,
     Null]; (* or give up if it is impossible *)
           If[res =!= $Failed, res, $Failed]]

We demonstrate how it works. 

initialization[{{"A", "b", "o", "r", "t"}, "h"}];

next[{"$", "A", "b", "o", "r", "t", "e", "d"}]

We are almost finished with our implementation of the crossword puzzle. The following function autoSearch goes
through a given collection of words words (in the form of a list of their letters) until it finds one that can be attached to
the previously placed words. If none is found, it gives $Failed. 

autoSearch :=
Module[{counter = 0, res},
For[(* what to fit *)
     newOne = words[[1]],
     If[counter > Length[words] - 1, False,
        (res = next[newOne]) === $Failed],
     (* shift to get new constellation *)
     words = RotateLeft[words];
     newOne = words[[1]];
     counter = counter + 1,
     Null]; res]

We  are  finally  ready  to  define  crossWordConstruction.  This  function  has  three  arguments:  the  initial  word
startString and its orientation, the list workStrings of the words to be used, and the number num of words to be attached
from  workStrings.  The  message  crossWordConstruction::cpafw  appears  when  it  is  no  longer  possible  to
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attach  words.  In  crossWordConstruction,  we  test  the  arguments  for  correctness,  and  keep  the  list  words
updated. 

crossWordConstruction::cpafw =
"Cannot place any further words.";

CrossWordConstruction[startString:{_String, ("h" | "v")},
                      workStrings_?(VectorQ[#, (Head[#] === String)&]&),
                      num_Integer?(# > 1&)] :=
Module[{res},
 (* prepare workstring as single characters *)
 words = Characters /@ workStrings;
(* start - initialization of all variables *)
 initialization[{Characters[startString[[1]]], startString[[2]]}];
(* num times attach new word *)
 Do[res = autoSearch;
    If[res === $Failed,
          Message[crossWordConstruction::cpafw];
          (* emergency exit -- could be refined *) Abort[]; Null,
          attachAndUpdate[res];
          words = Drop[words, 1]], {num}]] /; Length[workStrings] >= num

We now try out this code using the Mathematica built-in commands as our supply of words. 

reservoir = Names["System`*"];

Here, we connect the first six built-in Mathematica commands. 

CrossWordConstruction[{reservoir[[1]], "h"}, Take[reservoir, {2, 100}], 5];

Now, here are the contents of placed. 

placed

Currently, exactly six values for w exist.

??ω

Clear[ω]

We do not look at the closed lists because of their sizes. 

Length /@ {closed["h"], closed["v"],
           startClosed["h"], startClosed["v"],
           endClosed["h"], endClosed["v"]}

In the following case,  it  is  not  possible to  attach the third element of the second argument to already-connected letter
chains.  (We  could  implement  a  more  graceful  ending,  but  because  we  are  mainly  interested  in  the  case  of  possible
continuation, the Abort[] will do the job.)

CrossWordConstruction[{"Aaab", "h"}, {"Bbbc", "Cccc", "Dddd"}, 3]

But as many attachments as possible were made. 

placed

Because placed is a list of coordinates of letters, it is not particularly convenient to read. Thus, we print the associated
words as actual words written horizontally or vertically. The command TableForm is well suited for this formatting.
It saves space and is much faster and more editable than a corresponding graphics approach like this one. 
Function[placed, Show[Graphics[{
Rectangle[# - {0.46, 0.46}, # + {0.46, 0.46}]& /@
 Complement[Flatten[Table[{, }, Evaluate[
   Sequence @@ MapThread[Flatten[List[##]]&, {{, },
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      {-1, 1} + #& /@ ({Min[#], Max[#]}& /@ Transpose[First /@
     placed])}]]], 1], First /@ placed], Text[StyleForm[
       #1, FontFamily ->"Courier", FontSize -> 12], #2]& @@ #& /@ 
        Reverse /@ placed}], AspectRatio -> Automatic, Axes -> False.
                             PlotRange -> All]][placed]

The  following  function  display  accomplishes  what  we  want.  The  auxiliary  function  iter  finds  the  region
(including  its  boundary)  containing  all  of  the  cells  used.  If  a  cell  is  occupied,  the  function  M  returns  the  letter  in  it;
otherwise,  M  returns  " ".  After  building  a  table  of  letters  or  " ",  we  use  TableForm  (with  the  option  setting
TableSpacing -> {0, 0}) to display the crossed words.

display :=
Module[{iter, M, i, j},
(* the iterator for the dimensions *)
iter = Reverse[MapAt[Append[#, -1]&,
  MapThread[Flatten[List[##]]&, {{j, i},
    MapAt[Reverse, {-1, 1} + #& /@ ({Min[#], Max[#]}& /@
      Transpose[First /@ placed]), {2}]}], {2}]];
(* make definitions for M *)
Apply[Set[M[#1], #2]&, placed, {1}];
(* the non letter cells *)
M[x_] = " ";
TableForm[(* it is just a Table in TableForm *)
  Table[M[{j, i}], Evaluate[Sequence @@ iter]], 
        TableSpacing -> {0, 0}]]

We can finally look at placed graphically. 

display

To conclude this subsection, we give a somewhat larger example where the first 50 built-in names are to be connected. 

CrossWordConstruction[{reservoir[[1]], "h"},
                      Take[reservoir, {2, 200}], 49]; // Timing

Here, the current arrangement of letters in placed is shown.

display

Here is one more example using the Mathematica commands at the end of the alphabet. 

CrossWordConstruction[{reservoir[[-1]], "v"},
      Reverse[Take[reservoir, {-200, -2}]], 49]; // Timing

display

The next example uses the words from the beginning of this Subsection.

tWords = 
{"Salzmann", "Tenneberg", "Rennsteig", "Gotha", "Walterhausen",
 "Eisbein", "Bratwurst", "Thuringia", "Weimar", "Eisenach",
 "Hörselberg", "Friedrichroda", "Dumplings", "Erfurt", "Bach",
 "Germany", "Forest", "Autobahn", "Wartburg", "Inselsberg",
 "Schiller"};

CrossWordConstruction[{tWords[[-1]], "v"}, Rest[tWords], 20]; 
display

By using the list of words tWords in different orders, we can get many different word arrangements.
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Make Input

(* generate a random permutation of a list  *)
randomPermutation[ _List] :=
Module[{n = Length[ ], l = Range[Length[ ]], tmp1, tmp2, j},
    Do[(* randomly swap elements *)
       tmp1 = l[[i]]; j = Random[Integer, {i, n}]; tmp2 = l[[j]];
       l[[i]] = tmp2; l[[j]] = tmp1, {i, Length[l]}]; [[l]]]
       
Do[(* a random permutation of the list tWords *)
   reorderedtWords = randomPermutation[tWords];
   (* try making a crossword construction;  continue if it does not finish *)
   CheckAbort[CrossWordConstruction[{reorderedtWords[[-1]], "v"}, 
                         Rest[reorderedtWords], 20];
              Print @ display, Null], 
   {100}]                      

It is also possible to use all built-in Mathematica commands via 
Make Input

CrossWordConstruction[{reservoir[[-1]], "v"}, Rest[reservoir],
                      Length[Rest[reservoir]]];
display

but the computation takes longer, and the result is too large to reproduce here. 
$
M
i
n
M $ $
a M N
c i e
h n $ t
i P N w
n r u o
e e m r
N c b k
u i e L
m s r i
b i B c
e S o i e

TargetFunctions
l s s

TraditionalOrder e
c
t

S TrigExpand
$ContextPath o

o S n
w i E
S n v
p g a S

WeierstrassPPrime l l i
c e u n
i L a g

S a e t u
S e l t e l

workStrings t t C t C a
h r F h e r r

ViewPoint i i a r e i
w S n l r I a t

WeierstrassP l g e a t t y
a S o B D c a e D

WindowFloating i t r a t l C e Tra
e n S M e t e i e p

UpSetDelayed B g e ParametricPlot S
e r u q t k s s l h h Trac

TraceOriginal S S e l u h o
e t e ParametricPlot3D ViewCenter

ViewVertical a q k r n e W S S S
t c u S s V c u h t e t

TraditionalNotation k e t ParentConnect i a t r
o C n y l h l r P $Display

S n o c l u ParentDirectory n
c E m e e e r P e g S

TraceForward v p F D s L ParentForm r c S C p
i a PolynomialLCM U c o i p h a

TrigToExp l e r t a B t T c s a a n
t OutputNamePacket Raster L o e i n r M

S S a e h c r U R s o A a a
c i t Orderless k i D u s n d c x Q

S i z e m S s Overflow j t S U
TraceLevel OutputStream u t c e u e i n

t n M S t b i M o s M s r z i
OutputMathEditExpression s c o m M Parenthesize n
p i l r c t E n p o t m s

Underscript f t i R Overlaps i x t o e SchurDecompositi
i i i WindowSize N t p e s b i n a
o c p g w S o M u o C i i Permutations l

T T n F l Q s PageHeight a t n a t u u s l
T a $MachineName S s o i E n a p i e r i s C

$ProcessID S g b Unprotect P r e q S S I t I o n l o M P L P
x S y S l r a m r NumericFunction InputToInputForm NumericQ

T t S u n e $Messages ToUpperCase c s a l g t o d u i M n
i J u p t t A e k l e n e InterpolatingPolynomial F k La

$OutputForms u p e a D l TableDirections e c a g x c e k G r P
e s e r x e $MinNumber S t R t t r InterpolationPoints e e o a G
C t r T s L l g TotalWidth R $Failed a u R a d i B n InputStr

$TracePostAction i s r c e a n y e t R b r e l U IntervalUnion o e t t e
n f c i r n y N m ThreeJSymbol p P u a l e a s n x r E e a

T s i r g i g e o e P e TeXSave r w e d i R I e a Interact
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T s i r g i g e o e P e TeXSave r w e d i R I e a Interact
$TopDirectory t c i RepeatedString a SignPadding E a P n M P InverseFunction Unset d n e

L r a p e t h e t t a n t r P e TreeForm g t t e O s Tr
$TracePreAction a t t d b s t P TraceAbove v e i P a d Q o u R F e Sound b E

w i i B u reservoir e l t i d n l c i J u t M r e I F u r C j q
$SyntaxHandler n o o c o r o SixJSymbol r NotebookAutoSave a LinkOpen r l p Inverse Minu

r ReturnExpressionPacket n t t o u t e m r r c x l d o l o l c a
C S T StringByteCount l R t d t t I LinkCreate n G l EvaluationCel
a SelectedNotebook RuleDelayed t o m l a I a i e t c n t r a o
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ReturnInputFormPacket o e T MathItalics OpenAppend R o g L v D s r M n p i v
o o l c i n e P v t MessageName e T a LogicalExpand h o EllipticTheta

ReplaceRepeated l P y t c t I e c i t r c r t x T i n r
u y a O n LinkReadHeld n MatrixExp t t t s o PartitionsQ F o c EnterTextPa

T c n p w o R o s r t s MaximumSize m c o S r k s D T
ReplaceHeldPart o e n m a n p e I Messages n o c J p e InterpretTemplate S $ M o
x E m r V i t ListPlot3D r n G g n L e a o S s a c n D o EvaluatePac

$PathnameSeparator x i W a a i l v t MathieuS l i R c s c c t $Off l c p o
B ReplaceList a i l l o LowerCaseQ a e m Overhang e o i a E D e i I S v h A s D

$PreferencesDirectory r l d u G n t l r m k d b t n Forward o o m T F e o t ExitDi
u RungeKutta MathieuCharacteristicA I p MathieuSPrime E u i i i u FontName i C S s

$PrePrint F o h s D l o I n r R r c D o E HeldPart b g x n o Generic p
d SeriesData d $ s Notation n t e MessageList r GetContext D l Gradient d n r l

$PasswordFile c I I P t e t g o p FontSize y S F M s E E i a
n ReplacePart LinkOptions I r e r a Multinomial GraphicsArray f I i o i t E x u p y
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$MaxRootDegree ListContourPlot u Split o c o r E E x E D Infinity u a m t e n r a r
x T t s l t n i E x x t x F HermiteH t n m Contours n d G com

$ ListDensityPlot SameQ i a i B E z x G p placed t a n i i R p h m H s a a k
M S R B t o t o o x e p r o o n e c HoldAll ContourShading a i b m e C
e WhiteSpace ListInterpolation r FunctionExpand I a n n E d r t m n e n a r s o l m t
s $ r e x i o c n p e e x e Union GridBox v a CoshIntegral C
s TextRendering m FrontEndTokenExecute t h n n p d a r n C R C e c h O
a r p a P S o g a N e i t t o G l i Larger Row Depth t CreateDirectory p
g a t n MachineNumberQ k P u E g c S F n C C a t C l a a E e h r e
e c S B n d a m HermiteNormalForm x r s t u e DefaultColor o u d r l r e FaceForm combina
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c $Context r L a e a i i S R S D c R R n T t e l MatrixForm C s

$LicenseExpirationDate s e l s NumberForm o NotebookDefault a NotebookPrint NHoldRest m S e o LinkRe
$ e f l m n i t l i t l n t W u r o p LaserPrint m N N
H t R R R i NotebookDelete a a a r e Q NonPositive a r p o o N P
o NotebookFind S n e C l TextForm t a Q u R N e c N O O i lengthWords
m o a t g NumberSigns l o t e e p NonNegative R $ Lexicographic e C e n e
e TotalHeight l a R R e n t a n j $IgnoreEOF R B t a e e R t d e 0 t o b C u
D S D t NumberPadding a y d e i i o i d R d c e R e e n F e m o o d
i u i e n p R r e i s l g u e L NotebookClose b r T 1 m o n o U

TraditionalForm g L T l TraceDepth d t G TextStyle h n n i o d r e a o e e u k s I
e i a h a n S i a t d t s t d a l o d m UpSet A t n S
c t b r c WindowWidth o m i t R L s B k Q p a p a v

StripWrapperBoxes e o e o r n m WindowElements e i e l C o t p n SetA
o l u A $CommandLine a g TableHeadings H o o SqrtBox i l t r
r $ $ g l n B u t o c n a v y s s
y TextParagraph l WynnDegree WeierstrassHalfPeriods c s S l k v r Removed Tens
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y TextParagraph l WynnDegree WeierstrassHalfPeriods c s S l k v r Removed Tens
e r x Thickness u d F e S y M
m i b $ o r u ProductLog
p n ResetDirectory l
o t u e m f PromptForm
r F p f a T i
a o $LinkSupported a c o S T p T
r r r u e Rationalize
y m $MaxLicenseProcesses l G a r H y x
P s c t r d i e t
r $MaxMachineNumber F a i n l A
e i o p c g d l
f $MachineType n h a T E $PipeSuppo
i t t i l o x g
x B c s S p n

$MaxPrecision s t r $NumberMark
x r e e

$LicenseProcesses n
a s $Notebooks

$OperatingSystem i
o

$SuppressInputFormHeads

By using the command names from the packages instead of the built-in names, we could make much bigger crossword
puzzles. First, many more names are available, and second, they are, on average, longer than the built-in names. 

Make Input

reservoir = Select[Complement[#2, #1#], StringLength[#] > 1&]&[
 Names["*"], Needs /@  (* all function names after package loading *)
  {"Algebra`Master`", "Calculus`Master`", "DiscreteMath`Master`", 
   "Geometry`Master`", "Graphics`Master`", "LinearAlgebra`Master`", 
   "Miscellaneous`Master`", "NumberTheory`Master`", "NumericalMath`Master`",  
   "Statistics`Master`", "Utilities`Master`", "Utilities`Master`"};
  (* all function names before package loading *)
  Names["*"]];
  
CrossWordConstruction[{reservoir[[-1]], "v"}, Rest[reservoir],
                      Length[Rest[reservoir]]];
display

E
x R
t A e
r s g

D e y r
r m m e
o e p R s
p V t e s
N a o g i

E o l t I r o
l n u i n e n

M l N e c c s R S LeastS
e D i u D C l s e t

S a i p m i E o u i p a MostSig
i n s s e s s v d o o n
n D p o r t t a e n r d VarianceRatioCI

C g i e i i r i r C R t a n
o l f r d c i m i o e V r VarianceRatioTe

B n e f s Q C b a a n p a d e
e f P e i u o u t n s o l i MemoryConserve
s i r r o a l t e c t r u z v
t d P e e n r u i D e a ButcherTreeSimplify a
F e o C d n M t m o N O M n s t l

B C i C n B i h i c a i ContinuedFractionForm OrderStarSubPlots N
i S o t o c e s a c e t l u t M f e
n p n C r e t s r t CurveCountLimit WorldCountries a w
o l v o r I a o a i I i s r i a n WorldGrid t
m i B e e e n D n c o x PeriodicForm x J n C r D o H
i n o x f l t i D t n n Uranium C o SphericalDistance
a e o H f a e s i e C N M s h n m s h r
l F l u i t r t s r I PrimeQMessages t r s R W h a Stib

M D u e l c i v r t i T u g J M o E t P SquareMatrixQ z
i N i n a l i o a i r s a PollardPTest n NResidue a m f Gallon s i r p u T F

VarianceTest s c n A e n l b i t b r e r j a l P n o R t g p 7 i o f
i w t t S r n M T u b i l R CompositeBezier o o t a l t t o e h 6 n C l
M t r i e e M t a a t ButcherSimplify n i Abbreviation V t r t R t e a
a o i WorldGraphics t b i t d M c F o c 3 t Tuesday F BohrMagnet
x n b n e l r l o i SymbolicTable W a M S f a V c t u y l t 5
A C u c WorldGridBehind o e o Dysprosium l m AtomicWeight e n Asharp2 s
p o t t i x n W P r r s m r a c o S c l S
p t i m o r g l e f AtomicMassUnit R r h t B Asharp
r e WorldGridStyle OrderStarSymbolSize r i C d S S n a 2 o a F Gallium l a

S o s n t p ColumnJoin F t l t c R r s i p o C u d
t x W WorldRange S e d t n r a S a e ArcSecond F p e LegendSize Chlorin
u i e r IntervalBisection D H s a t p t O s i b l r w

E d m i L M M x d LambertAzimuthal e Cflat3 y P LegendLabelSpace P
x e a g WorldDatabase e o ByteOrder t a a e e i G R S B u A l r 3 u Diopte
p n t h m WorldPlot h f a d n n n r e Hectare r f d r D m I s

Q e t i t b c y S T S ElectronCharge a v a o p l y S N s newLinea
u c ThomsonCrossSection u b l S o o r y D y S Month l w l a B I p u c s t

MovingMedian t B C n r r d S Gadolinium B G i L p l LegendTextDirection Lumerg c OliveD
d e u I W Tungsten DayOfWeek t l e n S Lambert F f v i i u F M 0 o o n b i r c o

LinearFilter d t e C G n y Helium d y k s l i g n t Bflat4 N e w s R S I e b ListAndCu
a VacuumPermittivity s L G u B B B d m Mercator X h a s h S i c u d A1 n a a c n r e b a
t a h g l h u s m l e l B b r S a t ListShadowPlot3D m i f M h n h s O d e h A

HypergeometricDistribution l e M h i a t h u c u a Krypton s Bsharp7 G o o n o i b u f a e g l c f R d e l
c u r i t R ConvertTemperature q e r l D a p r n w r s e m i d d e a r E a R d Li
R e P c s y d p t r L u L Simple S Nobelium d 3 a A p r n d r f i d d a r z

KurtosisExcess l r E K d r 6 i p B i e i t h z o C LightCadmiumRed l O e e o M l b g i d o Epha
p ProtonMass e b i u 7 e g r g y SeaGreenDark w o n r a f A S TransitiveReduction r
r t s h l e c m M z h e h l F p n e P b C LimeGreen y F b h n d s s u H i

W e B c a v r a P O o ListPlotVectorField e C Moccasin o o TranslateVertices s S n
RungeKuttaOrderConditions u o TridiagonalSolve e e e u o p h s l r W PolarMap o c o p m B C

r e t p p n r r b GreenishUmber u N r PieStyle n i i g e l e EulerEquations C r
l n c e 1 AppendColumns i i r XShadow t V f r D n Spline s u M m o i

$RungeKuttaMethod t h a t u DeepMadderLake i J p m MidnightBlue a e t t Torus Cartesian Thistle m
B a e D ZShadowPosition e s r e a SkyBlue o o o F r Y I h e M l h o s

CovarianceMatrixDetRatio t r f C e d S B ToDMS r c e O n l w r k Xenon Shekel Carrot a N NumericPart o
r i P CholeskyDecomposition t R J u i F o F s x e F6 e a O l d r M x i n e e e Un
d o h s a h t GreatDodecahedron r b o Y i t o r m r l i S Mega i M p g a x N t

Pennyweight t a M E N R i w u k S e i Curie d D7 D u B e a o g h i x m a l Henry t UseApart An
r a 2 r AgeOfUniverse P p U l DeepOchre q a r l e o e r l n TwoColoring i u x i P e N C n x

ListWaveform p a l c d i m e t r u n i l G d e i u g r i m m i c e s e o i t N ZeroV

66 Printed from THE MATHEMATICA GUIDEBOOKS

©  2004, 2005   Springer Science+Business Media, Inc.



ListWaveform p a l c d i m e t r u n i l G d e i u g r i m m i c e s e o i t N ZeroV
p Int32 n a k V e Cubic i e D4 e FourierExpSeriesCoefficient m a A m a r t x m t P e

MultivariatePearsonSkewness2 E M t e E i L e DeepSkyBlue n e r w e c u r e u l n u t m N t p S a x Zz
l a 7 l q o a World s c t T T e a r O CoordinateSystem M t m i u e K o c r t T L

B e j u l b J C y e r h n h o v t V a i Shot t i S s a t S r Lin
B e ProtonMagneticMoment i GeneralizedBarChart o C r Didot e p e C R P e t c p n a g u i l i u a t

ParameterTable s t r E r t l c e o m g m HeadCenter D6 o S R Farad r c h a T t h b t e t b n e
s s PythagoreanMajor i e s ErrorListPlot f n i S s r a o b p a R n t t h a n a i b s i Bias s Arr

PartialSumOfSquares e o E n c f b f s n e o ShowLabeledGraph n a d h e i i n b o o e o o e f
e l PlanckConstant s t W l DoubleHelix i t a Orange n e l e l e d n o S ExponentialGeneratingFunctionCon

OutputControl Y G r t a e a a c a n i B x C c t r o d m p C g n e s r o
J Z F t e n GreatIcosahedron SignaturePermutation o a P i m o V a Foot A7 g GraphComplement
Z e C B Sinusoidal h K i g k 0 M B e t s i c n g a c T m e n v z T B F n L
e r o u c M u n u M M P S P a a n K G o s o r a a S r n e EulerianCycle Equivalences

ProtonComptonWavelength a r i l DeepCobaltViolet r t SpringEmbedding M t n t l b u t i r r e r o o 3 c H
o s a p c o s t u a d v l e e r S l l r a a i P l b i n Weber e i d r GrayCode t

PearsonSkewness2 u u h TransformGraphics i e e E SimplifyKroneckerDelta k n Shadow e s c g D EulerianQ o e
c t e s u e G l x x a 2 p e t l w LabeledTreeToCode m T l Abohm GridGr
h e r TurquoiseMedium P r B p c YellowOchre h U S Omer u t s r y o B o C p 6 C

OpenReadBinary r G h s T S l e l l A i b M UnionSet r r O e ExpandGraph L RSolve l o
P N a ParameterQ u h o e u o TransitiveClosure c d e d S BarStyle 4 e s u Bar n Cube C m
r u m r AtomicNumber o t n e d C g g a t J S i r e u d t Mil b v i t o p M
i m m m q w e a C Z T D t $ h o Quart e FromInversionVector j Pade HeapSort e m o

SimplexMedian b a B K F K u LightGoldenrod RemoveSelfLoops b e Q r o u n l x c G Span
c e MuonMass a e a C o e d l r r c S i d e s c M C C i I l C c S D Peru H RegularQ o e
i r h l r y f i g LightSalmon o o a p n ExponentialGeneratingFunction t Deci d Lux l a s n
p C C C a i m s l s e S e r L i g h e G h t e k 1 n r g 3 c m T q a BTU l a p i t

ShapeReport C l TurquoisePale n h S i d o e s F u s d e t a h Bipolar u m r AllPairsShortestP
l r n e a p m u r t d a S MintCream a n r F S s P N G VariationalD G l b e e e o V K i
V t t r Fsharp6 m 7 V d h G a i l o o a a u r e r Cerulean t ReduceElement ISolve

SpatialMedian i i t s ListContourPlot3D t H i r l N r m NaN FerrersDiagram t e c e y r n
l C f n i L S P T o w w a v a o d e m u t b p a r y SemialgebraicComponents P s G
u e i u C f i u o Bsharp2 l P A m FourierSinTransform Lines h c FromCycles Q u 2 o i L o r

StudentTPValue r c e h i s n i a e Julian S l k e l t n b a r D e 5 6 e A S M O P m Acre l Index
t a d i c t d n n t o i c t K B P y G e l O o s D C SymmetricReduction Pphi e f y n e

OutputList F S a O EarthRadius R t m h h i r d M r N r F f z LogPlot e p p n n w a s t n t n
f e r q t r y E l e 3 a m TransposeTableau O ArgShade m o q RightAssociates Cycle A o e
i P a u e d C Cflat6 d D t i k q j w r e m f a p n GraphProduct a e r P T Runs m g Exp
c o c a P e S Y W t P A i d i u e o n b P c a N i d e A D C L i o h s i e 5

C a i t r r r FootCandle X a r o t A e c P o GeneratingFunctionConstants UnitQuaternionQ Even o a r E
o t n i e i S l t v S S l s n L A q t u n M r r i n m c j r s k l s c l Q
v NeutronComptonWavelength p e e i l u r L O m o i b GraphDifference C k AllPoints Edges Xxi Plum Ex
a N n I e a r r f a a n C Stellate SimplifyErf u n n e 3 o s T 2 m I a o a 6

FitCurvatureTable r R b o p c i a B h C m l D t s g r S Pentagon UnitQuaternions M e n t w t n O
i x H a i r MediumOrchid u i o a FourierSample a T O q P s n r F m n f e e e e
a A t Technetium d u m n m r u l r 7 e r t Barn f u e e FindCycle a Khaki CountRoots r r w T
n N P a i m LightViridian m o i c M a i N e T a r u R c T e o M n A
c O Strontium M u u t TransposePartition o u Tesla FromAdjacencyLists Cubit ElementToPolynomial
e V i O e s OrchidMedium U s e i c g n m s b e u o d e C r d p d o g
M A m f a M T L m B o r e s b l N t g ExactRandomGraph l D N L R n e
a TakeWhile V F n F e G LightSteelBlue b FourierCosTransform B e White u Barrel Q S n ExtensionDegree Q b
t a a s M s a f t k f m e r e y r a m t a G F H N A x v u g r
r b Township h i h n l S a V y l CoordinatesFromCartesian C Olive u b i p o U u o B Contract R E e E RealV
i l o CalendarChange n i B a n n a t y f x e o h l s l u i 4 h y FromElementCode
x TemperedMinor r o r I t a i o l C t C A C C B4 r T N s c I Brown Q EdgeColoring B P c i o t d 0 g O
O i p r p 2 G u l u a 0 h r o o a B t a e l n Tera O Q A M a Giga l l t O a S C MethodGF

AffineRationalize 4 5 M R r m e e s TriangularSurfacePlot N e v r f P n ThomsonBer n i FieldInd Hull m r
S a P a o e t D c i o d a E r s b w u s o e DotProduct d i y a r c s n d N c i Cad
a H AstronomicalUnit e R e a R n n G l d C i o o m N Albers a n i A c S Are Q t o c q R L m
m a i t g a n LegendShadow ArcLengthFactor b e u P G4 r y q B d o u y U FieldIrreducible Q

E p t AvogadroConstant L d p e t A6 a i e a n k e x t l r t M u A a d n b HSolve 0 r m s e g f u
s D l D n s n e i a q y g s r M D FirstLexicographicTableau c E n s e p v s Q h t Ca
t i e i s K e LegendTextOffset u h t a i l O T o t p t k t k d e e Oak GF Quaternion t G B t
i s M VacuumPermeability s i h i a t B3 p m o f a Hand K h Filled A o t g c t r R i l r G C i e

P m p e g u l e g t V A o m R B D G w C b a s S P o S PrimaryLeftAssociate AbsIJK C C1 D p r
e a e a ToPeriodicForm o F h LegendSpacing a o a r o l s H u o n i t o a e h y l b o D a n
r t r n n g Bflat1 r t M r t VoronoiDiagram e s i b w s m i r c FindSet G AdjustedSignIJK Inversi
c e s a WorldBackground l s t LightCoral i a E V 3 y p a e d s e D p c p k 4 Q i E I I t U t o
e d i l a a A i m t n t g a B o u DeleteFromTableau h AddVertex J FromQuaternion
n V o Zirconium Roentgen r c Pondus TravelingSalesmanBounds i C t y e l i M D 0 t p K B0 C a t Q
t a n W 3 V c a n i M o s u 1 t i a y s C a s a a G A h T i FunctionOfCode
a r R M TroyOunce i M l y x e n h e A2 B t Strings c DiagramPlot m k s P r s Q r Back p t Q E

S g i e u i Sulfur i S C 2 d M e s l r i r Slug t o i s e ChromaticNumber o I I G P G
i e a p WorldToGraphics g S i n t a D i a l B i o RandomHeap e y G l o R l d a a e n FunctionOfCoeff
g P n o n Bsharp0 MediumVioletRed u t l a c w n m s DerangementQ e y R t Q S n t d l
n o c r M N t l i t k m m r TravelingSalesman a a V a ChangeEdges c e FieldSize Yy
e i CertificateM a RSquared ListSurfaceOfRevolution i C B O B P t p DeleteCycle d r a c r n n R
d n i g c n p n s u x h l c PathConditionGraph 0 r Ghost E InequalitySolve e Cone
ButcherPlotLabel n N FluidOunce r L A MediumBlue A3 a u h o n S DeleteEdge e x i a e a S T m a
y l e e e P i i s F Y H D r SeaGreen PermutationGroupQ i n Cofactor IrreduciblePolynomial

C t DeuteronMagneticMoment g t LineStyles C e t e m Y c E W e n E Q C r m E a R
o e S n i d r i g h a f l a r I C G C ParameterRanges a BreadthFirstTraversal o Helix m l l o
v WorldProjection c y M G n G t t t l d t n y e y a V M r s g e a l Element m e e E o
a a i M m a Cflat2 r i h EconomizedRationalApproximation Paraboloidal Meter t N I N W T p Star t m x t
r D D G D l u o i g l s e n m w i i n d i k a l l W C l DistinctPermutations r r e t I

ChineseRemainderTheorem m u n a e PaleVioletRed u a W e n S S r InduceSubgraph n h c h y h n X y i n e n
o a s s n s M e m e Tantalum n r m C n h s d HeadLength u t m t r g P i S DeleteVertex R c t n t
v n i i e c e n t 3 A Polyhedra E R h R i a e o b i IntegerFunctions F e d u t n D i P C d e
a c g g r r CertificateK o f C l r e a e t t Truncate R r s t m u r e b Wheat t u g o o e r
r e n n a e h PrintFlag PlotGradientField r d r d e e LastLexicographicTableau Minim n s CostOfPath l d d v
i M e M l t o P P a e G o D t n e t o t c u c e 5 l t Dyne Grap
a L d a i e d V Eflat5 s C Y r r e r NVariationalBound s InitializeUnionFind t t e t E1 E A n C l
n E R t z U a u 2 PieLineStyle B e e o t s c S i a M d E E Bridges Box Disc
c e r e n M l t u n t e a p u FourierTransform P T HLSColor ND e o t a R g D u q g s m
e g i d i SumOfSquaresRepresentations PermanentGreen r L s P a o R R e u l n i t a e u l u S R o Bit D1 E
M r x V f l n a e n u i FourierCosSeriesCoefficient InverseZTransform e Torr n CartesianProduct a D i c
a e a o t e m T TrialDivisionLimit S Natrium u m r h n a g i b c S n i d o f r v o d i Blue r c
t s r r i S p a u V p y m InverseFourierSinTransform v d Curves R e t i x o n e i a w D H a r e e
r s i m v i l b T m i r c n u e G l s Isomorphism N m n e a l BipartiteMatchin
i a D a d e l OrderStarZeros LogLinearListPlot P M t Ivory r a T t o p MakeTree S n e l r e n t t
x n i r e R e D l n i CoordinatesToCartesian s a Frames a Triangle v r c q n L a a P g e Kr
M c s i d a ChiSquarePValue e g LogListPlot c a t i p G r t o S e y e t u c l t r e e d i
L e t a P n g Dflat0 G o n A OrchidDark Cylindrical o h r m Sienna o Q IdenticalQ e a e y P a m c
E r t V g BestFitParameters R r w l a D o Knot Lead V n r S v r C m Vv l c e Li

i e a e e e DeuteronMass u DifferentialInvariants V p Parameters t R p i e l b e GraphUnion t
b M l Geepound e r m a k r 1 Feet C h r LabelPoints T a d r 5 n t y
u e u s M n D LogGridMinor T L k L R c y t M O n c S y Hofstadter Radius
t a e T e M i U n k $FourierOverallConstant EllipticCylindrical d t I S P p s i R r Reyn
i n Hogshead Median F u G r g l g w a o i c l d o r HypergeometricF o Q e
o D m i d g a MediumPurple q e i e ScaleFactors n FirstIntegrals L m u e e e l s e o P R a R
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v u e m u n t T LogLinearPlot d e d e i LinearLogPlot U c a t i i g n e e i d i n
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m EqualVariances a r t Tellurium 0 Single B e i e e e o V u
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ConvexHullMedian t e r a e a h 1 x B f f d n p D r
n e Unnilquadium v S d a O p SphericalPlot3D t 5 i p

CovarianceMatrix l P P M c NLimit i QuarterTone i a a D s s 6
l RamanujanTauTheta u g a u p d n Fflat7 t t T t
i r r l r w RamanujanTau 3 e e i 0 1 MuonGFacto
n a a t i o a i d r n s H n
g m m i m S n f r S t Esharp4 e Scand
T e e v m i d i a t R T Fsharp7 e
S t t a e d o c t a a Fsharp0 t Midd
q e e r d e m a u r n e Recognize e
u r r i M d A n r I g Fsharp1 t S
a B C a e P r c IntegerConvert m Gsharp
r i I t a V r e T t Fsharp2 W M o l
e a T e n a a L y SignedInt8 l o Mollweide i
D s a K l y e p r T U H r E d n
i b u u v e p MagneticFluxQuantum e
s l r e e o b i l d t l e F
t e t l PolygonsOnly Gflat1 b C r a w i
r o a a e e l a r N t
i s t u s r i T I u
b i StandardizedResiduals p t p e n m Lengt
u s o s o P p r v e
t E OpenWriteBinary i o o i m a r
i x a n l n s r i
o c StudentTDistribution y g i c Median
n e Q n a

s SequentialSumOfSquares o DurbinWatsonD L
s a m t

KnownStandardDeviation j
r a
a KendallRankCorrelation

SummaryReport
u

StandardDeviationMLE LogNorma
e
E

StartingParameters
r

VarianceInflation
r

 Here a different one is shown—all names of named characters in Mathematica.
Make Input

reservoir = StringDrop[StringDrop[
 ToString[FullForm[#]], -2], 3]& /@    
  DeleteCases[Select[FromCharacterCode /@ Range[10^5],
   Characters[ToString[FullForm[#]]][[-2]] === "]"&],"]"];
  
CrossWordConstruction[{reservoir[[-1]], "v"}, Rest[reservoir],
                      Length[Rest[reservoir]]];
display

N
o
t

N D S
o C o u
t o N w c

NotSquareSuperset L TildeFullEqual o n c
q e n t R e
u L f D t S i e

SquareSubset t N o LeftVectorBar u g d
D r f T o u r N c h s
o LeftTeeVector t b C o c t S

L w I U i L l l t e V l
U C NotSucceedsTilde n C n p a e e NotSubsetEqual T e e a
p SucceedsEqual f A i t V n s R c i d c n
p o NotNestedGreaterGreater r e e g s i k l s t t
e LeftRightVector U r c r c l G g w d E o E
r k p o l s t e r h i S e q r q
R LeftArrowRightArrow V w e e o E e t s C u F u B u
i i NotTildeTilde B M c r q a A e a c u E a a a
g SucceedsSlantEqual c a i t B D u t r C p c l SmallCircle
h e ReturnIndicator a e r o i e l p
t R C o u o r u DoubleUpArrow n t e E AutoPlacehold
A MinusPlus o G r L s n b o w t I R a d q E y
r g n R N r G e l AutoOperand N o n i l s u m V
r E h N t i N o e r LeftGuillemet b G o u v g D T a p LeftDownTeeV

NotGreaterGreater L t U o o g o t a e t S l r t r i h i CircleDot F r
w r e A n t u h t E t a A Infinity e D e T I s t f l y i y Equili

o f n d L r t C q RightTeeVector r r S Continuation i G f d S v S F m
NotLeftTriangleBar t g e e I U o u S r e r u t D u t l t b Superset m e m i p E F

I S l r s n p n a u T r AutoRightMatch r o b e d e l i r a P a l t x i
n k e B s t V g l c i G w k u u l L r e g e l e LessEqual o l l y p l
d e B r T LowerLeftArrow T h l r C c b e e L r C l n l i l e U o l
i l r a i g c u i T D d LeftBracketingBar k l ShiftKey a o LeftTriangle C n S d p n e
c e a c l r t e l h Mod2Key a p C e t t s l m m i i t q C T e d
a t c k d a o n d a D u t SpadeSuit a S r T s m e a D r e u i r n D

N t o k e D LeftAngleBracket LeftDoubleBracket I t p t u e CapitalKoppa G c d a r i t i
o DownQuestion l C u l r n G a i r c e D D u DoubleStruckCapital
t r t u Divide D D ReverseDoublePrime t DoubleStruckE ControlKey T b t e t e l n a m
L b a o i n o l S e G t X a c Y u CapitalChi h a e g l o
e AscendingEllipsis L u a E t D u VerticalLine CurlyRho h l k UpEquilibrium l e i r T l E n
f e I i b m m e o b S r s t i Y X G l d S c G S i e d

P t S n g l o p r u l t u U e G h c C o S e TripleDot C o G u m
L r T EmptySet C d h e n t D b e r c CapitalOmicron i C GothicS t S c S r a t DoubleStruckK
e e r r a i t P d y o l S u k D t t c a l c h c r t DoubleStruckR p h G t s s
s c DifferentialD u p c B r S C t e t c C o G i h C p o S r i r i r c i i o h e
s e a o c i a u i u i S r k a w o G o i a i n c i c i p u k t c t i t
E d n u k t t l m i r t u C p Angstrom n c p t ScriptW p GothicP ScriptCapitalZ h c
q e g b C a DoubleStruckG r c a i A h t CapitalNu i t t C k c l i CapitalRho
u s l l a l r l o u k p t r i h a t l p C S CupCap H r Y N c a U
a T OpenCurlyQuote p P DoubleStruckCapitalC r ScriptCapitalL t a c a p GothicCapitalD o CapitalKappa

P l i d i h h k a t l o L c a i l S C p r p i p t a i
NotSquareSubsetEqual G l GothicCapitalS E i C p a T w M p t K c a i i i GothicQ GothicCapitalE CapitalLambda

u r d S a a c q c a i l S i a Dagger p t p t a C u i a Und
RoundImplies ReverseUpEquilibrium l r u C p t SadSmiley c t l U i i a t a B l C a ScriptCapitalW
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RoundImplies ReverseUpEquilibrium l r u C p t SadSmiley c t l U i i a t a B l C a ScriptCapitalW
M a c m I GothicCapitalQ a i a S r a J A C CapitalNTilde OSlash p c C a X Do

RightDoubleBracketingBar U p l p t l c G S C Villa c a a t a G I t p i ScriptX a l E D e
n e e n Bullet Cedilla R r o c Theta p T Akuz p p F l Psi Z t i p W m e E l
u r e i S C G t l i t r p t h t i i F ScriptC t e a p E G p s m e

NotSquareSubset N d GothicR S a o C a Q p h i Florin IDoubleDot t t a CapitalOAcute x DoubleStruckCapita
o N s n r S c p t l l C t i p t r a a i Kappa l a J J i t y e o t e
t o C i c r i h u CapitalYAcute Digamma n Del l g i E s h C D n m y K
RightBracketingBar C p r i t i b p E R l P E o A Chi C m t UGrave ScriptCapitalX i d m D e
i L p u t i p a c S Y i S ScriptG t D H a C a E E a r c s c p a i a o y
g e ReversePrime r CapitalUDoubleAcute S U H i r l o a E p a B C l CapitalOGrave G X i m n n w
h s t l a t Q Q i n a Hacek HBar m a e u c D i p L a u E v i o A t U o g d n
t s L Backslash y p P t l I r a c e InvisiblePostfixScriptBase ScriptCapitalY a p n E K T R

R T V e l K i C M I A i DotlessI n e s l k u a t l a t h t l T d l e r e
i r e f D P a t ScriptCapitalC c p S k n v J e b l a a Thorn CapitalDelta i K E e l y i v
g i r C t GothicCapitalP c p c u u t q N d Xi V D l C l s C o c e p e C i a e

R h a t i F U u p l r A i r CapitalAGrave O e s e O o e C E h C a ScriptZ D Y y s A i p Under
i t n i r l p b a P C i n S t o e t g G n Pi r T t D e A C a p l o WeierstrassP g s
g C g c c o A l D o p g c a S S C N a r t b y i Rho d c C a p i DoubleStruckA l r c i Place

R h e l a l CloverLeaf GothicCapitalR r l CapitalAAcute t CapitalATilde t i u a p i t s b n o o l s e E
i t i e l e r r S u y S e i M a g m p g i v n e h d Flat p i t C a D s l d n w e q
g F l E T o t DoubledPi r p u p m p G a v e g S i e ICup l e i t a u l GothicJ e y P u
h l i l i D w r l i t i CapitalAHat e Nu p n n a t a l r G a S D l i
t DownExclamation B u Wedge g S OAcute m i Mho e a S v S a l Z l a m t o SubsetEqual
V o g i e u a c S GothicF a m v e RawEscape FiLigature l B e y m FilledSquare u s i

LessGreater p s b r k Section t r ODoubleDot a T e d a L e a A s m X e t P m t u b b
c s l C r i E T h T i w i c u i S ScriptCapitalR e c l r

D t D R CapitalOmega a Square ScriptCapitalH Eth i h u AE n Delta b H c a E r FreakedSmiley i
o o o e s S p c c t a i M c i m s e R o FlLigature S l L p L u
w r w v CapitalStigma k r ODoubleAcute NonBreakingSpace o A SZ e c i GothicCapitalM D L a NotHumpEqual m
n B N n e r t I i o l e S d S S p a N u l p P L e p r i DoubleStruckZ n
R a o L r EmptySmallSquare a p GothicG e ARing p i p p a SpaceIndicator a k t GothicN p u f e g R
i r t e s c l CurlyTheta l p a a Mu a a c e g d g c e m D p s b t K R i
g E f e Trademark D H C Degree h AHat c m c c e a S n e f b GothicCapitalN C LessTilde g
h l t E C o C S a s i e S e e EHat p m NTilde C s e e y g h
t e V l CapitalDigamma u u GothicH p s AGrave Cap S i a e x a S a G S S i Therefore t
T m e e l p b r r i G I N e a E c v c n S Iota c p o c CenterEllipsis t V
e e c m o CapitalSampi l l GothicI t o S a ScriptV AAcute r CAcute e t EAcute G K r i t r r i A e
e n t e s e t e y p a t c t e N e a i T I M r r o i t h i Currency NotPrecedesEqual c
V RightDownVectorBar l a D P CapitalAlpha r u ABar u V CapitalEth n a CapitalABar p p a i p D c g r t
e r t C e l o h C V i Omicron n y l e t i d r p l v CapitalUAcute o k o o
c u c GothicCapitalF c p a C d ATilde B c i k IHat P p e a a M M B N u CapitalPsi w LongRightArr

RightUpDownVector t p CapitalOHat T h Or CHacek c e B h h p B b a i
i o l Proportional GothicCapitalG K p CapitalAE H S a r CapitalARing D S r l p LongLeftRig
g r y o r t i u n CapitalACup t s t a c e RegisteredTrademark h
h Q DownTee a CapitalODoubleDot S Cent t a o CCedilla CapitalUGrave S t RightDownVec
t u P y L l a ACup a E C S c r a l e i e t a A
T RightUpTeeVector RuleDelayed C GothicK ScriptCapitalB a p CapitalCAcute ScriptE W I t p r l N U R n
r i t a i n S E R c i a s p a r i UDoubleAcute GothicO u E e n S e g
i g LeftDownVectorBar g GothicCapitalH ADoubleDot p i i p i YAcute l c S C c DoubleStruckCapitalZ
a h e c D r o l a i l t i p a f u t TabKey k o t n h u e
n t h P l a CapitalODoubleAcute Gimel t o a t t YDoubleDot CapitalUHat p C DoubleDagger o e r
g T o a e D s p a b E a n l a Cross o I e r i a b a w r n
l r DoubleContourIntegral r GothicCapitalI s CapitalOTilde C l S I l a w GothicA O GothicCapitalO l n i K
e i d t u L m h e u I c D L p n r G m G a a i e S G c e

a O e i b a UDoubleDot ScriptH r o S i S B CapitalUDoubleDot l p t S m l a y
n NotHumpDownHump r a DoubleStruckS g p o a i u l t c r v t g t N D i a EnterKey i y l
g e l e S i s CapitalOSlash t p b a a r e Beta Hyphen a h o t l r l p A D
l SquareUnion L DoubleStruckT h n i u h Not l s l i v i i D u a F HumpEqual e h n NotLessSla
e R C e t o a l Product a U C e h A p e DoubleStruckD c o b l D c y g w
E i N u f DoubleStruckU r r o l ScriptCapitalD t C C D u l I o k l n
q g o R r t u t y n y c p T p o C GothicCapitalZ a o b e o u Fernsline T LeftTriangleE
u h t i l DoubleStruckCapitalU I E r e ScriptCapitalE p p u l S t b i e
a t S g y o k p p GothicT e c t p i i b e t a CloseCurlyDoubleQuote
l T u h DoubleStruckCapitalV A D s p r a GothicV CapitalTheta D t l S r C e d A

e p t o b a r GothicCapitalT CapitalEta t D D a o a e t u a S A e r
e e DoubleStruckCapitalW r u l C p T C a o o Integral DoubleStruckCapitalB P T N r N
A r o b e i o b GothicCapitalU t DoubleStruckB A o b B t u k a i r i r i o o o
r s GreaterEqual B DoubleStruckV w l n p U o r U t b u l r c C p t u a o l N t w t
r e b e r o a Mod1Key GothicU D u l Sterling NotSubset u k a i a c s p d o R G N

ContourIntegral Q a u DoubleStruckW S t UpArrow b y d e l S c P p t l k DoubleLongLeftRightArrow
S w e u c b o D t GothicCapitalV u l C S S GraySquare t N k i a U Q e r G g e t
h B o k l u EmptySquare l F b Because q t S r o C t l p l t L r h a G

DoubleVerticalBar t e e b u DoubleStruckCapitalA S p u r HeartSuit a C a T s RightModified e t t r
r a e t D l AutoLeftMatch o a n e t i MeasuredAngle r c E p o l a i m o f a T e e
t V c i NotLessEqual k NumberSign p a S r t r c u k q i n P u l i D n t t r r a
L e k n w L ImaginaryJ b i l t u a e k L c O u t g S o WatchIcon G T e i S t
e GreaterEqualLess g n o R l SixPointedStar c l NoBreak k Paragraph n e w r r r a l e
f t t B A n FilledDownTriangle a i u k U s C l l u o OverParenthesis F n a r
t i T a r g g S ForAll g c Coproduct s KeyBar OverBrace A a a u g n T
A c RightUpVectorBar L h FilledRectangle S m k a s V L p n t r t n l l t i
r a l o LeftVector P r i a M OptionKey e e HappySmiley t D VerticalBar e g l e E l
r l d LeftTeeArrow f S D r I E u WarningSign N i l r s t o o r l E B q d
o S e t k FilledSmallCircle m o LeftModified t s L U a D LowerRightArrow F e q a u e
w e E A e a c p e k OverBracket e a n i KernelIcon n U u B u r a

p q NotGreaterLess l m e l m C G f l L R c D f i N u RightArrow p l a a l
a u r e o d FilledSmallSquare L S r t MathematicaIcon t o b r A l r l
r a DoubleLeftArrow t n e e n p o k e U f g l w D n l RightArrowBar r E
a l w o d s s t FilledUpTriangle a p t h T n o P e o r q
t n t g l t D U t i A w l U w NotSucceeds
o FilledVerySmallSquare L e e o p D l r n u p w a
r l e t r w RightTee o d r V s D l

HorizontalLine f o n e w e o e NotLessFullEqual
u NotExists n V e n w c w

NotReverseElement A I e V T t DownLeftRightVector
p RightTriangleBar n c NotPrecedesTilde o A
D r d t c e r NotPrecedesSlantEqual

RightArrowLeftArrow DoubleLeftRightArrow i o t V r
w w c r o PrecedesEqual NotLessLess
n a r c w
H NestedLessLess NotNestedLessLess

SquareSubsetEqual o o
m NotGreaterEqual PrecedesSlantEqual

UpperLeftArrow

Now, we could go on to make a three-dimensional (3D) crossword puzzle, crossword puzzles on a torus by identifying
equivalent lattice points, and so on, but we end here to leave something for the reader. 

Σ (* session summary *) TMGBs`PrintSessionSummary[]
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6.5 Mathematical Operations with Matrices

à 6.5.1 Linear Algebra 
This section is devoted to problems arising in linear algebra. We include them in this chapter because of the identifica-
tion  list =̀ vector,  listOfLists OfEqualLength =̀ matrix,  etc.,  and  because  we  need  the  corresponding  operations  later,
especially in the next part of the book, which deals with graphics in Mathematica. (We will discuss a special topic from
linear algebra in Chapter 1 of the Numerics volume [302÷] in connection with numerical methods, and in Chapter 1 of
the  Symbolics volume [303÷]  when  dealing  with  symbolic calculations;  we  will  not  touch  this  subject  again.)  Let  us
refer to the three functions Dot, Inner, and Outer discussed in Subsection 6.4.3. The following statement holds for
nearly all commands from linear algebra. (Mathematica  is a very useful tool for working with concrete matrices, for a
collection of many useful matrix identities for symbolic matrices, see [192÷], [25÷].) 

The commands used to solve problems in linear algebra (determinants, solution of systems of 
linear equations, eigenvalues, etc.) can in most cases be applied to arbitrary approximate 
numbers, exact numbers, and symbolic expressions if these operations are reasonably defined 
for these types of arguments. The runtime and the complexity depend dramatically on the form 
of the input.

Before operating on a matrix, it is useful to determine its structure and size. Length gives the information at level 1.
To get the “size” of a matrix, we can use Dimensions. 

 

Dimensions[list]

gives the dimensions of the matrix list. The head of list need not be List. 

Thus we use Dimensions here. 

Dimensions[Table[f[i, j, k, l],
                 {i, 3}, {j, 2, 3}, {k, 0, 3, 1/2}, {l, 0, 2}]]

For nonrectangular objects, the outermost dimension is found. 

Dimensions[z[z[1], z[z[2], z[2]], z[z[z[3], z[3]], z[z[4], z[4]]]]]

We turn  now to  the  typical  problems of  linear  algebra:  inverting  a  matrix,  computing  its  determinant,  calculating the
eigenvalues and eigenvectors in A.xi = l xi, and solving systems of the form A.x = b. 

 

Inverse[squareMatrix]

finds the inverse matrix squareMatrix-1 corresponding to the square matrix squareMatrix. 

Here is the general definition of a Hilbert matrix. 

hilbert[n_] := Table[1/(i + j + 1), {i, n}, {j, n}];

Here is a Hilbert matrix of order 6. 

hilbert[6] // MatrixForm

Dot[squareMatrix, Inverse[squareMatrix]] gives the identity matrix (if matrix is not singular). 
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(%.Inverse[hilbert[6]]) // MatrixForm

A further important matrix operation is Det [221÷], [311÷], [85÷], [174÷], [175÷]. 

 

Det[squareMatrix]

finds the determinant of the matrix squareMatrix. 

Here are the determinants of the first nine Hilbert matrices. 

Table[Det[hilbert[n]], {n, 9}] // MatrixForm

At this point, we should make a remark about the resources required by the routines for linear algebra when applied to
exact, approximate numerical, and symbolic arguments. We look at the computation times needed to find the determi-
nant for several examples. Here are the numbers when the elements of the matrix are given with machine accuracy. (For
more accurate timings, we repeat each calculation using the inner Do loop.)

Table[Timing[Do[Det[Array[N[1/Plus[##]]&, {n, n}]], 
                {10}]][[1, 1]], {n, 10}]

This is what we get with 32-digit numbers as elements. 

Table[Timing[Do[Det[Array[N[1/Plus[##], 32]&, {n, n}]],
               {10}]][[1, 1]], {n, 10}]

This is what we get with 512-digit numbers as elements. 

Table[Timing[Do[Det[Array[N[1/Plus[##], 512]&, {n, n}]],
               {10}]][[1, 1]], {n, 10}]

Now, we use exact fractions as elements. 

Table[Timing[Do[Det[Array[(1/Plus[##])&, {n, n}]],
             {10}]][[1, 1]], {n, 12}]

Finally, we get the following timings for symbolic arguments as elements (be aware that there is no inner Do loop in the
following input). 

Table[Timing[Det[Array[a, {n, n}]]; ][[1, 1]], {n, 7}]

The  difference  in  the  amount  of  time  required  is  quite  large.  The  calculation  with  approximate  numbers  with  many
digits  or  with  symbolic  quantities  is  much  slower  than  is  the  computation  with  elements  of  machine  accuracy.  For
matrix dimensions relevant to  practical  problems,  the  time required can differ  by several  orders  of  magnitude, and so
the user should always think about when it is best to go to machine numbers. Finding determinants of dense matrices
symbolically can also take a great deal of memory for n ¥ 8. 

Table[{dim, ByteCount[Det[Array[a, {dim, dim}]]]/10.^6 MB}, {dim, 8}]

The determinant †1 - A.B§ for antisymmetric matrices A and B can always be written as a square [319÷]. Here we show
this  explicitly  for  nonnumeric  matrices  of  dimensions  two  to  five.  The  complexity  of  the  calculations  grows  quickly
with the matrix dimensions.

(* antisymmetric d×d  matrix with elements [i, j] *) 
AntisymmetricMatrix[d_, _] := 
             Table[Which[j < i, [i, j], i == j, 0, j > i, - [j, i]], 
                   {i, d}, {j, d}]

Module[{ }, Table[Timing[(Det[IdentityMatrix[d] - 
              AntisymmetricMatrix[d, ].AntisymmetricMatrix[d, ]] //
              (* recognize a square *) Factor) /. _^2 -> aFullSquare],
      {d, 2, 5}]]
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These remarks on computational time and memory requirements essentially apply to all linear algebra routines. Because
Mathematica  does not automatically make use of auxiliary variables to save intermediate expressions,  this behavior is
expected. 

In  the  following  example,  we  observe  the  order  in  which  summands  of  the  determinant  with  symbolic  entries  are
computed.  We  compute  the  determinant  of  the  square  matrix  fij,  where  with  the  elements  we  associate  the  rule  that

products of f are simplified to one f with the joining of the current arguments. 
f[a__] f[b__] ^= f[a, b];

Det @ Array[f[{#1, #2}]&, {3, 3}]

Clear[f]

Now  let  us  deal  with  some  larger  symbolic  determinants.  We  will  calculate  the  Wronskian  [49÷]  of  the  functions
8sinHzL, sinH2 zL, …, sinHn zL<. This defines the Wronskian WzHwsL of a list of functions ws with respect to the variable z.

Wronskian[ws_List, z_] := Det[Table[D[ws, {z, k}], 
                                    {k, 0, Length[ws] - 1}]]

Here are the first eight Wronskians. They are relatively large sums.

Length /@ 
 (WSins = Table[Wronskian[Table[Sin[k z], {k, n}], z], {n, 8}])

Short[WSins[[8]], 6]

Simplifying  the  Wronskians  using  TrigFactor  yields  the  short  result  I¤k=1
n-1 k !M sinnHzL H-2 sinHzLL n Hn-1Lê2  [96÷],

[335÷], [323÷], [290÷].
WSins // TrigFactor

Table[Product[k!, {k, n - 1}] Sin[z]^n (-2Sin[z])^(n (n - 1)/2), {n, 8}]

Another function often needed in matrix calculations is Tr. 

 

Tr[squareMatrix]

calculates the trace of squareMatrix (the sum of its diagonal elements).

As a side step, we will compare various top-level implementations of Tr. We can define such a function and even call it
Trace  as  long  as  we  keep  it  separate  from  the  built-in  Trace  used  for  debugging.  Of  course,  we  could  name  it
MatrixTrace,  but  partly  the  point  of  the  following  is  the  coexistence  of  two  commands  with  the  same  name  in
different  contexts.  This  coexistence can be done using Mathematica’s  context  specification.  The built-in  Trace  is in
the  context  System`.  Thus,  we  need  only  define  our  Trace  explicitly  in  the  context  Global`.  Because the  com-
mands of the context Global`  are applied before those in the context System`,  we can make the following defini-
tion.  (Mathematica  warns  us  that  we  have  now  two  functions  called  Trace  in  two  contexts,  which  both  are  on  the
context path.)

SetAttributes[Global`Trace, HoldAll]
Global`Trace[x_?MatrixQ] := Sum[x[[i, i]], {i, Length[x]}]
Global`Trace[x_] := System`Trace[x]

Our Trace function is now available. 

??Trace

It works for matrices. 

Trace[{{1, 2}, {3, 4}}]
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It also works for other expressions. (To get this, we needed the attribute HoldAll—otherwise, the argument would be
computed before giving it to System`Trace, and this would have led to no further computation.) 

Trace[2 + 3 7 + 5 6 + Sin[Pi] + Log[E]]

Even the computation of the trace of a matrix can now be observed in detail using the built-in Trace. 

Trace[Trace[{{1, 2}, {3, 4}}]]

Note  that  the  above  computation  of  the  trace  is,  in  a  certain  sense,  the  “obvious”  one,  but  not  necessarily  the  most
elegant.  Here  are  a  few other  implementations that  do  not  make use  of  auxiliary variables  (for  comparison,  we again
give the “obvious” definitions). 

traceDef1[mat_] := Plus @@ Transpose[mat, {1, 1}]

traceDef2[mat_] := Plus @@ Flatten[MapIndexed[Take, mat]]

traceDef3[mat_] := Sum[mat[[i, i]], {i, Length[mat]}]

traceDef4[mat_] :=
Plus @@ MapIndexed[#1[[#2[[1]]]]&, mat]

traceDef5[mat_] := Plus @@ First[Transpose[
MapIndexed[RotateLeft[#1, #2[[1]] - 1]&, mat]]]

traceDef6[mat_] := Plus @@
Flatten[IdentityMatrix[Length[mat]] mat]

traceDef7[mat_] :=
Fold[#1 + #2[[Position[mat, #2][[1, 1]]]]&, 0, mat]

(traceDef6 follows [1÷].) Here is a test of their relative speeds for a 200ä200 matrix. To get a reasonable resolution,
we use an inner Do loop inside Timing.

testMatrix = Table[i j, {i, 200}, {j, 200}];

The built-in trace function Tr is of course the fastest.

Timing[Do[Tr[testMatrix], {10^5}]]

Here  are  the  timings  for  our  implementations.  (Observe  the  different  number  of  times  the  trace  is  carried  out  in  the
various examples.)

Timing[Do[traceDef1[testMatrix], {100}]]

Timing[Do[traceDef2[testMatrix], {100}]]

Timing[Do[traceDef3[testMatrix], {100}]]

Timing[Do[traceDef4[testMatrix], {100}]]

Timing[traceDef5[testMatrix]]

Timing[traceDef6[testMatrix]]

Timing[traceDef7[testMatrix]]

Next, we prove the identity ∑detHMHtLL ê ∑ t = detHMHtLL trIM£HtL.MHtL-1M [246÷], [112÷] for a n μ n matrix MHtL with t-

dependent  matrix elements for  small  n.  We  use  Simplify  to  show that  the  difference  of  the  left-hand  side  and  the
right-hand side vanishes.
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Module[{ , τ},
       Table[  = Table[ [i, j][τ], {i, d}, {j, d}];
             zero = D[Det[ ], τ] - Det[ ] Tr[D[ , τ].Inverse[ ]];
             {LeafCount[zero], Timing[Simplify[zero]]}, {d, 2, 4}]]

For a nonsingular matrix A, we have TrIA-1M = ∑ HA - l 1L ê ∑ l »l=0  (here 1 is the identity matrix of the same dimension

as A) [313÷]. The following input checks this identity for generic matrices of dimensions 1 μ 1 to 6 μ 6. Similar to the
above calculation with symbolic matrices, the calculation times increase quickly with the dimension.

Module[{A, a},
Table[Timing[A = Table[a[i, j], {i, d}, {j, d}];
      ExpandAll[Tr[Inverse[A]] - 
        D[Log[Det[A + λ IdentityMatrix[d]]], λ] /. λ -> 0]], {d, 6}]]

For 2 μ 2 matrices k  and Mk , the d μ d  matrix A with elements ai, j = TrI i.M j
≤1M has the interesting property that its

determinant vanishes identically if d ¥ 5. Here is a quick explicit check for this unusual property for d § 6 [143÷].

[k_] = Table[ [k][i, j], {i, 2}, {j, 2}];
M[k_] = Table[m[k][i, j], {i, 2}, {j, 2}];

Table[{d, Expand[Det @ Table[Tr[ [k].M[l]], 
                             {k, d}, {l, d}]] === 0},
      {d, 6}]

Table[{d, Expand[Det @ Table[Tr[ [k].Inverse[M[l]]], 
                             {k, d}, {l, d}]] === 0},
      {d, 6}]

To compute eigenvalues and eigenvectors, we have Eigenvalues. (Note that values and system in Eigenval
ues and Eigenvectors are not capitalized.) 

 

Eigenvalues[squareMatrix]

finds all eigenvalues of the matrix squareMatrix. 

Eigenvectors[squareMatrix]

finds all eigenvectors of the matrix squareMatrix. 

Eigensystem[squareMatrix]

finds all eigenvalues and eigenvectors of the matrix squareMatrix. 

Presently,  it  is  not  possible  to  compute  a  selected  set  of  eigenvalues  and  eigenfunctions  (typically,  we  have  large
matrices but are only interested in the largest or smallest eigenvalue). Moreover, the built-in commands do not take into
account the sparsity of matrices. In case of degenerate eigenvalues, the corresponding eigenvectors given by Eigensys
tem or Eigenvectors spanning the eigenspace are not orthogonal to each other, but just linear independent. These
eigenvectors can be easily orthogonalized (the function GramSchmidt from the package LinearAlgebra`Orthog
onalization` comes in handy here.) 

A measure of the (numerical) difficulty of finding the inverse of a symmetric matrix is given by its so-called condition
number †maxHeigenvalueL êminHeigenvalueL§. 

Do[ev = Eigenvalues[N[hilbert[i]]];
   Print["i = ", i, " condition number = ", Max[ev]/Min[ev]],
{i, 9}]

For comparison, we note that, for generalized eigenvalue problems from finite element method computations of dimen-
sion 50000, the condition number is typically in the order of magnitude of the last printed condition number.
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The  following  (Pauli)  matrices  and  their  eigenvalues  play  an  important  role  in  the  description  of  the  inner  rotational
momentum (spin)  of  elementary  particles  (see  any  textbook  on  quantum mechanics,  e.g.,  [321÷],  [88÷],  and  [64÷]).
(We represent si as σ[i].)

σ[1] = {{0, 1}, {1, 0}};
σ[2] = {{0, -I}, {I, 0}};
σ[3] = {{1, 0}, {0, -1}};
Do[Print["σ[", i, "] =   ", MatrixForm[σ[i]]], {i, 3}]

These matrices have the following properties: 

† Their square is the identity matrix. 

† Their eigenvalues are +1 and -1. 

† si.s j = sk  with i, j, k cyclic. 

† They are anticommutative, that is, si.s j = -s j si.

We quickly check these properties.
MatrixForm /@ Table[σ[i].σ[i], {i, 3}]

Table[Eigenvalues[σ[i]], {i, 3}]

{σ[1].σ[2] == I σ[3], σ[2].σ[3] == I σ[1], σ[3].σ[1] == I σ[2]}

{σ[1].σ[2] == -σ[2].σ[1], σ[2].σ[3] == -σ[3].σ[2], σ[3].σ[1] == -σ[1].σ[3]}

Here  is  the  eigensystem  for  a  spin  in  an  arbitrary  direction  using  direction  cosines  [1],  [2],  and  [3].  This

eigensystem corresponds to the matrix ⁄i=1
3 si i.

Eigensystem[
Sum[ [i] σ[i], {i, 3}]] /. { [1]^2 + [2]^2 + [3]^2 -> 1}

We  have  a  more  detailed  look  at  a  small  symmetric  matrix  with  real  elements  and  nondegenerate  eigenvalues,  and
quickly  review  some  of  the  properties  of  the  eigenvalues  and  eigenvectors.  We  will  use  a  matrix   with  elements

i j = i j ë Ii2 + j2 + 1M.
symmMatrix[n_] := Table[i j/(1 + i^2 + j^2), {i, n}, {j, n}]

For the explicit calculations, we will use a 6 μ 6 matrix  (meaning n = 6).

(  = symmMatrix[6]) // MatrixForm

These are the eigenvalues w j and the eigenvectors j.

{evals, evecs} = Eigensystem[N[ , 10]]

The eigenvectors to different eigenvalues are orthogonal to each other and the eigenvectors are normalized.

Table[evecs[[j]].evecs[[k]], {j, Length[evecs]}, {k, Length[evecs]}]

Using the outer product, we can form the eigenprojectors j = j ≈ j. The eigenprojectors project on the subspace that

is spanned by all vectors j, such that . j = w j j.

s1 = Table[Outer[Times, evecs[[j]], evecs[[j]]], {j, Length[evals]}];

The eigenprojectors can be expressed as a matrix product that figures only the eigenvalues: 
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j = ‰
k=1
k∫ j

n 1

w j - wk
 H - wk  nL

s2 = 
With[{n = Length[evals]}, 
      Table[Fold[Dot, IdentityMatrix[n], #]& @ (* the factors *)
       Table[If[j == k, IdentityMatrix[n], 1/(evals[[j]] - evals[[k]])*
               (symmMatrix[n] -  evals[[k]] IdentityMatrix[n])], {k, n}],
      {j, n}]];

The two sets of eigenprojectors are identical within the precision of the the calculation.

s1 - s2 // Flatten // N[#, {Infinity, 1}]& // Union

The eigenprojectors are symmetric matrices.

Max[# - Transpose[#]]& /@ s1

The eigenvalues of projection matrices are 0 and 1.

(Eigenvalues /@  s1) /. _?(Abs[#] < 10^-20&) :> 0

The differences of the projectors to the identity operator are also projectors.

(Eigenvalues /@  ((IdentityMatrix[6] - #)& /@ s1)) /. 
                             _?(Abs[#] < 10^-20&) :> 0

This means their trace is 1 too.

Tr /@ s1 

The eigenvectors lie within the eigenspaces of the eigenprojectors.

Table[ s1[[j]].evecs[[j]] - evecs[[j]], {j, 6}] 

The sum of all eigenprojectors  is the identity matrix (meaning the eigenvectors span the whole space) and the sum of
the products of the eigenprojectors (the spectral resolution) with the eigenvalues is the original matrix = ⁄j=1

n w j j.

(Plus @@ ( s1))

(Plus @@ (evals s2)) - 

The eigenprojectors are themselves orthogonal to each other. But because the eigenprojectors are themselves matrices,
we must now sum over two indices.

Table[(* form trace of dot product *) Tr[ s1[[j]]. s1[[k]]], 
      {j, Length[evals]}, {k, Length[evals]}]

Eigensystem  works  for  dense  numerical  matrices  up  to  around  103 ä103  (depending  on  the  computer  used,  this
number might be too small or too large) in a few minutes. Here is a nonsymmetric 20ä20 tridiagonal matrix. 

hm = Table[Which[i == j, 5, j - i == 1, i + j,
                 i - j == 1, i + j + 1, True, 0], {i, 20}, {j, 20}];

Here is a submatrix. 

TableForm[Take[#, 8]& /@ Take[hm, 8]]

This example gives its eigenvalues (first list of the following output) and eigenvectors (second list). 

({evals, evecs} = Eigensystem[N[hm]]) // Short[#, 12]&
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We can  verify  the  correctness  of  this  result  by  checking  the  equation  Adiag = C-1.A.C,  where  C  is  the  matrix whose

columns are the eigenvectors and Adiag  is the diagonal matrix with the eigenvalues of A on the main diagonal. Because

the columns of C are the eigenvectors, we first have to transpose evecs. We set insignificant components ( < 10-10) to
0. 

chop[m_] := m //. _?(Abs[#] < 10^-10&) -> 0

Inverse[Transpose[evecs]].hm.Transpose[evecs] // chop

Here are the same eigenvalues as computed with Eigensystem. 

Union @@ (DiagonalMatrix[evals] - % // chop)

The standard deviation of the eigenvalues (in case of real eigenvalues) can be expressed through the traces of the matrix
and its square [114÷], [328÷].

With[{n = Length[evals]},
     {(* direct evaluation *) (n - 1)/n Variance[evals], 
      (* through traces *) 1./n (Tr[hm.hm] - Tr[hm]^2/n)}]

For  matrices  consisting  of  exact  numbers,  we  can  find  the  eigenvalues  and  eigenfunctions  when  the  characteristic
equation  can  be  solved  exactly  in  radicals,  as  well  as  for  higher  order  characteristic  equations,  which  means  that
typically matrices of at most 4ä4 can be treated symbolically if we only want at most radicals in the result. For larger
matrices, the eigenvalues will (in most cases unavoidably) be expressed in Root-objects; see Chapter 1 of the Symbol-
ics volume [303÷] for a detailed discussion of them.

Eigenvalues[hilbert[6]]

Of course, numerically, no problem exists in calculating the eigenvalues. 

Eigenvalues[N[hilbert[6]]]

Also, eigenvalues can be calculated in arbitrary precision. 

Eigenvalues[N[hilbert[6], 50]]

Eigenvalue problems are very important in practical applications. One way to calculate eigenvalues iteratively is the so-
called  power  method  for  calculating  the  lowest  eigenvalue.  With  Mathematica,  we  can  implement  this  method  very
concisely  (see,  for  instance,  [324÷],  [316÷],  [299÷],  [92÷],  [128÷],  and  [91÷]).  Here  is  the  lowest  eigenvalue  of  an
example matrix calculated with this method. 

Union[Function[matrix, matrix.Last[#]/Last[#]&[
 FixedPointList[N[(#/Max[#])&[matrix.#]]&, {1, 1, 1, 1}, 100]]][
 (* the matrix *)
 {{1, -3, 2, -4}, {4, -4, 1, 3}, {6, 3, -5, 6}, {3, -5, 5, -6}}],
                SameTest -> Equal]

Here is the comparison with the direct result of Mathematica (the construction HeldPart[…] does the extraction of
the matrix used in the last computation for the input history and saves us from retyping the matrix.). 

Eigenvalues[N @ HeldPart[(Hold /@ DownValues[In][[
                      $Line - 1]])[[2]], 1, 1, 1][[1]]]

The following example calculates the integer-valued eigenvalues of a complicated-looking matrix [52÷], [53÷], [54÷],
[166÷].

neatMatrix[n_] := 
  Table[I If[j === k, Sum[If[i === j, 0, Cot[j - i]], {i, n}], 
             1/Sin[j - k]], {j, n}, {k, n}]

neatMatrix[4]
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Eigenvalues[N[%]]

Eigenvalues[N[neatMatrix[30]]]

Sort[Re[%]]

For other matrices that have nice eigenvalues, see [250÷], [31÷].

Be aware  of  the  imaginary parts  in  the  last  eigenvalue  result.  Although neatMatrix[30]  was  explicitly hermitian
the eigenvalues  returned were  not  purely  real.  The imaginary parts  resulted  from the  algorithm used  in Mathematica.
Using a higher precision of the input matrix results in smaller imaginary parts.

Eigenvalues[N[neatMatrix[30], $MachinePrecision + 1]] // Im // N

Interestingly, for every even n, the eigenvalues of neatMatrix are H-n + 1L, H-n + 3L, ..., -1, +1, …, Hn - 3L, Hn - 1L,
[52÷].

Sort[Re[Eigenvalues[N[neatMatrix[100]]]]] // Timing

The  eigenvalues  returned  by  Eigenvalues  and  Eigensystem  are  sorted  by  absolute  value  of  the  real  part.  The
following graphics show the size of the eigenvalues and a density plot of the eigenvectors of a 400 μ 400 matrix with
elements ai j = tanH7 ê9 Hi + jLL.

efGraphics[f_, dim_] :=
Module[{mat, evals, evecs},
 (* the matrix *)
 mat = Table[N[f[i, j]], {i, dim}, {j, dim}];
 (* the eigenvalues and eigenvectors *)
 {evals, evecs} = Eigensystem[mat];
 (* the eigenvalues and eigenvectors *)
 Show[GraphicsArray[{
 ListPlot[Sort[Re[evals]], PlotJoined -> True, PlotRange -> All,
          Axes -> False, Frame -> True, DisplayFunction -> Identity],
 (* sort eigenvectors *)
 evecsSorted = evecs[[First /@ Sort[
      MapIndexed[{#2[[1]], #1}&, Re[evals]], #1[[2]] < #2[[2]]&]]];
 (* density plot of eigenvectors *)
 ListDensityPlot[Re[evecsSorted], Mesh -> False, FrameTicks -> None,
                 ColorFunction -> (Hue[0.8 #]&),
                 DisplayFunction -> Identity]}]]]

efGraphics[Tan[7/9(#1 + #2)]&, 400]

Next, we display the eigenvalues of 16 μ 16 matrices with elements

a i j =

expHi jL if i < j
expH-i x jL if i > j
1 if i = j

as j  ranges from 0 to 2 p and x  is a fixed constant. The eigenvalues for each value of j  are displayed as points of the
same color in the complex plane.
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Show[GraphicsArray[
Function[ξ, With[{d = 16, ppϕ = 2400}, 
Graphics[{PointSize[0.001], 
Table[{Hue[ϕ/(2Pi)], Point[{Re[#], Im[#]}]& /@ Eigenvalues[
      (* the d×d matrix *)
      Table[Exp[I ϕ Which[i < j, 1., i > j, -1. ξ, i == j, 0.]],
            {i, d}, {j, d}]]},
     {ϕ, 0, 2Pi, 2Pi/ppϕ}]}, PlotRange -> {{-2, 4}, {-3, 3}}, 
     AspectRatio -> Automatic]]] /@ (* x-values *) {1/6, 2, 3, 5}]]

Modifying the definition of the last matrix slightly, we get a much more complicated pattern of the eigenvalues.

Module[{n = 100, pp = 400, A, ϕ}, 
(* define a matrix M[j] *)
Set @@ {A[ϕ_], Table[
         Which[Abs[i - j] === 1, Exp[I 2Pi Sign[i - j] j ϕ],
               Abs[i - j] === 3, 1, True, 0], {i, n}, {j, n}]};
(* show real and imaginary parts of eigenvalues as a function of j *)
Show[GraphicsArray[{# /. Point[{x_, y_}] :> Point[{Re[x], y}],
                    # /. Point[{x_, y_}] :> Point[{Im[x], y}]}&[
Graphics[{PointSize[0.002], {#, Apply[{#1, 1 - #2}&, #, {-2}]}&[
     Table[Point[{#, ϕ}]& /@ Sort[Eigenvalues[A[ϕ]]],
           {ϕ, 0., 1., 1./pp}]]},
    Frame -> True, PlotRange -> All, FrameTicks -> None]]]]]

Let us give a small graphics application of Eigensystem: The use of the eigenmesh to smooth a curve [115÷]. Given
a curve with points 8xk , yk< we express the curve as a superposition of the eigenfunctions of a finite difference approxi-
mation of the curvature. The following input uses a noisy Lissajous curve with 512 points. The graphic shows how the
curve is reproduced when all eigenfunctions are taken into account.

Module[{n = 512, mat, evals, evecs, xData, yData,
        scpsx, scpsy, sumx, sumy},
(* matrix of the Laplace operator *)
mat = Table[Which[i === j, 1, Abs[i - j] === 1, -1/2,
            (i == 1 && j == n) || (i == n && j == 1),
            -1/2, True, 0], {i, n}, {j, n}] // N;
(* eigensystem of mat *)
{evals, evecs} = Eigensystem[mat];
(* sort eigenvectors *)
evecs1 = evecs[[First /@ Sort[
     MapIndexed[{#2[[1]], #1}&, Re[evals]], #1[[2]] < #2[[2]]&]]];
{xData, yData} = Transpose[
         Table[{Cos[5. t] + 6/5 Random[], Sin[3. t] + 6/5 Random[]}, 
              {t, 0, 2Pi, 2Pi/(n - 1)}]];
{scpsx, scpsy} = {xData.#& /@ #, yData.#& /@ #}&[evecs1];
sumx = 0; sumy = 0;
Show[Graphics[Reverse @
Table[{sumx, sumy} = {sumx, sumy} + 
                     {scpsx[[k]] evecs1[[k]], scpsy[[k]] evecs1[[k]]};
      {Hue[k/n 0.8], Line[Transpose[{sumx, sumy}]]},
      {k, n}]], AspectRatio -> Automatic]]

While  for  many applications,  symmetric (hermitian) matrices are  most important, asymmetric matrices can have quite
interesting properties too. In the following, we will visualize the (generically complex) eigenvalues of 32768 matrices
of size 16 μ 16. The elements of the matrices are all 1 on the upper subdiagonal (ai,i+1 = 1), and all permutations of ≤1

on  the  lower  subdiagonal  (ai,i-1 = ≤1)  [140÷].  makeTridiagonalMatrix  constructs  such  a  matrix  for  a  given

subdiagonal subDiagonal.
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permutationsPM1[d_] := permutationsPM1[d] = Flatten[
 Permutations /@ Table[Join[Table[1, {k}], Table[-1, {d - k}]], 
                       {k, 0, d}], 1];

makeTridiagonalMatrix[subDiagonal_] := 
Module[{d = Length[subDiagonal] + 1, M},
       (* matrix to be filled *)
       M = Table[0., {d}, {d}];
       (* add 1's *)
       Do[M[[i, i + 1]] = 1., {i, d - 1}];
       (* add ±1's *)
       Do[M[[i, i - 1]] = N[subDiagonal[[i - 1]]], {i, 2, d}]; 
       (* return matrix *) M]

The resulting 524288 eigenvalues form a complicated pattern in the complex plane. (Using larger matrices constructed
in the same way shows the fractal nature of the resulting point set [140÷].)

Show[Graphics[{PointSize[0.001], 
     ((* make points in the complex plane *) 
      Point[{Re[#], Im[#]}]& /@ 
        Eigenvalues[makeTridiagonalMatrix[#]])& /@ 
                                   permutationsPM1[15]}], 
     AspectRatio -> Automatic, PlotRange -> All]

Here is another tridiagonal matrix. Its determinant is the polynomial xn + ⁄k=0
n-1 ck  xk  [89÷].

tridiagonalPolyMatrix[x_, c_List?(OddQ[Length[#]]&)] := 
With[{o = Length[c]}, (-1)^((o - 1)/2) *
Table[Which[i == j, If[OddQ[i], c[[o - i + 1]] + 
                       If[i == 1, x, c[[o - i + 2]] x], 0],
            j == i - 1, If[OddQ[i], x, -1], 
            j == i + 1, If[OddQ[i], -1, x],
            True, 0], {i, o}, {j, o}]]

tridiagonalPolyMatrix[x, {α, β, γ, δ, ε}] // Det

The next two graphics show the eigenvalues of the matrix when x and the list c are varied.

Show[GraphicsArray[
Block[{$DisplayFunction = Identity, o = 200, p = 60},
{(* vary c values *)
 Graphics[{PointSize[0.004], 
 Table[{Hue[0.78 ρ/2], Point[{Re[#], Im[#]}]& /@ 
   Eigenvalues[tridiagonalPolyMatrix[1 - I, 
                 N @ Table[ρ Exp[2 Pi I k/o], {k, 0, o}]] ]}, 
       {ρ, 0, 2, 2/p}]}, PlotRange -> All],
 (* vary x value *)
 Graphics[{PointSize[0.004], 
 Table[{Hue[0.78 ρ], Point[{Re[#], Im[#]}]& /@ 
   Eigenvalues[tridiagonalPolyMatrix[Exp[2 Pi I ρ], 
                 N @ Table[Exp[2 Pi I k/o], {k, 0, o}]] ]}, 
       {ρ, 0, 1, 1/p}]}, PlotRange -> All]}]]]

For demonstration purposes, we will diagonalize the following symbolic 2 μ 2 matrix. Assuming the three parameters a,
b, and g are real-valued, this is a general hermitian 2 μ 2 matrix.

 = {{α, γ + I δ}, {γ - I δ, β}};

To  complex  conjugate  symbolic  quantities,  we  now  introduce  the  function  conjugate  that  carries  out  the  complex
conjugation for all complex numbers.
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conjugate[expr_] := expr /. Complex[r_, i_] :> Complex[r, -i]

It is straightforward to calculate the diagonalizing matrix. As typical in the context of hermitian matrices, we call it U.

(* find eigenvalues and eigenvectors *)
{eigenValues , eigenVectors } = Eigensystem[ ];

(* a quick check for the eigensystem *)
Table[ .eigenVectors [[j]] - 
      eigenValues [[j]] eigenVectors [[j]], {j, 2}] // Simplify

(* norms of the eigenvectors *)
norms  = Sqrt[#.conjugate[#]]& /@ eigenVectors  // Simplify;
(* normalize eigenvectors *)
eigenVectors N = Divide @@@ Transpose[{eigenVectors , norms }] // 
                 Simplify;
(* the eigenvectors as columns are the diagonalizing matrix *)
U  = Transpose[eigenVectors N]

U is unitary and fulfills the properties U.U
T

= 1 and U
T

.U = 1.

U Adjoint = conjugate[Transpose[U ]];

{U .U Adjoint, U Adjoint.U } // Simplify

And the original matrix  can be expressed as U. .U
T

=  where  is the diagonal matrix of the eigenvalues.

U .DiagonalMatrix[eigenValues ].U Adjoint -  // Simplify

Sometimes one has to solve the so-called generalized eigenvalue problem A.x = l M.x with two square matrices A and
M.  For matrices with machine number elements, the form Eignesystem[{A, M}],  Eigenvalues[{A, M}],
and Eigenvectors[{A, M}] can be used for this case. Here is a small example.

Agep = {{1, 3}, {-2, 1}} // N;
Mgep = {{2, 3}, {9, -8}} // N;

{{eval1, evec1}, {eval2, evec2}} = Transpose @ Eigensystem[{Agep, Mgep}]

And here is a quick check of the numerical correctness of the result.

{Agep.evec1 - eval1 Mgep.evec1, Agep.evec2 - eval2 Mgep.evec2}

To solve systems of linear equations, we have LinearSolve. 

 

LinearSolve[matrix, rightHandSide]

finds x so that matrix.x = rightHandSide. If the system of equations is underdetermined, 
LinearSolve gives one possible solution. 

Here is a system that is clearly underdetermined because twice as many variables exist as equations. 

m = 6;
(mat = Table[If[i <= 2j, 1, 0], {j, m}, {i, 2 m}]) // TableForm

We find the right-hand side. 

rightHandSide = Table[i, {i, m}]

LinearSolve gives one possible solution. 

LinearSolve[mat, rightHandSide]

If we want to find all solutions of a system of equations, we need Solve. 
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Solve[{equations}, {unknowns}]

solves the system of equations equations for the variables unknowns. If the system is 
underdetermined, some of the variables in the list unknowns are expressed in terms of other 
variables. The equations appearing in equations must have the head Equal. 

Consider the following list of unknowns. 

Clear[x]
unknowns = Table[x[i], {i, 2 m}]

We form the matrix product of mat with the coefficient vector unknowns. 

leftHandSide = unknowns.#& /@ mat

With Thread,  we can join the sides of the equations that belong together with Equal  (standing for “equality in the
mathematical sense”). 

(equations =
 Thread[Equal[leftHandSide, rightHandSide]]) // TableForm

Solve  does  what  we  expect:  The  complete  solution  of  this  underdetermined  system  depends  parametrically  on  six
variables. 

Solve[equations, unknowns]

The result of Solve is a list of lists. The inner List contains the solution in form that uses Rule, so that it is easy to
plug  this  solution  into  an  expression.  Here  is  another  example  for  an  underdetermined  system.  Given  two  vectors
{ax, ay, az} and {bx, by, bz},  we look for a third {, , },  which is orthogonal to the two given ones
[107÷]. 

Solve[{ax  + ay  + az  == 0, bx  + by  + bz  == 0}, {, , }]

({, , } /. %)[[1]]

{%.{ax, ay, az}, %.{bx, by, bz}} // Simplify

If  the  coefficients  appearing  in linear  equations  are  floating  point  numbers,  then we can tackle much larger problems
using Solve. We consider a discretization of the functional equation

xHtL = Ht, xHtL - dxHtLtL

Ht, xL =

- x
4 if 0 § t < 1

4

- 1
4 + 3 x

4 if 1
4 § t < 1

2
1
2 - x

4 if 1
2 § t < 3

4
1
4 + 3 x

4 if 3
4 § t < 1

at tk = k ê n for n = 104. eqs is a list of 104 linear equations for the xk = xHtkL. We explicitly insert 1. to obtain numeri-
cal coefficients.

ν = 10000;
eqs = Table[1. x[t] - 1. Function[{t, x},
         Which[0   <= t < 1/4, -x/4,
               1/4 <= t < 1/2, -1/4 + 3x/4,
               1/2 <= t < 3/4, 1/2 - x/4,
               3/4 <= t <   1, 1/4 + 3/4 x]][
                                t, x[FractionalPart[4t]]], 
            {t, 0, 1 - 1/ν, 1/ν}];
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Solving the 104 equations can be done in less than a minute on a 2 GHz computer.
(sol = Solve[# == 0& /@ eqs, 
             Table[x[t], {t, 0, 1 - 1/ν, 1/ν}]]); // Timing

Displaying the connected points 8xk , 1 - xn-k< yields the so-called Siamese sisters [77÷].

Show[Graphics[{Thickness[0.001],
               MapIndexed[{Hue[#2[[1]]/ν], Line[#1]}&,
      Partition[Table[{x[t], 1 - x[1 - t]}, 
                         {t, 0, 1 - 1/ν, 1/ν}] /.
            x[1] -> x[0] /. Dispatch[sol[[1]]], 2, 1]]}],
     AspectRatio -> Automatic]

Because the “length” of the new vector is undetermined, we do not get a unique result. 

With these matrix operations, we can easily do some calculations on the electric and magnetic field strengths E and H in
a moving coordinate system. 

Physical Remark: Lorentz Transformation of Physical Quantities

In  the  framework  of  the  theory  of  special  relativity,  space  and  time  coordinates  are  combined  into  one  quantity
xm = Hx, y, z, ictL.  It  is  today common to  use  covariant  and  contravariant  quantities  (see,  e.g.,  [222÷],  [135÷],  [255÷],

[336÷], and [220÷]) instead of explicit vectors containing i = -1 , but here the use of a particular coordinate system
is more convenient. (We discuss covariant and contravariant quantities in Chapter 1 of the Symbolics volume [303÷].)
If we change from a coordinate system K to a system K£, which is moving with constant relative velocity v along the x
axis, space and time are transformed according to xm

£ = Lmn xn, where the expression with double subscripts is summed

over 1 to 4, which in this case means over n. 

The matrix L (Lorentz transformation) is 

I1 - b2M-1ê2 0 0 i b I1 - b2M-1ê2

0 1 0 0
0 0 1 0

-i b I1 - b2M-1ê2 0 0 I1 - b2M-1ê2

with b = v ê c (c = speed of light in a vacuum). 

The quantities  EH = EkL  and  HH = HkL  appearing  in  the  Maxwell  equations  (in  a  vacuum) can be  combined similarly
into a new quantity, the electromagnetic field strength tensor F (Fmn). 

0 Hz -Hy -i Ex

-Hz 0 Hx -i Ey

Hy -Hx 0 -i Ez

i Ex i Ey i Ez 0

As a tensor,  its transformation is given by Fmn
£ = Lma Lnb Fab.  (For more details, see any textbook on electrodynamics,

e.g., [29÷] and [237÷]; for a three-dimensional tensor formulation, see [120÷].)
1

Now, we want  to use these equations to find the electric and magnetic field strengths in a moving coordinate system.
Here is the Lorentz transformation matrix. 
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Clear[v, c, β, x, y, z, t];
β = v/c;
LorentzTrafo = {{1/Sqrt[1 - β^2],     0, 0, I β/Sqrt[1 - β^2]},
                {0,                      1, 0, 0             },
                {0,                      0, 1, 0             },
                {-I β /Sqrt[1 - β^2], 0, 0, 1/Sqrt[1 - β^2]  }};

Its determinant is 1, which means that absolute space-time volumes are not altered by the transformation of coordinates. 

Det[LorentzTrafo] // Simplify

Here is the four-vector of space-time. 

fourX = {x, y, z, I c t};

Now,  space  and  time  are  transformed  from  fourX  to  fourXs  as  follows.  (Note  that  we  must  “dimensionalize”
fourXs  before  the  computation  of  the  transformed  quantities:  fourXs[1]  can  be  given  a  value,  but  not  four
Xs[[1]]; fourXs = {, , , } would indeed suffice, but it is visually ugly and generates messages.) 

fourXs = {Null, Null, Null, Null};
Do[fourXs[[i]] = Sum[LorentzTrafo[[i, j]] fourX[[j]], {j, 4}], {i, 4}];
fourXs // Simplify

We can get the same result (faster) with matrix multiplication.

LorentzTrafo.fourX // Simplify

(We could also have used matrix multiplication for the above summation purpose.) The time coordinate x4 ê HicL can be
written in a more elegant form. 

fourXs[[4]]/(I c) // Simplify

In the limiting case c Ø ¶,  we get  exactly x£ = x - v t  and t£ = t,  that is,  the Galilean transformation.  Here is the field
strength tensor. 

F = {{    0,    Hz,  - Hy, -I Ex},
     { - Hz,     0,    Hx, -I Ey},
     {   Hy,  - Hx,     0, -I Ez},
     { I Ex,  I Ey,  I Ez,     0}};

Now, we extract the electric and magnetic field strengths. 

electricFieldStrength[fieldTensor_] :=
{fieldTensor[[4, 1]], fieldTensor[[4, 2]], fieldTensor[[4, 3]]}/I;

magneticFieldStrength[fieldTensor_] :=
{fieldTensor[[2, 3]], fieldTensor[[3, 1]], fieldTensor[[1, 2]]};

In the original coordinate system, we get exactly E and H. 

electricFieldStrength[F]

magneticFieldStrength[F]

With the approach above, we get the field strength tensor in the new (moving) coordinate system. 

FTrafo = Table[
  Sum[LorentzTrafo[[i, k]] LorentzTrafo[[j, l]] F[[k, l]],
      {k, 4}, {l, 4}], {i, 4}, {j, 4}] // Simplify

Again, by matrix multiplication, we can arrive at the same result.

LorentzTrafo.F.Transpose[LorentzTrafo] // Simplify
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Thus, we obtain the “new” electric and magnetic field strengths. 

Es = electricFieldStrength[FTrafo]

Hs = magneticFieldStrength[FTrafo]

Although  both  E  and  H  vary,  quantities  that  remain  constant  under  a  transformation  of  variables  exist:  E2 - H2  and
E.H . 

Es.Es - Hs.Hs // Simplify

Es.Hs // Simplify

These two invariants [103÷] can also be found from the field strength tensor and the so-called dual field strength tensor
F*, defined by 

Fmn
* = emnab Fab

where emnab  is the complete antisymmetric tensor of fourth order (the Levi–Civita tensor, discussed earlier in Subsection

6.1.2). 
LeviCivita∂[var__] := Signature[{var}]

FDual = Table[Sum[LeviCivita∂[i, j, k, l] F[[k, l]],
                  {k, 4}, {l, 4}], {i, 4}, {j, 4}];
MatrixForm[FDual]

Using matrix operations, we can carry out the last operation without explicitly using iterators.

LeviCivita∂4D = Table[LeviCivita∂[k, l, i, j], 
                      {k, 4}, {l, 4}, {i, 4}, {j, 4}];

Tr[Transpose[LeviCivita∂4D.F, {3, 1, 4, 2}], Plus, 2] // MatrixForm

Now, we can express the invariants in the following way: -2 IE2 - H2M. 
Sum[F[[i, j]] F[[i, j]], {i, 4}, {j, 4}]

Again, by using matrix operations a short and efficient method of calculating the last result is obtained.

-Tr[F.F]

We also get the second invariant (up to the numerical factor of -8 i). 

Sum[FDual[[i, j]] F[[i, j]], {i, 4}, {j, 4}]

The matrix form of the last input is similar to the one from above.

-Tr[FDual.F]

Also the eigenvalues of Fab can be expressed through the two invariants E2 - H2 and E.H . 

(Eigenvalues[F] // Simplify) //.
             {Ex^2 + Ey^2 + Ez^2 - Hx^2 - Hy^2 - Hz^2 -> - 1,
              Ex Hx + Ey Hy + Ez Hz -> 2}

This result concludes our  little detour into classical electrodynamics, but many other things could now be studied, for
example,  how  to  move  relative  to  a  given  electromagnetic  field  to  observe  it  as  only  an  electric  field  or  only  as  a
magnetic field, and so on; we come back to this subject in Chapters 1 and 2 of the Graphics volume [301÷]. 

In  many  applications,  the  following  situation  occurs.  We  have  more  equations  than  unknowns,  and  all  the  equations
together have to be fulfilled “as well as possible”. The tool (in the linear case) for achieving this result is the function
PseudoInverse [33÷], [284÷].
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?PseudoInverse

 

PseudoInverse[matrix]

gives the Moore–Penrose inverse of matrix. 

The Moore–Penrose inverse of a matrix A
é

 of a matrix A is uniquely defined by the following four properties:

à A.A
é

.A = A

à A
é

.A.A
é

. = A
é

à IA.A
é MT = A.A

é

à IAé .AMT = A
é

.A

As an application of the PseudoInverse, let us calculate the “best” approximation of an intersection of a bunch of
lines that nearly intersect in one point.

The  implicit  equation  of  a  line  going  through  a  given  point  {p0x, p0y}  with  a  given  direction  {dx, dy}  (we
discuss Eliminate in Chapter 1 of the Symbolics volume [303÷]) is given by the following expression.

Subtract @@ Eliminate[
   Thread[{x, y} == {p0x, p0y} + t {dx, dy}], {t}] // Simplify

Here are 12 lines with random slopes, all going “nearly” through the point 81 ê2, 1 ê2<. We represent these lines in the
form {point, direction}.

tab = Table[{1/2 + {Abs[Sin[k]], Abs[Cos[k]]}/10., 
             1.{Sin[k E], Cos[k GoldenRatio]}}, {k, 12}]

Here is a sketch of the situation at hand.

Show[Graphics[{Line[{#[[1]] - 200 #[[2]], 
                     #[[1]] + 200 #[[2]]}]& /@ tab}],
     PlotRange -> {{0, 1}, {0, 1}}, Frame -> True,
     AspectRatio -> Automatic]

res contains the implicit equations of the 12 lines.

res = #[[2, 2]] (#[[1, 1]] - x) + #[[2, 1]] (y - #[[1, 2]])& /@ tab

Let us look for the “point” of intersection. The best we can do is to solve the above system as well as possible in the
sense to keep all squared differences minimal. Here is the brute force approach.

sol = Solve[{D[#, x] == 0, D[#, y] == 0}&[
            Expand[Plus @@ (res^2)]], {x, y}]

Here is the Moore–Penrose approach. We make a list of the parameters of the lines.

lineData = Module[{cx, cy, constant},
                  (* could use CoefficientList from 
                     Chapter 1 of the Symbolics volume here *)
                  cx = Cases[#, _ x][[1]]/x;
                  cy = Cases[#, _ y][[1]]/y;
                  constant = # - cx x - cy y // Chop;
                  {cx, cy, constant}]& /@ Expand[res]

This is the matrix constructed.

A = Take[#, 2]& /@ lineData;
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Here is right-hand side.

b = Last /@ lineData;

We arrive at the same coordinates for the “best” crossing point.

PseudoInverse[A].b

Here the calculated point (as the center of the concentric circles) and the lines are shown.

Show[Graphics[{{GrayLevel[1/2], 
                Table[Circle[{x, y} /. sol[[1]], r], {r, 0, 0.1, 0.01}]},
                Line[{#[[1]] - 200 #[[2]], #[[1]] + 200 #[[2]]}]& /@ tab}],
     PlotRange -> {{0.3, 0.7}, {0.3, 0.7}},
     AspectRatio -> Automatic, Frame -> True]

Mathematica  can also calculate the pseudoinverse of a symbolic matrix. Because the resulting matrix for a 3 μ 2 input
matrix is quite large, we extract common denominators using extractCommonDenominator.

extractCommonDenominator[m_?MatrixQ] :=
Module[{(* the common denominator *)
        den = PolynomialLCM @@ Denominator[Flatten[Simplify[m]]]},
       (HoldForm @@ {Cancel[m den]})/den /. 
        (* use bar for conjugation *) Conjugate[a_] :> OverBar[a]]

PseudoInverse[Table[Subscript[ , i, j], {i, 3}, {j, 2}]] //
                                   extractCommonDenominator

Most of the commands relating to linear algebra introduced in this chapter possess options. 

Options[Det]

Options[Inverse]

Options[Eigensystem]

Options[Eigenvectors]

Options[Eigenvalues]

Options[LinearSolve]

The  option  Modulus -> integer  is  of  no  interest  here;  it  essentially  says  that  all  numbers  that  appear  are  to  be
regarded modulo integer. The two other options are Method and Inverse. 

 

Method

is an option for the commands LinearSolve, Inverse, RowReduce (to be treated soon), 
and NullSpace. It defines the internal algorithm to be used in the computation.

Default:

Automatic

Admissible: 

DivisionFreeRowReduction or CofactorExpansion or OneStepRowReduc
tion

It  is  not  easy to  give general  guidelines  for  deciding which method to  use for  which kind of  matrices (sparse  or  full;
symbolic,  exact,  or  numerical;  the  ratio  of  the  largest/smallest  element;  etc.).  The  speed  of  execution  and  size  of  the
result (for underdetermined systems of equations, even the result itself) may depend heavily on the method used. Thus,
the user should explore the various methods for the matrices at hand. Here is an example for LinearSolve. 
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Clear[a, b, c, M, vec];
M = {{a, 1, b, 2}, {c, 0, a, 1}, {a, a, 2, 0}, {0, 2, a, b}};
vec = {1, 1, 1, 1};

Timing[ByteCount[LinearSolve[M, vec, Method -> #]]]& /@
  {CofactorExpansion, DivisionFreeRowReduction, 
   OneStepRowReduction, Automatic}

Be aware that not only the timings but also the explicit form of the results depend on the chosen method. 

SameQ @@ (LinearSolve[M, vec, Method -> #]& /@
  {CofactorExpansion, DivisionFreeRowReduction,
   OneStepRowReduction, Automatic})

The second option is ZeroTest. 

 

ZeroTest

is an option for the commands Eigensystem, Eigenvectors, LinearSolve, 
Inverse, RowReduce (to be treated below), and NullSpace. It defines the function to be 
applied to determine whether matrix elements and temporary expressions are zero.

Default:

for LinearSolve, Inverse: (# == 0&) for Eigensystem, Eigenvectors, 
NullSpace, RowReduce: Automatic (meaning various heuristic tests)

Admissible: 

arbitrary (pure) function or Automatic 

Here is an obviously singular matrix. 

nullMatrix = (* 4 hidden zeros *)
{{x(x + 1) - (x^2 + x), Cos[1]^2 - 1/2(1 + Cos[2])},
 {Sin[1] - 2 Sin[1/2] Cos[1/2], Sin[Pi/8] - Sqrt[2 - Sqrt[2]]/2}}

We can see that all elements are zero by using FullSimplify (we discuss FullSimplify in detail in Chapter 3 of
the Symbolics volume [303÷]).

FullSimplify[nullMatrix]

With the default ZeroTest -> (# == 0&), we seem to get an inverse. 

Inverse[nullMatrix]

But this nonsingularity only seems to be the case. 

N[%]

With the setting ZeroTest -> Automatic,  Inverse  recognizes that it  is dealing with a singular matrix during
the computation. 

Inverse[nullMatrix, ZeroTest -> Automatic]

To  illustrate  the  application  of  mathematical  operations  on  lists,  we  give  one  more  example,  the  so-called  quantum
cellular automata. 
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Physical Remark: Quantum Cellular Automata 

Suppose we are given a list c0 j  ( j = 1, …, n) of complex numbers (the states of the individual particles (=elements of a

discretization of a function describing them) in a physical system at time t = 0). For j < 1 and j > n, we continue the list
periodically: 

c0 n+1 = c0 μ 1, c0 n+2 = c0 μ 2, …, c0 μ 0 = c0 n, c0 -1 = c0 n-1, …

The state of the system cij at a later time (we consider only discrete time steps here) is given by

ci+1 j = Ici j + i d ci j-1 + i d ci j+1M, ci n +1 = ci 1, ci 0 = ci n.

Here d  is a complex parameter characterizing the system, and  is a normalization constant defined implicitly so that
we have for all i

‚
j=1

n

°ci j•2 = 1.

For  details  on  quantum  cellular  automata,  see  [118÷],  [119÷],  [116÷],  [117÷],  [5÷],  [30÷],  [210÷],  [147÷],  [45÷],
[13÷],  and  [95÷];  and  for  a  general  treatment  on  cellular  automata,  see,  for  example,  [327÷].  For  quantum  random
walks, see [224÷].
1

We  now  want  to  find  the  cij  (i = 1, …, m)  for  a  given  list  c0 j.  Here  is  an  implementation.  Note  that  we  can  get  by

without using temporary auxiliary variables. First, for each list, we add the last element to the front and the first element
to the end of the list, as suggested by the above periodicity condition. The resulting list is divided into sublists of length
three using Partition[…, 3, 1], and then the elements at the next level are computed using Dot[{I d, 1, I
Conjugate[d]}, #]& /@ …. Finally, the function Function[p, p/Sqrt[p.Conjugate[p]]] is used to
compute , and all elements are divided by  = Sqrt[p.Conjugate[p]]. This process is repeated iter times
via NestList. 

QuantumCellularAutomata[start_, δ_, iter_] :=
NestList[Function[p, p/Sqrt[p.Conjugate[p]]][
               ({I δ, 1, I Conjugate[δ]}.#& /@
              Partition[Prepend[Append[#, First[#]], Last[#]], 3, 1])]&,
         Function[p, p/Sqrt[p.Conjugate[p]]][N[start]], iter]

Symbolically, this result grows very quickly, while a numerical example is much faster and shorter. 

{LeafCount[#], ByteCount[#]}&[
                 QuantumCellularAutomata[{α, β, γ, δ, ε}, 2, 3]]

QuantumCellularAutomata[{0, 0, 1, 0, 0}, 2, 5]

This implementation allows us to choose significantly longer initial lists, and to use many more iterations, whereas still
only using an acceptable amount of time. We now look at the resulting data sets graphically. To get real numbers, we
use Abs[#^2]&. We discuss the command ListDensityPlot and its options in detail in Chapter 3 of the Graphics
volume [301÷]. 
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ListDensityPlot[Abs[Transpose @ QuantumCellularAutomata[
    Join[#, {1}, #]&[Table[0, {70}]], 20(1 + I), 1000]]^2,
                 (* color according to the absolute value *)
                 ColorFunction -> (Hue[0.74#]&), Mesh -> False,
                 Frame -> False, AspectRatio -> 1/3] // Timing

For  some  interesting  patterns  formed  by  friends  of  quantum  cellular  automata,  namely  heads  of  quantum  Turing
machines, see [161÷], and [162÷].

To end this subsection, we give some comments regarding “symbolic” matrix calculations. By symbolic, we mean that
the matrix is not explicitly given, so its dimensions are not known. Let us start with solving a matrix equation. 

Clear[A, b, x];
Solve[A.x == b, x]

The result  looks  a bit  strange at first  sight,  but  is  reasonable.  Mathematica  does  not  give Dot  special treatment, so it
just says that we should take the inverse with respect to the second argument. We could bring this into a more common
form  by  making  a  definition.  (We  use  Dot[a]  on  the  right-hand  side  of  the  following  definition  to  match  also  the
cases A.B.x == b, A.B.C.x == b, ... .) 

Unprotect[InverseFunction]

InverseFunction/:
InverseFunction[Dot, n_, n_][a__, b_] := Inverse[Dot[a]].b

Now, we have the following behavior. (Do not worry about the warning; it just means that whenever inverse functions
are used, some possible solutions may be lost. However, we know this will not be the case in this example, because we
are  inverting  a  linear  relation.  And  because  the  expression  A.Inverse[A]  for  a  symbol  A  without  a  value  cannot
evaluated to an identity matrix of unknown dimension, it will stay unevaluated. As a result, Solve cannot verify that
the found solution was correct and will discard it. The option setting VerifySolutions -> False tells Solve
to skip the verification step.)

Solve[A.x == b, x, VerifySolutions -> False]

Now, let us look at a slightly more complicated example. 

Solve[A.B.x == b, x, VerifySolutions -> False]

Again, we had only partial success in our first trial. Probably, we would like to see Inverse[A.B] “done”. We can
easily attach a corresponding rule to Inverse. 

Unprotect[Inverse]

Inverse[matProd_Dot] := Dot @@ (Inverse /@ Reverse[List @@ matProd])

Here is our result. 

Solve[A.B.x == b, x, VerifySolutions -> False]

Let us remove the above definitions. They show that not much is built-in for symbolic matrix manipulations, but it is no
problem to add the missing definitions to the built-in rules to get the desired behavior. 

Clear[InverseFunction, Inverse]

Protect[InverseFunction, Inverse]

Numerical linear algebra with sparse matrices we will discuss in Chapter 1 of the Numerics volume [302÷].

Σ (* session summary *) TMGBs`PrintSessionSummary[]
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à 6.5.2 Constructing and Solving Magic Squares
As  an  application  of  lists  and  the  linear  algebra  commands  in  Mathematica,  in  this  subsection,  we  construct  magic
squares and solve them. We take a rather naive and straightforward approach; for a more mathematical construction, see
the references cited below. A magic square is a square array of positive integers so that the sum of the elements in its
columns is equal to the sum of the elements in its rows and to the sum of its elements along its mainDiagonal and
subDiagonal.  (Sometimes,  it  is  also  required  that  each  number  appear  only  once  in  the  magic  square;  we  do  not
demand this  here.)  Note  that  a  magic square  of  nth  order  contains  n2  elements,  but  that  the  number of  equations  that
determine its elements is only 2 n + 2; the system of equations is underdetermined for n > 2. Using LinearSolve, we
get a good solution in the sense that only relatively small numbers occur. 

We  begin  with  the  construction  of  magic squares.  In  order  to  apply  LinearSolve,  we  need  to  find  the  coefficient
matrix of  the  corresponding  system of  equations.  We consider  every  element of  the magic square  to be an unknown,
and number the unknowns row by row. Thus, for n = 4, we have:

x1 x2 x3 x4

x5 x6 x7 x8

x9 x10 x11 x12

x13 x14 x15 x16

The coefficient matrix for the 2 n + 2 equations for a magic square of nth-order can be constructed as follows. 

equationsMagicSquare[n_Integer] :=
 Module[{rows, columns, mainDiagonal, subDiagonal},
   (* n left-hand sides of the equation for the n rows *)
   rows = Flatten /@ Table[If[i == j, Table[1, {n}],
                                      Table[0, {n}]], {j, n}, {i, n}];
   (* n left-hand sides of the equation for the n columns *)
   columns = Flatten /@ Partition[Transpose[rows], n];
   (* equation for the main diagonal *)
   mainDiagonal = Flatten[Table[If[i == j, 1, 0], {i, n}, {j, n}]];
   (* equation for the subDiagonal *)
   subDiagonal = Flatten[Table[If[i == j, 1, 0], {i, n, 1, -1}, {j, n}]];
   (* combine the 2n + 2 equations *)
   Join[rows, columns, {mainDiagonal, subDiagonal}]]

We now look at the resulting rectangular coefficient matrices for n = 3 and n = 4. 

TableForm[equationsMagicSquare[3], TableSpacing -> {1, 1}]

TableForm[equationsMagicSquare[4], TableSpacing -> {1, 1}]

Next, we look for a solution of this system of equations. We choose one “free parameter”, the value of the sums of the
rows,  columns,  mainDiagonal,  and  subDiagonal.  We  use  this  value  only  temporarily;  the  resulting  magic
square  will  have a different  sum for  its rows,  columns,  mainDiagonal,  and subDiagonal.  The reason is that
LinearSolve  also produces  negative fractions as solutions.  Because magic squares usually consist only of positive
integers,  we  multiply  all  elements  with  the  least  common multiple  of  the  denominators,  and  add  two  to  the  absolute
value  of  the  smallest  negative  element  to  eliminate  negative  elements.  We  could  have  used  any  other  transformation
that  ensures  positivity  of  all  elements.  These  operations  do  not  affect  the  equality  of  the  sums of  the  rows,  columns,
maindiagonal, and subdiagonal,  but only the numerical value of this sum. To be able to study the intermediate results
later, the local variables of Module are enclosed in comment brackets. The function LCM calculates the least common
multiple of a set of number; we will discuss it in more detail in Chapter 2 of the Numerics volume [302÷].
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magicSquare[n_Integer, (* size *)
            rightHandSide_Integer | rightHandSide_Rational
            (* "the parameter sum" *)] :=
Module[{(* the local variables are in a comment to 
           see their values outside of the Module *)
        (* sol1, sol2, sol3, magical, summe *)},
(* find a special solution of the underdetermined system of equations *)
sol1 = LinearSolve[equationsMagicSquare[n],
                    Table[rightHandSide, {2n + 2}]];
(* multiply this solution with the least common multiple 
   [formed with LCM] of the denominators [extracted with Denominator] *)
sol2 = (LCM @@ Denominator /@ sol1) sol1;
(* add the smallest negative element + 2, or 2, respectively *)
sol3 = sol2 + If[Min[sol2] < 0, -Min[sol2] + 2, 2];
(* partition the sequence of elements obtained above
   into rows of length n *)
magical = Partition[sol3, n];
(* compute the sum of the rows, columns, mainDiagonal and subDiagonal *)
sum = Plus @@ magical[[1]];
(* Output the magic square itself, and the
   sum of the rows, columns, main-, and subDiagonals *)
 {magical, sum}]

Here are a few examples. We use TableForm instead of MatrixForm because magicSquare is not a rectangular
matrix. 

magicSquare[3, 5] // TableForm

magicSquare[3, 22] // TableForm

magicSquare[3, 3/7] // TableForm

magicSquare[4, 23/17] // TableForm

magicSquare[5, 0] // TableForm

We now look at a special example to examine the computational steps. 

magicSquare[3, 5]

sol1 is a solution of the system of linear equations. 

sol1

sol2  arises from sol1  by multiplication with the least common multiple (computed with LCM)  of  its denominators.
sol2 = (LCM @@ Denominator /@ sol1) sol1. 

sol2

We  get  sol3  from  sol2  by  adding  either  2  or  2  +  absoluteValueOfSmallestElement:  sol3 = sol2 + If[
Min[sol2] < 0, -Min[sol2] + 2, 2]. 

sol3

Then,  magical  is  created  by  partitioning  the  sequence  of  elements  in  sol3  into  rows  of  length  n.  magical =
Partition[sol3, n].

magical

sum  is  found  by  computing  the  sum  of  the  rows,  columns,  maindiagonal,  and  subdiagonals:  sum  =  Plus  @@
magical[[1]]. 
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sum

To make this example into a puzzle, we need to code our magic square. We identify for instance 0 with A, 1 with B, 2
with F, 3 with G, 4 with H, 5 with J, 6 with K, 7 with L, 8 with M, and 9 with P. 

codedMagicSquare[n_Integer,
                 rightHandSide_Integer | rightHandSide_Rational] :=
Module[{(* working variable *) aux},
 (* computation of the magic square and removal of its inner brackets 
    to simplify later computations;
    here we could have used a Map[..., ..., {-1}] construction *)
 aux = Flatten[magicSquare[n, rightHandSide], 2];
 (* transform the numbers to lists of strings of the individual digits *)
 aux = Characters[ToString[#]]& /@ aux;
 (* replace the digits by letters *)
 aux = aux //. {"0" -> "A", "1" -> "B", "2" -> "F", "3" -> "G", "4" -> "H",
                "5" -> "J", "6" -> "K", "7" -> "L", "8" -> "M", "9" -> "P"}
 (* combine the individual letters *)
 aux = (StringJoin @@ #)& /@ aux;
 (* build the original form {{magic square}, sum} *)
 {Partition[aux, n], Last[aux]}]

Finally, we have a true magic square. 

codedMagicSquare[3, 5] // TableForm

We now look at the converse: Given a magic square (or a related puzzle) and its sum in the form of coded letters, find
the numbers associated with the letters. To this end, we first define a function toNumber that converts a string into a
sum of the products of the letters with 10n. 

toNumber[s_String] :=
Module[{ch}, ToExpression[chars = Characters[s]].
             Table[10^i, {i, Length[chars] - 1, 0, -1}]];

Here is an example with a rather long sequence of letters.

toNumber["AABMPPQRSTXYZZZZ"]

In a certain sense, the solution of a magic square can be more difficult than its construction. Thus, we first program a
preliminary step: preSolveMagicSquare. This routine solves the equations for a given magic square; however, in
general, the solutions are neither positive integers nor free of arbitrary parameters. 
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preSolveMagicSquare[magic_List] :=
Module[{aux, vars, magicS, magigSN, dim, eqns},
 (* auxiliary variables *)
 aux = Union[Flatten[Characters /@ Flatten[magic]]];
 (* create the desired letters as symbols *)
 vars = ToExpression /@ aux;
 (* extract the magic square and the sum of the
    rows, columns, main-, and subDiagonals *)
 magicS = magic[[1]]; sum = magic[[2]]; dim = Length[magicS];
 (* convert the sequence of letters to coefficients and powers of 10 *)
 magicSN = Map[toNumber, magicS, {2}];
 (* combine the equations *)
 eqns = Join[(Plus @@ #)& /@ magicSN,
             (Plus @@ #)& /@ Transpose[magicSN],
             {Sum[magicSN[[i, i]], {i, dim}],
              Sum[magicSN[[dim - i + 1, i]], {i, dim}]}];
 (* convert the sequence of letters in the sums of the rows, columns, 
    main-, and subDiagonals into coefficients and powers of 10 *)
sum = toNumber[sum];
 (* connect the left-hand and right-hand sides
    of the equations to each other *)
eqns = Equal[#, sum]& /@ eqns;
(* solve the system of equations *)
Solve[eqns, vars]]

We now attempt to solve the magic square constructed above. 

test = codedMagicSquare[3, 5]

preSolution = preSolveMagicSquare[test]

Here  is  the  usual  problem with  magic  squares.  The  system of  equations  arising  from the  sums of  the  rows,  columns,
main diagonals,  and subdiagonals  does not suffice to uniquely determine the digits associated with the letters (see the
above discussion of the number of equations in a magic square). That is why we used Solve in preSolveMagic
Square  rather than LinearSolve  to find a solution to the system of equations.  We obtain the undetermined vari-
ables  by  sorting  out  all  objects  with  the  head  Symbol  on  the  right-hand  side  of  the  replacement  rules  produced  by
Solve. 

variables = Union[Cases[Level[#[[2]]& /@ preSolution[[1]], {-1}], _Symbol]]

We  still  have  to  sort  out  the  integer  solutions  for  the  desired  letters.  To  do  this,  we  first  convert  the  list  of  the
“parameter letters” obtained above into a list of iterators. Using Sequence, we can apply this “conjoining” of lists in a
Do loop, for example. 

iterators = {#, 0, 9}& /@ variables

iterators = Sequence @@ iterators

We now insert these iterators into the solution found above and check for integers. 

Do[If[And @@ (IntegerQ /@ (#[[2]]& /@ preSolution[[1]])),
      Print[Sequence @@ variables]], Evaluate[iterators]]

We now package this code. The following function solveMagicSquare gives all possible identifications lettersØintÖ
egers. It allows one digit to be mapped to different letters. 
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SolveMagicSquare[magic_List] :=
Module[{preSolution, variables, varString, iterators},
 (* a first solution, maybe containing free parameters *)
 preSolution = preSolveMagicSquare[magic];
 (* the variables still present in preSolution *)
 variables = Union[Cases[Level[#[[2]]& /@
                  preSolution[[1]], {-1}], _Symbol]];
 (* stringified variables *)                 
 varString = ToString[variables];
Which[Length[variables] == 0,
       CellPrint[Cell[TextData[{"Î All Variables are determined."}], 
                      "PrintText"]],
      Length[variables] >= 1,
       CellPrint[Cell[TextData[{
             "Î The following variables remain undetermined: ",
                    StyleBox[varString, "MR"]}], "PrintText"]]];
CellPrint[Cell[TextData[{"Î The possible solutions are:"}], "PrintText"]];
 (* calculate all possible solutions *)
 (* the iterators over the variables *)
 iterators = Sequence @@ ({#, 0, 9}& /@ variables);
 solnList = Flatten[Append[(ToString[#[[1]]] -> #[[2]])& /@
                                           preSolution[[1]],
                  (ToString[#] -> #)& /@ variables]];
 solution = {};
 (* collect all possible solutions *)
 Do[(* check solution *)
    If[And @@ ((IntegerQ[#] && 0 <= # <= 9)& /@
                  (#[[2]]& /@ preSolution[[1]])),
              AppendTo[solution, solnList]],
    Evaluate[iterators]];
 (* return the solutions *)   
  solution]

Once again, we solve the magic square constructed above. 

SolveMagicSquare[codedMagicSquare[3, 5]]

The second solution is our above encoding. 

Finally, we give one last example to test solveMagicSquare. 

magicSquare[4, 34/78] // TableForm

codedMagicSquare[4, 34/78] // TableForm

SolveMagicSquare[%]

We compare it again with our coding. 
{"0" -> "A", "1" -> "B", "2" -> "F", "3" -> "G", "4" -> "H",
 "5" -> "J", "6" -> "K", "7" -> "L", "8" -> "M", "9" -> "P"};

Two reasons explain why the same letter always appears in the lower right corner. 

First, the equations for determining the numbers in a magic square are not linearly independent, although there are only
a small number of them in comparison with the number of unknowns, which can be seen using RowReduce. 

 

RowReduce[rectangularMatrix] 

constructs a simplified form of rectangularMatrix by taking linear combinations of the rows 
and columns. 
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For a 3ä3 magic square, all equations are still linearly independent. 

equationsMagicSquare[3] // MatrixForm

However, for a 4ä4-magic square, they are no longer linearly independent. 

RowReduce[equationsMagicSquare[3]] // MatrixForm

The second reason relates to the first. The same letter appears in the lower right corner of the magic square because of
the  sorting  behavior  of  LinearSolve.  If  we  had  used  Solve  in  the  generation  of  magic  squares  in  an  analogous
way, we would have been able to build a much wider variety of magic squares. 

With a little effort, it is possible to use Solve to find the principal structure of a magic square of nth-order. Here is an
example with n = 3 and sum 3 A. 

Partition[
   (({a1, a2, a3, a4, a5, a6, a7, a8, a9} /.
      Solve[ ({a1, a2, a3, a4, a5, a6, a7, a8, a9}.# == 3/2a)& /@
              equationsMagicSquare[3],
               {a1, a2, a3, a4, a5, a6, a7, a8, a9}]) /.
                (* write in nicer form *)
                {{a -> 2A, a7 -> B, a8 -> A + B - C, a9 -> A + C}} //
       Simplify)[[1, 1]], 3] // TableForm[#, TableAlignments -> Center]&

It is also possible to find the replacement rules needed here, but this is somewhat complicated; see the references cited
below. 

Now, we look at a “real” magic square-like puzzle (adapted from [334÷]): The letters in the square 
UH EE HU LR ÖG
GU ÖR AG EH HE
SG HH GE RU AR
RE UU SR G GH

R LG RH UE EU

are to be replaced by integers so that the same letters have the same integers, and different letters are to be replaced by
different integers. In addition, the sums of the five numbers in every column should be the same as the sum of the five
numbers  in  each  of  the  two  diagonals,  namely,  the  value  represented  by  ÖEE.  Moreover,  if  the  numbers  are  put  in
increasing order, each successive pair should differ by the same constant. (If corresponding letters are put in the order
corresponding to the increasing numbers, they give the name of the author’s home town.) 

Short[#, 6]& @
(sol = SolveMagicSquare[
        {{{"uh", "ee", "hu", "lr", "ög"}, 
          {"gu", "ör", "ag", "eh", "he"}, 
          {"sg", "hh", "ge", "ru", "ar"}, 
          {"re", "uu", "sr",  "g", "gh"}, 
          { "r", "lg", "rh", "ue", "eu"}}, "öee"}])

Because of the many possible interpretations, we do not write them all out; we do collect them in sol for later use. The
37 solutions arise from various interpretations of the letters as numbers. 

Length[sol]

The solution  we want  is  determined by the  condition  that  if  the  numbers  are  put  in  increasing order,  each successive
pair should differ by the same constant. Here, this condition is coded. 

Select[sol, (Length[Union[Apply[(#2 - #1)&, #]& /@
                Partition[Sort[#[[2]]& /@ #], 2, 1]]] == 1)&]
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The last step automates the computation of the solution word and capitalizes the first letter. 

makeWord[li_] :=
StringJoin[(* capitalize first letter *)
           ToUpperCase[StringTake[#, 1]], StringDrop[#, 1]]&[
  StringJoin[Function[x, x[[1]], (* sort *)
           {Listable}][Sort[li, #1[[2]] < #2[[2]]&]]]]

This substitution gives the correct solution. 

{makeWord[%%[[1]]], makeWord[%%[[2]]], makeWord[%%[[3]]]}

So  the  answer  is  Hörselgau  (located  in  Thuringia  at  the  foot  of  the  Hörselberg  mountain  chain  (the  reader  might
know them from Richard Wagner's Tannhäuser opera) and the foot of the Inselsberg (one of the mountains Gauss used
to measure the sum of angles in a geographical triangle [267÷]).

For  more  on  magic  squares,  see  [15÷],  [173÷],  [55÷],  and  [6÷].  For  some  deeper  number  theory  studies  of  magic
squares, see [28÷], [270÷], [171÷], [330÷], [312÷], [144÷], [274÷], [40÷], [259÷], [286÷], [36÷], [275÷], [3÷], [44÷],
[78÷], [308÷], [131÷], [34÷], and [132÷]. Magic hexagons are treated in [133÷], magical parquets in [23÷], and magic
cubes in [4÷] and [254÷]. For inertia tensors of “massified” magic squares, see [258÷].

In a similar way, we could implement solutions to problems like the following [325÷]: Replace each of the letters in the
following sum by digits, such that the addition becomes correct: GAUSS+RIESE=EUKLID.

Σ (* session summary *) TMGBs`PrintSessionSummary[]

à 6.5.3 Powers and Exponents of Matrices 
The operations discussed in the previous subsection are all linear. It is also possible to compute powers of matrices. 

 

MatrixPower[matrix, exponent] 

gives the exponentth power of the square matrix matrix. 

Roughly  speaking,  a  function  f  of  a  matrix is  defined  by  the  Taylor  (Laurent)  series  of  the  function  f ,  with  powers
replaced  by  iterated  matrix  products.  (For  mathematical details  on  the  definition  of  functions  of  square  matrices,  see
[193÷], [17÷], [257÷], [188÷], [182÷], and [256÷].) Here is a rather large power. Here is the 100th power of an integer-
values 2 μ 2 matrix.

MatrixPower[{{1, 2}, {3, 4}}, 100]

The  matrix  power  A-1  is  just  the  inverse  of  the  matrix  A.  The  following  input  demonstrates  this  for  a  generic  2 μ 2
matrix.

MatrixPower[{{a11, a12}, {a21, a22}}, -1] ==
    Inverse[{{a11, a12}, {a21, a22}}]

Using the Taylor series Imatrixn ë n !M, it is also possible to define ematrix [219÷], [127÷], [248÷], [67÷]. 

 

MatrixExp[matrix] 

gives the value ematrix of the exponential function applied to the square matrix matrix. 

Here is ematrix of the above matrix. 

MatrixExp[{{1., 2.}, {3., 4.}}]

Using  FixedPointList,  we  can  examine  how  this  result  comes  about.  We  have  matrix^0 = 1,  where  1  is  the
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identity matrix of the same dimension as matrix. 
n = 0;
FixedPointList[
(n = n + 1; # + MatrixPower[{{1., 2.}, {3., 4.}}, n]/n!)&,
               {{1., 0.}, {0., 1.}}] // Short[#, 12]&

Thus, a total of 35 iterations are needed to obtain machine accuracy. 

Length[%]

Here,  MatrixExp  is  used  for  a  numerical  check of  the  identity detIeAM = eTr A.  For  A,  we use  a  Hilbert  matrix with

elements Hi + j + 1L-1, and the matrix dimension ranges from 1 to 5.

Table[Det[MatrixExp[#]] -
      Exp[Plus @@ MapIndexed[Take, #]]&[
                  Array[N[1/(#1 + #2 + i)]&, {8, 8}]], {i, 1, 5}]

Table[Det[MatrixExp[#]] - Exp[Tr[#]]&[ 
                   Array[N[1/(#1 + #2 + i)]&, {8, 8}]], {i, 1, 5}]

Using an input matrix with high-precision numbers as elements shows that the identity holds within the precision of the
calculation.

Table[Det[MatrixExp[#]] - Exp[Tr[#]]&[ 
                   Array[N[1/(#1 + #2 + i), 30]&, {8, 8}]], {i, 1, 5}]

Similar to the exponential function of a scalar argument, we can have expHAL = expHBL for two matrices A, and B with
A ∫ B. Here is an example [268÷].

MatrixExp[Pi {{0, -1}, {1, 0}}] === MatrixExp[Pi {{1, 1}, {-2, -1}}]

Next, we define an n μ n integer-valued matrix with the integers 1, 2, …, n - 1 below the diagonal and 0 else [2÷].

[n_] := Table[If[j == i - 1, i, 0], {i, 0, n - 1}, {j, 0, n - 1}];

The  exponential  function  of  [n]  can  be  calculated  through  its  defining  series.  The  series  terminates  after  the  nth
term. The function fillInStageExp  marks through which term an element gets filled.

fillInStageExp [d_] := 
Plus @@ (MapIndexed[(* mark elements *) C[#2[[1]], #1/(#2[[1]] - 1)!]&,
        Drop[FixedPointList[ [d].#&, IdentityMatrix[d]], -1], {3}] /.
        C[_, 0_] :> 0) /. (* keep fill-in time *) C[s_, _] :> s

Here is the matrix [6], its exponential function, and the fill in-time of the elements.

MatrixForm /@ { [6], MatrixExp[ [6]], fillInStageExp [6]}

Using MatrixExp, we can implement, for instance, a matrix version of Cos.

MatrixCos[m_] := (MatrixExp[I m] + MatrixExp[-I m])/2

It is well known that iterating Cos yields a fixpoint, the solution of Cos[x] == x.

FixedPoint[Cos, 1.]

Cos[%] - %

Here, the same is done for our MatrixCos and a “random” starting matrix.

startMat[n_] := Table[1/(i + j^2 + 3.), {i, n}, {j, n}];

fpl[n_] := FixedPointList[MatrixCos, startMat[n],
                          SameTest -> (Max[Abs[#1 - #2]] < 10^-10&)];
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For a 1D matrix, we recover the result from above.

fpl[1] // Short[#, 4]&

For a 2D matrix, we obtain a diagonal matrix with the entries above.

(fl = fpl[2]) // {Length[#], Last[#]}&

Again, we found a solution of Cos[x] == x.

MatrixCos[Last[fl]] - Last[fl] // Chop

Here, the convergence is visualized. We display the logarithmic difference as a function of the number of iterations.

ListPlot[Log[10, (Max[DeleteCases[Abs[#], 
                             (* no zeros *) _?(# == 0.&), {-1}]])&  /@
                  Apply[Subtract, Partition[fl, 2, 1], {1}]],
         PlotRange -> All, Frame -> True]

Using high-precision  numbers  instead of  machine numbers  shows  that  the  spurious  imaginary parts  in  the last  results
are really zero. To avoid loosing precision at each step, we use the function SetPrecision.

startMat[n_] := Table[N[1/(i + j^2 + 3), 30], {i, n}, {j, n}];

fpl[n_]  := FixedPointList[SetPrecision[MatrixCos[#], 20]&, 
                           startMat[n], 1000, SameTest -> Equal]

(fl3 = fpl[3]) // {Length[#], Last[#]}&

The nondiagonal  elements approach zero, but are always nonzero.  So the Equal  same test yields always False  and
the  iterations  stop  after  maxIter=1000  steps.  The  following  graphic  show  how  the  diagonal  (red  points)  approach  a
fixed  point  and  how the  nondiagonal  matrix elements (blue  points)  shrink.  (Because  we work  with  20-digit  matrices,
the diagonal differences become effectively zero after about 100 iterations.)

Module[{pairDifferences, diagonalDifferences, nonDiagonalDifferences},
 (* matrix differences *)
 pairDifferences = (Subtract @@@ Take[Partition[fl3, 2, 1], All]);
 (* maximal diagonal and nondiagonal matrix element differences *)
 diagonalDifferences = Max[Abs[IdentityMatrix[3] #]]& /@ pairDifferences;
 nonDiagonalDifferences = Max[Abs[(1 - IdentityMatrix[3]) #]]& /@ 
                                                        pairDifferences;
 (* show diagonal differences in red and nondiagonal differences in blue *)
 Show[Graphics[{PointSize[0.003],
  Function[{col, data}, {col, Point /@ DeleteCases[
   MapIndexed[{#2[[1]], Log[10, #1]}&, data], {_, Indeterminate}]}] @@@
   {{RGBColor[0, 0, 1], nonDiagonalDifferences},
    {RGBColor[1, 0, 0], diagonalDifferences}}}], 
    Frame -> True, PlotRange -> All]]

MatrixExp  can also deal  with matrices containing symbolic inputs.  Such matrix exponentials arise frequently when
dealing with Lie groups. Here is a typical example [318÷].

 = MatrixExp[1/2 {{0, 0, ωz, ωx - I ωy}, 
                    {0, 0, ωx + I ωy, -ωz},
                    {ωz, ωx - I ωy, 0, 0},
                    {ωx + I ωy, -ωz, 0, 0}}];

Because no automatic simplification is carried out by MatrixExp, such results are typically quite large.

LeafCount[]

Simplifying the result yields a compact answer.
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FixedPoint[Simplify[# //. 
            (* let w be the norm of the vector {wx, wy, wz} *)
            f_. ωx^2 + f_. ωy^2 + f_. ωz^2 :> f ω^2 //.
            {Sqrt[-ω^2] :> I ω, 1/Sqrt[-ω^2] :> 1/(I ω),
             Sqrt[ω^2] :> ω, 1/Sqrt[ω^2] :> 1/ω}]&, ]

MatrixPower also works with noninteger exponents. 

Here is the square root of a matrix. 

MatrixPower[{{1., 2.}, {3., 4.}}, 1/2]

If we square it, we get the original matrix again. 

%.% // Chop

It is also possible to find roots of a symbolic matrix. 

MatrixPower[{{a, b}, {c, d}}, 1/2]

Here is the third root of a numerical matrix. 

MatrixPower[{{1., 2.}, {3., 4.}}, 1/3]

Multiplying three copies of this matrix together gives back the original matrix (within roundoff error). 

%.%.%

Here the same operation is carried out using high-precision numbers.

#.#.#&[MatrixPower[N[{{1, 2}, {3, 4}}, 100], 1/3]] - {{1, 2}, {3, 4}}

Using  the  spectral  decomposition  of  the  matrix  generated  by  Eigensystem,  we  can  calculate  the  third  root  “by
hand”. If C  is the transposed matrix of the eigenvectors (fulfilling C.C-1 = C-1.C = 1),  which diagonalizes the matrix

A  (this means C-1.A.C  is a diagonal  matrix; and taking the third root of it  just  reduces to taking the third root of the
elements from the diagonal), we have 

A = C.C-1.A.C.C-1

= C.IC-1.A.CM1ê3
.IC-1.A.CM1ê3

.IC-1.A.CM1ê3
.C-1

= C.IC-1.A.CM1ê3
.C-1.C.IC-1.A.CM1ê3

 C-1.C.IC-1.A.CM1ê3
.C-1

so that A1ê3 = C.IC-1.A.CM1ê3
 C-1 Because C-1.A.C is a diagonal matrix, this quantity is easy to calculate to any power.

Here, this identity is exemplified. 
myPower[mat_, n_] :=
Module[{evals, evecs, C, matDiagonal},
       (* the eigensystem *)
       {evals, evecs} = Eigensystem[mat];
       (* transform matrix to diagonal form *)
       C = Transpose[evecs];
       matDiagonal = Inverse[C].mat.C;
       (* take ordinary power of matDiagonal and transform back *)
       C.Power[matDiagonal, n].Inverse[C]]

myPower[{{1., 2.}, {3., 4.}}, 1/3]

%.%.%

Using high-precision numbers shows agreement in all significant digits.
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myPower[N[{{1, 2}, {3, 4}}, 40], 1/3]

%.%.%

Now let us use the matrix functions discussed for an application.

Mathematical Remark: Abstract Evolution Equations

The solution to the second-order ordinary differential equation u≥HtL = uHtL, where  is a t-independent expression, is
given by

uHtL = coshIt M u0 +
sinhIt M

v0.

Here u0 = uH0L and v0 = u£H0L. If we consider the vector equation u≥HtL = . uHtL where  is now a t- and uHtL-indepen-
dent operator, the solution can be written in the form [189÷], [80÷]

uHtL = .u0 + .v0 = coshIt M.u0 + sinhIt M.I M-1
. v0

where  now u0 = uH0L  and  v0 = u£H0L.  The functions  coshIt 1ê2M,  sinhIt 1ê2M,  and  I 1ê2M-1  of  the  operator   are  to  be

interpreted appropriately, for instance, through their power series. (Because coshIt 1ê2M and I 1ê2M-1 in the second term

of the solution are both functions of , they commute and their order does not matter.
1

In  the  following,  we will  consider  the  case  where  uHtL  is  a  vector  with  elements unHtL  and  is  a  matrix.  We start  by
implementing  the  three  matrix  functions  MatrixCosh,  MatrixSinh,  and  MatrixSqrt  through  the  two  built-in
functions  MatrixExp  and  MatrixPower.  Operator  application  and  operator  composition  now  become  matrix
multiplication.

MatrixCosh[m_] := (MatrixExp[m] + MatrixExp[-m])/2
MatrixSinh[m_] := (MatrixExp[m] - MatrixExp[-m])/2
MatrixSqrt[m_] := MatrixPower[m, 1/2]

As a  specific  example,  we  consider  Newton’s  equation  of  motion  for  three  unit  mass  particles  coupled  to  each  other
with springs of unit stiffness [62÷]. The 0th and 4th particles are fixed.

eqs = {u[1]''[t] ==         - 2 u[1][t] + u[2][t], 
       u[2]''[t] == u[1][t] - 2 u[2][t] + u[3][t], 
       u[3]''[t] == u[2][t] - 2 u[3][t]};

It is straightforward to extract the matrix  corresponding to the system eqs and to calculate the matrix . Its elements
are relatively complicated functions of t.

 = {{-2, 1, 0}, {1, -2, 1}, {0, 1, -2}};
U  = MatrixCosh[t MatrixSqrt[]] // (* some simplification *)
            Normal // ToRadicals // (Together //@ #)& // Simplify //
            ExpToTrig // Simplify

Here is a quick check that the so-found solution fulfills the original differential equations and the initial conditions.

sols = Rule @@@ Transpose[{{u[1], u[2], u[3]},
           Function[t, #]& /@ (U.{u[1][0], u[2][0], u[3][0]})}];

{u[1][0], u[2][0], u[3][0]} /. sols /. t -> 0 // FullSimplify
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(* for a purely symbolic verification:
   FullSimplify[RootReduce //@ (eqs /. sols)] *)
eqs /. sols // N[#, 22]& // Simplify

Now let us take a much larger example, namely o = 51 nonfixed particles (the 0th and the 52th particle are held fixed).
This time we construct a numerical solution only.

o = 51;
(* 0th and oth particle are fixed *)
 = Table[Which[n == m, -2, Abs[n - m] == 1, 1, True, 0],

          {n, o}, {m, o}];
          
 = MatrixSqrt[N[ ]];
[t_] := MatrixCosh[t ];

For the initial condition ukHt = 0L = dHo-1Lê2,k , uk
£ HtL = 0 (this means at the start only the centermost particle is elongated)

we calculate the solutions for 100 times t and display the solution.

u0 = Table[If[n == (o - 1)/2, 1., 0.], {n, o}];
ListPlot3D[Append[Prepend[#, 0], 0]& /@
           Table[ [t].u0, {t, 0, 12, 12/100}], 
           Mesh -> False, PlotRange -> All] // Timing

The last calculation has the drawback that for each t  we had to calculate a matrix exponential.  While this is relatively
quick done,  carrying out  such an exponentiation hundreds  of times can take a while.  If  we consider together with the
time evaluation of unHtL, the time evolution of un

£ HtL given by [264÷]

u£HtL = sinhIt M. .u0 + coshIt M. v0

then we get a time-independent map 8uHt + d tL, u£Ht + d tL< = Hd tL.8uHtL, u£HtL<. This means that the four block matrices
forming  are only dependent on d t  and not explicitly on t.  So they have only once to be calculated. As a result, the
above calculation can be carried out much more efficiently. This time we solve for 0 § t § 40. One nicely sees how the
initial  distribution  reaches  the  fixed  0th  and  52th  particles  and  interferences  of  the  reflected  and  original  oscillations
occur. We display the resulting solution as a 3D plot and as a density plot.

δt = 0.05;
  = MatrixCosh[δt ];
  = MatrixSinh[δt ].Inverse[ ];
 
 = MatrixSinh[δt ]. ;
 = MatrixCosh[δt ];

(* initial velocities *)
v0 = Table[0, {n, o}];

{u, v} = {u0, v0};
(data = Append[Prepend[First[#], 0], 0]& /@ 
          Table[{u, v} = {.u + .v, .u + .v}, {800}];) // Timing

Show[GraphicsArray[
Block[{$DisplayFunction = Identity},
 {ListPlot3D[data, Mesh -> False, PlotRange -> All],
  ListDensityPlot[data, Mesh -> False, PlotRange -> Automatic, 
                 MeshRange -> {{0, o + 1}, {0, 800 δt}},
                 ColorFunction -> (Hue[0.8 #]&)]}]]]

For the Green’s function of the finite linear chain, see [26÷], [60÷]. (For problems with time-dependent coefficients, the
matrix  exponent  has  to  be  replaced  with  a  time  ordered  matrix  exponent  [170÷];  for  systems  of  coupled  chains,  see
[81÷].)
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We conclude this subsection with an illustration of the theorem of Cayley–Hamilton. (Because of time limitations, we
program only the case in which all elements are numbers.) 

Mathematical Remark: Theorem of Cayley-Hamilton

Let  A  be  a  square  matrix  of  dimension  d.  The  associated  characteristic  polynomial  (in  l)  is  †A - l 1§ = 0,  where  1
denotes  the  corresponding  d-dimensional  identity  matrix.  Substituting  for  l  in  this  equation  A  itself,  the  resulting
polynomial equation in the matrix A is satisfied. 
1

We restrict the arguments to numeric ones to avoid very time- and memory-consuming calculations.

CayleyHamiltonTrueQ[mat_List?
         (* Test whether mat is a square matrix
            containing only numbers *)
          ((MatrixQ[#, NumberQ] && Length[Dimensions[#]] == 2 &&
            Dimensions[#][[1]] == Dimensions[#][[2]]) &)] :=
Module[{dim, characteristicPolynomial, characteristicPolynomialList,
        characteristicPolynomialMatrix, λ},
       (* determine the dimension of the matrix *)
       dim = Length[mat];
       (* compute the characteristic polynomial *)
       characteristicPolynomial = Det[mat - λ IdentityMatrix[dim]];
       (* for ease of manipulation, change the head from Plus to List *)
       characteristicPolynomialList = List @@ characteristicPolynomial;
       (* replace the powers of l by powers of the matrix *)
       characteristicPolynomialMatrix =
            Replace[#, {a_. λ^n_  :>  a MatrixPower[mat, n],
                        a_. λ     ->  a mat,
                        a_        ->  a IdentityMatrix[dim]}]& /@
                                        characteristicPolynomialList;
       (* simplify and check whether the zero matrix is obtained *)
       If[Simplify[Plus @@ characteristicPolynomialMatrix] ==
                                          Table[0, {dim}, {dim}],
           True, False]]

Here is a test with a 2ä2 matrix. 

CayleyHamiltonTrueQ[{{5, 3}, {6, 4}}]

For nonsquare matrices, no suitable rule is implemented. 

CayleyHamiltonTrueQ[{{5, 3}, {6, 4}, {8, 9}}]

The same holds when symbolic elements appear. 

CayleyHamiltonTrueQ[{{5, 3}, {6, symbolic}}]

Next, we consider a larger matrix. 

CayleyHamiltonTrueQ[Table[i + j, {i, 6}, {j, 6}]]

In  the  implementation of  CayleyHamiltonTrueQ  given  above,  we  calculated  the  characteristic  polynomial  using
Det. Mathematica also has a built-in command to calculate characteristic polynomials [100÷].

??CharacteristicPolynomial
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CharacteristicPolynomial[matrix, var]

calculates the characteristic polynomial of the square matrix matrix in the variable var. 

Here is a simple example.

CharacteristicPolynomial[Table[i + j - 1/j, {i, 3}, {j, 3}], λ]

The same result is obtained by calculating †A - l 1§.
Det[Table[i + j - 1/j, {i, 3}, {j, 3}] - λ IdentityMatrix[3]]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

6.6 The Top Ten Built-in Commands 
As the last application of lists (although a more time-consuming one), we investigate the frequency of use for the nearly
2000 built-in Mathematica commands. We conduct our search in the standard Mathematica packages. 

We begin by finding all built-in commands that we want to count.  (We must use DeleteCases  to  get rid of com
mands because it is added to the list of variables before Names["*`*"] is carried out.) 

commands = DeleteCases[Names["*"], "commands"];

We now package all commands in HoldPattern,  which prevents their evaluation, and it is also much more conve-
nient for matching patterns than is the Unevaluated, already used on other occasions. 

allBuiltInNames = (HoldPattern @@ ToHeldExpression[#])& /@ commands;

Short[allBuiltInNames, 18]

Now,  we  need  to  load  the  programs  to  be  searched.  We  obtain  a  list  of  their  names  using  FileNames.  (We  now
introduce  this  command,  although,  in  general,  it  is  not  our  intention  to  discuss  commands dealing  with  the  operating
system.) 

 

FileNames[fileStringNameWithPossibleMetaCharacters, directory, Infinity] 

gives a list of all file names that match fileStringNameWithPossibleMetaCharacters and are in 
the directory directory or in any of its subdirectories. 

Here are all files of interest to us. (The construction 
Select[$Path, StringMatchQ[#, "*Packages*"]&]

is  needed  to  access  to  the  package  directory  and  other  directories  containing  name.m  files,  independent  of  the  plat-
form.) 

files = Union[Flatten[{
filesPackages = FileNames["*.m", #, Infinity]& /@
                  Select[$Path, StringMatchQ[#, "*StandardPackages*"]&],
(* optional *)
filesStartUp = FileNames["*.m", #, Infinity]& /@
                          Select[$Path, StringMatchQ[#, "*StartUp*"]&]}]];

Short[files, 10]

We have the following number of files. 

Length[files]
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We now get to the heart of the routine for analyzing the commands: whichCommandsAreUsed gives a list whose ith
element is the number of times the ith command in allBuiltInNames is used in these packages. In anticipation of
its later use, the argument of whichCommandsAreUsed  should be in the form of a list of Mathematica  definitions,
each enclosed in Hold. 

We now define a function hold such that it meets the following conditions: 

† It is not a built-in function. 

† Its arguments never change. 

Thus, we give hold only the attribute HoldAll and do not give any explicit function definition. 

SetAttributes[hold, HoldAll];

The  function  whichCommandsAreUsed  operates  as  follows.  First,  all  Hold[Null]  are  removed  from  the  list.
These Hold[Null] were generated while parsing comments and newlines in the packages. Next, all Hold commands
(built-in commands) at  level 1 enclosing the expressions  are replaced by the function hold  defined above.  Then, the
head List of the enclosing list is replaced using hold. To get all built-in commands that are used (and to prevent their
immediate  evaluation),  we  enclose  all  atomic  expressions  with  hold,  using  Map[hold, expr, {-1}, Heads
-> True]. We split the resulting expression with Level[hold[…hold[…]…], {-2}, Heads -> True]

into expressions of the form hold[atom]. Finally, using Count on these expressions, we count how often each built-
in command appears. (A related construction can be found in [194÷], Subsection 5.3.2.) 

An  alternative  approach  to  using  the  HoldAll  attribute  and  HoldPattern  is  to  convert  the  interesting  parts  into
strings. Then, no danger exists of an evaluation taking place. We believe the implementation given here is more interest-
ing and more elegant. 

whichCommandsAreUsed[l_?(VectorQ[#, (Head[#] == Hold&)]&)] :=
Module[{buildingBlocks, result},
(* keep current status of spelling messages *)
oldspell = General::spell; oldspell1 = General::spell1;
Off[General::spell]; Off[General::spell1];
buildingBlocks = (* make all hold[...] *)
  Level[Map[hold, hold @@ (Apply[hold, #]& /@  Select[l,
                                  (# =!= Hold[Null]&)]),
            {-1}, Heads -> True],
       {-2}, Heads -> True];
(* now count *)
result = Count[buildingBlocks, #, {-1}]& /@ allBuiltInNames;
(* The last step was simple, but is relatively slow. 
   Using hashing and sorting we could considerably speed it up:

  Module[{  = Table[0, {Length[allBuiltInNames]}], },
   MapIndexed[( [#1] = #2[[1]])&, hold @@@ allBuiltInNames];
   counts = Cases[{ [First[#]], Length[#]}& /@ 
                                     Split[Sort[buildingBlocks]],
                  {_Integer, _}];
   Do[ [[counts[[j, 1]]]] = counts[[j, 2]], {j, Length[counts]}];
   result = ];
*)
(* restore old status of spelling messages *)
If[Head[oldspell]  === String, On[General::spell]];
If[Head[oldspell1] === String, On[General::spell1]];
result]
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To avoid getting a list of nearly 2000 elements that are mostly 0s (any single package will use only a small fraction of
all  built-in  commands),  we  define  the  function  whichCommandsAreUsedWithCommand.  This  routine  uses  the
result  of  whichCommandsAreUsed  and  produces  an  ordered  list  of  the  number  of  times  the  built-in  commands
appear. 

whichCommandsAreUsedWithCommand[l_List] :=
Sort[ (* more often used commands come first *)
  Select[Thread[(* mix number and names *)
                {commands, l}], (#[[2]] != 0)& ],
         OrderedQ[{#2[[2]], #1[[2]]}]& ]

We now test it. 

a = Append; b = Plot; (* to see if a and b are evaluated *)
whichCommandsAreUsedWithCommand[
whichCommandsAreUsed[{Hold[a; a + 1; a + 2],
                      Hold[2 3],
                      Hold[{6}],
                      Hold[Function[Sin, Sin + Cos]],
                      Hold[b[c]],
                      Hold[hold],
                      Hold[N @@ (r& /@ {s, ss})],
                      Hold[Quit[]],
                      Hold[ReleaseHold[Hold[E]]],
                      Hold[Hold],
                      Hold[N[6]],
                      Hold[1 = 2],
                      Hold[6[N]],
                      Hold[$IterationLimit]}
                    ]]

Our implementation worked perfectly. Nothing is evaluated, Append and Plot do not appear, $IterationLimit
does appear,  and neither Quit  nor 1 = 2  leads to an error  message or quit  the kernel.  Moreover,  the outermost list
and the occurrences of Hold at level 1 are not counted.

Let us detour for a moment, and let us use the just-implemented functions to analyze which commands have been used
how often inside the current notebook. To do this, we read the current notebook as a Mathematica expression.

thisNotebook = Get[ToFileName["FileName" /. 
                   NotebookInformation[EvaluationNotebook[]]]]; 

All inputs appear in cells of type "Input".

inputCells = Cases[thisNotebook, 
                   Cell[_, "Input" (* | Program *), ___], Infinity]; 

We  extract  the  actual  inputs  and  transform  them  into  held  Mathematica  expressions.  (The  message  Trace::shdw
comes from the function Global`Trace introduced in Subsection 6.5.1.)

inputCells // Length

heldInputs = DeleteCases[
   Which[Head[#[[1]]] === String, ToHeldExpression[#[[1]]], 
         Head[#[[1]]] === TextData, 
         (* convert syntactically correct expressions *)
         If[SyntaxQ[#], ToHeldExpression[#]]&[
            (* make input string *)
            StringJoin[#[[1, 1]] /. (* remove style of comments *)
                       StyleBox[s_, ___] :> s]]]& /@ inputCells, 
                           Null | $Failed]; 
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Here is the result of which functions have been used how often. 

whichCommandsAreUsedWithCommand[
         whichCommandsAreUsed[heldInputs]] // Take[#, 20]&

In case, the reader is wondering about the relatively large number of occurrences of Null in the last result: They arise
from inputs like the following.

FullForm[Hold[a; b;]]

Here is the total number of occurrences of built-in functions.

Plus @@ (Last /@ %%)

Here is the same done with the (larger) Chapter 1 of the Symbolics volume [303÷]. Because we intentionally use some
incorrect syntax in this chapter, the building of heldInputs uses the If[SyntaxQ[#],…] construction.

Make Input

chapterS1Notebook = Get[ToFileName[ReplacePart["FileName" /. 
   NotebookInformation[EvaluationNotebook[]], "4_Symbolics_1.nb", 2]]];
              
(* all input cells of 4_Symbolics_1.nb *)
inputCells = Cases[chapterS1Notebook, Cell[_, "Input", ___], Infinity]; 

heldInputs = If[SyntaxQ[#], ToHeldExpression[#], Sequence @@ {}]& /@
 DeleteCases[
  Which[Head[#[[1]]] === String, #[[1]],
        Head[#[[1]]] === TextData, 
          StringJoin[#[[1, 1]] /. StyleBox[s_, ___] :> s]]& /@ inputCells,
             Null, {1}];

Altogether, more than 67000 occurrences of built-in functions exist and these are the most used ones. Carrying out the
next input yields this result:
{67510,{{Times,8190},{List,6615},{Power,5883},{Plus,4421},{Set,2789}}}.

Make Input

{Plus @@ (Last /@ #), Take[#, 5]}&[
   whichCommandsAreUsedWithCommand[whichCommandsAreUsed[heldInputs]]]

It  now  remains  to  analyze  all  standard  packages.  We  cannot  do  this  with  Get,  of  course,  as  this  would  lead  to  the
immediate evaluation of the Mathematica commands contained there. Instead, we use ReadList. 

 

ReadList[file, Hold[Expression]]

gives a list of all Mathematica expressions in file, each enclosed in Hold. Comments in file of 
the form (*  comment *) yield Hold[Null]. 

We look at files. This is the first package.

files[[1]]

We read it in.

ReadList[files[[1]], Hold[Expression]];

This package consists of 30 “lines”. 

Length[%]
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We are ready to analyze the first package. 

Off[General::spell]; Off[General::spell1];
Timing[whichCommandsAreUsedWithCommand[whichCommandsAreUsed[
                         ReadList[files[[1]], Hold[Expression]]]]]

Because it would take a relatively large amount of time, we do not run the following input that analyses all packages. 
Make Input

res = whichCommandsAreUsedWithCommand[
Sum[whichCommandsAreUsed[ReadList[files[[i]], Hold[Expression]]], 
    {i, Length[files]}]]

The following result was calculated from all packages in the standard package directory. Its routines contained 170112
appearances  of  built-in  Mathematica  commands  in  the  context  System`.  Here  is  an  ordered  list  of  the  most-used
commands. 

Command Appearances
List 19 836
Pattern 12 910
Blank 12 743
Set 11 940
Times 10 392
Power 6354
Plus 5352
Null 5194
CompoundExpression 4848
SetDelayed 3672
 ª 

Because of changes in the packages with each release of Mathematica, the reader’s results might be different from the
just-calculated ones.

The frequency of occurrence of all commands is best visualized graphically. Let pHkL be the frequency ordered decreas-
ingly,  and  then  using  the  following  code  we  can  generate  the  following  log–log  plot,  showing  over  a  broad  region
Zipf’s  law  pHkL = a k-r  [156÷],  [266÷],  [227÷],  [307÷],  [217÷],  [197÷],  [121÷],  [276÷],  [216÷],  [65÷],  [9÷],  [93÷],
[124÷], [82÷], [201÷], [300÷], [240÷], [305÷], [306÷], [338÷], [153÷], and [113÷]. 

Make Input

data = Reverse[Sort[DeleteCases[(#/Plus @@ #)&[(Last /@ res)], 0]]];

(* clean-up of used symbols *)
Needs["Graphics`Graphics`"]

Remove[Global`LogLogListPlot]

Remove /@ ToExpression[StringJoin["Global`", StringDrop[#, 18]]]& /@ 
                                        Names["Graphics`Graphics`*"];
                                        
Needs["Graphics`Graphics`"]                                        

LogLogListPlot[data, Frame -> True, FrameLabel -> {"k", "p(k)"},
               PlotJoined -> True, PlotRange -> All,
               PlotStyle -> {Hue[0], Thickness[0.004]}]
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It  may also be of  interest  to look at  the commands in last place.  Some of  the built-in functions appear  in  none of  the
packages. We leave it to the user to investigate which ones. But they are needed anyway. The user will probably make
use of some of these commands from time to time, mostly in interactive work rather than using them in packages. They
often deal with “fine-tuning” graphics and with numerical routines. 

Now,  let  us  analyze  the  Mathematica  source  code  from  this  book.  Using  the  input  from  above  for  the  analysis of
Chapter 1 of the Symbolics volume [303÷] for all chapters, we can determine which Mathematica functions were used
how often.  In  summary, the source  code contains  about  435000 occurrences  of  built-in  commands. These are  my top
ten. 

guideBooksChapterFileNames = ToFileName[ReplacePart["FileName" /. 
  NotebookInformation[EvaluationNotebook[]], #, 2]]& /@  
     {"1_Programming_1.nb", "1_Programming_2.nb", "1_Programming_3.nb",
      "1_Programming_4.nb", "1_Programming_5.nb", "1_Programming_6.nb",
      "2_Graphics_1.nb", "2_Graphics_2.nb", "2_Graphics_3.nb",
      "3_Numerics_1.nb", "3_Numerics_2.nb", 
      "4_Symbolics_1.nb", "4_Symbolics_2.nb", "4_Symbolics_3.nb"}; 

Make Input

Off[Syntax::com]; Off[Precision::precsm];
allHeldInputs = Module[{aux}, 
Table[(* read in the notebook *)
   nb = Get[guideBooksChapterFileNames[[i]]];  
   (* analyze the notebook *)             
   inputCells = Cases[nb, Cell[_, "Input" | "Program", ___], Infinity]; 
   heldInputs = If[SyntaxQ[#], ToHeldExpression[#], Sequence @@ {}]& /@
   DeleteCases[Which[Head[#[[1]]] === String, #[[1]],
                     Head[#[[1]]] === TextData, 
                     aux = #[[1, 1]] /. StyleBox[s_, ___] :> s;
                     If[Head[aux] === String || 
                        Union[Head /@ aux] === {String},
                        StringJoin[aux]]]& /@ inputCells,
               Null, {1}], {i, 14}] // Flatten];  
   
res = whichCommandsAreUsedWithCommand[whichCommandsAreUsed[allHeldInputs]];

Plus @@ (Last /@ res)

Take[res, 12]

Rank
1
2
3
4
5
6
7
8
9
10

 

Command Appearances
List 57 555
Times 43 986
Power 29 205
Plus 24 639
Slot 19 131
Set 18 396
Blank 15 862
Pattern 15 227
Rule 15 116
CompoundExpression 13 375

The relative frequency of all commands is now given by the following picture.
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Make Input

data = Reverse[Sort[DeleteCases[(#/Plus @@ #)&[(Last /@ res)], 0]]];

Needs["Graphics`Graphics`"]

LogLogListPlot[data, Frame -> True, FrameLabel -> {"k", "p(k)"},
               PlotJoined -> True, PlotRange -> All,
               PlotStyle -> {Hue[0], Thickness[0.004]}]

We  could,  of  course,  also  extract  all  evaluatable  cells  from  the  14  chapter  notebooks  and  evaluate  them  in  a  new
notebook. The following code extracts the 21000+ evaluatable cells.

Make Input 

allEvaluatableCells = DeleteCases[Flatten[
Table[Cases[(* read in chapter notebook *)
            Get[guideBooksChapterFileNames[[k]]], 
            (* extract evaluatable cells *)
            Cell[_, "Input" | "Program" | "StandardFormInput", ___], 
            Infinity] //.  (* make evaluatable input *) "Program" -> "Input" , 
       {k, 14}]], Cell[___, Evaluatable -> False, ___]]; 
                              
Length[allEvaluatableCells]

Evaluating  all  cells  would  at  once  would  result  in  a  lot  of  problems  (interfering  variable  names,  unreasonable  large
memory demand, etc.). To avoid such problems, we could define a $Pre-function that avoids the actual evaluation of
each input.

Make Input 

(* to avoid any actual evaluation; just parsing is enough *)
SetAttributes[hold, HoldAll];
(* to later get out of the hold-mode *)
EscapeTheHold /: hold[EscapeTheHold] := Unset[$Pre]

(* create a new notebook with the inputs *)
nbAllInputs = NotebookPut @ Notebook[
Flatten[{(* to avoid full evaluation of the inputs *)
         Cell["$Pre = hold", "Input"], 
         (* avoid spelling annoying messages *)
         Cell["Off[General::spell]; Off[General::spell1];", "Input"],
         Take[allEvaluatableCells, (* maybe less *) All]}]];
         
LineNumberBefore = $Line;
(* select and evaluate all cells—this will take some hours *)
FrontEndTokenExecute[nbAllInputs, "SelectAll"];
FrontEndTokenExecute[nbAllInputs, "EvaluateCells"];

Removing now the paralyzing $Pre  with the above setup EscapeTheHold  will  bring Mathematica  back to a state
where we can fully evaluate inputs. Now all the evaluatable inputs of the four GuideBooks are stored in the downvalues
of  In.  Extracting  them  gives  the  expression  allInputExpressions  containing  held  versions  of  all  input.  The
interested reader  can continue to carry out  statistics on these inputs (such as ByteCount,  LeafCount,  …), but we
end here.
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Make Input 

(* de-paralyze Mathematica *)
EscapeTheHold
LineNumberAfter = $Line;

(* extract and freeze inputs from the GuideBooks *)
allInputExpressions = Extract[#, 2, Hold]& /@
  Take[DownValues[In], {LineNumberBefore + 3, LineNumberAfter - 2}]

We  could  go  on  with  related  investigations,  for  instance,  with  the  question:  When  writing  a  Mathematica  package,
which keys are most often pressed? Let us calculate a detailed result of analyzing all packages in this respect. 

We again  make use  of  the command ReadList.  In  the form ReadList[file, Record, RecordSeparators
-> {}],  a  file  is  read  in  as  one  string.  We  then  divide  it  into  its  building  blocks  and  count  the  frequency  of  their
appearances.  (This  means  we  also  count  the  not  typed  notebook  structures  like  Cell.)  Here  is  the  corresponding
program. (We use the same files as above.)

Make Input

Module[{char, allOccuringCharacters, all},
Do[char[i] = Sort[
   Function[allLetters,(* count letters *)
   {{#, Count[allLetters, #]}& /@ Union[allLetters]}][
   Characters[StringJoin @@ Flatten[
   (* read in the file *)
   ReadList[files[[i]], Record, RecordSeparators -> {}]]]][[1]],
    OrderedQ[{#2[[2]], #1[[2]]}]&], {i, 1, Length[files]}];
   (* add results for all files *)
   allOccuringCharacters = Union[ 
    First /@ Flatten[Table[char[i], {i, 1, Length[files]}], 1]];
   all = Flatten[Table[char[i], {i, 1, Length[files]}], 1];
   result = {Union[First[#]], Plus @@ Last[#]}&[
               Transpose[Cases[all, {#, _}]]]& /@ allOccuringCharacters];

We do not execute this program. Here is the result of executing it. 
Make Input

InputForm[Take[result = Sort[{#1[[1]], #2}& @@@ result, 
                             OrderedQ[{#2[[2]], #1[[2]]}]&], 26]]

This results in a total of about three million characters for the packages. The following input calculates the exact result.
Make Input

Plus @@ (Last /@ result)

For  characters,  the  following  form  of  Zipf’s  law  holds  approximately:  pHkL = a - b lnHkL,  where  it  is  the  occurrence
probability for the letter k, and the probabilities are sorted.
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Make Input

With[{data = Last /@ result},
ListPlot[MapIndexed[{Log[#2[[1]]], #1}&, 
                    (Last /@ data)/Plus @@ (Last /@ data)], 
         PlotRange -> {0, 0.075}, PlotJoined -> True,
         PlotStyle -> {Hue[0], Thickness[0.004]}]]

Now,  once  we  have  read  in  all  files,  we  could  go  on  and  answer  related  questions  of  interest.  So,  how  deeply  are
Mathematica  programs  nested?  The  following  program counts  this  for  all  definitions  from files.  The  output  is  in  the
form depthOfRoutine, numberOfSuchRoutines. 

Make Input

Off[General::spell1]; Off[Read::readt];

Function[arg, {#, Count[arg, #]}& /@ Union[arg]][
   Flatten[Array[Depth /@ DeleteCases[ReadList[files[[#]],
              Hold[Expression]], Hold[Null]]&, Length[files]]]] // TableForm

The result is as follows. 
Depth Number

2 35
3 1234
4 3533
5 1210
6 1382
7 1619
8 1016
9 806

…
30 3
32 1
34 1
35 1

(Following the last investigation, we could now analyze how many functions a given functions directly calls [322÷].)

We  could  try  to  analyze  the  file  system  of  the  computer  from  inside  Mathematica,  for  instance,  with  the  following
input. 

Make Input

FixedPoint[Map[If[FileType[#] === Directory, FileNames["*", {#}], #]&, 
               #, {-1}]&,
          Flatten[FileNames["*", {#}]& /@ 
                      {FixedPoint[ParentDirectory, Directory[]]}]]

But,  as  mentioned  in  the  preface,  we  will  not  discuss  file-related  things  in  this  book,  and  so,  we  do  not  go  into  the
details of these commands. 

We  now  could  go  on  and  investigate  some  statistical  properties  of  the  notebooks  forming  this  book.  Because  the
following  operations  are  quite  memory  intensive,  we  do  not  carry  them  out  here  by  default.  I  recommend restarting
Mathematica  if  the  reader  wants  to  run  the  following  inputs.  I  also  recommend  using  the  unevaluated  notebooks  to
avoid  reading  very  large  notebooks  into  the  Mathematica  kernel.  To  avoid  reading  in  large  amounts  of  PostScript
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graphics  and Mathematica  outputs,  the  following  inputs  are  best  run  on  notebooks  that  have all  graphics  and outputs
removed.  The  reader  might  get  different  results  when  running  the  following  input,  because  of  a  different  number of
output cells currently present, modified input cells, …. In the following inputs, we frequently turn off messages. While
various  messages  could  be  avoided  by  using  a  more  careful  programming,  to  avoid  the  presentation  of  many  long
programs we will not do this here.

How many styles are used how often?
Make Input

cellData = Table[(* read in the notebook *)
   nb = Get[guideBooksChapterFileNames[[i]]];  
   (* analyze the notebook *)             
   allCells = Select[Cases[nb, _Cell, Infinity], Length[#] > 1& ]; 
   {#[[1]], Length[#]}& /@ Split[Sort[#[[2]]& /@ allCells]], {i, 14}];             

(* add all data together *)   
Sort[Function[cs, {cs, Plus @@ (* extract style data *)
            (Last /@ Cases[Flatten[cellData, 1], {cs, _}])}] /@ 
                           Union[Flatten[Map[First, cellData, {2}]]],
     #1[[2]] > #2[[2]]&] // TableForm

Here are the first ten entries from the last result:

Input 20 910
Text 19 089
BibliographyItem 9535
InlineFormula 5696
DisplayFormula 1362
SolutionSubgroup 979
MathDescription 941
TextDescription 871
DescriptionTop 621
DescriptionBottom 621

Now, we could investigate typeset formulas. Which boxes are used, and how often do they appear?
Make Input

(* the box types we are looking for *)
boxTypes = _ButtonBox | _CounterBox | _ErrorBox | _FormBox | _FractionBox |
           _FrameBox | _GridBox | _OverscriptBox | _RadicalBox | _RowBox | 
           _SqrtBox | _StyleBox | _SubscriptBox | _SubsuperscriptBox |
           _SuperscriptBox | _TagBox |  _UnderscriptBox;
     
boxData = Table[(* read in the notebook *)
                nb = Get[guideBooksChapterFileNames[[i]]];               
                (* analyze the notebook *)
               allBoxes = Head /@ Cases[nb, boxTypes, Infinity];
               {#[[1]], Length[#]}& /@ Split[Sort[allBoxes]], {i, 14}];            

(* add all data together *)   
Sort[Function[cs, {cs, Plus @@ (* extract box data *)
            (Last /@ Cases[Flatten[boxData, 1], {cs, _}])}] /@ 
                         Union[Flatten[Map[First, allBoxes, {2}]]],
     #1[[2]] > #2[[2]]&] // TableForm

The first 10 entries in the result are:
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StyleBox 61 067
RowBox 60 476
FormBox 21 597
ButtonBox 19 427
CounterBox 17 640
SubscriptBox 12 986
SuperscriptBox 10 315
FractionBox 2578
SubsuperscriptBox 1930
TagBox 895

Which options are used in the notebooks, and how often do they appear?
Make Input

optionsData =
Table[(* read in the notebook *)
      nb = Get[guideBooksChapterFileNames[[i]]];               
      (* analyze the notebook *)
      allOptions = First /@ Cases[nb, _Rule, Infinity];
      {#[[1]], Length[#]}& /@ Split[Sort[allOptions]], {i, 14}];          

(* add all data together *)       
Select[Sort[Function[cs, {cs, Plus @@ (* extract option data *)
            (Last /@ Cases[Flatten[optionsData, 1], {cs, _}])}] /@ 
                         Union[Flatten[Map[First, optionsData, {2}]]],
       #1[[2]] > #2[[2]]&], 
      (* take only the most frequent ones *) #[[2]] > 5&] // TableForm

These are the ten most-used options.

ButtonStyle 21 931
CellTags 15 639
FontSlant 2927
FontWeight 1268
ParagraphSpacing 697
Editable 568
LimitsPositioning 367
ScriptLevel 287
Evaluatable 263
MultilineFunction 238

What  is  the  ratio  between  text  and  Mathematica  input  in  this  book?  The  following  two  graphics  try  to  answer  this
question. The left graphic shows the running ratio between the number of input cells and the number of text cells. The
right graphic shows the running ratio between the ByteCount of the input cells and the ByteCount of the text cells.
Each chapter is represented as one line, ranging from red (Chapter 1 of the Programming volume) to dark blue (Chapter
3 of the Symbolics volume). Here are a few observations from these plots:
† In the beginning, the ratios are small, meaning that text cells dominate the beginnings of the chapters
† The longest is Chapter 1 of the Symbolics volume, followed by Chapter 1 of the Numerics volume.
†  The  two chapters  with  the  most Mathematica  inputs  (having  a  ByteCount  ratio  of  about  1)  are  the  two graphics
Chapters, 1 and 2.
† Asymptotically, the ratio between input cells and text cells is about 1 for all chapters, meaning that each Mathematica
input has some kind of corresponding text cell.
†  The  large  jump  in  the  ByteCount  ratio  for  Chapter  1  of  the  Symbolics  volume  is  caused  by  the  large  implicit
representation of the trefoil knot from Subsection 1.9.3 of the Symbolics volume [303÷].
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Make Input

Off[General::dbyz]
cellTypeData = Module[{cells},
Table[(* read in the notebook *)
      nb = Get[guideBooksChapterFileNames[[i]]];               
      (* extract input- and text-cells *)
      cells = Cases[nb, Cell[___, "Input", ___] | 
                        Cell[___, "Text", ___], Infinity];
      (* count input- and text-cells *)            
      Apply[Divide, Transpose[Rest[FoldList[Plus, 0,
                      If[MatchQ[#, Cell[___, "Input", ___]],
            {{1, 0}, {ByteCount[#], 0}},
            {{0, 1}, {0, ByteCount[#]}}]& /@ cells]]], {-2}], {i, 14}]];   
   
Show[GraphicsArray[
Function[fl, Graphics[
MapIndexed[{Hue[(#2[[1]] - 1)/18], #1}&,
     Line /@ (MapIndexed[{#2[[1]], #1}&, fl[#]]& /@ cellTypeData)],
                 PlotRange -> All, Frame -> True]] /@ {First, Last}]]

How deep are notebooks structured? We count the number of expressions at level i  as a function of i.  We display the
result as a graphic.

Make Input

Off[ReplaceAll::reps]; Off[StringReplacePart::string];
Off[Get::string]; Off[ToFileName::strse]; Off[Part::partd];
depthData = Table[(* make notebook filename *)
   (* read in the notebook *)                
   nb = Get[guideBooksChapterFileNames[[i]]]; 
   (* analyze the notebook *)
   Table[{k, Length[Level[nb, {k - 1}]]}, {k, Depth[nb]}], {i, 14}];  
             
ListPlot[(* add all data together *)
Sort[Function[cs, {cs, Plus @@ (* extract depth data *)
            (Last /@ Cases[Flatten[depthData, 1], {cs, _}])}] /@ 
                           Union[Flatten[Map[First, depthData, {2}]]],
     #1[[2]] > #2[[2]]&], PlotRange -> All,
         PlotStyle -> {Hue[0], PointSize[0.008]}]

We could also analyze some more content-related issues. How many references are used, and from which year do they
come?
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Make Input

(* extract the part of the bibliography cell that contains the year *)
getYearString[bibliographyItemCell_] := 
Module[{textData = bibliographyItemCell[[1, 1]] //.
         {a___, s1_String, s2_String, b___} :> {a, s1 <> s2, b}},
       If[# =!= {}, Last[#], {}]&[
       DeleteCases[Cases[textData, _String], 
                   _?(Union[Characters[#]] === {" "} ||
                      Union[Characters[#]] === {"."}&)]]]
                      
(* extract the year from the last characters of a bibliography item *)
getYear[s_String] := 
With[{sp = StringPosition[s, "."][[-1, -1]] - 1},
     If[(* journal or book? *)
        StringTake[s, {sp, sp}] === ")", StringTake[s, {sp - 4, sp - 1}],
        StringTake[s, {sp - 3, sp}]]];
        
getYear[{}] := Sequence[]        

(* extract bibliographic data *)       
bibliographyData =
Table[(* read in the notebook *)
      nb = Get[guideBooksChapterFileNames[[i]]];               
      (* analyze the notebook *)
      bibliographyCells = Cases[nb, Cell[_, "BibliographyItem", _], 
                                Infinity]; 
      Select[getYear[getYearString[#]]& /@ bibliographyCells, 
             If[SyntaxQ[#], 1800 < ToExpression[#] <= 2004]&], {i, 14}];           

(* add all data together *)
(allBibliographyData = Sort[{ToExpression[#[[1]]], Length[#]}& /@ 
                            Split[Sort[Flatten[bibliographyData]]],
                                  #1[[2]] > #2[[2]]&]);
                                  
(* earliest and latest references *)
{Take[#, +15], "<<" <> ToString[Length[#] - 20] <> ">>", 
 Take[#, -15]}&[allBibliographyData]                                  
                                  
(* visualize results *)
Show[GraphicsArray[
Block[{$DisplayFunction = Identity,
       opts = Sequence[Axes -> False, Frame -> True, PlotRange -> All,
                       PlotStyle -> {Hue[0], PointSize[0.008]}]},
{(* plot the data *)      
 ListPlot[N[allBibliographyData], opts], 
 (* logarithmic plot of the data *)   
 ListPlot[{#[[1]], Log[#[[2]]]}& /@ N[allBibliographyData], opts]}]]]

This is the result. The picture shows the author’s effort to keep the references up to date. The second plot is the logarith-
mic one. We skip the Zipf law for the references [277÷]. 

How  many  (different)  words  appear  in  the  text  (in  Text-style  cells)?  (For  a  computational  analysis  of  the  English
language in general, see [178÷].)
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Make Input

textData =
Table[(* read in the notebook *)
      nb = Get[guideBooksChapterFileNames[[i]]];               
      (* analyze the notebook *)
       texts = Join[ (* take out the pure text parts *)
          Cases[DeleteCases[Cases[
             (* remove non-Text cells *)
             DeleteCases[nb, Cell[_TextData, "Input", ___] |
                             Cell[_TextData, "Program", ___] |
                             Cell[_TextData, "BibliographyItem", ___], 
                         (* keep italicized words *)    
                         Infinity] /. StyleBox[it_, "TI"] :> it,
                TextData[___], Infinity], 
                 (* do not take inputs, hyperlinks, references, … *)
                       _StyleBox | _BoxData | _Cell | 
                       _CounterBox | _ButtonBox, Infinity], 
               _String, Infinity],

     First /@ Cases[nb, Cell[_String, "Text", ___], Infinity]], 
   {i, 1, 14}];  

   
(* split the string part into single words *)
splitString1[s_String] := StringTake[s, #]& /@ ({1, -1} + #& /@ 
    Partition[Flatten[{0, StringPosition[s, 
    (* dividing characters *) {", ", ". ", ": "}], 
                       StringLength[s] + 1}], 2])
                                   
splitString2[s_String] :=

With[{l = StringLength[s]},
StringTake[s, #]& /@ ({1, -1} + #& /@

          Partition[Flatten[{0, DeleteCases[
                  StringPosition[s, {" ", "—", "-"}], {l, l}], l + 1}], 
                            2])]
                  
(* separate out all single words *)
extractWords = (Select[ToLowerCase /@ DeleteCases[Flatten[splitString2 /@ 
                              Flatten[splitString1 /@ #]], ""], LetterQ] /.
                                          "mathematica" -> "Mathematica")&;

(* words used in the 14 chapters *)
allUsedWordsList = extractWords /@ textData;   

wordCountData = {Length[Union[#]], Length[#]}& /@ allUsedWordsList;

After running the above code,  we get  the following results.  The text  of  the GuideBooks  has  about  450000 words  and
about 8300 different words.

Make Input

(* number of words and number of different words for all chapters *)
{Length[allUsedWords = Flatten[allUsedWordsList]], 
 Length[differentUsedWords = Union[allUsedWords]]}

The number of different words used in a chapter n  compared to the total number of words  defines the lexical wealth
= ê N . A power law is conjectures to hold in the form = a k b [110÷]. 

THE MATHEMATICA GUIDEBOOKS to PROGRAMMING—GRAPHICS—NUMERICS—SYMBOLICS 117

©  2004, 2005   Springer Science+Business Media, Inc.



Make Input

Show[GraphicsArray[
Block[{$DisplayFunction = Identity,  opts = 
       Sequence[PlotRange -> All, Frame -> True, Axes -> False]}, 
 {(* show  ~ ^g *)
  ListPlot[Log[wordCountData], opts],
  (* show  ~ ( / )^b *)
  ListPlot[{Log[#1/#2], Log[#2]}& @@@ wordCountData, opts]}]]]
  
(* fit the power law *)
Exp[Fit[{Log[#1/#2], Log[#2]}& @@@ wordCountData, {1, }, ]] // Together

Here are the most frequently used words.
Make Input

wordStatistics = Sort[{#[[1]], Length[#]}& /@ Split[Sort[allUsedWords]],
                      Last[#1] > Last[#2]&];
                      
GridBox[Take[wordStatistics, 20], 
        ColumnAlignments -> {Left, Right}] //  DisplayForm

Comparing  the  ranked  words  from  different  chapters  shows  a  high  degree  of  coinciding  words  [332÷].  Because  the
chapters were written largely in parallel, this is to be expected.

Make Input

(* words in the chapters *)
allUsedWordsInChapters = extractWords /@ textData;
                      
(* ranked words in selected chapters *)
rankedUsedWordsInChapters = 
Map[#[[1]]&, Take[Sort[{#[[1]], Length[#]}& /@ 
      Split[Sort[allUsedWordsInChapters[[#]]]],
            Last[#1] > Last[#2]&], 15]]& /@ {6, 7, 8, 10, 12, 14};
            
(* show ranked words in selected chapters *)
TableForm[Transpose[rankedUsedWordsInChapters], 
   TableHeadings -> Map[StyleForm[#, FontWeight -> "Bold"]&, 
         {Range[15], {"P6", "G1", "G2", "N1", "S1", "S3"}}, {-1}],
          TableSpacing -> {0.2, 2}]

Let  us  check  how  often  typical  mathematics  book  words  appear  (for  a  top-ten  list  of  mathematics  article  titles,  see
http://www.maths.leeds.ac.uk/~pmt6jrp/personal/mathswords.html).

Make Input

Cases[wordStatistics, {"integrate", _} | {"differentiate", _} |
                      {"solve", _} | {"sum", _} | {"multiply", _} |
                      {"derive", _} | {"substitute", _} | {"vanish", _}]

Make Input

Cases[wordStatistics, {"trivial", _} | 
                      {"straightforward" | "straightforwardly", _} |
                      {"easily", _} | {(* left to the *)"reader", _}]

How often was Mathematica mentioned throughout all 14 main chapters?
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Make Input

Plus @@ (Count[Get[#], "Mathematica", {-1}]& /@ guideBooksChapterFileNames)

The frequency of occurrence of all words is again best visualized graphically. 
Make Input

Needs["Graphics`Graphics`"]

LogLogListPlot[Reverse[Sort[(#/Plus @@ #)&[Last /@ wordStatistics]]], 
               Frame -> True, FrameLabel -> {"k", "p(k)"},
               PlotJoined -> True, PlotRange -> All,
               PlotStyle -> {Hue[0], Thickness[0.004]}]

Having counted the words,  it is easy to calculate the frequency of the various letters inside the more than two million
characters.

Make Input

Take[Sort[{#[[1]], Length[#]}& /@ 
        Split[Sort[Flatten[Characters /@ allUsedWords]]],
                   Last[#1] > Last[#2]&], 26] 

As in  Subsection 6.4.2,  we could  investigate  still  more questions,  such  as the average number of  inputs  between two
text cells, statistics about the size of the exercise solutions, the number of comments (* … *) in the Mathematica inputs,
the  distribution  of  Mathematica  commands  in  the  notebooks  themselves  (viewed  as  Mathematica  expressions),  the
number of diagonal links [289÷], the connectivity of the referenced papers [225÷], [226÷], the connectivity and cluster-
ing properties  of  Mathematica  code as  a  network  [7÷],  [76÷] (considering  say,  the  built-in functions  as  elements and
the appearance as an argument as an edge) …, but we will end here and leave it to the reader to continue this kind of
investigations.  In  Chapter  1  of  the  Numerics  volume [302÷],  we  will  return  to  some related  considerations—we will
analyze long-range correlations in Shakespeare’s Hamlet.

Σ (* session summary *) TMGBs`PrintSessionSummary[]

Overview

Get[ToFileName[ReplacePart[
            "FileName" /. NotebookInformation[EvaluationNotebook[]],
            "ChapterOverview.m", 2]]];

ChapterOverview["Programming", 6]
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Exercises

  1.L2 Benford’s Rule

Given a long list of empirical data (e.g., lengths of rivers, areas of deserts and seas, addresses, bank account balances,
physical  data,  chemical  data),  check  whether  this  data  satisfies  Benford’s  rule:  The  probability  distribution  of  the
appearance of the digit i (1 § i § 9) in the first place in a data entry is log10H1 + 1 ê iL, where all zeros to the left of the

first  significant  digit  are  ignored.  For  details  on  Benford’s  rule,  see  [139÷],  [137÷],  [337÷],  [32÷],  [242÷],  [94÷],
[265÷], [241÷], [243÷], [249÷], [61÷], [71÷], [186÷], [51÷], [50÷], [66÷], [138÷], [153÷], [164÷], [252÷], and [228÷]
and the references therein. 

  2.L1 Map, Outer, Inner, and Thread versus Table and Part, Iteratorless Generated Tables, Sum-
free Sets

a)  Compare the computational times for Map,  Outer,  Inner,  and Thread  on reasonably-sized vectors to those for
Table, Do, and Part using analogous constructions. 

b) Write a function that generates the same output as 
Table[f[i1, i2, …, in], {i1, 1, …, m}, {i2, 1, …, m}, …, {in, 1, …, m}] 
but which does not contain any explicit iterator variable. 

c) Given a square matrix A  of dimension d with elements aij  and a vector of operators f  of length d with elements f j,

form a new matrix B with elements bij = f jIaijM. Write several different programs that form the matrix B, and compare

their timings for some matrices A and vectors f of different dimensions. 

d) Given a set o  of positive integers 8n1, …, no<, recursively enlarge this set by adding the smallest integer that cannot
be expressed as a sum ni + n j, 1 § i, j § o [86÷].

Implement the recursive enlargement first using a procedural (list-based) approach and then using a caching approach.
Compare the timing of the two approaches for the starting set of the first ten primes for 2000 recursive enlargements.

  3.L1 Index

Create an index for the Mathematica  commands that are introduced in this book. It should consist of a list of the form
{…, {"commandi", "chapterSectionSubsectioni"}, …}. The function whereIntroduced[command] should

give the number of the section where the command is introduced. Check that no command was misspelled when it was
introduced.  Which commands were introduced twice? The list of commands can be found in the package Chapter
Overview`. 

  4.L3 Functions Used Too Early?, Check of References, Closing ]], Line Lengths, Distribution of 
Initials, Check of Spacings

a)  In the preface,  we stated our aim that every time a command is used in this book,  it should already have been dis-
cussed. Create a Mathematica program to check for specific examples to see how close we came to our goal. Collect all
commands that have been introduced in gray boxes in a list alreadyIntroducedCommands. The command $Pre
might be useful here. 

b) This GuideBooks have many references. Check if each mentioned reference is really present and if each reference is
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at  least  mentioned  once.  Which  journals  are  the  most  cited?  What  is  the  number  of  electronic  papers  referenced  and
how did the fraction of electronic papers change over the last years?

c) What are the most common first letters of the initials and last names of all authors of the quoted papers and books?

d)  What is the distribution of the line lengths used in the inputs of this book?  How much white space (in the form of
raw space characters) is on average present in the inputs? What is the average density of code comments?

e)  Brackets  are  very  prominent  in  Mathematica  code.  Not  more  than  two  opening  brackets  can  occur  in  a  row,  but
arbitrarily  many  closing  brackets  can  occur  in  a  row.  Analyze  the  literal  inputs  of  the  Mathematica  GuideBooks  to
determine  how  often  n  closing  brackets  occur.  If  the  inputs  had  been  expressed  in  FullForm,  how  often  would  n
closing brackets occur?

f)  As discussed in the Introduction,  the inputs  of  the GuideBooks  are  in InputForm.  To make the inputs  as easy as
possible to read, care has been taken to format them properly. This includes white spaces after all commas, white spaces
around operators with relatively low binding power (such as ->  or /.).  Write a program that checks for violations of
such spacing rules and check all inputs from this volume of the GuideBooks.

g)  If  one considers  language as a network and the words as vertices,  one can analyze the distribution of neighbors  in
this  network.  The  natural  interpretations  of  neighbors  of  a  word  are  the  preceding  and  postceding  words.  (Viewing
sentences as natural units of a language, the first word of a sentence does not have a precessor and the last word does
not have a postceder [234÷].) Analyzing large amounts of sentences and graphing the resulting (binned) frequency of
the number of neighbors versus the number of neighbors in a double logarithmic plot shows two clearly different linear
regimes  [76÷].  Analyze  the  texts  of  the  GuideBooks  and  see  if,  despite  this  relatively  small  amount  of  data  and  the
nonnativeness of the author, the two different power laws are nevertheless present.

  5.L1 Tube Points

Write two different programs to solve the following problem. Suppose we are given lists of the form 

points = 8p1, p2, p3, …, pn}

radii  = 8r1, r2, r3, …, rn}

vecv   = 8v1, v2, p3, …, vn}

vecu   = 8u1, u2, u3, …, un}

cos    = 8c1, c2, c3, …, cm}

sin    = 8s1, s2, s3, …, sm}

Here, pi, vi, ui  are vectors of the form {pxi, pyi, pzi}, {vxi, vyi, vzi}, {uxi, uyi, uzi}.  The pxi,…  are atomic
objects (in a typical application, real numbers); the ci, si, ri are assumed to be atomic objects.

Create a list of the following form: 

{{p1 + r1 c1 v1 + r1 s1 u1,

  p1 + r1 c2 v1 + r1 s2 u1,

  p1 + r1 c3 v1 + r1 s3 u1, …,

  p1 + r1 cm v1 + r1 sm u1},

 {p2 + r2 c1 v2 + r2 s1 u2,

  p2 + r2 c2 v2 + r2 s2 u2,

  p2 + r2 c3 v2 + r2 s3 u2, …,

  p2 + r2 cm v2 + r2 sm u2},

  ª

 {pn + rn c1 vn + rn s1 un,
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  pn + rn c2 vn + rn s2 un,

  pn + rn c3 vn + rn s3 un, …,

  pn + rn cm vn + rn sm un}}.

(pi + ri c j vi + ri s j ui is a list (head List) with three elements.) 

  6.L1 All Subsets

Explain  the  operation  of  the  following  command allSubsets[list],  which  produces  all  subsets  of  a  given  set  list,
including the empty set and the set list itself. Here is the implementation (coming from [310÷]): 

allSubsets[l_List] :=
Sort[Distribute[{{}, {#}}& /@ Union[l], List, List, List, Union]]

Use such a function definition to implement a one-liner for the sums

Hk1, k2 , …, knL =
1

K
 ‚

j=0

K-1

‰
m=1

n km j

K

where K = ¤j=1
n k j. This sum can be expressed as [291÷]

Hk1, k2 , …, knL = ‰
j=1

n

Ik j - 1M + ‚
9ki1

,…, kim =
H-1Lm ‚

j=0

Iki1
,…, kim M-1

‰
h=im+1

n kh j

Iki1 , …, kim M
.

Here the outer sum runs over all nonempty subsets of the set 8k1, k2 , …, kn<, and the inner product over all k j  not in a

given  subset.  Iki1 , …, kim M  denotes  the  greatest  common  divisor  of  the  numbers  ki1 ,  ki2 ,  …,  kim .  Calculate

Hp1, p2 , …, p10L where pk  is the kth prime.

  7.L1 Moessner’s Process, Ducci’s Iterations

a) Write all integers in natural order. Then delete every second one, and form the following sequence of partial sums: 
start sequence
delete every second element
form new partial sums

 

1 2 3 4 5 6 7 8  …
1 3 5 7  …
1 4 9 16  …  .

They are all squares. Now, delete every third number of the initial sequence, and form the partial sums. If we then strike
every second number and again form the partial sums, we get a sequence of cubes. 

start sequence
delete every third element
form new partial sums
delete every second element
form new partial sums

 

1 2 3 4 5 6 7 8 9  …
1 2 4 5 7 8  …
1 3 7 12 19 27  …
1 7 19  …
1 8 27  …

Find a functional program for this process that first deletes every ith number and then produces j numbers. Conjecture if
i = 4 and i = 5 lead to fourth and fifth powers? 

b) Take four positive integers m, n, p, and q, and form four new integers †m - n§, †n - p§, †p - q§, and †q - m§. Iterate this
process until it converges [190÷], [141÷], [212÷], [154÷], [46÷]. 
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  8.L1 Triangles, Group Elements, Partitions, Stieltjes Iterations

Describe what the following pieces of code do. 

a) 

NestedTriangles[n_Integer?Positive] :=
(Function[{x, y}, x.#& /@ y] @@ #)& /@
   Distribute[{Table[{{ Cos[i Pi/2], Sin[i Pi/2]},
                      {-Sin[i Pi/2], Cos[i Pi/2]}}, {i, 0, 3}],
               Flatten[NestList[#/2&,
                           {{{1, 1}, {3, +1}, {1, 3}},
                            {{1, 0}, {2, -1}, {2, 1}}}, n], 1]}, List]

Look at the output graphically using the following input.

Show[Graphics[Polygon /@ Triangles[6]],
     AspectRatio -> Automatic, PlotRange -> All]

b) 

FixedPoint[Union[Flatten[Outer[Function[C, #]& @
                        Simplify[#1[#2[C]]]&, #, #]]]&,
                 {Function[C, -C], Function[C, (C + I)/(C - I)]}]

c) 

PartitionsLists[n_Integer?Positive] := Drop[FixedPointList[
 Complement[Union[Flatten[ReplaceList[#, 
  {{a___, b_, c_, d___} :> {a, b - 1, c + 1, d} /; b - c >= 2,
  {a___, b_, c:(d_ ...), e_, f___} :> {a, b - 1, c, e + 1, f} /; 
          b - 1 == d == e + 1}]& /@ #, 1]], #]&, 
                     {{n, ##}& @@ Table[0, {n - 1}]}], -2]

d) 

Unprotect[Table];

Table[body_, iters__, Heads -> l_List] := 
With[{d = Length[{iters}]},
Fold[Apply[First[#2], #1, {Last[#2]}]&, Table[body, iters],
         Reverse[MapIndexed[{#1, #2[[1]] - 1}&, 
         Take[Flatten[Table[l, {d}]], d]]]]]
         
Table[body_, iters__, Heads -> l_] := Table[body, iters, Heads -> {l}]    

e) 

[_List] := With[{λ = Length[]},
 Module[{ = NestList[Flatten[
   Outer[Join, {#}, List /@ Range[Last[#] + 1, λ], 1]& /@ #, 2]&, 
              List /@ Range[λ], λ - 1]},
   FixedPointList[Function[ , 
    Divide @@@ Partition[Append[Reverse[Apply[(Plus[##])/Length[{##}]&, 
     Apply[Times, Map[ [[##]]&, , {-2}], {2}], {1}]], 1], 2, 1]], ]]] /;
                  (Or @@ (InexactNumberQ /@ )) && (And @@ (NumericQ /@ )) 
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f) 

pseudoRandomTree[kStart_] :=
Module[{, k, , },
  := If[IntegerPart[Abs[Sqrt[2] Sin[Pi k Sin[k = k + 1]]]] === 0, 
         0, 2];
 k = kStart; [_] := -1;
  /: Line[{x_, y_}, []] := 
          Table[{Line[{x, y}, {x + 1, [x + 1] = [x + 1] + 1}], 
                 Line[{x + 1, [x + 1]}, []]}, {i, }];
 tree = Line[{0, 0}, []];        
 symmetrizeRules = Dispatch[Flatten [Function[l, 
                      (# -> (# - {0, l[[-1, 2]]/2}))& /@ l] /@ 
                     Split[Union[DeleteCases[Level[tree, {-2}], {}]], 
                           #1[[1]] === #2[[1]]&]]];
 Graphics[tree /. symmetrizeRules /. Line[l__] :> Line[{l}], 
          Frame -> True]]

  9.L3 ¶¶ Æ Sd∫d, TrIgm1 .gm2 .∫ .gm2 nM, tanh Identity, Multidimensional Determinant

a) Implement the following identity (meaning the calculation of its right-hand side) for Levi–Civita tensors [269÷] and
[41÷] ¶n…p: 

¶t1  t2 …  tr-1  tr  nr+1 …  nn  ¶t1  t2 …  tr-1  tr  mr+1 …  mn = r ! 9dnr+1  mr+1  dnr+2  mr+2  ∫ dnn  mn=Amr+1  …mnE

The  expression  8expression<Amr+1 …mnE
 denotes  the  Bach  bracket  and  means  a  complete  antisymmetrization in  the  vari-

ables mr+1 …mn.

Here, dnm  is the Kronecker symbol, and for all variables with double subscripts, we assume an implicit summation over

1 to dimension. 

b) Given n matrices HkLAi
j (i, j, k = 1, …, n) of dimensions n μ n, the expression [84÷]

9 H1LAk1

k1 ∫ HnLAkn

kn  da
b=@k1,k2,…,kn,aD

vanishes  identically.  Here  the  expression  8expression<Am1 …mnE
 denotes  again  the  Bach  bracket  and  means  a  complete

antisymmetrization in the variables m1 …mn, and da
b  is the Kronecker symbol. Summation from 1 to n is assumed for all

doubly  occurring  indices.  For  n = 2, 3, 4,  verify  this  identity  by  explicit  calculation.  Is  n = 5  feasible  for  explicit
verification?

c) In many quantum electrodynamics calculations, the trace of the product of Dirac matrices gm, m = 0, 1, 2, 3 [42÷] has

to be calculated. A compact formula for this trace is [318÷], [320÷]

TrIgm1 .gm2. … . gm2 n M = 4 ‚
all pairings

dpairing ‰
all pairs

 hmi ,m j .

Here,  the  summation  extends  over  all  permutations  9mi1 , mi2 , …, mi2 n=  of  9m 1 , m 2 , …, m 2 n =  such  that

mi1 < mi3 < ∫ < mi2 n-1  and  mi1 < mi2 ,  mi3 < mi4 ,  …,  mi2 n-1 < mi2 n .  The  symbol  dpairing  is  the  signature  of  the  permutation

9mi1 , mi2 , …, mi2 n=. The inner product extends over all pairs 9mi, m j=. All of the indices mi  run conventionally from 0 to 3.

hmi ,m j  is the metric tensor h = diag 8-1, 1, 1, 1<. 
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Calculate  the  trace  for  the  product  of  2,  4,  6,  and  8  Dirac  matrices.  Use  the  following  representation  of  the  Dirac  g
matrices to check the results:

g0 =

0 0 -i 0
0 0 0 -i

-i 0 0 0
0 -i 0 0

, g1 =

0 0 0 -i
0 0 -i 0
0 +i 0 0

+i 0 0 0

, g2 =

0 0 0 -1
0 0 +1 0
0 +1 0 0

-1 0 0 0

, g3 =

0 0 -i 0
0 0 0 +i

+i 0 0 0
0 -i 0 0

.

d) The following identity holds for almost all complex zk  [283÷]:

‰
k,l=1
k<l

n

tanhHzk - zlL =
1

2dnê2t dn ê2t!
 ‚

s

signatureHsL ‰
k=1

dnê2t
tanhHzsH2 k-1L - zsH2 kLL

The summation runs over all elements of the permutations s of 81, 2, …, n<. Prove this identity for n = 6. (Do not use
functions like Simplify, Together, TrigToExp, etc., but only functions discussed so far.)

e) The determinant of a (2D) n μ n matrix  with elements ai, j can be written in the form 

detHL = ¶1,2,…,n ¶k1,k2,…,kn  a1,k1  a2,k2  … an,kn

where summation from 1 to n is understood for the doubly occurring variables k1, …, kn and ¶1,2,…,n is fully antisymmet-

ric in all of its variable pairs. This suggests the generalization of the determinant for an d-dimensional (dD) n μ n … μ n
“matrix” d  with elements ai1,i2,…,id  of the form [155÷], [231÷], [163÷], [236÷], [130÷], [295÷], [207÷]

detHdL = ‰
j=1

d

¶
k1

I jM,k2
I jM,…,kn

I jM  ‰
i=1

n

aki
H1L,ki

H2L,…,ki
HmL

where km
H1L = m and again summation from 1 to n is understood for the doubly occurring variables. Implement a function

MultiDimensionalDet that for a given dD matrix d  of size n μ n … μ n calculates this multidimensional determi-
nant. 

10.L1 Digits in p, Mediant Insertion, Matrix Product

a)  Let lijHpL  be the sequence of number pairs 88i1, j1<, 8i2, j2<, …<  of the positions of the first appearance of the digit i

after  the  digit  j  in  the  decimal  expansion  of  p  [239÷],  where  i1 < j1 < i2 < j2 < ….  program  the  computation  of  the

lijHpL. 

b) Given a list l  of (reduced) rational numbers, write a function that inserts the mediant between each two numbers of
the list l. The mediant of two rational numbers p1 êq1 and p2 êq2 Hwhere gcdHp1, q1L = gcdHp2, q2L = 1L is defined as the
number Hp1 + p2L ê Hq1 + q2L.

c) The constant e can be calculated through the following limit of matrix product [83÷], [129÷]

an cn

bn dn
= ‰

k=1

n 2 k 2 k - 1
2 k - 1 2 k - 2

e = lim
nØ¶

an + cn

bn + dn
.

(This is basically an unfolded continued fraction expansion). How large a n is needed to obtain 1000 correct digits of e?
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11.L1 d’Hondt Voting

Implement  the  d’Hondt’s  voting  method.  If  possible,  try  not  to  use  any  temporary  variables.  The  d’Hondt’s  voting
method  is  as  follows:  Suppose  a  parliament  with  a  given  number  of  seats  is  to  be  filled  with  representatives  from
several  parties  on the basis  of  an election.  Divide  the number of  votes  received by each party by 1,  2,  3,  etc.  Put the
resulting numbers in  decreasing order  (where each number is included according to its multiplicity). Now, assign one
seat to the party with the largest number, one seat to the party with the second largest number, etc., until all seats have
been assigned. If, at the end, more equal numbers than seats are available, choose the parties to get the seats randomly.
(We discuss the generation of random numbers in detail in the next chapter, so either do not treat this possibility at the
moment or come back to this later.) 

Here is an example. Suppose six seats are to be assigned and that the results of the election are: A received 8 votes, B
received 5, and C received 9 votes. We get the following table of numbers after dividing by 1, 2, 3 …: 

A : 8 4
8

3

8

4

8

5

4

3
∫

B : 5
5

2

5

3

5

4

5

5

5

6
∫

C : 9
9

2

9

3

9

4

9

5

3

2
∫

Then, the decreasing list (with corresponding parties) is 

9 8 5
9

2
4 3

8

3
C A B C A C » A

Thus, A gets two seats, C gets three, and B gets one seat. For more on the interesting mathematical aspects of elections,
see  [261÷],  [35÷],  [297÷],  [260÷],  [27÷],  [97÷],  [329÷],  [262÷],  [287÷],  [159÷],  [99÷],  [169÷],  and  [296÷];  for  an
interesting  nonpolitical  application,  see  [309÷].  For  a  nice  Mathematica-based  proof  of  the  related  Arrow’s  theorem,
see [293÷].

12.L2 Grouping, Unsorted Complements

a) Suppose we want to divide a given a list of real (complex) numbers into groups of numbers that are “close together”.
Program a corresponding function. 

b)  Given  a  list  of  real  positive  integers  8z1, z2, …, zn<  and  a  positive  number  e,  extract  all  possible  maximal  length
chains of numbers 9zi1 , zi2 , …, zi j=, j ¥ 2, such that °zik+1 - zik • § e. Do not make use of the built-in function Split.

c)  Given a  list  of  lists  with vector-valued elements. (The vectors  are  lists  (of  equal  length)  of  real  numbers.)  Assume
some vectors  occur  possibly  more than  once,  but  the  components  of  the  vectors  are  slightly different  (Equal  would
return True,  but the last digits might be different).  Write an efficient VectorUnion  function that unions the list of
vectors. Why is it possible to implement a function more efficient than the built-in Union?

d) Write a function UnSortedComplement[l1, l2], that forms the complement of l1  with respect to the list l2  and
does not reorder the list l1 and takes the multiplicity in the list l2 into account when removing elements from l1.

126 Printed from THE MATHEMATICA GUIDEBOOKS

©  2004, 2005   Springer Science+Business Media, Inc.



13.L1 All Arithmetic Expressions

Given a list of numbers (atoms) and a list of binary operations, use the numbers and the operations to form all syntacti-
cally correct nested expressions.  The order of the numbers should not be changed, and only the binary operations and
parentheses () should be inserted between the numbers [72÷].

14.L1 Symbols with Values, SetDelayed Assignments, Counting Integers

a) Identify which values will be collected in the following list li: 

name = DeleteCases[Names["*"], "names"];

li = {};

Do[Clear[f];
   f[Evaluate[ToExpression[names[[i]] <> "_"]]] =
                                            ToExpression[names[[i]]]^2;
   If[f[3] =!= 9, AppendTo[li, {names[[i]], ToExpression[names[[i]]]}]],
  {i, 1, Length[names]}];
  
li

b) Identify which built-in functions will be returned from the following code:

Cases[{#, ToExpression[StringJoin["f[x_] :=" <> # <> "[x]"]];
          StringPosition[ToString[FullForm[DownValues[f]]], #]}& /@ 
                                          Names["System`*"], {_, {}}]

c) Given the following list of numbers

Do[data[n] = Table[IntegerPart[k Sin[k]], {k, 10^n}], {n, 4}].

Use various implementations to count how often each integer appears in data[n].   

15.L1 Sort[list, strangeFunction]

Examine whether Sort generates error messages for nontransitive, asymmetric order relations. 

16.L3 Bracket-Aligned Formatting, Fortran Real*8, Method Option, Level functions,
        Conversion to StandardForm inputs

a) Write a function that formats a Mathematica  expression in such a way that pairs of corresponding brackets [ and ]
of the FullForm are aligned.

b) Mathematica includes the command FortranForm. Unfortunately, no type declarations are allowed, so the output
is not always in an appropriate form to be given directly to a Fortran program. Write a function that rewrites arbitrary
integers in the form of Fortran Real*8 numbers. Let the result be a string. 

c)  Which  Mathematica  functions  have  a  Method  option?  Can  one  use  the  Mathematica  kernel  to  find  the  possible
option settings?

d) Which Mathematica functions take level specifications? Can one use the Mathematica kernel to find these functions?

e) Write a function that converts the InputForm input cells of the GuideBooks  into StandardForm cells. Preserve
all comments, indentation (as much as possible) and use typical StandardForm symbols such as π, , , and →.
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17.L2 ReplaceAll Order, Pattern Realization, Pure Functions

a)  The  function  orderedTriedExpressions  returns  a  list  of  all  (sub)expressions  of  expr  in  the  order  tried  by
ReplaceAll. 

orderedTriedExpressions[expr_] := 
 Module[{bag = {}}, expr /. x_ :> Null /; (AppendTo[bag, x]; False); bag]

Implement a version of orderedTriedExpressions that uses only built-in functions. Implement another version
of orderedTriedExpressions that does not make any assignments (no Set or SetDelayed). 

b)  Write  a  function  patternRealization  that,  analogous  to  MatchQ,  takes  two  arguments  expression  and
expressionWithPatterns and gives a list of the actual realizations of the pattern variables. Write a version of pattern
Realization that does not contain any auxiliary variables. Test both versions on a few examples. 

c)  Given  an  expression  that  contains  one-argument  pure  functions  using  Slots  (like  #^2&[(#1 + #2)^3&[#1,
2#1]&[(#1 + #2 + (#^2&[#]))&[#1, #4]]]&),  write  a  function  that  replaces  these  pure  functions  with
ones that have two arguments, and use explicit variables (like Function[x, bodyContainingx]).

18.L3 Matrix Identities, Frobenius Formula, Iterative Matrix Square Root

a) For an arbitrary 3ä3 matrix A, 

A3 - trHAL A2 +
1

2
 ItrHAL2 - trIA2MM A - detHAL 1 = 0,

where tr is the trace, det is the determinant, and 1 is the 3D identity matrix. (This identity follows from the Theorem of
Cayley–Hamilton together with the Newton relations.) Prove this identity. 

b) For arbitrary 2ä2 matrices A and B, the following identity hold [20÷]:
B.A = HtrHA.BL - trHAL trHBLL 1 + trHAL B + trHBL A - A.B

Here again tr stands for the trace, and 1 is the 2D identity matrix. Prove this identity. Does it also hold for 3ä3 matri-
ces? If not, does there exist a generalization of the form 

B.A = ‚
i, j,k,l=0

1

ci, j,k,l
H1L  trIAi.B jM trHALk trHBLl  1 + ‚

a=1

2

‚
i, j,k,l=0

1

ci, j,k,l
HA,aL  trIAi.B jM trHALk trHBLl Aa +

‚
a=1

2

‚
i, j,k,l=0

1

ci, j,k,l
HB,aL  trIAi.B jM trHALk trHBLl Ba - A.B

for 3 μ 3 matrices?

c) Prove the Amitsur–Levitzky identity [38÷] for n = 3. The Amitsur–Levitsky identity states that for the 2 n matrices of
dimension  n μ n,  denoted  by  A1, A2, …, A2 n,  the  following  sum  over  all  permutations  s  of  the  numbers
H1, 2, …, 2 nL yields the n μ n zero matrix 0n: ⁄s signatureHsL AsH1L.AsH2L.∫ .AsH2 nL = 0n.

d) Fix a univariate polynomial qHxL of degree n and consider the eigenvalue problem [204÷]

∑k IqHxL y j
Hn,kLHxLM

∑ xk
= l j

Hn,kL y j
Hn,kLHxL.

Assume that the y j
Hn,kLHxL are polynomials too and conjecture a closed form for the eigenvalues l j

Hn,kL.
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e)  The well-known Frobenius formula [98÷],  [114÷] expresses the inverse of a 2 μ 2 block matrix 
 

 
 (,  ,  ,

and  being n μ n matrices) in the form

-1 - -1..I - .-1.M-1
--1..I - .-1.M-1

I - .-1.M-1 I - .-1.M-1 .

(The last expression can be rewritten in various equivalent forms.) Here we assume that the inverses of all four block
matrices , ,  ,  and   exist. Implement a function that derives this type of representation for an n μ n  block matrix.
Test the function for n = 2, 3, and 4.

f)  Let  A  be  an  n μ n  matrix.  Its  square  root  can  be  calculated  by  iterating  the  map  B Ø B.HB.B + 3 AL H3 B.B + AL-1

starting with an nD identity matrix [180÷]. Use this iteration to calculate a numerical approximation to the square root
of a 10 μ 10 Hilbert matrix.

g) Consider the following three n μ n matrices G Ha, bL, WHxL, and MHx1, …, xnL with elements

gi, jHa, bL = ‡
a

b
fiHxL f jHxL dx

wi, jHxL =
∑i-1 f jHxL

∑ x j
i-1

mi, jHx1, …, xnL = f jIx jM.

Here  the  f j  are  unspecified  real-valued  functions.  Verify  the  following  relations  for  small  n  by  explicit  calculation

[63÷]:

∑n2 detHGHa, bLL
∑bn2

»b=a =
¤k=1

2 n-1 kn-†n-k§

n2 !
 detHWHaLL

detHGHa, bLL = ‡
a

b
∫ ‡

a

b
detHMHx1, …, xnLL2 dx1 … dxn

detHWHxLL =
∑nHn-1Lê2 detHMHx1, …, xnLL

∑ x2 ∑ x3
2 ∫ ∑ xn

n-1

where 1 § i, j § n. How far can one go with n?

h)  Define  the  derivative  „  of  a  function  f  of  a  matrix  A  through  the  component  representation  [69÷],  [70÷],  [57÷],
[272÷], [149÷]

„ HAL
„ A i jkl

=
d H HALLi j

d HALkl
.

(This means this matrix derivative is a tensor of depth 4.)  Implement this derivative in an index-free manner.

For the power function f HzL = zn, the derivative can be expressed as

„ An

„ A i jkl
= ‚

m=1

n

IAm-1Mik  IAn-mMl j.

Implement this formula also in an index-free manner.
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19.L2 Autoloading and Package Test

a) Many Mathematica functions are programmed in the Mathematica language and autoloaded when needed. Find these
functions.

b) Analyze all packages from the standard packages directory according to the following criteria: 
† How many commands are exported? 
† Are undocumented commands exported? 
† How many variables are used inside the packages? 
† Which packages export no commands? 
† Which packages change the attributes of built-in commands? 
† Which packages alter the options for the built-in commands? 
† Which packages give error messages when loaded? 

Do not load each individual package “manually”.

20.L2 PrecedenceForm

Examine  the  meaning  of  the  built-in  command  PrecedenceForm,  and  determine  the  precedence  of  all  built-in
commands  (when  possible).  Knowing  preferences  is  important,  for  instance,  for  determining  if  2 + 4 // #; &
means 2 + 4 // (#; )& or (2 + 4 // #); & and so on. Do the same with all named characters (like Circle
Times, DoubleLongRightArrow) that can be used as operators.

21.L2 One-Liners

a) Write a “one-liner” that makes the following: Given a positive integer sum s and a list summands of positive integers
ai,  the  function  AllPossibleFactors[s, summands]  should  return  a  list  of  all  possibilities  of  lists  of  factors
8 f1, f2, …, fn<, such as 

s § ‚
i=0

n

fi ai, with fi ¥ 0 " i

(A  one-liner  is,  “by  definition”,  a  Mathematica  program  that  consists  only  of  one  piece  of  code,  uses  no  named  or
temporary variables or functions, and is often a nice example in functional programming. A one-liner does not necessar-
ily fit into one line.) How many different arrangements of 1¢, 5¢, 10¢, and 25¢ coins can one make, so that the net total
is less than $1? 

b) Write a one-liner for the Ferrer conjugate from Exercise 9.d) in Chapter 5. 

c) Model the function AppendTo by using the function Append.

d)  Write  a  one-liner  that  recursively  implements  Meissel’s  formula  [331÷],  [223÷],  [43÷],  [208÷],  [209÷]  for  the
calculation of pHnL, the number of primes less than or equal to n. 

pHnL = n - 1 + pI n M + ‚
j=1

k

H-1L j ‚
pi1

<pi2
 ∫< pi j

n

pi1  ∫ pi j

.

Here p1, p2, …, pk  are  all  primes less than or  equal to  n .  (The nth  prime can be obtained using Prime[n].)  Use
only built-in symbols.

e) Write a one-liner for generating the following polynomials pnHx1, …, xnL [184÷] in factored form:
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pnHx1, …, xnL = ‚
s

‰
k=1

n

xk
mk HsL

The summation runs over all elements of the permutations s of 81, 2, …, n<. For a permutation s = 8 j1, j2, …, jn< the
function mkHsL counts the number of jl, l = k + 1, …, n that are smaller than jk . Calculate p1 to p8 explicitly.

f) Write a one-liner that, for given positive integers k and p (0 < p < k) proves the following identity [39÷]:

‚
n1=1

k-1

‚
n2=1

k-n1-1

‚
n3=1

k-n1-n2-1

∫ ‚
np=1

k-n1-n2-…-np-1 1

n1 !
 
∑ f HxLn1

∑ xn1
 

1

n2 !
 
∑ f HxLn2

∑ xn2
 ∫ 

1

np !
 
∑ f HxLnp

∑ xnp
 

1

Ik - n1 - n2 - ∫ - npM!
 
∑ f HxLk-n1-n2-∫-np

∑ xk-n1-n2-∫-np-1
= Hp + 1L 

Hk - 1L!

Hk - 1 - pL !
 

1

k !
 
∑k- p-1 f HxLk

∑ xk-p-1
.

g) For any n μ n matrix , the following identity holds [8÷]:

detHL =
1

n !
 det

trHL 1 0 ∫ 0 0
trI2M trHL 2 ∫ 0 0

ª ª ª ∏ ª ª

trIn-1M trIn-2M trIn-2M ∫ trHL n - 1

trHnL trIn-1M trIn-2M ∫ trI2M trHL

.

Implement a one-liner that checks this identity for a given matrix . (n ! is the factorial function, in Mathematica n!.)

h) Let pHzL = ⁄j=0
n c j z j  be the characteristic polynomial of the n μ n matrix . Then, the inverse -1 can be expressed

as -1 = -c0
-1 ⁄j=1

n c j  j-1 [8÷]. Implement a one-liner that uses this identity to calculate the inverse.

i) Write a one-liner that implements the expansion of an arbitrary function f HzL in the product [18÷]

PoH f HzL, z0L = ‰
k=0

o

H kH f Hz0LLL
lnJzíz0 N

k!

around the  point  f Hz0L ∫ 0 and where  0H f HzLL = f HzL  and kH f HzLL = expHz ∑ lnH f HzLL ê ∑ zL.  For  a  sufficiently smooth
function f HzL, we have limoØ¶ PoH f HzL, z0L = f HzL. Calculate P12HcosHp ê2L, 1L.

j)  Write  a  one-liner  that  generates  all  different  expressions  resulting  from  the  repeated  application  of  a  binary  (two-
argument) function to n  sorted arguments. For example, for the four  arguments a,  b,  c,  d  and the function f ,  the five
compositions  f Ha, f Hb, f Hc, dLLL,  f Ha, f H f Hb, cL, dLL,  f H f Ha, bL, f Hc, dLL,  f H f Ha, f Hb, cLL, dL,  and  f H f H f Ha, bL, cL, dL
should  be  formed.  How  frequently  do  k  consecutive  closing  ‘)’  occur  for  ten  arguments?  For  six  equal  arguments

a = b = … = -1 , and f =Power, how many numerically different expressions result [104÷], [122÷]?

k)  Write  a  one-liner  KolakoskiSequence[n]  that  calculates  the  first  n  terms of  the  Kolakoski  sequence  [167÷],
[68÷],  [279÷].  With  the  exception  of  n,  the  function  KolakoskiSequence  should  not  use  any  not  built-in  com-
mands. The Kolakoski sequence 82, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, …<  is the (unique) sequence of its own run lengths
(meaning 2 twos, then 2 ones, then 1 two, 1 one, then 2 twos, ….

l) Given the three differential identities
x£HtL = yHtL zHtL
y£HtL = xHtL zHtL
z£HtL = xHtL yHtL
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define  a  sequence  of  functions  recursively  through  skHtL = ∑ sk-1HtL ê ∑ t,  starting  with  s0HtL = xHtL.  The resulting  snHtL
have the form snHtL = ⁄i, j,k=0

n+1 ci, j,k  xHtLi yHtL j zHtLk . The coefficients fulfill the following sum rule: ⁄i, j,k=0
n+1 ci, j,k = n ! [79÷].

Implement  a  one-liner  factorialSumTest  that,  by  explicit  calculation,  checks  this  property  for  a  given  n  (the
factorial  of  n  is  just  n!  in  Mathematica).  The  implementation  should  not  use  any  built-in  symbol.  Check  the  sum
property for 0 § n § 100.

m) Write a one-liner that, for a given n, calculates the number of permutations having k (k = 0, 1, …, n) increasing two-
sequences  in  all  permutations  of  81, 2, …, n<.  (An  increasing  two  sequence  in  a  permutation  8 j1, j2, …, jn<  is  a  pair
8 ji, ji+1< such that ji+1 = ji + 1 [150÷], [151÷].)

22.L2 Precedences

a) What are the results of the following expressions? 

Function[x, Hold[x], {Listable}] @ 
            Hold[{1 + 1, 2 + 2, 3 + 3}]

Function[x, Hold[x], {Listable}] @@ 
             Hold[{1 + 1, 2 + 2, 3 + 3}]

Function[x, Hold[x], {Listable, HoldAll}] @ 
             Hold[{1 + 1, 2 + 2, 3 + 3}]

Function[x, Hold[x], {Listable, HoldAll}] @@ 
             Hold[{1 + 1, 2 + 2, 3 + 3}]

Function[x, Hold[x], {Listable, HoldAll}] @ 
            (#& @@ Hold[{1 + 1, 2 + 2, 3 + 3}])

Function[x, Hold[x], {Listable}] @@ 
             (#& @@ Hold[{1 + 1, 2 + 2, 3 + 3}])

Function[x, Hold[x], {Listable, HoldAll}] @ #& @@ 
             Hold[{1 + 1, 2 + 2, 3 + 3}]

Function[x, Hold[x], {Listable, HoldAll}] @
    Function[x, Hold[x], {Listable, HoldAll}] @@ 
                 Hold[{1 + 1, 2 + 2, 3 + 3}]

Function[x, Hold[x], {Listable, HoldAll}] @@
    Function[x, Hold[x], {Listable, HoldAll}] @ 
                 Hold[{1 + 1, 2 + 2, 3 + 3}]

Function[x, Hold[x], {Listable, HoldAll}] @@
    Function[x, Hold[x], {Listable, HoldAll}] @@ 
                 Hold[{1 + 1, 2 + 2, 3 + 3}]

b) If 

localVar = 11;
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Block[{localVar = 1}, Print[localVar];WhatIsHere]

prints out 11, what might have been coded in WhatIsHere? Find a WhatIsHere that also works if Block is replaced by
With. 

23.L2 Puzzles

a) What is the result of the following input? (Here the spaces in the input matter; do not introduce or remove blanks.)

1 @ 2 @@ 3 / 4 /@ 6 //@ 7 || 8 | 9 /.10 /.11

b) Find a value for factor, such that the following two definitions for give different results.

scaledReversedShiftedListV1[factor_, list_List] :=
Function[Join[factor #, Reverse[factor/2 #]]][list]

scaledReversedShiftedListV2[factor_, list_List] :=
Function[x, Join[factor x, Reverse[factor/2 x]]][list]

c) Predict the result of the following input.

{#, InputForm[ToExpression @ #], 
    FullForm[ToExpression @ #]}& /@ 
             Table["1"<>Table[".", {i}], {i, 1, 11}] // TableForm

d) Predict the result of the following input.

Power @@ Unevaluated[Times[2, 2, 2]].

e) Predict the result of the following input.

Power[Delete @@ Cos[Sin[2], 0]].

f) Predict the result of the following input.

{Dimensions[#], Length[Flatten[#]]}& /@ 
                  NestList[Outer[List, #, #]&,{1., 2}, 3]

g)  Given  a  held  expression,  write  a  function  that  replaces  all  occurrences  of  p_Plus  by  the  evaluated  result of
Length[p].

h) Predict the result of the following input.

    Block[{Infinity}, Apply[Subtract, {Infinity, Infinity}]]

i) Predict the result of the following input.

inherit[fNew_, fOld_] := 
CompoundExpression[
 SetAttributes[fNew, Attributes[fOld]];
 Options[fNew] = Options[fOld];
 (#[fNew] = (#[fOld] /. fOld -> fNew))& /@ 
 {NValues, SubValues, DownValues, 
  OwnValues, UpValues, FormatValues}]
  
SetAttributes[f, {Listable}];
f[x_Plus] := Length[Unevaluated[x]];
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Module[{f}, 
       inherit[f, ToExpression["f"]];
       SetAttributes[f, HoldAll];
       f[i__Integer] = i^2; 
       f @@ f[{1 + 1, 2 + 2}]]

j) Predict which messages will be issued when evaluating the following:

Evaluate //@ Block[{I = 1}, I^2]

What will be the result?

k) Find a Mathematica expression expr such that First[expr] and expr[[1]] give different results.

l) Predict the result of the following inputs:

f[x_] := Block[{α = Not[TrueQ[α]]}, f[x + 1] /; α]
f @@ f[0]

m) Predict the result of the following input:

Module[{x = D, f}, C @@ f[x_] ~ Set ~ x // f[C]&] - 
Module[{x = D, f}, Set @@ f[x_] ~ C ~ x // f[C]&]         

n) Predict the result of the following input:

 = 0;
Union[Array[1&, {100}], SameTest -> (( =  + 1; False)&)];


o) Implement a function virtualMatrix[dim] that generates a “virtual” matrix of size dim μ dim that behaves like
a “real” matrix as in the following:

   In[2] :=  = virtualMatrix[10^6];

   In[3] := {MatrixQ[ ], Dimensions[ ], Length[ [[1]]],
        { [[1, 1]], [[-1, -1]]},
        [[1000, 1000]] = 1000; [[1000, 1000]]}

 Out[3] = {True,{1000000,1000000},1000000,{1,1},1000}

Do not unprotect any built-in function or use upvalues.

p)  Given an expression expr  (fully evaluated and not  containing any held parts)  and two integers k  and l,  what  is the
result of MapIndexed[(Part[expr, ##]& @@ #2)&, expr, {k, l}, Heads -> True]?

24.L2 Hash Value Collisions, Permutation Digit Sets

a) The function Hash[expr] returns the hash value of expr. Find two integers that are hashed to the same hash value.

b) Let o
HbL be the set of all o-digit integers in base b with every digit from the range @1, oD appearing exactly once in the

base  b  representation.  (For  instance  3
H10L = 8123, 132, 213, 231, 312, 321< .)  Let  o

HbL  be  the  set  of  pairs  8s1, s2<,
s1, s2 œ o

HbL  such  that  s2 = m s1,  j œ , m ¥ 2.  Find  the  sets  o
HbL  for  2 § b § 10,  1 § k § b - 1.  How  many  elements

does 11
H12L have? Format the results in the form s2 = m s1.
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25.L1 Function Calls in GluedPolygons

In the construction of the glued polygons in Section 6.0, the function Trace was used to show the relative frequency
of the use of various list-manipulating functions. This was overestimating the number of function calls. Determine the
actual  number  of  calls  to  the  functions  Reverse,  Join,  Dot,  Map,  Partition,  Apply,  Take,  MapThread,
Drop, Table, Part, and Flatten when evaluating GluedPolygons[5, 3Pi/4, 1, Polygon, Display
Function -> Identity].

 

Solutions

  1. Benford’s Rule   

We cannot give a completely general solution here. First, we have to read in the data using Get or ReadList depend-
ing on the nature of the data. Then, we must extract the first digits. Depending on the kind of data, we may use First[
IntegerDigits[…]],  First[RealDigits[…]],  or  First[ToExpression[…]].  These  have  to  be
applied  to  the  list  containing  the  data using Map,  and then Cases[…, digit]  and/or  Count[…, digit]  finds the
number of digits. If the reader does not have any data, the reader can look in the package Miscellaneous`Chemi
calElements`. (A representative collection of data can also be found in [14÷], but it has to be typed in; also, some
web  hosts  have  some  data  relevant  to  this  exercise,  like  the  ionization  energies  of  atoms  http://www.physik.uni-
kassel.de/theorie/plasma/.) First, we load the package and then define three auxiliary functions data, firstNumber,
and counter. Their use is obvious.

Needs["Miscellaneous`ChemicalElements`"]

(* extract data for all elements *)
data[what_] := (what /@ Elements)

(* handling integers and real numbers differently *)
firstNumber[number_] :=
Which[MachineNumberQ[number], RealDigits[number][[1, 1]],
      IntegerQ[number], IntegerDigits[number][[1]],
      (* ignore data *) True, Sequence @@ {}]

(* count first digits *)
counter[dat_] := {#, Count[dat, #]}& /@ {1, 2, 3, 4, 5, 6, 7, 8, 9}

We  now  analyze  the  atomic  weight,  melting  point,  boiling  point,  heat  of  fusion,  heat  of  vaporization,  density,  and
thermal conductivity for the frequency of appearance of the digits 1 through 9 in the first place. 

We turn off some of the warning and error messages from this package because they appear so frequently. The result of
the following counts are lists with elements of the form {firstDigit, numberOfItsAppearance}. 

Off[AtomicWeight::unstable]; Off[AtomicWeight::unknown];
aw = counter[firstNumber /@ data[AtomicWeight]]

(* counter making function *)
makeCounter[property_] := 
counter[firstNumber /@ (If[# =!= Unknown, #[[1]],
                           Sequence @@ {}]& /@ data[property])]
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Off[MeltingPoint::form]; Off[MeltingPoint::unknown];
mp = makeCounter[MeltingPoint]

Off[BoilingPoint::form]; Off[BoilingPoint::unknown];
bp = makeCounter[BoilingPoint]

Off[HeatOfFusion::form]; Off[HeatOfFusion::unknown];
hf = makeCounter[HeatOfFusion]

Off[HeatOfVaporization::form]; Off[HeatOfVaporization::unknown];
hv = makeCounter[HeatOfVaporization]

Off[ThermalConductivity::form]; Off[ThermalConductivity::unknown];
tc = makeCounter[ThermalConductivity]

Off[MessageName[Density, #]]& /@ {"form", "temp", "tempform", "unknown"};
d = makeCounter[Density]

Here are all results combined. The ith element of the following list is the number of occurrences of the digit i.

Plus @@ (Transpose[#][[2]]& /@ {aw, mp, bp, hf, hv, tc, d})

Here is a comparison of the calculated frequency with the theoretical prediction of the relative frequencies. 

% / Plus @@ % // N

Table[Log[10, 1 + 1/n], {n, 1, 9}] // N

Note that the theoretical probabilities, of course, add up to 1. 

N[Plus @@ %]

In view of the small set of data, the degree of agreement is astounding. Benford’s rule is often correct even for numbers
generated purely mathematically. 

We now read it population data of US cities and villages from 2003 and earlier. The following web page contains links
to files with the data for all states.

topPage = 
Import["http://www.census.gov/popest/cities/SUB-EST2003-04.html", "Text"];

There are the link names of the files with the population data.

tableURLs = StringJoin["http://www.census.gov/popest/cities/", #]& /@ 
    StringReverse /@ StringCases[StringReverse @ topPage, 
        ShortestMatch[StringReverse["csv"] ~~ __ ~~ 
                      StringReverse["tables/SUB-EST2003"]]];

Here are a few of the data shown.

StringTake[Import[tableURLs[[38]],"Text"], {13005, 13339}]

We import the population data of more than 8000 cities and villages and count how often the first digit is the integer k.
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allData = 
Table[(* read in file as a string *)
      dataSet = Import[tableURLs[[k]], "Text"];
      (* extract population data *)
      townVillageData = StringReplace[#, "," -> ""]& /@
         (* treat strings and towns differently *)
         (StringReplace[#, If[StringCount[#, "\""] === 0,
                              "," -> ", ", "\"" -> " "]]& /@
         StringCases[dataSet, 
                     ShortestMatch[("town" | "village") ~~ __ ~~ "\n"]]);
      (* use latest available population data *)
      If[# =!= {}, Last[#], {}]&[
        StringCases[StringSplit[#], NumberString]]& /@ townVillageData,
        {k, Length[tableURLs]}];

(* count occurrences of first digits 1 to 9 *)
{First[#], Length[#]}& /@ 
  Split[Sort[First[IntegerDigits[#]]& /@ Flatten[ToExpression /@ allData]]]

We see an excellent agreement with the frequencies predicted by Benford’s rule.

With[{Σ = Plus @@ (Last /@ %) // N},  {#1, #2/Σ}& @@@ %]

Next,  we implement a function numberDistribution.  It  gives a list  of lists with the number of digits in the first
num digits of the results of the function func applied to all integers in range. The trivial case (no 0 in the first place) is
not included, and only those numbers with enough digits are analyzed. 

numberDistribution[func_Symbol | func_Function, 
                   range_List, num_Integer] :=
If[# != {}, Delete[#, {1, 1}], #]&[(* just counting *)
Table[{k, Count[#, k]}, {k, 0, 9}]& /@ (* make list of digits *)
Transpose[Take[#, num]& /@ IntegerDigits /@
 Select[Table[func[i], Evaluate[Prepend[range, i]]],
        (* select relevant integers *)
        (IntegerQ[#] && (# >= 10^num))&]]]

Here are two examples: ⁄i=1
n Hi + 1L and 3n - 2n.

numberDistribution[Sum[i + 1, {i, #}]&, {1, 100}, 2]

numberDistribution[(3^# - 2^#)&, {1, 200}, 3]

To  better  appreciate  the  results  of  numberDistribution,  we  examine  the  frequencies  graphically  (the  relevant
commands are introduced in Chapter 1 of the Graphics volume [301÷]). 

Needs["Graphics`Legend`"]
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plotNumberDistribution[func_Symbol | func_Function,
                             range_List, num_Integer] :=
Module[{(* the data *) aux = numberDistribution[func, range, num]},
If[aux != {},
ShowLegend[Show[Table[
   ListPlot[aux[[i]],
   (* option setting for a nice plot *)
            PlotJoined -> True, DisplayFunction -> Identity,
            PlotStyle -> {AbsoluteThickness[3],
                        Hue[(i - 1)/num 0.7]}], {i, num}],
     PlotRange -> All, AxesOrigin -> {0, 0},
     DisplayFunction -> Identity,
     AxesLabel -> {"digit", " number of\n occurrences"}],
     (* the legend *)
     {Table[{Graphics[{AbsoluteThickness[2],
      Hue[(i - 1)/num 0.7], Line[{{0, i/num}, {1, i/num}}]}],
            StyleForm["digit" <> ToString[i],
          FontFamily -> "Helvetica", FontSize -> 8]}, {i, num}],
      LegendPosition -> {1.0, -0.4}, LegendSize -> {0.8, 0.4 num/3}}],
           Print["no digits to plot"]]]

We now look at three examples: n ! [179÷], n + n2 + n3, nn. 

plotNumberDistribution[Factorial, {1, 250}, 3]

plotNumberDistribution[(# + #^2 + #^3)&, {1, 1000}, 3]

plotNumberDistribution[#^#&, {1, 200}, 5]

Next, we have a look at the digit distribution for the 3 n + 1 problem [168÷]. We start at all integers less than 104  and
carry out the iterations until a cycle is found.

threeNPlus1[n0_] := NestWhileList[If[EvenQ[#], #/2, 3 # + 1]&, n0, 
                                  (* stopping criteria *)
                                  (# =!= 1 && # =!= 2 && # =!= 4)&]

Here are the resulting probabilities for the first digits.

Function[l, (* analyze first digit frequencies *)
         {First[#], N @ Length[#]/Length[Flatten[l]]}& /@ l] @ 
Split[Sort[Flatten[
      (* run 3n + 1 iterations for different starting values *)
         Table[First[IntegerDigits[#]]& /@ threeNPlus1[k], 
               {k, 10^4}]]]]

For  further  arithmetical  examples  see  [298÷],  [111÷],  [145÷],  [146÷],  [337÷];  for  dynamical  system  examples,  see
[282÷];  and  for  discretized  images,  see  [152÷].  For  deviations  from  Benford’s  rule  for  the  weight  of  crushed  stone
pieces, see [176÷]. .For the first digit, Benford’s rule is again more or less satisfied, but not for the later digits. 

For an analysis of the probability of appearance of the digit j after the digit i, we have the following distribution .

[digits_List] := 
With[{n = Length[digits]},
     Log[10, 1 + 1/Sum[digits[[k]] 10^(n - k), {k, n}]]]

Summing over all possible values of the second digit we recover the above probabilities for the first digit.

Table[Sum[ [{d1, d2}], {d2, 0, 9}], {d1, 1, 9}] -
Table[ [{d1}], {d1, 1, 9}] // Simplify

Let us consider the first two digits of tanHk e ê pL where 1 § k § 105.
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theorData = Table[ [{d1, d2}], {d2, 0, 9}, {d1, 1, 9}];

experData = {First[#], Length[#]}& /@ 
       Split[Sort[Table[Take[RealDigits[N[Tan[k E/Pi]]][[1]], 2], 
                        {k, 10^5}]]];

The theoretical probabilities agree quite well with the ones from the sequence tanHk e ê pL.
Show[GraphicsArray[
Block[{$DisplayFunction = Identity},
{(* theoretical distribution *)
 ListPlot3D[theorData, MeshRange -> {{1, 9}, {0, 9}},
                       MeshStyle -> {Thickness[0.001]}],
 (* here obtained data *)
 ListPlot3D[Transpose[Map[Last[#]/10^5&, 
                      Partition[experData, 10], {2}]], 
                PlotRange -> All, MeshRange -> {{1, 9}, {0, 9}},
                MeshStyle -> {Thickness[0.001]}]}]]]

The first digits of the powers of 2 [19÷] are an example for which it is possible to show analytically that Benford’s rule
holds. In a few minutes, we can calculate the first digits for 2k  for k = 1, …, 106.

o = 10^6;
data = Table[StringTake[ToString[N[2^k], InputForm], {1, 1}], 
             {k, o}];

The agreement with the theoretical distribution is excellent.

Map[{#[[1]], (* data/theoretical value - 1 *) 
             #[[2]]/Log[10, 1 + 1/#[[1]]] - 1}&, 
    (* count first digits *)
    {ToExpression[First[#]], N[Length[#]/o]}& /@ Split[Sort[data]]]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

  2. Map, Outer, Inner, and Thread versus Table and Part, Iteratorless Generated Tables, Sum-
free Sets

a) First, we create a list with elements. 

testList = Array[a, 500];

We now apply  a  function  f,  not  specified  explicitly  to  each  element.  We use  an  inner  Do  loop  to  get  more accurate
timings.  The  function  f  has  nontrivial  rules  in  the  moment.  The  Map  version  is  much  faster  than  is  the  Table[
Part[...]]] version.

Timing[Do[Map[f, testList], {100}]][[1]]

Timing[Do[Table[f[testList[[i]]], {i, 500}], {100}]][[1]]

For comparison, here is a version with a function carrying the attribute Listable. 

SetAttributes[f, Listable];
Timing[Do[f[testList], {100}]][[1]]

In addition to the improvement in efficiency, note that in the second construction, the length of the list has to be given
explicitly  (or  a  construction  like  Length[testMatrix]  has  to  be  used  in  the  iterator).  Here  is  the  analogous
construction for a matrix. 

testMatrix = Array[a, {50, 50}];
{Timing[Do[Map[f, testMatrix, {2}], {100}]][[1]],
 Timing[Do[Table[f[testMatrix[[i, j]]], {i, 50}, {j, 50}], {100}]][[1]]}
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Here are two lists testLista and testListb that have no values, so that these two lists contain symbolic elements
of the form a[i].

testLista = Array[a, 500];
testListb = Array[a, 500];

We compute the generalized scalar product of the two lists, once using Inner and once in the “conventional” way. 

Timing[Do[Inner[f, testLista, testListb, g], {100}]][[1]]

Timing[Do[g @@ Sum[f[testList[[i]], testList[[i]]], 
                   {i, 500}], {100}]][[1]]
        

To test Outer, we reduce the size of the matrices somewhat. 

testLista = Array[a, 50];
testListb = Array[a, 50];

Timing[Do[Outer[f, testLista, testListb], {100}]][[1]]

For comparison, here is the conventional approach. 

Timing[Do[Table[f[testLista[[i]], testListb[[j]]],
                {i, 50}, {j, 50}], {100}]][[1]]

For Thread, we need some more lists. 

Do[testListNr[i] = Array[a[i], {20}], {i, 30}]

Here, Thread is applied. 

Thread[f @@ Table[testListNr[i], {i, 30}]] // Short[#, 12]&

Timing[Do[Thread[f @@ Table[testListNr[i], {i, 30}]], {100}]][[1]]

Here, all equivalent elements are individually identified and further applied. The savings in time is significant, because
a conventional approach requires operating 20 times on 30 different lists. 

Timing[Do[Table[f @@ Table[testListNr[i][[j]], {i, 30}], {j, 20}], {100}]][

Σ (* session summary *) TMGBs`PrintSessionSummary[]

b) Outer gives the possibility to create such a table. Because all m-ranges for the iterators are the same, we generate
just one of them, make a table of them, and apply Outer[f, ##]& to this table.  

functionalTableMaker[f_, n_, m_] :=
          Outer[f, ##]& @@ Table[#, {n}]&[Range[m]]

Let  us  check  the  equivalence  of  the  result  of  functionalTableMaker  with  the  Table  version  and  compare
timings. 

functionalTableMaker[ABC, 4, 5] ===
Table[ABC[i1, i2, i3, i4], {i1, 1, 5}, {i2, 1, 5}, {i3, 1, 5}, {i4, 1, 5}]

Timing[Do[Table[ABC[i1, i2, i3, i4, i5, i6],
                {i1, 1, 4}, {i2, 1, 4}, {i3, 1, 4},
                {i4, 1, 4}, {i5, 1, 4}, {i6, 1, 4}], {100}]]

Timing[Do[functionalTableMaker[ABC, 6, 4], {100}]]

As expected, the functional version is much faster. Another possibility is the use of Array.

functionalTableMaker2[f_, n_, m_] := Array[f, Array[m&, n]]

140 Printed from THE MATHEMATICA GUIDEBOOKS

©  2004, 2005   Springer Science+Business Media, Inc.



functionalTableMaker2[ABC, 6, 4] ===
Table[ABC[i1, i2, i3, i4, i5, i6],
      {i1, 1, 4}, {i2, 1, 4}, {i3, 1, 4},
      {i4, 1, 4}, {i5, 1, 4}, {i6, 1, 4}]

Timing[Do[functionalTableMaker2[ABC, 6, 4], {100}]]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

c)  Here  are  a  couple  of  functional  and  procedural  programmed  possibilities  to  perform  the  task.  They  should  be
reviewed in detail to see how the various constructs work. 

m[1][f_, mat_] := Transpose[MapThread[#2 /@ #1&, {Transpose[mat], f}]]

m[2][f_, mat_] := Inner[#2[#1]&, mat, f, List]

m[3][f_, mat_] := MapThread[#1[#2]&, {f, #}]& /@ mat

m[4][f_, mat_] := Module[{mat1 = mat},
                      Do[mat1[[i]] = Inner[#2[#1]&, mat[[i]], f, List],
                       {i, 1, Length[f]}]; mat1]

m[5][f_, mat_] := Table[f[[j]][mat[[i, j]]], {i, Length[f]}, {j, Length[f]}

m[6][f_, mat_] := MapIndexed[f[[#2[[2]]]][#1]&, mat, {2}]

m[7][f_, mat_] := Module[{mat1 = mat},
                      Do[mat1[[i, j]] = f[[j]][mat[[i, j]]],
                         {i, Length[f]}, {j, Length[f]}]; mat1]

m[8][f_, mat_] := Module[{mat1 = mat, matHold = Hold @@ {mat},
                         (* avoid evaluation *)
                         fHold = Hold @@ {f}},
                         Do[mat1[[i, j]] = fHold[[1, j]][matHold[[1, i, j]]
                            {i, Length[f]}, {j, Length[f]}]; mat1]

Let us test that all m[i] really generate the same result. 

SameQ @@ (Function[{f, mat}, #[f, mat]& /@ Table[m[i], {i, 8}]][
                   Array[k, 5], Array[b, {5, 5}]])

Now, let us time the various programming constructs with differently sized matrices. 

(* format timing uniformly *)
timeString[t_Real, afterCommaDigits_] := 
Module[{τ = ToString[t], p, σ},
       (* smaller than display granularity *)
       If[t < 10^-afterCommaDigits, "0." <> 
                StringJoin[Table["0", {afterCommaDigits}]],
       (* format nicely string *)
       p = StringPosition[τ, "."][[1, 1]];
       σ = StringTake[τ, {1, Min[p + afterCommaDigits, StringLength[τ]]}];
       If[StringLength[σ] < p + afterCommaDigits, 
          StringJoin[σ, Table["0", {(p + afterCommaDigits) - 
                                    StringLength[σ]}]], σ]]]
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With[{minDim = 20, maxDim = 200, stepDim = 8},
Module[{timings, testMat, testf},
(* get timings *)   
timings = Table[testMat = Array[b, {dim, dim}]; testf = Array[k, dim];
                Table[Timing[m[i][testf, testMat]][[1, 1]], {i, 8}],
                {dim, minDim, maxDim, stepDim}];
(* format results *)                
TableForm[Map[timeString[#, 2]&, timings, {-1}], TableHeadings ->
          {Table[dim, {dim, minDim, maxDim, stepDim}],
                 Table[ToString[m[i]] <> "\n\n", {i, 8}]}]]]

The first method, which always treats one column (or row) at once, is the fastest. 

Σ (* session summary *) TMGBs`PrintSessionSummary[]

c)  We start  by implementing the  procedural  approach.  To do this,  we operate  with  the two lists  set  and sums.  The
function next returns the smallest integer that is larger than the largest element of set and that is not contained in sums.

next[set_, sums_] :=
Module[{max = Last[set], pos, new, l = Length[sums]},
 (* position of largest sum smaller than largest element *)
 pos = Position[sums, _?(# > max&), {1}, 1][[1, 1]];
 (* find next integer that is not an already encountered sum *)
 While[new = sums[[pos]] + 1; 
       pos = pos + 1; pos <= l && sums[[pos]] == new,
       Null];
 new]

The function update adds the integer new to the list set and adds all sums that can be formed using set and new to the
list sums. It returns the updated lists set and sums.

update[set_, sums_, new_] := 
  (* add element and all new sums *)
  {Append[set, new], Union[Flatten[{sums, new + set}]]}

Using  the  two  functions  next  and  update,  it  is  straightforward  to  implement the  function  enlargeSetProce
dural that adds n integers to the initial list initialSet.

enlargeSetProcedural[initialSet_, n_] := 
Module[{set = initialSet, sums, new},
       sums = Union[Flatten[Outer[Plus, set, set]]];
       Do[new = next[set, sums];
       {set, sums} = update[set, sums, new], {n}];
       set]

Here is a simple example showing how enlargeSetProcedural works.

enlargeSetProcedural[{1, 2, 3, 4, 5}, 6]

Now let us implement the function enlargeSetUsingCaching. Instead of using a list to store all elements and all
sums, we define functions element and isSumQ which contain the information.
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enlargeSetUsingCaching[initialSet_, n_] := 
Module[{element, isSumQ, l = Length[initialSet], counter, max},
(* initialize with given numbers *)
MapIndexed[(element[#2[[1]]] = #1)&, initialSet];
counter = l;
(* initialize isSumQ with all sums 
   that can be formed from initialSet *)
(isSumQ[#] = True)& /@  Union[Flatten[
             Outer[Plus, initialSet, initialSet]]];
(* add n elements to the set *)
Do[With[{max = element[counter]},
        (* starting at the largest element in the set find the 
           smallest integer that is not an already formable sum *)
        For[k = 1, isSumQ[max + k], k = k + 1, Null];
            element[counter = counter + 1] = max + k;
            (* add new possible sums *)
            Do[isSumQ[element[j] + element[counter]] = True, 
               {j, counter}]], {n}];
(* return all elements *)
Table[element[k], {k, l + n}]]

Again, we use the simple starting sequence 81, 2, 3, 4, 5< for a quick check of enlargeSetUsingCaching.

enlargeSetUsingCaching[{1, 2, 3, 4, 5}, 6]

Now let us compare the timings of enlargeSetProcedural  and enlargeSetProcedural  for the starting set
being the first ten primes for 2000 recursive enlargements.

primeSet = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29};

( P2000 = enlargeSetProcedural[primeSet, 2000];) // Timing

( C2000 = enlargeSetUsingCaching[primeSet, 2000];) // Timing

The timings are nearly identical and the two calculated sets agree too.

P2000 === C2000

The complexity of both implementations is about OIn2M for small n. enlargeSetUsingCaching will be asymptoti-

cally faster. enlargeSetProcedural will have to search through larger and larger lists, whereas enlargeSetUs
ingCaching does not have to do this. But both functions will create at each step the constantly increasing sets of new
sums.

{#, Timing[enlargeSetProcedural[primeSet, #][[1]]]}& /@ 
                                  {100, 200, 400, 800, 1600}

{#, Timing[enlargeSetUsingCaching[primeSet, #][[1]]]}& /@ 
                                  {100, 200, 400, 800, 1600}

Interestingly, the sequence of differences between the numbers nk  it  seems to become periodic for any starting set o

[86÷], [205÷].

Σ (* session summary *) TMGBs`PrintSessionSummary[]
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  3. Index  

The list of the commands introduced in this book is Private`IntroducedCommands in the package Chapter
Overview. The form for each chapter is {"command", "whereIntroduced"}, where whereIntroduced is the section
of subsection in form of a string where the command command was discussed. There a consecutive numbering (ranging
from 1 to  14)  of  all  chapters  is  used.  We create  a  list  of  the  same names in  the  context  Global`.  (In  addition,  we
assume that the list of all built-in commands comes from this package.)

Get[ToFileName[ReplacePart[
            "FileName" /. NotebookInformation[EvaluationNotebook[]],
            "ChapterOverview.m", 2]]];

introducedCommandsPre =
   GuideBooks`ChapterOverview`Private`IntroducedCommands;

introducedCommands = Union[
   Flatten[Map[First, introducedCommandsPre, {2}]]];

allCommands = Names["System`*"];

Here is a shortened version of the list of commands introduced in boxes in this book. 

introducedCommands // Short[#, 14]&

This is the total number of commands. 

Length[introducedCommands]

Here  is  the  Mathematica  index.  The  function  whereIntroduced  gives  the  section  in  which  the  command  was
introduced. 

whereIntroduced[command_] :=
Module[{aux},
       (* where it is *)
       aux = Position[introducedCommandsPre, command];
       (* return chapter and section numbering *)
       If[aux == {}, "This command was not introduced.",
          consecutiveNumberingToPartNumbering /@
           (Part[introducedCommandsPre, #[[1]], #[[2]], 2]& /@ aux)]]

(* convert from consecutive to four-volume numbering *)
consecutiveNumberingToPartNumbering[s_String] :=
Module[{spos = StringPosition[s, ".", 1][[1, 1]], cn, rest},
        cn = ToExpression[StringTake[s, {1, spos - 1}]];
        rest = StringTake[s, {spos, StringLength[s]}];
       (* 6 Programming, 3 Graphics, 
          2 Numerics, and 3 Symbolics chapters *)
       Which[cn <  7, "P_" <> ToString[cn],
             cn < 10, "G_" <> ToString[cn - 6],
             cn < 12, "N_" <> ToString[cn - 9],
             cn < 15, "S_" <> ToString[cn - 11]] <> rest]

Here are a few examples involving commands that were introduced just once. 

whereIntroduced["TableForm"]

whereIntroduced["InputForm"]

We  have  mentioned  Plot  twice,  once  at  the  beginning  of  Chapter 3  to  plot  something  and  again  in  more  detail  in
Chapter 1 of the Graphics volume [301÷]. 
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whereIntroduced["Plot"]

The following command was not treated in this book at all. 

whereIntroduced["PolynomialMod"]

Here are all the commands that were not discussed. 

Complement[allCommands, introducedCommands] // Short[#, 16]&

Many commands were not introduced. 

Length[Complement[allCommands, introducedCommands]]

Did we misspell  the  name of  any command in  introducedCommands;  that  is,  is  there a  command in  our  list  that
does not appear in the list produced by Names["*"]? 

Complement[introducedCommands, allCommands]

How many Mathematica commands were introduced in the various chapters? 

Do[CellPrint[Cell["Î In Chapter " <> 
  Which[i <  7, "Programming_" <> #[i], 
        i < 10, "Graphics_" <> #[i - 6],
        i < 12, "Numerics_" <> #[i - 9], 
        i < 15, "Symbolics_" <> #[i - 11]]&[ToString] <> 
                 ", a total of " <> 
                  ToString[Length[introducedCommandsPre[[i - 1]]]] <> 
                  " commands were discussed.", "PrintText"]],
   {i, 2, 14}]

Which commands were discussed more than once, and in which sections? Here are the reasons for the multiple appear-
ances. 

† Their operations depend on their argument. 

† They are used for both 2D and 3D graphics. 

† They are first introduced, and then later discussed in detail. 

({#[[1, 1]], (* where it appeared? *) 
             whereIntroduced[#[[1, 1]]]}& /@
  Select[Split[Sort[Flatten[introducedCommandsPre, 1]], 
               #1[[1]] === #2[[1]]&], 
         (* at least two times mentioned *) Length[#] > 1&]) // 
                                                  Short[#, 12]&

Σ (* session summary *) TMGBs`PrintSessionSummary[]

  4. Functions Used Too Early?, Check of References, Closing ]], Line Lengths, Distribution of 
Initials, Check of Spacings  

a) The idea is the following: After reading in the notebooks and extracting the inputs as well all definitions of Mathemat-
ica  commands,  we  decompose  each  Mathematica  input  with  Level[..., {-1}, Heads -> True]  into  its
basic parts, and pick out all built-in commands that are used there but that have not yet been introduced. We begin with
the built-in commands. For later use, we enclose them in Hold. 

allSystemCommands = ToHeldExpression /@ Union[Names["System`*"]];

The list  alreadyIntroducedCommands  needs  to  be  updated.  Here  is  what  it  looks  like  at  the  end  of  Chapter 2.
(The commands are collected as strings, analogous to the list introducedCommands in the previous problem.) 
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alreadyIntroducedCommands =
{"FullForm", "TreeForm", "InputForm", "OutputForm", "Head", "Integer", 
 "Rational", "Real", "Complex", "String", "Plus", "Times", "Power", 
 "Sqrt", "Symbol", "Subtract", "Divide", "Minus", "Exp", "Sin", "Cos", 
 "Tan", "Cot", "Sec", "Csc", "Sinh", "Cosh", "Tanh", "Coth", "Sech", 
 "Csch", "N", "I", "Pi", "Degree", "E", "GoldenRatio", "EulerGamma", 
 "DirectedInfinity", "ComplexInfinity", "Indeterminate", "ArcSin", 
 "ArcCos", "ArcTan", "ArcCot", "ArcSec", "ArcCsc", "ArcSinh", "ArcCosh", 
 "ArcTanh", "ArcCoth", "ArcSech", "ArcCsch", "Re", "Im", "Arg", "Abs", 
 "N", "Short", "Shallow", "Skeleton", "Part", "Depth", "Position", 
 "Level", "Heads", "Length", "LeafCount", "Numerator", "Denominator", 
 "IntegerDigits", "RealDigits", "BaseForm"};

The main programming work is in searching for the commands of the inputs that have not yet been used. The function
orderCheck does this task. Its operation is more or less analogous to that in Section 6.6. First, we enclose all atomic
subexpressions in unevaluated form (attribute HoldAll in Function) in Hold. Next, we extract the commands that
have  already  been  introduced.  The  remaining Hold[var]  are  analyzed  to  see  if  they  are  built-in  functions.  Rest  is
needed  to  remove  the  first  Hold[Hold].  If  the  resulting  list  is  not  {},  it  is  printed.  The  argument  is  returned
unchanged. For better readability, in particular for expressions containing many inputs, we print the In[…] numbering
and the analyzed expression in the input form. 

orderCheck :=
Function[x, (* print the result of the analysis *)
          Function[y, If[y != {},
CellPrint[Cell[TextData[{
  StyleBox["Î In "],
  StyleBox["In[" <> ToString[$Line] <> "]", "CellLabel"],
  StyleBox["\n"],
  StyleBox[StringDrop[StringDrop[ToString[
        InputForm[Unevaluated[x]]], 12], -1], FontFamily -> "Courier"],
  StyleBox[
   "\nÎ The following, until now not discussed, functions were used: \n"],
  StyleBox[ToString[y], FontFamily -> "Courier"]}], "PrintText"]]]][
       (* wrap Hold around everywhere and then look
           if it was already introduced *) (HoldForm @@ #)& /@
         Intersection[Complement[Rest[Level[
                  Map[Hold, Hold[x], {-1},
                      Heads -> True], {-2}, Heads -> True]],
       (* introduced commands *)                            
       ToHeldExpression /@ alreadyIntroducedCommands],
                           allSystemCommands]]; x, {HoldAll}]

Here,  we  check  an  example  expression  for  new  commands  (we  see  that  no  subexpression  is  computed,  and  Hold
appears exactly once). 

orderCheck[y[x_] := Block[{$RecursionLimit = 100, v},
                          $IterationLimit; Hold;
                          Blank; Blank; Blank;
                          Unevaluated[Integrate];
                          $Version; Date;
                          v[y_] := v[y - 1]2 + 3;
                          v[0] = 456;
                          v[x]]]

If no new command appears, nothing is printed. 

Sin[x^3] + Cos[x y] + 12 // orderCheck
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Now,  if  we set  $Pre = orderCheck,  every Mathematica  input  will  automatically be checked for  commands that
have not yet been introduced (note that the expression given to $Pre must be a function). We do not discuss the test,
but the interested reader can see how frequent commands that were not introduced were actually used. 

Note that the given function is applied to every Mathematica input. Thus, the following approach will not work because
we cannot wrap orderCheck around multiple expressions. After doing so multiple expressions will be interpreted as
factors  of  a  product.  The  warning  message  RuleDelayed::rhs  is  issued  because  of  the  (fu1[x_]  :=

Sin[x], x^2)*(fu2[x_] := Cos[x], x^3) interpretation of the argument.

orderCheck[fu1[x_] := {Sin[x], x^2}
           fu2[x_] := {Cos[x], x^3}]

However, the following example does work. 

$Pre = orderCheck;

fu1[x_] := {Sin[x], x^2}
fu2[x_] := {Cos[x], x^3}

The analysis of the results  of  calculations with Mathematica  can be done in a similar way.  In this case,  no additional
work is needed to prevent the computation of the parts. 

Once in a while, we use commands that have not yet been “officially” introduced. To analyze these cases correctly, we
could introduce a variable $orderCheck,  with possible values  True  and False,  which tells whether  to check the
following input: 
$Pre = If[$orderCheck == True, orderCheck, Identity]

To prevent it from checking itself, the two inputs $orderCheck = True and $orderCheck = False have to
be treated specially. We do not give further details here. We conclude by recovering the original value of $Pre. 

$Pre =.

Evaluating $Pre now has no side effect.

$Pre =.

Anyway, we leave it to the reader to check how often we used commands that were not introduced at all or how often
commands  were  used  before  they  were  “officially”  introduced.  It  happened  sometimes.  So  the  reader  did  not  really
expect to find the actual answer to the posed question here. To really figure out how often it happens that commands are
used  before  they  are  explained,  we  must  read  in  the  notebooks  forming  the  GuideBooks,  extract  the  cells  (and  their
positions) that introduce new commands (they are of type "MathDescription") and compare these with the actual
commands  used  in  cells  of  type  "Input".  The  list  of  functions  introduced  before  a  certain  "Input"  cell  must  be
updated after every occurrence of a "MathDescription" cell.

Σ (* session summary *) TMGBs`PrintSessionSummary[]

b) We do not carry out this check by hand; this would be too time-consuming and error-prone. Because notebooks are
Mathematica expressions, we can carry out the check inside Mathematica. The references in the Reference sections are
in cells of the type Cell[referenceDetails, "BibliographyItem", CellTags -> "LastNameOfTheFirstAuÖ
thorAndTwoDigitYear"]. We extract these cells and then extract the relevant LastNameOfTheFirstAuthorAndTwoDigitÖ
Year from the cells. This process gives us the list of references. In the main text of the GuideBooks chapters, we refer to
a  reference  in  the  form  ButtonBox["˜", ButtonData :> "LastNameOfTheFirstAuthorAndTwoDigitYear",
ButtonStyle -> "Hyperlink"]  (this  is  the  underlying  expression  Mathematica  expression  in  the  notebook).
We extract  the  right-hand  side  of  the  ButtonData  option,  and  this  gives  us  a  list  of  all  the  references  we refer  to.
Then, we just compare if any elements are in the referred references that are not in the listed references and opposite.
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notebooks = Flatten[
     {Function[{c, n}, (c <> ToString[#] <> ".nb")& /@ Range[n]] @@@
      {{"1_Programming_", 6}, {"2_Graphics_", 3}, 
       {"3_Numerics_", 2}, {"4_Symbolics_", 3}},
      "Preface.nb", "0_Introduction.nb", "Appendix_A.nb"}]

(* directory name *)
dirName = StringDrop[ToFileName["FileName" /.    
            NotebookInformation[EvaluationNotebook[]]], -18];

Here is an implementation of the program sketched above.

Function[nbs,
(* read in a notebook *)
nb = Get[(* construct file name *) dirName <> nbs];
(* check tags for unresolved counter boxes *)
If[MemberQ[nb, CounterBox["BibliographyCounter", _], Infinity],
   If[# =!= {}, Print["Different tags in " <> nbs <> " : ", List @@@ #]]& @
     Select[Union /@ Cases[nb //. (* extract counter structures *)
     {a___, CounterBox["BibliographyCounter", r_], 
            ButtonBox["˜",  ButtonData :> _, __], b___} :> 
                {a, C[r, ], b}, _C, Infinity], Length[#] === 2&]];
(* the references *)
references = Flatten[Last /@ 
 Cases[Cases[nb, Cell[__, "BibliographyItem", __], Infinity],
       HoldPattern[CellTags -> r_], Infinity]];
(* are tags unique? *)
If[Not[Sort[references] === Union[references]],
   Print["Multiple tags in file: ", nbs];
   Print[Select[Split[Sort[references]], (Length[#] >= 2)&]]];             
(* the mentioned references *)
referredToReferences = Flatten[#[[2, 2]]& /@ 
    Cases[nb, ButtonBox["˜", ButtonData :> _,
              ButtonStyle -> "Hyperlink", ___], Infinity]];
(* analyse all data *)              
{nbs, {(* how many entries? *) Length /@ #, 
       (* any entries unused or unreferenced? *) 
       (* any entries unused? *) Complement @@ #, 
       (* any entries unreferenced? *) 
       Complement @@ Reverse[#]}}&[
         {references, referredToReferences}]] /@ notebooks

Luckily, all second arguments of the last lists are empty, which means each mentioned reference is really present and
each given reference is mentioned at least once. 

This input gives the total number of references (counted with their multiplicity in case they are used in more than one
chapter).

Plus @@ (#[[2, 1, 1]]& /@ %)

Here are the current number of Arxiv-, DOI-, book-, and direct hyper-links.

Function[refs, Count[refs, ButtonStyle -> #, {-2}]& /@ 
 (* link types *) {"ArXivLink", "DOILink", "BookLink", "Hyperlink"}][
  Flatten[Table[Cases[Get[dirName <> notebooks[[k]]], 
                      Cell[___, "BibliographyItem", ___], Infinity], 
                {k, Length[notebooks]}]]]

This means that about 73% of all refrences are hyperlinked.

N[(Plus @@ %)/%%]
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Now, let us analyze which are the most-cited journals. We extract all italic journal (and book) titles from the references.

data = Table[
 (* the notebook to be analyzed *)
 nb = Get[dirName <> notebooks[[k]]];
 (* the journal and book titles in the reference cells *)
 items = First /@ Cases[Cases[nb, Cell[___, "BibliographyItem", ___],
                       Infinity], StyleBox[_, "TI"], Infinity], 
              {k, Length[notebooks]}];

We sort the titles and count how frequently they occur.

res = Sort[Split[Sort[Flatten[data]]], Length[#1] > Length[#2]&];

Here  are  the  12  most  cited  journals.  As  mentioned  in  the  introduction,  most  examples  come  from  general  physics,
mathematics,  and  related  fields  [206÷]  (and,  of  course,  Mathematica-related  journals).  Five  of  the  arXiv  physics
preprint groups made it into the top ten.

(* format nicely *)
GridBox[{StyleBox[First[#], FontFamily -> "Times", FontSlant -> Italic], 
         Length[#]}& /@ Take[res, 12],
        ColumnAlignments -> {Left, Right}] // DisplayForm

The function publicationYear extracts the year of the publication of a journal article or a book from a Bibliog
raphyItem cell.

publicationYear[ref_] := 
Module[{ref1 = DeleteCases[ref, _ButtonBox, Infinity],
        str, sp1, sp2, year},
(* extract journals and preprints; no books *)        
str = Cases[ref, _String?(StringMatchQ[#, "*(*)*"]&), {-1}];
If[str =!= {},
   (* a journal or preprint citation *)
   {sp1, sp2} = StringPosition[str[[-1]], #]& /@ {"(", ")"};
   year = StringTake[str[[-1]], {sp1[[-1, 1]] + 1, sp2[[-1, 1]] - 1}]];
If[Head[year] === String && SyntaxQ[year] &&
   (* excluding the publication year of this book *)
   TrueQ[1600 <= ToExpression[year] <= 2004], Null,
   (* a book citation *)
   str = Cases[ref2, TextData[{___, r_}] :> r];
   If[str =!= {},
      sp2 = StringPosition[str[[-1]], "."];
      year = StringTake[str[[-1]], {sp2[[-1, 1]] - 4, sp2[[-1, 1]] - 1}]]];
If[Head[year] === String && SyntaxQ[year] &&
   (* until the completed last year *)
   TrueQ[1600 <= ToExpression[year] <= 2004], year]]

We  read  in  all  notebooks  and  determine  the  publication  years  of  all  citations.  We  separately  count  the  electronic
articles. They either refer to a URL (visible in the ButtonFunction as URL) or have a “Get Preprint” button.
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data = Table[
nb = Get[(* construct file name *) dirName <> notebooks[[k]]];
(* the references *)
references = Cases[nb, Cell[__, "BibliographyItem", __], Infinity];
(* the references to electronic documents *)
eReferences = Select[references,
                     (MemberQ[#, "Get Preprint", {-1}] ||     
                      MemberQ[#, URL, {-1}, Heads -> True])&];      
(* the publication years *)
DeleteCases[{publicationYear /@ eReferences, 
             publicationYear /@ references}, Null, {2}],
             {k, Length[notebooks]}];

Here is the number of electronic articles over the last ten years.

eData = Select[{ToExpression[First[#]], Length[#]}& /@ 
                           Split[Sort[Flatten[First /@ data]]],
               #[[1]] <= 2004&]

In a logarithmic plot, the exponential increase of electronic articles in the nineties becomes easily visible.

ListPlot[aux = Apply[{#1, Log[10, #2]}&, eData, {1}],
         PlotJoined -> True, Frame -> True, Axes -> False,
         Epilog -> {PointSize[0.02], Point /@ aux},
         FrameTicks -> {Table[j, {j, 1988, 2004, 2}], 
                        Automatic, None, None}]

The number of electronic articles nearly exactly doubles from year to year. This is in agreement with general estima-
tions. (See the electronic articles [230÷], [187÷], [245÷]; for printed literature, see [16÷]). For the arXiv statistics, see
http://arXiv.org/cgi-bin/show_monthly_submissions .)  And  the  “starting  date”  of  electronic  articles  (mentioned  in  this
book) is in 1991 [21÷].

With[{fit = (* take data from 1992 to 2000 and extrapolate *)
            Fit[Cases[aux, {_?(1992 <= # <= 2000&), _}], {1, x}, x]},
     {10^Coefficient[fit, x, 1], x /. Solve[fit == 0, x][[1]]}]

 Now let us see what fraction the electronic articles constitute among all references.

allData = Select[{ToExpression[First[#]], Length[#]}& /@ 
                 Split[Sort[Flatten[Last /@ data]]],
                 (* use =only full years *) #[[1]] <= 2004&];
                           
(* select relevant years *)
allData1 = Cases[allData, Alternatives @@ ({#, _}& /@ 
                                            (First /@ eData))];

eFraction = MapThread[{#1[[1]], #1[[2]]/#2[[2]]}&, {eData, allData1}];

The relative  fraction  of  electronic articles  reached about  50% in  2000 (this  distribution  is  not  unique  because  there a
preprint  may  appear  in  a  journal  later).  (The  relatively  steep  increase  in  the  number  of  references  in  the  years
1998–2000 is largely caused by the new symbolic and numeric computing capabilities that precipitated with the release
of Version 4.0 of Mathematica.)

ListPlot[eFraction, PlotJoined -> True, Frame -> True, Axes -> False,
         Epilog -> {PointSize[0.02], Point /@ eFraction},
         FrameTicks -> {Table[j, {j, 1988, 2004, 2}], 
                        Automatic, None, None}]

Plotting the total number of references as a function of their age in a double logarithmic plot shows clearly two different
distribution regimes [123÷].  The number of  cited references decreases more quickly for references that are older than
about 101.05 º 11 years.
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logLogData = {Log[10, 2005 - ToExpression[First[#]]], 
              Log[10, Last[#]]}& /@ allData;
          
ListPlot[logLogData, PlotRange -> All, Frame -> True, Axes -> False]

Here are the approximate decay powers for the two regimes.

Function[lg, Fit[Select[logLogData, (#[[1]] ~ lg ~ 1.05)&], 
                 {1, x}, x]] /@ {Less, Greater}

To quantify the crossover point, we calculate the weighted residue for a set of linear fits for the citation counts between
the ages ageList.

residue[ageList_List] := 
Module[{ageRanges, rawData, rangeData, fitFunctions, 
        (* ignore very recent papers *) minLogAge = Log[10, 2.5]}, 
 If[OrderedQ[ageList], 
    (* age intervals *)
    ageRanges = Partition[Flatten[{minLogAge, ageList, Infinity}], 2, 1];
    (* citation data *)
    rawData = N @ Select[logLogData, #1[[1]] >= minLogAge&];
    (* citation data in age intervals *)
    rangeData = Function[{age1, age2}, 
                      Select[rawData, (age1 <= #[[1]] <= age2)&]] @@@
                                                           ageRanges;
    (* linear fits to citation data in age intervals *)
    fitFunctions = Function[x, Evaluate[Fit[#, {1, x}, x]]]& /@ rangeData; 
    (* sums of squares of differences; weighted by citation counts *)
    Sum[(Plus @@ (Evaluate[#2 Abs[fitFunctions[[k]][#1] - #2]]& @@@ 
               rangeData[[k]])), {k, Length[ageRanges]}],
     Infinity]]

The left graphic shows the residue as a function of one crossover age and the right 3D graphic shows the residue as a
function of two crossover ages.

Show[GraphicsArray[
   Block[{$DisplayFunction = Identity},
      {(* residue for fit with two linear functions *)
       Plot[residue[{age}], {age, 0, 2}, AxesLabel -> {"age", None}], 
       (* residue for fit with three linear functions *)
       Plot3D[residue[{age1, age2}], {age1, 0, 2}, {age2, 0, 2},
              PlotPoints -> 160,  AxesLabel -> {"age1", "age2", None},
              ViewPoint -> {-3, -0.8, 2}, Mesh -> False]}]]] //
                                          Internal`DeactivateMessages  

For one crossover point, we find again the age of about 12 years and for two crossover points, we find the second age to
be about 45 years.

Module[{allPoints, minPoints}, 
 (* extract points from all polygons *)
 allPoints = Cases[Level[Cases[Graphics3D[%[[1, 2]]], 
                                _Polygon, Infinity], {-2}], _List];
 (* smallest residue values *)
 minPoints = Union[Cases[allPoints, {_, _, Min[Last /@ allPoints]}]];
 10^(Most /@ minPoints) "years"]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

c) These are the notebooks to be analyzed.
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notebooks = Flatten[
     {Function[{c, n}, (c <> ToString[#] <> ".nb")& /@ Range[n]] @@@
      {{"1_Programming_", 6}, {"2_Graphics_", 3}, 
       {"3_Numerics_", 2}, {"4_Symbolics_", 3}},
      "Preface.nb", "0_Introduction.nb", "Appendix_A.nb"}];

fileNames = ToFileName[ReplacePart["FileName" /. 
  NotebookInformation[EvaluationNotebook[]], #, 2]]& /@ notebooks;

Do[nb[k] = Get[fileNames[[k]]], {k, 17}]

We extract all reference cells.

bibliographyItems[nb_] := 
             Cases[nb, Cell[___, "BibliographyItem", ___], Infinity]

The  part  referenceCell[[1, 1, 3]]  is  the  string  of  the  author  names.  The  function  getLetters  analyzes  the
string and extracts the first letters of the initial, middle, and the last names.

getLetters[s_String] := 
Module[{chars = Characters[s], upperCasePosis, initialAndMiddleNamePosis},
(* position of upper case letters *)
upperCasePosis = Flatten[Position[chars, _?UpperCaseQ, {1}, Heads -> False]
(* position of upper case letters of initials;
   all initial and middle names are abbreviated *)
initialAndMiddleNamePosis = Select[upperCasePosis, (chars[[# + 1]] === ".")
{(* first letter of initials *) 
 chars[[initialAndMiddleNamePosis]],
 (* first letter of lastname *) 
 chars[[Complement[upperCasePosis, initialAndMiddleNamePosis]]]}]

getLetters[StyleBox[s_String, ___]] := getLetters[s]

(* extract the names from a reference cell *)
extractNameString[Cell[TextData[l_], ___]] := 
With[{pos = Position[l, _String, {1}, 1]},
     If[pos =!= {}, l[[pos[[1, 1]]]]]]

Now, we extract all first letters and count their appearance.

allLetters = Flatten[Table[getLetters[extractNameString[#]]& /@ 
                          bibliographyItems[nb[k]], {k, 17}], 1];

So the most frequent first and middle names start with J and the most frequent last names start with S.

Take[Sort[{First[#], Length[#]}& /@ Split[Sort[Flatten[First /@ allLetters]
                                          #1[[2]] > #2[[2]]&], 10]

ReplacePart[DownValues[In][[-2]], Last, {2, 1, 1, 2, 1, 1, 1, 1}][[2]]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

d) Now, let us analyze the line lengths of the inputs and the relative fraction of white space. The function lines splits
a string containing newline characters into single lines. 

lines[s_String] := StringTake[s, #]& /@ 
      Partition[Flatten[{1, StringPosition[s, "\n"], StringLength[s]}], 2]

We read in all chapters, select the inputs, split the inputs into lines, and determine the lengths of the lines as well as the
number of white space characters.
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notebooks = Flatten[
     {Function[{c, n}, (c <> ToString[#] <> ".nb")& /@ Range[n]] @@@
      {{"1_Programming_", 6}, {"2_Graphics_", 3}, 
       {"3_Numerics_", 2}, {"4_Symbolics_", 3}}}]; 

fileNames = ToFileName[ReplacePart["FileName" /. 
  NotebookInformation[EvaluationNotebook[]], #, 2]]& /@ notebooks;

(* indentation of a Mathematica input line *)
indentation[s_String] := 
With[{chars = Characters[s]},
 If[(* no nontrivial characters on this line *)
    StringLength[s] <= 1 || 
          Complement[chars, {"\n", "\t", " "}] === {}, 0,
    Position[Rest[chars], _?(# =!= " "&), {1}, 1, 
             Heads -> False][[1, 1]]]]

data = Table[
 nb = Get[fileNames[[k]]];
 (* get input cells *)
 inputCells = Cases[nb, Cell[__, "Input", ___], Infinity];
 (* the input strings *)
 inputStrings =  Which[Head[#[[1]]] === String, #[[1]],
                       Head[#[[1]]] === TextData,
                       Check[StringJoin @@ DeleteCases[#[[1, 1]], 
                                     _StyleBox], Sequence @@ {}],
                       True, Sequence @@ {}]& /@ inputCells;
 (* split input cells into individual lines *)          
 allLines = Flatten[lines /@ inputStrings]; 
 (* get line lengths and count white spaces *)    
 {StringLength[#], Count[Characters[#], " "], 
  indentation[#]}& /@ allLines, {k, 1, 14}];         

The next  graphic  shows the  distribution of  the line lengths.  The peak for  short  line length is caused by inputs like %,
N[%], ….

ListPlot[{First[#], Length[#]}& /@ 
              Drop[Split[Sort[First /@ Flatten[data, 1]]], 1], 
        Frame -> True, Axes -> False, PlotJoined -> True, 
        PlotRange -> {{0, 80}, All}]

About one-fifth of the inputs are white space.

N[#2/#1& @@ Apply[Plus, Transpose[Flatten[data, 1]], {1}]]

In average, the inputs are indented by about five to six characters.

indents = {First[#], Length[#]}& /@ 
           Split[Sort[Flatten[Last /@ Flatten[data, 1]]]];

(Plus @@ (Times @@@ indents))/(Plus @@ (Last /@ indents)) // N

We end with analyzing the density of code comments. For a given cell of type "Input" or "Program", the function
commentAndCodeLines counts the number of lines of comments and code. 
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(* count number of newline characters in an expression *)
countNewlineChars[expr_] := Length @
  StringPosition[StringJoin[Cases[expr, _String, {-1}]], "\n"]
  
commentAndCodeLines[inputAndProgramCell_] := 
Module[{numberOfCommentLines, s1, s2}, 
 If[FreeQ[inputAndProgramCell, _BoxData, Infinity], 
 {(* count number of comment lines *)
  numberOfCommentLines = Plus @@ ((1 + countNewlineChars[#])& /@ 
  Cases[inputAndProgramCell, StyleBox[_, "CodeComment", ___],
        Infinity]),
 (* count number of code lines *)
 s1 = DeleteCases[inputAndProgramCell[[1]], 
                  StyleBox[_, "CodeComment", ___], Infinity] /.
                  StyleBox[x_, __] :> x;
 If[(* comment only case *) s1 === TextData[], 0,                 
    (* ignore empty lines *)
    s2 = If[Head[s1] === String, s1, StringJoin[s1[[1]]]];
    Plus @@ (If[Complement[Union[Characters[#]], {"\n", " "}] =!= {}, 
                1, 0]& /@ (StringTake[s2, #]& /@ Partition[
    Union[Flatten[{1, First /@ StringPosition[s2, "\n"], 
                  StringLength[s2]}]], 2, 1]))]}, Sequence @@ {}]]

Extracting now the input and program cells for all 14 chapter notebooks yields the following counting data. 

data = Table[
  (* load notebook *) nb = Get[fileNames[[j]]];
  (* extract input and program cells *)
  inputAndProgramCells = 
    Cases[Flatten[nb[[1]] //. Cell[CellGroupData[l_, ___], ___] :> l], 
          Cell[_, "Input" | "Program", ___]];
  (* analyze inputs and comments *)
  Table[commentAndCodeLines @ inputAndProgramCells[[k]], 
       {k, Length[inputAndProgramCells]}], {j, 14}];

On average, we have one comment per six lines of code.

Divide @@ (Plus @@@ Transpose[Flatten[data, 1]]) // N

Shorter,  especially  one-,  two-,  and  three-line,  inputs  have  seldom  comments;  larger  inputs  have  approximately  one
comment per three to four lines of code. Sorting the above data data with respect to the number of lines of code yields
the following distribution of the average number of comments as a function of the number of code lines of the inputs.
Because the number of inputs with more than 20 lines of code is relatively small, the data have relatively large fluctua-
tions on the right end of the graphic.

ListPlot[Select[{#[[1, 1]], (Plus @@ (Last /@ #))/Length[#]}& /@ 
                (Split[Sort[Reverse /@ Flatten[data, 1]], 
                       #1[[1]] === #2[[1]]&]), First[#] < 50&]]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

e)  To  count  the  number  of  successive  square  closing  brackets,  we  read  in  all  notebooks  of  the  Mathematica  Guide-
Books, extract all input cells, delete all comments, and transform the inputs into a sequence of characters. After deleting
whitespace, we use Split to separate groups of square closing brackets.

notebooks = Flatten[
     {Function[{c, n}, (c <> ToString[#] <> ".nb")& /@ Range[n]] @@@
      {{"1_Programming_", 6}, {"2_Graphics_", 3}, 
       {"3_Numerics_", 2}, {"4_Symbolics_", 3}},
      "Preface.nb", "0_Introduction.nb", "Appendix_A.nb"}]; 
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fileNames = ToFileName[ReplacePart[
           "FileName" /. NotebookInformation[EvaluationNotebook[]],
            #, 2]]& /@ notebooks;

data = Table[
nb = Get[fileNames[[k]]];
(* the input cells *)
inputCells = Cases[nb, Cell[__, "Input", ___], Infinity];
(* the input strings *)
inputStrings = Which[Head[#[[1]]] === String, #[[1]],
                     Head[#[[1]]] === TextData,
                     StringJoin[Cases[#[[1, 1]], _String]],
                     True, Sequence @@ {}]& /@ inputCells;
(* the characters of the input strings *)           
characters = DeleteCases[Characters[#],
             (* ignore spaces and newlines *)
               "\t" | "\n" | " "]& /@ inputStrings;
(* count sequences of "]" *)               
{StringJoin[First[#]], Length[#]}& /@ 
   Split[Sort[Flatten[Cases[Split[#], {"]", ___}]& /@ 
             characters, 1]]], {k, 14}];

We add all results from the 14 chapters of the four volumes of the GuideBooks.

res = Sort[Flatten[data, 1], 
        StringLength[#1[[1]]] <= StringLength[#2[[1]]]&] //.
         {a___, {α_, n_}, {α_, m_}, b___} :> {a, {α, n + m}, b};

res // TableForm

To a good approximation, we find that the probability pn
HDL of n successive closing square brackets obeys pn

HDL ~ expH-nL.
logProbPlot[res_] := 
Module[{n = Plus @@ (Last /@ res)},
ListPlot[{#[[1]], Log[10, #[[2]]]}& /@ 
                   N[{StringLength[#[[1]]], #[[2]]/n}& /@ res],
         PlotJoined -> True, Axes -> False, 
         Frame -> True, PlotRange -> All]]
         
logProbPlot[res]

Now,  let  us  deal  with  all  input  written  in  FullForm.  To  obtain  the  FullForm  version  of  the  inputs,  we  have  to
interpret the inputs using ToHeldExpression. We then transform the resulting expressions into strings, strip out the
enclosing Hold[] characters, delete whitespace, and proceed as above.

(* suppress messages *)
Off[Syntax::com]; Off[SyntaxQ::string]; Off[Trace::shdw]; 
Off[List::string]; Off[StringJoin::string]; Off[Precision::precsm];
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data = Table[
nb = Get[fileNames[[k]]];
(* the input cells *)
inputCells = Cases[nb, Cell[__, "Input", ___], Infinity];
(* the interpreted inputs *)
heldInputs = If[SyntaxQ[#], 
ToHeldExpression[#], Sequence @@ {}]& /@
 DeleteCases[Which[Head[#[[1]]] === String, #[[1]],
                   Head[#[[1]]] === TextData, 
                   StringJoin[#[[1, 1]] /. StyleBox[s_, ___] :> s]]& /@ 
                                                    inputCells, Null, {1}];
(* the input strings *)
inputStrings = If[StringLength[#] > 6, 
      StringDrop[StringDrop[#, -1], 5]]& /@ 
        (ToString[FullForm[#]]& /@ heldInputs);
(* the characters of the input strings *)           
characters = DeleteCases[Characters[#],  
             (* ignore spaces and newlines *)
               "\t" | "\n" | " "]& /@ inputStrings;
(* count sequences of "]" *)               
{StringJoin[First[#]], Length[#]}& /@ 
   Split[Sort[Flatten[Cases[Split[#], {"]", ___}]& /@ 
             characters, 1]]], {k, 14}];

Using the FullForm  versions  of  the inputs  yields a different  distribution.  No ]]  for  part  extraction occur  anymore,
but many Map, Apply, …, that are written in their infix form contribute now with closing square brackets.

res = Sort[Flatten[data, 1], 
           StringLength[#1[[1]]] <= StringLength[#2[[1]]]&] //.
      {a___, {α_, n_}, {α_, m_}, b___} :> {a, {α, n + m}, b};

res // TableForm

Again, we find that the probability pè n
HDL of n successive closing square brackets obeys approximatively pè n

HDL ~ expH-nL.
logProbPlot[res]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

f) We start by creating a list of all notebooks to be checked.

notebooks = (* Programming volume only *)
     ("1_Programming_"<> ToString[#] <> ".nb")& /@ Range[6]; 

fileNames = ToFileName[ReplacePart[
           "FileName" /. NotebookInformation[EvaluationNotebook[]],
            #, 2]]& /@ notebooks;

nbs = Get /@ fileNames;

We extract all cells containing Mathematica inputs (ignoring inline cells).

allCells = Flatten[#[[1]] //. 
           Cell[CellGroupData[l_List, ___], ___] :> l]& /@ nbs;

inputCells = Cases[#, Cell[_?(FreeQ[#, _BoxData, {0, Infinity}]&), 
                           "Input" | "Program", ___], 
                   Infinity]& /@ allCells;

These is the number of input cells to be checked.

Length /@ inputCells

156 Printed from THE MATHEMATICA GUIDEBOOKS

©  2004, 2005   Springer Science+Business Media, Inc.



Given  a  cell  of  type  "Input"  or  "Program",  the  function  makeInputString  generates  a  single  string  of  the
actual  input.  Comments  are  stripped  out  and  a  single  whitespace  is  prepended  and  appended.  Newline  characters  are
treated as a single empty space.

makeInputString[c:Cell[s_, "Input" | "Program", ___]] := 
StringReplace[StringJoin[" ",
Which[Head[s] === String, s,
      (* delete comments; concatenate pieces *)
      Head[s] === TextData, StringJoin[s[[1]] /. _StyleBox :> " "],
      True, Print[k]; CellPrint[c]], " "], {"\n" -> " ", "\t" -> " "}]

The  function  spacingCorrectQ  tests  if  the  string  s  has  for  all  elements  of  allowedNeighbors  “allowed”
neighbors.  allowedNeighborsQ[s,  characters,  potentialLeftNeighbors,  potentialRightNeighbors]  returns
True if the character sequence characters inside the string s has a left neighboring character from the list potentialLeftÖ
Neighbors and a right neighboring character from the list potentialRightNeighbors. Any indicates that any character can
appear.  So,  for  example,  to  the  left  of  a  semicolon ';'  any character  can  appear,  but  to  the  right  an empty space or  a
closing bracket or a closing parentheses is allowed.

spacingCorrectQ[ _String] := 
With[{  = allowedNeighborsQ, 
      (* special treatment of Increment and Decrement *)
      s = StringReplace[ , {"++" -> " +", "--" -> " -"}]}, 
 [s, ";",   Any, {" ", "]", ")"}] &&
 [s, ",",   Any, {" "}] &&
 [s, "+",   {" ", "+", "(", "^", "[", "{"}, Any] &&
 [s, "-",   {" ", "-", "(", "^", "[", "{", "`"}, Any] &&
 [s, "=",   {" ", "=", ":", "^", "!", ">", "<"}, {" ", "=", "!", "."}] &&
 [s, ":=",  {" ", "^"}, {" "}] &&
 [s, "==",  {" ", "="}, {" ", "="}] &&
 [s, "<",   {" ", "<"}, {" ", "=", "<", ">"}] &&
 [s, ">",   {" ", "-", ":", ">", "<"}, {" ", "=", ">"}] &&
 [s, "<>",  {" "}, {" "}] &&
 [s, "===", {" "}, {" "}] &&
 [s, "=!=", {" "}, {" "}] &&
 [s, "->",  {" "}, {" "}] &&
 [s, ":>",  {" "}, {" "}] &&
 [s, "/.",  {" ", "/"}, {" "}] &&
 [s, "//.", {" "}, {" "}] &&
 [s, "//",  {" "}, {" ", ".", "@"}] &&
 [s, "/;",  {" "}, {" "}] &&
 [s, "@",   {" ", "/", "@"}, {" ", "@"}] &&
 [s, "/@",  {" ", "/"}, {" ", "@"}] &&
 [s, "@@",  {" ", "@"}, {" ", "@"}] &&
 [s, "@@@", {" "}, {" "}] &&
 [s, "&&",  {" "}, {" "}] &&
 [s, "||",  {" "}, {" "}] &&
 [s, "|",   {" ", "|"}, {" ", "|"}]]

The function allowedNeighbors  finally locates the position of the character sequence of interest and checks their
neighboring characters. We do not want to reimplement the Mathematica parser and we do not have to for our restricted
purpose. Simply checking the left and right neighbors is enough for our purposes. A more refined treatment would take
into account if the characters appear inside a string, for instance.
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allowedNeighborsQ[s_String, characters_String, 
                  potentialLeftNeighbors_, potentialRightNeighbors_] := 
Module[{posis = StringPosition[s, characters]}, 
 If[posis === {}, True, 
    (* actual left neighbor characters *)
    leftCharacters = Union[StringTake[s, {#, #}]& /@ 
                           ((First /@ posis) - 1)];
    (* actual right neighbor characters *)
    rightCharacters = Union[StringTake[s, {#, #}]& /@ 
                           ((Last /@ posis) + 1)];
    (* are actual left neighbor characters allowed? *)
    If[potentialLeftNeighbors === Any, True,
       Complement[leftCharacters,  
                  Append[potentialLeftNeighbors, "\""]] === {}] &&
    (* are actual right neighbor characters allowed? *)
    If[potentialRightNeighbors === Any, True,
       Complement[rightCharacters, 
                  Append[potentialRightNeighbors, "\""]] === {}]]]

Here are two simple examples of the use of allowedNeighborsQ. The second input does not have a space after the
semicolon.

allowedNeighborsQ["1 + 1; 2", ";", Any, {" ", "]", ")"}]

allowedNeighborsQ["1 + 1;2", ";", Any, {" ", "]", ")"}]

spacingCorrectQ  tests  for  the neighbors  of 25 character sequences at once. The second element of the following
list does not have a space after one comma and no spaces around ->.

{spacingCorrectQ["Plot[Sin[x], {x, 0, 1}, Frame -> True]}]"], 
 (* the next input has spacing mistakes *)
 spacingCorrectQ["Plot[Sin[x],{x, 0, 1}, Frame->True]}]"]}

The six chapters of this book have about 5400 Mathematica input containing cells.

Length[Flatten[inputCells]]

Now, we check all of them. We observe some violations of our declared spacing rules. But reading the text surrounding
these cells, we recognize that these violations were all intentional.

Do[(* make one input string *)
   input = makeInputString @ inputCells[[j, k]];
   (* check spacing and potentially print the problem *)
   If[Not[spacingCorrectQ[input]], 
      CellPrint[Cell["Î In Chapter " <> ToString[j] <> ":", "PrintText"]];
      CellPrint[Append[inputCells[[j, k]], 
              C[Evaluatable -> False, FontColor -> GrayLevel[0.5]]] /.
              C -> Sequence]],
  {j, Length[inputCells]}, {k, Length[inputCells[[j]]]}];

Σ (* session summary *) TMGBs`PrintSessionSummary[]

g) We first implement some functions that extract the cells containing from a notebook. Then we extract the texts from
these cells, split these texts into sentences, and finally into pairs of consecutive words.

(* extract cells containing text from a notebook *)
extractCells[nb_] := Cases[nb, Cell[_, 
          "Text" | "TextDescription" | "ItemizedNoteBox", ___], Infinity];

(* if free of typesetting, convert styled text into plain text *)
toText[c_] := c /. StyleBox[s_String?LetterQ, __] :> s
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(* extract cells containing text from a notebook *)
makeTexts[cells_] := 
Which[Head[#] === String, #, 
      (* join pieces to one string *)
      Head[#] === List, StringJoin[#], 
      True, Sequence @@ {}]& /@ 
        (Which[Head[#[[1]]] === String, #[[1]], 
               (* delete remaining box structures *)
               Head[#[[1]]] === TextData, 
                DeleteCases[toText[#[[1, 1]]],
                   _CounterBox | _StyleBox | _ButtonBox | 
                   _Cell, Infinity], True, Sequence @@ {}]& /@ cells);

(* split a given text into pieces *)
sentencePieces[text_String] := 
Module[{s, posis, seqs, fragments1, fragments2},
  s = StringJoin[StringReplace[text, 
      {"[" -> " ",  "]" -> " ", "“" -> "", "”" -> "", "-" -> " ", 
       "—" -> " ", "{" -> "", "}" -> "", " " -> ""}], " "];
 (* are delimiters present *)
 If[posis = StringPosition[s, {".", "?", "!", ";", ":", "(", ")"}];
    posis =!= {}, λ = StringLength[s];
    (* make pieces *) seqs = ({-1, +1} + #& /@ posis);
    fragments1 = StringTake[s, #]& /@ 
             Join[{{1, seqs[[1, 1]]}}, {#[[1, 2]], #[[2, 1]]}& /@ 
                   Partition[seqs, 2, 1], {{seqs[[-1, 2]], λ}}],
    fragments1 = {s}];
 fragments2 = StringReplace[#, {"." -> "", "," -> "", 
             "(" -> "", ")" -> "", ":" -> ""}]& /@ fragments1;
 DeleteCases[fragments2, "" | " " | "  "]]

(* split a sentence into a list of words *)
toWords[sentence_String] := 
Module[{s, λ, posis, words},
 (* use lower case words only *)
 s = FixedPoint[StringReplace[#, "  " -> " "]&, ToLowerCase[sentence]];
 λ = StringLength[s];
 (* find word delimiter " " *)
 posis = Partition[Flatten[{1, {-1, 1} + #& /@ 
                            StringPosition[s, " "], λ}], 2];
 (* return list of consecutive words *)
 words = StringTake[s, #]& /@ Map[Min[#, λ]&, posis, {-1}];
 Select[DeleteCases[words, ""], LetterQ]]

The function makeNeighbors forms the neighbors of all words of a sentence or a sentence fragment.

(* form neighbor pairs from a list of words *)
makeNeighbors[s_String] := Partition[toWords[s], 2, 1]

The function spellCheck returns the words from the list words that are not proper English words.

(* spell check a list of words *)
spellCheck[words_] :=
With[{(* an invisible notebook *)
      nb = NotebookPut[Notebook[{Cell[ToString[words], "Text"]}, 
                                Visible -> False]], l = $ParentLink},
     LinkWrite[l, NotebookGetMisspellingsPacket[nb]]; 
     (NotebookClose[nb, Interactive -> False]; #)&[LinkRead[l]]]

These are the 17 files of the GuideBooks that we will use as the source for text.

THE MATHEMATICA GUIDEBOOKS to PROGRAMMING—GRAPHICS—NUMERICS—SYMBOLICS 159

©  2004, 2005   Springer Science+Business Media, Inc.



notebooks = 
     {"1_Programming_1.nb", "1_Programming_2.nb", "1_Programming_3.nb",
      "1_Programming_4.nb", "1_Programming_5.nb", "1_Programming_6.nb",
      "2_Graphics_1.nb", "2_Graphics_2.nb", "2_Graphics_3.nb",
      "3_Numerics_1.nb", "3_Numerics_2.nb", 
      "4_Symbolics_1.nb", "4_Symbolics_2.nb", "4_Symbolics_3.nb",
      "Preface.nb", "0_Introduction.nb", "Appendix_A.nb"}; 

Using the above functions, we extract the texts from the notebooks and form all pairs of consecutive words.

data = 
Table[nb = Get[ToFileName[ReplacePart[
               "FileName" /. NotebookInformation[EvaluationNotebook[]],
                                                   notebooks[[j]], 2]]];
      (* extract cells containing text *)
      cells = extractCells[nb];
      (* extract text *)
      texts = makeTexts[cells];
      (* extract sentences *)
      allSentencePieces = 
      Flatten[Table[Check[sentencePieces[texts[[k]]], 
                    (* to see potential problems *) print[k]],
              {k, Length[texts]}]];
      (* list of neighboring words *)        
      Flatten[makeNeighbors /@ allSentencePieces, 1], 
      {j, 1, Length[notebooks]}];

allPairs = Flatten[data, 1];

Because we often in the GuideBooks use descriptive multi-word-symbols for user-supplied variables that are not proper
English  words,  we  eliminate  all  pairs  that  contain  such  multi-word-symbols.  After  doing  this  we  have  about  445000
pairs of words.

badWords = (spellCheck @ 
            Complement[Union[Flatten[allPairs]], ToLowerCase /@ Names["*"]]

(* non-English words -> 0 *)
dRules = Dispatch[(# :> 0)& /@ badWords];
finalPairs = Cases[DeleteCases[allPairs /. dRules, 
                               badWords, {-1}], {_String, _String}];
Length[finalPairs]

Now, we eliminate doubles and count the number of different pairs—more than 100000 different pairs occur.

wordsAndNumberNumbers = Sort[{Length[#], #[[1, 1]]}& /@ 
           (Union /@ Split[Sort[finalPairs], #1[[1]] === #2[[1]]&])];

Λ = Plus @@ (First /@ wordsAndNumberNumbers)

Here are the words with the most potential neighbors and the number of different neighbors.

Take[wordsAndNumberNumbers, -50] // Reverse

On  average,  the  words  of  the  GuideBooks  have  about  14  different  neighbors.  This  is  not  much,  but  for  a  computer-
system-related book from a nonnative author, one does not expect the word variety of a novel.

N[Plus @@ (First /@ #)/Length[#]]&[wordsAndNumberNumbers]

The next graphic shows a logarithmic plot of the data from wordsAndNumberNumbers.

logData = Log[10, N[First /@ wordsAndNumberNumbers]];
ListPlot[logData, PlotRange -> All]
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Next, we bin the data logData.

makeBins[l_, δ_] := {First[#] δ, Length[#]}& /@ Split[Round[Sort[l]/δ]]
 = {First[#], Log[10, #[[2]]/Λ]}& /@ makeBins[logData, 0.26];

For a guide for the eye we calculate two best-fit curves for the data. The functions Fit is used here, we will discuss it
in Chapter 1 of the Numerics volume [302÷].

 = 1.7;
y1[x_] = Fit[Select[ , #[[1]] <= &], {1, x}, x];
y2[x_] = Fit[Select[ , #[[1]] >= &], {1, x}, x];

So, we finally arrive at the following graphic. While we analyzed a comparatively small amount of data, the typical two
power law structure is clearly visible. The transition point is around 50 neighbors.

ListPlot[ , PlotRange -> All, Frame -> True, Axes -> False,
          PlotStyle -> {GrayLevel[0], PointSize[0.025]},
          Prolog -> {Hue[0], Thickness[0.01],
            Line[{{0, y1[0]}, { , y1[ ]}}], 
            Line[{{ , y2[ ]}, { [[-1, 1]], y2[ [[-1, 1]]]}}]}]

To obtain a more reliable value for the crossover point than from visual inspection, we plot the residue of fits with two
straight  lines  as  a  function  of  the  crossover  point.  The  following  graphic  shows  the  resulting  residue,  the  curves of
different color represent different bin sizes.

δV[binSize_, _?NumberQ] := 
Module[{ , 1, 2, y1, y2}, 
 (* log bin data *)
  = {First[#], Log[10, #[[2]]/Λ]}& /@ makeBins[logData, binSize];
 (* the two linear fits *)
 y1[x_] = Fit[ 1 = Select[ , #[[1]] <= &], {1, x}, x];
 y2[x_] = Fit[ 2 = Select[ , #[[1]] >= &], {1, x}, x];
 (* residue *)
 ((Plus @@ (Abs[y1[#1] - #2]& @@@ 1)) + 
  (Plus @@ (Abs[y2[#1] - #2]& @@@ 2)))]

Plot[Evaluate[Table[δV[binSize, ξ], {binSize, 0.2, 0.4, 0.2/25}]],
     {ξ, 1, 2}, PlotPoints -> 20,
     PlotStyle -> Table[Hue[x], {x, 0, 0.8, 0.8/25}]]

The average value of the minima is about 1.7.

Module[{lines = Cases[%, _Line, Infinity], lineData, min},
  Sum[lineData = lines[[k, 1]];
      min = Min[Last /@ lineData];
      (#[[-1, 1]] + #[[1, 1]])/2&[Cases[lineData, {_, min}]],
      {k, Length[lines]}]/Length[lines]] // N[#, 3]&

For a similar distribution for references, see [123÷].

Σ (* session summary *) TMGBs`PrintSessionSummary[]

  5. Tube Points  

Here the lists are manipulated for n = 8 and n = 5. 

n = 8; m = 5;

[l__] := StringJoin[ToString /@ {l}]

points = Table[{ [p, i, x], [p, i, y], [p, i, z]}, {i, n}]
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radii = Table[StringJoin["r", ToString[i]], {i, n}]

radii = Table[ [r, i], {i, n}]

vecv = Table[{ [v, i, x], [v, i, y], [v, i, z]}, {i, n}]

vecu = Table[{ [u, i, x], [u, i, y], [u, i, z]}, {i, n}]

{cos = Table[ [c, i], {i, m}], sin = Table[ [s, i], {i, m}]}

Here is the "obvious" implementation using Table. 

version1 = Table[Expand[points[[i]] + radii[[i]] (cos[[j]] vecv[[i]] +
                                                  sin[[j]] vecu[[i]])],
                 {i, n}, {j, m}];

Short[version1, 14]

Next, we give a somewhat more elegant and faster formulation. Its operation will become obvious after some thought. 

version2 = MapThread[
     Map[Function[x, #1 + x], #2]&,
         {points, Partition[Apply[Plus,
                Distribute[{radii Transpose[{vecv, vecu}],
                            Transpose[{cos, sin}]},
                           List, List, List, Times],
             {1}], m]}];

Here is another version. 

version3 = Transpose[points + #& /@
                (Outer[Times, cos, radii vecv] +
                 Outer[Times, sin, radii vecu]), {2, 1, 3}];

The three results are equal. 

version1 == version2 == version3

Here is a comparison of the needed computational times. 

Timing[Do[Table[Expand[
            points[[i]] + radii[[i]] (cos[[j]] vecv[[i]] +
                                      sin[[j]] vecu[[i]])],
       {i, n}, {j, m}], {100}]]

Timing[Do[MapThread[
     Map[Function[x, #1 + x], #2]&,
         {points, Partition[
           Apply[Plus,
                Distribute[{radii Transpose[{vecv, vecu}],
                            Transpose[{cos, sin}]},
                           List, List, List, Times],
             {1}], m]}], {100}]]

Timing[Do[Transpose[points + #& /@
               (Outer[Times, cos, radii vecv] +
                Outer[Times, sin, radii vecu]), {2, 1, 3}], {100}]]

The result is not surprising because, in the first version, all lists have to be manipulated repeatedly to extract the needed
parts, whereas in the second and third version, the lists are always treated at once. 

Σ (* session summary *) TMGBs`PrintSessionSummary[]
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  6. All Subsets 

We look at what happens step by step. 

1) Union removes all elements from the list l that appear more than once. 

2) {{}, {#}}& /@ …  makes a list with the elements {{}, {e}} for every element e in the list l. 

3)  Distribute[…, List, List, List, Union]  does  the  actual  work.  It  is  based  on  “multiplying  out”
{{}, {e1}} ä {{}, {e2}} ä {{}, {e3}} ä∫ä {{}, {en}}.  

We  now  look  at  the  result  with  another  (union  instead  of  Union)  fifth  argument  of  Distribute  to  see  what
happens. 

Distribute[{{{}, {a}}, {{}, {b}}, {{}, {c}}}, List, List, List, union]

4) The Union in the fifth argument of Distribute removes the superfluous empty lists and combines elements that
belong together in a set. Here is allSubsets in action. 

allSubsets[l_List] := Sort[Distribute[{{}, {#}}& /@
                                 Union[l], List, List, List, Union]]

allSubsets[{a, b, c, d}]

The last result is identical to the one returned from the built-in function Subsets.

Subsets[{a, b, c, d}]

Now  let  us  deal  with  the  sum  multidimensional  sum  Hk1, k2 , …, knL.  Here  is  a  direct  implementation of
Hk1, k2 , …, knL. 

[hL_] := With[{K = Times @@ hL},
                1/K Sum[Times @@ Floor[hL j/K], {j, 0, K - 1}]]

We can speed up [hL] by forming the product in the body of the sum only once.

S[hL_] := With[{K = Times @@ hL},
                1/K Sum[Evaluate[Times @@ Floor[hL j/K]], 
                        {j, 0, K - 1}]]

Using a slight adaptation of the last Distribute[…], it is straightforward to implement the following one-liner for
calculating Hk1, k2 , …, knL.

C[l_] := Times @@ (l - 1) + Plus @@
    ((-1)^#1 Sum[j/#2 Times @@ Floor[j #3/#2], 
                 {j, 0, #2 - 1}]&[
     Length[#], GCD @@ l[[#]], Complement[l, l[[#]]]]& /@
                         Rest[Subsets[Range[Length[l]]]])

Next, we use the three implementations with the first five primes.

{ [#] // Timing, S[#] // Timing, C[#] // Timing}&[
                               {2, 3, 5, 7, 11, 13}]

Calculating Hp1, p2 , …, p10L directly would require summing about 6.5 109 terms. The subset summation ranges over
1023 subsets and all together 5120 floor terms only.

C[{2, 3, 5, 7, 11, 13, 17, 19, 23, 29}]

Σ (* session summary *) TMGBs`PrintSessionSummary[]
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  7. Moessner’s Process, Ducci’s Iterations, Matrix Product 

a) First, here is a possible implementation. 

strikeList[ord_Integer?Positive, num_Integer?Positive] :=
Fold[Rest[FoldList[Plus, 0,
                Delete[#1, List /@ Range[#2, Length[#1], #2]]]]&,
        Range[num ord], Range[ord, 2, -1]]

This  formulation  is  relatively  efficient.  Range[num  ord]  produces  the  initial  list  of  numbers.  List  /@

Range[#2, Length[#1], #2]  creates  a  list  with  the  numbers  to  be  eliminated.  Delete[…]  removes  these
elements, and FoldList[Plus, …] sums the resulting numerical sequences. Rest is needed to get rid of the 0 at
the beginning of the summation. Fold takes care of the work of removing every ith element, …, every second element.
To be able to follow the removal process somewhat better, we replace Fold by FoldList. 

strikeListLong[ord_Integer?Positive, num_Integer?Positive] :=
FoldList[Rest[FoldList[Plus, 0,
                Delete[#1, List /@ Range[#2, Length[#1], #2]]]]&,
          Range[num ord], Range[ord, 2, -1]]

Here is an example. 

strikeListLong[4, 4]

Using Trace, we see in detail how the program strikeList works. 

Trace[strikeList[3, 2]]

We now run strikeList for ord = 2, 3, 4, and 5. 

strikeList[2, 12]

strikeList[3, 12]

strikeList[4, 12]

strikeList[5, 12]

Here is a comparison of the last results with the first 12 fifth powers.

Range[12]^5

This result indicates that the resulting lists for n = 4 and 5 are also powers for small n. Actually, not only for small n,
but for all n. For an explanation, see [218÷], [232÷], [142÷], and [183÷]. 

Note  that  there  are  other,  similar identities.  For  instance,  the nth-order  differences  of  the sequence 1n,2n,… is just  n !

[72÷]. 
Make Input

SchubertRelation[ord_Integer?Positive, len_Integer?Positive] :=
    (-1)^ord Nest[Apply[Subtract, Partition[#, 2, 1], {1}]&,
                  Array[#^ord&, len], ord] ==
                  Array[Evaluate[ord!]&, len - ord] /; len >= ord
                  
Table[SchubertRelation[i, j], {i, 48}, {j, i, 48}] // Flatten // Union          

Σ (* session summary *) TMGBs`PrintSessionSummary[]

b) Using FixedPointList, this construction is easily implemented. Here is an example. 
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FixedPointList[Abs[Apply[Subtract, (* make pairs *)
     Partition[Append[#, First[#]], 2, 1], {1}]]&, {41, 71, 81, 13}]

Interestingly, this process ends in four equal numbers. Let us check 1512 more examples. 

DucciChain[l:{_Integer?Positive..}] :=
Drop[FixedPointList[Abs[Apply[Subtract,
      Partition[Append[#, First[#]], 2, 1], {1}]]&, l], -2]

Here is an example.

DucciChain[{111, 112, 113, 114}]

Union[Flatten[Table[Equal @@ Last[DucciChain[{a, b, c, d}]],
                    {a, 30, 35}, {b, 67, 72}, {c, 56, 62}, {d, 89, 94}]]]

Here is a visualization of the convergence process.  (We discuss the command Random  in the next chapter.)  The first
two  numbers  and  the  second  two  numbers  of  the  four-element  list  are  used  to  form Cartesian  coordinates.  The  solid
lines connect points from one iteration stage, and the dotted lines show the iteration step. 

Show[GraphicsArray[#]]& /@ 
  Partition[Table[(* make the table of 4 x 4 pictures *)
    Graphics[{(* make lines in both directions *)
              Thickness[0.001], Line /@ #,
             {Dashing[{0.03, 0.03}], Thickness[0.001],
              Line /@ Transpose[#]},
             {PointSize[0.02], Point[Last[#][[2]]]}}&[
              Map[Partition[#, 2]&, DucciChain[
                  (* four randomly chosen start integers *)
                  Table[Random[Integer, {1, 100}], {4}]]]],
             Frame -> True, FrameTicks -> None, 
             AspectRatio -> 1, PlotRange -> All], {16}], 4]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

c) It is straightforward to implement the matrix product.  We form the product as long as the result deviates from e  by

more than 10-1000.
e = N[E, 1000];
A = IdentityMatrix[2];
k = 1;
While[Abs[(A[[1, 1]] + A[[2, 1]])/
          (A[[1, 2]] + A[[2, 2]]) - e] > 10^-1000,
      A = {{2k, 2k - 1}, {2k - 1, 2k - 2}}.A; k++];

After 203 steps, we obtain 1000 correct digits. At this point, the matrix has integer elements with 499 digits.

{k, N[A]}

The ratios of elements of the matrix allow to give lower and upper bounds for e.

$MaxExtraPrecision = 1000;
A[[2, 1]]/A[[2, 2]] < E < A[[1, 1]]/A[[1, 2]]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

  8. Triangles, Group Elements, Partitions, Stieltjes Iterations 

a) First, we look at the result. 
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NestedTriangles[n_Integer?Positive] :=
(Function[{x, y}, x.#& /@ y] @@ #)& /@
   Distribute[{Table[{{ Cos[i Pi/2], Sin[i Pi/2]},
                      {-Sin[i Pi/2], Cos[i Pi/2]}}, {i, 0, 3}],
               Flatten[NestList[#/2&, {{{1, 1}, {3, +1}, {1, 3}},
                                       {{1, 0}, {2, -1}, {2, 1}}}, n], 1]},
              List];

Show[Graphics[Polygon /@ NestedTriangles[6]],
     AspectRatio -> Automatic, PlotRange -> All]

Here is how it works. The {{1, 1}, {3, 1}, {1, 3}}, {{1, 0}, {2, -1}, {2, 1}} are the coordi-
nates of the vertices of two initial triangles. The part Nest[#/2&, …] produces n reduced in size and moved toward
the origin 80, 0< copies of the triangle. Flatten removes the inner brackets so that only lists with coordinates remain. 
Table[{{  Cos[i  Pi/2],  Sin[i  Pi/2]},  {-Sin[i  Pi/2],  Cos[i  Pi/2]}},  {i,  0,  3}]

creates  four  rotation  matrices  corresponding  to  rotation  angles  0é,  90é,  180é,  and  270é.  Distribute[{...,
...}, List]  forms  all  possible  combinations  of  the  triangles  and  rotation  angles.  Finally,  the  following  function
performs the rotation of all vertices of a triangle using a given rotation matrix: Function[{x, y}, x.#& /@ y]
@@ #)& /@ ….

Σ (* session summary *) TMGBs`PrintSessionSummary[]

b) Let us run the code to see what happens. 

FixedPoint[Union[Flatten[Outer[Function[C, #]& @
             Simplify[#1[#2[C]]]&, #, #]]]&,
         {Function[C, -C], Function[C, (C + I)/(C - I)]}]

We start with two pure functions, and new pure functions are formed by composition with the inner argument C. After
the  composition  has  been  done,  the  result  is  simplified  and  transformed  again  into  a  pure  function.  This  evaluation
happens by applying Outer with every possible combination of pure functions, until no new ones are generated. This
procedure only makes sense when the functions form a group under composition, so that this process finishes naturally
at some stage. In the example above, the group under consideration is the tetrahedral group. 

Σ (* session summary *) TMGBs`PrintSessionSummary[]

c)  The  function  PartitionsLists  generates  a  list  of  all  weakly  decreasing  sequences  of  nonnegative  numbers
summing to n. Let us discuss what is done inside partitionsLists. First, a list of the form {{n, 0, 0,… 0}}
with  one  sublist  with  n - 1  zeros  is  created.  Then  the  function  Complement[…]&  is  repeatedly  applied  to  these
sublists until the result no longer changes. At each step, new sublists are formed from each sublist by moving a “unit”
to  the  right  in  such  a  way  that  we  form  a  new  weakly  decreasing  sequence.  The  two  rules  form  such  sequences if
possible,  Union  eliminates doubles,  and the function ReplaceList  makes sure  that we generate all  possible  ones.
Then,  using  Complement,  the  sequences  that  were  already  present  are  eliminated.  The  results  returned  contain  all
newly created sublists at each step.

PartitionsLists[n_Integer?Positive] := Drop[FixedPointList[
 Complement[Union[Flatten[ReplaceList[#, 
  {{a___, b_, c_, d___} :> {a, b - 1, c + 1, d} /; b - c >= 2,
  {a___, b_, c:(d_ ...), e_, f___} :> {a, b - 1, c, e + 1, f} /; 
               b - 1 == d == e + 1}]& /@ #, 1]], #]&, 
                            {{n, ##}& @@ Table[0, {n - 1}]}], -2]

Inspecting the following input demonstrates how partitionsLists works.

PartitionsLists[4]

Here is a slightly larger example. For brevity, we display only the length of the sublists.
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Length /@ PartitionsLists[33]

The built-in function PartitionsP[n] returns the number of weakly decreasing sequences of nonnegative numbers
that sum to n. This shows that the last input generated all possible of the more than 10000 sequences.

{Plus @@ %, PartitionsP[33]}

The following graphic shows how many new sequences were created at each step [108÷].

ListPlot[%%]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

d) First, the protected symbol Table is unprotected. Then an option Heads is added to Table. The option setting of
the Heads option is the head to be used instead of List of the resulting nested expression. First, the Table command
without the Heads option is evaluated and then the List heads are replaced with the given heads. In case the number
of given heads is less than the depth of the nested list generated by Table the heads are used cyclically.

Unprotect[Table];

Table[body_, iters__, Heads -> l_List] := 
With[{d = Length[{iters}]},
Fold[Apply[First[#2], #1, {Last[#2]}]&, Table[body, iters],
         Reverse[MapIndexed[{#1, #2[[1]] - 1}&, 
         Take[Flatten[Table[l, {d}]], d]]]]]
         
Table[body_, iters__, Heads -> l_] :=  Table[body, iters, Heads -> {l}]    

Here are some examples.

Table[Subscript[ , i, j], {i, 3}, {j, 3}, {k, 3}, Heads -> {A, B, C}]

Table[Subscript[ , i, j], {i, 2}, {j, 3}, {k, 4}, Heads -> { , }]

If only one head specification is supplied, it does not have to be enclosed in a list.

Table[Subscript[ , i, j], {i, 2}, {j, 2}, Heads -> ]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

e)  Let  us  begin  analyzing  .    is  a  list  of  lists  of  all  ordered  n-tuples  (n = 1, …, l)  of  the  integers  1, 2, …, l.  It  is
generated by recursively adding larger integers to the lists of already existing ones. Here this is demonstrated.

F[λ_] := NestList[Flatten[
      Outer[Join, {#}, List /@ Range[Last[#] + 1, λ], 1]& /@  #, 2]&, 
                 List /@ Range[λ], λ - 1]

F[3]

F[5]

The  FixedPointList[…]  in   starts  with  the  list    and  iterates  the  map  Hl = 8l1, l2, …, ll<L  Ø
8mlHlL, ml-1HlL, …, m1HlL<. Here mkHlL = HkLlê Hk-1Ll and HkLl is the arithmetic mean of all products of k different numbers of
the  list  l  (we  assume  H0Ll = 1).  The  Apply[Times,  ...]  forms  the  products,  Apply[(Plus[##])/
Length[{##}]&, …] forms the arithmetic means, and Divide @@@ Partition[…] forms the quotients. Here
one iteration step is shown for a symbolic list  with five elements.

fplStep[_] := Function[ , 
      Divide @@@ Partition[Append[Reverse[Apply[(Plus[##])/Length[{##}]&, 
         Apply[Times, Map[ [[##]]&, , {-2}], {2}], {1}]], 1], 2, 1]]

fplStep[F[5]][Array[Subscript[, #]&, {5}]]
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The  condition  finally  restricts  the  application  of   to  lists  containing  only  numeric  elements,  of  which  at  least  one
must be approximate. This allows FixedPointList to terminate.

Now let us look at two examples of  at work for two numeric lists.

[_List] :=  With[{λ = Length[]},
     Module[{ = NestList[Flatten[
      Outer[Join, {#}, List /@ Range[Last[#] + 1, λ], 1]& /@ #, 2]&, 
                 List /@ Range[λ], λ - 1]},
      FixedPointList[Function[ , 
      Divide @@@ Partition[Append[Reverse[Apply[Plus[##]/Length[{##}]&, 
         Apply[Times, Map[ [[##]]&, , {-2}], {2}], {1}]], 1], 2, 1]], ]]]
         (Or @@ (InexactNumberQ /@ )) && (And @@ (NumericQ /@ )) 

(* use high-precision numbers *)
[N[{1, 2, 3}, 22]]

[N[{Pi, E, GoldenRatio, EulerGamma}]]

We  see  that  the  iterations  converge  and  all  elements  of  the  list  become equal.  By observing  that  ¤k=1
l mkHlL  does  not

change in the iterations, it is easy to show that the fixed point of these iterations is I¤k=1
l kM

1êl
 [288÷], [229÷].

{(1 2 3)^(1/3), (Pi E GoldenRatio EulerGamma)^(1/4)} // N

Σ (* session summary *) TMGBs`PrintSessionSummary[]

f) As the name of the function implies, pseudoRandomTree tries to build a random tree structure.

 defines a pseudorandom function that yields 0 with probability 1/2 and 2 with probability 1/2. The pseudorandom is
based on the rounded functions value of a multiple of sin at far apart integers. The definition for  is the main ingredi-
ent  of  the  function  pseudoRandomTree.  The  expression  Line[{x, y}, []]  first  generates  a  pseudorandom
integer through a call to . When the integer is zero, the process stops. When the integer is 2, two Line-objects with a
second argument are created and two further  Line-objects  of the form Line[{x£, y£}, []]  are formed. The x-
coordinate  is  increased  by  one  and  the  x-coordinate,  starting  for  each  x  from 0,  is  consecutively  increased  with  each
corresponding  call  to    that  gave  2  for  the  same  x  (this  is  done  through  the  auxiliary  function  ).  Starting  from
Line[{0, 0}, []],  we than let things loose. For most values of kStart,  the recursive calls to   will soon die
(they die with probability one at some time). The result of this evaluation we call tree. symmetrizeRules extracts
all  {x, y}  and  symmetrizes  them  with  respect  to  y  so  that  for  a  given  value  of  x,  the  y-values  lie  in  the  interval
@yMinHxL, yMaxHxLD.  In  the  last  step,  the  tree  tree  is  symmetrized  through  the  dispatched  rule  set  symmetrize
Rules, a List structure is added inside the Line-objects and a Graphics-object is formed and returned.
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pseudoRandomTree[kStart_] :=
Module[{, k, , , tree, symmetrizeRules},
 (* pseudorandom function returning 0 or 2; mean == 1 *)
 (* singular "good choice":
    RealDigits[Pi, 18, 1000][[1]] and kStart = 0 *)
  := If[IntegerPart[Abs[Sqrt[2] Sin[Pi k Sin[k = k + 1]]]] === 0, 
         0, 2];
 (* initialize k and  *)
 k = kStart; [_] := -1;
 (* recursive definition for ;
    if  yields true, make two new branches *)
  /: Line[{x_, y_}, []] := 
          Table[{Line[{x, y}, {x + 1, [x + 1] = [x + 1] + 1}], 
                 Line[{x + 1, [x + 1]}, []]}, {i, }];
 (* form a tree *)
 tree = Line[{0, 0}, []];        
 (* symmetrize tree with respect to y *)
 symmetrizeRules = Dispatch[Flatten [Function[l, 
                      (# -> (# - {0, l[[-1, 2]]/2}))& /@ l] /@ 
                     Split[Union[DeleteCases[Level[tree, {-2}], {}]], 
                           #1[[1]] === #2[[1]]&]]];
 (* return Graphics-object *)
 Graphics[(* form symmetrized tree *)
          tree /. symmetrizeRules /. Line[l__] :> Line[{l}], 
          Frame -> True]]

Here are two examples. For kStart = 1, we get an empty tree; for kStart = 2, we get a nontrivial tree.

Table[pseudoRandomTree[k0] // InputForm, {k0, 2}]

Here this tree is shown.

Show[pseudoRandomTree[2]]

The next graphic shows the number of Line-objects in the resulting trees as a function of kStart.

ListPlot[Table[{k0, Count[pseudoRandomTree[k0], _Line, Infinity]},
               {k0, 1000}], PlotRange -> All]

We now show two larger trees. Because  is potentially called many times recursively, we change the default value of
$RecursionLimit.

$RecursionLimit = Infinity; $MaxExtraPrecision = 1000 

Show[GraphicsArray[{pseudoRandomTree[836084275711],
                    pseudoRandomTree[506626351403]}]]

We end with a very big tree—it lives for many iterations and has nearly 100000 lines. 

{(* depths and maximal width *)
 {Max[#1], 2Max[#2]}& @@ 
    Transpose[Level[Cases[#, _Line, Infinity], {-2}]], 
 (* number of lines *)
 Count[#, _Line, Infinity]}&[pseudoRandomTree[914977508823]]

Σ (* session summary *) TMGBs`PrintSessionSummary[]
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  9. ¶¶ Æ Sd∫d, TrIgm1 .gm2 .∫ .gm2 nM, tanh Identity, Multidimensional Determinant

a)  Here is one possible implementation. We do not give the explicit definition of ¶n…p  and dnm  here. We first program

the case r = n. Several things have to be taken into consideration. 

Because of the summation convention, the identity above holds only for variables that appear twice. It does not hold for
numbers. But we are not sorting out the variables using _Symbol, but rather the numbers using ?(FreeQ[#, _Num
ber]&), because a variable could be of type a[2] (i.e., it does not have head Symbol). Indexed variables will often
apply in practical calculations when many indices exist and when they are “automatically” generated.

Because we want to find a rule for a product of Levi–Civita tensors, we have to input the rule via TagSetDelayed,
which avoids the rule to be attached to Times, which would slow down Times considerably. 

Because  the  variables  appearing  twice  can  be  anywhere  in  the  expression  LeviCivita∂,  whereas  the  Levi-Civita
tensor has to be multiplied by -1 if two arguments are interchanged, we have to determine whether we have an even or
an odd permutation. This is done in two steps: 
† Changing from the given order of the arguments to the canonical normal form
† Changing variable order to the form with the variables appearing twice at the beginning. 
The antisymmetrization is accomplished with Permutations along with the signature of the resulting permutations. 
For symmetry, we use Kroneckerδ instead of KroneckerDelta.

(* complete contraction, no tensor index remains *)
LeviCivita∂/: LeviCivita∂[var__?(FreeQ[#, _Number]&)] *
LeviCivita∂[var__?(FreeQ[#, _Number]&)] := Length[{var}]!;

(* the typical case *)
LeviCivita∂/: LeviCivita∂[var1__] LeviCivita∂[var2__] :=
Module[{commonIndices, rest1, rest2, s1, s2, ex, from},
(* the indices both have *)
commonIndices = Intersection @@ 
         (Select[#, Function[y, !NumberQ[y]]]& /@ {{var1}, {var2}});
(* the indices that exist only once *)
rest1 = Complement[{var1}, commonIndices];
rest2 = Complement[{var2}, commonIndices];
(* reordering indices and keep track of sign changes *)
s1 = Signature[{var1}]/Signature[Join[commonIndices, rest1]];
s2 = Signature[{var2}]/Signature[Join[commonIndices, rest2]];
(* the new indices pairs *)
ex = ({rest1, #, Signature[#]}& /@ Permutations[rest2])/Signature[rest2];
(* make Kronecker symbols *)
from = Plus @@ Apply[Times, {#[[3]],
                     Thread[Kroneckerδ[#[[1]], #[[2]]]]}& /@ ex, 2];
Length[commonIndices]! s1 s2 from]

We now try out the program for three dimensions. 

LeviCivita∂[a, b, c] LeviCivita∂[a, b, c]

LeviCivita∂[a, b, c] LeviCivita∂[a, b, f]

LeviCivita∂[a, b, c] LeviCivita∂[a, e, f]

LeviCivita∂[a, b, c] LeviCivita∂[g, e, f]

Here is a short test for our function using the last result. 
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Table[Signature[{a, b, c}] Signature[{g, e, f}] -
       (% /. Kroneckerδ -> KroneckerDelta), 
       {a, 0, 1}, {b, 0, 1}, {c, 0, 1},
       {g, 0, 1}, {e, 0, 1}, {f, 0, 1}] // Flatten // Union

Here is the product of two four-dimensional (4D) Levi-Civita tensors, written in a more traditional format.

LeviCivita∂[α, β, γ, ∂] LeviCivita∂[ρ, μ, ν, σ] /. 
                                Kroneckerδ[i__] -> Subscript[δ, i]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

b) The function sumTerms calculates the antisymmetrized sum for a given n.

sumTerms[n_] := sumTerms[n] = 
(Evaluate[signature[{##}] Product[A[j][k[j], Slot[j]], {j, n}]*
 KroneckerDelta[b, Slot[n + 1]]]& @@@ 
 Permutations[Append[#, a]& @ Table[k[j], {j, n}]]) /. 
                                    signature -> Signature;

Here is an abbreviated form for n = 2. The antisymmetrized sum contains six terms.

(Plus @@ sumTerms[2]) /.
  KroneckerDelta[a_, b_] :> Subscript[δ, a, b] /.
  A[l_][k[i_], k[j_]] :> 
     Subsuperscript[A[l], Subscript[k, i], Subscript[k, j]]

The number of summands is Hn + 1L !.

Table[{n, Length[sumTerms[n]]}, {n, 2, 6}]

The function  sums over the doubly occurring indices for given a and b.

[a_, b_, n_] := 
Sum[(* sum over all terms from sumTerms[n] *)
    Sum[(* sum over the doubly occurring indices *)
        Evaluate[sumTerms[n][[i]]],
        Evaluate[Sequence @@ Table[{k[j], n}, {j, n}]]], 
                                    {i, Length[sumTerms[n]]}];

Now, we carry out the summations for all a and b.

Table[[a, b, 2], {a, 2}, {j, 2}] // Timing

Table[[a, b, 3], {a, 3}, {j, 3}] // Timing

Table[[a, b, 4], {a, 4}, {j, 4}] // Timing

The case n = 5 is feasible, but using the function  we would have to store large intermediate expressions. So, we carry
out the sum term by term and merge the new terms with the old ones as soon as possible. The following input does this
for a = 1, b = 2.

Block[{n = 5, a = 1, b = 2, sum = 0},
Do[sum = sum + 
   Sum[(* sum over the doubly occurring indices *)
       Evaluate[sumTerms[n][[i]]],
       Evaluate[Sequence @@ Table[{k[j], n}, {j, n}]]],
       {i, Length[sumTerms[n]]}]; sum] // Timing

The remaining 24 pairs for 8a, b< can be treated in a similar way. So the case n = 5 is explicitly doable.

Σ (* session summary *) TMGBs`PrintSessionSummary[]

c) We will denote the Dirac matrices by γ[m]. The function DiracTrace calculates the trace by calling the function
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diracTraceAux.  For  the function diracTraceAux,  only the number of  Dirac matrices matters; their  indices are
irrelevant.

DiracTrace[HoldPattern[Dot[Γ__γ]], η_] := 
Module[{indices = First /@ {Γ}, n = Length[{Γ}]/2},
 4 (diracTraceAux[n, η] /. (* use actual indices *)
          Apply[Rule, Transpose[{Range[2n], indices}], {1}])] /;
                                               EvenQ[Length[{Γ}]]

DiracTrace[HoldPattern[Dot[Γ__γ]], η_] := 0 /; OddQ[Length[{Γ}]]

The function diracTraceAux calculates the trace of 2 n Dirac matrices. diracTraceAux takes into account only
the  minimal  number  of  pairs  by  constructing  such  lists  of  pairs  that  obey  the  orderings  mi1 < mi3 < ∫ < mi2 n-1  and

mi1 < mi2 , mi3 < mi4 , …, mi2 n-1 < mi2 n .

diracTraceAux[n_, η_] := 
Module[{l = Range[2n], firstSymbolsList, prePairs, lastSymbols, pairs},
(* the ordered list of first indices of the pairs *)
firstSymbolsList = Flatten[Table[Evaluate[Table[i[k], {k, n}]],
      Evaluate[Sequence @@ 
        Table[{i[k], If[k == 1, 1, i[k - 1] + 1], 2n}, {k, n}]]], n - 1];
(* potential pairs *)        
prePairs = Flatten[(firstSymbols = #;
   lastSymbols = Complement[l, firstSymbols];
   Transpose[{firstSymbols, #}]& /@ 
             Permutations[lastSymbols])& /@ firstSymbolsList, 1];
(* check ordering within pairs *)             
pairs = Select[prePairs, (And @@ Map[OrderedQ, #])&];
(* take into account signature and sum result *)
(Plus @@ ((Signature[Flatten[#]] Times @@ Apply[η, #, {1}])& /@ pairs))]

Here is an example of the output of diracTraceAux.

diracTraceAux[2, η]

Now let us calculate the traces of the actual products.

f1[μ_, ν_] = DiracTrace[γ[μ].γ[ν], η]

f2[μ_, ν_, ρ_, σ_] = DiracTrace[γ[μ].γ[ν].γ[ρ].γ[σ], η]

f3[μ_, ν_, ρ_, σ_, τ_, ξ_] = DiracTrace[γ[μ].γ[ν].γ[ρ].γ[σ].γ[τ].γ[ξ], η]

For space reasons, we use subscripts for the product of eight Dirac matrices.

(f4[μ_, ν_, ρ_, σ_, τ_, ξ_, α_, β_] = 
     DiracTrace[γ[μ].γ[ν].γ[ρ].γ[σ].γ[τ].γ[ξ].γ[α].γ[β], η]) /.
           η[a_, b_] -> Subscript[η, a, b]
      

Now let us check the results. We implement the metric tensor and explicit realizations for the Dirac matrices.

η[i_, j_] = Which[i == j == 0, -1, i == j, 1, True, 0];

γ[0] = {{0, 0, -I, 0}, {0, 0, 0, -I}, {-I, 0, 0, 0}, {0, -I, 0, 0}};
γ[1] = {{0, 0, 0, -I}, {0, 0, -I, 0}, {0, I, 0, 0}, {I, 0, 0, 0}};
γ[2] = {{0, 0, 0, -1}, {0, 0, 1, 0}, {0, 1, 0, 0}, {-1, 0, 0, 0}};
γ[3] = {{0, 0, -I, 0}, {0, 0, 0, I}, {I, 0, 0, 0}, {0, -I, 0, 0}};

To check, we use all possible realizations for all indices, which means for the product of two Dirac matrices we check
16 cases,  for  the  product  of  four  Dirac  matrices we check 256  cases,  for  the  product  of  six  Dirac  matrices we  check
4096 cases, and for the product of eight Dirac matrices we check 65536 cases.
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Table[f1[μ, ν] - Tr[γ[μ].γ[ν]],
      {μ, 0, 3}, {ν, 0, 3}] // Flatten // Union

Table[f2[μ, ν, ρ, σ] - Tr[γ[μ].γ[ν].γ[ρ].γ[σ]],
      {μ, 0, 3}, {ν, 0, 3}, {ρ, 0, 3}, {σ, 0, 3}] // Flatten // Union

Table[f3[μ, ν, ρ, σ, τ, ξ] - 
      Tr[γ[μ].γ[ν].γ[ρ].γ[σ].γ[τ].γ[ξ]],
      {μ, 0, 3}, {ν, 0, 3}, {ρ, 0, 3}, {σ, 0, 3},
      {τ, 0, 3}, {ξ, 0, 3}] // Flatten // Union

Table[f4[μ, ν, ρ, σ, τ, ξ, α, β] - 
      Tr[γ[μ].γ[ν].γ[ρ].γ[σ].γ[τ].γ[ξ].γ[α].γ[β]],
      {μ, 0, 3}, {ν, 0, 3}, {ρ, 0, 3}, {σ, 0, 3},
      {τ, 0, 3}, {ξ, 0, 3}, {α, 0, 3}, {β, 0, 3}] // Flatten // Union

Σ (* session summary *) TMGBs`PrintSessionSummary[]

d) identity[n] given the identity with n variables zk .

identity[n_] := With[{ν = If[EvenQ[n], n/2, (n - 1)/2]},
Product[Tanh[z[j] - z[k]], {j, 1, n}, {k, j + 1, n}] -
2^-ν/ν! Plus @@  (Function[l, Signature[l]*
  Product[Tanh[z[l[[2k - 1]]] - z[l[[2k]]]], {k, ν}]] /@ 
                                  Permutations[Range[n]])]

For n = 6, we get the following expression.

 = 6;
identity[] /. z[i_] :> Subscript[z, i]

To prove this expression we first use the addition theorem of the tanh function to generate all possible tanhHzkL.
aux1 = identity[] /. Tanh[x_ + y_] :> 
          (Tanh[x] + Tanh[y])/(1 + Tanh[x] Tanh[y]);

We can get rid of the denominators by multiplying with ¤1§k<l§n
n H1 + tanhHzk L tanhHzlLL.

fac = Times @@ Flatten[Table[1 - Tanh[z[i]] Tanh[z[j]], 
                             {i, }, {j, i - 1}]];

Expanding now the resulting polynomial gives 0 and proves the identity under consideration.

Expand[(fac aux1[[1]]) + (Expand[fac #]& /@ Expand[aux1[[2]]])]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

e) The implementation of MultiDimensionalDet is straightforward. Because we do not know d  and n in advance,
we must generate the iterators automatically. Here this is done.

MultiDimensionalDet[t_?(TensorRank[#] ==  Length[Dimensions[#]]&)] :=
Module[{i, n = Length[Dimensions[t]], d = Length[t], ∂, part, k, l},
Sum[Evaluate[
    (* product of Levi-Civita tensors *)
    Product[∂ @ Table[i[k, l], {k, d}], {l, n}]*
    (* product of matrix elements *)
    Product[part[t, ##]& @@ Table[i[k, l], 
                         {l, n}], {k, d}] /. i[k_, 1] :> k],
    (* summation iterators *)                     
    Evaluate[Sequence @@ ({#, d}& /@ 
     DeleteCases[Flatten[Table[i[k, l], {l, n}, {k, d}], 1],
                i[k_, 1]])]] /. (* make Levi-Civita *)
        {∂[l:{_Integer..}] :> Signature[l], part -> Part}]
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For 2D matrices, the results of MultiDimensionalDet agree with the ones from Det.

(* 2×2 matrix *)
MultiDimensionalDet[Table[Subscript[ , i, j], {i, 2}, {j, 2}]]

(* 3×3 matrix *)
MultiDimensionalDet[Table[Subscript[ , i, j], {i, 3}, {j, 3}]] == 
Det[Table[Subscript[ , i, j], {i, 3}, {j, 3}]]

Here is the determinant of a 3 μ 3 μ 3 matrix.

MultiDimensionalDet[Table[Subscript[ , i, j, k], {i, 3}, {j, 3}, {k, 3}]]

For  the  special  class  of  d-dimensional  matrices whose  elements depend  only  on  the  greatest  common divisor  of  their
indices, the multidimensional determinant is independent of the dimension [185÷]. The next input demonstrates this by
using the simplest possible example, namely ak1,k2,…,km = gcdHk1, k2, …, kmL.

Function[{o, dMax}, Table[MultiDimensionalDet @
Table[GCD @@ Table[i[j], {j, d}],
      Evaluate[Sequence @@ Table[{i[j], o}, {j, d}]]], 
      {d, 2, dMax}]] @@@ {{2, 7}, {3, 4}}          

For applications of the multidimensional determinant, see [214÷], [157÷], [160÷], [215÷], [333÷]. For noncommutative
determinants, see [101÷].

Σ (* session summary *) TMGBs`PrintSessionSummary[]

10. Digits in p, Mediant Insertion

a) First, we generate the digits of p as a list that can be manipulated. 

pi = RealDigits[N[Pi, 100]][[1]]

The explicit positions of the various digits can be obtained in this way. 

Do[posis[i] = Flatten[Position[pi, i]], {i, 0, 9}]

??posis

To search for the relevant pairs, we can use pattern matching. 

pairs[i_, i_] := Partition[posis[i], 2]

pairs[i_, j_] :=
Partition[ (* make even length *)
           If[EvenQ[Length[#]], #, Drop[#, -1]]&[ (* the positions *)
             First /@ (Sort[Join[{#, i}& /@ posis[i], {#, j}& /@ posis[j]],
                            #1[[1]] < #2[[1]]&] //.
(* look for the interesting pattern *)
  {{{_, j}, y__} -> {y},
    {x___, {y1_, k_}, {y2_, k_}, z___} -> {x, {y1, k}, z}})], 2]

Here are a few examples. 

pairs[0, 0]

pairs[0, 1]

pairs[1, 0]

pairs[3, 9]

See [24÷] for many details concerning the relevant mathematics.
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Σ (* session summary *) TMGBs`PrintSessionSummary[]

b) To insert a median, we first partition the original list in sublist of length 2. We keep the first element of each of the
sublist and replace the second one with the median. At the end, we add the last element of the original list.

insertMediants[l_] := 
 Flatten[{Apply[{#1, (Numerator[#1] + Numerator[#2])/
                     (Denominator[#1] + Denominator[#2])}&,
         Partition[l, 2, 1], {1}], Last[l]}]

Here is an example. Starting from the list {0,1}, we repeatedly insert medians.

nl = NestList[insertMediants, {0, 1}, 6]

The following graphic shows the behavior of the iterated median insertion.

Show[Function[d, With[{l = Length[d] - 1},
  ListPlot[(* add x-coordinate *)

   MapIndexed[{(#2[[1]] - 1)/l, #1}&, d], 
   DisplayFunction -> Identity, PlotJoined -> True,

           PlotStyle -> {Thickness[0.001], Hue[Random[]]}]]] /@ 
                            NestList[insertMediants, {0, 1}, 12],

      DisplayFunction -> $DisplayFunction, AspectRatio -> Automatic]

Switching from the x,y-coordinate system to an Hx + yL,Hy - xL-coordinate system shows the structure slightly better.

Show[% /. Line[l_] :> Line[{Plus @@ #, Subtract @@ #}/Sqrt[2.]& /@ l],
 (* stretch *) AspectRatio -> 1/3, Frame -> True, Axes -> False

Σ (* session summary *) TMGBs`PrintSessionSummary[]

11. d’Hondt Voting 

Here  is  a  possible  solution.  The  arguments  of  dHondt  are  the  list  votes  of  the  vote  counts  and  the  list  seats of
available seats. In two positions (in the arguments and at the end of the right-hand side), we use Condition to check
that the arguments have the correct form. In each step of FixedPoint, we maintain a list consisting of two lists. The
first contains the number that was used to divide the vote of the current party, and the second contains the number of
seats already assigned to the party. As long as enough seats are still available, we assign them. If all seats have already
been  assigned,  nothing  more happens.  When  the  number  of  equal  numbers  is  larger  than is  the  number  of  remaining
seats, we assign them randomly. 

dHondt[votes_List?((Union[Head /@ #] == {Integer}) && Min[#] > 0&),
       seats_Integer] :=
FixedPoint[(* until all votes have been used *)
  Function[x, (* the assignment *)
           Which[(Plus @@ #[[2]]) + Length[x] <= seats,
                    {MapAt[(# + 1)&, #[[1]], x], MapAt[(# + 1)&, #[[2]], x]
                  Plus @@ #[[2]] == seats, #,
                 (Plus @@ #[[2]]) + Length[x] > seats,
              (* random decision *)
            CellPrint[Cell["Î A seat is randomly assigned.", "PrintText"]];
                Function[y, {MapAt[(# + 1)&, #[[1]], y],
                             MapAt[(# + 1)&, #[[2]], y]}][x[[#]]& /@
               (Table[Random[Integer, {1, Length[x]}],
                    {(Plus @@ #[[2]]) + Length[x] - seats}])]]][ 
      (* the leading party *)
      Position[#, Max[#]]&[votes/#[[1]]]] &,
            {Table[1, {Length[votes]}], Table[0, {Length[votes]}]}][[2]] /;
                          (* more votes than seats *) Plus @@ votes > seats
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First, we run the example problem. 

dHondt[{8, 5, 9}, 6]

Here is another example. 

dHondt[{31, 2, 1}, 12]

In the following examples, the last seat is assigned randomly. 

dHondt[{6, 8, 9}, 6]

dHondt[{6, 8, 9}, 6]

For typically sized parliaments, the computation can be accomplished in a fraction of a second. 

Timing[dHondt[{23456783, 12345732, 34897345, 7345673}, 600]]

As expected, this partition of the seats reflects the vote totals reasonably well. 

(600 #/(Plus @@ #))&[{23456783, 12345732, 34897345, 7345673}] // N

Σ (* session summary *) TMGBs`PrintSessionSummary[]

12. Grouping, Unsorted Complements

a)  Here is a simple approach; more efficient variants exist.  For each list element, we first seek all nearby elements. If
the resulting subsets are mutually disjointed, the problem is solved. If not, the numbers in these lists cannot be grouped
in nonoverlapping disjoint subsets. 

(* a message for the case grouping is not possible *)
group::ngr = "The numbers `1` cannot be grouped.";

group[l_, ∂_] :=
Block[{groupedList = 
      Union[Function[x, Select[l, (* look for all which are "near" *)
                               (Abs[# - x] < ∂)&]] /@ l]},
     groupedList /;
      If[Length[Union @@ groupedList]  === 
         Length[Join @@ groupedList], True, Message[group::ngr, l]; False]]

Here are three examples. 

group[{0.01, 0.02, 0.03, 0.04, 0.05, 0.0500002}, 0.005]

When the numbers cannot be grouped, a message is generated.

group[{0.01, 0.02, 0.03, 0.04, 0.05}, 0.012]

Note the different choice of brackets in the following: Now all numbers fall into one class. 

group[{0.01, 0.012, 0.013, 0.014, 0.015}, 0.1]

Here  is  a  more  elaborated  function  that  finds  groups  of  objects.  Given  a  list   of  dD  vectors,  the  function  find
Groups  groups  them  in  such  a  way,  that  within  each  group  there  exists  at  least  one  vector  which  has  Euclidean
distance less  or  equal  to   to  another  vector  of  the  same group.  The function  findGroups  is  written  in  a  one-liner
style and tries to achieve a good complexity by first separating clusters in each coordinate direction.
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findGroups[ _?(MatrixQ[#, NumericQ]&), _?NonNegative] := 
Flatten[Function[α, Apply[#&, Last /@ Rest[
(* separate all clusters *)
NestWhileList[{#[[1]], Flatten[#[[2]]]}&[
(* recursively find points of a cluster; find "chains" *)
NestWhile[Function[σ, {#[[1]], {#[[2]], σ[[2]]}}&[{Complement[σ[[1]], #], 
 #}&[(* find and remove points in distance  *)
     Flatten[Fold[Function[{λ, μ}, 
      {Complement[λ[[1]], #], (* form nested lists, not flat ones *)
      {#, λ[[2]]}}&[Select[λ[[1]], (#.#&[#[[1]] - μ[[1]]] < ^2)&]]], 
         {σ[[1]], {}}, σ[[2, 1]]][[2]]]]]], {Rest[#[[1]]], {{#[[1, 1]]}}}, 
    (#[[2, 1]] =!= {})&]]&, (* index all points to keep multiples *)
    {MapIndexed[C, α], {}}, #[[1]] =!= {}&]], {2}]] /@
        (* separate cluster if possible by coordinate values;
           avoid n^2 complexity in the number of points *)
        Fold[Function[{λ, δ}, Flatten[Map[RotateRight[#, δ]&, 
        Split[Sort[RotateLeft[#, δ]& /@ #], #2[[1]] - #1[[1]] < &], 
         {2}]& /@ λ, 1]], { }, Range[Length[ [[1]]]]], 1]

We repeat the three inputs from above. Now each element must be a vector, so, we map List over the above lists.

findGroups[List /@ {0.01, 0.02, 0.03, 0.04, 0.05, 0.0500002}, 0.005]

(* each group now has exactly one element *)
findGroups[List /@ {0.01, 0.02, 0.03, 0.04, 0.05}, 0.012]

findGroups[List /@ {0.01, 0.012, 0.013, 0.014, 0.015}, 0.1]

Here is a more complicated example. We use 1000 pseudorandom points from @-1, 1D μ @-1, 1D.
points = Table[N[{Cos[k], Cos[k^2]}], {k, 1000}];

The function  showColoredGroups  generates  a  graphic  of  the  groups  by connecting nearby points  of  a  group  and
coloring each group.

(* join nearby points of each group by a line *)
makeGroupOutLine[l_, δ_] := 
Table[If[#.#&[l[[i]] - l[[j]]] < δ^2, Line[{l[[i]], l[[j]]}], {}],
      {i, Length[l]}, {j, i + 1, Length[l]}]
      
showColoredGroups[points_, δ_, opts___] := 
Show[Graphics[{(* the points *)
 {PointSize[0.01], GrayLevel[0.5], Point /@ points},
 (* randomly colored groups *)
 {Hue[Random[]], makeGroupOutLine[#, δ]}& /@ findGroups[points, δ]}],
    opts, PlotRange -> All, AspectRatio -> Automatic];

As a function of d, we obtain one group for d = 0.2 and 40 groups for d = 0.1.

Show[GraphicsArray[
showColoredGroups[points, #, DisplayFunction -> Identity,
                  PlotLabel -> "δ = " <> ToString[#]]& /@ 
                   {0.1, 0.15, 0.2}]]

The next graphic shows the number of groups as a function of d.

ListPlot[Table[{δ, Length[findGroups[points, δ]]}, {δ, 0, 0.2, 0.01}],
         PlotJoined -> True]

We end by repeating the above calculation for 1000 pseudorandom points in 3D.
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points = Table[N[{Cos[k], Cos[k^2], Cos[k^3]}], {k, 1000}];

Show[GraphicsArray[
showColoredGroups[points, #, DisplayFunction -> Identity,
                  PlotLabel -> "δ = " <> ToString[#]]& /@ 
                   {0.15, 0.2, 0.3}] /. Graphics -> Graphics3D]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

b) As a first step, we sort the given list. After that, we partition this sorted list into sublists of length two and check to
see if  their  difference  is  less than maxDiff .  If  this  is  not  the case,  we have found  delimiters for  the groups.  Knowing
them, we select all pairs that form a group and join them into one list. At the end, all groups of length 1 are identified,
and the groups are sorted according to their first element. Here, this approach is implemented. 

splitInGroups[l:{_Integer..}, maxDiff_] :=
Function[l1, Sort[Join[List /@ Complement[l1, Flatten[#]], #], 
                  #1[[1]] < #2[[1]]&]&[
Function[p, Map[Union[(* make groups *)
Flatten[(* take all pairs which are in one group *)
  Take[p, #]]]&, {1, -1} + #& /@ (* relevant pairs *)
  Select[Partition[Flatten[{0, Position[
     Map[(* check difference between pairs *)
         Abs[Subtract @@ #] <= maxDiff&, p, {1}], False],
                Length[l1]}], 2, 1], -Subtract @@ # > 1&]]][
     (* partition sorted list *)
        Partition[l1, 2, 1]]]][(* sort given list *)Union[l]]

Here are some examples. 

splitInGroups[{1, 2, 3, 5, 6, 7, 9, 11, 22, 23}, 1]

splitInGroups[{1, 2, 3, 5, 6, 7, 9, 11, 22, 23}, 5]

splitInGroups[{1, 2, 3, 5, 6, 7, 9, 11, 22, 23}, 11]

Using the built-in function Split, it is straightforward to implement splitInGroups.

splitInGroups[l:{_Integer..}, maxDiff_] := 
           Split[Union[l], #2 - #1 <= maxDiff&]

splitInGroups[{1, 2, 3, 5, 6, 7, 9, 11, 22, 23}, 1]

splitInGroups[{1, 2, 3, 5, 6, 7, 9, 11, 22, 23}, 5]

splitInGroups[{1, 2, 3, 5, 6, 7, 9, 11, 22, 23}, 11]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

c)  The  built-in  Union  called  with  one  argument,  meaning  Union[listOfVectors]  first  sorts  listOfVectors  and  then
eliminates doubles. Because of the vector-valued nature of the elements of listOfVectors, vectors that are equal (in the
sense of Equal) do not need to be adjacent after the sorting and so would not be eliminated. Union with an explicitly
specified SameTest,  meaning Union[listOfVectors, SameTest -> Equal]  carries out all nHn - 1L ê2 possible
comparisons  between  the  n  elements  of  listOfVectors  and  so  has  a  genuine  quadratic  complexity.  For  an  arbitrary
transitive identification function  f  in  SameTest -> f,  this  is  the best  that  can be done.  No sorting criterion can be
derived from the identification function f in general. For the special case under consideration, real vectors that are to be
identified  if  their  components  differ  by  less  than  ¶,  the  situation  is  different.  Here  it  is  possible  to  derive  a  sorting
function from the identification function f. Thus, it is possible to make use of the n lnHnL complexity of Sort and it is
possible to implement a function VectorUnion that is faster than the built-in function Union with the option setting
SameTest -> Equal.
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We start by implementing a function componentUnion that splits a list of real vectors into groups with identical first
components. 

(* carry out unioning with respect to the first component *)
componentUnion[lists_, f_] := 
   Split[Sort[lists], f[First[#1], First[#2]]&];

To  eliminate  identical  elements  from  a  list  of  real  vectors,  we  recursively  split  the  list  of  vectors  into  groups  with
identical  kth  components.  When  such  a  group  has  only  one  element,  we  have  a  unique  vector.  If  after  splitting  with
respect  to  all  d  components,  we  have  groups  of  vectors  with  more  than  one  element  this  means  that  such  a  group
represents one vector. We extract its first vector as a representative vector.

(* vector is separated *)
unionStep[{v_}, {κ_, d_}, f_] := {RotateRight[v, κ]};
(* vector is separated *)
unionStep[l_List, {κ_, d_}, f_] := 
With[{ = If[κ + 1 <= d, unionStep[#, {κ + 1, d}, f]&[
                            RotateLeft /@ #]&, Identity]},
      /@ componentUnion[l, f]]

(* default SameTest *)
VectorUnion[lists_] := VectorUnion[lists, SameTest -> Equal]

VectorUnion[lists_, SameTest -> f_] := 
    First /@ Level[unionStep[lists, {0, Length[lists[[1]]]}, f], {-3}]

Now let us look at VectorUnion in action. The following list L is easy to union.

L = {{1, 2, 3}, {3, 4, 4}, {1, 2, 5}, {1, 2, 3}};
{VectorUnion[L], Union[L, SameTest -> Equal], Union[L]}

The next list L requires the SameTest option of Union to be specified. (Be aware that Union[L] returns a list with
three elements.)

∂ = $MachineEpsilon;
L = {{1 - ∂, 0.}, {1., 1.}, {1 + ∂, 0.}};
{VectorUnion[L], Union[L, SameTest -> Equal], Union[L]}

As a  more complicated example for  Union  and  VectorUnion,  let  us  use  points  scattered  around  the  vertices  of  a
hypercube.

testData[n_, dim_] := 
Table[(-1)^Random[Integer] + 
      Random[Real, 2 $MachineEpsilon {-1, 1}], {n}, {dim}];

Now, we union a list with 1000 vectors. VectorUnion is clearly faster.

data = testData[10^3, 15];

{Union[data, SameTest -> Equal] // Length // Timing,
 VectorUnion[data] // Length // Timing}

Due to the quadratic complexity of Union, VectorUnion can be much faster than Union.

data = testData[10^4, 16];

{Union[data, SameTest -> Equal] // Length // Timing,
 VectorUnion[data] // Length // Timing}

VectorUnion  could  be  further  optimized by  unioning  the  components  in  a  preprocessing  step  and permutating the
components in such a way that most separation is done as early as possible.

Here  is  a  small  application  of  VectorUnion.  We  will  repeatedly  calculate  all  intersections  formed  by  all  lines
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through pairs of a given set of points [148÷]. The function allIntersection calculates all nondegenerate intersec-
tions of the lines formed through the points ps.

allIntersection[ps_] := 
Module[{λ = Length[ps], sol, tab},  
 tab =  Table[(* check for messages from (nearly) parallel lines *)
              sol = Check[Solve[ps[[i]] + s (ps[[j]] - ps[[i]]) == 
                                ps[[k]] + t (ps[[k]] - ps[[l]]), {s, t}], 
                         $Failed];
             (* use only finite solutions *)
             If[sol =!= $Failed && sol =!= {} && sol =!= {{}},
                ps[[i]] + s (ps[[j]] - ps[[i]]) /. sol, {}],
        (* use each line pair only once *)
        {i, λ}, {j, i + 1,  λ}, {k, i + 1, λ}, {l, k + 1, λ}];
 (* consolidate intersection points *)
 VectorUnion @ DeleteCases[Level[tab, {-2}], {}]]

Starting with the six vertices of a regular hexagon, in the first step, we obtain 36 different intersections out of 73 finite
ones.  In  the  second  step,  we  obtain  18190  different  intersections  out  of  182181  finite  points  after  identifying  nearly
identical  points.  (The  messages in  the  following input  result  from trying to calculate the  intersections of  two (nearly)
parallel lines.)

nGonPoints[n_] := Table[{Cos[ϕ], Sin[ϕ]}, {ϕ, 0, 2Pi (1 - 1/n), 2Pi/n}];

nl = NestList[allIntersection, (* hexagon vertices *) N @ nGonPoints[6], 2];
               
Length /@ nl        

Here is a visualization of all of the intersection points.

Show[Graphics[(* color according to generation step number *)
 MapIndexed[{PointSize[0.003 #2[[1]]], Hue[0.8 (#2[[1]] - 1)/3], 
                                       Point /@ #1}&, Reverse @ nl], 
     Frame -> True, PlotRange -> 3 {{-1, 1}, {-1, 1}}, Frame -> True,
     AspectRatio -> Automatic, FrameTicks -> False]]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

d) Here is a first possible implementation. We recursively delete the first element of the first list that equals the nth 
element of the second list.

UnSortedComplement[l1_List, l2_List] := Fold[DeleteCases[#1, #2, {1}, 1]&,

Here is a simple example showing that the function UnSortedComplement works as expected.

UnSortedComplement[{1, 1, 2, 5, 5, 5, 3, 3, 2}, {1, 5, 2, 2, 3}]

Here is a slightly larger example, both lists having length 1000.

UnSortedComplement[Table[Round[10 Abs[Cos[k]]], {k, 1000}],
                   Table[Round[10 Abs[Sin[k]]], {k, 1000}]] // Timing

Because this implementation of the function UnSortedComplement has complexity OHn1 n2L where n j  is the length

of the list l j, forming the unsorted complement of two lists of length 50000 takes some time.

( 1 = UnSortedComplement[Table[Round[100 Abs[Cos[k]]], {k, 50000}],
                         Table[Round[100 Abs[Sin[k]]], {k, 50000}]]) // 
                                                       Length // Timing

We  can  reduce  the  complexity  to  OHn1 + n2L  by  stepping  through  the  list  l1  and  using  a  constant-time  lookup  if  the
element occurs (including multiplicity) in l2. Here this is implemented.
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UnSortedComplement[l1_List, l2_List] := 
Module[{},
       (* analyze list l2 *)
       If[Head[[#]] === ,  [#] = 1, [#] = [#] + 1]& /@ l2;
       (* step through l1 and remove the elements that occur in l2 *)
       If[Head[[#]] ===  || [#] === 0,  #, 
          [#] = [#] - 1; Sequence @@ {}]& /@ l1]

Here is again the simple test example from above.

UnSortedComplement[{1, 1, 2, 5, 5, 5, 3, 3, 2}, {1, 5, 2, 2, 3}]

For the two lists of length 1000, this version of UnSortedComplement uses roughly the same time as the first (it has
a better complexity, but at each step it must perform more operations).

UnSortedComplement[Table[Round[10 Abs[Cos[k]]], {k, 1000}],
                   Table[Round[10 Abs[Sin[k]]], {k, 1000}]] // Timing

The example containing two 50000 element lists is already faster by more than a factor of four.

( 2 = UnSortedComplement[Table[Round[100 Abs[Cos[k]]], {k, 50000}],
                         Table[Round[100 Abs[Sin[k]]], {k, 50000}]]) // 
                                                       Length // Timing

The last result agrees with the above one.

1 === 2

Now, we can form the unsorted complement of a still larger list in reasonable time. The next input forms the unsorted
complement of two list of length 105.

( 3 = UnSortedComplement[Table[Round[10^4 Abs[Cos[k]]], {k, 10^5}],
                         Table[Round[10^4 Abs[Sin[k]]], {k, 10^5}]]) // 
                                                      Length // Timing

The resulting list exhibits some interesting structure.

ListPlot[ 3]

13. All Arithmetic Expressions 

We  use  a  string-oriented  approach  here.  Suppose  the  numbers  and  the  operations  are  given  in  the  form  of  a  list of
strings. The following implementation does what we want. 

allArithmeticExpressions[numbersList_List, operationsList_List] :=
(* make a Mathematica expression *)
(HoldForm @@ ToHeldExpression[StringJoin[Flatten[#]]])& /@
Union[Nest[(Sequence @@ Table[Sequence @@ Table[
(* insert the operation at all possible positions;
   keep brackets matching *)
     Insert[Delete[#, {{i}, {i + 1}}],
   StringJoin[operationsList[[j]], "[", #[[i]], ", ", #[[i + 1]], "]"],
          i], {j, Length[operationsList]}],
                    {i, Length[#] - 1}])& /@ #&,
                    {numbersList}, Length[numbersList] - 1]]

The idea is to enclose two neighboring numbers in parentheses and join them using one binary operation. This process
is repeated for all neighboring pairs of numbers and for all given operations until only a single expression remains. For
better readability of the results, we form Mathematica expressions via ToHeldExpression[StringJoin[Flat
ten[#]]])& /@ …. 
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Some expressions appear twice and are eliminated using Union. Here is an example of the operation of allArithme
ticExpressions.  (Suppose  for  the moment that "",  "",  "",  and ""  are functions  not yet  explicitly speci-
fied.) Here are all possible expressions for three arguments and four operations.

allArithmeticExpressions[{"a", "b", "c"}, {"", "", "", ""}]

Next, we calculate all possible expressions for four arguments and two operations.

allArithmeticExpressions[{"a", "b", "c", "d"}, {"", ""}]

Here are all possible results for the four operations +, ×, gcd, and lcm and the digits of the year 1999.

ReleaseHold /@
 allArithmeticExpressions[{"1", "9", "9", "9"},
                         {"Plus", "Times", "GCD", "LCM"}] // Union

Let us give an alternative programming possibility. This time, we will manipulate expressions, not strings. We will use
ReplaceList with a suitable rule to obtain all possible groupings.

allArithmeticExpressions1[args_, ops_] := 
Nest[Function[o, Flatten[Function[c, ReplaceList[c,
             {α___, β_, γ_, δ___} :> {α, #[β, γ], δ}]& /@ ops] /@ o, 2]],
                  {args}, Length[args] - 1] // Flatten

Using the example from above, we obtain again 32 possible expressions.

allArithmeticExpressions1[{a, b, c}, {, , , }]

This approach can be easily generalized from binary to trinary operations.

allArithmeticExpressions2[args_, ops_] := 
Nest[Function[o, Flatten[Function[c, ReplaceList[c,
             {α___, β_, γ_, δ_, ∂___} :> 
             {α, #[β, γ, δ], ∂}]& /@ ops] /@ o, 2]],
                  {args}, (Length[args]  - 1)/2] // Flatten

The next example yields 48 possible expressions.

allArithmeticExpressions2[{a, b, c, d, e}, {, , , }]

One  possible  application  for  allArithmeticExpressions  would  be  the  automatic  generation  of  the  arithmetic
games, which are popular at the beginning of each year. For an application to 4s, see [75÷], [37÷], [134÷], [72÷], and
[11÷]. For all sensible compositions of vector analysis operators, see [198÷], [199÷], and [200÷].

Σ (* session summary *) TMGBs`PrintSessionSummary[]

14. Symbols with Values, SetDelayed Assignments, Counting Integers 

a) The program carries out a function definition of the form f[builtInName_] := builtInName^2, and then computes
f[3]. We now let the program run. 

names = DeleteCases[DeleteCases[Names["*"], "names"], 
                   (* otherwise we might get into trouble *)
                   "RuleTable" | "$Epilog"];
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(* shut off various messages *)
Off[$$Media::obsym]; Off[General::ovfl]; 
Off[General::under]; Off[General::unfl];
li = {};
Do[(* clear f and then give a new definition *)
   Clear[f];
   f[ToExpression[names[[i]] <> "_"]] = ToExpression[names[[i]]]^2;
   If[f[3] =!= 9,
   (* names[[i]] was not correctly treated *)
      AppendTo[li, {names[[i]], ToExpression[names[[i]]]}]],
   {i, 1, Length[names]}];
li // Length

Here are some of the elements of li shown (we select the “small” ones). (Be aware of the entry {i, …} in the list li. It
represents the value of the iteration variable i from the above Do loop.)

Select[li, ByteCount[#] < 60&]

The list li contains those system functions that have a value. Note that I (head Complex) is in the list li, but E (head
Symbol) is not. If we had carried out this operation with SetDelayed instead of Set, we would have obtained the
following result. 

li = {};
Do[Clear[f];
   ToExpression[
     "f[" <> names[[i]] <> "_] := " <> names[[i]] <> "^2"];
   If[f[3] =!= 9,
      AppendTo[li, {names[[i]], ToExpression[names[[i]]]}]],
  {i, 1, Length[names]}];
li

The result is shorter, but still not {}. We already know from an earlier exercise that problems with Symbol exist. The
appearance  of  Power  in  li  is  from  the  special  right-hand  side  in  our  function  definition  (the  fullform  is
Power[command, 2]). 

Clear[f];
f[power_] := power[power, 2]

f[3]

Clear[f];
f[Power_] := Power[Power, 2]

f[3]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

b)  The  code  returns  all  built-in  functions  builtInFunction  that,  after  carrying  out  the  definition  f[x_] := builtInÖ
Function[x], do not result in a definition of the form {HoldPattern[f[x_]] :> builtInFunction[x]}. To find
the  functions  builtInFunction  that  behave  “unusually”,  we  build  the  string  "f[x_] := builtInFunction[x]"  and
convert  this  string  into  an  expression.  This  evaluates  and  makes  a  definition  for  the  function  f.  Then  we  analyze  the
“stringized”  downvalue  associated  with  f.  If  builtInFunction  does  not  appear  in  the  downvalue,  this  function  will  be
returned.  (The  functions  DownValues,  RuleDelayed,  and  List  that  appear  in  all  downvalues  would  have  to  be
checked separately—but these functions work fine.)
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Cases[{#, (* make function definition *)
 ToExpression[StringJoin["f[x_] := " <> # <> "[x]"]];
    (* analyze function definition *)
 StringPosition[ToString[FullForm[DownValues[f]]], #]}& /@ 
                (* all built-in functions *) Names["System`*"], {_, {}}]

Three functions were returned: Evaluate, Unevaluated, and the undocumented function Release. In Chapters 3
and  4,  we  discussed  the  semantics  of  Evaluate  and  Unevaluated.  Here  they  appear  as  the  head  of  the  second
argument  of  SetDelayed  and  they  cause  the  second  argument  to  be  either  explicitly  evaluated  or  avoiding  any
evaluation.  (But  because  of  the  HoldAll  and  SequenceHold  attribute  of  SetDelayed,  this  would  not  happen
anyway.)

f[x_] := Evaluate[x]

??f

f[x_] := Unevaluated[x]

??f

Σ (* session summary *) TMGBs`PrintSessionSummary[]

c) We start by generating the lists containing the data.

Do[data[n] = Table[IntegerPart[k Sin[k]], {k, 10^n}], {n, 4}]

One  way  to  count  the  numbers  occurring  in  data  would  be  using  Count.  We  start  by  creating  lists  containing  the
numbers that actually occur in the data.

Do[occuringNumbers[n] = Union[data[n]], {n, 4}];

Now, we simply count how often the numbers appear.

With[{n = 2},
Table[{occuringNumbers[n][[i]], 
       Count[data[n], occuringNumbers[n][[i]]]}, 
                   {i, Length[occuringNumbers[n]]}]]

The calculation of these numbers has a bad complexity—for each data set, many calls to Count have to be carried out.

Table[Timing[Table[{occuringNumbers[n][[i]], 
         Count[data[n], occuringNumbers[n][[i]]]}, 
                   {i, Length[occuringNumbers[n]]}];],
      {n, 1, 4}] 

Here is a much faster way. First, we sort the data sets. This process makes equal numbers adjacent. Then, we split them
into sublists of equal numbers using the function Split and we determine the length of the sublists. To get measurable
timings, we carry out all calculations ten times.

Table[Timing[Do[{First[#], Length[#]}& /@ Split[Sort[data[n]]],
                {10}]], 
      {n, 4}]

Another possibility is to go through the list and increase a counter for every number each time it is found. This method
also has a good complexity, but the absolute timings cannot compete with the last method.
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Table[Timing[
       Do[c[occuringNumbers[n][[i]]] = 0, 
         {i, Length[occuringNumbers[n]]}];
        (c[#] = c[#] + 1)& /@ data[n];
      Table[c[occuringNumbers[n][[i]]], 
           {i, Length[occuringNumbers[n]]}];],
      {n, 4}]

Without first determining which numbers occur, we can slightly speed up the last method.

Table[Timing[Clear[c];
             (c[#] = If[Head[c[#]] === c, 1, c[#] + 1])& /@ data[n];
              {#[[1, 1, 1]], #[[2]]}& /@ DownValues[c];],
     {n, 4}]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

15. Sort[list, strangeFunction] 

We  carry  out  the  analysis  for  three  arguments;  the  generalization  to  more  arguments  is  straightforward.  Here  are  all
possible argument pairs that could be tested by Sort. 

combinations = Flatten[Outer[List, {1, 2, 3}, {1, 2, 3}], 1]

trueFalseCombinations gives all possible assignments of truth values to these combinations. 

trueFalseCombinations =
  Flatten[Permutations /@ Table[Join[Table[True, {j, i}],
                                      Table[False, {j, 9 - i}]], 
                                {i, 0, 9}], 1];

Here are all possible lists of length 3 to be sorted. 

allSortLists =
 Flatten[Permutations /@ Flatten[
  Table[Join[Table[1, {j, i}], Table[2, {j, 3 - i - k}], Table[3, {k}]],
        {k, 0, 3}, {i, 0, 3 - k}], 1], 1];

Short[allSortLists, 5]

Now, we check all possible combinations as arguments to Sort. 

Do[Clear[tempSorter];
   (* make a definition for the sorting function tempSorter *)
   Set[Evaluate[tempSorter @@ #[[1]]], #[[2]]]& /@
    Thread[{combinations, trueFalseCombinations[[i]]}];
     Sort[#, tempSorter]& /@ allSortLists, {i, Length[allSortLists]}]

No messages were generated, so all went well. 

Σ (* session summary *) TMGBs`PrintSessionSummary[]

16. Bracket-Aligned Formatting, Fortran Real*8, Method Option, Level Functions,
     Conversion to StandardForm Inputs

a) To align the brackets in a Mathematica expression, we will convert the expression to a string and then position each
character  of  the  string.  Before  dealing  with  the  implementation of  a  function  that  aligns  the  square  brackets,  we  will
write a little function restoreSpecialCharacters that deals with special characters. FullForm has the annoy-
ing  feature  that  it  does  not  treat  Greek,  script,  Gothic,  etc.  characters  as  characters,  but  rather  displays  them  as  the
sequence of ASCII characters of their long names. Here this is demonstrated.
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ToString[FullForm[Sin[α + ArcTan[β, Cot[c]]]]]

Characters[%] // InputForm

Instead of the last result, we would like to get
{"S", "i", "n", "[", "P", "l", "u", "s", "α",", " ",  
 "A", "r", "c", "T", "a", "n", "[", "β", "]", ",", " ", 
 "C", "o", "t", "[", "c", "]", "]", "]", "]"}

The function specialCharacter converts a list of characters representing a special character into the correspond-
ing special character. We define specialCharacter for all available special characters.

Apply[Set[specialCharacter[#1], #2]&, 
{Characters[StringDrop[StringDrop[
  ToString[FullForm[#]], -2], 3]], #}& /@ 
  DeleteCases[Select[(* all characters *)
  FromCharacterCode /@ Range[10^5],
         Characters[ToString[FullForm[#]]][[-2]] === "]"&], "]"], {1}];

The next input shows specialCharacter at work for the character a.

specialCharacter[{"A", "l", "p", "h", "a"}] // InputForm

Using  specialCharacter,  it  is  straightforward  to  write  a  function  restoreSpecialCharacters,  which
restores all  special characters in a list of characters.  We recognize the beginning of a special character by the appear-
ance of "\\".

restoreSpecialCharacters[stringList_] :=
Module[{slashPosis, specialCharacterPosis, newCharacters},
 (* position of a \ indicating a special character *)
 slashPosis = Position[stringList, "\\"];
 (* position of the special character characters *)
 specialCharacterPosis = 
 Table[k = #[[1]] + 1;
       While[stringList[[k]] =!= "]",
             k = k + 1]; {#[[1]], k}]& /@ slashPosis;
 (* the to be substituted character *)
 newCharacters = specialCharacter[Take[stringList, 
             # + {2, -1}]]& /@ specialCharacterPosis;
 (* the position of repeated replacements to be done *)
 posisData = MapIndexed[(First[#1] - Last[#1])&, 
                 Transpose[{specialCharacterPosis, 
                 Drop[FoldList[Plus, 0, 
                     -Apply[Subtract, specialCharacterPosis, {1}]], -1]}]];
 (* do the exchange of characters *)
 Fold[Insert[Delete[#1, List /@ (Range @@ #2[[1]])], 
          #2[[2]], #2[[1, 1]]]&,
          stringList, Transpose[{posisData, newCharacters}]]]

Here  is  the  function  restoreSpecialCharacters  applied  to  the  above  expression  that  contained  the  special
characters a and b.

StringJoin @ restoreSpecialCharacters[
                  Characters[ToString[FullForm[Sin[α + Cos[β]] + γ]]]] 

Now, we can implement the function AlignBrackets.  Its  argument is a Mathematica  expression.  alignBrack
ets writes a cell that contains the FullForm of this expression in a properly aligned way. The two auxiliary functions
indexList and prefaceSpaces index the elements of a list and prepend white space to a list.
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indexList[{l___, c:C[i_, j_, _]}] :=
With[{λ = Length[{l}]},
     Append[MapIndexed[C[i, -λ + #2[[1]] + j - 1, #1]&, {l}], c]]

prefaceSpaces[{c:C[i_, j_, _], r___}] :=
         Join[Table[C[i, k, " "], {k, j - 1}], {c}, {r}]

The implementation idea behind alignBrackets  is simple: The function AlignBrackets  starts by generating a
string  of  the  FullForm  of  code.  The  opening  and  closing  square  brackets  in  this  string  are  then  located  and  posi-
tioned. Keeping the relative position of these characters, we position of the square brackets. Then, we position all other
characters accordingly.

(* AlignBrackets is a formatting function ---
   avoid any evaluation *)
SetAttributes[AlignBrackets, HoldAllComplete];

AlignBrackets[code_] :=
Module[{characters1, characters, row, column, markedBrackets, 
        CPosis, lines, indexedLines, minColumn, indentedIndexedLines, 
        indentedFullyIndexedLines, finalLines, cellString},
(* transform unevaluated input into characters *)
characters1 = Characters[ToString[FullForm[HoldComplete[code]]]];
characters = Drop[Drop[characters1, 13], -1];
(* restore special characters *) 
characters = restoreSpecialCharacters[characters];
(* mark positions of opening and closing square brackets;
   one at each line and new "[" indented *)
row = 0; column = 0;
markedBrackets = 
 Which[# === "[", C[row = row + 1, column = column + 1, #], 
       # === "]", C[row = row + 1, column = column - 1;       
                  column + 1, #], 
       True, #]& /@ characters;
(* put a "," after a "]" on the same line *)
markedBrackets = 
markedBrackets //. {a___, C[i_, j_, "]"], ",", b___} :> 
                   {a, "]", C[i, j + 1, ","], b};       
(* position of marked characters *)
CPosis = Flatten[{0, Position[markedBrackets, _C]}];
(* split into lines *)
lines = Take[markedBrackets, {#[[1]] + 1, #[[2]]}]& /@ Partition[CPosis, 2,
(* position all characters of one line *)
indexedLines = indexList /@ lines;
(* left-most column *)
minColumn = Min[#[[2]]& /@ Cases[indexedLines, _C, {2}]];
(* left-most column is left flush *) 
indentedIndexedLines = indexedLines /. C[i_, j_, s_] :> 
                               C[i, j - minColumn + 1, s];
(* add " " to the left *)
indentedFullyIndexedLines =  prefaceSpaces /@ indentedIndexedLines;
(* add new line at the end of each line *)
finalLines = Append[Last /@ #, FromCharacterCode[10]]& /@ 
                                 indentedFullyIndexedLines;
(* form one string *)
cellString = StringDrop[StringJoin[Flatten[finalLines]], -1];
(* display the string *)
CellPrint[Cell[cellString, "Input", FontWeight -> "Plain"]]]

Now,  let  us  test  the  function  AlignBrackets.  Here  is  a  simple  nested  input.  It  is  easy  to  check  the  alignment  by
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inspection.  Note  that  the  first  character  of  the  first  line  has  to  be  indented  to  achieve  the  overall  alignment  structure
needed.

AlignBrackets[Sin[α + n + [b, D[c[g], g], 1 + 1]]]

Here is a test that the last expression is correct—we evaluate the last cell generated.

SelectionMove[SelectedNotebook[], Previous, Cell, 3];
SelectionEvaluateCreateCell[SelectedNotebook[]]

The next expression looks very symmetric after the alignment of the square brackets.

AlignBrackets @@ {Nest[f, x, 8]}

The last example shown here is the formatted version of the function RotatedBlackWhiteStrips from Subsec-
tion 1.1.2.

AlignBrackets[
Graphics[MapIndexed[{If[(-1)^(Plus @@ #2) == 1,
               GrayLevel[0], GrayLevel[0.8]],
       Polygon[Join[#1[[1]], Reverse[#1[[2]]]]]}&,
            Partition[Partition[
              Distribute[{N[{{+Cos[#], Sin[#]},
                             {-Sin[#], Cos[#]}}]& /@
                               Range[0, 2 Pi, 2Pi/],
                          N[(1 - (#/(2 Pi)))*
                             {Cos[ρ #], Sin[ρ #]}]& /@ 
                                 Range[0, 2 Pi, 2 Pi/ ]},
     List, List, List, Dot],  + 1], {2, 2}, 1], {2}], 
          AspectRatio -> Automatic, PlotRange -> All]]

We leave it to the readers to refine the function alignBrackets for the case of long lists of arguments, for the case
that the expression contains strings, and to adapt details it to their formatting preferences.

Σ (* session summary *) TMGBs`PrintSessionSummary[]

b) Here is one suggestion. 

FortranReal8[n_Integer] :=
If[n === 0, "0.D0",
   If[Sign[n] === -1, "-", ""] <> "0." <> StringJoin[ToString /@
   FixedPoint[If[Last[#] === 0, Drop[#, -1], #]&, #]] <>
   "D" <> ToString[Length[#]]&[IntegerDigits[n]]]

We now give three examples. 

FortranReal8[18936]

FortranReal8[-3]

FortranReal8[0]

Much broader Fortran transformation utilities can be found in the C, FORTRAN77 and other formats code generation
package by M. Sofroniou (MathSource 0205-254) and Fortran definitions by P. Janhunen (MathSource 0202-172). 

Σ (* session summary *) TMGBs`PrintSessionSummary[]

c) Finding the 15 built-in functions that have a Method option is straightforward.

functions = ToExpression[#, InputForm, 
              Unevaluated]& /@ DeleteCases[Names["*"], "I"];

functionsWithOptions = ToString /@ Select[functions, 
                                    MemberQ[Options[#], Method, {-1}]&]
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Finding the possible options settings within Mathematica  is more tricky. Unfortunately, there is not a PossibleOp
tionSettings[function,  option]  command,  so  that  we  cannot  successfully  evaluate  PossibleOption
Settings[NDSolve, Method],  etc.  The  best  one  can  do  within  Mathematica  is  to  have  a  close  look  at  the
messages  of  the  functions.  Maybe  a  usage  message of  a  function  will  say  what  are  the  possible  settings,  or  maybe a
warning message issued when an unknown option setting is used,  contains some hints about the allowed settings.  So,
we load all messages.

(* load all messages (usage and warning/error messages) *)
Get[ToFileName[{$TopDirectory, "SystemFiles", "Kernel", 
                "TextResources", $Language}, #]]& /@

{"Messages.m", "Usage.m"};

Extracting  the  messages  that  contain  the  word  method  yields  55  messages  that  might  contain  some hints  on  possible
settings.

Off[Message::name];
potentiallyUsefulMessages = DeleteCases[
Flatten[Select[Messages[#], (* match method or Method *)
       (Or @@ ((StringMatchQ[#, "*Method*"] || 
                StringMatchQ[#, "*method*"])& /@ 
                Cases[#, _String, {-1}]))&]& /@ functions],
 RuleDelayed[Verbatim[HoldPattern][MessageName[Method, _]], _]];

potentiallyUsefulMessages // Length

We  now  investigate  the  content  of  the  messages.  For  a  programmatic  treatment,  we  would  like  to  avoid  reading  the
messages.  So,  without  implementing  a  limited  version  of  artificial  intelligence,  the  best  is  to  just  search  for  built-in
names and numbers in the texts.

functionsFromText[s_String] := 
DeleteCases[
Select[StringTake[s, #]& /@ Partition[(* make words *)
         Flatten[{1, {-1, +1} + #& /@ First /@ 
            StringPosition[s, {" ", ".", ",", ";"}],
       StringLength[s]}], 2], (* extract built-in functions *)
       (Context[#] === "System`" || 
        Head[ToExpression[#]] === Integer) &], "Method"]

We arrive at the following set of built-in functions that are referred to by the 15 functions that have a Method option.

Off[Context::notfound]; Off[ToExpression::sntx]; Off[ToExpression::sntxi];
data = Union[Flatten[{ToString[#[[1, 1, 1]]], 
       functionsFromText[#[[2]]]}]]& /@ potentiallyUsefulMessages;

Consolidating the  result  and eliminating all  functions  that are themselves options,  as well as some obvious  nonoption
settings, yields the following conjectured Method option settings.

Off[First::normal];
allOptions = ToString /@ Union[First /@ Flatten[Options /@ functions]];

functionsWithOptions = ToString /@ Select[functions, 
                          MemberQ[Options[#], Method, {-1}]&]

functionsWithAnyOption = ToString /@ Select[functions, Options[#] =!= {}&];
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Off[Attributes::notfound];
functionsAndPotentialMethodSettings = 
DeleteCases[{#[[1]], DeleteCases[
 If[Union[LetterQ /@ #[[2]]] === {False, True},
           (* no mixed number symbol settings *)
    DeleteCases[#[[2]], _?(Not[LetterQ[#]]&)], #[[2]]],
    (* options and option settings have mostly different names *)
    _?(MemberQ[Join[allOptions, functionsWithOptions,
                    functionsWithAnyOption], #]&)]}& /@ 
DeleteCases[Function[f, {f, DeleteCases[
  Union[Flatten[Select[data, MemberQ[#, f]&]]], f]}] /@ 
                                    functionsWithOptions,
 (* these surely are not Method option settings *)
  "Value" | "For" | "If" | "Not" | "With" | "Infinity" | 
  _?(MemberQ[Attributes[#], NumericFunction]&), {-1}], {_, {}}];

Print /@ functionsAndPotentialMethodSettings;

Σ (* session summary *) TMGBs`PrintSessionSummary[]

d)  If  a  function  takes  a  level  specification,  then its  usage message will  say so.  We start  by loading  and collecting all
usage messages.

Get[ToFileName[{$TopDirectory, "SystemFiles", "Kernel", 
                "TextResources", $Language}, "Usage.m"]];

systemCommands = Names["System`*"];
(* clear the ReadProtected attribute *)
If[MemberQ[Attributes[#], ReadProtected],
   ClearAttributes[#, ReadProtected]]& /@ 
     Apply[Unevaluated, ToHeldExpression /@ 
              DeleteCases[systemCommands, "I"], {1}];
(* make list of all messages *)
allMessages = (Messages @@ #)& /@ (ToHeldExpression[#]& /@
                               DeleteCases[systemCommands, "I"]);

Off[Part::partw];
allUsageMessages = Select[allMessages, #[[1, 1, 1, 2]] === "usage"&];

Next, we extract all messages that contain explicitly the word "level".

messagesContaing["level"] = 
Select[#[[1, 2]]& /@ allUsageMessages,
       StringMatchQ[#, "*level*"] && StringMatchQ[#, "*[*"]&];

messagesContaing["level"] // Length

Here is one example.

messagesContaing["level"][[11]]

Without explicitly reading all messages and deciding if these functions take a level specification, we will extract from
the body of  the  messages all  that  contain explicit  argument  specifications of  the form function[args, levelspecificaÖ
tion, other args].

goLeft[s_String, pos_] := 
Module[{p = pos}, 
(* go to the left until function name starts *)
 While[p > 0 && Not[StringTake[s, {p, p}] === " "],
       p = p - 1]; p + 1]   
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getMathematicaExpression[s_String] := 
Select[StringTake[s, {goLeft[s, #[[1]]], #[[2]]}]& /@ 
 (* position of function arguments *)
 Partition[Union[Flatten[{StringPosition[s, "["],
                          StringPosition[s, "]"]}]], 2],
 (* "lev" appears somewhere *)              
 StringMatchQ[#, "*lev*"]&]

Here are the functions that were found.

Flatten[getMathematicaExpression /@ 
            messagesContaing["level"]] // TableForm

But unfortunately,  not  all  usage message bodies contain "lev" explicitly. To find the remaining ones,  like Outer,  we
would have to refine the textual analysis of the message body.

??Outer

Σ (* session summary *) TMGBs`PrintSessionSummary[]

e)  The  easiest  way  to  achieve  the  conversion  would  be  to  use  the  menu  item  CellöDisplay  AsöStandardForm.
While  this  would  generate  StandardForm  formatting,  the  resulting  spacing  would  be  suboptimal.  Using  the  menu
item CellöConvert ToöStandardForm would give less white space and proper StandardForm characters, but we
would  loose  all  comments. So,  we implement a  string-manipulation based  approach  to  modify the  InputForm  cells
before we will display them as StandardForm cells.

The first  argument  of  the  input  form cells  of  the GuideBooks  are  all  either  strings  of  compound expressions  with the
head TextData.  As  a  first  step,  we  form pure  strings  of  all  input  form cell  bodies  by removing the  style boxes  for
comments.

makeOneString[s_String] := s

makeOneString[TextData[sb_StyleBox]] := makeOneString[TextData[{sb}]] 

makeOneString[TextData[l_List]] := 
  StringJoin[Which[Head[#] === String, #,
                   Head[#] === StyleBox, #[[1]],
                   True, Print["Unexpected item: ", #]; ""]& /@ l]

To preserve the alignment, we replace multiple white spaces with twice as many white spaces (StandardForm uses a
smaller natural white space size). Single white spaces, we do not change.

addMultiSpaces[s_String] :=
Module[{chars, groupedChars, newChars1, newChars2},
    chars = Characters[s] /. {"\t" -> Sequence @@ Table[" ", {3}]};
    (* group multiple white space together *)
    groupedChars = Split[chars, (#1 == " " && #2 == " ")&];
    newChars1 = Flatten[If[Length[#] === 1, #, Join[#, #]]& /@ groupedChars
    newChars2 = Flatten[If[# === "\n", {"\n", " "}, #]& /@ newChars1];
    StringJoin[newChars2]]

Next, we deal with using special symbols. The function useShortName uses the short name newName instead of the
old name oldName  when  the  left  and right  neighboring  characters  come from the lists  goodLeftCharacters  and goodÖ
RightCharacters.
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useShortName[s_String, {oldName_, newName_}, 
             {goodLeftCharacters_, goodRightCharacters_}] := 
Module[{s1 = " " <> s <> " ", chars, thePositions, goodPositions},
       chars = Characters[s1];
       thePositions = StringPosition[s1, oldName];
       (* find isolated occurrences *)
       goodPositions = Select[thePositions, 
              (MemberQ[goodLeftCharacters , chars[[#[[1]] - 1]]] &&
               MemberQ[goodRightCharacters, chars[[#[[2]] + 1]]])&];
       StringTake[StringReplacePart[s1, newName, goodPositions], {2, -2}]]

For the quantities Pi, I, E, and Infinity, we allow the surrounding characters to be white space and numbers to the
left.

useShortIPiInfinity[s_String] := 
  Fold[useShortName[#1, #2, {{"{", "(", ",", " ", "\n", ";", "/",
                              "1", "2", "3", "4", "5","6","7","9","0"},
                             {"}", ")", ",", " ", "\n", ";", "^"}}]&, 
       s, {{"Pi", "π"}, {"I", " "}, {"E", " "}, {"Infinity", "∞"}}]

Here is an example of the transformations that useShortIPiInfinity carries out.

useShortIPiInfinity["NameWithPiInside + Pi + 1 + DirectedInfinity[2] - 
                     Sum[k, {k, Infinity}] + 4 u I + 2 I I"] 

For the operators ==, ->, and :>, we assume white space characters as neighbors.

useShortEqualRule[s_String] :=
  Fold[useShortName[#1, #2, {{" ", "\n"}, {" ", "\n"}}]&, 
       s, {{"==", " "}, {"->", "→"}, {":>", " "}}]

For a more typical StandardForm appearance, we also replace double brackets from Part, namely [[ and ]] by P
and T. 
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usePartBrackets[s_String] := 
Module[{s1, theOpeningPositionsAll, λ,
        literalStringPositions, theClosingPositions, 
        theOpeningPositionsInsideStrings, theOpeningPositions,
        , , (* count intermediate brackets *) },
       chars = Characters[s1 = " " <> s <> " "];
       (* the opening Part double brackets;
          (assume they always occur together and not on separate lines *)
       theOpeningPositionsAll = StringPosition[s1, "[["]; 
       (* inside strings, do not replace double brackets *)
       literalStringPositions = Partition[First /@ StringPosition[s1, "\""]
       theOpeningPositionsInsideStrings = 
       Select[theOpeningPositionsAll, (Or @@ 
          (Function[{l, u}, l < #[[1]] < u] @@@ literalStringPositions))&];
       theOpeningPositions = DeleteCases[theOpeningPositionsAll,
              Alternatives @@ theOpeningPositionsInsideStrings];   
       λ = Length[theOpeningPositions]; 
        = StringLength[s1];
       (* find closing Part double brackets *)
       theClosingPositions = 
       Table[ = theOpeningPositions[[k]] + 2;  = 0;
             (* step through the string until closing pair is found *)
             While[(StringTake[s1, ] =!= "]]" ||  =!= 0) && Max[] <= ,
                   (* find matching pair in case of nesting *)
                   If[StringTake[s1, [[1]] {1, 1}] == "[",  =  + 1];
                   If[StringTake[s1, [[1]] {1, 1}] == "]",  =  - 1];
                     =  + 1]; If[Max[] > , $Failed, ], {k, λ}];
       If[MemberQ[theClosingPositions, $Failed], 
          (* return original string in case of unmatched brackets *) s,     
          StringTake[StringReplacePart[s1, Join[Table["P", {λ}], Table["T",
                     Join[theOpeningPositions, theClosingPositions]], {2, -

To adjust for the smaller width of the characters , →, and  instead of ==, ->, and :>, we add some white space in
the lines following occurrences of these characters. 

adjustIndentation[s_String] :=
Module[{newLinePositions, lineStrings, lineCharacters, 
        counts, cCounts, newNewLines}, 
       newLinePositions = StringPosition[s, "\n"];
       lineStrings = StringTake[s, # + {1, 0}]& /@ 
           Partition[Flatten[{0, newLinePositions, StringLength[s]}], 2];
       lineCharacters = Characters /@ lineStrings;
       (* count narrower characters *)
       counts = Count[#, "π" | "→" | " " | " "]& /@ lineCharacters;
       cCounts = Rest[FoldList[Plus, 0, counts]];
       newNewLines = StringJoin["\n", StringJoin[Table[" ", {#}]]]& /@ 
                                                    Drop[cCounts, -1];
      (* add white space to the newline characters *)
      StringReplacePart[s, newNewLines, newLinePositions]]

The last function could be extended to analyze more carefully the number of new characters above white space charac-
ters of following lines.

Now, we have all individual transformations together to define the function makeStandardFormCell that converts
a  formatted InputForm  cells  to  a  StandardForm  cell  with  similar indentation.  We use the style "RigidStan
dardFormInput"  which is defined in the stylesheet of the GuideBooks.  We avoid formatting powers,  sums, prod-
ucts, integrals and so on in a truly 2D manner.
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makeStandardFormCell[c:Cell[expr_, "Input", rest___]] :=
Module[{s1, s2, s3, s4, s5, s6},
       If[MemberQ[expr, _BoxData, Infinity], c,
          (* carry out all of the above transformations *)
          s1 = makeOneString[expr];
          s2 = addMultiSpaces[s1];
          s3 = useShortIPiInfinity[s2];
          s4 = useShortEqualRule[s3];
          s5 = usePartBrackets[s4];
          s6 = adjustIndentation[s5];
          Cell[BoxData[s6], "RigidStandardFormInput", rest]]]

makeStandardFormCell[c_] := c

Here is a simple example. This is the formatted original InputForm cell.

E^(2 + 2 I pi) == E^2 + 1/Infinity + {{0}}[[1, {0}[[1]] + 1]] /.
                  pi -> Pi /. E^2 :> 2

Here we create a formatted version of the corresponding StandardForm cell.

CellPrint @ (sfCell = makeStandardFormCell @ 
(* the underlying cell expression of the last input *)
Cell["\<\
E^(2 + 2 I pi) == E^2 + 1/Infinity + {{0}}[[1, {0}[[1]] + 1]] /.
                  pi -> Pi /. E^2 :> 2\
\>", "Input"])

We could also remove all formatting and let the Mathematica  front end do all formatting, including adding spaces and
linebreaks.  While  this  will  remove  all  alignments,  for  smaller  inputs  such  a  formatting  is  sometimes preferable.  The
function removeWhiteSpace removes all white space that has no semantic meaning. For these cells, we use the cell
style "StandardFormInput".

removeWhiteSpace[body_] :=
 FixedPoint[StringReplace[#, 
         (* remove white space around low-binding operators *)
         {" // " -> "//", " + " -> "+", " - " -> "-", 
          " = " -> "=",  " := " -> ":=", " → " -> "→", "  " -> " ",
          "  " -> " ", " != " -> "!=", " === " -> "===", " =!= " -> "=!=",
          " > " -> ">", " < " -> "<", " >= " -> ">=", " <= " -> "<=",
          " /. " -> "/.", " //. " -> "//.",  " /; " -> "/;", 
          " /@ " -> "/@", " //@ " -> "//@", " @@ " -> "@@", 
          " @@@ " -> "@@@", " && " -> "&&", " || " -> "||", " | " -> "|",
          ", " -> ",", "; " -> ","}]&, 
          (* condense multiple whitespace *)
          FixedPoint[StringReplace[#, {"\n" -> " ", "  " -> " "}]&, 
                     body]]

(* remove white space in strings and use other cell style *)
makeAutomaticallyFormattedStandardFormCell[expr_] := 
expr //. c:Cell[BoxData[b_], "RigidStandardFormInput", r___] :>
           Cell[BoxData[removeWhiteSpace[b]], "StandardFormInput", r]

Here is the example cell from above with the alternative formatting.

CellPrint @ makeAutomaticallyFormattedStandardFormCell[sfCell]

Now, we can use the function makeStandardFormCell to convert all cells of a whole GuideBook notebook. 
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makeNotebookWithStandardFormCells[Notebook[cells_, rest___]] :=
Module[{physicalCells, newCells},
 physicalCells = Flatten[cells //. Cell[CellGroupData[l_, ___], ___] :> l];
 newCells = makeStandardFormCell /@ physicalCells;
 Notebook[newCells, rest]]

Here is an example. We use this notebook.

notebooksTMGBs = Flatten[
     {Function[{c, n}, (c <> ToString[#] <> ".nb")& /@ Range[n]] @@@
      {{"1_Programming_", 6}, {"2_Graphics_", 3}, 
       {"3_Numerics_", 2}, {"4_Symbolics_", 3}}}];

fileNames = ToFileName[ReplacePart["FileName" /. 
  NotebookInformation[EvaluationNotebook[]], #, 2]]& /@ notebooksTMGBs;

(* read in the stylesheet *)
stylesheet = Get[ToFileName[ReplacePart["FileName" /. 
                  NotebookInformation[EvaluationNotebook[]], 
                            "GuideBooksStylesheet.nb", 2]]];

(* read in this notebook *)
nb = Get[fileNames[[6]]];

(* reformat inputs *)
sfCellNb = makeNotebookWithStandardFormCells[nb];

When displaying the reformatted notebook sfCellNb in the front end, the strings inside the BoxData are automati-
cally converted  into  (nested)  box  structures.  (Most  inputs  of  the  GuideBooks  will  evaluate  in  such  a newly formatted
notebook in the same manner as they did in the original notebook. But some inputs analyze the structure of a notebook
and as a result might behave differently or not work properly.)

(* To view the nb generated with the following input 
   properly, the stylesheet GuideBooksStylesheet.nb 
   should be assigned.
   For saving the notebook in another directory,
   no private stylesheet should be embedded 
   and the stylesheet should be in the other directory.
   The new notebook should be closed, opened again and saved again
   preserve the boxes generated by the front end. *)
NotebookPut[sfCellNb /. (StyleDefinitions -> _) -> 
                        (StyleDefinitions -> stylesheet)]

And here is a version with all alignments and white spaces removed.

sfCellNbC = makeAutomaticallyFormattedStandardFormCell[sfCellNb];

NotebookPut[sfCellNbC /. (StyleDefinitions -> _) -> 
                         (StyleDefinitions -> stylesheet)]

Make Input 

NotebookPut[makeNotebookWithStandardFormCells[#]]& /@ fileNames

Σ (* session summary *) TMGBs`PrintSessionSummary[]

17. ReplaceAll Order, Pattern Realization, Pure Functions 

a) This is the original function orderedTriedExpressions.
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orderedTriedExpressions[expr_] := 
Module[{bag = {}},
       expr /. x_ :> Null /; (AppendTo[bag, x]; False);
       bag]

To compare the results of the functions orderedTriedExpressionsi with the result of orderedTriedExpres
sions, we will use the following test expression expr.

expr = {a[A[B]][C], {b, {c, d, Sin[ArcTan[1, e]]}}};
res = orderedTriedExpressions[expr]

It  is  straightforward  to  implement  a  version  of  orderedTriedExpressions  that  uses  only  built-in  functions.
Instead of the variable bag, we just use any built-in function. (To avoid the creation of a nonbuilt-in function …$i, we
use Block instead of Module and Factor instead of x and Expand for bag.)

orderedTriedExpressions2[expr_] := 
Block[{Expand = {}},
       expr //. Factor_ :> Null /; (AppendTo[Expand, Factor]; False);
       Expand]

orderedTriedExpressions2[expr] === res

By using a pure function, we eliminate the pattern variable expr.

orderedTriedExpressions3 = 
Block[{Expand = {}},
       # //. Factor_ :> Null /; (AppendTo[Expand, Factor]; False);
       Expand]&;

orderedTriedExpressions3[expr] === res

The  implementation  of  a  version  of  orderedTriedExpressions  without  assignments  is  slightly  more  compli-
cated.  ReplaceAll  will  try  a  subexpression  and,  if  no  match  occurs,  will  try  the  head  of  the  expression  and  its
elements.  If  no  match occurs  in  any of  them, ReplaceAll  will  recursively  continue.  We can get  a  list  of  head and
arguments  from  Level[subExpression,  {1},  Heads  ->  True].  To  achieve  the  recursive  treatment  of  all
subexpressions without using assignments, we use a self-reproducing pure function via #0. We end the recursion when
we  encounter  an  atomic  expression.  Putting  all  of  this  together  results  in  the  following  implementation.  (The
Sequence @@ … destroys unnecessary outer lists.)

orderedTriedExpressions4 = 
{(Sequence @@ {#, If[AtomQ[#], Sequence @@ {}, Sequence @@ (#0 /@  
                        DeleteCases[Level[#, {1}, Heads -> True], {}, 
                                    {1}])]})&[#]}&;

Here is a check that orderedTriedExpressions4 works correctly.

orderedTriedExpressions4[expr] === res

Σ (* session summary *) TMGBs`PrintSessionSummary[]

b) The idea for the function PatternRealization is as follows. First, we look for all pattern variables (including
Pattern)  in  expressionWithPatterns  (by  using  Position[Hold[expressionWithPatterns],  Pattern]).  Then
we carefully extract the first arguments of all Patterns with HeldPart  and collect them in a list (after eliminating
multiple elements). Then we define an auxiliary function faux  whose arguments are the same as those of expression
and  whose  right-hand  side  is  just  the  list  of  the  pattern  variables.  After  applying  this  function  to  the  arguments of
expression,  the  result  is  a  list  of  the  actual  realizations  of  the  pattern  variables.  Finally,  we  combine  corresponding
pattern variables and realizations. To avoid evaluation of any variable, we use HoldForm everywhere in the result; this
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has the convenient side effect  that Sequences arising from the pattern matching are also displayed.  We assume that
the first argument of PatternRealization is free of patterns. Here is the corresponding code. 

(* to avoid any evaluation of the argument *)
SetAttributes[PatternRealization, HoldAllComplete];

PatternRealization[expr_, form_] :=
Module[{faux, allPatternVars, lhs, rhs},
(* the local function *)
SetAttributes[faux, HoldAll];
(* all pattern variables *)
allPatternVars = List /@ Union[Join @@ Apply[HeldPart[Hold[form], ##]&,
   Append[Drop[#, -1], 1]& /@ Position[Hold[form], Pattern], {1}]];
(* define local function with same pattern *)
Set @@ {Apply[faux, Hold[form], {1}][[1]], allPatternVars};
(* prepare left hand side for output *)
lhs = List @@ Apply[HoldForm, allPatternVars, {1}];
(* apply the function faux and prepare right hand side for output *)
rhs = List @@ Apply[HoldForm, Apply[faux, Hold[expr], {1}][[1]], {1}];
(* merge corresponding patterns and realizations *)
Apply[RuleDelayed, Transpose[{lhs, rhs}], {1}]] /;
                      (* usable only if expr matches form *)
                      (MatchQ[Hold[expr], Hold[form]])

Here are three examples.

PatternRealization[f[1, 2, 3, 4, {1, 2}], f[x_, y__, z:{1, 2}]]

PatternRealization[g[w[4], 5], g[x_:2, y:_w, z_Integer]]

PatternRealization[g[1, 2, 3], g[HoldPattern[x__Integer]]]

Note that a Sequence of matches is displayed as HoldForm[sequence].

To write a purely functional form of PatternRealization (called PatternRealizationF), we have to get rid
of the variables faux, allPats, lhs, and rhs.  The last three are easily eliminated by using pure functions. To get
rid of faux, we change the implementation slightly; we do not apply a named function to the arguments of expression,
but  this  time apply  a  replacement  rule,  which  has  the  same effect  as  faux  in  the  implementation above.  So,  we  can
implement as follows. 

SetAttributes[PatternRealizationF, HoldAllComplete];

PatternRealizationF[expr_, form_] :=
(Apply[RuleDelayed, Transpose[{List @@
        Apply[HoldForm, #1, {1}], (Hold[expr] /. #2)[[1]]}], {1}]& @@
 ({#1, RuleDelayed @@ {HoldPattern[form],
    List @@ Apply[HoldForm, #1, {1}]}}&[
      List /@ Union[Join @@ Apply[HeldPart[Hold[form], ##]&,
         Append[Drop[#, -1], 1]& /@
            Position[Hold[form], Pattern], {1}]]])) /;
                       (MatchQ[Hold[expr], Hold[form]])

Again, four examples follow. 

PatternRealizationF[h[1, 2, 1, 2, 3, 3], h[x__, x__, z__?(# > 2&)]]

PatternRealizationF[k[2, 2, 2, 2], k[a:(1 | 2), b:(2)..]]

PatternRealizationF[H[1, 1], H[a:(b:(c:(d:((e_)..))))]]

PatternRealizationF[H[1, 2, 3], HoldPattern[H[x__, HoldPattern[y_]]]]
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The  function  PatternRealizationF  can  be  considerably  improved,  especially  for  wrappers  like  Verbatim
appearing as arguments.

Σ (* session summary *) TMGBs`PrintSessionSummary[]

c) Unfortunately, we cannot simply do a simple replacement like the following.

rule[x_] := Function[body_] :> 
               With[{newBody = body /. Slot[1] -> x}, Function[x, newBody]]

The following result is obviously not, what we want.

(#^2&[#]&) /. rule[η]

The problem is that the body /. Slot[1] -> x replacement does not properly take into account the scoping range
of the Function under consideration. In addition, the pure function might take more than one argument. Let us deal
with the number of arguments first. numberOfSlots determines how many arguments a body of a pure function that
uses Slots expects. Note that not all of the Slots might actually be in use later.

SetAttributes[numberOfSlots, HoldAll];

numberOfSlots[body_] := 
Function[vars, (* how many Slots were used *)
                Max[Position[Position[(* which Slots are used *)
                   Hold[body]&[Sequence @@ vars], 
                      #]& /@ vars, _?(# =!= {}&), {1}, 
                          Heads -> False]]][Table[Unique[x], 
                     (* maximal number of Slots *)
                   {Max[First /@ Cases[Hold[body], Slot[_], {-2}]]}]]

Here are two examples.

{numberOfSlots[#[3]^2&[#]], numberOfSlots[#3^2&[#1, #4]]}

Now, we deal with the replacement of the Slots within the correct scoping range. rule is a Rule that does the actual
replacement of  the one-argument pure functions using Slots with pure functions that  use explicit variables.  We first
determine how many named variables are needed (using the function numberOfSlots from above). Then we gener-
ate  a  list  of  unique  variables  names and  plug  the  new body of  the  pure  function  (with  a  named variable  instead  of  a
Slot)  into  a  pure  function  of  the  form Function[listOfNewVariables, newBody].  To  make sure  that  the  Slots
replaced by named variables have the correct scoping radius, we evaluate a held version of the pure function and check
if  no  free  Slots  remain  using  the  condition  FreeQ[newBody, Slot, {-1}, Heads -> True].  We  create
unique  dummy  variables  using  Unique,  which  makes  sure  that  the  dummy  function  variable  is  not  independently
occurring in the body of Function.
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rule[x_] = 
  Function[body_?((* check if Slots are present *)
                  Function[b, MemberQ[Hold[b], Slot, {-1}, Heads -> True],
                           {HoldAll}])] :> 
       With[{(* new body with named vars *)
             newBody = Module[{vars = Table[Unique[x], 
                                     {numberOfSlots[body]}], F},
             (* a dummy head *)
             SetAttributes[F, HoldAll];
             (* construct the new pure function *)
             DeleteCases[(function[vars, #]& @ 
                           (* construct the body *)
                            Apply[F, Function[(* evaluated held body *)
                                     Hold[body]][Sequence @@ vars]]) /.
                                        function -> Function,
                                         F, Infinity, Heads -> True]]}, 
                   newBody /; (* are no other Slots present? *)
                   FreeQ[newBody, Slot, {-1}, Heads -> True]];

Here, the rule is applied twice to see successive replacement of the Slots.

#^2&[#]& /. rule[x]

% /. rule[y]

Applying now the rule until  all  pure functions  are substituted gives our function pureFunctionsWithSlotsTo
PureFunctionsWithVariables.

pureFunctionsWithSlotsToPureFunctionsWithVariables[expr_] := expr //. rule[

Now, we apply pureFunctionsWithSlotsToPureFunctionsWithVariables  to the example mentioned in
the exercise.

 = #^2&[(#1 + #2)^3&[#1, 2#1]&[(#1 + #2 + (#^2&[#]))&[#1, #4]]]&

1 = pureFunctionsWithSlotsToPureFunctionsWithVariables[]

Here is a quick check that both two pure functions are mathematically identical.

{[1, 2, 3, 4], 1[1, 2, 3, 4]}

Σ (* session summary *) TMGBs`PrintSessionSummary[]

18. Matrix Identities, Frobenius Formula, Iterative Matrix Square Root 

a) We immediately have the following result, which shows that the relationship holds. 

(#.#.# - Tr[#] #.# + 1/2(Tr[#]^2 - Tr[#.#]) # -
 Det[#] IdentityMatrix[3])&[Array[a, {3, 3}]] // Expand

Here is a similar identity for a 2 μ 2 matrix:
2 - t trHAL

detH1 - t AL
= ‚

k=0

¶

trHAL tk

Function[A, ((2 - t Tr[A])1/Det[IdentityMatrix[2] - t A]  - 
    Sum[Evaluate[Tr[MatrixPower[A, n]]] t^n, {n, 0, Infinity}])][
                                    Array[a, {2, 2}]] // Simplify

And here is another form to express detH1 - t AL [211÷].
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 = 2;
 = Table[[i, j], {i, }, {j, }];

Det[IdentityMatrix[ ] - t ] // Simplify

Exp[-Sum[1/k t^k Tr[MatrixPower[, k]], {k, Infinity}]] // Simplify

Σ (* session summary *) TMGBs`PrintSessionSummary[]

b) We check the relationship explicitly. 

A = Array[a, {2, 2}]; B = Array[b, {2, 2}];

B.A - (Tr[A.B] - Tr[A] Tr[B]) IdentityMatrix[2] -
       Tr[A] B - Tr[B] A + A.B // Expand

This relationship does not hold for 3ä3 matrices. 

A = Array[a, {3, 3}]; B = Array[b, {3, 3}];

(B.A - (Tr[A.B] - Tr[A] Tr[B]) IdentityMatrix[3] -
        Tr[A] B - Tr[B] A + A.B // Expand) ===
{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}

Now let us investigate if the generalized version exists. The function makeSum  forms the inner sums in the proposed
identity. The c[i, j, k, l] are to be determined unknowns.

makeSum[c_, {A_, B_}] := 
Sum[c[i, j, k, l] * Tr[MatrixPower[A, i].MatrixPower[B, j]] *
                    Tr[MatrixPower[A, k]] Tr[MatrixPower[B, l]],
    {i, 0, 1}, {j, 0, 1}, {k, 0, 1}, {l, 0, 1}]

To  avoid  calculations  with  large  matrices  that  have  symbolic  entries,  we  generate  now  15  pairs  of  “random”  integer
matrices and form the corresponding right-hand sides. If a solution for the c[i, j, k, l] exists, it must hold for these
pairs too.

dim = 3;
eqs = Table[
A = Table[μ + 2 ν^3 + α, {μ, dim}, {ν, dim}];
B = Table[μ -ν^2 + α μ,  {μ, dim}, {ν, dim}];
# == 0& /@ Flatten[B.A - 
     (makeSum[c[1], {A, B}] IdentityMatrix[dim] +
      makeSum[c[a, 1], {A, B}] A + makeSum[c[a, 2], {A, B}] A.A +
      makeSum[c[b, 1], {A, B}] B + makeSum[c[b, 2], {A, B}] B.B - A.B)], 
           {α, 15}];

eqs  contains many more equations than variables. For sufficiently generic pairs of matrices, we expect eqs  either to
yield a unique solution or no solution at all. We have more equations than unknowns.

cs = Cases[eqs, c[__][__], Infinity] // Union;

{Length[cs], Length[Flatten[eqs]]}

Solve  shows that the system of equations for the cs is inconsistent.  That means no identity of the above form holds
for all 3 μ 3 matrices.

Solve[Flatten[eqs], cs]

For similar identities, see [90÷].

Σ (* session summary *) TMGBs`PrintSessionSummary[]

c) Here are 2 n 3×3 matrices with generic symbolic elements.
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n = 3;
Do[a[k] = Table[a[k, i, j], {i, n}, {j, n}], {k, 2n}]

There are the 720 possible permutations of the eight numbers {1, 2, 3, 4, 5, 6, 7, 8}.

perms = Permutations[Range[2 n]];

The proof now seems straightforward—we just evaluate an n = 3 version of the following input.

With[{n = 2},
 Block[{a, perms},
       Do[a[k] = Table[a[k, i, j], {i, n}, {j, n}], {k, 2 n}];
       (* the permutations *)
       perms = Permutations[Range[2 n]];
        Expand[Plus @@ (* the terms *)
                ((Signature[#] (Dot @@ (a /@ #)))& /@ perms)]]]

This process will theoretically work, but in practice, it will use a very large amount of memory. Let us see how large the
quantities are and how long it takes to compute things. The calculation of a single matrix product is quite fast.

(m1 = Dot @@ (a /@ perms[[1]]);) // Timing

Every one of the 720 resulting matrix products needs about 0.5 MB in unexpanded and about 1 MB in expanded form.

{ByteCount[m1], ByteCount[m1 // Expand]}

So, we deal with each of the nine matrix elements individually. The next input will take about 3 minutes on a 2 GHz
computer.

Table[sum = 0;
      Do[elem = (Dot @@ (a /@ perms[[k]]))[[i, j]];
         sum = sum + Signature[perms[[k]]] Expand[elem],
        {k, Length[perms]}];
      sum, {i, 3}, {j, 3}]

This method saved a lot of memory.

MaxMemoryUsed[]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

d)  We  start  by  calculating  the  left-hand  side  of  the  eigenvalue  equation  for  a  generic  degree  n  polynomial

qHxL = xn + ⁄i=0
n-1 bi xi.

lhs[k_, n_] := 
Module[{p = x^k + Sum[α[j] x^j, {j, 0, k - 1}], ψ = Sum[β[j] x^j, {j, 0, n}
       Expand[D[p ψ, {x, k}]]]

The function  coefficient  extracts  the  coefficient  of  bl  x j  of  s.  (Using  the  functions  Coefficient  and/or  Coeffi
cientList the following could be implemented more efficiently; we will discuss these functions in Chapter 1 of the
Symbolics volume [303÷].)

coefficient[s_, j_, l_] := 
Which[j == 0, s /. x -> 0,
      j == 1, (s /. x^_ -> 0 /. x -> C[1]) - (s /. x -> 0),
      True, (s /. x^j -> C[1]) - (s /. x -> 0)] /. 
             x -> 0 /. β[l] -> C[2] /. _β -> 0 /. _C -> 1

For the calculation of the eigenvalues, we calculate the matrix of coefficients of bl  x j of lhs[k, n].

cMat[k_, n_] := Table[coefficient[lhs[k, n], i, j], {i, 0, n}, {j, 0, n}]

Here are the first few l j
Hn,kL.
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Table[{k, Eigenvalues[cMat[k, 4]]}, {k, 0, 6}]

A quick look at the last numbers suggests l j
Hn,kL = Hk + jL ! ê j !.

Table[(n + k)!/n!, {k, 0, 6}, {n, 0, 4}] 

Σ (* session summary *) TMGBs`PrintSessionSummary[]

e) For a shorter output, we define two format rules for the functions dot and inverse.

Format[dot[a__]] := Dot[a]
Format[inverse[a_]] := Power[a, "-1"]

These  are  the  elementary properties  of  the  dot  product.  We will  denote  the  identity matrix (of  unspecified  dimension
n μ n) by . a, b, and c denote (sequences of) matrices.

(* flat like property *)
dot[a___, dot[b__], c___] :=  dot[a, b, c]
(* pull out numeric factors *)
dot[a___, f_?NumericQ b_, c___] :=  f dot[a, b, c]
(* single argument *)
dot[a_] := a
(* remove identities *)
dot[a___, b_, inverse[b_], c___] := dot[a, c]
dot[a___, inverse[b_], b_, c___] := dot[a, c]
dot[a___, , b___] := dot[a, b]
dot[] := 

We  add  two  more  rules  for  dot.  They  are  mathematically  not  needed,  but  they  transform  dot  products  into  a  nicer
looking and more concise form.

(* partial expand *)
dot[a___, α_.  + b__, c___] := α dot[a, c] + dot[a, Plus[b], c]

(* extract minus sign *)
dot[a___, b_Plus, c___] := -dot[a, Expand[-b], c] /; 
                Max[(List @@ b) /. {_dot -> 1,  -> 1}] < 0

Here is an example expression showing some of the now active transformation rules for dot at work.

Dot[A, Times[-2, Dot[-B, A, inverse[A], Dot[B, C]] + Dot[F, G]]]

% /. Dot -> dot

The internal form of the expression still contains dot.

InputForm[%]

For  a  pointed  manipulation  of  dot  products,  we  implement  two  more  functions:  dotExpand  and  dotCollect.
dotExpand[expr]  will  expand  all  sums  inside  dot  and  dotCollect[expr, v]  will  collect  terms  in  expr  with
respect to v.

dotExpand[expr_] := expr //.  dot[a___, b_ + c__, d___] :> 
                                dot[a, b, d] + dot[a, Plus[c], d]

dotCollect[expr_, v_] := expr //. 
{α_. dot[a___, v] + γ_. dot[c___, v] :> dot[α dot[a] + γ dot[c], v],
 α_. dot[v, b___] + γ_. dot[v, c___] :> dot[v, α dot[b] + γ dot[c]],
 α_. dot[a___, v] + β_. v :> dot[α dot[a] + β one, v],
 α_. dot[v, b___] + β_. v :> dot[v, α dot[b] + β one]}

Given  two  expressions  of  the  form  term = rest,  isolate[term,  rest,  v]  will  multiply  rest  with  appropriate
inverses to isolate the variable v in term.
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isolate[f_?NumericQ term_, rest_, v_] := 
        isolate[term, dot[rest, f], v]
       
isolate[dot[a_, b___, v_, c___], rest_, v_] := 
        isolate[dot[b, v, c], dot[inverse[a], rest], v]  
        
isolate[dot[a___, v_, b___, c_], rest_, v_] := 
        isolate[dot[a, v, b], dot[rest, inverse[c]], v]
        
isolate[v_, rest_, v_]  := {v, rest}      

Here is an example.

isolate[dot[a, A, b], C, A]

Using the function isolate, it is straightforward to implement a function solve[eqs, v] that solves eqs = 0 for v.

solve[eqs_, v_] := 
Module[{eqsC = dotCollect[eqs, v], bTerm},
 (* the term that contains v *)
 bTerm = Select[dotCollect[eqs, v], MemberQ[#, v, {0, Infinity}]&];
 (* return result as a rule *)               
 Rule @@ isolate[bTerm, bTerm - eqsC, v]]

The following input shows solve at work.

solve[dot[, ] - 2 dot[', ] - dot[, ] + dot[, ], ]

Using  solve,  we  now  implement  the  function  reduce.  reduce[eqs, n, v]  eliminates  the  variable  v  from the
equations eqs using the nth equation of eqs.

reduce[eqs_, n_, v_] := Delete[eqs, n] //. solve[eqs[[n]], v]

Now let us put the functions solve and reduce to work. Let 
 

 
 be a block matrix and 

 

 
 its inverse. This

means we have the following set of coupled, linear equations for , , , and .

(eqs0 = Inner[dot, {{, }, {, }}, {{, }, {, }}, Plus] - 
              {{, 0}, {0, }} // Flatten) // TableForm

It is straightforward to solve, say, for  (depending on the properties of the various block matrices other orders might
be more appropriate [191÷]). We eliminate , , and  and solve the remaining single equation for .

eqs1 = reduce[eqs0, 2, ]

eqs2 = reduce[eqs1, 2, ]

eqs3 = reduce[eqs2, 1, ]

sol = solve[eqs3[[1]], ]

Now, we have two possibilities to solve for the remaining variables , , and . Either we repeat the above steps for a
different variable ordering. Or we backsubstitute the solution for  into eqs3 and obtain so the solution for  and then
backsubstitute  the  solutions  for    and    into  eqs2  to  obtain  the  solution  for    and  so  on.  To  simplify intermediate
expressions  that  arise  after  backsubstitution,  we  implement  a  very  simplistic  simplifier.  dotSimplify  is  basically
equal to dotCollect, but this time we do not prescribe v.

dotSimplify[expr_] := expr //. 
{α_. dot[a___, v_] + γ_. dot[c___, v_] :> dot[α dot[a] + γ dot[c], v],
 α_. dot[v_, b___] + γ_. dot[v_, c___] :> dot[v, α dot[b] + γ dot[c]],
 α_. dot[a___, v_] + β_. v_ :> dot[α dot[a] + β , v],
 α_. dot[v_, b___] + β_. v_ :> dot[v, α dot[b] + β ]}
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Substituting the solution for  into eqs2 gives one equation for .

eqs2a = dotSimplify[eqs2 /. sol]

sol = solve[eqs2a[[1]], ]

Substituting the solutions for  and  into eqs1 gives two equations for . Both can be used to solve for .

eqs1a = dotSimplify[eqs1 /. sol /. sol]

sol1 = solve[eqs1a[[1]], ]

sol2 = solve[eqs1a[[2]], ]

The identity of the two forms can be easily established by multiplying by the inverse plus term.

dot[sol1[[2]] - sol2[[2]],
     - dot[, inverse[], ]] // dotExpand

Substituting finally the solutions for , , and  into eqs0 gives three equations for . All three can be used to solve
for .

eqs0a = dotSimplify[eqs0 /. sol /. sol /. sol2]

sol = solve[eqs0a[[2]], ]

So, we obtain the following result for the inverse of a 2 μ 2 block matrix.

res = {{, }, {, }} /. sol1 /. sol /. sol /. sol

Here  is  a  quick  check  of  the  result.  We use  the  function  BlockMatrix  from the  package  LinearAlgebra`Ma
trixManipulation`  to  assemble  a  2 μ 2  block  matrix,  each  submatrix  is  a  generic  2 μ 2  matrix  with  symbolic
entries. (We could, of course, use larger matrices here.)

Needs["LinearAlgebra`MatrixManipulation`"]

{1, 1, 1, 1} = 
Table[Subscript[#, i, j], {i, 2}, {j, 2}]& /@ {a, b, c, d};

 = BlockMatrix[{{1, 1}, {1, 1}}]

Simplify @ (Inverse[] - 
Block[{ = {{1, 0}, {0, 1}},
        = 1,  = 1,  = 1,  = 1},
       Evaluate[BlockMatrix[res /. dot -> Dot /. inverse -> Inverse]]])

For a 3 μ 3 matrix, we can repeat all of the above steps. We solve the system for .

eqs0 = Inner[dot, {{, , }, {, , }, {, , }}, 
                  {{, , }, {, , }, {, , }}, Plus] - 
       {{, 0, 0}, {0, , 0}, {0, 0, }} // Flatten

(* recursively eliminate variables *) 
eqs1 = dotExpand /@ reduce[eqs0, 2, ];
eqs2 = dotExpand /@ reduce[eqs1, 2, ];
eqs3 = dotExpand /@ reduce[eqs2, 2, ];
eqs4 = dotExpand /@ reduce[eqs3, 3, ];
eqs5 = dotExpand /@ reduce[eqs4, 3, ];
eqs6 = dotExpand /@ reduce[eqs5, 3, ];
eqs7 = dotExpand /@ reduce[eqs6, 3, ];
eqs8 = dotExpand /@ reduce[eqs7, 2, ];
sol = solve[eqs8[[1]], ]

Here is again a quick check for the correctness of the last result. To avoid the symbolic inversion of a 6 μ 6 matrix, we
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use a matrix with numeric elements here.
{1, 1, 1, 1, 1, 1, 1, 1, 1} = 
       (* use some rational function of the indices *)
       Table[Table[k/(i + j + k + 1), {i, 2}, {j, 2}], {k, 9}];

 = 
BlockMatrix[{{1, 1, 1}, {1, 1, 1}, {1, 1, 1}}];

Take[Inverse[], {3, 4}, {1, 2}]

Block[{ = 1,  = 1,  = 1,  = 1,  = 1, 
        = 1,  = 1,  = 1,  = 1},
       Evaluate[sol /. dot -> Dot /. inverse -> Inverse]]

Instead of solving manually for the remaining eight block matrices , , , , , , , and , we implement a function
fullSolve that carries out these steps.

fullSolve[eqs_List, elimVars_, v_] :=
Module[{remainingEqs = eqs,
        remainingElimVars = Alternatives @@ elimVars,
        FreeEquations, nEq, nextElimVar, nextEq},
 While[Length[remainingEqs] > 1,
       (* use first equations without identity *)
       FreeEquations = Select[remainingEqs, 
                                 FreeQ[#, , Infinity]&];
       If[FreeEquations =!= {}, 
          nEq = Position[remainingEqs, 
                         FreeEquations[[1]]][[1, 1]];                  
          (* variable to be eliminated *)
          nextElimVar = Cases[FreeEquations[[1]], 
                              remainingElimVars, Infinity][[1]],
          (* equation to be used *)
          nextEq = Select[remainingEqs, 
                          MemberQ[#, remainingElimVars, 
                                        Infinity]&, 1][[1]];
          nEq = Position[remainingEqs, nextEq][[1, 1]];   
          nextElimVar = Cases[nextEq, remainingElimVars, Infinity][[1]]];
        (* eliminate one variable *) 
        remainingEqs = dotExpand /@ reduce[remainingEqs, nEq, nextElimVar];
        remainingElimVars = DeleteCases[remainingElimVars, nextElimVar]];
(* solve remaining equation *)        
solve[remainingEqs[[1]], v]]

fullSolve allows to rederive the above solution for  as well as to calculate the other inverses.

fullSolve[eqs0, {, , , , , , , }, ]

fullSolve[eqs0, {, , , , , , , }, ]

{{, , }, {, , }, {, , }} /. Table[
fullSolve[eqs0, Delete[{, , , , , , , , }, k], 
                       {, , , , , , , , }[[k]]],
          {k, 9}]

A quick check for the derived result.

Inverse[] - BlockMatrix @ 
Block[{ = 1,  = 1,  = 1,  = 1,  = 1, 
        = 1,  = 1,  = 1,  = 1},
       Evaluate[% /. dot -> Dot /. inverse -> Inverse]]

Now let us deal with the case of a 4 μ 4 block matrix. This is the defining set of equations for the 16 inverse matrices
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i, j. 

m = 4;
eqs0 = Inner[dot, Table[Subscript[, i, j], {i, m}, {j, m}], 
                  Table[Subscript[, i, j], {i, m}, {j, m}], Plus] - 
       DiagonalMatrix[Table[, {m}]] // Flatten

For brevity, we solve only for 1, 1. We use the above-implemented function fullSolve for the solution (instead of,

say, iterate the 2 μ 2 result).

allVars = Flatten[Table[Subscript[, i, j], {i, m}, {j, m}]]

ν = 1;
11 = fullSolve[eqs0, Delete[allVars, ν], allVars[[ν]]];

The result is quite large. To represent it in a compact form, we repeatedly introduce some abbreviations for inverses of
sums.

11 // LeafCount

invAbb1 = Cases[11, inverse[_Plus], Infinity, 1]

11Short1 = 11 //. invAbb1[[1]] -> ;

invAbb2 = Cases[11Short1, inverse[_Plus], Infinity, 1]

11Short2 = 11Short1 //. invAbb2[[1]] -> ;

Here is the simplified form of the result.

dotSimplify[11Short2]

For the solution of more complicated blockmatrix problems, see [177÷], [317÷],  and http://math.ucsd.edu/~ncalg/  and
L. Zhao’s MathSource package 0212-016. For supermatrices, see [22÷] and [87÷].

Σ (* session summary *) TMGBs`PrintSessionSummary[]

f) The function MatrixSquareRoot implements the iterative procedure.

MatrixSquareRoot[A_?(MatrixQ[#, NumericQ]&), maxIter_:100] := 
  FixedPointList[(#.(#.# + 3 A).Inverse[3 #.# + A])&, 
                 IdentityMatrix[Length[A]], maxIter]

This is the Hilbert matrix whose square root has to be found.

 = Table[1/(i + j + 1), {i, 10}, {j, 10}];

A  machine-precision  calculation  does  not  converge.  The  fifth  iteration  yields  a  result  correct  to  about  five  digits.
Further iterations diverge. The message Inverse::luc indicates that after a certain number of iterations (eight) the
inverse cannot be calculated reliably anymore.

msrMP = MatrixSquareRoot[N[ ]];

{msrMP // Length, Max[Abs[#.# - ]]& /@ Take[msrMP, 10]}

A high-precision calculation starting with 400 digits yields a square root having about 200 correct digits.

msrHP = MatrixSquareRoot[N[ , 400]];

{(* iteration data *) Length[msrHP], Precision[msrHP[[-1]]],
 (* check result *) msrHP[[-1]].msrHP[[-1]] -  // Abs // Max,
 1 - msrHP[[-1]]/MatrixPower[N[ , 1000], 1/2] // Abs // Max}

For other iterative methods to calculate the square root of a matrix, see [136÷], [109÷].
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Σ (* session summary *) TMGBs`PrintSessionSummary[]

g) We start by implementing the three determinants detHG Ha, bLL, detHWHxLL, and detHMHx1, …, xnLL. Here fs is a list of
functions { f1, …, fn}.

GramDet[fs_List, {a_, b_}] := Det @ 
Outer[Integrate[#1 #2, {ξ, a, b}]&, #[ξ]& /@ fs, #[ξ]& /@ fs]

WronskiDet[fs_List, x_] := Det @
Table[D[#[x]& /@ fs, {x, k}], {k, 0, Length[fs] - 1}]

FunDet[fs_List, xs_List] := Det @ Outer[#1[#2]&, fs, xs]

In the following, we will always use the standard variables and so define the following three shortcuts.

GramDet[n_Integer] := GramDet[Array[f, n], {a, b}]
WronskiDet[n_Integer] := WronskiDet[Array[f, n], x]
FunDet[n_Integer] := FunDet[Array[f, n], Array[x, n]]

We start with the first identity. 

[n_] := Product[k^(n - Abs[n - k]), {k, 2n - 1}]/(n^2)!

Table[Timing[Expand[WronskiDet[n]^2 /. x -> a] -
             Expand[[n] D[GramDet[n], {b, n^2}] /. b -> a]], 
      {n, 1, 4}]

We see dramatic increase in the calculation time as a function of n. The time-consuming operations are the n2 differentia-
tions  with  respect  to  b.  Actually,  Mathematica  has  optimized code  for  higher  order  differentiations.  Carrying  out  the
differentiations repeatedly takes considerably longer. Here is a list of the timing and the number of terms in the interme-
diate sums.

Module[{gd = GramDet[4]},
       Table[{j, Timing[gd = D[gd, b]][[1]], Length[gd]}, {j, 16}]]

Waiting long enough, we could also prove the n = 5 case explicitly.

Now, we will deal with the second identity. A straightforward implementation does not yield a verifiable identity.

With[{n = 2}, 
     Integrate[FunDet[n]^2, {x[1], a, b}, {x[2], a, b}] - 
     GramDet[n]] // ExpandAll

Integrate  does  not  automatically distribute  over  sums (because  a  sum might  be  integrable  in  closed  form,  but  its
individual  summands  might  not  be).  So,  we  distribute  Integrate  over  sums  and  rename  the  dummy  integration
variables  afterwards.  This  allows to  verify  the  identities  for  n = 1, 2, 3, 4, 5  easily.  Because no  feature  of  the  built-in
function  Integrate  are  used  in  the  following  calculation,  but  only  structural  operations  based  on  the  form of  the
expressions are carried out, we use Block with the local variable Integrate. This avoids that the built-in function
Integrate tries to integrate the expressions, and is so much faster.
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Block[{Integrate}, 
Table[Timing[Expand[
      (Expand[1/n! Fold[Integrate[#1, {#2, a, b}]&, 
                  Expand[FunDet[n]^2], Table[x[j], {j, n}]] //. 
      (* distribute Integrate over sums *)           
      Integrate[p_Plus, {ξ_, a_, b_}] :> 
                (Integrate[#, {ξ, a, b}]& /@ p)] //.
      (* pull-out integration variable free factors *) 
      Integrate[f_ g_, {ξ_, a_, b_}] :> 
        f Integrate[g, {ξ, a, b}] /; FreeQ[f, ξ, {0, Infinity}] //. 
      (* use x for dummy integration variables *)
      Integrate[int_, {x[j_], a, b}] :> 
                Integrate[int /. x[j] -> ξ, {ξ, a, b}]) - 
      GramDet[n]]], {n, 2, 5}]]          

We  can  improve  on  the  last  timing  by  observing  that  the  built-in  function  Integrate  does  a  lot  of  work  to  find
matching internal integration rules. By implementing our own function integrate that is linear and pulls out integra-
tion variable-independent factors, we can deal with the n = 4 case, and n = 5 case too.

(* linearity of integration *)
integrate[p_Plus, {x_, a, b}] := integrate[#, {x, a, b}]& /@ p;

integrate[c_ f_, {x_, a, b}] := c integrate[f, {x, a, b}] /; 
                                            FreeQ[c, x, {0, Infinity}];

Table[Timing[Expand[
(Expand[1/n! Fold[integrate[#1, {#2, a, b}]&, 
                 Expand[FunDet[n]^2], Table[x[j], {j, n}]] //.
    integrate[int_, {x[j_], a, b}] :> 
              integrate[int /. x[j] -> ξ, {ξ, a, b}]] /.
    integrate -> Integrate) - GramDet[n]]], {n, 4, 5}]

The third identity is most easily verifiable.  Because the number of terms does not grow after differentiation, this time
we can easily reach n = 8.

Table[{n, Timing[Expand[(Fold[D, FunDet[n], 
                       Table[{x[j], j - 1}, {j, 2, n}]] /. 
                  x[_] :> x) - WronskiDet[n]]]}, {n, 8}]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

h) This is the indexed version of the definition.

d0[fA_?MatrixQ, A_?MatrixQ] := 
  With[{d = Length[A]}, 
       Table[D[fA[[i, j]], A[[k, l]]], {i, d}, {j, d}, {k, d}, {l, d}]]

Here is a possible index-free version of the definition.

d1[fA_?MatrixQ, A_?MatrixQ] := 
   Map[Function[e, Map[D[e, #]&, A, {2}]], fA, {2}]

Using the function Outer, we can further shorten the definition.

d2[fA_?MatrixQ, A_?MatrixQ] := Outer[D, fA, A]

Here is a quick check that the three definitions are identical for small matrix dimensions and powers.

Table[A = Table[a[i, j], {i, d}, {j, d}];
      fA = MatrixPower[A, n];
      SameQ @@ Expand[{d0[fA, A], d1[fA, A], d2[fA, A]}], {d, 4}, {n, 4}]

We continue with the implementation of the special formula for the derivative of a positive integer power of a matrix.
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Here is again the straightforward index-using implementation of the definition.
dP0[An_?MatrixQ, A_?MatrixQ] := 
    With[{d = Length[A]}, 
         Table[Sum[MatrixPower[A, m - 1][[i, k]]*
                    MatrixPower[A, n - m][[l, j]], {m, n}], 
                     {i, d}, {j, d}, {k, d}, {l, d}]]

And  here  is  an  index-free  implementation.  We  have  to  carry  out  a  nontrivial  transposition  on  the  outer  products  to
obtain the correct index ordering.

dP2[An_?MatrixQ, A_?MatrixQ] := Transpose[#, {4, 2, 1, 3}]& @
    Sum[Outer[Times, MatrixPower[A, m - 1], MatrixPower[A, n - m]], {m, n}]

And here is a again quick check that the two definitions are identical.

Table[A = Table[a[i, j], {i, d}, {j, d}];
      An = MatrixPower[A, n];
      SameQ @@ Expand[{dP0[An, A], dP2[An, A]}], {d, 4}, {n, 4}]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

19. Autoloading and Package Test 

a) These are all built-in function names.

allNames = Names["*"];

This is the amount of memory currently used by Mathematica.

MemoryInUse[]

We determine all definitions currently present for all of them.

(* string to unevaluated expression *)
unevaluatedNamesInitially = 
          ToExpression[#, InputForm, Unevaluated]& /@ allNames;

We make all definitions available by removing the ReadProtected attribute.

readProtectedNames = 
Select[unevaluatedNamesInitially, MemberQ[Attributes[#], ReadProtected]&];

About 200 functions of this kind exist.

Length[readProtectedNames]

Off[Attributes::"locked"];
ClearAttributes[#, ReadProtected]& /@ readProtectedNames;

These  are  all  current  definitions.  Because  the  symbol  I  is  has  the  Locked  and  the  ReadProtected  attribute,  we
turn off the General::readp message.

Off[General::"readp"];
(* all currently known rules *)
OwnValuesInitially    = OwnValues    /@ unevaluatedNamesInitially;
DownValuesInitially   = DownValues   /@ unevaluatedNamesInitially;
NValuesInitially      = NValues      /@ unevaluatedNamesInitially;
FormatValuesInitially = FormatValues /@ unevaluatedNamesInitially;
SubValuesInitially    = SubValues    /@ unevaluatedNamesInitially;
UpValuesInitially     = UpValues     /@ unevaluatedNamesInitially;

Most present are OwnValues. 
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Count[#, _?(# =!= {}&)]& /@ 
  {OwnValuesInitially, DownValuesInitially, NValuesInitially,
   FormatValuesInitially, SubValuesInitially, UpValuesInitially}

It  is  the  ownvalue  that  causes  autoloading  of  the  start-up  packages.  Here  is  the  current  ownvalue  of  AppellF1  (a
special function of mathematical physics) shown.

OwnValues[AppellF1]

Currently, no downvalues are associated with AppellF1.

DownValues[AppellF1]

Evaluating  the  symbol itself  causes  the  right-hand  side  of  the  last  rule  to  evaluate,  and  as  a  result,  the  corresponding
Mathematica package gets loaded.

AppellF1

As a result, no ownvalues exist anymore for AppellF1.

OwnValues[AppellF1]

But the loading of the package did create downvalues for AppellF1.

Begin["System`AppellF1Dump`"]
DownValues[AppellF1]
End[]

If we want to determine which symbols are autoloaded, we have to watch for the head System`Dump`AutoLoad at
position  {1, 2, 1, 0}  in  the  corresponding  ownvalues.  Here,  this  head  is  extracted  for  InverseJacobiCD,
another special function of mathematical physics.

OwnValues[InverseJacobiCD][[1, 2, 1, 0]]

Going  systematically  through  all  function  names  yields  the  following  list  of  autoloaded  functions.  Most  autoloaded
functions are special functions of mathematical physics (see Chapter 3 of the Symbolics volume [303÷]).

Off[Part::"partd"]; Off[Part::"partw"];
First /@ Select[Transpose[{allNames, OwnValuesInitially}],
       (If[Depth[#[[2]]] > 3,
          #[[2, 1, 2, 1, 0]]] === System`Dump`AutoLoad)&]

Length[%]

Converting all names into expressions and evaluating them yields fewer functions with ownvalues (because the autoload-
ing  ownvalues  were  removed),  but  more  functions  with  downvalues.  (Because  the  autoloading  results  in  reading  in
definitions for these functions.)

ToExpression /@ allNames;

(* removing again the ReadProtected attribute;
   in the process of loading the package it might have been added *)
readProtectedNames = Select[unevaluatedNamesInitially,
                            MemberQ[Attributes[#], ReadProtected]&];

Off[General::"readp"];
OwnValuesAfter    = OwnValues    /@ unevaluatedNamesInitially;
DownValuesAfter   = DownValues   /@ unevaluatedNamesInitially;
NValuesAfter      = NValues      /@ unevaluatedNamesInitially;
FormatValuesAfter = FormatValues /@ unevaluatedNamesInitially;
SubValuesAfter    = SubValues    /@ unevaluatedNamesInitially;
UpValuesAfter     = UpValues     /@ unevaluatedNamesInitially;
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The most present values are ownvalues. 

Count[#, _?(# =!= {}&)]& /@ 
  {OwnValuesAfter, DownValuesAfter, NValuesAfter,
   FormatValuesAfter, SubValuesAfter, UpValuesAfter}

This is  the  amount of  memory used  after  all  autoloaded functions  have their  full  definitions.  Now,  Mathematica  uses
much more memory than in the beginning of this session.

MemoryInUse[]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

b) Here are all packages to be investigated. 

Length @ (files = Flatten[
 FileNames["*.m", #, Infinity]& /@
       Select[$Path, StringMatchQ[#, "*StandardPackages*"]&]])

To  avoid  the  multiple  appearance  of  commands  as  much  as  possible  (we  cannot  avoid  them  completely  because  a
couple  of  packages  need  the  same  ones),  we  eliminate  all  master  packages  from  allFiles.  (We  cannot  avoid  all
multiple appearances  without  a  much larger  effort;  the  evaluation  of  Needs  inside  packages  causes some problems).
Because of the intricate way the univariate and the multivariate statistics packages work together,  we also do not take
them into account here.

files = Complement[files, 
   Select[files, (StringMatchQ[#, "*Master*"] || 
                  StringMatchQ[#, "*Kernel*"] || 
                  StringMatchQ[#, "*Common*"] || 
                  StringMatchQ[#, "*Statistics*"])&]];

Here are the names of the variables introduced, which will be used in the following. To get them in the list of symbols
before any package is loaded, we introduce them now. 

(* introduce all symbols *)
namesBefore; allNamesBefore; unevaluatedNamesBefore;
attributesBefore; optionsBefore; $ContextPathBefore;
allPackageVariables; exportedPackageCommands;
exportedDocumentedPackageCommands;
exportedUndocumentedPackageCommands;
messageGeneratingPackages; attributesChangingPackages;
optionsChangingPackages; exportedUndocumentedCommands;
namesAfter; newNames; allNamesAfter; allNewNames;
documentedCommands; attributesAfter; posis; optionsAfter; i;
commonAttributeChanges; commonExportedDocumentedPackageCommands;
commonExportedPackageCommands; commonExportedUndocumentedPackageCommands;
commonOptionChanges; exportedDocumentedPackageCommands1;
exportedPackageCommands1; exportedUndocumentedPackageCommands1; 
reducedFileName;

For  comparison  with  the  condition  after  reading  in  the  packages,  here  are  the  known  variable  names  (collected  as
strings), their attributes, and their options. 
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(* the function names *)
namesBefore = DeleteCases[Names["*"], "$Echo"];
(* evaluate all function names to avoid auto-loading later on *)
ToExpression /@ namesBefore;
(* all names from all contexts *)
allNamesBefore = Names["*`*"];
(* transform strings into unevaluated commands *)
unevaluatedNamesBefore = 
 ToExpression[#, InputForm, Unevaluated]& /@ namesBefore;
(* list of current attributes *) 
attributesBefore = Attributes /@ unevaluatedNamesBefore;
(* list of current options *) 
optionsBefore = Options /@ unevaluatedNamesBefore;
(* the original context path *)
$ContextPathBefore = $ContextPath;

{Length[allNamesBefore], Length[namesBefore], MemoryInUse[]}

Here is the list that will collect all symbols.

allPackageVariables = {};

This list collects all exported symbols. 

exportedPackageCommands = {};

This  list  collects  all  exported  and  documented  symbols.  (In  the  ideal  case,  this  list  should  be  identical  to  the  list
(exportedPackageCommands.)

exportedDocumentedPackageCommands = {};

This list collects all exported but undocumented commands. (If possible, this list should be empty.)

exportedUndocumentedPackageCommands = {};

This one collects all packages that generate messages. (This will be mainly the case for obsolete packages.)

messageGeneratingPackages = {};

The following collects all packages that change attributes of built-in functions from namesBefore. 

attributesChangingPackages = {};

This collects all packages that change options of built-in functions from namesBefore. 

optionsChangingPackages = {};

Now, we turn to the real work, the analysis of the loading and contents of all packages. Taking into account the naming
of variables that appear in the following, together with the code comments, the operation of the following code should
be  obvious.  After  the  analysis  of  the  loading  process  and  the  symbols  used,  the  new  symbols  are  removed  using
Remove. For a more refined treatment of restoring the state of a Mathematica session, see the package CleanSlate
by T. Gayley (MathSource 0204-310).

We will get  some messages that originate from loading obsolete packages, but because some of the symbols exported
are not present in the System` context, we cannot shut off these messages now.

212 Printed from THE MATHEMATICA GUIDEBOOKS

©  2004, 2005   Springer Science+Business Media, Inc.



Off[SetOptions::optnf]; Off[StringJoin::string]; Off[MessageName::messg];

Do[
 (* read in file and check if this generates a message *)
 Check[Get[files[[i]]], AppendTo[messageGeneratingPackages, i]];
 (* analyze all that could have been changed,
    and save changes in corresponding lists;
    after that, restore original state *)
 (* remove disturbing  definitions *) 
 Unset[$Pre]; Unset[$Post];
 (* new names globally visible *)    
 namesAfter = Names["*"];
 newNames = Complement[namesAfter, namesBefore];
 AppendTo[exportedPackageCommands, newNames];
 (* new names from all contexts *)  
 allNamesAfter = Names["*`*"];
 allNewNames = Complement[allNamesAfter, allNamesBefore];
 AppendTo[allPackageVariables, allNewNames];
(* exported and documented commands *)
documentedCommands = ToString /@ Select[
       ToExpression[#, InputForm, Unevaluated]& /@ newNames,
               Head[MessageName[#, "usage"]] == String&];
AppendTo[exportedDocumentedPackageCommands, documentedCommands];
AppendTo[exportedUndocumentedPackageCommands, 
        Complement[newNames, documentedCommands]];
(* checking the status of the attributes *)
attributesAfter = Attributes /@ unevaluatedNamesBefore;
If[attributesAfter =!= attributesBefore,
   posis = Flatten[Position[Apply[SameQ,
        Transpose[{attributesAfter, attributesBefore}], {1}], False]];
   AppendTo[attributesChangingPackages, {i, posis}];]; 
(* checking the status of the options *)
optionsAfter = Options /@ unevaluatedNamesBefore;
If[optionsAfter =!= optionsBefore,
   posis = Flatten[Position[Apply[SameQ,
        Transpose[{optionsAfter, optionsBefore}], {1}], False]];
   AppendTo[optionsChangingPackages, {i, posis}];
   Unprotect /@ namesBefore[[posis]];
   Do[Options[namesBefore[[posis[[i]]]]] = optionsBefore[[i]], 
     {i, Length[posis]}]];
(* restoring old state *)
   Do[If[FreeQ[attributesBefore[[i]], Locked],
         Attributes[Evaluate[namesBefore[[posis[[i]]]]]] =
                    attributesBefore[[i]]], 
     {i, Length[posis]}];
(* remove introduced variables *)                 
Unprotect /@ allNewNames;
(* some screened symbols will be removed automatically *)
Off[Remove::rmnsm]; Off[Remove::relex];
Remove /@ allNewNames;
On[Remove::rmnsm]; On[Remove::relex];
(* restore old context path *)
$ContextPath = $ContextPathBefore, {i, Length[files]}]

We will remove some commonly appearing commands that are related to the front end in the following input.

commonExportedPackageCommands = 
First /@ Select[Split[Sort[Flatten[exportedPackageCommands]]],
       Length[#] > 5&]
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exportedPackageCommands1 = 
  Complement[#, commonExportedPackageCommands]& /@ 
                               exportedPackageCommands;

Here is a list of how many packages export how many commands. Some packages seem to export many functions. This
is because some packages load other packages recursively.

{#[[1]], Length[#]}& /@ 
  Split[Sort[Length /@ exportedPackageCommands1]]

This makes a total of about 2000 different exported commands.

Length[Union[Flatten[exportedPackageCommands1]]]

Now, let us look at the documented commands.

commonExportedDocumentedPackageCommands = 
First /@ Select[Split[Sort[Flatten[exportedDocumentedPackageCommands]]],
       Length[#] > 5&];

exportedDocumentedPackageCommands1 = 
        Complement[#, commonExportedDocumentedPackageCommands]& /@ 
                               exportedDocumentedPackageCommands;

{#[[1]], Length[#]}& /@ 
  Split[Sort[Length /@ exportedDocumentedPackageCommands1]]

Now, let us look at the undocumented, but exported commands.

commonExportedUndocumentedPackageCommands = 
First /@ Select[Split[Sort[Flatten[
        exportedUndocumentedPackageCommands]]], Length[#] > 5&];

(exportedUndocumentedPackageCommands1 = 
 Union[Flatten[Complement[#, 
    commonExportedUndocumentedPackageCommands]& /@ 
                exportedUndocumentedPackageCommands]]) // Length

Which packages generated messages while loading them? Most of these packages deal with obsolete functions.

reducedFileName = 
     StringDrop[#, {1, StringPosition[#, "StandardPackages"][[1, 2]]}]&;

reducedFileName /@ files[[messageGeneratingPackages]]

Which packages changed the attributes of built-in functions? And which functions were changed?

commonAttributeChanges = 
First /@ Select[Split[Sort[Flatten[attributesChangingPackages]]],
       Length[#] > 5&];

{reducedFileName[files[[#[[1]]]]], namesBefore[[#[[2]]]]}& /@ 
DeleteCases[{#[[1]], Complement[#[[2]], commonAttributeChanges]}& /@ 
                                 attributesChangingPackages, {_, {}}]

Which packages changed the options of built-in functions? And which functions were changed?

commonOptionChanges = 
First /@ Select[Split[Sort[Flatten[optionsChangingPackages]]],
       Length[#] > 5&];

{reducedFileName[files[[#[[1]]]]], namesBefore[[#[[2]]]]}& /@ 
DeleteCases[{#[[1]], Complement[#[[2]], commonOptionChanges]}& /@ 
                                  optionsChangingPackages, {_, {}}]

Here is the state of Mathematica after loading all packages. 
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{Length[Names["*`*"]], Length[Names["*"]], MemoryInUse[]}

Considering that, we have removed all definitions that were read in immediately, we lost some memory. Using Share,
we can recover some of it.

Share[]

The following number of variables have been added since the beginning. 

Complement[Names["*`*"], allNamesBefore] 

Σ (* session summary *) TMGBs`PrintSessionSummary[]

20. PrecedenceForm   

The  command  PrecedenceForm  determines  the  bracketing  in  using  the  infix  notation  for  commands.  Here  is  the
syntax:  command[argument1,  …,  PrecedenceForm[argument],  precedenceLevel],  …,  argumentn]

specify  precedence  of  argument  for  formatting.  Here,  precedenceLevel  must  be  a  positive  integer.  The  result  is  then
printed with appropriate parentheses if the command would have the precedence precedenceLevel. Here is an example. 

Plus[x, PrecedenceForm[y, 100], z]

Plus[x, PrecedenceForm[y, 500], z]

We begin with the search for all commands where a sensible PrecedenceForm could exist. We do this by checking
to  see  whether  a  round  pair  of  brackets  ()  appears  in  command[x, PrecedenceForm[y, 1]].  Because  many
built-in  commands  will  not  be  happy  to  get  this  input,  we  first  turn  off  all  messages  and  remove commands that  are
especially dangerous for our investigations. 

(* all built-in names *)
systemCommands = Names["System`*"];

(* read in message file *)
Get[ToFileName[{$TopDirectory, "SystemFiles", "Kernel", 
                "TextResources", $Language}, "Messages.m"]];

(* suppress messages *)
Off[Attributes::locked];

(* remove ReadProtected attribute *)
If[MemberQ[Attributes[#], ReadProtected],
   ClearAttributes[#, ReadProtected]]& /@ 
Apply[Unevaluated, ToHeldExpression /@ systemCommands, {1}];

(* all messages *)
allMessages = (Messages @@ #)& /@ (ToHeldExpression[#]& /@
                               DeleteCases[systemCommands, "I"]);

allMessagesUnevaluated = Unevaluated @@ #& /@ (First /@ Flatten[allMessages
                   
(* shut off all messages *)
Off /@ allMessagesUnevaluated;
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(* remove inappropriate functions *)
goodSystemCommands = Select[Complement[systemCommands, 
  {"Break", "Continue", "ConsoleMessage", "Edit", "FixedPoint", 
   "FixedPointList", "$Inspector", "OpenTemporary", "$PrintHoldPattern",
   "Streams", "Remove", "$Epilog", "Return", "Set", "SubValues", 
   "Run", "Print", "SetDelayed", "Throw", "$PrintLiteral",
   "ConvertToPostScript", "ArrayRules", "Signature"}],
                                  # === ToString[ToExpression[#]]&];

Here is the code for the actual search. We use StringMatchQ to recognize the (). 

li = Select[goodSystemCommands, (StringMatchQ[ToString[ToExpression[
                 # <> "[x, " <> "PrecedenceForm[y, 1]]"]], "*(*)*"])&]

Now, increasing the second argument of  PrecedenceForm  stepwise and observing when the ()  disappear,  we get
the  corresponding  PrecedenceLevel  (the  use  of  ReplaceAll  is  needed  because  of  the  Hold-like  attribute of
many commands). 

{#, Module[{i = 1}, While[StringMatchQ[ToString[
                           ToExpression[# <> "[x,
                           " <> "PrecedenceForm[y, k]]"] /. {k -> i}],
                                   "*(*)*"], i = i + 1]; i - 1]}& /@ li;

To conclude, we now reorder these somewhat. 

Sort[%, #1[[2]] < #2[[2]]&] // TableForm

The second element of the result of PrintForm[expr] contains also the explicit precedence level.

{PrintForm[Unevaluated[a @ b]][[2]],
 PrintForm[Unevaluated[a /@ b]][[2]],
 PrintForm[Unevaluated[a @@ b]][[2]],
 PrintForm[Unevaluated[a // b]][[2]],
 PrintForm[Unevaluated[a //@ b]][[2]]}

With a knowledge of PrecedenceLevel, we now know when to use brackets () and can understand the meaning of
the written out expression. 

_!_ == __||__ == __ == __ == __||__ == _!_

FullForm[Hold[_!_ == __||__ == __ == __ == __||__ == _!_]]

These are the names of all named characters.

allNamedCharacters = 
DeleteCases[Select[FromCharacterCode /@ Range[10^5],
             Characters[ToString[FullForm[#]]][[-2]] === "]"&], "]"];

Not all of them are operators, many are letter-like forms.

Take[allNamedCharacters, -12] // InputForm

We extract the operator name corresponding to the character names.

characterNames = {#, StringDrop[StringDrop[
       ToString[FullForm[#]], -2], 3]}& /@ allNamedCharacters;

Now, we construct characterFunction[x, PrecedenceForm[y, 1]] to find the names that represent operators.

li2 =
Select[characterNames, 
         (StringMatchQ[ToString[ToExpression[
           #[[2]] <> "[x, " <> "PrecedenceForm[y, 1]]"]], "*(*)*"])&];
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Continuing  in  the  same way  as  above,  we  now  investigate  characterFunction[x, PrecedenceForm[y, k]]  to
determine the precedence.

{#, Module[{i = 1},
           While[StringMatchQ[ToString[
                     ToExpression[#[[2]] <> "[x,
                     " <> "PrecedenceForm[y, k]]"] /. {k -> i}],
                   "*(*)*"], i = i + 1]; i - 1]}& /@ li2;

Here are the operators together with their precedences.

With[{L = Sort[Union[%], #1[[2]] < #2[[2]]&]},
TableForm[Flatten /@ Partition[If[EvenQ[Length[L]], L, 
                       Append[L, {" ", " ", " "}]], 2],
          TableSpacing -> {0.5, 1}]]

We now turn the messages back on. 

On /@ allMessagesUnevaluated;

Off[General::newsym]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

21. One-Liners   

a)  The programming objective  is  to  look for  every given set  of  summands that can be fit  into the difference  between
sum and the already accumulated number. We do not count the trivial result when all factors are 0. 

Here are three possibilities. 
The  first  version  uses  the  construction  of  an  iterator.  The  multiple  iterator  is  built  by  using  Unique  to  generate  the
iterator. Variables are constructed as lists, and then Sequence removes the outermost curly brackets. 
Note that Evaluate is necessary in all arguments (body and iterator) of Table (because of the attribute HoldAll). 

AllPossibleFactors1[sum_?(TrueQ[# > 0]&),
                    summands_?(VectorQ[#, TrueQ[# > 0]&]&)] :=
Rest[Function[l, Flatten[
 Table[Evaluate[#], Evaluate[Sequence @@
          MapThread[List, {#, Array[0&, {l}],
                   (sum - Drop[FoldList[Plus, 0, MapThread[Times,
                           {#, summands}]], -1])/summands}]]], 
                                   l - 1]&[Table[Unique[i], {l}]]][
                                        Length[summands]]]

Here is a simple example. 

AllPossibleFactors1[8, {4, 2, 1}]

All resulting sums are less than or equal to 8. 

{4, 2, 1}.#& /@ %

When all summands are bigger than the sum, we get an empty list as the result. 

AllPossibleFactors1[8, {44, 24, 11}]

Now, the question concerning one dollar is calculated. 

AllPossibleFactors1[100, {25, 10, 5, 1}] // Length

The  second  arrangement  uses  Fold  to  generate  the  nesting.  Every  already-existing  sequence  of  factors  is  used  to
determine the iterator for Range in the next step. 
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AllPossibleFactors2[sum_?(TrueQ[# > 0]&),
                    summands_?(VectorQ[#, TrueQ[# > 0]&]&)] :=
Rest[Fold[Function[{was, is},
   Flatten[Function[old, Flatten[{old, #}]& /@
    Range[0, (sum - Drop[is, -1].old)/Last[is]]] /@ was, 1]],
Array[{#}&, Floor[sum/First[summands]] + 1, 0],
 Drop[Flatten /@ FoldList[List, {}, summands], 2]]]

For comparison, we again calculate the division of the dollar. 

AllPossibleFactors2[100, {25, 10, 5, 1}] // Length

The last version here is a slightly rewritten form of the previous example, which uses Array rather than Range. Note
that  for  Array,  the  second  argument  has  to  be  an  integer,  and  so  Floor  (see  Chapter  1  of  the  Numerics  volume
[302÷]) is necessary here. 

AllPossibleFactors3[sum_?(TrueQ[# > 0]&),
                    summands_?(VectorQ[#, TrueQ[# > 0]&]&)] :=
Rest[Fold[Function[{was, is},
   Flatten[Function[old, Array[Flatten[{old, #}]&,
      Floor[(sum - Drop[is, -1].old)/Last[is]] + 1, 0]] /@ was, 1]],
Array[{#}&, Floor[sum/First[summands]] + 1, 0],
 Drop[Flatten /@ FoldList[List, {}, summands], 2]]]

For a third and last time, the dollar splitting is calculated. 

AllPossibleFactors3[100, {25, 10, 5, 1}] // Length

Σ (* session summary *) TMGBs`PrintSessionSummary[]

b) Here is a direct translation of the implementation from Exercise 9.d) in Chapter 5. 

FerrerConjugate1[l_List] :=
      Drop[Length /@ FixedPointList[DeleteCases[# - 1, 0]&, l], -2]

We test, using the two examples from the last chapter. 

FerrerConjugate1[{6, 3, 2}]

FerrerConjugate1[{2, 2, 2, 2, 2, 1}]

Another possibility would be to count the numbers in the list that are greater than 1, 2,…, n1. 

FerrerConjugate2[l_List] :=
     Function[i, Count[l, _?(# >= i&)]] /@ Range[First[l]]

FerrerConjugate2[{6, 3, 2}]

FerrerConjugate2[{2, 2, 2, 2, 2, 1}]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

c) We will call our model of AppendTo lowercase appendTo. appendTo must have the HoldFirst attribute.

SetAttributes[appendTo, HoldFirst];

The model  of  AppendTo  evaluates  the  list  in  the  right-hand  side of  Set,  appends  the  new element,  and assigns the
result to the name of the list.

appendTo[l_, new_] := Set[l, Append[l, new]]

Here is a quick check for appendTos behavior.

Λ[1] = {1, 2, 3};

218 Printed from THE MATHEMATICA GUIDEBOOKS

©  2004, 2005   Springer Science+Business Media, Inc.



appendTo[Λ[1], 4]

Λ[1]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

d) Let us start by implementing the calculation of the products pi1  ∫ pi j . products forms all possible products with k

factors.
products[ s_, k_] := Flatten[
Table[Times @@ s[[#]],
      Evaluate[Sequence @@ Table[{i[j], If[j == 1, 1, i[j - 1] + 1], 
                Length[ s]}, {j, k}]]]&[Table[i[j], {j, k}]]]

Here are all products of five symbols with no powers.

Table[products[{a, b, c, d, e}, k], {k, 6}]

Using products, it is straightforward to implement Meissel’s formula.

pi[1] = 0;
pi[n_] := With[{ s = Prime[Range[pi[Floor[Sqrt[n]]]]]}, 
               n - 1 + pi[IntegerPart[Sqrt[n]]] + 
                Sum[(-1)^k Plus @@ IntegerPart[n/products[ s, k]],
                    {k, Length[ s]}]]

The exercise asked for an implementation with only built-in symbols. This means we must eliminate the s, pi, and the
iterator variables. For brevity, we will use one-letter built-in symbols. There are seven to choose from.

Select[Names["*"], (StringLength[#] === 1 && UpperCaseQ[#])&]

For the function pi, we will use PrimePi. PrimePi is the built-in function that calculates the number of primes less
than or  equal  to  its  argument.  To not  interfere  with its  built-in meaning,  we give it  an option.  We use a  string as  the
option value. So, we end with the following implementation.

Unprotect[PrimePi];
PrimePi[1, Method -> "Meissel"] = 0;

PrimePi[N_, Method -> "Meissel"] := 
Module[{C, D, K}, Function[O, 
N - 1 + PrimePi[IntegerPart[Sqrt[N]], Method -> "Meissel"] + 
          Sum[(-1)^K Plus @@ IntegerPart[N/Flatten[Table[Times @@ O[[#]],
      Evaluate[Sequence @@ Table[{C[D], If[D == 1, 1, C[D - 1] + 1], 
                Length[O]}, {D, K}]]]&[Table[C[D], {D, K}]]]],
              {K, Length[O]}]][Prime[Range[
              PrimePi[Floor[Sqrt[N]], Method -> "Meissel"]]]]]

Here is a quick check that only built-in symbols were used.

Union[Context /@ Cases[DownValues[PrimePi], _Symbol, {-1}, Heads -> True]]

The values calculated by our PrimePi agree with the values of the built-in version.

PrimePi[1000, Method -> "Meissel"]

PrimePi[1000]

The  above  implementation  could  be  slightly  improved  for  efficiency.  Instead  of  multiplying  all  numbers  for  each
product, we could carry out this recursively.

Σ (* session summary *) TMGBs`PrintSessionSummary[]

e) The implementation of the pn  is straightforward. We first generate a list of the xk  and the permutations s. Then we
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map the function mk  to the permutations, then multiply and sum the result. Finally, we factor the result.

permutationPolynomial[n_Integer, x_] := 
Function[xs, Factor[Plus @@ (Function[p, Times @@ 
(xs^Array[Function[j, Count[Drop[p, j], _?(# < p[[j]]&)]], n])] /@ 
                                 Permutations[Range[n]])]][Array[x, n]]

Here are the polynomials p1 to p8 explicitly calculated.

permutationPolynomial[1, x]

permutationPolynomial[2, x]

permutationPolynomial[3, x]

permutationPolynomial[4, x]

permutationPolynomial[5, x]

permutationPolynomial[6, x]

permutationPolynomial[7, x]

permutationPolynomial[8, x]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

f) Here is a straightforward implementation of this differential identity.

diffId[k_Integer, p_Integer] := (Sum[
  (* make body of sum *) Evaluate[
  Product[D[f[x]^n[j]/n[j]!, {x, n[j] - 1}], {j, p}]*
  D[f[x]^(k - Sum[n[j], {j, p}])/(k - Sum[n[j], {j, p}])!, 
     {x, k - Sum[n[j], {j, p}] - 1}]],
  (* make iterators *)
  Evaluate[Sequence @@ Transpose[{Table[n[j], {j, p}],
           FoldList[Subtract, k - 1, Table[n[j], {j, p - 1}]]}]]] -
(p + 1) (k - 1)!/(k - 1 - p)! D[f[x]^k/k!, {x, k - p - 1}] // Expand)  /;
                                                              0 < p < k    

Next, we check all allowed p and k for k § 12.

Table[diffId[k, p], {k, 12}, {p, k - 1}]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

g)  Here  is  again  a  straightforward  implementation of  the  identity.  We  first  calculate  the  sequence  of  traces  (keeping
only the highest power of the matrix). Then, we form the new matrix and calculate its determinant.

det[_?MatrixQ] := Function[n, 1/n! Det[
Function[, Array[Which[#1 >= #2, [[#1 - #2 + 1]], #2 == #1 + 1, #1,
                  True, 0]&, {n, n}]][Last /@ (* traces of powers *)
         FoldList[{#, Tr[#]}&[#2.#1[[1]]]&, {, Tr[]}, 
                              Table[, {n - 1}]]]]][Length[]]

For  a  “random”  matrix,  we  again  check  that  the  results  of  inverse  agree  with  the  left-hand  side,  meaning  Det. Of
course, det is much slower.

 = With[{n = 12}, Table[(i + j)/(i j + 1), {i, n}, {j, n}]];

{(det1 = Det[]); // Timing, (det2 = det[]); // Timing,
 det1 - det2}

For a similar expression for the discriminant of the characteristic polynomial of a matrix, see [235÷].
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Σ (* session summary *) TMGBs`PrintSessionSummary[]

h) Here is a straightforward implementation of the identity. We calculate the characteristic polynomial only once.

inverse[_?MatrixQ] := (-1/#1 (#2 /. ζ^k_. :> MatrixPower[, k - 1]))& @@ 
 (Function[cp, {#, cp - #}&[cp /. ζ -> 0]][CharacteristicPolynomial[, ζ]])

For a “random” matrix, we check that the results of inverse agree with the results of the built-in function Inverse.
Of course, inverse is much slower.

 = With[{n = 12}, Table[(i + j)/(i j + 1), {i, n}, {j, n}]];

{(inv1 = Inverse[]); // Timing, (inv2 = inverse[]); // Timing,
 inv1 - inv2 // Flatten // Union}

Σ (* session summary *) TMGBs`PrintSessionSummary[]

i) It is straightforward to implement this product expansion. The optional argument  is a potential simplifier.

productForm[f_, {z_, z0_, o_}, _:Identity] := 
Module[{ζ}, (Times @@
MapIndexed[#1^(Log[z/ζ]^(#2[[1]] - 1)/(#2[[1]] - 1)!)&,
           NestList[ [Exp[ζ D[Log[#], ζ]]]&, f[ζ], o]] /. ζ -> z0)]

Here are the first factors for a general f  and a general expansion point.

productForm[f, {z, , 3}]

P12HcosHp ê2L, 1L is a relatively large expression. But it approximates the true result relatively purely.

cosProduct12 = productForm[Cos, {Pi/2, 1, 12}];
{ByteCount[cosProduct12]/10.^6 MB, N @ cosProduct12}

Σ (* session summary *) TMGBs`PrintSessionSummary[]

j)  Here is a one-liner forming all binary function-based expressions.  Recursively we simply form all pairs of adjacent
neighbors.

allBinaryCompositions[argList_, f_] := 
Nest[Union[Flatten[Table[
          Join[Take[#, k - 1], {f[#[[k]], #[[k + 1]]]},
               Take[#, {k + 2, Length[#]}]], 
                        {k, Length[#] - 1}]& /@ #, 1]]&, 
    {argList}, Length[argList] - 1] // Flatten

Here are two examples. We use four and five arguments.

allBinaryCompositions[{a, b, c, d}, f]

allBinaryCompositions[{a, b, c, d, e}, f]

The number of different expressions obtained using allBinaryCompositions are the Catalan numbers [285÷].

Table[Length @ allBinaryCompositions[Range[n], f], {n, 2, 12}]

Needs["DiscreteMath`CombinatorialFunctions`"]
Table[CatalanNumber[n - 1], {n, 2, 12}]

To count how frequently we have k  consecutive closing ‘)’, we transform the expressions into a string and then count
consecutive closing ‘]’. 
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bracketCounter[expr_, allBracketStrings_] :=
MapIndexed[#1/#2[[1]]&, Reverse[Length[First[#]]& /@ 
(* start with longest sequence and count backwards *)
FoldList[(* which are new? *)
         {Complement[#2, #1[[2]]], Union[Join[#1[[2]], #2]]}&,
         {(* new *){}, (* occurred already *) {}},
         Flatten /@ Reverse[(* positions of k consecutive ] *)
         (Range @@@ StringPosition[ToString[expr], #])& /@
          allBracketStrings]]]]

Here is an example.

bracketCounter[f[f[a, f[f[b, c], d]], e], {"]", "]]", "]]]"}]

For 10 symbols, we obtain the following distribution for the closing brackets.

allBracketStrings = Table[StringJoin[Table["]", {k}]], {k, 10}];
Plus @@ (bracketCounter[#, allBracketStrings]& /@ 
                       allBinaryCompositions[Range[10], f])

Now, we form all  possible powers of  i.  To identify numerically equal  powers,  we numericalize to  high precision and
then reduce the number of digits to allow Sort  to identify equal real parts.  This yields 15 different numerical values
out of the 37 starting expressions.

identicalPowers = {N[#[[1, 1]]], Last /@ #}& /@ 
Split[Sort[{N[(* high-precision numericalization *) N[#, 1000], 
              (* form lower precision number *) 100], #}& /@ 
       allBinaryCompositions[Table[I, {k, 6}], Power]],
      First[#1] == First[#2]&];

Here are the numerically identical, but structurally different power towers.

Map[(# /. List -> Equal)&, 
    HoldForm /@ Select[Last /@ identicalPowers, Length[#] > 1&]] //
                                       TableForm // TraditionalForm

Using Simplify, or even the stronger function FullSimplify (to be discussed in the Symbolics volume [303÷]),
does  not  allow  to  show  the  correctness  of  all  of  the  above  equalities.  The  function  ComplexExpand  (also  to  be
discussed in the Symbolics volume [303÷]) can show the correctness of the found identities.

{Simplify[#], FullSimplify[#], ComplexExpand[#]}&[
                 Equal @@ identicalPowers[[6, 2]]]

We  end  with  a  visualization.  For  13  arguments  that  are  powers  of  i  and  f =Power,  as  well  for  a  random  complex
number and f = arctan, we show all resulting expressions in the complex plane.

(* form compositions for symbolic z and f *)
abcList13 = allBinaryCompositions[Table[z^k, {k, 13}], f];
Length[abcList13]

(* form compositions for concrete z and f *)
Internal`DeactivateMessages[
 abcLists13N = (DeleteCases[#, $Aborted]& @ 
  ((* skip calculations that produce too large intermediate numbers *)
   Function[abc, TimeConstrained[abc /. {z -> #1, f -> #2}, 1]] /@ 
                                        Take[abcList13, All]))& @@@
               {{1. I, Power}, {-0.0986423 - 0.0046093 I, ArcTan}}];
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(* no messages from too large numbers *) Off[Graphics::gptn];

(* show the two sets of numbers in the complex plane *)
Show[GraphicsArray[Internal`DeactivateMessages @ 
 Graphics[{PointSize[0.001], Point[N[{Re[#], Im[#]}]]& /@ #1}, 
         Frame -> True, PlotRange -> #2]& @@@ 
         Transpose[{abcLists13N, {{{-3, 3}, {-3, 3}}, 
                                  {{-3, 1}, {-1, 1}/20}}}]]]

For a Mathematica implementation of the four fours problems, see [172÷].

Σ (* session summary *) TMGBs`PrintSessionSummary[]

k) To motivate the implementation of KolakoskiSequence below, we start with a straightforward procedural way
to calculate n terms of the Kolakoski sequence. KolakoskiP start by preparing a list l of two leading twos and n - 1
zeros  to  be  filled  in.  We  then  step  through  the  list  l  and  add  elements  at  the  end  according  to  earlier  elements  that
indicate the run length. The construction k = 3 - k switches between ones and twos.

KolakoskiP[n_] := 
Module[{l, c, k, p, t}, 
 (* list to be filled in *)
 l = Table[0, {n + 1}];
 l[[1]] = 2; l[[2]] = 2;
 c = 3; (* inserting position *)
 k = 2; (* element of l *)
 p = 2; (* extracting position *)
 (* now add elements *)
 While[c <= n,
       t = l[[p++]];
       k = 3 - k;
       If[t === 1, l[[c++]] = k, l[[c++]] = k; l[[c++]] = k]]; 
 (* return first n elements *)
 Take[l, n]]

The function runLengthPropertyQ checks if the list l is a Kolakoski sequence.

runLengthPropertyQ[l_] := 
With[{  = Length /@ Split[l]}, Take[l, Length[ ]] === ]

Here are the first 20 numbers of the Kolakoski sequence.

KolakoskiP[20]

The last sequence, as well as its continuation as returned by runLengthPropertyQ is the Kolakoski sequence.

{runLengthPropertyQ[%], runLengthPropertyQ[KolakoskiP[10^5]]}

Rewriting now the above function KolakoskiP in a functional way leads to the following one-liner KolakoskiSe
quence.  The  While  is  replaced  by  a  NestWhile,  and  the  Table  by  Array  to  avoid  any  named variables.  The
equivalent to the part assignments to l is now the ReplacePart construction. And then recursively updated variables
c, k, and p are parts of a list that are updated in each NestWhile step.

KolakoskiSequence[n_Integer?Positive] := 
NestWhile[(If[#1[[#4]] === 1,
              {ReplacePart[#1, 3 - #3, #2], 
               #2 + 1, 3 - #3, #4 + 1}, 
              {ReplacePart[#1, 3 - #3, {{#2}, {#2 + 1}}], 
               #2 + 2, 3 - #3, #4 + 1}]& @@ #)&, 
          {ReplacePart[Array[0&, n + 1], 2, {{1}, {2}}], 3, 2, 2}, 
          (#[[2]] <= n)&][[1]] // Take[#, n]&
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The  first  1000  elements  of  the  Kolakoski  sequence  are  calculated  by  KolakoskiSequence  within  a  fraction  of  a
second.

(l = KolakoskiSequence[10^3]); // Timing

(* correctness check *) runLengthPropertyQ[l]

To calculate many elements of  the  Kolakoski  sequence quickly  (more than a  million per  second on  a fast  computer),
one would use a compiled version of the above procedural code. We will discuss the function Compile in Chapter 1
of the Numerics volume [302÷].

Make Input 

KolakoskiSequenceCompiled =  Compile[{{n, _Integer}},
Module[{l = Table[0, {n + 1}], c = 3, k = 2, p = 2, t},
       l[[1]] = 2; l[[2]] = 2;
       While[c <= n, t = l[[p++]];  k = 3 - k;
             If[t === 1, l[[c++]] = k, l[[c++]] = k; l[[c++]] = k]]; 
       Take[l, n]]];

Interestingly,  for  the  Kolakoski  sequence  (prefaced  with  1)  there  exists  a  real  number  g = 0.3496655 …,  such  that  a
normal continued fraction formed from the sequence agrees with the number whose base g digits are the sequence itself
[294÷].

1

1 + 1
2+ 1

2+ 1
1+ 1

1+ 1
2+∫

= 1 g + 2 g2 + 2 g3 + 1 g4 + 1 g5 + 2 g6 + ∫

The following two inputs confirm this amazing identity.

KolakoskiCF = N[#, 50]& @
   FromContinuedFraction[KS = Join[{0, 1}, KolakoskiSequence[100]]]

With[{γ = 0.349665586890918381856010520425405661511003828125276},
     KS.(N[γ, 200]^Range[0, Length[KS] - 1])]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

l)  A  straightforward  implementation  would  be  along  the  following  lines.  Calculating  the  skHtL  is  straightforward.
Replacing the xHtL, yHtL, and zHtL by one yields automatically the sum of all coefficients.

coefficientSum[n_] := 
Module[{x, y, z, τ, σ},
       {x'[t], y'[t], z'[t]} = {y[t] z[t], x[t] z[t], x[t] y[t]};
       σ[0] = x[t];
       σ[k_] := σ[k] = D[σ[k - 1], t];
       σ[n] /. _[t] -> 1]

Here is a quick check for n = 10.

{coefficientSum[10], 10!}

Now, we rewrite the above function to avoid the use of any built-in symbol. We replace the explicit definitions for the
three derivatives with replacement rules and we carry out the recursive calculation of the skHtL using NestList. And
instead of the user symbols x, y, z, and t, we use just built-in functions that do not have any nontrivial evaluation rules
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for any number and kind of arguments. Such functions are, for instance, attributes. Here we use HoldFirst, Hold
Rest, HoldAll, and the symbol D for t above. Here is the resulting function factorialSumTest.

factorialSumTest = ((NestList[Expand[D[#, D] /. 
      {HoldFirst'[D] -> HoldRest[D] HoldAll[D],
       HoldRest'[D] -> HoldFirst[D] HoldAll[D],
       HoldAll'[D] -> HoldFirst[D] HoldRest[D]}]&, 
       HoldFirst[D], #] /. _[D] -> 1) == Range[0, #]!)&;

Because of the use of NestList, we can now check all n less than 100 at once in just a few seconds.

factorialSumTest[100] // Timing

Σ (* session summary *) TMGBs`PrintSessionSummary[]

m)  Here is a straightforward implementation. After generating all permutations using Permutations,  we split each
permutation into pairs of adjacent elements. We then just count the number of pairs of the form 8 ji, ji + 1< and return a
list with elements of the form 8numberOfIncreasing2Sequences, numberOfPermutations<.

countIncreasingTwoSequence[n_Integer?Positive] := 
{First[#], Length[#]}& /@ 
     Split[Sort[(Count[(Subtract[##] == -1)& @@@ 
           Partition[#, 2, 1], True])& /@ Permutations[Range[n]]]]

Here is an example.

countIncreasingTwoSequence[8]

The following input calculates the number of increasing two-sequences using a closed-form formula [151÷].

Module[{n = 8, },
       [k_] := k! Sum[(-1)^j/j!, {j, 0, k}] (* Gamma[k + 1, -1]/E *); 
       Table[{k, Binomial[n, k] [n - k + 1]/n}, {k, 0, n}]]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

22. Precedences  

a)  In  the  first  example,  not  much  interesting  happens.  The  pure  function  Function[x,  Hold[x],

{Listable}]  is  applied  to  the  argument  Hold[{1 + 1, 2 + 2, 3 + 3}].  Because  the  argument  has  the
head  Hold,  the  Listable  attribute  of  the  pure  function  cannot  do  anything  and  the  result  is  just  the  argument
enclosed in an additional Hold. 

Function[x, Hold[x], {Listable}] @ Hold[{1 + 1, 2 + 2, 3 + 3}]

In  the  second  example,  the  pure  function  Function[x, Hold[x], {Listable}]  is  applied  (this  time  in  the
sense  of  Apply)  to  Hold[{1 + 1, 2 + 2, 3 + 3}].  So  the  head  Hold  gets  replaced  by  Function[x,
Hold[x], {Listable}]. Now, the argument {1 + 1, 2 + 2, 3 + 3} evaluates first to {2, 4, 6} and
then the pure function with the Listable attribute comes to work and applies Hold to every element of this list. 

Function[x, Hold[x], {Listable}] @@ Hold[{1 + 1, 2 + 2, 3 + 3}]

In  the  third  example,  the  pure  function  Function[x,  Hold[x],  {Listable,  HoldAll}]  is  applied  to
Hold[{1 + 1, 2 + 2, 3 + 3}]. The additional attribute HoldAll of the pure function does not matter here
because the argument is already wrapped in Hold and the result is the same, as in the first example. 

Function[x, Hold[x], {Listable, HoldAll}] @ Hold[{1 + 1, 2 + 2, 3 + 3}]

In  the  fourth  example,  the  function  Function[x, Hold[x], {Listable, HoldAll}]  is  applied  (this  time
again in the sense of Apply) to Hold[{1 + 1, 2 + 2, 3 + 3}]. But now the pure function has the attribute
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HoldAll,  so  its  argument  stays  unevaluated  and  the  Listable  attribute  can  come  to  work  to  give  {Hold[1 +
1], Hold[2 + 2], Hold[3 + 3]}. 

Function[x, Hold[x], {Listable, HoldAll}] @@ Hold[{1 + 1, 2 + 2, 3 + 3}]

In the fifth example, the argument of the pure function Function[x, Hold[x], {Listable, HoldAll}] is
a  more  complicated  expression.  Because  of  the  HoldAll  attribute,  nothing  happens  again  and  the  result  is  just  the
whole argument wrapped in an outer Hold. 

Function[x, Hold[x], {Listable, HoldAll}] @
                     (#& @@ Hold[{1 + 1, 2 + 2, 3 + 3}])

In  the  sixth  example,  the  pure  function  Function[x, Hold[x], {Listable}]  is  applied  (here  again  in  the
sense of Apply) to its argument. The argument evaluates to {2, 4, 6}.

#& @@ Hold[{1 + 1, 2 + 2, 3 + 3}]

Now  applying  the  pure  function  Function[x,  Hold[x],  {Listable}]  results  in  Function[x,
Hold[x], {Listable}][2, 4, 6]. Because the pure function takes only one argument, the first argument gets
taken out and the result is Hold[2]. 

Function[x, Hold[x], {Listable}] @@ (#& @@ Hold[{1 + 1, 2 + 2, 3 + 3}])

The seventh example is similar to the fifth one, but this time there are no explicit parentheses for grouping. Because @
binds here more strongly than @@ (binding of @ and @@ works from right to left), the structure of the expression is now
the following. 

FullForm[Hold[Function[x, a] @ #& @@ y]]

The  result  of  evaluating  the  first  argument  of  Apply  is  the  pure  function  Function[x,  Hold[x],

{Listable, HoldAll}][#1]&. This then gets applied (in the sense of Apply to Hold[1 + 1, 2 + 2, 3
+ 3]. The outer pure function has no HoldAll attribute, so the resulting expression is Function[x, Hold[x],
{Listable, HoldAll}][{2, 4, 6}], which finally gives {Hold[2], Hold[4], Hold[6]}. 

Function[x, Hold[x], {Listable, HoldAll}] @ 
                       #& @@ Hold[{1 + 1, 2 + 2, 3 + 3}]

The eighth example has the following structure. 

FullForm[Hold[Function[x, x] @ Function[y, y] @@ a]]

First,  the  two  arguments  of  Apply  get  evaluated.  The  first  argument  results  in  substituting  the  whole  pure  function
Function[x, Hold[x], {Listable, HoldAll}]  as  the  x  in  the  Hold  of  the  outer  one.  The result  is  the
following expression. 

Function[x, Hold[x], {Listable, HoldAll}] @
    Function[x, Hold[x], {Listable, HoldAll}]

The  second  argument  of  Apply  is  just  Hold[1 + 1, 2 + 2, 3 + 3],  which,  because  of  the  Hold,  stays
unchanged. Then, Apply comes to work and replaces the Hold of the second argument by the first argument. Because
of the Hold wrapped around the head of this expression, the evaluation ends here. 

Function[x, Hold[x], {Listable, HoldAll}] @
    Function[x, Hold[x], {Listable, HoldAll}] @@
                         Hold[{1 + 1, 2 + 2, 3 + 3}]

The ninth example contains the @ and @@ interchanged in comparison with the last example. Now, the expression to be
analyzed has the following structure. 

FullForm[Hold[Function[x, x] @@ Function[y, y] @ a]]
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This  time  the  stronger  binding  @  (it  is  leftmost)  has  the  result  that  the  second  argument  of  Apply  is  now
Function[x, Hold[x], {Listable, HoldAll}] @ Hold[{1 + 1, 2 + 2, 3 + 3}]. The result of
evaluating  this  is  Hold[Hold[{1  +  1, 2 +  2, 3 + 3}]].  Now,  the  first  argument  of  Apply,  the  pure
function  Function[x, Hold[x], {Listable, HoldAll}],  replaces  the  head  Hold  of  Hold[Hold[{1
+ 1, 2 + 2, 3 + 3}]], to give Function[x, Hold[x], {Listable, HoldAll}][Hold[{1 + 1,
2 + 2, 3 + 3}]]. This expression finally evaluates again to Hold[Hold[{1 + 1, 2 + 2, 3 + 3}]]. 

Function[x, Hold[x], {Listable, HoldAll}] @@
    Function[x, Hold[x], {Listable, HoldAll}] @ Hold[{1 + 1, 2 + 2, 3 + 3}]

The tenth and last example has the following structure. 

FullForm[Hold[Function[x, x] @@ Function[y, y] @@ a]]

This  time  the  second  argument  of  the  outer  Apply  has  itself  the  head  Apply.  This  second  argument  evaluates  to
{Hold[1  +  1],  Hold[2  +  2],  Hold[3  +  3]}.  Now,  the  outer  Apply  comes  to  work  and  gives
Function[x, Hold[x], {Listable, HoldAll}][Hold[1 + 1], Hold[2 + 2], Hold[3 + 3]],
which finally evaluates to Hold[Hold[1 + 1]]. 

Function[x, Hold[x], {Listable, HoldAll}] @@
    Function[x, Hold[x], {Listable, HoldAll}] @@ Hold[{1 + 1, 2 + 2, 3 + 3}

Σ (* session summary *) TMGBs`PrintSessionSummary[]

b) Obviously, what must be avoided is that the Print[localVar]; is carried out without changing localVar to
11.  This  can  be  achieved  using  postfix  notation  with  a  construction  of  the  form  Print[localVar] // Hold.
After Print[localVar]  has been wrapped in Hold,  we must change the value of localVar  and then carry out
the Print statement. Here are ways to do this. 

localVar = 11;
Block[{localVar = 1},
      Print[localVar]; //
         Hold // 
         (MapAt[Function[p, localVar = 11; p, {HoldAll}], #, {1}]&) //
         ReleaseHold]

localVar = 11;
Block[{localVar = 1},
      Print[localVar]; // Hold // (localVar = 11; #&) // ReleaseHold]

We could also explicitly replace the 1 by the needed 11. 

localVar = 11;
Block[{localVar = 1},
      Print[localVar]; // Hold // 
      (# /. HoldPattern[localVar] -> 11 &) // ReleaseHold]

The last construction also works for With. 

localVar = 11;
With[{localVar = 1},
     Print[localVar]; // Hold // (# /. 1 -> 11&) // ReleaseHold]

We could also use a more dirty way (this means taking into account issued messages) to achieve the 11 printed. Both
Block and Module expect two arguments. If we call them with more than two arguments, no built-in code causes any
nontrivial evaluation. So, we would just apply Evaluate in postfix notation to the Print statement. 

Block[{localVar = 1}, Print[localVar]; // Evaluate, thirdArgument]

The message can be avoided by using Off in the evaluated third argument of Block.
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Block[{localVar = 1}, Print[localVar]; // Evaluate, 
      Evaluate[Off[Block::"argrx"]]]

With[{localVar = 1}, Print[localVar]; // Evaluate, thirdArgument]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

23. Puzzles  

a) Using FullForm, we can see the grouping better. (Be aware of the difference the spacing before the 10 and the 11
makes.)

FullForm[Hold[1 @ 2 @@ 3 / 4 /@ 6 //@ 7 || 8 | 9 /. 10 /.11]]

The following subexpressions give a nontrivial evaluation.

Apply[1[2], 3]

MapAll[6, 7]

Times[10, Power[0.11, -1]]

So, we finally have the following result.

1 @ 2 @@ 3 / 4 /@ 6 //@ 7 || 8 | 9 /. 10 /.11

FullForm[%]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

b)  For  “ordinary”  input,  Function[bodyWithSlot]  and  Function[x, bodyWithx]  will  behave  in  the  same way.
So for factor=a, we get the same output from the following functions.

scaledReversedShiftedListV1[factor_, list_List] :=
Function[Join[factor #, Reverse[factor/2 #]]][list]

scaledReversedShiftedListV2[factor_, list_List] :=
Function[x, Join[factor x, Reverse[factor/2 x]]][list]

scaledReversedShiftedListV1[α, {1, 2, 3}]

scaledReversedShiftedListV2[α, {1, 2, 3}]

If  we use x  as  the  first  argument,  we still  get  the same result.  The x  in  the first  argument  of  Function  is  properly
renamed.

scaledReversedShiftedListV1[x, {1, 2, 3}]

scaledReversedShiftedListV2[x, {1, 2, 3}]

The dummy variable  x  inside  Function  was  replaced  by  x$  so  that  there  is  no  naming collision  with  the  other  x.
Holding the right-hand side of the definitions above shows this nicely.

showScreening[factor_, list_List] :=
Hold[Function[x, Join[factor x, Reverse[factor/2 x]]][list]]

showScreening[x, {1, 2, 3}]

Because Slot variables cannot be locally renamed, the two functions give different results for factor = #.

scaledReversedShiftedListV1[#, {1, 2, 3}]

scaledReversedShiftedListV2[#, {1, 2, 3}]

Σ (* session summary *) TMGBs`PrintSessionSummary[]
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c) The problem is to predict what will be the Mathematica meaning of 1.…. (n periods).

1. is the real number 1.

1.. cannot be parsed

1... means Repeated[1.]

1.... means RepeatedNull[1.].

More points, then, repeat the above listing by forming nested structures.
{#, InputForm[ToExpression @ #], 
    FullForm[ToExpression @ #]}& /@ 
Table["1" <> Table[".", {i}], {i, 1, 11}] // TableForm

Σ (* session summary *) TMGBs`PrintSessionSummary[]

d)  The  Unevaluated  prevents  Times[2, 2, 2]  from  evaluating  to  8;  instead  Times[2, 2, 2]  is  given
unevaluated to Apply, which changes the head Times to the head Power, and the result of Power[2, 2, 2] is 16.

Power @@ Unevaluated[Times[2, 2, 2]]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

e) The result will be 2 and a message will be issued.

Power[Delete @@ Cos[Sin[2], 0]]

Cos[Sin[2], 0]  calls  the  Cos  function  with  two  arguments.  No  built-in  rules  exist  for  this  case;  a  message  is
issued  and  the  expression  returns  unchanged.  Then,  Delete  gets  applied  to  this  expression,  meaning  Delete[
Sin[2], 0] is formed. With the level specification 0, Delete will delete the head. This means Sequence[2] is
the result. Finally, Power[2] evaluates to 2.

Σ (* session summary *) TMGBs`PrintSessionSummary[]

f) First, the NestList part is carried out. The function applied by NestList at every step is the following: Take the
outer product of the argument with itself and return the resulting nested list. The starting list is the list {1., 2}.

The application of Outer is carried out three times. After the first application, we have the following nested list.

Outer[List, {1., 2}, {1., 2}]

After the second application, we have this result.

Outer[List, %, %]

In every application of Outer, the nesting level rises from n to 2 n + 1 (2 n from forming the outer product and 1 from
the newly created lists at level {-2}).

The  number  of  elements  Length[Flatten[#]]  is  equal  to  2n,  where  n  is  the  length  of  the  result  of  applying
Dimensions to the expression. 

So, we finally have our result.
{Dimensions[#], Length[Flatten[#]]}& /@ 
                  NestList[Outer[List, #, #]&, {1., 2}, 3]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

g) Here is a held expression and a first attempt to replace the sums.

Hold[g[1 + 1, 2 + 2 + 2]] /. p_Plus :> Length[p]
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Because  of  the  Hold  around  the  expression  and  the  HoldRest  attribute  of  RuleDelayed,  the  result  does  not
contain evaluated versions of Length. The following two approaches also do not succeed. Now, the right-hand side of
the rules evaluated before the actual Plus expression is substituted.

Hold[g[1 + 1, 2 + 2 + 2]] /. p_Plus :> Evaluate[Length[p]]

Hold[g[1 + 1, 2 + 2 + 2]] /. p_Plus -> Length[p]

We can achieve the evaluation we are looking for by using Condition inside the right side of the rule and evaluating
the unevaluated version of Plus.

Hold[g[1 + 1, 2 + 2 + 2]] /. HoldPattern[p_Plus] :> 
            With[{eval = Length[Unevaluated[p]]}, eval /; True]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

h) Infinity is a symbol. As such, Block will scope it and treat it as a local symbol with no built-in meaning. This
means Infinity-Infinity will be treated like c-c and the result is 0.

Block[{Infinity}, Apply[Subtract, {Infinity, Infinity}]]

Without the scoping of Block, we would obtain Indeterminate.

Apply[Subtract, {Infinity, Infinity}]

Crucial in the behavior above is the fact that Infinity did not evaluate to DirectedInfinity[1].

Hold[Infinity] // FullForm

Infinity // FullForm

DirectedInfinity[1] is not a symbol and cannot be used as a local variable inside Block.

Block[{DirectedInfinity[1]}, 
      Apply[Subtract, {DirectedInfinity[1], DirectedInfinity[1]}]]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

i) We evaluate the first two inputs.

inherit[fNew_, fOld_] := 
CompoundExpression[
  SetAttributes[fNew, Attributes[fOld]];
  Options[fNew] = Options[fOld];
  (#[fNew] = (#[fOld] /. fOld -> fNew))& /@ 
  {NValues, SubValues, DownValues, OwnValues, UpValues, FormatValues}]

SetAttributes[f, {Listable}];
f[x_Plus] := Length[Unevaluated[x]];

Let  us  study  the  function  inherit.  It  will  add  all  of  the  definitions  (meaning  its  attributes,  options,  and  various
values)  given  for  a  symbol  fOld  to  the  symbol  fNew.  (This  means  the  function  fNew  will  inherit  the  properties of
fOld [292÷]. For a detailed discussion of inheritance in Mathematica see [126÷].)

inherit[fNew_, fOld_] := 
CompoundExpression[
 (* take over attributes *)
 SetAttributes[fNew, Attributes[fOld]];
 (* take over options *)
 Options[fNew] = Options[fOld];
 (* take over all definitions *)
 (#[fNew] = (#[fOld] /. fOld -> fNew))& /@ 
 {NValues, SubValues, DownValues, OwnValues, UpValues, FormatValues}]
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SetAttributes[f, {Listable}];
f[x_Plus] := Length[Unevaluated[x]];

Here, we transfer the definitions of f to .

inherit[, f];

??

Now,  let  us  look  at  the  Module.  The  local  variable  is  the  symbol  f.  This  means  at  runtime  Module  will  create  a
variable  f$number.  The  first  statement  of  the  body  of  the  Module  transfers  the  definitions  of  f  to  f$number.  The
ToExpression["f"]  creates  a  symbol f  different  from the  local  to  Module  variable  f$number  and  identical  to
the variable f we already gave a definition for. Then, f$number gets the additional attribute HoldAll. Then, a further
definition  for  f$number  for  the  case  of  multiple  integer  arguments  is  made.  Finally,  f$number @@ f$number[{1
+ 1, 2 + 2}] gets carried out. According to the Listable and HoldAll attribute, f$number[{1 + 1, 2 +
2}] is transformed to {f$number[1 + 1], f$number[2 + 2]}. Then, the inherited definition f$number[x_
Plus]  :=  Length[Unevaluated[x]]  fires  and  we  get  {2,  2}.  Now,  f$number  gets  applied  yielding
f$number[2, 2].  The definition f$number[i__Integer] = i^2  fires and we obtain Sequence[2, 2]^2.
The last expression evaluates to Power[2, 2, 2], which finally evaluates to 16.

Module[{f}, 
       inherit[f, ToExpression["f"]];
       SetAttributes[f, HoldAll];
       f[i__Integer] = i^2; 
       f @@ f[{1 + 1, 2 + 2}]]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

j) Three messages are generated. The first message is issued from Block because it is unable to localize a symbol with
the attribute Locked. 

Block[{I = 1}, I^2]

The  second  message  is  generated  after  the  evaluation  of  Evaluate[…]  in  the  first  argument  of  Block  where  an
assignment to a symbol with the attribute Protected is tried.

I = 1

The third message is again from Block. This time the first argument of Block does not have the expected structure.
There is no built-in rule for Block for this case, and as a result Block[{1}, -1] is returned.

Block[{1}, -1]

For comparison, we evaluate the original input.

Evaluate //@ Block[{I = 1}, I^2]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

k)  For all “ordinary” expressions First[expr]  and expr[[1]]  will give identical results.  They will return different
results when expr, say, has the head Sequence.

expr = Sequence[];
{First[expr], expr[[1]]}

expr = Sequence[1];
{First[expr], expr[[1]]}

expr could also contain assignments that behave differently inside First and Part.
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expr := (a /: First[a] = 1; a)
{First[expr], expr[[1]]}

Σ (* session summary *) TMGBs`PrintSessionSummary[]

l) The first input makes a definition for f. The right-hand side of the definition is a Block construct. The local variable
of the Block  is α.  When entering the Block,  the variable α  gets initialized with the value Not[TrueQ[α]].  This
means  that  if  a  has  the  value  True,  α  will  become  False;  when  α  already  has  the  value  False,  α  will  become
True; and when α is neither True or False then α will become True. The body of the Block then carries out the
calculation f[x + 1] under the condition α. 

f[x_] := Block[{α = Not[TrueQ[α]]}, f[x + 1] /; α]

The second input starts with the calculation of f[0]. Initially α does not have a value, so the α on the left-hand side of
the first  argument of  Block  evaluates to True.  As a  result,  f[0 + 1] /; α  in  the body of  Block  evaluates to
f[1].  The  evaluation  now continues  (still  being  inside  the  originally  entered  Block)  with  f[1].  A  new Block  is
opened and the new local variable a now gets initialized to False, because the α in Not[TrueQ[α]] is the one from
the first Block with the value True. As a result, the condition in f[1 + 1] /; α evaluates to False, and f[1]
is  the  result  of  evaluating  f[0].  After  the  argument  f[0]  in  Apply[f, f[0]]  has  been  evaluated,  Apply  goes
into effect and f[1] evaluates to f[1]. Now again the definition for f[x] fires, and repeating the steps from above it
evaluates to f[2]. This is the result returned.

f @@ f[0]

Using Trace, the described steps are easy to identify.

Trace[f @@ f[0]]

Σ (* session summary *) TMGBs`PrintSessionSummary[]

m)  First, let us be clear about the grouping of the body of the two Modules that contain a mixture of prefix, postfix,
and infix notation.

Hold[COrSet @@ f[x_] ~ SetOrC ~ x // f[x]&] // FullForm

The  last  output  shows  that  after  evaluating  the  head  Function[F]  the  expression  SetOrC[f[Pattern[x,
Blank[]]],x]  gets evaluated. Then COrSet  is applied to the result and finally the body of the pure function F  is
evaluated. Inside the first Module, a definition for f is created. Although x is a variable declared local to Module, the
presence of  the pattern x_  in  Set  makes the x  local to  Set.  As a result,  we have a definition of  the form f[x_]=x.
This  definition  evaluates  and  then  C  gets  applied  to  its  result  x.  Finally  f[C]  gets  evaluated  using  the  just  set-up
definition for f. This gives C.

Module[{x = D, f}, C @@ f[x_] ~ Set ~ x; DownValues[f]]

In  evaluating  the  second Module  things  go  differently.  First  C[f[x_], x]  evaluates  to  C[f[x$number_], D].
But because this time x_  does not appear in a scoping construct the right-hand side is not scoped and evaluates to D.
The x in Pattern[x, Blank[]] is inside a function with the attribute HoldFirst. So it does not evaluate to D,
but rather it is now the x$number variable created by Module. As a result, we have a definition of the form f[x_]=D.
The  pattern  variable  from  the  left-hand  side  does  not  appear  on  the  right-hand  side.  Applying  Set  to
C[f[x$number_], D] gives the definition f[x_]=D. After this definition is evaluated, f[C] finally yields D.

Module[{x = D, f}, Set @@ f[x_] ~ C ~ x; DownValues[f]]

As a result, we get C - D. The next input evaluates the original code fragment.

Module[{x = D, f}, C @@ f[x_] ~ Set ~ x // f[C]&] - 
Module[{x = D, f}, Set @@ f[x_] ~ C ~ x // f[C]&]         
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Σ (* session summary *) TMGBs`PrintSessionSummary[]

n)  Although all  the  elements of  the  first  argument  of  Union  are  identical,  the  test  applied by the SameTest  option
setting  will  always  return  False.  Because  Union  with  an  explicit  setting  of  the  SameTest  option  carries  out  all
needed comparisons (modulo transitivity), this means the first  element has to be compared with 99 others,  the second
with 98 others, ..... This makes ⁄k=1

99 k = 4950 comparisons.

 = 0;
Union[Array[1&, {100}], SameTest -> (( =  + 1; False)&)];


Σ (* session summary *) TMGBs`PrintSessionSummary[]

o)  Obviously,  on  most  computers,  virtualMatrix  cannot  create  a  “real”  matrix  of  size  106 μ 106.  The  trick  to
generate  such  a  matrix  is  to  have  only  one  “real”  column  and  all  other  column  being  exactly  identical.  Here  this  is
implemented.

virtualMatrix[dim_] := 
Module[{row = Table[1, {dim}]}, row /. 1 -> row]

 will now behave as a matrix.

 = virtualMatrix[10^6];

{MatrixQ[ ], Dimensions[ ], Length[ [[1]]],
        { [[1, 1]], [[-1, -1]]},
        [[1000, 1000]] = 1000; [[1000, 1000]]}

 also is a matrix, but not all elements are independently stored. So its actual memory usage is far smaller than for a
“real” matrix.

{ByteCount[ ], MemoryInUse[]}

Of  course,  operations  that  will  make  the  rows  different,  or  extract  all  elements  (such  as  Flatten[ ])  will  need
“real” memory and will very probably run out of memory. The following input changes one element per row. Now the
rows become different and are stored as different entries. As a result, the real memory consumption increases.

Do[ [[k, 1]] = k; Print[MemoryInUse[]], {k, 5}]

For applications of such matrices, see, for instance, [281÷].

Σ (* session summary *) TMGBs`PrintSessionSummary[]

p) The MapIndexed function maps the pure function (Part[expr, ##]& @@ #2)& to the levels {k, l} of expr.
The pure function depends only on the position of the part on which it acts. It extracts exactly the same part from expr
that was there. As a result, expr itself is returned.

Here is an example expression.
expr = Log[x^2 + 5 x] + Sin[4 t^2 y^4] -
       (t y^(2 + Exp[-3 x])) + 45 t^6 - 4;

We use -10 § k, l § 10 and check that MapIndexed[(Part[expr, ##]& @@ #2)&, expr, {k, l}, Heads
-> True] evaluates to the original expression.

Table[MapIndexed[(Part[expr, ##]& @@ #2)&, 
                 expr, {k, l}, Heads -> True] === expr, 
                 {k, -10, 10}, {l, -10, 10}] // Flatten // Union

Σ (* session summary *) TMGBs`PrintSessionSummary[]
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24. Hash Value Collisions, Permutation Digit Sets 

a) Experimenting suggests that the hash values have values in the order 109 I § c = 232M.
Hash /@ {2, Sqrt[3], E, N[Pi, 300], Sin[Catalan], x^x + Log[Sin[x]]}

N[%]

This means that when sampling about c = 216 = 65 536 values, we expect to find two expressions hashed to the same
hash  value  [271÷],  [304÷].  (This  is  the  idea  of  the  birthday  paradox  used  here  [263÷],  [10÷],  [251÷].)  So  let  us  use
hash 105 different large integers.

SeedRandom[111]

t = {Hash[#], #}& /@ Table[Random[Integer, {1, 10^15}], {10^5}];

We now have a few less than 100000 different hash values (the actual number depends on the computer system and the
Mathematica session); this means we found some collisions. All randomly selected integers were different.)

{Length[Union[First /@ t]], Length[Union[Last /@ t]]}

Here are the pairs with the same hash value.

Map[Last, Select[Partition[Sort[t, (#1[[1]] < #2[[1]])&], 2, 1], 
                 (#[[1, 1]] == #[[2, 1]])&], {2}]

Map[Hash, %, {2}]

We do not have to invoke Random here (we discuss Random in the Chapter 1 of the Graphics volume [301÷]). Trying
to use the integers 1 to 105 will give 105 different hash values, but the numerical values of, say, 1 ê i for 1 § i § 105 will
be sometimes hashed to the same integer.

t = {Hash[N[#, 22]], #}& /@ Table[1/i, {i, 10^5}];

We now have less than 10000 different hash values; this means we found some collisions.

Length[Union[First /@ t]]

Map[Last, Select[Partition[Sort[t, (#1[[1]] < #2[[1]])&], 2, 1], 
                 (#[[1, 1]] == #[[2, 1]])&], {2}]

Map[Hash, N[%, 22], {2}]

Be aware that the explicit hash values for the numerical approximations of 1 ê i depend on the precision used.

Map[Hash, N[%%, 30], {2}]

Hash values are operating system- and session-dependent.

Σ (* session summary *) TMGBs`PrintSessionSummary[]

b) To be general, we implement one function for the calculation of the set k
HbL that takes into account about efficiency,

but  does  not  take  into  account  special  properties  of  b  and  k  (like  divisibility  rules  based  on  the  sums  of  the  digits
[247÷]).

There are  various  possible  approaches  to the calculation of  the set o
HbL.  We could,  for  instance, loop over  all  k-digit

integers and all multipliers m  and select the pairs fulfilling the conditions on their digits. Here we choose a more time
and  memory  efficient  approach.  We  search  for  the  s1  and  the  multipliers  m  and  build  the  digits  of  these  numbers
recursively from the end. Starting with an expression of the form {{lastDigit}, {2,…,mmax}} we form the expres-
sions  {{penultimateDigit, lastDigit}, {2,…,mmax}}  and  selects  the  multipliers  m  that  are  compatible  with  the
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conditions. Then we add the next digit and so on. Here mmax  is the largest possible multiplier m, the integer part of the

ratio of the largest to the smallest number from o
HbL. The trailing digits trailingDigits are compatible with the multiplier

m,  if  the last digits from the product  are from @1, kD  and if  the smallest and largest numbers having the trailing digits
trailingDigits allows having the multiplier m. The two functions nonRepeatingTrailingDigitsQ and minMax
BoundQ implement these two conditions.

(* no digits appears twice and come from [1, o] *)
nonRepeatingSequenceQ[l_, o_] := Length[Union[l]] === Length[l] && 
                                 Max[l] <= o && Min[l] =!= 0

(* the digits of the number n are fulfilling the conditions *)
nonRepeatingNumberQ[n_, k_, o_, base_] := 
            nonRepeatingSequenceQ[IntegerDigits[n, base, k], o]

(* the product of m and the number with trailing digits tDs 
   is fulfilling the conditions *)
nonRepeatingTrailingDigitsQ[tDs:trailingDigits_, m_, o_, base_] := 
   nonRepeatingNumberQ[m FromDigits[tDs, base], Length[tDs], o, base]

(* the multiplier m is compatible with the trailing digits *)
minMaxBoundQ[tDs:trailingDigits_, m_, allDigits_, b:base_] := 
Block[{tDsM, minX, maxX, minY, maxY, sc, scM},
      tDsM = IntegerDigits[m FromDigits[tDs, base], base, Length[tDs]];
      {sc, scM} = Sort[Complement[allDigits, #]]& /@ {tDs, tDsM}; 
      (* smallest and largest number *)
      {minX,  maxX} = FromDigits[Join[#, tDs ], b]& /@ {sc , Reverse[sc ]};
      (* smallest and largest number after multiplication *)
      {minY,  maxY} = FromDigits[Join[#, tDsM], b]& /@ {scM, Reverse[scM]};
      (* bounds on the multiplier *)
      If[IntegerQ[#], IntegerPart[#], IntegerPart[#] + 1]&[minY/maxX] <= 
         m <= IntegerPart[maxY/minX]]

Given  an  expression  of  the  form  {{trailingDigits},  {possibleMultipliers}},  the  function  reduceMultiples
selects the possible multipliers from possibleMultipliers.

reduceMultiples[{tDs:trailingDigits_, m:possibleMultiples_}, 
                o_, allDigits_, base_] := 
{tDs, Select[m, (* apply the two conditions *)
                (nonRepeatingTrailingDigitsQ[tDs, #, o, base] && 
                 minMaxBoundQ[tDs, #, allDigits, base])&]}

To  add  a  digit  to  the  already  present  trailing  digits  and  select  the  resulting  possible  sequences,  we  use  the  function
addDigit.

addDigit[{tDs:trailingDigits_, m:possibleMultiples_}, 
         o_, allDigits_, base_] := 
   reduceMultiples[{#, m}, o, allDigits, base]& /@ 
                   (Join[{#}, tDs]& /@ Complement[allDigits, tDs])

The function step applies the function addDigit to a list of expressions and deletes the ones which have no possible
multipliers.

step[tm:trailingDigitsAndMultiplesList_, o_, allDigits_, base_] := 
DeleteCases[Flatten[addDigit[#, o, allDigits, base]& /@ tm, 1], {_, {}}]

Putting now all these functions together, we arrive at the function findDigitsAndMultiples. 
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findDigitsAndMultiples[o_, base_] := 
Module[{allDigits = Range[o], start},
       (* fill in all first digits and all multipliers *)
       start = {{#}, Range[2, 
                     IntegerPart[FromDigits[Reverse @ allDigits, base]/
                     FromDigits[allDigits, base]]]}& /@ allDigits;
       (* add all o - 1 remaining digits *)
       Nest[step[#, o, allDigits, base]&, start, o - 1]]

Here is the simplest example: 3
H4L = 881234, 3124<<.

findDigitsAndMultiples[3, 4]

To format the results nicely, we implement a function formatIdentities.

formatIdentities[{digits_, multipliers_}, base_] := 
Block[{Equal, Times}, (HoldForm @@
{Equal[Times[BaseForm[#, base], BaseForm[FromDigits[digits, base], base]],
       BaseForm[# FromDigits[digits, base], base]]})& /@ multipliers]

Here are the seven pairs from the set 6
H7L.

formatIdentities[#, 7]& /@ findDigitsAndMultiples[6, 7]

The smallest o yielding nontrivial solutions in base 10 is o = 8. The 2270 different s1 are calculated in a few seconds.

Timing[Length[fdsm810 = findDigitsAndMultiples[8, 10]]]

Here are the solutions from the last set that have the largest multiplicity (three).

formatIdentities[#, 10]& /@ 
Function[λ, Select[fdsm810, Length[Last[#]] == λ&]][
         (* largest multiplicity *) Max[Length[Last[#]]& /@ fdsm810]]

And here is the number of pairs of the sets o
HbL  for 2 § b § 10, 1 § k § b - 1. The base b  increases downwards and o

increases horizontally.
With[{bMax = 10}, TableForm[
      Table[If[j < b, (* add multiplicity *) 
               Plus @@ (Length[Last[#]]& /@ 
                               findDigitsAndMultiples[j, b]), "-"], 
          {b, 2, bMax}, {j, bMax - 1}], TableSpacing -> 1, 
          TableHeadings -> {Range[2, bMax], Range[1, bMax - 1]},
          TableAlignments -> Center]]

Now  it  is  straightforward  to  calculate  the  cardinality  of  11
H12L  using  numberOfSolution[findDigitsAnd

Multiples[11, 12]]. The result is 2017603.

Σ (* session summary *) TMGBs`PrintSessionSummary[]

25. Function Calls in GluedPolygons 

This was the code for the construction of the glued polygons.
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GluedPolygons[n_Integer?(# >= 3&), angle:α_?(Im[N[#]] === 0&),
              iter__Integer?(# >= 0&), faceShape:(Polygon | Line),
              opts___Rule] :=
Module[{c = N[Cos[α]], s = N[Sin[α]], myUnion, , , allm, argch, 
        makeHole, makeLine,  = #/Sqrt[#.#]&, ∂ = 10^-6},
(* a completely transitive Union  *)
myUnion[l_] := Union[l, SameTest -> ((Plus @@ (#.#& /@ (#1 - #2))) < ∂&)];
(* construction of next layer *)
(* rotate a point *)
[point_, rotPoint_, {dir1_, dir2_, dir3_}] :=
 Module[{δ = point - rotPoint, parallel, normal},
        parallel = δ.dir1 dir1;
        normal = Sqrt[#.#]&[δ - parallel];
        rotPoint + c normal dir2 + s normal dir3 + parallel];
(* rotate points *) 
[l_] := 
Module[{dir1, dir2, dir3, first},
       (* 3 orthogonal directions *)
       dir1 = [Subtract @@ Take[l, 2]];
       dir2 = [(Plus @@ l)/Length[l] - (Plus @@ Take[l, 2])/2];
       dir3 = -Cross[dir1, dir2];
       Map[N[ [#, l[[1]], {dir1, dir2, dir3}]]&, l, {-2}]];
(* prepare lists *)       
allm[l_] := Table[RotateLeft[l, i], {i, Length[l] - 1}];
argch[l_] := Join[Reverse[Take[l, 2]], Reverse[Drop[l, 2]]];
(* make a hole in a polygon *)
makeHole[l_] := 
 With[{mp = (Plus @@ l)/Length[l], h = Append[#, First[#]]&[l]},
       MapThread[Polygon[Join[#1, Reverse[#2]]]&,
      {Partition[h, 2, 1], Partition[mp + 0.8(# - mp)& /@ h, 2, 1]}]];
(* wireframe or polygons *)
makeLine[l_] := Line[Append[l, First[l]]];
(* show graphics *)
Show[Graphics3D[If[faceShape === Polygon, makeHole[#], makeLine[#]]& /@ 
 Join[{Table[N[{Cos[ϕ], Sin[ϕ], 0}], {ϕ, 0, 2Pi - 2Pi/n, 2Pi/n}]},
(* build layer on layer *)
If[iter > 0, Flatten[NestList[myUnion[argch /@ (  /@
 Flatten[Join[allm /@ #], 1])]&, Join[argch /@ (  /@ #)]&[(* one face *)
    Table[Table[N[{Cos[ϕ], Sin[ϕ], 0}], {ϕ, ϕ0, ϕ0 + 2Pi - 2Pi/n, 2Pi/n}],
          {ϕ0, 0, 2Pi - 2Pi/n, 2Pi/n}]], iter - 1], 1], {}]]], opts]]

These are the functions we are interested in.

interestingFunctions =  {Reverse, Join, Dot, Map, Partition, 
          Apply, Take, MapThread, Drop, Table, Part, Flatten};

To monitor the number of calls to the built-in function func, we unprotect these functions and add a new rule to it. The
new rule never matches (the False in the condition), but as a side effect of the test, we monitor that they were called.

(Unprotect[#]; counter[#] = 0; 
 HoldPattern[#[___]] := Null /; (counter[#] = counter[#] + 1; False))& /@ 
                                          interestingFunctions;

Now, we run the construction of the glued polygons.

GluedPolygons[5, 3Pi/4, 1, Polygon, DisplayFunction -> Identity];

Here is the actual number of calls to the functions under consideration.

{#, counter[#]}& /@ interestingFunctions
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As a side effect in the condition testing, we not only monitor the call itself, but we also store the arguments used to call
func. Here, this is implemented.

(Unprotect[#]; bag[#] = Bag[]; 
 HoldPattern[#[args___]] := Null /; 
            (bag[#] = Bag[bag[#], Bag[args]]; False))& /@ 
                                          interestingFunctions;

Now, we run the construction of the glued polygons again.

GluedPolygons[5, 3Pi/4, 1, Polygon, DisplayFunction -> Identity];

For instance, Apply was called 16 times with Plus as its first argument.

Count[bag[Apply], Plus, Infinity]

Σ (* session summary *) TMGBs`PrintSessionSummary[]
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